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After the discovery of the Higgs boson in 2012, the current best theoretical

model that describes all observed particles and their interactions, the standard model

(SM), was considered complete. However, there are a plethora of physical phenomena

that the SM does not accurately describe, which motivates particle physicists to search

for evidence of new particles produced by high energy collisions at the Large Hadron

Collider (LHC). In traditional searches for physics beyond the standard model, a

requirement of high missing transverse momentum (pmiss
T ) is often used to identify

potential new particles. However, without any signs of significant deviations from

standard model expectations, a search where this requirement is removed has been

performed. There are many well motivated and previously unexplored physics mod-

els, including versions of supersymmetry (SUSY) characterized by R-parity violation

or with additional hidden sectors, that predict the production of events with low pmiss
T ,

many jets, and top quarks. In particular, a general search is performed to look for

the pair production of scalar top quarks that would decay to two top quarks and six



additional light flavor jets. The search is performed using events with at least seven

jets and exactly one electron or muon. No requirement on pmiss
T is imposed. With the

use of a neural-network-based signal-to-background discriminator, a background es-

timation has been achieved where more traditional techniques would not be possible.

The study is based on a sample of proton-proton collisions at
√
s = 13 TeV corre-

sponding to 137.2 fb−1 of integrated luminosity collected with the Compact Muon

Solenoid (CMS) detector at the LHC in 2016, 2017, and 2018. Results of the search

are interpreted for stealth SUSY and SUSY with R-parity violation, resulting in a

lower limit exclusion of scalar top production of 900 and 700 GeV, respectively.
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CHAPTER ONE

Introduction

“We are at the very beginning of time for the human race. It is not
unreasonable that we grapple with problems. But there are tens of
thousands of years in the future. Our responsibility is to do what we
can, learn what we can, improve the solutions, and pass them on.”

—Richard P. Feynman (1918–1988)

From the dawn of civilization, progress has always been correlated with an

increased understanding of the world around us. With this in mind, it is vital that

we as a society push the boundaries of understanding. The study of physics has a

rich history, and although it would take far more than this thesis to properly describe

it, we can highlight specific key developments.

It might seem obvious now, but using mathematics as a means to describe

physical processes was a revolutionary concept. Who did this first is a subject of

debate, but it is undeniable that the physical laws written down by Sir Isaac Newton

in the 17th century using mathematics were a huge step toward the goal of a complete

understanding of the universe. Newton’s success with his models of motion and

gravity effectively changed the way we approach physics. During the 19th century,

hundreds of brilliant minds later, there were two more key developments: Dmitri

Mendeleev’s periodic table of elements and James Maxwell’s equations of classical

electromagnetism. The periodic table of elements established a set of building blocks

for all matter, while the theories of Newton and Maxwell together provided a way to

describe all known forces (at that time) and the motion of objects in the universe. It
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was thought at the time that putting these monumental models together, along with

a few others, would conclude all of the fundamental work of physicists, leaving only

more precise measurements of fundamental constants. Luckily, that was not the case,

because the universe is much more interesting than these well-defined but “boring”

models make it out to be.

One interesting consequence of Maxwell’s equations was that they predicted

a value of the speed of light in a vacuum. However, Maxwell’s equations are not

invariant under Galilean transformations, which implies that they are only valid for

one inertial reference frame. This goes against the assumption that the laws of elec-

tricity and magnetism must be the same regardless of the frame of reference in which

they are observed. This led Albert Einstein, in 1905, to solve this problem with his

groundbreaking theory of special relativity. About a decade later he generalized this

to include gravity with his theory of general relativity. This changed our concept of

space by promoting it from a 3-dimensional space to a 4-dimensional spacetime. If you

are keeping score at this point, we now have two models (Newton’s and Maxwell’s)

that describe how objects in the universe interact, another model (Einstein’s rel-

ativity) that generalize these to include an understanding of spacetime itself, and

Mendeleev’s periodic table of elements, which describes all matter in the universe.

However, at the time it was questioned whether or not these models would hold for

very small objects, or in other words, would these models hold for all length scales?

It could be said that almost all breakthroughs in physics during the last century were

a consequence of attempting to answer that question.

As it turns out, the laws of physics for extremely small objects differ greatly

from the theories previously formulated. In fact, one of the first pieces of evidence of
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something interesting was J.J. Thompson’s discovery of the first elementary particle in

1897, the electron. This forced physicists to consider the possibility that the elements

in the periodic table were not fundamental, but were composed of something more

elementary. The next piece of the puzzle was the discovery of the nucleus by Ernest

Rutherford in 1911, which eventually led to the idea that all matter in the universe

is composed of protons, neutrons, and electrons. Also, as the tried and true theories

were inadequate to describe physics at the size scale of the electron, the formulation of

quantum mechanics by Erwin Schrödinger and others during the 1920’s was necessary.

During the 1920’s through 1950’s, new theories of nature were becoming less intuitive

but more accurate as we probed smaller and smaller objects. This was the first time

in human history that probing physics many orders of magnitude smaller than a drop

of water was possible. Then, in the late 1950’s and 1960’s something extraordinary

began to happen. There was an explosion of newly observed particles, which was

made possible by the construction of particle accelerators. There was then a race to

reformulate our theories of the universe to include these new particles. Eventually,

these developments led to the discovery of many fundamental particles and it became

clear that the proton and neutron were composed of some of them. We ended up

naming these particles quarks and leptons, and theories describing their nature began

to emerge. At first, there were two separate theories for leptons and quarks formulated

by Sheldon Glashow in 1961 and Murray Gell-Mann et al. in 1964, respectively. One

can see the size of matter that was beginning to be probed in Fig. 1.1, and as scientists

pushed to smaller and smaller scales, a reformulation of physical laws and the way

we think about the composition of matter was necessary.
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?
Figure 1.1: The composition of a drop of water as we zoom in. At one scale, we can
say that it is composed of the elements oxygen and hydrogen. As we zoom in further,
we can see that hydrogen is composed of a proton and an electron. Then we can see
that a proton is composed of two up quarks and one down quark. Finally, we are
at the limit of our zooming abilities and currently we believe that the up quark is
fundamental. However, it could be composed of something more fundamental.
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By the late 1960’s, models existed that could describe the large number of

newly discovered particles, but there was not a single, unified theory that described

them all. Also, the origin of mass became an interesting question. In 1967, Steven

Weinberg and Abdus Salam, using an interesting idea by Peter Higgs et al., were

able to answer the latter question of mass by extending Glashow’s theory of leptons.

There was only one “problem” with this new theory of leptons: it predicted particles

that had not been observed at the time. These particles would later be known as the

massive gauge bosons (the W’s and Z), and the Higgs boson. It was not obvious at this

time that this extended lepton theory could be extended again to include the quarks,

but by the 1970’s, adding the quarks to this theory of leptons became the “standard.”

At last, this new combination of quarks and leptons summarized all known particles

and their interactions, with the exception of gravity. This theory eventually was

called the “standard model” of particle physics (SM). Einstein’s general theory of

relativity (GR) was then, and is now, the most generally accepted theory of gravity.

However, merging GR with the standard model is extremely difficult, and to this

day no one has managed to do it successfully. Since the strength of gravity is only

relevant for extremely massive objects, it is generally safe to ignore it when considering

elementary particles. With the formulation of the SM, it became clear that not all

of the fundamental particles that it predicted had been discovered, so it was far from

being fully verified.

During the 50 years after the initial formulation of the SM, particle physicists

built larger and more complex particle accelerators, which began observing new par-

ticles predicted by the SM. The nature of these complex particle accelerators moved

experiments from university labs to large-scale research facilities around the world,
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where thousands of physicists are needed to build, maintain, and analyze the data.

It was no longer possible for a small group of physicists at a university to discover

a new fundamental particle of nature. This massive effort eventually led to the dis-

covery of all SM particles. With a huge announcement on July 4, 2012, the final

particle, the Higgs boson, was discovered at CERN’s Large Hadron Collider (LHC).

The Higgs boson is the particle associated with the mechanism that gives all matter

in the universe mass. Figure 1.2 shows the latest version of the “golden” channels

used to discover the Higgs boson. This kind of approach is typically called a “bump

hunt,” where one looks for an excess or “bump” on top of a background. In these

two independent plots, one can observe the presence of a bump at 125 GeV, and it

was obvious that only a new particle with that mass could produce it.
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Figure 1.2: Higgs boson “golden” observation channels, which both show an excess
of events at 125 GeV above the background based on the “no Higgs” hypothesis.
(Left) Invariant mass of the diphoton system, where the Higgs decays to two photons.
(Right) Invariant mass of a four-lepton system, in which the Higgs decays to four
leptons [1, 2].
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Today, physicists have discovered all fundamental particles that the SM pre-

dicts. A new “periodic table” of elementary particles is shown in Fig. 1.3 along with

some of their properties. The current state of affairs is that physicists have a well-

verified model with a few unobserved predictions, and are now in a situation where

there are no more obvious particles left to be discovered. We now look to theoretical

physicists to produce new models of nature that predict more particles or interesting

phenomena for experimental physicists to investigate. One of these theories is called

supersymmetry (SUSY), where the number of particles in Fig. 1.3 could effectively be

doubled. This new unproven theory is the main motivation for this thesis, where we

search for one of these new supersymmetric particles. In this case, we seek the scalar

top quark, a particle that is associated with the top quark. I will go into more detail

on the SM and this possible new theory, which is yet to be verified, in the following

chapter. At this interesting point in physics we all wait with bated breath for any

signs of new phenomena, because it will shape the field of particle physics for the

foreseeable future.
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Figure 1.3: The particles of the standard model. The standard model includes three
generations of quarks and leptons. The gauge bosons mediate the electromagnetic,
weak, and strong forces, and the Higgs boson is associated with the mechanism that
gives particles their mass. Image source [3].
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CHAPTER TWO

The Standard Model and Supersymmetry

2.1 Introduction

What is commonly known as the standard model (SM) of particle physics is

currently the best theory describing the particles in our universe and their inter-

actions. The derivation of the SM is a conglomerate of brilliant ideas from many

different physicists, with the most important concepts being the use of quantum field

theory, Yang-Mills theory, the Brout-Englert-Higgs mechanism, and renormalization.

It can be derived from a few assumptions, but one issue is that these assumptions

can be viewed as “ad-hoc.” We still need to put in a good amount of particle content

by hand, assume a specific form for the Higgs potential, and require a specific local

gauge invariance (SU(3)C ⊗ SU(2)L ⊗ U(1)Y ). Also, there are a good number of

free parameters that need to be measured. At the end of the day, it also does not

describe all observed phenomena in the universe, and we are still actively searching

for a so-called “theory of everything.” I will go into more detail on the shortcomings

of the SM in Section 2.2.5. However, it is undeniably the most successful theory

to date for particle physics. One potential extension to the SM is Supersymmetry

(SUSY), which effectively doubles the number of particles that the SM predicts. So

far, no evidence of these extra particles has been observed, but a good candidate for

discovery is the scalar top quark. I will go into more detail on SUSY in Section 2.3.
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2.2 The Standard Model

I will go over a quick pedagogical derivation of the SM, highlighting important

details from an experimental physicist’s point of view. There are some aspects of this

theory that go beyond the scope of this thesis, and for these I refer the reader to

other dedicated sources. The summary I give below came mostly from these great

sources [4–8].

2.2.1 Observed Particles and Interactions

First let us list out explicitly all of the known particles and their observed

interactions. The fundamental particles can be broken up into two main categories,

fermions (half-integer spin) and bosons (whole-integer spin), where spin is an intrinsic

form of angular momentum carried by a particle. The fermions are considered the

“matter” particles, while the bosons are considered the “force carrier” particles.

We have so far observed four distinct forces of nature. These forces are the

electromagnetic, strong, weak, and gravitational forces. All four vary in strength and

the reason why is still an open question. However, the SM can accurately describe all

forces, except gravity. Three out of four is not bad, but so far gravity is best explained

by general relativity, which is not a quantum theory. Unifying the description of the

four forces is another open question in physics. For now we will ignore gravity and

focus on the other three forces. We can do this because gravity can be safely ignored

at a particle accelerator due to the small masses of the particles and the relatively

tiny strength of gravity compared to the other forces. With these three forces in

mind, we say the particles that mediate interactions for these forces are the bosons.

The boson associated with the electromagnetic force is the photon (γ). The Z and
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W bosons (Z0,W+,W−) are associated with the weak force, and the eight gluons (g)

are associated with the strong force. Note that the number of particles is as follows:

one for the electromagnetic force, three for the weak force, and eight for the strong

force.

We further divide the fermions into two categories, the quarks and the leptons,

because the strong force only acts on the quarks. We can also group the fermions into

different generations, where the up and down quarks (u, d), along with the electron

neutrino and electron (νe, e), form the first generation. Similarly, the second genera-

tion consists of the charm and strange quarks (c, s) along with the muon neutrino and

muon (νµ, µ). The third and final generation consists of the top and bottom quarks

(t, b) along with the tau neutrino and tau (ντ , τ). The number of these particles in-

creases by a factor of two when you include the antimatter version of each. We can

look at Fig. 2.1 and see a full list of all observed particles. Note that the quarks all

have different colors, which is to say they all possess a “color” charge related to the

strong force. Because of this, the number of quarks and leptons differ by a factor of

three.

You may be wondering where all of these particles come from, and how exactly

they interact with each other. To answer most of this question we must first derive the

Lagrangian for the SM. The SM is a quantum field theory, so we must start viewing

particles as an excitation of a field, and it is these fields that we must spend our time

thinking about.
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Figure 2.1: Summary of all observed particles, where a labeled circle corresponds to a
unique particle. There are six types of quarks each having color charge, which means
we have a red, green, blue version of each quark, and similarly we have an antired,
antigreen, and antiblue version of each antiquark. This brings the total number of
quarks to 36. There are six types of leptons, but unlike the quarks they only have
an antilepton version. This brings the total number of leptons to 12. For the bosons,
only the gluons (g) get multiple copies, each with a different double color charge
for a total of 8. Then there are 5 more unique bosons, making the total number
of bosons 13. This bring the total number of observed particles in the universe to
36 + 12 + 13 = 61.
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Table 2.1: Summary of fermion fields explicitly placed in the SM, including their
quantum numbers: spin, electric charge (Q), third component of weak isospin (I3),

hypercharge Y , and color (r, g,b).

Fermions
Generation

Spin Q I3 Y Color
I II III

Quarks

(
uL
dL

) (
cL
sL

) (
tL
bL

)
1
2

2
3

1
2 1

3
r, g,b

−1
3
−1

2

uR cR tR
1
2

2
3

0 4
3

r, g,b

dR sR bR
1
2

−1
3

0 −2
3

r, g,b

Leptons

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
1
2

0 1
2 −1 -

−1 −1
2

eR µR τR
1
2

−1 0 −2 -

2.2.2 The Lagrangian of the Standard Model

When putting together the SM Lagrangian, we must first write down the

kinetic terms for all of the fermions explicitly, and since they are spin-1
2

fields, we

must treat them as spinors. For simplicity we will define the leptons as normal 4-

component Dirac spinors. For example, the electron field is defined as

e =



e0

e1

e2

e3


(2.1)

such that ei for i ∈ {0, 1, 2, 3} are complex functions. However, we will define the

quark fields as a triplet of Dirac spinors, one for each color. For example, the up

quark field is defined as

u =


ured

ugreen

ublue

 (2.2)
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such that ucolor for color ∈ {red, green, blue} are the 4-component Dirac spinors. We

will also be using chiral representation, so we can consider the left- and right-handed

components of each field separately. This is done because the weak force only interacts

with the left-handed components of the fields. By using the left-handed
(

1−γ5

2

)
and

right-handed
(

1+γ5

2

)
projection operators, any field can be separated into their left-

and right-handed components. For example, the electron field becomes

e = eL + eR (2.3)

eL =

(
1− γ5

2

)
e (2.4)

eR =

(
1 + γ5

2

)
e. (2.5)

Next, it is convenient to group some of the left-handed fields into doublets (ar-

ray of 4-component Dirac spinors), and leave the right-handed fields as singlets (single

4-component Dirac spinor). For example, the components of the first generation of

left-handed fermions are grouped as

Qud =

uL
dL

 (2.6)

Le =

νeL
eL

 . (2.7)

The last thing we need to consider is the right-handed component of the neu-

trino fields. We know in general that neutrinos do not have electric charge or color

charge, and only interact with other particles through the weak force. Due to the

weak force only allowing the left-handed component of fields to interact, no interac-

tion will occur with the right-handed component of neutrino fields in the SM. The

question of whether they exist is still an open question in physics, but since the SM
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does not need them, we will not consider right-handed neutrinos. Putting this alto-

gether and writing out each field, we get the kinematic terms for the SM Lagrangian

of the fermion fields:

LKin,Fermions = iQud /DQud + iQcs /DQcs + iQtb /DQtb︸ ︷︷ ︸
Left-handed quarks

+ iuR /DuR + idR /DdR + icR /DcR + isR /DsR + itR /DtR + ibR /DbR︸ ︷︷ ︸
Right-handed quarks

+ iLe /DLe + iLµ /DLµ + iLτ /DLτ︸ ︷︷ ︸
Left-handed leptons

+ ieR /DeR + iµR /DµR + iτR /DτR︸ ︷︷ ︸
Right-handed leptons (no right-handed neutrinos)

(2.8)

such that /D ≡ γµDµ,1 γµ are the usual gamma matrices, and Dµ is the covariant

derivative. Note that this is just the Dirac Lagrangian for each field, but without a

mass term. The mass term will be handled later by the Brout-Englert-Higgs mecha-

nism. The representations of the fermion fields that are added to the SM Lagrangian

are listed in Table 2.1. Following Yang-Mills theory, we need to look closely at the

covariant derivative, and think about the local symmetry that we will impose and

what it means logistically.

The SM requires a SU(3)C ⊗ SU(2)L ⊗ U(1)Y local gauge invariance, which

in turn requires us to add some gauge fields to preserve the local gauge invariance.

This can be done by using a particular covariant derivative that depends on how we

1 We will use Einstein summation notation, where two identical indeces implies a sum over
that index. If the index is the Greek µ or ν, then we add the Minkowski metric (gµν):

γµDµ =

3∑
µ=0

3∑
ν=0

gµνγ
µDµ
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expect the fermion to interact, and can be different for each field:

Dµ = ∂µ −
1

2
igsΓsλαG

α
µ − ig|I3|σjW j

µ −
1

2
ig′Y Bµ (2.9)

where gs is the coupling strength for SU(3), Γs is 1 for quarks and 0 for other fields,

λα for α ∈ {1, 2, 3, 4, 5, 6, 7, 8} are the eight generators for SU(3) (also known as the

Gell-Mann matrices), Gα
µ are the eight SU(3) gauge fields, g is the coupling strength

for SU(2), I3 is the third component of weak isospin, σj for j ∈ {1, 2, 3} are the three

generators for SU(2) (also known as the Pauli matrices), W j
µ are the three SU(2)

gauge fields, g′ is the coupling strength for U(1), Y is hypercharge, and Bµ is the

U(1) gauge field. The observed I3 and Y values for each fermion field are listed in

Table 2.1.

We will see later that the gauge fields that we were forced to add, due to

requiring local gauge invariance, will turn into the vector boson fields of the SM.

Unlike the fermions, the bosons (except for the Higgs) are a consequence of local gauge

invariance. Although the covariant derivative adds in interacting terms between the

fermions and the vector bosons, it does not add in the kinematic terms. Therefore,

we must add them in by hand:

LKin,Bosons = −1

4
Gα
µνG

µν
α︸ ︷︷ ︸

SU(3) gauge field’s term

+ −1

4
W j
µνW

µν
j︸ ︷︷ ︸

SU(2) gauge field’s term

+ −1

4
BµνB

µν︸ ︷︷ ︸
U(1) gauge field’s term

(2.10)

where we have defined tensors using the gauge fields, the SU(3) structure constant

tensor (fabc), and the SU(2) structure constants tensor (εabc):

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν (2.11)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (2.12)

Bµν = ∂µB
a
ν − ∂νBa

µ. (2.13)
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If we add these two Lagrangians together we will have all SM fields plus their inter-

actions that correspond to all observed particles (except for the Higgs boson), but

they are all massless. If we were to add the mass terms now by hand, the local gauge

invariance we imposed would not hold. There is a solution to this problem, which

was alluded to earlier, called the Brout-Englert-Higgs mechanism.

First we must introduce the Higgs field, which is a complex scalar SU(2)

doublet with Y = 1:

φ =

φ+

φ0

 =

r+e
iθ+

r0e
iθ0

 (2.14)

where φ+,0 are complex, r+,0 are positive real-valued, and θ+,0 are the complex phases.

The complex conjugate is defined as:

φ̃ =

 φ∗0

−φ∗+

 . (2.15)

The Higgs field can now contribute to the SM Lagrangian with a kinetic term, a clev-

erly chosen potential, and Yukawa terms that connect the Higgs field to the fermions:

Lφ = (Dµφ)†(Dµφ)− V (φ†φ)

−
[
λeLeφeR + λuQudφ̃uR + λdQudφdR + h.c.

]
−
[
λµLµφµR + λcQcsφ̃cR + λsQcsφsR + h.c.

]
−
[
λτLτφτR + λtQtbφ̃tR + λbQtbφbR + h.c.

]
(2.16)

where λf corresponds to the Yukawa coupling for a particular fermion (f). Note the

use of “h.c.” implies that the terms listed previously are repeated after taking the

hermitian conjugate. The potential term is defined as

V (φ†φ) = µ2φ†φ+ λ(φ†φ)2. (2.17)
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This form of the potential was chosen because it gives us the results we are looking

for, as we will see. It can be viewed as “ad-hoc” since there is no fundamental reason

for this exact form. In fact, there are other, more complicated forms that can give us

the same result.

Looking at the potential term in more detail, we can rewrite it in terms of the

real numbers r+ and r0:

V (r+, r0) = µ2(r2
+ + r2

0) + λ(r2
+ + r2

0)2. (2.18)

This potential is plotted as a function of r+ and r0 in Fig. 2.2 for the experimentally

observed values of the parameters. The sign of λ has to be positive to prevent the

potential from becoming unstable, but there are two choices for the sign of µ2. For

µ2 > 0, the potential is always positive with a minimum or vacuum expectation value

(vev) of zero:

〈0|φ|0〉 =

0

0

 . (2.19)

However, for µ2 < 0, the true minimum potential becomes
√
−µ2

2λ
, and results in the

famous “Mexican hat” potential.

Having the minima no longer occur at the origin gives the neutral component

of φ a non-zero vev, which leads to spontaneous symmetry breaking as the Higgs field

“rolls” from the origin down toward the minima:

〈0|φ|0〉 =

 0

v√
2

 , where v =

√
−µ

2

λ
. (2.20)
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Figure 2.2: Higgs potential plotted with the experimentally observed parameter val-
ues.

This allows us to now redefine the Higgs field as an expansion around its minimum:

φ =
1√
2

 0

v +H

 (2.21)

where H becomes the Higgs boson field. After updating the Higgs field with this

expansion, the Higgs covariant derivative leads to some of the bosons obtaining mass

(including the Higgs boson), and the Yukawa terms lead to the fermions obtaining

mass. This becomes apparent for the vector bosons after redefining the gauge fields

as

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) (2.22)
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Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ) (2.23)

Aµ =
1√

g2 + g′2
(gW 3

µ + g′Bµ) (2.24)

where we can now say W±
µ , Zµ, and Aµ correspond to the two W’s, Z, and photon

fields, respectively. After some plugging and chugging for the Higgs portion of the

Lagrangian, we can work out the mass of each particle, and its relation to the Higgs

boson as

mW =
1

2
vg (2.25)

mZ =
1

2
v
√
g2 + g′2 (2.26)

mA = 0 (2.27)

mH =
√

2λv2 (2.28)

mf =
λfv√

2
, for f being any massive fermion. (2.29)

Notice for all of the masses, except for the Higgs boson, there is an explicit coupling

value that must be known. The mass of the Higgs can be determined from the free

parameters of the Higgs potential.

Another interesting feature of the SM is that couplings depend on the energy

scale, also known as the “running” of the couplings. In fact the running of the SU(3)

coupling explains confinement and the asymptotic-free nature of the strong force.

At low energy scales gs goes to infinity (confinement), while at high energy it gets

weaker (asymptotic freedom). This can be seen in Fig. 2.3, which shows the measured

running of αs, which is related to gs by

αs =
g2
s

4π
. (2.30)
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The running of couplings also implies that the masses of all particles should change

depending on the running of their Yukawa couplings to the Higgs field. In fact, it

would be an interesting analysis to measure the running of the Higgs boson to see

if it changes depending on the energy scale. The value of the Higgs mass depends

on the value of the vev and parameters of the Higgs potential, so before quantum

corrections are made it should be a constant. It is also interesting to note that the

couplings of the electromagnetic, weak, and strong forces seem to have an energy

scale where their values almost converge to the same value. This “almost” unification

of the forces motivates people to think that a theory beyond the SM (BSM) should

have a unification scale for all of the forces. This is actually one motivation for SUSY,

which will be explained in Section 2.3. I will not go into more detail here about why

the coupling runs as a function of energy scale, but the interested reader should look

up the beta function from the renormalization group for more information.

With all of these pieces now established, we can finally write out the full SM

Lagrangian as

LSM = LKin,Fermions + LKin,Bosons + Lφ. (2.31)

With the discovery of the Higgs boson in 2012, all particles expected from the SM

have been observed, and there are only a few very rare interactions not yet observed.

2.2.3 Interactions of Particles

Looking at the Lagrangian, we can see how all particles in the SM interact with

each other. Figure 2.4 shows how each particle interacts with the others, indicated

by connecting lines. Note that there are some self interactions. In general, we see all

fermions can only interact by means of a boson, while bosons can interact directly.
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Figure 2.3: Running of αs measured by various collaborations as a function of energy
scale Q.

This leads us to say that the bosons are the force mediators for the fundamental forces

of nature. We break interactions into two categories, ones that come from gauge

bosons, and other interactions that include the Higgs boson. Figure 2.5 shows all

vertices that come from gauge interactions. The gauge interactions are predominantly

what is seen in nature, and at a hadron collider interactions that include a gluon

(strong interactions) are very common. Interactions including a Higgs boson are very

rare compared to gauge interactions, so we will not consider them for this thesis.

For this thesis, there are two strong interactions that I would like to focus on.

Figure 2.6 shows the possible production of two top quarks, and production of a QCD

multijet. A jet is defined as the signature seen in a detector for either a quark or gluon.

