ABSTRACT

Orbifold Branes in String Theory and Their Applications to Cosmology
Michael J. Devin, Ph.D.
Advisor: Anzhong Wang, Ph.D.

This dissertation contains two distinct compactification schemes of 10-dimen-
sional string theory, as well as some of the implications of one of these schemes for
string cosmology. The first half of this work begins with a brief overview of cosmology
and goes through constructing and then analyzing the first model, inspired by the
work of Santos and Wang. The second part consists of an attempt to construct
similar models using the the popular warped conifold compactification scheme, as
well as an appendix with a variant of the first model and its derivation. The work
concludes with the observation that the latter attempt does not admit solutions
of the same form, and that the variant model in the appendix is degenerate to

previously studied KK-type models.
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CHAPTER ONE

Introduction to Modern Cosmology

1.1  Three Principles

There are three main ideas that have guided the development of cosmology
for almost a century. Each represented a philosophical shift away from an anthro-
pocentric view of the universe, a privileged place in terms of position, motion, or

local matter arrangement.

1.1.1  Cosmological Principle

The main assumptions of cosmology are homogeneity and isotropy. That is,
that laws we observe on earth and in the solar system can be applied to the rest of
the universe as well. This is also often cited as stating that the location of Earth has
no special significance to the physics we observe beyond our solar system. Extending
this idea to time as well as space was one motivation for Einstein’s original belief in
a static universe. At the largest scales the universe does appear homogeneous and
isotropic, though dynamic. For this reason, and for the simplification it yields, the

universe is generally modeled by the Friedmann-Robertson-Walker (FRW) metric,

dr?
1 — kr?

ds® = —df? + a*(1) ( +r%(do? + sm20d¢2)) : (1.1)

where a(t) is the expansion factor, and k the spatial curvature, which takes the
values £ = 0, £1. The space-times are called flat for £ = 0, closed for £ = +1, and

open for k = —1, that is,

0, flat,
k=< +1, closed, (1.2)
—1, open.

All of the experiments carried out so far are consistent with k£ = 0 [1].



1.1.2 Weyl’s Postulate

The second assumption generally accepted is that all the matter in the universe
follows geodesics in this space-time. This motion is a consequence of relativity in the
absence of any non-gravitational forces that significantly affect the motion at such
distances, though the dark matter halos within galaxies could hypothetically have
such a long range interaction. Mathematically this means that the matter fields in

the universe can be described by a perfect fluid,
Top = (p + P)uatty — pgap, (a,b=10,1,2,3), (1.3)

where p and p denote, respectively, the pressure and energy density of the fluid with
its four-velocity u,, measured by co-moving observers. It should be noted that p

and p should be understood to be the sum of all the species,

P= P P=) pi (1.4)

In general, the equation of state of the fluid can be written as

Di = Wipi, (1.5)

where for different eras and species of matter we have different equations of state.
For example, in the radiation-dominated epoch, w, = 1/3, while in the matter-
dominated epoch, w,, = 0, and in the dark energy dominated epoch, wprp < —1/3.

When wg;irp = 1, it is called a stiff fluid. The cosmological constant term can be

considered as a particular case of a perfect fluid with wy = —1 and
= = (1.6
PA = —PA = el .

1.1.8 Finstein’s General Relativity

General relativity is assumed to describe the evolution of the universe, except
possibly in the quantum-gravity regime within a short time of the big bang. General
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relativity is encoded in the second-order partial differential equations [2],
1
Rab — §Rgab = 87TGTab + Agab, (17)

where R,, denotes the Ricci tensor, R the Ricci scalar, and G and A are, respec-
tively, the Newtonian and cosmological constants. The energy-momentum tensor

T,, satisfies the conservation laws of the energy and momentum,
VT =0, (1.8)

where V, denotes the covariant derivative with respect to the metric ggq.

For the FRW metric (1.1), the non-vanishing components of the Einstein tensor

Gy are given by

k
GOO = 3(H2+_2),
a
G,: = zd H? K . i=1.2.3 1.9
iy = a—i‘ +§ gij, (1,7 =1,2,3) (1.9)

where

1 .
Gab = Rab - éRgaba H= ga (11())

a

and a = da(t)/dt. In the co-moving coordinates, we have u, = ¢, and the Einstein

field equations (1.7) yield,

G k 1

H?> = —)p— — 4+ =-A 1.11
5Pt gl (1.11)
A7 1

- 27 ZA. 1.12

" 3 (p+p)+3 (1.12)

Eq.(1.11) is often referred to as the Friedmann equation. Combining these two

equations, we obtain the conservation law of energy,
p+3H (p+p) =0, (1.13)

which can be also obtained from the conservation laws of the energy and momentum,

Eq.(1.8).



1.2 Three Observational Supports

The familiar big bang cosmology is supported primarily by three observations.
The pattern of redshifts as a function of luminosity, which is interpreted to be a
relation of velocity to distance, also known as Hubble’s law, is the first and most

dramatic evidence,

v = Hd, (1.14)

where v denotes the receding velocity of a galaxy, d its distance, and H the Hubble

parameter. The current value of H is Hy ~ 72 (km/s)/Mpc [1].

The 2.725 degree cosmic microwave background, and the ratios of light isotopes
in space are the others [3]. The fact that the expansion of the universe is currently
accelerating is a newer and more exciting finding, and is most clearly visible in the

supernova redshift data collected in the past decade [4, 5, 6, 7).

The ratios of deuterium, helium 3 and 4, and lithium to hydrogen are all
consistent with the big bang model using roughly the same value for the matter to
radiation ratio [3]. The evolution of the universe during this epoch is fairly well
accounted for without including dark energy, which after inflation, will only become

important again at later times.

The standard model of modern cosmology is known as the lambda-CDM
model. It fits the known expansion data to a FRW model with nonzero cosmo-
logical constant and supplements observed baryonic matter with what is known as
cold dark matter [3]. The cold dark matter models most favored are hidden sector
particles that behave similarly to ordinary dust, but are inert with respect to the
electromagnetic field. Models including other fluids with negative pressures greater
than 1/3 of the density are known as dark energy models. The cosmological constant
is the special case where pressure is exactly negative of density. The evidence for

dark matter consists primarily of the galactic rotation curve and anomalous gravi-



tational lensing. Some efforts have been made to determine how dark matter might
affect the measurements of planets or satellites in the solar system, but generally the
effects are expected to be too weak to have been measured so far. The cosmological
constant favored by experiment is extremely small, and its theoretical value is cutoft
dependent, quite large in even the most conservative case. This is the well-known

cosmological constant problem [§].



CHAPTER TWO
Orbifold Branes in String/M-Theory

One of the major fascinations with string theory in the last decade, especially
with regards to cosmology, is the braneworlds scenario [9]. The traditional approach
to compactification of ten dimensional string theory is based on Kaluza and Klein’s
original model, supplemented with the idea of bulk dimensions. Matter is allowed
to exist in a number of ’large’ dimensions greater than four, but is ’stuck’ to an
embedded four dimensional surface called a brane. The same mechanism used by
early string theorists to explain confinement of quarks is employed on a wider scale,
confining all nongravitational forces to the brane, and branes are the only ’allowed
endpoints’ of strings in type IIB, the theory of closed strings. Branes themselves
obey a Nambu-Goto type action in the simplest case, equal to a world volume swept
out times the brane tension. In the presence of fluxes this generalizes to the Dirac-
Born-Infeld action. Their intrinsic metrics act as curved space-time for particles
confined to the surface, as they sweep out minimal surfaces of their corresponding
dimensions plus one in the ten dimensional space-time in which they are embedded.
So, one can visualize branes as a literal interpretation of the rubber sheet metaphor
often used to describe curved space-times in GR. The standard approach to building
a braneworld model involves compactifying ten dimensions down to five or six, then
using an effective theory to describe the motions of the branes themselves, from which
we end up with familiar four dimensional Einstein’s equations used for cosmology.
The appeal of brane models is twofold: they allow for the creation of more scenarios
near the testable TeV scale of current colliders, and they also address the original
contents of Einstein with Kaluza and Klein’s scenario, that of the ’speciality’” of

tying up some dimensions and not others. Also, the scales of the brane models are



typically used to try to explain the hierarchy problem, avoiding the 'Plankian desert’,
the large range of energies separating the standard model from Planck scale physics,
in which it is supposed that no new phenomena occur. So D-branes, so named
because of the Dirichlet type boundary conditions imposed on strings connecting
to them, are often used with non-compactified extra dimensions in string models
to generate such physics. Here we use the standard compactification techniques to
get an effective theory with five large dimensions, then give this bulk a reflection
symmetry about two parallel co-dimension-one volumes in it, on which we put the
branes. The bulk is also made periodic with respect to the normal direction to the

branes. This is called a S;/Z5 orbifold symmetry.

