
ABSTRACT

Generalized Inverse Limits and the Intermediate Value Property

Tavish J. Dunn, Ph.D.

Mentor: David J. Ryden, Ph.D.

We introduce and discuss various notions of the intermediate value property appli-

cable to upper-semicontinuous set-valued functions f : [0, 1]! 2[0,1]. In the first part,

we present su�cient conditions such that an inverse limit of a sequence of bonding

functions of this type is a continuum. In the second part, we examine the relation-

ship between the dynamics of an upper-semicontinuous function with the intermediate

value property and the topological structure of the corresponding inverse limit. In

particular, we present conditions under which the existence of a cycle of period not a

power of 2 implies indecomposability in the inverse limit and vice-versa. Lastly, we

show that these conditions are sharp by constructing a family of upper-semicontinuous

functions with the intermediate value property and cycles of all periods, yet admits

a hereditarily decomposable inverse limit.
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CHAPTER ONE

Introduction

Inverse limits play an important role in continuum theory and dynamics. They

were originally developed in conjunction with cohomology theory in the 1930s and

40s. At this time it was found that the inverse limit of continua is itself a continuum,

making inverse limits relevant to continuum theory. A compilation of the fundamental

properties of inverse limits along with new results of particular interest to continuum

theorists was written by Capel in 1954 [14]. In the late 1950s and early 60s, the value

of inverse limits for the study of continuum theory became apparent with their use

in constructing exotic spaces from relatively simple spaces [1, 27, 45]. They are also

useful for representing and studying properties of known spaces.

Inverse limits caught the interest of dynamicists in 1967 when R.F. Williams

demonstrated a relationship between attractors and the shift map on an inverse limit

[50]. He showed that for a given inverse limit X with shift map h, there is a dif-

feomorphism f : S4 ! S4 and indecomposable subset ⌦0 of its non-wandering set

such that (X, h) is conjugate to (⌦0, f |⌦0). Conversely, he also showed that, given

a di↵eomorphism of manifolds f : M ! M and a one-deminsional set ⌦0 that is

an irreducible subset of the non-wandering set with hyperbolic and associated stable

structure, then there is an inverse limit X such that (⌦0, f) is conjugate to (X, h).

In the 1980s, Barge and Martin showed that every inverse limit space of a mapping

f : [0, 1] ! [0, 1] can be realized as a global attractor A for a homeomorphism g of
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the plane such that
⇣
lim �{[0, 1], f}, h

⌘
is conjugate to (A, g|A) [6]. This provided an

impetus for the study of topological dynamics of inverse limits of the unit interval.

Accordingly, they also showed the existence of a periodic point of a continuous func-

tion f : [0, 1]! [0, 1] implies the existence of an indecomposable subcontinuum of its

inverse limit, and proved a pseudo-converse [9].

In 2004, Mahavier introduced a notion of inverse limits involving set-valued bond-

ing functions on [0, 1] instead of continuous bonding functions [37], and worked with

Ingram in 2006 to extend this concept to inverse limits of upper-semicontinuous set-

valued functions on compact Hausdor↵ spaces [31]. In these papers, Ingram and

Mahavier gave examples of these generalized inverse limits for which many of the

well-known properties of inverse limits of continuous function did not hold. This new

context, in which little could be taken for granted, has seen a large body of research

in recent years over a wide variety of topics, including connectedness [18, 24], in-

decomposability [34, 47], modeling spaces [2], the full-projection property [4], and

specification [21].

The focus of this dissertation is on inverse limits of set-valued functions satisfying

either of two notions of the intermediate value property for set-valued functions.

We show these functions may be used to generate connected inverse limits, and we

explore the relationship between the dynamics of a set-valued function f on [0, 1] and

the topological structure of the inverse limit generated by f .

In Chapter Two, we give give preliminary definitions with some history of the field

interspersed and a preview of the main results of this dissertation. In Chapter Three,

2



we define the weak intermediate value property and intermediate value property for

set-valued functions. We then prove theorems about the structure of functions with

the intermediate value property and give su�cient conditions such that a sequence of

set-valued functions with the weak intermediate value property admits a continuum

as its inverse limit, leading to a generalization of work by Nall [10].

In Chapter Four, we look at inverse limits of a function with the intermediate

value property and explore the relationship between the existence of periodic cycles

of the bonding function whose period is not a power of 2 and indecomposability in

the corresponding inverse limit. This generalizes work from Barge and Martin [5].

Key in these proofs is the full-projection property, which we prove holds for inverse

limits of this type.

This leads immediately into Chapter Five, in which we show one of the main

results of Chapter Four does not hold if we drop the assumption that the bonding

function is almost nonfissile. We construct a family of set-valued functions with

the intermediate value property that has periodic cycles of all periods, yet admits

a hereditarily decomposable inverse limit. Lastly, in Chapter Six we explore some

avenues for future work.
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CHAPTER TWO

Preliminaries

We give preliminary definitions and related results from continuum theory, clas-

sical inverse limits, classical dynamical systems, set-valued inverse limits, and set-

valued dynamical systems in Sections 2.1 through 2.5 respectively. This context

allows us to provide in Sections 2.4 and 2.5 a preview of the main results of the

dissertation.

2.1 Continuum Theory

We begin with some preliminary definitions from continuum theory. A more

in-depth introduction to the subject can be found in [40]. For an introduction to

topology, see [48].

Definition 2.1.1 . Let X and Y be topological spaces. A mapping, or map, from

X to Y is a continuous function f : X ! Y .

Definition 2.1.2 . A continuum is a nonempty, compact, connected metric space.

For a continuum X, a set K ✓ X is a subcontinuum if K is a continuum. We denote

the collection of nonempty compact subsets of X by 2X and denote the collection of

nonempty subcontinua of X by C(X).

It is well-known that ifX is a compact metric space, both 2X and CX are compact.
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Figure 2.1: The BJK Continuum

Definition 2.1.3 . A nondegenerate continuum X is decomposable if it is the union

of two proper subcontinua and indecomposable if it is not decomposable. X is hered-

itarily decomposable if each of its nondegenerate subcontinua is decomposable.

It is not intuitive that indecomposable continua exist. The topology of indecom-

posable continua is exotic; for example, an indecomopsable continuum is not locally

connected at any point. A famous example of an indecomposable planar continuum

is the Brouwer-Janiszewski-Knaster (BJK) continuum, or buckethandle continuum

(See Figure 2.1).

Definition 2.1.4 . A continuum K is irreducible about a nonempty closed set

A ✓ K if no proper subcontinuum of K contains A.

A famous characterization of indecomposability given by Stefan Mazurkiewicz is

that a continuum X is indecomposable if and only if X contains three points such

that X is irreducible about any two of them [39].

Definition 2.1.5 . A continuum X is unicoherent if, for every pair of subcontinua

A,B ✓ X with A[B = X, A\B is a continuum. X is hereditarily unicoherent if every

subcontinuum is unicoherent, or equivalently, the intersection of any non-disjoint pair

of subcontinua of X is itself a subcontinuum of X.
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2.2 Classical Inverse Limits

For a general introduction to inverse limits, see [32].

The graph of a function f : [a, b]! 2[c,d] is the set G(f) = {(x, y) 2 [a, b]⇥ [c, d] :

y 2 f(x)}.

Definition 2.2.1 . Let X0, X1, X2, . . . be a sequence of continua and for all i 2 N

let fi : Xi�1 ! Xi be continuous. The pair {Xi, fi} called an inverse sequence. The

inverse limit of the inverse sequence is the subspace of
Q

i2! Xi given by

lim �{Xi, fi} =
�
x = (x0, x1, . . . ) 2

Q
i2! Xi : xi�1 = fi(xi) 8i � 1

 
.

The spaces Xi are called the factor spaces of the inverse limit, and the functions

fi are called the bonding maps For each n 2 !, the map ⇡n : lim �{Xi, fi} ! Xn

defined by ⇡n(x) = xn is the projection map onto the nth factor space. For two

consecutive integers n and n + 1, ⇡n+1,n : lim �{Xi, fi} ! Xn+1 ⇥ Xn defined by

⇡n+1,n(x) = (xn+1, xn) is the projection map into Xn+1 ⇥Xn.

It is well-known that if {Xi, fi} is an inverse where each factor space is a contin-

uum, then X = lim �{Xi, fi} is a continuum.

Definition 2.2.2 . Let X0, X1, X2, . . . be a sequence of continua and for all i 2 N

let fi : Xi ! Xi�1 be continuous. X = lim �{Xi, fi} has the closed-set property if for

every closed subset C of X, C = lim �{⇡i[C], fi|⇡i[C]}.

Capel showed that inverse limits of continua with continuous bonding maps have

the closed-set property [14]. Thus we are able to regard closed subsets of X as inverse
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limits in their own right. But under the generalized notion of an inverse limit that

we will introduce in Section 2.4, this does not always hold.

Definition 2.2.3 . Let X be a continuum and f : X ! X be continuous. The shift

map, or forgetful shift, on lim �{X, f} is the map h : lim �{X, f} ! lim �{X, f} defined

by h(x) = (x1, x2, . . . ), where x = (x0, x1, . . . ).

The shift map is a homeomorphism of an inverse limit space with itself, with

h�1(x) = (f(x0, x0, x1, . . . )), although it is not a homeomorphism in the generalized

setting. Sometimes the literature refers to h�1 as the shift map instead.

Definition 2.2.4 . Let {Xi, fi} be an inverse sequence and X = lim �{Xi, fi}. We

say X has the full-projection property if and only if K = X for every subcontinuum

K of X such that ⇡i[K] = Xi for infinitely many i 2 !.

The full-projection property holds for inverse limits of continua with continuous

bonding maps. The full-projection property and closed-set property both hold for

calssical inverse limits, but they become distinct concepts in the set-valued setting.

Definition 2.2.5 . Let {Xi}i2! be a sequence of compact Hausdor↵ spaces and

{fi}i2N be a sequence of mappings fi : Xi ! Xi�1. We say lim �{Xi, fi} has the

subsequence property if for every increasing sequence {ni}i2! in !, lim �{Xni , gi} is

homeomorphic to lim �{Xi, fi}, where gi = fni+1
ni .

The subsequence property holds for all inverse limits of continuous functions and

shows that the representation of a given space as an inverse limit is not unique.
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Like the closed-set and full-projection properties, the subsequence property does not

always hold for generalized inverse limits.

Definition 2.2.6 . A tree is a uniquely arcwise connected union of finitely many

arcs. A continuum is tree-like if it is homeomorphic to an inverse limit on trees.

It is well-known that tree-like continua are hereditarily unicoherent.

2.3 Classical Dynamical Systems

Definition 2.3.1 . A dynamical system is a pair (X, f) consisting of a metric space

X and a continuous function f : X ! X.

Definition 2.3.2 . Let f : X ! X be a continuous function. The orbit of a point

x 2 X is the sequence {f i(x)}i2!, where f 0(x) = x. If there is some n 2 N such that

fn(x) = x, then x is periodic. The period of x is the smallest such natural number n.

A finite sequence (x0, x1, . . . , xn�1) is called a cycle if (x0, x1, . . . , xn�1, x0, x1, . . . ) is

a periodic orbit.

R.F. Williams’s result that attractors can be realized as homeomorphic to an

inverse limit where the dynamical system is conjugate to the shift map [50] provided

a major impetus to the use of inverse limits to study dynamical systems.

The dynamical system (lim �{X, f}, h), where h is the shift map, provides a use-

ful tool for studying the dynamics of (X, f) and vice-versa. For example, a peri-

odic point (x0, x1, x2, . . . ) 2 lim �{X, f} of period n indicates (xn, xn�1, . . . , x2, x1) is

a periodic cycle of (X, f). Conversely, if x0 is a periodic point of (X, f) with pe-
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riod n, then (x0, fn�1(x0), fn�2(x0), . . . , f(x0), x0, fn�1(x0, . . . )) is a periodic point of

(lim �{X, f}, h).

In the 1980s, Marcy Barge and Joe Martin undertook a study to discern for a map

f : [0, 1] ! [0, 1] the relationship of its dynamics to the dynamics of the shift map

on its inverse limit [6, 7] and to the topology of its inverse limit [5, 8]. The following

two results are of particular interest for this dissertation and form pseudo-converses

to one another:

Theorem 2.3.3 . (Barge and Martin [5, Theorem 1]) Suppose that k and n are

integers, k � 0, n � 1, and that f : [0, 1]! [0, 1] has a point of period 2k(2n+1), i.e.,

of period not a power of 2. Then lim �{[0, 1], f} has an indecomposable subcontinuum

that is invariant under h2k+1
where h is the shift homeomorphism.

Theorem 2.3.4 . (Barge and Martin, [5, Theorem 7]) If f : [0, 1]! [0, 1] is organic,

and lim �{[0, 1], f} is indecomposable, then f has a periodic point whose period is not

a power of 2.

Since Theorem 2.3.3 only specifies the inverse limit contains an (possibly proper)

indecomposable subcontinuum, Theorems 2.3.3 and 2.3.4 are not true converses,

though both connect the existence of a period not a power of 2 for the bonding

map to indecomposability in the inverse limit. The subsequence property is critical

to the proof of Theorem 2.3.3.

Also critical to the proof of Theorem 2.3.3 is the relationship between periodic

points. A.N. Sharkovskii introduced the following ordering of the positive integers,

now known as the Sharkovskii ordering [46].
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3 � 5 � 7 � 9 � · · · � 3 · 2 � 5 · 2 � 7 · 2 � 9 · 2 � . . .

� 3 · 22 � 5 · 22 � 7 · 22 � 9 · 22 � · · · � 3 · 2k � 5 · 2k � 7 · 2k � 9 · 2k �. . .

· · · � 24 � 23 � 22 � 2 � 1

Theorem 2.3.5 . (Sharkovskii, [46]) Suppose f : R! R is a mapping and f has a

periodic point of period k. If k � j, then f has a point of period k.

We may apply this theorem to a map f : [0, 1]! [0, 1] by continuously extending

f to be constant on (�1, 0] and [1,1). Note that if f has a point of period not a

power of 2, as is assumed in Theorem 2.3.3, then f has periodic points of infinitely

many periods. In particular, f has a periodic point whose period is a multiple of 3.

Thus Theorem 2.3.3 demonstrates a connection between complicated dynamics and

exotic topology.

2.4 Set-Valued Inverse Limits

In 2004 and 2006, Mahavier and Ingram introduced inverse limits with upper-

semicontinuous set-valued functions [31, 37]. Since then, extensive work has been

done to generalize and extend results from the classical setting. Many fundamental

results of classical inverse limits do not carry into the set-valued setting.

Definition 2.4.1 . A function f : X ! 2Y is upper-semicontinuous at x if for every

open set U containing f(x) there is an open set V containing x such that f(V ) ✓ U .

The function f is upper-semicontinuous if it is upper-semicontinuous at every point

in its domain.
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Ingram and Mahavier proved that f is upper-semicontinuous if and only if G(f)

is closed [31].

Definition 2.4.2 . Let X0, X1, X2, . . . be a sequence of continua and for all i 2 N

let fi : Xi ! 2Xi�1 be upper-semicontinuous. The pair {Xi, fi} is called an inverse

sequence, and the inverse limit of {Xi, fi}, sometimes called the generalized inverse

limit of {Xi, fi}, is the subspace of
Q

i2! Xi given by

lim �{Xi, fi} =
�
x = (x0, x1, . . . ) 2

Q
i2! Xi : xi�1 2 fi(xi) 8i � 1

 
.

The spaces Xi are called the factor spaces of the inverse limit, and the functions

fi are the bonding functions. For n > i, fn
i : Xn ! Xi denotes the composition

fi+1 � fi+2 � ... � fn. For each n 2 !, the map ⇡n : lim �{Xi, fi} ! Xn defined by

⇡n(x) = xn is the projection map onto the nth factor space. For two consecutive

integers n and n + 1, ⇡n+1,n : lim �{Xi, fi} ! Xn+1 ⇥ Xn defined by ⇡n+1,n(x) =

(xn+1, xn) is the projection map into Xn+1 ⇥Xn.

