
 

ABSTRACT 

 

Chemometric Modeling of UV-Visible and LC-UV Data for Prediction of Hydrolysate 

Fermentability and Identification of Inhibitory Degradation Products 

 

Negar Hedayatifar, Ph.D. 

 

Mentor: C. Kevin Chambliss, Ph.D. 

 

 

 Production of ethanol from lignocellulosic biomass requires a pretreatment step to 

liberate fermentable sugars trapped within the plant. During pretreatment, lignin and 

some sugars undergo degradation to form compounds which have shown inhibitory 

effects to fermentative microorganisms. Accordingly, development of a rapid and 

accurate method for assessment of microbial inhibition and identification of inhibitory 

compounds is essential for gaining a better understanding of pretreatment and its 

downstream effects on fermentation processes.  

 Traditional methods for identification of inhibitory compounds involve a 

“bottom-up” approach. Using this approach, one or more known degradation compounds 

are added to fermentation media and their effects on batch fermentation of ethanol are 

observed. These methods are extremely time-consuming and labor-intensive which 

makes them unattractive to researchers. Furthermore, they are carried out on degradation 

compounds that have already been identified. Given that biomass hydrolysates contain 

many unidentified constituents, identification of inhibitory compounds by traditional 

means is unlikely to occur on a timescale that is consistent with current mandates for 



 

commercial production of cellulosic ethanol. To address these limitations, we have 

developed a chemometric model that correlates ultraviolet (UV)-visible spectroscopic 

data of 21 different biomass hydrolysates with their fermentability (percent inhibition of 

ethanol production). This novel approach enables rapid prediction of hydrolysate 

fermentability using UV-visible spectroscopic data alone and offers significant 

improvements in throughput and labor when compared to traditional batch fermentation 

methods. The model was subsequently used to predict percent inhibition for five 

hydrolysate samples, with a root-mean-square error of prediction of 6%.  

 To evaluate the use of chemometric modeling for identification of inhibitory 

compounds in biomass hydrolysate, a second model was developed to correlate HPLC-

UV chromatographic data of the 21 hydrolysates with their percent inhibition. Detection 

was monitored at four specific wavelengths identified by the UV-visible model as 

significant spectral regions. Once constructed, the HPLC-UV model was used to identify 

retention times that had the highest correlation with inhibition. To determine whether 

better resolution or more universal detectability of sample constituents may lead to 

identification of additional retention times, a third chemometric model was developed 

with chromatographic data of hydrolysates obtained via ion chromatography with 

conductivity detection.  
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CHAPTER ONE 

 

Hydrolysis and Fermentation of Lignocellulosic Materials for Ethanol Production 

 

 

Ethanol as a Renewable Source of Energy 

  

 Crude oil has been the world’s main energy source for decades.  Given that 

energy consumption continues to increase, and that the rate of fossil fuel formation is 

significantly lower than the rate of expenditure, it can be expected that the world’s 

petroleum reserves will be depleted at some point in the future.
1-2

  Annual global oil 

production has been predicted to decline dramatically by year 2050.
3
  Ethanol, on the 

other hand, is a renewable energy source produced via fermentation of sugars.  It has 

been widely used in the United States as a fuel additive up to 10% by volume.  Ethanol is 

renewable, burns cleaner than gasoline, and reduces the net carbon dioxide that is added 

to the atmosphere.
4-8

  Due to its broad range of economical and environmental benefits, 

production of fuel ethanol from lignocellulosic biomass has been the subject of extensive 

research.
9,10

  Lignocellulosic biomass is composed of lignin (15-20%), cellulose (40-

50%), and hemicellulose (25-35%).  Lignin is a cross-linked, hydrophobic 

macromolecule that contributes to the strength and rigidity of the plant cell wall.  

Cellulose and hemicellulose contain the fermentable sugars in oligomeric form, and 

represent the majority of a feedstock’s composition.  The abundance of fermentable 

sugars in lignocellulosic biomass makes it an attractive renewable resource for ethanol 

production.  Conversion of biomass to ethanol is generally accomplished in three steps
11

 

(Figure 1.1): 1) pretreatment of biomass to liberate cellulose and break down 
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hemicellulose and lignin, 2) enzymatic hydrolysis of cellulose, and 3) fermentation of 

sugars to produce ethanol.  

 

 

Figure 1.1. Typical scheme for production of ethanol from lignocellulosic biomass. 

 

 During pretreatment, lignin is broken down and hemicellulose is hydrolyzed to 

five and six-carbon sugars.
13

  Cellulose, which is a polymer of β-1,4 linked glucose units, 

becomes accessible to further enzymatic hydrolysis.  Hemicellulosic sugars are present in 

a soluble fraction called the hydrolysate, and cellulose remains in the insoluble fraction.  

Pretreatment is often carried out under harsh conditions, such as dilute sulfuric acid 

hydrolysis at elevated temperatures.  Under these conditions, lignin and fermentable 
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sugars form degradation compounds that have shown inhibitory effects to downstream 

enzymatic and fermentation processes.
12-14

  For example, glucose and xylose can undergo 

degradation to form 5-hydroxymethylfurfural (5-HMF) and furfural, respectively.  Figure 

1.2 shows an example of glucose degradation to 5-HMF. 

 

  
Figure 1.2. Formation of degradation products from glucose (reproduced from [15]). 

 

 

 The nature and concentration of degradation products formed largely depends on 

the feedstock type and the chemistry and severity of the pretreatment method 

employed.
13,16

  A lack of a firm understanding regarding the identity of inhibitory 

compounds generated during pretreatment and their mechanism of action is one of the 

key barriers to cost-effective production of bioethanol.
13

  Thus, identification of 

inhibitory hydrolysate constituents is a crucial step in gaining a better understanding of 

pretreatment and its downstream effects on enzymatic and fermentation processes.  In 

this chapter, we provide a review of recent work related to identification of biomass 

degradation products and their inhibitory effects on ethanol production. 

 

Biomass Composition 

  

 A wide variety of lignocellulosic feedstocks exist for production of bioethanol 

(e.g. hardwood, softwood, agricultural residues, and forestry residues).  Lignocellulosic 

materials are composed of lignin, cellulose, and hemicellulose.  Lignin is an aromatic 

polymer composed of condensed monomeric residues such as trans-p-coniferyl alcohol, 
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trans-p-coumaryl alcohol, and trans-p-sinapyl alcohol.  The terms guaiacyl (G), p-

hydroxyphenyl (H), and syringyl (S) are used to denote the three types of monomeric 

lignin residues.
13

  Cellulose is composed of glucose units linked by β-1-4 glycosidic 

bonds.
17

  Hemicellulose is a highly branched heteropolymer of pentose and hexose 

sugars.  In addition to lignin, cellulose, and hemicellulose, plant biomass is also 

composed of extractive (water or ethanol-soluble components) and non-extractive (ash, 

pectin, proteins, and starch) components.  Given the complex nature of biomass, 

obtaining a detailed compositional analysis is essential for evaluating its potential as a 

feedstock for production of bioethanol. 

 

Compositional Analysis of Biomass Feedstock 

  

 Conventional wet chemistry methods for compositional analysis of biomass 

feedstocks are generally based on gravimetric, colorimetric, and chromatographic 

techniques.  Additional analytical procedures have recently emerged for compositional 

analysis of biomass.
18-24

  In a study by Hames and coworkers, a chemometric model was 

developed, using near infrared (NIR) spectroscopy and partial least squares (PLS) 

regression, for rapid prediction of 10 chemical properties (glucan, xylan, lignin, protein, 

acetyl, structural inorganics, galactan, arabinan, mannan, and uronic acids) for a wide 

range of corn stover samples.
18

  The chemometric model demonstrated precision and 

accuracy similar to that of traditional wet chemistry methods.  Pordesimo and coworkers 

further used this developed model to investigate correlations between corn stover 

composition and crop maturity.
19

  Two identical corn cultivars were studied from two 

weeks before corn kernel physiological maturity until four weeks after the grain had 

reached the moisture content suitable for harvesting.  Compositional analysis was carried 
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out using the previously established NIR model
18

 and revealed a rapid decrease in soluble 

solids and increase in xylan and lignin content, immediately following crop physiological 

maturity.   

 Characterization of water-soluble materials in biomass feedstocks has also been 

reported in recent studies.
20,21

  In a study by Chen and coworkers, over 30 previously 

unknown water-soluble constituents of corn stover were successfully characterized.
20

  

Five representative corn stover samples of varying composition were obtained, extracted 

(Soxhlet method), and analyzed using multiple analytical protocols.  Overall, mass 

percent of water-soluble materials ranged from 14 to 27 % of the dry weight of the 

feedstock, with carbohydrates representing the largest fraction of the dry weight of 

extractives (30-57%).  Alditols, aromatic acids, aliphatic acids, and inorganic cations and 

anions accounted for 3-7%, 0.06-0.1%, 7-21%, 6-14%, and 2-5% of the dry weight of 

extractives, respectively.  Additionally, a band of material, with a reddish-brown color 

was consistently retained on the SPE cartridge, and was referred to as the red-brown 

fraction.  This fraction was eluted with a 50:50 water-acetonitrile mixture, followed by 

gravimetric analysis of the residue remaining after solvent evaporation.  The red brown 

fraction accounted for 10-18% of the dry weight of extractives.  Qualitative analysis of 

this fraction via RPLC-UV suggested the presence of a complex oligomeric mixture.  The 

authors suggested that the constituents of the red-brown fraction should be categorized in 

future compositional studies of biomass.  In another study by Chen and coworkers, 

composition of water-soluble extractives in four switchgrass samples were analyzed.
21

  

An accelerated solvent extraction (ASE) system was used for extraction of water-soluble 

materials.  This system demonstrated similar removal of water-soluble extractives and a 
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7-fold reduction in time compared to the Soxhlet technique.  Overall, most compound 

classes exhibited similar contributions to the mass balance for water extractives 

compared to that observed for corn stover,
20

 with carbohydrates and the red-brown 

fraction being the major exceptions.  Monomeric sugars and the red-brown fraction 

accounted for 18-27% and 30-35% of the dry weight of extractives in switchgrass, 

respectively, compared to 30-57% and 10-18% in corn stover.
20

  Overall, water-soluble 

extractives accounted for 12-15% of the dry weight of the feedstock.   

 In a recent study, rapid determination of lignin content using chemometric 

modeling of Fourier transform mid-infrared (FTIR) data was demonstrated by Tamaki 

and Mazza.
23

  Total lignin content was defined as the amount of acid-insoluble and acid-

soluble lignin.  Acid-insoluble lignin was determined gravimetrically and acid-soluble 

lignin was determined using absorbance of hydrolysate at 320 nm.  Two chemometric 

models were developed correlating the FTIR spectra of 67 triticale and 47 wheat straw 

samples with their lignin content (% wt/wt, oven-dry basis).  A third model was 

constructed using all triticale and wheat samples.  For all three models, 75% of samples 

were selected for calibration, and the remaining 25% were used to validate the models.  

All models were constructed by regressing FTIR data with lignin content, using partial 

least squares (PLS) algorithm.  The predictive performance of the models was evaluated 

using the validation samples.  Root-mean-square error of prediction (RMSEP) for the 

triticale, wheat, and combined model were 0.305, 0.163, and 0.272%, respectively, 

demonstrating that mid-infrared spectroscopic techniques can be used for rapid prediction 

of lignin content in triticale and wheat straw feedstocks.   
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In 2011, DeMartini and coworkers reported the development of a downscaled 

method for compositional analysis of biomass.
24

  The method is based on the 

conventional wet chemistry methods developed by the National Renewable Energy 

Laboratory,
25

 but is scaled down by a factor of 100 to use significantly less materials.  

The procedure is performed in HPLC vials and can be automated, thus, improving labor 

input and throughput.  The major changes in the downscaled approach are: 1) 

centrifugation and decanting to accomplish solid-liquid separation as opposed to 

filtration, 2) omission of mixing in the first hydrolysis step, and 3) measurement of total 

acid-insoluble residue (lignin and ash).  Comparison of the downscaled approach with 

traditional methods revealed identical carbohydrate composition and similar estimates of 

lignin and ash content for three biomass samples (poplar, switchgrass, and sugarcane 

bagasse).   

 

Analysis of Degradation Compounds 

  

 Common degradation compounds produced during pretreatment of biomass 

include aliphatic acids, aromatic acids, aldehydes, and ketones.
26

  Given their commercial 

importance, both as value-added products and potential fermentation inhibitors, a detailed 

understanding of formation and quantity of degradation products in biomass hydrolysate 

is critical.  Several analytical methods have been developed for identification and 

quantitation of constituents in biomass hydrolysate.  Gas chromatography techniques 

with flame ionization (FID) and mass spectrometry (MS) detection have traditionally 

been used for analysis of degradation products.
27-29

  These methods require derivitization 

of target analytes prior to analysis, which is time-consuming and unattractive to 

researchers analyzing samples of unknown composition.  Several high performance 
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liquid chromatography techniques (HPLC) are also available for analysis of degradation 

compounds in biomass hydrolysate, with UV, refractive index (RI), mass spectrometric, 

or conductivity detection, depending on the compound class being analyzed.  Methods for 

simultaneous detection of degradation compounds from different analyte classes have 

also been developed.  In a study by Chen and coworkers, an analytical procedure was 

developed, using methyl tertiary-butyl ether (MTBE) extraction of corn stover 

hydrolysate followed by HPLC analysis and UV detection.
30

  The method allowed for 

simultaneous identification of 32 degradation compounds in a reference standard, and 15 

compounds in a corn stover hydrolysate in a 120-minute run.  In a more recent study, 

Sharma and coworkers expanded upon the method described above, using LC-photodiode 

array (PDA) and tandem mass spectrometry detection (LC-PDA-MS/MS) for 

simultaneous identification and quantitation of 40 degradation compounds in a 60-minute 

run.
31

  In addition, Scarlata and Hyman have developed a fast (10-minute) HPLC method 

for the analysis of acetic acid, furfural, HMF, ethanol, and carbohydrates, using RI 

detection.
32

   

 It is important to note that the amount and nature of degradation products formed 

varies with each hydrolysate.  The effects of varying pretreatment and feedstock type on 

formation of degradation products in biomass hydrolysate have been investigated 

recently.
16

  Three feedstocks (corn stover, poplar, and pine) were pretreated using eight 

different methods (0.7% H2SO4, 0.07% H2SO4, liquid hot water, neutral buffer solution, 

aqueous ammonia, lime, lime with oxygen pressurization, and wet oxidation).  Forty 

degradation products in the pretreated hydrolysates were analyzed using a previously 

established method by Sharma and coworkers.
31  

The results demonstrated that the 
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formation of degradation compounds was a function of feedstock type, pretreatment 

chemistry and severity (pH, time, and temperature).   