2.1 (D +dy + d_)-Dimensional Decompositions

Let us begin with the action for the NS/NS sector in (D+d +d_)-dimensions,
My = Mp x Mg, x My_, where My, and M,_ are dy and d_ dimensional spaces,

respectively, and N = D +dy +d_. Then the action may be written as, [10, 11, 12],

A 1 — &
Sy = ——/de\/|gN|e ®

N

2K2
. {RN[Q] +(vé) - 1_12H} | (2.1)

where V is the covariant derivative with respect to §*8 with A, B =0,1,...,N — 1,

and ® is the dilaton field. The NS three-form field H ABc 1s defined as

Hipe = 38[ABBC]7 (2.2)
H? = H*P°Hype, (2:3)

where the square brackets imply total antisymmetrization over all indices, and

BCD = —ch, aABCD = " . (24)



The first step in evaluating this action to get an effective five dimensional

theory is to take a block diagonal metric ansatz given by,

ds% = gapdxida®
2 0 (x ) .
= Gu () dzda® + 6\/Zw+( )h;; (z4)dzldz),

4V O () dePdet, (2.5)

where gqp(2) is the metric on Mp parametrized by the coordinates = with a, b, c =
0,1,....,D—1, h;; (z4) is the metric on the compact space My, with coordinates z*
where i, j = D, D+1,..., D+d; — 1, and hy; (2_) is the metric on the compact space

M_ with coordinates 2”, where p,¢q =D +d,,D+d, +1,...,N — 1.

In addition, we also assume the dilaton field ® is a function of %, and that

the flux Bep is block diagonal as well,

Bu(x) 0 0
(BC’D> = 0 €£+($)Bij <Z+) 0
0 0 e-@B, (z)

(2.6)

This considerably simplifies the action. In particular, the non-vanishing components

of Hapc are

Habc = Habc:3a[aBbc}a

Hiji = % Hyp =3¢ 0; By,

Hpyr = et Hpyr = 3t O Bar)s
Haij = Bije&—@af—&-a
ﬁapq = Byt Vil (2.7)

where V,, denotes the covariant derivative with respect to §.



The Ricci scalar for the complete metric may be broken up into the scalars of the

product spaces as well as a few cross terms containing the warp factors,
. _/Zz
Rld) = Rolg)+e VE" Ry, 7]
_ /=
+e VI Ry 1]
o do +1) /- 2
259,90 — D (90,

D (o)

—Vdid— (Vo) (Vo). (2.8)

where
dy

Q=15

TRV (2.9)
To further simplify the problem, we shall remove the coupling of the dilaton to the
Ricci scalar and factor the volume element as well. This is done with the standard
transformation from the string frame to the Einstein frame by absorbing the dilation

with the conformal transformation of

Gab = Q2§abu Q= 6%- (210)

The Ricci scalar and QQ term transform accordingly,

Rplg) = Q*{Rplg]+2(D—1)0InQ
—(D-2)(D—-1)(VInQ)*},
JV.VQ = Q2 (0Q

—(D—2)(VQ)(VInQ)), (2.11)

where O = ¢®V,V,, and V, denotes the covariant derivative with respect to g®.
Then, combining Egs.(2.8) and (2.11), we obtain
PN SR A
Viawle™ 3 Bixlg) + (V@) —

12

o {RD[g] e (W’R

9



e VIR, - %hﬂ) + 5500
2(D—-1) . 1 AN 2
“h-3 T <V<Q_q)>>
5 (Ve - 5 (V)R (2.12)

The transformed flux action becomes

H? = 66(§:§)H2
2q-8) [ 2(e._ [
+3e D2 (e (£+ d+¢+) B2 (V&)

A )

2643,/
+€ £+ d+w+Hi

— 2

4T (2.13)
with

H? = Hye(x)H"™(2),

Hi = Hii(24) H* (z),

H? = Hpp (2-) H' (2-),

Bl = Bij(z4) B (24),

B = By () BM (=), (2.14)
and

9%Gac = 00, BTFRS =68, hTPh, =61 (2.15)

Substituting Eqgs.(2.13) and (2.14) into Eq.(2.1), and then integrating by parts, we

obtain the D-dimensional effective action in the Einstein frame,

1
S =~y / Vigold®z (Bolg) = £57 (9,€2)), (2.16)

10



where ¢, = {¢, ¢+ }, and

2 i (2.17)
K , .
b Va, Vi

/\/|hi] A%z,
1 1
Ly = §;<V¢n)2+—e‘VDg2¢H2

IS
H
Il

12
+04+€2£+7\/%w+ (Vf+)2
fa TV (ve Y
_e\/%¢ <5+€_\/Zw+

4B e %wf_%em— T+
T 581”), (2.18)
and
6 = %(@_@, (2.19)
ar = 4‘2i/ddizi VIhE[BE (21),
By = i/ddizﬂ: VInF|Ray (24),

1
e = /%%wWﬁ@» (2.20)
12V,

2.2 Orbifold Branes

The action for the brane can be written as,

S50 = et [ \f]obn|vEL 0n€e) a 160
MD—l

_ 1
S It
My,

KLY 3 (D0, 66:X) (2.21)

where [ = 1,2, Vg_)l (¢n,&+) denotes the potential of the scalar fields ¢, on the
branes, and Sé‘l)’s are the intrinsic coordinates of the branes with p,v = 0,1, ..., D—2,

11



and €, = —ey; = 1. x denotes collectively the matter fields. The surface of the (I)th

brane is given explicitly as,

O, (2%) =0, (2.22)
or parametrically as
2% = g (55)) . (2.23)
91(3[)_1 denotes the determinant of the reduced metric gfi,) of the I-th brane, defined
as
@) (I)a (1)b
G = GabC(yy €y | 1) (2.24)
D—1
(]) a __ (91:“
€Ly = o6 (2.25)

Then, the total action is given by the sum of the D-dimensional bulk action

and the brane boundary actions,
(E E (E.I
tot()zl = 857 + Z SD l)m (226>

The variation of the total action (2.26) with respect to the metric g* yields

the field equations,

(2.27)

where §(z) denotes the Dirac delta function, normalized in the sense of [13], and the

energy-momentum tensors TébD ) and 72(,{) are defined as,

HTL = 3 (V") (Van)
tage e \F@M (Va€s) (Vo)
ra TV (9,6) (Vi)
Jrze*\/g ¢Hacde od

12



1

_igabE(DE); (2.28)
T = S+
S = 2% — gL s (2.29)
where ¢" = ¢,,, and
= eV (6n6s) - (2.30)

Variation of the action (2.26), with respect to ¢, ¥y, & and By, gives equations

for the matter fields,

1 8 -
0 - V132 %H?
¢ VD=2 "7
Y- 26¢E¢<@+6—\/M+

2 18
FBe VBV o, K/a v

(2.31)

(2.32)

13



8
06 = — (V&) + \/%(Vafi) (V*%y)
_i_T/_ie\/Di,Q m&wi _’Y_ﬂ:e ﬁd&*Zfi

a4 2a:l:

2 ()
oV, I
X E 2K, € b1 —i—aé >
— ( 9+ =

(2.33)
vC[—[cab =
(2.34)
(I
I 25£D—1,m
0-¢ = - K‘D 5¢ )
5£(1)
(I = _9 2 D—1,m
Ty = FD Sthy
1
)  _ 26‘C(D)71,m
08+
5£(1)
o) = _apdeV s o ZLoLm (2.35)

Deriving the equations in the bulk involves simply dropping the delta function
terms from the above equations. Those boundary terms can then be put into the
Israel junction conditions to give boundary conditions on the bulk fields’ solutions’
normal derivatives at the brane [14, 15]. Alternatively, the Gauss-Codacci and Lanc-
zos equations for the (D — 1) dimensional gravitational field equations can be used

[16]. In the following, we shall follow the second approach.

Let’s begin with the Gauss-Codacci equations

G(D-1) _ 915/3) + Eﬁ) + }",S’Vj_l), (2.36)

v

14



with

D -3
' = D9y {65 ehet,
1
a, b
—_ |:Gab/n/ n + mG(D)} g,u,l/}7
Eﬁ) = C((lgjzln“el(’u)nce?,,),

FOU = K, K) - KK,

pv

—%gw (KopK*P — K?) (2.37)

where n® denotes the normal vector to the brane, GP) = g“belbD), and Céﬁzi the

Weyl tensor. The extrinsic curvature K, is defined as
K, = e‘(’#)e?y)vanb. (2.38)

And the Lanczos equations read [17],

(K —olf (K] = —p T (239
where

(K] = limg, o+ KD T = lime,o- K(D)

[KD]” = gDw [K,S{/)]_' (2.40)

If the fields have reflection symmetry about the brane surfaces, then the discontinuity
in the normal derivatives will simply be twice the boundary value.
Then, substituting into the extrinsic curvatures K, ,S{,), the effective energy-

momentum tensor 7]},9 through the Lanczos equations (2.39), and setting
I
Sﬁ = 7-‘(‘9 + g,i )gfﬁ, (2.41)

where g,(f) is a coupling constant of the I-th brane [18], we find that

T —

I () I I

15



Then, Gg,)_l) given by Eq.(2.36) can be cast in the form,

(D-1) _ (D) (D) 4 g(D-1) 4 4
G = G + B +EL T+ EpmL

2
+Kp 1T + AD—lg,uw

where we have defined

E}(f—l) = 7

and
D -3
Koo = g
D -3
Apy = ———g?kb.
D=1 = 3D —2) k"D

Taking the energy momentum tensor for a perfect fluid,

Ty = (/O + p) UyUy — PYuv,

where u,, is the four-velocity of the fluid, we obtain,

D -3

L

X {(p + ) upuy, — (p + %p> gw} :

Note that in writing Eqgs.(2.43)-(2.47), the super indices (/) were dropped.

