
 
 
 
 
 
 
 
 

ABSTRACT 
 

Stochastic Dynamic Optimal Power Flow under the Variability of Renewable Energy 
with Modern Heuristic Optimization Techniques 

 
Wenlei Bai, Ph.D. 

 
Mentor: Kwang Y. Lee, Ph.D. 

 
With the increasing penetration of renewable energy to power systems, such as 

wind power, more challenges have been brought to system operations due to the 

intermittent nature of wind. Such influence can be reflected on ancillary services of 

systems such as frequency control, scheduling and dispatch, and operating reserves. To 

tackle those challenges, wind power forecast has become an important tool. 

Nowadays, forecasters typically have access to information scattered through a 

huge number of observed wind power time-series data from a large number of wind 

farms. However traditional multivariate time-series models can only process small 

number of data and capture only the temporal correlation in wind.  In this work we 

utilized a probabilistic forecast model, dynamic factor model (DFM), to predict wind 

power. The DFM is able to capture both the spatial and temporal correlation of data, and 

generate as many scenarios as possible to represent the uncertainty of wind power 

forecast.  



This work also focuses on the optimization of the system integrated with wind 

power and storage devices over 24 hours. Thus we formulate such problem as a 

stochastic dynamic optimal power flow (DOPF) problem. The essence of solving 

stochastic problem is to make a decision that performs well on average under almost all 

possible scenarios. In all, the objective functions are to optimize the expected value over 

all scenarios generated by DFM. 

Once the stochastic optimization problem is formulated, a proper methodology is 

required to solve the problem. Static optimal power flow (OPF) is a highly non-linear, 

mixed-integer, non-convex and non-smooth problem, and traditional techniques such as 

nonlinear programming, quadratic programming, interior point method simplifies the 

problem which sacrifices the accuracy of the solution, and fails to consider the non-

smooth, non-differentiable and non-convex objective functions. Therefore, to circumvent 

these downsides we proposed a novel heuristic method called artificial bee colony (ABC) 

to tackle the static OPF without approximation. In this study, the ABC has been tested on 

small, medium and large power system for OPF (IEEE-30, IEEE-57 and IEEE-118 buses) 

and then it was modified and extended to solve a dynamic optimization problem 

recursively.  
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CHAPTER ONE 
 

Introduction 
 
 

1.1 Wind Energy Integration 
 

Wind is providing one of the cheapest and cleanest sources of electrical energy. 

Installed capacity of wind power plants has increased from1.5 GW to 26 GW in 20 years 

in USA and near $50 billion has been invested on wind energy in this period of time [1]. 

In 2010 for the first time ever, the installed capacity of new wind power plants in 

developing countries became more than developed countries [2]. It shows that wind 

power is not a technology only for developed countries, which cannot be deployed in 

other places. It also implies that wind power is getting more and more economic, and that 

in addition to its environmental advantages, more countries install wind units because the 

cost of these units is constantly falling. 

Applications of wind power for producing electrical energy were studied in the 

literatures at early 19th century [3] [4]. After the oil crisis, interest in the power of the 

wind re-emerged. Capacity of installed wind power plants increased year after year and 

more researchers started to work on wind power and its unique issues. Generally, 

researches on wind power can be categorized into five different categories; i) system 

operation with high wind penetration issue, focusing on increasing system’s reliability by 

advanced forecasting methods and operational tools, ii) wind turbine issues, 

concentrating on mechanical aspects of wind power, iii) power generator types, focusing 

on different types of generators employed to convert the mechanical power into the 
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electrical, iv) integration issues, seeking best topologies to connect the wind generator to 

the network using converters/capacitor banks/soft-starters, and v) control methods, 

focusing on different control strategies including pitch-angle control and converter 

control. 

 
1.2 Modern Heuristic Techniques  

 
Modern heuristic techniques have been developed and drawn researchers’ 

attention in recently years because of their advantages such as ease to implement, 

robustness, and efficiency to handle non-convex, non-linear, discontinuous and complex 

problems [5]. These techniques include evolutionary computation, simulated annealing, 

Tabu search, particle swarm optimization, and so forth. Reports of applications of these 

tools have been widely published, including in power system operation area [6]-[8]. This 

section briefly introduces fundamentals of these techniques.  

Evolutionary computation is a major technique in modern heuristic optimization 

methods. Evolutionary computation is a term to describe any concerns of evolutionary 

algorithms, which provide practical advantages for difficult optimization problems [5]. 

Natural evolution is a hypothetical population-based optimization process. Simulating 

this process on a computer results in stochastic optimization techniques which can often 

outperform classic methods of optimization.  Evolutionary algorithms include 

evolutionary strategies, evolutionary programming, genetic algorithm, differential 

evolution, etc. One of the main advantages in evolutionary computation is that it uses a 

simple concept, as demonstrated in Fig. 1.1. The algorithm consists of initialization, 

which may be a purely random sampling of possible solutions. Then, those possible 

solutions are updated before evaluating their “fitness’s”. The fitness values indicate 
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“good” or “bad” solutions. Later, better solutions will be chosen. Such process does not 

require gradient information which may be required of in other conventional algorithms. 

Over the iterations of random variation and selection, the population can be made to 

converge [9],[10]. 

 

Initialize Population

Update individuals

Evaluate “Fitness”

Apply Selection
 

Figure 1.1. Steps of a typical evolutionary algorithm.  
 
 

Genetic algorithm (GA) is a search algorithm based on the analogy of natural 

selection and genetics.  The features of GA are different in several aspects from other 

heuristic search algorithms: i) GA is a multipath that searches many peaks in parallel, 

hence reducing the possibility of trapping in local minima. ii) GA adopts coding and 

decoding schemes for parameters, which will help the GA to evolve the current state into 

the next state with minimum computations. iii) GA uses the roulette wheel selection 

scheme to improve solution. Such scheme enables improved performance with high 

probability. 

 Another category of heuristic methods are called swarm intelligence techniques, 

such as particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee 
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colony (ABC), etc. Those algorithms mimic the behaviors of natural creatures when they 

form into a swarm. Colorni, Dorigo, and Maniezzo developed ACO based mainly on the 

social insect, especially ant metaphor [11]. Each individual exchanges information 

through pheromones implicitly in ACO. Eberhart and Kennedy developed PSO based on 

the analogy of swarms of birds and fish schooling [12]. Each particle remembers its best 

route so far, called personal best, and meanwhile recognize neighbors’ best route, called 

global best. Then, each particle will be updated based on personal best and global best 

information till they search the optimum of certain objective functions. The particle 

updating scheme is defined as: 

   
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where  
t
iv  is the velocity of the i-th particle at iteration t, w, c1 and c2 are weight 

coefficients, rand1 and rand2 are two random numbers between 0 and 1, 
t
ix  is the current 

position of particle at iteration t, Pi is the best personal solution the i-th particle has 

memorized and Pg is the global best of the whole group. The velocity is updated 

incorporating the information of personal best and global best. The modification of 

position is demonstrated in Fig. 1.2, which is based on equation (1.1). 

 
1.3 Operational Challenges in Wind Integrated System 

 
Driven by increasing prices for fossil fuels and concerns about emissions, the 

wind energy, which is environment-friendly and costless, is rapidly penetrating into 

current power systems. Such penetration introduces more variability and uncertainty due 

to the intermittent nature of the wind, which cause significant impacts/challenges in 
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power system operations [13]. The impacts of wind power in the electric power system 

depend on a large extent on the level of wind power generation, grid size and types of 

power generation in the system. The established control methods and available system 

reserves for dealing with variable demand and supply are adequate for dealing with the 

additional variability at the wind energy penetration level up to 20 percent, depending on 

the nature of a specific system. For higher penetration levels, additional changes to 

operation may be required to accommodate wind energy. 

 

 

Figure 1.2. Description of velocity and position updates in PSO [12]. 
 
 

1.3.1 Impact of Wind Generation on Automatic Generation Control 
 

With the expansion of installed wind power capacity, corresponding regulating 

reserve will be required to accommodate both load uncertainty and high wind power 

variations. Conventionally, the fast-responding automatic generation control (AGC) units 

will respond to automatic control error (ACE) signal to regulate frequency whenever 

there is an imbalance between load and generation. The ACE signal arises due to the 

imbalance of load and generation. The information regarding frequency and tie-line 
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power flow errors is contained in the ACE signals [14]. Based on the premise that inter-

area (different areas) effects are normally weaker than intra-area (same area) effects, all 

generators within an area are assumed to be synchronized in the same frequency. 

However such assumption may not be carried to the system where large wind penetration 

is imposed, because one may observe potentially larger imbalances at locations where 

installed wind capacity is high. Consequently, frequency is spatially differentiated even 

in the same area. Such spatial variation requires the allocation of regulating reserve, 

unbundling of control input down to the generator level. In all, the conventional simple 

control by AGC will not meet the control requirements. There have been studies on the 

impact of wind integration on conventional AGC in real-world systems. For instance, the 

work in [15] shows that the integration of large-scale wind generation requires novel 

frequency regulation and load following mechanisms for the California Independent 

System Operator (ISO). 

 
1.3.2 Impact of Wind Generation on Unit Commitment  
 

The Unit Commitment (UC) is the decision process to determine which units 

should be turned on at which generation level [16]. Since wind power is less predictable 

than demand, thus the integration of significant wind power requires UC to be carried out 

more frequently, preferably each time new wind power forecast are available, for 

example, every 6 hour. It is obvious that the commitment decisions are very sensitive to 

wind power forecast when there is considerable wind penetration in the system. 

Neglecting wind power forecast is a decision error that may lead to unnecessary cost. Bad 

forecast may lead to even worse case than no forecast [17].  One example can illustrate 

such impact. If an independent system operator (ISO) makes a day-ahead UC considering 
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no wind power available and this leads to operating certain number of coal-fired power 

plant. However, there is plenty of wind power available the following day, and the 

system ought to maximize using wind power according to today’s practice. Since the 

coal-fired power plant cannot reduce the output fast enough, coal-fired units will be 

turned off and fast-response and yet expensive gas-fired power plants need to be started. 

The whole process would lead to the operational cost.  The discussion above concludes 

that the main challenge for UC is the forecast uncertainty. A number of possible solutions 

have been proposed in the literature. For example, in [18] and [19] stochastic UC is 

formulated under large wind penetration. Stochastic UC requires the UC solution be 

robust for accommodating low actual wind power when wind was expected high and vice 

versa. Robustness means that the UC is flexible enough to accommodate wind variations, 

without emergency commitment or emergency de-commitment. 

 
1.3.3 Impact of Wind Generation on Economic Dispatch 
 

Once the UC has decided which units to turn on, normally one-day ahead, 

economic dispatch (ED) will take place every 10-15 min to adjust the output of 

committed units due to the load and wind variations. The complexity in ED arises from 

various factors: technical, economic, and environmental policies. In [20], the wind 

forecast in reducing the system-wide emission as well as generation cost is quantified 

assuming static dispatch. Another key factor that complicates the operation is rate of 

response of various resources. For example, coal-fired unit is slower than gas-fired 

turbines. The work in [21] shows that a look-ahead ED approach, which considers wind 

power dispatchable, reduces the cost than that of static ED, which treats wind power as 

negative load by explicitly accounting for the rate of response of different types of 
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generators. Despite the fact that seemingly “free energy” is not fully utilized, the overall 

system generation cost is reduced. This is because the fact that by smoothing out high 

inter-temporal changes from the wind generation, the generation from the fast responsive 

and yet expensive unit is also reduced. 

Obviously, should a suitable wind power forecast model be developed, the risk 

and challenges in system can be significantly reduced. In order to further reduce the 

negative impacts of wind forecast due to its uncertainty, a proper stochastic optimization 

dispatch scheme is in urgent need. Driven by the operational challenges due to wind and 

the advantages of modern heuristic techniques, this work is proposed in the dissertation. 

The following lists the scope of the dissertation. 

 
1.4 Scope of the Dissertation 

The outcome of the proposed research is highlighted as following: 

1. Developed a wind power forecasting model, dynamic factor model (DFM), which is 

able to process large multi-dimensional data with less computational burden. The 

model adopts the principle component analysis technique. 

2. By different dynamic shocks, the DFM is able to generate various scenarios which 

represent the uncertainty of forecast. Such scenarios are of great interest for stochastic 

optimization when considering power system with high wind penetration. 

3. Adopted the modern heuristic technique, artificial bee colony (ABC), as the 

methodology to solve optimal power flow problem. Since OPF is highly non-linear 

and non-convex, ABC is more efficient and flexible to tackle such problem. 
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4. Improved ABC based on orthogonal learning such that the exploration and 

exploitation of the original ABC has been improved into good balance. The original 

ABC is good at exploration and yet not sufficient in exploitation. 

5. Proposed a methodology for dynamic OPF over 24 hour horizon. The methodology is 

built based on the ABC, solving static OPF recursively with additional dynamic 

constraints. 

6. Proposed a stochastic optimization to optimize the expected cost function under all 

available scenarios. The uncertainty arises from the wind power forecast and is 

represented by scenarios generated from the DFM. 
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CHAPTER TWO 
 

Wind Power Forecast and Power System Operations 
 
 

2.1 Wind Power Forecast Definitioin 

The forecasted wind power at time t, for a look-ahead time, t+k, is denoted by 

𝑃෠௧ା௞|௧ meaning that the wind farm is expected to produce such power during the time 

resolution of the forecast (e.g., 1 hr.) given constant wind speed.  Time horizon, T, is the 

total forecast period in the future (e.g., 24 hrs.). It is worthy to mention that the forecasted 

power 𝑃෠௧ା௞|௧ is the point forecast, whereas another type of forecast is called probabilistic 

forecast. Details will be discussed in the following content.   

A forecasting system is characterized by its time horizon, which is the future time 

period for which the wind power will be predicted (e.g., the next 1 hour). The forecasting 

system usually is characterized in accordance with its time horizon – very short term, 

short term, medium term, or long term. In wind power forecasting (WPF) problem, 

generally time horizon can be categorized into three groups: 1) Very short term, where 

the time horizon is a few hours. A limit value of 4 hours for this term is proposed in [22]. 

2) Short term, where the time horizon rises from the very short term to 48 or 72 hr. 

Application in this horizon is the trading in one day-ahead market. 3) Medium term, 

where it ranges from the short term to 7 days. As the forecasting horizon increases, the 

forecast error increases as well [23]. Applications of using this horizon in forecasting are 

the unit commitment (UC) of the conventional generation, and maintenance planning 

[24]. 
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Advanced forecasting methods are generally divided into two main groups. The 

first one is called physical approach, and second is statistical approach. The dynamic 

factor model proposed in the thesis is a time series statistical model.  

 
2.1.1 Physical Approach 
 
 The physical approach model takes the physical phenomena of the wind flow and 

terrain of wind farm into account, plus using the wind-turbine manufacturer’s power 

curve to predict the wind power. The numerical wind prediction (NWP) provides the 

atmospheric information over certain area [25]. In order to obtain the detailed 

characterization of the weather variables in wind farms, physical approach has to 

downscale the wind speed and direction from NWP to the turbine hub’s height [26][27]. 

