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Petrophysical Facies Mapping of the Pennsylvanian Cline Shale,
Midland Basin, West Texas
Kieron C. Prince, M.S.

Thesis Chairperson: Stacy C. Atchley, Ph.D.

The Cline Shale is a Pennsylvanian unconventional shale resource play located in
the Midland Basin, west Texas. This study evaluates the depositional, stratigraphic and
petrologic controls on Cline Shale reservoir quality and their spatial distribution as
determined from core-calibrated petrophysical facies across the study area. Eight
depositional facies were observed and described from the cored Gunn36 #1 well located
in Howard County. Five petrophysical facies were derived from the statistical comparison
of core observed depositional facies with corresponding digital well log data. Two
additional petrophysical facies that are not calibrated to core observations account for
both the distribution of undifferentiated shallow-marine carbonates across the Horseshoe
Atoll, and borehole washouts. By mapping the petrophysical facies, it was determined
that the distribution of the most prospective Organic Rich Shale (ORS) facies, located
principally in southwest Howard and northeast Glasscock counties, was controlled by

proximity to the contemporaneous Horseshoe Atoll and Eastern Shelf.
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CHAPTER ONE
Introduction
The Cline Shale, or simply “Cline”, is an unconventional shale play of
Pennsylvanian age within the Midland Basin of west Texas. The Midland Basin is a
subordinate basin of the greater Permian Basin. The Permian Basin is a 115,000 square
mile asymmetrical structural depression located in west Texas and southeast New Mexico
(Galley, 1958) that was periodically inundated as part of a Late Pennsylvanian seaway
that extended from the Williston Basin of North Dakota to the Appalachian-Ouchita-
Marathon orogen of the eastern and southwestern USA (Algeo and Heckel, 2008) (Figure
1). The Permian Basin occupied the former site of the early Paleozoic Tobosa Basin, a
shallow basin along the Late Cambrian through Mississippian passive continental margin
of North America. The Tobosa Basin was partitioned into numerous subordinate basins
as a result of foreland deformation and associated inversion of extensional fault blocks
during the Late Paleozoic convergence of Laurasia and Gondwanaland as Pangea was
assembled (Tai, 2001; Cawood and Buchan, 2007; Stampfli et al., 2013) (Figure 2). The
inverted fault blocks became the locus of Late Paleozoic shallow-marine carbonate and
clastic deposition, whereas the adjacent basins were the sites of deeper-water carbonate
and clastic deposition (Hills, 1972). The Permian Basin was ultimately subdivided into
the Midland and Delaware basins that were separated by the Central Basin Platform

(Yang and Dorobek, 1995; Cortez III, 2012).
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Figure 2. The Early Ordovician extent of the ancestral Tobosa Basin and its subsequent
Mississippian subdivisions: Midland Basin, Delaware Basin, Central Basin Platform.

Modified from Adams (1965).



The Permian Basin is one of the most mature and prolific onshore oil and gas provinces
in the continental United States, with the first economic oil discovery made in 1920 in
Mitchell County, Texas (Galley, 1958). Exploration and production in the Permian Basin
has continued for more than 90 years, and as of 2005, has yielded cumulative
conventional oil production of 30.4 billion barrels primarily from Permian marine
carbonate reservoirs (Dutton et al., 2005). The second most productive reservoir interval
is Pennsylvanian age marine carbonate and/or sandstone reservoirs (Dutton et al., 2005).
Most recently, horizontal drilling coupled with hydraulic fracture stimulation has allowed
oil to be produced from low-matrix-permeability unconventional shale reservoirs, e.g. the
Barnett Shale (Pollastro et al., 2007; Kinley et al., 2008), Woodford Shale (Cardott and
Lambert, 1985; Miceli Romero and Philp, 2012), and Marcellus Shale (Wang and Carr,
2013; Kohl et al., 2014). The Pennsylvanian Cline Shale is a similar unconventional
reservoir located within the Midland Basin.

This study evaluates the depositional, stratigraphic and petrologic controls on
Cline Shale reservoir quality, and the spatial distribution of core-calibrated petrophysical
facies across the area of study within the Midland Basin. The study area is located
principally in Borden, Scurry, Howard, Mitchell, Glasscock, and Sterling counties of

west Texas (Figure 1).