Looking closer at the top quark production diagram, we see that two gluons interact
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Figure 2.4: Diagram with lines showing the interactions between different particles
including some that self interact [3].

and produce a tt pair. Since the top quark has a very large mass, it decays almost

instantaneously into a W boson and a bottom quark. For this thesis we will consider

the case where one of the W bosons decays into two low-mass quarks, and the other

decays into a lepton and its neutrino. The QCD multijet Feynman diagram can look

similar to top quark production except that it keeps using the gluon self-interaction

vertex until it has produced the same number of objects as the tt production diagram.

It is important to see that all vertices for these diagrams come from a combination

of strong and weak gauge interactions, assuming two initial gluons. We will see that

these two diagrams lead to the largest SM background for our search for new physics.
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Figure 2.5: Summary of vertices of all gauge-boson-mediated interactions [3].

2.2.4 Symmetries of the Standard Model

The SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetries that we explicitly placed

in the SM, following Neother’s theorem, says that there must be some conserved

quantities. This leads to the conservation of color charge from SU(3)C , weak isospin

(I3) from SU(2)L, and hypercharge (Y ) from U(1)Y . The observed electric charge

can be obtained by combining these values, using the Gell-Mann-Nishijima relation

Q = I3 +
Y

2
. (2.32)
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Figure 2.6: Diagrams from a hadron collider that produce four total gluons or quarks.
(Left) Example for semileptonic tt production. (Right) Example of QCD production,
which produces the same number of jets as semileptonic tt.

Another interesting feature of the SM is the “accidental” symmetries of the

Lagrangian. There are some transformations that leave the Lagrangian invariant that

were not explicitly required, and for every symmetry there exists a conservation law.

For example, we have four U(1) global symmetries that lead to baryon and lepton

number conservation:

• Q→ eα/3Q←→ Conservation of baryon number

(acting on all quark fields)

• E → eβE ←→ Conservation of electron number

(acting on electron and electron neutrino fields)

• M → eβM ←→ Conservation of muon number

(acting on muon and muon neutrino fields)

• T → eβT ←→ Conservation of tau number

(acting on tau and tau neutrino fields)

For baryon number, all quarks are assigned a value of 1/3, and all antiquarks a value

of −1/3. For example, this leads to a baryon number of 1 for the proton and 0 for

the pions. We define lepton number as the sum of electron, muon, and tau numbers.
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The conservation of baryon and lepton numbers has so far been consistent with all

experimental observations. This means that any extension to the SM should also

have these symmetries or must weakly break them.

2.2.5 Issues with the Standard Model

Although the SM can successfully describe an extensive amount of physical

phenomena, we know that it is not the final story. In fact we can view the SM as

an effective theory of some larger more inclusive theory, such that when the appro-

priate approximations are made it becomes equivalent to the SM. This has been the

litmus test of extensions to well established models ever since Isaac Newton wrote

his famous laws of motion. The open questions of the SM can be thought of as two

separate categories, experimental observations that it does not describe, and funda-

mental assumptions or consequences that are unknown. At the end of the day it could

be argued that any theory will philosophically have some open questions, regardless

of how successful it is. For brevity, I will leave those questions to the theorists and

philosophers, and only list a subset of the issues, focusing on what the community

views as the most important. Some of the biggest experimentally observed issues

are:

• Gravity: This is a famous issue with the SM. I will not go into the reasons

why, but so far there have been no successful quantum theories of gravity.

• Dark Matter and Dark Energy: We know that the energy and matter content

of the universe is only composed of ∼5% ordinary matter. As of today there

has been no confirmed theory that accurately describes what dark matter or

dark energy is composed of.
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• Matter-Antimatter Asymmetry: Considering the ∼5% of matter and energy

that we know about, the universe is composed of mostly ordinary matter,

and there is almost no antimatter. Assuming equal amounts of matter and

antimatter were produced at the beginning of the universe, there is no obvious

mechanism for this asymmetry.

• Origin of Neutrino Mass: With the observation of neutrino oscillations, we

know that the neutrinos should possess a non-zero mass. However, presently

this is considered a minor change to the SM, and in fact some people define

the SM by the most popular method for giving neutrino masses. I list it here

because the exact mechanism is still in question, so until it is definitive I will

consider the SM to have massless neutrinos.

The issues listed above, with the exception of neutrino mass, will require a major

change to the SM or will come from a theory with completely different assumptions.

Some of the fundamental assumptions or consequences of the SM that are still open

questions include:

• Higgs Mass Hierarchy Problem: The value of the Higgs boson mass, when we

take into account quantum corrections, should be many orders of magnitude

higher than it is measured to be without some extraordinary fine tuning. I

will go over this in more detail in the SUSY section (Section 2.3.1) because

it can offer a solution to this problem.

• Particles’ Mass Values: This might be more of a philosophical question, but

is there a reason for the particular value of each particle’s mass? This can

be reformulated as: why does each particle have its particular value of the
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Yukawa coupling to the Higgs? Perhaps it is a sign of some symmetry that

has yet to be seen.

• Form of the Higgs Potential: The exact form of the Higgs potential is un-

known, and the form that is used in the SM was assumed.

• Baryon and Lepton Number Conservation: These conservation laws are from

accidental symmetries in the SM. Up to the point that they have been exper-

imentally verified, they could be violated.

• Three Families of Fermions: Nature has chosen to have three copies of each

family of fermions with different mass values. Is this a sign of some underlying

symmetry that has yet to be formulated?

• Force Unification: Electromagnetism and the weak force unify in strength

at a particular energy scale, but at no energy scale do all three forces unify.

Should we be looking for a Grand Unified Theory (GUT)?

• Right-handed Neutrinos: The SM does not have right-handed neutrinos (left-

handed antineutrinos) in its current form. Perhaps, this can be solved when

we explain the origin of neutrino mass.

Finding a model that answers these questions and is consistent with the SM would

lead the Nobel committee to make an easy decision. Many great physicists are working

on this, and in time we will find solutions to many of these problems. SUSY offers

solutions to some of these problems, which is the reason why we are considering it

for this thesis.
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2.3 Supersymmetry

A possible extension to the standard model is SUSY. The general idea behind

SUSY is that all particles in the SM have a partner particle. The main motivation

for assuming that there are almost double the number of particles that have been

observed is that SUSY offers a solution to the Higgs mass hierarchy problem. This

is based on an argument that nature has chosen fundamental values of some physical

parameters such that their effective values are not “unnaturally” different—in this

case, the bare mass of the Higgs boson vs. the observed mass. The summary I give

below came mostly from these great sources [9–13].

2.3.1 Higgs Mass Hierarchy Problem

At the heart of the SM is the energy scale for which it is valid. It works well

at the electroweak energy scale of O(102) GeV, but as energy increases to the Planck

scale of O(1019) GeV, gravity is no longer negligible. This issue manifests itself when

calculating the observed mass of each particle by including the bare mass, tree-level,

and radiative loop corrections. When evaluating the momentum integrals of the loop

corrections it is necessary to stop at the scale at which we believe the theory is no

longer valid, in this case the Planck scale. When doing this for all massive fermions

and vector gauge bosons, the loop correction terms have a reasonable dependence on

this cut-off scale. However, the Higgs boson is a different story since it is a scalar

which gives its mass calculation a quadratic dependence on the cut-off scale from the

loop correction terms. As Fig. 2.7 illustrates, including the loop correction terms from

the heaviest particle that couples to the Higgs, the top quark with mtop ≈ 173 GeV,
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results in a correction term of the form

∆m2
H = Ntop

m2
top

4π2v2

[
−Λ2 + 6m2

top log

(
Λ

mtop

)
− 2m2

top

]
+O

(
1

Λ2

)
(2.33)

where Λ is the cut-off scale—in this case the Planck scale—and Ntop is a repetition

number. For the top quark, Ntop = 3 due to its color charge. This leads to the

calculation of the observed Higgs mass (mH) as

m2
H = m2

Bare −Ntop

m2
top

4π2v2
Λ2 +O (Λ) ≈ (125 GeV)2 (2.34)

which implies the Higgs bare mass (mBare) is

m2
Bare ≈ 1252 +Ntop

m2
top

4π2v2
Λ2 +O (Λ) ≈ (O(1019) GeV)2. (2.35)

Looking at the size of m2
H vs. m2

Bare implies that in the SM there is fine tuning—an

extremely contrived cancellation between the Higgs bare mass and the corrections

needed to calculate the observed Higgs mass.

t

t

H H

H H

t̃

Figure 2.7: The quadratically divergent loop corrections to the Higgs boson mass.
(Top) Corrections from the top quark. (Bottom) Corrections from the scalar partner
of the top quark.
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One idea for rectifying the Higgs mass hierarchy problem is to assume that

there are some other corrections to the Higgs mass that are on the same order that

can cancel out these extremely large fermion loop corrections. This can be achieved

for the top quark by assuming there are two new complex color-triplet scalar fields

φs, one for the right-handed top field and another for the left-handed top field, with

masses ms. We then assume that they couple to the Higgs field with trilinear and

quadrilinear terms with vλs and λs couplings. The correction terms to the Higgs

mass, as seen in Fig. 2.7, for this scalar field have the form

∆m2
H , s = −Nsλs

16π2

[
−Λ2 + 2m2

s log

(
Λ

ms

)]
−Nsλ

2
s

16π2
v2

[
−1 + 2 log

(
Λ

ms

)]
+O

(
1

Λ2

)
(2.36)

where Ns is the repetition number. For this case Ns = 2Ntop since we are adding

two color-triplet scalar fields. If we assume that λ2
s =

2m2
top

v2 , adding the Higgs’ mass

contribution terms of the top quark and this new scalar yields

∆m2
H , tot =

Ntopm
2
top

2π2v2

[(
m2
top −m2

s

)
log

(
Λ

ms

)
+ 3m2

top log

(
ms

mtop

)]
+O

(
1

Λ2

)
.

(2.37)

Now all quadratically divergent terms have been canceled out, and if it turns out that

the mtop = ms, the logarithmically divergent terms will vanish too.

With an extra scalar field for every fermion, all divergent terms for the SM

fermions can be canceled. Following a similar argument, the addition of a fermion for

every boson in the SM that has the right couplings to the Higgs boson will remove

their associated divergent terms as well. Thus, it appears the hierarchy problem can

be solved by adding a boson for every fermion, and a fermion for every boson. Noticing

that there seems to be a symmetry between fermions and bosons, we can now start
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using the nomenclature of SUSY: for every SM particle there is a supersymmetric

partner particle. The name given to the scalar (boson) partner for each fermion in

the SM is often given by adding a “s” to the SM fermion’s name, and the name given

to the fermion partner for each boson is found by adding “ino” to the end of the SM

boson’s name. For example, the top quark’s SUSY partner is often called the scalar

top quark, top squark, or stop, and the SUSY partner for the gluon is often called the

gluino. By following this idea of a symmetry between bosons and fermions through,

SUSY can be formulated.

2.3.2 Supersymmetry Formalism

I will now provide a very brief overview of the SUSY formalism by trying to

highlight important differences from the SM, but it is in no way complete. As an

extension to special relativity, the fields in the SM satisfy the Poincaré space-time

symmetry, such that the fields are invariant under Lorentz (Λµ
ν) and translation (ξµ)

transformations

xµ → x′µ = Λµ
νx

ν + ξµ = eiωij(M
ij)µνxν + eib

µPµ , (2.38)

where ωij and bµ are arbitrary parameters. Mµν and Pµ are the generators of the

group that satisfy the Poincaré algebra

[Pµ, Pν ] = 0

[Mµν , Pρ] = i(gµρPν − gνρPµ)

[Mµν ,Mρσ] = i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ),

(2.39)

where gµν is the Minkowski metric.

SUSY is a hypothetical symmetry between boson fields and fermion fields.

It manifests as an extension to the Poincaré group, often called the super-Poincaré
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group, that is a space-time symmetry that assumes there is some new operator Q

that transforms fields as

Q|Boson〉 = |Fermion〉

Q|Fermion〉 = |Boson〉.
(2.40)

The generators for Q are usually represented as Weyl spinors with 1/2 spin,2 where

the generators are denoted by Qα (α = 1, 2) and their conjugates Q†α̇ ≡ (Qα)† must

satisfy an algebra of this form:

{Qα, Q
†
β̇
} = 2σµ

αβ̇
Pµ

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0

[Pµ, Qα] = [Pµ, Q
†
α̇] = 0

[Qα,Mµν ] = (sµν)
β
α Qβ

[Q†α̇,Mµν ] = (sµν)
α̇
β̇
Q†β̇,

(2.41)

where sµν = i
4
(σµσν − σνσµ) and sµν = i

4
(σµσν − σνσµ). The main takeaway is that

we extend the usual Poincaré invariance of the SM and impose the super-Poincaré

invariance. We will see that this is not the only “super” extension that is done in

order for SUSY to be formulated.

In the formulation of SUSY, we extend the definition of fields that are functions

of spacetime to superfields that are functions on a “superspace.” The space that the

usual fields depend on, the four-dimensional spacetime, is extended into this larger

“superspace” with four extra anticommuting variables.3 They are normally denoted

2 A Weyl spinor can be defined as the two nonzero components of a four component left-
handed (right-handed) Dirac spinor. The representation of the spinors used for the SM formulation
in Section 2.2.2 used Dirac spinors, but for SUSY it is usually chosen to represent them as Weyl
spinors.

3 Variables that anticommute are often called Grassmann variables and in this case behave
like Weyl spinors.
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by θα (α = 1, 2) and their conjugates θ†α̇ ≡ (θα)†. They must satisfy an algebra of

this form:

{θα, θβ} = {θ†α̇, θ
†
β̇
} = {θα, θ†α̇} = 0

[xµ, θα] = [xµ, θ†α̇] = 0.

(2.42)

By taking advantage of the fermionic nature of θ that any combination of three

or more θ’s is zero, we can now write a general superfield as an expansion of these

new θ and θ† variables:

Φ(x, θ, θ†) = φ(x) +
√

2θξ(x) +
√

2θ†χ†(x) + θθF (x) + θ†θ†G(x)

+ θσµθ†Aµ(x) + θθθ†λ†(x) + θ†θ†θκ(x) +
1

2
θθθ†θ†D(x)

(2.43)

where φ, F , G, and D are Lorentz-scalar functions, ξ, χ†, κ, and λ† are Weyl spinors,

and Aµ is a vector. We can see the three types of fields (scalar, spinor, and vec-

tor) that the SM utilizes explicitly in a general superfield. We can also imagine how

the observed particles and their superpartners can be grouped together in a super-

field. Taking this one step further, a chiral (left-handed) superfield can be defined by

requiring:

DαΦL =

(
∂

∂θα
+ iσµαα̇θ

†α∂µ

)
ΦL = 0. (2.44)

This reduces a large number of free parameters in the general superfields. Following

a similar argument, the chiral and vector fields can be written as

ΦL(y, θ, θ†) = φ(y) +
√

2θξ(y) + θθF (y) , yµ = xµ − iθσµθ† (2.45)

V (x, θ, θ†) = θσµθ†Aµ(x) + θθθ†λ†(x) + θ†θ†θλ(x) +
1

2
θθθ†θ†D(x). (2.46)

All fermions, sfermions, and Higgs fields come from left-handed chiral superfields,

while gauge fields come from supervector fields.
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There is one final piece that is needed in order to develop a realistic SUSY

theory. It turns out, by construction, that the masses of each SM particle and their

SUSY partners will be identical. This is a problem because no SUSY particle has

been observed in nature. Either the universe does not obey SUSY, or the masses of

these new particles must be much heavier than their SM partners. We can increase

the mass of the SUSY particles by adding extra terms to the Lagrangian, so-called

“soft” terms, by hand, which breaks SUSY. One issue with this is that if the masses

of the superpartners are too large then the Higgs’ mass hierarchy problem will be

reintroduced.

2.3.3 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a SUSY-based ex-

tension to the SM that assumes the minimum possible number of fields. Table 2.2

shows details of all superfields included in the MSSM. In short, the fields of the SM

are promoted to be superfields. The components of these fields can be broken up

into the SM fields and their SUSY partner fields. One exception, however, is that a

second Higgs superfield must be added. Unlike the SM, we must introduce two Higgs

doublets because in SUSY, triangular anomalies will appear and cause higher-order

diagrams with left-handed fermions to be divergent. This divergence is avoided by

introducing two Higgs doublets with opposite hypercharge.

We can write the Lagrangian of the MSSM as two parts. There is one that

conserves SUSY (LSUSY), and one that breaks SUSY (LSoft), such that the mass of

the superpartners are much higher than their SM counterparts. This gives the total
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Table 2.2: Summary of MSSM fields. The subscripts i, a, and b used for different
fields take the following values: i ∈ {1, 2, 3}, a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and

b ∈ {1, 2, 3}.

Superfield Component Fields Spin Rep. Name

Matter Fields
Generation

I II III

Q̂i

(
uL
dL

) (
cL
sL

) (
tL
bL

)
1
2

(3,2, 1
3)

Quarks(
ũL
d̃L

) (
c̃L
s̃L

) (
t̃L
b̃L

)
0 Squarks

ûci
u†R c†R t†R

1
2 (3,1,−4

3)
Quarks

ũ∗R c̃∗R t̃∗R 0 Squarks

d̂ci
d†R s†R b†R

1
2 (3,1, 2

3)
Quarks

d̃∗R s̃∗R b̃∗R 0 Squarks

L̂i

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
1
2

(1,2,−1)

Leptons(
ν̃eL
ẽL

) (
ν̃µL
µ̃L

) (
ν̃τL
τ̃L

)
0 Sleptons

êci
e†R µ†R τ †R

1
2 (1,1, 2)

Antileptons

ẽ∗R µ̃∗R τ̃∗R 0 Antisleptons

Gauge Fields

Ĝa
Gµa 1

(8,1, 0)
Gluon

G̃µa
1
2 Gluino

Ŵb
Wµ
b 1

(1,3, 0)
Bosons

W̃µ
b

1
2 Winos

B̂
Bµ 1

(1,1, 0)
Bosons

B̃µ 1
2 Bino

Higgs Fields

Ĥu

(
H+
u

H0
u

)
0

(1,2, 1)

Higgs(
H̃+
u

H̃0
u

)
1
2 Higgsino

Ĥd

(
H0
d

H−d

)
0

(1,2,−1)

Higgs(
H̃0
d

H̃−d

)
1
2 Higgsino

36



Lagrangian as:

LMSSM = LSUSY + LSoft. (2.47)

As mentioned before, SUSY assumes an extension of spacetime to superspace where

four Grassmann variables have been added. This also implies that we must integrate

over these new variables when defining the SUSY action. We do this as we write out

the Lagrangian to be able to compare the SUSY Lagrangian with the SM. I will not

write out the appropriate rules of integration for Grassmann variables, because we

will not perform the integration explicitly. The SUSY-conserving part can be written

as

LSUSY =

∫
d2θ

1

4
(2Tr(Wα

sWsα + 2Tr(WαWα) +WαWα)) + h.c.︸ ︷︷ ︸
Gauge boson and gaugino kinetic terms

+
∑
i

∫
d2θd2θ† Q̂†ie

(gsλaĜa+gσbŴb+g
′YQB̂)Q̂i︸ ︷︷ ︸

Left-handed quarks/squarks kinetic terms

+
∑
i

∫
d2θd2θ†

(
ûc†i e

(−gsλa∗Ĝa+g′YuB̂)ûci + d̂c†i e
(−gsλa∗Ĝa+g′YdB̂)d̂ci

)
︸ ︷︷ ︸

Right-handed quarks/squarks kinetic terms

+
∑
i

∫
d2θd2θ†

(
L̂†ie

(gσbŴb+g
′YLB̂)L̂i + êc†i e

(
g
′
YeB̂

)
êci

)
︸ ︷︷ ︸

Lepton/sleptons kinetic terms

+

∫
d2θd2θ†

(
Ĥ†ue

(2gσbŴb+g
′YHu B̂)Ĥu + Ĥ†de

(2gσbŴb+g
′YHd B̂)Ĥd

)
︸ ︷︷ ︸

Higgs kinetic terms

+

∫
d2θW + h.c.︸ ︷︷ ︸

Superpotential Term

(2.48)

where the terms that do not appear in Table 2.2 are defined as

Wsα = −1

4
D†D†e−

1
2
λaĜaDαe

1
2
λaĜa (2.49)
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Wα = −1

4
D†D†e−

1
2
σbŴbDαe

1
2
σbŴb (2.50)

Wα = −1

4
D†D†DαB̂ (2.51)

W =
∑
ij

(
λuijQ̂iĤuû

c
j − λdijQ̂iĤdd̂

c
j − λeijL̂Ĥdê

c
j

)
+ µĤuĤd. (2.52)

Similarly to building the SM Lagrangian, we add in the SUSY equivalent

kinetic terms for all superfields, Higgs Yukawa terms, and Higgs potential. Imposing

local SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge invariance is done by including the vector

superfield terms in the exponential of the kinetic terms. The potential term is usually

referred to as the “superpotential.” The superpotential, Eq. (2.52), is where the

SUSY-equivalent Yukawa and Higgs potential terms are defined. We will see that it

is possible to add terms to the superpotential in Sections 2.3.4 and 2.3.5 to extend

beyond the MSSM.

The soft SUSY breaking component of the Lagrangian is:

LSoft = −1

2

(
M3

8∑
a=1

G̃aG̃a +M2

3∑
b=1

W̃bW̃b +M1B̃B̃ + h.c.

)
︸ ︷︷ ︸

Gaugino Mass Terms

−
3∑
i=3

(
m2
Q̃i
Q̃†iQ̃i +m2

ũRi
|ũRi|2 +m2

d̃Ri
|d̃Ri|2 +m2

L̃i
L̃†i L̃i +m2

ẽRi
|ẽRi|2

)
︸ ︷︷ ︸

Sfermion Mass Terms

−m2
HuH

†
uHu −m2

Hd
H†dHd −Bµ(HuHd + h.c.)︸ ︷︷ ︸

Higgs Mass and Bilinear Terms

−
∑
ij

(
Auijλ

u
ijQ̃iHuũRj − AdijλdijQ̃iHdd̃Rj − AeijλeijL̃iHdẽRj + h.c.

)
︸ ︷︷ ︸

Higgs and Sfermions Trilinear Terms

.

(2.53)

This includes soft mass terms for all of the SUSY particles, an analog of the µ term

for the Higgs potential (bilinear) with extra constant B, and an analog for the Higgs

Yukawa terms (trilinear) with extra constants Aij. Unlike the SM potential, we do
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not need to assume any sign or shape because imposing SUSY breaking triggers

electroweak spontaneous symmetry breaking with the appropriate sign for µ2. I will

not go into detail on the Higgs mechanism for SUSY, which gives similar results as

the Higgs mechanism in the SM, with the exception that there are now five Higgs

bosons where two should have electric charge. The soft SUSY terms add O(100)

extra free parameters on top of the SM, which makes it less than ideal. This adds

to the list of parameters that must be measured. One bright side to this long list of

free parameters is that measuring these parameters will keep particle physicists busy,

most importantly employed, for decades if not hundreds of years to come.

It is important to point out that local gauge invariance allows for more terms

to be added to the superpotential, but most physicists impose an extra discrete sym-

metry that removes them. This symmetry is called R-parity and its quantum number

can be calculated as:

PR = (−1)3B−L+2s (2.54)

where B corresponds to baryon number, L corresponds to lepton number, and s

corresponds to spin. All SM particles have PR = 1, while all SUSY particles have

PR = −1. All vertices must conserve this number, which implies that a SUSY particle

can never decay to SM particles only. The motivation for assuming this symmetry

is to stabilize the MSSM. Without it, these extra terms allowed by gauge invariance

would introduce lepton and baryon number violation and lead to proton decay. Since

lepton and baryon number violation has never been observed, the MSSM must ei-

ther conserve it or break it softly. Similarly, no evidence for proton decay has been
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observed. For this thesis we will actually consider a model that does not conserve

R-parity.

The cross sections for the production of various SUSY particles expected at

the LHC are shown in Fig. 2.8. For the purpose of this thesis, we are only interested

in the red curve, which corresponds to top squark production. Other groups look

for the higher cross section options, such as gluino production, and they have placed

stringent limits on their allowable cross sections. In general, SUSY groups have looked

for gluino or top squark production first because of a combination of high cross section

and low SM backgrounds.
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Figure 2.8: SUSY cross sections as a function of particle mass.
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For simplicity, most searches for the MSSM assume a simplified version where

only a few of the interactions are strong enough to be seen. For this thesis we only

allow for terms that produce the partner of the top quark, the scalar top quark

(“stop”), and its decay to the lightest neutral gaugino, the neutralino, which is often

called the lightest supersymmetric particle (LSP). Figure 2.9 illustrates the assumed

dominant interactions for this thesis.

g

t̃

t̃

t̃

χ̃
0

1

t

Figure 2.9: Relevant vertices from the MSSM for this thesis. (Left) Vertex needed for
strong scalar top quark production at the LHC. (Right) Vertex needed for a scalar
top quark decaying into a top quark and neutralino.

Some physicists make the argument that the theory of everything should not

have hundreds of free parameters that need to be measured. However, the MSSM is

still a very powerful theory, and this leads physicists to think that if it does exist it

must manifest from some more inclusive theory. Many searches for the MSSM have

been performed, but no evidence for it has been observed. This fact leaves us with

three options: the MSSM is just out of reach and if we keep looking with more data

we will find it, the MSSM is too simple and there are extra fields or interactions that
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we should be looking for, or all forms of SUSY are not physical. For this thesis we

will consider the second option and make small extensions to the MSSM that will

open up currently unexplored regions of phase space.

2.3.4 R-Parity Violating SUSY

One reasonable extension to the MSSM that can be performed is to relax

the R-parity requirement that was added by hand. This type of SUSY is called

R-parity violating (RPV) SUSY. This allows for the addition of extra terms to the

superpotential that still allow for the usual local gauge invariance:

W∆L=1 =
1

2
λijkL̂iL̂j ê

c
k + λ′ijkL̂iQ̂j d̂

c
k + µ′iL̂iĤu (2.55)

W∆B=1 =
1

2
λ′′ijkûci d̂

c
j d̂
c
k. (2.56)

As stated before, these terms cause lepton and baryon number violation respectively.