The main procedure is depicted in Fig. 2.1.   

 

 

Figure 2.1. Physical Approach Structure [32]. 
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Figure 2.2. Main steps of physical approach for wind forecasting. 
 
 

As shown in Fig. 2.2, the main two procedures in physical approach are downscaling and 

conversion to power. There are typical two methods for downscaling: 1) combine the 

modeling of the wind profile and the geostrophic law to obtain surface winds [26], 2) 

model a full description of the terrain (local roughness, orography, obstacles etc.) by 

computational fluid dynamics (CFD) to obtain a prediction of local wind regime [28]. 

When it comes to converting data into wind power, the manufacturers’ power curve is 

needed.   

 
2.1.2 Statistical Approach 

 There is an alternative approach, statistical approach, for wind forecasting. Such 

approach directly transforms the input data into wind generation by only one step, as 

shown in Fig. 2.3. For instance, the statistical model block in Fig. 2.4 is able to combine 
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the variables from NWPs such as wind speed, direction, temperature, etc., with on-line 

measurements from SCADA data such as wind power, speed, direction, etc. By 

considering these inputs, a direct estimate of regional wind power can be obtained by 

statistical model.  

 

 

Figure 2.3. Statistical approach structure [32]. 
 
 

 

Figure 2.4. Main steps of the statistical forecasting approach. 
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There are different types of statistical models. For example, artificial intelligence 

based models, such as Neural Networks (NNs) and Support Vector Machines (SVMs) are 

considered as nonlinear “black-box” models. There are also models that can be expressed 

analytically, such as time-series model, and Kernel regression. In all, the statistical model 

can be expressed mathematically as:  

)ˆ,ˆ,,,,,,,,(ˆ
||111| tktttntttnttttkt xxxxxPPPfP                       (2.1) 

where P is the wind power, x is the explanatory variable, tktp |ˆ   is the k-step ahead 

forecast power, and tktx |ˆ   is the k-step ahead forecast explanatory variable. In other 

words, the statistical model is a function of past values of p and a set of past values and 

forecasts of the explanatory variables x.  

 The dynamic factor model (DFM) presented in this work is a multivariate time-

series model which takes into account the multiple wind farms as input. Such model 

considers both the spatial and temporal correlation of input data which provides more 

information of the data and thus results in more practical and precise forecast [29]. The 

details of DFM is found in Chapter three.  

 
2.2 Evaluation of Forecasts 

The WPFs are inherently uncertain because no forecast model can be perfect. 

Thus the evaluation of the forecasts become essential. Practitioners should not only be 

able to assess the performance of the forecasts but also to understand what factors 

influence the prediction uncertainty. Evaluation of the quality of forecasting methods is 

conducted by comparing wind power predictions directly with the actual corresponding 

observations. This section describes a framework of forecast evaluations. 
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2.2.1 Standard Error Measures 

 The prediction error at a given time t+k is defined as the difference between the 

forecast and observation:  

tktkttkt PPe ||
ˆ
                                                   (2.2) 

where tkte |  is the forecast error corresponding to time t+k for the prediction made at 

time t. The forecast error is often normalized by the wind farm installed capacity in order 

to compare results with other wind farms regardless of the difference in wind power 

capacity: 

 tktkt
capcap

tkt
tkt PP

PP

e
e |

|
|

ˆ1



                                      (2.3) 

where Pcap is the wind power capacity. Any prediction error can be decomposed into two 

components: systematic error and random error. The systematic error should be zero for a 

perfect model while random error can be modelled as a series of independent random 

variables of Gaussian distribution [30].  

 There are several error measures defined as followings to assess the quality of 

forecasting methods. The bias error, BIASk, which corresponds to an estimate of the 

systematic error that is provided by the mean error over the whole evaluation period: 





N

t
tktk e

N
BIAS

1
|

1
                                          (2.4) 

where N is the number of prediction errors used for method evaluation. The BIASk 

provides an indication of whether the method tends to overestimate or underestimate the 

forecasted variable. However it is very unlikely that a forecasting method with a zero 

BIASk will result in perfect predictions because the BIASk could cancel out positive and 
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negative error values along the prediction horizon. Thus the mean square error (MSE) is 

defined to identify the contribution of both positive and negative errors to a forecasting 

method:  





N

t
tktk e

N
MSE

1

2
|

1
                                      (2.5) 

where N is the number of prediction errors used for method evaluation. There are two 

other basic criteria for performance evaluation: the mean absolute error (MAE) and the 

root mean square error (RMSE): 





N

t
tktk e

N
MAE

1
|

1
                                        (2.6) 
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
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                                        (2.7) 

Similar to the MAE, both systematic and random errors affect the RMSE criterion.  

 
2.2.2 Comparison of Forecasting Methods 

 Different forecasting methods are usually made comparison by various criterion 

because one method may work best at certain criterion while less effective at other 

criterions. The performance of forecasting methods not only depends on the variance of 

errors but on the evaluation period because certain methods are designed specifically for 

different prediction horizons. To compare the performances of various methods, the “skill 

score” which is defined as the improvement relative to the reference is an important 

indication [31]:  

%100



ref
k

k
ref
k

k EvC

EvCEvC
IMP                                  (2.8) 
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where the EvC is the selected evaluation criterion, such as MAE, RMSE, or their 

normalized version, etc. Positive value indicates the advanced approach is better than the 

reference model and negative values imply that advanced approach performs worse.  

 
2.3 Uncertainty in WPF 

Short-term forecasting tools that are currently widely in use can provide single-

valued point forecasts. However, the main drawback of point forecasts is that no 

information is provided on the dispersion of observations around the predicted value. 

Additional information on the uncertainty associated with future wind power predictions 

is required. Recent research has focused on associating uncertainty estimates with point 

forecasts to become probabilistic forecasts or scenarios of wind power.  

Probabilistic forecasting consists of estimating the future uncertainty of wind 

power that can be expressed as a probability measure. The forecasted wind power can be 

described as random variables in probability density function (PDF), cumulative 

distribution function (CDF), moments of distributions (mean, variance, skewness), or a 

set of percentiles. In all, the PDF are the most fundamental representation for uncertainty 

because other forms can be deduced from PDF. For example, let ft+k be the PDF of Pt+k 

(wind power for look-ahead time t+k) and let Ft+k be the consequent CDF. Since Ft+k is a 

monotone increasing function, the percentile 


ktq   with proportion ]1,0[  of the random 

variable Pt+k is uniquely defined as the value x, such that  )( xPprob kt , or in 

another form is defined as )(1  
  ktkt Fq , and 


ktq ˆ  is denoted as an estimate of percentile 


ktq   at time step t for look-ahead time t+k.  
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Percentiles are then used to build intervals that provide a range of possible values 

where the observed value is expected to lie within under certain confidence level. This 

type of probabilistic forecast is called interval forecasts [32]. The interval forecast is 

defined by its lower and upper bounds, which are two forecasted quantiles. Figure 2.5 

gives an example of interval forecasts with different intervals. 

 

 

Figure 2.5. Interval forecasts [32]. 
 
 

The common representation is to center the intervals on the median. Thus, the 

probabilities are symmetric around the median. However, the distances are not 

symmetric. For example, if the first quantile is 500 MW with α = 35%, and the second is 

1,800 MW with α = 65% around a median of 800 MW, the corresponding interval is 

[500, 1,800], with a coverage rate of 30% and an amplitude of 1300 MW. The distance to 

each side is not the same: 300 MW for first quantile bound and 1000 for the other 

quantile bound. 

Note that since the error distribution in WPF is skewed and heavy-tailed, the 

forecasted distribution of wind power output might also be asymmetric. Therefore, it is 
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uncommon to center the intervals on the mean or on the point forecasts because, in 

asymmetrical distributions, the mean and the median may be very different. In this 

situation, the point forecast may not lie inside an interval with low coverage rate. 

The probabilistic forecasts are produced for each look-ahead time independently. 

Therefore, they are not able to develop the forecast uncertainty over the forecasted time 

series due to the fact that the probabilistic forecasts do not consider the temporal 

correlation in the forecasted time series. However such temporal correlation over the time 

horizon is a valuable information in time-dependent decision-making problems such as 

the unit commitment under large wind power penetration.  A scenario generation method 

described in [34] is used to generate a number of wind power scenarios that provide 

information on forecasting uncertainty through the set of look-ahead times. It is worthy to 

mention that there is no standard or systematic way to evaluate probabilistic wind power 

forecast because an individual probabilistic forecast cannot be determined as incorrect. 

For example, a probabilistic forecast states that the expected power generation for a given 

horizon is between 1 and 1.6 MW with 40% probability, and the actual wind power is 0.8 

MW. Since the probabilistic forecast only covers 40% of the cases, we cannot say the 

forecast is incorrect.  Evaluation schemes can be defined uniquely from case to case 

based on applications. For example reference [33] have evaluated the probabilistic 

forecast models based on one-day ahead economic dispatch or power system operating 

cost.  
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CHAPTER THREE 
 

Dynamic Factor Model for Wind Forecast 
 
 

3.1 Dynamic Factor Model 

With the increasing penetration of renewable energy to power system, more 

challenges have been brought to system operations because of the intermittent nature of 

such energy [35]. Wind energy has great impact on system’s stability and reliability 

because the wind power is highly uncertain and unpredictable. Such influence can be 

reflected on ancillary services of systems such as frequency control, scheduling and 

dispatch, and operating reserves. There are two major approaches in wind power forecast 

in terms of output: point forecast and probabilistic forecast. The point forecast gives a 

single value for future wind power, which usually is an estimate of conditional mean of 

wind power. However probabilistic forecast is of more interest because it provides a 

complete characterization of the conditional distribution of future wind power [36],[37]. 

In other words, it considers the wind power’s volatility. Extensive researches on 

probabilistic forecast have been conducted due to the fact that such forecast can provide 

the information of uncertainty from the forecast, which is of importance for system 

operators to make decisions [38]. The uncertainty representation is in the form of 

quantiles, interval forecasts, probability density function (pdf), and scenarios, etc.    

Reference [37] gives a comprehensive review of the methodologies for wind 

power forecast which include physical models, statistical models and combined models. 

Traditional time-series model (statistical model) and autoregressive model (AR), captures 
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the temporal correlation in wind. The model predicts the future wind power as the linear 

combination of current and past data plus a white noise error [39]. Advanced statistical 

model, space-time model, is proposed in [40]. The model considers the terrain, wind 

direction, wind speed as the input data to the model and the quality of forecast is assessed 

by economic dispatch model simulating the northwest region of America and such 

forecast model implies cost saving compared with AR and persistence models. However 

few of the aforementioned works have focused on the stochastic process with large 

number of multivariate, even though the spatial correlation among wind farms has placed 

an important factor on power system reliability. For example, wind farms with positively 

correlated output power and sharing the same transmission lines might cause congestion 

which leads to curtailment [41]. 

As discussed above, scenario synthesis has evolved from point values to a single 

time-series; however the correlation among time-series has not been systematically 

implemented. In this work we proposed a novel multivariate time series model, DFM, to 

address the correlation among wind farms in nearby area where wind power is affected 

by similar weather condition and the correlation inherited in time domain. Thus it is also 

a spatio-temporal model. The model is a multivariate stochastic process because it 

includes 96 wind farms time-series data as input. Factor analysis (FA) is a statistical tool 

to reduce data dimension by describing the observed correlated variables in terms of the 

unobserved/latent variables, called factors. The observed variables are modeled as linear 

combinations of the latent factors. DFM utilizes factor analysis concept to reduce the data 

dimension such that the computational burden of regular multivariate time-series analysis 

can be reduced significantly. Thus the observed data can be decomposed by the 
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multiplication of factor loadings and dynamic factors [42]-[44]. In addition, by DFM 

various forecast scenarios/realizations can be generated to represent the uncertainty 

because the model is essentially driven by uncorrelated dynamic shocks.   

In all, the advantages of DFM are 1) an arbitrary number of wind power scenarios 

can be generated; 2) all scenarios have the similar spatial and temporal correlation, 

statistical characteristics as the actual observations do; 3) computational burden can be 

reduced significantly since by factor analysis much less dimensional variables are 

required than full vector autoregressive model (VAR).  

 
3.1.1 Data Description 

Wind power observation data of total N = 96 wind farms from EROCT were used. 

The hourly data were from January 1st to March 31th in 2013 for total T = 24×90 hours. 

Total wind power capacity is 10,407 MW. Thus the observation data set A is a N×T 

matrix as shown in Fig 3.1. The forecast period is the following day of the historical data, 

which is April 1st, 2013.  

 

A
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Figure 3.1. Observation data set A. 
 
 
The original data is preprocessed by the followings: 1) subtract the average value 

of every wind farm’s data from the original data; 2) divide the residuals by the standard 

deviation of every wind farm; 3) extract the periodic pattern of data. Steps 1 and 2 are the 
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standardizing process and step 3 is the process of removing seasonality. The periodic 

component is estimated by averaging data for the same hour every day: the observation 

set )9024(96 A is reshaped into 902496 Y  first, which is a three dimensional matrix 

(90 number of 96×24 matrix), then the mean of each hour over 90 days is stacked into

2496Z , and finally the diurnal pattern was subtracted from hourly data from the 

observations. Note that after synthesizing scenarios using residuals, the reversed process 

will be applied in order to obtain final scenarios. The process is defined in the following 

equations: 

ξχX

XPA

R

R




                                                (3.1) 

Where A is the observation data set and is decomposed into components: periodic 

data P, common component TN  and idiosyncratic component (unpredictable data) 

TN ; XR is the residual signals after subtracting periodic data from the observation 

data A. Then X is normalized and standardized by  

 
( )

( )
R R

R

X mean X
X

std X


                                        (3.2) 

 
3.1.2 Derivation of DFM 

Factor analysis model has been applied widely in energy, load and economic 

forecasting areas [45]. Such model is used to find the unobserved correlated latent 

variables (factors) out of observations. Factor analysis (FA) is a statistical tool to reduce 

data dimension. The following example illustrates the FA process of reducing the 

observed variables of school courses by latent variables. 
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Five students were collected as samples in Table 3.1, and their course grades on 

four different subjects were observed variables. Some students are good at arithmetic 

courses, and some are good at linguistic courses. The arithmetic ability and linguistic 

ability are not observed; however we can extract such information.   

