ABSTRACT

The Design, Synthesis, and Biological Evaluation of Indole-based Anticancer Agents Matthew T. MacDonough, Ph.D. Mentor: Kevin G. Pinney, Ph.D.

Solid tumors depend on a vascular network that delivers nutrients and oxygen, thus selectively targeting the developed tumor vasculature represents a feasible strategy for the treatment of cancer. Both small-molecules and biologics that function in this manner are referred to as vascular disrupting agents (VDAs). Two benchmark VDAs, combretastatin A-1 (CA1) and combretastatin A-4 (CA4), that are both natural products inhibit the dynamic tubulin-microtuble protein system responsible, in part, for the cellular shape of endothelial cells lining tumor blood vessels. This inhibition ultimately results in morphological changes of endothelial cells, from flat to round, and leads to vessel collapse precluding blood flow to the tumor. The success of CA1P and CA4P (corresponding phosphate salts of CA1 and CA4) as VDAs has inspired the development of inhibitors of tubulin that bear structural similarities and incorporate the indole molecular template.

2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'', 4'', 5''-trimethoxybenzoyl)-6methoxyindole (**OXi8006**), prepared as its water-soluble phosphate prodrug salt (**OXi8007**), is a lead VDA discovered by the Pinney Research Group. Scale-up syntheses were necessary to facilitate planned biological studies. To investigate structure activity relationship considerations, analogues of **OXi8006** were prepared which incorporate functional group modifications of the 3-aroyl ring, the 2-aryl ring, and the indole fused-ring. These derivatives were evaluated for their ability to inhibit tubulin assembly and for their cytotoxicity against three human cancer cell lines (NCI-H460, SK-OV-3, and DU-145) through collaborative studies with the Trawick Research Group. Bioreductively activatable prodrug conjugates (BAPCs) of OXi8006 that incorporate nitro-thiophenyl bioreductive triggers were synthesized to target tumor hypoxia. The mechanistic pathway for 2-aryl indole formation via the Bischler-Mohlau indole reaction was explored through isotopic labeling of key intermediates. This strategy was also applied to benzo[b]furan and benzo[b]thiophene analogues. Results suggest formation of an imine intermediate for 2-aryl indoles as evidenced by key ¹³C NMR signatures. Similar studies suggest the formation of 3-aryl benzo[*b*]furans and benzo[*b*]thiophenes via a pathway in which no aryl shift (2- to 3-position) was observed when hydroxyl substitution is present on the bromoacetophenone starting material. In summary, OXi8006 and OXi8007, a focused library of analogues including BAPCs, as well as isotopically labeled indoles, benzo[b]thiophenes, and benzo[b]furans were prepared.

The Design, Synthesis, and Biological Evaluation of Indole-based Anticancer Agents

by

Matthew T. MacDonough, B.S.

A Dissertation

Approved by the Department of Chemistry and Biochemistry

Patrick J. Farmer, Ph.D., Chairperson

Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Approved by the Dissertation Committee

Kevin G. Pinney, Ph.D., Chairperson

Charles M. Garner, Ph.D.

Robert R. Kane, Ph.D.

Mary Lynn Trawick, Ph.D.

William C. Hockaday, Ph.D.

Accepted by the Graduate School December 2013

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2013 by Matthew T. MacDonough

All rights reserved

TABLE OF CONTENTS

List of Figures	vii
List of Schemes	ix
List of Tables	x
Acknowledgments	xi
Dedication	xii
CHAPTER ONE	
Introduction	1
Antiangiogenic Agents	3
Vascular Disrupting Agents	5
Bioreductive Prodrugs	11
Mechanisms of Heterocyclic Ring Formation	13
CHAPTER TWO - Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent	
Abstract	18
Results and Discussion	22
Experimental Section	30
References	46
CHAPTER THREE - Synthesis and Biological Evaluation of Indole-based, Anti-cance Agents Inspired by the Vascular Disrupting Agent 2-(3 '-Hydroxy-4 '- methoxyphenyl)-3-(3", 4", 5"-trimethoxybenzoyl)-6-methoxyindole (OXi8006)	r
Abstract	56
Introduction	57
Results and Discussion	61

Conclusion	66
Experimental	67
References and notes	97
CHAPTER FOUR-Indole-based Bioreductively Activatable Prodrug Conjugates	
Synthesis of Bioreductive Prodrugs	102
Materials and Methods	105
CHAPTER FIVE- Mechanisms of Heterocyclic Ring Formation	
Synthesis of ¹³ C Labeled Indoles	112
Synthesis of ¹³ C Labeled Benzo[<i>b</i>]furans	114
Synthesis of ¹³ C Labeled Benzo[<i>b</i>]thiophenes	114
Materials and Methods	115
CHAPTER SIX	
Conclusion	124
APPENDICES	
Appendix A	127
Appendix B	202
Appendix C	257
Appendix D	360
Appendix E	391
Appendix F	425
REFERENCES	443

LIST OF FIGURES

INTRODUCTION

1.1. Structures of Paclitaxel, Vinblastine, Vincristine, and Colchicine	.7
1.2. Structures of CA4, CA4P, CA1, and CA1P	.8
1.3. Structures of Pinney Group VDAs	.11
1.4. Combretastatin A-4 BAPCs	.13

CHAPTER TWO

CHAPTER THREE

3.1. Selected colchicine site tubulin binding agents	59
3.2. Structural diversity within the $3-(3', 4', 5'-\text{trimethoxybenzoyl})$ indole	61
3.3. Molecular structures of synthesized 2-aryl-3-aroylindole analogues 25-36	64

CHAPTER FOUR

4.1. Reductive Cleavage of Indole-based BACPs	102
---	-----

LIST OF SCHEMES

|--|

1.1. Pathway A of the Bischler-Mohlau Indole Reaction14
1.2. Pathway B of the Bischler-Mohlau Indole Reaction14
1.3. Pathway A for Synthetic Route to Benzo[b]thiophenes and Benzo[b]furans16
1.4. Isotopic Labeling of α -Bromoacetophenone to Determine Mechanistic Pathways of Indole, Benzo[b]thiophene, and Benzo[b]furan Ring Formation17
CHAPTER TWO
2.1. Synthesis of Indole Analogues 8 and 3023
2.2. Preparation of Indole-Based Disodium Phosphate Prodrug Salts 33 and 3424
CHAPTER THREE
3.1. Synthetic route to OXi8006 analogues from bromoacetophenones 3 and 4 62
3.2. Synthetic route to modified indole 10 63
CHAPTER FOUR
4.1. Synthesis of nitrothiophene bioreductive triggers103
4.2. Synthesis of bioreductively activatable prodrug conjugates (BAPCs)105
CHAPTER FIVE
5.1. Synthetic route to 13 C-labeled bromoacetophenone intermediate 6 112
5.2. Synthesis of ¹³ C-labeled indole 8 113
5.3. Synthesis of benzo[<i>b</i>]furan 11 114

5.4. Synthesis of benzo[b]thiophene 14.....115

LIST OF TABLES

CHAPTER TWO

2.1. Inhibition of Tubulin Polymerization and Colchicine Binding	26
2.2. Cytotoxicity Against Human Cancer Cell Lines NCI-H460, DU-145, and SK-	
OV-3	27

CHAPTER THREE

3.1. Cytotoxicity Against Human Cancer Cell Lines SK-OV-3, NCI-H460, and	
DU-145	65
3.2. Inhibition of tubulin polymerization and colchicine binding	66

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Kevin G. Pinney. I am greatly appreciative of the opportunity to work in his research lab. He provided me with guidance and support to be successful both within the lab as well as in life outside the lab. He was always understanding throughout my career both as an undergraduate student and graduate student.

I am also grateful to my committee. Dr. Kane and Dr. Garner have always offered support and have helped extend my knowledge of organic chemistry. Dr. Trawick has been a wonderful collaborator and teacher. I have enjoyed getting to know Dr. Hockaday over my graduate career and sharing our interest in NMR spectroscopy.

I would also like to thank the Department of Chemistry and Biochemistry at Baylor University. Dr. Farmer, Adonna Cook, Nancy Kallus, Barbara Rauls, and Virginia Hynek were all helpful whenever I needed, many times dropping whatever they were working on to help me.

I am thankful to my colleagues in the Pinney Research Group. They provided continued support and advice that allowed me to reach the point I am at now. From understanding basic chemistry mechanisms to ordering chemicals to setting up complex reactions, I could not have done it without them.

I would not be here today if not for my loving family to which I owe everything. Their financial, emotional, and spiritual support and guidance has allowed me to reach the point I am at in life. I love you all and considered myself fortunate for the unconditional love you continue to provide.

xi

DEDICATION

To George Parkman MacDonough III

and the memory of

Marie Caeser MacDonough Raymond Ignatius Mulligan Catherine Cecilia Lukasavage Mulligan

CHAPTER ONE

Introduction

The selective targeting of tumor vasculature for the therapeutic treatment of cancer was first suggested by Judah Folkman in 1971.¹ This notion was founded on the fundamental dependence of a vascular network that provides tumors with the necessary blood, oxygen, and nutrients vital for survival.² Tumors with a deficiency in vasculature are restricted to a size of 1-2 mm³ and the capacity to metastasize is constrained.² In contrast, tumors with established vascularity can experience exacerbated growth of the primary tumor and enhanced metastatic spread. Healthy tissues and organs also require a vascular network to deliver blood, as well as provide a means of waste removal. However, the vascular architecture within healthy tissues is highly organized and systematic compared to the disorganized and chaotic nature of tumor vasculature, leading to distinct differences between normal healthy tissue vasculature and the vasculature within the tumor microenvironment.³ Specifically, growth amplification of neoplastic cell population and overexpression of proagiogenic factors lead to underdeveloped vasculature deficient in vessel hierarchy, in which arterioles, capillaries, and venules cannot be clearly defined.⁴ The immature nature of tumor vasculature results in blood vessels which have an abnormal shape, bulges, inconsistent

¹ Folkman J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. **1971**, 285, 1182–1186.

² Brem, S.; Brem, H.; Folkman, J.; Finkelstein, D.; Patz, A. Prolonged Tumor Dormancy by Prevention of Neovascularization in the Vitreous. *Cancer Res.* **1976**, *36*, 2807-2812.

³ Siemann, D. W. The Unique Characteristics of Tumor Vasculature and Preclinical Evidence for its Selective Disruption by Tumor-Vascular Disrupting Agents. *Cancer Treatment Reviews*. **2011**, *37*, 63-74.

⁴ Konerding, M. A.; Fait, E.; Gaumann, A. 3D Microvascular Architecture of Pre-cancerous Lesions and Invasive Carcinomas of the Colon. *Br. J. Cancer*. **2001**, *84*, 1354-1362.

diameters, blind ends, and arteriolar-venous shunts.⁴⁻⁶ In addition, lymphatic vessels

responsible for waste removal are intermittent, leaky, and result in dilated, swollen vessels.⁷⁻⁸

Tumor vasculature is also characterized by a diminished presence of smooth muscle cells and

asymmetrical lining of endothelial cells which leads to an irregular basement membrane.9-10

This, in turn, elevates vessel permeability, ultimately increasing interstitial pressure.¹¹⁻¹²

Tumor vessels are also disproportionally distributed throughout the tumor tissue,

consequently leading to regions of low oxygen known as hypoxia, a condition that has shown

to promote angiogenesis and increased metastatic potential.¹¹⁻¹⁶ The distinct morphological

as well as physiological characteristics of tumor vasculature present a viable target for

therapeutic intervention, and two strategies in which to do so have ensued. The first aims to

impede new vessel formation and is known as the antiangiogenesis approach, and the second

⁹ Carmeliet, P.; Jain, R. K.; Angiogenesis in Cancer and Other Diseases. *Nature*, **2000**, 407, 249-257.

¹² Vaupel, P.; Fortmeyer, H. P.; Runkel, S.; Kallinowski, F. Blood Flow, Oxygen Consumption, and Tissue Oxygenation of Human Breast Cancer Xenografts in Nude Rats. *Cancer Res.* **1987**, *47*, 3496-3503.

⁵ Dewhirst, M. W.; Kimura, H.; Rehmus, S. W.; Braun, R. D.; Papahadjopoulos, D.; Hong, K.; Secomb, T. W. Microvascular Studies on the Origins of Perfusion-limited Hypoxia. *Br. J. Cancer.* **1996**, *27*, S247-S251.

⁶ McDonald, D.; Choyke, P. Imaging of Agiogenesis: From Microscope to Clinic. *Nature Med.* **2003**, *9*, 713-725.

⁷ Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K. Absence of Functional Lymphatics Within a Murine Sarcoma: a Molecular and Functional Evaluation. *Cancer Res.* **2000**, *60*, 4324-4327.

⁸ Padera, T. P.; Kadambi, A.; di Tomaso, E.; Carrerira, C. M.; Brown, E. B.; Boucher, Y.; Choi, N. C.; Mathisen, D.; Wain, J.; Mark, E. J.; Munn, L. L.; Jain, R. K. Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics. *Scicence*, **2000**, *296*, 1883-1886.

¹⁰ Gee M. S.; Procopio, W. N.; Makonnen, S.; Feldman, M. D.; Yeilding, N. M.; Lee, W. M. Tumor Vessel Development and Maturation Impose Limits on the Effectiveness of Anti-vascular Therapy. *Am. J. Pathol.* **2003**, *162*, 183-193.

¹¹ Tong, R. T.; Boucher, Y.; Kozin, S. V.; Winkler, F.; Hicklin, D. J.; Jain, R. K. Vascular Normalization by Vascular Endothelial Growth Factor Receptor 2 Blockade Induces a Pressure Gradient Across the Vasculature and Improves Drug Penetration in Tumors. *Cancer Res.* **2004**, *64*, 3731-3736.

¹³ Vaupel, P.; Schlenger, K.; Knoop, C.; Hockel, M. Oxygenation of Human Tumors: Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. *Cancer Res.* **1991**, *51*(12), 3316-3322.

¹⁴ Vaupel, P.; Hockel, M. Blood Supply, Oxygenation Status and Metabolic Mircomilieu of Breast Cancers: Characterization and Therapeutic Relevance. *Int. J. Oncol.* **2000**, *17*, 869-879.

¹⁵ Jain, R. K. Determinants of Tumor Blood Flow: A Review. *Cancer Res.* **1988**, *48*, 2641-2658.

¹⁶ Jain, R. K. Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. *Science*, **2005**, *307*, 58-62.

targets existing vasculature and intents to disrupt established vessels, an approach known as vascular disrupting.¹⁷⁻¹⁸

Anti-Angiogenic Agents

Angiogenesis refers to the process by which new blood vessels are formed from preexisting vasculature and is driven by several molecular elements both in healthy tissue and in tumors. However, angiogenesis within the tumor microenvironment is not strictly regulated compared to the methodical systematic processes of healthy tissue. This is a consequence of a prolonged imbalance of pro-angiogenic factors and anti-angiogenic factors in which an excess of pro-angiogenic signaling and an insufficient anti-angiogenic signaling leads to unorthodox tumor vasculature. Some of the established promoters leading to angiogenic signaling include vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1, placental growth factor (P1GF), and cytokines.¹⁹⁻²⁰ The overexpression of these as well as other angiogenic promoters may occur through a variety of mechanisms such as transcriptional regulation by acidosis, sex hormones, chemokines, oncogene mutations, and hypoxia.²¹⁻²² Antiangiogenic agents are designed to target promoters and factors associated with angiogenesis in an effort to inhibit tumor neovascularization. The first angiogenesis inhibiting agent (AIA) to received approval from the Food and Drug Administration (FDA)

¹⁷ Horsman, M. R.; Bohn, A. B.; Busk, M. Vascular Targeting Therapy: Potential Benefit Depends of Tumor and Host Related Effects. Exp. Oncol. 2010, 32(3), 143-148.

¹⁸ Siemann, D. W.; Bibby, M. C.; Dark, G. G.; Dicker, A. P.; Eskens, F. A. L. M.; Horsman, M. R.; Marme, D.; LoRusso, P. M. Differentiation and Definition of Vascular-Targeting Therapies. Clin. Cancer Res. 2005, 11, 416-420.

¹⁹ Carmeliet, P. Angiogenesis in Helath and Disease. Nat. Med. 2003, 9, 653-660.

²⁰ Carmeliet, P.; Jain, R. K. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 2011, 473, 298-307.

²¹ Ferrara, N. Vascular Endothelial Growth Factor. *Arterioscler Thromb. Vasc. Biol.* 2009, 29, 789-791.

