
ABSTRACT

Orbifold Branes in String Theory and Their Applications to Cosmology

Michael J. Devin, Ph.D.

Advisor: Anzhong Wang, Ph.D.

This dissertation contains two distinct compactification schemes of 10-dimen-

sional string theory, as well as some of the implications of one of these schemes for

string cosmology. The first half of this work begins with a brief overview of cosmology

and goes through constructing and then analyzing the first model, inspired by the

work of Santos and Wang. The second part consists of an attempt to construct

similar models using the the popular warped conifold compactification scheme, as

well as an appendix with a variant of the first model and its derivation. The work

concludes with the observation that the latter attempt does not admit solutions

of the same form, and that the variant model in the appendix is degenerate to

previously studied KK-type models.
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CHAPTER ONE

Introduction to Modern Cosmology

1.1 Three Principles

There are three main ideas that have guided the development of cosmology

for almost a century. Each represented a philosophical shift away from an anthro-

pocentric view of the universe, a privileged place in terms of position, motion, or

local matter arrangement.

1.1.1 Cosmological Principle

The main assumptions of cosmology are homogeneity and isotropy. That is,

that laws we observe on earth and in the solar system can be applied to the rest of

the universe as well. This is also often cited as stating that the location of Earth has

no special significance to the physics we observe beyond our solar system. Extending

this idea to time as well as space was one motivation for Einstein’s original belief in

a static universe. At the largest scales the universe does appear homogeneous and

isotropic, though dynamic. For this reason, and for the simplification it yields, the

universe is generally modeled by the Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

)
, (1.1)

where a(t) is the expansion factor, and k the spatial curvature, which takes the

values k = 0,±1. The space-times are called flat for k = 0, closed for k = +1, and

open for k = −1, that is,

k =


0, flat,

+1, closed,

−1, open.

(1.2)

All of the experiments carried out so far are consistent with k = 0 [1].
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1.1.2 Weyl’s Postulate

The second assumption generally accepted is that all the matter in the universe

follows geodesics in this space-time. This motion is a consequence of relativity in the

absence of any non-gravitational forces that significantly affect the motion at such

distances, though the dark matter halos within galaxies could hypothetically have

such a long range interaction. Mathematically this means that the matter fields in

the universe can be described by a perfect fluid,

Tab = (ρ+ p)uaub − pgab, (a, b = 0, 1, 2, 3), (1.3)

where p and ρ denote, respectively, the pressure and energy density of the fluid with

its four-velocity ua, measured by co-moving observers. It should be noted that p

and ρ should be understood to be the sum of all the species,

p =
∑

pi, ρ =
∑

ρi. (1.4)

In general, the equation of state of the fluid can be written as

pi = wiρi, (1.5)

where for different eras and species of matter we have different equations of state.

For example, in the radiation-dominated epoch, wγ = 1/3, while in the matter-

dominated epoch, wm = 0, and in the dark energy dominated epoch, wDE < −1/3.

When wstiff = 1, it is called a stiff fluid. The cosmological constant term can be

considered as a particular case of a perfect fluid with wΛ = −1 and

ρΛ = −pΛ =
Λ

8πG
. (1.6)

1.1.3 Einstein’s General Relativity

General relativity is assumed to describe the evolution of the universe, except

possibly in the quantum-gravity regime within a short time of the big bang. General
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relativity is encoded in the second-order partial differential equations [2],

Rab −
1

2
Rgab = 8πGTab + Λgab, (1.7)

where Rab denotes the Ricci tensor, R the Ricci scalar, and G and Λ are, respec-

tively, the Newtonian and cosmological constants. The energy-momentum tensor

Tab satisfies the conservation laws of the energy and momentum,

∇aTab = 0, (1.8)

where ∇a denotes the covariant derivative with respect to the metric gab.

For the FRW metric (1.1), the non-vanishing components of the Einstein tensor

Gab are given by

G00 = 3

(
H2 +

k

a2

)
,

Gij =

(
2
ä

a
+H2 +

k

a2

)
gij, (i, j = 1, 2, 3) (1.9)

where

Gab ≡ Rab −
1

2
Rgab, H ≡ ȧ

a
, (1.10)

and ȧ ≡ da(t)/dt. In the co-moving coordinates, we have ua = δta, and the Einstein

field equations (1.7) yield,

H2 =
8πG

3
ρ− k

a2
+

1

3
Λ, (1.11)

ä

a
= −4πG

3
(ρ+ p) +

1

3
Λ. (1.12)

Eq.(1.11) is often referred to as the Friedmann equation. Combining these two

equations, we obtain the conservation law of energy,

ρ̇+ 3H (ρ+ p) = 0, (1.13)

which can be also obtained from the conservation laws of the energy and momentum,

Eq.(1.8).

3



1.2 Three Observational Supports

The familiar big bang cosmology is supported primarily by three observations.

The pattern of redshifts as a function of luminosity, which is interpreted to be a

relation of velocity to distance, also known as Hubble’s law, is the first and most

dramatic evidence,

v = Hd, (1.14)

where v denotes the receding velocity of a galaxy, d its distance, and H the Hubble

parameter. The current value of H is H0 ' 72 (km/s)/Mpc [1].

The 2.725 degree cosmic microwave background, and the ratios of light isotopes

in space are the others [3]. The fact that the expansion of the universe is currently

accelerating is a newer and more exciting finding, and is most clearly visible in the

supernova redshift data collected in the past decade [4, 5, 6, 7].

The ratios of deuterium, helium 3 and 4, and lithium to hydrogen are all

consistent with the big bang model using roughly the same value for the matter to

radiation ratio [3]. The evolution of the universe during this epoch is fairly well

accounted for without including dark energy, which after inflation, will only become

important again at later times.

The standard model of modern cosmology is known as the lambda-CDM

model. It fits the known expansion data to a FRW model with nonzero cosmo-

logical constant and supplements observed baryonic matter with what is known as

cold dark matter [3]. The cold dark matter models most favored are hidden sector

particles that behave similarly to ordinary dust, but are inert with respect to the

electromagnetic field. Models including other fluids with negative pressures greater

than 1/3 of the density are known as dark energy models. The cosmological constant

is the special case where pressure is exactly negative of density. The evidence for

dark matter consists primarily of the galactic rotation curve and anomalous gravi-
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tational lensing. Some efforts have been made to determine how dark matter might

affect the measurements of planets or satellites in the solar system, but generally the

effects are expected to be too weak to have been measured so far. The cosmological

constant favored by experiment is extremely small, and its theoretical value is cutoff

dependent, quite large in even the most conservative case. This is the well-known

cosmological constant problem [8].
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CHAPTER TWO

Orbifold Branes in String/M-Theory

One of the major fascinations with string theory in the last decade, especially

with regards to cosmology, is the braneworlds scenario [9]. The traditional approach

to compactification of ten dimensional string theory is based on Kaluza and Klein’s

original model, supplemented with the idea of bulk dimensions. Matter is allowed

to exist in a number of ’large’ dimensions greater than four, but is ’stuck’ to an

embedded four dimensional surface called a brane. The same mechanism used by

early string theorists to explain confinement of quarks is employed on a wider scale,

confining all nongravitational forces to the brane, and branes are the only ’allowed

endpoints’ of strings in type IIB, the theory of closed strings. Branes themselves

obey a Nambu-Goto type action in the simplest case, equal to a world volume swept

out times the brane tension. In the presence of fluxes this generalizes to the Dirac-

Born-Infeld action. Their intrinsic metrics act as curved space-time for particles

confined to the surface, as they sweep out minimal surfaces of their corresponding

dimensions plus one in the ten dimensional space-time in which they are embedded.

So, one can visualize branes as a literal interpretation of the rubber sheet metaphor

often used to describe curved space-times in GR. The standard approach to building

a braneworld model involves compactifying ten dimensions down to five or six, then

using an effective theory to describe the motions of the branes themselves, from which

we end up with familiar four dimensional Einstein’s equations used for cosmology.

The appeal of brane models is twofold: they allow for the creation of more scenarios

near the testable TeV scale of current colliders, and they also address the original

contents of Einstein with Kaluza and Klein’s scenario, that of the ’speciality’ of

tying up some dimensions and not others. Also, the scales of the brane models are
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typically used to try to explain the hierarchy problem, avoiding the ’Plankian desert’,

the large range of energies separating the standard model from Planck scale physics,

in which it is supposed that no new phenomena occur. So D-branes, so named

because of the Dirichlet type boundary conditions imposed on strings connecting

to them, are often used with non-compactified extra dimensions in string models

to generate such physics. Here we use the standard compactification techniques to

get an effective theory with five large dimensions, then give this bulk a reflection

symmetry about two parallel co-dimension-one volumes in it, on which we put the

branes. The bulk is also made periodic with respect to the normal direction to the

branes. This is called a S1/Z2 orbifold symmetry.

2.1 (D + d+ + d−)-Dimensional Decompositions

Let us begin with the action for the NS/NS sector in (D+d++d−)-dimensions,

M̂N = MD×Md+ ×Md− , whereMd+ andMd− are d+ and d− dimensional spaces,

respectively, and N ≡ D+ d+ + d−. Then the action may be written as, [10, 11, 12],

ŜN = − 1

2κ2
N

∫
dNx

√
|ĝN |e−Φ̂

×
{
R̂N [ĝ] +

(
∇̂Φ̂
)2

− 1

12
Ĥ2

}
, (2.1)

where ∇̂ is the covariant derivative with respect to ĝAB with A,B = 0, 1, ..., N − 1,

and Φ̂ is the dilaton field. The NS three-form field ĤABC is defined as

ĤABC = 3∂[AB̂BC], (2.2)

Ĥ2 = ĤABCĤABC , (2.3)

where the square brackets imply total antisymmetrization over all indices, and

B̂CD = −B̂DC , ∂AB̂CD ≡
∂B̂CD

∂xA
. (2.4)
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The first step in evaluating this action to get an effective five dimensional

theory is to take a block diagonal metric ansatz given by,

dŝ2
N = ĝABdx

AdxB

= g̃ab (x) dxadxb + e

√
2

d+
ψ+(x)

h+
ij (z+) dzi+dz

j
+

+e

√
2

d−
ψ−(x)

h−pq (z−) dzp−dz
q
−, (2.5)

where g̃ab(x) is the metric on MD parametrized by the coordinates xa with a, b, c =

0, 1, ..., D− 1, h+
ij (z+) is the metric on the compact spaceMd+ with coordinates zi+,

where i, j = D,D+1, ..., D+d+−1, and h−ij (z−) is the metric on the compact space

Md− with coordinates zp−, where p, q = D + d+, D + d+ + 1, ..., N − 1.

In addition, we also assume the dilaton field Φ̂ is a function of xa, and that

the flux B̂CD is block diagonal as well,

(
B̂CD

)
=


Bab(x) 0 0

0 eξ+(x)Bij (z+) 0

0 0 eξ−(x)Bpq (z−)

 .

(2.6)

This considerably simplifies the action. In particular, the non-vanishing components

of ĤABC are

Ĥabc = Habc = 3∂[aBbc],

Ĥijk = eξ+Hijk = 3eξ+∂[iBjk],

Ĥpqr = eξ−Hpqr = 3eξ−∂[pBqr],

Ĥaij = Bije
ξ+∇̃aξ+,

Ĥapq = Bpqe
ξ−∇̃aξ−, (2.7)

where ∇̃a denotes the covariant derivative with respect to g̃ab.
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The Ricci scalar for the complete metric may be broken up into the scalars of the

product spaces as well as a few cross terms containing the warp factors,

R̂N [ĝ] = R̃D[g̃] + e
−
√

2
d+

ψ+
Rd+

[
h+
]

+e
−
√

2
d−

ψ−
Rd−

[
h−
]

−2g̃ab∇̃a∇̃bQ−
(d+ + 1)

2

(
∇̃ψ+

)2

−(d− + 1)

2

(
∇̃ψ−

)2

−
√
d+d−

(
∇̃ψ+

)(
∇̃ψ−

)
, (2.8)

where

Q ≡
√
d+

2
ψ+ +

√
d−
2
ψ−. (2.9)

To further simplify the problem, we shall remove the coupling of the dilaton to the

Ricci scalar and factor the volume element as well. This is done with the standard

transformation from the string frame to the Einstein frame by absorbing the dilation

with the conformal transformation of

gab = Ω2g̃ab, Ω = e
Q−Φ̂
D−2 . (2.10)

The Ricci scalar and Q term transform accordingly,

R̃D[g̃] = Ω2 {RD[g] + 2(D − 1)2 ln Ω

−(D − 2)(D − 1) (∇ ln Ω)2} ,
g̃ab∇̃a∇̃bQ = Ω2 (2Q

−(D − 2) (∇Q) (∇ ln Ω)) , (2.11)

where 2 ≡ gab∇a∇b, and ∇a denotes the covariant derivative with respect to gab.