With this in mind, the couplings for these terms must be very small to match current

observations. For the purpose of this thesis we will consider only the baryon-number-

violation term. In general, both the baryon-number-violating terms and lepton-

number-violating terms are needed in order to have proton decay, so allowing for

the baryon-number-violating term only with an appropriate coupling is consistent

with current measurements. We will refer to this RPV by the UDD term, shown

in Eq. (2.56), since it allows for interactions with a right-handed up and two right-

handed down type quarks or squarks. The UDD term introduces interactions of this

type, as shown in Fig. 2.10.

With this UDD term, the MSSM requirement that all SUSY particle decays

must produce a SUSY particle is no longer true. However, all interactions in RPV

SUSY still conserve R-parity, except for when it comes to the UDD vertex, which is
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Figure 2.10: Vertex from the UDD superpotential that allows for a right-handed
scalar quark to decay into two right-handed quarks.

assumed to have a weak coupling. This interaction only allows for the LSP to decay to

SM particles. Normally in the MSSM, the LSP is stable and leaves detectors unseen,

but now it has a means to decay. This means most physicists look for signatures that

have a large amount of missing energy because the LSP is stable, but now we can look

for SUSY with signatures that have small amounts of missing energy. These types

of signatures have been mostly ignored in the past. This is why there are effectively

no limits placed on the top squark mass when considering a SUSY theory with the

MSSM plus this UDD term. For simplicity we will consider a simplified version of the

MSSM described earlier. This means we will only allow for interactions summarized

in Figs. 2.9 and 2.10. Finally, it is worth noting that this extra RPV term does not

contribute significantly to top squark production, so the top squark production cross

section is identical to what the MSSM predicts.

2.3.5 Stealth SYY SUSY

For this thesis, the other extension to the MSSM that we consider, stealth

SYY, adds new superfields Ŝ and Ŷ to the MSSM. These fields are considered to
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be in a “hidden” sector, separate from the SM and SUSY sectors described by the

MSSM. This theory actually imposes the SU(5) local gauge invariance rather than the

usual SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The SM or MSSM can be embedded in a SU(5)

local gauge invariance rather than the usual one. It also adds in a superfield that

corresponds to gravity, which can be considered to be mediated by a spin-2 particle,

the graviton, and its superpartner, the gravatino.

A chiral singlet superfield (Ŝ) is added to this hidden sector that contains a

scalar singlet (S) and its SUSY partner singlino (S̃). Unlike all the fields in the MSSM,

we assume that the masses are almost degenerate, which means that SUSY is assumed

to be mostly conserved (a nonzero mass difference is needed for the singlino to decay).

This field is not charged, interacting only with the MSSM fields via superpotential

couplings to vector-like fields. Physicists refer to interactions via an intermediate

vector-like field to be the hidden “portal” to the SM and SUSY sectors. This nature

of the singlet and singlino is why the name of this theory is stealth SUSY, and why it

is considered to be in its own sector. The other chiral superfields that are added are

the Ŷ and Ŷ pair that transform as 5+5 under SU(5)GUT. The main takeaway is that

these fields are charged and interact with particles in the MSSM. The superpotential

that allows for the singlet and singlinos to interact with MSSM particles via Ŷ and

Ŷ is defined as

WSY Y =
1

2
mŜ2 + λŜŶ Ŷ +mY Ŷ Ŷ . (2.57)

We can now see why we consider the name of the theory to be stealth SYY, since

there is a stealth sector that only interacts with the MSSM through the ŜŶ Ŷ term in

the superpotential. This is done through loop diagrams that are shown in Fig. 2.11.
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This theory still conserves R-parity, and gives a signature with a small amount of

missing energy since the gravatino is assumed to have a low mass.

Y

Y

χ̃
0

1

S̃

g

YS̃

G̃

S

YS

g

g

Figure 2.11: Effective vertices coming from Y and Y loops. (Left) Effective vertex
allowing the neutralino to decay. (Middle) Effective vertex allowing the singlino to
decay. (Right) Effective vertex allowing the singlet to decay.

These extra fields, or sector, that are added to the MSSM for this theory are not

considered to be strong enough to contribute significantly to top squark production.

This means the MSSM top squark cross section calculations can be used. These terms

only contribute to the decay of the top squark, which effectively allows for the top

squark to decay to particles that can be completely observed in a particle detector.

The most important thing to consider is that similarly to the RPV SUSY model

described earlier, this model will produce a signature that has not been fully explored

by past searches, and effectively has no limits on the possible top squark masses.
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CHAPTER THREE

Experimental Apparatus

“An experiment is a question which science poses to Nature and a
measurement is the recording of Nature’s answer.”

—Max Planck (1858–1947)

3.1 Introduction

The experimental apparatus used for this thesis, in short, is one of the most

complicated machines ever created. We process data from proton-proton collisions

produced at the Large Hadron Collider (LHC) and recorded by the Compact Muon

Solenoid (CMS) detector. The basic principle is to accelerate two sets of protons as

fast as possible, traveling clockwise and counterclockwise around a ring, and then

collide them together. It is the product of these collisions that we study, and where

we hope to see signs of new and interesting physical phenomena.

3.2 The Large Hadron Collider

The LHC is the largest and most powerful particle accelerator ever created.

The LHC is designed to collide protons at a center-of-mass energy (COM) of up

to 14 TeV, the highest energy of any accelerator ever constructed. It is located at

the European Organization for Nuclear Research (CERN) in Geneva, Switzerland.

The accelerator itself spans the border between France and Switzerland as shown

in Fig. 3.1, and it is located in the 26.7 km tunnel originally built for the Large

Electron-Positron Collider (LEP) in the late 1980’s. The LHC is made up of eight

straight sections and eight arcs, where the straight sections facilitate the crossings
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of the clockwise and counterclockwise beams. It is these high energy beam crossings

where proton-proton collisions occur. The LHC passes through four main detectors

located around the ring. There are two general purpose detectors, the Compact

Muon Solenoid (CMS) and A Toroidal LHC ApparatuS (ATLAS), and two detectors

designed for more specific purposes, A Large Ion Collider Experiment (ALICE) and

LHC-beauty (LHCb). Most of the details and figures in this section come from

Ref. [14].

Figure 3.1: A diagram of the LHC, showing the location of the tunnel with respect
to the French-Swiss border, Geneva, Switzerland, and the Swiss Alps.

3.2.1 The Journey of a Proton into the LHC

In order for a proton to generate collisions in the LHC, it must first pass

through a few stages as shown in Fig. 3.2. The process begins in a bottle of hydrogen
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gas, where hydrogen atoms are ionized to produce free protons. These protons are

then directed to the linear accelerator (LINAC). The LINAC is the first step in

the accelerator chain, increasing the energy of the protons to 50 MeV. Next, the

proton synchrotron booster, a small circular accelerator (relative to the LHC), boosts

the protons to about 1.4 GeV. The booster then feeds the protons to the proton

synchrotron (PS), which accelerates them to about 25 GeV and starts “bunching”

them together.

It is important for the PS to bunch protons into densely packed groups, and

it is these groups of protons that are steered to collide with each other in the LHC.

When these bunches of protons collide it is called a bunch crossing. The denser the

protons in each bunch, the higher the probability of two protons interacting when

two bunches cross. These bunches are spaced every 25 nanosecond (ns) in the beam

to ensure that there are no proton collisions at times other than during the bunch

crossing. All detectors have very sensitive electronics that need to know exactly when

two protons can collide in order to measure the protons’ interaction properly.

After exiting the PS, the proton bunches are passed into the super proton

synchrotron (SPS), which boosts the protons to about 450 GeV. Finally, after the

SPS, the protons make their way into the LHC, where the protons circulate clockwise

and counterclockwise with an energy of 7 TeV.

3.2.2 Performance of the LHC

While the main purpose of the LHC is to deliver proton-proton collisions, the

LHC can be thought of as an event producing machine. An event is all information

that can be saved during a proton-proton collision. However, not every event has
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Figure 3.2: A schematic diagram of the CERN accelerator chain including the LINAC,
PS Booster (PSB), PS, SPS, and LHC. The locations of the four major detectors
positioned around the LHC are also shown.
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something interesting—in fact, over 99.9975% of the events produced by the LHC are

never saved to be processed later. The LHC was designed to maximize the number

of interesting events by maximizing the COM and the instantaneous luminosity (L).

For any particular physical process produced in the LHC, we can calculate the

number of events per second we expect for this process by using

dNevent

dt
= Lσevent, (3.1)

where L is the instantaneous luminosity and σevent is the cross section for a particular

process. The cross section is related to the probability of a specific process to occur.

It can depend on the proton beam energy, and how complicated the physics of the

particular event you are interested in. At the LHC, events that produce two gluons

occur much more often than events that produce a Higgs boson, and one easy way to

see this is to compare the cross sections of both processes. However, the instantaneous

luminosity, Eq. (3.2), depends only on the proton beam parameters. For a Gaussian

distribution of protons in each bunch of a proton beam, the instantaneous luminosity

is given by

L =
N2
b nbfrevγr
4πεnβ∗

F (3.2)

where Nb is the number of particles per bunch, nb is the number of bunches per proton

beam, frev is the revolution frequency, γr is the relativistic gamma factor, εn is the

normalized transverse proton beam emittance, β∗ is the so-called beta function at the

collision point, and F is the geometric luminosity reduction factor due to the crossing

angle at the interaction point (IP). F is defined as

F =

[
1 +

(
θcσz
2σ∗x

)2
]− 1

2

(3.3)
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where θc is the full crossing angle at the IP, σz is the standard deviation of the bunch

length, and σ∗x is the transverse standard deviation of the bunch size at the IP. Some

of these variables are shown schematically in Fig. 3.3, which shows a proton bunch

crossing. It is assumed that the two bunches of protons are identical and spherical in

shape.

Beam	1 Beam	2

Head	On	
Crossing

Long	
Range

Long	
Range 𝜃"

𝜎$

𝑑&

𝜎'∗

IP

Figure 3.3: A diagram showing two bunches of protons crossing. They are modeled
as two identical Gaussian distributions with σ∗x and σz as the standard deviation
along the transverse and longitudinal directions, and θc as the full crossing angle with
respect to the IP.

Given the formula for the instantaneous luminosity, Eq. (3.1) can be used to

calculate the total number of expected events over a certain amount of time

N =

∫
dNevent

dt
dt = σeventLtot, (3.4)

where the total integrated luminosity (Ltot) is defined as:

Ltot =

∫
L dt. (3.5)
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Thus, in general, the total number of events expected for a particular interesting

physics process is just the cross section for that process times the total integrated

luminosity of the corresponding data sample. Cross section has units of area, which

implies that total integrated luminosity has units of inverse area. The total integrated

luminosity is often quoted as a measure of the amount of data collected, since it is not

specific to a particular analysis. When looking at the total integrated luminosity it is

important to keep in mind that there are two possible numbers that can be quoted, the

total “delivered” and “recorded” luminosity. The total delivered luminosity measures

the amount of possible data delivered to CMS by the LHC, while recorded luminosity

is the amount of data that CMS recorded while fully functional. The data used for this

thesis were collected during 2016–2018 of LHC Run 2 at a center-of-mass energy of

13 TeV, and correspond to the total recorded integrated luminosity shown in Fig. 3.4.

3.3 The Compact Muon Solenoid

CMS is a general purpose detector located on the LHC near Cessy, France,

between the Jura Mountains and Lac Léman (Lake Geneva), across the ring from the

main CERN site in Meyrin, Switzerland. It fits snuggly in a massive cavern located

100 m underground. CMS is assembled from many subdetectors that each provide

unique and useful information about the particles that are produced when protons

are collided. It possesses, as its name suggests, a large superconducting solenoid

magnet that produces a constant 3.8 Tesla (T) magnetic field within the solenoid and

quickly drops off outside the solenoid. The magnetic field is critical for determining

the momenta of charged particles, as the particles’ trajectories bend in the field. The

design of CMS and its subdetectors was based on the geometry of the magnet. As
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Figure 3.4: Total delivered and recorded luminosity for CMS from the turn-on of the
LHC to the end of 2018. Most of the integrated luminosity at a center-of-mass energy
of 13 TeV came during the 2016–2018 running period.

shown in Fig. 3.5, there are subdetectors inside and outside the magnet. Inside,

and closest to the beam pipe, is the silicon tracker consisting of silicon pixels and

strips, followed radially outward by the electromagnetic calorimeter (ECAL) and the

hadronic calorimeter (HCAL). Outside the magnet there are three muon systems.

The barrel region consists of aluminum drift tubes (DT) and resistive plate chambers

(RPC). The endcaps are intermixed with cathode strips chambers (CSC) and more

RPCs.

In general, CMS is designed to measure the position and energy of all particles

that come from the collision. The interactions of particles are different for each
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subdetector, as shown in Fig. 3.6. For example, some subdetectors are designed to

minimally interact with the particles, while some are designed to stop and absorb

them completely. During the data-taking period, the CMS detector was undergoing

the Phase 1 upgrade. After taking data in 2016, part of the tracking system was

replaced, and after taking data in 2017, parts of the HCAL readout system were

replaced. The original electronics are referred to as the legacy system, while the new

electronics are referred to as the Phase 1 system. The subdetectors are discussed in

their respective sections below. The information about CMS comes primarily from

references [14,15].

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1.9 m2 ~124M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 3.5: Cutaway view of the CMS detector. Each subdetector is listed in the
figure, and there is a person near the front for scale.
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Figure 3.6: Transverse view of the CMS detector showing how different particles in-
teract with different subdetectors. Muons leave a curved track in the tracker, interact
minimally in the ECAL and HCAL, and then deposit hits in the muon systems before
leaving the detector. Electrons leave a curved track in the tracker, and deposit their
energy in the ECAL. Charged hadrons leave a curved track in the tracker, and deposit
their energy in the HCAL. Neutral hadrons only deposit their energy in the HCAL.
Photons only deposit their energy in the ECAL.

3.3.1 Detector Geometry and Basic Variables

Similar to the detectors used at the Fermilab Tevatron and many other collider

experiments, CMS has a cylindrical shape consisting of a barrel piece and two endcaps.

It has a length of 21 m, a diameter of 15 m, and weighs about 14,000 tonnes. We

define the coordinate system such that the x-axis points radially toward the center of

the LHC, the y-axis points vertically upward, and the z-axis points along the beam

pipe. The center of the detector, also referred as the interaction point (IP), is at

the origin of the coordinate system. The positive z direction points toward the Jura

Mountains in the direction of the counterclockwise LHC beam. It is convenient to

work in a coordinate system in which the usual azimuthal angle φ is measured from
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the x-axis in the (x, y) plane, and the polar angle θ is measured from the +z-axis.

The polar angle θ can be mapped to a quantity known as the pseudorapidity (η)

defined as

η = − ln

[
tan

(
θ

2

)]
. (3.6)

For massless particles (e.g. photons), pseudorapidity is equal to rapidity, i.e. a quan-

tity that defines a Lorentz boost along the z-axis. The geometry of CMS is designed

such that particles up to |η| ∼ 5 can be detected. From the mapping of η to θ,

θ = π/2 (for a particle with no z component of momentum) corresponds to η = 0.

Similarly, as θ → 0 or π (closer to the beam pipe), η → ±∞.

We also define useful variables in terms of η. One of them is the Lorentz-

invariant angular separation (∆R) between two particles:

∆R =
√

(∆η)2 + (∆φ)2. (3.7)

Having a Lorentz-invariant component of the 4-vector is useful, especially at hadron

colliders, since the boost along the z-axis for the interacting particles is not known

exactly.

Proton-proton collisions can often be thought of in terms of collisions of partons

inside protons. This then implies that when two partons interact they will have some

fraction of the total energy of the proton. This fraction varies from event to event;

thus initial momenta along the beam axis (z-axis) of the partons before the interaction

is not known. However, the initial momentum of each parton in the transverse plane

is nearly zero. Therefore, it is often convenient to think about each particle in terms

of its transverse components, for example instead of the total momentum (Ptot) we

consider the component along the (x,y) plane pT. The particle’s 4-momentum can be
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fully determined by measuring the mass or energy, pT, η, and φ. They can then be

related to the usual Px, Py, and Pz by

Px = Ptot sin θ cosφ = pT cosφ (3.8)

Py = Ptot sin θ sinφ = pT sinφ (3.9)

Pz = Ptot cos θ = pT sinh η. (3.10)

3.3.2 Tracker

Once a particle has been created from a proton-proton collision and passes

through the beam pipe, the first subdetector that it can interact with is the tracker. It

is important to keep in mind that particles produced parallel to the beam pipe cannot

be measured by the CMS detector. The main purpose of the tracker is to measure the

curvature of charged particles with pT > 1 GeV, so that we can accurately determine

their momentum. The tracker consists of many small modules that are grouped

in layers transverse to the beam pipe. In fact, CMS is pretty much an extremely

complicated cylindrical onion of detectors. When a charged particle goes through the

tracker it will leave a “hit” in many layers that can later be aligned to form the path

of the particle.

The tracker is designed to measure the trajectory of charged particles with

minimal interactions between incident particles and the tracker materials in order to

reduce bremsstrahlung and nuclear interactions. With this in mind, the tracker is

colloquially known as a non-destructive detector, and is constructed with a minimum

amount of material. It is also the closest to the beam pipe and IP, which implies

that it sees the highest flux of particles. Thus, it must be composed of radiation-hard

material, which is why it is made of silicon. The tracker has a diameter of 2.5 m, a
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length of 5.8 m, and about 200 m2 of active silicon. This makes the CMS tracker the

largest silicon tracker ever constructed. It has about 75 million readout channels and

provides a position measurement resolution of about 10 µm. It also has a pT resolution

of about 1–2% for a 100 GeV particle. The tracker consists of two components, the

pixel tracker and strip tracker. A cross section view and pictorial view of the tracker

are shown in Figs. 3.7 and 3.8, respectively.

Figure 3.7: A cross section view of the tracker with its subsystems labeled. Closest to
the IP is the pixel detector (BPIX and FPIX) followed by the inner (TID and TIB)
and outer (TEC and TOB) strip tracker. The tracker has coverage out to |η| = 2.4.

The pixel tracker consists of over 1400 modules that comprise the segmented

silicon sensor with a pixel pitch of 100× 150 µm2. The modules are aligned in multiple

layers around the beam pipe. Like other subdetectors, the pixel tracker is further

divided into a barrel region (BPIX) and two endcaps (plus or minus FPIX). In the

legacy system there were three layers in BPIX, and two layers in FPIX. After the 2016

data-taking period, the pixel tracker was completely replaced and new electronics were
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Figure 3.8: Images of the legacy tracker. (Top) The inner and outer strip tracker
barrel. (Bottom left) Half of the BPIX. (Bottom right) Half of the FPIX, placed in
front of the BPIX. Image source [16].

installed [17]. With this upgrade, the first layer was moved closer to the beam pipe,

and an extra layer was added to both BPIX and FPIX. This can be seen in Fig. 3.9.

This led to an increase in vertex reconstruction efficiency, while assuring that the

pixel detector as a whole will continue to function well during the CMS data-taking

periods between 2017–2023. If the pixel tracker had not been replaced, the radiation

damage would eventually lead to a significant loss in data quality.

During the data-taking period of 2017, the first year of running with the

Phase 1 pixel detector, there were issues with the electronics that made some of
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Figure 3.9: Diagrams comparing the legacy pixel detector and new Phase 1 upgrade
pixel detector. (Top) A cross sectional view of the pixel detector where top is the
new Phase 1 pixel detector and the bottom is the legacy pixel detector. (Bottom) A
view of the pixel barrel where the left is the legacy barrel pixel detector and the right
is the Phase 1 barrel pixel detector.
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the modules stop functioning. It was later determined that a component related to

powering the module was failing in the unique high magnetic field, high radiation

flux environment. The impact on physics analysis was minimal, and the detector

simulation was adjusted to include the missing modules. For the analysis presented

in this thesis, the failing pixel tracker electronics had only a small impact on the

reconstruction of electrons, muons, and bottom quarks. All the damaged modules

were replaced during the year-end technical stop after the data-taking period of 2017.

The Silicon Strip Tracker (SST) consists of over 15,000 silicon strip modules

with varying sizes. The Tracker Inner Barrel (TIB) has four layers of modules along

with the Tracker Inner Disks (TID), which have two discs of modules. The Tracker

Outer Barrel (TOB) has six layers of modules along with the Tracker Endcaps (TEC),

which have nine discs of modules. The overall layout of the silicon strip tracker is

shown together with the silicon pixel tracker in Fig. 3.7.

3.3.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is almost completely made of lead

tungstate (PbWO4) crystals, with the exception of two layers of the preshower de-

tector in front of the endcaps, which are composed of silicon strips. A diagram of

the layout and coverage is shown in Fig. 3.10. The main purpose of the ECAL

is to measure the energy and position of any electromagnetically interacting parti-

cle that makes it past the tracker, for example, electrons and photons. Unlike the

tracker, calorimeters such as the ECAL are considered destructive instruments, de-

signed to completely stop and absorb the particles. When a particle hits the ECAL

it produces an electromagnetic shower by interacting with the PbWO4 crystals. For
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particles above a specific threshold energy, about an MeV, the dominant processes are

electron-positron pair creation for photons and bremsstrahlung for electrons. These

two processes will continue until the energy of the photons (electron) produced fall

below the 1 MeV threshold, after which the photoelectric effect and Compton scatter-

ing dominate. This cascade from a single high-energy electromagnetically interacting

particle can produce many orders of magnitude more low energy particles. This can

be seen in the bottom image of Fig. 3.11, which shows an example of the PbWO4

crystals with an artistic rendering of an electromagnetic shower.

The ECAL is a homogeneous calorimeter. The PbWO4 crystals fill most of

the ECAL volume, serving as the active medium and producing light signals. The

ECAL barrel (EB) is composed of about 61200 crystals that have a front-face cross

section of about 22× 22 mm2 and a length of 230 mm. The geometry of the crystals

is designed such that they can almost completely contain a single electromagnetic

shower. The ECAL endcap (EE) is composed of about 7324 crystals that have a

front-face cross section of 28.6 × 28.6 mm2 and a length of 220 mm. At the end of

each crystal, a silicon avalanche photodiode (APD) collects the light produced by the

crystal. The APD then converts the light it collects to an electrical signal, which is

amplified for further processing. The energy of the particle that produces the shower

is related to the amount of light the APD collects. The resolution of the ECAL energy

measurements can be described by a function of the energy, and a few experimentally

measured constants ( σ
E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2 (3.11)
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Figure 3.10: Diagrams of ECAL. (Top) A sketch of the ECAL showing the barrel mod-
ules that contain the crystals, the endcaps, and the preshower detectors. (Bottom)
Diagram showing the coverage of the barrel and endcap of the ECAL subdetector.
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Figure 3.11: Images of ECAL. (Top left) Image of a EB module sliding into place.
(Top right) Image of the fulling installed EB (reflecting green laser light). (Bottom)
Image of a lead tungstate (PbWO4) crystal with a electromagnetic shower shown
inside.

where S is the stochastic term, N is related to the noise, and C is a constant offset.

One interesting feature of this equation is that the measured energy resolution goes

down (improves) for higher energy particles.

3.3.4 Hadron Calorimeter

The hadron calorimeter (HCAL) surrounds the ECAL system and is the last of

the subdetectors inside the solenoid. Like the ECAL subdetector, the main purpose

of the HCAL is to measure the energy and position of hadrons that pass through

the ECAL and enter it, for example charged pions and neutrons. It is a destructive

detector in that the particles interact with the calorimeter material, and the interac-

tions cause a cascade of secondary particles called a hadronic shower. In the HCAL,
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incident hadrons produce a hadronic shower where one high energy hadron produces a

large number of low energy particles. The main difference between a hadronic shower

and an electromagnetic shower is that the hadrons interact with the nucleus of the

material in the calorimeter which releases high energy charged particles, which then

produces electromagnetic showers.

The HCAL consists of several subsystems. The HCAL barrel (HB) and two

endcaps (HE) are located inside the solenoid magnet. These two subsystems con-

tribute the most to the physics analysis discussed in this thesis. The other systems

are a very far forward component (HF), and another barrel layer (HO), which is out-

side the solenoid magnet. The HF is mostly used by analyses that look at events

with physics objects at large |η|, for example, heavy ion physics. The HO was added

in hopes of measuring particles that make it past the HB and the solenoid, but it

turns out that HO does not contribute significantly to physics object reconstruction.

Pictures of HB and HF are included in Fig. 3.12.

Figure 3.12: (Left) Image of the HB brass and scintillator being installed inside the
solenoid. (Right) Five segments of the HF during assembly, showing the quartz fibers
and steel. Image source [18].
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The HCAL was another subdetector that was enhanced during the Phase 1

upgrade, and is detailed in the Phase 1 upgrade CMS technical design report [19].

This was done by replacing all readout electronics of each subsystem. HO was the first

subsystem to be upgraded before the 2016 data-taking period, followed by HF after

the 2016 data-taking period. The two most important subsystems were purposely

chosen to go last to build on experience gained during the HO and HF upgrades.

After the 2017 data-taking period, HE was upgraded, followed by HB after the 2018

data-taking period. Due to the staged upgrading of HCAL, the HCAL system was

effectively different for all three data-taking periods considered in this thesis. These

transitions are accounted for in the simulation of events and modifications to the

event reconstruction software. The HB subsystem used the legacy electronics for all

three years. Figure 3.13 includes two diagrams that show the legacy and Phase 1

HCAL systems, detailing the depth segmentation. Individual channels of the HCAL

are defined as a function of η, φ, and depth, and they are read out separately. The

readout electronics, as well as more compact photosensors adopted for the Phase 1

upgrade, enable a larger number of readout channels, which is reflected in an increase

in the depth segmentation.

The exact means of collecting the energy and position information vary over

different subsystems of the HCAL. We will focus on the HE and HB subsystems, be-

cause they are the only part of HCAL used for this thesis. Unlike the ECAL, the HE

and HB are not composed of a homogeneous material. They are sampling calorime-

ters, consisting of alternating layers of plastic scintillator and brass. The brass, as

the absorber, causes incident hadrons to produce cascade showers of secondary par-

ticles well contained in the HCAL volume. The scintillator then receives showered
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Figure 3.13: Diagrams of HCAL. (Top) A diagram detailing the depth segmentation
for the legacy HCAL. (Bottom) A diagram detailing the depth segmentation of the
upgraded Phase 1 HCAL.
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secondary particles produced in the brass absorbers, and emits light in proportion to

the number of particles that interact with the scintillator. The energy information of

the hadron is then converted to an analog light signal inside the plastic scintillator.