 
Table 3.1. Sample data of four subjects 

Student 
Number 

Grade 
Math Literature Spanish Physics 

1 100 44 37 93 
2 80 72 71 79 
3 50 50 50 50 
4 20 76 83 27 
5 10 82 91 19 

 
 

Table 3.2. Ability loading 

Subject Ability Loading 
Arithmetic Linguistic 

Math 1 0 
Literature 0.2 0.8 
Spanish 0.1 0.9 
Physics 0.9 0.1 

 
 

Table 3.3. Unobserved Variables 

Student Ability 
Arithmetic Linguistic 

1 100 30 
2 80 70 
3 50 50 
4 20 90 
5 10 100 

 
 

As shown in Tables 3.2 and 3.3, the arithmetic ability and linguistic ability are 

loaded differently with respect to course. In all, the observed data grade can be found by 

the multiplication of ability loading and ability matrix, which are latent variables:  

GradeT
(4×5) = Ability Loading(4×2) × AbilityT

(2×5) 
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In this work, the latent variables can be wind speed, air density, wind direction, 

etc. Evolved from static factor model, the dynamic model not only considers the spatial 

correlation (among various wind farms) but the temporal correlation as well. “Dynamic” 

means that there is time lag in factor loadings. Same as for time-series model, the 

assumption for DFM is that the data is wide-sense stationary, meaning that the auto-

covariance function is only dependent on the time-lag and the whole stochastic process 

has constant expected value and variance.   

After aforementioned preprocessing of observation data, the residual data matrix 

X  can be decomposed into two components, the common component χ

and the idiosyncratic component ξ [46], where N is the total number of wind 

farms over T hours. The column vector  Nt2t1tt x,,x,x X represents the wind 

power of N wind farms at time t, where Tt ,,1 :  

ttt ξχX                                                    (3.3) 

The goal is to synthesize the common component by dynamic factor model. It is 

assumed that 
χ can be decomposed into the multiplication of factor loading 

A(L), an N×Q×M three dimensional polynomial matrix which can be seen as M number 

of N×Q matrices, and the dynamic factor  Qf as: 

  0( )t t M t MA L f A A f                                  (3.4) 

where S is the lag/lead steps, A(L) is a notation for polynomial matrix: 

M
M LALAA(L)  0

0 , and LM is the delay operator meaning that ft is delayed by 

M, ft-M. Since the derivation starts from the residuals  X , it is reasonable to assume 
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that dynamic factors can be obtained through filter B(L), an Q×N×M three dimensional 

polynomial matrix similar as A(L): 

( )t tf B L X                                                (3.5) 

Furthermore, dynamic factors f is a time series structure; thus vector autoregressive 

(VAR) model can be used to model f: 

 0( )t t R t RC L C f C f                                     (3.6) 

where εt is the column vector of white noise  Qε and C(L) is the coefficients 

Q×Q×R three dimensional polynomial matrix: 
0

0( ) R
RC L C L C L   . Another 

way to look at equation (3.6) is that dynamic factors f is driven by noise ε; however the 

noise term has the same spatial correlation as in the actual observation data, while the 

goal here is to formulate a series of uncorrelated noise to drive f so that as many 

scenarios can be synthesized. Guided by this idea, we extract the correlation structure 

from ε by Cholesky decomposition [41]: 

tt Hδε                                                      (3.7) 

where  Qδ  is a series of spatially and temporally uncorrelated white Gaussian noise 

with zero mean and variance one. H is the Q×Q matrix that preserves the correlation 

structure. There is one additional assumption in DFM: χ and ξ are uncorrelated as: 

  [ ] 0T
j kE                                              (3.8) 

where Nkj ,1,,  .  

Combing equations (3.4) (3.5) (3.6) and (3.7), the dynamic factor is represented as: 

  tt HδCAχ 1)L()L(                                       (3.9) 



27 
 

which leads to the comprehensive form of DFM. Then the question of how to estimate 

the polynomial matrices A(L), B(L), and C(L) arises naturally, and the procedure is 

discussed in the following. In all, the DFM can be summarized in Figs. 3.2 and 3.3. 

 

B(L) A(L)

H C(L)-1 A(L)

χtftXt

δt εt ft χt

 

Figure 3.2. Block diagram for DFM (Top: estimating A(L) and B(L); Bottom: generating scenarios). 
 
 

 

Figure 3.3. DFM decomposition components. 
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The common component of wind power consists of deterministic components 

(factor loadings and VAR process) and stochastic component (random dynamic shocks).  

 
3.1.3 Estimation Parameters for DFM 

Previous section has raised a question of how to estimate A(L), B(L) and C(L), 

before beginning the derivation, several fundamental concepts need to be introduced.  

Auto-correlation (in stationary time series) is defined as:   

   
2

11
1,1

)-][)(][(E


 ktXtX

kR XX


                            (3.10) 

where RX1,X1 is the auto-correlation function of one random sequence X1. E is the 

expected value operator and k is the time lag. Note that since after normalization and 

standardization the data has zero mean, μ = 0 and variance σ2 = 1, thus the auto-

correlation function is equivalent with auto-covariance function, which is defined as:  

   ][][E 111,1 ktXtXkR XX                                    (3.11) 

The cross-covariance is defined as: 
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       (3.12) 

where RX1,X2 (k) is the cross-covariance function of two random sequences X1 and X2 with 

k lag,  E is the expected value, k is the time lag, and x1 and x2 are the one realization 

(observation) of X1 and X2 random sequences respectively. Note that we can only 

estimate such random sequences because in practice, only a finite segment of the 

realization of the infinite-length random process is available. Unless otherwise, 
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correlation and covariance functions are treated the same in this work because after 

normalization and standardization the data has zero mean, μ = 0 and variance σ2 = 1.  

Since there are total N signals (wind farms), and the N×N covariance matrix at 

lagged k is defined as: 
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where Rx1,x2 is the covariance function between wind farms. It is assumed that common 

components and idiosyncratic components are uncorrelated ( 0]E[ T  ), which leads 

to: 
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        (3.14) 

where ΣX(k) is the auto/cross - covariance function of data matrix X at time lag k.   

Similarly, Σχ(k) and Σξ(k) are the auto/cross - covariance function of common component 

and idiosyncratic component, respectively.  

In order to reduce the dimension of observed variables, we adopt the concept of 

principle component analysis (PCA) to transfer data into orthogonal basis sets such that 

the largest possible variance can be represented by less dimensional orthogonal basis. 

The covariance matrix ΣX is a symmetric matrix and by conducing PCA, equation (3.13) 

can be decomposed into two parts: 

                 kΣkΣkVkΩkVkVkΩkVkΣ ξχ
TT

X  222111                (3.15) 
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where Ω1(Q×Q)is the diagonal matrix whose diagonal elements are top Q large 

eigenvalues of Σ(k) and Ω2, (N-Q) ×(N-Q) matrix, is the diagonal matrix whose diagonal 

is the rest of eigenvalues (N-Q), and V is the corresponding eigenvectors and VT is its 

transpose. In all, the Q number of top large eigenvalues and their corresponding 

eigenvectors of the covariance matrix in X at the given lag are converted to the 

covariance matrix of common components in χ, and the rest of the eigenvalues and their 

corresponding eigenvectors are converted to the covariance of idiosyncratic components 

in ξ.  

 In DFM, the goal is to minimize the variance of idiosyncratic component, in 

others words, to minimize the summation of diagonals of the covariance matrix of 

idiosyncratic component, which is the trace of the covariance matrix defined by: 
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        (3.16) 

By the Courant-Fischer Theorem [42],  

1 1 1( ) ( ) T
XA L B L V V                                   (3.17) 

Recall that 
TT

X VΩVVΩV 222111   by Principle Component Analysis (PCA), thus 

equation (3.17) is further expand to  
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From (3.18), A(L) and B(L) are found by: A(L) = V1(L), B(L) = V1(L)T , where 

MQNLV )(1
 represents M numbers of N×Q matrices. Note that each column vector in 

matrices V1 and V2 are orthogonal basis (e.g., V1(:,1)×V2(:,1) = 0) due to the property of 

eigen-decomposition of a symmetric matrix.  

The Courant-Fischer Theorem is the fundamental to find A(L) and B(L) which is 

stated as: Let Γ be an N×N symmetric matrix with eigenvalues λi in descending order, 

where i is from 1,…, N. The N×N matrix A with rank (A) = Q that minimizes the top Q 

eigenvalues of  

*))(( AΓAΓ                                           (3.19) 

to zero is given by  

*111 VVA                   (3.20) 

where Ω1 denotes the diagonal matrix containing the top Q large eigenvalues of Γ and V1 

is the corresponding eigenvectors, and V* means the conjugate transpose of matrix V.  

 For the vector auto regressive model (VAR) process:  

tRtRttt εfCfCfCf   2211                           (3.21) 

where the coefficient matrix C(L) is estimated by Yule-Walker equation [47]. After 

multiplying shifted ft on both side and calculating the covariance matrix by taking the 

expected value, we obtain: 
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where ΣR is the covariance matrix of R lag. Since ft is uncorrelated with εt, the expected 

value of them are zero. Then the equation is rearranged as: 









































































RRR

R

R

R C

C

C












2

1

021

201

110

2

1

                              (3.23) 

Therefore, C(L) can be calculated by multiplying the inverse of the matrix in the right-

hand side to the matrix in the left-hand side. 

 
3.2 Verification of DFM 

In all, the procedures of synthesizing scenarios can be summarized as following: 

(a) χ̂ , ξ̂ , and f̂  are estimated from data set X (the ‘hat’ denotes for the estimated value), 

(b) since dynamic factors f can be modeled as VAR process, the noise term in VAR 

model can be estimated as ε̂  and meanwhile, the correlation structure matrix H can be 

estimated by Cholesky decomposition in [41], (c) Scenarios of χ̂  can be synthesized by 

giving dynamic shocks δ which are uncorrelated noises into the model as denoted by 

(3.7), (d) Χ̂  can be finally synthesized by adding χ̂  with ξ̂ , and the estimation of 

original data can be obtained by adding seasonality and reversing the normalization 

process.  

 
3.2.1 Verification in Time and Frequency Domain 

Figures 3.4 and 3.5 show the comparison between actual wind power and its 

common component χ̂  at 75th and 81th wind farm site. From two figures it is observed 

that the common component can catch the trend of actual wind power (similar ramp, 

maximum, minimum and overall shape with the actual measurements).  
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Figure 3.4. Actual wind power and common component of wind power at #75 wind farm.  
 

 

Figure 3.5. Actual wind power and scenario of wind power at #81 wind farm.  
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Figure 3.6. PSD of Actual wind power and synthesized wind power at #81 wind farm.  
 
 

Figure 3.6 also verifies the model by PSD plot in frequency domain. Note that the 

x-axis is ‘period’, the reciprocal of ‘frequency’. It is found the function with frequency 

corresponding to 24 hour period contributes the most in #81 wind farm observation data. 

Similarly the synthesized PSD agrees with the actual wind data.  

As described earlier, one of the advantages is that the DFM can capture the co-

movement of synthesized scenarios; in other words, the synthesized scenarios of different 

wind farms have similar correlations as the actual ones do. Figures 3.7 and 3.8 

demonstrate the actual wind power correlation between #9 and #10 wind farms with the 

correlation coefficient 0.9215, and the synthesized scenarios have the correlation 

coefficient of 0.9000.   
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Figure 3.7. Correlation of wind power at #8 and #9 wind farms with correlation coefficient of 0.9215.  
 

 

Figure 3.8. Scenarios correlation of wind power at #8 and #9 wind farms with correlation coefficient of 0.9.  
 
 

G
e

n
er

a
tio

n
 (M

W
) 

G
en

er
at

io
n

 (M
W

) 



36 
 

3.2.2 Forecast by DFM 

Forecast by time-series model means to calculate the expected value by the 

model, in other words, considering the expected value of noise as zero and such forecast 

provides minimum square error [48]: 

  1
( ) ( )t t

t k t kA L C L H 
                                     (3.24) 

where k is the future steps past the end of the observed series. The superscript t is to be 

read as “given data up to time t”. Therefore in order to have the minimum square error 

forecast over next 24 hours, columns in dynamic shock, δt+1,…,δt+24 are zeros which is 

illustrated by Fig. 3.9.  
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Q×T: actual innovations extracted 
from the observation data Q×24

Dynamic shocks δ  

Figure 3.9. Dynamic shock illustration in forecasting. 
 
 

The actual innovation extracted from the observation data is Q×T, and is 

augmented by future innovation (zeros) of Q×24. The filter   1
( ) ( )A L C L H


, a moving 

window, is indicated in blue box and applied to the innovation to obtain the common 

component
t

ktχ  .  
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The forecast result is provided in Figures 3.10 and 3.11. There are 15 forecasted 

future scenarios plotted in blue lines, the minimum mean square error (MSE) forecast 

plotted in red (dynamic shock columns are zero), and the actual wind power plotted in 

black.  

 
Figure 3.10. Forecast at #29 wind farm.  

 

 

Figure 3.11. Forecast at #32 wind farm.  
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The forecast is able to capture the trend of actual wind power, and the generated 

scenarios are used by stochastic programming to make decisions concerning the 

penetration of intermittent wind power. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39 
 

 
 
 

CHAPTER FOUR 
  

Heuristic Method on Power System Application  
 
 

4.1 Introduction 
 

Modern heuristic optimization techniques have been developed in the past 

decades to facilitate solving optimization problems which were previously difficult or 

impossible to solve in power systems area [5]. Those techniques include evolutionary 

programming, simulated annealing, Tabu search, particle swarm optimization, etc. The 

applications in power system range over security assessment, generation and maintenance 

scheduling, economic dispatch, optimal power flow, transmission network expansion 

planning, generation expansion and reactive power planning, distribution system 

optimization, power plant and power system controls, etc. In this chapter a novel heuristic 

technique called artificial bee colony (ABC) is introduced with its application to optimal 

power flow.   

 
4.1.1 Optimization in Power System Operation 

Power system optimization has evolved with developments in computing and 

optimization theory in decades. As early as in the first half of the 20th century, the 

optimal power flow was ‘solved’ by empirical methods, rules of thumb and primitive 

tools such as analog network analyzers [49]. With the development of computing ability 

of computers, the optimal power flow problem was first formulated by Carpentier in 1962 

[89] and has proven to be a very difficult problem to solve.  



40 
 

There are generally three types when it comes to power system operation 

optimization problems in the literature: power flow (load flow), economic dispatch, and 

optimal power flow. Here a brief description of the differences/commons is given among 

these problems. Table 4.1 lists the major characteristics of power system operation 

problems. The power flow focuses on the generation; load and transmission network 

models and solves a nonlinear mathematical problem. However, the solution might not be 

optimal or physically feasible under certain constraints. For instance, the power flow 

models do not consider generator reactive power and transmission line limits. Historically 

economic dispatch (ED) has been the major tool for system operation and planning of the 

power systems; however the control variables for ED are only real power and the 

electrical network is solely represented by single equality constraint, the power balance 

equation. The economic dispatch fails to consider the power flow constraints in network.  

