
ABSTRACT

A Bivariate Regression Model with Correlated Mixed Responses

Ross A. Bray, Ph.D.

Chairpersons: John W. Seaman, Jr., Ph.D., and James D. Stamey, Ph.D.

In the dissertation we consider a bivariate model for associated binary and

continuous responses such as those in a clinical trial where both safety and efficacy

are observed. We designate a marginal and conditional model that allows for the

association between the responses by including the marginal response as an addi-

tional predictor of the conditional response. We use a Bayesian approach to model

the bivariate regression model using a hierarchical prior structure. Simulation stud-

ies indicate that the model provides good point and interval estimates of regression

parameters across a variety of parameter configurations, with smaller binary event

probabilities offering particular challenges. For example, as the probability of an

adverse event decreases, we find that the marginal posterior variances increase for

the binary safety response regression coefficients, but not for the conditional efficacy

response coefficients. Potential problems with induced priors are briefly considered.

We implement an asymptotic higher order approximation in order to obtain pa-

rameter estimates and confidence intervals via a simulation study. In comparison,

the frequentist intervals are slightly more narrow than the Bayesian intervals (using

vague priors), but the latter have far superior coverage. Finally, we implement a

Bayesian sample size determination method while controlling an operating charac-

teristic of the model, the family-wise error rate. We find that there is a savings in



power afforded by use of the multiplicity adjustment when simultaneously testing

multiple hypotheses. Simulation results indicate that multiplicity adjustments im-

prove the power of the model when compared to the overly conservative Bonferroni

adjustment. We also see an improvement in power through the effective use of prior

information.
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CHAPTER ONE

Introduction

Correlation between responses is common in many areas of statistics. One

place this is seen is in the trade-off between efficacy and safety in the context of a

clinical trial. When both responses are binary Thall and Cook (2004) discuss the

efficacy and safety trade-off in the context of a dose-finding study using Bayesian

methods and Conaway and Petroni (1996) mention various designs for clinical trials

that allow for this trade-off. In addition, Thall and Cheng (1999) propose a two-

dimensional treatment comparison when both efficacy and safety are real valued.

In this dissertation, we are not interested in the case when the responses are

similar, both discrete or continuous, but rather when they are mixed outcome types.

McCulloch (2008) proposes joint modeling of mixed outcome types using a latent

random effects model. Alternatively, Fitzmaurice and Laird (1995) introduce a bi-

variate regression based on a marginal and conditional formulation to model the

mixed outcomes. They incorporate an association between the responses by includ-

ing the marginal response as an additional predictor of the conditional response. We

will focus on the latter approach.

An important question in bivariate modeling is whether incorporating joint

outcomes indicates an improvement over modeling each outcome independently. The

principle of parsimony, or Ockham’s razor, tells us that the simpler model is better if

all else is equal. Stamey et al. (2013) develop a Bayesian sample size determination

on the model proposed by Fitzmaurice and Laird (1995). Their results indicate that,

assuming there is some correlation between the mixed outcomes, there is a savings

in sample size by implementing the bivariate model, rather than the independence

model.
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The dissertation is organized as follows. In Chapter Two we introduce a

Bayesian approach to the bivariate regression model from Fitzmaurice and Laird

(1995). We utilize an hierarchical prior structure in the context of an hypothetical

weight loss scenario. We investigate the performance of our model in the weight loss

scenario through a simulation study and discuss our recommendations for using the

model.

In Chapter Three we detail an asymptotic frequentist approach to inference

for this model called the r∗ method. This method is intended to provide improved

approximations over those utilizing Wald and score statistics. The r∗ method has its

basis in normal theory and utilizes an adjustment to the likelihood root statistic. We

continue to use the weight loss example from Chapter Two and perform a simulation

study to analyze the use of the r∗ method on the bivariate regression model. We

conclude Chapter Three with a comparison of the Bayesian approach to the r∗

method.

In Chapter Four we extend the Bayesian sample size determination from

Stamey et al. (2013). We are interested in exploring an operating characteristic

of the Bayesian model, the family-wise error rate (FWER), in testing multiple end-

points concurrently. We propose that utilizing multiplicity adjustments to control

the FWER will improve the power of the model. We also discuss the merits of using

frequentist methods such as multiplicity adjustments in a Bayesian context. We

look at two multiplicity adjustment methods, the fixed-sequence and fallback pro-

cedures, and use a Bayesian sample size simulation to compare their results to the

overly conservative Bonferroni adjustment method. We conclude the dissertation

with a discussion in Chapter Five.
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CHAPTER TWO

Bayesian Application of a Bivariate Mixed Response Model

2.1 Introduction

Bivariate responses are common in many areas of research. For example, a

computer manufacturer may wish to model processor speed and temperature as a

function of programming application (image editing vs data streaming, for example).

In drug development, a researcher may need to consider both efficacy and safety as a

function of treatment choice, gender, and other covariates. In general, the responses

may be both continuous, both discrete, or one of each. We are concerned with the

latter combination.

A general bivariate data model can, of course, be written in marginal and

conditional form:

Y1 ∼ D1(µ1(x),V1)

Y2|Y1 ∼ D2(µ2(x),V2),

(2.1)

whereDi(µi(x),Vi) is a specified distribution with mean function µi, covariate vector

x, and variance function Vi, i = 1, 2. In this dissertation, we focus on the situation

where one response is discrete and the other is continuous. Either can be chosen as

Y1 although, especially in the binary case, it is often convenient to condition on the

discrete random variable.

Olkin and Tate (1961) proposed one of the earliest methods for analyzing

mixed discrete and continuous outcomes with a general “location model” which has a

multinomial distribution for discrete outcomes and multivariate normal distribution

for the continuous outcome. In their case D1 is the discrete outcome and D2 is the

continuous outcome. Lauritzen and Wermuth (1989) provide another example, using

graphical models. In contrast, Cox (1972) takes D1 to be normal and the conditional

3



distribution of the binary response given the continuous response is Bernoulli with

a logistic link function.

Of particular interest to us is the case of a binary random variable, Y1, and a

continuous random variable, Y2, conditional on Y1. In the biopharmaceutical context,

this might take the form of a binary safety variable and a continuous efficacy variable.

This type of model has been considered, for example, by Fitzmaurice and Laird

(1995), Gueorguieva and Agresti (2001), and Teixeira-Pinto and Normand (2009).

The model used by Fitzmaurice and Laird (1995) takes D1 to be Bernoulli and D2

to be normal. They fit the resulting model using maximum likelihood. We offer

a Bayesian approach in this chapter. In Chapter Three, we provide frequentist

interval estimates using the r∗ method of Brazzale et al. (2007) to extend the results

in Fitzmaurice and Laird (1995). Stamey et al. (2013) implement a Bayesian sample

size determination on the model used by Fitzmaurice and Laird (1995). In Chapter

Four, we extend their approach in an attempt to improve operating characteristics

of our Bayesian model.

McCulloch (2008) looked at joint modeling of mixed outcomes but approached

it as a latent random effects model. Wei (2012) extended the model by McCulloch

(2008) using the Bayesian approach while also incorporating misclassification and

zero inflation. McCulloch (2008) is concerned with being able to model the corre-

lation between the mixed outcome types, while Fitzmaurice and Laird (1995) treat

the association between the responses as a nuisance parameter. A direct comparison

of these two models has not been done.

Our motivating problem stems from Robertson and Allison (2009) who study

the effects of various drugs on suicidal ideations and suicide attempts. We consider

two safety situations where weight loss is our efficacy variable.

In this chapter we present our Bayesian model. We detail the basic data model,

common to both the Bayesian and maximum likelihood approach, in Section 2.2. We

4



provide two hypothetical examples in Section 2.3. A simulation study is presented

in Section 2.4 and we conclude with a discussion in Section 2.5.

2.2 Data Model

In this section we present the bivariate data model. Following Fitzmaurice

and Laird (1995) we assume that we have both a binary and a continuous response

for each subject. In what follows, we sometimes refer to the binary variable as the

“safety” variable, and the continuous response as the “efficacy” variable, reflecting

our chief motivation. Of course, the model is more generally applicable.

Let Y1i be the binary response for the safety variable, where Y1i = 1 for an

adverse event and Y1i = 0 otherwise, for subject i, i = 1, ..., n. Also let Y2i be the

continuous response of the efficacy variable, for subject i. We assume both Y1i and

Y2i are dependent on covariate vector xi ≡ (x1i, x2i, ..., xpi)
′
. We also account for po-

tential dependence between Y1i and Y2i by including Y1i as an additional predictor

of Y2i. The model is given by

Y1i ∼ Bernoulli(πi)

with

logit(πi) = γ0 + γ1x1i +

p∑
j=2

γjxji, (2.2)

logit(πi) = log

(
πi

1− πi

)
, 0 < πi < 1,

and

Y2i|Y1i ∼ N(µi, σ
2),

where

µi = β0 + β1x1i +

p∑
j=1

βjxji + λ(y1i − πi). (2.3)

5



Notice that λ is included in the model to allow for the relationship between

Y1i and Y2i. Also notice that any number of covariates can be included additively in

the link functions of the model.

The logit link in (2.2) is symmetric around zero with lim
π→0

logit(πi) = −∞ and

lim
π→1

logit(πi) = ∞. We will be mainly interested in πi between 0 and 0.5. For this

case the intercept coefficient, γ0, will be negative and a positive covariate coefficient

corresponds to a larger probability while a negative covariate coefficient corresponds

to a smaller probability.

The effect of λ in the linear link (2.2) depends on whether the binary event

of interest occurred. If so, then the continuous response mean, µi, is adjusted by

λ(1 − πi) ∈ (−λ, λ). Note that, for rare adverse events, this adjustment will be

approximately equal to λ in magnitude.

We derive the marginal expectations and variances of Y1i and Y2i, as well as the

covariance between Y1i and Y2i. The marginal expectation of Y1i is straightforward:

E[Y1i] = πi =
exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)
1 + exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

) .
The marginal expectation of Y2i is

E[Y2i] = E[E(Y2i|Y1i)]

= β0 + β1x1i +

p∑
j=1

βjxji.

The marginal variance components are

V ar[Y1i] = πi(1− πi)

=
exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)
[
1 + exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)]2 ,

6



and

V ar[Y2i] = E[V ar(Y2i|Y1i)] + V ar[E(Y2i|Y1i)]

= σ2 +
λ exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)
[
1 + exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)]2 .

Finally, the covariance is

Cov[Y1i, Y2i] = E[y1iy2i]− E[y1i]E[y2i]

=
λ exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)
[
1 + exp

(
γ0 + γ1x1i +

∑p
j=1 γjxji

)]2 .

Note that the covariance is a linear function of λ and not a function of the regression

parameters for the continuous response.

2.3 Examples

2.3.1 Weight Loss/Suicide Attempt

Robertson and Allison (2009) discuss drugs that are associated with suicidal

ideations and attempts. Among these is a treatment for obesity. They consider the

number of suicidal ‘ideations’ that occurred while patients were on the drug and the

corresponding number of suicide attempts. Using their study in an hypothetical con-

text, we suppose that, in addition to suicidal ideation, percent body weight change

compared to baseline is available as an efficacy response. Our safety endpoint is

y1i = 1 for a suicide ideation and 0 otherwise, and the efficacy endpoint, y2i|y1i ∈ R,

is continuous and represents the percent body weight change compared to baseline.

A negative value of y2i|y1i indicates a weight gain. Let n be the number of patients

enrolled in the study and let age and gender also be recorded as covariates for each

subject. Here, x1i = age is continuous and x2i = gender is binary, with 1 indicating

male and 0 female. The data model is then

Y1i ∼ Bernoulli(πi),

7



with

logit(πi) = γ0 + γ1x1i + γ2x2i,

and

Y2i|Y1i ∼ N(µi, σ
2),

where, for Y1i = y1i,

µi = β0 + β1x1i + β2x2i + λ(y1i − πi). (2.4)

The likelihood is

L(y1i, y2i|β,γ, λ, σ) ∝
n∏
i=1

πy1i

i (1− πi)1−y1i(2πσ2)−1/2 exp

{
− 1

2σ2
(y2i − µi)2

}
,

(2.5)

where β = (β0, β1, β2)
′
, γ = (γ0, γ1, γ2)

′
,

πi =
exp[γ0 + γ1x1i + γ2x2i]

1 + exp[γ0 + γ1x1i + γ2x2i]
, (2.6)

and µi is defined in (2.4).

Prior information might be incorporated using conditional means priors, Zell-

ner’s g-priors, or other methods for prior construction in generalized linear models.

See, for example, Robert (2007) or Christensen et al. (2011) for overviews of such

methods. In the absence of prior information, diffuse priors on the regression co-

efficients can be constructed by using normal distributions, centered at zero, and

with large variances. We take the latter approach, assigning β0 ∼ N(0, 1000),

β1, β2 ∼ N(0, 100), γi ∼ N(0, 100), λ ∼ N(0, 1000), and σ ∼ U(0, 100), where

i = 0, 1, 2, and the joint prior is denoted p(β,γ, λ, σ). The specified hierarchical

model is pictured in Figure 2.1. The upper bound on the uniform prior is chosen

to be large enough to have little influence on posterior quantities of interest. We

discuss this more thoroughly in Section 2.4.
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Figure 2.1: General Bayesian heirarchical model.

The joint posterior is

p(β,γ, λ, σ|y1i, y2i) ∝
n∏
i=1

[
πy1i

i (1− πi)1−y1i(2πσ2)−1/2 exp

{
− 1

2σ2
(y2i − µi)2

}]
× p(β,γ, λ, σ). (2.7)

No closed-form posteriors are available for our model, so we use Markov chain Monte

Carlo (MCMC) methods to find the posterior distributions. We will use OpenBUGS

(Thomas et al., 2006) to simulate from the posterior distributions of the parameters

via the BRugs package (Thomas et al., 2006) in R.