Then, combining Eqs.(2.8) and (2.11), we obtain

√
|ĝN |e−Φ̂

{
R̂N [ĝ] +

(
∇̂Φ̂
)2

− 1

12
Ĥ2

}
=
√
|gDh+h−|

{
RD[g] + e−2Q−Φ̂

D−2

(
e
−
√

2
d+

ψ+
Rd+

9



+e
−
√

2
d−

ψ−
Rd− −

1

12
Ĥ2

)
+

2

D − 2
2Q

−2(D − 1)

D − 2
2Φ̂− 1

D − 2

(
∇
(
Q− Φ̂

))2

−1

2
(∇ψ+)2 − 1

2
(∇ψ−)2

}
. (2.12)

The transformed flux action becomes

Ĥ2 = e
6(Q−Φ̂)
D−2 H2

+3e
2(Q−Φ̂)
D−2

(
e

2

(
ξ+−

√
2

d+
ψ+

)
B2

+ (∇ξ+)2

+e
2

(
ξ−−

√
2

d−
ψ−

)
B2
− (∇ξ−)2

)
+e

2ξ+−3
√

2
d+

ψ+
H2

+

+e
2ξ−−3

√
2

d−
ψ−
H2
−, (2.13)

with

H2 = Habc(x)Habc(x),

H2
+ = Hijk (z+)H ijk (z+) ,

H2
− = Hpqr (z−)Hpqr (z−) ,

B2
+ = Bij (z+)Bij (z+) ,

B2
− = Bpq (z−)Bpq (z−) , (2.14)

and

gabgac = δbc, h+ikh+
ij = δkj , h−pqh−pr = δqr . (2.15)

Substituting Eqs.(2.13) and (2.14) into Eq.(2.1), and then integrating by parts, we

obtain the D-dimensional effective action in the Einstein frame,

S
(E)
D = − 1

2κ2
D

∫ √
|gD|dDx

(
RD[g]− L(E)

D (φn, ξ±)
)
, (2.16)

10



where φn = {φ, ψ±}, and

κ2
D ≡ κ2

N

Vd+Vd−
, (2.17)

Vd± ≡
∫ √

|h±| dd±z±,

L(E)
D =

1

2

∑
n

(∇φn)2 +
1

12
e−
√

8
D−2

φH2

+α+e
2ξ+−

√
8

d+
ψ+

(∇ξ+)2

+α−e
2ξ−−

√
8

d−
ψ−

(∇ξ−)2

−e
√

2
D−2

φ

(
β+e

−
√

2
d+

ψ+

+β−e
−
√

2
d−

ψ− − γ+e
2ξ+−

√
18
d+

ψ+

−γ−e
2ξ−−

√
18
d−

ψ−

)
, (2.18)

and

φ ≡
√

2

D − 2

(
Φ̂−Q

)
, (2.19)

α± ≡
1

4Vd±

∫
dd±z±

√
|h±|B2

± (z±),

β± ≡
1

Vd±

∫
dd±z±

√
|h±|Rd± (z±),

γ± ≡
1

12Vd±

∫
dd±z±

√
|h±|H2

± (z±). (2.20)

2.2 Orbifold Branes

The action for the brane can be written as,

S
(E,I)
D−1,m = −εI

∫
M

(I)
D−1

√∣∣∣g(I)
D−1

∣∣∣V (I)
D−1 (φn, ξ±) dD−1ξ(I)

+

∫
M

(I)
D−1

dD−1ξ(I)

√∣∣∣g(I)
D−1

∣∣∣
×L(I)

D−1,m (φn, ξ±, χ) , (2.21)

where I = 1, 2, V
(I)
D−1 (φn, ξ±) denotes the potential of the scalar fields φn on the

branes, and ξµ(I)’s are the intrinsic coordinates of the branes with µ, ν = 0, 1, ..., D−2,
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and ε1 = −ε2 = 1. χ denotes collectively the matter fields. The surface of the (I)th

brane is given explicitly as,

ΦI (xa) = 0, (2.22)

or parametrically as

xa = xa
(
ξµ(I)

)
. (2.23)

g
(I)
D−1 denotes the determinant of the reduced metric g

(I)
µν of the I-th brane, defined

as

g(I)
µν ≡ gabe

(I)a
(µ) e

(I)b
(ν)

∣∣∣
M

(I)
D−1

, (2.24)

e
(I) a
(µ) ≡

∂xa

∂ξµ(I)
. (2.25)

Then, the total action is given by the sum of the D-dimensional bulk action

and the brane boundary actions,

S
(E)
total = S

(E)
D +

2∑
I=1

S
(E,I)
D−1,m. (2.26)

The variation of the total action (2.26) with respect to the metric gab yields

the field equations,

G
(D)
ab = κ2

DT
(D)
ab + κ2

D

2∑
I=1

T (I)
µν e

(I, µ)
a e

(I, ν)
b

×

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣ δ (ΦI) , (2.27)

where δ(x) denotes the Dirac delta function, normalized in the sense of [13], and the

energy-momentum tensors T
(D)
ab and T (I)

µν are defined as,

κ2
DT

(D)
ab ≡ 1

2
(∇aφ

n) (∇bφn)

+α+e
2ξ+−

√
8

d+
ψ+

(∇aξ+) (∇bξ+)

+α−e
2ξ−−

√
8

d−
ψ−

(∇aξ−) (∇bξ−)

+
1

4
e−
√

8
D−2

φHacdH
cd

b

12



−1

2
gabL(E)

D , (2.28)

T (I)
µν ≡ S(I)

µν + τ (I)
p g(I)

µν ,

S(I)
µν ≡ 2

δL(I)
D−1,m

δg(I) µν
− g(I)

µν L
(I)
D−1,m, (2.29)

where φn = φn, and

τ (I)
p ≡ εIV

(I)
D−1 (φn, ξ±) . (2.30)

Variation of the action (2.26), with respect to φ, ψ±, ξ± and Bab, gives equations

for the matter fields,

2φ = − 1

12

√
8

D − 2
e−
√

8
D−2

φH2

−
√

2

D − 2
e
√

2
D−2

φ

(
β+e

−
√

2
d+

ψ+

+β−e
−
√

2
d−

ψ− − γ+e
2ξ+−

√
18
d+

ψ+

−γ−e
2ξ−−

√
18
d−

ψ−

)
−

2∑
i=1

(
2κ2

DεI
∂V

(I)
D−1

∂φ
+ σ

(I)
φ

)

×

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣ δ (ΦI) , (2.31)

2ψ± = −α±

√
8

d±
e

2ξ±−
√

8
d±

ψ±
(∇ξ±)2

e
√

2
D−2

φ

(
β±

√
2

d±
e
−
√

2
d±

ψ±

−γ±

√
18

d±
e

2ξ±−
√

18
d±

ψ±

)

−
2∑
i=1

(
2κ2

DεI
∂V

(I)
D−1

∂ψ±
+ σ

(I)
ψ±

)

×

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣ δ (ΦI) , (2.32)
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2ξ± = − (∇ξ±)2 +

√
8

d±
(∇aξ±) (∇aψ±)

+
γ±
α±

e
√

2
D−2

φ−
√

2
d±

ψ± − γ±
2α±

e

√
8

d±
ψ±−2ξ±

×
2∑
I=1

(
2κ2

DεI
∂V

(I)
D−1

∂ξ±
+ σ

(I)
ξ±

)

×

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣ δ (ΦI) , (2.33)

∇cHcab =

√
8

D − 2
Hcab∇cφ

−
2∑
i=1

σ
(I)
ab

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣ δ (ΦI), (2.34)

σ
(I)
φ ≡ −2κ2

D

δL(I)
D−1,m

δφ
,

σ
(I)
ψ±
≡ −2κ2

D

δL(I)
D−1,m

δψ±
,

σ
(I)
ξ±
≡ −2κ2

D

δL(I)
D−1,m

δξ±
,

σ
(I)
ab ≡ −4κ2

De
√

8
D−2

φ
δL(I)

D−1,m

δBab
. (2.35)

Deriving the equations in the bulk involves simply dropping the delta function

terms from the above equations. Those boundary terms can then be put into the

Israel junction conditions to give boundary conditions on the bulk fields’ solutions’

normal derivatives at the brane [14, 15]. Alternatively, the Gauss-Codacci and Lanc-

zos equations for the (D − 1) dimensional gravitational field equations can be used

[16]. In the following, we shall follow the second approach.

Let’s begin with the Gauss-Codacci equations

G(D−1)
µν = G(D)

µν + E(D)
µν + F (D−1)

µν , (2.36)

14



with

G(D)
µν ≡ D − 3

(D − 2)

{
G

(D)
ab e

a
(µ)e

b
(ν)

−
[
Gabn

anb +
1

D − 1
G(D)

]
gµν

}
,

E(D)
µν ≡ C

(D)
abcdn

aeb(µ)n
ced(ν),

F (D−1)
µν ≡ KµλK

λ
ν −KKµν

−1

2
gµν
(
KαβK

αβ −K2
)
, (2.37)

where na denotes the normal vector to the brane, G(D) ≡ gabG
(D)
ab , and C

(D)
abcd the

Weyl tensor. The extrinsic curvature Kµν is defined as

Kµν ≡ ea(µ)e
b
(ν)∇anb. (2.38)

And the Lanczos equations read [17],

[
K(I)
µν

]− − g(I)
µν

[
K(I)

]−
= −κ2

DT (I)
µν , (2.39)

where

[
K(I)
µν

]− ≡ limΦI→0+K(I) +
µν − limΦI→0−K

(I) −
µν ,[

K(I)
]− ≡ g(I) µν

[
K(I)
µν

]−
. (2.40)

If the fields have reflection symmetry about the brane surfaces, then the discontinuity

in the normal derivatives will simply be twice the boundary value.

Then, substituting into the extrinsic curvatures K
(I)
µν , the effective energy-

momentum tensor T (I)
µν through the Lanczos equations (2.39), and setting

S(I)
µν = τ (I)

µν + g
(I)
k g(I)

µν , (2.41)

where g
(I)
k is a coupling constant of the I-th brane [18], we find that

T (I)
µν = τ (I)

µν +
(
g

(I)
k + τ (I)

p

)
g(I)
µν . (2.42)

15



Then, G
(D−1)
µν given by Eq.(2.36) can be cast in the form,

G(D−1)
µν = G(D)

µν + E(D)
µν + E (D−1)

µν + κ4
Dπµν

+κ2
D−1τµν + ΛD−1gµν , (2.43)

where we have defined

πµν ≡
1

4

{
τµλτ

λ
ν −

1

D − 2
ττµν

−1

2
gµν

(
ταβταβ −

1

D − 2
τ 2

)}
,

E (D−1)
µν ≡ κ4

D(D − 3)

4(D − 2)
τp

×
[
τµν +

(
gk +

1

2
τp

)
gµν

]
, (2.44)

and

κ2
D−1 =

D − 3

4(D − 2)
gkκ

4
D,

ΛD−1 =
D − 3

8(D − 2)
g2
kκ

4
D. (2.45)

Taking the energy momentum tensor for a perfect fluid,

τµν = (ρ+ p)uµuν − pgµν , (2.46)

where uµ is the four-velocity of the fluid, we obtain,

πµν =
D − 3

4(D − 2)
ρ

×
[
(ρ+ p)uµuν −

(
p+

1

2
ρ

)
gµν

]
. (2.47)

Note that in writing Eqs.(2.43)-(2.47), the super indices (I) were dropped.

Using the surface ΦI(x) = 0 to define the brane, we can divide the space-time

into two regions, one with ΦI(x) > 0 and the other with ΦI(x) < 0 [see Fig.2.1].