The optimal power flow (OPF) solves for the optimal solution under a specified 

objective function subject to the power flow constraints, generator limits, transmission 

lines’ thermal capacity, switching equipment limits, etc. From Table 4.1, there are 

various sub-problems stemming from the three general types in order to meet specific 

situations. Such as alternating current OPF (ACOPF), direct current OPF (DCOPF), 

security constrained OPF (SCOPF), etc.  Note that OPF can be a fundamental tool for 

power system operation, and based on such tool various modified versions can be 

developed for specific purposes. For instance, nowadays with high penetration of 

renewable energy and storage devices, system operators are developing dispatch methods 

to meet the needs and the essence of such methods are still OPF problem. 
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Table 4.1. Major Types of Power System Problems 

General 
problem 

type 

Problem 
name 

Voltage 
angle 

constraint? 

Bus 
voltage 

constraint? 

Transmission 
constraint? 

Assumption Generator 
costs? 

Contingency 
constraints? 

OPF ACOPF Y Y Y ---- Y N 

OPF DCOPF N N Y V is 
constant 

Y N 

OPF Security 
Constrained 
ED (SCED) 

Y N Y V is 
constant 

Y Y 

PF Power 
Flow 

N Y N ---- N N 

ED ED N N N No 
transmission 
constraints 

Y N 

OPF Security 
Constrained 

OPF 
(SCOPF) 

Y Depends Y Depends Y Y 

 
 

System operators and planners consider the OPF is one of the most essential 

problems in power systems because of the detailed controls over power system which 

result in a significant reduction in the cost. The OPF was first proposed as early as to 

1960s by Carpentier and has grown into a powerful tool for system operation and 

planning [50]-[52]. The OPF problem, under the objective function of minimizing cost, 

takes into account the constraints of AC load flow at each node, transmission line 

capacity, voltage limits, etc. and controls real, reactive power, voltage, transformer taps, 

shunt compensators which lead to significant reduction in the cost. In other words, the 

aim of OPF is to optimize an objective function representing the total cost of generation, 

power losses, voltage stability, and/or other relevant information, while satisfying the 

system constraints [53].   

Classical methods such as linear programming [54], quadratic programming [55] 

and interior point method [56]-[57], rely on theoretical assumptions of convexity and are 
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very sensitive to starting points. Therefore these methods can be easily trapped into a 

local optimum or diverge and only fit for limited types of objective functions. The OPF 

becomes a highly non-linear, non-convex and large dimensional optimization problem 

after incorporating non-smooth, non-convex, non-linear, and non-differential objective 

functions and constraints, which is difficult, if not impossible, to solve by classical 

methods. Therefore researchers have been focused on developing more efficient and 

robust methods to handle OPF problems without simplifying the system. For this 

purpose, meta-heuristic methods such as genetic algorithm [58], evolutionary 

programming [59], Tabu search [60], particle swarm optimization [61] have been placed 

attention on solving the OPF problems. Reference [61] proposed an improved PSO to 

tackle the problem considering the valve point effect on the regular quadratic fuel cost 

function. 

 
4.1.2 Optimal Power Flow Problem 

Mathematically, solving an OPF problem is equivalent to finding a set of optimal 

decision/control vectors that minimizes an objective function under several constraints. 

The OPF problem to be considered is formulated as follows [53]: 

0),(             

0),(         ..

0),(      





uxh

uxgts

uxfMin

                                             (4.1) 

where  

u : decision/control vectors, 

x : state vectors, 

f : objective functions,  
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g : equality functions, 

h : inequality functions, 

The vector u includes generator real power PG except at the slack bus, generator 

bus voltage VG, transformer tap T, and shunt compensator QC at selected buses.  The 

vector x includes real power PG1 at the slack bus, voltage VL at load buses, reactive power 

QG at generator buses, and transmission line loadings SL. There are four objective 

functions chosen in the study: quadratic cost function, quadratic cost function with valve-

point effect, power loss, and voltage stability. They are respectively listed in following: 

iGiiGii cPbPaf  2
1                                              (4.2) 
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The equality constraints g from (4.1) are the AC power flow balance equations at each 

bus representing that the power flowing into that specific bus is equal to the power 

flowing out, and the equations are defined as:  
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Inequality constraints h in (4.1) are listed as generator limits, tap position of transformers, 

shunt capacitor constraints, and security constraints on load bus voltage and transmission 

line flows. 

GGiGiGi
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max,

max,min,
                        (4.10)     

where  

ai, bi, ci, di, ei,  : fuel cost coefficients of the i-th unit, 

PGi : real power of the i-th unit, 

Vi : voltage magnitude at bus i, 

rk, xk : the resistance and reactance of the transmission line k that links bus i and j,  

Vi, Vj : voltages at bus i and j, 

δi, δj : angles at bus i and j, 

 ω : the weighting factor, 

 Npq : the number of PQ buses, 

Nl : the total number of transmission lines, 

NG : the number of generators, 

NT : the number of tap-changing transformers, 

Yij, θij : the Y-bus admittance matrix elements, 
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 PGi,min, PGi,max : the minimum/maximum real power limits of generating unit i, 

QGi,min, QGi,max : the minimum/maximum reactive power limits of generating unit i, 

    VGi,min, VGi,max : the minimum/maximum voltage limits of generating unit i, 

TPi,min, TPi,max : the limits of transformers, 

Qci,min, Qci,max : the limits of shunt capacitors,  

VLi,min, VLi,max : the limits of load bus voltage, 

SLi,max : the maximum line flow of transmission line i, 

It is worth to mention that the control variables (real power generation of PV 

buses, voltage at all generator buses, transformer tap settings, and shunt compensators) 

are randomly initialized within the feasible domain, while a penalty function is 

introduced in order to ensure that the dependent/state variables are in the feasible domain 

as well. In other words, penalty function is utilized to handle the inequality constraints. 

The penalty cost function is defined as: 
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where  

p(xi)  : the penalty function of dependent variable xi at bus i, 

The penalty cost increases with a quadratic form when dependent variables are 

exceeding the limits and the cost is zero if the constraints are not violated. For example, if 

one of the PQ bus voltage exceeds the limit, certain amount of penalty will be added, 

which leads to the increase of total cost and eventually this solution will be abandoned. 

Thus the augmented objective function by adding the penalty function of the slack bus, 

reactive power generation, PQ bus voltage and transmission line capacity is described as: 
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where f is the original fuel cost function (f1, f2, f3, or f4 in (4.2)-(4.5)), Cp, Cq, Cv and Cs 

respectively denote the penalty factors of real power generation of slack bus, reactive 

power output of the generator buses, and PQ bus voltage and transmission line capacity, 

i.e., 

 f  : the original fuel cost function (f1, f2, f3 or f4 in this study), 

Cp: penalty factors of real power generation of slack bus, 

Cq: penalty factors of reactive power output of the generator buses, 

Cv: penalty factors of PQ bus voltage, 

Cs: penalty factors of transmission line capacity. 

 
4.2 Artificial Bee Colony  

Artificial bee colony (ABC) is a population-based search procedure inspired from 

the intelligent behavior of honeybees [62]. It is as simple as particle swarm optimization 

(PSO) and differential evolution (DE) algorithms, and uses only common control 

parameters such as colony size and maximum cycle number. There are three types of 

bees in the ABC system: employed bee, onlooker bee and scout bee. The aim of all bees 

is to find the best food source (possible solution) with highest nectar (fitness value); in 

other words, artificial bees fly in a multidimensional search space to find the global 

optimal. Employed bees search for food sources based on their memory and the 

information gathered on food sources is shared with onlooker bees. Onlooker bees tend to 

choose good sources with higher nectar and further explore new food sources around the 
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selected food sources. Scout bees abandon old food sources and randomly start a new 

source in a way to avoid local minimum. 

As the ABC has proven its robust, efficient and simple characteristics, it has been 

widely implemented in solving a range of optimization problems in recent years such as 

job shop scheduling and machine timetabling problems [63]. The ABC was also 

implemented to tune the PI controller parameters in microgrid power electronics control 

[64]. In reference [65], authors applied the ABC or improved ABC in power system 

problems such as OPF, modified OPF which integrated wind power and storage devices. 

Continuing this section the detailed procedures of ABC algorithm is presented. 

 
4.2.1 Employed Bee Phase 

Before entering into employed bee phase, initial possible solutions are generated 

from the search space. After the initialization, the search process will be carried out in a 

repeated cycles by those three types of bees. At initialization each vector solution Xi = 

{Xi,1,Xi,2,…,Xi,D} is generated randomly within the limits of the control variables as 

follows: 

 , , _min , _max , _min(0,1) ( )i j i j i j i jX X rand X X                           (4.13)      

where  

SN: the number of employed bees and onlooker bees, i is from 1 to SN, 

D: the number of control variables, j is a random number from 1 to D, 

Xi,j_min : the lower bounds for dimension j, 

Xi,j_max : the upper bounds for dimension j, 

rand(0,1): a uniformly distributed random number in (0,1). 
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In the employed bee phase, employed bees update the current solution based on 

neighborhood information and then evaluate the nectar (fitness) of the new food source. 

The update equation is defined as:  

)( ,,,,, jkjijijiji XXXV                                   (4.14) 

where  

k : is an integer different from i, uniformly chosen from the range [1, SN], 

Φi,j : a random number from [-1,1], 

If the new source is better (higher nectar) than the old one, employed bee will memorize 

the new source and disregard the old. Otherwise the old one will be remained. Such 

scheme is simply known as greedy selection.  

 
4.2.2 Onlooker Bee Phase 

The onlooker bee phase starts when the food source information was shared from 

employed bees. In nature, onlooker bees tend to select the food source with higher nectar. 

The nectar information has been shared by employed bees. To mimic such phenomenon, 

the roulette wheel selection scheme [5] is used in the onlooker bee phase, which ensures 

good food source will have a higher probability to be selected, and then onlooker bee will 

update those solutions. The roulette wheel selection scheme is defined in the following: 




 SN

j
j

i
i

fit

fit
P

1

                                                 (4.15) 

where  

fiti : the fitness value associated with solution i, 

Pi : the probability associated with solution i, 
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The onlooker bee updates the selected solution using equation (4.14) as the 

employed bees do and memorize the solution by greedy selection. This process will 

continue until every onlooker bee finishes its search. 

 
4.2.3 Scout Bee Phase 

After a predefined number of searching cycles, food sources become exhausted 

(inactive solution) if their quality could not be improved anymore, then an employed bee 

will become a scout bee to start a random direction to search for new food source. This 

process is to avoid local optima. In the original ABC, only one scout is allowed to occur 

in each cycle [62]. After finding a new food source, the scout bee will turn itself back to 

employed bee. Note that the random search by scout is also performed by equation (4.13) 

same as in the initialization stage.  

 
4.2.4 ABC for the OPF Problem 

As mentioned in previous sections, the OPF problem is to find the optimal 

decision variables so that the objective function can be optimized. The control/decision 

vector u consists of:  

 ; ; ; G G Cu P V T Q                                             (4.16) 

where  

PG  : real power output at PV  buses, 

VG : bus voltage at PV and slack buses, 

T : transformer tap settings, 

QC : shunt compensators settings, 

The state vector x consists of  
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  1; ; ; G L G Lx P V Q S                                             (4.17) 

where    

PG1  : real power output at slack bus, 

VL: PQ bus voltage, 

QG : generator reactive power output, 

SL : transmission line loadings, 

It is necessary to clarify for those readers who are new to power system that there 

are three types of buses in power system: slack bus, PV bus and PQ bus. Slack bus is to 

balance the real and reactive power in the system while performing load flow 

calculations, it is also known as reference bus. The PV bus is the node where real power 

P and voltage magnitude V are specified, it is also known as generator bus. The PQ bus is 

the node where real and reactive power is specified, known as load bus. 

There are four types of objective functions (f1, f2,  f3 and f4) in this study as 

defined in previous sections. The fitness value of one solution can be evaluated using the 

following equation [62]:  
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where  

α : constant, 

f : objective function of (4.12). 

It can be easily seen that for the cost function f greater than zero (OPF problems), to 

minimize cost function is to maximize the fitness value.  



51 
 

The framework of ABC algorithm is summarized as follows: 

Step 1) Initialization: 

1.1) Randomly generate SN points in the search space as feasible solution Xi by 

(4.13). 

1.2) Run AC power flow and evaluate the fitness equation (4.18). 

Step 2) For all employed bees (i = 1,…,SN): 

2.1) Update a candidate solution Vi by (4.14).  

2.2) Run power flow and evaluate the fitness function, and calculate the probability p 

associated with its fitness by (4.15). 

2.3) Choose a solution (from Xi and Vi) with better fitness value. 

Step 3) For all onlooker bees (will only be executed under certain probability p): 

3.1) Update a new candidate solution Vi by (4.14).  

3.2) Run AC power flow and evaluate the fitness function by (4.18). 

3.3) Choose a solution (from Xi and Vi) with better fitness function. 

Step 4) For all scout bees (they will be executed only after the maximum trial m). Note 

that the maximum trial m is a predefined number that if a certain food cannot be 

improved by an employed bee after m times, the employed bee will become a scout bee. 

4.1) Replace Xi with a new random solution Xi by (4.13). 

4.2) Run AC power flow and evaluate the fitness function by (4.18). 

After initialization, the algorithm repeats the search processes of employed bees, 

onlooker bees, and scout bees by a predefined cycle. 
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4.3 Case Studies by ABC 

All simulations were performed on a computer with 3.4 GHz Intel core i7 

Processor and 8 GB RAM. Power flow was calculated by Newton-Raphson method in 

MATPOWER package [66]. 

4.3.1 Test System Description 

All four test cases were performed on IEEE-30 bus system. The configuration of 

the system is shown in Fig. 4.1. Reference [67] gives the data of IEEE 30-bus test system, 

and control variable limits. There are total 24 control variables which consist of real 

power generation at five PV buses and voltage magnitude of all six generator buses, nine 

shunt compensator controls for injecting reactive power and four transformer tap 

controls. There are six generators and buses 10, 12, 15, 17, 20, 21, 23, 24 and 29 are 

equipped with shunt compensators. In addition, lines 4-12, 6-9, 6-10, and 28-27 are 

equipped with tap-changing transformers as shown in Fig. 4.1. The system is at 100 

MVA base with active power demand of 2.834 p.u. and reactive power demand of 1.262 

p.u. The quadratic cost fuel cost coefficients were taken from [51]. 

 
29

11

9

3 4

10

8

28

6
1

7
2

5

27

30 26 25

23
24

15 18 19

17 20

14 16

21

22
13

12

 

Figure 4.1. IEEE-30 bus system. 
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4.3.2 ABC Parameters for OPF 

There are several parameters to be pre-determined in the ABC algorithm. For 

instance, the number of colony size is 200, in other words, the size of employed bees and 

onlooker bees is 100 for each. The number of food sources is 100. The trial limit is 100; 

meaning that a food source could not be improved after 100 updating attempts and then 

the food source will be abandoned by its employed bee. The number of cycles for 

foraging (stop criteria) is 400 iterations and there are total 24 parameters to be optimized 

as listed in Table 4.2. 