²² Vogelstein, B.; Kinzler, K. W.; Cancer Genes and the Pathways They Control. *Nat. Med.* **2004**, *10*, 789-799.

was bevacizumab (AvastinTM) in 2004 for the treatment of colorectal cancer.²³ Bevacizumab is a humanized monoclonal antibody that targets VEGF and inhibits the binding of receptors VEGFR1 and VEGFR2, ultimately leading to the normalization of mature vasculature and inhibition of new vessel production.²⁴ Since initial approval in 2004 Bevacizumab has since been approved for glioblastomas of the brain,²⁵ lung cancers,²⁶⁻²⁷ and renal carsiomas.^{24,28} Other strategies associated with AIAs involve targeting the endothelial cell receptorassociated tyrosine kinase activity, basement membrane degradation, tube development, endothelial cell proliferation, and endothelial cell migration.²⁹⁻³¹ AIAs that selectively target pro-angiogenic factors include both antibody-based design, also known as biologics, and small molecules. The complementary approach to targeting tumor vasculature, distinct from inhibiting angiogenesis, involves the direct degradation of the existing vasculature, a process referred to as vascular disruption.

²³ Wu, J. M.; Staton, C. A. Anti-angiogenic Drug Discovery: Lessons From the Past and Thoughts for the Furture. *Expert Opin. Drug Discov.* **2012**, *7*(8), 723-743.

²⁴ Yang, J. C.; Haworth, L.; Sherry, R. M.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.; Steinberg, S. M.; Chen, H. X.; Rosenberg, S. A. A Randomized Trial of Bevacizumab, An Anti-vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. *N. Engl. J. Med.* **2003**, *349*(5), 427-434.

²⁵ Chamberlain, M. C. Bevacizumab for the Treatment of Recurrent Glioblastoma. *Clin. Med. Insights Oncol.* **2011**, *5*, 117-129.

²⁶ Sandler, A.; Gray, R.; Perry, M. C.; Brahmer, J.; Schiller, J. H.; Dowiati, A.; Lilenbaum, R.; Johnson, D. H. Paclitaxel-carboplatin Alone or with Bevacizumab for Non-small-cell Lung Cancer. *N. Engl. J. Med.* **2006**, *355*(24), 2542-2550.

²⁷ Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; Manegold, C. Phase III of Cisplatin Plus Gemcitabine with Either Placebo or Bevacizumab as First-line Therapy For Nonsquamous Non-small-cell Lung Cacner: AVAiL. *J. Clin. Oncol.* **2009**, *27*(8), 1227-1234.

²⁸ Rini, B. I. Vascular Endothelial Growth Factor-targeted Therapy in Renal Cell Carcinoma: Current Status and Future Directions. *Clin. Cancer Res.* **2007**, *13*, 1098-1106.

²⁹ Kerbel, R.; Folkman, J. Clinical Translation of Angiogenesis Inhibitors. *Nat. Revs. Cancer*, **2002**, *2*, 727-739.

³⁰ Boehm, S.; Rothermundt, C.; Hess, D.; Joerger, M. Antiangiogenic Drugs in Oncology: A Focus on Drug Safety and the Elderly- A Mini Review. *Gerontology*, **2010**, *56*, 303-309.

³¹ Siemann, D. W.; Warrington, K. H.; Horsman, M. R. Targeting Tumor Blood Vessels: An Adjuvant Strategy for Radiation Therapy. *Radiother*. *Oncol.* **2000**, *57*, 5-12.

Vascular Disrupting Agents

Vascular disrupting agents (VDAs) seek to selectively destroy the established vascular network within tumor tissue. This concept was developed by Juliana Denekamp and co-workers in 1983 and continues to represent a promising strategy for the therapeutic treatment of cancer.³² VDAs can be classified into two groups: biological (ligand-directed) and small molecules. Biological or ligand-directed VDAs include peptides and antibodies and are designed to target receptors of up-regulated molecular elements associated with key cell-signaling pathways. Small molecule VDAs have advanced further clinically than their biological counterparts and are further divided into two categories: tubulin-binding agents and the flavonoids. These classes are centered on distinct modes of action and both lead to the ultimate disruption of tumor vasculature. Tubulin-binding small molecule VDAs comprise key binding interactions with tubulin, the key component of microtubules. Microtubules are biopolymers that are responsible for many assorted roles within the cellular environment such as chromosomal segregation, intracellular transport, and are a key component to cytoskeletal shape.³³ Structurally, microtubules are long filamentous hollow tubes that are assembled from 13 parallel profilaments, which are comprised of alternating subunits of α - and β -tubulin heterodimers.³³ Microtubules are assembled through the

³² Denekamp, J.; Hill, S. A.; Hobson, B. Vascular Occlusion and Tumor Cell Death. *Eur. J. Cancer Clin. Oncl.* **1983**, *19*, 271-275.

³³ Stanton, R. A.; Gernert, K. M.; Nettles, J. H.; Aneja, R. Drugs that Target Dynamic Microtubules: A New Molecular Perspective. *Med. Res. Rev.* **2011**, *31*(3), 443-481.

polymerization of α - and β -tubulin monomers and are disassembled through the depolymerization of α - and β -tubulin monomers, a process known as dynamic instability.³⁴ The polar nature of this dynamic instability is evident in a plus (+) end that is capable of rapid growth and a sluggish minus (-) end. The growing and shortening of microtubules through this process is regulated by many factors including available GTP, α - and β -tubulin monomer concentrations, and microtubule-stabilizing proteins (MAPs).³³ Efforts to selectively target and disrupt microtubule dynamics have resulted in three classes of tubulinbinding molecules: microtubule stabilizers, microtubule destabilizers, and microtubule modulators.³⁵ These efforts have also revealed three distinct binding sites on tubulin. The first is referred to as the taxol or taxoid binding site, named for the microtubule stabilizing natural product taxol (paclitaxel) (Fig. 1) and is located on the β -tubulin heterodimer. The second is known as the vinca-alkaloid site, named for the microtubule destabilizing natural products vincristine and vinblastine (Fig. 1), and is located in the $\alpha\beta$ -tubulin interface. The third binding site is known as the colchicine site, named after the natural product colchicine (Fig. 1), and is located on β -tubulin heterodimer.

³⁴ Walker, R. A.; O'Brien, E. T.; Pryer, N. K.; Soboeiro, M. F.; Voter, W. A.; Erickson, H. P.; Salmon, E. D. Dynamic Instability of Individual Microtubules Analyzed by Video Light Microscopy: Rate Constants and Transition Frequencies. *J. Cell Biol.* **1988**, *107*, 1437-1448.

³⁵ Heidemann, S. Microtubules, Leukemia, and Cough Syrup. *Blood*, **2006**, *107*, 2216-2217.

Figure 1.1. Structures of Paclitaxel, Vinblastine, Vincristine, and Colchicine.

The initial success of the taxanes and vinca-alkaloids inspired efforts to develop colchicine-like compounds and lead to the discovery of the combretastatin family of natural products isolated from the South African bush willow tree *Combretum caffrum* by George R. Pettit and co-workers.³⁶⁻³⁷ Colchicine itself displays vascular disrupting properties; however, this occurs at doses that exhibit high toxicity.³⁸ Currently, combretastatin A-4 (CA4) and its phosphate salt prodrug CA4P (ZybrestatTM) and combretastatin A-1 (CA1) and its corresponding prodrug CA1P (OXi4503) represent benchmark VDAs that bind at the colchicine site (Fig. 2).

³⁶ Pettit, G. R.; Cragg, G. M.; Singh, S. B. Antineoplastic Agents, 112. Constituents of Combretum Caffrum. J. Nat. Prod. **1987**, 50, 386-391.

³⁷ Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. The Antimitotic Natural Products Combretastatin A-2 and Combretastatin A-4: Studies on the Mechanism of Their Inhibition of the Binding of Colchicine to Tubulin. *Biochemistry*, **1989**, *28*, 6984-6991.

³⁸ Boyland, E.; Boyland, M. E. Studies in Tissue Metabolism: The Action of Colchicine and B. Typhosus Extract. *Biochemistry*, **1937**, *31*(3), 454-460.

Figure 1.2. Structures of CA4, CA4P, CA1, and CA1P.

CA4P (ZybrestatTM) was the first small-molecule, tubulin-binding VDA to enter

clinical trails.³⁹⁻⁴¹ Although several small-molecule VDAs binding to tubulin are currently in

clinical trails, there are currently none approved by the FDA.⁴⁰⁻⁴³ The success of the

combretastatins has inspired intense research efforts within the Pinney group to develop

molecules which incorporate structural similarities to CA4 and CA1 and has resulted in a

host of molecular scaffolds, including dihydronaphthalenes,^{44,45} benzosuberenes,^{44,46,47}

³⁹ Hasani, A.; Leighl, N. Classification and Toxicities of Vascular Disrupting Agents. *Clin. Lung Cancer.* **2011**, *12*(1), 18-25.

⁴⁰ Dowlati, A.; Robertson, K. Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.; McCrae, K. R.; Remick, S. C. A Phase I Pharmacokinetic and Translational Study of the Novel Vascular Targeting Agent Combretastatin A-4 Phosphate on a Single-dose Intravenous Schedule in Patients with Advanced Cancer. *Cacner Res.* **2002**, *62*(12), 3408-3416.

⁴¹ Rustin, G. J.; Galbraith, S. M.; Anderson, H.; Stratford, M.; Folkes, L. K.; Sena, L.; Gumbrell, L.; Price, P. M. Phase I Clinical Trial of Weekly Combretastatin A-4 Phosphate: Clinical and Pharmacokinetic Results. *J. Clin. Oncol.* **2003**, *21*(15), 2815-2822.

⁴² Lee, R. M.; Gewirtz, D. A. Colchicine Site Inhibitors of Microtubule Integrity as Vascular Disrupting Agents. *Drug Dev. Res.* **2008**, *69*(6), 352-358.

⁴³ Pinney, K. G. in Vascular-Targeted Therapies in Oncolgy, ed. Siemann, D. John Wiley & Sons, London, UK, **2006**, ch. 6, 95-121.

⁴⁴ Sriram, M.; Hall, J. J.; Grohmann, N. C.; Strecker, T. E.; Wootton, T.; Franken, A.; Trawick, M. L.; Pinney, K. G. Design, Synthesis, and Biological Evaluation of Dihydronaphthalene and Benzosuberene Analogs

benzo[b]thiophenes,⁴⁸⁻⁵¹ benzo[b]furans,⁵² and indoles⁵³⁻⁵⁴ (Fig. 3). Many of these molecular

frameworks aim to mimic the cis-stilbenoid arrangement inherent to the combretastatins as

well as preserving the 3,4,5-trimethoxyaryl and phenolic functionalities. Further efforts to

explore the structural activity relationships essential for the inhibition of tubulin

polymerization and cytotoxicity against human cancer cell lines have been explored within a

variety of molecular frameworks and the indole scaffold has garnered much attention (see

Appendix A for VDA indole stuctures).⁵⁵⁻⁵⁶ The exploration of tolerable structural

of Combretastatins as Inhibitors of Tubulin Polymerization in Cancer Chemotherapy. *Bioorg*. *Med. Chem.* **2008**, *16*(17), 8161-8171.

⁴⁵ Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. Tubulin Binding Ligands and Corresponding Prodrug Constructs. US6593374 B2, **2003**.

⁴⁶ Pinney, K. G.; Sriram, M. Combretastatin Analogs with Tubulin Binding Activity. US8394859 B2, **2013**.

⁴⁷ Tapure, R. P.; George, C. S.; Sriram, M.; Strecker, T.; Tidmore, J. K.; Hamel, E.; Charlton-Sevcik, A. K.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G.; *Med. Chem. Comm.* **2012**, *3*, 720-724.

⁴⁸ Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai, R.; Hamel, E. A New Anti-tubulin Agent Containing the Benzo[*b*]thiophene Ring System. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1081-1086.

⁴⁹ Mullica, D. F.; Pinney, K. G.; Mocharla, V. P.; Dingeman, K. M.; Bounds, A. D.; Sappenfield, E. L. Characterization and Structural Analyses of Trimethoxy and Triethoxybenzo[*b*]thiophene. *J. Chem. Crystallogr.* **1998**, *28*, 289-295.

⁵⁰ Mullica, D. F.; Pinney, K. G.; Dingeman, K. M.; Bounds, A. D.; Sappenfield, E. L. X-ray Structures of Two Methoxybenzo[*b*]thiophenes. *J. Chem. Crystallogr.* **1996**, *26*, 801-806.

⁵¹ Pinney, K. G.; Pilar, M.; Mocharla, V. P.; Shirali, A.; Pettie, G. R. Anti-mitotic Agents Which Inhibit Tubulin Polymerization. US06162930, **2000**.

⁵² Pinney, K. G.; Pettie, G. R.; Mocharla, V. P.; Pilar, M.; Shirali, A. Description Anti-mitotic Agents Which Inhibit Tubulin Polymerization. US6350777 B2, **2002**.

⁵³ Hadimani, M. B.; Kessler, R. J.; Kautz, J. A.; Ghatak, A.; Shirali, A. R.; O'dell, H.; Garner, C. M.; Pinney, K. G. 2-(3-tert-Butyldimethylsiloxy-4-methoxyphenyl)-6-methoxy-3-(3, 4, 5-trimethoxybenzoyl)indole. *Acta. Cryst.* **2002**, *C58*, 330-332.

⁵⁴ Pinney, K. G.; Wang, F.; Hadimani, M. B. Indole-containing and Combretastatin-related Antimitotic and Anti-tubulin Polymerization Agents. US6849656 B1, **2005**.

⁵⁵ Brancale, A.; Silvestri, R. Indole, A Core Nucleus for Potent Inhibitors of Tubulin Polymerization. *Med. Res. Rev.* **2007**, *27*(2), 209-238.

⁵⁶ Patil, S. A.; Patil, R.; Miller, D. D. Indole Molecules as Inhibitors of Tubulin Polymerization: Potential New Anticancer Agents. *Future Med. Chem.* **2012**, *4*(16), 2085-2115.

modifications to VDA scaffolds has also extended into the development of bioreductively activatable prodrug conjugates (BAPCs).

Bioreductive Prodrugs

An established strategy for the delivery of a therapeutic agent involves "masking" the parent agent as an inactive form to later be selectively activated in a desired environment. This approach has been applied to selectively target tumor hypoxia and has resulted in therapeutic agents known as bioreductive prodrugs or bioreductively activatable prodrug conjugates (BAPCs). In general, this is achieved with five chemical classes (nitro groups, quinones, aromatic *N*-oxides, aliphatic *N*-oxides and transition metals) and, upon a one or two electron enzymatic reduction of the prodrug, the resulting superoxide or prodrug radical is strongly cytotoxic.⁵⁷ One example of a bioreductive prodrug is tirapazamine, which can undergo a one-electron reduction that results in a free radical species 50-200 fold more toxic than the prodrug under hypoxic conditions.⁵⁸⁻⁶⁰ A BAPC contains an oxidant moiety that is covalently linked to an active therapeutic agent rendering the BAPC inactive. The oxidant portion of the BAPC is then reduced releasing the parent therapeutic agent in the active form. This method was applied to the development of CA4 BAPCs by Peter Davis and co-workers

⁵⁷ Wilson, W. P.; Hay, M. P. Targeting Hypoxia in Cancer Therapy. *Nature Reviews*. **2011**, *11*, 393-410.

⁵⁸ Brown, J. M.; SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. *Br. J. Cancer* **1993**, *67*, 1163–1170.

⁵⁹Chowdhury, G.; Junnotula, V.; Daniels, J. S.; Greenberg, M. M.; Gates, K. S. DNA strand damage product analysis provides evidence that the tumor cell specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O2. *J. Am. Chem. Soc.* **2007**, *129*, 12870–12877.

⁶⁰ Shinde, S. S.; Hay, M. P.; Patterson, A. V.; Denny, W. A.; Anderson, R. F. Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase. *J. Am. Chem. Soc.* **2009**, *131*, 14220–14221.

employing nitrothiophene bioreductive triggers as the oxidant portion and CA4 as the parent VDA (Fig. 4).⁶¹

R = OP(O)O₂⊖_{Na2}⊕

Figure 1.3. Structures of Pinney Group VDAs.

⁶¹ Thompson, P.; Naylor, M. A.; Everett, S. A.; Stratford, M. R. L.; Lewis, G.; Hill, S.; Patel, K. B.; Wardman, P.; Davis, P. D. Synthesis and Biological Properties of Bioreductively Targeted Nitrothienyl Prodrugs of Combretastatin A-4. *Mol. Cancer Ther.* **2006**, *5*(11), 2886-2894.

Figure 1.4. Combretastatin A-4 BAPCs.

These CA4 BACPs showed severe decreases in activity in both the A549 cell line and inhibition of tubulin polymerization in the prodrug form, showing the successful masking of the parent CA4 VDA. It was also determined that *gem*-dimethyl substitution on the ether bridge showed higher susceptibility to cleavage by cytochrome P450 than the *nor-* and *mono-* methyl substitution.

