ABSTRACT
Generalized Inverse Limits and the Intermediate Value Property
Tavish J. Dunn, Ph.D.

Mentor: David J. Ryden, Ph.D.

We introduce and discuss various notions of the intermediate value property appli-
cable to upper-semicontinuous set-valued functions f : [0,1] — 2%, In the first part,
we present sufficient conditions such that an inverse limit of a sequence of bonding
functions of this type is a continuum. In the second part, we examine the relation-
ship between the dynamics of an upper-semicontinuous function with the intermediate
value property and the topological structure of the corresponding inverse limit. In
particular, we present conditions under which the existence of a cycle of period not a
power of 2 implies indecomposability in the inverse limit and vice-versa. Lastly, we
show that these conditions are sharp by constructing a family of upper-semicontinuous
functions with the intermediate value property and cycles of all periods, yet admits

a hereditarily decomposable inverse limit.



Generalized Inverse Limits and the Intermediate Value Property
by
Tavish J. Dunn, B.S.

A Dissertation

Approved by the Department of Mathematics

Dorina Mitrea, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

David J. Ryden, Ph.D., Chairperson

Jonathan Meddaugh, Ph.D.

Brian Raines, Ph.D.

Mark Sepanski, Ph.D.

David Kahle, Ph.D.

Accepted by the Graduate School
August 2021

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright (©) 2021 by Tavish J. Dunn

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES . ... e
ACKNOWLEDGMENTS ... e
DEDICATTION .
1. Introduction. ... ...
2. Preliminaries . .. ... ...
2.1 Continuum Theory . ..... ...
2.2 Classical Inverse Limits. .......... ... ... . . ..
2.3 Classical Dynamical Systems . .............. .. .. ... ... .. .. .. .. ...
2.4 Set-Valued Inverse Limits........ ... ... .. ... .. ... ... .. ... ...
2.5 Set-Valued Dynamical Systems ............. ... ... ... ... .......

3. Connectedness of Inverse Limits of Set-Valued Functions on [0,1] with the
(Weak) Intermediate Value Property ............... ... ... ... .. ...
3.1 Introduction .......... ...
3.2 Intermediate Value Properties for Set-Valued Functions ..............

3.3 Showing Connectedness of Generalized Inverse Limits with the Weak
Intermediate Value Property ........ ... ... . .
3.4 Examples. ... ..

4. Connecting the Dynamics of the Bonding Function with the Structure of
the Inverse Limit. .. .. ...
4.1 Full-Projection Property......... .. ... .. . . .
4.2 Relationship Between Periodicity and Indecomposability .............

5. A Hereditarily Decomposable Inverse Limit of a Map with Periodic Orbits
of all Periods ... ... .
D1 Cantor Sets . . ...
5.2 A Hereditarily Decomposable Inverse Limit ........................

6. Future Work . ...

BIBLIOGRAPHY . ..

v



2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

LIST OF FIGURES

The BJK Continuume. . .......... . e 5
Set-valued functions that generate indecomposable inverse limits ......... 15
Upper-semicontinuous function where the Sharkovskii order fails. ........ 18
Upper-semicontinuous function with intermediate value property. ........ 22

Upper-semicontinuous function with the weak intermediate value property. 23

Upper-semcontinuous function w/o the weak intermeidate value property. . 24

G(f) (left) and G(f?) (right) from Example 3.4.1 ...................... 39
G(f) from Example 3.4.2 ... ... 39
G(f) (left) and G <f|[i1]) (right) for Example 3.4.3 ................ ... 40
G(f) for Example 3.4.4 ... 40



ACKNOWLEDGMENTS

I would like to thank the faculty and staff of Baylor University and the Department
of Mathematics for their support throughout my time in graduate school. 1 am
grateful to Dr. David Ryden for the numerous hours he spent encouraging me and
helping me in research, writing, and preparing for conferences. Thank you for helping
me be clear in what I am trying to say and helping me learn how to investigate the
literature. I am also grateful to Dr. Jonathan Meddaugh for his help proofreading
and challenging my proofs to be rigorous, helping me develop as a researcher.

I also want to thank my family for their support and encouragement. Moving
across the country is a large endeavor, and the help family members and the wonderful
people I have come to know in Texas have helped me reach this point and become

the person I am today.

vi



To the reader.

vil



CHAPTER ONE

Introduction

Inverse limits play an important role in continuum theory and dynamics. They
were originally developed in conjunction with cohomology theory in the 1930s and
40s. At this time it was found that the inverse limit of continua is itself a continuum,
making inverse limits relevant to continuum theory. A compilation of the fundamental
properties of inverse limits along with new results of particular interest to continuum
theorists was written by Capel in 1954 [14]. In the late 1950s and early 60s, the value
of inverse limits for the study of continuum theory became apparent with their use
in constructing exotic spaces from relatively simple spaces [1, 27, 45]. They are also
useful for representing and studying properties of known spaces.

Inverse limits caught the interest of dynamicists in 1967 when R.F. Williams
demonstrated a relationship between attractors and the shift map on an inverse limit
[50]. He showed that for a given inverse limit X with shift map h, there is a dif-
feomorphism f : S* — S* and indecomposable subset )y of its non-wandering set
such that (X, h) is conjugate to (€, fla,). Conversely, he also showed that, given
a diffeomorphism of manifolds f : M — M and a one-deminsional set )y that is
an irreducible subset of the non-wandering set with hyperbolic and associated stable
structure, then there is an inverse limit X such that (o, f) is conjugate to (X, h).

In the 1980s, Barge and Martin showed that every inverse limit space of a mapping

f :10,1] — [0, 1] can be realized as a global attractor A for a homeomorphism g of



the plane such that (@{[0, 1], f}, h) is conjugate to (A, g|la) [6]. This provided an
impetus for the study of topological dynamics of inverse limits of the unit interval.
Accordingly, they also showed the existence of a periodic point of a continuous func-
tion f : [0, 1] — [0, 1] implies the existence of an indecomposable subcontinuum of its
inverse limit, and proved a pseudo-converse [9].

In 2004, Mahavier introduced a notion of inverse limits involving set-valued bond-
ing functions on [0, 1] instead of continuous bonding functions [37], and worked with
Ingram in 2006 to extend this concept to inverse limits of upper-semicontinuous set-
valued functions on compact Hausdorff spaces [31]. In these papers, Ingram and
Mahavier gave examples of these generalized inverse limits for which many of the
well-known properties of inverse limits of continuous function did not hold. This new
context, in which little could be taken for granted, has seen a large body of research
in recent years over a wide variety of topics, including connectedness [18, 24|, in-
decomposability [34, 47], modeling spaces [2], the full-projection property [4], and
specification [21].

The focus of this dissertation is on inverse limits of set-valued functions satisfying
either of two notions of the intermediate value property for set-valued functions.
We show these functions may be used to generate connected inverse limits, and we
explore the relationship between the dynamics of a set-valued function f on [0, 1] and
the topological structure of the inverse limit generated by f.

In Chapter Two, we give give preliminary definitions with some history of the field

interspersed and a preview of the main results of this dissertation. In Chapter Three,



we define the weak intermediate value property and intermediate value property for
set-valued functions. We then prove theorems about the structure of functions with
the intermediate value property and give sufficient conditions such that a sequence of
set-valued functions with the weak intermediate value property admits a continuum
as its inverse limit, leading to a generalization of work by Nall [10].

In Chapter Four, we look at inverse limits of a function with the intermediate
value property and explore the relationship between the existence of periodic cycles
of the bonding function whose period is not a power of 2 and indecomposability in
the corresponding inverse limit. This generalizes work from Barge and Martin [5].
Key in these proofs is the full-projection property, which we prove holds for inverse
limits of this type.

This leads immediately into Chapter Five, in which we show one of the main
results of Chapter Four does not hold if we drop the assumption that the bonding
function is almost nonfissile. We construct a family of set-valued functions with
the intermediate value property that has periodic cycles of all periods, yet admits
a hereditarily decomposable inverse limit. Lastly, in Chapter Six we explore some

avenues for future work.



CHAPTER TWO

Preliminaries

We give preliminary definitions and related results from continuum theory, clas-
sical inverse limits, classical dynamical systems, set-valued inverse limits, and set-
valued dynamical systems in Sections 2.1 through 2.5 respectively. This context
allows us to provide in Sections 2.4 and 2.5 a preview of the main results of the

dissertation.

2.1 Continuum Theory
We begin with some preliminary definitions from continuum theory. A more
in-depth introduction to the subject can be found in [40]. For an introduction to

topology, see [48].

Definition 2.1.1 . Let X and Y be topological spaces. A mapping, or map, from

X toY is a continuous function f: X — Y.

Definition 2.1.2 . A continuum is a nonempty, compact, connected metric space.
For a continuum X, a set K C X is a subcontinuum if K is a continuum. We denote
the collection of nonempty compact subsets of X by 2% and denote the collection of
nonempty subcontinua of X by C'(X).

It is well-known that if X is a compact metric space, both 2% and C* are compact.



Figure 2.1: The BJK Continuum

Definition 2.1.3 . A nondegenerate continuum X is decomposable if it is the union
of two proper subcontinua and indecomposable if it is not decomposable. X is hered-
itarily decomposable if each of its nondegenerate subcontinua is decomposable.

It is not intuitive that indecomposable continua exist. The topology of indecom-
posable continua is exotic; for example, an indecomopsable continuum is not locally
connected at any point. A famous example of an indecomposable planar continuum
is the Brouwer-Janiszewski-Knaster (BJK) continuum, or buckethandle continuum

(See Figure 2.1).

Definition 2.1.4 . A continuum K is irreducible about a nonempty closed set
A C K if no proper subcontinuum of K contains A.

A famous characterization of indecomposability given by Stefan Mazurkiewicz is
that a continuum X is indecomposable if and only if X contains three points such

that X is irreducible about any two of them [39].

Definition 2.1.5 . A continuum X is unicoherent if, for every pair of subcontinua
A, B C X with AUB = X, ANB is a continuum. X is hereditarily unicoherent if every
subcontinuum is unicoherent, or equivalently, the intersection of any non-disjoint pair

of subcontinua of X is itself a subcontinuum of X.



2.2 Classical Inverse Limits
For a general introduction to inverse limits, see [32].
The graph of a function f : [a,b] — 2[¢¥ is the set G(f) = {(z,y) € |a,b] x [c,d] :

y € f(x)}.

Definition 2.2.1 . Let Xg, X1, X, ... be a sequence of continua and for all i € N
let f; : X;—1 — X; be continuous. The pair {X;, f;} called an inverse sequence. The
inverse limit of the inverse sequence is the subspace of ]

X, given by

@{Xufz} = {33' = (l’o,.ﬁlﬂ'l, .. ) € Hiew X;:ixi1 = fz(fﬂl) Vi > 1} .

The spaces X; are called the factor spaces of the inverse limit, and the functions
f; are called the bonding maps For each n € w, the map =, : @{Xl,fz} - X,
defined by 7,(z) = z, is the projection map onto the nth factor space. For two
consecutive integers n and n + 1, Tp41, @{Xi,fi} — X,11 X X, defined by
Tnt1.0(T) = (Tpt1, T,) is the projection map into X, 11 x X,,.

It is well-known that if {Xj, f;} is an inverse where each factor space is a contin-

uum, then X = le{XZ-, fi} is a continuum.

Definition 2.2.2 . Let X, X1, Xo,... be a sequence of continua and for all i € N

let f; : X; — X,;_1 be continuous. X = @{Xi, fi} has the closed-set property if for

every closed subset C' of X, C' = Im{m[C], fi|r,c)}-

Capel showed that inverse limits of continua with continuous bonding maps have

the closed-set property [14]. Thus we are able to regard closed subsets of X as inverse



limits in their own right. But under the generalized notion of an inverse limit that

we will introduce in Section 2.4, this does not always hold.

Definition 2.2.3 . Let X be a continuum and f : X — X be continuous. The shift
map, or forgetful shift, on @{X,f} is the map h : @{X,f} — @n{X, f} defined
by h(z) = (x1,x2,...), where x = (zg, x1,...).

The shift map is a homeomorphism of an inverse limit space with itself, with
h=Y(z) = (f(xo, o, x1,...)), although it is not a homeomorphism in the generalized

setting. Sometimes the literature refers to A=! as the shift map instead.

Definition 2.2.4 . Let {X;, fi} be an inverse sequence and X = lim{X;, f;}. We
say X has the full-projection property if and only if K = X for every subcontinuum
K of X such that m;[K] = X; for infinitely many i € w.

The full-projection property holds for inverse limits of continua with continuous
bonding maps. The full-projection property and closed-set property both hold for

calssical inverse limits, but they become distinct concepts in the set-valued setting.

Definition 2.2.5 . Let {X;}ic be a sequence of compact Hausdorff spaces and
{fi}ien be a sequence of mappings f; : X; — X,_;. We say lgl{XZ,fZ} has the
subsequence property if for every increasing sequence {n;};c, in w, @{Xni, g:} is
homeomorphic to im{X;, fi}, where g; = My

The subsequence property holds for all inverse limits of continuous functions and

shows that the representation of a given space as an inverse limit is not unique.



Like the closed-set and full-projection properties, the subsequence property does not

always hold for generalized inverse limits.

Definition 2.2.6 . A tree is a uniquely arcwise connected union of finitely many
arcs. A continuum is tree-like if it is homeomorphic to an inverse limit on trees.

It is well-known that tree-like continua are hereditarily unicoherent.

2.8 Classical Dynamical Systems
Definition 2.5.1 . A dynamical system is a pair (X, f) consisting of a metric space

X and a continuous function f: X — X.

Definition 2.3.2 . Let f: X — X be a continuous function. The orbit of a point
r € X is the sequence {f*(x)}ic,, where fO(x) = z. If there is some n € N such that
f™(x) = x, then z is periodic. The period of x is the smallest such natural number n.
A finite sequence (xg, 21, ...,x,_1) is called a cycle if (zg,x1,...,Tp_1, %0, X1,...) I8
a periodic orbit.

R.F. Williams’s result that attractors can be realized as homeomorphic to an
inverse limit where the dynamical system is conjugate to the shift map [50] provided
a major impetus to the use of inverse limits to study dynamical systems.

The dynamical system (@{X ,f},h), where h is the shift map, provides a use-
ful tool for studying the dynamics of (X, f) and vice-versa. For example, a peri-
odic point (xg, z1,Z2,...) € @{X,f} of period n indicates (z,, Tp_1,...,%2,21) is

a periodic cycle of (X, f). Conversely, if xy is a periodic point of (X, f) with pe-



riod n, then (xq, f* 1 (x0), " *(x0),- .., f(x0), o, [ (20, ...)) is a periodic point of
(Uim{X, £}, 7).

In the 1980s, Marcy Barge and Joe Martin undertook a study to discern for a map
f :0,1] — [0, 1] the relationship of its dynamics to the dynamics of the shift map
on its inverse limit [6, 7] and to the topology of its inverse limit [5, 8]. The following
two results are of particular interest for this dissertation and form pseudo-converses

to one another:

Theorem 2.3.3 . (Barge and Martin [5, Theorem 1]) Suppose that k and n are
integers, k > 0, n > 1, and that f : [0,1] — [0, 1] has a point of period 2*(2n+1), i.e.,
of period not a power of 2. Then lim{[0, 1], f} has an indecomposable subcontinuum

that is invariant under h2""" where h is the shift homeomorphism.

Theorem 2.3.4 . (Barge and Martin, [5, Theorem 7]) If f : [0, 1] — [0, 1] is organic,
and @n{[(), 1], f} is indecomposable, then f has a periodic point whose period is not
a power of 2.

Since Theorem 2.3.3 only specifies the inverse limit contains an (possibly proper)
indecomposable subcontinuum, Theorems 2.3.3 and 2.3.4 are not true converses,
though both connect the existence of a period not a power of 2 for the bonding
map to indecomposability in the inverse limit. The subsequence property is critical
to the proof of Theorem 2.3.3.

Also critical to the proof of Theorem 2.3.3 is the relationship between periodic
points. A.N. Sharkovskii introduced the following ordering of the positive integers,

now known as the Sharkovskii ordering [46].