Since the field equations are the second-order differential equations, so the matter

fields have to be at least continuous across this surface, although in general their

16



Figure 2.1: The hypersurface Σ, where Σ ≡
{
xA : ΦI(x) = 0

}
, divides the spacetime

into two regions, M±, where M+ ≡
{
xA : ΦI(x) > 0

}
and M− ≡

{
xA : ΦI(x) < 0

}
.

first-order directives need not be. Introducing the Heaviside function H(x), defined

as

H (x) =

{
1, x > 0,

0, x < 0,
(2.48)

in the neighborhood of ΦI(x) = 0 we can write the matter fields in the form,

F (x) = F+(x)H (ΦI) + F−(x) [1−H (ΦI)] , (2.49)

where F ≡ {φ, ψ±, ξ±, B}, and F+ (F−) is defined in the region ΦI > 0 (ΦI < 0).

Then, we find that

F,a(x) = F+
,a (x)H (ΦI) + F−,a (x) [1−H (ΦI)] ,

F,ab(x) = F+
,ab(x)H (ΦI) + F−,ab(x) [1−H (ΦI)]

+ [F,a]
− ∂ΦI(x)

∂xb
δ (ΦI) , (2.50)
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where [F,a]
− is defined as that in Eq.(2.40). Projecting F,a onto na and ea(µ) directions,

we find

F,a = F,µe
(µ)
a − F,nna, (2.51)

where

F,n ≡ naF,a, F,µ ≡ ea(µ)F,a. (2.52)

Then, we have

[F,a]
− na = [F,n]− ,

[F,a]
− ea(µ) = 0. (2.53)

Inserting Eqs.(2.51)-(2.53) into Eq.(2.50), we find

F,ab(x) = F+
,ab(x)H (ΦI) + F−,ab(x) [1−H (ΦI)]

− [F,n]− nanbNI δ (ΦI) , (2.54)

where NI ≡
√
|ΦI,cΦ

,c
I |, and

na =
1

NI

∂ΦI(x)

∂xa
. (2.55)

Substituting Eq.(2.54) into Eqs.(2.31)-(2.34), we find that the matter field equations

on the branes are, [
φ(I)
,n

]−
= −Ψ(I)

(
2κ2

DεI
∂V

(I)
D−1

∂φ
+ σ

(I)
φ

)
, (2.56)

[
ψ

(I)
±,n

]−
= −Ψ(I)

(
2κ2

DεI
∂V

(I)
D−1

∂ψ±
+ σ

(I)
ψ±

)
, (2.57)

[
ξ

(I)
±,n

]−
= −Ψ(I)

2α±
e

√
8

d±
ψ±−2ξ±

×
2∑
I=1

(
2κ2

DεI
∂V

(I)
D−1

∂ξ±
+ σ

(I)
ξ±

)
, (2.58)[

H
(I)
nab

]−
= −Ψ(I) σ

(I)
ab , (2.59)

where

Hnab ≡ Hcabn
c, Ψ(I) ≡ 1

NI

√√√√∣∣∣∣∣g
(I)
D−1

gD

∣∣∣∣∣. (2.60)
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2.3 Orbifold Branes in 5-Dimensional Spacetimes

Choosing D = 5, d+ = 3, d− = 2 we return to our metric ansatz, for the five-

dimensional space-time with a three dimensional spatial space that is homogeneous,

isotropic, and independent of time. It can always be written in the form [19],

ds2
5 = gabdx

adxb = gMNdx
MdxN − e2ω(xM)dΣ2

k, (2.61)

where M, N = 0, 1. In the conformal gauge,

g00 = g11, g01 = 0, (2.62)

this becomes,

ds2
5 = e2σ(t,y)

(
dt2 − dy2

)
− e2ω(t,y)dΣ2

k. (2.63)

Note that metric (2.63) still has the gauge freedom,

t = f(t′ + y′) + g(t′ − y′), y = f(t′ + y′)− g(t′ − y′), (2.64)

where f(t′ + y′) and g(t′ − y′) are arbitrary functions.

From this point on we remove the flux to keep things simple. Let

B̂CD = 0, (2.65)

so that

ξ± = 0, α± = 0, γ± = 0. (2.66)

2.3.1 Field Equations Outside of Branes

Then, outside the two branes the independent equations of Eqs.(2.27) are,

ω,tt + ω,t (ω,t − 2σ,t) + ω,yy + ω,y (ω,y − 2σ,y)

= −1

6

(
φ2
,t + φ2

,y + ψ2
+,t + ψ2

+,y + ψ2
−,t + ψ2

−,y
)
, (2.67)

2σ,tt + ω,tt − 3ω,t
2 −

(
2σ,yy + ω,yy − 3ω,y

2
)
− 4ke2(σ−ω)
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= −1

2

(
φ2
,t − φ2

,y + ψ2
+,t − ψ2

+,y + ψ2
−,t − ψ2

−,y
)
, (2.68)

ω,ty + ω,tω,y − (σ,tω,y + σ,yω,t)

= −1

6
(φ,tφ,y + ψ+,tψ+,y + ψ−,tψ−,y) , (2.69)

ω,tt + 3ω,t
2 −

(
ω,yy + 3ω,y

2
)

+ 2ke2(σ−ω)

=
1

3
e2σV5. (2.70)

On the other hand, the corresponding Klein-Gordon equations take the form,

φ,tt + 3φ,tω,t − (φ,yy + 3φ,yω,y)

= −
√

2

3
e2σV5, (2.71)

ψ+,tt + 3ψ+,tω,t − (ψ+,yy + 3ψ,yω,y)

= e2σβ+e
√

2/3φ−ψ+ , (2.72)

ψ−,tt + 3ψ−,tω,t − (ψ−,yy + 3ψ,yω,y)

=

√
2

3
e2σβ−e

√
2/3φ−ψ− , (2.73)

with

V5 = e
√

2
3
φ
(
β+e

−ψ+ + β−e
−
√

2
3
ψ−
)
. (2.74)

2.3.2 Field Equations On the Branes

On each of the two branes, the metric reduces to

ds2
5

∣∣
M

(I)
4

= g(I)
µν dξ

µ
(I)dξ

ν
(I) = dτ 2

I − a2 (τI) dΣ2
k, (2.75)

where ξµ(I) ≡ {τI , r, θ, ϕ}, and τI denotes the proper time of the I-th brane, defined

by

dτI = eσ[tI(τI),yI(τI)]

√
1−

(
ẏI

ṫI

)2

dtI ,

a (τI) ≡ eω[tI(τI),yI(τI)], (2.76)
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with ẏI ≡ dyI/dτI , etc. For the sake of simplicity we shall drop all the indices “I”,

unless some specific attention is needed. The normal vector na and the tangential

vectors ea(µ) are given, respectively, by

na = e2σ
(
−ẏδta + ṫδya

)
,

na = −
(
ẏδat + ṫδay

)
,

ea(τ) = ṫδat + ẏδay , ea(r) = δar ,

ea(θ) = δaθ , ea(ϕ) = δaϕ. (2.77)

Proceeding to the Gauss-Codacci relations we find that

G(5)
µν = G(5)

τ δτµδ
τ
ν − G

(5)
θ δmµ δ

n
ν gmn,

E(5)
µν = E(5)

(
3δτµδ

τ
ν − δmµ δnν gmn

)
, (2.78)

where

G(5)
τ ≡ 1

3
e−2σ

(
φ2
,t − φ2

,y + ψ2
+,t − ψ2

+,y + ψ2
−,t − ψ2

−,y
)

− 5

24

[
(∇φ)2 + (∇ψ+)2 + (∇ψ−)2

]
+

1

4
V5,

G(5)
θ ≡ 1

3

[
φ2
,n + ψ2

+,n + ψ2
−,n
]

+
5

24

[
(∇φ)2 + (∇ψ+)2 + (∇ψ−)2

]
− 1

4
V5,

E(5) ≡ 1

6
e−2σ [(σ,tt − ω,tt)− (σ,yy − ω,yy)

+ke2(σ−ω)
]
, (2.79)

with φ,n ≡ na∇aφ. The four-dimensional equations on each brane take the form,

H2 +
k

a2
=

8πG

3
(ρ+ τp) +

1

3
Λ +

1

3
G(5)
τ + E(5)

+
2πG

3ρΛ

(ρ+ τp)
2 , (2.80)

ä

a
= −4πG

3
(ρ+ 3p− 2τp) +

1

3
Λ− E(5)

−1

6

(
G(5)
τ + 3G(5)

θ

)
− 2πG

3ρΛ

[ρ (2ρ+ 3p)

+ (ρ+ 3p− τp) τp] , (2.81)
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where H ≡ ȧ/a, , Λ ≡ Λ4 and G ≡ G4. On the other hand, from Eqs.(2.56) and

(2.57), we find

[
φ(I)
,n

]−
= −

(
2κ2

5εI
∂V

(I)
4

∂φ
+ σ

(I)
φ

)
Ψ, (2.82)

[
ψ

(I)
±,n

]−
= −

(
2κ2

5εI
∂V

(I)
4

∂ψ±
+ σ

(I)
ψ±

)
Ψ. (2.83)
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CHAPTER THREE

Radion Stability

In the two-brane models, one important question is the stability of branes. In

this section, we shall address this issue.

3.1 The Spacetime Background with Poincaré Symmetry

The five dimensional static metric with a four dimensional Poincaré symmetry

is given by Eq.(2.63) with k = 0 and σ(y) = ω(y), that is,

ds2
5 = e2σ(y)

(
ηµνdx

µdxν − dy2
)
. (3.1)

Our specific solutions are given by,

σ(y) =
1

3
ln

(
|y|+ y0

L

)
,

φ(y) = c1ln

(
|y|+ y0

L

)
+ φ0,

ψ+(y) = c2ln

(
|y|+ y0

L

)
+ ψ0

+,

ψ−(y) =

√
3

2
c2 ln

(
|y|+ y0

L

)
+ ψ0

−, (3.2)

where c1, y0, L, σ0, φ0, and ψ0
+ are all arbitrary constants, and

16 = 6c2
1 + 15c2

2,

ψ0
− =

√
3

2

(
ψ0

+ − ln

(
−β+

β−

))
. (3.3)

The function |y| is defined as that given in Fig.3.1.

These are the solutions to the equations outside the branes Eqs.(2.67)-(2.72).

Boundary conditions must still be enforced using the on brane equations Eqs.(2.80)-

(2.81) and Eqs.(2.82)-(2.83). The normal vector na(I) to the I-th brane is given by

na(I) = −ε(I)y e−σ(yI)δay , (3.4)
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Figure 3.1: The function |y| defined in Eq.(3.2).

and

ṫ = e−σ(yI), ẏ = 0,

G(5)
τ = −G(5)

θ = − 2

9L2

(
L

yI + y0

) 8
3

, (3.5)

where y1 = yc > 0 and y2 = 0. Inserting the above into Eqs.(2.80) and (2.81), and

H = 0, the equations are satisfied for τ
(I)
µν = 0, provided that the tension τ

(I)
p defined

by Eq.(2.30) satisfies the relation,

(
τ

(I)
(φ,ψ±) + 2ρΛ

(I)
)2

=
ρ

(I)
Λ

9πG4L2

(
L

yI + y0

)8/3

, (3.6)

where ρ
(I)
Λ denotes the corresponding energy density of the effective cosmological

constant on the I-th brane, defined as ρ
(I)
Λ = Λ(I)/(8πG). From Eqs.(2.82) and

(2.83), we find that

∂V
(I)

4

∂φ
=

c1εI
κ2

5(yI + y0)
, (3.7)

∂V
(I)

4

∂ψ+

=
c2εI

κ2
5(yI + y0)

, (3.8)

∂V
(I)

4

∂ψ−
= −

√
3c2εI√

2κ2
5(yI + y0)

. (3.9)

To study the radion stability, it is convenient to introduce the proper distance Y ,

defined by

D(t) =

∫ y1

y2

eσ(t,y)dy. (3.10)
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where y2(t2) < y < y1(t1), and y = yI(tI) denote the locations of the two branes.