Mechanisms of Heterocyclic Ring Formation

The heterocyclic scaffolding of indoles, benzo[*b*]thiophenes, and benzo[*b*]furans share a prosperous abundance in medical chemistry.⁶² The mechanistic pathways and synthetic routes to these platforms are well established and can vary greatly. For instance, the Bischler-Mohlau indole reaction can produce both 2-aryl indoles and 3-aryl indoles from an α -haloketones and appropriate anilines. The indole product (2-aryl or 3-aryl) is determined by the mechanistic pathway that is favored. For the Bischler-Mohlau reaction, Pathway A (Scheme 1) involves initial displacement of a bromine atom by a molecule of aniline. The pathway continues through the intramolecular cyclization and subsequent aromatization resulting in 2-aryl indole **4**. The pathway may stop here, resulting in 2-aryl indole **4**, but, in the presence of acid, can undergo a 1, 2-aryl shift to afford 3-aryl indole **5**.

⁶² Roughley, S. D.; Jordan, A. M. The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. *J. Med. Chem.* **2011**, *54*, 3451-3479.

Scheme 1.1. Pathway A of the Bischler-Mohlau Indole Reaction.

The competing Pathway B (Scheme 2) begins in a similar fashion with the initial displacement of bromine by a molecule of aniline, however, pathway B then involves the condensation of a second molecule of aniline, resulting in imine intermediate **6**. Imine **6** then undergoes intramolecular cyclization displacing the initial aniline molecule, and upon tautomerization of 3-aryl **8**, the stable 3-aryl tautomer **9** results.

Scheme 1.2. Pathway B of the Bischler-Mohlau Indole Reaction.

Previous computational and experimental studies have suggested that pathway B is preferred when an excess of aniline is used.⁶³ The synthetic route to benzo[*b*]thiophenes and benzo[*b*]furans also employs α -haloketones with appropriate thiols and phenols, however, the mechanistic pathway is thought to favor a pathway similar to pathway A, resulting in either 1, 2-aryl shifted 2-arylbenzo[*b*]thiophenes and 2-arylbenzo[*b*]furans or non-shifted 3arylbenzo[*b*]thiophenes and 3-arylbenzo[*b*]furans (Scheme 3).

Scheme 1.3. Pathway A for Synthetic Route to Benzo[*b*]thiophenes and Benzo[*b*]furans.

Evidence of the 1, 2-aryl shift was demonstrated in the antiestrogen work of both Eli Lilly⁶⁴ and John Katzenellenbogen and co-workers⁶⁵ en route to 3-aroyl-2-aryl-

⁶³ Vara, Y.; Aldaba, E.; Arrieta, A.; Pizarro, J. L.; Arriortua, M. I.; Cossio, F. P. Regiochemistry of the Microwave-assisted Reaction Between Aromatic Amines and a-Bromoketones to Yield Substituted 1*H*-indoles. *Org. Biomol. Chem.* **2008**, *6*, 1763-1772.

⁶⁴ Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. Antiestrogens-2. Structure-activity Studies in a Series of 3-Aroyl-2-arylbenzo[*b*]thiophene Derivatives Leading to [6-Hydroxy-2-(4-hydroxyphenyl)benzo[*b*]thien-3-yl][4-[2-(1-piperidinyl)ethoxy]-phenyl]methanone Hydrochloride (LY156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity. *J. Med. Chem.* **1984**, *27*, 1057-1066.

benzo[*b*]thiophenes. Further evidence of the 1, 2-aryl shift in pathway A was exhibited by the Pinney group and the synthesis of 3-aroyl-2-arylbenzo[*b*]thiophenes as VDAs.⁵³⁻⁵⁴ In contrast, no 1, 2-aryl migration in pathway A was evident in the synthesis of benzo[*b*]furans and resulted in 3-arylbenzo[*b*]furans by Pinney and co-workers.⁵²

Scheme 1.4. Isotopic Labeling of α -Bromoacetophenone to Determine Mechanstic Pathways of Indole, Benzo[b]thiophene, and Benzo[b]furan Ring Formation.

In order to evaluate what pathway is operable in our systems, an isotope labeling

strategy was engaged where the α -carbon to the carbonyl of the α -bromoacetophenone was

⁶⁵ Kym, P. R.; Anstead, G. M.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A. Structural and Computational Modeling Studies on 3-aroyl-2-arylbenzo[*b*]thiophene Estrogen Receptor Ligands: LY117018 and Aryl Azide Photoaffinity Labeling Analogs; Investigation of Conformational Preferences, Differential Photoreactivity, and Preferential Modes of Binding. *J. Med. Chem.* **1993**, *36*, 3910-3922.

isotopically labeled with ¹³C (Scheme 4). The cyclized products could then be evaluated for distinct ¹³C NMR signatures and provide evidence as to which mechanistic pathway predominates with respect to indoles, benzo[*b*]thiophenes, and benzo[*b*]furans. The mechanistic pathway evidence will provide insight for the rational design of synthetic routes to afford desired functionalized VDAs that incorporate indole, benzo[*b*]thiophene, and benzo[*b*]furan molecular frameworks.

CHAPTER TWO

Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent

Reprinted (adapted) with permission from Hadimani, M. B.; MacDonough, M. T.;
Ghatak, A.; Strecker, T. E.; Lopez, R.; Sriram, M.; Nguyen, B. L.; Hall, J. J.; Kessler, R.
J.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettit, G. R.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent. J. Nat. Prod. 2013, http://dx.doi.org/10.1021/np400374w. Copyright 2013 American Chemical Society

ABSTRACT.

The natural products colchicine and combretastatin A-4 (CA4) are potent inhibitors of tubulin assembly, and they have inspired the design and synthesis of a large number of small-molecule, potential anticancer agents. The indole-based molecular scaffold is prominent among these SAR modifications, leading to a rapidly increasing number of agents. The water-soluble phosphate prodrug **33** (OXi8007) of a 2-aryl-3aroylindole-based phenol **8** (OXi8006) was prepared by chemical synthesis and found to be strongly cytotoxic against selected human cancer cell lines (GI₅₀ = 36 nM against DU-145 cells, for example). The free phenol, **8** (OXi8006), was a strong inhibitor (IC₅₀ = 1.1 mM) of tubulin assembly. The corresponding phosphate prodrug **33** (OXi8007) also demonstrated pronounced interference with tumor vasculature in a preliminary *in vivo* study utilizing a SCID mouse model bearing an orthotopic PC-3 (prostate) tumor as imaged by color Doppler ultrasound. The combination of these results provides evidence that indole-based phosphate prodrug **33** (OXi8007) functions as a vascular disrupting agent (VDA) that may prove useful for the treatment of cancer. The vast majority of natural products and synthetic compounds that bind to the tubulin-microtubule protein system and subsequently interfere with the dynamic assembly/disassembly inherent to the a,b-tubulin/microtubule system do so by many variations of this overall mechanism of action. The most thoroughly studied are interactions at the colchicine, vinca alkaloid, and taxoid sites.¹² A significant number of antiproliferative, anticancer agents function through this basic mechanism of action. The combretastatin family of natural products consists of a variety of *cis*-stilbenoid compounds isolated from the South African bush willow tree, *Combretum caffrum*.¹ Combretastatin A-4 (CA4) is among the most potent antimitotic agents from this family of compounds and binds to the colchicine site on tubulin (Fig. 1, compound 2).³⁻⁵ As with many natural products, the challenge of water solubility led to the development of a disodium phosphate prodrug **3**, combretastatin A-4P (CA4P).⁶ The discovery of CA4 has led to a diverse library of anti-tubulin agents designed to mimic the simple stilbenoid structure.¹⁷

Figure 2.1. Representative Small-Molecule Inhibitors of Tubulin Assembly.

The indole structure is prevalent as a core molecular component in a variety of inhibitors of tubulin assembly.⁸ As an early example, the vinca alkaloid natural products vinblastine and vincristine, originally isolated from a periwinkle plant (Catharanthus

roseus), both incorporate two key indole ring systems.^{9,10} A significant number of compounds that bind to the colchicine site and inhibit microtubule formation are also indole-based (see Fig. 2 for representative molecules). To the best of our knowledge, the first examples of such colchicine site interactive, indole-based compounds were reported by von Angerer *et al*¹¹ (Fig. 2, compound **6**) and separately by Pinney *et al*^{12,13} (Fig. 2, compounds 7-8) in the middle-to-late 1990s. Our (Pinney and co-workers) 2-aryl-3aroyl-indole analogues¹²⁻¹⁴ were originally inspired, in part, by the combretastatin collection of natural products (pioneered by George R. Pettit)^{1,15} and the non-steroidal, selective estrogen receptor modulator (SERM) work of Eli Lilly Inc., featuring benzo[b]thiophene templates.¹⁶ A judicious combination of key structural features inherent to both of these molecules led to the preparation of benzo[b]thiophene-based analogues (Fig. 1, compounds 4-5) that proved to be potent inhibitors of tubulin assembly through a binding interaction at the colchicine site.¹⁷⁻¹⁸ A logical course of structure activity relationship (SAR) considerations led to the idea of incorporating a nitrogen atom in the form of an indole-based analogue.

Herein, we report the synthesis of this indole-based compound **8** (OXi8006), along with a water-soluble phosphate salt **33** (OXi8007) and the corresponding *N*-methyl derivatives (**30** and **34**). Cytotoxicity of these compounds against selected human cancer cell lines and their ability to inhibit tubulin polymerization are described. In addition, a preliminary color Doppler ultrasound experiment with a PC-3 tumor in a SCID mouse model is presented, demonstrating a time-progressive disruption of tumor blood flow, thus aiding in the establishment of phosphate prodrug **33** (OXi8007) as among the first indole-based, vascular disrupting agents (VDAs). A structurally similar 3-aroylindole

(Fig. 2, compound **11**, also referred to as BPR0L075)^{21,28-29} was recently described by Mason *et al* as a VDA.³⁰ In addition, *N*-methyl-5,6,7-trimethoxy indole VDAs have been recently reported by Hu *et al*.³¹

Figure 2.2. Compilation of Indole-Based Inhibitors of Tubulin Assembly (6: von Angerer 1998¹¹ **7-8**: Pinney 2001¹² **9**: Mahboobi and Beckers 2001^{19} **10**: Silvestri 2004^{20} **11**: Lee and Hsieh 2004^{21} **12**: Chang 2007^{22} **13**: Cachet 2008^{23} **14-15**: Chang 2008^{24} **16**: Romagnoli 2008^{25} **17**: Silvestri 2011^{26} **18**: Liou 2011^{27}).

A previous study by Dalal and Burchill in a TC-32 tumor model found minimal necrosis and vessel occlusion with indole salt **33** (OXi8007) and CA4P as compared with OXi4503.³² Compounds delineated as VDAs function by disrupting existing tumor vasculature, ultimately leading to oxygen and nutrient deprivation to the tumor. VDAs are a separate class of anticancer agents that are mechanistically distinct from the angiogenesis inhibiting agents (AIAs).^{33,34} VDAs cause morphology changes (rounding up) of the endothelial cells lining the microvessels feeding tumors leading to hypoxia,

and ultimately to tumor necrosis.³⁵ No VDA has been approved by the FDA to date, however several are currently progressing in clinical trials. Our original patent publications inspired Flynn and co-workers to apply their elegant heteroatom ring formation synthetic strategy towards the synthesis of indole **8** (OXi8006).³⁶ Their important contributions in this area ultimately led to their design and synthesis of BNC105, a benzofuran-based VDA that is currently undergoing clinical trials.^{37,38}

RESULTS AND DISCUSSION.

synthesis of indole analogues 8 and 30 The involved substituted bromoacetophenone 24 as a key intermediate, which was prepared from commercially available isovanillin 19 (Scheme 1). After protection of the phenol as its corresponding silvl ether 20, addition of methyllithium afforded the secondary alcohol 21, which upon oxidation with PCC furnished the expected acetophenone derivative 22. Treatment with LDA followed by TMSCl resulted in silvl enol ether 23, which was converted to its corresponding bromide 24. The 2-aryl substituted indole derivative 25 was prepared following the Bischler-Mohlau method, by condensation of the substituted bromoacetophenone 24 with 3-methoxyaniline in the high boiling solvent N_N -dimethyl aniline.³⁹ Subsequent reaction of indole **25** with 3,4,5-trimethoxybenzoyl chloride yielded the 2-aryl-3-trimethoxybenzoyl substituted indole derivative 27 through a Friedel-Crafts benzoylation reaction. Desilylation of compound 27 with TBAF afforded the desired parent indole-based phenolic ligand 8 (OXi8006). Preparation of the corresponding Nmethyl indole derivative **30** followed a similar synthetic pathway (Scheme 1) except that the TBS protecting group on intermediate 25 was replaced with an isopropyl group (intermediate **26b**) prior to the benzoylation reaction.

Scheme 2.1. Synthesis of Indole Analogues 8 and 30.

In general, the benzoylation reaction proceeded with higher yields with the isopropyl protecting group rather than with the TBS group. However, the isopropyl group was not used throughout the synthetic sequence since other reactions tended to have higher yields with the TBS group in place, and product purification following deprotection of the isopropyl group was more involved, hence the preference for the TBS group.

Reaction of either phenol (8 or 30) with *in situ* generated dibenzyl chlorophosphite resulted in the expected indole-based dibenzyl phosphate ester derivative (31 or 32). Catalytic hydrogenolysis of the benzylic carbon-oxygen bonds with hydrogen gas and palladium on activated carbon (10%), followed by an acid-base reaction between the resulting phosphoric acid and sodium methoxide in methanol resulted in the desired disodium phosphate indole prodrug 33 (OXi8007) or the *N*-methyl derivative 34.⁶

Scheme 2.2. Preparation of Indole-Based Disodium Phosphate Prodrug Salts 33 and 34.

Initial debenzylation attempts involved reaction of the dibenzyl ester with *in situ* generated iodotrimethylsilane, from chlorotrimethylsilane and sodium iodide. The hydrogenolysis reaction offered the advantages of ease of work up and isolation of the product and better yields compared with the iodotrimethylsilane reaction.⁶

The two indole free phenolic analogues **8** (OXi8006) and **30** and their corresponding water-soluble prodrug salts **33** (OXi8007) and **34** were evaluated for their ability to inhibit tubulin polymerization (in a cell-free, pure protein assay). Indole **8** was found to be a potent inhibitor of tubulin assembly (IC₅₀ = 1.1 mM) comparable with CA4 (Table 1). While CA4P (containing the bulky phosphate prodrug moiety) is inactive (IC₅₀ > 40 mM) as an inhibitor of tubulin assembly,⁴⁰ the indole-based phosphate prodrug **33** (OXi8007) was found to be strongly inhibitory (IC₅₀ = 4.2 mM). The addition of the *N*-methyl group resulted in a loss of the ability to inhibit tubulin polymerization (IC₅₀ > 20 mM) for both the free phenol **30** and its corresponding phosphate prodrug salt **34**. In a binding assay against tritium-labeled colchicine, indole **8** (OXi8006) demonstrated modest inhibition at a concentration of 1 mM (40%) that increased at 5 mM (75%). CA4, as a control, strongly inhibited colchicine binding even at 1 mM (91%). The phosphate prodrug salt, **33** (OXi8007), was only minimally inhibitory (26%) at a concentration of 5 mM.

Both of the *N*-methyl analogues **30** and **34** showed only modest inhibition (34% and 29% respectively) at a high concentration (50 mM). Two possible conclusions can be inferred from these data. First, it seems likely that the non-methylated, free phenol **8** (OXi8006) interacts with the colchicine binding site in an orientation that places the free phenolic moiety outside of the binding pocket. This seems plausible since the
corresponding prodrug **33** (OXi8007), containing the bulky phosphate salt moiety, also demonstrated strong inhibition of tubulin assembly, which is typically not the case for small-molecule phosphate prodrugs of active tubulin binding agents (such as CA4P). Secondly, incorporation of a methyl group on the indole-nitrogen atom severely limited the ability of these analogues to interact with tubulin.

		Inhibition of colchicine binding (%)		
Compound	Inhibition of tubulin polymerization IC ₅₀ (mM)	1 mM	5 mM	50 mM
CA4	0.96 <u>+</u> 0.07	91 <u>+</u> 1	99 <u>+</u> 0.8	\mathbf{nd}^{a}
8 (OXi8006)	1.1 <u>+</u> 0.04	40 <u>+</u> 0.2	75 <u>+</u> 0.2	nd
33 (OXi8007)	4.2 ± 0.1	nd	26 <u>+</u> 4	nd
30	> 20	nd	nd	34 <u>+</u> 2
34	> 20	nd	nd	29 <u>+</u> 2

Table 2.1. Inhibition of Tubulin Polymerization and Colchicine Binding.

a nd = not determined in this study.