3<5<7<9<...<3:2<5:2=<7-2<9.-2<...
<3-22<5-22<7-22<9.22<...<3-28<5.2k 7.2k 9.2k < |

=20 <23 <222 221

Theorem 2.3.5 . (Sharkovskii, [46]) Suppose f : R — R is a mapping and f has a
periodic point of period k. If k£ < 7, then f has a point of period k.

We may apply this theorem to a map f : [0, 1] — [0, 1] by continuously extending
f to be constant on (—o0,0] and [1,00). Note that if f has a point of period not a
power of 2, as is assumed in Theorem 2.3.3, then f has periodic points of infinitely
many periods. In particular, f has a periodic point whose period is a multiple of 3.
Thus Theorem 2.3.3 demonstrates a connection between complicated dynamics and

exotic topology.

2.4 Set-Valued Inverse Limits
In 2004 and 2006, Mahavier and Ingram introduced inverse limits with upper-
semicontinuous set-valued functions [31, 37]. Since then, extensive work has been
done to generalize and extend results from the classical setting. Many fundamental

results of classical inverse limits do not carry into the set-valued setting.

Definition 2.4.1 . A function f : X — 2Y is upper-semicontinuous at x if for every
open set U containing f(x) there is an open set V' containing x such that f(V') C U.
The function f is upper-semicontinuous if it is upper-semicontinuous at every point

in its domain.

10



Ingram and Mahavier proved that f is upper-semicontinuous if and only if G(f)

is closed [31].

Definition 2.4.2 . Let Xq, X1, Xo,... be a sequence of continua and for all i € N
let f; : X; — 2%-1 be upper-semicontinuous. The pair {X;, f;} is called an inverse
sequence, and the inverse limit of {X;, f;}, sometimes called the generalized inverse

limit of {X;, f;}, is the subspace of [[,., X; given by

@{X“fl} = {LC = (130,371, .. ) € HiEuJ Xz X1 € fz(xl) Vi Z 1} .

The spaces X; are called the factor spaces of the inverse limit, and the functions
fi are the bonding functions. For n > 4, fI' : X,, — X, denotes the composition
fix1 © fixg 0...0 f,. For each n € w, the map m, : @{Xi,fi} — X, defined by
mn(z) = x, is the projection map onto the nth factor space. For two consecutive
integers n and n + 1, m,11, : lgl{XZ,fZ} — X1 X X, defined by m,410(x) =
(Tpy1, Tp) is the projection map into X, 411 X X,.

This new notion opened up the possibility for a wider variety of spaces to be
modeled as inverse limits on a given sequence of factor spaces. Shortly after its
introduction, a large body of research developed around inverse limits with set-valued
functions, dealing with topics that include the kinds of spaces that can be realized as
inverse limits [2, 11, 12, 28] and conditions under which results from classical inverse

limits are extended [3, 16, 17, 24, 25, 30, 34, 47].

11



2.4.1 Connectedness

One property of classical inverse limits that does not hold in general for inverse
limits of upper-semicontinuous functions is that, in the classical setting, the inverse
limit of continua is a continuum. Ingram and Mahavier found in [31] that even inverse
limits of upper-semicontinuous functions on [0, 1] are compact and nonempty but not
necessarily connected, and gave examples of such functions. Ingram presents the

following problems in [29]:

Problem. 6.1 Characterize connectedness of inverse limits on continua with upper-

semicontinuous bonding functions.

Problem. 6.2 Characterize connectedness of inverse limits on continua with upper-

semicontinuous bonding functions on [0, 1].

Problem. 6.3 Find sufficient conditions that an inverse limit on continua with

upper-semicontinuous bonding functions be a continuum.

Problem. 6.4 Solve Problem 6.3 on [0, 1].

Theorem 2.4.3 . (Ingram and Mahavier, [31]) Y&n{Xm fn} is connected if and only

if the sets
Lo (f) = {(xo, 21,22, . .. 1) € [0, 1" 1 2,y € fi(w;) Vi < n}

are connected for each n.

12



These sets I',(f), subsequently dubbed Mahavier products by Charatonik and
Roe, have been the subject of research in their own right [18, 20, 26].

While this criterion characterizes connectedness, it is difficult to verify due to the
need to check infinitely many conditions. Ingram and Mahavier also presented some

sufficient conditions that are more readily verfied.

Theorem 2.4.4 . (Ingram and Mahavier, [31]) If for each i € w, X; is a continuum
and f; : X;11 — C(X;) is upper-semicontinuous, then l’gl{Xi, fi} is a continuum.
Nall also presented some conditions sufficient to ensure the connectedness of the

inverse limit of a single set-valued function on [0, 1].

Theorem 2.4.5 . (Nall, [10]) Let X be a continuum and f : X — 2% be a sur-
jective upper-semicontinuous function with connected graph G(f) such that G(f) =
U, G(fa), where each f, : X — C(X) is upper-semicontinuous. Then Im{X, f} is a
continuum.

While it is true that the inverse limit need not be connected, Bani¢ and Kennedy
showed there is a component of inverse limits with set-valued functions on [0, 1] that
is large in the sense that its projections encapsulate the entire graphs of the bonding

functions.

Theorem 2.4.6 . (Bani¢ and Kennedy, [3]) For all n € w, let £, : [0,1] — 2% be an
upper-semicontinuous function such that the graph G( f,,) is connected and surjective.

Then there is a continuum C' € §m{[0, 1], f,} such that my41,[C] = G(fx) for any n.

13



Greenwood and Kennedy developed a characterization for the connectedness of
inverse limits of upper-semicontinuous functions on [0, 1] that are surjective and have
connected graphs in [24] and refined the result in [25]. Their result, stated in Theorem
3.3.3, requires preliminary technical definitions, which will be introduced in Chapter

Three. We use this to show the following in Theorem 3.3.5:

Theorem. For each n € N, let f, : [0,1] — 20U be a surjective, upper-
semicontinuous function with the weak intermediate value property and a connected
graph G(fy). Then Im{[0,1], f,} is connected.

We show in Theorem 3.3.8 that in the special case of a single bonding function, the
criteria in the previous theorem is equivalent to that of Nall’s theorem (2.4.5). Like
Nall’s theorem, this provides sufficient conditions that are verified through checking
each bonding function individually, providing an easily verifiable condition to check
for connectedness in the inverse limit. Theorem 3.3.5 is the most general result that
provides sufficient conditions for the connectedness of a generalized inverse limit using

criteria restricted to individual bonding maps.

2.4.2 Indecomosability and Full-Projection Property

With the advent of generalized inverse limits, another area of particular interest
has been to identify and analyze circumstances that give rise to indecomposable
subcontinua. Ingram [29], James P. Kelly [33], Jonathan Meddaugh [34], and Scott
Varagona [47] have all written on the subject, using the full-projection property as a

crucial tool to demonstrate indecomposability.

14



Ezample 2.4.7 . (Varagona, [47]) Let f : [0,1] — 21 be defined by the graph
made by drawing straight line segments from (0,0) to (%, %), (%, %) to (%, %), (%, %)
to (%, 1), along with the reflection of this figure about the line x = % (pictured on

the left in Figure 2.2). Then l’&n{[@, 1], f} is indecomposable.

Ezample 2.4.8 . (Kelly, [33]) Let f : [0,1] — 2[%U be the graph found on the right

of Figure 2.2. Then lim{[0, 1], f} is an indecomposable continuum.

Figure 2.2: Set-valued functions that generate indecomposable inverse limits

While there is no proof that the full-projection property is a necessary condition
for indecomposability, many if not all of the results related to the indecomposability of
inverse limits with set-valued functions make use of it. Thus an important question
related to the study of indecomposability is if there is a theorem that ensures an
indecomposable inverse limit has the full-projection property or if there is an inverse
limit that is an indecomposable continuum but does not have the full-projection
property.

Since the bonding function is set-valued, the shift map on the generalized inverse

limit @{X , f} is no longer injective, though it is still a continuous surjection. The

15



corresopndence between periodic points of the inverse limit and periodic cycles of the
dynamical system (X, f) is preserved, however, allowing us to model a more robust
variety of dynamical systems as inverse limits.

In general, the subsequence property does not hold for inverse limits of upper-
semicontinuous functions. Thus the proof for Theorem 2.3.3 cannot be lifted to the
set-valued setting. However, we form an alternate proof making use of the following

from Theorem 4.1.12:

Theorem. Suppose {[0,1], f,} is an inverse sequence where, for each n € N, f,, :
[0,1] — 2% is a surjective, light, almost nonfissile, upper-semicontinuous map with
the intermediate value property. Then @{[O, 1], fn} has the full-projection property.

The added assumptions that f is light and almost nonfissile are necessary for the

proof and will be introduced in Chapter Four.

2.5 Set-Valued Dynamical Systems
Set-valued dynamical systems have been used to model switched circuit networks
[13], economics [19], and game theory [22, 38]. Recent years have seen the field grow as
arobust area of study in its own right, with results involving the specification property
[21], chaos [23], entropy [15, 35], and shadowing [42, 43]. In this dissertation, we are
interested in the connection between complicated dynamics and exotic topology.
As with inverse limits, many fundamental properties of dynamics fail when moved

to the generalized setting.
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Definition 2.5.1 . Let X and Y be metric spaces and f : X — 2¥. An orbit of
f is a sequence {z;};c, Where z;41 € f(z;) for all i. If z € X, an orbit of z is an
orbit of f where xo = x. The orbit is said to be periodic if there is some n € N such
that x,.; = x; for all i. The smallest such n is called the period of the orbit. A
finite sequence (zg,x1,...,2T,_1) is called a cycle if (zg,x1,...,Tn_1,%0,Z1,...) 1S a
periodic orbit.

As f is a set-valued function, a given point may not have a unique orbit. Because
of this, for a given orbit {;};c, there may be some i € N such that z; = xg, even if
{z;}icw 18 not periodic. Similarly if {z; };., is an orbit of period n, there may be some
0 < j < n such that x; = xo. For instance, the function f : [0, 1] — 2% defined by
f(0) = f(1) =1[0,1] and f(x) = {0} for z € (0,1) has (0,0,1,0,1) as a periodic cycle.
Although xq = 1 = 0, the period of the orbit is 5.

In general, the Sharkovskii order does not hold for upper-semicontinuous set-

valued functions.

Ezample 2.5.2 . Define f :[0,1] — 2[%1 by

1/2 re€0,1)
fl@) =9 [1/2,1] T =1/2

-2 2e€(1/2,1]

\
Then (0, %, 1) is a period 3 cycle, but there is no period 2 cycle. So the Sharkovskii

order fails for f. See Figure 2.3 for the graph of this function.

17



Figure 2.3: Upper-semicontinuous function where the Sharkovskii order fails.

However, the intermediate value property (defined in Chapter Three) allows us to

recover the Sharkovskii order.

Theorem 2.5.3 . (Otey, Ryden, [41]) Let f : [0,1] — 2[%! be upper-semicontinuous
and have the intermediate value property. If f has a cycle of period n, then f has
cycles of every period m such that n < m.

With the Sharkovskii order and the full-projection property in place, we provide
the following generalizations of Theorems 2.3.3 and 2.3.4 in Theorems 4.2.2 and 4.2.8
respectively, connecting complicated dynamics of set-valued functions to the exotic

topology of their corresponding inverse limits.

Theorem. Let f :[0,1] — 21 be upper-semicontinuous, surjective, almost non-
fissile, light, and have the intermediate value property, and G(f) have empty interior.
If f has an orbit of period not a power of 2, then 1'@{[0, 1], f} contains an indecom-

posable subcontinuum.
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Theorem. If f :[0,1] — 21 is upper-semicontinuous, organic and has the inter-
mediate value property and @{[O, 1], f} is indecomposable, then f has a periodic
cycle with a period that is not a power of 2.

The intermediate value property will be key as it allows us to generalize Theorem

2.3.5 and use the Sharkovskii order with set-valued functions.
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CHAPTER THREE

Connectedness of Inverse Limits of Set-Valued Functions on [0,1] with the (Weak)
Intermediate Value Property

3.1 Introduction

In this chapter, we consider the connectedness of generalized inverse limits on
[0, 1] whose bonding functions have the weak intermediate value property. In Section
3.2, we introduce two generalized notions of the intermediate value property that are
applicable to set-valued functions. Then we prove some structure theorems to give
the reader some intuition as to the nature of the weak intermediate value property
and intermediate value property for upper-semicontinuous functions.

In Section 3.3, we introduce a characterization of connectedness of inverse limits
of upper-semicontinuous functions on [0, 1] that are surjective and have connected
graphs from [24, 25]. This allows us to prove the main theorem of the chapter, The-
orem 3.3.5, in which we show a sequence of upper-semicontinuous functions with the
weak intermediate value property generates a connected inverse limit under modest
conditions. The sufficient conditions provided in Theorem 3.3.5 are easily verfiable, as
they pertain to the bonding functions taken in isolation, rather than taken together
in compositions of finite subsequences. We show in Theorem 3.3.8 that in the special
case of a single bonding function, the criteria in Theorem 3.3.5 is equivalent to that

of Nall’s theorem (2.4.5).
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In Section 3.4, we present examples demonstrating that the assumptions of The-
orem 3.3.5 are sharp, and thus cannot be dropped. We also present an upper-
semicontinuous function that does not have the weak intermediate value property
yet admits a connected inverse limit, indicating the sufficient conditions of Theorem
3.3.5 are not necessary. This indicates room for further research on necessary or suf-
ficient conditions on a sequence of upper-semicontinuous bonding functions to admit

a connected inverse limit.

3.2 Intermediate Value Properties for Set-Valued Functions

Definition 8.2.1 . Let f : [a,b] — 2@ be an upper-semicontinuous function.
We say f has the intermediate value property if, given distinct z1,xo and distinct
y1 € f(x1), y2 € f(x2), there is some z strictly between 1 and x5 such that y € f(z).

We say f has the weak intermediate value property if, given distinct x1, x2, and
y1 € f(z1) there is some yo € f(x2) such that if y is between y; and yo, then there is
x between z; and x5 such that y € f(z).

Note that we do not specify if z5 is larger than x;. So for a function to have
the weak intermediate value property, it is necessary for the condition to hold when
To > x1 and x1 > wo. If f is upper-semicontinuous and has the intermediate value
property, it follows that f is weakly continuous via Theorem 3.2.10.

Let f : [a,b] — 2¥ and g : [¢,d] — 2% be upper-semicontinuous, I be a
closed subinterval of [a,b], and J be a closed subinterval of [c, d] such that if x € I,
then f(x)N.J # 0. Let f|; : I — 214 denote the function f|;(x) = f(z). Let

fI : T — J denote the function f|/(x) = f(x) N J. Note that if f and g have the
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(weak) intermediate value property, then each of f|;, f|7, and g o f has the (weak)
intermediate value property as well.

Below we present some examples to demonstrate what it means for an upper-
semicontinuous function to have the intermediate value property and weak inter-
mediate value property. Examples 3.2.2, 3.2.3, and 3.2.4 are upper-semicontinuous
functions that have the intermediate value property, the weak intermediate value

property but not the intermediate value property, and neither property respectively.

Ezample 3.2.2 . Let f:[0,1] — 2[%U be defined by

flx) = %sin(l)jt}1 nggi

Flfl(?nm‘#—ﬂ—l) %Sxﬁl

Then f has the intermediate value property, the graph of which can be seen in

Figure 3.1.

Figure 3.1: Upper-semicontinuous function with intermediate value property.
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Ezample 3.2.8 . Let f : [0,1] — 2% be given by f(z) = {z,1 — x}. Then f
is upper-semicontinuous and has the weak intermediate value property but does not

have the intermediate value property.
To see why f does not have the intermediate value property, consider (x1,y;) =

(0,1) and (x2,42) = (5, 3). There is no € (0, }) such that f(z) contains 3.

Figure 3.2: Upper-semicontinuous function with the weak intermediate value prop-
erty.

Ezample 3.2.4 . Let f:[0,1] — 2% be given by

Then f has neither the intermediate value property nor the weak intermediate value

property.

Let (z1,y1) = (3,0) and 2, = 1. Since f (3) = {5}, y2 must be . But 5; ¢ f()

for any x € (}L, %) So f does not have the weak intermediate value property. Note,
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from the graph of f in Figure 3.3 that the weak intermediate value property holds

for o > x; and only fails in a case where x1 > 5.

Figure 3.3: Upper-semcontinuous function w/o the weak intermeidate value property.