For our case this gives

Y =
3L

4

((
yI + y0

L

)4/3

−
(y0

L

)4/3
)
. (3.11)

Then, in terms of Y , the static solution (3.1) can be written as

ds2
5 = e−2A(Y )ηµνdx

µdxν − dY 2, (3.12)

with

A(Y ) = −1

4
ln

(
4 (|Y |+ Y0)

3L

)
,

φ(Y ) =
3

4
c1 ln

(
4 (|Y |+ Y0)

3L

)
+ φ0,

ψ+(Y ) =
3

4
c2 ln

(
4 (|Y |+ Y0)

3L

)
+ ψ0

+,

ψ−(Y ) =

√
27

32
c2 ln

(
4 (|Y |+ Y0)

3L

)
+ ψ0

−, (3.13)

where

Y0 =
3L

4

(y0

L

)4/3

. (3.14)

In comparison to the Randal-Sundrum setup, this metric has
√
Y warp factor, in-

stead of e−Y . In order to get a feel for this space, consider null rays propagating

normal to the brane. These will obey

Y 5 =
3L

4

(
t0 ±

5

4
t

)4

. (3.15)

So while we do not have the Cauchy problem of incoming signals arriving from

infinity in finite time, we we still find it useful to use two branes to compactify this

bulk space. The monotonic nature of the warp factor then implies that, at least for

static branes, one will have positive and the other negative tension.
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3.2 Radion Stability

Following [20],we consider a massive scalar test field Φ with the actions,

Sb =

∫
d4x

∫ Yc

0

dY
√
−g5

(
(∇Φ)2 −M2Φ2

)
,

SI = −αI
∫
M

(I)
4

d4x

√
−g(I)

4

(
Φ2 − v2

I

)2
, (3.16)

where αI and vI are real constants. In the background of Eq.(3.12), the field Φ

satisfies the Klein-Gordon equation

Φ′′ − 4A′Φ′ −M2Φ =
2∑
I=1

2αIΦ
(
Φ2 − v2

I

)
δ(Y − YI). (3.17)

Using a pill box integration over the the I-th brane, we find that

dΦ(Y )

dY

∣∣∣∣YI+ε

YI−ε
= 2αIΦI

(
Φ2
I − v2

I

)
, (3.18)

where ΦI ≡ Φ(YI). Since

lim
Y→Y +

c

dΦ(Y )

dY
= − lim

Y→Y −
c

dΦ(Y )

dY
≡ −Φ′ (Yc) ,

lim
Y→0−

dΦ(Y )

dY
= − lim

Y→0+

dΦ(Y )

dY
≡ −Φ′(0), (3.19)

the conditions (3.18) can be written as,

Φ′(Yc) = −α1Φ1

(
Φ2

1 − v2
1

)
, (3.20)

Φ′(0) = α2Φ2

(
Φ2

2 − v2
2

)
. (3.21)

Inserting the above solution back to the actions (3.16), and integrating over Y , we

get the effective potential for the radion Yc,

VΦ (Yc) ≡ −
∫ Yc−ε

0+ε

dY
√
−g5

(
(∇Φ)2 −M2Φ2

)
+

2∑
I=1

αI

∫ YI+ε

YI−ε
dY

√
−g(I)

4

(
Φ2 − v2

I

)2

×δ (Y − YI)

= e−4A(Y )Φ(Y )Φ′(Y )
∣∣Yc
0

+
2∑
I=1

αI
(
Φ2
I − v2

I

)2
e−4A(YI). (3.22)
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For our solution given by Eq.(3.13) and Eq.(3.17) in the region 0 < Y < Yc,

we find that

d2Φ

dz2
+

1

z

dΦ

dz
− Φ = 0, (3.23)

where z ≡M (Y + Y0). Eq.(3.23) has the general solution,

Φ = aI0(z) + bK0(z), (3.24)

where I0(z) and K0(z) denote the modified Bessel function of the first and second

kind, respectively [21]. In the limit that αI ’s are very large [20], Eqs.(3.20) and

(3.21) show that there are solutions only when Φ(0) ' v2 and Φ(Yc) ' v1, that is,

v1 ' aIc0 + bKc
0, (3.25)

v2 ' aI0
0 + bK0

0 , (3.26)

where

zc = M (Yc + Y0) , z0 = MY0,

I i0 ≡ I0 (zi) , Ki
0 ≡ K0 (zi) . (3.27)

Eqs.(3.25) and (3.26) have the solution,

a ' 1

∆

(
v1K

0
0 − v2K

c
0

)
,

b ' 1

∆

(
v2I

c
0 − v1I

0
0

)
, (3.28)

where

∆ ≡ Ic0K
0
0 − I0

0K
c
0. (3.29)

Inserting Eqs.(3.24) and (3.28) into Eq.(3.22), we find that

VΦ (Yc) '
4

3L∆

{
v1zc

[
v1

(
I0

0K
c
1 + Ic1K

0
0

)
−v2 (Ic0K

c
1 + Ic1K

c
0)]

+v2z0

[
v2

(
Ic0K

0
1 + I0

1K
c
0

)
−v1

(
I0

0K
0
1 + I0

1K
0
0

)]}
. (3.30)
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When z0 � 1, we have zc = z0 +MYc � 1. Then, we find

I0(z) ' I1(z) '
√

1

2πz
ez,

K0(z) ' K1(z) '
√

π

2z
e−z. (3.31)

Substituting them into Eq.(3.30), we get

VΦ (Yc) '
4z0

3L sinh (MYc)

{(
v1

2 + v2
2
)

cosh (MYc)− 2v1v2

}
, (3.32)

which has a minimum at

Y min.
c =

1

M
cosh−1

(
v1

2 + v2
2

2v1v2

)
, (3.33)

where

∂2VΦ (Yc)

∂Yc
2

∣∣∣∣
Yc=Ymin.

c

'
(

16z0M
2

3L

)
(v1v2)2

|v2
1 − v2

2|
> 0,

VΦ (Yc) '

{
∞, Yc = 0,

∞, Yc =∞.
(3.34)

This shows the potential always has a minimum at a finite and non-zero value of Yc.

As a result, the radion is stabilized.

To calculate the corresponding radion mass, we need to know the precise re-

lation between Yc and the radion scalar ϕ. Following [19, 20], we find that

ϕ =

(
12

κ2
5

∫ Yc

0

e−2AdY

)1/2

=
√

6LM3
5

×

{(
4 (Yc + Y0)

3L

)3/2

−
(

4Y0

3L

)3/2
}1/2

. (3.35)

So,

m2
ϕ ≡

∂2VΦ (Yc)

2∂ϕ2

∣∣∣∣
Yc=Ymin.

c

=
M2

M3
5

(
16Y0

27L

)1/2

× (v1v2)2

|v2
1 − v2

2|
cosh−1

(
v1

2 + v2
2

2v1v2

)
, (3.36)

where M3
5 = M8

10Vd+Vd− .
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Figure 3.2: The potential VΦ (Yc) defined by Eq.(3.32) for M � 1/Y0.

When z � 1, we find

I0(z) ' 1, I1(z) ' z

4
,

K0(z) ' − ln(z), K1(z) ' 1

z
. (3.37)

Then, Eq.(3.30) reduces to

VΦ (Yc) '
v1 − v2

3LYc

{
(v1 − v2)

(
4− z2

0 ln (z0)
)
Y0

+z2
0 (v2 − 2v1 ln (z0))Yc

}
, (3.38)

for Yc � Y0. This potential has no minimum, as shown in Fig. 3.3, leading to an

unstable radion for M � 1/Y0.

29



Y
0

V  (Y )

 c

cΦ

Figure 3.3: The potential VΦ (Yc) defined in Eq.(3.38) for M � 1/Y0.
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CHAPTER FOUR

Localization of Gravity and 4D Effective Newtonian Potential

One of the most important aspects to any model is where it connects to exper-

iment. The most important is to reproduce the newtownian gravity limit. In models

with five large dimensions, care must be taken to verify that the inverse square law

is still approximately obeyed by masses on the brane. In simple compactification

schemes the use of gauss’s law gives the correct limit when the distance is large

compared to the size of the extra dimension. This is the source of some of the most

stringent experimental constraint on the size of extra dimensions. In the single brane

Randal-Sundrum type models the limit is accomplished by a more subtle effect, that

of the warped nature of the extra dimension itself, namely the convergent nature

of the ADS warp factor. In these orbifold models this issue remains important. To

study the localization of gravity and the four-dimensional effective gravitational po-

tential, in this section let us consider small fluctuations hab of the five dimensional

static metric with a four dimensional Poincaré symmetry, given by Eqs.(3.1) in its

conformally flat form.

4.1 Tensor Perturbations and the KK Towers

Since such tensor perturbations are not coupled with scalar ones [22], without

loss of generality we can set the perturbations of the scalar fields to zero, i.e., δφn = 0.

We choose the gauge [23, 24]

hay = 0, hλλ = 0 = ∂λhµλ. (4.1)

Then, it can be shown that [25]

δG
(5)
ab = −1

2
25hab −

3

2
{(∂cσ) (∂chab)

−2 [25σ + (∂cσ) (∂cσ)]hab} ,
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κ2
5δT

(5)
ab = −1

4
hab

(∑
n=1

(∇φn)2 − 2V5

)
,

δT (4)
µν = (τp + λ)hµν , (4.2)

where 25 ≡ ηab∂a∂b and (∂cσ) (∂chab) ≡ ηcd (∂cσ) (∂dhab), with ηab being the five-

dimensional Minkowski metric. Substituting the above expressions into the gravi-

tational field equations (2.27) with D = 5, we find that in the present case there is

only one independent equation, given by

25h̃µν +
3

2

(
σ′′ +

3

2
σ′

2

)
h̃µν = 0, (4.3)

where hµν ≡ e−3σ/2h̃µν . Setting

h̃µν(x, y) = ĥµν(x)ψ(y),

25 = 24 −∇2
y = ηµν∂µ∂ν − ∂2

y ,

24ĥµν(x) = −m2ĥµν(x), (4.4)

we find that Eq.(4.3) takes the form of the Schrödinger equation,(
−∇2

y + V
)
ψ = m2ψ, (4.5)

where

V ≡ 3

2

(
σ′′ +

3

2
σ′

2

)
= − 1

4 (|y|+ y0)2 +
δ(y)

y0

− δ (y − yc)
yc + y0

. (4.6)

From the above expression we can see clearly that the potential has a delta-function

well at y = yc, which is responsible for the localization of the graviton on this brane.

In contrast, the potential has a delta-function barrier at y = 0, which makes the

gravity delocalized on the y = 0 brane. Fig. 4.1 shows the potential schematically.

Integration of Eq.(4.5) in the neighborhood of y = 0 and y = yc yields, respec-

tively, the boundary conditions,

lim
y→y−c

ψ′(y) =
1

2 (yc + y0)
lim
y→y−c

ψ(y), (4.7)
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Figure 4.1: The potential defined by Eq.(4.6).

lim
y→0+

ψ′(y) =
1

2y0

lim
y→0+

ψ(y). (4.8)

Note that in writing the above equations we had used the Z2 symmetry of the wave

function ψ.

Introducing the operators,

Q ≡ ∇y −
3

2
σ′, Q† ≡ −∇y −

3

2
σ′, (4.9)

Eq.(4.5) can be written in the form of a supersymmetric quantum mechanics prob-

lem,

Q† ·Qψ = m2ψ, (4.10)

which, together with the boundary conditions (4.7) and (4.8), guarantees that the

operator Q† · Q is Hermitian [26, 19]. Then, by the usual theorems from Quantum

Mechanics [27], we can see that all eigenvalues m2 are non-negative, and their cor-

responding wave functions ψn(y) are orthogonal to each other and form a complete

basis. Therefore, the background in the current setup is gravitationally stable.

4.1.1 Zero Mode

The four-dimensional gravity is given by the existence of the normalizable zero

mode, for which the corresponding wavefunction is given by

ψ0(y) = N0 (|y|+ y0)1/2 , (4.11)
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Figure 4.2: The wavefunction ψ0(y) defined by Eq.(4.11) for the zero mode.

where N0 is the normalization factor, defined as

N0 =

√
2

yc (yc + 2y0)
. (4.12)

Eq.(4.11) shows clearly that the wavefunction is increasing as y increases from 0 to

yc [see Fig. 4.2]. Therefore, the gravity is indeed localized near the y = yc brane.