The phenolic indole **8** (OXi8006) and its corresponding prodrug salt **33** (OXi8007) demonstrated consistently strong cytotoxicity (GI₅₀ values ranging from 3.5 to 38 nM) against the NCI-H460 (lung), DU-145 (prostate), and SK-OV-3 (ovarian) human cancer cell lines. Cytotoxicity was greatly diminished (IC₅₀ approximately 3,000 nM) with the closely related *N*-methyl phenol **30** and prodrug **34**. These data track with the inhibition of tubulin assembly data. Thus, it is instructive to briefly address the question (and subsequent confusion) that occasionally arises in regard to why compounds that are in the nM concentration range in terms of GI₅₀ values for cytotoxicity against selected

human cancer cell lines, rarely show lower than micromolar activity in terms of their measured IC_{50} value in the inhibition of tubulin assembly assay. This is commonly noted for many compounds including CA4, for example, as well as indole **8** (OXi8006).

Table 2.2. Cytotoxicity Against Human Cancer Cell Lines NCI-H460, DU-145, and SK-OV-3.

	GI_{50} (mM) SRB assay ^a		
Compound	NCI-H460	DU-145	SK-OV-3
CA4	0.0028^{b}	0.00054^{b}	0.00042
CA4P	0.066 ^c	0.016 ^c	nd^d
8 (OXi8006)	0.0379	0.0356	0.00345
33 (OXi8007)	0.0311	0.0297	0.0223
30	4.14	2.68	2.05
34	3.56	4.67	8.64

^{*a*} Average of $n \ge 3$ independent determinations. ^{*b*} For additional data see ref 40. ^{*c*} See ref 41. ^{*d*} nd = not determined in this study.

Although the reason is not known with certainty, several factors may contribute. For example, the stoichiometry that exists between the concentration of compound and the concentration of tubulin needed to achieve an IC_{50} value in the micromolar range in the pure protein (cell-free) assay may be drastically different from the requisite stoichiometry that exists when inhibiting tubulin in a cell based assay leading to a measured GI_{50} value for cytotoxicity in the nanomolar range. It should be emphasized that the pure protein assay incorporates no cellular components other than tubulin. Importantly, tubulin disassembly (in cells) may release factors that are involved in intramolecular signal transduction leading to a major amplification. In addition, the

amount of tubulin needed in the pure protein assay in order to accurately measure inhibition of microtubule formation (by monitoring absorbance at 350 nm spectrophotometrically) is large enough that the practical lower limit for this assay is around 0.5 to 1 micromolar (IC₅₀ value) for even the most active inhibitors of tubulin polymerization.

Figure 2.3. Dynamics of Vascular Disruption Caused by OXi8007 in Human Prostate Tumor PC-3 Xenograft Visualized by Doppler Ultrasound. Sequential transaxial images were acquired over a period of 80 min following injection of indole prodrug **33** (OXi8007) (350 mg/kg IP) in a SCID mouse. A) Immediately post injection, B) 20 min, C) 40 min, D) 60 min, E) 80 min. Each image was acquired in color Doppler mode with extensive vasculature initially observed both within the tumor (outline in yellow) and in surrounding tissue. Within 20 min the tumor vascular perfusion had decreased with further progressive decline, so that by 80 min no vascular flow was observed within the tumor. Flow was however still apparent in surrounding normal tissues (white arrow). White scale bar 2 mm. Heat scale bar representing flow ranging from \pm 64.2 mm/s.

As a preliminary test of vascular disrupting activity *in vivo*, color Doppler ultrasound was applied to a PC-3 human tumor xenograft growing in a SCID mouse. Images were acquired over a period of 80 min starting immediately after administration of indole prodrug **33** (OXi8007). The tumor was clearly visible (Fig. 3) with extensive bidirectional blood flow displayed in red and blue. Blood flow was also observed in vessels outside the tumor. Blood flow decreased progressively and by 80 min had essentially ceased in the core of the tumor. The extratumoral vessels remained undisrupted throughout. The differential activity in the tumor and animal tissue provides preliminary evidence of selective vascular disruption *in vivo*. Ultrasound has emerged as a valuable imaging technique for VDAs⁴² and has recently been validated as a corollary imaging strategy to bioluminescence imaging (BLI)³³ for the assessment of VDAs.⁴³

In summary, an indole-based, water-soluble phosphate prodrug salt **33** (OXi8007) was prepared by chemical synthesis and found to be strongly cytotoxic against a selection of human cancer cell lines. Its parent phenolic analogue **8** (OXi8006) was a potent inhibitor of tubulin assembly. A preliminary Doppler ultrasound experiment demonstrated that indole prodrug **33** (OXi8007) has VDA characteristics that are potentially suitable for the treatment of cancer. Additional studies are underway with indole prodrug **33** (OXi8007) and related compounds to further understand the biological mechanism of action and to investigate structure activity relationships within the 2-aryl-3-aroylindole molecular framework.

EXPERIMENTAL SECTION.

General Experimental Methods. Dichloromethane, acetonitrile, dimethylformamide (DMF), methanol, ethanol, and tetrahydrofuran (THF) were used in

their anhydrous forms, as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen gas, unless specified. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F_{254} , 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a Biotage isolera flash purification system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns or manually in glass columns.

Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 or 300 MHz), ¹³C NMR (125 or 75 MHz), and ³¹P NMR (200 or 120 MHz) spectroscopic data using a Varian VNMRS 500 MHz or Bruker DPX 300 MHz instrument. Spectra were recorded in CDCl₃, D₂O, or CD₃OD. All chemical shifts are expressed in ppm (δ), coupling constants (*J*) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), septet (sept), double doublet, (dd), and multiplet (m).

Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm - 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column; method A: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 0.1% TFA in H₂O; or method B: solvent A, acetonitrile, solvent B, 10% A / 90% B to 100% A / 0% B over 0 to 40 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out under positive ESI (electrospray ionization) using a Thermo scientific LTQ Orbitrap Discovery instrument.

3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde (20).⁴⁴ To a solution of 3hydroxy-4-methoxybenzaldehyde **19** (25.00 g, 164.4 mmol) dissolved in CH₂Cl₂ (250 mL) at 0 °C was added triethylamine (Et₃N) (25.2 mL, 180.9 mmol) followed by N,Ndimethylaminopyridine (DMAP) (2.01 g, 16.4 mmol). The reaction mixture was stirred for 10 min, and tert-butyldimethylsilyl chloride (TBSCl) (27.26 g, 180.9 mmol) was then added gradually. The solution was allowed to warm to room temperature over 12 h. Upon completion of the reaction, the reaction mixture was quenched with water (150 mL) and extracted with CH_2Cl_2 . The extracted layers were combined, dried over Na_2SO_4 , and concentrated under reduced pressure. The TBS benzaldehyde product 20 [47.09 g, 176.9 mmol, $R_f = 0.50$ (70:30 hexanes:EtOAc)] was isolated quantitatively as a yellow oil and was taken to the next step without further purification. ¹H NMR (CDCl₃, 500 MHz): δ 9.80 (s, 1H, CHO), 7.45 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H, ArH), 7.35 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.93 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.87 (s, 3H, OC<u>H</u>₃), 0.99 (s, 9H, C(C<u>H</u>₃)₃), 0.16 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 55.1, 25.3, 18.0, -5.0.

3-tert-Butyldimethylsilyloxy-1-(1'-hydroxyethyl)-4-methoxybenzene (**21**).^{12,44} Crude TBS benzaldehyde **20** (47.09 g, 176.9 mmol) dissolved in tetrahydrofuran (THF, 500 mL) at 0 °C was treated with CH₃Li (144 mL, 230 mmol) dropwise. The solution was allowed to reach room temperature over 12 h. Upon completion of the reaction, the reaction mixture was slowly quenched with water (200 mL) and extracted with EtOAc. The organic extract was dried over Na₂SO₄ and concentrated under reduced pressure, resulting in secondary alcohol **21** [48.97 g, 173.4 mmol, 98%, R_f = 0.40 (70:30 hexanes:EtOAc)] as a yellow oil, which was taken to the next step without further purification. ¹H NMR (CDCl₃, 500 MHz): δ 6.88 (m, 2H, Ar<u>H</u>), 6.83 (d, *J* = 8.1 Hz, 1H, Ar<u>H</u>), 4.81 (q, *J* = 6.3 Hz, 1H, C<u>H</u>), 3.79 (s, 3H, OC<u>H</u>₃), 1.82 (s, 1H, O<u>H</u>), 1.45 (d, *J* = 6.3 Hz, 3H, C<u>H</u>₃), 0.99 (s, 9H, (C<u>H</u>₃)₃), 0.15 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 149.7, 144.5, 138.9, 118.4, 118.0, 111.7, 69.1, 55.1, 25.5, 24.9, 18.2, -4.8.

3-tert-Butyldimethylsilylox)-4-methoxyacetophenone (22).^{17,44} To a solution of crude alcohol **21** (48.97 g, 173.4 mmol) and Celite[®] (35 g) in CH₂Cl₂ (500 mL) at 0 °C was added pyridinium chlorochromate (PCC, 41.12 g, 190.7 mmol) in small increments (1-3 g), allowing 10 min of stirring between each addition. The reaction mixture was allowed to warm to room temperature over 12 h. Upon completion of the reaction, the reaction mixture was filtered through a 50/50 plug of silica gel/Celite[®], and the plug was rinsed well with CH₂Cl₂. The filtrate was concentrated under reduced pressure providing the desired acetophenone derivative **22** [37.94 g, 135.3 mmol, 78%, R_f = 0.50 (70:30 hexanes:EtOAc)] as a pale yellow solid. ¹H NMR (CDCl₃, 500 MHz): δ 7.57 (dd, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 3.86 (s, 3H, OC<u>H₃</u>), 2.52 (s, 3H, C<u>H₃</u>), 1.00 (s, 9H, C(C<u>H₃</u>)₃), 0.16 (s, 6H, Si(C<u>H₃</u>)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 196.7, 155.3, 144.8, 130.5, 123.5, 120.4, 110.7, 55.4, 26.2, 25.6, 18.4, -4.7.

1-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1-trimethylsilylethene (23).¹⁷ To a solution of diisopropylamine (16.6 mL, 117 mmol) in THF (300 mL) at 0 °C was added *n*-butyllithium (47.04 mL, 117.4 mmol) dropwise. The LDA solution was allowed to stir for 15 min, and then a solution of TBS-acetophenone 22 (21.95 g, 78.27 mmol) in THF (100 mL) was added dropwise. The solution was stirred for 10 min, and trimethylsilyl chloride (TMSCl) (14.9 mL, 117.4 mmol) was added dropwise. The reaction mixture was allowed to reach room temperature over 12 h. Upon completion of the reaction, the solution was diluted with NaHCO₃ (10%, 200 mL). The reaction mixture was extracted with diethyl ether. Next the extract was dried over Na₂SO₄, and the organic phase was concentrated under reduced pressure to provide crude TMS-enol ether **23** (30.45 g, 86.12 mmol) as a dark yellow oil, which was taken to the next step without purification. ¹HNMR (CDCl₃, 500 MHz): δ 7.18 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H Ar<u>H</u>), 7.12 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.80 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 4.78 (d, *J* = 1.5 Hz, 1H, CH₂), 4.34 (d, *J* = 1.5 Hz, 1H, CH₂), 3.81 (s, 3H, OCH₃), 1.03 (s, 9H, C(CH₃)₃), 0.27 (s, 9H, Si(CH₃)₃), 0.18 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 155.3, 151.1, 144.4, 130.6, 118.8, 118.1, 111.2, 89.5, 55.4, 25.7, 18.4, 0.03, -4.7.

3'-(tert-Butyldimethylsilyloxy)-4'-methoxy-2-bromoacetophenone (24).¹⁷ To a solution of crude 23 (30.45 g, 86.12 mmol) and anhydrous K₂CO₃ (0.51 g, 3.7 mmol) in CH₂Cl₂ (250 mL) at 0 °C was added bromine (2.66 mL, 51.7 mmol) dropwise. The solution was allowed to stir for 30 min, diluted with sodium thiosulfate (10%) and extracted with CH₂Cl₂. The extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / 98%B (4 CV), 2%A / 98%B → 20%A / 80%B (10 CV), 20%A / 80%B (1.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] afforded bromoacetophenone analogue 24 [18.10 g, 50.38 mmol, 58%, R_f = 0.37 (90:10 hexanes:EtOAc)] as a tan red solid. ¹H NMR (CDCl₃, 500 MHz): δ 7.61 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 7.48 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.88 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 4.37 (s, 2H, C<u>H₂), 3.88 (s, 3H, OC<u>H₃</u>), 1.00 (s, 9H, C(C<u>H₃</u>)₃), 0.17 (s, 6H, Si(C<u>H₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 189.8, 156.1, 145.1, 127.1, 124.2,</u></u> 121.0, 111.0, 55.5, 30.7, 25.6, 18.4, -4.6. HPLC: method B, 9.10 min. HRMS (ESI⁺): m/z calculated for C₁₅H₂₃BrNaO₃Si [M+Na]⁺ 381.0492, found 381.0496.

2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6-methoxyindole (25).⁴⁵ To a solution of *m*-anisidine (2.05 mL, 18.4 mmol) dissolved in *N*,*N*-dimethylaniline (20 mL) at 170 °C was added dropwise bromoacetophenone 24 (2.0 g, 5.6 mmol) in EtOAc (5 mL). The reaction mixture was stirred at 170 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc $(3 \times 50 \text{ mL})$. The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2.6 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulted in the desired 2-phenylindole derivative **25** [1.49 g, 3.88 mmol, 69%, $R_f = 0.48$ (50:50 hexanes:EtOAc)] as light tan crystals. ¹H NMR (CDCl₃, 500 MHz): δ 8.11 (br s, 1H, NH), 7.47 (d, J = 8.5 Hz, 1H, ArH), 7.16 (dd, J = 8.5 Hz, 2.0 Hz 1H, ArH), 7.13 (d, J = 2.5 Hz, 1H, ArH), 6.90 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 6.89 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.79 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H, ArH), 6.64 (dd, *J* = 2.0 Hz, 1.0 Hz 1H, ArH), 3.86 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 1.04 (s, 9H, $C(CH_3)_3$, 0.21 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 156.3, 150.5, 145.4, 137.4, 136.9, 125.8, 123.7, 120.9, 118.2, 117.8, 112.4, 109.9, 98.6, 94.5, 55.6, 55.4, 25.7, 18.5, -4.6. HPLC: method B, 21.09 min. HRMS (ESI⁺): m/z calculated for C₂₂H₃₀NO₃Si [M+H]⁺ 384.1989, found 384.1989.

2-(3'-Hydroxy-4'-methoxyphenyl)-6-methoxyindole (26a).⁴⁶ To a solution of TBS-protected phenol 25 (0.10 g, 0.26 mmol) in THF (10 mL) at 0 °C was added

tetrabutylammonium fluoride (TBAF, 0.4 mL, 0.4 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min and then allowed to reach room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (5.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] afforded the desired free phenol indole 26a [0.72 g, 0.27 mmol, $R_f = 0.22$ (70:30 hexanes:EtOAc)] as a yellow powder. ¹H NMR (CDCl₃, 500 MHz): $\delta 8.12$ (br s, 1H, N<u>H</u>), 7.47 (d, J = 8.6 Hz, 1H, Ar<u>H</u>), 7.20 (d, J = 2.1 Hz, 1H, $Ar\underline{H}$, 7.11 (dd, J = 8.3 Hz, 2.1 Hz, 1H, $Ar\underline{H}$), 6.90 (m, 1H, $Ar\underline{H}$), 6.78 (dd, J = 8.6 Hz, 2.2 Hz, 1H, ArH), 6.64 (d, J = 1.6 Hz, 1H, ArH), 5.67 (br s, 1H, OH), 3.93 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 156.6, 146.20, 146.15, 137.6, 136.9, 126.5, 123.8, 121.2, 116.8, 111.4, 111.2, 110.1, 99.1, 94.6, 56.2, 55.9. HPLC: method B, 12.33 min. HRMS (ESI⁺): m/z calculated for C₁₆H₁₆NO₃ [M+H]⁺ 270.1125, found 270.1128.