Definition 3.2.5 . The function f : [a,b] — 2% is weakly continuous from the
left at x if it is upper-semicontinuous and, for each y € f(z), there is a sequence
{(Zn, Yn) }new that converges to (z,y) such that x, < x and y, € f(z,) for each n.

The function f : [a,b] — 2[4 is weakly continuous from the right at x if it is
upper-semicontinuous and, for each y € f(x), there is a sequence {(zn, Yn)}neo that
converges to (x,y) such that z, > x and y,, € f(x,) for each n.

The function f : [a,b] — 2l is weakly continuous at x if f is weakly continuous
from the left and from the right at z, and f is weakly continuous if it is weakly

continuous for each x € (a,b).

Theorem 3.2.6 . Suppose f : [0,1] — 2[%! is upper-semicontinuous. Then f has
the intermediate value property if and only if f is weakly continuous and f(z) is

connected for each z.
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Proof. If f has the intermediate value property, then f is weakly continuous and f(x)
is connected for each x by Theorem 3.2.8. To see the converse, suppose f does not
have the intermediate value property but that f is weakly continuous. We show that
f(z) fails to be connected for some = € [0, 1]. Since f does not have the intermediate
value property, there are (z1,y1), (22,%2) € G(f) and y strictly between y; and y,
such that y & f(x) for all z strictly between x; and z5. There are four cases, all
similar, corresponding to the orders of x1 and x5 and of y; and y,. We consider only
the case in which xy < x5 and y; < ys.

Since f is weakly continuous from the right at xy, there is (z},v}) € G(f) such
that 1 < 2] < x9 and ¥} < y. Since f is weakly continuous from the left at xo,
there is (24, v5) € G(f) such that 2} < 2}, < x5 and y < yj. It follows that, for each
x € [7], 1), y € f(x). Since yj <y <y it follows that Vi,r . N G(f) is the union of
two disjoint compact sets K7 and K. Then m [K;]Um [Ks] = [2], 25]. Consequently,
there is ¢ € m[K;] Nm[Ky). It follows that {c} x f(c) is a subset of K; U K5 that

intersects both K; and K,. Hence f(c) is not connected. O

Notation. For 0 <a < b <1, let Viop = [a,b] x [0, 1].

Lemma 3.2.7 . Let f :[0,1] — 2001 be an upper-semicontinuous function with
G(f) connected. Then for all @ < b there is some subcontinuum C' of G(f) N Vi

such that C' N {a} x [0,1] # 0 and C' N {b} x [0, 1] # 0.
Proof. Let
L ={H : H is a component of G(f) N Vjop and H N {a} x [0,1] # 0},
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R ={K : K is a component of G(f) NV}, and K N{b} x [0,1] # 0}.

Note for all H € £ and K € R, either HN K = () or H = K by the maximality
of components. Also G(f) N Vi = (UL) U (UR); otherwise there would be some
component D of G(f) N Vi that does not intersect either {a} x [0, 1] or {b} x [0, 1].
Then D would be a proper component of G(f), contradicting the connectedness of
G(f)-

Suppose that LN R = (. Then f(a) and f(b) are disjoint closed subsets of
G(f) N Viay such that no component of G(f) N V4 intersects f(a) and f(b). Then
by the Cut-Wire Theorem, there are two disjoint closed sets A and B such that
G(f)NVey = AUB, f(a) C A, and f(b) C B. Aseach H € L and K € R
is connected, H C A and K C B. Thus A = |J£ and B = [JR. Then AU
(G(f) N Vjo,q) and BU (G(f) N Vj1)) are nonempty disjoint closed sets whose union

is G(f), contradicting the connectedness of G(f). O

The following theorem provides a graphical characterization of the weak interme-
diate value property. A similar result characterizing the Intermediate Value Property

is provided in Theorem 3.2.10 for the purpose of comparison.

Theorem 3.2.8 . Let f : [0,1] — 2% be a upper-semicontinuous function such

that G(f) is connected. The following are equivalent:
1. f has the weak intermediate value property.

2. For all a < b, each component of G(f) NV}, intersects both {a} x [0,1] and

{b} x [0,1].
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Proof. (1 = 2) As in Lemma 3.2.7, let

L ={H : H is a component of G(f) N Vo and H N {a} x [0,1] # 0},

R = {K : K is a component of G(f) NV}, and K N {b} x [0,1] # 0}.

Note every component D of G(f) N Vi, is a member of either £ or R; otherwise
D would be a proper component of G(f), contradicting the assumption that G(f) is
connected. By contradiction, suppose there is some component C' of G(f) NV, that
does not intersect both {a} x [0, 1] and {b} x [0, 1]. Without loss of generality, suppose
C N ({b} x[0,1]) = 0. Note this implies C' € L. Then C and f(b) are nonempty
disjoint closed subsets of G(f) N Vi, such that no connected subset of G(f) N Vi
intersects both C' and {b} x f(b). Then by the Cut-Wire Theorem, there are disjoint
closed sets A and B in G(f) N Vjgy such that AU B = G(f) N Vjay, C C A, and
{b} x f(b) C B. Note that by the connectedness of each H € L and K € R, H C A
and K C B. Thus A = Uycp\(onr) H and B = Uk K.

Let ;1 = max{z : (z,y) € A}. By Lemma 3.2.7, there is some connected set
D C B such that DN {a} x[0,1] # 0 and D N {b} x [0,1] # 0. As D is connected,
there is some point z € f(x1) such that (xq, 2) € D. Note there is some y € f(x;) such
that (z1,y) € A and either y > z or z > y. Without loss of generality, suppose z > y.
Let y3 = max{y : (z1,y) € Aand y < z}. Define ¢ = min{d(A4, B),b — 21} > 0.
Let x5 = 2y + § and yo € f(z2). By the construction of 1 and wzy, (22,12) € B.
So |y — y1| > §; otherwise d((w1,y1), (z2,%2)) < €. Let y € (y1 — S,41 + 5) be

between y; and yp and = between x; and xp. By definition of 1, (z,y) ¢ A. But
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d((z1,11), (z,y)) < € so (z,y) ¢ B. Thus for each x between z; and xo, y ¢ f(x), a
contradiction.

(2 = 1) Choose x1,z2 € [0,1] and let y; € f(z1). Suppose x; < 2. Let C be a
component of G(f) NV, 2, containing (x1,4;). Choose y, such that (z2,1y2) € C. As
C is connected, my(C') is connected where 7y : [0,1]2> — [0, 1] is the projection map
given by mo(z,y) = y. Thus me(C) is an interval containing y; and y,. So for any y
between y; and y9, there is some x € [x7, x5 such that (z,y) € C, i.e. y € f(x). The

case where x1 > x5 follows by a similar argument. O]

Theorem 3.2.9 . Let f :[0,1] — 2[%3 be upper-semicontinuous function such that
G(f) is connected. If f(x) is connected for every x € [0,1], then f has the weak

intermediate value property.

Proof. Let 0 < a < b < 1. By Lemma 3.2.7, there is some component C' of G(f) N
Viap that intersects {a} x [0,1] and {b} x [0,1]. Since f(a) and f(b) are connected,
Cn({a} x[0,1]) = {a} x f(a) and C' N ({b} x[0,1]) = {b} x f(b). Let D be a
component of G(f) N Vi,y. Since G(f) is connected, either D N ({a} x [0,1]) # 0 or
D N ({b} x [0,1]) # 0. In either case, C' N D # (). Therefore D = C. Thus every
component of G(f) N Vi, intersects {a} x [0,1] and {b} x [0,1], and f has the weak

intermediate value property by Theorem 3.2.8. O]

Theorem 3.2.10 . Let f : [0,1] — 21 be upper-semicontinuous. Then the fol-

lowing are equivalent.

1. f has the intermediate value property.
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2. For all a < b, G(f) N Vjgy is connected and G(f) N Vigy = G(f) N Viap)-

Proof. (1 = 2) Suppose [ has the intermediate value property. In order to show
that for all @ < b G(f) N Vjay is connected, we first show that f(x) is connected for
each x € [0,1]. By way of contradiction, suppose there is an x; such that f(z;) is
disconnected. Let U; and U, be two intervals open in [0, 1] such that f(z;) C U; UUs,
fle)NUL #0, f(a1)NUy # 0 and U; NU, = 0.

Since f is upper-semicontinuous, there is an open set V' 3 z; such that if z € V|
then f(x) C Uy UUs. Let o € V \ {21} and choose y» € f(x2). Then yo € U; or
y2 € Uy. Without loss of generality, suppose yo € Us. Let y; € f(x1)NU;. Then there
is some y € [0, 1]\ (U; U Uy) strictly between y; and y,. Let 2 be between x; and 5.
Then since z € V| f(x) C Uy UU,. Soy ¢ f(z), contradicting the assumption that
f has the Intermediate Value Property. Thus f(x) is connected for all z € [0, 1].

Let K and K5 be components of G(f) N V.. Since f has the Intermediate Value
Property and therefore the weak intermediate value property, K7 N ({a} x [0,1]) #
f and Ky N ({a} x [0,1]) # 0@ by Theorem 3.2.8. But because f(a) is connected,
{a} x f(a) is connected and intersects both K; and K. So K; N Ky # () as K, and
K are components. Hence Ky = K, making G(f) N V], connected.

Next we show G(f) N Vg = m If f(a) is a singleton, then (a, f(a)) €
m as f is upper-semicontinuous. Similarly if f(b) is a singleton, then
(b, f(b)) € G(f)NViap). Suppose f(a) is nondegenerate. Let {(an,2,)}new be a

sequence in G(f) N Vigp) such that a, — a. Taking subsequences if necessary,
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we may choose the sequence such that {z,},c. converges to some z € f(a). So
(0,2) € TG Vi,

Lety € f(a)\{z} and let € > 0 such that |z—y| > €. Since 2, — z, thereis N € N
such that if n > N, then y is not between z,, and z. Let y. be strictly between y and z,
for all n > N such that |y —y.| < €. Since f has the Intermediate Value Property, for
each n > N there is some x,, € (a, a,) such that y. € f(a,). Then a, — a and (a,y.) €
m. By the same argument, for all 0 < § < € there is some ys such that
(a,y5) € G(f) N Viup). Since d((a,y), (a,ys)) = 0, (a,y) € G(f) N Vias). Therefore
{a} x f(a) € G(f) N Viap). By a similar argument, {b} x f(b) € G(f) N Viap). Thus
G(f) N Viap) = G(f) 0 Viay-

(2 = 1) The converse follows by contradiction. Suppose for all a < b, G(f) N Vg
is connected and G(f) N Viap) = G(f) N Viap), but f does not have the Intermediate
Value Property. Then there is some distinct xq, 22, y1 € f(z1), y2 € f(22), and y
strictly between y; and yo such that y ¢ f(z) for all x strictly between z; and .
There are four cases depending on which of z; and x5 is larger and which of y; and
Yo is larger. Suppose 1 < x5 and y; < y». The proofs for the remaining cases are

similar.

Since G(f) N Vigy2a] = G(f) N Vi a0), there are 21 < a' <V < 29, yor € f(d')
with y <y , and yy € f(b') with yy > y. So y is strictly between y, and y;, but

y ¢ f(x) for any = € [a’,0']. Thus G(f) N Vjg ) is disconnected, a contradiction. [
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3.8 Showing Connectedness of Generalized Inverse Limits with the Weak
Intermediate Value Property

Notation. Let i > 0, ¢ > 0, and A; = [a;,b;] be a subset of [0, 1] for each i. For

j € {i,i — 1}, define

J; =10, a;), R, = (K; x [0,1]) U Z,,
K; = (b, 1] TL,=T,UL,
Zi = Ay X Ay, TR; =T;UR;,
T, = ([0,1] x K1) U Z,, BL: = B;U L,
B; = ([0,1] x J;_1) U Z; BR; = B;UR;,

Zi(e) = ((a; — €,b; + €) X (ai_1 — €, b;_1 +¢€)) N ([0,1] x [0,1]).

Definition 3.3.1 . Suppose i > 0 and f : [0, 1] — 21 is upper-semicontinuous. If
for each j € {i,i — 1}, A; = [a;,b;] € [0, 1], either

e Se{BL,BR,TL, TR}, or

e A;n{0,1} =0 and S € {L;, R;}, or

o A1 N{0,1} =0 and S € {B,, T}},

and there exists € > 0 and a component C’ of the set G(f) N Z;(¢e) such that C" C S,
then any component C' of C" N Z; is an S-set in G(f) framed by A; x A;_1, denoted
G(f)Ce S.
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In the following definition, only condition (1) is used for the purpose of prov-
ing our main result. But for the sake of completeness and to properly introduce
Greenwood’s and Kennedy’s criterion for connected inverse limits of surjective upper-
semicontinuous functions on [0, 1] with connected graphs, we present the full definition

of a CC-sequence.

Definition 3.3.2 . Suppose for each i > 0, fiy1 : [0,1] — 2% is a surjective
upper-semicontinuous function with a connected graph, denoted G;.1, and m,n € N

are such that m + 1 < n. Suppose that there exist
e a closed interval A; C [0, 1] for each i, m <i <mn, and

e a point

(pk)kEw € @{[0, 1]>fz'} N (H[Ov 1] X H Az X H[07 1]) .

<m m<i<n i>n

For each i > 0, let C; be the component of G; N Z; containing (p;, p;—1) and suppose

the following properties hold:
L. Gm+1 [Cm+1 Rm-i—l or Gm—i—l [:Cm+1 Lm—i—l;

2. o if n = m + 2, then G2 Ce,rio Tnr2 if Grg1t Cepyy Lingr, and Grypo

ECerQ Bm+2 lf Gm+1 Ecm+1 Rm+1;

e if n > m 4+ 2, then G,,12 Cc

m—+42

BR, 42 or Gpie Co

m—+2

B,y if
Gm+1 [Cm+1 Rm_H, and Gm+2 Ecm+2 TLm+2 or Gm+2 Ecm+2 TRm+2 if

G(m+1 ECm+1 Lm+1;

32



3. ifm+2 <7 <n—1, then Gz‘+1 CCipq BL;; or Gii Ccin BR;.4, if G; Cc; BR;
or GZ ECi TRZ, and Gi+1 [CiJrl TLfL'Jrl or Gi+1 IZC%.Jrl TRiJrl if Gl [:CZ. BLZ or

Gi Co; TLZ';

4. if n >m+2, then G, C¢, B, it G,-1 Ce,_, BR,—10r G,,—1 C¢,_, TR,,—1, and

n—1

Gn Ce, Tn if Gn—l Ce, BLn_l or Gn—l Co, TLn_l.

Then {f; : i > 0} admits a component cropping sequence, or CC-sequence,

over [m,n| with pivot point (pg)ren. The collection {f; : i > 0} of functions admits
a CC-sequence if there exist m,n € N such that {f; : ¢ > 0} admits a CC-sequence

over [m,n] with some pivot point.

Theorem 3.3.3 . (Greenwood, Kennedy [25]) Suppose that for each ¢ > 0, I; is an
interval, f;;1 : I;;1 — 2% is a surjective upper-semicontinuous function, and G(f;1,) is
connected. The system admits a CC-sequence if and only if @{[i, fi} is disconnected.

We show that if all bonding functions have the weak intermediate value property,
then (1) from the above definition cannot be met, i.e. that the graph of such a
function contains no L-sets or R-sets. This along with Theorem 3.3.3 is sufficient to

establish the main result.

Theorem 3.3.4 . Let f :[0,1] — 21 be a function that is upper-semicontinuous
and has the weak intermediate value property, and suppose G(f) be connected. Then

G(f) contains no L-sets or R-sets.
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Proof. We show that G(f) contains no L-sets. That there are no R-sets follows by
a symmetric argument. By way of contradiction, suppose there are some A; = [a, b
and Ay = [c, d] such that A; x Ay frames an L-set of G(f). Let ¢ > 0 and C" C L be
a component of G(f) N Z(e) that contains an L-set C. Then C” and C' are connected
sets that do not intersect any of [a,b] x [0, ¢), [a,b] x (d,1], or (b,1] x [0,1]. Thus C
is a component of Vi, ;4. However by Theorem 3.2.8, C'N ({b+¢€} x [0,1]) # 0, a

contradiction. ]

Theorem 8.3.5 . For each n € N, let f, : [0,1] — 2% be a surjective, upper-
semicontinuous function with the weak intermediate value property and a connected

graph G(f,). Then 1&1{[0, 1], fn} is connected.