The frequency of scintillating light corresponds to blue. It is shifted to the range

of green in optical fibers, which are often referred to as wavelength shifting fibers

(WSF). However, if light can get into this fiber it can come out, which is why it

needs to be shifted to a different frequency, so that it will not leave the fiber in tran-

sit. The scintillator and readout optical fibers were not replaced during the Phase 1

HCAL upgrade. The part that was upgraded turns this light into an analog signal,

then eventually into a digitized signal. This digitized signal is then sent off-detector

to be processed further. Figure 3.14 shows some photos from the HCAL Phase 1

installation effort.

3.3.5 Magnet

The magnet used by CMS is a large solenoid that has properties detailed in

Table 3.1. It is a superconducting magnet that is cooled to 4.5 K by means of an

extensive cryogenic system. Figure 3.15 shows a magnetic field map around the CMS

detector. The main purpose of the magnet is to bend the trajectories of charged

particles to measure their momentum, and to identify the sign of their charge. The

resolution of the momentum decreases as the pT of charged particles increases. This

is the main motivation for maximizing the field strength. The magnetic field is a

constant 3.8 T inside the magnet, and falls rapidly outside, by means of a steel

return yoke that has an outer diameter of 14 m. The yoke is made of three layers

and provides most of the structural support for CMS. In general, only muons and
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Figure 3.14: (Top) Images of the HCAL Phase 1 upgrade. (Bottom left) View of the
endcap showing HE and the CSC muon systems. (Bottom right) The closing of the
endcaps after the HE Phase 1 upgrade, showing the intermixed muon DTs and the
solenoid.
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neutrinos are expected to make it past the magnetic field, and of course new weakly

interacting particles could make it this far, too. Although, there are some hadrons

that make it past the HCAL, it is a small fraction. The tracker, ECAL, and HCAL

fit inside the solenoid, and the muon systems are interleaved with the return yoke. It

has a momentum resolution of ∆p/p ≈ 10% for momenta at 1 TeV, which is sufficient

to determine the sign of a muon up to pT ≈ 1 TeV. For the 2016–2018 data-taking

periods used in this thesis, the magnetic system was fully functional; in previous years

it had not operated fully.

Table 3.1: Properties of the CMS solenoid magnet.

Property Value
Field 3.8 T

Inner Diameter 5.9 m
Length 12.9 m
Current 19.5 kA

Stored Energy 2.7 GJ
Number of Turns 2168

Weight 12,000 tonnes
Hoop Stress 64 atm

3.3.6 Muon Systems

Last but not least of the CMS subdetectors are the muon systems. The purpose

of the muon systems, as the name suggests, is to measure the position of muons.

Muons are the heavier counterpart of the electron, having a lifetime long enough to

pass through CMS before decaying. Unlike electrons, muons do not interact much

with material, so they can pass through several meters of iron. This means that muons

leave a very clean signature, and are therefore one of the namesakes of the Compact

Muon Solenoid. In fact, CMS was designed, and named, with the goal of detecting
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Figure 3.15: (Top) Diagram showing the magnetic field strength inside and outside of
the solenoid. (Bottom) A schematic of the solenoid and its cryogenic system. Image
source [20].
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muons from Higgs boson decays. It turns out, with no surprise, that detecting muons

was critical for the discovery of the Higgs boson. As shown in Fig. 3.16, most of the

CMS volume is filled with the muon systems. The muon systems are composed of

three separate subsystems, the Drift Tubes, Resistive Plate Chambers, and Cathode

Strip Chambers.

0 2 4 6 8 10 12 z (m)

R
 (m

)

1

0

2

3

4

5

6

7

8

1 3 5 7 9 11
5.0
4.0

3.0

2.5
2.4
2.3
2.2
2.1
2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.00.9 1.10.80.70.60.50.40.30.20.1
40.4°44.3° 36.8°48.4°52.8°57.5°62.5°67.7°73.1°78.6°84.3°

0.77°
2.1°

5.7°

9.4°
10.4°
11.5°
12.6°
14.0°
15.4°

17.0°

18.8°

20.7°

22.8°

25.2°

27.7°

30.5°

33.5°

θ°
η

θ°η

M
E4

/1

M
E3

/1

M
E2

/1

M
E1

/2

M
E1

/1

M
E2

/2

M
E3

/2

M
E1

/3

R
E3

/3

R
E1

/3
R

E1
/2MB1

MB2

MB3

MB4

Wheel 0 Wheel 1

RB1

RB2

RB3

RB4

Solenoid magnet

Silicon 
tracker

Steel

Wheel 2

R
E2

/3

R
E3

/2
M

E4
/2

R
E4

/3
R

E4
/2

R
E2

/2

CSCs
RPCs

DTs

R
E2

/2

HCAL

ECAL

Figure 3.16: Diagram showing the layout and coverage of the CMS subdetectors,
highlighting the coverage of the muon detector DTs, CSCs, and RPCs.

The Drift Tubes (DT) are wire gas detectors in which a charged particle (muon)

passing through creates free electrons in the gas volume that are then attracted to

positively charged wires. Each DT is composed of many tube cells that are about 4 cm

wide and are filled with gas, together with the positively charged wire. Based on the

position of the wires that registered the free electrons, the position of the particle that
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went through the DT can be measured. The (r, φ) coordinate is measured by wires

parallel to the beampipe, while the z coordinate is obtained from wires perpendicular

to the beampipe. The electrons’ drift speed and arrival time is used to determine

the muon’s distance away from the wire. There are about 250 DTs located in CMS.

Each DT is about 2 m by 2.5 m in size, and they are arranged in four layers parallel

to the beam pipe in the barrel of CMS. Each DT has 1 or 2 RPCs attached to it,

as shown in Fig. 3.16, to provide redundancy because the timing of the DT can be a

problem. It takes longer than 25 ns for the DT to readout a muon hit. The timing

and radiation sensitivity is the reason why DTs are only used in the barrel, where

the number of particles produced and radiation damage is much lower compared to

the endcaps. A high-pT muon can cross up to 6 RPCs and 4 DTs, which produces

about 44 measured points that can be used to construct a muon track. The single

point resolution of a DT is about 200 µm.

The Resistive Plate Chambers (RPC) consist of two high resistive parallel

plates. One plate is positively charged and the other is negatively charged, with a

gas volume separating them. When a charged particle (muon) passes through the

gas it produces free electrons, causing an avalanche that moves towards the positively

charged plate. The electrons are then collected by metallic readout strips. This gives

position information, but the resolution is not as good as the DT or CSC. However,

the timing resolution is about 1 ns, which is very fast and is ideal for event triggering.

There are 610 RPCs in the barrel and endcap sections.

The Cathode Strip Chambers (CSC) have a similar design to the DTs. The

CSCs also use free electrons produced in a gas by charged particles (muons) that are

then collected by a positivity charged wire. However, unlike the DTs, they also have
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a negatively charged wire that is meant to collect the positively charge ions that form

when the free electrons are produced. The CSCs are more radiation hard compared to

the DTs, which is why they are used in the endcaps. There are 468 CSCs intermixed

with the RPCs to cover the endcaps, as shown in Fig. 3.16.

3.3.7 Trigger

As described in Section 3.2, proton bunches cross every 25 ns, which means

that there are 40 million proton collisions every second. One may want to record

the data for every bunch crossing, but it would result in an impossible amount of

information to store. Also, not every bunch crossing has an “interesting” event,

where an interesting event is subjectively defined as possibly having information worth

studying. Logistically, we can only store about a few hundred events per second.

This is where the trigger system comes in. The trigger system, aptly named, will

“trigger” on interesting events by flagging them for storage and further processing.

This system will perform a quick reconstruction of every event, and if it passes a

predetermined threshold, the event will be passed to long-term storage. The time it

takes to fully collect the data for a particular event, and the time it takes the trigger

system to reconstruct that event in order to make a decision, forces each subdetector

to independently buffer every event before dumping it or passing it along to long-term

storage. The trigger system consists of two main parts, the Level-1 trigger and the

High Level Trigger.

Passing the Level-1 Trigger (L1T) is the first step before an event is saved for

future analysis. The L1T is designed to make extremely fast decisions with a small

amount of information. It reduces the number of events which may be saved down to

74



about 100,000 per second, which means that it dumps about 99.75% of all events. The

L1T electronics are stored in the CMS service cavern adjacent to the experimental

cavern. The electronics must be specially designed and constructed. A total time of

3.2 µs is budgeted for the partial data to be transfered to the service cavern, a decision

to be made, and that decision to be transfered back to each subdetector, which are

meanwhile still buffering the full event information. This short time window makes it

impossible to use the full information from every subdetector to make this decision.

Thus, only the ECAL, HCAL, and the muon systems are used. Objects such as

photons, electrons, muons, and jets are quickly constructed, and events in which

these objects pass a pT, ET, and other simple variable thresholds are kept and passed

along to the High Level Trigger.

The High Level Trigger (HLT) is a computer farm stored near the control

room, and it has access to all the information available for every event. This means

that a more complex event reconstruction can be performed for each event, similar to

the reconstruction performed for final analysis. The HLT filters the number of events

saved per second to a few hundred. This means it dumps about 99.9% of the events

that it receives from the L1T. The HLT was designed to accept different sets of object

requirements, also known as trigger paths, to help filter events into data sets. For

example, the single lepton triggers collect events with at least one lepton candidate

passing certain criteria. The HLT allows for analyses to use a trigger path specific

to each analysis, assuming the trigger requirements keep the number of events stored

below the storing threshold. For the analysis in this thesis, the generic single-lepton

trigger paths commonly used by a large number of CMS analyses were sufficient.
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CHAPTER FOUR

Event Simulation and Reconstruction

4.1 Introduction

Chapter Three described how the LHC delivers proton-proton collisions and

how CMS was constructed to measure the collisions. This chapter describes in greater

detail how an “event” is processed. First, what exactly is an event? In short, an event

is everything that happens during one proton-proton bunch crossing inside of CMS.

Each event contains all the physics information relevant for that particular bunch

crossing, and events are independent of one another. The data for each event are

later processed to reconstruct the 4-vectors of the physics objects that came from the

collision. This step of analyzing the data collected by CMS is called reconstruction,

and it is performed centrally for all analyses using the CMS software framework

(CMSSW), which was written by thousands of CMS physicists.

Figure 4.1 shows an example of a tt + jets candidate event. It depicts how

each subdetector responds to particles coming from top quark decays. As described in

Chapter Two, a top (antitop) quark decays to a bottom quark and a W boson before

it can travel a measurable distance in the detector. In this event, the top quark and

antitop quark each decay to a W boson, and the W bosons also decay before they

travel a measurable distance. One of the W bosons decays to two quarks, and the

other produces a muon and missing energy (neutrino). As Chapter Five describes,

the tt + jets process is the largest SM background that needs to be estimated. This

reconstructed event shows the detectable particles produced in top quark decays.
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Different kinds of physics objects are reconstructed in different ways, as each object

interacts with the CMS detector differently as discussed in Chapter Three. The

reconstruction of physics objects will be described later in this chapter.

The event reconstruction described above applies to real proton-proton colli-

sion events collected by CMS, but we also need to reconstruct events that are simu-

lated. Simulated events are generated by a series of computer programs based on the

SM or physics beyond the SM, and they are passed through the CMS detector simu-

lation. The simulation programs produce signals as expected from each subdetector,

and simulated events can be treated in the same way as real collision data events

collected by CMS. In general, there are many applications of simulated events, but

for the purpose of this thesis we use them to predict some SM backgrounds and the

SUSY signals. The summary below will go into more detail on event simulation and

reconstruction. It also comes primarily from Refs. [21–23].

4.2 Event Simulation

Event simulation is performed using Monte Carlo (MC) simulation software.

Simulated events, colloquially called MC events or MC data, are used to predict SM

backgrounds as well as the particular BSM signal events that we are searching for.

Before describing how an event is reconstructed, we discuss how they are simulated,

since the reconstruction process for MC data and collision data events is the same.

4.2.1 Background Prediction with Simulated Events

Assuming we can successfully produce simulated events, there is a question

that immediately arises: how many events should be produced? The answer depends

on a few factors, but ignoring computational constraints, events are simulated until
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78



a signal or background prediction is considered accurate. This means the statistical

uncertainty is sufficiently small. This constraint might imply that the number of

generated events should match the number of events that the physics model predicts.

However, this is either not enough or too many events depending on the process.

What is done instead is to weight each event such that we get an effective number of

predicted events corresponding to the amount of real data we are analyzing:

Neff =

Ngen∑
i

wi, (4.1)

where Ngen is number of events that are generated. We can define wi and calculate

the uncertainty on the number of predicted events using

wi =
σL

Ngen

(4.2)

σNeff
=

√√√√Ngen∑
i

w2
i , (4.3)

where σ is the cross section of the process being simulated and L is the integrated

luminosity or the amount of collision data collected by CMS. This allows us to gener-

ate an arbitrary number of events and still be able to produce a signal or background

prediction and its uncertainty. These equations work not only for generated events

but for data events as well. Data is just a special case where wi = 1 and Ngen = Ndata.

Another interesting point is that we can reduce σNeff
by generating more simulated

events.

Predicting the backgrounds for any SM (or BSM) processes requires that we

know the cross section for that process. There are many groups of theorists who

perform state-of-the-art theoretical predictions for various SM processes and exper-

imentalists who measure these processes as accurately as possible. A summary of
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the latest greatest cross section measurements is shown in Fig. 4.2 for various SM

processes. For the signal models that we are searching for, we use the top squark pair

production cross section values shown in Fig. 2.8.
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Figure 4.2: Theoretical and CMS measured production cross sections of various pro-
cesses.

Now that we know how to predict the effective number of events from a set of

simulated events, we still need to actually produce and reconstruct them to calculate

interesting quantities for our studies.

4.2.2 Event Generation and Parton Shower

The first step in simulating events is event generation and the parton shower

(PS) calculation, where the interactions of all initial particles and their byproducts

are calculated. Figure 4.3 shows an example event where each blob and line represent
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parts of the event that need to be simulated. In general, there is more than one

proton-proton interaction occurring within each event, which is called in-time pileup.

This requires us to define one proton-proton interaction as the interaction of interest,

which is called the hard process. All other proton-proton interactions in the event

are then considered to be pileup. The existence of in-time pileup means that each

event contains particles that leave tracks and deposit energy in the detector that are

not relevant to the part of the event of interest.

Once we determine the process that we want to simulate, for example tt pro-

duction, most of the relevant calculations are done when we simulate the hard process

in the event generation. For proton-proton scattering we write Feynman diagrams

that show either the free quarks or gluons, often called partons, within the protons.

These partons are the particles that are actually interacting since protons are com-

posite particles. The initial energy of each parton is not simply the energy of the

incoming proton, because this energy will be shared with the other partons not in-

teracting within the proton. In fact, the initial energy of each parton ends up being

described probabilistically by a distribution, the parton distribution function (PDFs),

that needs to be measured and describes the structure of the proton. Using the PDFs

we can determine the initial kinematics of the partons involved in the scattering. And

then, using the SM and relevant Feynman rules, we can predict the initial particles

produced, for example, the two top quarks and their decay products for tt production.

Performing these calculations for the wide variety of processes that are needed

by CMS is a huge undertaking. There are a few groups of theoretical physicists

that write and maintain dedicated software for generating events. For the MC data
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Figure 4.3: Monte Carlo-simulated event of a hadron-hadron collision. The red
blob in the center represents the hard process, surrounded by lines representing
bremsstrahlung as simulated by the parton showers. The purple blob indicates a sec-
ond hard-scatter event. Parton-to-hadron transitions are represented by light green
blobs. Dark green blobs indicate hadron decays, and yellow lines represent low energy
photon radiation. Image source [24].
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used in this thesis, the powheg and MadGraph event generator programs are used

primarily.

After generating the hard process, the next step in event simulation is to sim-

ulate the rest of the particles produced in the event, the parton shower. This includes

the hadronization and showering of the particles originating from the hard process.

When quarks and gluons are produced, they cannot stay free in the detector due to

the nature of QCD. In fact, when produced, they have enough energy to pull particles

from the vacuum that then do the same until they run out of energy. This process

is called hadronization. Hadronization is done such that the overall color charge is

conserved, which is handled by the PS during the color reconnection (CR) step. The

PS step is also where the underlying event is calculated but without the full rigor

used for the hard processes calculation. Another important step processed during the

PS calculation is to model extra jets that are produced from QCD radiation. When

a strongly interacting particle is produced in the event and has sufficient energy, it

can radiate a gluon jet. This is usually referred to as initial state radiation (ISR) or

final state radiation (FSR) depending on whether it comes from the initial partons

or the produced particles. For the purpose of this thesis, the modeling of extra jets

in the event is important because we look at tt events with at least seven jets, and

we only expect four of them to come from the hard process: two b-jets plus two jets

from the W boson decay.

Just like for event generation, several groups of people are dedicated to writing

and maintaining software for the parton shower simulation that is used by everyone

in CMS. The pythia program is used for the parton shower almost exclusively in

CMS and for all MC data used in this thesis. After event generation and the PS, the
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next step in the process is to simulate the interactions of the particles coming from

the proton-proton interaction and the detector material.

4.2.3 Detector Simulation

The event generation and PS calculations are in general detector-independent.

The detector simulation step uses an accurate representation of each subdetector and

its materials for simulating the interactions of the particles coming from the hard

process and PS, and is implemented by software based on Geant4. This is where

the magnetic field and the electromagnetic and hadronic showers are simulated, as

well as the interactions of the particles with the detector material.

Now that we have the actual particles that each subdetector observes, dedi-

cated software written for each subdetector is used to simulate the readout electronics.

The detector simulation simulates all information that we know about the detector.

Not only does it simulate all active layers and channels, it uses calibration informa-

tion to output signals and energy deposit information that we would expect from real

data. We even simulate dead channels in various subdetectors. The detector simula-

tion configuration changes based on which year of data taking we want to simulate,

since the CMS detector was undergoing upgrades between each year. We effectively

had a different detector for each of the three years of the data-taking period.

For example, the simulation of the HCAL readout electronics needed to be

updated. One important aspect of this was the modeling of the distribution of light

from the scintillators and wavelength shifting fibers (Y11) that carry the light from

the scintillators to the readout electronics, and the analog charge distribution coming

from the photomultiplier (SiPMs). This is detailed in CMS internal note [25] for the
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Phase 1 upgrade, which describes the electronics used for the 2018 data-taking period.

As described in Section 3.3.4, the particles that make it to HCAL will interact with

the brass absorber and scintillators, and will produce light proportional to the energy

of the initial incident particles. This light is then passed to the readout electronics

by the Y11 fibers for further processing, until we have a measurement of the amount

of energy deposited into the HCAL system. It is important for both reconstruction

and simulation to understand these two distributions in time. Figure 4.4 shows the

bench measurements of the distribution of light from the scintillator + Y11 system

and the charge distribution from the SiPMs. These two distributions can be con-

volved together to give us the pulse shape or charge distribution coming out of the

SiPMs from data measurements. This pulse shape is integrated by the on-detector

electronics every 25 ns, denoted by time step, and is sent off to the reconstruction

algorithm for further processing. Figure 4.5 shows a comparison of this pulse shape

for data, the updated detector simulation, and an older detector simulation that used

an incorrect scintillator + Y11 shape. One important thing to note is that it takes

about four time steps or ∼100 ns to read out all the charge coming from the readout

electronics for one hadronic hit in the HCAL. That means if two successive events

have hadrons that enter the HCAL, we will read out a pulse shape that is effectively

two independent pulse shapes added together but shifted by 25 ns. This is handled

during the reconstruction stage, but we can take advantage of the fact that the pulse

shape is the same for all hadronic hits and only the amplitude of the shape changes

depending on the energy of the hadron. This means if we know the pulse shape ex-

pected from a hadronic hit, we can simulate the electronics by adding multiple pulses

with varying amplitudes that are shifted in time depending on whether successive
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events have hadronic particles striking the HCAL. This pulse shape is the lowest

level of saved information for HCAL and everything necessary for reconstruction is

obtained from it.

A similar process was achieved for all subdetectors. After the detector sim-

ulation step, the output of simulated data looks as if it was collected by the CMS

detector.

4.3 Event Reconstruction

Once CMS has either collision data or simulated data, the next step is to

reconstruct and identify all stable particles in the event. CMS has a dedicated algo-

rithm, called Particle Flow (PF), that achieves this by reconstructing candidates (PF

candidates) of electrons, muons, photons, charged hadrons, and neutral hadrons by

determining their direction, energy, and type. Once we have this list of PF candidates,

we can use them to reconstruct more complicated objects, such as jets.

Information from the tracker and calorimeter systems are critical for PF re-

construction. Hits in the tracking subdetector are used to reconstruct the initial path

of particles from the primary vertex through CMS by the iterative tracking algorithm.

The ECAL and HCAL measure the energy of particles that pass through the tracking

system by absorbing them. These hits in the calorimeter systems are then clustered

together to fully reconstruct the energy deposited in multiple channels by a dedicated

clustering algorithm. The information from these two independent algorithms is then

linked together, along with hits measured by the muon systems, by the linking al-

gorithm to fully reconstruct the path, energy, and type of particles that came from

the primary vertex. The PF algorithm takes advantage of the fact that each particle
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Figure 4.4: (Top) Fits to deconvolved pulse shape data from the scintillator + Y11
system. (Bottom) Time response of a SiPM from laser-injected bench data.
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Figure 4.5: Comparison of integrated pulse shape per 25 ns for 2017 collision data
and two simulation options using a linear scale (left) and log scale (right).

type leaves a unique signature in the detector as shown in Fig. 3.6. For example, a

neutral hadron will not leave a track in the tracking system or a large energy deposit

in the ECAL, but will leave hits in the HCAL. If we see a cluster of hits in HCAL

that cannot be linked to a track or ECAL cluster, it is likely to be from a neutral

hadron.

Once the PF algorithm creates the initial list of reconstructed particles for each

event, there is usually further processing of the objects to filter out undesirable or

misidentified objects. This stage is analysis dependent, and details of the requirements

that are unique to this thesis are described in Section 4.3.1. There will also be some

events that suffer from a large amount of detector noise or reconstruction failures that

must be filtered out. For simulated events, the event weight described in Section 4.2.1

can be modified to account for discrepancies between collision data and MC data.

This modification of the event weight wi is often referred to as event reweighting or

applying a scale factor. Most MC data corrections can be applied by deriving a set
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of scale factors that change the weighting of simulated events such that it matches

the observed data prediction.

4.3.1 Physics Objects

4.3.1.1 Electrons. The selection for electrons starts with the collection of

electron candidates determined using the Gaussian Sum Filter algorithm. From this

collection, electrons are further selected based on their transverse momentum (pT >

30 GeV for 2016 and pT > 37 GeV for 2017 and 2018) and on their pseudorapidity

(|η| < 2.4). The different pT requirements in 2016 and in 2017–2018 are a result of the

increase in the pT threshold for the electron trigger. This analysis uses the “Tight”

working point for the cut-based electron ID.

The electron isolation is computed using the mini-isolation (miniIso) algo-

rithm, and electrons are required to pass miniIso < 0.1. In this algorithm, the size of

the ∆R cone used to calculate isolation is changed based on the transverse momentum

of the particle, which means that depending on the pT of the lepton, a different cone

size is used. The radius of the cone used is computed as max (0.05, min(0.2, 10/pT)).

In addition to the ID, the recommended impact parameter requirements are also im-

posed on the electron: |d0| < 0.05 (0.10) cm and |dz| < 0.10 (0.20) cm for the barrel

(endcap) region. The kinematic distributions for electrons that pass the above criteria

are shown in Fig. 4.6. No issues of concern are observed in comparisons of collision

data and MC data for 2016.
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Figure 4.6: The pT spectrum (top left), η (top right), and miniIso (bottom) of elec-
trons that pass the electron selection.

4.3.1.2 Muons. For muons, the baseline selection is similar to that of elec-

trons. Muons identified by the “Medium” working point are used. Additional re-

quirements that the muon’s transverse distance from the primary vertex be less than

0.2 cm (|dB| < 0.2 cm) and the longitudinal distance from the primary vertex be

less than 0.5 cm (|dz| < 0.5 cm) are also imposed. Muons must have pT > 30 GeV

and |η| < 2.4. Mini-isolation for muons is defined like that for electrons, with the
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requirement on muons being miniIso < 0.2. The kinematic distributions for muons

that pass the above criteria are shown in Fig. 4.7. No issues of concern are observed

in comparisons of collision data and MC data for 2016.

4.3.1.3 Jets. When a quark or gluon is produced with a sufficient amount

of energy and pT, it produces a shower of particles through hadronization. When

reconstructing the event, this cascade of particles that come from the quark or gluon

hadronization can be grouped together into a single 4-vector that is called a jet.

There are a few standard algorithms that take the list of particle flow candidates and

cluster them into a group of jets. For this analysis, jets are clustered using the anti-

kT algorithm with a distance parameter of R = 0.4 (AK4) and uses PF candidates

that pass the charge hadron subtraction (CHS). This complex algorithm is detailed

in Refs. [26–31].

The main idea is to group particle flow candidates based on two distance

values, dij between particles i and j, and diB between particle i and the beam (B).

They are defined as:

dij = min

(
1

p2
T,i

,
1

p2
T,j

)
∆R2

ij

R2
(4.4)

diB =
1

p2
T,i

(4.5)

where R is a tunable parameter that determines the size of the jets, in this case

R = 0.4 for AK4 jets. The variable ∆R2
ij using the φ and rapidity y of a particle is

given by:

∆R2
ij = (yi − yj)2 + (φi − φj)2 (4.6)

y =
1

2
ln
E + pz
E − pz

. (4.7)
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The algorithm then starts by finding the smallest distance in the set of distances, and

if it is a dij (rather than a diB) it combines them and uses the combined 4-vector to

recompute all distances again. If the smallest distance found is a diB, that particle

is removed and added to the list of final jets. This procedure is repeated until all

particles have either been clustered or labeled as a final jet.

The jet collection that comes from the AK4 algorithm is further processed.

Jets are required to satisfy pT > 30 GeV and |η| < 2.4. These requirements are used

to ensure the high quality of the jets, since jets can be more accurately reconstructed

once they have a sufficient amount of pT and are composed of PF candidates that

have tracks in the tracking system. To avoid overlap between jets and leptons, a

simple cleaning procedure is used, since the AK4 algorithm does not remove particles

that have been identified as well-defined leptons. Any jet that is within ∆R = 0.4 of

an isolated lepton and whose transverse momentum is within 100% of the pT of the

lepton is removed from consideration. We further require jets to pass the jetID, which

is defined by a combination of requirements on a list of variables related to each jet.