4.1.2 Non-Zero Modes

In order to have localized four-dimensional gravity, we require that the correc-

tions to the Newtonian law from the non-zero modes, the KK modes, of Eq.(4.5),

be very small, so that they will not contradict observations. When m 6= 0, it can be

shown that Eq.(4.5) has the general solution,

ψ = x1/2 (cJ0(x) + dY0(x)) , (4.13)

where x ≡ m (y + y0), and J0(x) and Y0(x) are the Bessel functions of the first and

second kind, respectively [21]. The integration constants c and d are determined

from the boundary conditions, Eqs.(4.7) and (4.8), which can now be cast in the

form, (
J1 (xc) Y1 (xc)

J1 (x0) Y1 (x0)

)(
c

d

)
= 0, (4.14)

where x0 ≡ my0 and xc ≡ x0 +myc. Clearly, there are no trivial solutions only when

∆ (x0, xc) ≡ J1 (xc)Y1 (x0)− J1 (x0)Y1 (xc) = 0. (4.15)
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Figure 4.3: The re-scaled function of ∆ defined by Eq.(4.15), where the dashed, dot-
dashed and solid lines are, respectively, for ∆ (x0 = 0.01) /35, ∆ (x0 = 1.0) /0.5 and
∆ (x0 = 1000) /0.005.

Table 4.1: The first three modes mn (n = 1, 2, 3) for x0 = 0.01, 1.0, 1000,
respectively.

x0 m1yc m2yc m3yc

0.01 3.82 7.01 10.16

1.0 3.36 6.53 9.69

1000 3.14 6.28 9.42

Fig. 4.3 shows the function ∆ (x0,myc) for x0 = 0.01, 1.0, 1000, respectively. From

this figure, we find that the spectrum of the gravitational KK towers is discrete, and

weakly depends on the specific values of x0.

Table I shows the first three modes mn (n = 1, 2, 3) for x0 = 0.01, 1.0, 1000,

from which it can be seen that to find mn, it is sufficient to consider only the case

x0 � 1. When x0 � 1, we find that xc = x0 +myc � 1 and [21]

J1(x) '
√

2

πx
cos

(
x− 3

4
π

)
,

Y1(x) '
√

2

πx
sin

(
x− 3

4
π

)
. (4.16)

Inserting the above expressions into Eq.(4.15), we obtain

∆ =
2

π
√
x0xc

sin (myc) , (4.17)
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with roots given by

mn =
nπ

yc
, (n = 1, 2, ...). (4.18)

In particular, we have

m1 ' 3.14×
(

10−19 m

yc

)
TeV

'


1 TeV, yc ' 10−19 m,

10−2 eV, yc ' 10−5 m,

10−4 eV, yc ' 10−3 m.

(4.19)

It should be noted that the mass mn calculated above is measured by the observer

with the metric ηµν . However, since the warped factor eσ(y) is not one at y = yc, the

physical mass on the visible brane should be given by [23]

mobs
n = e−σ(yc)mn =

(
yc + y0

L

)1/3

mn. (4.20)

Without introducing any new hierarchy, we expect that [(yc + y0)/L]1/3 ' O(1). As

a result, we have

mobs
n =

(
yc + y0

L

)1/5

mn ' mn. (4.21)

For each mn that satisfies Eq.(4.15), the wavefunction ψn(y) is given by

ψn(y) = Nnx
1/2
n

(
J0 (xn)

J1 (x0,n)
− Y0 (xn)

Y1 (x0,n)

)
, (4.22)

where

x0,n ≡ mny0 ' nπ

(
y0

yc

)
,

xn ≡ mn (y0 + y) ' nπ

(
y0 + y

yc

)
. (4.23)

The normalization factor Nn[≡ Nn (mn, yc)] is determined by the condition,∫ yc

0

|ψn(y)|2 dy = 1. (4.24)

Figs. 4.4, 4.5 and 4.6 show ψ1 (y) , ψ2 (y) and ψ3 (y) for x0,1 = 100, 102, 104,

respectively.
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Figure 4.4: The wavefunction, ψ1 (y), defined by Eq.(4.22) vs m1y where y ∈ [0, yc].
The dashed, dot-dashed and solid lines are, respectively, for x0,1 = 100, 102, 104.
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Figure 4.5: The wavefunction, ψ2 (y), defined by Eq.(4.22), vs m2y where y ∈ [0, yc].
The dashed, dot-dashed and solid lines are, respectively, for x0,1 = 100, 102, 104.
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Figure 4.6: The wavefunction, ψ3 (y), defined by Eq.(4.22), vs m3y where y ∈ [0, yc].
The dashed, dot-dashed and solid lines are, respectively, for x0,1 = 100, 102, 104.
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4.2 4D Newtonian Potential and Yukawa Corrections

To calculate the four-dimensional effective Newtonian potential and its cor-

rections, we consider two point-like sources of masses M1 and M2, located on the

brane at y = yc. Then, the discrete eigenfunction ψn(z) of mass mn has a Yukawa

correction to the four dimensional gravitational potential between the two particles

[28, 25],

U(r) = G4
M1M2

r
+
M1M2

M3
5 r

∞∑
n=1

e−mnr |ψn (yc)|2, (4.25)

where ψn (yc) is given by Eq.(4.22), with

xc,n ≡ mn (yc + y0) ' nπy0

yc
+ nπ. (4.26)

When x0,1 = m1y0 � 1, we find that

Nn '
cos (2mny0)√

2nπy0

,

ψn (yc) ' (−1)n+1

√
2

yc
. (4.27)

Then, we obtain,

|ψn (yc)|2 ' 2Mpl

(
lpl
yc

)
. (4.28)

Clearly, by properly choosing yc, the corrections of the four dimensional Newtonian

potential due to the high order gravitational KK modes are negligible.
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CHAPTER FIVE

Cosmological Model in the String/M-Theory

On each of the two branes, the metric reduces to

ds2
5

∣∣
M

(I)
4

= g(I)
µν dξ

µ
(I)dξ

ν
(I) = dτ 2

I − a2 (τI) dΣ2
k, (5.1)

where ξµ(I) ≡ {τI , r, θ, ϕ}, and τI denotes the proper time of the I-th brane, defined

by

dτI = eσ[tI(τI),yI(τI)]

√
1−

(
ẏI

ṫI

)2

dtI ,

a (τI) ≡ eω[tI(τI),yI(τI)], (5.2)

with ẏI ≡ dyI/dτI , etc. For the sake of simplicity and without of causing any con-

fusion, from now on we shall drop all the indices “I”, unless some specific attention

is needed. Then, the normal vector na and the tangential vectors ea(µ) are given,

respectively, by

na = e2σ
(
−ẏδta + ṫδya

)
,

na = −
(
ẏδat + ṫδay

)
,

ea(τ) = ṫδat + ẏδay , ea(r) = δar ,

ea(θ) = δaθ , ea(ϕ) = δaϕ. (5.3)

Thus, we find that

G(5)
µν = G(5)

τ δτµδ
τ
ν − G

(5)
θ δmµ δ

n
ν gmn,

E(5)
µν = E(5)

(
3δτµδ

τ
ν − δmµ δnν gmn

)
, (5.4)

where m, n = r, θ, ϕ, Then, it can be shown that the four-dimensional field

equations on each of the two branes take the form,

H2 +
k

a2
=

2πG

3ρΛ

(ρ+ τφ + 2ρΛ)2 +
1

3
G(5)
τ + E(5), (5.5)
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ä

a
= −2πG

3
(ρ+ 3p− 2ρΛ − τφ) (ρ+ 2ρΛ + τφ)

−E(5) − 1

6

(
G(5)
τ + 3G(5)

θ

)
, (5.6)

where H ≡ ȧ/a, , Λ ≡ Λ4, G ≡ G4 and ρΛ = Λ/(8πG).

Using Eqs.(5.5) and (5.6), the conservation law can be written as

ρ̇+ τ̇φ + 3H(ρ+ p) =
1

∆
[
1

3
Ġτ + ˙E(5) +H(G(5)

τ + G(5)
θ + 4E(5))] (5.7)

where

∆ =
4πG

3
(2ρΛ + ρ+ τφ). (5.8)

5.1 Particular Case

Based on the string or Horava-Witten hetereotic M-theory, we have several

particular cases of the cosmological models. In the case of the branes in the MD ×

Md+ ×Md− Compactification of type II string on S1/Z2 [29], we find the Friedmann

(2.80) equation and conservation equation (5.8) give

H2 =
2πG

3ρΛ

(ρ+ τφ + 2ρΛ)2 − 1

9L2a8
, (5.9)

ρ̇+ τ̇φ + 3H(ρ+ p) = −4H(2ρΛ + ρ+ τφ), (5.10)

5.2 General Case

Next we will solve the kind of the Friedmann equation and conservation equa-

tion in more general case,

H2 =
2πG

3ρΛ

(ρ+ τφ + 2ρΛ)2 − ρa, (5.11)

ρ̇+ τ̇φ + 3H(ρ+ p) = −αH(2ρΛ + ρ+ τφ). (5.12)

To solve the equations Eq.(5.11) and Eq.(5.12), we assume the interaction

between the matter fields and the potential field can be written as

ρ̇+ 3H(ρ+ p) = Q(a)H, (5.13)
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and that the state equation is given by,

p = ωρ. (5.14)

Then the solution for ρ is given by

ρ = a−3(1+ω)

∫
Qa2+3ω + c0a

−3(1+ω)da (5.15)

On the other side, the potential τφ satisfies

τ̇φ = −αH(2ρΛ + ρ+ τφ)−QH, (5.16)

which has the solution,

τφ = −2ρΛ −
α

aα

∫
aα−1ρda− 1

a

∫
aα−1Qda+

b0

aα
, (5.17)

with b0 constant.

If we expand the interaction term Q(a) as a polynomial series and consider

the different components of the matter fields, we have

Q(a) =
∑
i

Qi(a) =
∑

p=0,−1,−2...

Qi
pa
p. (5.18)

where i = m, γ for matter and radiation. Substituting Eq.(5.18) into Eq.(5.15) and

ignore the logarithm term, we have

ρ =
∑
i

ρi (5.19)

with

ρi =
∑

p 6=−3(1+ωi)

Qi
p

p+ 3 + 3ωi
ap + cioa

−3(1+ωi) (5.20)

Substitute the Equations (5.18) and (5.20) into Eq.(5.17) and ignoring the

logarithm term, we have
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τφ = −2ρΛ −
∑
i

∑
p6=−3(1+ωi),p 6=−α

αQi
p

(p+ 3 + 3ωi)(p+ α)
ap

−
∑
i

∑
p 6=−α

Qi
p

p+ α
ap −

∑
i,α 6=3(1+ωi)

αci0
α− 3(1 + ωi)

a−3(1+ωi) + b0a
−α, (5.21)

where b0, c
i
0 are constants. In Eqs(5.20),(5.21), to eliminate the logarithm term, we

have to set Qi
−α = 0, Qi

−3(1+ωi)
= 0 and ci0 = 0 if α = 3(1 + ωi).

Now we substitute the expressions ρ and τφ into Eq.(5.11) to get the Friedmann

equation

H2 =
2πG

3ρΛ

{∑
i

∑
p

3(1 + ωi)

(p+ 3 + 3ωi)(p+ α)
Qi
pa
p

−
∑
i

3(1 + ωi)

α− 3(1 + ωi)
ci0a
−3(1+ωi) + b0a

−α
}2

+ ρa. (5.22)

Combining the coefficient of polynomial, we obtain,

H2 =
2πG

3ρΛ

(∑
p

qpa
p

)2

+ ρa, (5.23)

where qp are arbitrary constants since Qi
p, c

i
0, b0 are arbitrary. We can select the

special values for qp to construct the polynomial to satisfy the cosmological obser-

vations. The values of the remaining terms in the infinite series can be obtained by

using the Friedmann equations to recursively determine them.
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CHAPTER SIX

Effective Action of Type IIB on Warped Conifold

We start with the standard Type IIB action,

SIIB = 1
2κ2

10

∫
d10x

√
−ĝ
{
R̂− ∂M τ∂M τ̄

2(Imτ)2 − G3·G3

12Imτ
− F̃ 2

5

4×5!