This new notion opened up the possibility for a wider variety of spaces to be

modeled as inverse limits on a given sequence of factor spaces. Shortly after its

introduction, a large body of research developed around inverse limits with set-valued

functions, dealing with topics that include the kinds of spaces that can be realized as

inverse limits [2, 11, 12, 28] and conditions under which results from classical inverse

limits are extended [3, 16, 17, 24, 25, 30, 34, 47].
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2.4.1 Connectedness

One property of classical inverse limits that does not hold in general for inverse

limits of upper-semicontinuous functions is that, in the classical setting, the inverse

limit of continua is a continuum. Ingram and Mahavier found in [31] that even inverse

limits of upper-semicontinuous functions on [0, 1] are compact and nonempty but not

necessarily connected, and gave examples of such functions. Ingram presents the

following problems in [29]:

Problem. 6.1 Characterize connectedness of inverse limits on continua with upper-

semicontinuous bonding functions.

Problem. 6.2 Characterize connectedness of inverse limits on continua with upper-

semicontinuous bonding functions on [0, 1].

Problem. 6.3 Find su�cient conditions that an inverse limit on continua with

upper-semicontinuous bonding functions be a continuum.

Problem. 6.4 Solve Problem 6.3 on [0, 1].

Theorem 2.4.3 . (Ingram and Mahavier, [31]) lim �{Xn, fn} is connected if and only

if the sets

�n(f) = {(x0, x1, x2, . . . xn) 2 [0, 1]n+1 : xi�1 2 fi(xi) 8i  n}

are connected for each n.
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These sets �n(f), subsequently dubbed Mahavier products by Charatonik and

Roe, have been the subject of research in their own right [18, 20, 26].

While this criterion characterizes connectedness, it is di�cult to verify due to the

need to check infinitely many conditions. Ingram and Mahavier also presented some

su�cient conditions that are more readily verfied.

Theorem 2.4.4 . (Ingram and Mahavier, [31]) If for each i 2 !, Xi is a continuum

and fi : Xi+1 ! C(Xi) is upper-semicontinuous, then lim �{Xi, fi} is a continuum.

Nall also presented some conditions su�cient to ensure the connectedness of the

inverse limit of a single set-valued function on [0, 1].

Theorem 2.4.5 . (Nall, [10]) Let X be a continuum and f : X ! 2X be a sur-

jective upper-semicontinuous function with connected graph G(f) such that G(f) =

S
↵ G(f↵), where each f↵ : X ! C(X) is upper-semicontinuous. Then lim �{X, f} is a

continuum.

While it is true that the inverse limit need not be connected, Banič and Kennedy

showed there is a component of inverse limits with set-valued functions on [0, 1] that

is large in the sense that its projections encapsulate the entire graphs of the bonding

functions.

Theorem 2.4.6 . (Banič and Kennedy, [3]) For all n 2 !, let fn : [0, 1]! 2[0,1] be an

upper-semicontinuous function such that the graph G(fn) is connected and surjective.

Then there is a continuum C ✓ lim �{[0, 1], fn} such that ⇡n+1,n[C] = G(fn) for any n.
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Greenwood and Kennedy developed a characterization for the connectedness of

inverse limits of upper-semicontinuous functions on [0, 1] that are surjective and have

connected graphs in [24] and refined the result in [25]. Their result, stated in Theorem

3.3.3, requires preliminary technical definitions, which will be introduced in Chapter

Three. We use this to show the following in Theorem 3.3.5:

Theorem. For each n 2 N, let fn : [0, 1] ! 2[0,1] be a surjective, upper-

semicontinuous function with the weak intermediate value property and a connected

graph G(fn). Then lim �{[0, 1], fn} is connected.

We show in Theorem 3.3.8 that in the special case of a single bonding function, the

criteria in the previous theorem is equivalent to that of Nall’s theorem (2.4.5). Like

Nall’s theorem, this provides su�cient conditions that are verified through checking

each bonding function individually, providing an easily verifiable condition to check

for connectedness in the inverse limit. Theorem 3.3.5 is the most general result that

provides su�cient conditions for the connectedness of a generalized inverse limit using

criteria restricted to individual bonding maps.

2.4.2 Indecomosability and Full-Projection Property

With the advent of generalized inverse limits, another area of particular interest

has been to identify and analyze circumstances that give rise to indecomposable

subcontinua. Ingram [29], James P. Kelly [33], Jonathan Meddaugh [34], and Scott

Varagona [47] have all written on the subject, using the full-projection property as a

crucial tool to demonstrate indecomposability.
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Example 2.4.7 . (Varagona, [47]) Let f : [0, 1] ! 2[0,1] be defined by the graph

made by drawing straight line segments from (0, 0) to
�
1
3 ,

1
3

�
,
�
1
3 ,

1
3

�
to
�
1
3 ,

2
3

�
,
�
1
3 ,

2
3

�

to
�
1
2 , 1
�
, along with the reflection of this figure about the line x = 1

2 (pictured on

the left in Figure 2.2). Then lim �{[0, 1], f} is indecomposable.

Example 2.4.8 . (Kelly, [33]) Let f : [0, 1]! 2[0,1] be the graph found on the right

of Figure 2.2. Then lim �{[0, 1], f} is an indecomposable continuum.

0 1
0

1

Figure 2.2: Set-valued functions that generate indecomposable inverse limits

While there is no proof that the full-projection property is a necessary condition

for indecomposability, many if not all of the results related to the indecomposability of

inverse limits with set-valued functions make use of it. Thus an important question

related to the study of indecomposability is if there is a theorem that ensures an

indecomposable inverse limit has the full-projection property or if there is an inverse

limit that is an indecomposable continuum but does not have the full-projection

property.

Since the bonding function is set-valued, the shift map on the generalized inverse

limit lim �{X, f} is no longer injective, though it is still a continuous surjection. The
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corresopndence between periodic points of the inverse limit and periodic cycles of the

dynamical system (X, f) is preserved, however, allowing us to model a more robust

variety of dynamical systems as inverse limits.

In general, the subsequence property does not hold for inverse limits of upper-

semicontinuous functions. Thus the proof for Theorem 2.3.3 cannot be lifted to the

set-valued setting. However, we form an alternate proof making use of the following

from Theorem 4.1.12:

Theorem. Suppose {[0, 1], fn} is an inverse sequence where, for each n 2 N, fn :

[0, 1]! 2[0,1] is a surjective, light, almost nonfissile, upper-semicontinuous map with

the intermediate value property. Then lim �{[0, 1], fn} has the full-projection property.

The added assumptions that f is light and almost nonfissile are necessary for the

proof and will be introduced in Chapter Four.

2.5 Set-Valued Dynamical Systems

Set-valued dynamical systems have been used to model switched circuit networks

[13], economics [19], and game theory [22, 38]. Recent years have seen the field grow as

a robust area of study in its own right, with results involving the specification property

[21], chaos [23], entropy [15, 35], and shadowing [42, 43]. In this dissertation, we are

interested in the connection between complicated dynamics and exotic topology.

As with inverse limits, many fundamental properties of dynamics fail when moved

to the generalized setting.
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Definition 2.5.1 . Let X and Y be metric spaces and f : X ! 2Y . An orbit of

f is a sequence {xi}i2! where xi+1 2 f(xi) for all i. If x 2 X, an orbit of x is an

orbit of f where x0 = x. The orbit is said to be periodic if there is some n 2 N such

that xn+i = xi for all i. The smallest such n is called the period of the orbit. A

finite sequence (x0, x1, . . . , xn�1) is called a cycle if (x0, x1, . . . , xn�1, x0, x1, . . . ) is a

periodic orbit.

As f is a set-valued function, a given point may not have a unique orbit. Because

of this, for a given orbit {xi}i2! there may be some i 2 N such that xi = x0, even if

{xi}i2! is not periodic. Similarly if {xi}i2! is an orbit of period n, there may be some

0 < j < n such that xj = x0. For instance, the function f : [0, 1] ! 2[0,1] defined by

f(0) = f(1) = [0, 1] and f(x) = {0} for x 2 (0, 1) has (0, 0, 1, 0, 1) as a periodic cycle.

Although x0 = x1 = 0, the period of the orbit is 5.

In general, the Sharkovskii order does not hold for upper-semicontinuous set-

valued functions.

Example 2.5.2 . Define f : [0, 1]! 2[0,1] by

f(x) =

8
>>>>>><

>>>>>>:

1/2 x 2 [0, 1)

[1/2,1] x = 1/2

1� x x 2 (1/2, 1]

Then
�
0, 12 , 1

�
is a period 3 cycle, but there is no period 2 cycle. So the Sharkovskii

order fails for f . See Figure 2.3 for the graph of this function.
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0 1
0

1

Figure 2.3: Upper-semicontinuous function where the Sharkovskii order fails.

However, the intermediate value property (defined in Chapter Three) allows us to

recover the Sharkovskii order.

Theorem 2.5.3 . (Otey, Ryden, [41]) Let f : [0, 1]! 2[0,1] be upper-semicontinuous

and have the intermediate value property. If f has a cycle of period n, then f has

cycles of every period m such that n � m.

With the Sharkovskii order and the full-projection property in place, we provide

the following generalizations of Theorems 2.3.3 and 2.3.4 in Theorems 4.2.2 and 4.2.8

respectively, connecting complicated dynamics of set-valued functions to the exotic

topology of their corresponding inverse limits.

Theorem. Let f : [0, 1] ! 2[0,1] be upper-semicontinuous, surjective, almost non-

fissile, light, and have the intermediate value property, and G(f) have empty interior.

If f has an orbit of period not a power of 2, then lim �{[0, 1], f} contains an indecom-

posable subcontinuum.
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Theorem. If f : [0, 1]! 2[0,1] is upper-semicontinuous, organic and has the inter-

mediate value property and lim �{[0, 1], f} is indecomposable, then f has a periodic

cycle with a period that is not a power of 2.

The intermediate value property will be key as it allows us to generalize Theorem

2.3.5 and use the Sharkovskii order with set-valued functions.

19



CHAPTER THREE

Connectedness of Inverse Limits of Set-Valued Functions on [0,1] with the (Weak)
Intermediate Value Property

3.1 Introduction

In this chapter, we consider the connectedness of generalized inverse limits on

[0, 1] whose bonding functions have the weak intermediate value property. In Section

3.2, we introduce two generalized notions of the intermediate value property that are

applicable to set-valued functions. Then we prove some structure theorems to give

the reader some intuition as to the nature of the weak intermediate value property

and intermediate value property for upper-semicontinuous functions.

In Section 3.3, we introduce a characterization of connectedness of inverse limits

of upper-semicontinuous functions on [0, 1] that are surjective and have connected

graphs from [24, 25]. This allows us to prove the main theorem of the chapter, The-

orem 3.3.5, in which we show a sequence of upper-semicontinuous functions with the

weak intermediate value property generates a connected inverse limit under modest

conditions. The su�cient conditions provided in Theorem 3.3.5 are easily verfiable, as

they pertain to the bonding functions taken in isolation, rather than taken together

in compositions of finite subsequences. We show in Theorem 3.3.8 that in the special

case of a single bonding function, the criteria in Theorem 3.3.5 is equivalent to that

of Nall’s theorem (2.4.5).
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In Section 3.4, we present examples demonstrating that the assumptions of The-

orem 3.3.5 are sharp, and thus cannot be dropped. We also present an upper-

semicontinuous function that does not have the weak intermediate value property

yet admits a connected inverse limit, indicating the su�cient conditions of Theorem

3.3.5 are not necessary. This indicates room for further research on necessary or suf-

ficient conditions on a sequence of upper-semicontinuous bonding functions to admit

a connected inverse limit.

3.2 Intermediate Value Properties for Set-Valued Functions

Definition 3.2.1 . Let f : [a, b] ! 2[c,d] be an upper-semicontinuous function.

We say f has the intermediate value property if, given distinct x1, x2 and distinct

y1 2 f(x1), y2 2 f(x2), there is some x strictly between x1 and x2 such that y 2 f(x).

We say f has the weak intermediate value property if, given distinct x1, x2, and

y1 2 f(x1) there is some y2 2 f(x2) such that if y is between y1 and y2, then there is

x between x1 and x2 such that y 2 f(x).

Note that we do not specify if x2 is larger than x1. So for a function to have

the weak intermediate value property, it is necessary for the condition to hold when

x2 > x1 and x1 > x2. If f is upper-semicontinuous and has the intermediate value

property, it follows that f is weakly continuous via Theorem 3.2.10.

Let f : [a, b] ! 2[c,d] and g : [c, d] ! 2[i,j] be upper-semicontinuous, I be a

closed subinterval of [a, b], and J be a closed subinterval of [c, d] such that if x 2 I,

then f(x) \ J 6= ;. Let f |I : I ! 2[c,d] denote the function f |I(x) = f(x). Let

f |JI : I ! J denote the function f |JI (x) = f(x) \ J . Note that if f and g have the
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(weak) intermediate value property, then each of f |I , f |JI , and g � f has the (weak)

intermediate value property as well.

Below we present some examples to demonstrate what it means for an upper-

semicontinuous function to have the intermediate value property and weak inter-

mediate value property. Examples 3.2.2, 3.2.3, and 3.2.4 are upper-semicontinuous

functions that have the intermediate value property, the weak intermediate value

property but not the intermediate value property, and neither property respectively.

Example 3.2.2 . Let f : [0, 1]! 2[0,1] be defined by

f(x) =

8
>>>>>><

>>>>>>:

⇥
0, 14
⇤

x = 0

1
4 sin

�
1
x

�
+ 1

4 0  x  1
⇡

1
4⇡�1(3⇡x+ ⇡ � 1) 1

⇡  x  1

Then f has the intermediate value property, the graph of which can be seen in

Figure 3.1.

0 1
0

1

Figure 3.1: Upper-semicontinuous function with intermediate value property.
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Example 3.2.3 . Let f : [0, 1] ! 2[0,1] be given by f(x) = {x, 1 � x}. Then f

is upper-semicontinuous and has the weak intermediate value property but does not

have the intermediate value property.

To see why f does not have the intermediate value property, consider (x1, y1) =

(0, 1) and (x2, y2) =
�
1
4 ,

1
4

�
. There is no x 2

�
0, 14
�
such that f(x) contains 1

2 .

0 1
0

1

Figure 3.2: Upper-semicontinuous function with the weak intermediate value prop-
erty.

Example 3.2.4 . Let f : [0, 1]! 2[0,1] be given by

f(x) =

8
>><

>>:

1
3x 0  x < 1

2

�
1
3x, 2x� 1

 
1
2  x  1

Then f has neither the intermediate value property nor the weak intermediate value

property.

Let (x1, y1) =
�
1
2 , 0
�
and x2 =

1
4 . Since f

�
1
4

�
=
�

1
12

 
, y2 must be 1

12 . But
1
24 /2 f(x)

for any x 2
�
1
4 ,

1
2

�
. So f does not have the weak intermediate value property. Note,
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from the graph of f in Figure 3.3 that the weak intermediate value property holds

for x2 > x1 and only fails in a case where x1 > x2.

0 1
0

1

Figure 3.3: Upper-semcontinuous function w/o the weak intermeidate value property.

Definition 3.2.5 . The function f : [a, b] ! 2[c,d] is weakly continuous from the

left at x if it is upper-semicontinuous and, for each y 2 f(x), there is a sequence

{(xn, yn)}n2! that converges to (x, y) such that xn < x and yn 2 f(xn) for each n.

The function f : [a, b] ! 2[c,d] is weakly continuous from the right at x if it is

upper-semicontinuous and, for each y 2 f(x), there is a sequence {(xn, yn)}n2! that

converges to (x, y) such that xn > x and yn 2 f(xn) for each n.

The function f : [a, b]! 2[c,d] is weakly continuous at x if f is weakly continuous

from the left and from the right at x, and f is weakly continuous if it is weakly

continuous for each x 2 (a, b).