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

Using the surface ®;(x) = 0 to define the brane, we can divide the space-time

into two regions, one with ®;(x) > 0 and the other with ®;(z) < 0 [see Fig.2.1].

Since the field equations are the second-order differential equations, so the matter

fields have to be at least continuous across this surface, although in general their

16



/

Figure 2.1: The hypersurface ¥, where > = {xA s Dy(z) = 0}, divides the spacetime
into two regions, M*, where M, = {24 : ®;(z) > 0} and M_ = {z*: ®;(z) < 0}.

first-order directives need not be. Introducing the Heaviside function H(z), defined
as

1, >0,

H(@::{ (2.48)

0, =<0,

in the neighborhood of ®;(x) = 0 we can write the matter fields in the form,
F(z)=F"(2)H (®;) + F () [1 — H(®)], (2.49)

where F = {¢, 1y, &, B}, and F* (F7) is defined in the region ®; > 0 (®; < 0).
Then, we find that

Fao(x) = Fg(x)H(®r)+ F,(x)[1 - H(®)],

Fu(r) = Fo(o)H (®r) + F () [1 — H ()]
0%, (x)

b

+ [Fa] 5 (®g), (2.50)

17



where [F,]" is defined as that in Eq.(2.40). Projecting F, onto n® and e,

we find
Ea, =F 6(#) - anw

H-a )

where

Fo=nFo F,=cl,F,

Then, we have

[Fo] ™ n® = [Fa]™,
[Fa] ™ €y = 0.

Inserting Eqs.(2.51)-(2.53) into Eq.(2.50), we find

Fap(r) = Fo(e)H (®1) + F () [1 - H ()]

— [Flu]” nany Ny 0 (®4),

where Ny = /|®;.P7], and

1 99(a)
na_N[ 81’“ .

) directions,

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Substituting Eq.(2.54) into Eqs.(2.31)-(2.34), we find that the matter field equations

on the branes are,

- 8‘/(1)
A = -0 (anh 4o,
_ aV(I)

I — I
Wn] =~y (2&,6 asziI—F il
[fm]‘ I SLNVE. =

tn 2004

nl- I
[Hr(m)b] = _\IJ(I) O'((zb)7
where

Hnab = Hcabnca \P(I) =

18

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)



2.8  Orbifold Branes in 5-Dimensional Spacetimes

Choosing D = 5,d, = 3,d_ = 2 we return to our metric ansatz, for the five-

dimensional space-time with a three dimensional spatial space that is homogeneous,

isotropic, and independent of time. It can always be written in the form [19],

ds? = gapdrtdr’ = gyndzMdzN — ezw(mM)dZi,
where M, N =0, 1. In the conformal gauge,

goo = 911, Yo1 = 0,

this becomes,

ds? = > (tw) (dt2 — dyz) — 2w 52,
Note that metric (2.63) still has the gauge freedom,
t=ft+y)+9t' —y), y=ft"+y) -9t —y),

where f(t' +4/) and g(t' — y') are arbitrary functions.

From this point on we remove the flux to keep things simple. Let
BCD - 07

so that

§&+=0, ar =0, v =0.

2.3.1 Field Equations Outside of Branes

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

Then, outside the two branes the independent equations of Eqgs.(2.27) are,

Wit +w (Wi —204) Wy +wy (Wy —20,)

1
_6 (¢2t + ¢2y + wit + wiy + djzt + dﬁy) )

20+ W — 3(“‘)7'52 - (2U,yy T Wyy — 3‘”442) — 4ke2lo—w)

19
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with

(¢2t - ¢2y + wit - wiy + lﬁt - zﬁy) ) (2.68)

1
2

Wy +wiwy — (0w, + 0 ywy)

1
= 6 (D10 y + Yy sty y +Y_4p_ ), (2.69)
W + 3w, ? — (Wyy + 3w,?) + 2ke* )
1
= 56201/5. (2.70)

On the other hand, the corresponding Klein-Gordon equations take the form,

¢,tt + 3¢,tw,t - (¢,yy + Sgb,yw,y)

_ _\/26201/5, (2.71)

Yy + 3wy — (Vg gy + 30w y)
= ¥ B, eV (2.72)

Vo + 3wy — (V- yy + 30U ywy)
2
- \@6205_6\/2/305—1#, (2.73)

Vs = eV39 (meﬂp+ + B,e’\/g“") . (2.74)

2.3.2  Field Equations On the Branes

On each of the two branes, the metric reduces to

ds§|M£1> = g)dely detyy = dri — a® (1) A, (2.75)

where 5?[) = {r7,7,0,¢}, and 7; denotes the proper time of the I-th brane, defined

by

. 2
dr; = eg[tI(TI)vyl(TI)} 1_(&) dt,
tr ’

a(r) = el (2.76)
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with y; = dy;/dry, etc. For the sake of simplicity we shall drop all the indices “I”,

unless some specific attention is needed. The normal vector n, and the tangential

vectors e{,, are given, respectively, by

ng = e (—yol +1idY),
= (oo 4 is°),
ety = 0% + Yoy, €(ry = 0y,
o) = 05, €y =% (2.77)
Proceeding to the Gauss-Codacci relations we find that
6% = OIS — G657 g

ES) = EO (35707 — 676" g , (2.78)
where
|
g£5) = 3¢ i (¢2t - ¢2y + wit - d’iy + lp%t N wzy)

o 2 2 21, 1
Y (Vo) + (Vipy)? + (VUo)*] + Z‘/Sa

G = %[qb?nwi,nwi,n]
2 (VO + (Vo) + (Vo] - 0
E® = ée_% (00— war) = (O — W)
ko] (2.79)

with ¢, = n*V,¢. The four-dimensional equations on each brane take the form,

k 1@ 1 1
H? L2 “A+ =GB L 5O
+ 3 (p+7p)+3 +3QT +
27TG 2
2.80
+3pA (p+7)°, (2.80)
e 1
2 = —%(p+3p—27‘p)—l—§A—E(5)
1 2nG
—~ (G +3 “”’)—— 20+ 3
; (GT + 3G, o [p (2p + 3p)
+(p+3p—1) 7, (2.81)



where H = a/a,, A = Ay and G = G4. On the other hand, from Egs.(2.56) and

(2.57), we find

)
(0] = —(zngel—ag‘; +a§f)> v, (2.82)
_ oy
[1/111)”} = — (2/{?6[ 3@/1 +0—1(P]j2> . (2.83)
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CHAPTER THREE

Radion Stability

In the two-brane models, one important question is the stability of branes. In

this section, we shall address this issue.

3.1 The Spacetime Background with Poincaré Symmetry

The five dimensional static metric with a four dimensional Poincaré symmetry

is given by Eq.(2.63) with £ = 0 and o(y) = w(y), that is,
dsz = >V (n,,datdz” — dy?) . (3.1)

Our specific solutions are given by,

oly) = %m(

oy) = Cll”(
o (M
b (y) = \/;021n(|y|LyO> 0, (3.2)

where c1, 40, L, 09, ¢o, and 1/}3 are all arbitrary constants, and

16 = 6¢; + 15¢3,
3 3,
The function |y| is defined as that given in Fig.3.1.

These are the solutions to the equations outside the branes Eqs.(2.67)-(2.72).
Boundary conditions must still be enforced using the on brane equations Egs.(2.80)-

(2.81) and Eqs.(2.82)-(2.83). The normal vector n{;, to the I-th brane is given by

niy = —eél)e_"(yf)éz, (3.4)
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Ayl

y

-2y, A e]E Y. 2y,

Figure 3.1: The function |y| defined in Eq.(3.2).

and

8
9 L \3
GO = —gP=__= ( ) : 35
0 Yr + Yo (3:5)

where y; = y. > 0 and y, = 0. Inserting the above into Eqs.(2.80) and (2.81), and

H =0, the equations are satisfied for T,S,I/) = 0, provided that the tension 7']5]) defined

by Eq.(2.30) satisfies the relation,

(1) 8/3
(I) 9 (I)>2 __Pa L 36
<T(¢’ﬂ/’i) T opn IrG4L? \ yr + yo ’ (3:6)

where pg\l) denotes the corresponding energy density of the effective cosmological

constant on the I-th brane, defined as p%) = AU /(87G). From Eqs.(2.82) and

(2.83), we find that

8‘/4(]) B cler (37)
9o w3(yr+ o) '
8‘/4([) _ C2€r (3.8)
My REyr+w) .
av4(1) _ \/§C2€1 (3 9)
o V262(yr + yo) .

To study the radion stability, it is convenient to introduce the proper distance Y,

defined by

Y1
D(t) = / 7t gy (3.10)
Y2
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where y,(t2) < y < y1(t1), and y = y;(t;) denote the locations of the two branes.