}
+ 1

8πiκ2
10

∫
C4∧G3∧G3

Imτ
+ Sloc (6.1)

where ĝAB is the ten dimensional metric in the Einstein frame. As our ansatz we

take the block diagonal metric,

ĝABdz
AdzB = g̃µν(x) dxµdxν + ḡij(x, y) dyidyj, (6.2)

where xµ, xν . . . denote the coordinates on our non-compact five dimensionnal space-

time, while yi, yj, . . . denote coordinates on the base T 1,1 of the conifold. g̃(x) is

assumed to be independent of the internal coordinates, while ḡ(x, y) depends both

on the internal and the external coordinates. In particular, the explicit form of ḡ is

given by

ḡ = h1(g5)2 + h2[(g4)2 + (g3)2] + h3[(g2)2 + (g1)2]. (6.3)

In the above the factors h1, h2, h3 all depend on xµ and reflect the fluctuations of the

various components of the internal geometry. On the other hand, the orthogonal

basis {g1, . . . , g5} only depends on the internal coordinates and is related to the

vielbeins {E1, . . . , E5} via

Ei =
1√
6
gi, i = 1, . . . , 4 (6.4)

E5 =
1

3
g5. (6.5)

The vielbeins themselves are given by

E1 =
1

2
√

3
(− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2) (6.6)
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E2 =
1

2
√

3
(dθ1 − sinψ sin θ2dφ2 − cosψdθ2) (6.7)

E3 =
1

2
√

3
(− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2) (6.8)

E4 =
1

2
√

3
(dθ1 + sinψ sin θ2dφ2 + cosψdθ2) (6.9)

E5 =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) . (6.10)

In this way we get the relationship between the 10D Ricci scalar R̂ , and the Ricci

scalars R̃ and R̄ for g̃ and ḡ respectively, to be,

R̂ = R̄ + R̃− 1

4
∂µξ∂

µξ +
1

2
∂µg̃ij∂

µg̃ij +
1

4
g̃ij g̃kl∂µg̃jl∂µg̃ik, (6.11)

where ξ = ln ḡ. For the ḡij that we have chosen this becomes

R̂ = R̄+ R̃− (∇h1)2

h2
1

− 2(∇h2)2

h2
2

− 2(∇h3)2

h2
3

− 1

2

(
∇h1

h1

+ 2
∇h2

h2

+ 2
∇h3

h3

)2

, (6.12)

with

R̄ =
48h1(h2 + h3)− 9(h2 − h3)2 − 16h1

2

4h1h2h3

. (6.13)

Finally, a conformal transformation of g̃(x)µν ≡ Ω−2(x)g(x)µν gives the minimally

coupled gravity part

√
ĝR̃ =

√
ḡ
√
g̃Ω2R(g) =

√
g
√
ḡΩ−3R(g) =

√
gR(g), (6.14)

where

Ω = h
1
6
1 h

1
3
2 h

1
3
3 , (6.15)

so that

√
ĝR̂ =

√
g

(
R(g) + Ω−2R̄− (∇h1)2

h2
1

− 2(∇h2)2

h2
2

−

2(∇h3)2

h2
3

− 30(∇ ln Ω)2 + 8∇2 ln Ω

)
, (6.16)

which is diagonalized by setting

lnh1 = w − 20

11
u, (6.17)
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lnh2 = u+ v, (6.18)

lnh3 = u− v, (6.19)

ln Ω =
1

6
w +

4

11
u, (6.20)

Thus we obtain:

√
ĝR̂ =

√
g

(
R(g) + e−

w
3
− 8

11
uR̄− 11

6
(∇w)2 − 4(∇v)2 − 900

121
(∇u)2

)
. (6.21)

Now we choose the form for the fluxes, with functions K,L,P ,Q, and f of

external co-ordinates, and ωn as then harmonic n forms.

B2 = K(g1 ∧ g2) + L(g3 ∧ g4), (6.22)

F3 =
Mα′

2

(
g3 ∧ g4 ∧ g5(1− f) + g1 ∧ g2 ∧ g5f + df ∧ (g1 ∧ g3 + g2 ∧ g4)

)
,(6.23)

F5 = Qω5 + dP ∧ ω2 ∧ ω2 +Q′ ∧ dx5 + ?5dP
′ ∧ g5, (6.24)

which, upon differentiating and applying the connection on gi we get,

H3 = dK ∧ g1 ∧ g2 + dL ∧ g3 ∧ g4 +
L−K

2
(g2 ∧ g4 − g1 ∧ g3) ∧ g5, (6.25)

for our H flux. In calculating the norm of the flux, the conformal factor Ω will leave

kinetic terms unchanged but will result in a factor Ω−2 multiplying terms with all

internal indices as happened to the R̄ term above.

(H3)2 = 6

{
(∇K)2e−2u−2v + (∇L)2e−2u+2v +

(L−K)2

4
e−

w
3

+ 14
11
u

}
, (6.26)

and for F3 as well :

(F3)2 = 9M2α′
2
[
(1− f)2e−

4
3
w−2v− 10

11
u + f 2e−

4
3
w+2v− 10

11
u + 2(∇f)2e−2u

]
. (6.27)

Lastly we take F5 to be a combination of the volume forms of the internal and

external spaces, ω5 and dx5, respectively, as well as an adding the derivative of a

scalar P times the 4 form, and its dual.

F5 = Qω5 + dP ∧ ω2 ∧ ω2 +Q′ ∧ dx5 + ?5dP
′ ∧ g5 (6.28)
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Which has a norm in the conformal frame of

(F5)2 = (5!)
(
Q2Ω−2 +Q′

2
Ω8 + (∇P )2e−4u + (∇P ′)2Ω6e−w+ 20

11
u
)

(6.29)

Also, the Chern-Simons term yields,

F5 ∧ F3 ∧B2 =
Mα′

2
Ω−2Q′(K(1− f) + Lf)dx5 ∧ ω5 (6.30)

giving an effective action,

SIIB =
1

2κ2
10

∫
d5x
√
g R5 −

1

2
(∇Φ)2 − 11

6
(∇w)2 − 4(∇v)2 − (

30∇u
11

)2[
24e−u cosh v − 9e

42
11
u−w sinh2 v − 4ew−

42
11
u
]
e−

1
3
w− 8

11
u

−3eΦ−2u

(
e2v(∇K)2 + e−2v(∇L)2 +

1

4
e−

1
3
w+ 36

11
u(L−K)2

)
−3

4
e−ΦM2α′

2
[
(1− f)2e−

4
3
w−2v− 10

11
u + f 2e−

4
3
w+2v− 10

11
u + 2(∇f)2e−2u

]
−Q

2

4
e−

1
3
w− 8

11
u − Q′2

4
e

4
3
w+ 32

11
u − (∇P )2e−4u − (∇P ′)2e4u

+
Mα′Q′

16π
e−

1
3
w− 8

11
u−Φ(K(1− f) + Lf) (6.31)

where Φ is the dilaton. The equations of motion are then

∇2Φ = 3eΦ−2u

(
e2v(∇K)2 + e−2v(∇L)2 +

1

4
e−

1
3
w+ 36

11
u(L−K)2

)
+
Mα′Q′

16π
e−

1
3
w− 8

11
u−Φ(K(1− f) + Lf)

−3

4
e−ΦM2α′

2
[
(1− f)2e−

4
3
w−2v− 10

11
u + f 2e−

4
3
w+2v− 10

11
u + 2(∇f)2e−2u

]
(6.32)

11∇2w = 8e
2
3
w− 50

11
u + 24e−

1
3
w− 19

11
u cosh v − 36e−

4
3
w+ 34

11
u sinh2 v

−Q
2

4
e−

1
3
w− 8

11
u +Q′2e

4
3
w+ 32

11
u +

Mα′Q′

16π
(K(1− f) + Lf)e−

1
3
w− 8

11
u−Φ

+
3

4
eΦ− 1

3
w+ 14

11
u(L−K)2 − 3M2α′

2
e−Φ− 4

3
w− 10

11
u
[
(1− f)2e−2v + f 2e2v

]
(6.33)

4∇2v = 9e−
4
3
w+ 34

11
u sinh 2v − 12e−

1
3
w− 19

11
u sinh v

−3

2
M2α′

2
e−Φ− 4

3
w− 10

11
u
[
(1− f)2e−2v − f 2e2v

]
+3eΦ−2u

(
e2v(∇K)2 − e−2v(∇L)2

)
(6.34)

(6.35)
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900

11
∇2u = 153e−

4
3
w+ 34

11
u sinh2 v − 100e

2
3
w− 50

11
u + 228e

−1
3
w− 19

11
u cosh v

−33eΦ−2u
(
e2v(∇K)2 + e−2v(∇L)2

)
+

21

2
eΦ− 1

3
w+ 14

11
u(L−K)2

−3

4
e−ΦM2α′

2
[
10(1− f)2e−

4
3
w−2v− 10

11
u + 10f 2e−

4
3
w+2v− 10

11
u + 44(∇f)2e−2u

]
−2Q2e−

1
3
w− 8

11
u + 8Q′2e

4
3
w+ 32

11
u − 22(∇P )2e−4u + 22(∇P ′)2e4u

+
Mα′Q′

2π
(K(1− f) + Lf)e−

1
3
w− 8

11
u−Φ (6.36)

∇2K = ∇K∇(2u− 2v − Φ) +
K − L

4
e−

1
3
w+ 14

11
u−2v

−Mα′Q′(1− f)

96π
e−

1
3
w−2v− 10

11
u−2Φ (6.37)

∗∇2L = ∇L∇(2u+ 2v − Φ) +
L−K

4
e−

1
3
w+ 14

11
u+2v

−Mα′Q′f

96π
e−

1
3
w+2v+ 14

11
u−2Φ (6.38)

∇2f = 2∇f∇u+ f sinh 2ve−
4
3
w+ 12

11
u +

Q′(K − L)

48πMα′
e−

1
3
w+ 14

11
u (6.39)

0 = ∇
(
e4u∇P ′ + e−4u∇P

)
, (6.40)

with the energy momentum tensor,

Tµν =
1

2
(∇µΦ)(∇νΦ) +

11

6
(∇µw)(∇νw) + 4(∇µv)(∇νv)

+
900

121
(∇µu)(∇νu) + 3eΦ−2u

(
e2v(∇µK)(∇νK) + e−2v(∇µL)(∇νL)

)
+

3Mα′

2
e−Φ−2u(∇µf)(∇νf) + e−4u(∇µP )(∇νP ) + e4u(∇µP

′)(∇νP
′)− 1

2
gµνL5(6.41)

Finding closed form nontrivial solutions to these equations is an open problem.

The following sections explore the possibility of solutions similar to those of the

previous chapters, with a negative result.

6.1 F5=0 Case

To simplify we can take

K − L = P = Q = Q′ = v = 0 (6.42)
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this eliminates the 5-flux and Chern-Simons terms, adding a symmetry between

g1, g2 and g3, g4. Now,

∇2f = 2∇f∇u (6.43)

∇2K = ∇K∇(2u− Φ) (6.44)

∇2Φ = 6eΦ−2u(∇K)2 (6.45)

900

11
∇2u = −100e

2
3
w− 50

11
u + 228e

−1
3
w− 19

11
u − 66eΦ−2u(∇K)2

−3

4
e−ΦM2α′

2
[
10(1− f)2e−

4
3
w− 10

11
u + 10f 2e−

4
3
w− 10

11
u + 44(∇f)2e−2u

]
(6.46)

11∇2w = 8e
2
3
w− 50

11
u + 24e−

1
3
w− 19

11
u − 3M2α′

2
e−Φ− 4

3
w− 10

11
u
[
(1− f)2 + f 2

]
(6.47)

if we further take

f = const. (6.48)

M2α′
2
(1− 2f + 2f 2) = m′ (6.49)

then

∇(eΦ−2u∇K) = ∇ · βK = 0 (6.50)

∇2Φ = 6eΦ−2u(∇K)2 = 6e2u−Φβ2
K (6.51)

900

11
∇2u = −120e

2
3
w− 50

11
u + 168e

−1
3
w− 19

11
u − 11∇2Φ +

110

4
∇2w (6.52)

11∇2w = 8e
2
3
w− 50

11
u + 24e−

1
3
w− 19

11
u − 3m′e−Φ− 4

3
w− 10

11
u (6.53)

and

V5 = 24e−
1
3
w− 19

11
u − 4e

2
3
w− 50

11
u − 6eΦ−2u(∇K)2 − 3m′

4
e−Φ− 4

3
w− 10

11
u (6.54)

Tµν =
1

2
(∇µΦ)(∇νΦ) +

11

6
(∇µw)(∇νw) +

900

121
(∇µu)(∇νu) + 6eΦ−2u(∇µK)(∇νK)− 1

2
gµνL5(6.55)

With a conformally flat metric

gµν = e−2Aηµνdx
µdxν − dy2 (6.56)

2 = (4Ay − ∂y)∂y (6.57)
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where all fields are functions of y only, then