CHAPTER TWO

Paleogeography and Regional Stratigraphy

Midland Basin

The Central Basin Platform (Figure 3) defines the western boundary of the
Midland Basin and formed as a fault bounded, basement-cored uplift that was reactivated
and inverted during the Marathon-Ouachita orogeny (Tai, 2001). The neighboring
Midland Basin is asymmetrical, with its deepest portion adjacent to the Central Basin
Platform (Yang and Dorobek, 1995). During the Pennsylvanian, the western portion of
the Midland Basin was characterized by the highest rates of subsidence and associated
deepest marine, sediment-starved environments (Adams et al., 1951).

The southern boundary of the Midland Basin includes the Marathon-Ouachita fold
and thrust belt and a basement-involved foreland feature similar to the Central Basin
Platform that is known as the Ozona Arch (Yang and Dorobek, 1995). The Northwestern,
Northern, and Eastern shelves define the northern and eastern limits of the Midland Basin

(Walker et al., 1995) (Figure 3).
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Figure 3. Pennsylvanian paleogeographic and major structural features map of west
Texas and southeastern New Mexico (modified from Dutton et al., 2005, and Wright,
2011b). The distribution of the Cline Shale is highlighted in green and was modified from

Martin (2012). The study area is indicated by the red dashed rectangle. The position of
the Horseshoe Atoll is after Vest, Jr. (1970).



The Horseshoe Atoll is a shallow marine phylloid algal bank complex that occurs
within the north-central portion of the Midland Basin and is characterized by a regional
crescent-shaped trend (Heck et al., 1952; Vest Jr., 1970; Schatzinger, 1987). Deposition
of the atoll began in the early Desmoinesian with aggradational growth that transitioned
into retrogradational (backstepping) growth in the mid-late Desmoinesian. The isolated,
generally retrogradational nature of the Horseshoe Atoll is due to shallow-marine
carbonate nucleation across a basin floor, paleotopographic high within the rapidly
subsiding central portion of the Midland Basin. Because the rise in relative sea-level
outpaced carbonate sediment production, the Horseshoe Atoll stratal succession records
long-period transgression, i.e., retrogradational stratal stacking (Mazzullo and Mazzullo,

1983; Waite, 1993).

Eastern Shelf
The Ouachita fold and thrust belt, located to the east of the study area, may be the
landward source of clastic sediment observed within the Cline Shale. Clastic sediment

derived from the Ouachita orogen was transported across the Eastern Shelf and into the

Midland Basin (Yang and Kominz, 2003).

Lithostratigraphy
The Canyon and Cisco groups (Figure 4) were originally described by Cummins,
1891, as cited by Boardman II and Malinky (1985).
The Canyon Group is composed of relatively thin, cyclic alternations between carbonate

and lesser amounts of shale (Galloway and Brown Jr, 1973; Schatzinger, 1987).



The Cisco Group is dominated by shale and has an estimated shelf to basin depositional
relief of 457 m (1500 ft.) and has an early Permian erosional unconformity as its upper
boundary (Saller et al., 1994). These groups have been extensively studied and
subdivided on the Eastern Shelf (Boardman II and Malinky, 1985; Yancey, 1986; Ross
and Ross, 1988; Boardman II and Heckel, 1989) and their upper Pennsylvanian strata
consist primarily of carbonate platform facies that transition basinward into siliclastic and
progressively finer-grained, deep-water facies (Yang and Kominz, 2003; Yang and
Dorobek, 2012). Basinal facies of the Canyon and Cisco groups have not been studied as
thoroughly due to both the lack of outcrop and the prevalence of informal subsurface
names that confuse stratigraphic delineation within the basin. One such informal
designation is the “Cline Shale”, a term that is used within the Midland Basin to describe
the organic-rich shale intervals of the upper Pennsylvanian Canyon and Cisco groups. In
this study the “Cline Shale” refers to the organic-rich shale interval between the

Pennsylvanian Strawn and Cisco groups (Figure 4).
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Figure 4. Stratigraphic correlation chart for Carboniferous (Pennsylvanian) strata within
the Midland Basin and Eastern Shelf of west Texas (modified from Wright, 2011b). The
highlighted source rock intervals are from Sarg et al. (1999). The eustatic sea level curve
is from Ross and Ross (1987). The apogee of long period sea level rise corresponds with
Cline Shale “source rock™ deposition. The long period rise in sea level during the Strawn
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CHAPTER THREE