For our case this gives

B e

Then, in terms of Y, the static solution (3.1) can be written as

ds? = e 24y, datda” — dY?, (3.12)
with
1 4(|Y| +Yp)
3 4(1Y| + Y¢
oY) = 101 In (%) + o,
3 4 (Y] +Yo)
P (Y) = 1 In (B—L + 99,
2T 4 (Y] +Yo) 0
Y (Y) = 35 ©2 In ( 3L +Z, (3.13)
where
3L 4/3
Yo == (%) . (3.14)

In comparison to the Randal-Sundrum setup, this metric has v/Y warp factor, in-
stead of e7Y. In order to get a feel for this space, consider null rays propagating

normal to the brane. These will obey

3L 5\*
ys = = + -t . 1
L (12 2) 1

So while we do not have the Cauchy problem of incoming signals arriving from
infinity in finite time, we we still find it useful to use two branes to compactify this
bulk space. The monotonic nature of the warp factor then implies that, at least for

static branes, one will have positive and the other negative tension.
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3.2 Radion Stability

Following [20],we consider a massive scalar test field ® with the actions,

/ d'z /0 " Y Vg (V) — M),

Sy =

S; =

—oq/ d'zy/—gf" (02 —03)”,
M
4

(3.16)

where «a; and vy are real constants. In the background of Eq.(3.12), the field ®

satisfies the Klein-Gordon equation

2
O —4AD — MPP =) " 20,P (B —v7) 6(Y — V7).

(3.17)
=1
Using a pill box integration over the the I-th brane, we find that
dd(Y) |1t
% L 200 P (@] — v7), (3.18)
where &; = ®(Y7). Since
. do(Y) . do(Y)
lim ——= — lim ——~ = -9 (Y,),
vy dY vy, dY (¥
. do(Y) do(Y) ,
lim ———= = =-0 3.19
yoo- dY oot dY (©), (3.19)
the conditions (3.18) can be written as,
(Y, = —oq® (PF—07), (3.20)
P(0) = (93 —03). (3.21)

Inserting the above solution back to the actions (3.16), and integrating over Y, we

get the effective potential for the radion Y,

Vo (Ye)

- /OYC_E Y /=g; (V®)* — M?a?)

+e
2 Yr+e 0 ) 2
+Za1 dY\/ —g, (CD —UI)
I=1 Yi—e
<6 (Y~ ¥7)

Ye

e MMe(YV)e'(Y)],

(3.22)



For our solution given by Eq.(3.13) and Eq.(3.17) in the region 0 < Y < Y,
we find that

e 142 (3.23)
where z = M (Y +Y)). Eq.(3.23) has the general solution,
O =aly(z) + bKy(2), (3.24)

where [y(z) and Ky(z) denote the modified Bessel function of the first and second
kind, respectively [21]. In the limit that «;’s are very large [20], Egs.(3.20) and

(3.21) show that there are solutions only when ®(0) ~ vy and ®(Y,) ~ vy, that is,

12

v al§+ K, (3.25)

vy =~ al+ bKyp, (3.26)
where

ze=M (Yo +Yo), z20=MYy,

IL=1(z), Ki=Ko(z). (3.27)

Eqgs.(3.25) and (3.26) have the solution,

a ~ % (v1K8 — UQKS) ,
b ~ % (val§ — v 1g) (3.28)
where
A =IEK) — I[DKS. (3.29)

Inserting Eqs.(3.24) and (3.28) into Eq.(3.22), we find that

4
3LA

—v2 (I + [T K5)]

Va (Ye) = {vize [or (I0KT + [TK)

+uy20 [v2 (IGKY + IT KG)

—vy (IgKY + 1K) } - (3.30)
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When zy > 1, we have z. = 2y + MY, > 1. Then, we find

1

I ~ [ e”
o(2) (2) 27rz
Ko(z) ~ ) =~ 212@ (3.31)
Substituting them into Eq.(3.30), we get
4z
Vo (Y,) ~ %STEMH {(v1® + v2?) cosh (MY,) — 20105}, (3.32)
which has a minimum at
1 U1 + 'UQQ
Y™™ = — cosh (3.33)
2?]11}2
where
62‘/@ (YC) ~ 162’0M2 (U1U2)2 > 0
8}/;2 Yc:Ythu - 3[/ ‘/Ul - U2|
oo, Y.=0,
Vo (Ye) =~ (3.34)
o0, Y. =o0.

This shows the potential always has a minimum at a finite and non-zero value of Y.

As a result, the radion is stabilized.

To calculate the corresponding radion mass, we need to know the precise re-

lation between Y. and the radion scalar . Following [19, 20], we find that
12 Y. 1/2
o = <_2 / e—“dy) = \/6LM}
K5 Jo
1/2
AR AR (3.35)
3L 3L ' '

So,
o Ve (Vo) _E(mfo)“
© 202 Yoy min. M3\ 27L
2 2
DL N : (3.36)
|v1—1;2| 201V

where M2 = M3Vy, Vi .
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AV(I)(YC)

min > YC
0 Yo

Figure 3.2: The potential Vg (Y.) defined by Eq.(3.32) for M > 1/Y;.

When 2z < 1, we find

S
—~
N
~—
12
—_
~

—

—~
N

~
12

Kol2) ~ —In(z), Kl(z)zé. (3.37)

Then, Eq.(3.30) reduces to

Vo (Y2) ”; L_sz {(vr = v2) (4 — 2210 (29)) Yo
+25 (V2 — 2v1In (29)) Yo } (3.38)

for Y. < Yy. This potential has no minimum, as shown in Fig. 3.3, leading to an

unstable radion for M < 1/Y5.
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AV(I) (Yc)

> Y.

Figure 3.3: The potential Vg (Y,) defined in Eq.(3.38) for M < 1/Y,.
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CHAPTER FOUR

Localization of Gravity and 4D Effective Newtonian Potential

One of the most important aspects to any model is where it connects to exper-
iment. The most important is to reproduce the newtownian gravity limit. In models
with five large dimensions, care must be taken to verify that the inverse square law
is still approximately obeyed by masses on the brane. In simple compactification
schemes the use of gauss’s law gives the correct limit when the distance is large
compared to the size of the extra dimension. This is the source of some of the most
stringent experimental constraint on the size of extra dimensions. In the single brane
Randal-Sundrum type models the limit is accomplished by a more subtle effect, that
of the warped nature of the extra dimension itself, namely the convergent nature
of the ADS warp factor. In these orbifold models this issue remains important. To
study the localization of gravity and the four-dimensional effective gravitational po-
tential, in this section let us consider small fluctuations h,, of the five dimensional
static metric with a four dimensional Poincaré symmetry, given by Eqgs.(3.1) in its

conformally flat form.

4.1 Tensor Perturbations and the KK Towers

Since such tensor perturbations are not coupled with scalar ones [22], without
loss of generality we can set the perturbations of the scalar fields to zero, i.e., d¢,, = 0.

We choose the gauge [23, 24]
hay =0, hy=0=0"h,,. (4.1)

Then, it can be shown that [25]

1 3
§GY) = —50sha = 5 {(0:0) (0°har)
—2[0s0 + (8.0) (8°0)] hap}
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1
2 (B) 2
w300y = —7ha (Z (V) —2V5>,

n=1

(5T$) = (1p+A) by,

(4.2)

where O5 = 1%°0,0, and (0.0) (0°ha) = 1° (0:0) (Oghay), With n% being the five-

dimensional Minkowski metric. Substituting the above expressions into the gravi-

tational field equations (2.27) with D = 5, we find that in the present case there is

only one independent equation, given by

. 3 3 5\ -
Dsh/ﬂ/ + § (O'” + 5O_/ ) hMV g O7

where h,,, = 6_3”/2%”. Setting

Py (2,Y) = hyu (2)0(y),
O = Oy — V2 = 09,0, — 07,

~ ~

O4h(z) = —mzhu,,(x),
we find that Eq.(4.3) takes the form of the Schrédinger equation,

(=V2+ V) =m,

3 3
VvV = 5(0”+§0’2)

1 5(y) 0 (y _ yc)

4(lyl + ) W Yetyo

where

(4.3)

(4.4)

(4.5)

(4.6)

From the above expression we can see clearly that the potential has a delta-function

well at y = ., which is responsible for the localization of the graviton on this brane.

In contrast, the potential has a delta-function barrier at y = 0, which makes the

gravity delocalized on the y = 0 brane. Fig. 4.1 shows the potential schematically.

Integration of Eq.(4.5) in the neighborhood of y = 0 and y = y, yields, respec-

tively, the boundary conditions,

1
lim ¥'(y) = ———— lim ,
m,w (y) et ) S Y(y)
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A V()

Y<

lim ¢/(y) = —— lim $(y) (4.8)

y—07t 2y0 y—07t
Note that in writing the above equations we had used the Z; symmetry of the wave

function .

Introducing the operators,

Q=V, — gal, Qf = -V, — gal, (4.9)

Eq.(4.5) can be written in the form of a supersymmetric quantum mechanics prob-
lem,

Q" Qy = m*y, (4.10)
which, together with the boundary conditions (4.7) and (4.8), guarantees that the
operator Q' - @ is Hermitian [26, 19]. Then, by the usual theorems from Quantum

Mechanics [27], we can see that all eigenvalues m?

are non-negative, and their cor-
responding wave functions 1, (y) are orthogonal to each other and form a complete

basis. Therefore, the background in the current setup is gravitationally stable.