We want to simulate a sample data set to illustrate the suicide ideation under

obesity treatment scenario described above. We simulate age as N(40, 16) to repre-

sent a wide range of ages and then transform so that x1i is standard normal. We set

gender as x2i ∼ Bernoulli(0.5) with an equal probability for men and women. We

want to target an average of πi = 0.02 and µi = 10 which yields parameter values

β = (13, 1.67,−6) and γ = (−4.6, 0.24, 1.1). We set λ = 10 and σ = 5. With these

values the marginal expectations are E[Y1i] ≈ 0.017 and E[Y2i] = 10. Note that the

negative value of β2 corresponds to women losing more weight on average than men,
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while the positive value of γ2 results in a higher probability of an adverse event for

men.

We generated 600 observations from the data model using R. The counts for y1

are included in Table 2.1 and a histogram of y2 is shown in Figure 2.2. Notice that the

histogram appears fairly symmetric and centered around our target value of µi = 10.

We perform the MCMC analysis using OpenBUGS by running two chains with a

burn-in of 5,000 iterations and then saving next 10,000 iterations. Thinning was

set at 5 because chains that were not thinned exhibited autocorrelation. The initial

values for the first chain were set at β = (−10,−2,−3), γ = (−10,−2,−4), λ = −10,

and σ = 1. Initial values for the second chain were β = (10, 2, 3), γ = (10, 2, 4),

λ = 10, and σ = 7.

Table 2.1: Frequencies of y1 from the weight loss/suicide ideation generated data.

y1 Frequency
Adverse event 19

No Adverse event 581

Figure 2.2: Histogram of y2 for the weight loss/suicide ideation generated data.

To assess convergence, we consider autocorrelation plots, densities and Gelman-

Rubin plots. Autocorrelation plots indicated no problems after thinning. In Figure

10



Figure 2.3: Density plots for β0, β1, β2, and γ0.

2.3, we see that the densities for β0, β1, β2, and γ0 appear smooth and unimodal. The

densities for γ1, γ2, λ, and σ appear similar to Figure 2.3. Finally, the Gelman-Rubin

plots all converge to one quickly and thus, the chains appear to converge.

The results of the MCMC simulation are included in Table 2.2. The eight

parameters are aligned with their true value along with their posterior mean and

the 95% credible interval. Notice that each of the credible intervals contain their

respective true values. Estimation of γ1 and γ2 is inherently difficult given their

small values and the fact that we observed “only” 19 adverse events out of a sample

of 600. In fact, adverse events like suicide ideation would likely be even more rare,

depending on the population.

2.3.2 Weight Loss/Systolic Blood Pressure

Consider the same weight loss scenario above where, rather than monitor sui-

cidal ideations, we dichotomize measurements of systolic blood pressure where an

increase of, say, 10 mm/Hg or greater is considered an adverse event. The binary

response is now y1i = 1 for an increase of at least 10 mm/Hg, and 0 otherwise. The

11



Table 2.2: Posterior means and 95% credible intervals for the weight loss/suicide
ideations example.

Parameter True 2.5% Mean 97.5%
β0 13.00 12.21 12.79 13.38
β1 1.67 1.17 1.59 2.01
β2 −6.00 −6.36 −5.54 −4.71
γ0 −4.60 −5.64 −4.48 −3.55
γ1 0.24 −0.33 0.26 0.84
γ2 1.10 −0.32 0.87 2.18
λ 10.00 6.44 9.23 12.02
σ 5.00 4.72 5.00 5.29

continuous response is still weight loss and we will continue to have age and gender

as our covariates. We use the prior distributions discussed in the weight loss/suicidal

ideations example which results in the joint posterior given in (2.7).

The data simulation will be similar to the previous example. We keep the

covariate distributions at x1i ∼ N(0, 1), and x2i ∼ Bernoulli(0.5). We select πi =

0.05 and µi = 5, so that an increase in systolic blood pressure is not considered as

rare an event as a suicidal ideation. The resulting parameter values are β0 = 3,

β1 = 1.33, β2 = 4, γ0 = −2.44, γ1 = 0.41, and γ2 = −1.45, and we set λ = −5 and

σ = 1. The marginal expectations using these parameter values are E[Y1i] = 0.041

and E[Y2i] = 5.

The MCMC procedure was again performed using OpenBUGS via R. We saved

10,000 iterations with a burn-in of 5,000 for two chains with thinning set at 5, and

initial values as in Section 2.3.1. Similar to the previous example, there were no

convergence issues in the autocorrelation, density, or Gelman-Rubin plots.

The results of the MCMC simulation are included in Table 2.3. Again, the

true value of the parameters aligned with their posterior means and 95% credible

intervals. Notice that, with the exception of γ2, the posterior means are fairly close

to their true values.
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Table 2.3: Posterior means and 95% credible intervals for the weight loss/systolic
blood pressure example.

Parameter True 2.5% Mean 97.5%
β0 3.00 2.82 3.01 3.19
β1 1.33 1.22 1.32 1.43
β2 4.00 3.75 3.97 4.20
γ0 −2.44 −2.80 −2.38 −1.99
γ1 0.41 0.12 0.42 0.71
γ2 −1.45 −3.29 −2.11 −1.14
λ −5.00 −5.05 −4.68 −4.31
σ 1.00 0.97 1.03 1.09

2.4 Simulation

We now assess how our model performs through a simulation study. We would

like to explore the performance of the model over a wide variety of πi and µi values.

We continue to use the weight loss drug as the hypothetical basis for our simu-

lation. For efficacy we will look at values of µi between 0 and 20, corresponding

to body weight percentage lost between 0 and 20 percent compared to baseline.

We set the range of πi for the safety variable between 0 and 0.20. Larger values

correspond to a safety variable with a higher probability of an adverse event such

as headaches or skin irritation. We target three values each of πi and µi. They are

πi = 0.02, 0.05, and 0.20, and µi = 5, 10, and 20. We will also choose λ = −5 and 10

and σ = 1 and 5. Therefore, combining every possible combination of πi, µi, λ, and

σ gives us 36 possible design points.

The complete data model is

Y1i ∼ Bernoulli(πi),

with

logit(πi) = γ0 + γ1x1i + γ2x2i,

and

Y2i|Y1i ∼ N(µi, σ
2),
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where, for Y1i = y1i,

µi = β0 + β1x1i + β2x2i + λ(y1i − πi).

Let x1i ∼ N(0, 1) and x2i ∼ Bernoulli(0.5) continue to be age and gender respec-

tively.

By specifying values of πi and µi, we can infer values of γ and β. Suppose

we take πi = 0.02. This means that, on average, individuals in this study have a

probability of 0.02 of experiencing an adverse event. The logit of 0.02 is approx-

imately −3.89. We must now choose how much of an effect age will have on the

probability of an adverse event. We arbitrarily choose that the probability of an

adverse event will fluctuate plus or minus two percent based on plus or minus three

standard deviations of the standard normal distribution. Thus, for three standard

deviations above the mean, we would have a probability of 0.04, and the logit of

0.04 is approximately −3.178. We can then calculate

γ1 =
logit(0.04)− logit(0.02)

3

=
−3.178− (−3.89)

3

≈ 0.24.

Note that this does not yield an exact zero probability for three standard deviations

below the average age because of the asymmetric properties of the logit transfor-

mation. Next we must decide what effect gender will have on the probability of an

adverse event. We arbitrarily choose that males, at the average age, will have a

probability of 0.03 while females, at the average age, will have a probability of 0.01.

The logit of 0.01 is approximately −4.6 and the logit of 0.03 is approximately −3.5.
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Therefore,

γ2 = logit(0.03)− logit(0.01)

= −3.5− (−4.6)

= 1.1.

Finally, γ0 is the probability of an adverse event for a female at the average age

which, from before, yields γ0 = logit(0.01) ≈ −4.6.

Similarly, we can calculate values of β for a target value of µi. Suppose the

baseline value of an average percent body weight lost is µi = 5. We arbitrarily choose

that the percent body weight lost will be plus or minus four percent for plus or minus

three standard deviations of age. Thus, we see that β1 = 4/3 ≈ 1.33. Furthermore,

we choose to have males at the average age lose seven percent of their body weight,

while females at the average age lose 3 percent of their body weight. Therefore,

β2 = 7 − 3 = 4. Finally, β0 corresponds to a female at the average age, and thus

β0 = 3.

Each target value of πi corresponds to a different set of true γ values such that

setting πi = 0.02 yields γ = (−4.6, 0.24, 1.1)
′
, πi = 0.05 yields γ = (−2.44, 0.41,−1.45)

′
,

and πi = 0.20 yields γ = (−1.73, 0.11, 0.64)
′
. Similarly, setting µi = 5 gives β =

(3, 1.33, 4)′, µi = 10 gives β = (13, 1.67,−6)
′
, and µi = 20 gives β = (16, 1, 8)′. Each

of the design points is listed in Table 2.4. We will refer to the design point with

πi = 0.02 and µi = 5 as design point 1 (DP1). Then call the case when πi = 0.05

and µi = 5 design point 2 (DP2). Continuing from left to right in Table 2.4 and

moving from top to bottom we have design points 3 through 9 (DP3 — DP9). Each

of the nine design points will also be run with the four combinations of λ and σ

discussed earlier.

For each of the simulations we ran 50 replications of OpenBUGS using R. The

first 5,000 iterations were discarded as a burn-in and the next 10,000 iterations were
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Table 2.4: The design points over which the simulation will be run.

Efficacy π = 0.02 π = 0.05 π = 0.20

µ = 5
γ = (−4.6, 0.24, 1.1)
β = (3, 1.33, 4)

γ = (−2.44, 0.41,−1.45)
β = (3, 1.33, 4)

γ = (−1.73, 0.11, 0.64)
β = (3, 1.33, 4)

µ = 10
γ = (−4.6, 0.24, 1.1)
β = (13, 1.67,−6)

γ = (−2.44, 0.41,−1.45)
β = (13, 1.67,−6)

γ = (−1.73, 0.11, 0.64)
β = (13, 1.67,−6)

µ = 20
γ = (−4.6, 0.24, 1.1)
β = (16, 1, 8)

γ = (−2.44, 0.41,−1.45)
β = (16, 1, 8)

γ = (−1.73, 0.11, 0.64)
β = (16, 1, 8)

recorded with thinning set at 5. We checked a random 4% of each set of simulation

replications for convergence and did not find any problems. We generated samples

with n = 600 for each of the 50 replications and we continue to use the prior

structure from the examples where β0, λ ∼ N(0, 1000), β1, β2, γ0, γ1, γ2 ∼ N(0, 100)

and σ ∼ U(0, 100). Initial values were set at 0 for all parameters except σ = 1.

The upper bound of 100 in the prior on σ allows for any body weight change,

from 0 to 100%. This is obviously conservative. Note that if we did have a bounded

parameter space for σ we could calculate an exact upper bound for the uniform

prior.

The sample size was chosen so that the 95% credible sets would not include zero

for some values of the parameters. Stamey et al. (2013) give a detailed discussion

of a Bayesian sample size determination for this model. They look at both the

average length and power criterion for evaluating the model, while also looking at

various cases of interest. One case is the situation where β1 is the parameter of

interest for some treatment covariate, x1. They also look at sample size in relation

to λ, the strength of the relationship between the binary and continuous components.

Finally, they look at the case where β1 and γ1 are of interest for the binary treatment

covariate, x1. Sample size issues will also be considered in Chapter Four.

The results for DP2 with λ = 10 and σ = 5 are included in Table 2.5. This

corresponds to our hypothetical weight loss drug example where an increase in sys-
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Table 2.5: Simulation results for DP2 with λ = 10 and σ = 5.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 3.00 2.29 2.92 3.57 1.28 0.98
β1 1.33 0.96 1.40 1.83 0.87 0.96
β2 4.00 3.23 4.11 4.98 1.74 0.92
γ0 −2.44 −2.96 −2.51 −2.09 0.88 0.98
γ1 0.41 0.09 0.45 0.80 0.71 0.92
γ2 −1.45 −2.64 −1.60 −0.70 1.94 0.96
λ 10.00 8.11 9.93 11.75 3.64 0.92
σ 5.00 4.69 4.97 5.26 0.56 0.96

tolic blood pressure is the safety variable of interest. This scenario assumes that the

drug results in an average weight loss of 5% with a probability of an adverse event of

0.05. Table 2.5 shows the true value of each parameter, the average of the posterior

means and 95% credible intervals, as well as the average width and coverage of the

intervals. Notice that the average of the posterior means is within, at most, 0.15, for

all parameters. The lowest coverage for this simulation is 92% and this is represen-

tative of most of the simulations. We do have a few simulations where the coverage

drops below 90% for one or two parameters with the lowest coverage occurring at

84%.

Figure 2.4 shows box plots of the four combinations of λ and σ for DP2 for β0.

The horizontal center line is the true value of β0 = 3. The center point for each box

plot is the average of the posterior means for the 50 replications of that simulation.

The upper and lower limits of the box plots are the average of the upper and lower

bounds, respectively, on the 95% posterior credible sets for the 50 replications. The

three gray bars in each box plot are centered at the average posterior means and

the average lower and upper bounds for the 95% credible intervals. The gray bars

extend plus and minus one simulation standard deviation above and below their

respective points on the box plot in order to give an estimate of the variability of
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Figure 2.4: Spread of posterior estimates for β0 in DP2.

the simulation. These bars occasionally overlap, and when this is the case we see a

darker shade of gray.

There are several things to note in Figure 2.4. First, on average, the posteriors

are fairly close to the true value of β0. Also, the width of the intervals appears

reasonable. These two trends follow in the estimation of the three efficacy regression

parameters across all 36 of the simulations. Notice that the width of the 95% credible

intervals is larger when σ is larger. This is also true for the simulation variability.