 

Assessment of Toxicity 

 

 Batch fermentation methods are typically employed for assessment of the toxicity 

of degradation products.  Toxicity tests are generally carried out using a bottom-up 

experimental design, which involves the addition of one or more compounds to 

fermentation media and observing their effects on cell growth and ethanol production 

relative to a control.  Inhibitory effects of several degradation compounds have been 

investigated previously.
13

  Furanic compounds (i.e.  furfural and 5-HMF), formed from 

degradation of sugars, have been of particular importance for toxicity in various 

microorganisms.
33-35

  Furans inhibit glycolysis by interfering with three glycolytic 

enzymes, alcohol dehydrogenase (ADH), pyruvate dehydrogenase (PDH), and aldehyde 

dehydrogenase (AlDH).  Furfural and HMF are metabolized by ADH to their 

corresponding alcohols, which results in a lag phase in cell growth.
36

  Furfuryl alcohol 

only slightly inhibits anaerobic growth of S.  cerevisiae and Escherichia coli,
37,38

 but 

complete inhibition of aerobic growth of Pichia stipitis by furfuryl alcohol has been 

reported.
39

  Furfural has been shown to inhibit ethanol production by 31% at 

concentrations as low as 1 g/L, when tested alone.
40

  At 2 g/L, furfural further inhibited 

cell growth of S. cerevisiae.  Inhibitory effects of HMF are less severe than furfural.
41

  

When tested alone, HMF has been shown to inhibit ethanol production by 20% at 2 g/L.  

When furfural and HMF were tested together, a total furan concentration of 3 g/L was 

required to inhibit ethanol production.
42

  However, the minimum inhibitory concentration 

of furans is significantly lower when they are present in a mixture of other degradation 
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products, which may be due to synergistic effects.  For example, Martinez and coworkers 

demonstrated that when the ratio of HMF to furfural is low (0.15-0.2), inhibition of 

ethanol production occurs at total furan concentration above 0.2 g/L.
42

  Even as the ratio 

of HMF to furfural increased to 0.8-1.1, the minimum inhibitory concentration of furans 

was as low as 0.5 g/L.  Several other studies have also demonstrated the inhibitory effects 

of HMF and furfural on cell growth and ethanol production in both pentose and hexose 

fermenting microorganisms.
43,44

   

 Acetic acid is another degradation compound that has been of particular 

importance in toxicity studies.  Previous studies have demonstrated that acetic acid is 

inhibitory to ethanol production and cell growth.
28,34,45

  Inhibitory effects of acetic acid 

are pH-dependent, since it is the undissociated form that can diffuse through the plasma 

membrane and dissociate in the cytosol.
46

  Once dissociated, protons must be pumped 

across the membrane to maintain intracellular pH.  This process requires energy, in the 

form of adenosine triphosphate (ATP).  At low concentrations, acetic acid can increase 

the rate of ethanol production by increasing energy expenditure, and thus, sugar uptake.  

However, above a critical concentration of acetic acid, the diffusion rate of the 

undissociated form will exceed the proton pumping capacity of the plasma membrane, 

leading to cell death.  Thus, increasing media pH can reduce the inhibitory effect of 

acetic acid.   

In a study by Graves and coworkers, the effect of pH and lactic or acetic acid on 

ethanol production was investigated.
47

  Corn mashes were supplemented with lactic or 

acetic acid at concentrations of 0, 0.5, 1.0, 2.0, 3.0, and 4.0 % w/v and 0, 0.1, 0.2, 0.4, 

0.8, and 1.6% w/v, respectively.  The pH values of all samples were subsequently 
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adjusted to 4.0 4.5, 5.0, or 5.5.  Total ethanol concentration decreased in presence of 

0.1% w/v acetic acid at pH 4.  Complete inhibition of ethanol production by S. cerevisiae 

was observed at pH 4 and acetic acid concentration of 0.8% w/v or higher.  Lactic acid 

inhibited ethanol production at a concentration of 3% w/v and pH ≤5.  At 4% w/v, lactic 

acid inhibited ethanol production at all pH values.   

Alkali and heavy metal salts are also present in lignocellulosic hydrolysates.
13

  

Potassium ion has been shown to inhibit hexokinase, enolase, and membrane ATPase 

activities and nucleic acid uptake in yeast cells.
49-51

  Difference in toxicity for calcium, 

magnesium, sodium, ammonium, iron, cobalt, copper, zinc, sulfate, and phosphate ions 

have also been previously demonstrated.
13,52,53

  Chloride ion has also been shown to have 

detrimental effects when present at concentrations exceeding 6 g/L.
48

  In a recent study 

by Casey and coworkers, it was demonstrated that xylose fermentation is more sensitive 

to salt concentration than glucose fermentation, and that overall ethanol yield decreases 

with increasing salt concentration, due to the increase in formation of glycerol 

byproduct.
54

  Although some ions demonstrate nutritive benefits to yeast metabolics and 

physiological functions, general consensus is that salts have a negative impact on 

microbial processes at elevated concentrations. 

 

Synergistic Inhibition 

 

 Synergistic effects occur when the combination of two or more degradation 

products cause more toxic effects than the sum of their individual effects.
13

  Several 

studies have investigated synergistic inhibition by testing different combinations of 

compounds and observing the inhibitory effects on cell growth and ethanol 

production.
13,26,37,55

  Lactic acid has shown synergistic inhibitory effects when tested 
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together with acetic acid, especially at elevated temperatures (≥ 30°C).
56

  Furfural has 

shown synergistic inhibition in P. stipitis and S. cerevisiae, when present in combination 

with acetic acid and HMF.
34,55

  Furfural has also shown severely toxic effects on ethanol 

production by E. coli when present in combination with other aldehyde degradation 

products.
44

  In addition, combinations of acetic acid with ethanol, and furfural with 

ethanol have demonstrated synergistic inhibition to ethanol producing microorganisms.
57

  

In a study by Oliva and coworkers, inhibitory effects of binary combinations of catechol, 

4-hydroxybenzaldehyde, vanillin, and furfural on yeast Kluyveromyces marxianus were 

investigated.
58

  Combinations of furfural with catechol and 4-hydroxybenzaldehyde 

demonstrated additive effects, while other binary combinations (catechol with 4-

hydroxybenzaldehyde, and vanillin with catechol, furfural, or 4-hydroxybenzaldehyde) 

showed synergistic effects and caused a 60-90% decrease in cell growth.  Vanillin 

demonstrated the most severe synergistic toxicity in binary combinations (90% reduction 

in cell growth and ethanol production).  In another study by Oliva and coworkers, the 

synergistic effects of combinations of acetic acid, furfural and catechol on fermentation 

were investigated.
59

  All compounds exhibited synergistic effects on ethanol production.  

Various combinations of sodium acetate, furfural, HMF, vanillin, and syringaldehyde 

have also exhibited synergistic inhibition on growth and H2 production by T.  

thermosaccharolyticum.
60

  It is important to note that most studies that investigated 

synergistic inhibition, utilized synthetic media for observing the effects of compounds 

studied, and the results are not always in agreement with synergistic inhibition that is 

observed in real hydrolysates.
61

  This suggests that other degradation compounds, in 

addition to the few tested, may significantly contribute to microbial inhibition, and that a 
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more holistic approach is needed to identify the inhibitory constituents of biomass 

hydrolysate. 

 

Detoxification Methods 

 

 Detoxification refers to the removal of inhibitors from the hydrolysate prior to 

fermentation.  Several biological, chemical, and physical methods have been reported for 

detoxification of lignocellulosic hydrolysates.  Several comprehensive reviews have been 

given previously.
13,26,62-64

  Biological detoxification refers to the treatment of hydrolysate 

with enzymes, such as peroxidase and laccase, to increase ethanol productivity in 

hydrolysate.
65

  Mechanism of detoxification by enzymes is suggested to be via oxidative 

polymerization of low-molecular-weight phenolic compounds.  Certain bacterial and 

yeast strains are also capable of metabolizing fufural, HMF, and ferulic acid.
66

  In 2005, 

Nichols and coworkers carried out a study investigating the ability of Coniochaeta 

ligniaria NRRL-30616 and 23 related fungal strains to metabolize furans and grow in 

dilute-acid hydrolysate of corn stover.
67

  Seven of the 23 strains demonstrated the ability 

to grow using furfural as the main carbon source.  C. ligniaria removed 99%, 85%, and 

23% of furfural, HMF and acetate, respectively.  However, 46%, 19%, and 15% of the 

glucose, xylose, and arabinose were also depleted.  Subsequent fermentation of abated 

hydrolysate showed significant improvement over fermentation of unabated hydrolysate.  

In a recent study by Nichols and coworkers, the ability of C. ligniaria NRRL30616 to 

remove furans, organic acids, aldehydes, and phenolic compounds in corn stover 

hydrolysate was investigated.
68

  Compounds from each of these classes were removed 

during the course of bioabatement.  Furthermore, xylose metabolism during fermentation 

by E. coli was improved.  Other detoxification methods, such as treatment with activated 
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charcoal or anion-exchange resins also effectively remove inhibitors.
62,69,70

  A 

disadvantage of anion-exchange resins is that they require the pH of the hydrolysate to be 

adjusted to 10, which requires additional chemicals.  Furthermore, use of anion-exchange 

resins can result in up to 26% loss of fermentable sugars.  Although treatment with 

activated charcoal does not have the pH limitation, its high cost presents a disadvantage.   

 Alkali treatment has also been widely used for detoxification of hydrolysates.  

During this process, the pH of the hydrolysate is raised to 9-10 with Ca(OH)2 

(overliming) and subsequently adjusted to 5.5 with H2SO4.
13

  In a study by Hames and 

coworkers, the use of 
13

C-NMR spectroscopy for comparison of overlimed and 

nonoverlimed hydrolysates for identification of functional groups involved in the 

overliming reaction was investigated.
71

  The spectra revealed that the major functional 

groups removed during overliming were lignin-derived aliphatic and aromatic acids and 

esters.  Ketone and aldehyde functional groups were not detected in spectra of untreated 

hydrolysates.  While overliming is effective at lowering toxicity of the hydrolysate, it 

results in the formation of an insoluble precipitate when used to detoxify dilute-acid 

(H2SO4) hydrolysate.  Removal of this precipitate is carried out via centrifugation prior to 

fermentation, adding an additional (and costly) step to the overall process.
26

  Overliming 

also leads to losses in sugar concentration.  A review of several alkaline treatment 

studies, using various bases and process conditions, has been given recently.
26 

 

Multivariate Data Analysis 

 

 Most aspects of nature are multivariate.  For example, a person’s health is 

dependent on multiple factors, such as genetic predisposition, diet, exercise habits, stress 

level, etc.  In chemical analyses, a single property of interest most often depends on 
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multiple factors.  As such, it is needed to measure multiple variables at the same time.  

Multivariate data often contain information regarding the property of interest, referred to 

as “signal”, and information that is not relevant, referred to as “noise”.
72

  The signal is 

not always apparent and may be hidden by the noise.  Furthermore, collinearity in the 

data can be an issue, where the measured variables are intercorrelated and linearly 

dependent to some degree.  Figure 1.3 shows an example of collinearity, where the 

responses at two different variables (wavelengths) for five different samples exhibit a 

linear trend.  Ideally, for each variable to describe a unique set of information regarding 

the property of interest, the response at each measured variable would be independent of 

others.  However, this is often not the case.  Chemometrics can be a powerful tool for 

analyzing and extracting useful information from chemical data using statistics and 

mathematics.
73,74

  Most common types of chemometric analyses include description, 

pattern recognition and classification, and regression and prediction.
75

  The specific 

chemometric method employed will depend on the type of analysis required.  

 

 

 

 

 

  

 

 

 

Figure 1.3. Hypothetical example showing collinearity in measured variables. 

 

 



16 

 Multiple linear regression (MLR) is used to build chemometric models based on 

linear correlations between the measured data (independent variables) and the property of 

interest (dependent variable) (Figure 1.4).
72

  In this way, every independent variable is 

associated with the dependent variable.  The model is constructed using linear least 

squares and can be used to predict the value of a dependent variable when only the 

independent variables are provided.  

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Hypothetical example of multiple linear regression analysis (reproduced from 

[73]). 

 

 

 Since MLR directly correlates each independent (X) variable with the dependent 

(Y) variable, any collinearity in the X data can have a detrimental effect on the accuracy 

of the model.
76

  To avoid problems with collinearity, multivariate regression models 

should be constructed using an orthogonal coordinate system.
77

  This can be 

accomplished using different algorithms such as principal component analysis (PCA), 

principal component regression (PCR), or partial least squares (PLS).  PCA uses a few 

linear combinations of the independent variables that can be used to summarize the data 
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and explain the variance (measure of the spread of variables).
77

  The linear combinations 

of the independent variables are used as axes to create a new coordinate system, thereby 

reducing the dimensionality of the data set.  The new axes are referred to as principal 

components (PCs).  The first PC is drawn in the direction of maximum variance through 

the independent data set, with each subsequent PC drawn in the next direction of highest 

variance and orthogonal to the preceding PC (Figure 1.5).  Therefore, all PCs are 

orthogonal and have a common origin, but will contain different degrees of variance.  