4.1.1 Zero Mode

The four-dimensional gravity is given by the existence of the normalizable zero

mode, for which the corresponding wavefunction is given by

Yo(y) = No (Jy| +0)""?, (4.11)
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Xe

Figure 4.2: The wavefunction ¢ (y) defined by Eq.(4.11) for the zero mode.

where Ny is the normalization factor, defined as

2
No = /m. (4.12)

Eq.(4.11) shows clearly that the wavefunction is increasing as y increases from 0 to

Y. [see Fig. 4.2]. Therefore, the gravity is indeed localized near the y = y. brane.

4.1.2  Non-Zero Modes

In order to have localized four-dimensional gravity, we require that the correc-
tions to the Newtonian law from the non-zero modes, the KK modes, of Eq.(4.5),
be very small, so that they will not contradict observations. When m # 0, it can be

shown that Eq.(4.5) has the general solution,
Y =22 (co(z) + dYo(z)), (4.13)

where = m (y + yo), and Jo(x) and Yy(x) are the Bessel functions of the first and
second kind, respectively [21]. The integration constants ¢ and d are determined

from the boundary conditions, Eqs.(4.7) and (4.8), which can now be cast in the

(o w0) ()
=0, (4.14)
Jl (l’o) Yi (370) d

where xg = myy and x. = xg+ my,. Clearly, there are no trivial solutions only when

form,

A(zg,x.) = Ji(xe) Y1 (x0) — J1 (20) Y1 (z:) = 0. (4.15)
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Figure 4.3: The re-scaled function of A defined by Eq.(4.15), where the dashed, dot-
dashed and solid lines are, respectively, for A (xy = 0.01) /35, A (z¢ = 1.0) /0.5 and
A (z9 = 1000) /0.005.

Table 4.1: The first three modes m,, (n = 1,2, 3) for 2o = 0.01, 1.0, 1000,
respectively.

To  MTM1Ye M2Ye M3Yc
0.01 3.82 7.01 10.16
1.0 3.36 6.53 9.69
1000 3.14 6.28 9.42

Fig. 4.3 shows the function A (zq, my.) for zo = 0.01, 1.0, 1000, respectively. From
this figure, we find that the spectrum of the gravitational KK towers is discrete, and

weakly depends on the specific values of xg.

Table I shows the first three modes m,, (n = 1,2,3) for zy = 0.01, 1.0, 1000,
from which it can be seen that to find m,,, it is sufficient to consider only the case

x> 1. When 2z > 1, we find that z, = 2o + my, > 1 and [21]

2 3
\| —cos |z ——m

T 4" )7

2 3

— ¢i — =7 . 4.16
\/ —sin <:C 47T> (4.16)

Inserting the above expressions into Eq.(4.15), we obtain

=~
=
12

ne
S
2

A = 2 sin (my.) , (4.17)

T/ XL
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with roots given by

my,=—, (n=12,..). (4.18)

In particular, we have

—19
my o~ 3.14><(10 m) TeV
Ye

1 TeV, Ye ~ 107 m,

12

1072eV, y.~107°m, (4.19)
107% eV, y.~ 1073 m.

It should be noted that the mass m,, calculated above is measured by the observer
with the metric 7,,. However, since the warped factor e?® is not one at y = y,, the

physical mass on the visible brane should be given by [23]

1/3
mzbs — efo'(yc)mn — (w) My, (420)

Without introducing any new hierarchy, we expect that [(y. + yo)/L]"* ~ O(1). As

a result, we have

1/5
mos = <@) My 22 My (4.21)

For each m,, that satisfies Eq.(4.15), the wavefunction v, (y) is given by

) = Nl (- b, (422)

where

— - Yo
Lo = MpYo=NT\ — |,

C

_|_
Ty = my(yo+y) =nm (yoy y) : (4.23)

The normalization factor N,[= N, (my,y.)] is determined by the condition,

/0 " )Py = 1 (4.24)

Figs. 4.4, 4.5 and 4.6 show 91 (y), 12 (y) and 5 (y) for xo1 = 100, 102, 104,
respectively.
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20F=-—-

-20

-40

Figure 4.4: The wavefunction, ¢4 (y), defined by Eq.(4.22) vs my where y € [0, y.].
The dashed, dot-dashed and solid lines are, respectively, for z¢; = 100, 102, 104.

-100

Figure 4.5: The wavefunction, ¢ (y), defined by Eq.(4.22), vs moy where y € [0, y.].
The dashed, dot-dashed and solid lines are, respectively, for zo; = 100, 102, 104.

—100f

Figure 4.6: The wavefu

= Mgy

nction, ¥ (y), defined by Eq.(4.22), vs mzy where y € [0, y.].

The dashed, dot-dashed and solid lines are, respectively, for z¢; = 100, 102, 104.
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4.2 4D Newtonian Potential and Yukawa Corrections

To calculate the four-dimensional effective Newtonian potential and its cor-
rections, we consider two point-like sources of masses M; and M,, located on the
brane at y = y.. Then, the discrete eigenfunction ,(z) of mass m, has a Yukawa

correction to the four dimensional gravitational potential between the two particles

[28, 25],
MMy~ MiMay N 2
- Y e 4.2
Ur) =Gy . + B n:1e [Un (ye), (4.25)

where 1, (y.) is given by Eq.(4.22), with

nm
Tem = My (Ye + Yo) = + nm. (4.26)

C

When xp1 = miyo > 1, we find that

cos (2m, o)

N, ~
v 2nmyq
2
Un (ye) =~ (=1 y_ (4.27)
Then, we obtain,
l
o () = 20, (y—l) . (4.28)

Clearly, by properly choosing ., the corrections of the four dimensional Newtonian

potential due to the high order gravitational KK modes are negligible.
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CHAPTER FIVE
Cosmological Model in the String/M-Theory

On each of the two branes, the metric reduces to
ds§|M£1> = g)del detyy = dri — a® (1) A, (5.1)

where 5?[) = {11,7,0,¢}, and 7; denotes the proper time of the I-th brane, defined
by

. 2
dr; = 60'[15[(7—1)7?/1(7—1)} 1_(2) dt,
tr ’

a(r) = ertimil (5.2)

with ¢; = dy;/dry, etc. For the sake of simplicity and without of causing any con-
fusion, from now on we shall drop all the indices “I”, unless some specific attention
is needed. Then, the normal vector n, and the tangential vectors e,y are given,

respectively, by
ne = €% (—y'5fl + i5fl’) ,
n = —(yop +1idy),
ety = 0 + Yoy, €(ry =0y,
ey = 0g, €lp =0 (5.3)
Thus, we find that
g% = 9607 — G076 Gn,
ER) = E® (36706] — 6767 gmn) - (5.4)

where m, n = r, 6, ¢, Then, it can be shown that the four-dimensional field

equations on each of the two branes take the form,

e 1
H? + = = 3% (p+ 70 +2p2)" + 3G + B®, (5.5)
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a 2
P —T(P+3P—QPA—T¢>)(P+2/?A+T¢)
— G _ (g(5 + 3g(5)> 7 (56)

where H = a/a,, A = Ay, G =Gy and py = A/(87G).

Using Eqs.(5.5) and (5.6), the conservation law can be written as

1.1, .
pt T+ 3H(p+p) = ([5G, + EO + H(G + G\ + 4E0))) (5.7)
where
A G
A= 3 (2pA +p+ T¢) (58)

5.1 Particular Case

Based on the string or Horava-Witten hetereotic M-theory, we have several
particular cases of the cosmological models. In the case of the branes in the Mp x
Mg+ x My~ Compactification of type II string on S*/Z, [29], we find the Friedmann

(2.80) equation and conservation equation (5.8) give

2nG 1
H? = —— 200)F — —— .
3pA (p+7¢+ pA) 9L2a87 (5 9)
p+ Ty +3H(p+p) =—4H(2pp + p+ 7p), (5.10)

5.2 (General Case

Next we will solve the kind of the Friedmann equation and conservation equa-

tion in more general case,

G
2 = 25 (04 70+ 200)" = (5.11)
p+ T, +3H(p+p) = —aH?2pr+ p+74). (5.12)

To solve the equations Eq.(5.11) and Eq.(5.12), we assume the interaction

between the matter fields and the potential field can be written as

p+3H(p+p)=Qa)H, (5.13)
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and that the state equation is given by,
P = wp. (5.14)
Then the solution for p is given by
p = a3+ /Qa2+3w + g 30w (5.15)
On the other side, the potential 74 satisfies
Ty = —aH(2pn +p+7p) — QH, (5.16)

which has the solution,

bo

a’

1
To = —2pA — C%/aa_l,oola - /aa_lea + (5.17)

with by constant.

If we expand the interaction term ()(a) as a polynomial series and consider

the different components of the matter fields, we have
Qa)=> Qia)= > Qa" (5.18)

i p=0,—1,—2...
where i = m, v for matter and radiation. Substituting Eq.(5.18) into Eq.(5.15) and

ignore the logarithm term, we have

p=2_pi (5.19)

with

Q) b i3
o § ' i g3 +wi) 5.20
Pi p+3—|—3wia + G ( )
p#—3(14w;)

Substitute the Equations (5.18) and (5.20) into Eq.(5.17) and ignoring the

logarithm term, we have
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aQé ,
e = 2= 2. (p+3+3w)(pta)

i pFA=3(14wi) pE—a

QZ o ach 3(14w,
_ _ =0 304w 4 opaT (591
ID S PV

i pFE— o P i,a#£3(14w;)

where by, ¢ are constants. In Eqs(5.20),(5.21), to eliminate the logarithm term, we

have to set Q~, =0, Q" , =0and ¢, =0if a = 3(1 +w;).