Again, these observations follow across all simulations for all three efficacy regression

parameters. Also notice a slight increase in the width of the credible sets when λ

has a magnitude of 10, as opposed to when λ has a magnitude of 5. This also follows

in the estimation of the efficacy regression parameters for each of the simulations,

although the disparity is more difficult to see in β2 and as πi gets smaller.

Estimation for the three safety regression parameters is more complicated.

Figures 2.5 and 2.6 show results that are similar to what we saw with the efficacy

regression parameters. One obvious difference is that the width of the intervals for

γ0 are little changed when σ is increased from 1 to 5. Estimation of γ2 is similar to

γ0 in this sense. The effect of σ on the estimation of γ1 in Figure 2.6 is similar to its

effect on the efficacy regression parameters but with smaller magnitude when our
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Figure 2.5: Spread of posterior estimates for γ0 in DP2.

Figure 2.6: Spread of posterior estimates for γ1 in DP2.
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probability of an adverse event is larger. This shows up in design points 3, 6, and 9

where πi = 0.20 and can be seen in Figure 2.7. This is the only observable difference

between how the model estimates γ1 and how it estimates the efficacy regression

parameters.

Figure 2.7: Spread of posterior estimates for γ1 in DP3.

The model has a more difficult time estimating the parameters for the binary

safety variable when the probability of an adverse event approaches 0, specifically in

the estimation of γ0 and γ2. This is evident in our design points 1, 4, and 7. Figure

2.8 is similar to the previous figures, however in order to be readable we have moved

the gray bar for the average of the lower bound of the 95% credible sets to the left

of the box plots and moved the gray bar for the average of the upper bound of the

95% credible sets to the right of the box plot. Note that the simulation variation

on the lower bounds is extremely high. This occurs because the small probability

of an adverse event means we only have a few events out of our total sample of

n = 600. When this happens the model tries to estimate an extremely small value

for a probability of an adverse event which results in estimates of, mainly, γ0 and

γ2 that are far from their true values. This only occurs in a small percentage of the

simulation replications, as can be seen in the high coverage percentages, however
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those few replications result in large simulation variability. When this is the case

it may be more interesting to use an alternative variability measurement to the

standard deviation, such as the median absolute deviation. Figure 2.9 is the same

as Figure 2.8 but with one median absolute deviation used to show the variability

rather than one standard deviation. Figure 2.9 is a much better representation of

how the simulation affects the estimation of γ0 in DP1.

Figure 2.8: Spread of posterior estimates for γ0 in DP1.

Estimation of λ is similar to what we saw with the efficacy regression param-

eters. The width of the intervals is dependent on the value of σ as well as the

probability of an adverse event. Thus, the interval width decreases as σ decreases,

and the interval width increases as πi goes towards 0.

Estimation of σ seems to only depend on the value of σ itself. When σ = 1

we see interval widths of approximately 0.11 for every simulation, while when σ = 5

the interval width increases to approximately 0.56 for each simulation. Additional

simulation results are included in Appendix A.

2.5 Discussion

The results of the simulation suggest that the performance of the model is

heavily dependent on the probability of an adverse event. As πi approaches 0 the
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Figure 2.9: Spread of posterior estimates for γ0 in DP1 using the median absolute
deviation.

model behaves erratically, especially in estimating γ0 and γ1. However, as πi in-

creases, the model seems to perform better. We see this in Figures 2.5 and 2.8. One

reason this could be happening is the induced prior on πi. We see in Figure 2.10 that

for relatively non-informative normal priors on the three safety regression parame-

ters we induce a “bathtub” shaped prior on πi. This means that as the true value of

πi approaches zero, the prior may start to overwhelm the likelihood in the posterior

distribution. As we put more informative priors on the safety regression parameters,

the induced prior becomes less of a problem. Thus, if we have information about πi

that can be translated into information about the safety regression parameters we

need to include it in our prior specification. One way to do this is through condi-

tional means priors. Seaman III et al. (2012) discuss the use of conditional means

priors and also give a more complete discussion of the induced prior problem. An-

other way to improve the results is by increasing the sample size. This would result

in a larger number of adverse events. With more information in the data, the prior

would not have as much of an impact on the posterior. Note that the induced prior

on µi appears to be, like the priors for the efficacy regression parameters and the

prior for λ, a relatively non-informative normal prior.
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Figure 2.10: Induced prior on π when generating 10,000 values from the covariate
distributions and the diffuse normal priors on the safety regression parameters.
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CHAPTER THREE

Higher Order Approximation to the Mixed Response Model

3.1 Introduction

Normal-theory approximations are often used in the construction of interval

estimates and hypothesis testing. One of these approximations is based on the Wald

statistic. This approach tends to perform well when we have a large sample size

resulting in an accurate normal approximation. We do not, however, know when

the sample is large enough to facilitate an accurate approximation. For complex

models, the regularity conditions necessary for the use of such approximations may

be suspect and difficult to check. Higher order approximations offer an alternative.

These include Edgeworth and saddlepoint approximations (Butler, 2007) the likeli-

hood based p-formula, and Barndorff-Nielsen’s p∗-formula (Barndorff-Nielsen, 1983;

Pawitan, 2001), and r∗, the modified likelihood root formula (Brazzale et al., 2007).

In this chapter we consider methods of obtaining approximate likelihoods in

order to perform inference for the bivariate discrete and continuous model mentioned

in Chapter Two, repeated here for convenience:

Y1i ∼ Bernoulli(πi), (3.1)

and

Y2i|Y1i ∼ N(µi, σ
2),

with link functions

logit(πi) = γ0 + γ1x1i + γ2x2i,

and

µi = β0 + β1x1i + β2x2i + λ(y1i − πi).

24



In Section 3.2 we consider the commonly used p∗ method. As we shall see, this

approach is not suitable for our model. In Section 3.3, we consider a higher-order

approximation, the r∗ method. We apply this approach to a simple linear regres-

sion model in Section 3.4 for illustration purposes. In Section 3.6, we use the r∗

method for our bivariate discrete and continuous model in (3.1). We conclude with

a discussion of our conclusions in Sections 3.8 and 3.10 respectively.

3.2 The p∗ Method

We consider the p∗-formula because the r∗ method was originally derived from

it. The p∗-formula often yields a good approximation to the sampling density and is

in wide use in the literature (Pace et al., 2011; Jiang and Wong, 2012; Cortese and

Ventura, 2012; Barreto et al., 2013). Efron (1998) even goes so far as to refer to the

p∗-formula as a ‘magic formula’ because of how well the approximation performs in

many cases.

Our overview of the p∗ method follows that of Pawitan (2001, pp. 247-250).

Suppose we have observations from a distribution indexed by a real-valued param-

eter, θ. Let θ̂ be a maximum likelihood estimator (MLE) of θ. From normal theory

we have,

θ̂ ∼ N
(
θ, j(θ̂)−1

)
,

where j(θ̂) is the observed information. Pawitan gives an in depth discussion of the

use of the observed versus the expected information. The approximate sampling

density of θ̂ is

pθ(θ̂) ≈ (2π)−1/2|j(θ̂)|1/2 exp

{
−j(θ̂)

2
(θ̂ − θ)2

}
. (3.2)

It can also be shown that an approximation of the log likelihood ratio statistic is

log
L(θ)

L(θ̂)
≈ −j(θ̂)

2
(θ̂ − θ)2.
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Substituting, we have

pθ(θ̂) ≈ (2π)−1/2|j(θ̂)|1/2L(θ)

L(θ̂)
. (3.3)

This is referred to as the likelihood-based p-formula, and Pawitan (2001) states that

it is ‘much more accurate’ than the normal-based formula in (3.2). We can improve

(3.3) by including a normalizing constant to make the density integrate to one. The

density is then

p∗θ(θ̂) ≈ c(θ)(2π)−1/2|j(θ̂)|1/2L(θ)

L(θ̂)
, (3.4)

and is called Barndorff-Nielsen’s p∗-formula (Barndorff-Nielsen, 1983).

In order to use the p∗-formula for inference, we find a p-value for testing

H0 : θ = θ0. If we are interested in a confidence interval for θ at some specified

significance level, α, we need to find the θ0’s such that the p-values are α/2 and

(1 − α/2). The difficulty with this method comes when the parameter is vector-

valued — call it θ — with dimension k. We are often only interested in a sub-vector

of θ but the p∗ method does not allow for easy elimination of nuisance parameters.

This forces the use of k-dimensional hypotheses or corresponding confidence regions,

which is often not practical. For this reason, we have chosen to employ another

higher-order approximation method that does allow for nuisance parameters. We

turn to that approach now.

3.3 The r∗ Method

The r∗ approximation was originally derived from the p∗-formula in Barndorff-

Nielsen (1986) and Barndorff-Nielsen (1990). The results are also summarized in

Barndorff-Nielsen and Cox (1994, Chapter 6). This approach affords a higher-order

approximation with the flexibility to handle nuisance parameters. We begin with a

detailed look at the basic r∗ method, applied to scalar parameters, following Brazzale

et al. (2007, pp. 5 ff.).
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Let z1, ..., zn be independent identically distributed random variables with

probability density function f(z; θ), where θ is an unknown scalar parameter. Let

`(θ) =
∑

log f(zi; θ) be the log likelihood, θ̂ the MLE, and j(θ) = −∂2`(θ)/∂θ2 the

observed information function. We denote the likelihood root by

r(θ) = sign(θ̂ − θ)
[
2
{
`(θ̂)− `(θ)

}]1/2

. (3.5)

The score statistic is

s(θ) = j(θ̂)−1/2∂`(θ)/∂θ, (3.6)

and the Wald statistic is

t(θ) = j(θ̂)1/2(θ̂ − θ). (3.7)

Note that (3.5) is a transformation of the likelihood ratio statistic,

w(θ) = r(θ)2 = 2
{
`(θ̂)− `(θ)

}
. (3.8)

Equations (3.5), (3.6), and (3.7) all have asymptotic standard normal distributions

under f(z; θ) and assuming certain conditions. Similarly, (3.8) has an asymptotic

chi-squared distribution with one degree of freedom.

Brazzale et al. (2007, Chapter 8) discuss higher order asymptotics. They

describe the modified likelihood root, which is

r∗(θ) = r(θ) +
1

r(θ)
log

{
q(θ)

r(θ)

}
, (3.9)

where q(θ) can be the score statistic, Wald statistic, or other functions depending on

the situation. For the univariate case, if the model is a member of the exponential

family, the Wald statistic is appropriate and q(θ) = t(θ). As with equations (3.5)–

(3.7), r∗(θ) has an asymptotic standard normal distribution. Brazzale et al. (2007)

state that the “normal approximation to the distribution of r∗(θ) can provide almost

exact inferences for θ, when these are available.”

Confidence intervals for θ using r∗(θ) can be calculated by testing the null

hypothesis that θ = θ0 for some specified θ0 against the alternative, θ 6= θ0. Thus,
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we use a grid of θ0 values and find the values such that Φ (r∗(θ0)) = α/2, and

Φ (r∗(θ0)) = 1 − α/2 for some specified confidence level α, where Φ denotes the

standard normal distribution function.

In general, we are more interested in models with more than one variable. Let

θ = (ψ,λ) be the d× 1 vector of parameters where ψ is the, possibly vector-valued,

parameter of interest and λ is the vector of nuisance parameters. In order to perform

inference on ψ we must eliminate the nuisance parameters, λ. We will do this using

the profile log likelihood, by substituting λ̂ψ for λ, where λ̂ψ is the constrained

MLE found by maximizing `(ψ,λ) with respect to λ for fixed ψ. The profile log

likelihood is

`p(ψ) = max
λ

`(ψ,λ) = `(ψ, λ̂ψ). (3.10)

The observed information for the profile log likelihood is

jp(ψ) = −∂
2`p(ψ)

∂ψ∂ψT

=
{
jψψ(ψ, λ̂ψ)

}−1

. (3.11)

Partition the observed information matrix into

j(ψ,λ) =

 jψψ(ψ,λ) jψλ(ψ,λ)

jλψ(ψ,λ) jλλ(ψ,λ)


such that jψψ(ψ, λ̂ψ) =

(
jψψ(ψ, λ̂ψ)

)−1

. If the parameter of interest is a scalar, ψ,

then rather than (3.11), we can define

jp(ψ) =
|j(ψ, λ̂ψ)|
|jλλ(ψ, λ̂ψ)|

,

where | · | is the determinant.

We can now define a modified likelihood root, r∗, that is similar to the uni-

variate version in (3.9), but includes an improved approximation and adjusts for

eliminating the nuisance parameters. This modified likelihood root is

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
q(ψ)

r(ψ)

}
, (3.12)
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where

r(ψ) = sign(ψ̂ −ψ)
[
2
{
`p(ψ̂)− `p(ψ)

}]1/2

, (3.13)

q(ψ) = t(ψ)ρ(ψ, ψ̂), (3.14)

t(ψ) = j1/2
p (ψ̂)(ψ̂ −ψ), (3.15)

and

ρ(ψ, ψ̂) =

{
|jλλ(θ̂)|
|jλλ(θ̂ψ)|

}1/2

, (3.16)

where θ̂ = (ψ̂, λ̂) and θ̂ψ = (ψ, λ̂ψ). The form of q has been modified from the

univariate case. As before, r∗ can be approximated by the standard normal distri-

bution.

Brazzale et al. (2007, p. 14) discuss that the most difficult part of using the r∗

approximation is the choice of the function q. When the parameter of interest is a

component of the canonical parameter in an exponential family, then the calculation

of (3.14) is fairly straightforward and has a good approximation to the exact condi-

tional distribution. Brazzale et al. (2007) also consider other methods for choosing

the q function.