2-(3'-Isopropoxy-4'-methoxyphenyl)-6-methoxyindole (**26b**).⁴⁵ To a well-stirred solution of free phenol **26a** (0.07 g, 0.27 mmol) and K₂CO₃ (0.12 g, 0.89 mmol) in DMF (10 mL) at 100 °C was added 2-bromopropane (0.05 mL, 0.54 mmol) dropwise. The reaction mixture was stirred for 12 h at 100 °C. The mixture was cooled to room temperature and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure to afford the desired isopropyl protected indole **26b** [0.05 g, 0.27 mmol, 60%, R_f = 0.50 (60:40 hexanes:EtOAc)] as a tan solid which was carried to the next step without further purification. ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (br s, 1H, N<u>H</u>), 7.47 (d, *J* = 8.6 Hz, 1H, Ar<u>H</u>), 7.21 (d, *J* = 2.1 Hz, 1H, Ar<u>H</u>), 7.16 (dd, *J* = 8.3 Hz, 2.1 Hz, 1H, Ar<u>H</u>), 6.90 (d, *J* = 8.4 Hz, 1H, Ar<u>H</u>), 6.86 (d, *J* = 2.1 Hz, 1H, Ar<u>H</u>), 6.79 (dd, *J* = 8.6 Hz, 2.3 Hz, 1H, Ar<u>H</u>), 6.67 (m, 1H, Ar<u>H</u>), 4.61 (sept, *J* = 6.0 Hz, 1H, C<u>H</u>), 3.87 (s, 3H, OC<u>H₃</u>), 3.83 (s, 3H, OC<u>H₃</u>), 1.39 (d, *J* = 6.1 Hz, 6H, (C<u>H₃</u>)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 156.5, 150.2, 147.7, 137.6, 137.2, 125.9, 123.8, 121.0, 117.9, 113.4, 112.5, 110.0, 98.7, 94.7, 71.9, 56.1, 55.8, 22.3. HRMS (ESI⁺): *m*/*z* calculated for C₁₉H₂₂NO₃ [M+H]⁺ 312.1594, found 312.1596.

2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3",4",5"trimethoxybenzoyl)-6-methoxyindole (27).¹³ To a solution of compound 25 (3.12 g, 8.14 mmol) in *o*-dichlorobenzene (30 mL) was added 3,4,5-trimethoxybenzoylchloride (2.82 g, 12.2 mmol). The reaction mixture was heated to reflux at 170 °C for 12 h. The *o*dichlorobenzene was removed by simple distillation, and the resulting dark colored crude oil was subjected to flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (4 CV), 10%A / 90%B → 80%A / 20%B (10 CV), 80%A / 20%B (2.8 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole analogue 27 [1.60 g, 2.77 mmol, 34%, R_f = 0.38 (60:40 hexanes:EtOAc)] as a yellow powder. ¹H NMR (CDCl₃, 500 MHz): δ 8.42 (br s, 1H, N<u>H</u>), 7.93 (d, *J* = 9.5 Hz, 1H, Ar<u>H</u>), 6.99 (s, 2H, Ar<u>H</u>) 6.94 (dd, *J* = 8.0 Hz, 2.0 Hz 1H, Ar<u>H</u>), 6.91 (dd, *J* = 9.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.91 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.77 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.70 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 3.87 (s, 3H, OC<u>H₃), 3.79 (s, 3H, OC<u>H₃), 3.74 (s, 3H, OCH₃), 3.69 (s, 6H, OCH₃), 0.94 (s, 9H, C(CH₃)₁), 0.04 (s, 6H, Si(CH₃)₂).</u></u> ¹³C NMR (CDCl₃, 125 MHz): δ 191.9, 157.4, 152.6, 151.6, 145.2, 142.1, 141.3, 136.5, 134.6, 125.2, 123.4, 122.6, 122.3, 121.9, 112.9, 111.8, 111.7, 107.4, 94.6, 60.9, 56.1, 55.9, 55.5, 25.8, 18.5, -4.7.

2-(3'-Isopropoxy-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-6*methoxyindole* (28).³⁶ To a well-stirred solution of compound 26b (1.07 g, 3.45 mmol) in o-dichlorobenzene (20 mL) was added 3,4,5-trimethoxybenzoylchloride (1.39 g, 6.04 mmol). The reaction mixture was heated to reflux at 160 °C for 16 h. The excess odichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to glass column flash chromatography (silica gel, hexanes/EtOAc: 50/50), yielding the desired isopropyl-indole analogue **28** [0.96 g, 1.90 mmol, 55%, $R_f = 0.29$ (hexanes/EtOAc: 50/50)] as a yellow solid. ¹H NMR (CDCl₃, 300 MHz): δ 8.79 (br s, 1H, N<u>H</u>), 7.94 (d, *J* = 9.4 Hz, 1H, Ar<u>H</u>), 6.99 (dd, *J* = 8.2 Hz, *J* = 2.1 Hz, 1H, Ar<u>H</u>), 6.98 (s, 2H, Ar<u>H</u>), 6.92 (dd, J = 6.1 Hz, 2.3 Hz, 1H, Ar<u>H</u>), 6.90 (d, J = 2.3 Hz, 1H, ArH), 6.74 (d, J = 2.1 Hz, 1H, ArH), 6.73 (d, J = 8.4 Hz, 1H, ArH), 4.16 (m, 1H, CH), 3.85 (s, 3H, OCH_3 , 3.79 (s, 3H, OCH_3), 3.78 (s, 3H, OCH_3), 3.66 (s, 6H, OCH_3), 1.21 (d, J = 5.6 Hz, 3H, CH₃), 1.19 (d, J = 5.6 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 191.8, 157.3, 152.5, 150.9, 147.1, 142.3, 141.2, 136.4, 134.5, 124.8, 123.2, 122.4, 121.0, 117.3, 112.6, 111.6, 111.5, 107.2, 94.5, 71.7, 64.4, 60.8, 55.9, 55.6, 25.3, 21.9.

2-(3'-Isopropoxy-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-N-methyl-6-methoxyindole (**29**).⁴⁵ To a solution of compound**28**(0.52 g, 1.03 mmol) in CH₂Cl₂(20 mL) at 0 °C was added sodium hydride (0.04 g, 1.75 mmol) slowly and carefully. Thesolution was stirred for 5 min, and methyl iodide (0.13 mL, 2.16 mmol) was addeddropwise. The reaction mixture was allowed to warm to room temperature over 19 h. Upon completion of the reaction, the solution was diluted with water (15 mL) and extracted with CH₂Cl₂ (2 x 15 mL). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by column flash column chromatography (silica gel, hexanes/EtOAc: 70/30) afforded methyl indole analogue **29** (0.43 g, 0.82 mmol, 80%, $R_f = 0.18$ (hexanes/EtOAc: 60/40)) as a white solid. ¹H NMR (CDCl₃, 300 MHz): d 8.00 (d, J = 8.7 Hz, 1H, ArH), 6.97 (dd, J = 8.7 Hz, 2.3 Hz, 1H, ArH), 6.88 (dd, J = 7.9 Hz, 1.9 Hz, 1H, ArH), 6.87 (d, J = 2.4 Hz, 1H, ArH), 6.84 (s, 2H, ArH), 6.81 (d, J = 8.3 Hz, 1H, ArH), 6.66 (d, J = 1.9 Hz, 1H, ArH), 4.28 (m, 1H, CH), 3.93 (s, 3H, CH₃), 3.82 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.73 (s, 6H, OCH₃), 3.66 (s, 3H, OCH₃), 1.27 (d, J = 6.1 Hz, 6H, (CH₃)₂). ¹³C NMR (CDCl₃, 75 MHz): d 191.8, 157.2, 152.2, 150.6, 146.7, 145.2, 140.5, 138.1, 135.3, 123.5, 123.3, 122.5, 121.8, 118.4, 114.0, 111.5, 111.2, 106.7, 93.6, 71.4, 60.7, 55.90, 55.86, 55.7, 31.4, 21.9. HPLC: method B, 15.14 min. HRMS (ESI⁺): *m*/*z* calculated for C₃₀H₃₃NNaO₇ [M+Na]⁺ 542.2149, found 542.2150.

2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-6methoxyindole (8) (OXi8006).¹² To a well-stirred solution of compound 27 (4.45 g, 7.70 mmol) in THF (15 mL) at 0 °C was added tetrabutylammonium fluoride (TBAF, 11.55 mL, 11.55 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (5 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired phenolic indole **8** (OXi8006) [2.49 g, 5.37 mmol, 70%, $R_f = 0.28$ (50:50 hexanes:EtOAc)] as a yellow powder. ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (br s, 1H, N<u>H</u>), 7.93 (d, J = 9.5 Hz, 1H, Ar<u>H</u>), 6.96 (s, 2H, Ar<u>H</u>) 6.95 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.93 (dd, J = 9.5 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 6.92 (d, J = 2.5 Hz, 1H, Ar<u>H</u>), 6.78 (dd, J = 8.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.65 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 5.55 (s, 1H, O<u>H</u>) 3.89 (s, 3H, OC<u>H₃</u>), 3.84 (s, 3H, OC<u>H₃</u>), 3.80 (s, 3H, OC<u>H₃</u>), 3.71 (s, 6H, OC<u>H₃</u>). ¹³C NMR (CDCl₃, 125 MHz): δ 192.7, 157.1, 152.5, 147.0, 145.3, 143.3, 141.0, 136.6, 135.0, 125.1, 123.0, 122.1, 121.5, 115.1, 112.6, 111.6, 110.3, 107.4, 94.8, 60.8, 56.0, 55.8, 55.6. HPLC: method B, 11.43 min. HRMS (ESI⁺): *m/z* calculated for C₂₆H₂₆NO₇ [M+H]⁺ 464.1704, found 464.1706.

2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-N-methyl-6methoxyindole (**30**).⁴⁵ To a solution of isopropyl ether **29** (0.426 g, 0.819 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added AlCl₃ (0.33 g, 2.46 mmol). The reaction mixture was allowed to warm to room temperature and stirring at room temperature continued for 2 h. Examination by TLC indicated the presence of starting material so an additional 3 molar equivalents (0.33 g, 2.46 mmol) of AlCl₃ was added, and the reaction mixture was stirred for an additional 1.5 h. Upon completion of the reaction, the reaction mixture was quenched with water (15 mL) and extracted with CH₂Cl₂(2 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography (silica gel, hexanes/EtOAc: 60/40) afforded the free phenolic *N*-methyl indole analogue **30** [0.286 g, 0.599 mmol, 73%, R_f = 0.17 (hexanes/EtOAc: 50/50)] as a colorless solid. ¹H NMR (CDCl₃, 500 MHz): d 8.02 (d, *J* = 8.7 Hz, 1H, Ar<u>H</u>), 6.96 (dd, J = 8.7 Hz, 2.2 Hz, 1H, Ar<u>H</u>), 6.86 (d, J = 2.1 Hz, 1H, Ar<u>H</u>),
6.79 (d, J = 8.0 Hz, 1H, Ar<u>H</u>), 6.78 (s, 2H, Ar<u>H</u>), 6.65 (m, 2H, Ar<u>H</u>), 5.77 (s, 1H, O<u>H</u>),
3.92 (s, 3H, C<u>H</u>₃), 3.82 (s, 3H, OC<u>H</u>₃), 3.77 (s, 3H, OC<u>H</u>₃), 3.74 (s, 6H, OC<u>H</u>₃), 3.65 (s,
3H, OC<u>H</u>₃). ¹³C NMR (CDCl₃, 75 MHz): d 192.2, 157.3, 152.3, 147.0, 145.4, 145.2,
140.2, 138.2, 135.8, 124.0, 123.6, 122.7, 121.9, 117.0, 114.4, 111.7, 110.2, 106.6, 93.7,
60.8, 56.1, 56.0, 55.9, 31.5. HPLC: method B, 12.38 min. HRMS (ESI⁺): *m/z* calculated for C₂₇H₂₈NO₇ [M+H]⁺ 478.1860, found 478.1857.

2-(3'-Dibenzylphosphate-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-6methoxyindole (31).⁴⁵ To a solution of compound 8 (1.90 g, 4.09 mmol) in acetonitrile (70 mL) at -25 °C was added CCl₄ (3.50 mL, 35.98 mmol). The solution was stirred for 10 min, and ethyldiisopropylamine (1.50 mL, 8.63 mmol) and DMAP (0.05 g, 0.41 mmol) were added. After 5 min of stirring, dibenzyl phosphite (1.36 mL, 6.17 mmol) was added, and the reaction mixture was stirred for 2 h while allowing the solution to reach room temperature. Upon completion of the reaction, the reaction was terminated by adding a solution of KH₂PO₄ (15 mL, 0.5 M) and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / $88\%B \rightarrow 100\%A / 0\%B$ (10 CV), 100%A / 0%B (5.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] afforded the desired phosphate ester 31 [2.71 g 3.75 mmol, 91 %, $R_f = 0.57$ (50:50 (hexanes:EtOAc)] as a yellow powder. ¹H NMR (CDCl₃, 500 MHz): δ 9.20 (br s, 1H, NH), 7.78 (d, J = 8.5 Hz, 1H, ArH), 7.35 (m, 10H, ArH), 7.25 (m, 1H, ArH), 6.96 (dd, J = 9.0 Hz, 2.5 Hz, 1H, ArH), 6.93 (s, 2H, ArH), 6.91 (d, J = 2.0 Hz)

Hz, 1H, Ar<u>H</u>), 6.86 (dd, J = 9.0 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 6.51 (d, J = 8.5 Hz, 1H, Ar<u>H</u>) 5.17 (d, 4H, J = 8.0 Hz, C<u>H</u>₂), 3.82 (s, 3H, OC<u>H</u>₃), 3.79 (s, 3H, OC<u>H</u>₃), 3.65 (s, 6H, OC<u>H</u>₃), 3.54 (s, 3H, OC<u>H</u>₃). ¹³C NMR (CDCl₃, 125 MHz): δ 192.1, 157.3, 152.7, 150.73, 150.69, 141.3, 141.2, 136.7, 135.6 (d, J = 7.3 Hz), 135.0, 128.84, 128.78, 128.1, 127.8, 124.6, 123.1, 122.3, 121.4, 112.8, 112.0, 111.7, 107.4, 94.9, 70.3 (d, J = 6.0 Hz), 60.9, 56.2, 55.8, 55.7. ³¹P NMR (CDCl₃, 200 MHz): δ -6.1. HPLC: method B, 16.40 min. HRMS (ESI⁺): m/z calculated for C₄₀H₃₈NNaO₁₀P [M+Na]⁺ 746.2126, found 746.2126.

2-(3'-Dibenzylphosphate-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-N*methyl-6-methoxyindole* (32)⁴⁵ To a well-stirred solution of compound **30** (0.312 g, 0.653 mmol) dissolved in acetonitrile (15 mL) at -25 °C was added CCl₄ (0.56 mL, 5.75 mmol). The reaction mixture was stirred for 10 min and ethyldiisopropylamine (0.24 mL, 1.37 mmol) and DMAP (0.01 g, 0.06 mmol) were added. After 5 min, dibenzyl phosphite (0.22 mL, 0.99 mmol) was added, and the reaction mixture was allowed to reach room temperature over 1.5 h. A solution of KH₂PO₄ (20 mL, 0.5 M) was added, and the reaction mixture was extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography (silica gel, hexanes/EtOAc: 50/50) yielded the desired phosphate ester **32** [0.35 g, 0.47 mmol, 73%, $R_f = 0.52$ (hexanes/EtOAc: 30/70)] as a colorless solid. ¹H NMR (CDCl₃, 300 MHz): d 7.88 (d, J = 8.7 Hz, 1H, ArH), 7.31 (m, 10H, ArH), 7.17 (m, 1H, ArH), 7.03 (m, 1H, ArH), 6.93 (dd, *J* = 8.8 Hz, 2.2 Hz, 1H, ArH), 6.84 (d, J = 2.2 Hz, 1H, ArH), 6.83 (s, 2H, ArH), 6.78 (d, J = 8.5 Hz, 1H, ArH), $5.14 (d, J = 8.1 Hz, 4H, CH_2), 3.91 (s, 3H, CH_3), 3.79 (s, 3H, OCH_3), 3.76 (s, 3H, OCH_3),$ 3.70 (s, 6H, OCH₃), 3.54 (s, 3H, OCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 191.7, 157.4,

152.5, 150.99, 150.95, 144.1, 140.7, 138.2, 135.7 (d, J = 6.8 Hz), 135.6, 129.0, 128.74, 128.70, 128.1, 123.84, 123.82, 122.8, 121.7, 114.5, 112.2, 111.7, 106.9, 93.7, 70.1 (d, J = 5.8 Hz), 60.9, 56.2, 56.1, 55.9, 31.4. ³¹P NMR (CDCl₃, 120MHz): d 5.95. HPLC: method B, 16.84 min. HRMS (ESI⁺): m/z calculated for C₄₁H₄₀NNaO₁₀P [M+Na]⁺ 760.2282, found 760.2280.