3(14w;)
Now we substitute the expressions p and 7,4 into Eq.(5.11) to get the Friedmann

equation

271G 3(14w;) ,
H2 — 2 i P
3pA{ZZ (p+ 3+ 3w;) (p+a)Qpa

3(1 4 w;) 2
_ 7 73(14»0.}1) —«
E o =30+ w) coa + boa } + pa. (5.22)

Combining the coefficient of polynomial, we obtain,

2rG
2 p 2
3PA (Z qpa ) + Pas (5.23)

where g, are arbitrary constants since Q;, ch, by are arbitrary. We can select the
special values for g, to construct the polynomial to satisfy the cosmological obser-
vations. The values of the remaining terms in the infinite series can be obtained by

using the Friedmann equations to recursively determine them.
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CHAPTER SIX
Effective Action of Type IIB on Warped Conifold

We start with the standard Type IIB action,

1 10 — |5 omTOMF  G3-Gs P2
S = 22, JdPzy Q{R 2(Imm)2  12[mr _ 4x5!

+87ri1:‘€%0 «[ Cootis G + 510'3 (61)

Imr

where gap is the ten dimensional metric in the Einstein frame. As our ansatz we

take the block diagonal metric,

gapdz"dz" = g, (x) detda” + gij(x,y) dy'dy’, (6.2)

where x#, x¥

... denote the coordinates on our non-compact five dimensionnal space-
time, while y’, 37, ... denote coordinates on the base T™! of the conifold. g(z) is
assumed to be independent of the internal coordinates, while g(z,y) depends both
on the internal and the external coordinates. In particular, the explicit form of g is
given by

g =hi(9°)* + h2[(g")* + (¢°)7] + hs[(9°)* + (9")°]. (6.3)
In the above the factors hq, ho, hz all depend on z* and reflect the fluctuations of the
various components of the internal geometry. On the other hand, the orthogonal

basis {g',...,¢°} only depends on the internal coordinates and is related to the

vielbeins {E*, ..., E°} via

, 1 .
.E’z = %917 ’L:].,,4 (64)
1
B = 3 (6.5)

The vielbeins themselves are given by

B = % (—sin O1dgy — cos 1 sin Oydpe + sin 1db;) (6.6)
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1
E? = —— (df; — sin ) sin Oods — cos 1db 6.7
W (do; Y sin Oad gy Ydbs) (6.7)
1
E? = m (— sin O1dpy + cos 1 sin Oadps — sin 1db;) (6.8)
E* = % (d6 + sin 1) sin Oydy + cos 1dbs) (6.9)
1
E°> = 3 (dip + cos B1dgy + cos Oades) . (6.10)

In this way we get the relationship between the 10D Ricci scalar R, and the Ricci

scalars R and R for § and g respectively, to be,
» - u 1o~ W ig 1~ij~kl I =
R=R + R — Z Mfa £+ §8ugw8 g + Zg g 0 gﬂﬁugik, (611)

where ¢ = Ing. For the g;; that we have chosen this becomes

L (Vh)? 2(Vhy)? 2(Vhy)2 1 (Vhy  _Vhy _Vhs\’
_ _ _ _ - 2 2 12
R=R+R 2 2 ¢ o\ L , (6.12)

with
48h1 (hy 4 hs) — 9(hy — h3)? — 16h,>

= 4hyhohs

(6.13)

Finally, a conformal transformation of §(z),, = Q ?(2)g(x),, gives the minimally

coupled gravity part

VIR = 3\ IVR(g) = VgV R(g) = V/IR(9). (6.14)
where
Q= hihhi, (6.15)
so that
~ A 9 h Vhi)?  2(Vhy)?
Vift= g (ntg) +or2r - b 200
1 2
2(Vhs)?
h; —30(VInQ)? 4+8V2In Q) : (6.16)
which is diagonalized by setting
20
Inh; = w-— T (6.17)



Inhy, = u+w, (6.18)

Inhy = u—w, (6.19)
1 4

Thus we obtain:

ViR= /g (R(g) +e 5TUYR — E(wa — 4(Vv)? — %(W)Z) . (6.21)

Now we choose the form for the fluxes, with functions K,L,P.,Q), and f of

external co-ordinates, and w,, as then harmonic n forms.

By = K(g'ANg*)+ L(g> N g"), (6.22)
Mo

By o= —— (PAGANPA=+d" NP AP +df A(g" A g>+ g° A g*)6.23)

Fy = Qus+dP Aws Aws +Q Adx’® + sdP' A gs, (6.24)

which, upon differentiating and applying the connection on ¢ we get,
1A 2 s a4, L=K o 4 1, 3 5
Hy=dKNg Ng°+dLNg>Ng +T(g NG =g Ng)Ng°, (6.25)

for our H flux. In calculating the norm of the flux, the conformal factor €2 will leave
kinetic terms unchanged but will result in a factor 22 multiplying terms with all

internal indices as happened to the R term above.

L - K 2 w 14
(H3>2 -6 {(VK)2€—2u—2v + (VL)26—2u+2v + %6_3"‘11“} ’ (626)

and for Fj as well :
(F3>2 _ 9M20/2 |:<1 . f>267§w72v7%u + f2€f%w+2vf%u + 2(vf)2672ui| . (627)

Lastly we take Fy to be a combination of the volume forms of the internal and
external spaces, ws and dz°, respectively, as well as an adding the derivative of a

scalar P times the 4 form, and its dual.

F5:QW5+CZP/\W2/\WQ—I—Q,/\dl‘5+*5dpl/\g5 (628)
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Which has a norm in the conformal frame of
(F? = (31) (@07 + Q2% + (VPPe ™ 4 (VP y0fe i)

Also, the Chern-Simons term yields,

M /
Fs NF3 N\ By = QK1 — f)+ Lf)da® Aws
giving an effective action,
1 30
S = 5 d°x\/g Rs — —(VCD) — —(Vw) — 4(Vv)? — ( v“)2
Ko 6 11

_ 42, . _42 1, 8
[246 “coshv—9ell“ wginh? v — 4e¥ 11“} R

1
3p®—2u <€2v(v K) 4+ e 2 (VL) Z€—§w+%u([ K)2>
3
ZB_QMQ 2 [(1 f)Qe—gw 20— Fe-fut=it 2(V f)2e —2ui|

2 2
_Q 6—%@()—%7‘ Q (VP)Q —4du (VP/)264’LL
]\4106{/@/6
m

1y 8
T (K(1 - f)+ Lf)
where ® is the dilaton. The equations of motion are then

V20 = 3eP72 (62”(VK)2 +e ?(VL)* + }leéw+u“(L — K)Q)

o
e et (K (- )+ L)

Dt (1 - feie ey pomiee B g o e ]

11V2w = 8e3¥ 1% 4 24¢ 5% 1% cosh v — 36e~ 3% 1% sinh? v

L oo g gredvr Ml%f/um — ) Lfjeniie

10

3 1,1
_i_ze@fguﬂrﬁu([/ _ K) _ 3M205/2 —®—Fw—jlu [(1 . f)2672v + f2621)]
AV?0 = 9e~ swtiy “sinh 2v — 12e™ W ﬁ"sinhv
10

__M2a/26—¢7—%w—ﬁu [(1 f)2 —2v f2 21)}

+3e?72 (e*(VK)? — e >'(VL)?)
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(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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900 _
szu — 153e 3w+ U ginh? v — 100e3¥~11% 4 298¢ 3 ¥~ 11% cosh v

21
=337 (M (V) + (VL)) + 5

ed)—%w—&—%u(L _ K)2
3 4 1 4 1
_16_¢M2a/2 [10(1 i f)2e—§w—2v—£u + 10f2€—§w+2v—£u + 44(Vf)26_2u

_2Q26—%w—%u + 8@/2€§w+%u — 22(VP)2e ¥ 4 22(VP)2et
MO/Q/

o (KL= )+ Lfjersvmie? (6.36)
m
K-L
V2K = VKV(2u — 20 — @) + e BwtITu
MO/Q/(l - f) —Ly—20-10y—29
TN ST W U uu 637
9%6r (6:37)
L-K 1, .
#VAL = VLV(2u+20 — @) + ~— e 3w Ut
Mo/'Q/ ,
o 3653 fe—%w+2v+ﬁlu—2® (638)
(K — L
V2f = 2V fVu + fsinh 2ve 3@ Hiiv 4 %e‘é”%“ (6.39)
0=V (¢"VP +e*VP), (6.40)

with the energy momentum tensor,

Ty = 5(V,u@) (Vo) + 4 (V) (Votw) + 4(V,0)(V,0)

+%(VW)(VZ/LL) +3e® 2 (¥ (V,K)(V,K) + e > (V,L)(V, L))

+ 3MO/ 67(1372“
2

(V) (Vof) + € MTLP)(VP) + (VP (T, P) = Sffd)

Finding closed form nontrivial solutions to these equations is an open problem.
The following sections explore the possibility of solutions similar to those of the

previous chapters, with a negative result.

6.1 F5=0 Case

To simplify we can take

K-L=P=Q=Q =v=0 (6.42)
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this eliminates the 5-flux and Chern-Simons terms, adding a symmetry between

g1, 92 and g3, d4- NOW)

V2f =2V fVu (6.43)
V2K = VKV (2u — ®) (6.44)
V20 = 6e® 2(VK)? (6.45)

%VQU — —100e3%~11% 4 2283 1% — 66 24(VK)?