The orthogonality constraint exists so that all PCs are independent of each other and each 

one explains a unique set of information, thereby eliminating the issue of collinearity.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Hypothetical example of a principal component (reproduced from [73]). 

 

 

 The maximum number of PCs that can be derived from the independent variables 

is either the number of variables or one less than the number of samples, whichever is 

less.
73

  For example, if spectral data, containing 1000 variables are obtained on 50 

samples, the maximum number of PCs that could be used to create the new coordinate 
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system would be 49.  In most cases, however, the actual number of PCs used to explain 

the variance is much smaller than the maximum number.  PCA is typically used to 

analyze data and find patterns, and determine which variables contribute to the observed 

pattern.  PCA forms the basis for several commonly used algorithms, such as soft 

independent modeling of class analogy (SIMCA), principal component regression (PCR), 

and partial least squares (PLS).   

 SIMCA is used for pattern recognition and classification.  It is a soft modeling 

technique, in that it is possible for a sample to be assigned to more than one class.
72,78

  

SIMCA involves two stages, training and classification.  During the training stage, PCA 

is carried out on the data set to make individual principal component models for each of 

the classes present within the data (Figure1.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. SIMCA: Construction of separate data classes. 

 

 

 The number of PCs used for each model may be different and depend on the 

variance within each class.  The mathematical relationship between the independent 
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variables and the PCs is subsequently used to create a PC “map”.
79

  During the 

classification stage, new samples are projected onto this map to determine which 

established class they belong to.  A sample is assigned to a given class if it occupies the 

space allocated to that class.  If a sample falls outside the class borders of the established 

classes, it will not be assigned to any class.  SIMCA is often used to identify and 

characterize subgroups within a group of samples (e.g. characterization of poultry meat in 

different stages of freshness), assign a new sample to an established class, or identify 

samples that are dissimilar compared to a known standard.  

 Several studies have demonstrated the use of SIMCA and PCA for pattern 

recognition or classification of data.
80-84

  For example, Lonni and coworkers 

demonstrated that SIMCA can be successfully used to build a chemometric model for 

classification of three species of Baccharis plant, using their HPLC-DAD 

chromatographic data.
84

  Principal component analysis was applied to chromatographic 

data of 74 alcoholic extracts of three Baccharis species to construct three class models, 

one for each species.  Subsequent assignment of eight independent samples to each of the 

three classes was successfully achieved using the developed models. 

 As mentioned previously, PCA explains variance that is associated with the 

independent data set. If the goal is to construct a chemometric model for prediction of the 

dependent variable (Y), then MLR can be carried out on the new PCs to construct a 

prediction model.  This two-step process is referred to as principal component regression 

(PCR).
72

  An advantage of PCR over MLR is that it eliminates the issue of collinearity by 

using orthogonal PCs rather than directly correlating each X variable with the Y variable.  

Unfortunately, PCR has some drawbacks associated with it.  As mentioned above, PCR is 
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a two step process, where PCA is carried out on the independent variables, followed by 

MLR analysis.  The new coordinate system is created using PCs drawn in the direction of 

maximum variance through the independent variables.  This means that each PC is 

created based on the amount of variance it explains in the X data, without any regard as 

to how that variance is correlated with the Y variable.  For this reason, PCA is called an 

unsupervised learning technique.
73

  The first few PCs include the most amount of signal 

regarding the X data with each subsequent PC including less signal and more noise.  

Therefore, when PCR is carried out, only the first few PCs are used, to incorporate 

mostly signal and little noise into the model.  This can be an issue, given that some of the 

excluded PCs may contain underlying relevant information regarding the Y variable.  

Accordingly, to obtain the best prediction model, PCR must be carried out on different 

combinations of all PCs created to determine the optimum combination to use.  This can 

be a tedious and time-consuming process, given that the total number of PCs created can 

be rather large.  This is the main disadvantage of PCR. 

 Partial least squares (PLS) regression is another tool for reducing collinearity in 

independent variables and constructing models that can predict the value of the Y 

variable.  In PLS, the new PCs are extracted  from the independent variables based on 

their correlation with the Y variable.
72

  In this way, each PC explains variance in both the 

X and Y data.  As with PCA, the new PCs are created in the order of relevance.  Since 

each PC explains information about both X and Y variables, all that is necessary to obtain 

the best prediction model is to use the right number of consecutive PCs to construct the 

model.
74

  This eliminates the need for repeated calculations using different combinations 
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of PCs, as necessary with PCR.  The chemometric model is constructed in the form of a 

regression vector: 

yˆ = bo + b1x1 + b2x2 + ...  + bnxn (1.1)  

where y is the dependent variable, xn is the independent variable, and b is the regression 

coefficient.  There are different types of PLS algorithm available, depending on the 

nature of the X and Y variables used for modeling.  PLS-1 is used to correlate two-

dimensional independent data (e.g. absorbance vs. wavelength) with a single Y variable 

(e.g. concentration), while PLS-2 is used to correlate two-dimensional independent data 

with two or more Y variables (e.g. concentration of multiple compounds in a given 

sample).  Tri-PLS is an N-way chemometric method which utilizes three-dimensional 

independent data (e.g. 3D chromatographic data) to build a regression model.  As with 

PLS, there are two types of Tri-PLS algorithm.  Tri-PLS1 can correlate the independent 

variables with a single Y variable, while Tri-PLS2 can correlate the independent data 

with two or more Y variables.  

 Once the chemometric model is constructed, it can be validated by predicting the 

value of the Y variable for a set of new samples, using their independent data alone.  The 

validation step can be used to evaluate the model’s predictive accuracy.  Once validated, 

root mean square error of prediction (RMSEP) can be calculated for the validation 

samples, using the equation:
72

  

           RMSEP =                    (1.2) 

 

where y is the predicted concentration, yi is the measured concentration for the ith 

validation sample, and n is the total number of validaion samples.  
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 Several studies have successfully demonstrated the use of PLS analysis for 

construction of predictive models.
76,85-87

  In a study by Galtier and coworkers, it was 

demonstrated that PLS can be used to build a chemometric model, correlating the near-

infrared (NIR) spectra of 102 extra virgin olive oil samples to their fatty acid and 

triglyceride content, determined by gas chromatography (GC) and high performance 

liquid chromatography (HPLC).
85

  The model was successful at predicting the fatty acid 

and triglyceride content for 23 validation samples, which were not part of the model 

calibration, based on their NIR spectra alone.  In another study by Donmez and 

coworkers, the use of PLS modeling of HPLC-DAD chromatographic data was 

investigated for the simultaneous detection of four pharmaceutical compounds in cough 

syrup.
86

  Twenty five synthetic syrup samples were prepared using various concentrations 

of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCl (DP), and 

carbetapentane citrate (CP).  A chemometric model was constructed, correlating HPLC-

DAD chromatographic data of the synthetic syrup samples with known concentrations of 

PG, GU, DP, and CP, using PLS-2.  The developed model was successfully used to 

predict concentrations of the four compounds in a commercial syrup sample.  Davis and 

coworkers demonstrated the use of PLS to explore correlations between ultraviolet (UV) 

spectra of 21 alcoholic extracts of habanero peppers and total concentration of two 

capsaicinoids, capsaicin and dihydrocapsaicin, present in the extracts.
76

  The regression 

model was successful at predicting total concentration of capsaicin and dihydrocapsaicin 

in 10 validation samples based on their UV spectra, and 12 more validation samples five 

months after model calibration.  In another study, Sikorska and coworkers successfully 

presented a method for simultaneous analysis of riboflavin (vitamin B2), tryptophan, 



23 

tyrosine, and phenylalanine in beer, using chemometric modeling of fluorescence 

spectra.
87

  As it can be seen, chemometrics is an effective tool for extracting useful 

information from the data and building predictive models.  

 It is important to note that real samples should always be used for constructing a 

chemometric model.
73

  Artificial or laboratory-prepared samples cannot be used because 

they lack all possible compounds, unknowns, and interferences that are present in real 

samples that may influence the overall matrix.  In complex mixtures, it is not possible to 

determine or quantitate all unknowns present in the mixture.  Therefore it is not possible 

to design a sample that would be a true representative of future samples in the field.  

Consequently, if a model is constructed with artificial samples, it can only be applied to 

samples with known, controlled compositions, and will be unable of accurately predicting 

the dependent variable for real samples that may contain unknowns or interferences.
88

   

 

Current Roadblocks to Cost-effective Production of Bioethanol 

 

 The technology for conversion of lignocellulosic biomass to ethanol has advanced 

considerably in recent decades.  However, the lack of a firm understanding regarding 

process fundamentals, specifically, identification of inhibitory compounds produced 

during pretreatment, presents a barrier to cost-effective production of ethanol.  Numerous 

studies have investigated the toxicity of several degradation products produced during 

pretreatment of biomass.  However, most have employed the bottom-up experimental 

design, during which, one or more compounds are added to fermentation media and their 

effects on cell growth and ethanol production are observed.  While this approach may be 

useful for assessing the relative toxicity of individual compounds, it does not take into 

account several factors contributing to overall hydrolysate toxicity.  For instance, the 
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inhibitory effects of degradation products may not only be due to their individual 

concentrations, but also through synergistic inhibition.  Furthermore, hydrolysates 

produced from different feedstock types, pretreatment methods and severities contain 

various types and concentrations of degradation products,
13,16

 which can affect overall 

toxicity.  Additionally, most toxicity studies have analyzed compounds that have already 

been identified.  While many compounds have been identified to-date, hundreds of un-

identified components are present in biomass hydrolysate.  Any of these compounds may 

be inhibitory to downstream fermentation processes.  Also, protocols used in various 

studies are inconsistent, measuring different output variables and using different 

fermentation procedures, inhibitor concentrations and/or fermentative organisms.
51,89-92

  

Therefore, comparing results between studies is often difficult.  For example, in a study 

by Tran and Chambers,
89

 it was reported that the relative toxicity of furfural was low, 

while in a study by Pfeifer and coworkers,
91

 it was reported that the toxicity of furfural 

was significant.  In addition to the disadvantages presented by the bottom-up approach, 

protocols used for toxicity tests are time consuming and labor intensive, making them 

unattractive to researchers exploring a broad spectrum of bioprocessing conditions.  

Therefore, traditional methods aimed at assessing toxicity or synergistic effects of certain 

compounds are unlikely to result in identification of all inhibitory constituents on a 

timescale that is consistent with current mandates for commercial production of cellulosic 

ethanol (Energy Independence and Security Act of 2007).
93

  Consequently, there remains 

a need for development of a rapid and accurate method for assessment of hydrolysate 

toxicity and identification of inhibitory hydrolysate constituent.   
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Scope of the Dissertation 

 

 The primary goal of this dissertation was to develop two chemometric models for 

rapid prediction of hydrolysate fermentability and identification of fermentation 

inhibitors, respectively.  Compositional data obtained on biomass hydrolysates were 

correlated with fermentability to build the models.  Fermentability was defined as percent 

inhibition of ethanol production compared to a control. The proposed methodology is a 

more rapid, top-down approach, in that it utilizes compositional information regarding 

whole hydrolysate, taking into account additive and/or synergistic effects from all 

constituents which may affect overall toxicity.  The developed models provide significant 

improvements in throughput and labor when compared to traditional methods used for 

assessing hydrolysate fermentability and identification of inhibitory compounds.  This 

work is expected to promote a better understanding of inhibitory constituents in biomass 

hydrolysate, which may facilitate the development of appropriate detoxification methods 

and/or inhibitor-resistant microorganisms that are capable of carrying out the 

fermentation process in the presence of inhibitory compounds.  The developed approach 

can be applied to various feedstocks, pretreatment methods, and fermentative organisms.  

Given that a majority of studies related to biofuel production have been carried out on 

ethanologenic organisms, Saccharomyces cerevisiae yeast was selected for proof-of-

concept purposes.  Furthermore, corn stover and dilute-acid pretreatment were the 

selected feedstock and pretreatment method, respectively, given that they are commonly 

employed in studies related to production of bioethanol. 

 The first chemometric model was developed for prediction of hydrolysate 

fermentability using UV-visible spectroscopic data.  The model was constructed, 
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correlating UV-visible spectral data of raw hydrolysate samples with percent inhibition 

values.  Percent inhibition was determined using traditional batch fermentation methods.  

Details regarding the development of this model are discussed in Chapter 2 of this 

dissertation.  The developed model demonstrated high prediction accuracy for a set of 

validation samples that were compositionally different from samples used for model 

construction.  Additionally, four spectral regions were identified by the model as having 

the strongest correlation with microbial inhibition.  The developed chemometric approach 

offers significant improvements in throughput and labor when compared to traditional 

batch fermentation methods. 