2-(3'-Disodiumphosphate-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-6*methoxyindole* (33) (OXi8007).¹² To a solution of dibenzyl ester 31 (2.71 g, 3.74 mmol) in methanol (70 mL) was added 10% palladium-carbon (1.2 g). The flask was evacuated under vacuum, and H₂ gas was introduced via a balloon. The reaction proceeded for 30 min, and the solution was filtered using Celite[®] with EtOAc. The filtrate was concentrated under reduced pressure to give the crude phosphoric acid derivative as a greenish-yellow oil (2.29 g, 4.22 mmol). The oil was dissolved in methanol (20 mL), and a solution of sodium methoxide (2.0 mL, 25% w/v in methanol) was added. The reaction mixture was stirred at room temperature for 12 h, and the methanol was removed under reduced pressure. Purification by flash chromatography using a prepacked 25 g reversed phase silica column [solvent A: water; solvent B: acetonitrile; gradient: 100%A / 0%B (3 CV), 100%A / 0%B $\rightarrow 20\%$ A / 80%B (10 CV), 0%A / 100%B (7.3 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulted in the desired disodium phosphate salt **33** (OXi8007) (1.49 g, 2.54 mmol, 60%) as a yellow powder. ¹H NMR (D_2O , 500 MHz): δ 8.03 (d, J = 9.0 Hz, 1H, ArH), 7.71 (m, 1H, ArH), 7.21 (d, J = 2.0 Hz, 1H, ArH) 7.03 (dd, J = 9.0 Hz, 2.5 Hz, 1H, ArH), 6.93 (s, 2H, ArH), 6.67 (d, J = 8.5 Hz, 1H, ArH), 6.63 OCH₃), 3.72 (s, 3H, OCH₃). ¹³C NMR (D₂O, 125 MHz): δ 195.1, 156.3, 151.7, 150.5,

150.4, 147.7, 142.8 (d, J = 5.6 Hz), 139.7, 136.6, 135.4, 125.8, 123.8, 122.2, 121.5, 120.4, 111.7, 111.2, 107.8, 94.5, 60.8, 56.1, 55.8, 55.7. ³¹P NMR (D₂O, 200 MHz): δ 0.57. HPLC: method A, 8.32 min. HRMS (ESI⁺): m/z calculated for C₂₆H₂₅NNa₂O₁₀P [M+H]⁺ 588.1006, found 588.1008.

2-(3'-Disodiumphosphate-4'-methoxyphenyl)-3-(3",4",5"-trimethoxybenzoyl)-Nmethyl-6-methoxyindole (34).⁴⁵ To a solution of dibenzyl ester 32 (0.32 g, 0.43 mmol) in ethanol (10 mL) was added 5% palladium-carbon (0.10 g). The flask was evacuated by aspirator vacuum, and H_2 gas was introduced into the solution via balloon. The reaction proceeded for 30 min, and the solution was filtered through Celite[®] in EtOAc. The filtrate was concentrated under reduced pressure to afford the crude phosphoric acid derivative as a yellow foam (0.223 g, 0.400 mmol). The foam product was dissolved in methanol (15 mL), and a solution of sodium methoxide (0.18 mL, 0.80 mmol, 4.37 M solution in methanol) was added. The reaction mixture was stirred at room temperature for 12 h. Next, the methanol was removed under reduced pressure. Purification by recrystallization from water-acetone afforded the desired salt 34 (0.168 g, 0.279 mmol, 64%) as a yellow solid. ¹H NMR (CD₃OD, 500 MHz): δ 7.89 (d, J = 8.8 Hz, 1H, ArH), 7.79 (m, 1H, ArH), 7.02 (d, J = 2.0 Hz, 1H, ArH), 6.88 (dd, J = 8.8 Hz, 2.2 Hz, 1H,ArH), 6.76 (s, 2H, ArH), 6.62 (d, J = 8.3 Hz, 1H, ArH), 6.58 (dd, J = 8.4 Hz, 2.1 Hz, 1H, ArH), 3.90 (s, 3H, CH₃), 3.77 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.74 (s, 6H, OCH₃), 3.69 (s, 3H, OCH₃). ¹³C NMR (CD₃OD, 75 MHz): δ 194.9, 158.8, 153.7, 152.2, 149.1, 148.9, 145.6 (d, J = 5.5 Hz), 141.5, 139.9, 137.4, 126.5, 124.3, 124.0, 123.2, 114.6, 112.9, 112.6, 108.0, 94.8, 61.1, 56.8, 56.6, 56.2, 32.4. ³¹P NMR (CD₃OD, 120 MHz): δ

1.84[•] HPLC: method B, 8.74 minutes. HRMS (ESI⁺): m/z calculated for C₂₇H₂₇NNa₂O₁₀P [M+H]⁺ 602.1162, found 602.1180.

Effects on Tubulin Polymerization. Bovine brain tubulin was purified using methods previously described.⁴⁷ The effect of compounds on tubulin assembly in vitro was determined by using a series of concentrations that were preincubated with 10 μ M tubulin (1.0 mg/mL) in glutamate buffer at 30 °C, followed by cooling to 0 °C. After GTP was added, the samples were mixed and transferred to cuvettes at 0 °C in a recording spectrophotometer and warmed to 30 °C to initiate polymerization. Tubulin assembly was observed turbidimetrically at 350 nm.⁴⁸ Polymer disassembly was confirmed by cooling to 0 °C. The calculated compound concentration that inhibited the extent of tubulin assembly by 50% after a 20 min incubation was defined as the IC₅₀ value.

Colchicine Binding Assay. Colchicine binding was measured as previously described.^{49,50} Solutions containing 1 μ M tubulin, 5.0 μ M [³H]colchicine, and inhibitor at either 50 μ M, 5 μ M, and/or 1 μ M (as specified) were used.

Cell Lines and Sulforhodamine B (SRB) Assay. Cancer cell lines were obtained from ATCC (DU-145 (prostate), SK-OV-3 (ovarian), and NCI-H460 (lung)) and maintained as recommended. Media included gentamicin and amphotericin B. The National Cancer Institute's standard SRB assay assessed cancer cell line growth inhibition, as previously described, with the GI_{50} being the drug concentrations calculated to cause a 50% reduction in net protein increase relative to untreated cells.⁵¹⁻⁵³ Results reported are averages of at least three separate experiments, each of which was carried out in triplicate. **Color Doppler Ultrasound Imaging with indole 33 (OXi8007).** PC-3-luc cells were grown in culture and harvested, as described previously.⁴³ Cells (2 x 10⁶) were implanted orthotopically in the prostate of a SCID mice (NIH, Frederick, MD), and the tumor was allowed to grow to approximately 5-7 mm in diameter. At this stage NAIR[®] Lotion (Church and Dwight, Princeton, NJ) was applied to ensure complete local hair removal. The mouse was anesthetized (2% isoflurane in oxygen), and gel was applied to ensure effective ultrasound coupling to the solid-state transducers: MS400 (24 MHz). Data were acquired using a Vevo 2100 (Visual Sonics Inc, Toronto, Ontario, Canada) in both B and color Doppler modes. Compound **33** (OXi8007) (350 mg/kg in saline) was injected IP, and ultrasound images were acquired over the next 80 min.

SUPPORTING INFORMATION. Characterization data for selected intermediates and the final compounds are available free of charge via the Internet at <u>http://pubs.acs.org</u>.

AUTHOR INFORMATION. Corresponding Author: *Tel: 1-254-710-4117. Fax: 1-254-710-4272. Email: <u>Kevin_Pinney@baylor.edu</u>

ACKNOWLEDGMENTS. The authors are grateful to the Cancer Prevention and Research Institute of Texas (CPRIT (RP100406), to K.G.P. and M.L.T.), Oxigene Inc. (to K.G.P. and M.L.T), the Welch Foundation (grant no. AA-1278 to K.G.P.), the Baylor University Research Committee (URC grant to K.G.P) and the National Cancer Institute Award Number 5R01CA140674 (to K.G.P and M.L.T with subcontract to R.P.M.) for their financial support of this project. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The authors also thank Dr. Alejandro

Ramirez (Mass Spectrometry Core Facility, Baylor University) and Dr. James Karban and Dr. Michelle Nemec (Director) for use of the shared Molecular Biosciences Center at Baylor University. Imaging was facilitated with the assistance of the Southwestern Small Animal Imaging Resource (SW-SAIRP), which is supported in part by NCI U24 CA126608, the Harold C. Simmons Cancer Center through an NCI Cancer Center Support Grant, 1P30 CA142543, and the Department of Radiology. We are grateful to Professor J. Hill (Cardiology, UTSW) for providing access to the Vevo 2100, which was acquired thanks to the NIH Shared Instrumentation Grant S10 RR031859.

REFERENCES.

1) Pinney, K. G.; Pettit, G. R.; Trawick, M. L.; Jelinek, C.; Chaplin, D. J. The Discovery and Development of the Combretastatins. In Antitumor Agents from Natural Products, 2nd ed.; Kingston, D., Newman, D., Cragg, G., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, Florida, 2011; pp 27-64.

2) Hamel, E. An Overview of Compounds and their Effects on Microtubule Assembly. In *Microtubule Targets in Cancer Therapy*, Fojo, A. T., Ed.; Humana Press: Towota, New Jersey, 2008; pp. 1-20.

3) Pettit, G. R.; Cragg, G. M.; Herald, D. L.; Schmidt, J. M.; Lohavanijaya, P. Antineoplastic agents. 84. Isolation and Structure of Combretastatin. *Can. J. Chem.* **1982**, 60, 1374-1376.

4) Pettit, G. R.; Cragg, G. M.; Singh, S. B. Antineoplastic Agents, 122. Constituents of Combretum caffrum. *J. Nat. Prod.* **1987**, *50*, 386-391.

5) Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. The Antimitotic Natural Products Combretastatin A-2 and Combretastatin A-4: Studies on the Mechanism of Their Inhibition of the Binding of Colchicine to Tubulin. *Biochemistry* **1989**, *28*, 6984-6991.

6) Pettit, G. R.; Rhodes, M. R. Antineoplastic Agents 389. New Syntheses of the Combretastatin A-4 Prodrug. *Anticancer Drug. Des.* **1998**, *13*, 183-191.

7) Chaudhary, A.; Pandeya, S. N.; Kumar, P.; Sharma, P. P.; Gupta, S.; Soni, N.; Verma, K. K.; Bhardwaj, G. Combretastatin A-4 Analogs as Anticancer Agents. *Mini-Rev. Med. Chem.* **2007**, *7*, 1186-1205.

8) Patil, S. A.; Patil, R.; Miller, D. D. Indole Moleceules as Inhibitors of Tubulin Polymerization: Potential New Anitcancer Agents. *Future Med. Chem.* **2012**, *4*(16), 2085-2115.

9) Owellen, R. J.; Hartke, C. A.; Dickerson, R. M.; Hains, F. O. Inhibition of Tubulinmicrotubule Polymerization by Drugs of the Vinca Alkaloid Class. *Cancer Res.* **1976**, *36*, 1499-1502.

10) Cragg, G. M.; Newman, D. J. Plants as a Source of Anti-cancer Agents. J. *Ethnopharmacol.* **2005**, *100*, 72-79.

11) Gastpar, R.; Goldbrunner, M.; Marko, D.; von Angerer, E. Methoxy-Substituted 3-Formyl-2-phenylindoles Inhibit Tubulin Polymerization. *J. Med. Chem.* **1998**, *41*, 4965-4972. 12) Pinney, K. G.; Wang, F.; Del Pilar Mejia, M. Preparation of Indole-containing and Combretastatin-related Anti-mitotic and Anti-tubulin Polymerization Agents. From PCT Int. Appl. **2001**, WO 2001019794 A2 20010322.

13) Note: The X-ray structure and a brief synthetic description of compound **27** were reported by Pinney and co-workers in: Hadimani, M.; Kessler, R. J.; Kautz, J. A.; Ghatak, A.; Shirali, A. R.; O'Dell, H.; Garner, C. M.; Pinney, K. G. 2-(3-*tert*-Butyldimethylsilyloxy-4-methoxyphenyl)-6-methoxy-3-(3,4,5-trimethoxybenzoyl)indole. *Acta Cryst.* **2002**, *C58*, 330-332.

14) Note: The structures of **8** (OXi8006) and **33** (OXi8007), along with a brief summary of their biological activity, were presented as a portion of a book chapter: Pinney, K. G. Molecular Recognition of the Colchicine Binding Site as a Design Paradigm for the Discovery and Development of Vascular Disrupting Agents. In *Vascular-targeted Therapies in Oncology*; Siemann, D. W., Ed.; John Wiley & Sons: London. 2006; pp 95-121.

15) Pettit G. R.; Pinney, K. G. Major Milestones. In American Society of *Pharmacognosy History*. Cragg, G., Ed.; 2009.

16) Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. Antiestrogens. 2. Structure-Activity Studies in a Series of 3-Aroyl-2-arylbenzo[*b*]thiophene Derivatives Leading to [6-Hydroxy-2-(4-hydroxyphenyl)benzo[*b*]thien-3-yl]-[4-[2-(1-piperidinyl)ethoxy]phenyl]methanone Hydrochloride (LY 156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity. *J. Med. Chem.* **1984**, *27*, 1057-1066.

17) Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. M. Preparation of Trimethoxyphenyl-containing Tubulin Binding Ligands and Corresponding Prodrug Constructs as Inhibitors of Tubulin Polymerization and Antimitotic Agents. From PCT Int. Appl. **2001**, WO 2001068654 A2 20010920.

18) Pinney, K. G.; Dingeman, K. M.; Bounds, A. D.; Mocharla, V. P.; Pettit, G. R.;
Bai, R.; Hamel, E. A New Anti-tubulin Agent Containing the Benzo[b]thiophene Ring
System. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1081-1086.

19) Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D. H.; Burgermeister, J.; Bohmer, F.-D.; Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents. *J. Med. Chem.* **2001**, *44*, 4535-4553.

20) Martino, G. D.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera, M. C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, Potent Inhibitors of Tubulin Polymerization. *J. Med. Chem.* **2004**, *47*, 6120-6123.

21) Liou, J.-P.; Chang, Y.-L.; Kuo, F.-M.; Chang, C.-W.; Tseng, H.-Y.; Wang, C.-C.; Yang, Y.-N.; Chang, J.-Y.; Lee, S.-J.; Hsieh, H.-P. Concise Synthesis and Structure-Activity Relationships of Combretastatin A-4 Analogues, 1-Aroylindoles and 3-Aroylindoles, as Novel Classes of Potent Antitubulin Agents. *J. Med. Chem.* **2004**, *47*, 4247-4257.

22) Liou, J.-P.; Wu, C.-Y.; Hsieh, H.-P.; Chang, C.-Y.; Chen, C.-M.; Kuo, C.-C.; Chang, J.-Y. 4- and 5-Aroylindoles as Novel Classes of Potent Antitubulin Agents. J. *Med. Chem.* 2007, *50*, 4548-4552.

23) Ty, N.; Dupeyre, G.; Chabot, G. G.; Seguin, J.; Tillequin, F.; Scherman, D.; Michel, S.; Cachet, X. Synthesis and Biological Evaluation of New Disubstituted Analogues of 6-Methoxy-3-(3,4,5-trimethoxybenzoyl)-1*H*-indole (BPR0L075), as Potential Antivascular Agents. *Bioorg. Med. Chem.* **2008**, *16*, 7494–7503.

24) Liou, J.-P.; Wu, Z.-Y.; Kuo, C.-C.; Chang, C.-Y.; Lu, P.-Y.; Chen, C.-M.; Hsieh, H.-P.; Chang, J.-Y. Discovery of 4-Amino and 4-Hydroxy-1-aroylindoles as Potent Tubulin Polymerization Inhibitors. *J. Med. Chem.* **2008**, *51*, 4351–4355.

25) Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Cristina, A. D.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.-P.; Hamel, E. Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors. *J. Med. Chem.* **2008**, *51*, 1464–1468.

26) Regina, G. L.; Bai, R.; Rensen, W.; Coluccia, A.; Piscitelli, F.; Gatti, V.;
Bolognesi, A.; Lavecchia, A.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto,
M. L.; Mariani, M.; Santoni, A.; Brancale, A.; Ferlini, C.; Dondio, G.; Varasi, M.;
Mercurio, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Design and Synthesis of 2Heterocyclyl-3-arylthio-1*H*-indoles as Potent Tubulin Polymerization and Cell Growth
Inhibitors with Improved Metabolic Stability. *J. Med. Chem.* 2011, *54*, 8394-8406.

27) Lee, H.-Y.; Chang, J.-Y.; Chang, L.-Y.; Lai, W.-Y.; Lai, M.-J.; Shih, K.-H.; Kuo, C.-C.; Chang, C.-Y.; Liou, J.-P. Concise Syntheses of *N*-Aryl-5,6,7-trimethoxyindoles as Antimitotic and Vascular Disrupting Agents: Application of the Copper-Mediated Ullmann-Type Arylation. *Org. Biomol. Chem.* **2011**, *9*, 3154-3157.