 
Table 4.2. Parameters for ABC algorithm 

Parameters Values 
Colony Size 
Food Number 
Limited Trials 
Maximum Cycles 
Parameters to be Optimized 

200 
100 
100 
400 
24 

 
 
4.3.3 Case 1: Quadratic Cost Function 

Case 1 is the standard OPF problem with quadratic cost function. The objective of 

this case is to minimize total generator fuel cost (4.2). Simulation was run 30 times in 

order to conduct statistical analysis. The minimum total cost from ABC is 799.904 $/h, 

with the maximum 801.518 $/h, the average 800.944 $/h, and standard deviation 0.162. 

Results from other methods such as gravitational search algorithm (GSA), linearly 

decreasing inertia weight particle swarm optimization (LDI-PSO), enhanced genetic 

algorithm (EGA), modified differential evolution (MDE), and modified shuffle-frog 

leaping algorithm (MSFA) [58], [68]-[71] were made comparison to the results from 
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ABC. The comparison including execution time is given in Table 4.3. Fig. 4.2 shows the 

convergence properties of ABC.  

 

 

Figure 4.2. Convergence characteristics of ABC method in Case 1. 
 
 

Table 4.3. Comparison of fuel cost in Case 1  

Method Min. 
($/h) 

Avg. 
($/h) 

Max. 
($/h) 

Std. 
Dev. (σ) 

t (s) 

ABC 799.904 800.944 801.518 0.162 39.8 
GSA [68] 805.175 812.194 827.459 N/A 10.8 

LDI-PSO [69] 800.734 801.557 803.869 N/A N/A 
EGA [58] 802.060 N/A 802.140 N/A N/A 
MDE [70] 802.376 802.382 802.404 N/A 23.3 

MSFLA [71] 802.287 802.414 802.509 N/A N/A 

 
 
Note that the computational time can be affected by several variables, such as the 

performance of computer, the complexity of algorithms, efficiency of code, etc. Although 

the ABC algorithm used in the study did not outperform some of other algorithms, we 

argue that the computational performance can be improved by using advanced computers 
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or parallel computing methods. Therefore computational time comparison is not the focal 

point in the study. 

 
4.3.4 Case 2: Quadratic Cost Function with Valve-Point Effect 

In a real power plant, steam is controlled by valves to enter the turbine through 

separate nozzle groups. The best efficiency is achieved when each nozzle group operates 

at full output [72]. Therefore in order to achieve highest possible efficiency for given 

output, valves are opened in sequence and this results in a rippled cost curve as in Fig. 

4.3. The objective function is given by equation (4.3). Table 4.4 shows the comparison 

with other methods.  

 

$/MW

Power(MW)

Valve 3

Valve 2

Valve 1

 

Figure 4.3. Effect of valve-point loading on a quadratic cost function. 
 
 

Table 4.4. Comparison of case 2 fuel cost 

Method Min. 
($/h) 

Avg. 
($/h) 

Max. 
($/h) 

Std. 
Dev. (σ) 

t (s) 

ABC 923.436 924.124 924.894 0.562 39.8 
GSA [68] 929.724 930.925 932.049 N/A 9.83 
MDE [70] 930.793 942.501 954.073 N/A N/A 
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From Table 4.4 the minimum total cost from ABC is 923.436$/h, with the 

maximum 924.894$/h, the average 924.124$/h, and standard deviation 0.562, and the 

convergence property is shown in Fig. 4.4. 

 

 

Figure 4.4. Convergence characteristics of ABC method in Case 2. 
 
 
4.3.5 Case 3: Minimization of Power Loss 

Real power loss is due to the power flowing through transmission lines which 

consist of resistance and reactance. It is apparent that minimizing real power loss is one 

of the major concerns for system operation. The objective function is given by (4.4). The 

convergence property is shown in Fig. 4.5 and Table 4.5 shows the comparison of case 3. 

 
Table 4.5. Comparison of power loss in Case 3  

Method Min. 
(MW/h) 

Avg. 
(MW/h) 

Max. 
(MW/h) 

Std. 
Dev. (σ) 

t (s) 

ABC 3.096 3.112 3.177 0.036 70.8 
HS [73] N/A 2.967 N/A N/A N/A 
EGA [58] N/A 3.201 N/A N/A N/A 
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From Table 4.5, the minimum total power loss from ABC is 3.096 MW/h, with 

the maximum 3.177 MW/h, the average 3.112 MW/h, and standard deviation 0.036. 

However the power loss found by harmony search from reference [73], according to 

reference [65], is not a feasible solution because the authors in [65] verified the power 

flow based on the optimal decision variables, there were bus voltage violations at all load 

buses except bus 7.  

 

Figure 4.5. Convergence characteristics of ABC method in Case 3. 
 
 
4.3.6 Case 4: Voltage Profile Improvement 

In power system operation, minimizing total cost is usually not the only objective 

considered, and other issue such as minimizing voltage derivation is of great importance. 

Thus the improvement of voltage profile is also investigated. The objective function for 

minimizing all PQ bus voltage V deviating from 1.0 p.u is described by (4.5). Fig. 4.6 

shows the convergence property.  
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After 30 times simulations, the minimum total cost found by ABC is 955.227 $/h, 

with the maximum 958.147 $/h, the average 956.824 $/h, and standard deviation 0.512. 

Since this is not a standard comparison case, no reference from other methods 

with the same system parameters can be found.  Fig. 4.7 compares the PQ bus voltage 

profiles with the case of minimizing basic quadratic cost function (Case 1).  

 

Figure 4.6. Convergence characteristics of ABC method in Case 4. 

 
 

 

Figure 4.7. Voltage profiles for Case 1 and Case 4. 
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From Fig. 4.7 it is obvious that by considering voltage improvement, the voltages 

of PQ buses stay close to 1 p.u.; on the other hand the voltage deviates from 1 p.u but 

within feasible limits when voltage improvement is not considered.   

This section introduced the artificial bee colony (ABC) algorithm for handling 

non-linear, non-convex optimal power flow problems. In this study the ABC has been 

proven its efficiency and robustness over four test cases of OPF problems. The 

comparison results have shown that ABC outperforms other heuristic methods in terms of 

finding better solutions with fewer costs.  In addition, with the help of high speed 

computers or parallel computing algorithm, the computational burden can be further 

reduced, which enable the ABC algorithm to promise as a useful tool for OPF problems. 

 
4.3.7 Case 5: Large System OPF by ABC 

Previous cases were tested on modified IEEE 30-bus system and in order to test 

the robustness of ABC on large systems, IEEE 118-bus system was adopted as a test 

system. Such system contains 54 generator buses, 9 shunt compensators and 9 

transformers. The diagram of IEEE 118-bus is shown in Fig. 4.8. Similarly, simulation 

were run 30 times for this case study, and Table 4.6 lists the simulation results. The 

average cost is 130,321 $/hr, with maximum 130,410 $/hr and minimum 130,210 $/hr; 

standard deviation 90.5 $/hr and it takes 4037.5 seconds.  

 
Table 4.6. Results for Case 5 

Method Min. 
(MW/h) 

Avg. 
(MW/h) 

Max. 
(MW/h) 

Std. 
Dev. (σ) 

t (s) 

ABC 130,210 130,321 130,410 90.5 4037.5 
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Fig. 4.8. IEEE 118-bus Test System [88]. 
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4.4 Improved Artificial Bee Colony Based on Orthogonal Learning 
 
 There are two critical issues on modern heuristic optimization techniques, that is, 

exploration and exploitation, where the former is the capability of creating diverse 

population in search space, and the latter is the ability to make the best decision given 

current information [74]. In reality, however, the two aspects are contradictory to each 

other and therefore a well balanced approach needs to be found. The search process of 

ABC performs well for exploration; however, it performs poorly for exploitation which 

leads to poor convergence [75]. In order to enhance the ability of exploitation, inspired by 

differential evolution (DE) researchers proposed a search mechanism which utilizes the 

information of current best solution. In other words, onlooker bees only search around the 

best solution of the previous iteration according to a predefined probability [76]-[77]. 

Reference [78] improved the initialization phase in that the chaotic system was utilized, 

and modified the search mechanism using the information of current best solution.  

The search equation of the original ABC randomly selects a dimension of the 

solution vector and performs mutation with the same dimension of another solution 

vector. Here the dimension refers to the number of control variables in a solution vector. 

For example, if the solution vector consists of 24 control variables, it is interpreted as 24 

dimensions in such solution vector. However, this search scheme falls short of 

effectiveness, because one solution vector may contain useful information on some 

dimensions while the other solution may contain good information on its other 

dimensions. In other words, merely concentrating on a specific dimension of the solution 

will be likely to lose other useful information for solution improvement. Therefore, in 

order to update the solution considering all the information of each dimension from two 
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candidate solutions, inspired by the orthogonal experimental design (OED) we propose 

an orthogonal learning (OL) technique to obtain better exploitation. The OED is utilized 

to determine the best combination out of two vectors via a relatively small number of 

experimental tests instead of exhaustive trials [79]-[80]. The OL strategy is implemented 

with the help of OED, and details of such strategy will be described later. 

Thus far, the application of ABC based on orthogonal learning on power system 

operation problems has not been documented in the literature yet. Here we first propose 

this method to handle the OPF problem. The performance was tested on modified IEEE 

30- and 118-bus test systems and comparative analysis was conducted with other 

methods.  

 
4.4.1. Orthogonal Learning Strategy 

The OL method in ABC is the strategy which is analogous to orthogonal 

experimental design (OED) in order to obtain the best candidate solution with few 

searching combinations. The OED was first introduced by R. A. Fisher in the 1920’s to 

study the effect of multi-variables/factors to the experimental output. As a powerful 

statistical tool, the OED was utilized to discover how much rain, water, fertilizer, 

sunshine, etc., are required to produce the best crop [81]. To illustrate the concept of 

OED the following simple chemical reaction experiment is considered as shown in Table 

4.7 [80].  

In this experiment, there are three factors: temperature (A), amount of Oxygen 

(B) and percentage of water (C) determining a chemical conversion rate. In addition, each 

factor contains three levels. For instance, the water can be 5%, 6%, or 7%. Thus there are 

33 = 27 total number of combinations that need to be experimented to find the best 
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conversion rate. However, with the help of OED, the best combination can be predicted 

by only testing few representative combinations, thus reducing total testing cost. 

Following describes the definition of orthogonal array and factor analysis, which leads to 

a comprehensive understanding of OL. 

 
Table 4.7. Chemical reaction experiment [80] 

 Factors 
 

Levels 
A 

Temp. °C 
B 

Oxygen (cm3) 
C 

Water (%) 
1 L1 80 90 5 
2 L2 85 120 6 
3 L3 90 150 7 

 
 

 
1) Orthogonal array: First we use ‘LN(sk)’ to denote an array with s levels per factor 

for k factors, and L and N respectively represent an array and the total number of 

combinations. For example, in the chemical reaction experiment given in Table 4.6 we 

define an array L9(33) with 3 factors, 3 levels per factor, and 9 combinations,  

3
9

1 1 1

1 2 2

1 3 3

2 1 2

(3 ) 2 2 3

2 3 1

3 1 3

3 2 1

3 3 2

L
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 
 
 
 
 
  

                                                (4.19) 

An N×k array A is defined as an orthogonal array (OA) which has index λ with 

strength t on 0 ≤ t ≤ k when each N×t sub-array of A contains all the combinations of t-

tuple exactly λ times as a row [82]. Equation (4.19) gives an example of a 9×3 OA with 
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strength 2 and index 1 (tuples (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) appear in 

any two columns one time). Note that an array with strength 3 and index 1 yields the full 

27 combinations of triplets. 

An OA is a predefined table for the OED method to work on. As mentioned 

earlier, the benefit of utilizing OED is to obtain the best combination by conducting only 

few experiments. The total nine experiments specified by the L9(33) are presented in 

Table 4.8. For instance, the first row is [1 1 1], which means that the factors A 

(Temperature), B (Oxygen), and C (Water) are all designed to the first level (80°, 90cm3, 

and 5%, respectively). The last column shows the results of the experiment for each 

combination. 

 
Table 4.8. Best combination levels By OED 

Comb. 
A: Temp. 

(°C) 
B: Oxygen 

(cm3) 
C: Water 

(%) 
Results 

(reaction rate) 

Cb1 (1) 80 (1) 90 (1) 5 f1 = 31 
Cb2 (1) 80 (2) 120 (2) 6 f2 = 54 
Cb3 (1) 80 (3) 150 (3) 7 f3 = 38 
Cb4 (2) 85 (1) 90 (2) 6 f4 = 53 
Cb5 (2) 85 (2) 120 (3) 7 f5 = 49 
Cb6 (2) 85 (3) 150 (1) 5 f6 = 42 
Cb7 (3) 90 (1) 90 (3) 7 f7 = 57 
Cb8 (3) 90 (2) 120 (1) 5 f8 = 62 
Cb9 (3) 90 (3) 150 (2) 6 f9 = 64 

levels Factor Analysis 

L1 
HA1= 

(f1+f2+f3)/3=41 
HB1= 

 (f1+f4+f7)/3=47 
HC1= 

 (f1+f6+f8)/3=45 

L2 
HA2= 

(f4+f5+f6)/3=48 
HB2= 

 (f2+f5+f8)/3=55 
HC2= 

(f2+f4+f9)/3=57 

L3 
HA3= 

(f7+f8+f9)/3=61 
HB3= 

 (f3+f6+f9)/3=48 
HC3= 

 (f3+f5+f7)/3=48 
OED 

Results 
A3 B2 C2 
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2) Factor analysis: Factor analysis (FA) is to evaluate the effects of each factor on 

the experimental results in order to determine the best combination of levels. With all N 

cases of experimental results of OA known, The FA is conducted to determine the best 

combination. The process of FA is described as: 

To determine the effect of each level for each factor, Hks is evaluated as the 

average effect of level s (s = 1, 2, 3) for the k-th factor (k = A, B, C),  










 9

1

9

1

n
nks

n
nksn

ks

z

zf
H                                          (4.20) 

where fn is the experimental result of the n-th (n=1,2…,9) combination, znks is 1 if in the 

n-th (n=1,2…,9) combination, the level of the k-th factor (k = A, B, C) is s (s = 1, 2, 3), 

otherwise is 0. For instance if we want to evaluate the effect of level 1 in factor B (B1), 

by inspection from the 3-rd column of Table 4.6 we find that combinations Cb1, Cb4 and 

Cb7 involve all the experiments of level 1 for factor B, with the corresponding 

experimental results f1 = 31, f4 = 53 and f7 = 57, and the average effect HB1 = 47. After 

computing the effect of all levels for each factor, the most effective level for each factor 

can be determined by selecting the highest quantity of Hks for each factor. The FA results 

can be found in Table 4.8 and the details of FA is explained in [79]-[80]. From Table 4.7, 

the best combination determined by FA is (A3, B2, C2). Note that this combination 

(90°C, 120cm3, 6%) is not one of the nine tested combinations. The OL will be 

implemented in the ABC algorithm in order to obtain the best candidate solution 

efficiently with few searching combinations by the analogy of OED.  
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3) Improved ABC with orthogonal learning 

As mentioned previously, the original ABC has poor efficiency on exploitation, 

and to overcome these issues, the OL strategy is proposed to find an efficient candidate 

solution. Considering the aforementioned discussion, the process of implementing OL 

into ABC is described below. First, a transmission vector Tj is formed: 

],1[

)()1,0(

SNjk

VVrandVT kbestkj



 

                                      (4.21) 

where Vbest is the best individual which has the best fitness value in current iteration, Vk is 

one of the SN feasible solutions different than solution Vj. The best candidate solution Vs 

is formed by combining the information of Tj and Vj; in other words, OL is applied to 

predict the best candidate solution by combining Tj and Vj with few tests as the analogy of 

the OED experiment in current iteration. It is worthy to mention that if OL applies to 

every pair of Tj and Vj, at each iteration the number of function evaluations is SN×(N+1), 

where N is the number of total combinations by the OA formed based on Tj and Vj. 