 A second chemometric model was developed, correlating HPLC-UV 

chromatographic data of raw hydrolysates with their percent inhibition.  Detection was 

monitored at the four wavelengths identified by the UV-visible model as the most 

significant spectral regions.  Details regarding the development of this model are 

discussed in Chapter 3 of this dissertation.  The goal was to demonstrate that 

chemometric modeling can be used to correlate microbial inhibition with HPLC-UV 

chromatographic data, and to identify significant retention times with the highest 

correlation with inhibition.  Two retention times were identified by the model as having 

the strongest correlation with inhibition.  The identified retention times corresponded to 

compounds that are known inhibitors of fermentative microorganisms.  To determine 

whether better resolution or more universal detectability of sample constituents may lead 

to identification of more compounds, all hydrolysate samples used for model construction 

were analyzed by ion chromatography (IC) with conductivity detection.  Another 

chemometric model was developed, correlating IC data with percent inhibition.  Details 
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of IC analysis and model development are also discussed in Chapter 3.  Conclusions and 

final remarks of this dissertation are discussed in Chapter 4, as well as future perspective 

on the research presented. 
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CHAPTER TWO 

 

Prediction of Hydrolysate Fermentability Using Chemometric Modeling of  

UV-Visible Spectroscopic Data 

 

 

Introduction 

 

  Production of fuel ethanol from lignocellulosic biomass holds a broad range of 

economical and environmental benefits and has thus been the subject of extensive 

research.
8-10

  Lignocellulosic biomass is composed of cellulose, hemicellulose, and lignin, 

with the former two composing up to 70% of the fermentable sugars.
63,94,95

  Generally, a 

pretreatment step is required to breakdown lignin and hemicellulose and render cellulose 

accessible for further enzymatic hydrolysis.
10,13,27,29 

 However, under pretreatment 

conditions, a variety of degradation products are formed that are potentially inhibitory to 

downstream fermentation processes.
14,46,96-98 

 Batch fermentation methods are typically 

used to assess the toxicity of pretreatment hydrolysate.
40

  These methods are extremely 

time-consuming and labor intensive, which makes them unattractive to researchers 

exploring a broad spectrum of bioprocessing parameters (i.e. feedstock, pretreatment 

chemistry and severity, etc.).  Consequently, there remains a need for development of a 

rapid and accurate method for assessment of hydrolysate toxicity.   

 Some progress has been made towards an alternative approach for assessment of 

hydrolysate toxicity.  Larsson and coworkers conducted an extensive study, investigating 

the influence of dilute-acid pretreatment severity (i.e. time, temperature, and acid 

concentration) on the release of sugars and by-products and on ethanol formation using 

the combined severity factor (CSF).
15

  The CSF is represented by:
99 
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   CSF = Log Ro − pH (2.1) 

   Ro = t × exp [(Tr – Tb) ∕ 14.75] 

where t is residence time, Tr is the reaction temperature and Tb is a reference temperature 

(100°C).  The pH is calculated from the amount of sulfuric acid used for pretreatment.  

Seventy six different severity conditions were chosen, corresponding to a CSF range of 

1.4-5.4.  Fermentability of hydrolysates, as measured by ethanol yield and productivity, 

generally decreased with increasing CSF, with the optimum CSF values corresponding to 

a range of 2.9-3.1.  However, not all samples followed this trend.  In fact, the hydrolysate 

sample with the highest ethanol yield had a CSF value of 3.4.  In another study carried 

out by Chen and coworkers, the relationship between reaction severity and accumulation 

of potentially inhibitory degradation products was assessed.
100

  Twelve corn stover 

hydrolysates were generated, covering a time and temperature range of 2-64 minutes and 

160-200°C, respectively.  The relationship between the concentration of nineteen 

degradation compounds and reaction severity was assessed.  The results demonstrated 

that at constant CSF, total concentration of degradation compounds varied significantly 

depending on the time and temperature employed.  Furthermore, in some cases, a higher 

concentration of degradation compounds was observed at lower CSF values.  These 

results further confirmed that the severity function cannot serve as an appropriate 

predictor for accumulation trends for degradation compounds. 

 In a recent work by Morita and coworkers,
101

 the use of near infrared (NIR) 

spectroscopy was investigated for screening recombinant Saccharomyces cerevisiae 

strains and evaluating their fermentation performance in YPD media (yeast extract-

peptone-dextrose).  Four different recombinant xylose-fermenting strains (one diploid 
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and three haploid) were used in the study.  Supernatant samples were collected from 

fermentation solutions and analyzed using NIR spectroscopy.  Samples were also 

analyzed for the amount of consumed glucose and xylose, produced ethanol, glycerol, 

and xylitol to evaluate fermentation performance.  A classification model was constructed 

using soft independent modeling of class analogy (SIMCA) to investigate the difference 

in spectral data among the strains.  Partial least squares was used to construct a separate 

prediction model for each strain, correlating the NIR spectral data with the concentration 

of consumed glucose and xylose, produced ethanol, glycerol, and xylitol.  In addition, 

one prediction model was constructed, using data from all four strains.  Overall, the 

results demonstrated that chemometric modeling of NIR spectral data can serve as a rapid 

tool for evaluating fermentation performance of recombinant strains.  It is important to 

note that since fermentations were carried out in YPD media, the performance of 

recombinant strains may vary when tested in real hydrolysate samples.  Chemometric 

modeling of NIR spectral data for prediction of hydrolysate fermentability was 

previously investigated in our laboratory.  However, preliminary experiments 

demonstrated a poor correlation between NIR spectral data and fermentability for the 

hydrolysate samples studied.  Therefore, focus was turned to other spectroscopic 

methods, such as UV-visible spectroscopy. 

 The use of UV absorption spectroscopy for monitoring furans in dilute acid 

hydrolysate has been investigated previously by Martinez and coworkers.
42 

 Their study 

also investigated the use of furan content as a predictor of hydrolysate toxicity.  Fourteen 

hydrolysates were fermented, and the amount of ethanol produced was plotted as a 

function of furan content.  For 11 hydrolysates, maximum ethanol production correlated 
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with a furan content below 0.2 g/L.  For three hydrolysates, however, maximum ethanol 

production was obtained at a furan content below 0.5 g/L.  The difference observed was 

considered to be due to a change in the ratio of 5-hydroxymethylfurfural (HMF) to 

furfural. Hydrolysates of lower toxicity had an HMF to furfural ratio of 0.8-1.1, while 

hydrolysates of higher toxicity had an HMF to furfural ration of 0.15-0.2.  It was 

concluded that total furan content can serve as a predictor of hydrolysate toxicity, given 

that “there are not large differences in the proportions of HMF and furfural”.
42

  To 

investigate the correlation between UV spectral data and furan content, UV analyses were 

carried out on 14 bagasse hydrolysate samples and the difference in spectral response at 

284 and 320 nm was plotted as a function of total furan content (furfural and HMF), 

determined by HPLC-UV.  Although good correlation was observed between single 

wavelength absorption data and furan content, the univariate nature of this approach does 

not account for variable changes in the amounts of other absorbing compounds, which 

could impact the accuracy of the method.  Furthermore, the authors stated that 

hydrolysate toxicity is caused by other compounds in addition to furans.  Consequently, a 

more comprehensive, full-spectrum technique is needed for rapid assessment of 

hydrolysate inhibition.   

 Herein we present a proof-of-concept chemometric model for prediction of 

hydrolysate fermentability using UV-visible spectral data.  Twenty one corn-stover 

hydrolysate samples of varying pretreatment severities were used to develop the model.  

UV-visible spectroscopic analyses were carried out on raw hydrolysates in the spectral 

range of 190 to 450 nm.  Fermentability (i.e. percent inhibition of ethanol production) 

was determined for each hydrolysate using traditional batch fermentation methods.  
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Partial least squares (PLS-1) was used to regress spectral data against inhibition values 

and construct the chemometric model.  Following model construction, validation was 

carried out by predicting percent inhibition of five hydrolysate samples, different from 

ones used to construct the model.  Predicted inhibition values were compared with 

experimentally determined inhibition values to assess the model’s predictive accuracy.  

Following validation, the model was used to identify spectral regions with the highest 

correlation with microbial inhibition.  The chemometric approach utilizes compositional 

information regarding whole hydrolysate for assessment of toxicity, taking into account 

additive and/or synergistic effects from all constituents.  The novelty of this work is in 

demonstrating that rapid and accurate prediction of microbial inhibition is feasible using 

chemometric modeling of UV-visible spectroscopic data.  The developed approach offers 

significant improvements in throughput and labor when compared to traditional batch 

fermentation methods.   

 

Experimental: Materials and Methods 

 

 

Reagents and Standards 

 

 Analytical grade glucose, yeast extract, peptone, ethanol, sulfuric acid and citric 

acid monohydrate were purchased from Sigma-Aldrich (St.  Louis, MO, USA).  Five 

ethanol standards at concentrations of 10, 4, 2, 1, and 0.2 mL/L were prepared from an 

ethanol (100 mL/L) stock solution.  These standards were subsequently used to build an 

external standard calibration curve for HPLC analyses of ethanol concentration.  Distilled 

water was purified and deionized to 18 MΩ with a Barnstead Nanopure Diamond UV 

water purification system. 
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Microorganisms 

 

 Saccharomyces cerevisiae D5A was obtained from National Renewable Energy 

Laboratory (NREL), (Golden, CO, USA).  The frozen stock culture was prepared using 

standard NREL protocols for S.  cerevisiae.
102 

 

Preparation of Hydrolysates 

 

 Corn stover (4.75% moisture content [(w/w)]) was provided by NREL in 1-2 mm 

mesh size.  Dr.  Peter van Walsum (University of Maine, Forest Bioproducts Research 

Initiative) provided the hydrolysate samples, which were generated using a Dionex 

accelerated solvent extractor (ASE 300).  Twenty six pretreatments of varying severities 

were carried out in 0.7% (w/w) sulfuric acid at a solids concentration of 8% (w/v).  Table 

2.1 lists the pretreatment severities used to generate each hydrolysate sample.  It was 

anticipated that this range of severities would be representative of future samples to be 

analyzed using the developed model.  In addition, it was anticipated that the selected 

severity range would provide variable amounts of degradation products, which can have 

varying effects on inhibition.
13

  Once received, the pH of the hydrolysate was adjusted to 

4.85 using calcium hydroxide, and particulates were removed by filtration with 0.45-µm 

membrane filters prior to fermentation. 

 

Fermentation of Hydrolysates 

 

 Hydrolysate samples were batch fermented in triplicate using the fermentation 

protocol specified in NREL Laboratory Analytical Procedure (LAP) Lignocellulosic 

Biomass Hydrolysis and Fermentation.
102

  No enzymatic hydrolysis was carried out prior  
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Table 2.1. Pretreatment parameters used to obtain calibration 

and validation samples. 

 

Sample 

number
a 

Time (min) Temperature 

(°C) 

CSF
b 

1 16 190 2.70 

2 64 170 2.72 

3 24 185 2.73 

4 50 175 2.76 

*5 14 195 2.79 

6 40 180 2.81 

*7 60 175 2.84 

8 22 190 2.84 

*9 64 175 2.86 

10 12 200 2.87 

*11 35 185 2.90 

12 26 190 2.91 

13 55 180 2.95 

14 20 195 2.95 

15 60 180 2.98 

16 22 195 2.99 

17 16 200 3.00 

18 24 195 3.03 

*19 18 200 3.05 

20 55 185 3.09 

21 40 190 3.10 

22 30 195 3.12 

23 24 200 3.17 

24 50 190 3.20 

25 45 195 3.30 

26 64 190 3.31 
a
 Validation samples are represented by asterisk 

b 
Corn stover hydrolysates were generated using ASE 300, 

0.7% (w/w) H2SO4, 8% (w/v) solids concentration 

CSF = log [t x exp (Tr – Tb) ∕ 14.75] − pH 



 

35 

to fermentation.  The fermentation inoculum was prepared by transferring one thawed 

stock vial of S.  cerevisiae to a sterile YPD (yeast extract-peptone-dextrose) flask, and 

incubated for 10-14 hours at 30°C with rotational agitation at 135 rpm.  Fermentations 

were performed in 150-mL flasks, containing 50 mL of total working solution.  The 

working solution included 11 mL of hydrolysate, 5 mL of sterilized 10x concentrated 

yeast-peptone (10x-YP) stock solution, 5 mL of sterilized glucose stock solution (500 

g/L) and 29 mL of sterilized DI water.  The 10x YP stock solution consisted of 100 g/L
 

yeast extract and 200 g/L
 
peptone in water and its pH was adjusted to 4.85 using 

sterilized citrate buffer.  The glucose stock solution was used to adjust the final 

concentration of fermentable sugars to 50 g/L.  The concentration of fermentable sugars 

in hydrolysate samples was determined by high-performance anion exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) using a previously 

established methodology.
103 

 Control samples only contained 5 mL of sterilized growth 

medium, 5 mL of sterilized glucose stock solution, and 40 mL of sterilized DI water.  All 

constituents were added aseptically to sterilized fermentation flasks, which were 

subsequently capped with rubber stoppers and an aluminum seal.  Prior to inoculation, 

the yeast inoculum was checked for contamination and analyzed according to NREL 

procedure.
102

  The optical density (O.D.) of the inoculum was measured at 600 nm.  This 

value was used to calculate the amount of culture needed to inoculate each fermentation 

flask to a starting O.D. of 0.5.  Following inoculation, samples were incubated at 30°C in 

a rotary shaker at 135 rpm for 48 hours.  Samples of 0.5 mL were drawn prior to 

inoculation and at 0, 2, 4, 6, 8, 10, 12, 14, 17, 19, 24 and 48 hours after inoculation.  
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Percent inhibition was calculated by comparing the amount of ethanol produced for each 

sample at a given sampling time to the amount produced in the control.  

 To determine precision of experimental fermentations, a pooled standard 

deviation (spool) was calculated.  This is a statistical tool for estimating variance when 

several series of measurements are taken under the same conditions, and it is assumed 

that the precision remains the same even if the observed values differ. Pooled standard 

deviation is calculated by:
104 

       

                      (2.2) 

  2                                                                                                 

where for a given sample, Xi is the measured value from the ith measurement, X̄1 is the 

mean of all measurements, N1 is the total number of measurements made, and Ny is the 

total number of samples being combined.  Additionally, the confidence interval for each 

sample was calculated at the 95% confidence limit, using: 

      

     (2.3) 

 

where z is the standard score and n is the number of measurements for a given sample. 