3
—ZeTP M [10(1 - f)Peiv i 102 4 aa(v f)26—2u] (6.46)

11V2w = 8¢5~ 1% 4 24e~ 50 11" — 3M2a e 3w~ 10 [(1— f)2 + [ (6.47)

if we further take

f = const. (6.48)
M2 (1 —2f 4+ 2f2) = m/ (6.49)
then
V(e*™VEK)=V-fg =0 (6.50)
V20 = 6e* 2 (VK)? = 62?52 (6.51)
2 i1 11
%v% = —120e3" 1% + 168¢ 3 11 — 11V?® + Tov%u (6.52)
11V2w = 8e3W 1" 4 243 11% — /e~ P 3w 11w (6.53)
and

!
3ZL e~ ®-Fu—tiu (6.54)

2 50

Vo = 24e ™3 1Y% — e 1% — 6e® (V)2 —

900

T, = %(vuq>)(qu>) + — (V) (Vow) + = (V) (Vo) + 6V, K)(V, K) — %gwla@%)

11
6 121

With a conformally flat metric

G = € A datdr” — dy? (6.56)

0= (44, — 9,)d, (6.57)
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where all fields are functions of y only, then

VK — 62u7<1>6K — 5064A7<I>+2ug

4qu)y _ q)yy — —6(60)2€8A_(D+2u

900 B
H(‘lAyuy — Uyy) = 1005w T + 298¢ 3 W11
+66(ﬁ0)268A7¢+2u - 1?5m’e¢§wﬂ)u

Zw—-3 —ly_19 Pty 10
11(4Aywy_wyy):8€3w 11u+24€ W 11u_37,n/e [ SW— U

3 11 1350

Loy = 00+ gty vy 9%
/
126759 — 2e50 Y — 3? e~ P-sw—itu

1 11 450
— —24 2 2 2 2 8A—-d+2u
/
120 de At gedutiu _ 9 e du-ity

8

Ry, = —4(A, — 0,)A,
Ry = nue (44, — 0,) A,
now trying
A= aln(y) +ag
® = coIn(y) + o
u=cIn(y) +uo
w = ¢z In(y) + wo
we have first
8a —cy+2¢; = =2
dacy + ¢y = _6(50)2e8ao—q>0+2u0
Co+ C2 = e

Thus three cases emerge from how the terms of the u equation cancel.
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(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)
(6.67)
(6.68)

(6.69)

(6.70)
(6.71)

(6.72)



6.1.1 Case of Like Terms Non-quadratic in y

2 50
-2 7é gCQ — ﬁcl
31
Cy = ﬁCl
which leads to
Co = —201
8a+4cy = -2

900(4a + 1)e; = —121(4a + 1)

(6.73)

(6.74)

(6.75)
(6.76)

(6.77)

Clearly in case 1, the system is overdetermined, unless the H flux is set to zero.

6.1.2 Case of Unlike Terms

—2—20 —506

37 1t
31

CQ#ﬁcl

leading to

10

A56e™ 50T TN = 15 90T 5 W0 1T

1 19 4 10
24e™5WOTIIU0 = /e~ P05 W0 T 0

w
3

In this case the m’ term cannot cancel the e~

6.1.3 Case of Like Terms with Powers of y~2

5 2 50
—2=—cy — —c¢
372 11"
31
szﬁcl

20

(6.78)
(6.79)

(6.80)

(6.81)

(6.82)

in both the v and w equations.

(6.83)

(6.84)



this leads to all terms on the right hand side having the same power of y,

co = —2¢

8a + 4cy = =2

900(da + 1)e; = —121(4a + 1)co — 1100e 0~
12508e 5w 1Tu0 _ @

11(4a + 1) = 8e3“0T i 4 24540710

4 10
6—¢0—§w0—ﬁm)

4 10
—3m e~ Po—3wo—17u0

(6.85)

(6.86)

(6.87)

(6.88)

so the field equations allow a solution, but all log coefficients have already been

determined, and we have not considered the R,, and R, equations.

a2

-8

3

CO——§

o =3

YTy

93

C —_—

T 44

Now,
Ly 19 2 40— 50 3m' 4 10,
Vo = +12e 39071140 — 2e3™0 11“0_?6 0-3Wo— 11 U
3 11 1350 3
Ty = Z(CO)Q + Z(Cz)z + 151 (e1)” = 5(4a +1)eco + Vo
1
= —4(a+1)a+ iR
T, 1 11, ., 450,

- = = 2 (e1)? = =(da+ 1o + Vi
e 2 gl o)+ prla)” = glat Do+ 1y
1
=—(4da+1)a+ §R
1.3, 11,93, 900 3, 20,3 15
(2 (2 T2 1 22y 2 2
2(2) * 6(44) +121(4) * 8)(2)7’é 8

ruling out solutions of this form for nonzero H flux.

o1

(6.89)
(6.90)
(6.91)

(6.92)

(6.93)
(6.94)
(6.95)

(6.96)

(6.97)

(6.98)



6.2 H =0 Case

Interestingly, the F3 term may be absorbed into @, if we take 5y = 0, letting

® become divergenceless. There are two cases to consider.

6.2.1 Case of Constant ®

now,
Co = 0
9
Cop = —
2 1101
and either
31
Cy = ﬁcl
or
2 50
9= 2 =
32711

(6.99)

(6.100)

(6.101)

(6.102)

The first results in all fields going to zero, while the second is overdetermined when

we consider the wy, equation.

6.2.2 Case of Variable ®

Without H, the ® equation can also be satisfied by,

now, from the divergence of u

31
wo = U0 + In(7/5)

and from the divergence of w,

7 9
ln(8g +24) + ¢o + wo = In(3m) + 740

and demanding that the powers of y on the right hand sides match,

Co = —201
31
Coy = ﬁcl

02

(6.103)

(6.104)

(6.105)

(6.106)

(6.107)



with two Einstein equations left, and with ¢; and wug still free,

1
R,uy = _gnuu%yk =
3 5.1 900 11 1
Ry, = 1Y =y 2[5(00)2 + ﬁ(cl)z + g(02)2] - g%yk

unfortunately for V; to vanish requires

ruling out a Kasner type solution for nonzero Fj flux.

23

(6.108)
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CHAPTER SEVEN

Conclusions and Discussions

In this dissertation, we have systematically studied orbifold branes in the
framework of string/M-Theory. In particular, in Chapter I, we have given a brief
introduction to “standard modern cosmology”. In Chapter II, we have a treatment
of compactification into a 3-way product space with a similar H flux. The action is
transformed to from the string to Einstein frames and written as an effective theory
with 4 scalars joining the dilaton in the bulk. Two of them come from the warp
factors of the two smaller product spaces, two from the H-flux, and one from the
transformation of the dilaton and warp factors. In Chapter III, we have the a sim-
ple solution to the equations of the previous sections possessing Poincare symmetry.
The orbifold symmetry imposed on the bulk scalar fields keeps the two branes at
the symmetry planes of the bulk at a stable proper distance from each other. It is
important not to confuse the massive scalar test field ® of section 3.B with either
the dilaton, radion, or the linear combination of dilaton and warp factors ¢ from
chapter 2. The important quantity is Y., the inter-brane proper distance. It aquires
an effective potential from the repulsive forces between branes generated by other
scalars, as well as the gravitational attraction. The bulk Kasner spacetime is static,
and the traditional Kasner instability in this model would manifest as a tendency
for the branes to collapse toward the metric singularity at Y = 0. That singularity
is removed by cutting and applying the orbifold symmetry, at two Y-planes. If the
position of the planes along the Y direction is stabilized then the singularity can-
not ’appear’, and the total volume modulus of the finite bulk direction and the 2
and 3 dimensional internal spaces, traditionally referred to as the radion, remains

stable. From the solutions for the fields 1+ we can see that the individual volume
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moduli of d4 will also remain bounded as long as the argument of the log remains
positive. This also is guaranteed be stabilizing the inter-brane distance, since it is
that distance that measures the ’size’ of the sawtooth pieces of our |Y'| co-ordinate.
In Chapter IV, we have verified that the corrections to ordinary 4-dimensional grav-
ity on the brane are small, by considering the mectric fluctuations near the branes.
This is essentially the same approach to finding the corrections to gravity from
Randall-Sundrum models, though our bulk background differs somewhat from those
scenarios. The main difference between models here and standard Randall-Sundrum
models is that the bulk is not an anti-de-sitter space, but an effective Kasner type
space with three scalar fields arising from compactification, similar to the earlier
Havora-Witten models. The boundary conditions on the branes for those scalar
fields determine our moduli masses and radion mass. Our zero mode corresponding
to 4D gravity on the brane is a generic result for the geometry of two branes. Gravity
in the bulk is suppressed less severely than in RS1, and needs the second brane for
the zero mode to be normalizble. Gravity could be thought of as not so much bound
to the TeV end of the orbifold as repelled from the plank end. In Chapter V, we
have focused on the cosmology of our primary model. The Friedmann equations for
a perfect fluid and their solution given an arbitrary interaction term proportional to
the Hubble factor, are worked out. In Chapter VI we have the compactification of
T} 1 , but without solutions. In particular, it may be that solutions similar to chapter
three fail because 77 ; does not satisfy the constraint on the curvatures of the d.
manifolds required by our other solutions of the D, d_,d, general compactification,
even though the topology is S5 XS3. There are also two Appendices A and B. In
Appendix A, we have a few steps to show the derivation of the solution in chapter
3. In Appendix B, we have an almost exactly analogous derivation of the chapter 3
solutions but for 6 bulk dimensions. The same constraint on the potential appears

here as in appendix A. The scalar potential vanishes, leaving 3 free fields constrained
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by orbifold boundary conditions. In concluding this dissertation, a few comments
are in order. First, the Goldberger-Wise mechanism can result in both stability of
inter-brane distance and of a reasonable Yukawa correction to gravity from a TeV
scale first excited state of the KK tower. However, in fitting to cosmological expan-
sion rate, the inverse eighth power term in the Friedmann equations generated by the
modular fields of the compactification does not completely replace the need for dark
energy, but merely moves the source of it over to a brane-bulk interaction term, that
may not be sufficiently justified from first principles. While it has for a while been
the case that theory has had a playground at scales too small for the experiments of
the time, there is also a rich history of the other end of the scale, in the predictions
of both Neptune and Pluto, for instance. Brane world models are in many ways the
analog of the predictions of very high energy particles in previous decades, granting
justification for exotic equations of state for dark fluids that are needed by the data

as we are able to measure higher derivatives of the Hubble parameter.
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APPENDIX A