This list of requirements is detailed in Table 4.1. The jetID variable is calculated for

each jet and we veto the event if there is a single jet that fails its jetID.

4.3.1.4 b-tagging. When looking at the objects in the jet collection there

is no label that identifies what kind of jet it is, i.e., what type of particle produced

it. We know that all quarks, other than the top quark, and all gluons produced by

the hard processes will produce a jet in the event. However, it becomes difficult to

classify the exact type of particle that produced a given jet.
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When a bottom (b) quark is produced, it tends to hadronize into B mesons

that have a lifetime long enough to travel a measurable distance. This means that if

we see a jet that was produced at a different vertex than the primary vertex, there

is a good chance that the jet contains a B meson that decayed after moving away

from the primary vertex where it was produced by the bottom quark. Dedicated

b-taggers try to take advantage of this property of bottom quarks by looking at the

PF constituents within each jet to determine if any PF candidate has a secondary

vertex. This information along with other properties of the jet is processed by a

neural network to calculate a discriminator value which can be used to classify the jet

as a b-jet [32,33]. For this analysis, we use a relatively new b-tagging algorithm based

on a neural network developed for use in any CMS analysis called DeepCSV [34].

Figure 4.8 shows the receiver operating characteristics (ROC) curves for vari-

ous b-tagging algorithms, which parametrically shows the efficiency of tagging a b-jet

(probability of tagging a b-jet given that it actually is a b-jet) vs. the misidentification

probability (probability of misidentifying a jet that does not originate from a b quark

as a b-jet—also known as the fake rate). When using a tagger, we adopt a particular

threshold value such that if a jet passes this threshold it is considered a b-jet and if it

is below that value it is not considered a b-jet. The value that defines this threshold

is called the working point (WP). Table 4.2 shows the values of the WP used for each

year of data together with the efficiency and fake rate. The WP is chosen such that

the fake rate is approximately 1%.

93



0 200 400 600 800 1000

1

10

210

310

410

510

Le
pt

on
s 

/ 2
0 

G
eV  + Xtt QCD Other

tt Data

CMS Preliminary  (13 TeV)-135.9 fb

0 200 400 600 800 1000
 [GeV]

T
Lepton p

0.5

1

1.5

D
at

a 
/ M

C

6− 4− 2− 0 2 4 6

1

10

210

310

410

Le
pt

on
s 

/ (
1)  + Xtt QCD Other

tt Data

CMS Preliminary  (13 TeV)-135.9 fb

6− 4− 2− 0 2 4 6
ηLepton 

0.5

1

1.5

D
at

a 
/ M

C

0 0.05 0.1 0.15 0.2 0.25 0.3

1

10

210

310

410

510

Le
pt

on
s 

/ (
1)  + Xtt QCD Other

tt Data

CMS Preliminary  (13 TeV)-135.9 fb

0 0.05 0.1 0.15 0.2 0.25 0.3
Lepton miniIso

0.5

1

1.5

D
at

a 
/ M

C

Figure 4.7: For 2016, the pT spectrum (top left), η (top right), and miniIso (bottom)
of muons in the lab frame that pass the muon selection are shown. Only events with
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Figure 4.8: Performance of the widely accepted b taggers used in CMS compared to
tagging jets from charm quarks and jets from other sources. The lines shown are for
CSVv2, DeepCSV, and cMVAv2.

Table 4.2: Working points used for DeepCSV with the corresponding efficiency and
fake rate.

Year WP Efficiency (%) Fake rate (%)
2016 0.6321 ≈68 ≈1
2017 0.4941 ≈68 ≈1
2018 0.4184 ≈68 ≈1
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CHAPTER FIVE

The Search for Scalar Top Quarks

“What do you think you are doing? ... Just do the right thing.”

—Nathaniel “Joe” Pastika (Postdoc Extraordinaire)

5.1 Introduction

Although many searches for supersymmetry have been done at the LHC, no

significant deviation from the Standard Model background has been observed, and

strong limits on squark and gluino masses have been set for many simplified mod-

els. Nearly all traditional SUSY searches require the presence of substantial missing

transverse momentum (pmiss
T ) caused by undetected SUSY particles, usually the light-

est neutralinos. Therefore, they would not be sensitive to well-motivated models of

new physics that do not produce large pmiss
T , such as R-parity violating (RPV) [35] or

Stealth SUSY [36–38], as discussed in Chapter Two.

This thesis is based on a novel search for top squark pair production in the

unexplored final state with two top quarks, many extra light-flavor jets, and no pmiss
T .

The search utilized a neural network (NN) and a data-driven background estimation

method to determine the largest standard model background. The NN was trained

using a novel adversarial technique to remove undesirable correlations between the NN

score and the number of jets in the event (Nj). The specific signal models considered

in the search are the following:

• RPV with UDD coupling, resulting in a final state with two top quarks and

six light-flavor (quark) jets
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• Stealth with SYY coupling, resulting in a final state with two top quarks and

six gluon jets

These SUSY models are illustrated in Fig. 5.1. The search uses the data sets collected

in 2016, 2017, and 2018, and covers the listed signal topologies with a single analysis.
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Figure 5.1: Top squark decay modes considered in this analysis. (Left) The RPV
UDD model where the neutralino decays via an off-shell squark that then decays
using the UDD interaction. (Right) The Stealth SYY model that has the top squark
decay through effective stealth vertices to stealth particles that decay to gluons and
a soft gravitino.

5.2 Analysis Strategy

The main distinguishing feature of the considered signal models from the SM

backgrounds is their high jet multiplicity (Nj). The two-jet or three-jet resonances

present in the signals are hard to exploit because of the large combinatorics and the

probability of jets going outside of the detector acceptance. Therefore, the final state

is essentially tt + jets, without pmiss
T . Events are required to have at least seven jets,

at least one b-tagged jet, and exactly one lepton. The presence of the lepton strongly
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reduces the background from QCD multijet production. In addition, the presence

of the lepton is useful as a handle for selecting the triggers that were used in this

analysis.

Since the jet multiplicity distribution is hard to model correctly with MC

simulation at very large number of jets (Nj ≥ 10), we rely on data to fit the shape

of the Nj distribution for the tt background. At large jet multiplicity the ratio of the

Nj+1 distribution to the Nj can be described by a well-behaved function that is used

to fit the Nj distribution directly from data. A signal region (SR) is the selection

of data that is used to maximize the amount of possible signal compared to the SM

backgrounds, while a control region (CR) is a particular selection of data that is

similar to the SR but is not expected to have signal present. Ideally, we would fit the

Nj shape in a dedicated CR, and then use it in our SR to estimate the tt background;

however, a signal-free control region that is also dominated by the tt background is

hard to construct. Therefore, we train a NN to distinguish signal from background

using jet 4-momenta and event shape information. The network is explicitly set up

to minimize dependence on Nj.

We construct four regions based on the output of the NN, where region 1 (D1)

is highly dominated by background, and region 4 (D4) is the most signal-enriched.

These four regions are then defined as D1, D2, D3, and D4. We then proceed to fit

all four regions simultaneously, with D1 effectively acting as the sought-after control

region, as illustrated in Fig. 5.2. The Nj shape is ensured to be the same in each

region by the following procedure: (1) the NN is constructed to be independent of

Nj; (2) residual shape differences are removed by deriving the divisions between the

regions separately for every Nj bin, such that the background fraction is the same for
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every Nj bin, at least in simulation; (3) systematic uncertainties are assigned to cover

for differences between collision data and simulation data resulting in a different Nj

shape between the four regions.

7 8

Most signal-enriched region

N
N

 s
co

re
0

1

9 10 11

Most background-enriched region

Nj≥12
Figure 5.2: Signal region bin definition as a function of Nj and NN bins.

5.3 Event Selection

The event selection is performed in multiple stages. The first stage is at the

trigger level. Due to the overwhelming number of proton-proton collisions delivered

by the LHC to CMS, data are analyzed online by the trigger system and only “in-

teresting” events are selected and saved for offline analyses. Offline, we then apply a
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baseline event selection that further filters out events not necessary for this analysis.

Finally, all events are then analyzed for the 2016, 2017, and 2018 data-taking periods

separately in great detail as discussed in the rest of this chapter. At the middle of

the 2018 data-taking period, part of HE minus (HEM) readout electronics stopped

functioning, which forces us to treat 2018 differently. The special treatment of 2018

results in the separation of the 2018 data into two data sets: (1) 2018 pre-HEM issue

(2018pre) which consists of the data collected prior to the HEM issue, and (2) 2018

post-HEM issue (2018post) which consists of the data collected after the HEM issue.

5.3.1 Online Event Selection

There is an extensive number of trigger paths that were used by CMS in order

to accommodate needs from a broad range of physics analyses. For this analysis, we

use a data set that was created by taking the “or” of a few triggers designed to record

events with an electron and another combination of triggers designed for events with

a muon. These combinations of triggers define our single electron and single muon

data sets as shown in Table 5.1.

For each single lepton data set, we need to measure the efficiency of the com-

bination of triggers that we used so we can correct the MC data to represent this

effect. When the MC data is simulated there is no explicit cut performed to remove

events in the same manner that collision data would have, due to the inefficiencies

of triggering. To model the trigger inefficiencies of collision data, we use a trigger

emulation that does a reasonable job of removing events that would have been missed

due to trigger inefficiencies. We then proceed to measure a simulation-to-data scale

factor to correct for residual differences in trigger efficiencies between collision data
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Table 5.1: Luminosities of CMS collected data sets used in this analysis, and the
combinations of triggers used to collect the data. Note that the 2018 data are

broken into two separate data sets as discussed in the text.

Data set Triggers Integrated luminosity (pb−1)
2016

Single electron HLT Ele27 WPTight Gsf 35908.886
OR HLT Ele115 CaloIdVT GsfTrkIdT
OR HLT Photon175

Single muon HLT IsoMu24 OR HLT IsoTkMu24 35917.149
OR HLT Mu50 OR HLT TkMu50

2017
Single electron HLT Ele35 WPTight 41525.529

OR HLT Ele115 CaloIdVT GsfTrkIdT
OR HLT Photon200

Single muon HLT IsoMu24 OR HLT IsoMu27 41525.250
OR HLT Mu50

2018(pre and post)
Single electron HLT Ele35 WPTight 20994.864 + 38648.875

OR HLT Ele115 CaloIdVT GsfTrkIdT
OR HLT Photon200

Single muon HLT IsoMu24 OR HLT IsoMu27 21071.298 + 38654.122
OR HLT Mu50

and simulated events. For the single electron, the efficiency is measured with the

denominator containing events with exactly one electron, one muon with pT greater

than 40 GeV, and a selection very close to our baseline:

• All jets in the event passing JetID,

• HT greater than or equal to 300 GeV,

• Number of jets in the event greater than or equal to 5,

• At least one b-tagged jet,

• The invariant mass between the lepton and b-tagged jet in the event between

50 and 250 GeV. If there is more than one b-tagged jet in the event, the

invariant mass of each b-tagged jet and the lepton is considered, and only

one combination has to meet this criterion.

For the numerator, we require the same selection as the denominator in addition to

passing the electron trigger. After making the above efficiency plot binned by electron

102



pT for both the single muon data set and the simulated samples, we obtain a scale

factor by dividing the former by the latter. The trigger efficiencies for the simulated

data binned in electron pT and η are shown in Figs. 5.3 and 5.4. The scale factor

between data and simulation is determined as a function of electron pT and η as

shown in Fig. 5.5.

We then repeat the same steps but for the single muon data set. We use the

same selection except that we look at the single electron data and require one electron

with pT greater than 40 GeV and one muon with the same selection. In this case, we

bin by the muon pT and η; the plots are shown in Figs. 5.6 and 5.7. The scale factor

between collision data and simulation was determined as a function of muon pT and

η, and is shown in Fig. 5.8.

5.3.2 Baseline Selection

The baseline event selection is motivated by both the requirements of the

single lepton triggers that are used for the online data selection and also to reduce

backgrounds, in particular those from QCD multijet production. The selection is not

very complicated compared to those used in other SUSY analyses. There is only one

selection used to define the signal region (SR). The baseline selection is as follows:

• Exactly one electron or muon: the lepton comes from the tt decay for our

signal, where where one top quark yields a W boson that decays into quarks

and the other top quark’s W boson decays into a lepton plus a neutrino. This

is not the largest branching fraction for tt, but this choice was motivated to

greatly reduce the QCD multijet background. QCD multijet events in general

do not have high-pT isolated leptons.
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Figure 5.3: Electron trigger efficiency in data and simulation for 2016 (top) and 2017
(bottom) as a function of electron pT (left) and η (right).

104



0.4

0.5

0.6

0.7

0.8

0.9

1

L1
 +

 H
LT

 E
ffi

ci
en

cy

Data_SingleMuon

MC (TT)

40 60 80 100 120 140 160 180 200

 [GeV]
T

p

0.8

0.9

1

1.1

1.2

D
at

a 
/ M

C

0.4

0.5

0.6

0.7

0.8

0.9

1

L1
 +

 H
LT

 E
ffi

ci
en

cy

Data_SingleMuon

MC (TT)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

η

0.8

0.9

1

1.1

1.2
D

at
a 

/ M
C

0.4

0.5

0.6

0.7

0.8

0.9

1

L1
 +

 H
LT

 E
ffi

ci
en

cy

Data_SingleMuon

MC (TT)

40 60 80 100 120 140 160 180 200

 [GeV]
T

p

0.8

0.9

1

1.1

1.2

D
at

a 
/ M

C

0.4

0.5

0.6

0.7

0.8

0.9

1

L1
 +

 H
LT

 E
ffi

ci
en

cy

Data_SingleMuon

MC (TT)

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

η

0.8

0.9

1

1.1

1.2

D
at

a 
/ M

C

Figure 5.4: Electron trigger efficiency in data and simulation for 2018pre (top) and
2018post (bottom) as a function of electron pT (left) and η (right).
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Figure 5.5: The electron trigger efficiency scale factor as a function of pT and η
is shown for 2016 (top left), 2017 (top right), 2018pre (bottom left), and 2018post
(bottom right).
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Figure 5.6: Muon trigger efficiency in data and simulation for 2016 (top) and 2017
(bottom) as a function of muon pT (left) and η (right).
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Figure 5.7: Muon trigger efficiency in data and simulation for 2018pre (top) and
2018post (bottom) as a function of muon pT (left) and η (right).
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Figure 5.8: The muon trigger efficiency scale factor as a function of pT and η is shown
for 2016 (top left), 2017 (top right), 2018pre (bottom left), and 2018post (bottom
right).
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• Nj ≥ 7: this choice is motivated by our signal models having a large number

of produced jets. The background estimation for tt also requires that the

Nj distribution be a falling spectrum. If events with less than seven jets are

included, the Nj spectrum would no longer match the functional form used

for the tt background estimation. More details on this are discussed later in

this chapter.

• Nb ≥ 1: for tt decay we expect exactly two b-jets. However, tagging all

the b-jets in an event can be difficult. Instead of requiring exactly two b-

jets, a looser requirement of one or more b-jets is used which leads to good

acceptance of signal events while still rejecting reducible backgrounds. The

requirement of at least one b-jet also allows for the derivation of other useful

search variables.

• 50 < M(l, b) < 250 GeV, where M(l, b) is defined as the invariant mass of

the lepton and a b-jet. This requirement is based on the expectation that the

b-jet and the lepton in the event come from the same top quark. If there are

multiple b-jets, at least one combination in the event is required to meet this

requirement.

• HT > 300 GeV: this is motivated to reduce some QCD multijet backgrounds

and to ensure that we are not susceptible to missing low energy MC data. HT

is a falling distribution, which means we can allow for orders of magnitude

more events the lower the HT cut is. This also means we would need an

order of magnitude more simulated events to describe these events. Since the

signals do not produce events with low HT it becomes logistically favorable

to have an HT cut.
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The M(l, b) distributions are shown in Fig. 5.9. The idea behind the M(l, b)

cut is to require a loose leptonic top quark tag so that selected events would have the

lepton and the b-jet coming from the same top quark decay. Figure 5.10 shows the

Nj distribution for the total background and a few selected signal models. From this

figure, it is clear that the signal populates the tail of the jet multiplicity distribution,

and that the main background process after the baseline selection is tt+jets. All other

backgrounds make up around 10% of the total background. To further enhance the

signal component and provide a tt background estimation method, a neural network

(NN) is trained. Details of this NN are given in Section 5.4.

During 2018 data taking in late June, two neighboring readout boxes (RBXs)

in the −z endcap, HEM15 and HEM16, were lost due to a commercial power sup-

ply failure. The HEM failure motivates the splitting of the 2018 data set into

two parts, the pre-HEM failure (2018pre) and post-HEM failure (HEM). The spe-

cific η-φ region covered by these two RBXs corresponds to η ∈ (−3.00,−1.30) and

φ ∈ (−1.57,−0.87). Having no input from HCAL in this region can result in an

increase to the number of fake leptons, and the mismeasurement of jet energy, among

other issues. The mismodeling of events motivated an additional requirement to be

applied to the 2018post data set. In general, if an object is reconstructed to be in

the vicinity of the HEM failure region, the entire event is vetoed. Table 5.2 shows

the definition of this veto.

5.3.3 HT Reweighting

Upon investigating the agreement between collision data and MC data for the

low jet multiplicity bins (≤7), a trend in the ratio of collision data to MC data for
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Figure 5.9: Distributions of M(l, b) in simulated backgrounds for 2016 (top left), 2017
(top right), 2018pre (bottom left) and 2018post (bottom right). The distributions for
the signal have been scaled by 50× for comparison.
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Figure 5.10: The Nj distribution for the four different background processes, overlaid
with a few selected signal models. The simulation is normalized to 35.9 fb−1 for 2016
(top left), to 41.5 fb−1 for 2017 (top right), to 21.1 fb−1 for the 2018 data set prior to
the HEM issue, and to 38.7 fb−1 for the 2018 data set after the HEM issue.

113



Table 5.2: The exact η, φ and pT requirements for jets and leptons that are used to
define the HEM event veto.

Jet η ∈ (−3.20,−1.10) AND φ ∈ (−1.77,−0.67) AND pT > 20.0 OR
Muon η ∈ (−3.00,−1.30) AND φ ∈ (−1.57,−0.87) AND pT > 20.0 OR

Electron η ∈ (−3.00,−1.30) AND φ ∈ (−1.57,−0.87) AND pT > 20.0

the HT distribution is apparent as shown in Fig. 5.11. The Nj variable is correlated

with HT. It is expected then that any HT disagreement will induce disagreements in

the Nj shape. This motivates the need for a scale factor to correct for the HT ratio

of collision data to MC data disagreement. An HT-dependent scale factor is derived

by performing a fit with an exponential function

SFHT
(HT, Nj) = AekHT (5.1)

to the ratio of the HT distributions for collision data and MC data. A and k are

free parameters that are functions of Nj. The fit is repeated for multiple Nj bins in

order to find a trend in the fit parameters as a function of Nj as shown in Fig. 5.12.

Using this fitted trend, the scale factor can be extrapolated to higher Nj bins. A

comparison between collision data and MC data for the HT distributions is shown

before and after the HT reweighting in Fig. 5.13 for events with exactly seven jets.

5.4 tt Background Estimation using a Neural Network

With the absence of an obvious control region for the dominant background

(tt), an effective control region using the discriminant of a signal vs. background

NN, as discussed in Section 5.2, is constructed. The NN discriminant value should

not be correlated with Nj because it is important for the Nj shape to remain the

same for every NN bin. If the Nj shape changes between the different NN bins then
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Figure 5.11: Ratio of data over simulation as a function of HT for a selection requiring
exactly five (top left), six (top right), and seven (bottom) jets.
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Figure 5.12: Derivation of the Nj dependent HT scale factor. (Top left) Trend in the
exponential parameter. (Top right) Trend in the normalization parameter. (Bottom)
Resulting scale factor as a function of HT and Nj.
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Figure 5.13: Data vs. MC data comparisons for our baseline with Nj exactly equal
to 7 in 2016. (Left) HT without the HT scale factor. (Right) HT with the HT scale
factor.

the shape obtained from a fit in the signal-depleted region is not applicable to the

signal-enriched region.

Our first attempt to discriminate the signal from background events was to ap-

ply a boosted decision tree (BDT) using some common event shape variables derived

using the jets in the event. However, this proved to be too strongly correlated with Nj,

primarily because the best discriminating variable between signal and tt production

is Nj. We then proceeded to use a Keras-based NN [39] because we could repurpose

the developments for adversarial gradient reversal (GR) training techniques [40] to

remove Nj dependence from the model while it is being trained.

5.4.1 Background of Neural Network Approach

At the end of the day, a NN is just a function. When people say that they

are going to train a NN, what they really mean is they are going to take a function
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with a large number of free parameters and perform a fit to some data. The function

can have an arbitrary number of inputs, free parameters, and outputs, which makes

it ideal for situations where writing an exact solution is difficult or impossible. The

real art of training a NN is to find out how to build this arbitrary function and to

identify a metric to optimize when determining the free parameters of the function.

Using calculus, if we would like to write a completely arbitrary function that

takes one variable, has an arbitrary number of free parameters, and yields one output

variable, a simple Taylor series such as

f(x) =
∞∑
n=0

(x− a)n

n!

dnf(a)

dxn
(5.2)

can be used. We could simply stop after taking the first two terms and perform a

linear fit, or keep one thousand terms and use a χ2 minimization metric. It just

boils down to what works for the given data and what is computationally feasible.

A Taylor series works well for situations with one input and one output, but what

about an arbitrary number of inputs and outputs? There are plenty of ways to build

a function to do this, but at the end of the day one needs to be able to train it and

use it. A NN is one computationally light and user friendly function that achieves

this goal.

A NN is first built by taking a linear combination of the inputs and then

passing that combination into an activation (simple non-linear) function. A common

choice for the activation function is the rectified linear unit (ReLU) function, which

is given by

relu(x) = max(0, x). (5.3)
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Given an input set x
(1)
k , where k is an index over inputs, and an output set x

(2)
j where

j is an index over outputs, a simple model can be written as

x
(2)
j = σ(1)

(∑
k

w
(1)
jk x

(1)
k + b

(1)
j

)
(5.4)

where σ(1)(x) is the activation function, w
(1)
jk is a matrix of the weights which are free

parameters, and b
(1)
j is an arbitrary bias that is added to the linear combination. By

taking an arbitrary number of linear combinations of the set x
(2)
j , a new set x

(3)
i can

be formed with a similar transformation by

x
(3)
i = σ(2)

(∑
j

w
(2)
ij x

(2)
j + b

(2)
i

)

= σ(2)

(∑
j

w
(2)
ij

[
σ(1)

(∑
k

w
(1)
jk x

(1)
k + b

(1)
j

)]
+ b

(2)
i

)
.

(5.5)

The addition of these linear combination transformations can be repeated until the

NN is sufficiently complicated, usually referred to as making the NN “deep.” A NN

of this type can be written in a more general form for n−1 transformations and n−2

“hidden” layers as

x
(n)
i = σ(n−1)

(∑
j

w
(n−1)
ij

[
σ(n−2)

(∑
k

w
(n−2)
jk [...]k + b

(n−2)
j

)]
+ b

(n−1)
i

)
. (5.6)

A NN that can be described by Eq. (5.6) is called a fully connected or dense NN.

As the new and exciting field of machine learning continues to grow, many different

ways of writing NN models will be developed and used.

The next step is to decide on a metric for goodness of fit, or in more commonly

used terms, to develop an appropriate loss function. A loss function is a mapping of

input data to a real value that, when minimized, optimizes the performance of the

NN. A common loss function for a regression NN, which predicts a value that can be
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any real number in the open set (−∞,∞), is the mean square error given by

L =
1

n

n∑
i=1

(yi − ȳi)2 (5.7)

where n is the number of data points, yi is the predicted value for the ith data point,

and ȳi is the true value for the ith data point. As the difference between the predicted

and true value gets smaller, the performance of the NN is improved. The NN used in

this analysis is a classifier, which outputs a value from the closed set [0, 1] to predict

what class an item belongs to. For this NN a “0” indicates that the event is from

background (tt) and a “1” indicates that the event is from signal. If the network is

performing poorly it usually gives a value of 0.5, which means that it could not decide

between background or signal. The loss function normally used for a classifier is the

cross entropy

L = −
n∑
i=1

ȳi log(yi), (5.8)

where n is the number of data points, yi is the predicted value for the ith data point,

and ȳi is the true value for the ith data point.

5.4.2 Input Variable Selection

The input variables for the training are selected to maximize the information

about the event, other than Nj, that could be used to discriminate between signal and

background (tt). The input variables are derived after boosting the jets and lepton

to the center-of-mass frame defined by the lepton and all jets with pT > 30 GeV and

|η| < 5 in the event. Only the top seven jets are used as NN inputs even for events

with more than seven jets because we did not want to introduce Nj dependence in

these variables, as Nj is not constant from event to event. The input variables can

be thought of as low- and high-level variables and are shown in Table 5.3. One set
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of high-level variables chosen for this analysis consists of the Fox-Wolfram moments

(FWM) [41]

Hl =
∑
i,j

|pi||pj|Pl(cos θij) (5.9)

where Pl is the lth Legendre polynomial, pi is the momentum of the ith jet, and θij

is the angle between the ith and jth jet. Another set of high-level variables is the jet

momentum tensor eigenvalues (JMTE) [42] defined using the JMT matrix

Sα,β =

∑
i p

α
i p

β
i∑

j |pj|2
(5.10)

where α, β = x, y, z and pαi is the momentum component of the ith jet. The FWM

variables have been used to define the event “shape,” classifying the “flow” of energy

in an event. The eigenvalues of Eq. (5.10) can be used to define the sphericity of

the event. The low-level variables are simply the 4-vectors of the lepton and seven

highest momentum jets in the event. Figures 5.14 and 5.15 show distributions of a

subset of the NN input variables for the tt background and signal events of the 2016

and 2017 scenarios, respectively.

Table 5.3: Summary of neural network input variables

Level Name Number of Variables

Low level

Jet pT

Top momentum jets 1–7
Jet η
Jet φ
Jet mass

Lepton pT

One electron or muon
Lepton η
Lepton φ
Lepton mass

High level
Fox-Wolfram moments 2–5
Jet momentum tensor eigenvalues 1–3
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5.4.3 Neural Network Training

The training is done using code based on the Keras with Tensorflow backend

Python packages [39, 43]. We performed a supervised training on a binary classifier.

Supervised training implies that the NN is informed about whether each event is

background or signal. An example of a fully connected binary classifier is shown in

Fig. 5.16.