Note that in order to use the r∗ method we need to have MLE’s for each of

our parameters. In general, we are interested in the r∗ approximation in cases when

there are no closed form solutions for the MLE’s. A numerical algorithm will have

to be implemented. We have used the mle function found in the stats4 package in

R. This function calls the optim function from the stats package, and we have used

the default method by Nelder and Mead (1965). We now illustrate the r∗ method

for the simple linear regression case.

3.4 Example: Simple Linear Regression

Consider the simple linear regression case where we let y1, ..., yn be iid observa-

tions from a N(µi, σ
2) distribution where µi = β0 +β1xi, and xi is some covariate of
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interest. We are interested in using the r∗ approach to construct confidence intervals

for β0, β1, and σ2. The likelihood is

L(µi, σ
2) =

n∏
i=1

(2πσ2)−1/2 exp

{
− 1

2σ2
i

(yi − µi)2

}
,

and the log likelihood is

`(µi, σ
2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − µi)2.

Substituting for µi we can calculate the MLE’s as the solution to the system of

equations

β̂0 = ȳ − β̂1x̄,

β̂1 =

∑n
i=1 xiyi − β̂0nx̄∑n

i=1 x
2
i

,

and

σ̂2 =

∑n
i=1(yi − β̂0 − β̂1xi)

2

n
.

We will also implement our numerical algorithm for the MLE’s, but will be able to

compare their results to the exact values.

Because we are interested in inference on all three parameters for this model,

we could let θ = ψ = (β0, β1, σ
2), using the terminology from Section 3.3. This

approach would be analogous to the p∗ method from Section 3.2, and we are not

interested in this because we would be creating a three dimensional confidence region

rather than three individual intervals. Thus, we will be implementing the r∗ method

three times with each of the three parameters as the one of interest.

Let β0 be the parameter of interest in the first iteration through the method.

We can then define

`p(β0) = max
λ

`(β0,λ)

= −n
2

log(2π)− n

2
log σ̂2 − 1

2σ̂2

n∑
i=1

(yi − β0 − β̂1xi)
2, (3.17)
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where λ = (β1, σ
2). Next, using (3.17), we have

r(β0) = sign(β̂0 − β0)
[
2
{
`p(β̂0)− `p(β0)

}]1/2

= sign(β̂0 − β0)

{
− 1

σ̂2

n∑
i=1

[
(yi − β̂0 − β̂1xi)

2 − (yi − β0 − β̂1xi)
2
]}

. (3.18)

It can be shown that

j(β0, β1, σ
2) =


n
σ2

∑n
i=1 xi
σ2

1
σ4

∑n
i=1 hi∑n

i=1 xi
σ2

∑n
i=1 x

2
i

σ2
1
σ4

∑n
i=1 xihi

1
σ4

∑n
i=1 hi

1
σ4

∑n
i=1 xihi

1
σ6

∑n
i=1 h

2
i − n

2σ4

 , (3.19)

where hi = yi − β0 − β1xi. Thus, using (3.19),

jp(β0) =
{
jβ0β0(β0, λ̂β0)

}−1

. (3.20)

and from (3.20)

t(β0) = j1/2
p (β̂0)(β̂0 − β0). (3.21)

Using (3.19), we can now define

ρ(β0, β̂0) =

{
|jλλ(β̂0, λ̂)|
|jλλ(β0, λ̂β0)|

}1/2

, (3.22)

where

jλλ(β̂0, λ̂) =


∑n
i=1 x

2
i

σ̂2
1
σ̂4

∑n
i=1 xihi

1
σ̂4

∑n
i=1 xihi

1
σ̂6

∑n
i=1 h

2
i − n

2σ̂4

 ,

and

jλλ(β0, λ̂β0) =


∑n
i=1 x

2
i

σ̂2
β0

1
σ̂4
β0

∑n
i=1 xihi

1
σ̂4
β0

∑n
i=1 xihi

1
σ̂6
β0

∑n
i=1 h

2
i − n

2σ̂4
β0

 .

Thus, from (3.21) and (3.22), we have

q(β0) = t(β0)ρ(β0, β̂0), (3.23)

and using (3.18) and (3.23) we get

r∗(β0) = r(β0) +
1

r(β0)
log

{
q(β0)

r(β0)

}
,
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which has an asymptotic standard normal distribution. Inference on β1 and σ2

follows a similar development to β0.

We will be analyzing a simulated sample for the Wald, likelihood root, and r∗

methods. Let β0 = 5, β1 = 3, and σ2 = 2. We will simulate a sample of independent

yi’s of size n = 30 from a N(β0 + xβ1, σ
2) distribution where we choose x ∼ N(0, 4).

For this example we have chosen the endpoints for β0 of (2, 8) enclosing a grid of 500

points. This is an arbitrary choice designed to be outside the 95% interval for β0.

In practice one would not know the true value of the parameter and could choose

the endpoints using alternative methods. One such method is to calculate the MLE

and information for a parameter and set the endpoints to the MLE plus and minus

3 standard deviations. The grid size should be chosen to reflect the amount of

precision needed.

The MLE for β0 using the numerical algorithm described in Section 3.3 is

approximately 5.11, seen in Table 3.1. Notice that the approximate MLE appears

equal to the true MLE, also in Table 3.1. The two MLE’s are equal to at least six

decimal places. We also see that the confidence interval for β0 using the r∗ method

is (4.57, 5.64). Comparatively, the intervals using both the Wald and likelihood root

methods are (4.59, 5.63). In this example, the inference for the three methods is

similar.

Table 3.1 also includes the results for β1 and σ2. As with β0 the true and nu-

merical MLE’s agree out to six decimal places. The intervals for β1 are very similar,

while the intervals for σ2 are close but not as much as the other two parameters.

Note that the length of the r∗ interval for σ2 is shorter than that of the Wald or

likelihood ratio.
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Table 3.1: Likelihood results for the three parameters of the simple linear regression
example.

Method β0 β1 σ2

True MLE 5.11 2.96 2.06
Numerical MLE 5.11 2.96 2.06

Statistic 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
Wald 4.59 5.63 2.83 3.10 1.01 3.11
Likelihood Root 4.59 5.63 2.83 3.10 1.29 3.58
r∗ 4.57 5.64 2.81 3.10 1.18 3.12

3.5 Example: Gamma Data

The r∗ method is most useful when statistics such as the Wald pivot have

a poor normal approximation to the parameter of interest. We have adapted an

example from Brazzale et al. (2007) illustrating this using gamma data. We have

included more detail than in their presentation.

Consider a sample y1, ..., yn from the gamma distribution

f(y;ψ, λ) =
λψyψ−1

Γ(ψ)
exp(−λy), y > 0, λ, ψ > 0,

where our parameter of interest is ψ. The log likelihood is

`(ψ, λ) = ψ
n∑
i=1

log yi − nλȳ + n(ψ log λ− log Γ(ψ))−
n∑
i=1

log yi. (3.24)

Taking the derivative with respect to λ we have

∂`(ψ, λ)

∂λ
= −nȳ +

nψ

λ
.

Setting to zero and solving gives the MLE

0 = −nȳ +
nψ

λ̂
⇒ nȳ =

nψ

λ̂

⇒ λ̂ = λ̂ψ =
ψ

ȳ
. (3.25)
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The negation of the second derivative with respect to λ yields

jλλ(ψ, λ) = −∂
2`(ψ, λ)

∂λ2

= −
(
−nψ
λ2

)
=
nψ

λ2
. (3.26)

Using (3.16) we see

ρ(ψ, ψ̂) =

{
|jλλ(ψ̂, λ̂)|
|jλλ(ψ, λ̂ψ)|

}1/2

=


nψ̂

λ̂2

nψ

λ̂2
ψ


1/2

=


nψ̂(
ψ̂
ȳ

)2

nψ

(ψȳ )
2


1/2

=


ȳ2

ψ̂

ȳ2

ψ


1/2

=

(
ψ

ψ̂

)1/2

, (3.27)

and ψ̂ can be calculated numerically. From (3.24) and (3.25) we can get the profile

log likelihood

`p(ψ) = ψ
n∑
i=1

log yi − nȳ
(
ψ

ȳ

)
+ n

(
ψ log

ψ

ȳ
− log Γ(ψ)

)
−

n∑
i=1

log yi

= ψ
n∑
i=1

log yi − nψ + nψ log
ψ

ȳ
− n log Γ(ψ)−

n∑
i=1

log yi

= ψ

[(
n∑
i=1

log yi

)
− n

]
+ n

[
ψ log

ψ

ȳ
− log Γ(ψ)

]
−

n∑
i=1

log yi. (3.28)

Now taking the derivative of (3.28) with respect to ψ gives

∂`p(ψ)

∂ψ
=

[
n∑
i=1

log yi

]
− n+ n logψ + n− n log ȳ − nΨ(ψ)

=
n∑
i=1

log yi + n logψ − n log ȳ − nΨ(ψ),
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Figure 3.1: Inference for shape parameter ψ of gamma sample of size n = 5. The
likelihood root, Wald pivot, and modified likelihood root. The horizontal lines are
at 0, ±1.96.

where Ψ(ψ) = Γ
′
(ψ)/Γ(ψ) is the digamma function. The second derivative with

respect to ψ produces

jp(ψ) = −∂
2`p(ψ)

∂ψ2

= −
[
n

ψ
− nΨ

′
(ψ)

]
= n

[
Ψ

′
(ψ)− 1

ψ

]
. (3.29)

Using (3.27), (3.28), and (3.29) we can calculate r(ψ), t(ψ), and r∗(ψ) in order to

find confidence intervals for ψ.

We generate five observations from a Gamma(1, 1) density, which are 1.22,

0.32, 0.42, 0.25, and 2.55. We can see in Figure 3.1 (similar to the right hand

panel of Figure 2.3 in Brazzale et al. (2007)) the likelihood root, r(ψ), Wald, t(ψ),

and modified likelihood root, r∗(ψ), statistics plotted against ψ. We see that the

Wald pivot is giving poor results because of the poor normal approximation. The

modified likelihood root, r∗(ψ), gives results that are more appropriate than the
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Wald, and the 95% confidence interval is an improvement over r(ψ). Thus, we see

that the modified likelihood root gives appropriate inference even in situations where

common methods, such as the Wald, are not suitable.

3.6 The r∗ Method for the Mixed Response Model

Recall the bivariate discrete and continuous model from (3.1). This model is

far more complex than either the simple linear regression or gamma models. We will

now apply the r∗ method to this model.

We know that the r∗ approximation is excellent when the parameter is a mem-

ber of an exponential family. We have attempted to show that the bivariate binomial

and normal model is a member of the exponential family without success. As an

alternative method of showing that the mixed response model has regularity condi-

tions similar to those in the exponential family, Figure 3.2 shows a contour plot of

the bivariate log likelihood of γ1 and β1, as well as the marginal log likelihood plots.

We see a slight ridge in the contour plot, but for the most part, both γ1 and β1

are symmetric and ‘unimodal’. The contour plots and log likelihoods are similar for

γ0, β0, γ2, and β2, but the ridges are slightly more pronounced. The log likelihood

for λ is also symmetric and unimodal, however the log likelihood for σ is positively

skewed, although it is unimodal.

The likelihood for the bivariate model is listed in (2.5) and so the log likelihood

is

`(β,γ, λ, σ) =

n∑
i=1

[y1i log πi + (1− y1i) log(1− πi)]−
n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(y2i − µi)2,

where µi and πi are defined in (2.4) and (2.6). There is no closed form for the MLE’s

so they will be calculated using the numerical method described in Section 3.3. As

with the simple linear regression case, we will employ the r∗ procedure individually

for each of the eight parameters in our model.
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Figure 3.2: Contour plot and log likelihoods for γ1 and β1.

Let γ1 be the parameter of interest on the first iteration through the method

and let θ = (γ0, γ2,β, λ, σ) be the vector of nuisance parameters. The profile log

likelihood is

`p(γ1) = max
θ

`(γ1,θ) = `(γ1, θ̂γ1).

The likelihood root is then

r(γ1) = sign(γ̂1 − γ1) [2 {`p(γ̂1)− `p(γ1)}]1/2 .

The observed information, j(γ,β, λ, σ), was calculated using Mathematica 8.0. The

code used to calculate the observed information is included in Appendix B. The

profile information for γ1 is

jp(γ1) =
{
jγ1γ1(γ1, θ̂γ1)

}−1

,

and thus

t(γ1) = j1/2
p (γ̂1)(γ̂1 − γ1).
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Next,

ρ(γ1, γ̂1) =

{
|jθθ(γ̂1, θ̂)|
|jθθ(γ1, θ̂γ1)|

}1/2

,

and so

q(γ1) = t(γ1)ρ(γ1, γ̂1),

such that

r∗(γ1) = r(γ1) +
1

r(γ1)
log

{
q(γ1)

r(γ1)

}
.

As before, r∗(γ1) has an asymptotic standard normal distribution. We calculate

r∗(γ1) for a grid of γ1 values. For some specified significance level, α, we then find

the γ1’s such that Φ(r∗(γ1)) ≈ α and Φ(r∗(γ1)) ≈ 1− α.

We follow a similar development with the other seven parameters in our model.

The result is that we have 100(1 − α)% confidence intervals for each parameter.

These intervals can then be compared to the credible sets from Chapter Two. We

now look at the weight-loss/blood pressure and weight-loss/suicide examples from

Sections 2.3.

3.7 Examples

3.7.1 Weight Loss/Blood Pressure

Consider the situation of a weight loss drug from Section 2.3.2 where we are

interested in the percent body weight lost and the occurrence of an increase of at

least 10 mm/hg in systolic blood pressure. As before, y1i = 1 is our safety indicator

for a blood pressure increase and is 0 otherwise, and y2i is the percent of body

weight lost while on the drug. From Section 2.3.2 we have two covariates. The

first covariate, x1i, is age, which we generate as N(40, 16) and then standardize to a

N(0, 1). The second covariate, x2i, is gender, and has a Bernoulli(0.5) distribution.