 

 

High-Performance Liquid Chromatography Analysis 

 

 An HPLC external standard calibration curve was constructed using ethanol 

standard solutions.  The calibration curve was subsequently used to determine ethanol 

concentration (mL/L) using a Dionex DX-600 series liquid chromatograph (Dionex, 

Sunnyvale, CA, USA).  The HPLC system consisted of an AS50 auto-injector, GS50 

Gradient pump, LC30 Chromatography oven and a Shodex RI-101 differential refractive 

index detector.  Chromatographic separation was achieved using a 150 mm x 7.8 mm 

Aminex HPX-87H fast fermentation column with 9 µM particle size (Bio-Rad, Hercules, 
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CA, USA), operated at 60°C.  A 30 x 4.6 mm IG Cation H guard column (Bio-Rad) was 

used to protect the analytical column.  An isocratic eluent consisting of 32 mM sulfuric 

acid at a flow rate of 1.0 mL/min was employed to achieve chromatographic separation.   

 

UV-visible Spectroscopic Analysis 

 

 Prior to fermentation, absorption spectra were collected using a PerkinElmer 

Lambda 35 Dual-beam Spectrometer (Perkin-Elmer, Waltham, MA, USA).  Each 

hydrolysate sample was diluted 2000-fold in DI water and its spectrum was obtained over 

the range of 190 to 450 nm using a 1.0 cm path-length quartz cell.   

 

Chemometric Analysis  

 

 Unscrambler 9.8 (CAMO Software Inc., Woodbridge, NJ, USA) was used for 

chemometric analyses.  UV-visible spectra and mean (n=3) inhibition data were imported 

into the software and mean-centered prior to all chemometric analyses.  Partial least 

squares (PLS-1) was used to regress inhibition values against spectral data.  The method 

used to calibrate the model was leave-one-out cross-validation.   

 Five hydrolysate samples were selected for model validation and the remaining 21 

samples were used to construct the model.  Validation samples (5, 7, 9, 11, and 19) were 

selected by placing mean inhibition values of all 26 samples into five categories, with 

each category corresponding to a specific inhibition range (20-30%, 30-40%, 40-50%, 

50-60%, and 60-70%).  Subsequently, one sample was randomly selected from each of 

the five categories, using a random number generator.  This process ensured that 

inhibition values of the validation samples spanned the range of inhibition values used for 

model calibration.   



 

38 

Results and Discussion 

 

 

Inhibition of Ethanol Production 

 

  It is important to point out that the concentration of sugars released during 

pretreatment in the hydrolysate samples was negligible and that the amount of ethanol 

produced during fermentation was primarily from the glucose added (50 g/L) prior to 

fermentation.  Since all hydrolysates had the same final concentration of glucose, the 

observed fermentation data do not enable an evaluation of actual ethanol yield from 

hydrolysates, but rather a relative ranking of hydrolysate toxicity.  Figure 2.1A shows the 

mean concentration of ethanol produced in each sample at specific sampling intervals (0, 

2, 4, 6, 8, 10, 12, 14, 17, 19, 24 and 48 hours) following inoculation.  Even though all 

samples show a similar amount of ethanol produced after 48 hours, the rate of ethanol 

production was different for each sample.  In order for calibration data to be 

representative of future samples, a sampling time that provided the greatest variation in 

inhibition was needed for modeling purposes.  From careful inspection of data 

represented in Figure 2.1A, it was determined that the greatest variability in ethanol 

concentration was observed at the 14 hour sampling time.  Accordingly, data from this 

sampling interval were selected for model development.  Mean percent inhibition values 

at 14 hours are presented in Figure 2.1B.  No direct correlation was observed between 

percent inhibition and CSF values listed in Table 2.1.  For instance, samples 7 and 8 have 

identical CSF values of 2.84, but mean percent inhibition values of 71 and 46, 

respectively. 
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Figure 2.1. Observed ethanol concentration and percent inhibition for hydrolysate 

samples: A) Mean concentration values of ethanol produced from triplicate experiments 

as a function of sampling time (0, 2, 4, 6, 8, 10, 12, 14, 17, 19, 24 and 48 hours), B) Mean 

percent inhibition of ethanol production at the 14 hour sampling time. Sample 6 showed 

0% inhibition at 14 hours. Error bars represent one standard deviation. 
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UV-Visible Spectroscopic Data 

 

 UV-visible spectra of the 26 hydrolysate samples are depicted in Figure 2.2A.  

Most notably in this data set, maxima are observed at 223 nm and 279 nm, with the latter 

maxima being the most prominent.  UV maxima at 279 are characteristic of furans, 

specifically furfural and HMF, which have long been considered among the most 

inhibitory degradation products in biomass hydrolysates.
33,42

  

 Figure 2.2B is a plot of the mean-centered spectral data, which was constructed 

by averaging the spectra on a wavelength-by-wavelength basis then subtracting the 

averaged spectrum from each individual spectrum.
76

 Mean-centering is most useful when 

the variance is of interest and not necessarily the signal of the data.  Accordingly, a mean-

centered plot can be used to identify regions with high variation in the data.  Figure 2.2B 

shows that most of the variance is occurring below 300 nm with several local maxima 

occurring between 200 and 280 nm.  Given that the model focuses on the variation in 

spectral data that is correlated with the observed variation in inhibition data, it is likely 

that the change in absorbance at these wavelengths has a strong correlation with 

microbial inhibition. 

 

Chemometric Model Construction and Validation 

 

 UV-visible spectral data of the 21 calibration samples and the inhibition data were 

imported into CAMO software and mean-centered prior to calibrating the regression 

model.  Partial least squares (PLS-1) was used to develop the model.  Partial least squares 

focuses on variance in the independent data set that is correlated with the dependent 

variable while minimizing the influence of uncorrelated variables.
73  

The model was 

constructed in the form of a regression vector:  
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Figure 2.2. A) UV-visible spectra of raw hydrolysate samples, B) mean-centered spectra 

of hydrolysate samples. 
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 yˆ = bo + b1x1 + b2x2 + ...  + bnxn (2.4) 

where yˆ is inhibition for a given sample, b is the regression coefficient determined by the 

PLS-1 algorithm, and xn is the measured absorbance at the selected wavelength (λ1 to λn).  

The chemometric model was calibrated using leave-one-out cross-validation.
73,105

  During 

this process, one calibration sample was kept out and a model was computed using the 

remaining samples.  The constructed model was subsequently used to predict inhibition 

for the sample that was left out.  This process was repeated until every sample was left 

out of calibration once.  The difference between predicted values and experimentally 

determined values of all calibration samples were used to calculate the predicted residual 

error sum of squares (PRESS): 

 PRESS = ∑ (y –yi) 
2  

(2.5) 

where y is the predicted inhibition and yi is the experimentally determined inhibition. This 

process was repeated for models using a different number of principal components (PCs).  

The calculated PRESS was subsequently averaged over all calibration samples to 

calculate the residual validation variance.
106

 Figure 2.3A is a plot of residual variance 

versus the number of PCs used to explain the model.   

 The residual validation variance plot represents the error that is expected with 

future predictions, depending on the number of PCs used.  To obtain the best prediction 

model, it is necessary to use the maximum number of components that provide the lowest 

value of Y-variance.  Utilization of additional PCs introduces noise into the model, and 

leads to an increase in prediction error.  Inspection of data in Figure 2.3A revealed that 

use of two PCs resulted in minimal residual variance. Figure 2.3B shows the scores plot, 

which displays the location of samples in the coordinate system for the first two PCs.  It 
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Figure 2.3. Regression overview of model constructed with full UV-visible spectral data 

(190-450 nm): A) residual variance plot, B) scores plot, C) predicted vs. measured plot. 
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is demonstrated below the x-axis that the first two PCs collectively explain 99% of the 

variance in the spectral data, and 76% of the variance in inhibition data, respectively.  For 

the model developed here, most samples are well-distributed across the coordinate 

system.  It should be noted that sample 6 was identified as an outlier using the software.  

This may be due to the fact that sample 6 presented 0% inhibition at the 14 hour sampling 

time.  Omission of sample 6 from the calibration sample set significantly improved the 

model’s correlation. 

  Following model calibration, the developed regression vector was used to predict 

inhibition for every calibration sample (n=20).  The predicted values were then plotted 

against measured values to obtain the predicted vs.  measured plot (Figure 2.3C).  This 

plot is used to evaluate a model’s fit.  A perfect model would have an R
2
 of 1.  For the 

developed model, R
2
 was 0.76.  It should be noted that R

2
 for the model constructed prior 

to omission of the outlier (sample 6) was 0.19.  For the developed model, the offset 

(intercept) was 12.  Root-mean-square error of calibration (RMSEC), standard error of 

calibration (SEC), and bias (systematic error) were 6, 6, and -2 E
-6

, respectively, 

indicating negligible systematic error and reasonable accuracy.  The correlation 

coefficient is the square-root of R
2
 and its sign indicates a positive or negative 

correlation.  Thus, the observed correlation coefficient of 0.87 demonstrates that an 

increase in inhibition is expected with an increase in absorption.  While the correlation 

coefficient and R
2 

provide a measure of the model’s fit, the best way to evaluate its 

predictive ability is to validate it using new samples. 

  Validation of the model was carried out with five hydrolysate samples that were 

not used to construct the model.  UV-visible spectra of validation samples were imported 
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into the software and used by the developed regression vector to predict inhibition values.  

Table 2.2 shows the results of the validation step, including experimental and predicted 

inhibition for each validation sample along with root-mean-square error of prediction 

(RMSEP).   

 

 

 Four of five samples (5, 7, 11, and 19) had predicted values that were within 95% 

confidence limits of experimentally determined inhibition.  Sample 9 had a predicted 

inhibition value that was not within the confidence limits.  This may be due to the fact 

that the experimentally determined inhibition value for sample 9 was outside of the range 

of values used for model calibration.  Predicted values for all validation samples had a 

high bias associated with them.  An explanation for the observed bias is unclear at this 

point.  Overall, the results confirmed that accurate prediction of microbial inhibition is 

Table 2.2.  Prediction results for full-spectrum and four-wavelength models. 

Validation 

sample 

number
a 

Experimental % 

inhibition
b 

Predicted 

full-spectrum 

model
c 

 

 

Predicted
 

four-wavelength 

model
d 

Absolute error
 

5 48 ± 6 52 52 4 

7 70 ± 6 75 75 5 

9 25 ± 6 36 36 11 

11 50 ± 6 55 55 5 

19 60 ± 6 63 63 3 

RMSEP  6 6  

a
 pretreatment parameters for validation samples are presented in Table 1. 

b
 mean 

percent inhibition from triplicate fermentations of hydrolysate and corresponding 95% 

confidence intervals. Pooled standard deviation was 5. 
c 

Predicted inhibition using 

model constructed with full UV-visible spectral data (190-450 nm). 
d 

Predicted 

inhibition using model constructed with spectral data at 201, 223, 242, and 279 nm. 
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feasible using chemometric modeling of UV-visible spectral data, provided that 

inhibition values for future samples fall within the range of values used for calibration. 

 

Identification of Significant Spectral Regions 

 

 Once the model was successfully validated, two chemometric tools, regression 

coefficient plot and x-loadings, were used to identify spectral regions with the strongest 

correlation to microbial inhibition.  Figure 2.4A is a plot of the different b coefficients 

from the regression vector (equation. 2.1) as a function of wavelength.  Maxima in this 

figure (201, 223, 242, and 279 nm) represent spectral regions where the change in 

absorbance is strongly correlated with the observed variation in inhibition.  Identification 

of these wavelengths as significant variables was also supported by the x-loadings plot 

(Figure 2.4B).  The loading is the cosine of the angle between each variable and the 

corresponding PC.
74

  The higher the loading value, the more significant that variable is to 

the PC.  A loading value of 1 or -1 (angle of 0 or 180 degrees) indicates that the variable 

is parallel with the component and contributes a significant amount of information to it.  

On the other hand, a loading value of 0 (angle 90 degrees) indicates that the variable 

contributes little information to that component.  In Figure 2.4B, peak maxima were 

identical to the ones identified in Figure 2.4A. 

 

Investigation of the Significance of Identified Wavelengths 

 To investigate the relative significance of the four wavelengths identified (201, 

223, 242, and 279 nm), a second multivariate model (“four-wavelength model”) was 

constructed, correlating spectral data at the identified wavelengths with inhibition data, 

and the results were compared with the previously developed full-spectrum model.  The  
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Figure 2.4. A) Regression coefficient plot for UV-visible model, B) X-loadings plot for 

the first two principal components. 
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same hydrolysate samples were used to construct and validate the four-wavelength model 

as the full-spectrum model.  The regression overview for the four-wavelength model is 

presented in Figure 2.5.  Validation of the model was carried out by predicting inhibition 

of five validation samples, using their spectral data at 201, 223, 242, and 279 nm.  

Results of validation are presented in Table 2.2.  The four-wavelength model had 

prediction results that were identical to the full-spectrum model.  For this model, R
2
 and 

RMSEP were 0.76 and 6, respectively.  Results indicate that the variation in absorbance 

at the four identified wavelengths is responsible for the observed variation in inhibition. 