Methods

Stratigraphic Correlation

A detailed stratigraphic framework was constructed across the study area by
correlating 138 well logs within a grid of 6 stratigraphic cross sections (Figure 5). The
Upper Strawn Formation top was selected as a stratigraphic datum owing to its deposition
as an extensive, uniformly thick unit across the study area (Wright, 2011a). The Upper
Strawn is composed primarily of bedded limestone and thinly bedded shale, and is
characterized by a pronounced drop in natural gamma radiation (Figure 6). Within the
study interval two additional formation tops were identified on well-logs: 1) the “Three
Fingers” is a marker bed recognized by a triplet set of repeated thinly bedded shales that
are thought to represent the boundary between the Canyon and Cisco groups, and 2) the
top of the Cline Shale is a doublet marker of thinly bedded shales located at the upper

limit of the study interval (Figure 6).
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Core Description

The entire 111 m (365 ft.) of core available for the Gunn36 #1 well was described
in detail at Midland College, Midland, Texas (Appendix D). Core descriptions were
completed at a resolution of 15 cm (0.5 ft.) and include documentation of the vertical
distribution of lithology, carbonate textural classification according to Dunham (1962) as
modified by Embry and Klovan (1971), grain type, grain size, sedimentary structures,
facies, ichnofabric index (Droser and Bottjer, 1986; Bottjer and Droser, 1991), color,
fracture density, cement type and occurrence, and effervescence with dilute hydrochloric

acid (Appendix D).

Facies Predictions

The Gunn36 #1 core description was digitized and depth-shifted to coincide with
digital petrophysical well log data. Core depositional facies were compared against
various well log data to determine whether facies can be predicted in wells that lack core
control (Crass, 2015). Cross plots of gamma ray versus density porosity suggest that a
numerical transform using bracketed parameter range cutoffs allows for facies prediction
(Crass, 2015) (Table 1). Wells having only raster images of gamma ray and density
porosity were digitized in the main module of IHS Petra ™ before the model was applied
to all wells. The transform was then applied using IHS Petra ™ software and the resulting
petrophysical facies were plotted in the depth track for wells viewed in the Cross Section

Module of IHS Petra ™,

13



Table 1. Guidelines for facies prediction from open-hole well logs.

Model Derived Petrofacies

Depositional Facies Equivalent

Parameters for
Well Log Prediction

Primarily LCF and SBM. GR=0to 150 API

Lesser IGC and MBM. DPHI =-10% to -2%
(OERLIERNCTER AW AN Primarily LCF and GSC. GR =0 to 60 API
(CGF) Lesser MBM. DPHI = -2% to 30%
Mixed Carbonate and Primarily MBM, SBM and LCF. GR =60to 105 API
Mud (MCM) Lesser GSC, LCM and MSC. DPHI =-2% to 30%
Non-Reservoir Shale Primarily MBM and SBM. Lesser GR 105 to 300 AP1
(NRS) BLM. DPHI =-10% to 10%
Organic Rich Shale Primarily BLM. GR =105 to 300 API
(ORS) Lesser MBM and SBM. DPHI = 10% to 30%
Shallow Marine N/A GR 0to 30 API
Carbonate (SMC) DPHI = -2% to 30%
Wash-Out Zone N/A GR not used

WOZ DPHI = above 30%
Structure Maps

Structure contour maps were prepared from the tops of the three main study units
correlated across the grid of well log cross sections (138 total wells), i.e., the Strawn,
Three Fingers, and Cline. Stratigraphic surface “picks” were placed using the Cross
Section Module of IHS Petra ™ and maps were subsequently generated using the
Mapping Module. The resulting contour maps were then exported as ESRI shape files
that were then accessed in the ESRI ArcGIS ™ ArcMap™ module where they were
subsequently exported in EPS format. The EPS files were then imported into ACD
Canvas ™ where final versions of all maps were hand-edited and refined to publication

quality.