Theorem 3.2.6 . Suppose f : [0, 1] ! 2[0,1] is upper-semicontinuous. Then f has

the intermediate value property if and only if f is weakly continuous and f(x) is

connected for each x.
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Proof. If f has the intermediate value property, then f is weakly continuous and f(x)

is connected for each x by Theorem 3.2.8. To see the converse, suppose f does not

have the intermediate value property but that f is weakly continuous. We show that

f(x) fails to be connected for some x 2 [0, 1]. Since f does not have the intermediate

value property, there are (x1, y1), (x2, y2) 2 G(f) and y strictly between y1 and y2

such that y 62 f(x) for all x strictly between x1 and x2. There are four cases, all

similar, corresponding to the orders of x1 and x2 and of y1 and y2. We consider only

the case in which x1 < x2 and y1 < y2.

Since f is weakly continuous from the right at x1, there is (x0
1, y

0
1) 2 G(f) such

that x1 < x0
1 < x2 and y01 < y. Since f is weakly continuous from the left at x2,

there is (x0
2, y

0
2) 2 G(f) such that x0

1 < x0
2 < x2 and y < y02. It follows that, for each

x 2 [x0
1, x

0
2], y 62 f(x). Since y01 < y < y02 it follows that V[x0

1,x
0
2]
\G(f) is the union of

two disjoint compact sets K1 and K2. Then ⇡1[K1][⇡1[K2] = [x0
1, x

0
2]. Consequently,

there is c 2 ⇡1[K1] \ ⇡1[K2]. It follows that {c} ⇥ f(c) is a subset of K1 [ K2 that

intersects both K1 and K2. Hence f(c) is not connected.

Notation. For 0  a < b  1, let V[a,b] = [a, b]⇥ [0, 1].

Lemma 3.2.7 . Let f : [0, 1] ! 2[0,1] be an upper-semicontinuous function with

G(f) connected. Then for all a  b there is some subcontinuum C of G(f) \ V[a,b]

such that C \ {a}⇥ [0, 1] 6= ; and C \ {b}⇥ [0, 1] 6= ;.

Proof. Let

L = {H : H is a component of G(f) \ V[a,b] and H \ {a}⇥ [0, 1] 6= ;},
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R = {K : K is a component of G(f) \ V[a,b] and K \ {b}⇥ [0, 1] 6= ;}.

Note for all H 2 L and K 2 R, either H \K = ; or H = K by the maximality

of components. Also G(f) \ V[a,b] = (
S

L) [ (
S

R); otherwise there would be some

component D of G(f)\ V[a,b] that does not intersect either {a}⇥ [0, 1] or {b}⇥ [0, 1].

Then D would be a proper component of G(f), contradicting the connectedness of

G(f).

Suppose that L \ R = ;. Then f(a) and f(b) are disjoint closed subsets of

G(f) \ V[a,b] such that no component of G(f) \ V[a,b] intersects f(a) and f(b). Then

by the Cut-Wire Theorem, there are two disjoint closed sets A and B such that

G(f) \ V[a,b] = A [ B, f(a) ✓ A, and f(b) ✓ B. As each H 2 L and K 2 R

is connected, H ✓ A and K ✓ B. Thus A =
S

L and B =
S

R. Then A [
�
G(f) \ V[0,a]

�
and B [

�
G(f) \ V[b,1]

�
are nonempty disjoint closed sets whose union

is G(f), contradicting the connectedness of G(f).

The following theorem provides a graphical characterization of the weak interme-

diate value property. A similar result characterizing the Intermediate Value Property

is provided in Theorem 3.2.10 for the purpose of comparison.

Theorem 3.2.8 . Let f : [0, 1] ! 2[0,1] be a upper-semicontinuous function such

that G(f) is connected. The following are equivalent:

1. f has the weak intermediate value property.

2. For all a  b, each component of G(f) \ V[a,b] intersects both {a} ⇥ [0, 1] and

{b}⇥ [0, 1].
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Proof. (1) 2) As in Lemma 3.2.7, let

L = {H : H is a component of G(f) \ V[a,b] and H \ {a}⇥ [0, 1] 6= ;},

R = {K : K is a component of G(f) \ V[a,b] and K \ {b}⇥ [0, 1] 6= ;}.

Note every component D of G(f) \ V[a,b] is a member of either L or R; otherwise

D would be a proper component of G(f), contradicting the assumption that G(f) is

connected. By contradiction, suppose there is some component C of G(f)\V[a,b] that

does not intersect both {a}⇥[0, 1] and {b}⇥[0, 1]. Without loss of generality, suppose

C \ ({b} ⇥ [0, 1]) = ;. Note this implies C 2 L. Then C and f(b) are nonempty

disjoint closed subsets of G(f) \ V[a,b] such that no connected subset of G(f) \ V[a,b]

intersects both C and {b}⇥ f(b). Then by the Cut-Wire Theorem, there are disjoint

closed sets A and B in G(f) \ V[a,b] such that A [ B = G(f) \ V[a,b], C ✓ A, and

{b}⇥ f(b) ✓ B. Note that by the connectedness of each H 2 L and K 2 R, H ✓ A

and K ✓ B. Thus A =
S

H2L\(L\R) H and B =
S

K2R K.

Let x1 = max{x : (x, y) 2 A}. By Lemma 3.2.7, there is some connected set

D ✓ B such that D \ {a} ⇥ [0, 1] 6= ; and D \ {b} ⇥ [0, 1] 6= ;. As D is connected,

there is some point z 2 f(x1) such that (x1, z) 2 D. Note there is some y 2 f(x1) such

that (x1, y) 2 A and either y > z or z > y. Without loss of generality, suppose z > y.

Let y1 = max{y : (x1, y) 2 A and y < z}. Define ✏ = min{d(A,B), b � x1} > 0.

Let x2 = x1 +
✏
2 and y2 2 f(x2). By the construction of x1 and x2, (x2, y2) 2 B.

So |y2 � y1| > ✏
2 ; otherwise d((x1, y1), (x2, y2)) < ✏. Let y 2 (y1 � ✏

2 , y1 +
✏
2) be

between y1 and y2 and x between x1 and x2. By definition of x1, (x, y) /2 A. But
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d((x1, y1), (x, y)) < ✏ so (x, y) /2 B. Thus for each x between x1 and x2, y /2 f(x), a

contradiction.

(2 ) 1) Choose x1, x2 2 [0, 1] and let y1 2 f(x1). Suppose x1 < x2. Let C be a

component of G(f)\V[x1,x2] containing (x1, y1). Choose y2 such that (x2, y2) 2 C. As

C is connected, ⇡2(C) is connected where ⇡2 : [0, 1]2 ! [0, 1] is the projection map

given by ⇡2(x, y) = y. Thus ⇡2(C) is an interval containing y1 and y2. So for any y

between y1 and y2, there is some x 2 [x1, x2] such that (x, y) 2 C, i.e. y 2 f(x). The

case where x1 > x2 follows by a similar argument.

Theorem 3.2.9 . Let f : [0, 1]! 2[0,1] be upper-semicontinuous function such that

G(f) is connected. If f(x) is connected for every x 2 [0, 1], then f has the weak

intermediate value property.

Proof. Let 0  a  b  1. By Lemma 3.2.7, there is some component C of G(f) \

V[a,b] that intersects {a} ⇥ [0, 1] and {b} ⇥ [0, 1]. Since f(a) and f(b) are connected,

C \ ({a}⇥ [0, 1]) = {a} ⇥ f(a) and C \ ({b}⇥ [0, 1]) = {b} ⇥ f(b). Let D be a

component of G(f) \ V[a,b]. Since G(f) is connected, either D \ ({a}⇥ [0, 1]) 6= ; or

D \ ({b}⇥ [0, 1]) 6= ;. In either case, C \ D 6= ;. Therefore D = C. Thus every

component of G(f)\ V[a,b] intersects {a}⇥ [0, 1] and {b}⇥ [0, 1], and f has the weak

intermediate value property by Theorem 3.2.8.

Theorem 3.2.10 . Let f : [0, 1] ! 2[0,1] be upper-semicontinuous. Then the fol-

lowing are equivalent.

1. f has the intermediate value property.
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2. For all a  b, G(f) \ V[a,b] is connected and G(f) \ V[a,b] = G(f) \ V(a,b).

Proof. (1 ) 2) Suppose f has the intermediate value property. In order to show

that for all a  b G(f) \ V[a,b] is connected, we first show that f(x) is connected for

each x 2 [0, 1]. By way of contradiction, suppose there is an x1 such that f(x1) is

disconnected. Let U1 and U2 be two intervals open in [0, 1] such that f(x1) ✓ U1[U2,

f(x1) \ U1 6= ;, f(x1) \ U2 6= ; and U1 \ U2 = ;.

Since f is upper-semicontinuous, there is an open set V 3 x1 such that if x 2 V ,

then f(x) ✓ U1 [ U2. Let x2 2 V \ {x1} and choose y2 2 f(x2). Then y2 2 U1 or

y2 2 U2. Without loss of generality, suppose y2 2 U2. Let y1 2 f(x1)\U1. Then there

is some y 2 [0, 1] \ (U1 [ U2) strictly between y1 and y2. Let x be between x1 and x2.

Then since x 2 V , f(x) ✓ U1 [ U2. So y /2 f(x), contradicting the assumption that

f has the Intermediate Value Property. Thus f(x) is connected for all x 2 [0, 1].

Let K1 and K2 be components of G(f)\V[a,b]. Since f has the Intermediate Value

Property and therefore the weak intermediate value property, K1 \ ({a}⇥ [0, 1]) 6=

; and K2 \ ({a}⇥ [0, 1]) 6= ; by Theorem 3.2.8. But because f(a) is connected,

{a}⇥ f(a) is connected and intersects both K1 and K2. So K1 \K2 6= ; as K1 and

K2 are components. Hence K1 = K2, making G(f) \ V[a,b] connected.

Next we show G(f) \ V[a,b] = G(f) \ V(a,b). If f(a) is a singleton, then (a, f(a)) 2

G(f) \ V(a,b) as f is upper-semicontinuous. Similarly if f(b) is a singleton, then

(b, f(b)) 2 G(f) \ V(a,b). Suppose f(a) is nondegenerate. Let {(an, zn)}n2! be a

sequence in G(f) \ V(a,b) such that an ! a. Taking subsequences if necessary,
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we may choose the sequence such that {zn}n2! converges to some z 2 f(a). So

(a, z) 2 G(f) \ V(a,b).

Let y 2 f(a)\{z} and let ✏ > 0 such that |z�y| > ✏. Since zn ! z, there is N 2 N

such that if n � N , then y is not between zn and z. Let y✏ be strictly between y and zn

for all n � N such that |y� y✏| < ✏. Since f has the Intermediate Value Property, for

each n � N there is some xn 2 (a, an) such that y✏ 2 f(an). Then an ! a and (a, y✏) 2

G(f) \ V(a,b). By the same argument, for all 0 < � < ✏ there is some y� such that

(a, y�) 2 G(f) \ V(a,b). Since d((a, y), (a, y�)) = �, (a, y) 2 G(f) \ V(a,b). Therefore

{a}⇥ f(a) ✓ G(f) \ V(a,b). By a similar argument, {b}⇥ f(b) ✓ G(f) \ V(a,b). Thus

G(f) \ V(a,b) = G(f) \ V[a,b].

(2) 1) The converse follows by contradiction. Suppose for all a  b, G(f)\V[a,b]

is connected and G(f) \ V[a,b] = G(f) \ V(a,b), but f does not have the Intermediate

Value Property. Then there is some distinct x1, x2, y1 2 f(x1), y2 2 f(x2), and y

strictly between y1 and y2 such that y /2 f(x) for all x strictly between x1 and x2.

There are four cases depending on which of x1 and x2 is larger and which of y1 and

y2 is larger. Suppose x1 < x2 and y1 < y2. The proofs for the remaining cases are

similar.

Since G(f) \ V[x1,x2] = G(f) \ V(x1,x2), there are x1 < a0 < b0 < x2, ya0 2 f(a0)

with ya0 < y , and yb0 2 f(b0) with yb0 > y. So y is strictly between ya0 and yb0 , but

y /2 f(x) for any x 2 [a0, b0]. Thus G(f) \ V[a0,b0] is disconnected, a contradiction.
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3.3 Showing Connectedness of Generalized Inverse Limits with the Weak
Intermediate Value Property

Notation. Let i > 0, ✏ > 0, and Ai = [ai, bi] be a subset of [0, 1] for each i. For

j 2 {i, i� 1}, define

Jj = [0, aj), Ri = (Ki ⇥ [0, 1]) [ Zi,

Kj = (bj, 1] TLi = Ti [ Li,

Zi = Ai ⇥ Ai�1, TRi = Ti [Ri,

Ti = ([0, 1]⇥Ki�1) [ Zi, BLi = Bi [ Li

Bi = ([0, 1]⇥ Ji�1) [ Zi, BRi = Bi [Ri,

Li = (Ji ⇥ [0, 1]) [ Zi,

Zi(✏) = ((ai � ✏, bi + ✏)⇥ (ai�1 � ✏, bi�1 + ✏)) \ ([0, 1]⇥ [0, 1]).

Definition 3.3.1 . Suppose i > 0 and f : [0, 1]! 2[0,1] is upper-semicontinuous. If

for each j 2 {i, i� 1}, Ai = [ai, bi] ( [0, 1], either

• S 2 {BL,BR, TL, TR}, or

• Ai \ {0, 1} = ; and S 2 {Li, Ri}, or

• Ai�1 \ {0, 1} = ; and S 2 {Bi, Ti},

and there exists ✏ > 0 and a component C 0 of the set G(f) \ Zi(✏) such that C 0 ⇢ S,

then any component C of C 0 \ Zi is an S-set in G(f) framed by Ai ⇥ Ai�1, denoted

G(f) @C S.
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In the following definition, only condition (1) is used for the purpose of prov-

ing our main result. But for the sake of completeness and to properly introduce

Greenwood’s and Kennedy’s criterion for connected inverse limits of surjective upper-

semicontinuous functions on [0, 1] with connected graphs, we present the full definition

of a CC-sequence.

Definition 3.3.2 . Suppose for each i > 0, fi+1 : [0, 1] ! 2[0,1] is a surjective

upper-semicontinuous function with a connected graph, denoted Gi+1, and m,n 2 N

are such that m+ 1 < n. Suppose that there exist

• a closed interval Ai ( [0, 1] for each i, m  i  n, and

• a point

(pk)k2! 2 lim �{[0, 1], fi} \
 
Y

i<m

[0, 1]⇥
Y

min

Ai ⇥
Y

i>n

[0, 1]

!
.

For each i > 0, let Ci be the component of Gi \ Zi containing (pi, pi�1) and suppose

the following properties hold:

1. Gm+1 @Cm+1 Rm+1 or Gm+1 @Cm+1 Lm+1;

2. • if n = m + 2, then Gm+2 @Cm+2 Tm+2 if Gm+1 @Cm+1 Lm+1, and Gm+2

@Cm+2 Bm+2 if Gm+1 @Cm+1 Rm+1;

• if n > m + 2, then Gm+2 @Cm+2 BRm+2 or Gm+2 @Cm+2 BLm+2 if

Gm+1 @Cm+1 Rm+1, and Gm+2 @Cm+2 TLm+2 or Gm+2 @Cm+2 TRm+2 if

Gm+1 @Cm+1 Lm+1;
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3. if m+2  i < n�1, then Gi+1 @Ci+1 BLi+1 or Gi+1 @Ci+1 BRi+1, if Gi @Ci BRi

or Gi @Ci TRi, and Gi+1 @Ci+1 TLi+1 or Gi+1 @Ci+1 TRi+1 if Gi @Ci BLi or

Gi @Ci TLi;

4. if n > m+2, then Gn @Cn Bn if Gn�1 @Cn�1 BRn�1 or Gn�1 @Cn�1 TRn�1, and

Gn @Cn Tn if Gn�1 @Cn�1 BLn�1 or Gn�1 @Cn�1 TLn�1.