However the original ABC only has SN function evaluations, therefore it brings too much 

computational burden to implement OL on every pair of Tj and Vj. Hence OL is applied 

only to one pair selected randomly at each iteration. The overall structure of the IABC 

algorithm is given below: 

Step 1) Initialization: 

1.1) Initialize SN solutions X1…,SN which satisfy the constraints of control variables by 

(4.13) randomly. 

1.2) Perform Load Flow to compute the fitness values. 

Step 2) Randomly select an index s from {1, …, SN}. 
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Step 3) In employed bees phase (j = 1, …, SN): 

3.1) Generate a candidate solution Vj by (4.14) if j ≠ s. 

3.2) Perform Load Flow to compute the fitness. 

3.3) Construct a candidate solution Vs by implementing OL if j = s (Only apply OL 

once at each iteration to save computational cost). 

3.4) Perform Load Flow to compute the fitness. 

3.5) Choose a solution (from Xj and Vj) with better fitness function. 

Step 4) In onlooker bees phase: 

4.1) Choose a solution with high fitness value (roulette wheel selection scheme) 

4.2) Update a new candidate solution by Vj (4.14). 

4.3) Perform Load flow to compute the fitness. 

4.4) Choose a solution (from Xj and Vj) with better fitness function. 

4.4) The best food source is memorized. 

Step 5) For all scout bees (execute after maximum trails): 

5.1) Replace Xj with a new randomly produced solution Xj by (4.13). 

5.2) Perform Load Flow to compute the fitness values. 

In the employed bees phase (Step 3), the solution will be chosen between Xj and 

Vj whichever has the higher fitness values. Next in Step 4, onlooker phase is executed. 

Onlookers will select a food source under a certain probability and generates a candidate 

solution. The solution is selected between Xj and Vj based on their fitness as well. Finally 

in Step 5, the scout process is executed. After initialization, the algorithm repeats until a 

stop criterion is met.  
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An individual employed bee is randomly chosen to use OL strategy to generate a 

candidate solution, while other employed bees employ equation (4.14) to generate a 

candidate solution. The idea of adopting OL is that we want to formulate a solution 

vector by combining the good information of every dimension of two solution vectors. 

Instead of conducting exhaustive tests, OL is implemented to predict the best 

combination of dimensions based on two candidate solutions.  

 
4.4.2 Optimal Power Flow Based on IABC 

As described in the previous section, an orthogonal array (OA) is a predefined 

table for the OED method to work on. An N×k array A is defined as an orthogonal array 

which has index λ with strength t on 0 ≤ t ≤ k when each N×t sub-array of A contains all 

the combinations of t-tuple exactly λ times as a row. We use ‘LN(sk)’ to denote an array 

with s levels per factor for k factors, and L and N respectively represent an array and the 

total number of combinations. In OPF case, ‘factor’ stands for the ‘control variable’ and 

‘level’ means the values of such control variable. For example, since there are total 24 

control variables in the IEEE-30 bus test case, a 2-level and 24-factor OA is needed, 

denoted by ‘L32(224)’. The reason why ‘2-level’ OA is required is because that the value 

of each factor is determined by either transmission vector Tj or solution Vj. The following 

paragraph describes the procedures of implementing IABC to OPF. 

To satisfy the definition of OA given previously, the 2-level and 24-factor OA is 

generated to be a 32×24 array with ‘1’ or ‘2’ entries. The procedures of generating 2-

level OA can be found in appendix A. Appendix B gives the full L32(224) OA structure. To 

illustrate how the OL is applied to ABC, which is the Step 3.3 in the IABC procedure, 

equation (4.21) gives the partial structure of OA. 
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 As described in Step 3.3, now there are two candidate solutions Vj and Tj 

available, and we want to predict the best solution Vs based on Vj and Tj. First we map the 

values of those two solutions in OA: whenever the entry is ‘1’, the corresponding value in 

Vj is chosen, and whenever the entry is ‘2’, the corresponding value in Tj is chosen as 

shown in Table 4.9. Then with the help of Factor Analysis, OED can predict the best 

combination by conducting only few experiments. Factor analysis (FA) is to evaluate the 

effects of each factor on the experimental results in order to determine the best 

combination of levels. The construction of the predicted solution Vs is summarized as 

follows: 

1)  Generate a 2-level OA LN(2k), with N = 2⌈log
2

(D+1)⌉, where N denotes for the total 

number of combinations for an OA and D is the dimension of the problem. (‘⌈  ⌉’ is the 

ceiling bracket, meaning round the number to the integer closer to ∞). The procedure 

to generate a 2-level OA is given in Appendix A. The reason why 2-level OA is 

developed is because there are only two candidate solutions (one is the current solution 

Vj chosen for OL, and the other one is the transmission vector Tj) used for OL. Thus by 

choosing either level, the values from vector Vj or Tj will be used to combine the best 

solution.  

2)  Fill the OA LN(2k) by the information of Tj and Vj. The OA is a 2 level, denoted by ‘1’ 

and ‘2’ and 24 factors (control variables) OA, and in such OA the value of Tj is chosen 

when the entry of OA is ‘1’, and that of Vj is chosen otherwise as shown in Table 4.9.  

3)  Obtain N test solutions Zn (1 ≤ n ≤ N) with the corresponding value of Tj (4.14) and Vj 

according to a 2-level OA LN(2k).  
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4)  Evaluate every test solution Zn (1 ≤ n ≤ N), f(Zn), and record the best solution Zb 

according to fitness values. 

5)  For each factor conduct FA to obtain the best level. 

6)  With the best levels determined in Step (4), predict the best combination solution Zp, 

and evaluate Zp. 

7) If Zp has better fitness value than Zb, it is adopted as the candidate solution vector Vj. 
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                               (4.22) 

As shown in Table 4.9, the number in the parenthesis 1 or 2 represents that the 

corresponding control variables from Vj or Tj is chosen. In other words, whenever the 

entry is ‘1’, the corresponding value in Vj is chosen, and whenever the entry is ‘2’, the 

corresponding value in Tj is chosen. The control variables of real power output, PV bus 

voltages, transformer taps, and reactive  power compensators are denoted by ‘P2, P5, 

etc.’ With all N cases of experimental results of OA known, The FA is conducted to 

determine the best combination. In IEEE 30-bus OPF example, FA is illustrated in Table 

4.10. The FA decides which level of each factor should be chosen, in other words, by FA, 

the value of each control variable can be determined based on Vj and Tj to construct Vs. 
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Table 4.9. Orthogonal array construction 

Factors 
Fitness 
Value 

Comb. P2 P5 P8 P11 … Qc21 Qc23 Qc24 Qc29  
1 (1) 49 (1) 21 (1) 21 (1) 12 … (1) 5 (1) 3 (1) 5 (1) 3 f1=110 
2 (1) 49 (1) 21 (1) 21 (1) 12 … (2) 1 (2) 3 (2) 5 (2) 4 f2=50 
3 (1) 49 (1) 21 (1) 21 (1) 12 … (1) 5 (1) 3 (1) 5 (2) 4 f3=60 
4 (1) 49 (1) 21 (1) 21 (1) 12 … (2) 1 (2) 3 (2) 5 (1) 3 f4=70 
⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ ⁞ ⁞ 

23 (2) 65 (1) 21 (2) 16 (2) 17 … (1) 5 (2) 3 (1) 5 (2) 4 f23=70 
24 (2) 65 (1) 21 (2) 16 (2) 17 … (2) 1 (1) 3 (2) 5 (1) 3 f24=70 
25 (2) 65 (2) 38 (1) 21 (1) 12 … (2) 1 (2) 3 (1) 5 (1) 3 f25=80 
26 (2) 65 (2) 38 (1) 21 (1) 12 … (1) 5 (1) 3 (2) 5 (2) 4 f26=90 
⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ ⁞ ⁞ 

 
 

Table 4.10. Factor analysis illustration 

Level: Factor Analysis: 

 
1 

(f1+f2+ 
f3+f4)/4 

=72.5 
 

(f1+f2+ 
f3+f4+f23+

f24)/6= 
71.7 

 

(f1+f2+ 
f3+f4+f25+f
26)/6= 76.7 

(f1+f2+ 
f3+f4+f25+

f26)/6= 
76.7 

 

… (f1+f3+f23+f
26)/4 = 82.5 

(f1+f3+f24+f
26)/4 = 82.5 

(f1+f3+f23+f
25)/4 = 80 

(f1+f4+ 
f24+f25)/4= 

82.5 

 
2 

(f23+f24+f
25+f26)/4=

77.5 
 

(f25+f26)/2 
= 85 

 

(f23+f24)/2= 
70 
 

(f23+f24)/2
= 70 

 

… (f2+f4+f24+f
25)/4 = 67.5 

(f2+f4+f23+f
25)/4 = 67.5 

(f2+f4+f24+f
26)/4 = 70 

(f2+f3+f23+f
26)/4= 
67.5 

The 
predicted 
solution: 

(2) 65 (2) 38 (1) 21 (1) 21 … (1) 5 (1) 3 (1) 5 (1) 3 
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4.4.3 Case Studies Based on IABC 

The following paragraph presents different cases to illustrate the performance of 

IABC. 

1) Case 1: Minimizing Fuel Cost for IEEE 30-bus System  

 Case 1 is the standard OPF problem with quadratic cost function. Section 4.3.1 

describes the IEEE 30-bus test system including the control variables; fuel costs 

coefficients, load demand, etc.  

The objective in this case is to minimize the total generator fuel cost (4.2). 

Simulation was run 30 times in order to conduct statistical analysis. The minimum total 

cost from IABC is 799.321 $/h, with the maximum 799.322 $/h, the average 799.321 $/h, 

and zero standard deviation. Results from other methods such as basic ABC, gravitational 

search algorithm (GSA), linearly decreasing inertia weight particle swarm optimization 

(LDI-PSO), enhanced genetic algorithm (EGA), modified differential evolution (MDE), 

and modified shuffle-frog leaping algorithm (MSFA) were made comparison to the 

results from IABC. The comparison including execution time is given in Table 4.11. Fig. 

4.9 shows the convergence properties of ABC, and IABC algorithms.  

Table 4.11 shows that the IABC approach found the minimum solution of 

799.321 $/h, less than all other methods in the literature, and faster convergence of IABC 

was demonstrated in Fig. 9. It is worth mentioning that for the standard quadratic fuel 

cost function, the improvement seems not significant because the cost function is not 

complex enough to show the improvement. 
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Figure 4.9. Convergence performance in case 1for IEEE-30 bus system. 
 
 

Table 4.11. Comparison for fuel cost minimization in IEEE 30-bus system 

Method 
Fuel cost ($/h)   

Min Avg. Max Std. Dev. (σ) t(s) 
IABC 799.321 799.321 799.322 0.000 56.8 
ABC 800.834 800.944 801.518 0.162 39.8 

GSA [68] 805.175 812.194 827.459 N/A 10.8 
LDI-PSO [69] 800.734 801.557 803.869 N/A N/A 

EGA [83] 802.060 N/A 802.140 N/A N/A 
MDE [70] 802.376 802.382 802.404 N/A 23.3 

MSFLA [71] 802.287 802.414 802.509 N/A N/A 
 
 

2) Case 2: Fuel Cost with Valve-Point Effect  

 In this case, bus 1 and bus 2 have units with the fuel cost function with vale-point 

effect (4.3). Simulation was run 30 times again to obtain statistical results. The minimum 

total fuel cost from IABC is 918.167 $/h, the average is 919.567 $/h, the maximum is 

921.458 $/h and with the standard deviation of 0.662. Table 4.11 gives the comparison 

with the results obtained from other methods. Note that since this case is not a typical 

bench mark problem, less studies are found to make comparison. The same issue applies 
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to the remaining two cases. Fig. 4.10 gives the convergence characteristics from the basic 

ABC and IABC method.  

 

 

Figure. 4.10. Convergence performance in case 2 for IEEE-30 bus system. 
 
 

Table 4.12. Comparison for valve-point loading effect in IEEE 30-bus system 

METHOD 
Fuel cost ($/h)   

Min Avg. Max Std. Dev. (σ) t(s) 
IABC 918.167 919.567 921.458 0.662 96.2 
ABC 945.450 960.565 973.599 8.547 74.6 

GSA [68] 929.724 930.925 932.049 N/A N/A 
MDE [70] 930.793 942.501 954.073 N/A N/A 

 
 

As shown in Table 4.12, the IABC approach found the minimum solution of 

918.167 $/h, less than all other methods in the literature, and better convergence property 

is shown in Fig. 4.10. 
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3) Case 3: Loss Minimization for IEEE 30-bus System  

The objective is to minimize the total real power loss as defined in (4.2). The 

control and state variables are identical with the previous two cases and the fuel cost 

function for this case is in the regular quadratic form. The results are compared with 

original ABC and EGA from reference [83]. The convergence property and comparison 

can be found in Fig. 4.11 and Table 4.13. As seen from Fig. 4.11, IABC outperforms 

ABC by obtaining smaller power loss. However, the convergence rates are similar. 

 
Table 4.13. Comparison for Total power loss in IEEE 30-bus 

METHOD 
Total real power loss (MW)   

Min Avg. Max Stand. Dev. (σ) t(s) 

IABC 3.084 3.086 3.100 0.003 104.2 
ABC 3.206 3.212 3.227 0.006 70.8 

EGA [12] N/A 3.201 N/A N/A N/A 
 

 

Fig. 4.11. Convergence performance in case 3 for IEEE-30 bus system. 
 
 

The minimum total real power loss from IABC is 3.084 MW, the average is 3.086 

MW, the maximum is 3.100 MW and with the standard deviation of 0.003. 
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4) Case 4: Minimizing Fuel Cost for IEEE 118-bus System 

In order to test the effectiveness and robustness of IABC on a large-scale power 

system, IEEE 118-bus test system is adopted. For this case, there are total 130 control 

variables including 9 transformer tap controls, 14 shunt compensator controls, 53 real 

power output controls and voltage magnitude control of all 54 generators buses. Note that 

one of the generator bus is slack bus and thus is not considered as control/decision 

variable. Details of IEEE 118-bus data can be found in [84]. The minimal cost found is 

129,862 $/h. The IABC was compared with regular ABC in Table 4.13. Figure 4.12 gives 

the convergence property. 