14



Facies Maps
Contour maps of cumulative facies thickness and distribution were generated for
each of the petrophysical facies in a manner similar to the structure contour maps. An
additional isopach map of the Cline interval, i.e., the strata between the Strawn and Cline

stratigraphic tops, was also prepared.

15



CHAPTER FOUR

Observed Facies and Environments

Introduction

To date, the Cline Shale has generally not been studied academically. The Cline
Shale has been described by the Midland Basin oil industry as the stratigraphic interval
that includes the basinal equivalents of the predominantly shelfal Canyon and Cisco
groups, and has generally been interpreted as a thin, dark shale that accumulated within a
rapidly subsiding and sediment starved basin (Adams et al., 1951; Adams, 1962).
Whereas the Canyon and Cisco are well-defined on the Eastern Shelf, their occurrence in
the Midland Basin is not, inasmuch as the Cline Shale transitions from relatively thick
Canyon and Cisco shelf carbonates, updip, to thin, condensed basinal shales, downdip
(Mazzullo and Reid, 1989). Sediment gravity flows that contain both skeletal grains and
lithoclasts are increasingly abundant from basinal positions towards the Horseshoe Atoll,
and are typically more common in Canyon equivalant strata (Hobson et al., 1985a;
Mazzullo and Reid, 1989; Cortez III, 2012).

Eight depositional facies (Table 2) are distinguished within the study area on the
basis of grain type, grain size, sedimentary structures, and ichnofabric index, 1.e., a
numerical scale from 1-5 such that 1 represents no bioturbation and complete
preservation of mechanical sedimentary structures, and 5 represents complete
bioturbation and total destruction of mechanical sedimentary structures (Bottjer and

Droser, 1991).

16
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Black Laminated Mudrock — BLM

Description: BLM 1is a black to dark gray siliciclastic mudrock composed of mm-
laminated silt and clay sized siliciclastic sediment (90%) with interspersed lamina of gray
calcareous silt (10%) (Figure 7A). Phosphate nodules are common in the darkest colored
sections and have an average diameter of 4 cm. Skeletal fragments are rare when present
and are typically brachiopod/bivalve fragments. This facies has little to no bioturbation
and is assigned an ichnofabric index of 1-2.

Interpretation: The lack of oxidation and bioturbation along with high mud
content suggest deposition in a low-energy offshore, oxygen-restricted setting that
corresponds to periods of maximum transgression (Heckel, 1977; Boardman II and

Malinky, 1985; Yancey, 1986).

Mottled Black Mudrock — MBM

Description: MBM 1is a dark to light gray mudrock with silt to clay sized
siliciclastic sediment (Figure 7B). Sedimentary structures include mm-scale laminae that
are discontinuous and wavy to convolute. The rock fabric is assigned an ichnofabric
index of 3-5. Carbonate allochems are uncommon (<10%) but can include fusulinids,
crinoids, and brachiopod/bivalve fragments. Carbonate mud composition may be as high
as 40%. This facies commonly overlies either the carbonate LCM, MSC, and GSC facies,
or the siliciclastic BLM facies.

Interpretation: The reduction in siliciclastic mud content coupled with the
increase in bioturbation and calcareous sediments suggest deposition in an offshore,
normal marine environment that is more oxygenated than that of the BLM facies

(Heckel,1977; Boardman II and Malinky, 1985; Hobson et al., 1985a; Yancey, 1986).
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Figure 7. Representative core photographs of depositional facies observed in the Gunn36
#1 well. Scale bar is 1cm. (A) Black laminated mudrock facies at 7893ft. (B) Mottled
black mudrock facies at 8024 ft. (C) Skeletal black mudrock facies at 7918.5 ft. (D)
Laminated carbonate mudstone facies at 7942 ft. (E) Mud supported carbonate facies at
7955 ft. (F) Grain supported carbonate facies at 7969 ft. (G) Lithoclastic carbonate
floatstone facies at 7994.5 ft. (H) Inversely graded carbonate facies at 8032.5 ft.
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Skeletal Black Mudrock — SBM

Description: SBM is a dark to light gray mudrock with 60-90% mud to clay sized
siliciclastic sediments (Figure 7C). The remaining 10-40 percent of the sediment volume
is dominated by carbonate mud and lesser allochems of brachiopods, crinoids and
fusulinids. The bioturbation index ranges from moderate to high (2-5) with mm-
lamination preserved when unobscured by bioturbation. This facies most commonly
overlies the MBM or BLM facies.