28) Kuo, C.-C.; Hsieh, H.-P.; Pan, W.-Y.; Chen, C.-P.; Liou, J.-P.; Lee, S.-J.; Chang, L.-Y.; Chen, L.-T.; Chen, C.-T.; Chang, J.-Y. BPR0L075, A Novel Synthetic Indole Compound with Antimitotic Activity in Human Cancer Cells, Exerts Effective Antitumoral Activity *in Vivo. Cancer Res.* **2004**, *64*, 4621-4628.

29) Wu, Y.-S.; Coumar, M. S.; Chang, J.-Y.; Sun, H.-Y.; Kuo, F.-M.; Kuo, C.-C.; Chen, Y.-J.; Chang, C.-Y.; Hsiao, C.-L.; Liou, J.-P.; Chen, C.-P.; Yao, H.-T.; Chiang, Y.-K.; Tan, U.-K.; Chen, C.-T.; Chu, C.-Y.; Wu, S.-Y.; Yeh, T.-K.; Lin, C.-Y.; Hsieh, H.-P. *J. Med. Chem.* **2009**, *52*, 4941-4945.

30) Liu, L.; Beck, H.; Wang, X.; Hsieh, H.-P.; Mason, R. P.; Liu, X. Tubulin-Destabilizing Agent BPR0L075 Induces Vascular-Disruption in Human Breast Cancer Mammary Fat Pad Xenografts. *PLoS ONE*, published online August 24, **2012**; DOI: 10.1371/journal.pone.0043314.

31) Zhao, D.-G.; Chen, J. J.; Du, Y.-R.; Ma, Y.-Y.; Chen, Y.-X.; Gao, K.; Hu, B.-R. Synthesis and Structure-Activity Relationships of *N*-Methyl-5,6,7-trimethoxyindoles as Novel Antimitotic and Vascular Disrupting Agents. *J. Med. Chem.* **2013**, *56*, 1467-1477.

32) Dalal, S.; Burchill, S. A. Preclinical Evaluation of Vascular-disrupting Agents in Ewing's Sarcoma Family of Tumours. *Eur. J. Cancer* **2009**, *45*, 713-722.

33) Mason, R. P.; Zhao, D.; Liu, L.; Trawick, M. L.; Pinney, K. G. A Perspective on Vascular Disrupting Agents that Interact with Tubulin: Preclinical Tumor Imaging and Biological Assessment. *Integr. Biol.*, **2011**, *3*, 375-387.

34) Tozer, G. M.; Kanthou, C.; Baguley, B. C. Disrupting Tumour Blood Vessels. *Nat. Rev. Cancer* **2005**, *5*, 423-435.

35) Chaplin, D. J.; Pettit, G. R.; Hill, S. A. Anti-vascular Approaches to Solid Tumour Therapy: Evaluation of Combretastatin A4 Phosphate. *Anticancer Res.* **1999**, *19*, 189-195.

36) Flynn, B. L.; Hamel, E.; Jung, M. K. One-Pot Synthesis of Benzo[*b*]furan and Indole Inhibitors of Tubulin Polymerization. *J. Med. Chem.* **2002**, *45*, 2670-2673.

37) Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. Discovery of 7-Hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[*b*]furan (BNC105), a Tubulin Polymerization Inhibitor with Potent Antiproliferative and Tumor Vascular Disrupting Properties. *J. Med. Chem.* **2011**, *54*, 6014-6027.

38) Kremmidiotis, G.; Leske, A. F.; Lavranos, T. C.; Beaumont, D.; Gasic, J.; Hall, A.; O'Callaghan, M.; Matthews, C. A.; Flynn, B. BNC105: A Novel Tubulin Polymerization Inhibitor that Selectively Disrupts Tumor Vasculature and Displays Single-Agent Antitumor Efficacy. *Mol. Cancer Ther.* **2010**, *9*, 1562-1573.

39) von Angerer, E.; Prekajac, J.; Strohmeier, J. 2-Phenylindoles. Relationship between Structure, Estrogen Receptor Affinity, and Mammary Tumor Inhibiting Activity in the Rat. *J. Med. Chem.* **1984**, *27*, 1439-1447.

40) Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. Antineoplastic Agents. 443. Synthesis of the Cancer Cell Growth Inhibitor Hydroxyphenstatin and Its Sodium Diphosphate Prodrug. *J. Med. Chem.* **2000**, *43*, 2731-2737.

41) Pettit, G. R.; Rosenberg, H. J.; Dixon, R.; Knight, J. C.; Hamel, E.; Chapuis, J.-C.;
Pettit, R. K.; Hogan, F.; Sumner, B.; Ain, K. B.; Trickey-Platt, B. Antineoplastic Agents.
548. Synthesis of Iodo- and Diiodocombstatin Phosphate Prodrugs. *J. Nat. Prod.* 2012, 75, 385-393.

42) Goertz, D. E.; Yu, J. L.; Kerbel, R. S.; Burns, P. N.; Foster, F. S. High-frequency Doppler Ultrasound Monitors the Effects of Antivascular Therapy on Tumor Blood Flow. *Cancer Res.* **2002**, *62*, 6371-6375.

43) Alhasan, M. K.; Liu, L.; Lewis, M. A.; Magnusson, J.; Mason, R. P. Comparison of Optical and Power Doppler Ultrasound Imaging for Non-Invasive Evaluation of Arsenic Trioxide as a Vascular Disrupting Agent in Tumors. *PLoS ONE* **2012**, *7*, e46106.

44) Tanpure, R. P.; Harkrider, A. R.; Strecker, T. E.; Hamel, E.; Trawick, M. L.; Pinney, K. G. Application of the McMurry Coupling Reaction in the Synthesis of Triand Tetra-arylethylene Analogues as Potential Cancer Chemotherapeutic Agents. *Bioorg. Med. Chem.* **2009**, *17*, 6993-7001. 45) Pinney, K.; Wang, F.; Hadimani, M.; Del Pilar Mejia, M.; Preparation of Trimethoxyphenyl-substituted Indoles with Anti-tubulin and Vascular Targeting Activity for Treatment of Cancer. From PCT Int. Appl. **2004**, WO 2004099139 A1 20041118.

46) Kaufmann, D.; Pojarova, M.; Vogel, S.; Liebl, R.; Gastpar, R.; Gross, D.; Nishino, T.; Pfaller, T.; von Angerer, E.; Antimitotic Activities of 2-Phenylindole-3-carbaldehydes in Human Breast Cancer Cells. *Bioorg. Med. Chem.* **2007**, *15*, 5122-5136.

47) Hamel, E.; Lin, C. M. Separation of Active Tubulin and Microtubule-associated Proteins by Ultracentrifugation and Isolation of a Component Causing the Formation of Microtubule Bundles. *Biochemistry* **1984**, *23*, 4173-4184.

48) Hamel, E. Evaluation of Antimitotic Agents by Quantitative Comparisons of Their Effects on the Polymerization of Purified Tubulin. *Cell Biochem. Biophys.* **2003**, *38*, 1-21.

49) Verdier-Pinard, P.; Lai, J. Y.; Yoo, H. D.; Yu, J.; Marquez, B.; Nagle, D. G.; Nambu, M.; White, J. D.; Falck, J. R.; Gerwick, W. H.; Day, B. W.; Hamel, E. Structure-activity Analysis of the Interaction of Curacin A, The Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. *Mol. Pharmacol.* **1998**, *53*, 62-76.

50) Hamel, E.; Lin, C. M. Stabilization of the Colchicine Binding Activity of Tubulin by Organic Acids. *Biochim. Biophys. Acta* **1981**, 675, 226-231.

51) Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. *Nat. Protocols* **2006**, *1*, 1112-1116.

52) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a High-flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. *J. Natl. Cancer Inst.* **1991**, *83*, 757-766.

53) Siles, R.; Ackley, J. F.; Hadimani, M. B.; Hall, J. J.; Mugabe, B. E.; Guddneppanavar, R.; Monk, K. A.; Chapuis, J.; Pettit, G. R.; Chaplin, D. J.; Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Pinney, K. G. Combretastatin Dinitrogen-substituted Stilbene Analogues as Tubulin-binding and Vascular-disrupting Agents. *J. Nat. Prod.* **2008**, *71*, 313-320.

CHAPTER THREE

Synthesis and Biological Evaluation of Indole-based, Anti-cancer Agents Inspired by the Vascular Disrupting Agent 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3", 4", 5"trimethoxybenzoyl)-6-methoxyindole (OXi8006)

Reprinted from Synthesis and Biological Evaluation of Indole-based, Anti-cancer Agents Inspired by the Vascular Disrupting Agent 2-(3 '-Hydroxy-4 'methoxyphenyl)-3-(3 ' ', 4 ' ', 5 ' '-trimethoxybenzoyl)-6-methoxyindole
(OXi8006), MacDonough, M. T.; Strecker, T. E.; Hamel, E.; Hall, J. J.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Copyright 2013, with permission from from Elsevier.

ABSTRACT.

The discovery of a 2-aryl-3-aroyl indole-based small-molecule inhibitor of tubulin assembly (referred to as **OXi8006**) inspired the design, synthesis, and biological evaluation of a series of diversely functionalized analogues. In the majority of examples, the pendant 2-aryl ring contained a 3-hydroxy-4-methoxy substitution pattern, and the fused aryl ring featured a 6-methoxy group. Most of the variability was in the 3-aroyl moiety, which was modified to incorporate methoxy (**33-36**), nitro (**25-27**), halogen (**28-29**), trifluoromethyl (**30**), or trifluoromethoxy (**31-32**) functionalities. In two analogues (**34** and **36**), the methoxy substitution pattern in the fused aryl ring varied, while in another derivative (**35**) the phenolic moiety was translocated from the pendant 2-aryl ring to position-7 of the fused aryl ring. Each of the compounds were evaluated for their cytotoxicity (*in vitro*) against the SK-OV-3 (ovarian), NCI-H460 (lung), and DU-145 (prostate) human cancer cell lines and for their ability to inhibit tubulin assembly. Four of the compounds (**30**, **31**, **35**, **36**) proved to be potent inhibitors of tubulin assembly (IC₅₀ < 5 mM), and three of these compounds (**31**, **35**, **36**) were strongly cytotoxic against the three cancer cell lines. The most active compound (**36**) in this series, which incorporated a methoxy group at position-7, was comparable in terms of inhibition of tubulin assembly and cytotoxicity to the lead compound **OXi8006**.

Keywords: Vascular disrupting agent (VDA), inhibitor of tubulin assembly, functionalized indole, combretastatin.

1. Introduction

The exploration and assessment of the tumor microenvironment and its physiology have revealed a number of prospective molecular targets for selective therapeutic intervention by small-molecule anti-cancer agents. A well-established target is the dynamic tubulin-microtubule protein system. Microtubules are structurally characterized as biopolymers composed of $\alpha\beta$ -tubulin heterodimers.^{1.5} The dynamic assembly and disassembly of microtubules is linked to a variety of cellular functions, including cell shape, intracellular motility, cellular division, and apoptosis.¹⁻⁵ More recently, certain small-molecule inhibitors of tubulin assembly have been identified as vascular disrupting agents (VDAs).⁶ These compounds selectively disrupt tumor vasculature by interfering with the tubulin-microtubule protein system of the endothelial cells lining tumor microvessels, which sets in motion a cascade of cell signaling events leading to morphology changes (rounding up) of these endothelial cells. This results in the occlusion of the vessels, which limits tumor blood flow. This in turn restricts the oxygen and nutrients vital for tumor survival. The vascular network feeding tumors is distinct from normal tissue vasculature and incorporates branching that is often unsystematic and convoluted.⁷⁻⁹ In addition, increased rates of tumor cell proliferation coupled with underdeveloped endothelium, in contrast to normal tissue vasculature, has

56

established tumor vasculature as a selective therapeutic target for anti-cancer agents.⁹ This approach has led to the development of a class of therapeutics referred to as vascular targeting agents (VTAs). This class is further subdivided into two discrete sub-classes centered upon distinct mechanism(s) of action: vascular disrupting agents (VDAs) and angiogenesis inhibiting agents (AIAs).¹⁰ VDAs damage existing tumor vasculature while AIAs impede new tumor vessel formation.¹⁰⁻¹² VDAs can be further divided into two distinct groups: biologics and small-molecules. One strategy focuses on the development of indole-based small-molecule VDAs that bind at the colchicine site, named after the natural product originally described as binding at the site (Figure 1)¹³ and whose interaction with tubulin led to the original isolation of the protein.¹⁴ Synthetic and biological studies with indole-based, colchicine site VDAs were originally prompted by the discovery of the potent natural products combretastatin A-4 (CA4) and combretastatin A-1 (CA1) that were isolated from the African bush willow tree, *Combretum caffrum*, by Pettit and co-workers (Figure 1).¹⁵⁻¹⁶ CA4 emerged as a benchmark VDA, and its corresponding prodrug salt CA4P (ZybrestatTM) was the first small-molecule tubulin binding VDA to enter clinical trials.¹⁷⁻¹⁹ Although no VDA is yet in routine clinical use, several small-molecule VDAs interacting at the colchicine site are in clinical trials.¹⁷⁻²¹

Figure 3.1. Selected colchicine site tubulin binding agents.

VDAs derived from the combretastatin family demonstrate potent antiproliferative activity in various human cancer cell lines *in vitro* through the inhibition of tubulin polymerization.²²⁻³¹ These findings led us and others to explore indole-based compounds for potential VDA and antitubulin activities by incorporating into their design structural similarities to the combretastatin series. Our work led to the potent compound 2-(3'-hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-6-methoxyindole(referred to as**OXi8006**),^{21,32-34} and Flynn³⁵ has subsequently pursued this compound(through a separate synthetic route) and structurally similar, highly active compounds.Because**OXi8006**potently inhibits tubulin assembly (IC₅₀ = 1.1 mM) and cell growth(for example, GI₅₀ = 3.45 nM against SK-OV-3 cells), we initiated further structuralstudies. As an initial finding, a water-soluble, disodium phosphate prodrug salt,**OXi8007**, demonstrated distinct*in vivo*VDA activity in a study employing a SCID mouse model bearing an orthotopic PC-3 (prostate) tumor as imaged by color Doppler ultrasound.³⁶

Herein, we report the synthesis and biological evaluation of a series of functionalized analogues of **OXi8006** in an effort to further explore the molecular space inherent to 2-aryl-3-aroyl indole-based anti-cancer agents. Our finding^{21,32-34} that **OXi8006** is a potent tubulin binding agent combined with the work of Hseih³⁷ with **BPR0L075** (Figure 1) provided preliminary structural parallels defining distinct associations between the stilbene aryl rings of CA4 and the aryl and aroyl rings of OXi8006 and BPR0L075. These correlations were further expanded by our previous identification of benzo[b]thiophene 1 and benzo[b]furan 2 as tubulin interacting compounds³⁸⁻⁴¹ and the subsequent studies by Flynn leading to the benzofuran-based **BNC105** (Figure 1), a VDA currently undergoing clinical trials.⁴²⁻⁴⁴ A narrow but focused literature survey of inhibitors of tubulin assembly that incorporate the indole molecular template confirms the importance of the 3-(3', 4', 5'-trimethoxybenzoyl)indole functionality while allowing for structural diversity within the indole core (Figure 2). This is exemplified by structures that include variation in alkoxy substitution (structure I, Fig. 2),³⁷ halogen incorporation (structures I and III),^{37,45} heterocyclic substitution at the 2-position (structure IV),⁴⁶ and derivatives of **BRP0L075** (such as compound II).⁴⁷

Figure 3.2. Structural diversity within the 3-(3', 4', 5'-trimethoxybenzoyl)indole molecular space.

The potent inhibition of tubulin assembly and cytotoxicity of **OXi8006** and **BPR0L075**, in addition to the previous studies with benzo[*b*]thiophene and benzo[*b*]furan derivatives, led to the present study, which investigates a small collection of diversely modified 2-aryl-3-aroyl indole-based analogues to gain further insight into the structural features of **OXi8006** that are most important for biological activity (inhibition of tubulin assembly and cytotoxicity).

2. Results and discussion

2.1 Chemistry

The synthetic route to derivatized **OXi8006** analogues **25**-**36** involved the previously described bromoacetophenone **3**³⁶ and commercially available bromoacetophenone **4** as key intermediates. 2-Aryl substituted indoles **5**-**11** were prepared by condensation of bromoacetophenone **3** or **4** with suitable anilines under Bischler-Mohlau conditions⁴⁸⁻⁴⁹ (Scheme 1). Further modification of 2-aryl indole **8** by
selective demethoxylation in the presence of ionic liquid [TMAH][Al₂Cl₇]⁵⁰ (generated from AlCl₃ and trimethylamine hydrochloride (TMAH)) and microwave irradiation yielded the phenolic 2-aryl indole 9, which was subsequently protected as its corresponding TBS derivative 10 (Scheme 2). The regioselectivity of the demethylation reaction was confirmed by X-ray crystallographic analysis of TBS indole 10 (see Supplementary data). Treatment of 2-aryl indoles 5-11 with appropriate functionalized benzoyl chloride derivatives resulted in 2-aryl-3-aroyl indole analogues 12-24 through a benzoylation reaction. Final desilylation with TBAF provided the parent 2-aryl-3-aroyl free phenol indole analogues 25-36.