 

Assessment of Univariate Techniques for Prediction of Hydrolysate Fermentability 

 

 Several univariate models were constructed to evaluate the use of single 

wavelength absorption data for prediction of microbial inhibition.  Univariate analyses 

were carried out by plotting the absorbance at each of the identified wavelengths (201, 

223, 242, 279 nm) as a function of inhibition for the calibration samples used to construct 

the chemometric models.  Data were subsequently fit to a straight line (Figure 2.6 and 

2.7) and the corresponding linear equation for each univariate analysis was used to 

predict inhibition for the five validation samples.  Results of the univariate analyses are 

presented in Table 2.3.  For the single wavelength models, R
2 

was lower than the 

multivariate models.  Furthermore, RMSEP for the single wavelength models at 201, 223, 

242, and 279 nm was 13, 10, 12, and 9, respectively.  Thus, the 279 nm model the best 

univariate prediction model.   
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Figure 2.5. Regression overview for model constructed using spectra data at 201, 223, 

242, and 279 nm: A) residual variance plot, B) scores plot, C) predicted vs. measured plot 
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Figure 2.6. Plot of absorbance (at 201 and 223 nm) as a function of percent inhibition. 
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Figure 2.7. Plot of absorbance (at 242 and 279 nm) as a function of percent inhibition. 
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Conclusions 

 

 Comparison of univariate models with multivariate (full-spectrum or four-

wavelength) models constructed in this work demonstrated that multivariate models 

provide superior prediction accuracy.  This may be due to the fact that overall 

hydrolysate inhibition is influenced by compounds that absorb in different regions of the 

UV spectrum, specifically 201, 223, 242, and 279 nm.  Therefore, a univariate approach 

utilizing single absorbance data at any one of these wavelengths may exclude critical 

information provided by the other three.  It is only when multivariate statistical analyses 

are applied that the best prediction accuracy is achieved.  Future work should be aimed at 

constructing a more comprehensive model by evaluating the effect of increasing 

calibration-sample size, using different types of lignocellulosic biomass feedstocks, and 

employing hydrolysates obtained from different pretreatment methods.  We note that 

increasing the size of the calibration set will introduce more variability and unknown 

interferences into the model.  As a result, the model will be more representative of all 

future samples, which may further improve prediction accuracy. 

Table 2.3. Prediction results using univariate approach (single-wavelength models) 

Validation 

sample 

number
 

Experimental   

% inhibition 

Predicted
a 

at 201 nm 

Predicted
b 

at 223 nm 

Predicted
c 

at 242 nm 

Predicted
d 

at 279 nm 

5 48 ± 6 48 47 47 52 

7 70 ± 6 54 60 56 75 

9 25 ± 6 48 44 45 42 

11 50 ± 6 49 49 49 56 

19 60 ± 6 51 54 52 63 

RMSEP  13 10 12 9 
a 

single wavelength models at 201 nm (y = 23.153x + 39.313, R
2 

= 0.0894), 
b 

223 

nm (y = 78.733x + 23.801, R
2
 = 0.3121), 

c
242

 
 nm (y = 72.818x + 33.773, R

2
 = 

0.1701), and 
d
279 nm (y = 57.525x + 16.522, R

2
 = 0.6155). 
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CHAPTER THREE 

 

Chemometric Modeling of HPLC-UV Data for Identification of 

Biomass Fermentation Inhibitors 

 

 

Introduction 

 

 Production of fuel ethanol from lignocellulosic biomass holds a broad range of 

benefits, both environmentally and economically.
9,10

  One of the key barriers to cost-

effective production of bioethanol has been the lack of a firm understanding regarding 

process fundamentals, specifically, identification of inhibitory compounds produced 

during pretreatment.  The mechanism of action of such inhibitors also remains largely 

unknown.  Biomass hydrolysates contain many constituents, any of which may be 

inhibitory to downstream fermentation processes.
28,31,98

  Thus, identification of inhibitory 

hydrolysate constituents is a crucial step in gaining a better understanding of pretreatment 

and its downstream effects on microbial fermentation processes.    

Traditional methods for identification of inhibitory compounds generally involve 

addition of one or more known degradation products to fermentation media and 

observation of the resulting effect on batch fermentation of ethanol.
40,45,90

  These bottom-

up toxicity tests are extremely time-consuming and labor-intensive.  Furthermore, 

protocols used in various laboratories are inconsistent, measuring different output 

variables and using different fermentation procedures, inhibitor concentrations and/or 

fermentative organisms.  Therefore, comparing results between studies is difficult.  Given 

that hundreds of components are present in pretreatment hydrolysates, many of which are 

not fully characterized, identification of inhibitory compounds by traditional means is 
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unlikely to occur on a timescale that is consistent with current mandates for commercial 

production of cellulosic ethanol in the United States (Energy Independence and Security 

Act of 2007).
93 

 Consequently, there remains a need to develop a more rapid and accurate 

method for identifying hydrolysate constituents responsible for observed inhibitory 

effects.   

 Our laboratory is actively investigating a paradigm-shifting approach for 

identification of inhibitory compounds in hydrolysates based on chemometric modeling 

of chromatographic data.  Chromatographic analyses provide compositional information 

about the hydrolysate, while fermentation analyses provide information regarding overall 

toxicity.  Chemometric tools minimize co-linearity in the data while providing important 

information regarding correlations between independent and dependent variables.
74,80,105 

 

Most chemometric analyses of chromatographic data fit in to one of three categories: 1) 

qualitative analyses, 2) quantitative analyses, and 3) optimization studies.  Qualitative 

analyses generally involve the use of principal component analysis (PCA), soft 

independent modeling of class analogy (SIMCA), or other statistical methods for 

classification of measured data.  For example, Lonni and coworkers demonstrated that 

SIMCA may be successfully used to build a chemometric model for classification of 

three species of Baccharis plant, using their HPLC-DAD chromatographic data.
84

  

Principal component analysis was applied to chromatographic data of 74 alcoholic 

extracts of three Baccharis species to construct three models, one for each species class.  

Successful classification of eight independent samples to each of the three classes was 

achieved using the developed models.   
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 Quantitative analyses involve the construction of a predictive model by 

correlating the independent data set with the concentration of an analyte of interest.  For 

example, in a study by Donmez and coworkers, the use of PLS modeling of HPLC-DAD 

chromatographic data was investigated for the simultaneous detection of four 

pharmaceutical compounds in cough syrup.
86

  Twenty five synthetic syrup samples were 

prepared using various concentrations of potassium guaiacolsulfonate (PG), guaifenesin 

(GU), diphenhydramine HCl (DP), and carbetapentane citrate (CP).  A chemometric 

model was constructed, correlating HPLC-DAD chromatographic data of the synthetic 

syrup samples with known concentrations of PG, GU, DP, and CP, using PLS-2.  The 

developed model was successfully used to predict concentrations of the four compounds 

in a commercial syrup sample.  Chemometric analyses of HPLC-DAD chromatographic 

data have also been successfully used for analysis of isoflavones in Trifolium lucanicum 

plant and pesticides in water samples.
107,108

   

 Optimization studies often involve the use of response surface methodology 

(RSM) to build a second-order polynomial model, which can be used to optimize a 

variable of interest that is influenced by several independent variables.
109

  For example, 

in a study by Sivakumar and coworkers, RSM and Derringer’s desirability function were 

used to optimize an HPLC method for the separation of two pharmaceutical drugs, 

Domperidone (DP) and Pantoprazole (PP).
110 

 Independent variables selected for 

optimization included acetonitrile concentration in the mobile phase, phosphate buffer 

molarity and flow rate.  Response factors selected for optimization included the retention 

factor of PP, retention times of PP, DP, and the internal standard (IS) acetophenone, and 

the resolution between two pairs (PP-IS and IS-DP).  A central composite design (CCD) 
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was used to fit all six variables into a second-order polynomial to determine the optimum 

conditions for separation of the studied compounds.  The predicted optimized HPLC 

conditions were subsequently applied for effective separation of both compounds in real 

pharmaceutical tablets.   

  While numerous studies have reported the use of chemometrics for qualitative, 

quantitative, and optimization analyses, the use of chemometrics for qualitative 

identification of specific variables within chromatographic data has not been reported.  In 

this work, we report a novel method for identification of inhibitory hydrolysate 

constituents using chemometric modeling of chromatographic data.  Partial least squares 

can be used to correlate chromatographic data of raw hydrolysates with microbial 

inhibition.  The model can then be used to identify specific variables (i.e. retention times) 

that have the strongest correlation with inhibition.  Once identified, these retention times 

can be further investigated to reveal the identity of compounds that are likely to be most 

inhibitory to the test organism used in fermentation of hydrolysates.  While most studies 

utilize chemometrics to find correlations that can be used for prediction purposes 

(qualitative or quantitative), the approach presented here utilizes chemometric modeling 

for qualitative identification of specific variables that significantly contribute to the 

observed effect (i. e. inhibition).  The proposed methodology is a more rapid, top-down 

approach for identification of inhibitory hydrolysate constituents, in that it utilizes 

compositional information regarding whole hydrolysate, taking into account additive 

and/or synergistic effects from all constituents which may affect toxicity.  Furthermore, 

the approach does not require prior knowledge of all hydrolysate constituents, given that 

compositional information is obtained via qualitative analyses.  
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 Herein we provide proof-of-concept data demonstrating the feasibility of our 

approach.  Twenty-six dilute-acid hydrolysate samples of varying composition were 

qualitatively characterized using reversed-phase liquid chromatography with UV 

detection (RPLC-UV) and ion chromatography with conductivity detection (IC).  

Microbial inhibition was assessed independently in batch fermentation experiments.  

Chemometric tools were used to find useful correlations between inhibition and 

chromatographic data.  The quality of chemometric models was evaluated by comparing 

predicted inhibition of five samples that were kept out of the calibration sample set with 

experimental values.  The x-loadings feature was used to identify retention times that 

were most strongly correlated with microbial inhibition.  Compounds eluting at these 

retention times were known inhibitors of fermentative microorganisms.     

 

Experimental: Materials and Methods 

 

 

Reagents and Standards 

 

 Analytical grade glucose, yeast extract, peptone, ethanol, sulfuric acid and citric 

acid monohydrate were purchased from Sigma-Aldrich (St.  Louis, MO, USA).  Five 

ethanol standards at concentrations of 10, 4, 2, 1, and 0. 2 mL/L
 
were prepared from an 

ethanol (100 mL/L) stock solution.  These standards were subsequently used to build an 

external standard calibration curve for high performance liquid chromatography (HPLC) 

analyses of ethanol concentration.  For IC analyses, a stock standard consisting of 42 

mg/L acetic acid, 50 mg/L propionic acid, and 254 mg/L sodium chloride in deionized 

water was used to prepare calibration standards via serial dilution. Distilled water was 
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purified and deionized to 18 MΩ with a Barnstead Nanopure Diamond UV water 

purification system.  

 

Preparation of Hydrolysates and Subsequent Fermentations 

 

 Hydrolysate samples were supplied by Dr.  Peter van Walsum (University of 

Maine, Forest Bioproducts Research Initiative), and fermented previously.
111 

 Once 

hydrolysates were received, the pH was adjusted to 4.85 using calcium hydroxide.  

Particulates were removed by filtration.  All hydrolysate samples were subsequently 

batch fermented in triplicate experiments.  Samples were drawn prior to inoculation and 

from time 0 to 48 hours following inoculation.  Samples were subsequently analyzed via 

HPLC with refractive index detection to determine ethanol concentration.
111 

 Table 3.1 

lists observed inhibition values for the 26 hydrolysates and the corresponding 

pretreatment conditions used to generate each sample.   

 

Reversed-Phase Liquid Chromatography Analysis of Raw Hydrolysates 

 

 Reversed-phase LC analyses generally followed the procedure reported by Chen 

et al.
30

  However, samples did not undergo MTBE extraction prior to analysis.  This step 

was omitted in the present study to preserve the compositional integrity of hydrolysates.  

Filtered hydrolysates were diluted 40-fold with deionized water and analyzed directly 

with UV detection at four wavelengths.  Additionally, a modified mobile-phase gradient 

consisting of (A) 0.025% (v/v) formic acid in water and (B) 10:90 water-acetonitrile 

containing 0.025% (v/v) formic acid was employed to achieve chromatographic 

separation.
31 

 UV absorbance was monitored at 201, 223, 242, and 279 nm.  These 

wavelengths were identified by a previous chemometric model utilizing UV-visible 
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spectral data (190-450 nm), as being most strongly correlated with microbial 

inhibition.
111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1.  Pretreatment severity and observed percent inhibition for 

 calibration and validation samples 

 

Sample 

number
a 

Time (min) Temperature 

(°C) 

CSF
b 

Percent 

inhibition at 

14 hours
c 

1 16 190 2.70 63 

2 64 170 2.72 41 

3 24 185 2.73 38 

4 50 175 2.76 38 

*5 14 195 2.79 48 

6 40 180 2.81 0 

*7 60 175 2.84 70 

8 22 190 2.84 46 

*9 64 175 2.86 25 

10 12 200 2.87 39 

*11 35 185 2.90 50 

12 26 190 2.91 46 

13 55 180 2.95 36 

14 20 195 2.95 57 

15 60 180 2.98 70 

16 22 195 2.99 71 

17 16 200 3.00 50 

18 24 195 3.03 38 

*19 18 200 3.05 60 

20 55 185 3.09 68 

21 40 190 3.10 62 

22 30 195 3.12 44 

23 24 200 3.17 54 

24 50 190 3.20 42 

25 45 195 3.30 57 

26 64 190 3.31 58 
a
 Validation samples are represented by asterisk 

b 
Corn stover hydrolysates were generated using ASE 300, 0.7% (w/w)  

H2SO4, 8% (w/v) solids concentration 

CSF = log [t x exp (Tr – Tb) ∕ 14.75] – pH 
c 
Mean percent inhibition from triplicate fermentations. 
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Ion Chromatography Analysis of Raw Hydrolysates 

 

 Ion chromatography analyses were carried out using a previously reported 

procedure.
16 

 Briefly, 250-µL of filtered hydrolysate was loaded onto a preconditioned 

Supelclean LC−18 SPE cartridge.  The cartridge was rinsed with slightly less than 5 mL 

of deionized water and the eluate was diluted to a final volume of 5 mL prior to analysis.  