Interpretation: The high siliciclastic mud content, variable bioturbation and

abundance of brachiopod fragments suggests deposition in an oxygenated, basinal
environment that is relatively more proximal to a shallow-marine carbonate shelf or bank

(Bottjer and Droser, 1991; Hickey and Henk, 2007).

Laminated Carbonate Mudstone — LCM

Description: LCM is a light gray carbonate mudstone that is dominated by mm-
scale lamina with <10% siliciclastic mud (Figure 7D). This facies is typically thin to
medium bedded (76 mm average thickness but up to 152 mm). The LCM commonly
sharply overlies the LCF and MCM facies and grades upward into the LCF, SBM or
BLM facies. Bioturbation is rare, and the rock fabric is classified as having an ichnofabic
index of 1-2. Skeletal fragments are also rare.

Interpretation: The abundance of laminated carbonate mud, sharp lower contacts
with the SBM and LCF facies and gradational upper contacts with the SBM, BLM and
LCEF facies suggest deposition of allochthonous sediments by turbidity currents on the

basin floor and/or toe of slope.Associated deposits are classified as the Tq and Te
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divisions of the ideal Bouma succession (Bouma, 1962; Enos and Moore, 1983;

Shanmugam, 1997).

Mud Supported Carbonate — MSC

Description: MSC is a medium to light gray wackestone with abundant mm-
lamina and current ripples (Figure 7E). This facies is characterized by normal grading
and a bimodal grain size distribution of mud-supported fine sand. The MSC is medium
bedded (average bed thickness of 190 mm) and commonly both under- and overlies the
siliciclastic mud dominated SBM and MBM facies. The basal contact is sharp and wavy,
whereas the upper contact is typically gradational. The MSC has an ichnofabric index of
1.

Interpretation: The abundance of carbonate mud, mm-lamina and ripples suggest
deposition by a current that is stronger than that invoked for the LCM facies. Deposits are
classified as the T. and Tq divisions of the ideal Bouma succession, and are interpreted to
have accumulated in a lower slope to toe of slope setting (Bouma, 1962; Enos and Moore,

1983; Shanmugam, 1997).

Grain Supported Carbonate — GSC
Description: GSC is a light gray, medium to coarse-grained carbonate packstone
(Figure 7F). Carbonate allochems are abundant and include fragments of crinoids,
brachiopods, bryozoans, fusulinids and lesser carbonate lithoclasts.
Beds are normally graded and average 304 mm in thickness. Lower contacts are wavy

and generally overlie the MBM, LCF and SBM facies.
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Upper contacts are gradational and commonly transition into the MBM facies and less so
the SBM and LCF facies. The GSC is characterized by an ichnofabric index of 1.
Interpretation: The abundance of coarse carbonate grains, presence of lithoclasts
and absence of mechanical sedimentary structures suggest turbidity deposition in a shelf
slope setting. Deposits are classified as the Ta division of the ideal Bouma succession

(Bouma, 1962; Enos and Moore, 1983; Shanmugam, 1997).

Lithoclastic Carbonate Floatstone — LCF

Description: LCF is a grey carbonate floatstone with abundant coarse lithoclasts
and lesser skeletal fragments of crinoids, brachiopods and fusulinids (Figure 7G). The
facies is ungraded, poorly-sorted and chaotic, and is characterized by a bimodal grain size
distribution of matrix-supported medium sand to pebble-sized clasts. Lower bed contacts
are sharp, wavy or inclined. At the lower contact grains are, in some cases, observed
penetrating the underlying BLM, MBM or SBM facies.
Upper contacts are sharp or gradational and inclined, and commonly overlie the
siliciclastic mudstone facies or the LCM and IGC carbonate facies. Bioturbation is
absent.

Interpretation: The unsorted, chaotic fabric, sharp (erosional) lower contact, and
abundance of coarse lithoclasts suggests debris-flow deposition in the middle to upper

shelf slope (Enos and Moore, 1983; Shanmugam, 1997).

Inversely Graded Carbonate — IGC
Description: 1GC is a light gray carbonate packstone to grainstone (Figure 7H).