The events used for training are required to pass the baseline selection defined

in Section 5.3. tt MC data samples generated using both powheg and MadGraph

are used for the background, and all of the available signal MC data are used for the

signal. During training, each event is labeled such that signal corresponds to (1) and

background corresponds to (0). We also label each event based on how many jets are

in the event, using five classes (7, 8, 9, 10, and 11 or more jets); for example an 8-jet

event is labeled (0, 1, 0, 0, 0). Each event is labeled as signal or background together

with the number of jets in the event. The simplest possible network architecture is

chosen as illustrated in Fig. 5.17, where a simple network only has the input, fully

connected, dropout, and output layers. The NN is effectively two simple networks

connected in series, where the second network punishes the first network for giving

it useful information, in this case, to determine Nj. The mechanism for the second

network to punish the first network comes from its contribution to the total loss

function, where a negative hyperparameter (λ) is introduced as

Ltotal = Lfirst − λLsecond. (5.11)

When the training code minimizes the total loss function, it maximizes the part of

the loss function that classifies Nj. The technique of having a part of the NN that
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punishes the whole network for having information needed to classify the number of

jets in the event is called gradient reversal [40]. This technique was pioneered in CMS

by NN-based object taggers that punished their NN for being able to distinguish the

difference between collision data and MC data while training.

Input
layer

Hidden
layers

Output
layer

.

.

.

.

.

.

.

.

.

𝑥"
𝑦$

Figure 5.16: Example of a fully connected neural network with an arbitrary number of
input variables, two hidden layers with an arbitrary number of nodes, and an output
layer that has two nodes corresponding to the prediction of the classifiers [44].

5.4.4 Training Performance

The performance of the training is quantified by the shape of the receiver

operating characteristic (ROC) curve and the value of the area under this curve,

where a value of one would indicate perfect training. The ROC curve is a plot of

the efficiency of tagging a signal event correctly as signal vs. the fake rate, in which

a background event is incorrectly tagged as signal, as parameterized by the value of
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Input Layer (39 variables)

Hidden Layer (70 nodes)

Hidden Layer (70 nodes)

Drop Out

Signal vs. Background Output

Gradient Reversal

Hidden Layer (10 nodes)

Number of Jets Output

Drop Out

Figure 5.17: Architecture chosen for the NN. It includes an input layer to a hidden
layer, to another hidden layer that then has dropout performed, to an output layer
that is supervised for the signal vs. background classification, to a gradient reversal
layer that is connected to a hidden layer, and finally to another output layer that is
supervised for classifying Nj.

Figure 5.18: A diagram that shows a network with a gradient reversal layer [40].
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the discriminant. Since different cut values are used to define the NN bins for each

Nj bin, the ROC curve is evaluated for each Nj bin separately. Figure 5.19 shows the

impact of gradient reversal, which forces the NN discriminator distribution shape for

tt to be almost the same for each Nj bin.

Figure 5.19: Discriminator distribution shape for each Nj that is classified in the tt
samples simulated for the 2016 (left) and 2017 (right) scenarios.

The NN output distributions for the tt background and a few example signal

points, as well as ROC curves, are shown in Fig. 5.20 for 2016 data and in Fig. 5.21

for 2017 data. These plots show that the performance of the training is different

for each mass model, which is expected because the kinematics of the events change

when the top squark mass is varied. For lower top squark masses, the kinematics of

the event tend to look similar to a tt decay (background).
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Figure 5.20: NN performance plots for the RPV model obtained from simulated events
corresponding to the 2016 scenario. (Left) The normalized NN score (DeepESM) is
shown for select signal models and all backgrounds summed together (AllBG). (Right)
ROC curves for the corresponding signal models.
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Figure 5.21: NN performance plots for the RPV model obtained from simulated events
corresponding to the 2017 scenario. (Left) The normalized NN score (DeepESM) is
shown for select signal models and all backgrounds summed together (AllBG). (Right)
ROC curves for the corresponding signal models.
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5.4.5 Neural Network Bin Definition

The background estimation method relies on the assumption that the Nj shape

is the same between NN bins. After using gradient reversal in the training of the NN,

the NN output is mostly independent of Nj. However, a small correlation remains. To

ensure that the Nj shape remains the same in each NN bin, the NN bin edges defining

NN bins 1, 2, 3, and 4 are derived separately for each Nj bin, such that each NN bin

contains a given fraction of background events. This per-Nj binning is illustrated in

Fig. 5.22. For example, NN bin 1 could have 55% of all tt + jets events, NN bin 2

could have 25%, NN bin 3 could have 15%, and NN bin 4 could have 5%. This means

that while the NN bin edge values may differ from Nj bin to Nj bin (i.e. the value

of the bin edge between NN bin 3 and NN bin 4 for Nj = 7 may be 0.78 while the

value of the bin edge between NN bin 3 and NN bin 4 for Nj = 8 may be 0.8), the tt

fraction remains the same. This ensures that the Nj shape for tt is the same for all

four NN bins, a necessary requirement for the fit. A systematic uncertainty is derived

to address the potential breakdown of this assumption for data, as described in later

sections.

To decide on the exact value of the NN bin edges, a significance metric is

maximized:

S

σB
=

Nsig√
Ntt +NQCD + (0.20×Ntt)

2 + (0.20×NQCD)2
(5.12)

where Nsig is the number of signal events for the RPV model with a top squark mass

of 550 GeV, Ntt is the number of tt events, and NQCD is the number of QCD multijet

events in a given Nj bin after the NN bin edges (corresponding to a given tt fraction)

are adjusted. Note that the value of 0.20 is included in the equation to take a rough
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Figure 5.22: Signal region bin definition as a function of Nj and NN bins. The NN
bins are defined as a function of Nj.

20% systematic uncertainty value of both Ntt and NQCD. The decision to optimize

the analysis for the RPV model with top squark mass of 550 GeV was based on the

expected sensitivity of the analysis. Models with top squark mass values less than

550 GeV have very large cross section values, which makes them easy to find if they

are present in data. On the other hand, models with top squark mass values greater

than 550 GeV have very small cross section values, which implies that they will be

difficult to observe if present. However, the analysis remains sensitive to all signal

models, because the signal Nj shapes do not change drastically as a function of top

squark mass.
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The significance value is calculated per Nj bin and then summed in quadrature

across all Nj bins. The optimal set of background fractions is derived using 2016 MC

data. The tt + jets background fraction ends up being 47.8%, 38.9%, 6.5%, and

2.4% for NN bins 1, 2, 3, and 4, respectively. The same tt+jets MC data background

fractions are applied to 2017, 2018pre, and 2018post, which yield unique NN bin edges

for each era. The final sets of bin edges are shown in Table 5.4 for 2016, Table 5.5

for 2017, Table 5.6 for 2018pre, and Table 5.7 for 2018post data, respectively. As

expected, the values are close to each other for all Nj, but staggered slightly as the

NN distributions have a very minor Nj dependence, even after gradient reversal. The

use of the Nj-dependent NN bin edge definition is shown in Fig. 5.23, where the left

plot shows the normalized Nj shape for each NN bin if the Nj-dependent NN bin

edges are not used and the right plot shows the normalized shapes if they are used.
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Figure 5.23: Applying the NN binning: using the same binning for all Nj bin (left),
and using the per Nj defined binning (right).
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Table 5.4: NN bin edges per Nj bin for 2016.

NN Bin Edge Nj = 7 Nj = 8 Nj = 9 Nj = 10 Nj = 11 Nj ≥ 12
1 to 2 0.349 0.358 0.371 0.386 0.410 0.410
2 to 3 0.680 0.740 0.787 0.816 0.848 0.853
3 to 4 0.835 0.878 0.901 0.917 0.936 0.936

Table 5.5: NN bin edges per Nj bin for 2017.

NN Bin Edge Nj = 7 Nj = 8 Nj = 9 Nj = 10 Nj = 11 Nj ≥ 12
1 to 2 0.346 0.363 0.376 0.384 0.396 0.396
2 to 3 0.714 0.752 0.780 0.794 0.801 0.801
3 to 4 0.833 0.864 0.885 0.895 0.901 0.901

Table 5.6: NN bin edges per Nj bin for 2018 pre HEM issue.

NN Bin Edge Nj = 7 Nj = 8 Nj = 9 Nj = 10 Nj = 11 Nj ≥ 12
1 to 2 0.345 0.363 0.374 0.386 0.386 0.386
2 to 3 0.713 0.752 0.779 0.805 0.805 0.805
3 to 4 0.832 0.863 0.883 0.900 0.911 0.911

Table 5.7: NN bin edges per Nj bin for 2018post.

NN Bin Edge Nj = 7 Nj = 8 Nj = 9 Nj = 10 Nj = 11 Nj ≥ 12
1 to 2 0.364 0.386 0.405 0.411 0.411 0.411
2 to 3 0.729 0.771 0.798 0.826 0.826 0.826
3 to 4 0.842 0.874 0.895 0.914 0.914 0.914
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With these NN bin edges defined, the numbers of signal events for different

RPV mass models in each of the NN bins are shown in the left plot of Fig. 5.24 for

2016. This plot indicates that the number of signal events does not increase with

NN bin. The right plot of Fig. 5.24 shows the value of the sum in quadrature per

Nj of the significance metric in Eq. (5.12) for each NN bin. It is clear from this plot

that the higher NN bins are more sensitive to the signal models than the lower NN

bins, as expected. Finally, the resulting Nj shapes per NN bin in the tt + jets MC

data is shown in Fig. 5.25. These Nj distributions give confidence that if the tt + jets

events in collision data and the tt + jets events in MC data have the same Nj-NN

dependence, the four NN bins will have the same tt + jets Nj shape.
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Figure 5.24: (Left) Number of signal events for different RPV signal models in each
NN bin. (Right) The sum in quadrature over each Nj bin of the significance metric
as defined in Eq. (5.12) per NN bin.
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Figure 5.25: Nj distribution for 2016 (top left), 2017 (top right), 2018pre (bottom
left), and 2018post (bottom right) for each of the NN bins for the MC data tt back-
ground using the per Nj bin edges.
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5.4.6 tt Fit Function

The Nj distribution is hard to model correctly at very high jet multiplicities

(Nj ≥ 10), so we rely on a fit of the shape of the Nj distribution in collision data for

the tt background estimation. From theoretical considerations [45], the ratio of the

Nj+1 distribution to the Nj distribution can be described by two components: (1)

a constant at high Nj, the so-called staircase behavior, and (2) a falling function at

lower Nj, often called the Poisson regime. We rely on an assumption that, beyond a

certain number of jets, the probability of producing an additional jet is independent

of the number of jets. For perfect “staircase” scaling the ratio R(j) is given by

R(j) =
N(j + 1)

N(j)
= c0 (constant) (5.13)

where N(j) gives the number of events with j number of jets in the event. When

adding lower jet multiplicities, an additional “Poisson” behavior is incorporated:

R(j) = c0 +
c1

j + c2

(5.14)

where c0, c1, and c2 are free parameters that need to be profiled in the fit to data.

Figure 5.26 shows the R(j) ratio for data collected at an electron-positron collider.

However, we found the parameters in Eq. (5.14) to be highly correlated. Having

fit parameters that are highly correlated can confuse the fit optimization algorithm

and result in unfavorable results. Therefore, we formulated an alternate functional

form, R′(j), which retained the desired property of “staircase” scaling at high jet

multiplicity. In this case the “Poisson” behavior is modeled by a falling exponential

R′(j) = p1 + (p0 − p1)ep2(j−7) (5.15)

where p0 is the value of the first point, p1 is the asymptotic value (staircase ratio),

and p2 is the exponential parameter. The parameterization in Eq. (5.15) still suffers
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Figure 5.26: Jet ratios R(n) in e+e− → jets production at 2 TeV center-of-mass
energy [45].

from large correlations between p1 and p2, so the function was recast in terms of the

values of the function evaluated at two points resulting in a new parameterization of

a mathematically equivalent function

f(x) = a2 +

[
(a1 − a2)x−m

(a0 − a2)x−n

] 1
n−m

(5.16)

where a0 = f(m) is the function at x = m, a1 = f(n) is the function at x = n, and

a2 is the asymptotic value. Setting m = 0 corresponds to f(0) = N(8)/N(7), and

n = 2 corresponds to f(2) = N(10)/N(9). The choice of m = 0 allows the fit to

take advantage of the large number of events in a background-dominated region for

constraining the shape. The choice of n = 2 gives the fit a greater lever arm in fitting

the shape, and is still in the region of a large number of tt events and relatively low
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signal events. With m = 0 and n = 2, Eq. (5.16) simplifies to

f(x) = a2 +

[
(a1 − a2)x

(a0 − a2)x−2

] 1
2

(5.17)

where a0 = N(8)/N(7), a1 = N(10)/N(9), and a2 is the asymptotic value as x→∞.

The correlation behavior is as desired, with no large correlations among the three

parameters. To further help with the behavior of the fit, we redefine a2 to be

a2 =


a1 − 1/d, d ≥ 1

a1 − (2− d), d < 1.

(5.18)

Thus, the final three parameters used in each fit are a0, a1, and d.

As a final step, we transform from using the ratio of neighboring Nj bins, f(x),

to instead expressing a function, F (x), in terms of Nj itself, by effectively multiplying

out the recursively defined prediction of Nj. This removes correlations for the bins of

the observables, and will allow for the proper handling of the Poisson uncertainties.

A recursive expression for Nj can now be defined as

F (0) = Number of entries in the 7-jets bin (5.19)

F (x) = F (x− 1)f(x− 1) for x > 0

where f(x) is the function defined in Eq. (5.17). Note that x = 0 corresponds to

the 7-jets bin and x = 7 corresponds to the inclusive ≥12-jets bin. Expanding the

expression for each Nj bin gives the following:

Nj = 7 : F (0) = N7

Nj = 8 : F (1) = F (0)f(0) = N7f(0)

Nj = 9 : F (2) = F (1)f(1) = N7f(0)f(1)

Nj = 10 : F (3) = F (2)f(2) = N7f(0)f(1)f(2)
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Nj = 11 : F (4) = F (3)f(3) = N7f(0)f(1)f(2)f(3)

Nj ≥ 12 : F (5) = F (4)f(4) + F (5)f(5) + · · ·+ F (10)f(10).

For the last term, it is sufficient to include Nj bins from 12 through 18. The analysis

uses the assumption that the tt background shape is the same for all four NN bins,

since the NN training was designed to remove shape differences across NN bins, and

the binning selection was designed to remove any residual differences. Therefore, the

floating parameters a0, a1, and d are shared among the tt background shape for the

four NN bins. There is a separate floating parameter for the number of entries in the

Nj = 7 bin for each of the four NN bins, resulting in a total of seven free parameters

for the tt+jets background fit: four normalization parameters and three shape-based

parameters.

5.5 QCD Multijet Background Estimation

The second largest background arises from QCD multijet events, which amounts

to around 5% of the total background (depending on the Nj bin). The number of

MC data for this subdominant background is low and some of these simulated events

have a relatively large weight, which causes the statistical uncertainties associated

with these events to be large. These statistical uncertainties would be used in the

statistical interpretation of the signals. In fact, these large statistical uncertainties

can hide a signal, because they give the fit too much freedom, which decreases the

overall sensitivity of the analysis.

To avoid factoring in these large statistical fluctuations, the QCD multijet

background is estimated using collision data in a QCD-dominated control region. To

ensure that this control region is orthogonal to the search region, a requirement of
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exactly one non-isolated muon and zero well-defined isolated leptons is used. A pT

requirement of 55 GeV is used for this non-isolated muon due to the online selection

required by the non-isolated muon trigger.

The baseline selection for this control region is:

• A non-isolated muon with the following properties:

∗ |η| < 2.4

∗ pT > 55 GeV

∗ Not isolated (using a 0.2 miniIso value as the requirement)

∗ Medium ID

• HT > 300 GeV

• All jets pass the loose jet ID for 2016 and the tight jet ID for 2017 and 2018

• Nj ≥ 7

The Nj distribution obtained using this selection of the QCD-enriched control region

is shown in Fig. 5.27. The NN score is calculated for the CR by using the non-isolated

muon in place of the isolated lepton used for the SR. It is important to stress that

the NN used in this control region (CR) is the exact same NN used to evaluate the

signal region. Distributions of the NN discriminant are shown in Fig. 5.27.

To estimate the QCD multijet background, all the events that pass the above

CR baseline selection are divided into the four NN bins utilizing the bin edges derived

in the signal region. Next, the non-QCD multijet events, taken from simulation, are

subtracted from the data in the control region. The QCD MC data is then used to

define a transfer factor, which is the ratio of the QCD yield in the signal and control
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Figure 5.27: Distributions for the QCD-enriched control region for 2016: Nj in loga-
rithmic scale (left) and NN score (right).

regions in simulation

TF =
NSR

NCR
, (5.20)

where NSR is the number of total weighted QCD multijet events in the signal region

simulation and NCR is the number of total weighted QCD multijet events in the

control region simulation. This transfer factor is used as an overall normalization for

the data in the control region to match the total expected QCD yield in the signal

region, shown for each era in Table 5.8. By having the transfer factor be an overall

normalization, the Nj shapes are taken from the CR directly for the QCD multijet

prediction. The prediction for a particular bin in the signal region is calculated from

NSR
ij = TF NCR

ij (5.21)

where i, j runs over all jets and all NN bins.
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The Nj distributions in each NN bin for the QCD multijet estimate in the four

time periods (2016, 2017, 2018pre, and 2018post) are shown in Figs. 5.28, 5.29, 5.30,

and 5.31, respectively.

Table 5.8: Transfer factor values used for each era for the QCD multijet background
estimate as well as the event yields of QCD multijet simulated events in the search

region and QCD control region.

Year QCD SR QCD CR TF (%)
2016 3917.2 133694.9 2.9
2017 3033.9 115726.9 2.6

2018pre 1423.8 57642.8 2.5
2018post 1586.1 72428.2 2.2

5.6 Systematic Uncertainties

After outlining the estimation method for each SM background, the last piece

needed before performing fits to the observed data is to determine all systematic

uncertainties. A systematic uncertainty is effectively a source of potential error that

is not purely statistical and can cause the overestimation or underestimation of a

background. For example, although the pT of the jets is carefully calibrated, the

simulation could still overestimate the pT of the jets in a given event. Since the

estimation of all small background processes is taken directly from simulation, this

overestimation of the jet pT could lead to more simulated events passing the signal

region selection than the observed data. This potential systematic shift in the jet

pT needs to be taken into account by a dedicated systematic uncertainty. In order

to account for the systematic shift, a multiplicative R value is derived based on

the uncertainty of the jet pT correction, such that when the expected number of

background events produced is multiplied by the R value, it is then corrected to the
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Figure 5.28: The Nj shape distribution comparison between the control region data-
driven estimate (blue) and the estimate taken directly from the QCD simulation (red)
in 2016 for four NN bins.

142



0 1 2 3 4 5 6
 - 6JN

1−10

1

10

210

310

QCD SR MC

Scaled QCD CR Data

 Distribution for QCD in D1 for 2017jN

0 1 2 3 4 5 6
 - 6JN

10

210

310
QCD SR MC

Scaled QCD CR Data

 Distribution for QCD in D2 for 2017jN

0 1 2 3 4 5 6
 - 6JN

1

10

210

QCD SR MC

Scaled QCD CR Data

 Distribution for QCD in D3 for 2017jN

0 1 2 3 4 5 6
 - 6JN

1

10

210
QCD SR MC

Scaled QCD CR Data

 Distribution for QCD in D4 for 2017jN
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driven estimate (blue) and the estimate taken directly from the QCD simulation (red)
in 2017 for four NN bins.
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appropriate value based on the observed data. Continuing with our example, if the

number of observed events is 10% lower than the expected prediction, given a 20%

uncertainty on the expected number of events corresponding to the jet pT uncertainty,

then the R value is equal to 0.8 and will have an observed nuisance parameter θ value

equal to 0.472. This systematic uncertainty is then included in a fit to the observed

data with a correction to the background estimation:

Nf = RθNi (5.22)

= 0.80.472Ni = 0.9Ni

where Nf is the final background prediction, R is the systematic uncertainty correc-

tion value, θ is a nuisance parameter used to adjust the size of R, and Ni is the initial

background prediction. The fit to data is performed by constructing a likelihood

function necessary for a statistical evaluation of the observed data. Details on the

statistical evaluation are given in Section 5.7. All systematic uncertainties applied

in the analysis are summarized in Table 5.9. Representative values for the range of

uncertainties across different NN and Nj bins are shown.

5.6.1 Signal and Non-tt Backgrounds

The signal and non-tt + jets backgrounds are estimated directly using simula-

tion, with the exception of the QCD multijet background estimation, which is derived

in the control region using the procedure discussed in Section 5.5.

The remaining non-tt+jets, non-QCD multijet background events are divided

into two categories depending on whether the hard process produces more or fewer

jets than tt. The first category is denoted as TTX, which includes mostly events with

tt + V where V is a vector boson or the Higgs boson. The second category is denoted
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as Other, and includes all other backgrounds, such as W + jets, Drell-Yan + jets,

diboson, triboson, and single top. The latter two components are then put into the fit

as separate components, each with its own normalization nuisance parameter, since

the Nj shape distribution may be different. A range of systematic uncertainties is

assigned to cover for potential mismodeling of these non-tt + jets, non-QCD multijet

background events, and are included as nuisance parameters in the fit.

• Luminosity uncertainty: 2.5% for 2016, 2.3% for 2017, and 2.5% for 2018

• Jet energy scale and resolution uncertainties as recommended by the JetMET

POG

• Uncertainties in the b-tagging efficiency data vs. MC data scale factor

• Uncertainties in the lepton identification and isolation data vs. MC data scale

factor

• Uncertainties in the trigger efficiency data vs. MC data scale factor

• Uncertainties in the HT correction data vs. MC data scale factor (not used

for signal)

• Uncertainties in the pileup reweighting

• Uncertainties in the renormalization and factorization scales

• Uncertainties in the parton distribution functions (PDF)

• Uncertainty in the cross section for the non-tt, non-QCD multijet back-

grounds: 30%

A scale factor to correct for the mismodeling of HT is applied, and so the

uncertainty in this correction is also used as a systematic uncertainty as shown in

Fig. 5.32. This scale factor is derived with the Nj = 5, 6, and 7 bins and is then

extrapolated to the higher Nj bins. The uncertainty is derived by looking at the

148



difference in the extrapolated scale factor function for the Nj = 8 bin to a direct fit of

the ratio of collision data to MC data in the Nj = 8 bin. The systematic uncertainty

related to the HT reweighting for the tt+jets background is described in Section A.2.

As mentioned in the beginning of this section, all background components

besides tt and QCD multijet processes are grouped into TTX and Other. Systematic

uncertainties for these two components are computed in a similar manner as for tt,

except that the resulting uncertainty is the ratio of the number of events in the varied

Nj shape to the nominal shape in each NN and Nj bin. Results for 2016 data are shown

in Fig. 5.33 for the TTX component and in Fig. 5.34 for the Other component. The

majority of variations are of the order .10% over all NN and Nj bins. Compounded

by the fact that the TTX and Other background components make up ∼5% of the

total contribution in the signal region, the relative size, and thus impact, of these

uncertainties is small.

The same treatment of systematics uncertainties performed for the two previ-

ously mentioned background components is also performed for the simulated signal

events. Figure 5.35 shows these sizes of the systematic uncertainties in the four NN

bins for the RPV signal model with mt̃ = 350, 550, and 850 GeV. In general, it is

found that the size of any systematic uncertainty variation across the vast majority

of Nj and NN bins is .10%.

5.6.2 tt Shape Systematic Uncertainties

The tt + jets background prediction comes directly from the fit to data. As

explained previously in Section 5.4, the key assumption in the fit procedure is that

the tt + jets shape is the same in all four NN bins. In the MC data simulation, this
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(Top right) comparison of the scale factor derived from extrapolating to the Nj = 8
bin (red) and fitting the Nj = 8 bin directly (black). (Bottom) multiplicative up and
down variation to the HT scale factor derived from the Nj = 8 bin extrapolation vs.
direct fit comparison for 2016.
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Figure 5.33: The ratio Nj(syst)/Nj(nom) for the various sources of systematic uncer-
tainty is shown for the TTX background component for 2016 data for the four NN
bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right).
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Figure 5.34: The ratio Nj(syst)/Nj(nom) for the various sources of systematic uncer-
tainty is shown for the Other background component for 2016 data for the four NN
bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right).
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Figure 5.35: The ratio Nj(syst)/Nj(nom) for the various sources of systematic un-
certainty are shown for the RPV SUSY model with mt̃ = 350 GeV (left), 550 GeV
(middle), and 850 GeV (right) for 2016 data for the four NN bins: D1 (top), D2 (top
middle), D3 (bottom middle), and D4 (bottom).
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is guaranteed by first removing most of the Nj dependence during the NN training

and then defining the NN bin edges such that each NN bin Di contains a certain

fraction of the tt background for each Nj bin. Of course, differences between collision

data and simulation would break this assumption, so it is important to address any

of the potential differences as uncertainties in the fit. It is important to note that the

only differences relevant here are those that would cause the Nj shape to be different

between the NN bins. If the difference is such that the overall Nj shape is different

in collision data and simulation, but the shapes in the different NN bins remain the

same, then the fit will be able to adjust to this new shape automatically and there is

no need for a systematic uncertainty.

Ideally, the systematic uncertainty related to differences in Nj shape between

NN bins would be derived from a dedicated tt + jets control region. However, for this

analysis an adequate control region that is also free of the signal has not been identi-

fied. Therefore, the analysis proceeds to evaluate many of the systematic uncertainties

from variations in the simulation. Variations considered include those related to the

b-tagging scale factor uncertainty, lepton identification/isolation/trigger scale factor

uncertainty, JEC/JER uncertainties, parton shower uncertainties, PDF uncertainties,

renormalization/factorization scale uncertainties, and HT scale factor uncertainties.