Then {fi : i > 0} admits a component cropping sequence, or CC-sequence,

{Ai : m  i  n},

over [m,n] with pivot point (pk)k2!. The collection {fi : i > 0} of functions admits

a CC-sequence if there exist m,n 2 N such that {fi : i > 0} admits a CC-sequence

over [m,n] with some pivot point.

Theorem 3.3.3 . (Greenwood, Kennedy [25]) Suppose that for each i � 0, Ii is an

interval, fi+1 : Ii+1 ! 2Ii is a surjective upper-semicontinuous function, and G(fi+1) is

connected. The system admits a CC-sequence if and only if lim �{Ii, fi} is disconnected.

We show that if all bonding functions have the weak intermediate value property,

then (1) from the above definition cannot be met, i.e. that the graph of such a

function contains no L-sets or R-sets. This along with Theorem 3.3.3 is su�cient to

establish the main result.

Theorem 3.3.4 . Let f : [0, 1]! 2[0,1] be a function that is upper-semicontinuous

and has the weak intermediate value property, and suppose G(f) be connected. Then

G(f) contains no L-sets or R-sets.
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Proof. We show that G(f) contains no L-sets. That there are no R-sets follows by

a symmetric argument. By way of contradiction, suppose there are some A1 = [a, b]

and A0 = [c, d] such that A1 ⇥A0 frames an L-set of G(f). Let ✏ > 0 and C 0 ⇢ L be

a component of G(f)\Z(✏) that contains an L-set C. Then C 0 and C are connected

sets that do not intersect any of [a, b]⇥ [0, c), [a, b]⇥ (d, 1], or (b, 1]⇥ [0, 1]. Thus C

is a component of V[a,b+✏]. However by Theorem 3.2.8, C \ ({b+ ✏}⇥ [0, 1]) 6= ;, a

contradiction.

Theorem 3.3.5 . For each n 2 N, let fn : [0, 1] ! 2[0,1] be a surjective, upper-

semicontinuous function with the weak intermediate value property and a connected

graph G(fn). Then lim �{[0, 1], fn} is connected.

Proof. By Theorem 3.3.4, G(f) contains no L-sets or R-sets. Then condition (1) of

the definition of a CC-sequence cannot be met. It follows that the system does not

admit a CC-sequence, and therefore lim �{[0, 1], f} is connected by Theorem 3.3.3.

Remark. Jonathan Medaugh has informed the author that Theorem 3.3.5 would hold

if f�1
n , rather than fn, were assumed to have the weak intermediate value property

for each n. One approach to the proof of such a result would involve finite Mahavier

products �n(f) and the fact that �n(f) and Gn(f�1) are homeomorphic where f�1 =

{f�1
i }i2N [18, Theorem 2.11].

We now establish a structure theorem regarding the graphs of functions with

the weak intermediate value property. Theorem 3.3.8 reveals a kinship with Nall’s

theorem (Theorem 2.4.5). In particular, it shows that upper-semicontinuous functions
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with the weak intermediate value property are precisely those that satisfy Nall’s

criteria. Thus Theorems 3.3.5 and 3.3.8 provide a generalization of Nall’s Theorem,

which is stated and proved in the context of a single bonding function.

Before examining the structure of upper-semicontinuous functions with the weak

intermediate value property as unions of their subgraphs, we must introduce the

notion of convergence in the hyperspace 2X with the Hausdor↵ topology, i.e. what it

means for a sequence of subsets of a metric space to converge. The following definition

and theorem can be found in [36].

Definition 3.3.6 . Let X be a space and {Ai}i2! be a sequence of subsets of X.

We define lim Ai and lim Ai as follows:

lim Ai = {x 2 X : for every open set U 3 x, U \ Ai 6= ; for infinitely many i},

lim Ai = {x 2 X : for every open set U 3 x, U \ Ai 6= ; for cofinitely many i}.

If lim Ai = lim Ai, we define lim Ai = lim Ai = lim Ai.

Theorem 3.3.7 . If X is a compact metric space and if {Ei}i2! is a sequence of

connected subsets of X such that lim Ei 6= ;, then lim Ei is connected.

Theorem 3.3.8 . Let f : [0, 1] ! 2[0,1] be an upper-semicontinuous function such

that G(f) is connected. Then f has the weak intermediate value property if and only

if there is a collection F of upper-semicontinuous functions g : [0, 1]! C([0, 1]) such

that G(f) =
S

g2F G(g).

Proof. (() Suppose there is a collection F of upper-semicontinuous functions g :

[0, 1]! C([0, 1]) such that G(f) =
S

g2F G(g). Let (x1, y1) 2 G(f) and x2 2 [0, 1] be
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distinct from x1. There is some g 2 F such that (x1, y1) 2 G(g). By Theorem 3.2.9,

g has the weak intermediate value property. Then there is some y2 such that if y is

between y1 and y2, there is some x between x1 and x2 such that y 2 g(x) ✓ f(x).

Thus f has the weak intermediate value property.

()) It su�ces to show that for each (x, y) 2 G(f), there is an upper-

semicontinuous function g : [0, 1] ! C([0, 1]) such that (x, y) 2 G(g) ✓ G(f). To

that end, suppose (x, y) 2 G(f). For each n 2 N, define Gn to be the collection of set-

valued functions gn that satisfy the following: let 0  i < 2n such that i
2n  x  i+1

2n

and Cn,i be the component of G(f) \ V[ i
2n , i+1

2n ]
containing (x, y). By Theorem 3.2.8,

Cn,i \
��

i+1
2n

 
⇥ [0, 1]

�
6= ;. Choose a component Cn,i+1 of G(f) \ V[ i+1

2n , i+2
2n ]

such

that Cn,i \ Cn,i+1 6= ;. Then by Theorem 3.2.8, Cn,i+1 \
��

i+2
2n

 
⇥ [0, 1]

�
6= ;.

Continuing inductively, for each i < j < 2n, we may choose a component Cn,j of

G(f) \ V[ j
2n , j+1

2n ] such that Cn,j�1 \ Cn,j 6= ; and Cn,j \
��

j+1
2n

 
⇥ [0, 1]

�
6= ;. By a

similar argument, for 0  j < i, we may choose a component Cn,j of G(f) \ V[ j
2n , j+1

2n ]

such that Cn,j \ Cn,j+1 6= ; and Cn,j \
��

j
2n

 
⇥ [0, 1]

�
6= ;. So for 0  j < 2n there

are components Cn,j of G(f) \ V[ j
2n , j+1

2n ] such that Cn,j \ Cn,k 6= ; if and only if

|j � k|  1. Define G(gn) =
S

j<2n Cn,j. Then gn is upper-semicontinuous and has a

connected graph. Since for any i < 2n and component Cn,i of G(f) \ V[ i
2n , i+1

2n ]
there

is some gn 2 Gn with Cn,i ✓ G(gn),
S

gn2Gn
G(gn) = G(f).

Let {G(gn)}n2N be a sequence of subcontinua of G(f) where gn 2 Gn for each

n. Since 2X is compact, there is a convergent subsequence {G(gnk
)}k2N such that

limG(gnk
) is a subcontinuum of G(f). Define g by G(g) = limG(gnk

). Then g is

upper-semicontinuous and has a connected graph. Furthermore (x, y) 2 G(g), as
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(x, y) 2 G(gnk
) for every k. Since ({0}⇥ gnk

(0)) 2 2[0,1]
2
for each k, there is a

convergent subsequence of {{0}⇥ {gnk
(0)}}. Then lim ({0}⇥ gnk

(0)) is a nonempty

subset of lim G(gnk
) = limG(gnk

) = G(g). Thus g(0) 6= ;. Similarly g(1) 6= ;. As

G(g) is connected, g is a upper-semicontinuous function on [0, 1]. Let F consist of all

such functions g for any (x, y) 2 G(f) and any sequence {G(gn)}n2N where gn 2 Gn

for each n.

In order to show g(x) is connected for each x 2 [0, 1], let (x, y), (x, y0) 2 G(g↵).

Then for each k there are points (xnk
, ynk

), (x0
nk
, y0nk

) 2 G(gnk
) such that (xnk

, ynk
)!

(x, y) and (x0
nk
, y0nk

) ! (x, y0). Let ink
and jnk

be the largest and smallest inte-

gers respectively such that xnk
, x0

nk
2
h
ink
2nk

,
jnk
2nk

i
. Note that

ink
2nk

,
jnk
2nk
! x because

xnk
, x0

nk
! x. By the construction of the g0nk

s, Ank
= G(gnk

) \ Vh
ink
2nk

,
jnk
2nk

i is a sub-

continuum containing (xnk
, ynk

) and (x0
nk
, y0nk

). So (x, y), (x, y0) 2 lim Ank
. Then by

Theorem 3.3.7, lim Ank
is a connected subset of limG(gnk

) = G(g) containing (x, y)

and (x, y0). Since
ink
2nk

,
jnk
2nk
! x, limAnk

✓ ({x}⇥ f(x)). As y and y0 are arbitrary

elements of g(x), g(x) is connected. Note that by Theorem 3.2.9, g has the weak

intermediate value property.

Next we show that G(f) =
S

↵2⇤ G(g). That
S

↵2⇤ G(g↵) ✓ G(f) follows from the

fact that G(g↵) ✓ G(f) for each ↵. To show G(f) ✓
S

↵2⇤ G(g↵), let (x, y) 2 G(f).

Then for each n 2 N, there is a upper-semicontinuous function gn 2 Gn such that

(x, y) 2 G(gn). Then there is a convergent subsequence {G(gnk
)}. Let g↵ 2 F be

such that G(g↵) = lim G(gnk
). Then (x, y) 2 G(g↵).
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3.4 Examples

The first three examples demonstrate that Theorem 3.3.5 is sharp in that the

conditions on the bonding functions cannot be dropped. Example 3.4.4 demonstrates

that the inverse limit may be connected even if the bonding functions do not have

the weak intermediate value property.

Example 3.4.1 (Nall). Let f : [0, 1]! 2[0,1] be given by

f(x) =

8
>><

>>:

1
3x 0  x < 1

2

�
1
3x, 2x� 1

 
1
2  x  1

Then f is an upper-semicontinuous surjective function such that G(f) is connected

that does not have the weak intermediate value property. Nall shows in [10] that

G(f 2) has an isolated point at (1, 0), so lim �{[0, 1], f} is not connected. Notice that

f satisfies the weak intermediate value property in the case of x2 � x1. However,

the definition of the weak intermediate value property does not allow us to restrict

ourselves to considering only the case where x2 � x1. For example, let (x1, y1) =
�
1
2 , 0
�

and x2 =
1
4 . Since f

�
1
4

�
=
�

1
12

 
, y2 must be 1

12 . But
1
24 /2 f(x) for any x 2

⇥
1
4 ,

1
2

⇤
. So

f does not have the weak intermediate value property.

Example 3.4.2 . The function f : [0, 1]! 2[0,1] given by f(x) =
�

2
3x,

2
3x+ 1

3

 
is an

upper-semicontinuous function that is surjective and satisfies the weak intermediate

value property. But G(f) is not connected, therefore lim �{[0, 1], f} is not connected.
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0 1
0

1

(1/2, 0)

(1, 1/2)

(1, 1)

0 1
0

1

(1/2, 0)(3/4, 0)

(1, 1/2)

(1, 1)

(1, 1/4)

(1, 0)

Figure 3.4: G(f) (left) and G(f 2) (right) from Example 3.4.1

0 1
0

1

(0, 1/3)

(1, 2/3)

(1, 1)

Figure 3.5: G(f) from Example 3.4.2

Example 3.4.3 . The function f : [0, 1] ! 2[0,1] given by f(x) =
�

1
4 ,

3
4x+ 1

4

 

is upper-semicontinuous, satisfies the weak intermediate value property, and has a

connected graph. But f is not surjective. Specifically if y 2
⇥
0, 14
�
, there is no x with

y 2 f(x). Thus lim �{[0, 1], f} = lim �
n⇥

1
4 , 1
⇤
, f |[ 14 ,1]

o
which is not connected.

Example 3.4.4 . (Ingram) Let f : [0, 1]! 2[0,1] be given by

f(x) =

8
>>>>>><

>>>>>>:

{0, x} 0  x  1
4

0 1
4  x  1

[0, 1] x = 1
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0 1
0

1

(1, 1/4)

(1, 1)

(0, 1/4)

0 1
0

1

(1/4, 1/4)

(1/4, 7/16)

(1, 1/4)

(1, 1)

Figure 3.6: G(f) (left) and G
⇣
f |[ 14 ,1]

⌘
(right) for Example 3.4.3

Then f does not have the weak intermediate value property but lim �{[0, 1], f} is con-

nected. If (x1, y1) =
�
1
4 ,

1
4

�
and x2 =

1
2 , then y2 = 0. But 1

8 /2 f(x) for any x 2
⇥
1
4 ,

1
2

⇤
.

Ingram gives a proof that lim �{[0, 1], f} is connected, which can be found in Example

2.9 pg. 24 of [29].

0 1
0

1

(1/4, 1/4)

(1, 1)

Figure 3.7: G(f) for Example 3.4.4
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CHAPTER FOUR

Connecting the Dynamics of the Bonding Function with the Structure of the Inverse
Limit

Now that we have proven this class of bonding functions may be used to construct

connected inverse limits, it is natural to further study the properties of their inverse

limits. In this chapter, we explore the relationship between the topological structure of

an inverse limit generated by a single bonding function on [0, 1] with the intermediate

value property and the dynamics of the shift map on the inverse limit. Barge and

Martin examined the relationship between the dynamics of a continuous function

f : [0, 1] ! [0, 1] and the dynamics of the shift map on the corresponding inverse

limit [6, 7]. They also examined the relationship between the dynamics of f and the

topological structure of the corresponding inverse limit [5], [8] . Two of their results

are of primary concern:

Theorem 4.0.1 . [5, Theorem 1] If f has a periodic point whose period is not a

power of two, then the inverse limit has an indecomposable subcontinuum that is

invariant under the shift.

Theorem 4.0.2 . [5, Theorem 7] If f is organic and the inverse limit is indecom-

posable, then f has a periodic cycle whose period is not a power of two.

A particular area of interest in the study of generalized inverse limits has been to

identify and analyze circumstances that give rise to indecomposable subcontinua in

the inverse limit. Ingram, James P. Kelly, Jonathan Meddaugh, and Scott Varagona
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have all written on the subject, using the full-projection property as a crucial tool to

demonstrate indecomposability [29], [33], [34], [47].

In Section 4.1, we establish the full-projection property for inverse limits of sur-

jective, light, almost nonfissile, upper-semicontinuous functions with the intermediate

value property (Theorem 4.1.12) and for all subcontinua whose projections are nonde-

generate (Theorem 4.1.13). A key aspect of that role is to establish the full-projection

property. The main result, stated here, follows from Theorems 4.2.3 and 4.2.8.

Then in Section 4.2, we generalize Theorems 4.0.1 and 4.0.2 as Theorems 4.2.3

and 4.2.8 respectively, in which the existence of periodic cycles with period not a

power of two in the bonding function gives rise to indecomposability in the inverse

limit and vice versa, respectively.

4.1 Full-Projection Property

In this section we consider the full-projection property for inverse limits of upper-

semicontinuous functions with the intermediate value property. It is shown elsewhere

[44] that an inverse limit with upper-semicontinuous bonding functions has the full-

projection property if and only if its nonfissile points constitute a dense G� subset of

the inverse limit. In light of this, it is reasonable to wonder whether an equivalent or

even su�cient condition might be to require that the bonding functions of the inverse

limit be almost nonfissile. Alone, almost nonfissile does not su�ce; in tandem with

surjectivity, lightness, and the intermediate value property, it does. Theorem 4.1.12

establishes this, and Theorem 4.1.13 provides a generalization, that any subcontin-

uum with nondegenerate projections in all coordinates may also be written as an
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inverse limit with the full-projection property by restricting the bonding functions

appropriately. These are the main results of Section 4.1.2

In Section 4.1.1, we present results intended to provide intuition regarding the

structure of almost nonfissile functions and their graphs. In Proposition 4.1.4, it is

shown that an upper-semicontinuous interval function is almost nonfissile if and only

if it is irreducible with respect to domain. B.R. Williams [49] defined “irreducible

with respect to domain” to study the full-projection property. Iztok Banič, Matevž

Črepnjak, Matej Merhar, and Uroš Milutinović [4] studied the property further and

introduced variations to Williams’s definition.