∇K = e2u−ΦβK = β0e
4A−Φ+2uŷ (6.58)

4AyΦy − Φyy = −6(β0)2e8A−Φ+2u (6.59)

900

11
(4Ayuy − uyy) = −100e

2
3
w− 50

11
u + 228e

−1
3
w− 19

11
u

+66(β0)2e8A−Φ+2u − 15

2
m′e−Φ− 4

3
w− 10

11
u (6.60)

11(4Aywy − wyy) = 8e
2
3
w− 50

11
u + 24e−

1
3
w− 19

11
u − 3m′e−Φ− 4

3
w− 10

11
u (6.61)

Tyy =
3

4
Φ2
y +

11

4
w2
y +

1350

121
u2
y + 9β2

0e
8A−Φ+2u

+12e−
1
3
w− 19

11
u − 2e

2
3
w− 50

11
u − 3m′

8
e−Φ− 4

3
w− 10

11
u (6.62)

Tµν = −ηµνe−2A[
1

4
Φ2
y +

11

12
w2
y +

450

121
u2
y + 3β2

0e
8A−Φ+2u

+12e−
1
3
w− 19

11
u − 2e

2
3
w− 50

11
u − 3m′

8
e−Φ− 4

3
w− 10

11
u] (6.63)

Ryy = −4(Ay − ∂y)Ay (6.64)

Rµν = ηµνe
−2A(4Ay − ∂y)Ay (6.65)

now trying

A = a ln(y) + a0 (6.66)

Φ = c0 ln(y) + φ0 (6.67)

u = c1 ln(y) + u0 (6.68)

w = c2 ln(y) + w0 (6.69)

we have first

8a− c0 + 2c1 = −2 (6.70)

4ac0 + c0 = −6(β0)2e8a0−Φ0+2u0 (6.71)

c0 + c2 =
9

11
c1 (6.72)

Thus three cases emerge from how the terms of the u equation cancel.
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6.1.1 Case of Like Terms Non-quadratic in y

−2 6= 2

3
c2 −

50

11
c1 (6.73)

c2 =
31

11
c1 (6.74)

which leads to

c0 = −2c1 (6.75)

8a+ 4c1 = −2 (6.76)

900(4a+ 1)c1 = −121(4a+ 1)c0 (6.77)

Clearly in case 1, the system is overdetermined, unless the H flux is set to zero.

6.1.2 Case of Unlike Terms

−2 =
2

3
c2 −

50

11
c1 (6.78)

c2 6=
31

11
c1 (6.79)

(6.80)

leading to

456e−
1
3
w0− 19

11
u0 = 15m′e−φ0− 4

3
w0− 10

11
u0 (6.81)

24e−
1
3
w0− 19

11
u0 = 3m′e−φ0− 4

3
w0− 10

11
u0 (6.82)

In this case the m′ term cannot cancel the e−
w
3 in both the u and w equations.

6.1.3 Case of Like Terms with Powers of y−2

−2 =
2

3
c2 −

50

11
c1 (6.83)

c2 =
31

11
c1 (6.84)
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this leads to all terms on the right hand side having the same power of y,

c0 = −2c1 (6.85)

8a+ 4c1 = −2 (6.86)

900(4a+ 1)c1 = −121(4a+ 1)c0 − 1100e
2
3
w0− 50

11
u0

+2508e−
1
3
w0− 19

11
u0 − 165m′

2
e−φ0− 4

3
w0− 10

11
u0 (6.87)

11(4a+ 1)c2 = 8e
2
3
w0− 50

11
u0 + 24e−

1
3
w0− 19

11
u0

−3m′e−φ0− 4
3
w0− 10

11
u0 (6.88)

so the field equations allow a solution, but all log coefficients have already been

determined, and we have not considered the Ryy and Rµν equations.

a = −5

8
(6.89)

c0 = −3

2
(6.90)

c1 =
3

4
(6.91)

c2 =
93

44
(6.92)

Now,

V0 ≡ +12e−
1
3
w0− 19

11
u0 − 2e

2
3
w0− 50

11
u0 − 3m′

8
e−φ0− 4

3
w0− 10

11
u) (6.93)

Tyy =
3

4
(c0)2 +

11

4
(c2)2 +

1350

121
(c1)2 − 3

2
(4a+ 1)c0 + V0 (6.94)

= −4(a+ 1)a+
1

2
R (6.95)

− Tµν
ηµνe−2A

=
1

4
(c0)2 +

11

12
(c2)2 +

450

121
(c1)2 − 1

2
(4a+ 1)c0 + V0 (6.96)

= −(4a+ 1)a+
1

2
R (6.97)

1

2
(
3

2
)2 +

11

6
(
93

44
)2 +

900

121
(
3

4
)2 + (1− 20

8
)(

3

2
) 6= 15

8
(6.98)

ruling out solutions of this form for nonzero H flux.
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6.2 H = 0 Case

Interestingly, the F3 term may be absorbed into Φ, if we take β0 = 0, letting

Φ become divergenceless. There are two cases to consider.

6.2.1 Case of Constant Φ

now,

c0 = 0 (6.99)

c2 =
9

11
c1 (6.100)

and either

c2 =
31

11
c1 (6.101)

or

−2 =
2

3
c2 −

50

11
c1 (6.102)

The first results in all fields going to zero, while the second is overdetermined when

we consider the wyy equation.

6.2.2 Case of Variable Φ

Without H, the Φ equation can also be satisfied by,

a = −1

4
(6.103)

now, from the divergence of u

w0 =
31

11
u0 + ln(7/5) (6.104)

and from the divergence of w,

ln(8
7

5
+ 24) + φ0 + w0 = ln(3m′) +

9

11
u0 (6.105)

and demanding that the powers of y on the right hand sides match,

c0 = −2c1 (6.106)

c2 =
31

11
c1 (6.107)
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with two Einstein equations left, and with c1 and u0 still free,

Rµν = −1

3
ηµνV0y

k = 0 (6.108)

Ryy =
3

4
y−2 = y−2[

1

2
(c0)2 +

900

121
(c1)2 +

11

6
(c2)2]− 1

3
V0y

k (6.109)

unfortunately for V0 to vanish requires

e−
1
3
w0− 19

11
u0 = 0 (6.110)

ruling out a Kasner type solution for nonzero F3 flux.
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CHAPTER SEVEN

Conclusions and Discussions

In this dissertation, we have systematically studied orbifold branes in the

framework of string/M-Theory. In particular, in Chapter I, we have given a brief

introduction to “standard modern cosmology”. In Chapter II, we have a treatment

of compactification into a 3-way product space with a similar H flux. The action is

transformed to from the string to Einstein frames and written as an effective theory

with 4 scalars joining the dilaton in the bulk. Two of them come from the warp

factors of the two smaller product spaces, two from the H-flux, and one from the

transformation of the dilaton and warp factors. In Chapter III, we have the a sim-

ple solution to the equations of the previous sections possessing Poincare symmetry.

The orbifold symmetry imposed on the bulk scalar fields keeps the two branes at

the symmetry planes of the bulk at a stable proper distance from each other. It is

important not to confuse the massive scalar test field Φ of section 3.B with either

the dilaton, radion, or the linear combination of dilaton and warp factors φ from

chapter 2. The important quantity is Yc, the inter-brane proper distance. It aquires

an effective potential from the repulsive forces between branes generated by other

scalars, as well as the gravitational attraction. The bulk Kasner spacetime is static,

and the traditional Kasner instability in this model would manifest as a tendency

for the branes to collapse toward the metric singularity at Y = 0. That singularity

is removed by cutting and applying the orbifold symmetry, at two Y-planes. If the

position of the planes along the Y direction is stabilized then the singularity can-

not ’appear’, and the total volume modulus of the finite bulk direction and the 2

and 3 dimensional internal spaces, traditionally referred to as the radion, remains

stable. From the solutions for the fields ψ± we can see that the individual volume
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moduli of d± will also remain bounded as long as the argument of the log remains

positive. This also is guaranteed be stabilizing the inter-brane distance, since it is

that distance that measures the ’size’ of the sawtooth pieces of our |Y | co-ordinate.

In Chapter IV, we have verified that the corrections to ordinary 4-dimensional grav-

ity on the brane are small, by considering the mectric fluctuations near the branes.

This is essentially the same approach to finding the corrections to gravity from

Randall-Sundrum models, though our bulk background differs somewhat from those

scenarios. The main difference between models here and standard Randall-Sundrum

models is that the bulk is not an anti-de-sitter space, but an effective Kasner type

space with three scalar fields arising from compactification, similar to the earlier

Havora-Witten models. The boundary conditions on the branes for those scalar

fields determine our moduli masses and radion mass. Our zero mode corresponding

to 4D gravity on the brane is a generic result for the geometry of two branes. Gravity

in the bulk is suppressed less severely than in RS1, and needs the second brane for

the zero mode to be normalizble. Gravity could be thought of as not so much bound

to the TeV end of the orbifold as repelled from the plank end. In Chapter V, we

have focused on the cosmology of our primary model. The Friedmann equations for

a perfect fluid and their solution given an arbitrary interaction term proportional to

the Hubble factor, are worked out. In Chapter VI we have the compactification of

T1,1 , but without solutions. In particular, it may be that solutions similar to chapter

three fail because T1,1 does not satisfy the constraint on the curvatures of the d±

manifolds required by our other solutions of the D, d−, d+ general compactification,

even though the topology is S2XS3. There are also two Appendices A and B. In

Appendix A, we have a few steps to show the derivation of the solution in chapter

3. In Appendix B, we have an almost exactly analogous derivation of the chapter 3

solutions but for 6 bulk dimensions. The same constraint on the potential appears

here as in appendix A. The scalar potential vanishes, leaving 3 free fields constrained
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by orbifold boundary conditions. In concluding this dissertation, a few comments

are in order. First, the Goldberger-Wise mechanism can result in both stability of

inter-brane distance and of a reasonable Yukawa correction to gravity from a TeV

scale first excited state of the KK tower. However, in fitting to cosmological expan-

sion rate, the inverse eighth power term in the Friedmann equations generated by the

modular fields of the compactification does not completely replace the need for dark

energy, but merely moves the source of it over to a brane-bulk interaction term, that

may not be sufficiently justified from first principles. While it has for a while been

the case that theory has had a playground at scales too small for the experiments of

the time, there is also a rich history of the other end of the scale, in the predictions

of both Neptune and Pluto, for instance. Brane world models are in many ways the

analog of the predictions of very high energy particles in previous decades, granting

justification for exotic equations of state for dark fluids that are needed by the data

as we are able to measure higher derivatives of the Hubble parameter.
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APPENDIX A

Derivation Summary

The expressions

L5 =
1

2
(∇φ)2 +

1

2
(∇ψ+)2 +

1

2
(∇ψ−)2 − V5 (A.1)

V5 = e
√

2
3
φ
(
β+e

−
√

2
3
ψ+ + β−e

−ψ−
)

(A.2)

Tab =
1

2
∇aφ∇bφ+

1

2
∇aψ+∇bψ+ +

1

2
∇ψ−∇bψ− −

1

2
gabL5 (A.3)

Rab = Tab −
1

D − 2
gabT (A.4)

=
1

2
∇aφ∇bφ+

1

2
∇aψ+∇bψ+ +

1

2
∇ψ−∇bψ− −

1

3
gabV5 (A.5)

lead to matter equations

2φ =

√
2

3
V5 (A.6)

2ψ+ =

√
2

3
β+e
√

2
3

(φ−ψ+) (A.7)

2ψ− = β−e
√

2
3
φ−ψ− . (A.8)

The space-time metric takes the form

ds2 = e−2Aηµνdx
µdxν − dy2 (A.9)

with its Ricci tensor being given by

Rµν = ηµνe
−2A(4Ay − ∂y)Ay = −1

3
ηµνV5 (A.10)

Ryy = −4(Ay − ∂y)Ay =
1

2

(
φ2
y + ψ2

+y + ψ2
−y
)
− 1

3
V5 (A.11)

2 = (4Ay − ∂y)∂y. (A.12)

Notice that

2A = −1

3
V5 (A.13)

1

2

(
φ2
y + ψ2

+y + ψ2
−y − 24A2

y

)
=

5

3
V5. (A.14)
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Now defining,

2Q = 0 (A.15)