Deposits are inversely graded and consist of grain supported medium sand to pebble-
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sized lithoclasts, and fragments of crinoids, brachiopods, bryozoans and fusulinids.
Lower contacts are inclined and irregular and may have grains that penetrate into the
underlying MBM or LCF facies. Upper contacts are sharp and irregular and usually
underlie the MBM or LCF facies. Bioturbation is absent.

Interpretation: The inverse grading and abundance of grains suggests upper slope
deposition by grain flows proximal to the source of carbonate allochems (Enos and

Moore, 1983).

Petrophysical Facies Description

Five log-based petrofacies were identified through the application of statistical
transforms developed by Crass (2015).

Table 1 and Figure 8 summarize the diagnostic petrophysical criteria by which
each of these core-based petrofacies are defined and lists their constituent depositional
facies. Two additional petrophysical facies were created that were not based on
depositional facies observed in core. These facies were created to account for the
predicted presence of inferred shallow-marine carbonates, as well as to account for the

presence of borehole washouts observed in well logs.

Shallow Marine Carbonate — SMC
The SMC facies was created to account for shallow-marine carbonates associated
with the Horseshoe Atoll, and was modeled after similar shallow-marine platform
deposits described by numerous workers (Myers et al., 1957; Mazzullo and Mazzullo,
1983; Hobson et al., 1985b; Schatzinger, 1987; Waite, 1993). The SMC is defined as

having a GR range of 0-30 API units and a DPHI range of -2-30 percent (Table 1).
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Wash-Out Zone — WOZ
The WOZ facies was created to account for the occurrence of borehole washouts
recorded on the wireline logs. Borehole washouts are most common in thin shales and
occur when the wellbore wall collapses or caves in response to excessive fluid pressure,
borehole stress, or unconsolidated sediments (Doveton, 1994). Borehole washouts are
characterized by a caliper log value exceeding the drill bit diameter and DPHI value

greater than 30 percent.
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Figure 8. Petrophysical facies from the Gunn36 #1 well and their diagnostic range of
gamma ray and density porosity cut-offs, along with the proportion of core observed
facies contributions to each petrophysical facies. The relative trends in carbonate to
organic content are also indicated at the bottom of the figure. Carbonate proportions
are based on the reactions of each facies to dilute hydrochloric acid. Organic
proportions were established based on core analyzed TOC (Figure 11). Carbonate and
organic content are inversely related and likely reflect both the introduction of oxygen

and the dilution of organic matter by carbonate gravity flows. Modified from Crass
(2015).

25



CHAPTER FIVE

Distribution of Reservoir Quality

The most prospective petrofacies include the ORS and to a lesser extent the NRS
(Crass, 2015). Crass (2015) determined relative reservoir potential by estimating the
proportion of total organic carbon (TOC). Both the Passey (Passey et al., 1990) and
Schmoker (Schmoker and Hester, 1983) methods were evaluated but the density porosity
log-based “Schmoker equation” was preferred because it produced results more similar to
those obtained from the laboratory analyses of core plugs that yielded a TOC range of 1-

10 wt% (Figure 9). The “Schmoker equation” is as follows:

156.956
pb

TOC (wt%) = ( ) _ 58.271, where:

pb = bulk density value from wireline log data

156.956 and 58.271 = empirical constants relating organic matter
density, matrix density, and a ratio between weight percents of
organic matter and organic carbon with generic shale values as

prescribed by Asquith (2012) (Crass, 2015).
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The relationships between core-derived depositional facies, petrophysical facies and
organic richness were evaluated with the use of box and whisker plots that compared
facies against Schmoker-calculated TOC estimates. Higher TOC values correspond with
the deep-water, siliciclastic-dominated facies (SBM, MBM and BLM) and lower TOC
values with the shallow-water, carbonate-dominated facies (IGC, LCF, GSC, MSC, and

LCM) (Figure 10).
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Figure 10. Box and whisker plot of depositional facies versus Schmoker-derived TOC.
Deeper water, siliciclastic dominated facies generally correspond with higher TOC
values. Refer to Table 2 for facies codes. Modified from Crass (2015).