4.1.1 Equivalence of Almost Nonfissile to Irreducibility with Respect to Domain

Definition 4.1.1 . Let X and Y be metric spaces and f : X ! 2Y . A point x 2 X

is a fissile point of f if |f(x)| > 1 and a nonfissile point otherwise, i.e. f(x) = {y}.

A point (x, y) 2 G(f) is a fissile point of G(f) if x is a fissile point of f and a

nonfissile point of G(f) otherwise.

The function f is almost nonfissile if the set of nonfissile points of G(f) is a dense

G� subset of G(f).

Let {Xi, fi} be an inverse sequence. A point (x0, x1, x2, ...) 2 lim �{Xi, fi} is a fissile

point of lim �{Xi, fi} if xi is a fissile point of fi for some i and a nonfissile point of

lim �{Xi, fi} otherwise.

The requirement that a function f : X ! 2Y be almost nonfissile is not equivalent

to the requirement that the set of nonfissile points of f be a dense G� subset of X.

For example, consider the function f : [0, 1]! 2[0,1] defined by f(x) = 0 if x 6= 1 and
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f(1) = [0, 1]. The set of nonfissile points of f is the interval [0, 1) which is a dense

G� subset of [0, 1], but the set of nonfissile points of G(f) is [0, 1)⇥ {0} which is not

dense in G(f).

However, it is true that if f is almost nonfissile, then the set of nonfissile points

of f is a dense G� set in X. It is straight forward to show density, and it is shown in

Lemma 4.1.2 that the set of nonfissile points of f is a G� set.

The set of fissile points of f : X ! 2Y , the set of fissile points of G(f), and the

set of fissile points of an inverse limit are all F� sets. The first and last of these is

proved in [44]. The first is also a consequence of Lemma 4.1.2.

Lemma 4.1.2 . Let f : [0, 1] ! 2[0,1] be an upper-semicontinuous function. Then

the set of nonfissile points of f is a G� subset of [0, 1]. If int G(f) = ;, then it is a

dense G� subset of [0, 1].

Proof. Define A = {x 2 [0, 1] : |f(x)| > 1}, and, for each n 2 N, define

Dn =

⇢
x 2 [0, 1] : diam f(x) � 1

n

�
.

As f is upper-semicontinuous, Dn is closed for each n. Note that A =
S

n2N Dn,

making A an F� set. It follows that the set of nonfissile points of f is a G� set.

We prove the second statement by contraposition. To that end, suppose the set of

nonfissile points of f is not dense or, equivlaently, that A is nonmeager. Then there

is some fixed n such that Dn is not nowhere dense, i.e. int Dn 6= ;. So there is some

nondegenerate interval [a, b] ✓ Dn.
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Let ✏ = infx2[a,b] diam f(x) � 1
n . Then for any ⌘ > 0, there exists z 2 [a, b]

such that ✏  diam f(z) < ✏ + ⌘. In particular, for ⌘ = ✏
8 , there is a z 2 [a, b]

such that diam f(z) < 9✏
8 . We assume the case z 2 [a, b), as the argument for

z = b follows a similar argument. Let c = min f(z) and d = max f(z). Since

f is upper-semicontinuous, there is some � > 0 such that if x 2 (z, z + �), then

f(x) ✓
�
c� ✏

8 , d+
✏
8

�
.

Let x 2 (z, z + �). As diam f(x) � ✏, f(x) ✓
�
c� ✏

8 , d+
✏
8

�
, and

diam
�
c� ✏

8 , d+
✏
8

�
< 11✏

8 , f(x) ◆
⇥
c+ ✏

4 , d�
✏
4

⇤
, an interval with nonempty

interior. As x was arbitrary, the set

U =
�
(x, y) : z < x < z + � and y 2

�
c+ ✏

4 , d�
✏
4

� 

is an open subset of G(f), so G(f) has nonempty interior. Therefore, by contraposi-

tion, if int G(f) = ;, then A is meager. So the set of points in [0, 1] on which f is

single-valued is a dense G�.

Definition 4.1.3 . A function f : [0, 1]! 2[0,1] is irreducible with respect to domain

if no closed subgraph of G(f) has full domain, that is, ⇡1[H] 6= [0, 1] for every closed

set H ( G(f).

Proposition 4.1.4 . Let f : [0, 1] ! 2[0,1] be an upper-semicontinuous function.

Then f is almost nonfissile if and only if f is irreducible with respect to domain.

Proof. First note that if int G(f) 6= ;, then f is neither almost nonfissile nor irre-

ducible with respect to domain. Suppose int G(f) = ;. Let Fi(f) be the set of fissile

points of G(f) and A = G(f) \ Fi(f), i.e. the set of nonfissile points of G(f). By
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Lemma 4.1.2, ⇡1[A] is a dense G� subset of [0, 1]. Then A is a closed subgraph of G(f)

with full domain. So if f is irreducible with respect to domain, A = G(f), making

f almost nonfissile. Conversely, if f is almost nonfissile, then as A is composed of

nonfissile points, any closed subgraph with full domain must contain A and hence

contains A. Thus if f is almost nonfissile and H is a closed subgraph of G(f) with

full domain, H ◆ A = G(f), making f irreducible with respect to domain.

4.1.2 The Full-projection Property in Inverse Limits of maps with the Intermediate

Value Property

Theorem 4.1.5 . (Ryden, [44]) Suppose {Xn, fn} is an inverse sequence and X =

lim �{Xn, fn}. Then X has the full-projection property if and only if the set of fissile

points of X is a meager F� set.

Lemma 4.1.6 . Suppose f : [0, 1]! 2[0,1] is a surjective, almost nonfissile, upper-

semicontinuous map with the intermediate value property. If f(x) is nondegenerate

for some interior point x of [0, 1], then there are sequences L1, L2, . . . , and R1, R2,

. . . of nondegenerate closed subintervals of [0, 1] such that

1. z < x for all z 2
S

Ln and z > x for all z 2
S
Rn,

2. limLn = {x} and limRn = {x},

3. lim f [Ln] = f(x) and lim f [Rn] = f(x).

Proof. We construct the sequence L1, L2,. . . only and note that the construction of R1,

R2,. . . is similar. Let a and b denote the points such that f(x) = [a, b]. Since upper-

semicontinuous maps with the intermediate value property are weakly continuous
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by Theorem 3.2.6, there are sequences ↵1, ↵2,. . . ; �1, �2,. . . ; a1, a2,. . . ; and b1, b2,

. . . such that each of the following is true:

• an 2 f(↵n) for all n,

• bn 2 f(�n) for all n,

• {↵n} and {�n} converge to x from the left,

• {an} and {bn} converge to a and b respectively.

Furthermore, since f is almost nonfissile, the sequences may be chosen so that f(↵n) =

{an} and f(�n) = {bn}. It follows that, for su�ciently large n, an and bn are distinct.

Finally, taking subsequences if necessary, the sequences may be chosen so that an <

a+b
2 < bn for each n 2 N and ↵n, �n < ↵n+1, �n+1 for each n 2 N.

Since an 6= bn for each n 2 N, it follows that ↵n 6= �n for each n 2 N. For

each n 2 N, define Ln to be the nondegenerate closed interval with endpoints ↵n

and �n. Then L1, L2,. . . satisfies (1) and (2). To see that it satisfies (3), note that

lim inf f [Ln] contains both a and b, and hence f(x), since an ! a and bn ! b as

n ! 1. On the other hand, lim sup f [Ln] ✓ f(x) since the graph of f is closed.

Hence lim f [Ln] = f(x), and {Ln} satisfies (3).

Lemma 4.1.7 . Suppose f : [0, 1] ! 2[0,1] is an almost nonfissile upper-

semicontinuous function with the intermediate value property. If y 2 f(x), and Dx

and Dy are open sets such that y 2 Dy and x 2 Dx, then there is an open subset D

of Dx such that f [D] ⇢ Dy.
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Proof. Since f is weakly continuous from both the left and the right by Theorem

3.2.6, there is a point x1 2 Dx such that f(x1) intersects Dy. Since f is almost

nonfissile, there is a nonfissile point x2 2 Dx, i.e. that f(x2) = {y2} ✓ Dy. Put

D = {x 2 [0, 1] : f(x) ⇢ Dy} \ Dx. Then D is a nonempty open subset of Dx that

contains x2. Furthermore, f [D] ⇢ Dy.

Lemma 4.1.8 . Suppose f : [0, 1] ! 2[0,1] is a light, almost nonfissile, upper-

semicontinuous map with the intermediate value property. If G is a G� subset of

D for some open subset D of [0, 1] then {x 2 [0, 1] : f(x) ✓ G} is a G� subset of

[0, 1]. Furthermore, if G is dense in D, then {x 2 [0, 1] : f(x) ✓ G} is dense in

{x 2 [0, 1] : f(x) ✓ D}.

Proof. There are open sets G1, G2, . . . such that
T

Gn = G. Since f is upper-

semicontinuous, {x 2 [0, 1] : f(x) ⇢ Gn} is open in [0, 1]. Note that
T
{x 2 [0, 1] :

f(x) ⇢ Gn} = {x 2 [0, 1] : f(x) ⇢
T
Gn} = {x 2 [0, 1] : f(x) ⇢ G}. It follows that

{x 2 [0, 1] : f(x) ⇢ G} is a G� set.

Suppose further that G is dense in some open set D. Replacing Gn with Gn \D

for each n 2 N if necessary, the open sets Gn may be taken to be open subsets of D

for which
T

Gn = G. Note that Gn is dense in D for each n 2 N. Suppose U is an

open interval in {x 2 [0, 1] : f(x) ⇢ D}. Since f is light and has the intermediate

value property, f [U ] is a nondegenerate interval in D. Then int f [U ] contains a point

of Gn. It follows that there is a point u of U and a point w of int f [U ]\Gn such that

w 2 f(u). Since f is almost nonfissile, u and w may be chosen so that f(u) = {w}.

It follows that Gn contains f(u) and U contains a point of {x 2 [0, 1] : f(x) ⇢ Gn}.
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Hence {x 2 [0, 1] : f(x) ⇢ Gn} is a dense open subset of {x 2 [0, 1] : f(x) ⇢ D}.

As this is true for each n 2 N, {x 2 [0, 1] : f(x) ⇢ G} is a dense G� subset of

{x 2 [0, 1] : f(x) ⇢ D}.

Definition 4.1.9 . A function f : X ! 2Y is light if for every y 2 [0, 1], the set

{x 2 [0, 1] : y 2 f(x)} has no interior.

Lemma 4.1.10 . Suppose f : [0, 1] ! 2[0,1] is a surjective, light, almost nonfissile,

upper-semicontinuous map with the intermediate value property. If y 2 f(x) and Dy

is an open set such that y 2 Dy \ (�1, y) \ Dy \ (y,1), then there is an open set

Dx such that x 2 Dx \ (�1, x) \Dx \ (x,1) and such that f [Dx] ⇢ Dy.

Proof. First suppose f(x) is nondegenerate. Then, by the Lemma 4.1.6, there are

sequences L1, L2,. . . and R1, R2,. . . of nondegenerate closed subintervals of [0, 1] such

that

1. z < x for all z 2
S

Ln, and z > x for all z 2
S

Rn,

2. limLn = {x}, and limRn = {x}, and

3. lim f [Ln] = f(x) and lim f [Rn] = f(x).

Since f(x) is a nondegenerate interval containing y, at least one of f(x) \ (�1, y)

and f(x)\(y,1) is a nondegenerate interval with one endpoint equal to y, say f(x)\

(y,1). Since y 2 Dy \ (y,1), every open interval whose left endpoint is y contains a

point of Dy \ (y,1). It follows that intf(x)\ (y,1) contains a point of Dy \ (y,1).

Hence intf(x) \ Dy \ (y,1) contains an open interval (y1, y2); furthermore, y1 and
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y2 may be chosen so that neither of them is an endpoint of f(x). Since f [Ln] and

f [Rn] are connected for each n 2 N by dint of the intermediate value property and

since lim f [Ln] = lim f [Rn] = f(x), it follows that there is N 2 N such that f [Ln]

and f [Rn] both contain (y1, y2) for each n � N . Hence, for each n � N , some point

of Ln has an image that intersects (y1, y2). As f is weakly continuous from both the

left and the right by Theorem 3.2.6, there are, for each n � N , points ln 2 int Ln

and l̃n 2 (y1, y2) such that l̃n 2 f(ln). Furthermore, since f is almost nonfissile, ln

and l̃n may be chosen so that ln is a nonfissile point of f . Then (y1, y2) is an open

set containing f(ln). Hence {x 2 [0, 1] : f(x) ⇢ (y1, y2)} is an open set containing ln.

For each n � N , put Un = int Ln \ {x 2 [0, 1] : f(x) ⇢ (y1, y2)}. Then Un ⇢ Ln, and

f [Un] ⇢ (y1, y2) ⇢ Dy. Similarly, for n � N , there are open sets Vn ⇢ Rn such that

f [Vn] ⇢ Dy. Finally, put Dx = (
S

n�N Un)[ (
S

n�N Vn). Note that f [Dx] ⇢ Dy. Thus

it remains only to show that x 2 Dx \ (�1, x) \Dx \ (x,1).

To that end note that, by (1) and the fact that Un ⇢ Ln and Vn ⇢ Rn for each n �

N , we have Dx\(�1, x) =
S

n�N Un and Dx\(x,1) =
S

n�N Vn. It follows from (2)

that x 2
S

n�N Un and x 2
S

n�N Vn. Consequently, x 2 Dx \ (�1, x)\Dx \ (x,1).

Now suppose f(x) is degenerate, that is, suppose f(x) = {y}. Suppose

n 2 N is given, and consider the interval
�
x, x+ 1

n

�
. Since f is light and upper-

semicontinuous, f
�
x, x+ 1

n

�
is a nondegenerate interval. Since the graph of f is

closed, y 2 f
�
x, x+ 1

n

�
. Since f

�
x, x+ 1

n

�
is an interval, this is equivalent to

y 2 int f
�
x, x+ 1

n

�
. It follows that int f

�
x, x+ 1

n

�
\ Dy is nonempty. By Lemma

4.1.7, there is an open subset Vn of
�
x, x+ 1

n

�
such that f [Vn] ⇢ Dy. Similarly,

there is an open subset Un of
�
x� 1

n , x
�
such that f [Un] ⇢ Dy. Thus Un and Vn
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are defined for n 2 N. Put Dx = (
S

n2N Un) [ (
S

n2N Vn). Then f [Dx] ⇢ Dy and

x 2 (
S

n2N Un) \ (
S

n2N Vn) = Dx \ (�1, x) \Dx \ (x,1).

Lemma 4.1.11 . Suppose {[0, 1], fn} is an inverse sequence where, for each n 2

N, fn is a surjective almost nonfissile, light, upper-semicontinuous map with the

intermediate value property. For each N 2 N, if x 2 lim �{[0, 1], fn} and U0, U1, . . . ,

UN are open sets containing x0, x1, . . . , xN respectively, then there are open subsets

D0, D1, . . . , DN of U0, U1, . . . , UN respectively such that

1. xn 2 Dn \ (�1, xn) \Dn \ (xn,1) for n = 0, 1, . . . , N ,

2. fn[Dn] ⇢ Dn�1 for n = 1, 2, . . . , N , and

3. zN , fN
N�1(zN), . . . , f

N
1 (zN) are nonfissile points of fN , fN�1, . . . , f1 respectively

for all zN in some comeager subset of DN .

Proof. The proof is by induction. First consider N = 1. Suppose x 2 lim �{[0, 1], fn},

and suppose U0 and U1 are open sets containing x0 and x1 respectively. Put D0 = U0.