ψ+ =
√

6B + c3Q+ ψ+0 (A.16)

we find that for V5 nonzero,

A =
1

4
lnQy + α (A.17)

φ = −
√

6A+ c1Q+ φ0 (A.18)

ψ− = −3A− 3B + c2Q+ ψ−0 (A.19)

and

V5 = β′−Q
1/4
y e3B+(

√
2/3c1−c2)Q + β′+Q

−1/2
y e−2B+

√
2/3(c1−c3)Q (A.20)

β′− = β−e
√

2/3φ0−ψ−0 (A.21)

β′+ = β+e
√

2/3(φ0−ψ+0) (A.22)

Then taking advantage of the similarity of the ψ+ and ψ− matter equations, we find

that √
2/3ψ+ = ψ− + c4 (A.23)

which leads to

B = −3

5
A (A.24)

c3 =
√

3/2c2 (A.25)

c4 =
√

2/3ψ+0 − ψ−0 (A.26)

ψ−0 =
√

2/3 ln

(
2β+

3β−

)
ψ+0 (A.27)

V5 = v0e
(
√

2/3c1−c2)Q−4A/5 (A.28)

ψ− = −6

5
A+ c2Q+ ψ−0 (A.29)

ψ+ = −3
√

6

5
A+ c3Q+ ψ+0 (A.30)

v0 = β′− + β′+. (A.31)
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This implicitly requires the constants β±(and therefore β′± as well,) to be the same

sign. The remaining equations are then

2Q = 0 (A.32)

2A = −1

3
v0e

(
√

2/3c1−c2)Q−4A/5 (A.33)

5Ayy = (
1

2
c2

1 +
5

4
c2

2)Q2
y − (2

√
6c1 + 6c2)QyAy +

64

5
A2
y (A.34)

If we assume ∂QV5 = 0, then

√
2/3c1 = c2 (A.35)

Qy = e4A (A.36)

Ayy = 4A2
y +

1

3
v0e
−4A/5 (A.37)

−36

5
A2
y − 12c2e

4AAy + 2c2
2e

8A − 5

3
v0e
−4A/5 = 0 (A.38)

but the last two equations are inconsistent, so V5 must depend on Q, or be zero.

Assuming

A = α ln y + α0 (A.39)

ψ+ = c+ ln y +m+ (A.40)

ψ− = c− ln y +m− (A.41)

φ = c0 ln y +m0 (A.42)

we find the constraints

(4α + 1)c+y
−2 =

√
2

3
β+e
√

2
3

((c0−c+) ln y+m0−m+) (A.43)

(4α + 1)c−y
−2 = β−e

√
( 2

3
c0−c−) ln y+

√
2
3
m0−m−) (A.44)

(4α + 1)c0y
−2 =

√
2

3
V5 (A.45)

(4α + 1)αy−2 = −1

3
V5 (A.46)

−4α(α + 1)y−2 =
1

2
(c2

0 + c2
+ + c2

−)− 1

3
V5 (A.47)

60



If V5 = 0 and the space is not flat, then α = −1
4
, and the first two equations cannot

be satisfied unless β± = 0. If V5 is nonzero then,

c0 = −
√

6α (A.48)

c− = 2− 2α (A.49)

c+ =
√

6(1− α) (A.50)

0 = 16α2 − 7α + 5 (A.51)

which again has no real roots for α. This leaves the β± = 0 case, which is a Kasner

type space. Gauss’ theorem egregium will constrain the topolog of d− to be T2 but

not d+. Thus, finally we obtain

ds2
(5) = dy2 +

√
y(ηµνdx

µdxν) (A.52)

and

3

2
= c2

+ + c2
− + c2

0. (A.53)

Introducing a scalar test field into the bulk, 2(5)F = m2F , we find that

2(5) = gab∇a∇b = gab(∂a∂b − Γcab∂c) (A.54)

=
1
√
y
2(4) +

1

y
∂y + ∂y∂y (A.55)

F = H(x)J(y) (A.56)

m2F =
J2(4)H√

y
+HJyy +

H

y
Jy (A.57)

2(4)H = H
(
J ′′ + y−1J ′ −m2

)√
y, (A.58)

from which we see that F will have massless modes in four dimensions, when J makes

right hand side factor zero. J must still obey the orbifold boundary conditions as

well. The solutions for nonzero m are the modified Bessel functions of chapter 3.
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APPENDIX B

Another Choice of Dimension

A similar result can be obtained by compactifying for D = 6 , d− = d+ = 2

L6 =
1

2
(∇φ)2 +

1

2
(∇ψ+)2 +

1

2
(∇ψ−)2 − V6 (B.1)

V6 = eφ/
√

2
(
β+e

−ψ+ + β−e
−ψ−
)

(B.2)

Tab =
1

2
∇aφ∇bφ+

1

2
∇aψ+∇bψ+ +

1

2
∇ψ−∇bψ− −

1

2
gabL6 (B.3)

Rab = Tab −
1

D − 2
gabT (B.4)

=
1

2
∇aφ∇bφ+

1

2
∇aψ+∇bψ+ +

1

2
∇ψ−∇bψ− +

1

4
gabV6 (B.5)

2φ = − 1√
2
V6 (B.6)

2ψ± = β±e
(φ/
√

2)−ψ± . (B.7)

(B.8)

Now assume a metric of the form

ds2 = dy2 + e2Adθ2 + e2Bηµνdx
µdxν (B.9)

where all functions are of y only. Then, we find

Rθθ = e2A2A (B.10)

Rµν = ηµνe
2B2B (B.11)

Ryy = −A′′ − 4B′′ − (A′)2 − 4(B′)2 (B.12)

2 = −(A′ + 4B′ + ∂y)∂y (B.13)

Then, substituting into Tab, we obtain

Rθθ =
1

4
e2AV6 (B.14)

Rµν =
1

4
e2BV6ηµν (B.15)

Ryy =
1

2

(
(φ′)2 + (ψ′+)2 + (ψ′−)2 +

1

2
V6

)
, (B.16)
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from which immediately we see that

2(A−B) = 0. (B.17)

Redefining

P = A+ 4B (B.18)

Q = A−B (B.19)

2 = −(P ′ + ∂y)∂y (B.20)

2P =
5

4
V6 (B.21)

2Q = 0 (B.22)

and then comparing with the equations for φ and ψ±, we get

φ =
−
√

8

5
P + c1

√
2Q (B.23)

ψ+ + ψ− =
4

5
P + 2c2Q+ c3 (B.24)

The equation for Q can be integrated to give

P = − lnQ′ + c0. (B.25)

And the similarity of the ψ± equations begs

ψ+ + ln β− = ψ− + ln β+, (B.26)

where now

ψ± =
2

5
P + c2Q+ c± (B.27)

V6 = 2β−e
(c1−c2)Q−4P/5 (B.28)

Thus, finally we get

Ryy = 2P +
4

5
(P ′ −Q′)(P ′ +Q′)

=
8

25
P ′2 +

4

5
P ′Q′((c2 − c1) + (c2

1 + c2
2)Q′2 +

1

4
V6 (B.29)
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which gives

V6 = (c2
1 + c2

2 + 1)Q′2 + (c2 − c1)P ′Q′ − 3

5
P ′2, (B.30)

so that

P ′ = −10

3
ec0−P

(
(c1 − c2)±

√
(c1 − c2)2 + 12(c2

1 + c2
2 + 1− 2β−w)/5

)
,(B.31)

w = e−2c0+(c1−c2)Q+6P/5. (B.32)

In order for the solutions to be consistent, β± = 0. Then,

P = ln y + p0 (B.33)

Q = α ln y + q0 (B.34)

3

5
= α(c1 − c2) + α2(c2

1 + c2
2 + 1) (B.35)

or, most generally

φ = cφ ln y + φ0 (B.36)

ψ± = c± ln y + ψ±0 (B.37)

A = (1− 4γ) ln y (B.38)

B = γ ln y (B.39)

m2 = c2
φ + c2

+ + c2
− (B.40)

γ =
1

5

(
1±

√
1− 5m2/8

)
(B.41)

It should be noted that as a result of Gauss’ theorem egregium, the topology of the

system must be M5xT5, and is thus purely degenerate to already explored toroidal

models for this choice of d±.

64



BIBLIOGRAPHY

[1] E. Komatsu, et al, Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538].

[2] R. d’Inverno, “Introducing Einstein’s Relativity,” (Claredon Press, Oxford,
1994).

[3] S. Dodelson, Modern Cosmology (Academic Press, New York, 2003).

[4] A.G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys.
J. 517, 565 (1999).

[5] A.G. Riess et al., Astrophys. J. 607, 665 (2004); P. Astier et al., Astron. and As-
trophys. 447, 31 (2006); D.N. Spergel et al., astro-ph/0603449; W.M. Wood-
Vasey et al., astro-ph/0701041; and T.M. Davis et al., astro-ph/0701510.

[6] S. Sullivan, A. Cooray, and D.E. Holz, arXiv:0706.3730; A. Mantz, et al.,
arXiv:0709.4294; and J. Dunkley, et al., arXiv:0803.0586.

[7] A. Albrecht, et al, arXiv:astro-ph/0609591; and J.A. Peacock, et al, arXiv:astro-
ph/0610906.

[8] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); S.M. Carroll, arXiv:astro-
ph/0004075; T. Padmanabhan, Phys. Rept. 380, 235 (2003); S. Nobbenhuis,
arXiv:gr-qc/0411093; J. Polchinski, arXiv:hep-th/0603249; and J.M. Cline,
arXiv:hep-th/0612129.

[9] V.A. Rubakov, Phys. Usp. 44, 871 (2001); R. Maartens, Living Reviews of Rel-
ativity 7 (2004); arXiv:astro-ph/0602415 (2006); P. Brax, C. van de Bruck
and A. C. Davis, Rept. Prog. Phys. 67, 2183 (2004); C. Csaki, arXiv:hep-
th/0404.096 (2004); V. Sahni, arXiv:astro-ph/0502032 (2005); D. Langlois,
arXiv:hep-th/0509231 (2005); R. Durrer, arXiv:hep-th/0507.006 (2005); A.
Lue, Phys. Rept. 423, 1 (2006); and D. Wands, arXiv:gr-qc/0601078 (2006).

[10] J.E. Lidsey, D. Wands, and E.J. Copeland, Phys. Rept. 337, 343 (2000).

[11] T. Battefeld and S. Watson, Rev. Mod. Phys. 78, 435 (2006).

[12] M. Gasperini, Elements of String Cosmology (Cambridge University Press,
Cambridge, 2007).

[13] F. Leblond, R.C. Myers, and D.J. Winters, JHEP, 07, 031 (2001).

[14] P. Binétruy, C. Deffayet, U. Ellwanger, and D. Langlois, Phys. Lett. B477, 285
(2000); and P. Binétruy, C. Deffayet, and D. Langlois, Nucl. Phys. B615,
219 (2001).

65



[15] A. Wang, R.-G. Cai, and N.O. Santos, Nucl. Phys. B797, 395 (2008)
[arXiv:astro-ph/0607371].

[16] T. Shiromizu, K.-I. Maeda, and M. Sasaki, Phys. Rev. D62, 024012 (2000);
A.N. Aliev and A.E. Gumrukcuoglu, Class. Quantum Grav. 21, 5081 (2004);
and R.-G. Cai and L.-M. Cao, Nucl. Phys. B785, 135 (2007).

[17] C. Lanczos, Phys. Z. 23, 539 (1922); and Ann. Phys. (Germany), 74, 518
(1924).

[18] J. Cline, C. Grojean, and G. Servant, Phys. Rev. Lett. 83, 4245 (1999); C.
Csaki et al, Phys. Lett. B462, 34 (1999).

[19] Q. Wu, Y.G. Gong, and A. Wang, JCAP, 06, 015 (2009) [arXiv:0810.5377].

[20] W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83, 4922 (1999); and Phys.
Lett. B475, 275 (2000).

[21] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover
Publications, INC., New York, 1972), pp.374-8.

[22] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000); T. Tanaka and
X. Montes, Nucl. Phys. B582, 259 (2000).

[23] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[24] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

[25] C. Csaki, J. Erlich, T. J. Hollowwood, and Y. Shirman, Nucl. Phys. B581, 309
(2000).

[26] C. Csaki, M.L. Graesser, and G.D. Kribs, Phys. Rev. D63, 065002 (2001).

[27] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Vols. I & II
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