A corresponding trend exists with the petrophysical facies. The carbonate related facies
(DCB, CGF), and the transitional MCM facies have lower TOC values and the
siliciclastic-dominated NRS and ORS facies have higher TOC values (Figure 11). The
ORS petrofacies has highest TOC values (range from 3-13%, average of 4.5%) and is the

most prospective potential reservoir.
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Figure 11. Box and whisker plot of petrophysical facies versus Schmoker-derived TOC.
The ORS is most organic rich and has the highest reservoir potential.

Cumulative isopach maps of both the ORS and NRS petrofacies illustrate the
influence of the Horseshoe Atoll and Eastern Shelf on both their distribution. Both facies
thin towards the atoll and thicken basinward (Figures 12 and 13). The ORS thickens in a
basinward direction into southwest Glasscock County and thins to the east towards the
Eastern Shelf in Sterling and Mitchell Counties (Figure 12). Noteworthy trends of the
NRS include northeastward thinning of the facies from southeast Scurry County in the
north to Glasscock County in the south, and thickening towards the Eastern Shelf in

southeast Mitchell and Sterling Counties (Figure 13).
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lies just outside of the study area). The outline of the Horseshoe Atoll is depicted by the
dashed black polygon in the northern portion of the study area. The position of the

Horseshoe Atoll is modified from Vest Jr. (1970).
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Proximity to the Horseshoe Atoll has a direct influence on the organic richness of the
ORS and NRS facies. The Atoll was a major source of carbonate debris that was shed
into the basin as gravity or debris flows. Carbonate gravity flows diluted organic matter
content as a result of both associated high sedimentation rates (Ibach, 1982; Tyson, 2001;
Lash and Blood, 2014) and introduction of oxygen and/or deposit feeding organisms
from shallower-water to deeper-water settings (Davis et al., 1989; Mertz Jr, 1989;
Landing, 2012). Carbonate gravity flows (represented by the CGF facies) generally
decrease in abundance south of the Horseshoe Atoll, with the exception of Scurry County
where the facies extends as an elongate trend basinward independent of the atoll (Figure
14). This feature may be related to the debris flows recognized on the edges of the
SACROC and Cogdell fields) in Scurry County and may be the result of channels cut into
the Horseshoe Atoll while the reef was exposed during sea-level lowstands (Reid and
Tomilson-Reid 1991; Walker, 1995). The occurrence of channelized debris flows is more
prevalent on the windward (northeastern) extent of the Atoll due to a combination of its
increased topographic relief (Burnside, 1959), and northeasterly wave approach from
prevailing winds (Walker, 1995). The inverse relationship between these carbonate
gravity flows and organic matter abundance is illustrated in the facies ratio map
ORS/CGF (Figure 15). In areas near the atoll, and more notably, proximal to the inferred
channel where the CGF facies extends basinward, there is a marked reduction in the

abundance of the ORS facies.
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CHAPTER SIX

Depositional History

In response to an acceleration in sea level rise during the Late Desmoinesian,
strata of the Horseshoe Atoll evolved from an aggradational to retrogradational
succession with a broad, pinnacle-style geometry, and culminated in a “drowned
unconformity” (sensu Schlager 1992) during the early Permian (Adams, 1962; Vest, Jr.,
1970; Greenlee and Lehman, 1993).

Variability in the succession of facies within basinward-equivalent strata to the
Horseshoe Atoll are characterized by a transition from carbonate to siliciclastic
dominated basinal facies. The prevalence of the carbonate CGF facies (Figure 14) is most
prevalent in areas within and proximal to the atoll, while the siliciclastic-enriched ORS
and NRS facies (Figure 12, Figure 13) are most prevalent in areas distal to the atoll.
During aggradational to retrogradational growth of the atoll, carbonate sediments were
readily supplied to adjacent basinal areas via sediment gravity flows, possibly induced by
bank top and slope destabilization during lowstands in sea level, e.g., CGF distributions
in Scurry and Mitchell counties (Figure 14) (sensu Greenlee and Lehman, 1993).
Regardless of mechanism, basinal stratigraphic successions that are dominated by
sediment gravity deposits have diluted concentrations of organic matter, and therefore,
lower exploration potential.