Note that D0 satisfies the requirement in (1). By the Lemma 4.1.10, there is an

open set D̃1 such that x1 2 D̃1 \ (�1, x1) \ D̃1 \ (x1,1) and f [D̃1] ⇢ D0. Put

D1 = U1 \ D̃1. Then D0 and D1 satisfy (1) and (2). The set of nonfissile points of f1

is a G� subset of [0, 1] by Lemma 4.1.2 and dense in [0, 1] since f1 is almost nonfissile.

Since D1 is open, the set of nonfissile points of f1 that lie in D1 is a comeager subset

of D1. Hence (3) holds, and the result is true for N = 1.

Suppose that the result is true for N = k for some k � 1, and consider n = k+1.

Suppose x 2 lim �{[0, 1], fn}, and suppose U0, U1, . . . , Uk+1 are open sets containing
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x1, x2, . . . , xk+1 respectively. Since the result holds for N = k, there are open subsets

D0, D1, . . . , Dk of U0, U1, . . . , Uk that satisfy (1), (2), and (3). By Lemma 4.1.10,

there is an open set Dk+1 such that xk+1 2 Dk+1 \ (�1, xk+1) \ Dk+1 \ (xk+1,1)

and fk+1[Dk+1] ⇢ Dk. Replacing Dk+1 with Dk+1 \Uk+1 if necessary, we may assume

Dk+1 ⇢ Uk+1. Note that Dk+1 satisfies (1) and (2). Thus it remains to show that

Dk+1 satisfies (3).

For each n 2 N, denote the set of fissile points of fn by Fi(fn). By

Lemma 4.1.2, Fi(fn) is an F� set for each n = 1, 2, . . . , k + 1. Since fk+1
n

is upper-semicontinuous for each n, (fk+1
n )�1(Fi(fn)) is an F� set for each

n = 1, 2, . . . , k + 1. Hence
Sk+1

n=1(f
k+1
n )�1(Fi(fn)) is an F� set. Equivalently, {z 2

Dk+1 : z, fk+1
k (z), . . . , fk+1

1 (z) are nonfissile points of fk, fk�1, . . . , f1 respectively}

is a G� set. Denote it by A, and note that A \ Dk+1 is a G� subset of Dk+1. To

see that A \ Dk+1 is dense in Dk+1, suppose D is an open interval in Dk+1. Since

fk+1 is light and has the intermediate value property, fk+1[D] is a nondegenerate

interval in Dk. Since Dk satisfies (3), {z 2 Dk : z, fk
k�1(z), . . . , f

k
1 (z) are non-

fissile points of fk, fk�1, . . . , f1 respectively} is a dense G� set in Dk. Denote

this set by G. Then, by Lemma 4.1.8, {x 2 [0, 1] : fk+1(x) ⇢ G} is a dense G�

set in {x 2 [0, 1] : fk+1(x) ⇢ Dk}. Since Dk+1 ⇢ {x 2 [0, 1] : fk+1(x) ⇢ Dk},

it follows that Dk+1 \ {x 2 [0, 1] : fk+1(x) ⇢ G} is a dense G� subset of

Dk+1. The set of nonfissile points of fk+1 in Dk+1 is also a dense G� sub-

set of Dk+1 by Lemma 4.1.2 and the fact that fk+1 is almost nonfissile. Put

A = ([0, 1] � Fi(fk+1)) \ Dk+1 \ {x 2 [0, 1] : fk+1(x) ⇢ G}. Then A is a dense G�

subset of Dk+1, and, for each z 2 A, z, fk+1
k (z), fk+1

k�1 (z), . . . , f
k+1
1 (z) are nonfissile
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points of fk+1, fk, . . . , f1 respectively. Hence Dk+1 satisfies (3), and the inductive

step is complete.

Theorem 4.1.12 . Suppose {[0, 1], fn} is an inverse sequence where, for each n 2 N,

fn : [0, 1] ! 2[0,1] is a surjective, light, almost nonfissile, upper-semicontinuous map

with the intermediate value property. Then lim �{[0, 1], fn} has the full-projection

property.

Proof. Denote lim �{[0, 1], fn} by X. By Theorem 4.1.5, it su�ces to show that the set

of nonfissile points of X is dense in X. For each n 2 N, denote {x 2 X : |fn(xn)| =

1} by ⇠ Fin(X), and note that the set of nonfissile points of X is ⇠ Fi1(X)\ ⇠

Fi2(X)\ ⇠ Fi3(X) \ .... Since ⇠ Fin(X) is a G� subset of X for each n, it su�ces to

show that ⇠ Fi1(X)\ ⇠ Fi2(X) \ · · ·\ ⇠ Fin(X) is dense in X for each n � 1.

To that end, suppose n is given and D is a nonempty basic open set in X. Then

D has the form D = D1 ⇥D2 ⇥ · · · ⇥Dm ⇥ [0, 1] ⇥ [0, 1] ⇥ . . . where Di is an open

subset of [0, 1] for i = 1, 2, . . . ,m, and where m � n. We must show that D contains a

point of ⇠ Fi1(X)\ ⇠ Fi2(X)\ · · ·\ ⇠ Fin(X), to which end it su�ces to show that

D contains a point of ⇠ Fi1(X)\ ⇠ Fi2(X) \ · · ·\ ⇠ Fim(X). This is a consequence

of Lemma 4.1.11.

Theorem 4.1.13 . Suppose {[0, 1], fn} is an inverse sequence where, for each n 2 !,

fn : [0, 1] ! 2[0,1] is a surjective, light, almost nonfissile, upper-semicontinuous map

with the intermediate value property. Let K be a subcontinuum of lim �{[0, 1], f} such
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that ⇡n[K] is nondegenerate for each n. Then K can be written as the inverse limit

of its projections and has the full-projection property.

Proof. For each n 2 !, letKn = ⇡n[K]. Then fn maps ⇡n+1[K] onto ⇡n[K]. Denote by

f 0
n the restriction of fn, fn|⇡n[K]

⇡n+1[K] : ⇡n+1[K]! 2⇡n[K]. Note f 0
n inherits the properties

of fn given in the hypothesis.

Define K 0 = lim �{⇡n[K], f 0
n}. Then K 0 is a subcontinuum of lim �{[0, 1], fn} by

Theorem 3.3.5 and has the full-projection property by Theorem 4.1.12.

To show K 0 = K, let x 2 K. Then for all n, ⇡n(x) 2 ⇡n(K) and ⇡n(x) 2

f(⇡n+1(x)) for all n. So ⇡n(x) 2 f 0
n(⇡n+1(x)), i.e. x 2 K 0. Therefore K ✓ K 0. But

⇡n(K) = ⇡n(K 0) for all n. Then as K 0 has the full-projection property, K 0 = K.

4.2 Relationship Between Periodicity and Indecomposability

We now turn to the connection between periodicity in an upper-semicontinuous

function f : [0, 1] ! 2[0,1] with the intermediate value property and indecompos-

ability in the corresponding inverse limit. In particular, we generalize a connection

established in the classical setting by Barge and Martin [5, Theorems 1 & 7].

In Section 4.2.1, we examine how a periodic cycle of f with period not a power of

two gives rise to an indecomposable subcontinuum of the inverse limit. The primary

result is Theorem 4.2.3. The proof leans heavily on the intermediate value property,

appealing to both the Sharkovskii order and the full-projection property, each of

which holds in a context involving the intermediate value property (Theorems 4.1.12

and 2.5.3).
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We then explore a pseudo converse in Section 4.2.2, that is, how the indecom-

posability of lim �{[0, 1], f} gives rise to a periodic cycle of f with period not a power

of two. This subsection focuses on organic maps and has Theorem 4.2.8 as its main

result.

4.2.1 Periodicity Giving Rise to Indecomposability

Lemma 4.2.1 . Let f : [0, 1] ! 2[0,1] be upper-semicontinuous, surjective, and

almost nonfissile and G(f) be connected and have empty interior. If there is some

y 2 [0, 1] and a nondegenerate interval I ✓ [0, 1] such that y 2 f(x) for every x 2 I,

then f is constant and single valued on I and f [I] = {y}.

Proof. Let x 2 I and y0 2 f(x). Then either x > inf I or x < sup I. The two cases

proceed similarly, so we shall prove the result for x > inf I. As f is weakly continuous,

there is a sequence {(xn, yn)}n2! in G(f) converging to (x, y0) such that xn 2 I and

xn < x. Since f is almost nonfissile, we may choose each (xn, yn) so that xn is a

nonfissile point of f . Thus f(xn) = {yn} for all n. But y 2 f(xn), so yn = y for all n.

As yn ! y0, this implies y0 = y. As x and y0 were arbitrary, f [I] = {y}.

Theorem 4.2.2 . Let f : [0, 1]! 2[0,1] be upper-semicontinuous, surjective, almost

nonfissile, light, and have the intermediate value property, and G(f) have empty

interior. If f has an orbit of period not a power of 2, then lim �{[0, 1], f} contains an

indecomposable subcontinuum.

A natural question arising from this theorem is whether it is necessary to assume f

is almost nonfissile and light in order to guarantee the inverse limit contains an inde-
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composable subcontinuum. In Chapter Five, we construct an upper-semicontinuous,

surjective function f with the intermediate value property that is not almost nonfissile

and has a hereditarily decomposable inverse limit even though it has periodic points

of all periods. Thus the additional assumption that f is almost nonfissile cannot be

dropped from Theorem 4.2.2.

Proof. Suppose f has an orbit of period n · 2k. By the Theorem 2.5.3, there is a

periodic orbit of f with period 3 · 2k+1. Let x 2 lim �{[0, 1], f} be the point that

models this orbit. Then (x3·2k+1�1, . . . , x1, x0) is a cycle f of period 3 · 2k+1. Let

h : lim �{[0, 1], f} ! lim �{[0, 1], f} be the forgetful shift. Then x has a period 3 orbit

under h2k+1
, namely

⇣
x, h2k+1

(x), h2k+2
(x)
⌘
. To show this, suppose to the contrary

that x does not have a period 3 orbit. By the construction of x, h3·2k+1
(x) = x. So

either h2k+1
(x) = x or h2k+2

(x) = x. If h2k+1
(x) = x, then for all n, xn+2k+1 = xn,

contradicting the fact (x0, x1, . . . , x3·2k+1�1) is an orbit of period 3 · 2k+1. By a similar

argument, h2k+2
(x) 6= x. Thus x has an orbit of period 3 under h2k+1

.

Let S be a subcontinuum of lim �{[0, 1], f} that is irreducible about x, h2k+1
(x), and

h2k+2
(x). By Theorem 4.1.13, there are restrictions f 0

n of f such that each f 0
n inherits

the properties of f listed in the hypothesis, S = lim �{⇡n(S), f 0
n}, and S has the full-

projection property. We show that S is indecomposable by showing it is irreducible

about any two points of x, h2k+1
(x), and h2k+2

(x).

By way of contradiction, suppose S is not irreducible between two points of

{x, h2k+1
(x), h2k+2

(x)}, say x and h2k+1
(x). Then there is a proper subcontinuum
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H ( S containing x and h2k+1
(x). So h2k+2

(x) /2 H as S is irreducible about x,

h2k+1
(x), and h2k+2

(x).

Since (x3·2k+1�1, . . . , x1, x0) is a cycle f of period 3 · 2k+1, there is some

i 2 {0, 1, . . . , 2k+1 � 1} such that for all n 2 N, ⇡3n·2k+1+i(x) 6= ⇡3n·2k+1+i(h
2k+1

(x)).

As h2k+1
permutes x, h2k+1

(x), and h2k+2
(x), there is some j 2 {0, 1, 2} such that for all

n 2 N, ⇡(3n+j)2k+1+i(h
2k+2

(x)) is between ⇡(3n+j)2k+1+i(x) and ⇡(3n+j)2k+1+i(h
2k+1

(x)).

Furthermore, ⇡(3n+j)2k+1+i(h
2k+2

(x)) is distinct from at least one of ⇡(3n+j)2k+1+i(x)

or ⇡(3n+j)2k+1+i(h
2k+1

(x)). So ⇡(3n+j)2k+1+i[H] is nondegenerate for each n, and

⇡(3n+j)2k+1+i(h
2k+2

(x)) 2 ⇡(3n+j)2k+1+i[H]. As f is weakly continuous and almost

nonfissile, there is a sequence of nonfissile points {(xk, yk)}k2N of G(f) such that

xk 2 ⇡(3n+j)2k+1+i[H] and

(xk, yk)! (⇡(3n+j)2k+1+i(h
2k+2

(x)), ⇡(3n+j)2k+1+i�1(h
2k+2

(x))).

Since f(xk) = {yk}, yk 2 ⇡(3n+j)2k+1+i�1[H]. Then ⇡(3n+j)2k+1+i�1(h
2k+2

(x)) 2

⇡(3n+j)2k+1+i�1[H] because yk ! ⇡(3n+j)2k+1+i�1(h
2k+2

(x)) and ⇡(3n+j)2k+1+i�1[H] is

closed. Furthermore, since f is almost nonfissile and light and ⇡(3n+j)2k+1+i[H] is

nondegenerate, ⇡(3n+j)2k+1+i�1[H] is nondegerate by Lemma 4.2.1.

Proceeding inductively, we see that ⇡l[H] is nondegenerate and ⇡l(h2k+2
(x)) 2

⇡l[H] for all l  (3n + j)2k+1 + i. As this holds for any n 2 N, ⇡l(h2k+2
(x)) 2 ⇡l[H]

for all l 2 N. Since H is the inverse limit of its own projections by Theorem 4.1.13,

h2k+2
(x) 2 H, a contradiction. Therefore S is irreductible about any two points of

{x, h2k+1
(x), h2k+2

(x)} and is indecomposable.
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Theorem 4.2.3 . Suppose f : [0, 1] ! 2[0,1] is upper-semicontinuous, surjective,

has the intermediate value property, and has an orbit of period not a power of 2. If

f |[0,1]\⇡1(int(G(f))) is almost nonfissile and light, then lim �{[0, 1], f} contains an inde-

composable subcontinuum.

Proof. If int G(f) = ;, then the conclusion follows form Theorem 4.2.2. Suppose

int G(f) 6= ;. Let (x0, x1, . . . , xp�1) be a cycle of f where p is not a power of 2. It

is su�cient to show there is a map g : [0, 1] ! 2[0,1] that is upper-semicontinuous,

almost nonfissile, and light, that has the intermediate value property and retains

(x0, x1, . . . , xp�1) as a periodic cycle, and such that G(g) has empty interior and

G(g) ✓ G(f). Then lim �{[0, 1], g} is a subcontinuum of lim �{[0, 1], f} that contains an

indecomposable subcontinuum by Theorem 4.2.2.

Note ⇡1[int G(f)] is an open subset of [0, 1]. Let {On}n2N be an enumeration of

the components of ⇡1[int G(f)]. We construct g as follows: if x 2 [0, 1]\⇡1[int G(f)],

let g(x) = f(x). For each n, we construct G(g) on On to contain any of (x0, x1),

(x1, x2),. . . ,(xp�1, x0) for which xi 2 On, and some (an,max f(On)), (bn,min f(On))

where an, bn 2 On. To that end, let C = {x0, x1, . . . , xp�1} [
S

n2N{an, bn}. Define

g(x) to be f(x) if x 2 C.

Note that for each n, C \On is finite. Define g on On \C to be single-valued and

continuous according to the following conditions:

1. g(x) ✓ f(x),

2. g is light on On \ C and
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3. if x is in C or bd On, then for any component U of On \ C with x 2 U ,

G(g|U) \ ({x}⇥ [0, 1]) = {x}⇥ g(x).

That g may be light on On \ C while maintaining G(g) ✓ G(f) follows from the

fact that On ✓ ⇡1[int G(f)]. Regarding (3), since C \ On is finite and f is weakly

continuous, g may also be constructed such that as y approaches x from within U ,

the graph of g is a ray with remainder g(x). Therefore such a map g exists. Note

that by (1) and the fact that g(x) = f(x) on C, g[On] = f [On].