The procedure to derive a given systematic uncertainty consists of comparing

Nj shapes per NN bin before and after applying a given systematic uncertainty vari-

ation. Since there is already a small difference between the NN bins in the nominal

case where no systematic uncertainty variation is done, only the additional differences

are considered as a source of systematic uncertainty. For systematic uncertainty vari-

ations where only the event weight is changed, such as for the b-tagging scale factors,
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the simulated Nj distributions are directly compared. The exact procedure is as

follows:

(1) Consider the Nj shape in bin Di, and normalize it to unit area

(2) Consider the total Nj shape obtained by summing across all four Di regions,

and normalize it to unit area

(3) Take the ratio of these two shapes (R = NDi
j /N total

j ) as a way to assess the

difference in Nj shape between NN bins

The results of this procedure for 2016 are shown in Fig. 5.36 for the effect from

uncertainties in the b-tagging efficiency scale factor, in Fig. 5.37 for the effect from

uncertainties in the lepton ID/isolation scale factors, in Fig. 5.39 for the HT scale

factor uncertainty, in Fig. 5.41 for the effect from varying the PDFs, and in Fig. 5.40

for the factorization/normalization scale uncertainty. As can be seen, the effect is

very small, less than 1–2% in most cases, with the exception of the scale variation for

bin D3 which reaches 15% at the highest Nj, and the PDF uncertainty for D4 which

reaches 5%. For cases where there are no events in the last bin, e.g. for Nj ≥ 12 in

bin D4, the systematic uncertainty is taken to be same as that of the preceding Nj

bin.

To assess the effect of varying the jet energy scale and resolution, it is impor-

tant to note that these corrections can cause bin migrations. When the transverse

momentum of a jet is varied, the total number of jets above threshold can change,

and the NN output value will also change (the jet momenta are inputs to the NN).

Therefore, a direct comparison of the Nj shape in the different NN bins cannot be

simply done because it would cause the analysis to be strongly affected by statistical

fluctuations in the tails of the Nj distribution. To counteract this, a modification
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to the procedure outlined above is made. Instead of directly using the simulated Nj

shape, a background-only fit is performed instead to determine the Nj shape.

The procedure thus becomes:

(1) Fit the Nj shape in each bin Di separately, i.e. each bin Di has its own set of

shape parameters aDi0 , aDi1 , dDi

(2) Fit the Nj shape in all NN bins together, using just a single set of parameters

aDi0 , aDi1 , dDi as is done in the default fit.

(3) Take ratio of these fitted distributions (R = NDi
j /N total

j ) as a way to assess

the difference in Nj shape between NN bins

The results for the jet energy scale uncertainty are shown in Fig. 5.42. Anal-

ogous plots for the jet energy resolution are shown in Fig. 5.43. The nominal shape

difference itself is also taken as a systematic uncertainty, see Fig. 5.46, and its size is

small (1–5%). The effects of varying the parton shower settings for ISR and FSR are

estimated in the same way as the effects of JEC and JER. Figures. 5.44 and 5.45 show

the ISR and FSR systematic uncertainties for 2016. Further derivations of systematic

uncertainties are discussed in the Appendix.

5.6.3 Systematic Uncertainty Correlations between Years

To combine the data from four different data periods, also known as “eras”,

assumptions need to be made on how to correlate systematic uncertainties between

different data eras. Wherever possible, the analysis follows internal CMS recommen-

dations.

tt shape uncertainties

• JEC : Treated them as fully uncorrelated to be conservative.
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Figure 5.36: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the b-tagging efficiency scale factor up and down by one standard deviation
for the 4 NN bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom
right). The x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted
by 0.
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Figure 5.37: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the lepton identification/isolation efficiency scale factor up and down by one
standard deviation for the 4 NN bins: D1 (top left), D2 (top right), D3 (bottom left),
and D4 (bottom right). The x axis shows Nj shifted down such that Nj = 7 is the
first bin, here noted by 0.
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Figure 5.38: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the pileup scale factor up and down by one standard deviation for the 4 NN
bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right). The
x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.39: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the HT scale factor up and down by one standard deviation for the 4 NN
bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right). The
x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.40: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the factorization and normalization scales up and down by a factor of 2 for
the 4 NN bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right).
The x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.41: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the parton distribution functions for the 4 NN bins: D1 (top left), D2 (top
right), D3 (bottom left), and D4 (bottom right). The x axis shows Nj shifted down
such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.42: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the jet energy scale up and down by one standard deviation for the 4 NN
bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right). The
x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.43: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the jet energy resolution up and down by one standard deviation for the 4
NN bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right). The
x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure 5.44: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the ISR settings in the parton shower up and down by a factor of 2 for the
4 NN bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right).
The x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.

• JER: Treated as uncorrelated between years

• Lepton ID/isolation/trigger : In this case, the uncertainty on the trigger effi-

ciency scale factor is dominant, and it is of statistical nature. Therefore, the

analysis treats this uncertainty as uncorrelated between the years.

• b-tagging efficiency : No official recommendation available so far. They are

treated as uncorrelated for now because of the different pixel detector in 2016

and 2017.

• Pileup: Treated as uncorrelated between years.

• PDF : Treated as correlated for 2017, 2018pre, and 2018post, but uncorrelated

for 2016, since a different PDF is used in 2016.

• Scale: Treated as correlated.
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Figure 5.45: Ratio R = Rsyst/Rnom showing the introduced Nj shape differences by
varying the FSR settings in the parton shower up and down by a factor of 2 for the
4 NN bins: D1 (top left), D2 (top right), D3 (bottom left), and D4 (bottom right).
The x axis shows Nj shifted down such that Nj = 7 is the first bin, here noted by 0.
For inclusion in the data card, the FSR systematic uncertainty has been scaled down
by a factor of

√
2 in order to include only the recommended variations up and down

by a factor of
√

2.
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Figure 5.46: Ratio Rnom showing the Nj shape differences between the 4 NN bins
without applying any systematic uncertainty variation: D1 (top left), D2 (top right),
D3 (bottom left), and D4 (bottom right). The x axis shows Nj shifted down such
that Nj = 7 is the first bin, here noted by 0.

• ISR/FSR: Treated as correlated for 2017, 2018pre, and 2018post, but uncor-

related for 2016, since a different tune is used in 2016.

• Underlying event : Treated as correlated for 2017, 2018pre, and 2018post, but

uncorrelated for 2016, since a different tune is used in 2016.

• Color reconnection: Treated as correlated for 2017, 2018pre, and 2018post,

but uncorrelated for 2016, since a different tune is used in 2016.

• ME-PS matching scale (hdamp): Treated as correlated for 2017, 2018pre, and

2018post, but uncorrelated for 2016, since a different tune is used in 2016.

• Jet mass-pT rescaling : Treated as uncorrelated.

• No HT reweighting : Treated as uncorrelated.
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• Nominal tt shape difference: Treat as uncorrelated between years because of

the use of different generator settings resulting in different tt Nj shapes, as

well as the use of a different NN training

Signal and non-tt background uncertainties

• Luminosity : Treated as uncorrelated between years

• JEC : They are treated as fully uncorrelated to be conservative.

• JER: Treated as uncorrelated between years

• Lepton ID/isolation/trigger : In this case, the uncertainty on the trigger effi-

ciency scale factor is dominant, and it is of statistical nature. Therefore, the

analysis treats this uncertainty as uncorrelated.

• b-tagging efficiency : No official recommendation available so far. They are

treated as uncorrelated for now because of the different pixel detector in 2016

and 2017.

• Pileup: Treated as uncorrelated between years

• PDF : Treated as correlated for 2017, 2018pre, and 2018post, but uncorrelated

for 2016, since a different PDF is used in 2016.

• Scale: Treated as correlated

• Non-tt background cross section: Fully correlated between years, but different

for each category of backgrounds.

5.7 Results and Interpretation

At the end of the day, we are just counting the number of collision data events

observed and comparing it to the expected number of background events. Deter-

mining whether or not the data deviates from the SM background is a question best
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answered using statistics. It is assumed that the number of collision data events

follows “counting” or Poisson statistics, and that the statistical significance of an

observed signal can be quantified by means of a p0-value. If there is no statistically

significant deviation from the background, the upper limit on the possible cross sec-

tion of a SUSY signal is obtained using the CLs method, which is used by all LHC

experiments. This method is based on a frequentist significance test using a likelihood

ratio as a test statistic. This section will cover the results of our statistical evaluation,

but first it will start with a brief overview of the methods we use. A more detailed

derivation can be found in [46,47].

5.7.1 Formalism for Statistical Interpretation

In particle physics, when a claim is made that some new physics phenomenon

has been observed, it is usually based on the statistical significance obtained from

the data analysis. The significance Z is defined as the number of standard deviations

away from the mean of a normal Gaussian distribution for an upper-tail probability

equal to the p0-value. It can be written as

Z = Φ−1(1− p0) =
√

2
∞∑
k=0

ck
2k + 1

(√
π

2
(1− 2p0)

)2k+1

(5.23)

for ck defined as

ck =
k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1)
=

{
1, 1,

7

6
,
127

90
, ...

}
(5.24)

where Φ−1 is the inverse of the cumulative distribution function of the standard

Gaussian distribution. It is generally accepted, arbitrarily, that Z = 5 (p0 = 2.87 ×

10−7) is needed to claim that a deviation from the background is significant enough

for a discovery.
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In order to calculate the p0-value, the likelihood function must first be built.

The likelihood is related to the probability of the observed number of events given the

expected number of events. It is used to perform a fit to the data where the value of

the likelihood is maximized. It is a function of a parameter of interest (POI), in this

case the signal strength µ defined as the ratio of the observed cross section divided

by the nominal cross section, and nuisance parameters whose values are not taken

as known a priori and must be obtained from fits to the data. For a binned analysis

with i number of bins, j number of nuisance parameters θ, prior nuisance parameter

values θ̃, and signal strength µ, the likelihood function is defined as

L(data|µ, θj) = Poisson(data |µsi(θj) + bi(θj)) π(θ̃j, θj) (5.25)

For the analysis described in this thesis, the Poisson nuisance terms π, predicted

signal si, and predicted background bi are defined respectively as

Poisson(data |µsi + bi) =
∏
i

(µsi + bi)
ni

ni!
e−(µsi+bi) (5.26)

π(θ̃j, θj) =
∏
j

1

σ(θ̃j)
√

2π
e
− 1

2

(
θj−θ̃j
σ(θ̃j)

)2

(5.27)

si(θj) = s0,i

∏
j

R
θj
ij (s) (5.28)

bi(θj) =
∑

x ∈ BG

(
x0,i

∏
j

R
θj
ij (x)

)
(5.29)

where ni is the observed number of data events per ith bin, all of the nuisance pa-

rameters have a prior mean θ̃j and sigma σ(θ̃j), Rij are the signal and background

dependent systematic uncertainty correction values for each bin and nuisance param-

eter, BG is a set of all backgrounds for the analysis, and x0,i (s0,i) are the nominal

prediction for a background (signal). The values of x0,i often come from MC data. For

the tt background, the x0,i values come from the fit function defined in Section 5.4.
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The tt fit function’s parameters are free during the fit and are considered to be in

the set of nuisance parameters θj. For the QCD background, the x0,i are taken di-

rectly from the prediction obtained based on the QCD control region data described

in Section 5.5.

In general, to set limits on the signal strength µ, we are interested in the

compatibility of the data with the background-only and the signal + background hy-

potheses, where the signal is allowed to scale by µ. With this in mind, we can

construct a test statistic qµ that depends on the value of µ, defined as

qµ = −2 ln
L(data |µ, θ̂µ)

L(data | µ̂, θ̂)
, with a constraint 0 ≤ µ̂ ≤ µ (5.30)

where a parameter with a hat indicates that it is profiled in its respective fit. Note

that the values of the nuisance parameters in each likelihood function are not the

same since they can change depending on whether signal is allowed to float in the

fit or is fixed. When performing the fits to data there ends up being a value for

the test statistic called the observed value qobs
µ that depends on the fixed µ value.

The value of qobs
0 is used to determine the significance Z as shown later. To extract

useful information from the observed value, we need to determine how rare it is.

This can be done by taking the data and best-fit values for the nuisance parameters,

and producing a large amount of pseudo-data by varying each parameter within its

range of uncertainty to construct probability distribution functions (PDFs) of the

test statistics by performing fits to these pseudo-experiments.

To determine the p0-value, a special case of these PDFs for the background-

only hypothesis with µ fixed to zero, f(q0| 0, θ̂obs
0 ), are produced. In this case, pseudo-

experiments are generated from data without signal injected. The p0-value is then
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defined as

p0 =

∫ ∞
qobs
0

f(q0| 0, θ̂obs
0 ) dq0. (5.31)

We can use the same formalism to define an upper limit on the SUSY cross sec-

tion by calculating the CLs values. The upper limit is calculated with the test statis-

tics coming from the signal + background hypothesis f(qµ|µ, θ̂obs
µ ) and the background-

only hypothesis f(qµ| 0, θ̂obs
0 ). Note that f(qµ|µ, θ̂obs

µ ) means that pseudo-experiments

were made by injecting signal at some µ value, and the same µ value is used in the

likelihood calculation in the numerator of the test statistic. Similarly, f(qµ| 0, θ̂obs
0 )

means that pseudo-experiments were made without injecting any signal, and µ is set

to zero in the numerator of the test statistic. We can define two p-values from these

PDFs that can be used to determine the CLs values:

pµ =

∫ ∞
qobs
µ

f(qµ|µ, θ̂obs
µ ) dqµ (5.32)

1− pb =

∫ ∞
qobs
µ

f(qµ| 0, θ̂obs
0 ) dqµ. (5.33)

See Fig. 5.47 for an example of these distributions for fixed µ during the fits. These

PDFs show the background-only and signal + background hypothesis distributions.

CLs is now defined by taking the ratio of these two values

CLs(µ) =
pµ

1− pb
≤ 1− α (5.34)

where α is the confidence level for which the results are quoted. For LHC experiments,

results are often quoted at the 95% confidence level (α = 0.95). One then can claim

an upper limit for the value of µ at the 95% confidence level, defined as µup, that

yields CLs ≤ 0.05. Finally, it is customary to quote the 1σ and 2σ uncertainties on

the upper limit µup by examining the distribution of µup, which is often a Gaussian
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distribution. We find the values of µup that yield 68% (1σ) and 95% (2σ) of the

distribution, as shown in Fig. 5.48.

Figure 5.47: Distributions of the test statistic in pseudo-experiments for the
background-only hypothesis (blue) and signal + background hypothesis (red) with
µ set to 1 in the fit. The observed test statistic value is shown and the curves are
integrated above this value to determine the needed p-values.

Finally, as you can imagine, producing these distributions of pseudo-data can

be computationally expensive. The asymptotic approximation can be taken assuming

a reasonable number of data events, and the observed significance Z and CLs can be

calculated using

Z =
√
qobs

0 (5.35)

CLs(µ) =
1− Φ(

√
qµ)

Φ(
√
qµ,A −

√
qµ)

(5.36)
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Figure 5.48: Distribution of µup measured for a set of fits using pseudo-data, showing
the 1σ, 2σ, and 3σ bands that correspond to 68%, 95%, and 99.7% of the area of the
distribution, respectively. Image source [48].
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where Φ is the cumulative distribution function of the standard Gaussian distribution,

and qµ,A is the test statistic obtained from a fit to the Asimov data1 rather than

the observed data. The results quoted in the later sections utilize the asymptotic

approximation.

5.7.2 Fits to Individual Years and Full Combined Data

The fit results for both the background-only fit and the signal + background fit

for the RPV SUSY model with top squark mass of 350 GeV for 2016, 2017, 2018pre,

and 2018post data are shown in Figs. 5.49, 5.50, 5.51, and 5.52, respectively. The

best-fit signal strengths and associated significances are shown in Tables 5.10, 5.11,

5.12, and 5.13. In addition to the best-fit signal strength, the corresponding observed

significance is also shown.

The fit results for the combined fit of 2016, 2017, 2018pre, and 2018post data

are shown in Figs. 5.53 and 5.54. A summary of the best-fit signal strengths and

associated significances is shown in the lower section of Tables 5.10, 5.11, 5.12, and

5.13. The tt fit shape parameters are listed in Table 5.14.

5.7.3 Observed Limits on SUSY Cross Sections

Observed significances, along with the best-fit signal strength, computed using

combined 2016, 2017, 2018pre, and 2018post data are shown in Table 5.15. Since

the 2018 data set is split into the pre-HEM and the post-HEM portions, 2017 data

have the highest luminosity of the four eras. No signal yields a significance above

3σ indicating that the background-only hypothesis is a reasonable model for the

1 The Asimov data set consists of the expected background with the nominal nuisance
parameters, setting all fluctuations to be zero.

171



0 1 2 3 4 5 6

E
ve

nt
s

1−10

1

10

210

310

410

510

610
NN bin D1

CMS Preliminary

Fit
N observed

 = 350 GeV
 t
~RPV m

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

3
10

410

5
10

6
10

NN bin D2 Fit
N observed

 = 350 GeV
 t
~RPV m

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

3
10

410

5
10

6
10

NN bin D3 Fit
N observed

 = 350 GeV
 t
~RPV m

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

310

410

510

610

NN bin D4

 (13 TeV)-135.9 fb

Fit
N observed

 = 350 GeV
 t
~RPV m

Number of jets
7 8 9 10 11 12≥

2−

0

2

0 1 2 3 4 5 6

E
ve

nt
s

1−10

1

10

210

310

410

510

610
NN bin D1

CMS Preliminary

Fit
N observed
Fit Signal
Fit Background

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

3
10

410

5
10

6
10

NN bin D2 Fit
N observed
Fit Signal
Fit Background

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

3
10

410

5
10

6
10

NN bin D3 Fit
N observed
Fit Signal
Fit Background

7 8 9 10 11 12≥

σ
(v

al
 -

 fi
t)

 / 

2−
0
2

0 1 2 3 4 5 6

1−10

1

10

210

310

410

510

610

NN bin D4

 (13 TeV)-135.9 fb

Fit
N observed
Fit Signal
Fit Background

Number of jets
7 8 9 10 11 12≥

2−

0

2

Figure 5.49: Post-fit predictions in logarithmic scale, along with the pulls, from the
background-only (top) and signal + background (bottom) fits to 2016 data.
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Figure 5.50: Post-fit predictions in logarithmic scale, along with the pulls, from the
background-only (top) and signal + background (bottom) fits to 2017 data.
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Figure 5.51: Post-fit predictions in logarithmic scale, along with the pulls, from the
background-only (top) and signal + background (bottom) fits to 2018pre data.
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Figure 5.52: Post-fit predictions in logarithmic scale, along with the pulls, for the
background-only (top) and signal + background (bottom) fits to 2018post data.
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Table 5.10: Best-fit signal strength and corresponding observed significance for 2016
and 2017 data with different top squark mass points of the RPV SUSY model.

Mass Best fit signal strength Observed significance p-value
2016

300 0.170.14
−0.17 0.81 0.209247

350 0.180.11
−0.14 1.20 0.115306

400 0.190.12
−0.14 1.33 0.0919423

450 0.220.14
−0.15 1.39 0.0818709

500 0.290.18
−0.19 1.48 0.0698057

550 0.260.23
−0.24 1.06 0.143891

600 0.380.30
−0.32 1.16 0.12223

650 0.410.39
−0.41 0.97 0.165662

700 0.650.58
−0.62 1.04 0.148284

750 0.780.79
−0.78 0.91 0.180499

800 1.041.16
−1.04 0.85 0.197531

850 1.871.83
−1.87 0.99 0.161917

900 2.262.65
−2.26 0.80 0.211634

950 3.143.98
−3.14 0.77 0.220715

1000 6.246.17
−6.16 1.01 0.157156

2017
300 0.100.12

−0.10 0.67 0.252949
350 0.130.10

−0.12 1.10 0.13555
400 0.160.13

−0.14 1.11 0.132814
450 0.150.17

−0.15 0.80 0.211727
500 0.160.22

−0.16 0.69 0.244811
550 0.230.31

−0.23 0.68 0.248567
600 0.200.44

−0.20 0.41 0.340254
650 0.170.65

−0.17 0.24 0.405109
700 0.000.94

−0.00 0.00 0.5
750 0.821.28

−0.82 0.58 0.280483
800 0.662.04

−0.66 0.29 0.384645
850 0.603.46

−0.60 0.16 0.437359
900 2.045.01

−2.04 0.39 0.347284
950 2.577.35

−2.57 0.33 0.370211
1000 2.599.87

−2.59 0.24 0.405917
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Table 5.11: Best-fit signal strength and corresponding observed significance for
2018pre and 2018post data with different top squark mass points of the RPV SUSY

model.

Mass Best fit signal strength Observed significance p-value
2018pre

300 0.270.14
−0.16 1.42 0.0781714

350 0.240.15
−0.19 1.19 0.117299

400 0.320.15
−0.19 1.61 0.0535427

450 0.420.19
−0.24 1.58 0.0565996

500 0.550.25
−0.33 1.53 0.0632478

550 0.750.38
−0.52 1.38 0.0837839

600 1.130.52
−0.68 1.50 0.0666822

650 1.550.75
−1.05 1.38 0.0841509

700 2.351.10
−1.47 1.45 0.0734226

750 3.431.64
−2.14 1.46 0.0723764

800 4.562.51
−3.15 1.35 0.0877883

850 7.803.31
−3.99 1.68 0.0463929

900 11.465.08
−6.82 1.48 0.0697702

950 17.802.20
−9.69 1.61 0.0538171

1000 20.000.00
−11.34 1.48 0.0693613

2018post
300 0.110.12

−0.11 0.81 0.208396
350 0.090.11

−0.09 0.73 0.231885
400 0.100.13

−0.10 0.73 0.232014
450 0.120.17

−0.12 0.62 0.266474
500 0.120.23

−0.12 0.50 0.308055
550 0.150.32

−0.15 0.44 0.330671
600 0.200.49

−0.20 0.37 0.353904
650 0.270.66

−0.27 0.38 0.352319
700 0.341.01

−0.34 0.31 0.377204
750 0.311.60

−0.31 0.18 0.428874
800 1.252.11

−1.25 0.56 0.289366
850 0.563.29

−0.56 0.16 0.434948
900 1.464.80

−1.46 0.28 0.390584
950 2.388.27

−2.38 0.26 0.395665
1000 4.9311.11

−4.93 0.42 0.338894
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Table 5.12: Best-fit signal strength and corresponding observed significance for 2016
and 2017 data with different top squark mass points of the stealth SUSY model.

Mass Best fit signal strength Observed significance p-value
2016

300 0.000.27
−0.00 0.00 0.5

350 0.220.15
−0.18 1.17 0.120041

400 0.180.12
−0.13 1.31 0.0955787

450 0.180.11
−0.13 1.42 0.0771406

500 0.180.13
−0.13 1.30 0.0968996

550 0.160.15
−0.16 1.01 0.155218

600 0.190.16
−0.18 1.09 0.138129

650 0.160.21
−0.16 0.71 0.239801

700 0.170.27
−0.17 0.58 0.279389

750 0.160.32
−0.16 0.47 0.318007

800 0.170.45
−0.17 0.36 0.360478

850 0.120.54
−0.12 0.22 0.414395

900 0.190.71
−0.19 0.25 0.399784

950 0.010.93
−0.01 0.02 0.49383

1000 0.021.19
−0.02 0.02 0.49299

2017
300 0.300.17

−0.20 1.43 0.076022
350 0.150.13

−0.14 1.04 0.149584
400 0.090.11

−0.09 0.76 0.224614
450 0.090.11

−0.09 0.70 0.240987
500 0.070.13

−0.07 0.51 0.30426
550 0.040.17

−0.04 0.25 0.402205
600 0.010.19

−0.01 0.01 0.494885
650 0.030.26

−0.03 0.10 0.458547
700 0.020.31

−0.02 0.06 0.477865
750 0.010.42

−0.01 0.00 0.5
800 0.000.44

−0.00 0.00 0.5
850 0.000.66

−0.00 0.00 0.5
900 0.000.89

−0.00 0.00 0.5
950 0.101.31

−0.10 0.08 0.469325
1000 0.001.49

−0.00 0.00 0.5
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Table 5.13: Best-fit signal strength and corresponding observed significance for
2018pre and 2018post data with different top squark mass points of the stealth

SUSY model.

Mass Best fit signal strength Observed significance p-value
2018pre

300 0.480.16
−0.28 1.22 0.111325

350 0.350.12
−0.15 1.84 0.0327516

400 0.280.14
−0.17 1.51 0.0658724

450 0.290.13
−0.15 1.67 0.0474788

500 0.310.15
−0.20 1.43 0.0759924

550 0.390.18
−0.22 1.61 0.0531983

600 0.480.21
−0.23 1.83 0.0338282

650 0.620.29
−0.32 1.72 0.0431011

700 0.810.39
−0.43 1.69 0.0457666

750 0.980.47
−0.50 1.75 0.039826

800 1.360.65
−0.71 1.72 0.0428183

850 1.760.90
−0.95 1.71 0.0439532

900 2.321.20
−1.26 1.68 0.0460304

950 3.121.60
−1.68 1.70 0.0445289

1000 4.362.31
−2.37 1.71 0.0439408

2018post
300 0.180.21

−0.18 0.78 0.218975
350 0.110.13

−0.11 0.80 0.212731
400 0.070.11

−0.07 0.54 0.293415
450 0.060.12

−0.06 0.44 0.329579
500 0.060.14

−0.06 0.44 0.331469
550 0.070.17

−0.07 0.41 0.339326
600 0.070.20

−0.07 0.32 0.373177
650 0.100.27

−0.10 0.35 0.364211
700 0.110.36

−0.11 0.29 0.385345
750 0.100.46

−0.10 0.20 0.422023
800 0.150.66

−0.15 0.22 0.414241
850 0.060.89

−0.06 0.05 0.479287
900 0.001.20

−0.00 0.00 0.5
950 0.171.63

−0.17 0.10 0.461023
1000 0.072.35

−0.07 0.02 0.493415
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Figure 5.53: Post-fit predictions in logarithmic scale, along with the pulls, from the
background-only fit to the combined full Run 2 data. The RPV SUSY models with
mt̃ = 350 GeV is overlaid.
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Figure 5.54: Post-fit predictions in logarithmic scale, along with the pulls, from the
signal + background fit to the combined full Run 2 data using the RPV SUSY model
with top squark mass of 350 GeV.
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Table 5.14: Fit parameters for the tt shape in the fit to the data for the combined
fit to 2016, 2017, 2018pre, and 2018post data.