Proof. By Theorem 3.3.4, G(f) contains no L-sets or R-sets. Then condition (1) of
the definition of a CC-sequence cannot be met. It follows that the system does not

admit a CC-sequence, and therefore im{[0, 1], f} is connected by Theorem 3.3.3. [

Remark. Jonathan Medaugh has informed the author that Theorem 3.3.5 would hold
if f-1, rather than f,, were assumed to have the weak intermediate value property
for each n. One approach to the proof of such a result would involve finite Mahavier
products T',,(f) and the fact that I',,(f) and G,,(f~!) are homeomorphic where f~1 =
{7 }ien [18, Theorem 2.11].

We now establish a structure theorem regarding the graphs of functions with
the weak intermediate value property. Theorem 3.3.8 reveals a kinship with Nall’s

theorem (Theorem 2.4.5). In particular, it shows that upper-semicontinuous functions
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with the weak intermediate value property are precisely those that satisfy Nall’s
criteria. Thus Theorems 3.3.5 and 3.3.8 provide a generalization of Nall’s Theorem,
which is stated and proved in the context of a single bonding function.

Before examining the structure of upper-semicontinuous functions with the weak
intermediate value property as unions of their subgraphs, we must introduce the
notion of convergence in the hyperspace 2% with the Hausdorff topology, i.e. what it
means for a sequence of subsets of a metric space to converge. The following definition

and theorem can be found in [36].

Definition 3.3.6 . Let X be a space and {A;}ic,, be a sequence of subsets of X.

We define lim A; and lim A; as follows:

lim A; = {z € X : for every open set U > x, U N A; # () for infinitely many i},

lim A; = {x € X : for every open set U > z, U N A; # () for cofinitely many i}.

Theorem 3.3.7 . If X is a compact metric space and if {F;};c, is a sequence of

connected subsets of X such that lim E; # ), then lim E; is connected.

Theorem 3.3.8 . Let f :[0,1] — 2% be an upper-semicontinuous function such
that G(f) is connected. Then f has the weak intermediate value property if and only

if there is a collection F of upper-semicontinuous functions ¢ : [0, 1] — C([0, 1]) such

that G(f) = U,er G(9)-
Proof. (<) Suppose there is a collection F of upper-semicontinuous functions g :
0,1} — €([0,1]) such that G(f) =, G(g)- Let (z1,y1) € G(f) and x5 € [0,1] be
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distinct from z;. There is some g € F such that (z1,y;) € G(g). By Theorem 3.2.9,
g has the weak intermediate value property. Then there is some y, such that if y is
between y; and ys, there is some x between x; and x5 such that y € g(z) C f(x).
Thus f has the weak intermediate value property.

(=) It suffices to show that for each (z,y) € G(f), there is an upper-
semicontinuous function ¢ : [0,1] — C([0, 1]) such that (z,y) € G(g9) € G(f). To
that end, suppose (z,y) € G(f). For each n € N, define G, to be the collection of set-
valued functions g, that satisfy the following: let 0 < i < 2™ such that 2% <z< Z;—nl

and C,,; be the component of G(f) N V[L 1) containing (x,y). By Theorem 3.2.8,
2”7 2n

ChriN ({’;—nl x [0, 1]) # (). Choose a component C, ;.1 of G(f) N V[% 2] such

Y

that Cn,i N Cn,i+1 7é @ Then by Theorem 328, Cn,i—l—l N ({l;_—,? X [071]) 7é Q)
Continuing inductively, for each ¢ < j < 2", we may choose a component C), ; of

G(f)n V[ 1] such that C,,;_1 N C,; # 0 and C, ; N ({]2%1 x [0, 1]) # (. By a

J_
2”7 271

similar argument, for 0 < j < i, we may choose a component C,, ; of G(f) N V[L =
277, b 271

such that C,, ; N Cy, 41 # 0 and C,,; N ({Qj—n} x [0, 1]) # (0. So for 0 < j < 2™ there

are components C,; of G(f) N V[ 1] such that C,; N C,x # 0 if and only if

J_
27’L7 27L

j — k| < 1. Define G(g,) = U

i<on Cnj. Then g, is upper-semicontinuous and has a

connected graph. Since for any ¢ < 2" and component C,,; of G(f) N V[ i there
omn

2m

is some g, € G, with Cy.; € G(gn), Uy, g, G(9n) = G(f).

Let {G(gn)}nen be a sequence of subcontinua of G(f) where g, € G, for each
n. Since 2% is compact, there is a convergent subsequence {G(gn,)}xen such that
lim G(gy,,) is a subcontinuum of G(f). Define g by G(g) = lim G(g,, ). Then g is

upper-semicontinuous and has a connected graph. Furthermore (z,y) € G(g), as
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(z,y) € G(gn,) for every k. Since ({0} X g, (0)) € 20U for each k, there is a
convergent subsequence of {{0} x {gn, (0)}}. Then lim ({0} x g, (0)) is a nonempty
subset of lim G(g,,) = limG(g,,) = G(g). Thus ¢g(0) # (. Similarly g(1) # 0. As
G(g) is connected, g is a upper-semicontinuous function on [0, 1]. Let F consist of all
such functions g for any (z,y) € G(f) and any sequence {G(¢,)}neny Where g, € G,
for each n.

In order to show g(x) is connected for each x € [0, 1], let (z,y), (x,y) € G(ga)-
Then for each k there are points (Ty,, Yn, ), (Th, Yn,) € G(gn,) such that (z,,,yn,) —
(z,y) and (7, .y, ) — (z,y'). Let iy, and j,, be the largest and smallest inte-

3 / ink jnk ink jnk
gers respectively such that z,,,z; € [sz’ ﬁ} Note that 7, 555 — & because

/

Tny,s Ty,

— x. By the construction of the g, s, An, = G(gn,) N V[Z%%] is a sub-
continuum containing (y,, ¥, ) and (z;, , ¥, ). So (z,y), (x,y') € lim A,,. Then by
Theorem 3.3.7, lim A, is a connected subset of lim G(g,,) = G(g) containing (z, )
and (x,y’). Since ;"T’Z, ;"Ti — z, limA,, € ({z} x f(z)). As y and ¢/ are arbitrary
elements of g(z), g(x) is connected. Note that by Theorem 3.2.9, g has the weak
intermediate value property.

Next we show that G(f) = [Juen G(g). That [J,cp G(g9a) € G(f) follows from the
fact that G(go) € G(f) for each a. To show G(f) C Uuer G(9a), let (z,y) € G(f).
Then for each n € N, there is a upper-semicontinuous function g, € G, such that

(z,y) € G(gn). Then there is a convergent subsequence {G(g,,)}. Let g, € F be

such that G(g,) = lim G(gn,). Then (x,y) € G(ga)- O
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3.4 FExamples
The first three examples demonstrate that Theorem 3.3.5 is sharp in that the
conditions on the bonding functions cannot be dropped. Example 3.4.4 demonstrates
that the inverse limit may be connected even if the bonding functions do not have

the weak intermediate value property.

Ezample 3.4.1 (Nall). Let f:[0,1] — 2/%U be given by

1 1

{%a:,Qa:—l} <zx<l

1
2

Then f is an upper-semicontinuous surjective function such that G(f) is connected
that does not have the weak intermediate value property. Nall shows in [10] that
G(f?) has an isolated point at (1,0), so l’&l{[(), 1], f} is not connected. Notice that
f satisfies the weak intermediate value property in the case of xo > x;. However,
the definition of the weak intermediate value property does not allow us to restrict
ourselves to considering only the case where xo > x1. For example, let (x1,y;) = (%, 0)
and z = 1. Since f (3) = {3}, y2 must be &. But 5; ¢ f(z) for any = € [1,1]. So

f does not have the weak intermediate value property.

Ezample 3.4.2 . The function f : [0,1] — 2% given by f(z) = %x, %x + %} is an
upper-semicontinuous function that is surjective and satisfies the weak intermediate

value property. But G(f) is not connected, therefore 1@{[0, 1], f} is not connected.
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1 (1,1) 1 (1,1)

(1,1/2) (1,1/2)

(1,1/4)

0 0 e (1,0)
0 (1/2,0) 1 0 (1/2,0)(3/4,0) 1

Figure 3.4: G(f) (left) and G(f?) (right) from Example 3.4.1

1 1,1

(1,2/3)

(0,1/3)

()
=

Figure 3.5: G(f) from Example 3.4.2

T +

Ezample 3.4.3 . The function f : [0,1] — 200U given by f(z) = {1,

W[

}

is upper-semicontinuous, satisfies the weak intermediate value property, and has a

=

connected graph. But f is not surjective. Specifically if y € [0, %), there is no x with

y € f(x). Thus @1{[0, 1, f} = 1&1 { [}l, 1} ’f‘[ivl]} which is not connected.

Ezample 3.4.4 . (Ingram) Let f : [0,1] — 2% be given by

{0,2} 0<z<:
fle)=1q 0 l<z<i
0, 1] r=1
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1 1, 1) 1 (1,1)

(1/4,7/16)

(0.1/4) (1,1/4) (1/4,1/4) (1,1/4)

Figure 3.6: G(f) (left) and G <f|[%1]) (right) for Example 3.4.3

Then f does not have the weak intermediate value property but im{[0, 1], f} is con-
nected. If (z1,41) = (1,3) and 25 = 1, then yo = 0. But £ ¢ f(x) for any z € [§, 3].

Ingram gives a proof that @n{[O, 1], f} is connected, which can be found in Example

2.9 pg. 24 of [29].

1 e (LD

/ (1/4,1/4)
0

0 1

Figure 3.7: G(f) for Example 3.4.4
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CHAPTER FOUR
Connecting the Dynamics of the Bonding Function with the Structure of the Inverse
Limit

Now that we have proven this class of bonding functions may be used to construct
connected inverse limits, it is natural to further study the properties of their inverse
limits. In this chapter, we explore the relationship between the topological structure of
an inverse limit generated by a single bonding function on [0, 1] with the intermediate
value property and the dynamics of the shift map on the inverse limit. Barge and
Martin examined the relationship between the dynamics of a continuous function
f :[0,1] — [0,1] and the dynamics of the shift map on the corresponding inverse
limit [6, 7]. They also examined the relationship between the dynamics of f and the
topological structure of the corresponding inverse limit [5], [8] . Two of their results

are of primary concern:

Theorem 4.0.1 . [5, Theorem 1] If f has a periodic point whose period is not a
power of two, then the inverse limit has an indecomposable subcontinuum that is

invariant under the shift.

Theorem 4.0.2 . [5, Theorem 7] If f is organic and the inverse limit is indecom-
posable, then f has a periodic cycle whose period is not a power of two.

A particular area of interest in the study of generalized inverse limits has been to
identify and analyze circumstances that give rise to indecomposable subcontinua in

the inverse limit. Ingram, James P. Kelly, Jonathan Meddaugh, and Scott Varagona
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have all written on the subject, using the full-projection property as a crucial tool to
demonstrate indecomposability [29], [33], [34], [47].

In Section 4.1, we establish the full-projection property for inverse limits of sur-
jective, light, almost nonfissile, upper-semicontinuous functions with the intermediate
value property (Theorem 4.1.12) and for all subcontinua whose projections are nonde-
generate (Theorem 4.1.13). A key aspect of that role is to establish the full-projection
property. The main result, stated here, follows from Theorems 4.2.3 and 4.2.8.

Then in Section 4.2, we generalize Theorems 4.0.1 and 4.0.2 as Theorems 4.2.3
and 4.2.8 respectively, in which the existence of periodic cycles with period not a
power of two in the bonding function gives rise to indecomposability in the inverse

limit and vice versa, respectively.

4.1 Full-Projection Property

In this section we consider the full-projection property for inverse limits of upper-
semicontinuous functions with the intermediate value property. It is shown elsewhere
[44] that an inverse limit with upper-semicontinuous bonding functions has the full-
projection property if and only if its nonfissile points constitute a dense Gy subset of
the inverse limit. In light of this, it is reasonable to wonder whether an equivalent or
even sufficient condition might be to require that the bonding functions of the inverse
limit be almost nonfissile. Alone, almost nonfissile does not suffice; in tandem with
surjectivity, lightness, and the intermediate value property, it does. Theorem 4.1.12
establishes this, and Theorem 4.1.13 provides a generalization, that any subcontin-

uum with nondegenerate projections in all coordinates may also be written as an
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inverse limit with the full-projection property by restricting the bonding functions
appropriately. These are the main results of Section 4.1.2

In Section 4.1.1, we present results intended to provide intuition regarding the
structure of almost nonfissile functions and their graphs. In Proposition 4.1.4, it is
shown that an upper-semicontinuous interval function is almost nonfissile if and only
if it is irreducible with respect to domain. B.R. Williams [49] defined “irreducible
with respect to domain” to study the full-projection property. Iztok Banic¢, Matevz
Crepnjak, Matej Merhar, and Uros Milutinovié [4] studied the property further and

introduced variations to Williams’s definition.

4.1.1 Equivalence of Almost Nonfissile to Irreducibility with Respect to Domain

Definition 4.1.1 . Let X and Y be metric spaces and f : X — 2¥. A point v € X
is a fissile point of f if |f(x)| > 1 and a nonfissile point otherwise, i.e. f(z) = {y}.

A point (z,y) € G(f) is a fissile point of G(f) if = is a fissile point of f and a
nonfissile point of G(f) otherwise.

The function f is almost nonfissile if the set of nonfissile points of G(f) is a dense
Gy subset of G(f).

Let {X;, f;} be an inverse sequence. A point (zg, 1, %2, ...) € @{Xi, fi}is a fissile
point of @{Xi, fi} if @; is a fissile point of f; for some ¢ and a nonfissile point of
@{Xi, fi} otherwise.

The requirement that a function f : X — 2¥ be almost nonfissile is not equivalent
to the requirement that the set of nonfissile points of f be a dense G5 subset of X.

For example, consider the function f : [0, 1] — 2[%U defined by f(z) = 0 if x # 1 and
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f(1) = [0,1]. The set of nonfissile points of f is the interval [0,1) which is a dense
Gy subset of [0, 1], but the set of nonfissile points of G(f) is [0,1) x {0} which is not
dense in G(f).

However, it is true that if f is almost nonfissile, then the set of nonfissile points
of f is a dense G set in X. It is straight forward to show density, and it is shown in
Lemma 4.1.2 that the set of nonfissile points of f is a G set.

The set of fissile points of f : X — 2Y, the set of fissile points of G(f), and the
set of fissile points of an inverse limit are all F,, sets. The first and last of these is

proved in [44]. The first is also a consequence of Lemma 4.1.2.

Lemma 4.1.2 . Let f :[0,1] — 2001 be an upper-semicontinuous function. Then
the set of nonfissile points of f is a Gs subset of [0,1]. If int G(f) = 0, then it is a

dense Gy subset of [0, 1].

Proof. Define A = {x € [0,1] : |f(x)| > 1}, and, for each n € N, define

b

As f is upper-semicontinuous, D,, is closed for each n. Note that A = |

D, = {x € [0,1] : diam f(x) >

S|

nen Dn;
making A an F, set. It follows that the set of nonfissile points of f is a Gy set.

We prove the second statement by contraposition. To that end, suppose the set of
nonfissile points of f is not dense or, equivlaently, that A is nonmeager. Then there

is some fixed n such that D,, is not nowhere dense, i.e. int D,, # (). So there is some

nondegenerate interval [a,b] C D,
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Let € = inf,eppdiam f(z) > L. Then for any n > 0, there exists z € [a,b]

such that ¢ < diam f(z) < €+ 7. In particular, for n = £, there is a z € [a, b
such that diam f(z) < %. We assume the case z € [a,b), as the argument for
z = b follows a similar argument. Let ¢ = min f(z) and d = max f(z). Since

f is upper-semicontinuous, there is some 6 > 0 such that if x € (z,z + 9), then
Let * € (2,24 6). As diam f(z) > ¢ f(z) C (¢c—§d+§), and
diam (C—§7d+§) < %, f(z) 2 [c+§1,d—§l], an interval with nonempty

interior. As x was arbitrary, the set
U={(z,y):z2<z<z+dandye (c+<,d—%)}

is an open subset of G(f), so G(f) has nonempty interior. Therefore, by contraposi-
tion, if int G(f) = ), then A is meager. So the set of points in [0,1] on which f is

single-valued is a dense Gj. O

Definition 4.1.3 . A function f : [0, 1] — 2[% is irreducible with respect to domain
if no closed subgraph of G(f) has full domain, that is, m[H] # [0, 1] for every closed

set H C G(f).