We have chosen to target πi = 0.05 and µi = 5 which results in parameter values of

β0 = 3, β1 = 1.33, β2 = 4, γ0 = −2.44, γ1 = 0.41, γ2 = −1.45, λ = −5 and σ = 1.
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We generate a sample of size n = 600, and we use the same seed as in the Bayesian

example.

Table 3.2a shows the results of the blood pressure example. Notice that the

true value for each parameter is listed along with the MLE’s and lower and upper

bounds to the 95% confidence interval. The MLE’s are fairly close to the true value

of the parameters although the estimates for γ0, γ2, and λ are not as close as the

others. The 95% confidence intervals include the true value of all 8 parameters, even

β0 by a small margin, which is not evident in Table 3.2a. We have included the

results for the blood pressure example using the Bayesian approach for comparison.

These are reproduced for convenience and listed in Table 3.2b.

Table 3.2: The results of the 95% confidence intervals and credible sets for the
weight loss/systolic blood pressure example using the r∗ and Bayesian methods

respectively.

(a) The r∗ method.

Par True 2.5% MLE 97.5%
β0 3.00 3.00 3.08 3.18
β1 1.33 1.23 1.32 1.40
β2 4.00 3.83 3.95 4.08
γ0 −2.44 −2.89 −2.62 −2.34
γ1 0.41 0.30 0.52 0.73
γ2 −1.45 −2.60 −1.71 −1.01
λ −5.00 −5.20 −4.80 −4.42
σ 1.00 0.92 0.97 1.03

(b) The Bayesian method.

Par True 2.5% mean 97.5%
β0 3.00 2.81 3.01 3.18
β1 1.33 1.21 1.32 1.43
β2 4.00 3.74 3.97 4.20
γ0 −2.44 −2.81 −2.38 −1.99
γ1 0.41 0.12 0.42 0.72
γ2 −1.45 −3.30 −2.10 −1.12
λ -5.00 −5.07 −4.69 −4.32
σ 1.00 0.97 1.03 1.09

3.7.2 Weight Loss/Suicidal Ideations

Recall the weight loss scenario where the adverse event of interest, y1i, was a

suicide attempt or not. We continue to define the efficacy response, y2i, as the percent

body weight lost. Age and gender are our covariates and we target πi = 0.02 and

µi = 10. These target values result in values of the parameters of β0 = 13, β1 = 1.67,
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β2 = −6, γ0 = −4.6, γ1 = 0.24, γ2 = 1.1, λ = 10, and σ = 5. We use the same seed

as in the Bayesian suicide example in Section 2.3.1 and simulate a sample of size

n = 600.

Recall from the simulation for the Bayesian model in Chapter Two that, as

πi approached zero, estimation became increasingly problematic. As we shall see in

Section 3.8, the r∗ method suffers in the same way. Here we apply the r∗ method

to the same data used to illustrate the small πi behavior for the Bayesian model.

Unfortunately, applying the r∗ method to the same data as in Section 2.3.1 we en-

countered an error. This error occurred because of the method used to calculate the

r∗ interval. Recall that the Wald pivot is used in the r∗ method and the square root

of the profile information is used to calculate the Wald pivot. The observed informa-

tion function of the profile log likelihood is jp(ψ) =
{
jψψ(ψ, λ̂ψ)

}
, where jψψ(ψ, λ̂ψ)

is the (ψ, ψ) block of the inverse of the observed information matrix j(ψ, λ). Brazzale

et al. (2007) suggests an alternative for the profile observed information when ψ is

a scalar, as in our scenario. They suggest

jp(ψ) =
|j(ψ, λ̂ψ)|
|jλλ(ψ, λ̂ψ)|

.

Using either method, occasionally the profile information will be negative for one or

more parameters, which results in an error in the algorithm. This happens more often

than not for our model when our binary response variable has small probabilities.

We will discuss this further in Section 3.8.

3.8 Simulation

We would like to compare the r∗ method to the Bayesian method detailed in

Chapter Two. Recall from Section 2.4 that we targeted three possible values each

of πi and µi in the Bayesian simulation for a total of nine design points. The table

of design points is reproduced in Table 3.3. We then had two values each of λ and

σ that, combined with the nine design points produced 36 total simulations. As in
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Table 3.3: The design points over which the r∗ simulation will be run.

Efficacy π = 0.02 π = 0.05 π = 0.20

µ = 5
γ = (−4.6, 0.24, 1.1)
β = (3, 1.33, 4)

γ = (−2.44, 0.41,−1.45)
β = (3, 1.33, 4)

γ = (−1.73, 0.11, 0.64)
β = (3, 1.33, 4)

µ = 10
γ = (−4.6, 0.24, 1.1)
β = (13, 1.67,−6)

γ = (−2.44, 0.41,−1.45)
β = (13, 1.67,−6)

γ = (−1.73, 0.11, 0.64)
β = (13, 1.67,−6)

µ = 20
γ = (−4.6, 0.24, 1.1)
β = (16, 1, 8)

γ = (−2.44, 0.41,−1.45)
β = (16, 1, 8)

γ = (−1.73, 0.11, 0.64)
β = (16, 1, 8)

the Bayesian simulation, let λ be either 10 or −5 and σ be either 1 or 5.

Errors occurred in the r∗ algorithm for some of the simulations. The errors

that occurred were mostly due to issues with the profile log likelihood that we have

previously discussed. There were also problems with the optimization routine as

well as with singularity in the information matrices. There were errors in every

simulation where πi = 0.02, consistent with the results from Section 3.7.2. A few of

the simulations where πi = 0.05 were successful, however none of those three design

points ran all four combinations of λ and σ without error. As a result, we focus our

discussion of the simulation and its results on design points three and nine, where

πi = 0.20 and µi = 5 and 20, respectively. Each of these design points completed all

four of the λ and σ combinations.

As before, let x1i be a standardized age covariate and let x2i be gender, with

equal probability of men and women. We will generate a sample of size n = 600

for x1 and x2. We will compute πi for each subject using the current γ values and

generate the 600 values of y1. Finally, we use x1i, x2i, πi, and y1i, along with the

current parameter values to calculate each of the µi which can be used to generate

each of the y2i.

Once the data is generated, we use x1i, x2i, y1i, and y2i to implement the

r∗ method. This process, of generating the data then estimating parameters, is
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replicated 50 times for each of the 36 simulations. Note that we have used the same

seeds as in the simulation for the Bayesian model in Section 2.4, allowing us to

compare the results.

Table 3.4 shows the results from the simulation for the r∗ method for DP3

with λ = 10 and σ = 1. We see that the average MLE is very close to the true value

for each of the eight parameters. The widths of all eight intervals is fairly narrow

as well. Note that, for this design point, we targeted the largest of our three values

of πi = 0.20, as well as µi = 5. Across all simulation results when πi = 0.20 we have

only three parameters with an average MLE around 0.15 away from its true value

and the vast majority of the parameters are within 0.05 of their true values. The

simulations that target πi = 0.05 have parameters with average MLE values that

are up to 0.26 away from their true values, with a larger number of parameters with

average MLE values further from their true values. This supports the conclusion

that the estimation of the model has more difficulty as πi gets smaller. Also of

interest in Table 3.4 are the coverage percentages for each parameter. Note that the

coverage of both λ and σ are very good here, at 96%, and they are consistently in

the 80’s and 90’s across all simulations. The other six parameters are a different

story. The regression parameters for both safety and efficacy have exceedingly bad

coverage values with the best coverage coming for β1 at 46% and the worst for γ2 at

26%.

Table 3.5 shows the simulation results for DP3 with λ = 10 and σ = 5. The

only distinction between the simulations for Tables 3.4 and 3.5 is the change from

σ = 1 to σ = 5. There are two notable differences in the results. The most obvious

change occurs in the coverage of the parameters. The coverage has increased for the

larger value of σ for the safety and efficacy regression parameters by an average of

40 to 50 percentage points. This is due, in part, to the other difference between the

simulation results, which is the widths. The widths are 3 to 4 times wider when
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Table 3.4: Simulation results for the r∗ method for DP3 with λ = 10 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.91 3.02 3.12 0.21 0.42
β1 1.33 1.22 1.32 1.42 0.20 0.46
β2 4.00 3.82 3.97 4.12 0.30 0.32
γ0 −1.73 −1.81 −1.75 −1.68 0.13 0.36
γ1 0.11 0.04 0.10 0.16 0.12 0.44
γ2 0.64 0.56 0.64 0.72 0.16 0.26
λ 10.00 9.82 10.03 10.23 0.41 0.96
σ 1.00 0.95 1.00 1.06 0.11 0.96

Table 3.5: The simulation results for the r∗ method for DP3 with λ = 10 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.57 3.02 3.46 0.89 0.82
β1 1.33 0.89 1.31 1.73 0.83 0.94
β2 4.00 3.36 4.00 4.62 1.26 0.88
γ0 −1.73 −1.90 −1.72 −1.54 0.35 0.82
γ1 0.11 −0.06 0.09 0.25 0.31 0.90
γ2 0.64 0.41 0.64 0.86 0.44 0.78
λ 10.00 8.95 9.96 10.96 2.01 0.90
σ 5.00 4.69 4.97 5.25 0.56 0.92

σ = 5 as compared to σ = 1. This says that the simulation variability in the MLE

routine is such that when the width’s are smaller the r∗ method cannot capture

the true value of the parameters. This is a trend we see across all the simulation

results. We also notice a similar trend, although not as drastic, when we change

the magnitude of λ, but in the opposite direction. When λ has a large magnitude

(λ = 10) the coverage is, on average, 10 to 20 percentage points lower than when λ

has a smaller magnitude (λ = −5). This is also due to a difference in widths, but in

this case the safety regression parameters are the only widths affected by the change

in magnitude.

Figure 3.3 summarizes the simulations for the four combinations of λ and σ for

DP3. The horizontal line is at 3, the true value of β0. The four box plots represent

the four combinations of λ and σ. The four points are at the average MLE value
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Figure 3.3: Spread of 95% confidence intervals for β0 in DP3.

of the 50 replications for each simulation. The upper and lower boundaries of the

plot are the average of the 97.5% and 2.5% confidence bounds, respectively, and the

three grey boxes extend one simulation standard deviation above and below each

of the average MLE, 2.5%, and 97.5% estimates. We see the difference in widths

between when σ = 1 and σ = 5. The difference in widths between the two values of

λ is difficult to see in this figure, however Figure 3.4 shows this more clearly for γ0 in

DP3. Figure 3.5 shows the box plots for all of the r∗ simulations where λ = 10. We

can see that the width of the 95% confidence intervals and the simulation variability

of the estimates increases as σ increases as well as when πi decreases. Finally, the

estimation of σ does not appear to be affected by the values of the other parameters.

We will compare the Bayesian simulation from Section 2.4 with the r∗ simulation in

Section 3.9.

3.9 Comparison of the Bayesian Simulation to the r∗ Simulation

Chapter Two presents the Bayesian development for model (3.1). We are

interested in knowing how the Bayesian model compares to the frequentist r∗ model.

The simulation studies from Chapters Two and Three used the same data,

so the comparisons between the results can be made directly. Recall that the r∗
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Figure 3.4: Spread of 95% confidence intervals for γ0 in DP3.

Figure 3.5: Spread of 95% confidence intervals for λ = 10.
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simulations resulted in errors in certain areas, specifically where πi = 0.02 and

µi = 10. The results for the Bayesian simulation are more complete, but we will only

be able to compare the methods where we have both sets of results.

Figure 3.6 illustrates the simulation results for both the Bayesian and r∗ meth-

ods. The figure is similar to the plots from Sections 2.4 and 3.8. The horizontal line

is still the true value of the parameter and each box plot depicts either the average

posterior mean and 95% credible set or the average MLE and 95% confidence inter-

val along with the simulation variability for each respective simulation. The main

difference between Figure 3.6 and the previous figures is that each label of the λ and

σ combination refers to two box plots with the plot from the Bayesian simulation

on the left and the r∗ simulation on the right. The most obvious thing to notice

on Figure 3.6 is that the r∗ simulations have consistently narrower intervals. This

is a trend in the results for all of the efficacy and safety regression parameters. We

do notice, however, that even with narrower intervals the simulation variability for

the MLE and 95% confidence intervals is, at best, similar to that of the average

posterior mean and 95% credible sets. This is easy to see in Figure 3.6 when λ = 10

and σ = 1 because of the overlap in the grey bars. The simulation variability for

the r∗ method also occasionally shows up slightly larger than that of the Bayesian

method.

Figure 3.7 compares the results across DP3 and DP9 when λ = −5. Note that

DP3 and DP9 both target πi = 0.20, resulting in γ = (−1.73, 0.11, 0.64). Figure

3.7 is interesting because the simulation results appear almost identical for both

methods. The average posterior means, average 95% credible sets, and even the

simulation variability for each simulation look very similar to the average MLE’s

and average 95% credible sets. The results for λ in other design points are similar

to what we see here.
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Figure 3.6: Comparison of simulation results for the Bayes and r∗ methods where the
plots are alternating between the two methods starting with the Bayesian results on
the far left. Results are for γ2 in DP3.

Figure 3.7: Comparison of simulation results for the Bayes and r∗ methods where the
plots are alternating between the two methods starting with the Bayesian results on
the far left. Results are for λ = −5 across DP3 and DP9.
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Table 3.6: Comparison of coverage for the Bayesian and r∗ approaches on DP3 with
two combinations of λ and σ.

(a) λ = 10 and σ = 1

Bayesian r∗

Parameter Coverage Coverage
β0 0.90 0.42
β1 1.00 0.46
β2 0.94 0.32
γ0 0.94 0.36
γ1 0.96 0.44
γ2 0.96 0.26
λ 0.96 0.96
σ 0.98 0.96

(b) λ = 10 and σ = 5

Bayesian r∗

Parameter Coverage Coverage
β0 0.96 0.82
β1 0.94 0.94
β2 0.98 0.88
γ0 0.94 0.82
γ1 0.98 0.90
γ2 0.94 0.78
λ 0.90 0.90
σ 0.98 0.92

The results for σ have similar interval widths for both methods. The average

posterior means and the MLE’s do not line up as closely as they do for λ.