Note that (x0, x1, . . . , xp�1) is a periodic cycle of g. By this construction, g is light

and almost nonfissile on each On and G(g)\VOn is connected. Note that if x 2 bd On,

condition (3) becomes G(g|U)\ ({x}⇥ [0, 1]) = {x}⇥ g(x) = {x}⇥ f(x). Then since

g|[0,1]\⇡1[int G(f)] = f |[0,1]\⇡1[int G(f)], g is almost nonfissile and light on [0, 1], and G(g)

is connected. It remains to show g has the intermediate value property. Since g(x) is

connected for each x 2 [0, 1], it is su�cient to show that g is weakly continuous.

We show that g is weakly continuous from the left. The proof that g is weakly

continuous from the right is similar. Let (x, y) 2 G(g) with x > 0. Suppose first

x 2 On for some n. If x 2 C, then by (3) there is a sequence {(xi, yi)}i2! in G(g)

such that xi 2 On \ (0, x) for all i and (xi, yi)! (x, y). Thus g is weakly continuous

at x from the left. If x /2 C, then since g is single-valued and continuous on On \ C,

it follows that g is weakly continuous at x from the left.

Next suppose x 62 On for any n. Then either x 2 [0, 1] \ ⇡1[int G(f)], x = supOn

for some n, or there is a subsequence Onk
such that x > supOnk

for all k but x =

sup
S

k Onk
.
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Case 1: Suppose x 2 [0, 1] \ ⇡1[int G(f)]. Since f is weakly continuous, there is a

sequence {(xi, yi)}i2! in G(f) such that xi < x for all i and (xi, yi) ! (x, y). Then

there is some N 2 N such that for i � N , xi 2 [0, 1] \ ⇡1[int G(f)]. Since g agrees

with f on [0, 1] \⇡1[int G(f)], {(xi, yi)}i�N is a sequence in G(g) converging to (x, y).

Case 2: Suppose x = supOn for some n. Then by (2), there is a sequence

{(xi, yi)}i2! in G(g) such that xi 2 On for all i and (xi, yi)! (x, y).

Case 3: Suppose there is a sequence {Onk
}k2! such that supOnk

< x and x =

sup
S

k Onk
. Note that any such sequence may be ordered so that Onk

= (ck, dk)

where dk < ck+1, ck ! x, and dk ! x. Then dk � ck ! 0, i.e. diam Onk
! 0. Let

{(xi, yi)}i2! be a sequence in G(f) such that xi < x for all i and (xi, yi) ! (x, y).

Recall that f Define a sequence {(x0
i, yi)}i2! in G(g) where x0

i is a point of some

Oni with yi 2 g(x0
i) if xi 2 Oni and x0

i = xi if xi 2 [0, 1] \ ⇡1[int G(f)]. Note

d((x0
i, yi), (xi, yi)) = |x0

i � xi| < diam Oni if xi 2 Oni . Let ✏ > 0 and N1 such that

if i � N1, d((xi, yi), (x, y)) <
✏
2 . Since diam Oni ! 0, there is some N2 such that if

i � N2, then diam Oni <
✏
2 . Then for i � max{N1, N2},

d((x0
i, yi), (x, y))  d((x0, yi), (xi, yi)) + d((xi, yi), (x, y)) <

✏
2 +

✏
2 = ✏.

Then (x0
i, yi) ! (x, y). Therefore g is weakly continuous from the left. By a similar

argument, g is weakly continuous from the right. Thus g is weakly continuous. Then

g has the intermediate value property.
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4.2.2 Indecomposability Giving Rise to Periodicity

Notation. If x1, x2 2 [a, b], let x1x2 denote the closed interval with endpoints x1 and

x2.

Definition 4.2.4 . If f : [a, b]! 2[a,b] is upper-semicontinuous, we say f is organic

if for every x, y 2 lim �{[a, b], f} such that lim �{[a, b], f} is irreducible between x and y,

then there exists n 2 N such that fn(xnyn) = [a, b].

Lemma 4.2.5 . Let f : [0, 1]! 2[0,1] be such that f is upper-semicontinuous, sur-

jective, and has the intermediate value property. Further suppose that lim �{[0, 1], f}

is irreducible between x and y. For k � 0, let Jk =
S

n�k f
n�k(xnyn). Then for each

k, Jk is a closed subinterval of [0, 1] with f(Jk+1) = Jk.

Proof. Since f has intermediate value property, xi 2 f(xi+1), and yi 2 f(yi+1) for all

i, xiyi ✓ f(xi+1yi+1). Thus if n2 > n1, fn1(xn1yn1) ✓ fn2(xn2yn2). So

x0y0 ✓ f(x1y1) ✓ f 2(x2y2) ✓ . . . .

Since f has the intermediate value property, for each k fk(xnyn) is an interval. Thus

Jk is a closed subinterval of [0, 1]. Note for n � k + 1,

f(Jk+1) ◆ f(fn�(k+1)(xnyn)) = fn�k(xnyn).

So f(Jk+1) ◆
S

n�k+1 f
n�k(xnyn). But because xkyk ✓ f(xk+1yk+1), we have

f(Jk+1) ◆
S

n�k f
n�k(xnyn).

As f(Jk+1) is closed,
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f(Jk+1) ◆
S

n�k f
n�k(xnyn) = Jk.

Similarly for n � k + 1,

Jk ◆ fn�k(xnyn) = f(fn�(k+1)(xnyn)).

Thus Jk ◆ f
�S

n�k+1 f
n�(k+1)(xnyn)

�
. Since Jk is closed and f has the intermediate

value property and is therefore weakly continuous, by Theorem 3.2.10,

f
�S

n�k+1 f
n�(k+1)(xnyn)

�
= f

⇣S
n�k+1 f

n�(k+1)(xnyn)
⌘
.

Thus

Jk = f
�S

n�k+1 f
n�(k+1)(xnyn)

�
= f

⇣S
n�k+1 f

n�(k+1)(xnyn)
⌘
= f(Jk+1).

Lemma 4.2.6 . Let f : [0, 1] ! 2[0,1] be such that G(f) is connected and f is

upper-semicontinuous, surjective, and has the intermediate value property. Further

suppose that lim �{[0, 1], f} is irreducible between x and y. If 0 < c < d < 1, then

there is some N 2 ! such that n > N implies [c, d] ✓ fn([xn, yn]).

Proof. Let Jk =
S

n�k f
n�k(xnyn), as in Lemma 4.2.5. Let J = lim �{Jk, f |Jk+1

}. As

f |Jk+1
also has the intermediate value property, is surjective, is upper-semicontinuous,

and G(f |Jk) is connected by Theorem 3.2.10, J is a subcontinuum of lim �{[0, 1], f}.

Note x, y 2 J ; hence J = lim �{[0, 1], f}. As f is surjective, J0 = [0, 1] and [0, 1] =

S
n�0 f

n(xnyn). Then because fn(xnyn) ✓ fn+1(xn+1yn+1) for each n, there is some

N 2 ! such that if n � N , [c, d] ✓ fn(xnyn).
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Lemma 4.2.7 . Suppose f : [0, 1]! 2[0,1] is upper-semicontinuous, surjective, has

the intermediate value property. If there are p, q 2 (0, 1) and r, s 2 ! with 0 2 f r(p)

and 1 2 f s(q), then f is organic.

Proof. Suppose lim �{[0, 1], f} is irreducible between x and y. Then by Lemma 4.2.6,

there are positive integers Nr and Ns such that if n > Nr, p 2 fn�r(xnyn) and if

n > Ns, q 2 fn�s(xnyn). So if n > Nr +Ns, fn(xnyn) = [0, 1].

Theorem 4.2.8 . If f : [0, 1] ! 2[0,1] is upper-semicontinuous, organic and has

the intermediate value property and lim �{[0, 1], f} is indecomposable, then f has a

periodic cycle with a period that is not a power of 2.

Proof. Since lim �{[0, 1], f} is indecomposable, there are three points x, y, and z such

that lim �{[0, 1], f} is irreducible between any two of them. Because f is organic, there

exists some n such that fn(xnyn) = fn(ynzn) = fn(xnzn) = [0, 1]. Without loss

of generality, suppose xn < yn < zn. As f is upper-semicontinuous and has the

intermediate value property, fn(yn) is a closed interval. Thus either yn 2 int(fn(yn)),

fn(yn) ✓ [0, yn], or fn(yn) ✓ [yn, 1].

Case 1: Suppose yn 2 int(fn(yn)). Then there are numbers c and d such that

c < yn < d and f(yn) = [c, d]. As f has the intermediate value property, f is weakly

continuous. Thus, there exist sequences {(ai, ci)}i2! and {(bi, di)}i2! in G(fn) such

that for all i ai, bi < yn, ai, bi ! yn, ci ! c, and di ! d. Furthermore these sequences

may be chosen such that ai  bi  ai+1 for all i. Then because c < yn < d, there is

some N 2 N such that i � N implies ci < yn < di. Since fn has the intermediate
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value property, for i � N , there is a point pi 2 [ai, bi] with yn 2 fn(pi). Furthermore

pi ! yn since ai, bi ! yn.

Note that as yn 2 intfn(yn) and pi ! yn, pi 2 fn(yn) for cofinitely many i. Then

yn 2 fn(pi) and pi 2 fn(yn) for cofinitely many i. Thus, for any k 2 N, there is

a periodic orbit of the form (q0, . . . , q2kn) where for j = 0 . . . , k, q2jn = yn and for

j = 0, . . . , k � 1, q(2j+1)n is a distinct member of the pi’s. In particular, k = 3 gives a

periodic cycle with a period that is not a power of 2, satisfying the conclusion of the

theorem.

Case 2: Suppose fn(yn) ✓ [0, yn]. Then either fn(yn) = {yn} or there is some

value b 2 fn(yn) with b < yn. If fn(yn) = yn, then there are values a, b 2 [xn, yn)

such that 0 2 fn(a) and 1 2 fn(b). Thus there is a closed interval J1 ✓ ab ✓ [xn, yn)

and a restriction fn|[yn,zn]J1
of fn such that fn|[yn,zn]J1

(J1) = [yn, zn] [41].

We show that such a J1 also exists if there is some b 2 fn(yn) with b < yn.

By the weak continuity of fn there is a sequence {(ai, bi)}i2! such that for all i,

xn  ai < yn, bi 2 fn(ai), ai ! yn, and bi ! b. Thus there is some bN < yn. Let

q 2 [xn, yn) be a point such that 1 2 fn(q). Then fn(bNq) ◆ [b, 1] ◆ [yn, zn], so there

is a closed interval J1 ✓ bNq ✓ [xn, yn) and a restriction fn|[yn,zn]J1
of fn such that

fn|[yn,zn]J1
(J1) = [yn, zn].

As fn([xn, yn]) ◆ J1, there is a closed subinterval J2 of [xn, yn] and a restriction

fn|J1J2 of fn such that fn|J1J2(J2) = J1. Similarly there is a closed subinterval J3 of

[yn, zn] and a restriction fn|J2J3 of fn such that fn|J2J3(J3) = J2.

Thus J3 ✓ fn|[yn,zn]J1
(fn|J1J2(f

n|J2J3(J3))) ✓ f 3n(J3). Then there is a periodic orbit

(q0, . . . , q3n) with q0 = q3n = q 2 J3, qn 2 J2, and q2n 2 J1. Suppose q2n = q.
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Then q 2 J1 \ J3 ✓ [xn, yn] \ [yn, zn] = {yn}. But then we would have yn 2 J1, a

contradiction. So q 6= q2n.

Let s be the period of (q0, . . . , q3n). Then s | 3n. As q2n 6= q0 = q, s - 2n. If s | n,

then s | 2n, a contradiction. It follows that s - n. Therefore 3 | s, and s is not a power

of 2 as desired. The case for fn(yn) ✓ [yn, 1] follows from a similar argument.
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CHAPTER FIVE

A Hereditarily Decomposable Inverse Limit of a Map with Periodic Orbits of all
Periods

We demonstrate the assumption in Theorem 4.2.2 that f is almost nonfissile is

sharp. In Example 5.2.1, we construct a family of functions F : [0, 1] ! 2[0,1] that

satisfy the hypothesis of Theorem 4.2.2 other than being almost nonfissile, with the

possible exception of being light, yet admit a hereditarily decomposable inverse limit.

We note in Example 5.2.1 that many members of this family are light and all have

the desired properties.

The construction of this family of functions relies heavily on collections of nested

Cantor sets, in which no point of a Cantor set in the collection is an endpoint of any

larger Cantor set in the collection. We establish the existence of such collections in

Section 5.1 that are necessary to define the family of functions in Example 5.2.1.

Then in Section 5.2, we show that each function F : [0, 1] ! 2[0,1] in this family

is upper-semicontinuous, surjective, has the intermediate value property, has a graph

with empty interior, has periodic cycles of all periods, and is not almost nonfissile.

We then examine the structure of the inverse limit generated by any one of these

functions and show that it is a tree-like, hereditarily decomposable continuum.

5.1 Cantor Sets

Definition 5.1.1 . A set C ✓ [0, 1] is a Cantor Set if C is a closed, perfect, nowhere

dense set. A point x 2 C is called a left endpoint of C if there is some number a
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such that (a, x) ✓ [0, 1] \C and a right endpoint if there is some number a such that

(x, a) ✓ [0, 1] \ C. These endpoints form a countable dense subset of C.

Definition 5.1.2 . Let K be a continuum and p 2 K. The composant of p in K is

the union of all proper subcontinua of K that contain p.

It is well-known that a metric continuum has three composants if it is decompos-

able and irreducible, one composant if it is decomposable but not irreducible, and

uncountably many composants if it is indecomposable.

Lemma 5.1.3 . Let C1 be the middle thirds Cantor set on [1/4, 3/4]. There is a

Cantor set C0 such that C1 ( C0 and no point of C1 is an endpoint of C0.

Proof. Construct C0 as follows: Note that every left endpoint of C1 corresponds to

some point b for some maximal interval (a, b) ✓ [1/8, 7/8] \ C1, and every right

endpoint of C1 corresponds to some point a for some maximal interval (a, b) ✓

[1/8, 7/8] \C1. Let Ka and Kb be the middle thirds Cantor sets on [a, a+1/3(b� a)]

and [b� 1/3(b� a), b] respectively.

Define C0 = C1 [ (
S

a Ka) [ (
S

b Kb). Since C0 is a countable union of Cantor

sets, it is perfect and nowhere dense. To show C0 is closed, let x be a limit point

of C0 \ C1 and {xn}n2! be a sequence in C0 converging to x. Since x /2 C1, there is

some maximal interval (a, b) ✓ [1/8, 7/8] \ C1 with x 2 (a, b), hence xn 2 (a, b) for

cofinitely many n. Thus xn 2 Ka [Kb cofinitely often and x 2 Ka [Kb as Ka [Kb is

closed. Thus C0 is a Cantor set containing C1 such that no point of C1 is an endpoint

of C0.
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Lemma 5.1.4 . Let C,D ✓ [0, 1] be Cantor sets where C ( D and no point of C

is an endpoint of D. Then there is a Cantor set E such that C ( E ( D, no point

of C is an endpoint of E, and no point of E is an endpoint of D.

Proof. Let {pn} be an enumeration of the endpoints of D. Since C is closed and

p1 /2 C, there are points ↵1 and �1 of C such that p1 2 (↵1, �1) ⇢ [0, 1] \C. As points

of C, ↵1 and �1 are not endpoints of D. Consequently, there are points a1 and b1 of

D \ C that are not endpoints of D such that ↵1 < a1 < p1 < b1 < �1.

Proceeding inductively, suppose (ai, bi) has been defined for i  n so that the

following hold.