Upon drowning of the atoll, the supply of carbonate sediment was shut off and

resulted in a proportional increase in siliciclastic sediments.
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This transition from basinal carbonates to siliciclastics coincides with the Three Fingers
stratigraphic top, and is conspicuous in wells proximal to the atoll (Figure 16). Organic
enrichment of basinal shales above the Three Fingers generally increases with increasing
distance away from the atoll (Figure 12, Figure 16). Some basinal wells show no
increase, and in some cases show a decrease in the proportion of ORS above the Three
Fingers. This is particularly evident in relation to the Eastern Shelf where there is a
relative decrease in the ORS facies proportion in the proximal areas. This may suggest
that clastic input from the shelf diluted organic richness in adjacent areas (see cross
sections D-D’ through F-F* Appendix D).

In summary, the highest concentration of the ORS facies, and therefore the
greatest exploration potential, is located in the basin center in Howard and Glasscock
counties (Figure 12). The least prospective areas for Cline exploration are those proximal
to the Horseshoe Atoll, Eastern Shelf, and the inferred lowstand channel, i.e., Borden,

Scurry, Mitchell, and Sterling counties (Figure 14).
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1.

CHAPTER SEVEN

Conclusions

The Cline interval encompasses the Pennsylvanian Canyon and Cisco Groups and
is comprised of eight depositional facies that accumulated in slope (LCM, MSC,
LCF, GSC, IGC) and basinal (BLM, MBM, SBM) environments.

A distribution of seven petrophysical facies from Crass (2015) were assessed in
this study. Five of these facies (DCB, CGF, MCM, NRS, and ORS) were derived
from data compiled from core descriptions and petrophysical data. Two additional
facies (WOZ and SMC) account for both the occurrence of borehole wash out
zones (WOZ) and presence of shallow marine carbonates of the Horseshoe Atoll

(SMCO).
The most prospective unconventional reservoir is the ORS facies (average TOC

of 4.5%). Sedimentological and ichnological features of the ORS facies suggest
deposition in an oxygen-depleted offshore marine environment. This facies is

most abundant in Glasscock County and the southern portion of Howard County.

The occurrence of the ORS facies is influenced by proximity to physiographic
features such as the Horseshoe Atoll, Eastern Shelf, and the lowstand channels cut
into northeastern portions of the atoll in the SACROC and Cogdell field areas in
Scurry County. Carbonate gravity flows derived from the Horseshoe Atoll dilute
organic richness and reduce unconventional shale reservoir quality.

This effect is amplified when channels are present that deliver sediment gravity

flow deposits further into the basin.
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5. Organic enrichment of basinal shales above the Three Fingers generally increases

with increasing distance away from the Horseshoe Atoll and Eastern Shelf.
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APPENDIX A

Structure Maps
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APPENDIX B

Facies Isopach Maps
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Core Description Legend

Sedimentary Structures and Grain Types

—— Planar Laminations ~ Brachiopod/Bivalve
=~~= Wavy Laminations # Bryozoan

1G  Normal Grading ® Gastropod

G Inverse Grading <> Lithoclast

D crinoid <> Intraclast

< Fusulinid & Phosphate Nodule

Ichnofabric Index

1 — No bioturbation recorded; all original sedimentary structures.

2 — Discrete, isolated trace fossils; up to 10 percent of original bedding disturbed.

3 — Approximately 10 to 40 percent of original bedding disturbed. Burrows are
generally isolated, but locally overlap.

4 — Last vestiges of bedding discernible; approximately 40-60 percent disturbed.
Burrows overlap and are not always well defined.

5 — Bedding is completely disturbed and sediment is nearly or totally homogenized.

Fractures

Fractures tabulated on a per-foot basis in bins of 5. Unless otherwise indicated,
fractures are bedding plane fractures and separations.

| Centerline Fracture r Petal Fracture

Effervescence

0 — No reaction. Negligible calcite fraction.

1 —Weak reaction. Low proportion of calcite.

2 — Moderate reaction. Subequal proportions of calcite and other minerals.
3 —Strong reaction. Primary mineral is calcite.

Dolo — Weak reaction unless powdered. High proportion of dolomite.

Color

Color designations assigned on a per-foot basis using direct visual comparison to
Munsell Soil Color Charts (2009). Unless otherwise noted, colors are from hue chart
“GLEY 2.”
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