 
Table 4.14. Comparison for case 4 

METHOD 
Fuel cost ($/h)   

Min Avg. Max Std. Dev.(σ) t(s) 
IABC 129,862 129,895 129,941 40.8 4157.8 
ABC 130,210 130,321 130,410 90.5 4037.5 

 

 

Figure 4.12. Convergence performance in case 4 for IEEE-118 bus system. 
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From Table 4.14, a better feasible solution can be found compared to the basic 

ABC. It is worth mentioning that the IABC takes longer execution time than other 

methods, because OL is implemented at each iteration to conduct the deep search.  

 
4.4.4 Statistical Analysis 

In order to draw convincing conclusions, statistical analysis over all cases were 

conducted. Fig. 4.13 presents the box plot for IABC and ABC algorithms of Case 4 

study. Table 4.15 gives the one-tail paired t-test results.  

 

 

Fig. 4.13. Box plot for Case 4. 
 
 

The box plot for Case 4 showed the 1st quartile, median, 3rd quartile, minimum 

and maximum values out of 30 simulation runs and it is obvious that the results from 

IABC is more consistent (smaller deviation) and better fuel cost is found. Therefore we 

conclude the effectiveness and robustness of IABC. Similar performance of Cases 1 

through 3 is also observed and due to space the rest of box plots are not listed. 
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Table 4.15. Paired statistical t-test for IABC and ABC 

Cases ABC IABC  
P-value  Best Avg. Best Avg. 

1 800.834 800.944 799.321 799.321 5.20e-33 
2 945.450 960.565 918.167 919.567 3.81e-18 
3 3.206 3.212 3.084 3.086 5.79e-41 
4 130,210 130,321 129,862 129,895 6.26e-23 

 
 
Table 4.15 gives the t-test results and it is seen that the IABC outperforms ABC in 

all four cases at 0.05 confidence level in terms of the total generation cost and power 

losses. The null hypothesis (H0) is defined as that there is no differences between two 

algorithms and the alternative hypothesis (H1) is that the performance of IABC is better 

than the original ABC.  Since all the p-values are smaller than 0.05, we can draw 

conclusion that there is significant difference between two algorithms; in other words, H0 

is rejected and H1 is accepted.  

It is worth to point out that it takes longer time for running IABC, because on 

employed bee deep search on solution space was performed in order to find promising 

solution. Meanwhile the computation time are not well reported for other techniques in 

the literature, thus making the full comparison on computation time impossible.  In order 

to reduce computational cost, parallel computing has been placed much attention; 

however it is out of the scope of this work and can be a future work. 

 This section formulates the OPF problem and describes three objective functions 

for case studies. It is shown that OPF is a non-smooth, non-convex and mixed-integer 

optimization problem because of the same properties inherited from the objective 

functions and constraints. A wide range of heuristic techniques have been applied to this 

problem, and the balance of the exploration and exploitation ability has always been of 
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great importance. In order to find more promising solution, an improved ABC (IABC) 

optimization technique is developed based on the orthogonal learning to improve the 

exploitation of the basic ABC. On the employed phase, orthogonal learning is 

implemented to predict the best combination of two solution vectors based on limited 

trials instead of exhaustive trials to conduct deep search in the solution space.  

In order to verify the effectiveness of proposed algorithm, IABC and basic ABC 

were tested on modified IEEE systems (30 and 118 bus). The results were compared with 

other modern heuristic methods and were able to find better feasible solutions. Different 

case studies and statistical analysis have demonstrated that the IABC is effective, 

accurate and robust with better optimization performance. In addition, IABC can be 

applied to large-scale power systems.  
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CHAPTER FIVE 
 

Stochastic Dynamic Optimal Power Flow 
 
 

5.1 Stochastic Dynamic Optimal Power Flow Formulation 

In essence, stochastic optimization is to perform well under all possible scenarios, 

and thus the objective function of such problem is to minimize the expected value. This 

chapters introduces the formulation of stochastic dynamic optimal power flow (DOPF) 

integrated with wind and storage devices. There are typical two approaches to model 

wind energy in power system operation. First one is to model the wind energy as 

control/dispatchable variable. In other words, wind energy can be dispatched according to 

reference. However, since naturally wind power is not easy to dispatch, penalties on 

overestimation and underestimation of wind will be imposed on the objective function. 

Second method is to model wind power as negative PQ buses, provided that wind power 

forecast is known. Such scheme maximizes utilizing wind energy.  

The work adopts the second approach treating wind power, and yet we still give 

discussion regarding wind power as control variable in the first subsection. Then scenario 

based stochastic model is introduced. Wind power forecast scenarios generated by DFM 

will be provided for stochastic DOPF. The original ABC is modified to tackle the 

dynamic optimization. Case studies regarding various cost functions have also been 

presented.  
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5.1.1 Dispatchable Wind Power 

The wind energy integration model is introduced by defining wind power as a 

random variable and an additional penalty costs due to the unknown future wind power. 

The model was developed from the perspectives of system operators (SOs). The SO can 

own conventional generators or both conventional and wind generators, or neither of 

them. In this case, the SO does not own wind farms. Since the wind power is uncertain, 

overestimation and underestimation factors need to be considered in the model. The 

overestimation is when the available wind generation is less than the scheduled reference. 

Reserve power will be purchased from other sources to compromise the insufficiency, 

and otherwise load will be shed. Those activities lead to incremental cost of the SO.  

Underestimation occurs when the available wind generation is greater than the 

scheduled reference, the SO needs to buy extra power which they have not expected from 

wind farms and deal with the extra power. Note that if the SO owns wind farms, the cost 

for underestimation penalty will not exist. The SO will usually sell the extra wind power 

to adjacent power grids by re-dispatching. If none of the above methods can be 

implemented, the excess energy can be dumped through dummy load resistors. In all, 

these activities can be modeled by an overestimation and underestimation penalty cost 

functions, and augmented to the generation cost while supporting load demands and 

complying with system constraints. It is worthy to mention that the constraints in 

economic dispatch is the minimum and maximum generator outputs and power balance, 

while in OPF there are constraints on generator outputs, voltage limits, transmission line 

capacity, transformers, power balance, etc. Thus, the following objective function is 

developed: 
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The objective function consists of the three aspects: 

1)  Fuel cost for thermal plants is represented in the first term; fi is the fuel cost function 

depending on power pi at the i-th unit. 

2) The penalty for underestimating wind power is accounted for in the second term, 

where Wi,av is a value in the range of 0 ≤ Wi,av ≤ ωr,i,; ωi and ωr,i are respectively the 

scheduled wind power and rated power  on the i-th wind generator, and Wi,av is a 

random variable with probabilities varying with a given probability density function 

(PDF), where Weibull PDF is considered in this study. 

3)  The penalty for overestimating wind power is accounted for in the third term, where 

Cp and Cr are penalty cost functions, respectively, for underestimating and 

overestimating wind power. 

We assume that the underestimation penalty cost and the overestimation reserve 

cost have linear relationships with the gap between the actual and scheduled wind 

generation [85]. Then the penalty and reserve cost functions, respectively, can be 

calculated as: 
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           (5.2) 

where kp and kr are the cost coefficients for penalty and reserve, respectively, and fW is 

the PDF of wind power. Note that the unit of cost coefficients is ‘$/h•MW’. They were 
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used to reflect the additional cost, and demonstrate the relationship between optimal 

output and the coefficients.                      

If we want to assess both the reserve and penalty costs numerically, the PDF for 

the output of wind power needs to be known. In general, the PDF of wind speed is in 

compliance with Weibull distribution. The following paragraph derives wind power PDF 

fW(ω). The PDF of wind speed is considered as Weibull distribution: 
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                           (5.3) 

where v is wind speed, f(v) is the PDF function of wind speed random variable. k and c 

are two factor parameters. Figs. 5.1 and 5.2 give the Weibull PDF functions for k = 1 and 

2, respectively, with c = 10, 15, and 20. 

 

Figure. 5.1. Weibull PDF with k = 1.  
 
 

The output power of wind farms is also random and can be obtained through a 

transformation from wind speed. Wind turbine power is related to wind speed as:  
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where vr is the rated wind speed, and vn and vo are cut-in and cut-out speeds, respectively. 

With a given wind speed Weibull distribution, references [85] give the details of 

transforming from wind speed to wind power distribution, and the transformation of two 

random variables are as shown below: 

 

Figure. 5.2. Weibull PDF with k = 2.  
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where v and  are respectively wind speed and power random variables, g is the function 

that maps v to . Given g, the wind speed PDF fV(v) can be transformed to the wind 

power PDF fW(ω) by (5.5). It is worth mentioning that the wind speed PDF fV(v) can be 
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obtained by historical meteorological data of a specific site, and we assume that it can be 

used for determining the expected value of wind speed and wind power in (5.2). The 

expected wind power is considered as the predicted available power.  

Fig. 5.3 demonstrates the wind power PDF with normalized output of wind power 

corresponding to the given wind speed PDF with k = 2 and c = 10, 15, and 20. 

 

Figure. 5.3. Wind power PDF with k = 2 (discrete at 0 and 1; continuous between 0 and 1). 
 
 
Note that the PDF of the wind power output consists of continuous random variable and 

discrete random variable (at 0 and 1). 

 
5.1.2 Scenario Based Stochastic Model 

A thorough description of wind power uncertainty would be by multiple random 

variables, and each one corresponds to a probability density function (PDF) (the 

dimension is the number of time steps within the prediction horizon). An approximate 

representation of this PDF can be obtained with a set of scenarios, sampled from the PDF 

representing the historical (observed) error distribution. Every wind power forecast 
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scenario can be treated as negative PQ buses in the sense of consuming negative power 

from the system (supplying power). One common way to represent the uncertainty of 

wind power is to assume that the wind power is subject to normal distribution N(𝜇, 𝜎ଶ) 

with expected value 𝜇 as forecasted wind and 𝜎 as the forecasting error. Then the Monte 

Carlo simulation [34] is utilized to generate a large set of scenarios subject to normal 

distribution and each scenario is assigned a probability which quantifies the likelihood of 

that scenario. In the case of wind power forecast, a scenario is a time-series or a particular 

sequence of values representing an assumed possible realization of wind power along 

some period [36]. An example of 10 scenarios wind power prediction is shown in Fig. 

5.4. The predicted expected value  𝜇 was obtained from Electrical Reliability Council of 

Texas (ERCOT) [86] on the date of Dec 21th 2014 by scaling to 1/10 of the original real 

power.  

 

 

Figure. 5.4. Scenarios of wind power output over 24 hr. 
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As described in Chapter three, the scenarios generated by Monto Carlo simulation 

is not able to catch the co-movement of different wind farms. In other words, the 

scenarios cannot represent the spatial correlations. By using dynamic factor model, 

scenarios are synthesized by dynamic innovations, which are Gaussian white noises. 

Those scenarios capture the co-movement of wind farms as demonstrated in Chapter 

three.   Fig. 5.5 gives the forecast scenarios by DFM.  

 

Figure. 5.5. Scenarios of wind power output by DFM. 
 
 
 The following content introduces the dynamic optimal power flow (DOPF), 

which is the optimization over a time period, energy storage device model, and the 

formulation of stochastic DOPF ubder given wind power forecast scenarios.   

 
5.1.3 Traditional Dynamic Optimal Power Flow 

Static/traditional OPF is to find the optimal solution at specific time; however, 

independent system operators (ISO) often need to make operational schedule plan one-

M
W
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day ahead. Therefore dynamic OPF becomes the heart of ISO to conduct economically 

efficient and reliable operation on power grid. Dynamic OPF is an extension of OPF over 

a time horizon under dynamic constraints, which breaks the timeline into t steps (24 

hours in this work) and considers OPF at each time step. The goal of traditional DOPF is 

to choose a set of control variables in order to minimize objective functions. In general 

the traditional dynamic OPF is defined as: 

  Min ),( uxf                                                           (5.6) 

s.t. 0),( uxg                                                      (5.7) 

                                         0),( uxh                                                      (5.8) 

where f is the objective function, g is the equality constraints which represents nonlinear 

AC power flow equations, and h is the system inequality constraints. The vector u is the 

vector of independent control variables and it includes generator active power outputs PG 

at PV bus, bus voltages VG at PV and slack buses, transformer tap settings T, and shunt 

VAR compensators QC.  There are three types of objective functions chosen for the study: 

minimization of total quadratic fuel cost, fuel cost with valve-point effect, and 

minimization of total power losses. The total generation cost is defined as: 
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The voltage improvement objective function is formed as: 
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The total power loss is formed as: 
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where ai bi ci are the fuel cost coefficients of the i-th generating unit, NG is the number of 

generators, PGit is the power generated at bus i at hour t, Vit is the voltage at bus i at hour 

t, Npq is the number of PQ buses, w is the weighting factor, Nl is the number of 

transmission lines, rk and xk are the resistance and reactance of the transmission line k that 

connects buses i and j, δit and δjt are the voltage angles at bus i and j, respectively, and t is 

from 1 to 24, representing one-day period. The equality constraint is the power flow 

equation at each bus, defined as: 
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Inequality constraints are listed as generator limits, ramp rate constraints of generators, 

tap position of transformers, shunt capacitor constraints, security constraints, load bus 

voltage and transmission line flows. 
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where N is the total number of buses; Pit and Qit are the injected real and reactive power 

of bus i at time t; Yij and θij are the Y-bus admittance matrix elements; the 

minimum/maximum real, reactive power and voltage limits of unit i are denoted by 

PGi,min, PGi,max, QGi,min, QGi,max, VGi,min, and VGi,max; URi and DRi are the ramp up/down 

limits of unit i, NT is the number of tap transformers; TPi,min, TPi,max, Qci,min, Qci,max, VLi,min 

and VLi,max are the limits of transformers, shunt capacitors, and load bus voltage, 

respectively; and SLi,max is the maximum line flow of transmission line i.   

 
5.1.4 Energy Storage System Modeling 

 Energy storage system (ESS) has the ability to absorb energy and dispatch energy 

around the network. Thus in this work, ESS are modeled as generators with the ability to 

inject positive or negative power onto network and state of charge (SOC) is adopted as 

the variable to keep track of the stored energy. It is assumed that the SOC is periodic 

during 24 hours, that is, the initial SOC level of each day is the same.   

 On those nodes installed with ESS, we define the power charged/discharged from 

ESS is PESS, which can be decomposed into: 

cha
ESS

dis
ESSESS PPP                                                          (5.18)  

where 
dis

ESSP  is the ‘discharging generator’ with positive power from the perspective of 

grid, and  
cha

ESSP  is the ‘charging generator’ with negative power. The model is shown in 

Fig. 5.6.  
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Energy Storage System
SOC Constraint:

SOCmin < SOC < SOCmax

Charging generator

Discharging generator

PESS < 0

PESS > 0

 

Figure. 5.6. ESS model.  
 