Derivation Summary

The expressions
Iy = (V6P + (V) + 5(Vo ) — Vs
Vs = V39 <B+e_\/g¢+ + /3_6_¢*>
Ty = SVidVib+ sVl Vi + SV6 Vi — Sauls

1
Rab = Tab_ —gabT

D -2
1 1 1 1
= §Va¢vb¢ + §Va¢+vlﬂ/1+ + §V¢,wa, - ggab%
lead to matter equations
2
06 = +/2V-
¢ V5
Oy, = §5+e\/§(¢>w+>
Oy_ = ﬂ_e\/g¢_¢*.
The space-time metric takes the form
ds® = e*QAnw,dx“dx” — dy?
with its Ricci tensor being given by
—24 1
Ry = nue (44, —0,)A4, = _gnuv%
1 1
Ryy = _4(Ay - 8@1)143/ = 5 (qﬁ + ¢iy + 7Vbzy) - g%

O = (44, —0,)0,.

Notice that

1
O0A = —=Vi
3 5

1 5
L@, 0,24l = vy

o8

(A.9)

(A.10)
(A.11)

(A.12)

(A.13)

(A.14)



Now defining,
0Q = 0

we find that for V5 nonzero,

1
A = Zany+a

¢ = —\/EA—i-le—i—(bO
Y. = —3A—3B+cQ+1v
and
Vi = B/_Q;/463B+(\/%01702)Q+B;Q;1/26723+ 2/3(c1—c3)Q
ﬁ’_ — @_6\/%%—%0
g = 5+e\/2/_3<¢o—w+o)

(A.15)

(A.16)

(A.17)
(A.18)

(A.19)

(A.20)
(A.21)

(A.22)

Then taking advantage of the similarity of the v, and i) matter equations, we find

that

V2/3s = Yo+

which leads to

5

C3 = 4/ 3/262

= /2 1/40 — Y9
Yoo = v2/3In ( )¢+0

Vi = upelV2Bea-e)Q-14/5
Y- = _QA + Q@+ v
Ve = _M’LH'C?)Q‘HMO

v = BL+06.
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(A.23)

(A.24)
(A.25)
(A.26)
(A.27)
(A.28)

(A.29)

(A.30)

(A.31)



This implicitly requires the constants i (and therefore 5/, as well,) to be the same

sign. The remaining equations are then

0Q = 0 (A.32)
A — _%eru/z/scl—cz)cz—mw (A.33)
54, = (224 22)Q2 — (2V6er +6 A, + 9y A.34
vy = (501+ZC2)Qy_( c1+ CQ)Qy y+€ Y (A.34)

If we assume JgVs = 0, then

AV 2/361 = (9 (A35)
Q, = * (A.36)
1
A, = 4A§ + §U0€_4A/5 (A.37)
—35—61412/ — 12c9e** A, + 2363 — §UO€4A/5 =0 (A.38)

but the last two equations are inconsistent, so V5 must depend on (), or be zero.

Assuming

A = alny+ o (A.39)
Yy = cylny+my (A.40)
Yo = c_Iny+m_ (A.41)
¢ = colny+mg (A.42)
we find the constraints
(da+ ey = \/gﬂ+e\/2((coc+)lny+m°m+) (A.43)
(da+1)c_y? = BeVGoe)nyry/Fmo=m-) (A.44)
(4a+Deoy™> = §V5 (A.45)
(4o +Nay™? = —%% (A.46)
—da(a+ 1)y = %(cg +cE 42— %‘/5 (A.A4T)



1

If V5 = 0 and the space is not flat, then a = —7,

be satisfied unless S+ = 0. If Vj is nonzero then,

Ch = —\/606
c. = 2-2ua
C+ = \/6(1 — )

0 = 160> —7a+5

and the first two equations cannot

(A.48)
(A.49)
(A.50)

(A.51)

which again has no real roots for o. This leaves the 5+ = 0 case, which is a Kasner

type space. Gauss’ theorem egregium will constrain the topolog of d_ to be T, but

not d,. Thus, finally we obtain

dsé) = dy* + /y(nudatdz”)
and

3
5 = ci+c2_+cg.

Introducing a scalar test field into the bulk, O F' = m?F, we find that

|:](5) = gabvavb = gab(aaab - Fcclbac)

1 1
= ﬁm(@ + ;(?y + 90,0,
Fo= H(x)J(y)
JOnH H
m?F = - + Hy -y

VY
OwH = H(J" +y 'J —m?) Wy,

(A.52)

(A.53)

(A.54)
(A.55)
(A.56)
(A.57)

(A.58)

from which we see that F will have massless modes in four dimensions, when J makes

right hand side factor zero. J must still obey the orbifold boundary conditions as

well. The solutions for nonzero m are the modified Bessel functions of chapter 3.
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APPENDIX B

Another Choice of Dimension

A similar result can be obtained by compactifying for D =6 ,d_ =d, =2

1 1 1
Lo = H(VOP+2Tu+ L vy v
Ve = e0/V2 (5+e—w+ —i—ﬁ_e_lﬁ*)
1 1 1 1
Tw = §Va¢vb¢ + §Va¢+vb¢+ + ivlﬁ—vbd’— — §gabL6
Rab - Tab - D_ 29abT
1 1 1 1
= §Va¢vb¢ + §Va¢+vb¢+ + QV?/J—VW— + Zlgab‘/(i
1
O¢p = ———V
¢ \/5 6
Oy, = ﬁiew/\/ﬁ)*wi_

Now assume a metric of the form

ds?

= dy* + 4do* + 62anda:“dx”

where all functions are of y only. Then, we find

= oA

= nwe’’0B

= —A"—4B" — (A)? — 4B
= —(A"+4B'+0,)0,

we obtain

Q)

DO = | =] =
<-.bl\D [\]
sy p
S
=
=
A

L 3T,

VRS
—
S
e
+
+=

D
[\

(B.1)
(B.2)
(B.3)
(B.4)
(B.5)
(B.6)
(B.7)

(B.8)

(B.9)

(B.10)
(B.11)
(B.12)

(B.13)

(B.14)
(B.15)

(B.16)



from which immediately we see that

0(A— B) = 0. (B.17)
Redefining
P = A+4B (B.18)
Q = A-B (B.19)
0O = —(P'+9,)d, (B.20)
aop — Z% (B.21)
0oQ = 0 (B.22)

and then comparing with the equations for ¢ and ¥4, we get

¢ = _T@Pjtcl\@Q (B.23)
vy +Y_ = gP + 2¢0Q + c3 (B.24)

The equation for ) can be integrated to give
P = —InQ + c. (B.25)

And the similarity of the ¢4 equations begs

Yy +InBo =+, (B.26)
where now
2
Yy = 5P+CZQ+Ci (B.27)
Vs = 28_elre2)@-4P/5 (B.28)

Thus, finally we get

4
Ry, = 0P+ g(Pl - Q/)(Pl + Q/)
8 4 1
= 2—5P/2 + gP’Q’((c2 —c)+ (f+c3)Q” + g (B.29)
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which gives

3
Vo = (i+a+1)Q%+ (c2—c1)P'Q — 5P’Q, (B.30)
so that
/ 10 C()fP 2 2 2
P = —5¢ (cr — ) £ \/(cl — )2+ 12(cf + 5+ 1—26_w)/5 )(B.31)
w = e 20H(—c2)QH6P/5 (B.32)
In order for the solutions to be consistent, S+ = 0. Then,
P = Iny+py (B.33)
Q = alny+q (B.34)
3
= alcp —cy) F (A +cE+1) (B.35)
or, most generally
¢ = cylny+ ¢ (B.36)
@Z):I: = C+ lny + w:i:[) (B37)
A = (1—4y)lny (B.38)
B = ~lny (B.39)
m? = cfb +ct+c (B.40)
1
7= < (1 +/1— 5m2/8) (B.41)

It should be noted that as a result of Gauss’ theorem egregium, the topology of the
system must be MsxT5, and is thus purely degenerate to already explored toroidal

models for this choice of d..
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