Proposition 4.1.4 . Let f :[0,1] — 2001 he an upper-semicontinuous function.

Then f is almost nonfissile if and only if f is irreducible with respect to domain.

Proof. First note that if int G(f) # ), then f is neither almost nonfissile nor irre-
ducible with respect to domain. Suppose int G(f) = (. Let Fi(f) be the set of fissile

points of G(f) and A = G(f) \ Fi(f), i.e. the set of nonfissile points of G(f). By
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Lemma 4.1.2, 71 [A] is a dense G5 subset of [0, 1]. Then A is a closed subgraph of G(f)
with full domain. So if f is irreducible with respect to domain, A = G(f), making
f almost nonfissile. Conversely, if f is almost nonfissile, then as A is composed of
nonfissile points, any closed subgraph with full domain must contain A and hence
contains A. Thus if f is almost nonfissile and H is a closed subgraph of G(f) with

full domain, H O A = G(f), making f irreducible with respect to domain. O

4.1.2 The Full-projection Property in Inverse Limits of maps with the Intermediate
Value Property

Theorem 4.1.5 . (Ryden, [44]) Suppose {X,, f.} is an inverse sequence and X =

@{Xn, fn}. Then X has the full-projection property if and only if the set of fissile

points of X is a meager F), set.

Lemma 4.1.6 . Suppose f : [0,1] — 2% is a surjective, almost nonfissile, upper-
semicontinuous map with the intermediate value property. If f(x) is nondegenerate
for some interior point x of [0, 1], then there are sequences Ly, Lo, ..., and Ry, Ry,

... of nondegenerate closed subintervals of [0, 1] such that

1. z<zforall z€|JL, and z > z for all z € | R,,
2. lim L,, = {z} and lim R,, = {x},
3. lim f[L,] = f(z) and lim f[R,] = f(z).

Proof. We construct the sequence Ly, Lo,...only and note that the construction of Ry,
Rs,...is similar. Let a and b denote the points such that f(x) = [a,b]. Since upper-
semicontinuous maps with the intermediate value property are weakly continuous
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by Theorem 3.2.6, there are sequences oy, ao,...; B1, Bay...; a1, ag,...; and by, b,

...such that each of the following is true:
e a, € f(ay) for all n,
e b, € f(B,) for all n,
e {a,} and {5,} converge to x from the left,
e {a,} and {b,} converge to a and b respectively.

Furthermore, since f is almost nonfissile, the sequences may be chosen so that f(«,) =
{a,} and f(B,) = {b,}. It follows that, for sufficiently large n, a,, and b,, are distinct.
Finally, taking subsequences if necessary, the sequences may be chosen so that a, <
“TH’ < b, for each n € N and «,, 8,, < a1, By for each n € N.

Since a,, # b, for each n € N, it follows that «, # [, for each n € N. For
each n € N, define L, to be the nondegenerate closed interval with endpoints «,,
and B,. Then L, Lo,...satisfies (1) and (2). To see that it satisfies (3), note that
lim inf f[L,] contains both a and b, and hence f(z), since a,, — a and b, — b as
n — oo. On the other hand, lim sup f[L,] C f(x) since the graph of f is closed.

Hence lim f[L,| = f(z), and {L,} satisfies (3). O

Lemma 4.1.7 . Suppose f : [0,1] — 20U is an almost nonfissile upper-
semicontinuous function with the intermediate value property. If y € f(z), and D,
and D, are open sets such that y € D, and z € D,, then there is an open subset D

of D, such that f[D] C D,.

47



Proof. Since f is weakly continuous from both the left and the right by Theorem
3.2.6, there is a point x; € D, such that f(z;) intersects D,. Since f is almost
nonfissile, there is a nonfissile point zo € D,, i.e. that f(z2) = {y.} € D,. Put
D ={z€[0,1] : f(z) C Dy} N D,. Then D is a nonempty open subset of D, that

contains x,. Furthermore, f[D] C D,. O

Lemma 4.1.8 . Suppose f : [0,1] — 2[%1 is a light, almost nonfissile, upper-
semicontinuous map with the intermediate value property. If G is a Gy subset of
D for some open subset D of [0,1] then {x € [0,1] : f(z) C G} is a Gs subset of
[0,1]. Furthermore, if G is dense in D, then {z € [0,1] : f(z) € G} is dense in

{z€[0,1 : f(zx) C D}.

Proof. There are open sets G, Ga, ...such that (|G, = G. Since f is upper-
semicontinuous, {z € [0,1] : f(z) C G,} is open in [0,1]. Note that ({z € [0,1] :
flx) CGp} ={z €[0,1] : f(z) CNGn} ={z €0,1] : f(x) C G}. It follows that
{z €10,1] : f(z) C G} is a Gy set.

Suppose further that G is dense in some open set D. Replacing G,, with G,, N D
for each n € N if necessary, the open sets GG,, may be taken to be open subsets of D
for which (G,, = G. Note that G,, is dense in D for each n € N. Suppose U is an
open interval in {z € [0,1] : f(z) C D}. Since f is light and has the intermediate
value property, f[U] is a nondegenerate interval in D. Then int f[U] contains a point
of G,. It follows that there is a point v of U and a point w of int f[U]NG,, such that
w € f(u). Since f is almost nonfissile, u and w may be chosen so that f(u) = {w}.

It follows that G,, contains f(u) and U contains a point of {z € [0,1] : f(z) C G,}.
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Hence {x € [0,1] : f(xz) C G,} is a dense open subset of {z € [0,1] : f(zx) C D}.
As this is true for each n € N, {z € [0,1] : f(z) C G} is a dense G4 subset of

{z €10,1]: f(z) C D}. O

Definition 4.1.9 . A function f : X — 2Y is light if for every y € [0, 1], the set

{z €1]0,1] : y € f(x)} has no interior.

Lemma 4.1.10 . Suppose f : [0,1] — 2% is a surjective, light, almost nonfissile,

upper-semicontinuous map with the intermediate value property. If y € f(x) and D,

is an open set such that y € D, N (—o0,y) N D, N (y,00), then there is an open set

D, such that z € D, N (—o0,z) N D, N (z,00) and such that f[D,] C D,.

Proof. First suppose f(z) is nondegenerate. Then, by the Lemma 4.1.6, there are
sequences L, Lo,...and Ry, Rs,...of nondegenerate closed subintervals of [0, 1] such

that
1. z<zforall ze€|JL,, and z > x for all z € | R,
2. lim L, = {z}, and lim R,, = {z}, and
3. lim f[L,] = f(x) and lim f[R,] = f(z).

Since f(z) is a nondegenerate interval containing y, at least one of f(z) N (—o0,y)
and f(z)N(y,o0) is a nondegenerate interval with one endpoint equal to y, say f(x)N
(y,00). Since y € W, every open interval whose left endpoint is y contains a
point of D, N (y,00). It follows that int f(z) N (y, 00) contains a point of D, N (y, 00).

Hence intf(z) N D, N (y,00) contains an open interval (yi,y2); furthermore, y; and
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y2 may be chosen so that neither of them is an endpoint of f(z). Since f[L,]| and
f[R,] are connected for each n € N by dint of the intermediate value property and
since lim f[L,] = lim f[R,] = f(z), it follows that there is N € N such that f[L,,]
and f[R,] both contain (yi,ys) for each n > N. Hence, for each n > N, some point
of L, has an image that intersects (y;,y2). As f is weakly continuous from both the
left and the right by Theorem 3.2.6, there are, for each n > N, points [,, € int L,
and [, € (y1,y2) such that L, € f (I,). Furthermore, since f is almost nonfissile, [,
and [,, may be chosen so that [, is a nonfissile point of f. Then (y1,y2) is an open
set containing f(l,,). Hence {z € [0,1] : f(z) C (y1,¥2)} is an open set containing ,,.
For each n > N, put U,, = int L, N {x € [0,1] : f(x) C (y1,y2)}. Then U, C L,, and
flU.] C (y1,y2) C D,. Similarly, for n > N, there are open sets V,, C R, such that

fIVa] € Dy. Finally, put D, = (U,>n Un) U(U,>ny Vo). Note that f[D,] C D,. Thus

it remains only to show that x € D, N (—oo,z) N D, N (z, 00).
To that end note that, by (1) and the fact that U,, C L,, and V,, C R, for each n >

N, we have D, N(—00,7) = J,>n Un and D, N(x,00) = J,,5 5 Va- It follows from (2)

that x € m and z € m Consequently, z € D, N (—oo,z)ND, N (x,00).

Now suppose f(x) is degenerate, that is, suppose f(x) = {y}. Suppose
n € N is given, and consider the interval (x,a:‘ + %) Since f is light and upper-
semicontinuous, f (m,x + %) is a nondegenerate interval. Since the graph of f is

closed, y € f (as,x—l— %) Since f (ZL‘,[E+ %) is an interval, this is equivalent to

y € int f (x,x + %) It follows that int f (a:, x+ %) N D, is nonempty. By Lemma
4.1.7, there is an open subset V,, of (z,z + %) such that f[V,] C D,. Similarly,
there is an open subset U, of (w — %,ac) such that f[U,] € D,. Thus U, and V,
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are defined for n € N. Put D, = (U,en Un) U (Upen Vo). Then f[D,] € D, and

T € (Upen Un) N (Upen Vo) = Dz N (=00, 2) N Dy N (2, 00). O

Lemma 4.1.11 . Suppose {[0,1], f,} is an inverse sequence where, for each n €
N, f, is a surjective almost nonfissile, light, upper-semicontinuous map with the
intermediate value property. For each N € N, if z € @{[0, 1], fn} and Uy, Uy, ...,
Uy are open sets containing g, x1, ..., £y respectively, then there are open subsets

Dqy, Dy, ..., Dy of Uy, Uy, ..., Uy respectively such that

1. z, € D,N(—00,z,) N D, N (x,,00) forn=0,1,..., N,
2. fulDn] € Dpq forn=1,2,... N, and

3. 2, [N_1(zn), ..., [N (2zn) are nonfissile points of fy, fy_1, ..., f1 respectively

for all z in some comeager subset of Dy.

Proof. The proof is by induction. First consider N = 1. Suppose = € 1‘&1{[0, 1], fu}s
and suppose Uy and U, are open sets containing xy and x, respectively. Put Dy = Uj.

Note that D, satisfies the requirement in (1). By the Lemma 4.1.10, there is an

open set D; such that z; € Dy N (—o0, 1) N Dy N (x1,00) and f[f)l] C Dy. Put
Dy = U, N Dy. Then Dy and D satisfy (1) and (2). The set of nonfissile points of f;
is a G5 subset of [0, 1] by Lemma 4.1.2 and dense in [0, 1] since f; is almost nonfissile.
Since D7 is open, the set of nonfissile points of f; that lie in D; is a comeager subset
of Dy. Hence (3) holds, and the result is true for N = 1.

Suppose that the result is true for N = k for some k£ > 1, and consider n = k + 1.

Suppose x € @{[O, 1], fn}, and suppose Uy, Uy, ..., Uxy1 are open sets containing
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X1, T, ..., Ty respectively. Since the result holds for N = k, there are open subsets

Dy, Dy, ..., Dy of Uy, Uy, ..., Uy that satisfy (1), (2), and (3). By Lemma 4.1.10,

there is an open set Dy such that x;,1 € Dy N (=00, k1) N Diy1 N (g1, 00)
and fr41[Dgy1] C Dg. Replacing Dy with Dy q N Uy if necessary, we may assume
Dgi1 C Ugyq. Note that Dyyq satisfies (1) and (2). Thus it remains to show that
Dy satisfies (3).

For each n € N, denote the set of fissile points of f, by Fi(f,). By
Lemma 4.1.2, Fi(f,) is an F, set for each n = 1,2,...,k + 1. Since fk*!
is upper-semicontinuous for each n, (f*1)7"}(Fi(f,)) is an F, set for each

n=1,2,....,k + 1. Hence U} (f¥1)"1(Fi(f,)) is an F, set. BEquivalently, {z €

n

Dii1 ¢ 2, fFT(2),. .., fF*1(2) are nonfissile points of fi, fi_1, ..., f1 respectively}

is a Gy set. Denote it by A, and note that A N Dy, is a Gs subset of Dy, 1. To
see that A N Dy, is dense in Dy 1, suppose D is an open interval in Dy,;. Since
fra1 is light and has the intermediate value property, fri1[D] is a nondegenerate
interval in Dj. Since Dy satisfies (3), {z € Dy : 2, fF (2),..., fF(2) are non-
fissile points of fx, fr_1, ..., f1 respectively} is a dense G5 set in Dy. Denote
this set by G. Then, by Lemma 4.1.8, {z € [0,1] : fry1(z) C G} is a dense Gy
set in {z € [0,1] : fry1(x) C Dg}. Since Diyy C {z € [0,1] : fry1(x) C Dy},
it follows that D,y N {x € [0,1] : firi(z) C G} is a dense Gs subset of
Dpyq.  The set of nonfissile points of fr.; in Dgyy is also a dense Gy sub-
set of Dyy1 by Lemma 4.1.2 and the fact that fr,; is almost nonfissile. Put
A = ([0,1] = Fi(fxs+1)) N Dy N{z € [0,1] : fry1(x) € G}. Then A is a dense G
subset of Dy, and, for each z € A, z, fi*!'(2), £l (2), ..., ff™(2) are nonfissile
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points of fri1, fx, ..., fi respectively. Hence Dy, satisfies (3), and the inductive

step is complete. O

Theorem 4.1.12 . Suppose {[0, 1], f, } is an inverse sequence where, for each n € N,
fn :0,1] — 2% is a surjective, light, almost nonfissile, upper-semicontinuous map
with the intermediate value property. Then @{[O, 1], fn} has the full-projection

property.

Proof. Denote @{[O, 1], fn} by X. By Theorem 4.1.5, it suffices to show that the set
of nonfissile points of X is dense in X. For each n € N, denote {x € X : |f,(x,)| =
1} by ~ Fi,(X), and note that the set of nonfissile points of X is ~ Fi;(X)N ~
Fia(X)N ~ Fiz(X) N .... Since ~ Fi,,(X) is a G5 subset of X for each n, it suffices to
show that ~ Fi; (X)N ~ Fig(X) NN ~ Fi,(X) is dense in X for each n > 1.

To that end, suppose n is given and D is a nonempty basic open set in X. Then
D has the form D = Dy x Dy X -+- x D,, x [0,1] x [0,1] x ... where D; is an open
subset of [0, 1] fori =1,2,...,m, and where m > n. We must show that D contains a
point of ~ Fi; (X)N ~ Fia(X) N---N ~ Fi,(X), to which end it suffices to show that
D contains a point of ~ Fi; (X)N ~ Fiy(X) N---N ~ Fi,,(X). This is a consequence

of Lemma 4.1.11. ]

Theorem 4.1.13 . Suppose {0, 1], f,} is an inverse sequence where, for each n € w,
fn :0,1] — 2001 is a surjective, light, almost nonfissile, upper-semicontinuous map

with the intermediate value property. Let K be a subcontinuum of @n{[(), 1], f} such
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that 7, [K] is nondegenerate for each n. Then K can be written as the inverse limit

of its projections and has the full-projection property.

Proof. Foreachn € w, let K,, = m,[K]. Then f,, maps m,1[K] onto m,[K]. Denote by

mn K]

f! the restriction of f,, fn‘wnH[K]

: i1 [K] — 2™ Note f! inherits the properties
of f, given in the hypothesis.

Define K" = lim{m,[K], f;}. Then K’ is a subcontinuum of Im{[0, 1], f} by
Theorem 3.3.5 and has the full-projection property by Theorem 4.1.12.