 

Therefore the SOC at time t during each period considering the power flow of 
dis

ESSP  and 
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ESSP  is defined as: 
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As mentioned earlier, it is expected for ESS that the initial SOC(0) is the same with the 

final SOC(23) of one day. Where 
cap
ESSE  is the energy capacity of ESS, and cha  and dis  

are the charging and discharging efficiencies of ESS, respectively. The SOC is 

constrained within the limits: 

 tESSESSESS SOCtSOCSOC  maxmin )(                                        (5.20) 

 
5.1.5 Stochastic Dynamic Optimal Power Flow Model 

 When considering the uncertainty of wind power forecasting error, the objective 

functions become the minimization of the expected value of total generation cost, voltage 

profile improvement or power loss among all generated scenarios.  For example, the 

objective function of minimizing total expected fuel cost is  

    
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where s1 is the scenarios of wind power, probs1 is the corresponding probabilities of each 

scenario, ci and ck are the respective cost functions of generators and ESSs, and 
1s

GitP  and 

1s
SktP  are the respective power of the i-th generator and k-th ESS at time t under scenarios. 

Note that the production cost of the renewable energy is negligible. The equality 

constraints will remain the same as (5.12) representing the power balance at each node, 

and all the inequality constraints will be reserved in the form that each scenario is 

considered. For example, the limits of load voltage: 

1max,
1

min, ,, stVVV pqLi
s

LitLi Ni                                  (5.22) 

The additional constraints are applied on the wind and ESS output power which is 

denoted as: 

1max,
1

min, , stPPP i
s

iti                                           (5.23) 

where 
1s

itP is the wind or ESS output power under individual scenario at time t.  

 
5.2 Modified ABC for Dynamic OPF 

Dynamic OPF is to optimize an objective function over a time period while 

considering constraints such as generating units ramp-rate constraints, power balance, 

transmission line limits, etc. The following introduces the methodology for solving 

Dynamic OPF. 

As mentioned previously, the original ABC, however, is designed for static 

optimization, while we modified the process to tackle the dynamic problem. The 

optimization at each hour is based on the optimization information of previous hours 

while satisfying the ramp constraints. For example, once the OPF at 00:00 am is solved, 

the solution found at 00:00 am is considered as known parameters to solve the 
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optimization at 1:00 am. In such case the control variables can be reduced significantly. 

In other words, the optimal solution was found recursively. The main structure of ABC 

maintains, and yet the solution found by time t is then saved as the known information for 

the next time t+1 as illustrated in the following:  

For time t: 

Step 1) Initialization: 

1.1) Randomly generate SN points in the search space as feasible solutions Xi by 

(4.13). 

1.2) Run Load Flow and evaluate the objective function by (4.18). 

Step 2) From all employed bees (i = 1, …, SN): 

2.1) Generate a candidate solution Vi by (4.14).  

2.2) Run Load Flow and evaluate the objective function by (4.18). 

2.3) Choose a solution (from Xi and Vi) with better fitness function. 

Step 3) For all onlooker bees (only ‘good’ solutions will be executed under certain 

probability p): 

3.1) Generate a new candidate solution by Vi (4.14).  

3.2) Run Load Flow and evaluate the objective function by (4.18). 

3.3) Choose a solution (from Xi and Vi) with better fitness function. 

Step 4) For all scout bees (only the solution which has not been updated after a 

predefined maximum number of trails will be executed): 

4.1) Replace Xi with a new randomly produced solution Xi by (4.13). 

4.2) Run Load Flow and evaluate the objective function by (4.18). 
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Save the optimal solution at time t, and use it as known information to find optimal 

solution at t+1. 

The modification enables the ABC process much fewer number of control 

variables at each hour compared with that of static optimization, where a large vector 

containing control variables for 24 hours is formed. If the original ABC was used, the 

control vector, which consists of real power of all generators and voltage magnitudes, 

transformer taps, and shunt capacitors over 24 hours, is in significantly large size. Such 

method has much computational burden and takes 48hrs while still can’t find feasible 

solutions. However, by modified ABC, the solution was found in 20mins.  

 
5.3 Case Studies and Analysis 

The following paragraphs illustrate different case studies which varies from fuel 

cost minimization to the integration of energy storage system.   

 
5.3.1 Case 1: Quadratic Fuel Cost Minimization 

Case 1 is the standard OPF problem with quadratic cost function. The data of 

IEEE 30-bus test system, and control variable limits and fuel cost coefficients are the 

same as in Section 4.3. There are total 15 control variables which consist of real power 

generation at five PV buses, voltage magnitude of all six generator buses and tap-settings 

of four transformers. The objective in this case is to minimize the total generator fuel cost 

in equation (5.9).  
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Figure.5.7. Modified IEEE-30 bus system. 
 
 

As shown in Fig. 5.7, buses 28 and 9 were modified as negative PQ buses with 

wind farms. Table 5.1 gives the generator data including the ramp up/down constraints 

and the optimal dispatch is shown in Fig. 5.8. 

 
Table 5.1 Generator data 

Buses Pmax 
(MW) 

Pmin 
(MW) 

Qmax 
(Mvar) 

Qmin 
(Mvar) 

Ramp up 
(MW) 

Ramp down 
(MW) 

1 250 50 200 -40 60 60 
2 80 20 200 -40 40 40 
5 50 15 160 -30 30 30 
8 35 10 120 -30 30 30 

11 30 10 100 -20 15 15 
13 40 12 120 -30 15 15 
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Figure 5.8. Power dispatch of six generators in Case 1. 
 
 

Load profile are obtained from Electric Reliability Council of Texas (ERCOT) 

[86] on the date of Dec 21st 2014. The dispatch scheme considers all the scenarios of 

wind forecast and as verified with Table 5.1, the ramp constraints were all complied. It is 

noticed that Generator 1 plays the major role in supplying and shrinking power due to its 

lower cost coefficients. The total generating cost is $15,929.  

 
5.3.2 Case 2: Quadratic Fuel Cost with Valve-Point Effect Minimization 

This case aims to minimize the cost function defined in equation (5.10). The 

control and state variables are identical with the previous case and the optimal dispatch is 

shown in Fig. 5.9. The total operating cost is $20,553. It can be seen that such cost 

function imposes additional cost because of the valve-point effect. 
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Figure 5.9. Power dispatch of six generators in Case 2. 
 
 

5.3.3 Case 3: Loss Minimization  

The objective is to minimize the total real power loss as defined in equation 

(5.11). The control and state variables are identical with the previous case and the optimal 

dispatch is shown in Fig. 5.10. The minimum total real power loss is from 99.98 MW. It 

is obvious that with different control objective, the optimal dispatch has different forms. 

For example generator at bus 5 always outputs its maximum power as opposed to the 

control scheme in Case 1.  Due to the limit of space, all control variables including PV 

bus voltages are not shown, and yet they are within the limits between 0.95 to 1.05 p.u. 
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Figure 5.10. Power dispatch of six generators in Case 3. 
 
 

5.3.4 Case 4: Impact of the Energy Storage System  

In this case, the system is modified with three generation buses, which are buses 

1, 2 and 5, to see how ESS may affect the generation profile. ESS is installed at bus 13. 

We investigate cases by considering constant fuel cost and dynamic fuel cost. 
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Figure 5.11. Power dispatch of 3 generators without ESS under constant fuel cost. 
 

 

Figure 5.12. Power dispatch of 3 generators with one ESS at bus 13 under constant fuel cost. 
 
 

Figure 5.11 shows the power dispatch of 3 generators without ESS installed under 

constant fuel cost over 24 hours as a base case for comparison. It is found that small 

ramps occurred on three generators. The total fuel cost is $16,203. Figure 5.12 depicts the 
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power dispatch of 3 generators with one ESS installed at bus 13 under constant fuel cost 

over 24 hours. Negative power of storage means to receive power from the grid. The total 

fuel cost is $16,105. Another observation is that power generation profiles of buses 2 and 

5 were smoothened due to the installation of ESS. 

 

Figure 5.13. Power dispatch of 3 generators with two ESSs at buses 11 and 13 under constant fuel cost. 
 

 

Figure 5.14. Power dispatch of 3 generators without ESS under dynamic fuel cost. 
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Figure 5.15. Power dispatch of 3 generators with one ESS at bus 13 under dynamic fuel cost. 
 
 

Figure 5.13 depicts the power dispatch of 3 generators with two ESSs installed at 

buses 11 and 13 under constant fuel cost over 24 hours. Negative power of storage means 

to receive power from grid. The total fuel cost is $16,085, which is less than the previous 

two cases where no ESS and only one ESS were installed. It is also observed that power 

generation profiles of buses 2 and 5 were smoothened due to the installation of two ESSs. 

In order to further investigate the impact of ESS, we tested the system by 

considering the dynamic fuel cost. In other words, generation fuel cost varies in 

accordance with the load. Figure 5.14 gives the generation profiles and again we inspect 

small ramps on profiles. The total cost is $35,363. Figure 5.15 shows the generation 

profiles of three generators and one ESS installed at bus 13 under dynamic fuel cost. By 

inspecting the profile of ESS, we found that whenever the fuel price is low, ESS charges 

power (negative power) and whenever fuel price increases, it discharges power to grid. 
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The load profile is shown in Figure 5.16. The total cost is $34,346. It is also observed that 

by installing ESS, generation profiles of buses 2 and 5 have been smoothened. 

 

Figure 5.16. Load Profile. 
 
 

Figure 5.17 shows the generation profiles with two ESSs installed at bus 11 and 

13 under dynamic fuel cost.  By inspection, we see that the generation profiles on buses 2 

and 5 have been smoothened even further. The total fuel cost is $34,024. Therefore by 

inspection, we conclude that ESS can mitigate the total operational cost and with more 

ESS installed, smoothen certain generation profiles. In other words, due to the flexibility 

of charging and discharging, ESS is able to mitigate risk of ramp effect which may be 

caused by the integration of renewable energy. If considering dynamic fuel cost, ESS is 

capable of shifting power in the sense that it would store energy when the fuel price is 

low, and dispatch energy when the price is high in order to save the cost. 
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Figure 5.17. Power dispatch of 3 generators with two ESSs at buses 11 and 13 under dynamic fuel cost. 
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CHAPTER SIX 
 

Conclusion and Future Studies 
 
 

6.1 Summary 

In summary, this work has focused on the power system operational challenges 

with high wind power penetration. In order to accommodate the uncertainty and 

variability of wind power, the dynamic factor model (DFM) is proposed to forecast wind 

energy by considering both temporal and spatial correlation of data. One of the 

advantages of DFM is that temporal and spatial correlated scenarios can be generated for 

the stochastic dynamic optimal power flow, which aims to optimize the system operation 

on various objectives, such as minimizing operating cost, power loss, etc. Due to the high 

non-linear, non-convex, discontinuity properties of the complex dynamic optimal power 

flow problem, modern heuristic optimization techniques have stood out because of the 

ability to solve such problem and easy implementation. We improved artificial bee 

colony (ABC) based on orthogonal learning to improve the balance of exploration and 

exploitation ability. Promising results are found compared to other methods listed in the 

literature in terms of finding the lower cost efficiently and robustly. Lastly the original 

ABC is modified to fit for dynamic optimization problem. Several case studies including 

minimizing quadratic cost, quadratic cost with valve-point effect, and power loss, and 

impacts of ESS, have been used to test the stochastic optimization.  
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6.2 Conclusions 

The following are the conclusions of this dissertation: 

1) The dynamic factor model (DFM) can successfully capture the spatial and 

temporal correlation among 96 wind farm data, which is more practical, compared 

to traditional vector autoregressive models. 

2) The DFM is able to reduce the computational burden significantly, owing to the 

dimension reduction technique and principle component analysis (PCA). In 

addition, DFM can generate forecast scenarios which represent the uncertainty of 

forecasting.  

3)  Modern heuristic techniques are good tools for solving complex non-linear and 

non-convex problems. Promising results can be found because such techniques do 

not approximate original problems.  

4)  A good balance between exploration and exploitation needs to be established in 

heuristic methods. The original ABC, strong for exploration, falls short in 

exploitation. The improved ABC based on orthogonal learning has been proposed 

to enhance the exploitation and promising results are found by IABC.  

5) Heuristic technique, ABC, has been widely applied for static optimization, and in 

this study, we extend its application to dynamic optimization where the problem 

is solved recursively. 

6) By installing wind power and storage devices, the operating cost can be 

significantly reduced. The ESS is able to mitigate risk of ramping effect which 

may be caused by the integration of renewable energy.  
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7) If considering dynamic fuel price, the ESS is capable of shifting power in the 

sense that it would store energy when the fuel price is low and dispatch energy 

when the price is high in order to save the cost 

 
6.3 Future Studies 

The followings can be continued in future studies base on the results provided in 

this work: 

1) The comparison on deterministic optimization and stochastic optimization on 

power system integrated with wind can be a future work. Such comparison 

includes the economic effects and system reliability. Since economic results are 

greatly affected by ancillary services, the objective function needs to include the 

ancillary services cost.  

2) There are typically two approaches of operating the system considering wind 

energy: one is to treat wind energy as negative load and the other is to treat the 

wind power as dispatchable resources such that the exceeding wind power can be 

placed in storage devices. The comparison between those two approaches is a 

future research topic.  

3) Detailed model of storage devices are to be developed for accurate control. For 

example, since storage devices have their lifetime, the degradation cost can be 

added in the model. 

4) Economics in the power market is always of interest. The stochastic dynamic OPF 

developed in this work can be a fundamental tool for power market analysis. For 

example, to determine financial transmission right (FTR) over entities is 
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essentially a complex optimization problem with various constraints in wind 

integrated power system.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



109 
 

 
 
 

APPENDIX 

 
A.  Construction of 2-level and D-factors OA[87]: 

OA = Generate_OA (D) 

{ n := 2⌈log
2

(D+1)⌉; 

   For i  := 1 to n do 

  For j := 1 to D do 

  level := 0; 

  k := j; 

  mask := n/2; 

  While k > 0 do 

   If (kmod2) and (bitand(i-1, mask) ≠ 0) then 

    level :=  (level + 1) mod 2; 

   k := ⌊k/2⌋; 

   mask := mask/2; 

  OA[i][j] := level + 1;}  

where the ‘⌈  ⌉’ is the ceiling bracket, meaning round the number to the integer closer to 

∞, ‘⌊  ⌋’ is the floor bracket, meaning round the number to the integer closer to 0. 

‘bitand(integ1, integ2)’ returns the bit-wise AND of values of integer1 and integer2. For 

example:  

a = 60 (60 = 0011 1100), b = 13 (13 = 0000 1101); 

bitand(a,b) returns 12 (12 = 0000 1100). 
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B.  L32(224) OA: 
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