An aqueous NaOH step-gradient was employed to achieve chromatographic separation: 1 

mM, 0.0-20.0 min; 30 mM, 20.0-21.0 min; 60 mM, 21.0–22.0 min; and back to 1 mM, 

22.0–27.0 min.  Eluted sample components were monitored via conductivity.   

 

Chemometric Analysis  

 

 Unscrambler 9.8 (CAMO Software Inc., Woodbridge, NJ, USA) was used for 

chemometric analyses.  Chromatographic data and mean (n=3) inhibition values were 

imported into the model as input variables and mean-centered prior to all chemometric 

analyses.  Tri-PLS−1 was used for regression of HPLC-UV data, given that 

chromatographic data were obtained in a three-dimensional format, with the axes 

corresponding to retention time, wavelength, and absorbance.  Partial least squares 

(PLS−1) was used for regression of IC data.  All chromatographic data included in 

chemometric models were derived from a single injection of each sample.  The method 

used to calibrate the models was leave-one-out cross-validation.  

 Five hydrolysate samples that were not included in the calibration sample set were 

selected for validation purposes.  Mean inhibition values of all 26 samples were placed 

into five categories, with each category corresponding to a specific inhibition range (20-

30%, 30-40%, 40-50%, 50-60%, and 60-70%).  Validation samples (5, 7, 9, 11, and 19) 

were randomly selected from each of the five categories, using a random number 
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generator.  This process ensured that inhibition values of the validation samples spanned 

the range of inhibition values used for model calibration, 

 

Results and Discussion 

 

 

HPLC-UV Chromatographic Data 

 

 Figures 3.1-3.4 depict HPLC-UV chromatograms of all 26 hydrolysate samples, 

obtained at 201, 223, 242, and 279 nm.  Based on previous work in our laboratory, it is 

known that analyte retention is primarily governed by hydrophobic interactions between 

the column and the analyte.
30 

 Generally, low-molecular weight aliphatic acids elute first, 

followed by aldehydes, phenols, and aromatic acids.  The most prominent peaks in each 

chromatogram occurred at 14.6 and 16.2 minutes.  As depicted in Figures 3.1-3.4, 

hydrolysates have many constituents, any of which can be inhibitory to fermentation.  

Given the complex nature of the HPLC-UV chromatograms, identification of specific 

retention times whose change in peak area (i.e. concentration) is most strongly correlated 

with inhibition would be difficult at best by visual comparison.  

 

Chemometric Model Construction and Validation 

 

 Reversed-phase LC data at all four monitored wavelengths and inhibition data for 

the 21 calibration samples were imported into Unscrambler as input variables.  Tri-PLS 

algorithm was used to develop the initial regression model.  Partial least squares 

regression focuses on variance in the independent data set that is correlated with the 

depend dependent variable while minimizing the influence of variance that is 

uncorrelated with the dependent variable.
72

  The model was calibrated using leave-one- 
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Figure 3.1. HPLC-UV chromatograms of raw hydrolysates. A) Chromatograms at 201 

nm, B) Expansion of chromatograms shown in A in the 14.3-16.75 min region. 

A 
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Figure 3.2. HPLC-UV chromatograms of raw hydrolysates. A) Chromatograms at 223 

nm, B) Expansion of chromatograms shown in A in the 14.3-16.75 min region. 
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Figure 3.3. HPLC-UV chromatograms of raw hydrolysates. A) Chromatograms at 242 

nm, B) Expansion of chromatograms shown in A in the 14.3-16.75 min region. 
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Figure 3.4. HPLC-UV chromatograms of raw hydrolysates. A) Chromatograms at 279 

nm, B) Expansion of chromatograms shown in A in the 14.3-16.75 min region. 
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out cross-validation. during which, the model was repeatedly recomputed while one 

calibration sample was left out and subsequently predicted using the developed 

model.
73,80 

 This process was repeated until every sample had been left out once.  In each 

case, the difference between predicted values and experimentally determined values of all 

samples were used to calculate the predicted residual error sum of squares (PRESS).   

 Figure 3.5A shows the plot of residual validation variance as a function of number 

of principal components (PCs) used to construct the model.  Residual variance was 

calculated by averaging PRESS (obtained during leave-one-out cross validation) over all 

calibration samples (n=21).
72 

 This was repeated for models using a different number of 

PCs.  The residual validation variance plot represents the error that is expected with 

future predictions, depending on the number of PCs used.  Figure 3.5A suggests that 

using models with 1-3 PCs would yield a lower residual variance than models 

constructed with a larger number of PCs.  To determine the optimum number of PCs, 

models constructed with 1-3 PCs were used to predict inhibition of five hydrolysate 

samples that were not used to construct the model.  The corresponding root mean square 

error of prediction (RMSEP) for models using 1, 2, and 3 PCs were 6, 5, and 7, 

respectively, suggesting that the best prediction model was constructed with 2 PCs.  

 Figure 3.5B shows the scores plot, which displays the location of samples in the 

coordinate system for the first two PCs.  It is demonstrated below the x-axis that the first 

two PCs collectively explain 99% of the variance in the chromatographic data and 45% 

of the variance in the inhibition data, respectively.  In a perfect model, samples would be 

uniformly distributed throughout the coordinate system.  For the model developed here, 

most samples were located near the center and right regions of the coordinate system.   
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Figure 3.5. Regression overview for model constructed with RPLC-UV data: A) variance 

vs. number of components, B) scores plot, C) predicted vs. measured plot 
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Although a more uniform distribution would likely result in a more robust model, the 

data swarm was deemed acceptable for the purposes of this work.   

  Once calibrated, the regression vector was used to predict inhibition for every 

calibration sample.  The predicted values were then plotted against measured values 

(Figure 3.5C) to evaluate the model’s fit (i.e. the degree of correlation between 

chromatographic data and observed inhibition).  The more linear the regression vector (i. 

e. the higher the R
2
), the better the correlation would be.  A perfect model would have an 

R
2
 of 1.  For the developed model, R

2
 was 0.79.  The offset (intercept) was 10.  RMSEC, 

standard error of calibration (SEC), and bias (systematic error) were 7, 7, and -3 E
-7

, 

respectively, indicating negligible systematic error and reasonable accuracy.  The 

correlation coefficient is the square-root of R
2
 and is a measure of the correlation between 

HPLC-UV chromatographic data and observed inhibition of calibration samples.  This 

value can range from −1 to 1, with 0 indicating no correlation.  The sign of the coefficient 

indicates a negative or positive correlation.  In Figure 3.5C, the correlation coefficient is 

0.89, indicating a positive correlation between chromatographic data and inhibition (i.e.  

an increase in inhibition is expected with an increase in absorbance).  Although the 

correlation coefficient and R
2 

can be used to evaluate the model’s correlation, the best 

way to assess its quality is to validate it using new samples.  

  Table 3.2 shows the results of the validation step, including experimental and 

predicted inhibition for each sample (columns two and three) along with RMSEP.  Given 

that all hydrolysate samples were fermented in triplicate under similar conditions, pooled 

standard deviation (spool) was used to determine experimental precision.  Four of five 

samples (5, 7, 9, and 11) had predicted inhibition values that were within 95% confidence 
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limits of experimental determinations.  These results indicate a reasonably strong 

correlation between microbial inhibition and reversed-phase chromatographic data.   

 

 

 

It is important to note that the above predictions were carried out using the developed 

model to evaluate its correlation and not for assessing its use as a predictive model.  A 

predictive chemometric model has been previously constructed in our laboratory, 

correlating UV-visible spectral data of hydrolysate samples with microbial inhibition.  

This model is better suited as a predictive model compared to the model developed in this 

study, given that UV-visible analyses are less time-consuming and labor-intensive than 

chromatographic analyses.  In the present work, the purpose of developing the LC-UV 

model was to identify retention times that were most strongly correlated with inhibition.   

 

Table 3.2. Experimentally determined inhibition and predicted inhibition for validation 

samples. 

 

Validation 

sample 

number 

Experimental 

% inhibition
a 

Predicted-model 1
b 

Predicted-model 2
c 

Predicted-model 4
d 

5 48 ± 6 48 51 51 

7 70 ± 6 75 80 59 

9 25 ± 6 28 29 26 

11 50 ± 6 52 47 37 

19 60 ± 6 71 62 56 

RMSEP  5 5 8 

a mean fermentability from triplicate fermentations of hydrolysate and corresponding 95% 

confidence intervals. Pooled standard deviation was 5.  

b model constructed using RPLC-UV chromatograms from all four wavelengths 

c model constructed with hydrolysates spiked with furfuryl alcohol  

d model constructed with chromatograms obtained from ion chromatography analyses 



 

70 

Identification of Significant Retention Times 

 

 Once the model was successfully validated, two chemometric tools (regression 

coefficient plot and x-loadings) were used to identify the significant variables.  The 

constructed model was explained by a regression vector in the form of  

 yˆ = bo + b1X1 + b2X2 + b3X3 + . . .  + bnXn (3.1) 

where yˆ is inhibition for a given sample, b is the regression coefficient determined by the 

algorithm, and Xn is the measured absorbance at a given wavelength and retention time.  

The regression coefficients (b) are plotted in Figure 3.6A as a function of retention time.  

Variables with larger regression coefficients make a more significant contribution to the 

correlation between chromatographic data and inhibition.  Peak maxima in Figure 3.6A 

are at 14.6 and 16.2 minutes, suggesting that a majority of the difference in sample 

composition that is correlated with inhibition is due to the change in absorbance (i.e. 

concentration) of compounds eluting at these retention times.  

 The loading plot is another tool that can be used along with the regression 

coefficient plot to identify variables with high significance to the model.  The loading is 

the cosine of the angle between each variable and the corresponding PC.
77

  As the angle 

between the component and the variable approaches 0 or 180 degrees, the loading 

approaches 1 or −1.  This indicates that the component is parallel with the variable, and 

the variable contributes much information to the component.  As the angle between the 

variable and the component approaches 90 degrees, the loading approaches 0, indicating 

that little information is contributed to the component from that variable.  The higher the 

loading value, the more significant that variable is to the corresponding PC.  Figure 3.6B 

shows the loadings plot for PC1 and PC2.  The most significant retention times in Figure 
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Figure 3.6. A) Regression coefficient plot for HPLC-UV model, B) X-loadings for the 

first two principal components. 
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3.6B are identical to those identified by the regression coefficient plot, further confirming 

their significance to the observed correlation.  

Significant retention times identified in Figure 3.6 correspond to 5-hydroxy-2-

methylfurfural (HMF) and furfural, respectively, which are of particular importance for 

toxicity in yeast.
33,37

  Identification of both compounds was confirmed by comparing UV 

absorbance ratios at multiple wavelengths (Aλ1/Aλ2) and retention time data with a 

reference standard (90%> agreement).  Additionally, peak purity for both compounds 

was evaluated by comparing multiple absorbance ratios at several retention times within 

the peak window with a reference standard (90%> agreement).  Furfural has shown to 

inhibit ethanol production by 31% at concentrations as low as 1 g/L, when tested alone.
40

  

At 2 g/L, furfural further inhibited cell growth of S.  cerevisiae.  HMF has shown to 

inhibit ethanol production by 20% when tested alone at 2 g/L.  When tested together, a 

total furan concentration of 3 g/L was required to inhibit ethanol production.
33

  However, 

the minimum inhibitory concentration of furans is significantly lower when they are 

present in a mixture of other degradation products, which may be due to synergistic 

effects.  For example, Martinez and coworkers demonstrated that when the ratio of HMF 

to furfural is low (0.15-0.2), inhibition of ethanol production occurred when the total 

furan concentration exceeded 0.2 g/L.
42 

 Even as the ratio of HMF to furfural increased to 

0.8−1.1, the minimum inhibitory concentration of furans was as low as 0.5 g/L.  Several 

other studies have also demonstrated the inhibitory effects of HMF and furfural.
34,41,44

  

The concentration range for HMF and furfural observed in samples used in this study was 

0.04-0.4 and 0.1-0.6 g/L, respectively.  Accordingly, identification of these compounds 
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by the model developed here was a promising result, confirming that the methodology 

employed is effective for identifying inhibitory compounds.   

 

Control Experiments Demonstrating that the Model isn’t Simply Picking Prominent 

Peaks 

 

 Given that the retention times identified by the model correspond to the most 

prominent peaks in the chromatogram, control experiments were carried out to ensure 

that the model did not simply select the most prominent variables as the most significant 

ones.  To accomplish this, the 21 hydrolysate samples that were used to construct the 

model were spiked with furfuryl alcohol.  Furfuryl alcohol was chosen due to its high 

absorptivity (ε223nm = 1.3 * 10
3
 M

−1
 cm

−1
) in the UV region and low toxicity in yeast.

37
  

The concentrations of furfuryl alcohol used in this work ranged from 0.0418 to 0.125 g/L.  

This concentration range was selected to obtain a similar absorbance range for the 

furfuryl alcohol peak as the peaks corresponding to 5-HMF and furfural (Figure 3.1B).  

To ensure that the amount used for spiking did not affect percent inhibition of 

hydrolysates, three hydrolysate samples with low, mid, and high inhibition (samples 8, 9, 

and 20) were spiked with furfuryl alcohol at a concentration of 0.125 g/L and re-

fermented.  A non-spiked version of each sample was also fermented for comparison. 

Fourteen hours following inoculation, percent inhibition was 46, 25, and 68% for samples 

8, 9 and 20, respectively.  For unspiked samples, percent inhibition was 43, 26, and 70%, 

corresponding to a relative percent difference of 7, 4, and 3%.  Results confirmed that 

observed inhibition in spiked samples was not significantly different than that of the 

unspiked samples.  Subsequently, hydrolysate samples were spiked randomly with 

varying amounts of furfuryl alcohol, ranging between 0.0418 and 0.125 g/L, and re-
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analyzed via RPLC with detection at 201, 223, 242, and 279 nm.  Independent 

experiments confirmed that the furfuryl alcohol spiking levels were within the linear 

range of the detector (Figure 3.7).  Figures 3.8 illustrates HPLC-UV chromatograms 

corresponding to samples showing minimum and maximum absorbance at 201 and 223 

nm.   