To show K' = K, let + € K. Then for all n, m,(z) € m,(K) and m,(x) €
f(mpy1(2)) for all n. So m,(z) € f(mpi1(2)), i.e. © € K'. Therefore K C K'. But

7o (K) = m,(K') for all n. Then as K’ has the full-projection property, K' = K. [

4.2 Relationship Between Periodicity and Indecomposability

We now turn to the connection between periodicity in an upper-semicontinuous
function f : [0,1] — 2% with the intermediate value property and indecompos-
ability in the corresponding inverse limit. In particular, we generalize a connection
established in the classical setting by Barge and Martin [5, Theorems 1 & 7.

In Section 4.2.1, we examine how a periodic cycle of f with period not a power of
two gives rise to an indecomposable subcontinuum of the inverse limit. The primary
result is Theorem 4.2.3. The proof leans heavily on the intermediate value property,
appealing to both the Sharkovskii order and the full-projection property, each of
which holds in a context involving the intermediate value property (Theorems 4.1.12

and 2.5.3).
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We then explore a pseudo converse in Section 4.2.2, that is, how the indecom-
posability of @{[O, 1], f} gives rise to a periodic cycle of f with period not a power
of two. This subsection focuses on organic maps and has Theorem 4.2.8 as its main

result.

4.2.1 Periodicity Giving Rise to Indecomposability

Lemma 4.2.1 . Let f : [0,1] — 20U be upper-semicontinuous, surjective, and
almost nonfissile and G(f) be connected and have empty interior. If there is some
y € [0,1] and a nondegenerate interval I C [0, 1] such that y € f(x) for every z € I,

then f is constant and single valued on I and f[I] = {y}.

Proof. Let © € I and y' € f(x). Then either z > inf I or < sup . The two cases
proceed similarly, so we shall prove the result for z > inf I. As f is weakly continuous,
there is a sequence {(x,, yn)}new in G(f) converging to (z,y’) such that z,, € I and
x, < z. Since f is almost nonfissile, we may choose each (x,,y,) so that z, is a
nonfissile point of f. Thus f(x,) = {y,} for all n. But y € f(z,), so y, =y for all n.

As y, — ¢/, this implies ¥/ = y. As x and y' were arbitrary, f[I] = {y}. O

Theorem 4.2.2 . Let f:[0,1] — 2[%1 be upper-semicontinuous, surjective, almost
nonfissile, light, and have the intermediate value property, and G(f) have empty
interior. If f has an orbit of period not a power of 2, then @{[0, 1], f} contains an
indecomposable subcontinuum.

A natural question arising from this theorem is whether it is necessary to assume f

is almost nonfissile and light in order to guarantee the inverse limit contains an inde-
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composable subcontinuum. In Chapter Five, we construct an upper-semicontinuous,
surjective function f with the intermediate value property that is not almost nonfissile
and has a hereditarily decomposable inverse limit even though it has periodic points
of all periods. Thus the additional assumption that f is almost nonfissile cannot be

dropped from Theorem 4.2.2.

Proof. Suppose f has an orbit of period n - 2¥. By the Theorem 2.5.3, there is a
periodic orbit of f with period 3 - 281, Let x € 1'@{[0, 1], f} be the point that
models this orbit. Then (Zg.ort1_1,...,21,20) is a cycle f of period 3 - 2F1. Let
h : im{[0, 1], f} — Lm{[0, 1], f} be the forgetful shift. Then z has a period 3 orbit
under 22", namely (x, h2 " (2), h2k+2(x)>. To show this, suppose to the contrary
that  does not have a period 3 orbit. By the construction of z, h3'2k+1(x) = x. So
either B2 (2) = 2 or B2 (2) = 2. If K2 (2) = =, then for all n, 2, oe+1 = T,
contradicting the fact (g, x1, ..., Z39x+1_1) is an orbit of period 3281, By a similar
argument, R () # . Thus x has an orbit of period 3 under R

Let S be a subcontinuum of im{[0, 1], f} that is irreducible about «, h2"" (z), and
h2k+2(x). By Theorem 4.1.13, there are restrictions f;, of f such that each f) inherits
the properties of f listed in the hypothesis, S = @{WH(S), fl}, and S has the full-
projection property. We show that S is indecomposable by showing it is irreducible
about any two points of 2, A2 (z), and 12" (z).

By way of contradiction, suppose S is not irreducible between two points of

{o, 2" (x), h¥ " (2)}, say = and h2""'(2). Then there is a proper subcontinuum

56



H C S containing x and h?"" (). So h*""’(z) ¢ H as S is irreducible about z,
h2 (2), and B2 (2).

Since (Tg.9c11_1,...,71,79) is a cycle f of period 3 - 281 there is some
i€ {0,1,...,251 — 1} such that for all n € N, maponr14:(2) # Taporrrpi(B2 (2)).
As 2" permutes z, K2 (z), and h2"" (), there is some j € {0, 1,2} such that for all
n € N, Tignypyaetis (B2 (2)) is between (g, o1 s(2) and mg, i joe (R (2)).
Furthermore, 7T(3n+j)2k+1+i(h2k+2 (z)) is distinct from at least one of (g, j)or+144(7)
or 7T(3n+j)2k+l+i(h2k+l($)). SO T(3p4j)2k+14:[H] is nondegenerate for each n, and
7T(3n+j)2k+l+i(h2k+2($)) € T(gnijy2r+iai [ H]. As f is weakly continuous and almost
nonfissile, there is a sequence of nonfissile points {(zx, yx) }ren of G(f) such that

T € T(3ppg)2e+144[H] and
(ks Yr) — (7T(3n+j)2k+1+i(h2k+2 (z)), 7T(3n+j)2k+1+i—1(h2k+2(fﬂ)))-

Since f(zx) = {m}, v € Tanpjoerivia[H].  Then o (B () €
T(@n+j)2e+14i-1[H] because yp — 7T(3n+j)2k+1+i—1(h2k+2<x>> and (g, jyoe+11 [H] is
closed. Furthermore, since f is almost nonfissile and light and (3,1 jjos+14;[H] is
nondegenerate, s, joe+14;_1[H] is nondegerate by Lemma 4.2.1.

Proceeding inductively, we see that m[H] is nondegenerate and m(h2" () €
m[H] for all | < (3n + 5)25+! +4. As this holds for any n € N, m(h*"(z)) € m[H]
for all [ € N. Since H is the inverse limit of its own projections by Theorem 4.1.13,
h2k+2(x) € H, a contradiction. Therefore S is irreductible about any two points of

{z,h2"" (), h2"(2)} and is indecomposable. O
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Theorem 4.2.3 . Suppose f : [0,1] — 2% is upper-semicontinuous, surjective,
has the intermediate value property, and has an orbit of period not a power of 2. If
flioanmiGint(c(s))) is almost nonfissile and light, then Im{[0,1], f} contains an inde-

composable subcontinuum.

Proof. 1f int G(f) = (), then the conclusion follows form Theorem 4.2.2. Suppose
int G(f) # 0. Let (zo,z1,...,2,-1) be a cycle of f where p is not a power of 2. It
is sufficient to show there is a map ¢ : [0,1] — 201 that is upper-semicontinuous,
almost nonfissile, and light, that has the intermediate value property and retains
(g, x1,...,2p_1) as a periodic cycle, and such that G(g) has empty interior and
G(g) € G(f). Then lim{[0, 1], g} is a subcontinuum of lim{[0, 1], f} that contains an
indecomposable subcontinuum by Theorem 4.2.2.

Note m[int G(f)] is an open subset of [0,1]. Let {O,},en be an enumeration of
the components of m [int G(f)]. We construct g as follows: if z € [0, 1]\ m[int G(f)],
let g(z) = f(x). For each n, we construct G(g) on O, to contain any of (x¢,z;),
(z1,22),. .. ,(7p_1,70) for which ; € O, and some (a,, max f(0,)), (b,, min f(O,,))
where a,,b, € O,. To that end, let C = {x¢,71,...,7, 1} U Unen{@n, by }. Define
g(x) to be f(x)if z € C.

Note that for each n, C' N O, is finite. Define g on O,, \ C to be single-valued and

continuous according to the following conditions:

L g(z) € f(),

2. g is light on O,, \ C' and

58



3. if x is in C or bd O,, then for any component U of O, \ C' with x € U,

Gglv) 0 ({z} x [0,1]) = {z} x g().

That ¢g may be light on O, \ C' while maintaining G(g) C G(f) follows from the
fact that O,, C m[int G(f)]. Regarding (3), since C' N O,, is finite and f is weakly
continuous, g may also be constructed such that as y approaches = from within U,
the graph of ¢ is a ray with remainder g(z). Therefore such a map ¢ exists. Note
that by (1) and the fact that g(z) = f(x) on C, g[0,] = f[O,].

Note that (xg,x1, ..., 2,_1) is a periodic cycle of g. By this construction, ¢ is light
and almost nonfissile on each O,, and G(g)NVp, is connected. Note that if z € bd O,,,
condition (3) becomes G(g|y) N ({z} x [0,1]) = {z} x g(z) = {x} x f(z). Then since
gl \mfint ¢(5) = floa\mnt ¢(f))> ¢ is almost nonfissile and light on [0,1], and G(g)
is connected. It remains to show g has the intermediate value property. Since g(z) is
connected for each = € [0, 1], it is sufficient to show that g is weakly continuous.

We show that ¢ is weakly continuous from the left. The proof that g is weakly
continuous from the right is similar. Let (z,y) € G(g) with x > 0. Suppose first
x € O, for some n. If z € C, then by (3) there is a sequence {(z;,y;) }icw in G(g)
such that z; € O, N (0, ) for all i and (x;,y;) — (z,y). Thus g is weakly continuous
at x from the left. If x ¢ C, then since g is single-valued and continuous on O,, \ C,
it follows that ¢ is weakly continuous at x from the left.

Next suppose & ¢ O,, for any n. Then either z € [0,1] \ m[int G(f)], z = sup O,

for some n, or there is a subsequence O,,, such that z > sup O,,, for all k but x =

sup Uy, On, -
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Case 1: Suppose z € [0,1]\ 71 [int G(f)]. Since f is weakly continuous, there is a
sequence {(x;,y;)}icw in G(f) such that z; < x for all i and (x;,y;) — (x,y). Then
there is some N € N such that for i > N, z; € [0,1] \ m[int G(f)]. Since g agrees
with f on [0, 1]\ 7 [int G(f)], {(zs, %) }izn is a sequence in G(g) converging to (z, 7).

Case 2: Suppose z = supO,, for some n. Then by (2), there is a sequence
{(xi,vi) }iew in G(g) such that z; € O, for all ¢ and (z;,y;) = (z,9).

Case 3: Suppose there is a sequence {Op, }re. such that supO,, < z and z =
sup J,, On,. Note that any such sequence may be ordered so that O,, = (c,dy)
where dy, < cpy1, ¢ — x, and d — x. Then dy — ¢ — 0, i.e. diam O,, — 0. Let
{(24,yi) }icw be a sequence in G(f) such that z; < x for all ¢ and (z;,y;) — (z,9).
Recall that f Define a sequence {(2},;)}icw in G(g) where ) is a point of some
O,, with y; € g(}) if x; € O,, and z; = xz; if z; € [0,1] \ m[int G(f)]. Note
d((z},vy), (xi,y5)) = |2} — x| < diam O,,, if x; € O,,. Let ¢ > 0 and N; such that

if ¢ > Ny, d((xi,9:), (z,y)) < 5. Since diam O,, — 0, there is some Ny such that if

£
5

i > Na, then diam O,, < §. Then for i > max{N;, Ny},

d((&?;, yz)v (.T, y)) < d((‘rlvyi>7 ($i> yl)) + d((.ﬁC“ y2)7 (II?, y)) < % + % =€
Then (z},y;) — (x,y). Therefore g is weakly continuous from the left. By a similar

argument, g is weakly continuous from the right. Thus ¢ is weakly continuous. Then

g has the intermediate value property. O]
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4.2.2 Indecomposability Giving Rise to Periodicity

Notation. If x1, x5 € [a,b], let T173 denote the closed interval with endpoints x; and

ZT9.

Definition 4.2.4 . 1f f : [a,b] — 2[®% is upper-semicontinuous, we say f is organic
if for every x,y € I‘Ln{[a, b], f} such that @{[a, b, f} is irreducible between x and v,

then there exists n € N such that f"(z,y,) = [a, b].

Lemma 4.2.5 . Let f:1]0,1] — 2001 be such that f is upper-semicontinuous, sur-

jective, and has the intermediate value property. Further suppose that @{[0, 1], f}

is irreducible between z and y. For k > 0, let Jp = |, >, [" *(Zn¥n). Then for each

k, Ji is a closed subinterval of [0, 1] with f(Ji41) = Ji.
Proof. Since f has intermediate value property, z; € f(z;41), and y; € f(y;11) for all
i, T;7; C f(TiaUizr). Thus if ng > ny, " (Tn Uny) € " (TryUng)- SO

Tovo € f(Tgn) € f2(Tamm) C - . .

Since f has the intermediate value property, for each k f*(Z,%,) is an interval. Thus

Jy is a closed subinterval of [0,1]. Note for n > k + 1,

(k1) 2 FO ) @0mm) = 7 (@at)-

So f(Jks1) 2 UnZkJrl [ *(Toyn). But because Tpyx C f(Tri1¥rs1), we have

f( 1) 2 U,si (@),

As f(Jk41) is closed,
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f(Jk+1) ) UnZk fn_k(xnyn) = Jk
Similarly for n > k41,
i 2 fn_k(xnyn> = f(fn_(k+1)(xnyn))-

Thus J, O f (URZ,CJrl P (z,y,)). Since Jj is closed and f has the intermediate

value property and is therefore weakly continuous, by Theorem 3.2.10,

T Uzion 0 @30) = 1 (U 0 @)

Thus

Je = f (Unsirr f7 00 (@070) = f (UnZk—f—l f“*“”(%)) = f(Jrt1)-

Lemma 4.2.6 . Let f : [0,1] — 21 be such that G(f) is connected and f is
upper-semicontinuous, surjective, and has the intermediate value property. Further
suppose that m{[0, 1], f} is irreducible between x and y. If 0 < ¢ < d <1, then

there is some N € w such that n > N implies [¢,d] C f"([zn, Yn))-

Proof. Let Ji, = U, /" *(Zn¥n), as in Lemma 4.2.5. Let J = Im{Ji, f[y,,,}. As
[, also has the intermediate value property, is surjective, is upper-semicontinuous,
and G(f|;,) is connected by Theorem 3.2.10, J is a subcontinuum of Lm{[0, 1], f}.

Note z,y € J; hence J = @1{[0,1],]‘}. As f is surjective, Jy = [0,1] and [0,1] =

Unso f/™"(Ta¥n). Then because f™(Tngn) € f" (Tnj1¥ni1) for each n, there is some

N € w such that if n > N, [¢,d] C f"(T,un)- ]
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Lemma 4.2.7 . Suppose f:[0,1] — 20011 is upper-semicontinuous, surjective, has
the intermediate value property. If there are p,q € (0,1) and r, s € w with 0 € f"(p)

and 1 € f*(q), then f is organic.

Proof. Suppose @{[O, 1], f} is irreducible between x and y. Then by Lemma 4.2.6,
there are positive integers N, and Ny such that if n > N,, p € f""(Z,y,) and if

n > Ns, q € f"*(Tyyn). Soif n > N, + Ny, f"(Toyn) = [0, 1]. O]

Theorem 4.2.8 . If f : [0,1] — 21 is upper-semicontinuous, organic and has
the intermediate value property and @1{[0, 1], f} is indecomposable, then f has a

periodic cycle with a period that is not a power of 2.

Proof. Since @{[O, 1], f} is indecomposable, there are three points x, y, and z such
that Jm{[0, 1], f} is irreducible between any two of them. Because f is organic, there
exists some n such that f"(T,7,) = ["(Unzn) = ["(Tnzn) = [0,1]. Without loss
of generality, suppose x, < y, < z,. As f is upper-semicontinuous and has the
intermediate value property, f™(y,) is a closed interval. Thus either y,, € int(f"(y,)),
F"(n) S 10, ynl, or f"(yn) S [yn, 1]-

Case 1: Suppose y, € int(f"(y,)). Then there are numbers ¢ and d such that
¢ <y, <dand f(y,) = [c,d]. As [ has the intermediate value property, f is weakly
continuous. Thus, there exist sequences {(a;, ¢;)}icw and {(b;, d;) }iew in G(f™) such
that for all ¢ a;, b; < y,, a;,b; = y,, ¢; — ¢, and d; — d. Furthermore these sequences
may be chosen such that a; < b; < a;y; for all 2. Then because ¢ < y, < d, there is

some N € N such that ¢ > N implies ¢; < y, < d;. Since f™ has the intermediate
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value property, for i > N, there is a point p; € [a;, b;] with y, € f™(p;). Furthermore
Di — Yn Since a;, b; — yp.