Parameter Background-only fit Signal + background fit
2016

a0 0.28938± 0.00578 0.27995± 0.00681
a1 0.26195± 0.00401 0.24380± 0.00896
d 26.995± 58.2 17.596± 36.2

2017
a0 0.30145± 0.00368 0.29333± 0.00480
a1 0.26524± 0.00416 0.25086± 0.00724
d 118.10± 163 60.646± 82.5

2018pre
a0 0.30338± 0.00418 0.29653± 0.00488
a1 0.26581± 0.00560 0.25317± 0.00796
d 285.31± 297 259.95± 291

2018post
a0 0.28405± 0.00364 0.27822± 0.00420
a1 0.25502± 0.00412 0.24098± 0.00711
d 15.726± 45.1 17.291± 38.3

data. Figures 5.55 and 5.56 show the limits for the RPV and stealth SUSY models

obtained from fits to data from 2016, 2017, 2018pre, 2018post, and all four data

eras combined. It is important to remember that the expected limit depends on the

observed data, which is especially relevant for our analysis because our tt signal shape

is also extracted from the data in addition to the nuisance parameters.

The observed limit is just outside the 2σ band above the expected limit for

the lower masses. This indicates that the fit prefers a non-zero amount of signal.

However, the amount of signal used during the fit is not too significant. Using the

combination of 2016, 2017, and 2018 data, we can exclude top squark masses up to

700 GeV for the RPV SUSY model, and masses up to 900 GeV for the stealth SUSY

model with the SYY portal.

182



Table 5.15: Best-fit signal strength and observed significances as a function of top
squark mass for the combination of 2016, 2017, 2018pre, and 2018post data.

Mass Best-fit signal strength significance p-value
RPV SUSY model

300 0.200.07
−0.10 2.18 0.0144863

350 0.180.06
−0.07 2.39 0.00848925

400 0.210.07
−0.07 2.78 0.00272507

450 0.240.09
−0.09 2.41 0.00795862

500 0.270.12
−0.12 2.11 0.0172651

550 0.280.15
−0.16 1.68 0.0469655

600 0.370.21
−0.22 1.61 0.0534263

650 0.370.29
−0.30 1.21 0.113719

700 0.460.43
−0.45 1.02 0.154306

750 0.800.59
−0.62 1.28 0.100945

800 0.970.85
−0.88 1.10 0.134677

850 1.461.37
−1.42 1.02 0.153237

900 1.902.00
−1.90 0.91 0.182308

950 2.783.02
−2.78 0.90 0.184776

1000 4.754.38
−4.47 1.06 0.145448

Stealth SUSY model
300 0.320.12

−0.15 1.77 0.0382575
350 0.210.07

−0.08 2.48 0.0065171
400 0.140.06

−0.07 1.85 0.0319404
450 0.140.06

−0.07 2.04 0.0207175
500 0.130.07

−0.07 1.75 0.0399094
550 0.130.08

−0.09 1.49 0.0684942
600 0.130.09

−0.10 1.32 0.0932231
650 0.130.12

−0.13 1.03 0.150597
700 0.160.16

−0.16 0.97 0.164849
750 0.160.19

−0.16 0.83 0.203799
800 0.180.26

−0.18 0.67 0.252377
850 0.190.34

−0.19 0.55 0.290372
900 0.270.45

−0.27 0.59 0.278353
950 0.330.58

−0.33 0.56 0.2894
1000 0.320.79

−0.32 0.40 0.345508
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Figure 5.55: Observed upper limit on the cross section as a function of top squark
mass for the RPV SUSY model, shown for 2016 data (top left), 2017 data (top right),
2018pre data (middle left), 2018post data (middle right), and the combination of all
four eras (bottom). The green and yellow bands show the 1σ and 2σ uncertainty
bands. The red line shows the top squark cross section as a function of its mass.
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Figure 5.56: Observed upper limit on the cross section as a function of top squark
mass for the stealth SUSY model with the SYY portal, shown for 2016 data (top
left), 2017 data (top right), 2018pre data (middle left), 2018post data (middle right),
and the combination of all four eras (bottom). The green and yellow bands show the
1σ and 2σ uncertainty bands. The red line shows the top squark cross section as a
function of its mass. 185



CHAPTER SIX

Summary

The goal of the work detailed in this thesis is to look for any signs of new

physical phenomena that had not been previously observed and that are not currently

predicted by the standard model of particle physics (SM). This thesis presents a search

for new physics featuring a final state with two top quarks, six additional light-flavor

jets, and no requirement on the presence of missing transverse momentum. The search

is performed in the context of supersymmetry (SUSY), a well-motivated extension of

the SM, using data collected at CERN’s Large Hadron Collider by the Compact

Muon Solenoid (CMS) detector. Events are selected from data corresponding to an

integrated luminosity of 137.2 fb−1 collected in proton-proton collisions at a center-

of-mass energy of 13 TeV during 2016, 2017, and 2018.

The event selection requires exactly one electron or muon and at least seven

jets, of which at least one should be b-tagged, and a loose leptonic top quark tag.

The dominant tt background is predicted from data using a simultaneous fit of the jet

multiplicity distribution across four bins of a neural network score. The results are

interpreted in terms of top squark pair production in the context of R-parity-violating

and stealth supersymmetry models. Top squark masses up to 700 GeV can be ex-

cluded at 95% confidence level for the signal model in which the top squark decays to

a top quark and the lightest neutralino, assuming the R-parity violating decay of the

neutralino to three light-flavor jets through a λ′′ coupling, as seen in Fig 5.55. Top

squark masses up to 900 GeV can be excluded for the stealth supersymmetry model
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in which the top squark decays to a top quark, a gluon, and a singlino, followed by

the decay of the singlino into a singlet and a gravitino, and the decay of the singlet

into two gluons, as seen in Fig. 5.56. This search is the first of its kind at the LHC,

and provides further information about the viability of light top squarks.

One implication of these results is the following: assuming these models reflect

reality, the mass of the top squark must be at least four times that of the SM’s top

quark. As discussed in Chapter Two, a major motivation for SUSY is that it offers a

natural solution to the Higgs mass hierarchy problem, but this is only true if the mass

of the top quark and the mass of the top squark are not too far apart. If their mass

difference becomes large, the correction to the Higgs mass by radiative loop diagrams

is dominated by logarithmically divergent terms, which results in the breakdown of

the naturalness argument. This alone is not enough to rule out SUSY completely,

even with these divergent terms in the Higgs mass calculation. However, it could

move SUSY down the list of well-motivated theories and promote others.

It is also worth noting that the amount of signal found in the signal + back-

ground fits is nonzero in this search; however, the amount of signal preferred by the fit

is not significant enough to claim a deviation from the background-only hypothesis.

An optimistic physicist would be open to the possibility that a signal is present in

the data, but is not produced at the expected rate. For example, the best-fit signal

strength found for the RPV 400 GeV signal in the combined data set is 0.21 ± 0.07

at a significance of 2.8σ. Interestingly enough, this fit is very close to the boundary

of declaring this result as evidence for a SUSY-like signal. In practice it has been ac-

cepted, arbitrarily, that a significance of 3σ is the boundary of a result being declared

“evidence,” and a significance of 5σ is used for a discovery. If we are to assume this

187



result as evidence for this signal, the best-fit signal strength would indicate that the

branching fraction for top squark decay is not 100% to this particular decay channel,

but instead about 21%. As this analysis assumes a branching fraction of 100% for

simplicity, the other 79% of top squarks could be decaying through some other modes

that fall outside our event selection. However, another interpretation of this fit re-

sult is that there is no signal, and the fact that the fit prefers to include a nonzero

amount could be due either to statistical fluctuations in the data or a missing or

underestimated source of systematic uncertainty. For example, we rely on simulated

tt events to estimate our systematic uncertainty, and if there is an unknown issue

in modeling events with a large number of jets, our analysis would be uniquely im-

pacted. The possibility of an unknown source of uncertainty in the simulated events

is what motivated us to derive data-driven systematic uncertainties from the QCD

control region. On the other hand, we chose to be as conservative as reasonably possi-

ble when deriving systematic uncertainties, which could imply that the uncertainties

are somewhat overestimated. This could mean that the significance values reported

earlier are underestimated.

Looking ahead, there are plans to repeat this search targeting a more inclu-

sive decay mode of tt in signal events. The analysis reported in this thesis is based

on events with exactly one lepton; however, tt can also produce events that are all

hadronic (no leptons) and dileptonic (two leptons). With data included from these

other decay modes of tt, we could increase the number of events considered, which

could push the observed significance of our signals to the evidence mark. Other plans

for the future include interpreting our results using other well-motivated extensions
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of the SM. One interesting example is a search for vector-like quarks, which are pre-

dicted by several classes of theoretical models beyond the SM [49]. Vector-like quarks

are non-chiral fermions in which their left- and right-handed components transform

the same way under SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry. The final-state

signature for such particles can result in tt + jets, which is similar to the SUSY mod-

els considered in this thesis. Pair production for these new vector-like quarks, for

some models, would then have a predicted cross section that is on the same order of

magnitude as the cross section for squark pair production.

With no obvious evidence for SUSY based on these results, or any other search,

the future of the field of particle physics still remains in flux. However, there is still a

lot of phase space that has not been fully explored. The motivations for some physics

models may be changing, but the hunt for evidence of physics beyond the standard

model at the LHC is far from over.
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APPENDIX

Additional Information about Systematic Uncertainties

A.1 tt Parton Shower Variation Shape Systematic Uncertainties

Following the method described in Section 5.6.2, systematic uncertainties are

derived by varying the parton shower settings in the MC data. Three different vari-

ations are used: “erdOn” which allows for color reconnection in the parton shower,

“hdamp (Up/Down)” which changes the ME-PS matching scale, and “underlying

event (Up/Down)” which varies internal pythia parameters that affect the simula-

tion of underlying event physics. Results for erdOn are shown in Fig. A.1, hdamp

(Up/Down) in Fig. A.2, and underlyingEvt (Up/Down) in Fig. A.3.

A.2 HT Shape Systematic Uncertainties

In addition to the systematic uncertainty derived for the HT scale factor that

is used for both tt and the other backgrounds, there are also two more HT-related

uncertainties applied to the tt + jets background. The motivation for including these

two uncertainties comes from the fact that both of the important variables in this

analysis, Nj and the NN score, are correlated with HT. Thus, any mismodeling in

this variable, even if the mismodeling may be small, could have an impact on the

final result. The approach to deriving these two systematic uncertainties is to create

two alternative HT scale factors (SF1 and SF2) and then use them on the tt MC data

following the procedure described in Section 5.6.2.

The first of these two uncertainties comes from the fact that the number of

simulated events at high HT diminishes, so the fit that is used to extrapolate to high
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Figure A.1: Ratio R = Rsyst/Rnom showing the Nj shape differences introduced by
allowing for color reconnection in the parton shower for the four NN bins: D1 (top
left), D2 (top right), D3 (bottom left), and D4 (bottom right). The x axis shows Nj

shifted down such that Nj = 7 is the first bin, here noted by 0.
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Figure A.2: Ratio R = Rsyst/Rnom showing the Nj shape differences introduced by
varying the ME-PS scale for the four NN bins: D1 (top left), D2 (top right), D3

(bottom left), and D4 (bottom right). The x axis shows Nj shifted down such that
Nj = 7 is the first bin, here noted by 0.
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Figure A.3: Ratio R = Rsyst/Rnom, showing the Nj shape differences introduced by
varying the underlying event model parameters for the four NN bins: D1 (top left),
D2 (top right), D3 (bottom left), and D4 (bottom right). The x axis shows Nj shifted
down such that Nj = 7 is the first bin, here noted by 0.

HT may be inaccurate. By looking at some sample fits, like the ones shown in Fig. A.4

for the HT distribution in the Nj = 7 bin, the statistical errors for the ratio above

2000 GeV are large in comparison to the statistical errors in bins less than 2000 GeV.

Having observed this trend, the first alternativeHT scale factor (SF1) is derived

such that all events with HT greater than 2000 GeV are weighted with the scale factor

value used at 2000 GeV, as shown in Fig. A.5. Using this alternative scale factor, the

HT and the Nj distributions for the tt simulation are compared with the respective

distributions using the nominal HT scale factor. The ratios of the Nj distributions

with the alternative scale factor over the Nj distributions with the nominal scale

factor, divided up by the different NN bins per year, are added as an uncertainty for

the tt + jets background shape. These ratios are shown in Fig. A.6 for 2016.
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Figure A.4: The ratio of data to simulation and the corresponding fit used to derive
the HT scale factor in the Nj = 7 bin for 2016 (left) and 2017 (right).

The second HT systematic uncertainty is motivated by the fact that the ex-

trapolation to higher Nj bin from the Nj = 5, 6, and 7 bins may be affected by

statistical fluctuations in these lower Nj bins. To derive an uncertainty that can ac-

count for this, a second alternative HT scale factor using only the values derived in

the Nj = 7 bin was applied to the tt simulation. The second alternative HT scale

factor (SF2) for both years is shown in Fig. A.7, and the respective ratios of the Nj

distributions for the four NN bins for 2016 are shown in Fig. A.8.

A.3 QCD Control Region Derived Systematic Uncertainties

So far, all of the systematic uncertainties have been derived directly from the

simulation and variations on the simulation. In an attempt to have a data-driven

uncertainty that addresses differences in the Nj-NN correlation in both collision data

and MC data, a new shape systematic uncertainty from the QCD control region is

evaluated.
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Figure A.5: The shape of alternative scale factor (SF1) with the HT scale factor
constant after 2000 GeV for 2016 (top left), 2017 (top right), 2018pre (bottom left),
and 2018post (bottom right).
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Figure A.6: The ratio of the Nj distribution, weighted by alternative HT SF1 that
is constant beyond 2000 GeV, to the Nj distribution weighted with the nominal HT

scale factor for 2016 in four NN bins: D1 (top left), D2 (top right), D3 (bottom left),
and D4 (bottom right).
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Figure A.7: The shape of alternative scale factor (SF2) using only values derived for
Nj = 7 for 2016 (top left), 2017 (top right), 2018pre (bottom left), and 2018post
(bottom right).
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Figure A.8: The ratio of the Nj distribution, weighted with alternative scale factor
(SF2) using the Nj = 7 value in higher Nj bins, to the Nj distribution weighted with
the nominal HT scale factor for 2016 in four NN bins: D1 (top left), D2 (top right),
D3 (bottom left), and D4 (bottom right).
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The first step is to determine whether the QCD MC data in the control region

has a similar Nj-NN correlation to that of the data in the control region. The data

vs. MC data agreement in the control region of the NN shape per Nj bin is shown in

Fig. A.9. Although the NN shapes between data and MC data appear to be different

in higher Nj bins, when taking into account the size of the error bars that result from

some of the highly weighted QCD samples, there is agreement between the two.
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Figure A.9: Data vs. MC data agreement in the NN shape distribution for (top) Nj

bins 7–9, and (bottom) Nj bins 10 and 11.

Next, the NN distributions for each Nj bin in the control region are shown

for both QCD MC data and QCD data in Figs. A.10 and A.11, respectively. From

Figs. A.10 and A.11, the NN shape per Nj seems to be slightly different, particularly
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at high Nj. For example, the 0.4 to 0.6 bin in the Nj = 11 NN shape for the QCD

MC data has the most events, whereas the 0.2 to 0.4 bin in the Nj = 11 NN shape for

data has the most events. However, when looking at NN shape relative to the total

shape, shown in red, the trends in the ratio plots below are the same.
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Figure A.10: The NN shape distribution for (top) Nj bins 7–9 and (bottom) Nj bins
10 and 11 relative to the overall NN shape distribution for all Nj for the QCD multijet
MC data in the control region.

This can be generalized to the tt + jets MC data in the signal region as well,

shown in Fig. A.12. It is clear that the overall shape for tt + jets MC data in the

signal region is different from that in the QCD MC data in the control region, but

the ratio of the total NN shape to the per Nj NN shape remains the same. This

similarity in shapes point to a more general correlation between Nj and the NN score
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Figure A.11: The NN shape distribution for (top) Nj bins 7–9 and (bottom) Nj bins
10 and 11 relative to the overall NN shape distribution for all Nj for the collision data
in the QCD control region.
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that is present in both the tt + jets MC data in the signal region and the data in the

QCD enriched control region. To further emphasize this point, the ratios of the full

NN shape for all Nj over the NN shape per Nj for tt MC data in the signal region are

overlaid with those for the data in the QCD enriched control region in Fig. A.13.
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Figure A.12: The NN shape distribution for (top) Nj bins 7–9 and (bottom) Nj bins
10 and 11 relative to the overall NN shape distribution for all Nj for the tt MC data
in the signal region.

From the comparison of collision data in the control region vs. tt MC data

shown in Fig. A.13, a new tt systematic uncertainty is derived using the following

procedure:

• First, four new Nj histograms (Di,j=0) are filled with all of the events in the tt

MC data that pass the signal selection. For each event, the total event weight
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Figure A.13: The ratio of the full NN shape distribution, i.e. for all Nj, to the NN
shape distribution for (top) Nj bins 7–9 and (bottom) Nj bins 10 and 11 for the data
in the QCD control region, QCD MC data in the control region, and tt in the signal
region. The five MVA bins are defined for the NN score from 0.0 to 1.0 with an
interval of 0.2.
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is multiplied by a factor chosen randomly from a Gaussian distribution with

a mean set from the value taken from Fig. A.13 and its sigma set from the

uncertainty shown in Fig. A.13.

• These four Nj histograms are summed together to get the total histogram

(Dtotal,j=0).

• The four histograms are normalized so that the area under each histogram is

1, and the Nj distribution for each NN bin is divided by the total (
Di,j=0

Dtot,j=0
).

• The resulting four histograms (one for each Di,j=0) are used to define Rsyst,j=0,

as done for the other tt systematic uncertainties.

• The ratio of Rsyst,j=0 to Rnom gives the shape of the systematic uncertainty.

This procedure is repeated 100 times (j = 0 to 99) and the final shape uncer-

tainty uses the value in each Nj, NN bin as the mean of the 100 trials. The error bar

for each bin consists of two components added in quadrature: (1) the width of the

distribution of the 100 trials, which constitutes the statistical component and (2) the

full deviation from one of the systematic uncertainties (|1 − R|) as an estimate for

how well the shape is known. The nominal value and the quadrature sum of these

two error components are shown in Fig. A.14.
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Figure A.14: Systematic uncertainty that gives an estimate on the impact of differ-
ences between the NN shape vs. Nj between data and MC data in 2016. The x axis
shows Nj shifted down such that Nj = 7 is the first bin noted by 0. The (top left) is
for NN bin D1, the (top right) is for NN bin D2, the (bottom left) is for NN bin D3,
and the (bottom right) is for NN bin D4. This systematic uncertainty is for the tt
background yields.
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A.4 Jet Mass-pT Rescaling

A.4.1 Jet pT Rescaling

Figure A.15 shows distributions of jet pT for the signal region and QCD control

region for the two highest-pT jets in the event. The ratio of data to MC data slopes

downward as a function of jet pT, suggesting that the jet pT spectrum in the MC

data is harder than in the data. It is interesting to note that the pattern is the same

for the signal region and the QCD control region, suggesting that the discrepancy

may have a common source in the generation and simulation of events with high jet

multiplicities for both the QCD and tt event simulation. Under this assumption, this

section describes a systematic variation of the jet pT scale in the event simulation

that is derived from the data vs. MC data comparison in the QCD control region and

then applied to the tt in the signal region. By observing that scaling jet pT in MC

data by 0.95 yields a much flatter ratio of data to MC data, a tt shape uncertainty

is derived when scaling jet pT (and jet mass).

To simplify things, the data are compared to QCD MC data in the QCD

control region ignoring all other subleading MC data components. It is found that

the ratio of data to MC data can be substantially flattened simply by rescaling the

MC data pT by the RMS ratio of the data and the MC data (RMSdata/RMSQCD).

It is also found that the RMS ratio is about 0.95 and that the ratio is independent

of jet pT rank. The ratio of 0.95 works well for the 2016, 2017, and 2018 data sets.

Figure A.16 shows the data and QCD MC data before and after this simple jet pT

scaling is applied. The RMS ratio is given at the top of each plot in the first column.

The post-scaling plots in the third column show that the histogram mean and RMS
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Figure A.15: Distributions of jet pT for the signal region (top row) and QCD control
region (bottom row) for the two highest-pT jets in the event for the 2016 data set.
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agree much better after the scaling. The fourth column shows the post-correction

ratio of data to MC data as a function of jet pT, which is much flatter.
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Figure A.16: Jet pT distributions in the QCD control region for the data (black) and
the QCD MC data (red) for the 2016 data set. The rows are sorted by jet pT rank in
the event, highest at the top. The first column shows the jet pT distributions without
any MC data correction. The second column shows the ratio of data to MC data of
the first column. The third column shows the distributions after scaling the jet pT

by a factor of 0.95 for the QCD MC data. The fourth column shows the ratio of data
to MC data of the third column. The distributions are normalized to unit area for
pT > 30 GeV.

A.4.2 Jet Mass Rescaling

Figure A.17 shows distributions of the jet mass for the signal region and QCD

control region for the two highest-pT jets in the event. The ration of data to MC

data demonstrates a clear downward trend. Seeing that the behavior in the control

region and signal region is similar, this section describes a systematic variation of

the jet mass scale in the event simulation that is derived from the data vs. MC data

comparison in the QCD control region. By observing that scaling jet mass in MC
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data yields a much flatter ratio of data to MC data, a tt shape uncertainty is derived

while simultaneously scaling jet mass and pT.

Following the same procedure performed in the jet pT scaling study in Sec-

tion A.4.1 but instead using the jet mass spectrum, it is found that scaling jet mass

by about 0.95 flattens the ratio of data to MC data. The value of 0.95 works well for

2016, while 1.01, 0.98, and 0.98 are the derived scale factors for 2017, 2018pre, and

2018post, respectively. Figure A.18 shows the data and QCD MC data before and

after this simple jet mass scaling is applied. The post scaling plots are shown in the

even columns and results for the first two jets are shown. The post-correction ratio

of data to MC data as a function of jet mass is much flatter.

A.4.3 Deriving a tt Shape Systematic Uncertainty

As shown in Fig. A.19, since jet pT and mass are correlated, a single uncertainty

is derived by scaling jet mass and pT at the same time. The systematic uncertainty

is derived using the procedure described in Section 5.6.2. The magnitude and shape

of the systematic uncertainty in each NN bin are shown for 2016 in Fig. A.21.

When this scaling of jet mass and pT is performed to produce the varied Nj

distribution, HT reweighting is not applied. This is because the scaling of jet pT and

the reweighting of event HT yield similar effects. In order to decouple the change in

Nj shape simply by not applying HT reweighting, an independent shape uncertainty

is derived by removing the nominal HT scale factor. This “noHT” shape variation

is ultimately “divided out” from the systematic uncertainty shape derived for mass-

pT scaling, i.e. the systematic uncertainty shape from scaling mass and pT (no HT
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Figure A.17: Distributions of jet mass for the signal region (top row) and QCD control
region (bottom row) for the two highest-pT jets in the event for the 2016 data set.
Here, MC data has been normalized to data to focus on shape differences.
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Figure A.18: Jet mass distributions in the QCD control region for the data (black)
and the QCD MC data (red) for the 2016 data set. The plots are grouped in pairs:
jet 1 is shown in the top row, and jet 2 is in the bottom row. The left plot for each
pairing is before rescaling and the right plot is after rescaling.

211



1

10

210

0 200 400 600 800 1000 1200 1400
 [GeV]

T
Jet 1 p

0

20

40

60

80

100

120

140

160

180

200

Je
t 1

 M
as

s 
[G

eV
]

1

10

210

310

0 200 400 600 800 1000 1200 1400
 [GeV]

T
Jet 2 p

0

20

40

60

80

100

120

140

160

180

200

Je
t 2

 M
as

s 
[G

eV
]

Figure A.19: Jet mass and pT for tt in the signal region. The two jet properties are
clearly correlated across jet rank.

reweighting) is divided by the shape from only removing HT reweighting, for each

NN bin.

After performing this extra division, two orthogonal systematic uncertainty

shapes are left. There is a mass-pT scaled systematic uncertainty, which solely ac-

commodates Nj shape changes from the scaling of jet mass and pT. Then there is a

new “noHT” systematic uncertainty, which gives a measure of how the HT reweighting

affects the tt Nj shapes per NN bin.

Although the mass-pT scaled systematic uncertainty is the primary one derived

here, a conservative approach is chosen to retain the “noHT” systematic uncertainty.

It is seen—at least for 2017, in Fig. A.20—that although HT reweighting resolves

the disagreement between data and MC data for HT, it can degrade the agreement

between data and MC data for jet mass. Thus, the result of removing HT reweighting

is treated as a valid variation and the corresponding uncertainty is propagated through

the analysis.
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Figure A.21 shows the three aforementioned systematic uncertainty shapes in

the four NN bins. In purple is the shape from scaling mass and pT by 0.95 and

also removing HT reweighting. In red is the shape obtained by simply removing HT

reweighting, and in blue is the final mass-pT scaled shape when dividing the purple

shape by the red shape.

To understand how significant these uncertainties are, the induced shape dif-

ferences in the same systematic uncertainty ratio are computed when the signal Nj

shape is added to the tt shape, i.e. treating signal as a systematic uncertainty. The

effect is shown in Fig. A.22 for three masses for the RPV SUSY model. Overall,

both the jet mass-pT rescaling and removal of HT reweighting induce changes similar

to how signal induces changes across NN bins, suggesting that these are important

uncertainties to incorporate.
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Figure A.20: Data vs. MC data comparisons for jet mass for 2017. The top two plots
are for the leading jet in the event, and the bottom two for the third jet in the event.
Progressing from left to right shows the result of removing HT reweighting and it is
seen that the data vs. MC data agreement improves by doing so.
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Figure A.21: The ratio R = Rsyst/Rnom, which shows the Nj shape differences intro-
duced by scaling all jet mass and pT by 0.95 for the four NN bins: D1 (top left), D2

(top right), D3 (bottom left), and D4 (bottom right). The x axis shows Nj shifted
down such that Nj = 7 is the first bin, here noted by 0. Shown in purple is the
mass-pT scaled shape (no HT reweighting), in red is the shape change resulting from
only the removal of HT reweighting, and blue is the ratio of the former to the latter.
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Figure A.22: The ratio R = Rsyst/Rnom, which shows the Nj shape differences intro-
duced by scaling all jet mass and pT by 0.95 for the four NN bins: D1 (top left), D2

(top right), D3 (bottom left), and D4 (bottom right). The x axis shows Nj shifted
down such that Nj = 7 is the first bin, here noted by 0. As a direct comparison, the
induced shape differences in the same ratio are shown when the signal Nj shape is
added to the tt shape (treating signal as a systematic uncertainty). This is done for
three masses for the RPV SUSY model. Overall, the jet mass-pT rescaling induces
changes similar to how signal would induce changes.
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