We can also compare the average coverage values for the two methods. Table

3.6 gives side-by-side comparison of the coverage for two combinations of λ and σ

in DP3. Table 3.6a depicts the comparison when λ = 10 and σ = 1. For the regres-

sion parameters in both the safety and efficacy portions of the model, the Bayesian

method is vastly superior to the r∗ method. We also notice that Table 3.6b, where

λ = 10 and σ = 5, shows a big improvement in the coverage for the r∗ method, how-

ever the Bayesian method still has a clear advantage. The only difference between

the two tables is the change from σ = 1 to σ = 5. This dependence on the size of σ

is a trend we see throughout the simulation results, which was mentioned in Section

3.8. The coverage for λ and σ is comparable in both methods, although across all

simulations the Bayesian method appears to have a slight advantage.

We have compared the simulations for the Bayesian and r∗ approaches to

our bivariate model. The r∗ approach has consistently smaller widths for the 95%

intervals but does not have improved simulation variability. The coverage for the

r∗ method is extremely dependent on the magnitude of σ. Even when the coverage
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for the r∗ method is better, the Bayesian approach has visibly better values. In

practice, this would lead to a much higher type I error for the r∗ approach. Thus,

we recommend the Bayesian method.

3.10 Discussion

Chapter Three looked at frequentist methods to the bivariate discrete and

continuous model. We introduced the p∗ method and discussed its usage as well

as why we have not implemented it here. We then introduced the r∗ method. We

looked at some specific examples of the r∗ method and compared some of those

examples to those used in the Bayesian approach. We then implemented a full scale

simulation using the r∗ method and compared it to the Bayesian simulation from

Section 2.4. The results indicated that the Bayesian method should be preferred.
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CHAPTER FOUR

Bayesian Power Study for Multiple Testing in Mixed Responses

4.1 Introduction

Assessing the operating characteristics of a statistical model is an important

step in determining the usefulness of the model. In particular, type I error rates and

power are two of the more important characteristics. There is a vast literature on

all aspects of operating characteristics for a wide variety of statistical models and

inferential methods.

Operating characteristics such as power and type one error rate are, of course,

repeated sampling constructs, averaging, as it were, over the sample space. Bayesian

methods condition on the data, averaging over the parameter space. Nevertheless,

operating characteristics are important to Bayesian practice in some contexts. As it

happens, Bayesian methods often have very good frequentist properties (Carlin and

Louis, 2009).

We are particularly interested in the regulatory context in which the use of

Bayesian methods in biopharmaceutical research must be accompanied by a thor-

ough examination of operating characteristics. See, for example, the FDA’s guidance

on the use of Bayesian statistics in medical device trials (FDA, 2010), which was

issued in draft form in 2006, and finalized in 2010. Pennello and Thompson (2007)

also give insight into regulatory requirements for submissions using Bayesian analy-

sis, specifically in the area of medical devices. In addition, Rubin (1984) talks about

the use of ‘frequency calculations’ when performing a Bayesian analysis. See also

Lee and Chu (2012) and Winkler (2001).

An operating characteristic of particular concern in multiple testing problems

is the family-wise error rate (FWER). Suppose, for example, we are interested in
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testing five endpoints in a frequentist analysis at the 5% type I error level for each

endpoint, then the probability of obtaining at least one erroneous significant result

can be almost 23%. This 23% is called the family-wise error rate and we must be

concerned with controlling this error. Three commonly used frequentist strategies

for controlling FWER include multiplicity adjusted significance levels, multiplicity

adjusted p-values, and simultaneous confidence intervals (Dmitrienko et al., 2010, p.

46).

An alternative method of controlling the FWER in a Bayesian analysis is

through exchangeability as discussed, for example, in Gelman et al. (2004). The

FDA guidance also discusses the role of exchangeability (see p. 30) as a possible

Bayesian approach to testing multiple endpoints.

As noted, there are several frequentist approaches to FWER problems, in-

cluding the multiplicity adjusted significance levels described in Dmitrienko et al.

(2010). In view of the fact that Bayesian methods often exhibit good frequentist

properties, we wish to investigate the application of these multiplicity adjustment

methods to Bayesian modeling—specifically to the joint statistical model studied in

Chapter Two. We discuss two of these methods, the fixed-sequence procedure and

the fallback procedure, in Sections 4.3.1 and 4.3.2 respectively.

In this chapter, we begin in Section 4.2 by redefining the Bayesian regression

model and constructing a Bayesian power simulation structure, analogous to the

sample size simulation used by Stamey et al. (2013). Section 4.3 discusses multiple

testing and some of the methods used to adjust for multiplicity, including the fixed-

sequence and fallback procedures. Section 4.4 presents the simulation and discusses

the results. We finish in Section 4.5 with a discussion.
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4.2 Bayesian Power

We will continue to use the mixed response bivariate regression model intro-

duced in Chapter Two and continued in Chapter Three. Define

Y1i ∼ Bernoulli(πi), (4.1)

and

Y2i|Y1i ∼ N(µi, σ
2),

with link functions

logit(πi) = γ0 + γ1x1i + γ2x2i,

and

µi = β0 + β1x1i + β2x2i + λ(y1i − πi).

Wang and Gelfand (2002) develop a Bayesian sample size determination method.

They are interested in finding the sample size, n, to optimize endpoints such as

the average coverage, average power, or average length of the posterior interval for

specific parameters. The method involves specifying two sets of priors rather than

one, as in a traditional Bayesian analysis. The ‘design’ or ‘sampling’ priors are

elicited to represent the fixed planning estimates that are chosen for a traditional

sample size determination. These probability distributions are chosen so that they

allow for some uncertainty in the parameter values used to generate the data. The

data are generated using parameters from the design priors. The process is repeated

for each iteration in the simulation. The ‘analysis’ or ‘fitting’ priors are those used in

a conventional Bayesian analysis. After the data are generated using the parameters

taken from the design priors, the analysis priors are used in the Bayesian model. In

practice, the analysis priors can be relatively non-informative but the design priors

must include some information. A Bayesian sample size determination utilizes the
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steps previously mentioned for various sample sizes until a sample size can be found

that achieves the endpoint of interest.

Stamey et al. (2013) implement a Bayesian sample size determination on (4.1),

both for the case where Y2 is dependent on Y1, and also the case where Y1 and Y2 are

independent. The independence is achieved by removing λ (y1i − πi) from the right

side of the Y2i|Y1i link function in (4.1). Stamey et al. (2013) focus on comparing

the performance of the independent and dependent models for a treatment indicator

in the portion of the model connected to the continuous response. They look at the

average length criterion (ALC), average coverage criterion (ACC), average power

criterion (APC) and type I error rates. They also briefly look at the APC and

type I error for a simultaneous hypothesis test on the treatment indicator for both

the binary and continuous responses. We will extend their work by comparing the

power of their simultaneous hypothesis test while using a Bonferroni adjustment for

multiplicity to the power achieved when using two methods to control the FWER.

Following Stamey et al. (2013) we use the following approach to calculate the

power:

(1) Specify the analysis priors for all parameters and the design priors for all

parameters except those of interest, the binary and continuous treatment

covariates.

(2) Specify the effect size of interest for the parameters of interest. The effect

size for the continuous treatment regression parameter will be a real number

where larger numbers indicate larger improvement. The effect size for the

binary treatment regression parameter will be specified as a real number

that can be translated through the logit transformation into a change in the

probability of a binary response for the baseline levels of the other binary

regression parameters.
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(3) For l = 1, 2, ...,M Monte Carlo iterations, at each sample size:

(a) Generate values of regression and variance parameters from their design

priors.

(b) Simulate continuous covariates from normal distributions (or suitable

alternatives) over expected ranges. Similarly, simulate binary covari-

ates from Bernoulli distributions.

(c) Calculate πi and µi from model (4.1) and generate y1i and y2i for i =

1, 2, ..., n using the parameters generated from the design priors and

the simulated covariates.

(d) To each simulated data set generated in Step 3c, fit the Bayesian model

using the analysis priors. A Gibbs sampler can be employed at this step.

(e) Calculate the posterior probability that the continuous treatment pa-

rameter exceeds 0 (or other threshold of interest). Similarly, calculate

the posterior probability that the binary treatment parameter exceeds

0. Calculate an indicator of acceptance or rejection based on a simul-

taneous hypothesis test or some multiplicity adjusted variant for the

FWER of interest, α.

(4) Fit a curve or surface through the Bayesian power values and find an ade-

quate sample size combination for the desired power.

Suppose for model (4.1) that we consider a clinical trial where Y1 is a safety

indicator, that is, let y1 = 1 if the subject experiences an adverse event and 0

otherwise. Also, let Y2 be a continuous efficacy variable. This is similar to the

situation discussed in Stamey et al. (2013). We are interested in simultaneous testing

of the treatment parameters, γ1 and β1. Let H1 correspond to hypothesis

H0 : γ1 = 0

HA : γ1 > 0,

(4.2)
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and H2 correspond to hypothesis

H0 : β1 = 0

HA : β1 > 0.

(4.3)

Note that H1 tests if γ1 > 0 which corresponds to a subject with the treatment

having a smaller probability of safety than a subject without the treatment. We

reject the simultaneous hypothesis test if P (γ1 > 0) ≥ α1 and P (β1 > 0) ≥ α2, for

some significance levels α1 and α2. In the safety and efficacy scenario this corresponds

to a significant increase in the probability of an adverse event due to treatment and a

significant increase in efficacy due to treatment. In the Bayesian context we compare

the marginal posterior probabilities that γ1 > 0 and β1 > 0 to the significance level(s)

of interest. We discuss methods of controlling the FWER under multiplicity in the

following section.

4.3 Multiple Testing

Testing of multiple endpoints is common in the literature. Perlman and Wu

(2004) discuss testing of multivariate endpoints with one-sided alternative hypothe-

ses, Gönen et al. (2003) introduce an Bayesian algorithm for simultaneous testing of

two-sample multivariate endpoints, and Pocock et al. (1987) give an overview of the

use of multiple testing in clinical trials. In our case, we are interested in simultane-

ous testing of our two treatment parameters, but are concerned with controlling the

FWER as well.

One method for controlling the FWER is through a Bonferroni adjustment,

originated by Dunn (1961). The Bonferroni correction is one of the most widely

used multiplicity adjustment methods, but is also well known to be very conservative,

especially for large numbers of endpoints. While the use of a Bonferroni correction is

not necessary in the Bayesian analysis of a single data set, power, coverage, and other

operating characteristics may benefit from its application across repeated samples.

55



There are several methods that attempt to avoid the overly conservative per-

formance associated with Bonferroni adjustments. For an overview, see Dmitrienko

et al. (2010), Chapter Two. The main focus of their discussion is the use of ‘step-

wise’ adjustments such as the Holm procedure and variations therof, like the Schaffer

procedure. Similarly, they discuss a variety of extensions to the Bonferroni proce-

dure. Most of the methods that Dmitrienko et al. (2010) discuss, determine the

order of the hypotheses to be tested a-posteriori, for example, using the magnitude

of the p-value. Procedures such as the fixed-sequence, fallback, and reverse fixed-

sequence procedures are the exception. These procedures all specify an order of the

hypotheses to be tested beforehand. The order of testing may correspond to clinical

importance, such as by concentration in a dose finding study. This seems to be

intuitive and we choose the fixed-sequence and fallback procedures to test against

the Bonferroni approach.

The use of the fixed-sequence and fallback procedures on a Bayesian analy-

sis, described in Sections 4.3.1 and 4.3.2, respectively, can be justified in a similar

manner to the Bonferroni approach. In our simulation we will compare power using

a Bonferroni adjustment, to that of the fixed sequence procedure and the fallback

procedure.

4.3.1 The Fixed-Sequence Procedure

Maurer et al. (1995) introduced the fixed-sequence testing approach. Westfall

and Krishen (2001) use the fixed-sequence approach, among others, in their paper.

We follow the development of the fixed-sequence procedure in Dmitrienko et al.

(2010, p. 56). Specify the order of our hypotheses to be tested as H1, ..., Hm, a-

priori. The fixed-sequence procedure starts by testing H1 and carries on sequentially

without a multiplicity adjustment as long as Hj, j = 1, ...,m is rejected at the jth

step. We reject Hk if pk ≤ α, k = 1, ..., j, where α is our FWER and pk is the
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posterior probability against Hk. Consider hypotheses (4.2) and (4.3). If H1 is tested

first, then we reject H1 if the posterior probability that γ1 > 0 is greater than α. If

this is the case, then we can move on to test H2, that β1 > 0, also using the posterior

probability at the α level. Thus, we test hypotheses sequentially until we find the

first non-significant hypothesis and we fail to reject every hypothesis following the

non-significant one. This stoppage is the reason the FWER is controlled in the fixed-

sequence procedure. The order of the hypotheses is incredibly important because if

a non-significant result occurs then none of the following hypothesis are even tested.

4.3.2 The Fallback Procedure

Dmitrienko et al. (2010, p. 57) also discuss the implementation of the fall-

back procedure. For this procedure we will continue to have ordered hypotheses

H1, ..., Hm. We are also still concerned with controlling α, the FWER. We can spec-

ify weights w1, ..., wm that correspond to each hypothesis such that αj = αwj assigns

a portion of the FWER to each hypothesis. When wj = wk = α/m for all j 6= k then

the error rate allocation is equal to that of the Bonferroni adjustment. The method

follows m steps. In step one we test H1 at the α1 = αw1 level. If p1 ≤ α1 then we

reject H1. Steps k = 2, ...,m proceed in order by testing Hk at αk = αk−1 + αwk

if Hk−1 is rejected, and at αk = αwk otherwise. Again, if pk ≤ αk, we reject Hk.