Note that as y, € int f"(y,) and p; = yn, pi € f"(yn) for cofinitely many i. Then
Yn € f"(p;) and p; € f"(y,) for cofinitely many i. Thus, for any k£ € N, there is
a periodic orbit of the form (qo, ..., goks) Where for j = 0...,k, ¢ojn = vy, and for
J=0,...,k—=1, qgjt1)n is a distinct member of the p;’s. In particular, k = 3 gives a
periodic cycle with a period that is not a power of 2, satisfying the conclusion of the
theorem.

Case 2: Suppose f"(y,) C [0,y,]. Then either f"(y,) = {y,} or there is some
value b € f"(y,) with b < y,,. If f"(yn) = yn, then there are values a,b € [z,,yn)
such that 0 € f"(a) and 1 € f*(b). Thus there is a closed interval J; C ab C [z, yn)
and a restriction f S’lmz”] of f™ such that f”|51"’z"}(J1) = [Yn, 2n] [41].

We show that such a J; also exists if there is some b € f"(y,) with b < y,.
By the weak continuity of f™ there is a sequence {(a;, b;)}ic such that for all i,
Ty < a; < Yn, b € f"(a;), a; = yn, and b; — b. Thus there is some by < y,. Let
q € [Tn, yn) be a point such that 1 € f"(g). Then f"(bxq) 2 [b,1] 2 [yn, 2n], s0 there

is a closed interval J; C byq C [2,,y,) and a restriction f" {[}yl”’z"] of f™ such that

P3N = W 2l

As f™([xn, yn]) 2 Ji, there is a closed subinterval Jy of [z,,y,] and a restriction
fr of fm such that f*|7(Jo) = Ji. Similarly there is a closed subinterval J; of
[Yn, 2n] and a restriction f”|§§ of f™ such that f" §§(J3) = Jo.

Thus J; C f" !%’“Z"](f” i;(f”ﬂg({]g))) C f?"(J3). Then there is a periodic orbit

(90, ---,q3n) With g9 = @30, = q¢ € J3, ¢, € Jo, and qa, € J1. Suppose ¢, = g¢.
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Then g € J1 N J3 C [0, Yn] N [Un, 20] = {yn}. But then we would have y, € Ji, a
contradiction. So q # qa,-

Let s be the period of (qo,...,¢s,). Then s | 3n. As g, # qo = ¢, s12n. If s | n,
then s | 2n, a contradiction. It follows that s 1 n. Therefore 3 | s, and s is not a power

of 2 as desired. The case for f"(y,) C [yn, 1] follows from a similar argument. O
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CHAPTER FIVE

A Hereditarily Decomposable Inverse Limit of a Map with Periodic Orbits of all
Periods

We demonstrate the assumption in Theorem 4.2.2 that f is almost nonfissile is
sharp. In Example 5.2.1, we construct a family of functions F : [0,1] — 2[% that
satisfy the hypothesis of Theorem 4.2.2 other than being almost nonfissile, with the
possible exception of being light, yet admit a hereditarily decomposable inverse limit.
We note in Example 5.2.1 that many members of this family are light and all have
the desired properties.

The construction of this family of functions relies heavily on collections of nested
Cantor sets, in which no point of a Cantor set in the collection is an endpoint of any
larger Cantor set in the collection. We establish the existence of such collections in
Section 5.1 that are necessary to define the family of functions in Example 5.2.1.

Then in Section 5.2, we show that each function F : [0,1] — 2% in this family
is upper-semicontinuous, surjective, has the intermediate value property, has a graph
with empty interior, has periodic cycles of all periods, and is not almost nonfissile.
We then examine the structure of the inverse limit generated by any one of these

functions and show that it is a tree-like, hereditarily decomposable continuum.

5.1 Cantor Sets
Definition 5.1.1 . A set C C [0,1] is a Cantor Set if C'is a closed, perfect, nowhere

dense set. A point z € C' is called a left endpoint of C' if there is some number a
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such that (a,z) C [0,1]\ C and a right endpoint if there is some number a such that

(x,a) € [0,1] \ C. These endpoints form a countable dense subset of C'.

Definition 5.1.2 . Let K be a continuum and p € K. The composant of p in K is
the union of all proper subcontinua of K that contain p.

It is well-known that a metric continuum has three composants if it is decompos-
able and irreducible, one composant if it is decomposable but not irreducible, and

uncountably many composants if it is indecomposable.

Lemma 5.1.3 . Let Cy be the middle thirds Cantor set on [1/4,3/4]. There is a

Cantor set Cj such that ¢y C Cj and no point of C] is an endpoint of C.

Proof. Construct Cy as follows: Note that every left endpoint of C; corresponds to
some point b for some maximal interval (a,b) C [1/8,7/8] \ C1, and every right
endpoint of C; corresponds to some point a for some maximal interval (a,b) C
[1/8,7/8]\ Cy. Let K, and K, be the middle thirds Cantor sets on [a,a+ 1/3(b— a)]
and [b— 1/3(b — a), b] respectively.

Define Cy = C1 U (U, Ka) U (U, Kp). Since Cj is a countable union of Cantor
sets, it is perfect and nowhere dense. To show (Y is closed, let  be a limit point
of Cy \ C1 and {x,},e, be a sequence in Cy converging to x. Since = ¢ Cf, there is
some maximal interval (a,b) C [1/8,7/8] \ Cy with = € (a,b), hence z,, € (a,b) for
cofinitely many n. Thus x,, € K, U K} cofinitely often and z € K, U K}, as K, U K}, is
closed. Thus Cj is a Cantor set containing C; such that no point of ' is an endpoint

of Co. ]
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Lemma 5.1.4 . Let C, D C [0,1] be Cantor sets where C' C D and no point of C'
is an endpoint of D. Then there is a Cantor set £ such that C C E C D, no point

of C' is an endpoint of F/, and no point of F is an endpoint of D.

Proof. Let {p,} be an enumeration of the endpoints of D. Since C is closed and
p1 ¢ C, there are points oy and f; of C such that p; € (g, 51) C [0,1]\ C. As points
of C, a; and f; are not endpoints of D. Consequently, there are points a; and b; of
D\ C that are not endpoints of D such that a; < a; < p; < b < 1.

Proceeding inductively, suppose (a;, b;) has been defined for i < n so that the

following hold.

ai,biED\C’

a; and b; are not endpoints of D

pi € (a;,b;)

if p; € (a;,b;) for some j < i, then (a;,b;) = (a;, b;)

if p; ¢ (a;,b;) for each j < i, then [a;, b;] N (Uj<[a;j, b)) =0

If poi1 € lai, b for some ¢ < n (and hence p,y1 € (a;, b)), let (api1,bni1) =
(ai,bi). Suppose pni1 & Uicpnlai, bi]. Since C'U (U<, lai, bi]) is closed and ppy1 ¢
Ccu (Uign[ai,bi]), there are points a,;1; and (3,41 of C' U (Uign[ai,bi]) such that
Pat1 € (i1, Bay1) C [0,1]\ (C'U (Uign[ai,bi])). As points of C'U (Uign{ai,bi}),
any1 and B,41 are not endpoints of D. Consequently, there are points a,11 and b, 1

of D\ (CU (Uign[ai,bi])) that are not endpoints of D such that a, 11 < a1 <
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Prnt1 < bpy1 < Bnyi1. Then a,41 and b, satisfy the criteria above and, by induction,
(a;, b;) is defined for each positive integer i.

Define E = D\ (U, cx(@n,by)). Then C C E C D, E is closed, and no point of
E' is an endpoint of D. Note also that since a,,b, € D for all n € N, and since any
two intervals of the form [a,,b,] are identical or disjoint, it follows that a,,b, € E
for each n € N. It remains to show that no point of C' is an endpoint of £ and FE is
perfect.

Let x € E\ {b, : n € N}. As z is not an endpoint of D, there is a subsequence
{pn,, }ken such that p, — z and p,, < x for all k. Since z # b, for each n, then
we may choose {py, } such that |a,,,b,,]| and [a,;,by,,] are disjoint for j # k. Then,

choosing a subsequence of p,, if necessary to have monotone convergence, we have

Uny < Py, < by < oy < Py <0 < .

k1

So a,, — x, making x a limit point of E from the left.
Similarly, let x € E \ {a, : n € N}. As x is not an endpoint of D, there is a

subsequence {p, }ren such that p,, — = and p,, > =. Furthermore, since = # a,, for

each n, we may choose {py, }ren such that

T <y, <Pnypyy <b <y, < Ppy, < by, -

Mot
So b,, — x, making x a limit point of E from the right.

Thus E is a perfect set and therefore a Cantor set. Furthermore, each point of
E\{an, b, : n € N} is not an endpoint of E. Thus every point of C'is not an endpoint

of F. ]
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Proposition 5.1.5 . There is a collection of Cantor sets {C,. : r € Q N[0, 1]} such

that when r > s, C,. C C; and no point of C, is an endpoint of C.

=

Proof. Let Cy and C be as in Lemma 5.1.3. By Lemma 5.1.4, there is a Cantor set
(/9 such that C; € (/2 € Cp, no point of €'y is an endpoint of C /5, and no point of
(/2 is an endpoint of Cy. By the same argument, there are Cantor sets C'; /4 and Cs4
such that C; € C3/4 € C12 € Cra € Cp and if s > r, no point of C, is an endpoint
of Cy. Continuing inductively, we may define a Cantor set C). for each dyadic rational
r in [0, 1] such that if s > 7, then C, C C and no point of C, is an endpoint of Cs.
By reindexing the subscripts according to an order-preserving bijection between the

dyadic rationals of [0, 1] and Q@ N[0, 1], we achieve the desired result. O

5.2 A Hereditarily Decomposable Inverse Limit
Example 5.2.1 . The following notation will be assumed for the remainder of the

chapter.

e Let {C, :r € QN[0,1]} denote a collection of Cantor sets in (0, 1] such that,

for r > s, C, C C and no point of C). is an endpoint of Cj.

=

e Let f:[0,1] — [0, 1] be a continuous function such that
f(t)=0forallt € {0} UC,
f(t) <minCy for all ¢ € [0, 1]
f(t) < tforallte(0,1]
Note in particular the following possibilities: (1) f could be light and (2) f

could be identically zero.
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e Let F:]0,1] — C([0,1]) be defined as follows:

{r@)} if £ ¢ Co

[0,sup{r:te C.}] ifteC

F(t) =
Note that G(f) € G(F) and that F is light if and only if f is light.

o Let X =1lim{[0,1], F'}. Note that X is a continuum since F'(t) is connected for

each t € [0,1].

e For each x € X and each n € N, let L,, C [0, 1]? be the union of {(¢, f(t)) : 0 <

t < z,} and the (possibly degenerate) vertical line segment from (z,, f(z,)) to

(x'm xn—l)-

e For n > 1, define G, : [0,2,] = C([0,2,-1]) by G(Gyn) = L.,. Note that

G(Gen) G G(F).

o Let L, = @{[0, Ty, Gen}. Note that L, is a continuum for each x € X since

Gan(t) is connected for each n € N and ¢ € [0, z,].

Theorem 5.2.2 . F is upper semicontinuous, surjective, has the intermediate value
property, and has periodic cycles of period n for every n € N. [F' is not almost

nonfissile, and F' is light if and only if f is light. G(F) has empty interior.

Proof. As F(t) = [0, 1] for t € Cy, F is surjective. To show F'is upper semicontinuous,
let {(tn, Yn)}new be a sequence in G(F') that converges to some point (¢,y). Then
either t,, € Cy cofinitely often or ¢, ¢ Cy for infinitely many n. First suppose t,, ¢ Cj

for infinitely many n. Then there is a subsequence { (%, , Yn, ) trew converging to (¢,y)
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such that t,, ¢ Cy for each k. Thus (¢,,,yn,) € G(f); hence (t,y) € G(f) C G(F)
by the continuity of f.

Next, suppose t, € Cy for cofinitely many n. Since Cj is closed, it follows that
t € Cy. Ifif y =0, then (t,y) € G(F). Suppose y # 0 and s € (0,y) N Q. As y, — v,
there is some N, € N such that n > N, implies y,, € (s, 1]. Since t,, € Cj for cofinitely
many n, we may choose N, such that for n > Ny, t,, € Cy. Then t,, € C, for n > N;.
So F(t) 2 [0,s]. Then F(t) 2 Usc(y)ngl0:s] = [0,y). As F(?) is closed, y € F(1),
hence (t,y) € G(F), making F' upper semicontinuous.

To show F is weakly continuous, let (t,y) € G(F). If t ¢ C, for any r # 0,
(t,y) € G(f) and weak continuity at ¢ is clear. If there is some r # 0 such that
t € C,, then it is sufficient to show that weak continuity holds for y = max F'(t) > 0.
Let {sy}new be a sequence in Q N [0, 1] such that s, — y and s, < y for all n. By
the construction of the Cantor sets, for each n, t € C, , and ¢ is not an endpoint of
any of the Cy, ’s. Thus there is some ¢, € Cs, such that |t —t,| < 1/n and t,, <t for
all n (or t, >t for all n). Ast, € Cs,, s, € F(t,). Thus {(¢,, Sn) tnew 1S & sequence
in G(F) converging to (¢,y), making F' weakly continuous at ¢. Since the image of
each point is connected and F' is weakly continuous, F' has the intermediate value
property by Theorem 2.15 of 3.2.6.

There are no nondegenerate intervals on which F' is nondegenerate, so G(F') has
empty interior. F' is not almost nonfissile as all nonfissile points are contained in
G(f), which is a closed proper subset of G(F'). Since Cy is nowhere dense, F' can fail
to be light only on a subinterval of [0, 1] \ Cp, on which F' agrees with f. Thus F is
light if and only if f is light.
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To see that F' has cycles of all periods, let n € N. Choose distinct points
tht% ...,t" in C;. Then for 1 < i < n, F(t') = [0,1]. Thus (t,...,t") is a pe-

riodic cycle of period n. m

Lemma 5.2.3 . Let x € X \ {0}. Then there is some N € w such that x, € Cj if

and only if n > N.

Proof. Since F(t) = f(t) < minCy for t ¢ Cy, it follows that, if z,, ¢ Cj for some n,
then xy ¢ Cy for each k < n. Equivalently, if z,, € Cy for some n, then ) € Cj for
each k > n. But it is not the case that x,, ¢ Cj for every n € w; otherwise x1, x, 3, ...
would be a nondecreasing sequence bounded above by min Cy that would converge to
a fixed point of f lying in (0, min Cp|, contrary to the definition of f. Thus there is

N € w such that z,, € C if and only if n > N. O

Proposition 5.2.4 . For each x € X \ {0}, L, is an arc with endpoints at z and 0.

Proof. By Lemma 5.2.3, there is some N € w such that x,, € Cj if and only if n > N.

For n > N, let

K, ={(f"(t), ..., f(t),t, 211, Tpyo,...): 0 <t < x,}.

Then K, is an arc from y" to y"*', where y' = (0,...,0, 2, ;4 1,...) for each i > N.
Furthermore, for each n, K,,; N (Uzgn Kl) = {y"*'}. Therefore, Uign K, is an arc
from y™ to y"*'. So U,y Ky is a ray in L, with endpoint y" that does not contain
0.