• ai, bi 2 D \ C

• ai and bi are not endpoints of D

• pi 2 (ai, bi)

• if pi 2 (aj, bj) for some j < i, then (ai, bi) = (aj, bj)

• if pi /2 (aj, bj) for each j < i, then [ai, bi] \ ([j<i[aj, bj]) = ;

If pn+1 2 [ai, bi] for some i  n (and hence pn+1 2 (ai, bi)), let (an+1, bn+1) =

(ai, bi). Suppose pn+1 /2
S

in[ai, bi]. Since C [
�S

in[ai, bi]
�
is closed and pn+1 /2

C [
�S

in[ai, bi]
�
, there are points ↵n+1 and �n+1 of C [

�S
in[ai, bi]

�
such that

pn+1 2 (↵n+1, �n+1) ⇢ [0, 1] \
�
C [

�S
in[ai, bi]

��
. As points of C [

�S
in{ai, bi}

�
,

↵n+1 and �n+1 are not endpoints of D. Consequently, there are points an+1 and bn+1

of D \
�
C [

�S
in[ai, bi]

��
that are not endpoints of D such that ↵n+1 < an+1 <
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pn+1 < bn+1 < �n+1. Then an+1 and bn+1 satisfy the criteria above and, by induction,

(ai, bi) is defined for each positive integer i.

Define E = D \
�S

n2N(an, bn)
�
. Then C ( E ( D, E is closed, and no point of

E is an endpoint of D. Note also that since an, bn 2 D for all n 2 N, and since any

two intervals of the form [an, bn] are identical or disjoint, it follows that an, bn 2 E

for each n 2 N. It remains to show that no point of C is an endpoint of E and E is

perfect.

Let x 2 E \ {bn : n 2 N}. As x is not an endpoint of D, there is a subsequence

{pnk
}k2N such that pnk

! x and pnk
< x for all k. Since x 6= bn for each n, then

we may choose {pnk
} such that [ank

, bnk
] and [anj , bnj ] are disjoint for j 6= k. Then,

choosing a subsequence of pnk
if necessary to have monotone convergence, we have

ank
< pnk

< bnk
< ank+1

< pnk+1
< bnk+1

< x.

So ank
! x, making x a limit point of E from the left.

Similarly, let x 2 E \ {an : n 2 N}. As x is not an endpoint of D, there is a

subsequence {pnk
}k2N such that pnk

! x and pnk
> x. Furthermore, since x 6= an for

each n, we may choose {pnk
}k2N such that

x < ank+1
< pnk+1

< bnk+1
< ank

< pnk
< bnk

.

So bnk
! x, making x a limit point of E from the right.

Thus E is a perfect set and therefore a Cantor set. Furthermore, each point of

E \{an, bn : n 2 N} is not an endpoint of E. Thus every point of C is not an endpoint

of E.
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Proposition 5.1.5 . There is a collection of Cantor sets {Cr : r 2 Q \ [0, 1]} such

that when r > s, Cr ( Cs and no point of Cr is an endpoint of Cs.

Proof. Let C0 and C1 be as in Lemma 5.1.3. By Lemma 5.1.4, there is a Cantor set

C1/2 such that C1 ( C1/2 ( C0, no point of C1 is an endpoint of C1/2, and no point of

C1/2 is an endpoint of C0. By the same argument, there are Cantor sets C1/4 and C3/4

such that C1 ( C3/4 ( C1/2 ( C1/4 ( C0 and if s > r, no point of Cr is an endpoint

of Cs. Continuing inductively, we may define a Cantor set Cr for each dyadic rational

r in [0, 1] such that if s > r, then Cr ( Cs and no point of Cr is an endpoint of Cs.

By reindexing the subscripts according to an order-preserving bijection between the

dyadic rationals of [0, 1] and Q \ [0, 1], we achieve the desired result.

5.2 A Hereditarily Decomposable Inverse Limit

Example 5.2.1 . The following notation will be assumed for the remainder of the

chapter.

• Let {Cr : r 2 Q \ [0, 1]} denote a collection of Cantor sets in (0, 1] such that,

for r > s, Cr ( Cs and no point of Cr is an endpoint of Cs.

• Let f : [0, 1]! [0, 1] be a continuous function such that

f(t) = 0 for all t 2 {0} [ C0

f(t) < minC0 for all t 2 [0, 1]

f(t) < t for all t 2 (0, 1]

Note in particular the following possibilities: (1) f could be light and (2) f

could be identically zero.
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• Let F : [0, 1]! C([0, 1]) be defined as follows:

F (t) =

8
>><

>>:

{f(t)} if t /2 C0

[0, sup{r : t 2 Cr}] if t 2 C0

.

Note that G(f) ( G(F ) and that F is light if and only if f is light.

• Let X = lim �{[0, 1], F}. Note that X is a continuum since F (t) is connected for

each t 2 [0, 1].

• For each x 2 X and each n 2 N, let Lxn ✓ [0, 1]2 be the union of {(t, f(t)) : 0 

t  xn} and the (possibly degenerate) vertical line segment from (xn, f(xn)) to

(xn, xn�1).

• For n � 1, define Gx,n : [0, xn] ! C([0, xn�1]) by G(Gx,n) = Lxn . Note that

G(Gx,n) ( G(F ).

• Let Lx = lim �{[0, xn], Gx,n}. Note that Lx is a continuum for each x 2 X since

Gx,n(t) is connected for each n 2 N and t 2 [0, xn].

Theorem 5.2.2 . F is upper semicontinuous, surjective, has the intermediate value

property, and has periodic cycles of period n for every n 2 N. F is not almost

nonfissile, and F is light if and only if f is light. G(F ) has empty interior.

Proof. As F (t) = [0, 1] for t 2 C1, F is surjective. To show F is upper semicontinuous,

let {(tn, yn)}n2! be a sequence in G(F ) that converges to some point (t, y). Then

either tn 2 C0 cofinitely often or tn /2 C0 for infinitely many n. First suppose tn /2 C0

for infinitely many n. Then there is a subsequence {(tnk
, ynk

)}k2! converging to (t, y)
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such that tnk
/2 C0 for each k. Thus (tnk

, ynk
) 2 G(f); hence (t, y) 2 G(f) ✓ G(F )

by the continuity of f .

Next, suppose tn 2 C0 for cofinitely many n. Since C0 is closed, it follows that

t 2 C0. If if y = 0, then (t, y) 2 G(F ). Suppose y 6= 0 and s 2 (0, y)\Q. As yn ! y,

there is some Ns 2 N such that n � Ns implies yn 2 (s, 1]. Since tn 2 C0 for cofinitely

many n, we may choose Ns such that for n � Ns, tn 2 C0. Then tn 2 Cs for n � Ns.

So F (t) ◆ [0, s]. Then F (t) ◆
S

s2(0,y)\Q[0, s] = [0, y). As F (t) is closed, y 2 F (t),

hence (t, y) 2 G(F ), making F upper semicontinuous.

To show F is weakly continuous, let (t, y) 2 G(F ). If t /2 Cr for any r 6= 0,

(t, y) 2 G(f) and weak continuity at t is clear. If there is some r 6= 0 such that

t 2 Cr, then it is su�cient to show that weak continuity holds for y = maxF (t) > 0.

Let {sn}n2! be a sequence in Q \ [0, 1] such that sn ! y and sn < y for all n. By

the construction of the Cantor sets, for each n, t 2 Csn , and t is not an endpoint of

any of the Csn ’s. Thus there is some tn 2 Csn such that |t� tn| < 1/n and tn < t for

all n (or tn > t for all n). As tn 2 Csn , sn 2 F (tn). Thus {(tn, sn)}n2! is a sequence

in G(F ) converging to (t, y), making F weakly continuous at t. Since the image of

each point is connected and F is weakly continuous, F has the intermediate value

property by Theorem 2.15 of 3.2.6.

There are no nondegenerate intervals on which F is nondegenerate, so G(F ) has

empty interior. F is not almost nonfissile as all nonfissile points are contained in

G(f), which is a closed proper subset of G(F ). Since C0 is nowhere dense, F can fail

to be light only on a subinterval of [0, 1] \ C0, on which F agrees with f . Thus F is

light if and only if f is light.
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To see that F has cycles of all periods, let n 2 N. Choose distinct points

t1, t2, . . . , tn in C1. Then for 1  i  n, F (ti) = [0, 1]. Thus (t1, . . . , tn) is a pe-

riodic cycle of period n.

Lemma 5.2.3 . Let x 2 X \ {0}. Then there is some N 2 ! such that xn 2 C0 if

and only if n � N .

Proof. Since F (t) = f(t) < minC0 for t /2 C0, it follows that, if xn /2 C0 for some n,

then xk /2 C0 for each k  n. Equivalently, if xn 2 C0 for some n, then xk 2 C0 for

each k � n. But it is not the case that xn /2 C0 for every n 2 !; otherwise x1, x2, x3, ...

would be a nondecreasing sequence bounded above by minC0 that would converge to

a fixed point of f lying in (0,minC0], contrary to the definition of f . Thus there is

N 2 ! such that xn 2 C0 if and only if n � N .

Proposition 5.2.4 . For each x 2 X \ {0}, Lx is an arc with endpoints at x and 0.

Proof. By Lemma 5.2.3, there is some N 2 ! such that xn 2 C0 if and only if n � N .

For n � N , let

Kn = {(fn(t), . . . , f(t), t, xn+1, xn+2, . . . ) : 0  t  xn}.

Then Kn is an arc from yn to yn+1, where yi = (0, . . . , 0, xi, xi+1, . . . ) for each i � N .

Furthermore, for each n, Kn+1 \
�S

in Ki

�
= {yn+1}. Therefore,

S
in Ki is an arc

from yN to yn+1. So
S

n�N Kn is a ray in Lx with endpoint yN that does not contain

0.

We consider two cases. First suppose N 6= 0. Note that yN 6= x. Define KN�1 by
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KN�1 = {(fN�1(t), . . . , f(t), t, xN , xN+1, . . . ) : 0  t  xN�1}.

Then KN�1 is an arc from x to yN that intersects
S

n�N Kn only at the point yN .

Hence
S

n�N�1 Kn is a ray in Lx with endpoint x that does not contain 0. To com-

plete the proof in the case where N 6= 0, it su�ces to show
S

n�N�1 Kn = Lx and

S
n�N�1 Kn \

�S
n�N�1 Kn

�
= {0}.

To show Lx ✓
�S

n�N�1 Kn

�
[ {0}, let z 2 Lx. The claim trivially holds for

z = 0. If z 6= 0, then by Lemma 5.2.3, zi 2 C0 for cofinitely many i. Since Gx,i(zi) \

C0 6= ; only if zi = xi, it follows that zi = xi for cofinitely many i. Thus there

is an M 2 ! such that for zi = xi if and only if i � M . If M  N , then z =

(fN�1(t) . . . , f(t), t, xN , xN+1, xN+2, . . . ) 2 KN�1. Suppose M > N . Then for i < M ,

zi < xi. So for 1  j  M � 1, zj�1 = Gx,j(zj) = f(zj). Thus for 0  j  M � 1,

zM�1�j = f j(zM�1). So z = (fM�1(t) . . . , f(t), t, xM , xM+1, xM+2, . . . ) 2 KM�1 and

Lx ✓
�S

n�N Kn

�
[ {0}.

Since Lx is closed and Kn ✓ Lx for each n � N ,
S

n�N�1 Kx ✓ Lx. As yn ! 0,

0 2
S

n�N�1 Kn \
�S

n�N�1 Kn

�
. Since Lx ✓

�S
n�N�1 Kn

�
[ {0}, it follows that

S
n�N�1 Kn \

�S
n�N�1 Kn

�
= {0} and Lx =

S
n�N�1 Kn, making Lx an arc from x to

0.

For the case in which N = 0, yN = x. Hence
S

n�N Kn is a ray with endpoint x

for which it can be shown by similar arguments that
S

n�N Kn \
�S

n�N Kn

�
= {0}

and Lx =
S

n�N Kn, making Lx an arc from x to 0.

Corollary 5.2.5 . X is arcwise connected.
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Theorem 5.2.6 . (Theorem 4.2 [30]) Suppose {fn}n2N is a sequence of functions

such that fn : [0, 1]! C([0, 1]) is a surjective upper semicontinuous function for each

positive integer n. If, for each n > 1, Zn is a closed totally disconnected subset of [0, 1]

such that if fn(t) is nondegenerate then t 2 Zn and (fn
i )

�1(Zi) is totally disconnected

for each i, 1  i  n, then lim �{[0, 1], fn} is a tree-like continuum.

Proposition 5.2.7 . X is tree-like and therefore hereditarily unicoherent.

Proof. For each n, let Zn = C0. Then Zn is a closed totally disconnected set. If F (t)

is nondegenerate then there is some r 2 Q \ [0, 1] such that t 2 Cr ⇢ C0. Since

C0 ✓ (0, 1], F�1(C0) ✓ C0. Thus F�n(C0) is totally disconnected for every n. So by

Theorem 5.2.6 X is tree-like.

Proposition 5.2.8 . Let K be a subcontinuum of X.

1. If 0 2 K, then K =
S

x2K Lx.

2. If 0 /2 K, then ⇡n[K] is degenerate for cofinitely many n.

Proof. First, suppose 0 2 K. AsX is hereditarily unicoherent, for each x 2 K, Lx\K

is a subcontinuum containing both x and 0. As Lx is an arc irreducible between x

and 0, Lx \K = Lx. Then Lx ✓ K. So K =
S

x2K Lx.

Next, suppose 0 /2 K. As F (0) = {0} and K is closed, 0 /2 ⇡n[K] for cofinitely

many n. Then ⇡n,n�1[K] is a subcontinuum of G(F ) that does not touch [0, 1]⇥ {0}

for cofinitely many n. For each such n, ⇡n,n�1[K] is a (possibly degenerate) vertical

line segment and ⇡n[K] contains a single point.
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Theorem 5.2.9 . X is a hereditarily decomposable tree-like continuum.

Proof. Let K be a nondegenerate subcontinuum of X. If 0 2 K, then K =
S

x2K Lx

by the above proposition. If there is some y such that K = Ly, then K is an arc

and thus decomposable. Otherwise, each Lx is a proper subcontinuum. Then the

composant of 0 in K is K itself, making K decomposable.

Now suppose 0 /2 K. By Proposition 5.2.8, for cofinitely many n, ⇡n[K] contains a

single point, which we denote kn. Since K is nondegenerate, ⇡n[K] is nondegenerate

for some n 2 N. Denote the largest such n by N . Then ⇡N [K] contains a point c

in its interior such that c /2 C0. Let x 2 ⇡�1
N (c) \ K. Then xn = kn for n > N .

Since c /2 C0, F (c) = {f(c)}. Since f(t) < minC0 for all t 2 [0, 1], it follows that

xn = fN�n(c) for n < N . So x = (fN(c), . . . , f(c), c, kN+1, kN+2, . . . ) is the unique

point of ⇡�1
N (c) \K. As c separates ⇡N(K), x is a separating point of K, and K is

decomposable.
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CHAPTER SIX

Future Work

Inverse limits with set-valued functions remains a field with many avenues for

future study. One source of possible research is in attempting to find generalizations

of the connections between topological and dynamic properties of classical inverse

limits found by Barge and Martin [5, 6, 7, 8]. Since the weak intermediate value

property is a weaker assumption than requiring that the image of each point be

connected and solves the immediate issue of whether the generalized inverse limit is

connected, it is worth applying to see what other results can be generalized. In [9],

Barge and Martin showed that the classical inverse limit of a single function on the

interval may be realized as a global attractor for a planar homeomorphism. This

raises the following questions: What conditions are su�cient to make generalized

inverse limits planar? What conditions make them global attractors?

An answer to the former question would provide a template for constructing more

exotic planar continua, while an answer to the latter would further illuminate the

connections between topology and dynamics in the setting of generalized inverse lim-

its.

One topic of interest for set-valued dynamics is the relationship between the en-

tropy of these types of functions and periodicity. The existence of a periodic cycle of

a function on [0, 1] with period not a power of 2 and the entropy of the function being

positive are equivalent in the classical case, but Kelly and Tennant showed that this is
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not the case in general for set-valued functions on [0, 1] [35]. This raises the question

of whether the intermediate value property is su�cient to restore this equivalence.

This would enhance our understanding chaos in dynamical systems with set-valued

functions.
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