This procedure will end up testing every one of the ordered hypotheses, but the

significance level will change depending on the acceptance or rejection of the pre-

ceding hypotheses. The ability to test every hypothesis is an advantage over the

fixed-sequence procedure. The fallback procedure simplifies to the fixed-sequence

procedure when w1 = 1 and w2 = · · · = wm = 0. For the power simulation in

Section 4.4 we will set w1 = w2 = α/2.
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4.4 Simulation

We follow a similar development to that of the example in Stamey et al. (2013).

Their example is based on an actual clinical trial. Let y1 = 1 be an indicator of the

occurrence of an adverse event and let y2 be a continuous efficacy response. Let

x1 = 1 indicate that the subject was given the treatment rather than the placebo

and let x2 be some continuous covariate. Table 4.1 gives the design and analysis

priors for each of the parameters. We will be looking exclusively at testing γ1 and

β1 simultaneously, so we set degenerate design priors at γ1 = 0.85 and β1 = 75.

Notice that the baseline value for γ0 will generally stay between −0.8 and 0 which

corresponds to adverse event probabilities between 0.31 and 0.5. There are three

different analysis priors for both γ1 and β1. These correspond to optimistic, reference,

and skeptical priors for each parameter. The reference and skeptical priors for γ1

were not included in Stamey et al. (2013), but have been added because we are

interested in the simultaneous test. The optimistic priors have means centered at

the effect of interest with standard deviations that place some information around

that point, as might be available from a previous study. The reference priors are

centered at 0 with large ‘non-informative’ standard deviations. The skeptical priors

are centered at 0 and have standard deviations that are informative. The skeptical

priors are designed to support the null hypothesis of no effect.

We have generated 1000 replications of the parameter values and data sets for

various sample sizes from 50 up to 400. The Bayesian model was fit using WinBUGS

through R. We kept 4500 iterations after a burn-in of 3000 iterations. Thinning was

set at 2 to avoid autocorrelation.

We have recorded the power of the Bayesian approach to individually detect

when γ1 and β1 are greater than 0. We have also recorded when γ1 and β1 are

greater than 0 simultaneously using the Bonferroni adjustment, the fixed-sequence

procedure, and the fallback procedure, both when γ1 and β1 are tested first. Our
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Table 4.1: Design and analysis priors and covariate distributions.

Parameter Design Prior Analysis Prior

γ0 N(−0.4, 0.2) N(−0.4, 1.00)

N(0.85, 1.00)

γ1 0.85 (fixed value) N(0, 1.00)

N(0, 30)

γ2 N(0.1, 0.05) N(0.1, 1.00)

β0 N(1200, 100) N(1200, 316)

N(75, 69)

β1 75 (fixed value) N(0, 69)

N(0, 3162)

β2 N(15, 5) N(15, 25)

λ N(400, 30) N(400, 408)

σ Uniform(140, 160) Uniform(0, 800)

X1 Bernoulli(0.5) NA

X2 Uniform(3, 23) NA
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interest is in the simultaneous test as might be the case in a clinical trial. As a

result, we have not recorded the results of the individual hypotheses for each of our

methods. Thus, the fixed sequence procedure will have the same result, regardless of

the order the hypotheses are tested, because all hypotheses are tested at the FWER,

α, until one hypothesis fails to be rejected. We then fail to reject the remainder of the

tests as well. On the other hand, the fallback procedure adjusts the individual error

rates throughout the testing process, and results in different powers when changing

the order of the hypotheses. The FWER will be controlled at α = 0.05. Note that

we have specified the weights for the fallback procedure as w1 = w2 = α/2 for each

ordering of the hypotheses.

Figure 4.1 plots the powers for various sample sizes using the optimistic priors

for the two treatment parameters individually along with the simultaneous power

using the Bonferroni adjustment. Notice that the individual powers for both the

efficacy and safety parameters individually are close enough to be indistinguishable.

Also, notice that there is a significant drop off from the individual powers to the

simultaneous power. This occurs because the individual powers are tested at the

95% significance level, and the Bonferroni adjustment requires that we test each

hypothesis at the 1 − 0.05/2 = 97.5% significance level. Note that this drop off

between the Bonferroni power and the individual powers also follows across the

simulation results for the reference and skeptical priors also.

Figure 4.2 shows the powers across various sample sizes for our four simul-

taneous methods using the optimistic priors. Note that the line labeled ‘Fallback

Efficacy’ refers to the fallback method when testing the efficacy treatment parame-

ter first. Similarly the fallback method when testing the safety treatment parameter

first is labeled ‘Fallback Safety.’ Notice that the Bonferroni adjustment has the

worst power of the four methods. This is a result of the conservative nature of

the method. The fixed-sequence method has better power than both of the fall-
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Figure 4.1: The individual powers across sample sizes for the efficacy and safety
treatment parameters plotted with the simultaneous power using the Bonferroni
adjustment. The optimistic priors were used for this plot.

back methods. This is intuitive because the fixed-sequence procedure by definition

does not make an adjustment to the FWER. Thus, because of the adjustment in

the fallback procedure, the fixed-sequence will perform as well or better than the

fallback method every time. This is important to note because if interest is in the

simultaneous hypothesis test exclusively and not in the individual hypotheses, then

the fixed-sequence procedure will always produce better results than the fallback

method. The two fallback methods perform similarly in this case. Power is slightly

higher when safety is tested first. As the sample size increases though, the two fall-

back methods become essentially equivalent. As with the previous figure, the results

using the reference and skeptical priors follow the same trends as are seen here.

Figure 4.3 shows the results for the fixed-sequence procedure across the opti-

mistic, reference, and skeptical priors. Notice that there is a definite improvement

from the skeptical prior to the reference prior and then again from the reference prior

to the optimistic prior. The improvement starts at approximately 10% between each
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Figure 4.2: Comparison of the four simultaneous methods for the optimistic priors.

of the skeptical and reference priors as well as the reference and optimistic priors.

The improvement steadily decreases as the sample size increases. These results are

intuitive because we would expect that using prior information should provide an

improvement over a so-called ‘non-informative’ prior such as the reference prior.

Similarly, we would hope that placing an informative prior over the null hypothesis

would weight the results toward the null, even when the null is false. Thus, we should

incorporate prior information into our prior distribution, if possible, to improve the

chances of rejecting a false null hypothesis. The differences between the prior types

show similar results across each of the different simultaneous methods.

In Chapter Two, as the probability of an adverse event in the safety regression

model decreased, the model had a more difficult time estimating the safety regression

parameters. This is seen in the increase in simulation variability. For the power

study, we hypothesized that, if the baseline probability of an adverse event in the

safety regression model were to be more rare, then the power of the test would

decrease. So far the results have all used the design prior for γ0 that is listed in
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Figure 4.3: Comparison of the optimistic, reference, and skeptical priors using the
fixed-sequence method.

Table 4.1 at N(−0.4, 0.2). This puts the baseline probability of an adverse event

approximately between 0.31 and 0.5. We ran simulations similar to those mentioned

previously but we changed the design prior for γ0 to N(−1.2, 0.2) and N(−2.0, 0.2).

These new design priors correspond to baseline values between 0.16 and 0.31 and

then 0.08 and 0.16, respectively. The results using the fixed-sequence method for

the three different design priors are shown in Figure 4.4. Performance is similar

across sample sizes for all three design priors, with none yielding a clear advantage.

This makes sense because, as we saw in Chapter Two, there was little difference

in coverage when simulation variability increased due to decreased adverse event

probabilities.

Finally, Figure 4.5 is a plot of the individual powers and simultaneous Bonfer-

roni adjustment when the design prior for γ0 is N(−1.2, 0.2), similar to Figure 4.1.

This is interesting because the individual efficacy and safety powers show an obvious

difference, when there was no difference previously. In this case the power for the

individual safety parameter has increased approximately 4% from the original design
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Figure 4.4: Comparison of the three design priors for γ0.

Figure 4.5: The individual powers for the efficacy and safety regression parameters
as well as the power for the simultaneous Bonferroni adjustment when the design
prior for γ0 is N(−1.2, 0.2).
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prior at N(−0.4, 0.2) and the power for the individual efficacy parameter has de-

creased approximately 4%. As we saw in Figure 4.4 the resulting simultaneous tests

are approximately equal using the fixed-sequence approach. These results would

become more important if the fallback procedure was being used. When the power

for safety increases and efficacy decreases, as it does here, the fallback procedure

when testing safety first increases its advantage over the fallback procedure when

testing efficacy first. Thus, in practice, a knowledge of what the individual powers

are doing in relation to each other should suggest which procedure to use in the

simultaneous test. (We have tabulated these results by method and sample size and

they are included in Appendix D.)

4.5 Discussion

In this chapter we have considered multiplicity adjustment methods in a Bayesian

sample size determination simulation in order to explore the operating characteris-

tics of controlling the FWER. We introduced the Bayesian sample size determination

scheme, following that of Stamey et al. (2013). We discussed various multiplicity

adjustment methods and the validity of using them in a Bayesian analysis. We then

introduced the fixed-sequence and fallback procedures and performed the simulation

in order to determine their effectiveness relative to the Bonferroni adjustment. The

results suggest that the fixed-sequence procedure will save the most power while

controlling the FWER if we are interested solely in the simultaneous test rather

than the individual hypotheses. We also saw that the incorporation of any prior

information available will save power over ‘non-informative’ or skeptical priors. We

finished by noting that adjusting the baseline adverse event probability does not

seem to have an effect on the simultaneous power using the fixed-sequence method,

but that the individual efficacy and safety powers are affected which corresponds to

an effect on the fallback procedures.
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CHAPTER FIVE

Conclusions

In the dissertation we consider the bivariate model with one binary and one

continuous response using the marginal and conditional model specification. We

condition the continuous response on the binary response in order to incorporate

a link between the two models that allows for some correlation between the two

responses. We implement a Bayesian approach to model the bivariate regression

model and compare it to a frequentist, higher-order asymptotic approach. Finally,

we extend a previous Bayesian sample size determination study by improving the

operating characteristics of the model using multiplicity adjustments.

In Chapter Two we introduce the bivariate discrete and continuous regression

model. We examine the performance of a Bayesian approach to estimating the

parameters in the model using a simulated example in a biopharmaceutical context

where the binary response is some safety indicator and the continuous response is

some efficacy variable. The simulation indicates that the Bayesian model estimates

the parameters well. The simulation also shows increased simulation variability in

the estimates when the probability of a safety event approaches zero. We discuss

the possibility that an induced prior on the adverse event probability is affecting the

estimates.

In Chapter Three we look at a frequentist method of estimation using higher-

order approximations, which is based on the likelihood ratio, called the r∗ method.

This approximation is built for estimation of models that do not meet the normality

assumptions that are required for methods such as the Wald and score statistics.

We chose the r∗ method over another higher-order approximation, the p∗ approach,

because the r∗ method affords convenient elimination of nuisance parameters. The
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r∗ approximation also appears to estimate the parameters fairly well. We conclude

Chapter Three with a comparison of the simulation results using the Bayesian ap-

proach to those using the r∗ approach. Both models appear to be sensitive to small

safety probabilities, sometimes prohibitively so in the case of the r∗ method. This

is due to an inconsistency in the profile information matrix that results in an error

in the estimation algorithm. When we do obtain results, the r∗ method results in

95% confidence intervals that are slightly narrower than the 95% Bayesian credible

sets. However, the MLE’s also exhibit the increased variability that we saw for the

Bayesian approach in Chapter Two and combined with the narrower intervals, the

coverage of the 95% intervals in the r∗ approach is much worse than the Bayesian

approach. We conclude by recommending the use of the Bayesian method for this

model.

In Chapter Four we extend a Bayesian sample size determination study using

the bivariate binary and continuous model. We hypothesize that interest is in both

safety and efficacy and is incorporated through a joint treatment endpoint. We

are interested in the operating characteristics of the model, specifically the power,

as might be useful in a regulatory setting. Although Bayesian inference does not

generally use methods based on repeated measurements, in this case, we claim that

this approach is appropriate through simulation in order to satisfy the requirements

of a regulatory submission. We use multiplicity adjustment techniques such as the

fixed-sequence and fallback approaches to improve the power of the bivariate model.

These two approaches are appropriate when the hypotheses of interest are ordered

a-priori. The results suggest that using methods for multiplicity yield an increase in

power over the overly conservative Bonferroni adjustment with the fixed-sequence

method showing the most improvement. We also see that incorporating any prior

information will save power over either ‘non-informative’ or skeptical priors. Finally,

we show that an adjustment to the baseline adverse event probability affects the
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individual safety and efficacy parameter powers. This results in an adjustment using

the fallback method, dependent upon which parameter is tested first, but does not

seem to affect the fixed-sequence procedure.
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Selected Simulation Results for the Bayesian Model
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These results represent one of the four simulations for each of the nine design

points (DP1 — DP9). The included tables are all for the case where λ = 10 and

σ = 1. The parameter estimation is similar to what is shown here, for all other

simulations. The differences that can be seen in the results, all relate to the widths

of the 95% credible sets. The widths of the credible sets for the efficacy regression

parameters are tied to both λ and σ. When λ decreases to −5 from 10, the width of

the credible set also decreases slightly. When σ increases to 5 from 1, the credible

set width also increases fairly drastically. The width of the credible sets for λ and

σ also increase with the magnitude of σ and do not depend on the magnitude of

λ. Finally, the safety regression parameter credible set widths do not appear to be

affected by the magnitude of either λ or σ.