  

 

Figure 3.7. Plot of absorbance as a function of concentration for all hydrolysate samples 

spiked with furfuryl alcohol. Top: Absorbance at 201 nm, Bottom: Absorbance at 223 nm 
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Figure 3.8 HPLC-UV chromatograms of spiked hydrolysate samples at 201 and 223 nm. 

 



 

76 

 Chromatograms of the 21 spiked hydrolysate samples from all four wavelengths 

and the original inhibition data were used to re-construct the chemometric model.  The 

regression overview for this model is provided in Figure 3.9.  Overall, this model had 

comparable results, using two PCs, to the original model constructed with RPLC-UV data 

of unspiked hydrolysates.  This was anticipated, given that no correlation was expected to 

exist between concentration changes in furfuryl alcohol and microbial inhibition.  This 

model was used to predict inhibition for the five validation samples that were spiked and 

analyzed in the same manner as the calibration samples.  Prediction results for this model 

are presented in Table 3.2 (column 4).  The model had an R
2 

of 0.72.  RMSEP was 5, a 

comparable value to model 1.  Furthermore, predicted values were within the 95% 

confidence intervals of experimentally determined inhibition in four of five validation 

samples (5, 9, 11, and 19).  The retention times identified by the regression coefficient 

and loadings plots (Figure 3.10) were unchanged relative to model 1, and corresponded to 

expected retention times for 5-HMF and furfural.  This confirms that the chemometric 

model developed did not identify significant retention times based on peak prominence, 

but based on changes in peak area and/or height and how the change is correlated with 

microbial inhibition.  

 

Exclusion of Significant Variables for Identification of Additional Retention Times  

 

 Figures 3.1-3.4 depict several peaks in the RPLC-UV chromatogram, with the 

most prominent ones at 14.6 and 16.2 minutes.  Since the prominent peaks were 

identified by the model as the most significant variables, it was unclear whether the 

significance of smaller peaks was masked by the presence of prominent ones.  To  
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Figure 3.9. Regression overview for model constructed using spiked hydrolysates: A) 

variance vs. number of components, B) scores plot, C) predicted vs. measured plot 
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Figure 3.10. A) Regression coefficient plot for model constructed using spiked 

hydrolysates, B) X-loadings for the first two principal components. 
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evaluate this, the retention time window ranging from 14−17.5 minutes was excluded 

from the chromatograms obtained on raw hydrolysates and the model was reconstructed 

with edited chromatograms.  The regression overview for this truncated model is 

presented in Figure 3.11.  Overall, the model’s correlation was poor.  Results of this 

experiment demonstrate that utilizing truncated chromatograms did not result in 

identification of additional retention times that were correlated with inhibition.  Results 

also confirm that the chromatographic data for 5-HMF and furfural made a significant 

contribution to the initial RPLC-UV model and that the change in peak areas of these 

compounds had a stronger correlation with inhibition than any other eluting compound.   

 

Use of a Different Detection Method for Identification of Additional Retention Times  

 

 While it was promising that the RPLC-UV model identified retention times 

corresponding to HMF and furfural, it was surprising that the model did not also identify 

the retention time corresponding to elution of acetic acid as a significant variable.  

Previous studies have suggested that acetic acid is inhibitory to microbial growth and 

fermentation.
15,43,92

  The inability of the model to identify the acetic acid peak as a 

significant retention time could be due to the methodology employed.  Acetic acid has 

low absorbance in the UV region, is not strongly retained, and could be co-eluting with 

other polar sample constituents.  Therefore, better resolution and/or more selective 

detection may lead to identification of the acetic acid peak by the model as a significant 

variable.  To test this hypothesis, all hydrolysate samples used for model construction 

were analyzed by ion chromatography (IC) with conductivity detection.  The gradient 

separation employed was designed to resolve early eluting compounds observed in  
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Figure 3.11. Regression overview for model constructed using truncated chromatograms: 

A) variance vs. number of components, B) scores plot, C) predicted vs. measured plot 
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RPLC-UV chromatograms (e.g. acetic acid, formic acid, lactic acid, etc.).  Anion 

exchange was employed to retain the dissociated form of these weak acids and elution  

was achieved by increasing the hydroxide ion concentration in the mobile phase.  Figure 

3.12 illustrates the IC chromatograms of all samples.  Three prominent peaks were 

observed at 4.9, 5.2, and 6.7 minutes, corresponding to acetic acid, propionic acid, and 

chloride ion, respectively.  Identification of compounds was achieved by comparison 

with a reference standard.  A chemometric model was subsequently developed to 

correlate IC chromatograms of the 21 hydrolysate samples with inhibition.  Sample 20 

was identified as an outlier by the model, possibly due to its significantly higher chloride 

ion concentration compared to other samples.  Omission of this sample from the 

calibration sample set resulted in an improvement in R
2 

and RMSEP from 0.50 and 12 to 

0.60 and 8, respectively.  The regression overview for the developed model is presented 

in supplementary material presented in Figure 3.13. Overall, the IC model demonstrated a 

weaker correlation, using two PCs, compared to model 1.  The model was subsequently 

used to predict inhibition of five validation samples and the results are presented in Table 

3.2 (column 5).  The model had an R
2
 of 0.60 and RMSEP of 8.  Validation samples 5, 9, 

and 19 had predicted values that were within 95% confidence intervals of experimentally 

determined inhibition.  Results of the validation step indicate a weaker correlation 

between ion chromatography data and microbial inhibition, compared to the model 

constructed with RPLC-UV data.  Nevertheless, the regression coefficient plot and the x-

loadings plot identified all three retention times as significant variables.  The x-loadings 

plot is depicted in Figure 3.14.  
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Figure 3.12. IC chromatograms of hydrolysate samples: A) Chromatograms of all 

hydrolysate samples. B) Expansion of chromatograms shown in A. 
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Figure 3.13. Regression overview for model constructed using ion chromatography data: 

A) variance vs. number of components, B) scores plot, C) predicted vs. measured plot. 
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Figure 3.14. X-loadings for ion chromatography model. 

 

 

 Retention time at 4.9 minutes, corresponding to the expected retention time of 

acetic acid, had the highest loading value, suggesting a stronger correlation with observed 

inhibition compared to other resolved peaks.  Previous studies have demonstrated that 

acetic acid is inhibitory to ethanol production and cell growth at concentrations of the 

undissociated form exceeding 5 g/L
 
.
45,46

  This is due to the fact that the undissociated 

acid can diffuse through the plasma membrane and dissociate inside the cell.  As a result, 

protons must be pumped across the membrane to maintain intracellular pH, a process that 

requires ATP.  Above a critical concentration of undissociated acid, the diffusion rate of 

the undissociated from will exceed the proton pumping capacity of the plasma 

membrane, leading to cell death.  The maximum concentration of acetic acid in 

hydrolysate samples used in this work was 3 g/L, a value lower than the reported 
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threshold.  However, it should be noted that previous studies were carried out by 

observing the effects of acetic acid on ethanol production and yeast growth when added 

alone, and did not investigate its toxicity when present in a mixture of hydrolysate 

constituents.  Therefore, the observed difference between reported inhibitory 

concentrations of acetic acid and inhibitory concentrations found in hydrolysate samples 

used in this work may be due to synergistic effects between acetic acid and other 

degradation compounds.  The IC model also identified retention times corresponding to 

propionic acid and chloride.  Chloride has been shown to have detrimental effects when 

present in concentrations exceeding 6 g/L.
48

  The concentration of chloride in hydrolysate 

samples used in this work ranged from 0.5 to 3.5 g/L.  Toxicity studies on propionic acid 

have not been reported previously.  However, other low molecular weight aliphatic acids 

have demonstrated inhibitory effects on ethanol production.
45-47,112

  

It is also important to recognize that although the chemometric model selected the 

peak corresponding to chloride as a significant variable, it may be the counter cation that 

has a high correlation with inhibition.  Based on previous studies, it is known that 

potassium ion is present in concentrations that are 10-60 times higher than other cations 

(Na
+
, Ca

2+
, Mg

2+
, NH4

+
) in water extracts of corn stover.

20
  Thus, it is likely that the 

counter cation for the identified chloride peak is potassium, which has been shown to 

inhibit hexokinase, enolase, and membrane ATPase activities and nucleic acid uptake in 

yeast cells.
49-51

  Overall, the results of the above experiment confirm that improved 

resolution and/or detectability of sample constituents may lead to identification of more 

retention times as significant variables.   
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Conclusions 

 

 We have successfully demonstrated that chemometric modeling can be used to 

correlate microbial inhibition with chromatographic data.  Furthermore, we have 

demonstrated that retention times identified by RPLC-UV and IC models as being 

strongly correlated with inhibition correspond to inhibitory compounds.  The utility of 

this approach may be further improved by better resolution and more universal 

detectability of sample constituents.  Future work should additionally aim to reduce the 

developed model to practice by expanding it to include more samples from different 

feedstock types, pretreatment methods and/or fermentative organisms.   It is important to 

note that high correlation does not always suggest causation.  As such, any compounds 

identified as significant by a chemometric model, must be further investigated to confirm 

their inhibitory effects on microbial processes.  This is still most readily accomplished by 

traditional, bottom-up toxicity testing.  However, chemometric modeling of 

chromatographic data provides a facile approach for identifying candidates and should 

significantly reduce the number of hydrolysate constituents that need to be tested in order 

to elucidate the most inhibitory compounds.  
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CHAPTER FOUR 

 

Conclusions and Final Remarks 

 

 

 We have demonstrated that chemometric modeling coupled with UV-visible and 

LC-UV analyses can be a powerful tool for prediction of hydrolysate fermentability and 

identification of fermentation inhibitors arising from pretreatment of biomass.  This is a 

novel method that offers significant increase in throughput for assessment of hydrolysate 

fermentability and identification of inhibitors when compared to traditional methods.  

Information obtained from using this methodology can be further used to facilitate the 

development of inhibitor-resistant microorganisms and/or appropriate detoxification 

methods.  Future work should aim to reduce these models to practice by expanding their 

sample size to include a wider range of feestock types, pretreatment chemistries, and 

fermentative microorganisms.  Ideally, multiple feedstock types (switchgrass, corn 

stover, sorghum, poplar, sugarcane bagasse, etc.) should be selected to construct 

feedstock-specific models.  Each feedstock should then be pretreated using various 

commonly used pretreatment methods (acid hydrolysis, ammonia fiber expansion 

(AFEX), steam explosion, alkaline treatment, etc.) to account for varying effects of 

pretreatment chemistry/severity on overall hydrolysate toxicity.  Given that the inhibitory 

effects of degradation compounds will vary for different microorganisms, each 

hydrolysate should be fermented using various commonly used microorganisms (E. coli, 

S. cerevisiae, Z. mobilis, P. stipitis).  Therefore, three different types of models would be 

constructed: feedstock-specific, pretreatment-specific, and feedstock-pretreatment-
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specific models.  Ideally, 200-300 total hydrolysate samples should be generated for each 

feedstock type. 

 The larger the number of samples that are included in the models, the more 

representative the models will be of future samples.  This will in turn make better 

prediction models.  A schematic of the proposed methodology for two feedstocks is 

depicted in Figures 4.1-4.5.  

 

 

Figure 4.1 Methodology for development of chemometric model utilizing data from all 

AFEX pretreated hydrolysates. 
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Figure 4.2. Methodology for development of chemometric model utilizing data from all 

dilute-acid pretreated hydrolysates. 

 

 

Figure 4.3. Methodology for development of chemometric model utilizing data from all 

lime pretreated hydrolysates. 
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Figure 4.4. Methodology for development of feedstock-pretreatment-specific models. 

 

 

 

Figure 4.5. Methodology for development of feedstock-specific models. 
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 As previously demonstrated by Morita and coworkers,
101 

using a model 

constructed with data from a specific yeast strain to carry out predictions for a different 

strain will lead to higher prediction error.  Similarly, it would be unlikely that a 

chemometric model constructed with data from a specific feedstock (e.g. switchgrass) or 

pretreatment chemistry (e.g. AFEX) could be successfully applied to data obtained from a 

different set of bioprocessing parameters.  Accordingly, one model should be constructed 

with data from all feedstocks and pretreatment chemistries (“all-in-one” model) (Figure 

4.6) and prediction results should be compared with other models in order to select the 

best prediction model(s).  

 

 

Figure 4.6. Methodology for development of a model with data from all hydrolysates (all-

in-one model). 

 

 

Each model should be validated with samples that are compositionally different from 

ones used to construct the models, but from the same feedstock type and/or pretreatment 
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chemistry.  Calibration sample size for each model can be increased over time by adding 

new samples and recalibrating the model. 

 The HPLC-UV models can be constructed in the same manner as those depicted 

in Figures 4.1-4.6, with the exception of HPLC-UV being the method of choice for 

qualitative analysis of hydrolysate.  If chromatographic data are obtained in a three-

dimensional format (i.e. at multiple wavelengths), Tri-PLS-2 should be used instead of 

PLS-2.  These models can be subsequently used for identification of significant retention 

times (i.e. compounds) whose change in peak area (i.e. concentration) has the strongest 

correlation with inhibition.  The identified retention times will likely correspond to 

inhibitory degradation compounds.  However, as mentioned before, high correlation does 

not always suggest causation.  Accordingly, all compounds identified as significant by a 

model will need to be tested to confirm their inhibitory effects on fermentation.  The 

proposed methodology can also be carried using a different detection method to identify 

additional retention times. 
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