We consider two cases. First suppose N # 0. Note that y" # x. Define Ky_; by
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Ky_1 = {(fNil(t), ce ,f(t),t,ZL'N,JZN+1, .. ) 0<t< xN—l}-

Then Ky_; is an arc from z to y" that intersects UnZN K, only at the point y”.
Hence Unz ~v_1 K» is a ray in L, with endpoint z that does not contain 0. To com-
plete the proof in the case where N # 0, it suffices to show m = L, and
Unszl Ky, \ (Unszl Kn) = {6}

To show L, C (Unz N1 Kn) U {0}, let 2 € L,. The claim trivially holds for
z=0. If 2 # 0, then by Lemma 5.2.3, 2; € Cy for cofinitely many 4. Since G, ;(z;) N
Coy # 0 only if z; = z;, it follows that z; = x; for cofinitely many 7. Thus there
is an M € w such that for z; = x; if and only if ¢« > M. If M < N, then z =
(YY) oo f(O)t 2N, TNgt, T, - - ) € Ky_1. Suppose M > N. Then for i < M,
zi <w. Sofor 1 <j < M-—1, 21 ==Gg;i(2) = f(z;). Thusfor 0 < j < M —1,
zv-1-j = fH(zm-1). So z = (fM7YE) .., f(6) b Tar, Tarens Targa, - - ) € K-y and
Ly € (Unsy Kn) U {0}

Since L, is closed and K, C L, for each n > N, m C L,. Asy™ — 0,
0 € m\ (Upsn_1 Kn). Since Ly C© (U,sy_1 Kn) U {0}, it follows that
Unsv—1 Ko\ (Upsn—1 Kn) = {0} and L, = U,>y_; Ky, making L, an arc from z to
0.

For the case in which N = 0, y¥ = 2. Hence UnzN K, is a ray with endpoint z
for which it can be shown by similar arguments that m\ (Un2 v K,) = {0}

and L, = UnzN K,,, making L, an arc from z to O. O

Corollary 5.2.5 . X is arcwise connected.
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Theorem 5.2.6 . (Theorem 4.2 [30]) Suppose {f,}nen is a sequence of functions
such that f, : [0,1] — C(]0, 1]) is a surjective upper semicontinuous function for each
positive integer n. If, for each n > 1, Z,, is a closed totally disconnected subset of [0, 1]
such that if f,(¢) is nondegenerate then ¢ € Z, and (f")~'(Z;) is totally disconnected

for each i, 1 < < n, then im{[0, 1], f,} is a tree-like continuum.

Proposition 5.2.7 . X is tree-like and therefore hereditarily unicoherent.

Proof. For each n, let Z, = Cy. Then Z, is a closed totally disconnected set. If F'(t)
is nondegenerate then there is some r € Q N [0,1] such that ¢ € C, C Cpy. Since
Co C (0,1], F~1(Cy) C Cy. Thus F~(Cy) is totally disconnected for every n. So by

Theorem 5.2.6 X is tree-like. O

Proposition 5.2.8 . Let K be a subcontinuum of X.
1. If 0 € K, then K = J, g L.
2. If 0 ¢ K, then 7,[K] is degenerate for cofinitely many n.

Proof. First, suppose 0 € K. As X is hereditarily unicoherent, for each z € K, L,NK
is a subcontinuum containing both x and 0. As L, is an arc irreducible between x
and 0, L, N K = L,. Then L, C K. So K = J,_j L.

Next, suppose 0 ¢ K. As F(0) = {0} and K is closed, 0 ¢ m,[K] for cofinitely
many n. Then 7, ,_1[K] is a subcontinuum of G(F) that does not touch [0,1] x {0}
for cofinitely many n. For each such n, m,,_1[K] is a (possibly degenerate) vertical

line segment and 7, [K] contains a single point. O
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Theorem 5.2.9 . X is a hereditarily decomposable tree-like continuum.

Proof. Let K be a nondegenerate subcontinuum of X. If 0 € K, then K = J,x L.
by the above proposition. If there is some y such that K = L,, then K is an arc
and thus decomposable. Otherwise, each L, is a proper subcontinuum. Then the
composant of 0 in K is K itself, making K decomposable.

Now suppose 0 ¢ K. By Proposition 5.2.8, for cofinitely many n, 7,[K] contains a
single point, which we denote k,. Since K is nondegenerate, 7,[K] is nondegenerate
for some n € N. Denote the largest such n by N. Then 7y[K] contains a point ¢
in its interior such that ¢ ¢ Cy. Let z € ny'(c) N K. Then x, = k, for n > N.
Since ¢ ¢ Cy, F(c) = {f(c)}. Since f(t) < minCjy for all ¢ € [0, 1], it follows that
r, = fN7"(c) for n < N. Soz = (f¥(c),..., f(c),c,kni1, knyo,...) is the unique
point of 7' (c) N K. As c separates my(K), x is a separating point of K, and K is

decomposable. O
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CHAPTER SIX

Future Work

Inverse limits with set-valued functions remains a field with many avenues for
future study. One source of possible research is in attempting to find generalizations
of the connections between topological and dynamic properties of classical inverse
limits found by Barge and Martin [5, 6, 7, 8]. Since the weak intermediate value
property is a weaker assumption than requiring that the image of each point be
connected and solves the immediate issue of whether the generalized inverse limit is
connected, it is worth applying to see what other results can be generalized. In [9],
Barge and Martin showed that the classical inverse limit of a single function on the
interval may be realized as a global attractor for a planar homeomorphism. This
raises the following questions: What conditions are sufficient to make generalized
inverse limits planar? What conditions make them global attractors?

An answer to the former question would provide a template for constructing more
exotic planar continua, while an answer to the latter would further illuminate the
connections between topology and dynamics in the setting of generalized inverse lim-
its.

One topic of interest for set-valued dynamics is the relationship between the en-
tropy of these types of functions and periodicity. The existence of a periodic cycle of
a function on [0, 1] with period not a power of 2 and the entropy of the function being

positive are equivalent in the classical case, but Kelly and Tennant showed that this is
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not the case in general for set-valued functions on [0, 1] [35]. This raises the question
of whether the intermediate value property is sufficient to restore this equivalence.
This would enhance our understanding chaos in dynamical systems with set-valued

functions.

78



BIBLIOGRAPHY

R. D. Anderson and Gustave Choquet. “A Plane Continuum no Two of Whose
Non-Degenerate Subcontinua are Homeomorphic: An Application of Inverse
Limits”. In: Proceedings of the American Mathematical Society 10.3 (June
1959), p. 347. DOIL: 10.2307/2032845.

I. Bani¢ and Veronica Martinez-de-la-Vega. “Universal dendrite D3 as a gen-
eralized inverse limit”. In: Houston Journal of Mathematics 41 (Jan. 2015),
pp. 669-682.

[ztok Bani¢ and Judy Kennedy. “Inverse limits with bonding functions whose
graphs are arcs”. In: Topology and its Applications 190 (Aug. 2015), pp. 9-21.
DOI: 10.1016/j.topol.2015.04.009.

Iztok Bani¢ et al. “The (Weak) Full Projection Property for Inverse Limits
with Upper Semicontinuous Bonding Functions”. In: Mediterranean Journal of
Mathematics 15.4 (June 2018). DOI1: 10.1007/s00009-018-1209-6.

Marcy Barge and Joe Martin. “Chaos, periodicity, and snakelike continua”. In:
Transactions of the American Mathematical Society 289.1 (Jan. 1985), pp. 355—
355. DOI: 10.1090/s0002-9947-1985-0779069-7.

Marcy Barge and Joe Martin. “Dense orbits on the interval.” In: Michigan
Mathematical Journal 34.1 (Jan. 1987). DOIL: 10.1307/mmj/1029003477.

Marcy Barge and Joe Martin. “Dense periodicity on the interval”. In: Proceed-
ings of the American Mathematical Society 94.4 (Apr. 1985), pp. 731-731. DOI:
10.1090/s0002-9939-1985-0792293-8.

Marcy Barge and Joe Martin. “Endpoints of inverse limit spaces and dynamics”.
In: Lecture Notes in Pure and Appl. Math 289.1 (Jan. 1994), pp. 355-355.

Marcy Barge and Joe Martin. “The construction of global attractors”. In: Pro-
ceedings of the American Mathematical Society 110.2 (Feb. 1990), pp. 523-523.
DOI: 10.1090/s0002-9939-1990-1023342-1. URL: https://doi.org/10.
1090/s0002-9939-1990-1023342-1.

Van C. Nall. “Connected Inverse Limits with a Set-Valued Function”. In: Topol-
ogy Proceedings 40 (2012), pp. 167-177.

79



[16]

[17]

Van C. Nall. “Finite graphs that are inverse limits with a set valued function
on [0,1])”. In: Topology and its Applications 158.10 (June 2011), pp. 1226-1233.
DOI: 10.1016/j.topol.2011.04.011

Van C. Nall. “The only finite graph that is an inverse limit with a set valued
function on [0, 1] is an arc”. In: Topology and its Applications 159.3 (Feb. 2012),
pp. 733-736. DOI: 10.1016/3.topol.2011.11.029.

M.K. Camlibel et al. “Switched networks and complementarity”. In: IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications
50.8 (Aug. 2003), pp. 1036-1046. DOI: 10.1109/tcsi.2003.815195.

C. E. Capel. “Inverse limit spaces”. In: Duke Mathematical Journal 21.2 (June
1954). DOI: 10.1215/s0012-7094~-54-02124-9.

Dante Carrasco-Olivera et al. “Topological entropy for set-valued maps”. In:
Discrete & Continuous Dynamical Systems - B 20.10 (2015), pp. 3461-3474.
DOI: 10.3934/dcdsb.2015.20.3461.

Wilodzimierz J. Charatonik and Robert P. Roe. “Inverse Limits of Continua
Having Trivial Shape”. In: Houston Journal of Mathematics 38.4 (Jan. 2012),
pp. 1307-1312.

Wiodzimierz J. Charatonik and Robert P. Roe. “Mappings between inverse
limits of continua with multivalued bonding functions”. In: Topology and its
Applications 159.1 (Jan. 2012), pp. 233-235. DOI: 10.1016/j.topol.2011.09.
008.

Wtodzimierz J. Charatonik and Robert P. Roe. “On Mahavier products”. In:
Topology and its Applications 166 (Apr. 2014), pp. 92-97. po1: 10.1016/j .
topol.2014.02.008.

Louis J. Cherene. Set Valued Dynamical Systems and Economic Flow. Springer
Berlin Heidelberg, 1978. DOI: 10.1007/978-3-642-45504-9.

Steven Clontz and Scott Varagona. Mahavier Products, Idempotent Relations,
and Condition I". 2018. eprint: arXiv:1805.06827.

Brian E. Raines and Tim Tennant. “The Specification property on a Set-valued
Map and its Inverse Limit”. In: Houston Journal of Mathematics 44.2 (2018),
pp. 665—677.

Mathieu Faure and Gregory Roth. “Stochastic Approximations of Set-Valued
Dynamical Systems: Convergence with Positive Probability to an Attractor”.
In: Mathematics of Operations Research 35.3 (Aug. 2010), pp. 624-640. DOI:
10.1287/moor.1100.0455.

80



[25]

[26]

28]

[29]

A. Fedeli. “On chaotic set-valued discrete dynamical systems”. In: Chaos,
Solitons € Fractals 23.4 (Feb. 2005), pp. 1381-1384. poI: 10.1016/s0960-
0779(04)00394-7.

Sina Greenwood and Judy Kennedy. “Connected generalized inverse limits”.
In: Topology and its Applications 159.1 (Jan. 2012), pp. 57-68. pOI: 10.1016/
j.topol.2011.07.019.

Sina Greenwood and Judy Kennedy. “Connected generalized inverse limits over
intervals”. In: Fundamenta Mathematicae 236 (2017), pp. 1-43.

Sina Greenwood and Judy Kennedy. “Connectedness and Ingram-Mahavier
products”. In: Topology and its Applications 166 (Apr. 2014), pp. 1-9. DOI:
10.1016/j.topol.2014.01.016.

George W. Henderson. “The pseudo-arc as an inverse limit with one binding
map”. In: Duke Mathematical Journal 31.3 (Sept. 1964). boI: 10.1215/s0012-
7094-64-03140-0.

Alejandro Illanes. “A circle is not the generalized inverse limit of a subset
of [0,1]”. In: Proceedings of the American Mathematical Society 139.08 (Aug.
2011), pp. 2987-2987. DOI: 10.1090/s0002-9939-2011-10876-1.

W. T. Ingram. An Introduction to Inverse Limits with Set-valued Functions.
Springer New York, 2012. 1SBN: 978-1-4614-4487-9. por1: 10 . 1007 /978-1-
4614-4487-9.

W. T. Ingram. “Concerning dimension and tree-likeness of inverse limits with
set-valued functions”. In: Houston Journal of Mathematics 40.2 (2014), pp. 621—
631.

W. T. Ingram and William S. Mahavier. “Inverse limits of upper semi-
continuous set-valued functions”. In: Houston Journal of Mathematics 32 (Jan.
2006), pp. 119-130.

W.T. Ingram and William S. Mahavier. Inverse Limits. Springer New York,
2012. por: 10.1007/978-1-4614-1797-2.

James P. Kelly. “Inverse limits with irreducible set-valued functions”. In: Topol-
ogy and its Applications 166 (Apr. 2014), pp. 15-31. boI: 10.1016/j . topol.
2014.02.001.

James P. Kelly and Jonathan Meddaugh. “Indecomposability in inverse lim-

its with set-valued functions”. In: Topology and its Applications 160.13 (Aug.
2013), pp. 1720-1731. DOI: 10.1016/3.topol.2013.07.002.

81



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

James P. Kelly and Tim Tennant. “Topological Entropy of Set-valued Func-
tions”. In: Houston Journal of Mathematics 43.1 (2017), pp. 263-282.

Sergio Macias. Topics on Continua. Chapman and Hall CRC, 2005. 1SBN: 978-
3-319-90902-8.

William S. Mahavier. “Inverse limits with subsets of [0, 1]x[0, 1]”. In: Topology
and its Applications 141.1-3 (June 2004), pp. 225-231. DOI: 10.1016/j.topol.
2003.12.008.

Michael Maschler and Bezalel Peleg. “Stable Sets and Stable Points of Set-
Valued Dynamic Systems with Applications to Game Theory”. In: STAM Jour-
nal on Control and Optimization 14.6 (Nov. 1976), pp. 985-995. DOI: 10.1137/
0314062.

Stefan Mazurkiewicz. “Un théoréme sur les continus indécomposables”. In: Fun-
damenta Mathematicae 1.1 (1920), pp. 35-39. DOT: 10.4064/fm-1-1-35-39.

Sam B. Nadler Jr. Continuum Theory: An Introduction. Monographs, Text-
books in Pure, and Applied Mathematics, vol. 158, Marcel Dekker Inc., New
York, 1992. 1SBN: 978-3-319-90902-8.

Drew Otey and David J. Ryden. “Sarkovskii order for upper semicontinuous
functions on [0, 1] with intermediate value property”. In: In Progress ().

Sergei Yu. Pilyugin and Janosch Rieger. “Shadowing and inverse shadowing
in set-valued dynamical systems. Contractive case”. In: Topological Methods in
Nonlinear Analysis 32.1 (2008), pp. 139-149. DOI: tmna/1463150468.

Sergei Yu. Pilyugin and Janosch Rieger. “Shadowing and inverse shadowing
in set-valued dynamical systems. Hyperbolic case”. In: Topological Methods in
Nonlinear Analysis 32.1 (2008), pp. 151-164. DOI: tmna/1463150469.

David J. Ryden. “The full-projection and closed-set properties”. In: In Progress

(-

Richard M. Schori. “A universal snake-like continuum”. In: Proceedings of the
American Mathematical Society 16.6 (June 1965), pp. 1313-1313. por: 10 .
1090/s0002-9939-1965-0184209-x.

A. N. Sharkovskii. “Coexistence of cycles of a continuous map of the line into

itself”. In: International Journal of Bifurcation and Chaos 05.05 (Oct. 1995),
pp. 1263-1273. DOI: 10.1142/50218127495000934.

82



[47]

[48]

[49]

[50]

Scott Varagona. “Inverse limits with upper semi-continuous bonding functions
and indecomposability”. In: Houston Journal of Mathematics 37 (Jan. 2011),
pp. 1017-1034.

S. Willard. General Topology. Addison Wesley series in mathematics/Lynn
H.Loomis. Addison-Wesley Publishing Company, 1970. 1sSBN: 9780201087079.
URL: https://books.google.com/books?id=eS8IPAQAAMAAJ.

B.R. Williams. “Indecomposability in inverse limits”. PhD dissertation. Baylor
University, 2010.

R.F. Williams. “One-dimensional non-wandering sets”. In: Topology 6.4 (Nov.
1967), pp. 473-487. pOIL: 10.1016/0040-9383(67)90005-5.

83