Table A.1: Simulation results for DP1 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 3.00 2.86 3.01 3.19 0.32 0.96
β1 1.33 1.19 1.31 1.43 0.23 0.94
β2 4.00 3.73 3.99 4.27 0.54 1.00
γ0 −4.60 −7.00 −5.14 −3.85 3.15 0.92
γ1 0.24 −0.25 0.22 0.67 0.92 0.98
γ2 1.10 −0.04 1.46 3.44 3.47 0.96
λ 10.00 9.48 10.08 10.69 1.20 0.94
σ 1.00 0.95 1.01 1.07 0.11 0.96

Table A.2: Simulation results for DP2 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 3.00 2.74 3.04 3.38 0.63 0.96
β1 1.33 1.18 1.31 1.43 0.26 0.96
β2 4.00 3.57 3.94 4.28 0.71 0.96
γ0 −2.44 −2.85 −2.43 −2.04 0.81 0.96
γ1 0.41 0.18 0.39 0.59 0.41 1.00
γ2 −1.45 −2.77 −1.76 −0.94 1.84 0.96
λ 10.00 9.63 10.00 10.36 0.74 0.94
σ 1.00 0.95 1.01 1.06 0.11 0.96
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Table A.3: Simulation results for DP3 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 3.00 2.63 3.03 3.46 0.83 0.90
β1 1.33 1.06 1.32 1.57 0.51 1.00
β2 4.00 3.30 3.93 4.57 1.28 0.94
γ0 −1.73 −2.07 −1.74 −1.44 0.63 0.94
γ1 0.11 −0.06 0.10 0.25 0.31 0.96
γ2 0.64 0.23 0.62 1.03 0.80 0.96
λ 10.00 9.82 10.03 10.23 0.41 0.96
σ 1.00 0.95 1.01 1.07 0.12 0.98

Table A.4: Simulation results for DP4 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 13.00 12.87 13.02 13.20 0.33 0.92
β1 1.67 1.53 1.65 1.77 0.24 0.94
β2 −6.00 −6.31 −6.05 −5.77 0.54 0.96
γ0 −4.60 −6.71 −4.97 −3.75 2.96 0.94
γ1 0.24 −0.32 0.15 0.60 0.92 0.88
γ2 1.10 −0.23 1.22 3.11 3.34 0.96
λ 10.00 9.50 10.08 10.67 1.18 0.96
σ 1.00 0.95 1.00 1.06 0.11 0.92

Table A.5: Simulation results for DP5 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 13.00 12.69 12.98 13.30 0.61 0.92
β1 1.67 1.52 1.65 1.79 0.26 0.94
β2 −6.00 −6.34 −5.98 −5.65 0.69 0.96
γ0 −2.44 −2.95 −2.52 −2.12 0.84 0.94
γ1 0.41 0.20 0.41 0.62 0.43 0.98
γ2 −1.45 −2.48 −1.54 −0.77 1.71 0.96
λ 10.00 9.65 10.02 10.39 0.74 0.98
σ 1.00 0.95 1.00 1.06 0.11 1.00
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Table A.6: Simulation results for DP6 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 13.00 12.62 13.01 13.44 0.82 0.94
β1 1.67 1.39 1.66 1.91 0.52 0.94
β2 −6.00 −6.65 −6.02 −5.38 1.28 0.96
γ0 −1.73 −2.08 −1.75 −1.45 0.63 0.92
γ1 0.11 −0.06 0.10 0.25 0.31 0.94
γ2 0.64 0.25 0.64 1.05 0.81 0.94
λ 10.00 9.80 10.00 10.20 0.40 1.00
σ 1.00 0.94 0.99 1.05 0.11 1.00

Table A.7: Simulation results for DP7 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 16.00 15.86 16.01 16.18 0.32 0.98
β1 1.00 0.86 0.98 1.09 0.23 0.94
β2 8.00 7.73 7.99 8.26 0.53 0.96
γ0 −4.60 −6.50 −4.93 −3.80 2.70 1.00
γ1 0.24 −0.28 0.18 0.62 0.90 0.98
γ2 1.10 −0.12 1.24 2.93 3.05 0.96
λ 10.00 9.38 9.97 10.56 1.18 0.94
σ 1.00 0.94 1.00 1.06 0.11 0.94

Table A.8: Simulation results for DP8 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 16.00 15.72 16.01 16.34 0.63 0.96
β1 1.00 0.85 0.98 1.10 0.26 0.92
β2 8.00 7.61 7.97 8.31 0.70 0.98
γ0 −2.44 −2.88 −2.45 −2.06 0.82 0.98
γ1 0.41 0.17 0.38 0.58 0.41 0.94
γ2 −1.45 −2.68 −1.68 −0.88 1.80 0.94
λ 10.00 9.62 9.98 10.35 0.73 0.92
σ 1.00 0.95 1.00 1.06 0.11 0.98
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Table A.9: Simulation results for DP9 with λ = 10 and σ = 1.

Parameter True 2.5% Mean 97.5% Width Coverage
β0 16.00 15.61 16.00 16.43 0.82 0.92
β1 1.00 0.72 0.98 1.23 0.51 0.86
β2 8.00 7.34 7.96 8.59 1.26 0.96
γ0 −1.73 −2.08 −1.76 −1.45 0.63 0.92
γ1 0.11 −0.06 0.10 0.25 0.31 0.84
γ2 0.64 0.24 0.64 1.04 0.80 0.92
λ 10.00 9.80 10.00 10.20 0.41 1.00
σ 1.00 0.95 1.00 1.06 0.11 0.96
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Mathematica Code to Calculate the Observed Information
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(* The log likelihood *)

f [γ 0, γ 1, γ 2, β 0, β 1, β 2, λ , σ ] :=

− 0.5 ∗ Log[2 ∗ π ∗ σ∧2]− (1 + Exp [γ0 + γ1 ∗ x1 + γ2 ∗ x2]) +

(y1 ∗ (γ0 + γ1 ∗ x1 + γ2 ∗ x2))−(1/(2∗σ∧2))∗(y2 − β0 − β1 ∗ x1 − β2 ∗ x2 − λ∗

(y1 − (Exp [γ0 + γ1 ∗ x1 + γ2 ∗ x2] / (1 + Exp [γ0 + γ1 ∗ x1 + γ2 ∗ x2])))) ∧2

(* Returns the elements of the observed information matrix *)

Simplify [−D [f [γ0, γ1, γ2, β0, β1, β2, λ, σ] , {{γ0, γ1, γ2, β0, β1, β2, λ, σ} , 2}]]
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Simulation Results using the r∗ Method
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Table C.1: Simulation results for the r∗ method for DP2 with λ = 10 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.94 3.05 3.14 0.20 0.40
β1 1.33 1.23 1.32 1.40 0.18 0.86
β2 4.00 3.78 3.93 4.05 0.26 0.42
γ0 −2.44 −2.54 −2.39 −2.24 0.30 0.58
γ1 0.41 0.28 0.40 0.52 0.25 0.80
γ2 −1.45 −2.35 −1.67 −1.18 1.16 0.86
λ 10.00 9.64 10.01 10.37 0.73 0.94
σ 1.00 0.94 1.00 1.06 0.11 1.00

Table C.2: Simulation results for the r∗ method for DP2 with λ = 10 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.49 2.93 3.36 0.87 0.90
β1 1.33 0.98 1.38 1.78 0.80 0.90
β2 4.00 3.45 4.08 4.68 1.22 0.82
γ0 −2.44 −2.76 −2.45 −2.11 0.65 0.92
γ1 0.41 0.14 0.44 0.74 0.60 0.86
γ2 −1.45 −2.53 −1.62 −0.79 1.75 0.94
λ 10.00 8.23 10.01 11.81 3.58 0.96
σ 5.00 4.65 4.93 5.20 0.55 0.90

Table C.3: Simulation results for the r∗ method for DP2 with λ = −5 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.92 3.01 3.11 0.19 0.64
β1 1.33 1.24 1.33 1.42 0.17 0.88
β2 4.00 3.87 3.99 4.13 0.26 0.66
γ0 −2.44 −2.70 −2.45 −2.21 0.48 0.64
γ1 0.41 0.19 0.40 0.60 0.42 0.88
γ2 −1.45 −2.40 −1.55 −0.91 1.49 0.80
λ −5.00 −5.40 −5.03 −4.66 0.73 0.86
σ 1.00 0.94 1.00 1.05 0.11 0.94
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Table C.4: Simulation results for the r∗ method for DP3 with λ = −5 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.89 2.98 3.08 0.19 0.50
β1 1.33 1.24 1.33 1.42 0.18 0.76
β2 4.00 3.89 4.02 4.16 0.28 0.38
γ0 −1.73 −1.83 −1.72 −1.61 0.22 0.50
γ1 0.11 0.02 0.12 0.22 0.20 0.66
γ2 0.64 0.48 0.62 0.76 0.27 0.46
λ −5.00 −5.18 −4.98 −4.78 0.40 0.96
σ 1.00 0.94 1.00 1.05 0.11 0.88

Table C.5: Simulation results for the r∗ method for DP3 with λ = −5 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 3.00 2.61 3.05 3.48 0.87 0.84
β1 1.33 0.91 1.32 1.72 0.81 0.98
β2 4.00 3.32 3.93 4.55 1.23 0.84
γ0 −1.73 −1.97 −1.77 −1.56 0.41 0.82
γ1 0.11 −0.07 0.11 0.29 0.36 0.94
γ2 0.64 0.42 0.68 0.94 0.52 0.78
λ −5.00 −5.98 −4.97 −3.97 2.02 0.92
σ 5.00 4.67 4.95 5.23 0.56 0.96

Table C.6: Simulation results for the r∗ method for DP6 with λ = 10 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 13.00 12.60 13.06 13.50 0.89 0.84
β1 1.67 1.31 1.73 2.15 0.84 0.86
β2 −6.00 −6.78 −6.14 −5.50 1.27 0.86
γ0 −1.73 −1.89 −1.72 −1.54 0.35 0.80
γ1 0.11 −0.01 0.15 0.30 0.31 0.74
γ2 0.64 0.40 0.62 0.84 0.44 0.80
λ 10.00 9.17 10.15 11.15 1.98 0.86
σ 5.00 4.73 5.01 5.29 0.56 1.00
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Table C.7: Simulation results for the r∗ method for DP8 with λ = 10 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.54 16.00 16.44 0.89 0.84
β1 1.00 0.64 1.04 1.44 0.80 0.94
β2 8.00 7.44 8.07 8.68 1.24 0.88
γ0 −2.44 −2.77 −2.45 −2.11 0.66 0.84
γ1 0.41 0.07 0.37 0.66 0.59 0.88
γ2 −1.45 −2.31 −1.47 −0.70 1.61 0.92
λ 10.00 8.00 9.81 11.62 3.62 0.88
σ 5.00 4.71 5.00 5.26 0.55 0.90

Table C.8: Simulation results for the r∗ method for DP8 with λ = −5 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.47 15.90 16.34 0.87 0.80
β1 1.00 0.61 1.00 1.40 0.80 0.94
β2 8.00 7.49 8.11 8.71 1.21 0.78
γ0 −2.44 −2.77 −2.43 −2.06 0.71 0.90
γ1 0.41 0.09 0.42 0.75 0.65 0.92
γ2 −1.45 −2.52 −1.63 −0.78 1.74 0.94
λ −5.00 −7.04 −5.26 −3.41 3.63 0.98
σ 5.00 4.71 4.99 5.26 0.56 0.96

Table C.9: Simulation results for the r∗ method for DP9 with λ = 10 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.87 15.98 16.08 0.21 0.46
β1 1.00 0.90 1.00 1.09 0.19 0.42
β2 8.00 7.87 8.02 8.17 0.30 0.46
γ0 −1.73 −1.83 −1.77 −1.70 0.13 0.40
γ1 0.11 0.05 0.11 0.17 0.12 0.48
γ2 0.64 0.59 0.67 0.75 0.16 0.40
λ 10.00 9.81 10.01 10.21 0.40 1.00
σ 1.00 0.94 1.00 1.05 0.11 0.94
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Table C.10: Simulation results for the r∗ method for DP9 with λ = 10 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.53 15.98 16.42 0.90 0.84
β1 1.00 0.62 1.03 1.45 0.84 0.88
β2 8.00 7.36 8.00 8.63 1.27 0.84
γ0 −1.73 −1.94 −1.76 −1.58 0.36 0.68
γ1 0.11 −0.05 0.10 0.26 0.32 0.80
γ2 0.64 0.43 0.66 0.88 0.45 0.70
λ 10.00 8.97 9.99 11.01 2.04 0.94
σ 5.00 4.71 5.00 5.27 0.56 1.00

Table C.11: Simulation results for the r∗ method for DP9 with λ = −5 and σ = 1.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.89 15.99 16.08 0.19 0.66
β1 1.00 0.92 1.01 1.10 0.18 0.70
β2 8.00 7.87 8.01 8.14 0.27 0.60
γ0 −1.73 −1.83 −1.73 −1.61 0.22 0.66
γ1 0.11 −0.01 0.09 0.19 0.20 0.76
γ2 0.64 0.50 0.63 0.77 0.27 0.64
λ −5.00 −5.17 −4.97 −4.77 0.40 0.94
σ 1.00 0.93 0.99 1.04 0.11 0.88

Table C.12: Simulation results for the r∗ method for DP9 with λ = −5 and σ = 5.

Parameter True 2.5% MLE 97.5% Width Coverage
β0 16.00 15.57 16.00 16.44 0.88 0.82
β1 1.00 0.59 1.00 1.41 0.81 0.92
β2 8.00 7.37 7.99 8.61 1.24 0.82
γ0 −1.73 −1.97 −1.77 −1.56 0.41 0.76
γ1 0.11 −0.06 0.12 0.30 0.36 1.00
γ2 0.64 0.43 0.68 0.94 0.52 0.80
λ −5.00 −6.18 −5.17 −4.16 2.03 0.96
σ 5.00 4.70 4.99 5.27 0.56 0.92
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Simulation Results for the Power Study
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