2.2 Biological Evaluation

The series of 2-aryl-3-aroyl indole analogues (Fig. 3) were evaluated for their cytotoxicity against the SK-OV-3, NCI-H460, and DU-145 human cancer cell lines (Table 1) and for their ability to inhibit tubulin assembly (Table 2). The two most active compounds (35 and 36) in the series featured substitution at position-7 in the fused aryl ring. Compound **36** (7-methoxy) was comparable to **OXi8006** in terms of both cytotoxicity (sub-micromolar) and inhibition of tubulin assembly (IC₅₀ = 1.1 μ M), and analogue 35, in which the hydroxyl group was transposed from the pendant 2-aryl ring to position-7 of the fused aryl ring, was nearly equipotent. Replacement of the 6-methoxy group with a 6-hydroxy moiety (analogue 33) resulted in a loss of antitubulin activity (> $20 \,\mu\text{M}$) and a significant decrease in cytotoxicity. All structural modifications in the 3aroyl moiety that replaced the 3,4,5-trimethoxy motif (inherent to OXi8006) with a different functionality resulted in a decrease in cytotoxicity (compared to OXi8006 and the reference stilbene compound, CA4). However, the 3,5-bis-trifluoromethyl analogue (30) and the 3-trifluoromethoxy derivative (31) remained relatively good inhibitors of tubulin assembly (3.1 and 3.7 µM, respectively). Although selective fluorine substitution in **CA4** analogues has been generally well-tolerated,⁵¹ this trend did not carry forward to this indole series of compounds. A 3,4,5-trifluoro analogue (**28**) demonstrated only modest inhibition of tubulin assembly (7.5 μ M), while a 3-fluoro derivative (**29**) was inactive (> 20 μ M) in this assay. Nitro-bearing analogues (**25-27**) were similarly inactive. These results suggest the importance of the 3,4,5-trimethoxy substitution pattern in the 3-aroyl moiety and appropriate substitution at positions 6 and 7 of the fused aryl ring for maintaining potent cytotoxicity and inhibition of tubulin assembly in this series of compounds.

Figure 3.3. Molecular structures of synthesized 2-aryl-3-aroylindole analogues 25-36.

	$GI_{50}(\mu M) \pm SD$ Sulforhodamine B assay ^a		
Compound	SK-OV-3	NCI-H460	DU-145
CA4	0.00533 <u>+</u> 0.00180	0.00449 <u>+</u> 0.0000648 ^b	0.00484 ± 0.000848^{b}
OXi8006	0.00345 <u>+</u> 0.000409	0.0379 <u>+</u> 0.00182	0.0356 <u>+</u> 0.00107
25	4.35 <u>+</u> 0.290	4.08 <u>+</u> 0.119	5.52 <u>+</u> 0.106
26	21.1 <u>+</u> 2.45	16.8 <u>+</u> 2.13	8.16 <u>+</u> 4.41
27	2.65 <u>+</u> 1.94	15.7 <u>+</u> 1.64	7.11 <u>+</u> 2.16
28	19.8 <u>+</u> 3.95	5.54 <u>+</u> 0.505	10.0 <u>+</u> 9.83
29	15.0 <u>+</u> 9.60	49.6 <u>+</u> 3.20	10.0 <u>+</u> 4.21
30	1.45 <u>+</u> 0.365	2.86 <u>+</u> 0.104	3.01 <u>+</u> 0.0829
31	0.283 <u>+</u> 0.0395	3.57 <u>+</u> 0.508	2.99 <u>+</u> 0.235
32	3.05 <u>+</u> 0.895	2.35 <u>+</u> 0.159	3.21 <u>+</u> 0.294
33	2.167 <u>+</u> 0.3657	2.910 <u>+</u> 0.4833	3.401 <u>+</u> 1.471
34	25.1 <u>+</u> 0.262	41.8 <u>+</u> 2.52	28.3 <u>+</u> 18.0
35	0.264 <u>+</u> 0.0418	0.177 <u>+</u> 0.0245	0.309 <u>+</u> 0.0143
36	0.0119 <u>+</u> 0.00422	0.992 <u>+</u> 0.320	0.0181 <u>+</u> 0.000772

Table 3.1. Cytotoxicity against human cancer cell lines SK-OV-3, NCI-H460,and DU-145

^a Average of $n \ge 3$ independent determinations. ^b For additional data see refs. 15-16.

		Inhibition of colchicine binding (%) <u>+</u> SD	
Compound	Inhibition of tubulin polymerization IC ₅₀ (μ M) \pm SD	1 µM	5 μΜ
CA4	1.3 <u>+</u> 0.07	88 <u>+</u> 2	98 <u>+</u> 0.5
OXi8006	1.1 <u>+</u> 0.04	40 <u>+</u> 0.2	75 <u>+</u> 0.2
25	> 20	nd ^a	nd
26	> 20	nd	nd
27	19 <u>+</u> 0.8	nd	21 <u>+</u> 1
28	7.5 <u>+</u> 2	nd	26 <u>+</u> 2
29	> 20	nd	nd
30	3.1 <u>+</u> 0.2	nd	26 <u>+</u> 2
31	3.7 <u>+</u> 0.4	nd	19 <u>+</u> 4
32	> 20	nd	nd
33	> 20	nd	nd
34	> 20	nd	nd
35	1.0 <u>+</u> 0.1	51 <u>+</u> 0.4	85 <u>+</u> 0.7
36	1.1 <u>+</u> 0.4	31 <u>+</u> 4	67 <u>+</u> 3

Table 3.2. Inhibition of tubulin polymerization and colchicine binding

^a nd = not determined in this study.

3. Conclusion

In summary, the results of this study have significantly extended our knowledge of functional group tolerability for 2-aryl-3-aroyl indole analogues. The most promising new analogues (**35**, **36**) demonstrated inhibition of tubulin assembly comparable to the reference compounds **OXi8006** and **CA4**, and future studies will evaluate these

compounds (as their corresponding water-soluble phosphate prodrug salts) for their potential to function as VDAs.

4. Experimental

4.1 Chemistry

4.1.1 Materials and instrumentation

CH₂Cl₂ and tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen gas, unless specified otherwise. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system (Biotage Isolera 1 or 4) using silica gel (200-400 mesh, 60 Å) prepacked columns. Reactions carried out under microwave irradiation were performed with a Biotage Initiator Microwave Synthesizer. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz), ¹³C NMR (125 MHz), and ¹⁹F NMR (470 MHz) spectroscopic data using a Varian VNMRS 500 MHz instrument. Spectra were recorded in $CDCl_3$, $(CD_3)_2SO$, or $(CD_3)_2CO$. All of the chemical shifts are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), double doublet (dd), double triplet (dt), triplet of triplets (tt), doublet of doublets of doublets (ddd), and multiplet (m). Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector ($\lambda = 190-400$ nm), a Zorbax XDB-C18 HPLC column (4.6 mm - 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column; solvent A: acetonitrile, solvent B: H₂O; gradient: 10%A / 90%B to 100%A / 0%B over 0 to 40 min;

post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out under positive ESI (electrospray ionization) using a Thermo scientific LTQ Orbitrap Discovery instrument.

4.1.2. 2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6-methoxyindole (5)³⁷

To a solution of *m*-anisidine (2.05 mL, 18.4 mmol) dissolved in *N*,*N*dimethylaniline (20 mL) at 170 °C was added dropwise bromoacetophenone 3 (2.0 g, 5.6 mmol) in EtOAc (5 mL). The reaction mixture was stirred at 170 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), $12\%A / 88\%B \rightarrow 100\%A / 0\%B$ (10 CV), 100%A / 0%B (2.6 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulted in the desired 2-phenylindole derivative 5 (1.49 g, 3.88 mmol, 69%, $R_f = 0.48$ (50:50 hexanes:EtOAc)) as light tan crystals. ¹**H NMR** (CDCl₃, 500 MHz): δ 8.11 (br s, 1H, NH), 7.47 (d, J = 8.5 Hz, 1H, ArH), 7.16 (dd, *J* = 8.5 Hz, 2.0 Hz 1H, ArH), 7.13 (d, *J* = 2.5 Hz, 1H, ArH), 6.90 (d, *J* = 8.5 Hz, 1H, ArH), 6.89 (d, J = 2.5 Hz, 1H, ArH), 6.79 (dd, J = 8.5 Hz, 2.5 Hz, 1H, ArH), $6.64 (dd, J = 2.0 Hz, 1.0 Hz 1H, ArH), 3.86 (s, 3H, OCH_3), 3.84 (s, 3H, OCH_3), 1.04 (s, 3$ 9H, C(CH₃)₃), 0.21 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 156.3, 150.5, 145.4, 137.4, 136.9, 125.8, 123.7, 120.9, 118.2, 117.8, 112.4, 109.9, 98.6, 94.5, 55.6, 55.4, 25.7, 18.5, -4.6.

4.1.3. 2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6-tert-

butyldimethylsilyloxyindole (6)

To a solution of 3-(tert-butyldimethylsilyloxy)aniline (2.06 g, 9.21 mmol) in N,Ndimethylaniline (20 mL) at 170 °C was added compound 3 (1.00 g, 2.79 mmol) dropwise in EtOAc (5 mL). The reaction mixture was stirred at 170 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / $98\%B (4 \text{ CV}), 2\%A / 98\%B \rightarrow 20\%A / 80\%B (10 \text{ CV}), 20\%A / 80\%B (2 \text{ CV}); flow rate:$ 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 2-phenylindole 6 (0.59 g, 1.23 mmol, 44%, $R_f = 0.39$ (90:10 hexanes:EtOAc)) as a brown solid. ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 8.09 \text{ (br s, 1H, NH)}, 7.37 \text{ (d, } J = 8.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, \text{ArH}), 7.10 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{H}, 100 \text{ Hz})$ Hz, 1H, ArH), 7.01 (dd, J = 8.5 Hz, 1.5 Hz, 1H, ArH), 6.82 (s, 1H, ArH), 6.72 (d, J = 8.5 Hz, 1H, ArH), 6.67 (dd, J = 8.5 Hz, 1.5 Hz, 1H, ArH), 6.54 (s, 1H, ArH), 3.70 (s, 3H, OCH_3 , 1.02 (s, 9H, C(CH₃)₃), 1.01 (s, 9H, C(CH₃)₃), 0.20 (s, 6H, Si(CH₃)₂), 0.18 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 150.7, 150.6, 145.4, 137.7, 137.3, 126.0, 124.5, 120.6, 118.5, 118.0, 114.6, 112.4, 101.8, 98.7, 55.4, 25.93, 25.89, 18.6, 18.4, -4.3, -4.5. HPLC: 25.45 min., purity at 254 nm >99%. HRMS (ESI⁺): m/z calculated for $C_{27}H_{42}NO_{3}Si_{2} [M+H]^{+} 484.2698$, found 484.2698.

4.1.4. 2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-4,5,6-trimethoxyindole (7)

To a solution of 3,4,5-trimethoxyaniline (0.336 g, 1.84 mmol) in *N*,*N*dimethylaniline (20 mL) at 170 °C was added compound **3** (0.20 g, 0.56 mmol) dropwise in EtOAc (5 mL). The reaction mixture was stirred at 170 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), $7\%A / 93\%B \rightarrow 60\%A / 40\%B$ (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 2-phenylindole 7 (0.14 g, 0.32 mmol, 58%, $R_f = 0.31$ (70:30 hexanes:EtOAc)) as colorless crystals. ¹H NMR $(CDCl_3, 500 \text{ MHz})$: $\delta 8.06 \text{ (br s, 1H, NH)}, 7.15 \text{ (dd, } J = 8.5 \text{ Hz}, 2.0 \text{ Hz}, 1\text{ H}, \text{ ArH}), 7.10$ $(d, J = 2.0 \text{ Hz}, 1\text{H}, \text{Ar}\underline{\text{H}}), 6.90 (d, J = 8.5 \text{ Hz}, 1\text{H}, \text{Ar}\underline{\text{H}}), 6.70 (dd, J = 2.0 \text{ Hz}, 1.0 \text{ Hz}, 1\text{H}), 6.70 (dd, J = 2.0 \text{ Hz}, 1.0 \text{ Hz}, 1\text{H})$ ArH), 6.66 (d, J = 0.5 Hz, 1H, ArH), 4.13 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 1.03 (s, 9H, C(CH₃)₃), 0.19 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 151.0, 150.6, 145.6, 145.5, 136.4, 135.8, 133.9, 125.8, 118.3, 117.9, 116.6, 112.5, 96.3, 89.8, 61.6, 60.9, 56.2, 55.2, 25.9, 18.5, -4.6. **HPLC**: 20.17 min., purity at 254 nm 94.2%. HRMS (ESI⁺): m/z calculated for $C_{24}H_{34}NO_5Si [M+H]^+$ 444.2201, found 443.2200.

4.1.5. 2-(4'-Methoxyphenyl)-6,7-dimethoxyindole (8)

To a solution of 2,3-dimethoxyaniline (0.92 mL, 6.85 mmol) dissolved in *N*,*N*-dimethylaniline (10 mL) was added 4-methoxybromoacetophenone **4** (0.79 g, 3.43 mmol). The solution was heated to reflux and stirred at 150 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a

prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (4 CV), 5%A / 95%B \rightarrow 40%A / 60%B (10 CV), 40%A / 60%B (4 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 6,7-dimethoxy-2phenylindole **8** (0.50 g, 1.76 mmol, 51%, R_f = 0.35 (80:20 hexanes:EtOAc)) as a tan solid. ¹**H NMR** (CDCl₃, 500 MHz): δ 8.61 (br s, 1H, N<u>H</u>), 7.61 (d, *J* = 8.7 Hz, 2H, Ar<u>H</u>), 7.28 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 6.97 (d, *J* = 8.7 Hz, 2H, Ar<u>H</u>), 6.87 (d, *J* = 8.6 Hz, 1H, Ar<u>H</u>), 6.66 (d, *J* = 2.1 Hz, 1H, Ar<u>H</u>), 4.09 (s, 3H, OC<u>H₃</u>), 3.97 (s, 3H, OC<u>H₃</u>), 3.85 (s, 3H, OC<u>H₃</u>). ¹³C NMR (CDCl₃, 125 MHz): δ 159.2, 147.1, 138.0, 134.2, 131.3, 126.4, 126.0, 125.3, 115.3, 114.5, 108.5, 98.8, 61.1, 57.4, 55.4. **HPLC**: 15.30 min., purity at 254 nm 90.6%. **HRMS (ESI**⁺): *m/z* calculated for C₁₇H₁₈NO₃ [M+H]⁺ 284.1281, found 284.1282.

4.1.6. 2-(4'-Methoxyphenyl)-6-methoxy-7-hydroxyindole (9)

Trimethoxyindole **8** (0.61 g, 2.16 mmol) was dissolved in a solution of [Al₂Cl₇][TMAH] (6.3 mL, 3.13 mmol, 0.496 M in CH₂Cl₂). The reaction mixture was sealed and subjected to microwave irradiation at 80 °C for 1 h. Upon completion of the reaction, the reaction mixture was diluted with NaHCO₃ and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 6-methoxy-7-hydroxy-2phenylindole **9** (0.42 g, 1.55 mmol, 71%, R_f = 0.36 (70:30 hexanes:EtOAc)) as a tan solid. ¹**H NMR** ((CD₃)₂CO, 500 MHz): δ 10.11 (br s, 1H, N<u>H</u>), 7.85 (d, *J* = 8.7 Hz, 2H, Ar<u>H</u>), 7.66 (s, 1H, O<u>H</u>), 6.98 (m, 3H, Ar<u>H</u>), 6.81 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 6.66 (d, J = 2.2 Hz, 1H, Ar<u>H</u>), 3.83 (s, 3H, OC<u>H</u>₃), 3.81 (s, 3H, OC<u>H</u>₃). ¹³C NMR ((CD₃)₂CO, 125 MHz): δ 159.9, 142.5, 138.8, 133.1, 128.4, 127.2, 127.1, 126.5, 115.0, 111.3, 108.9, 99.0, 58.3, 55.7. HPLC: 13.47 min., purity at 254 nm 85.8%. HRMS (ESI⁺): *m/z* calculated for C₁₆H₁₆NO₃ [M+H]⁺ 270.1125, found 270.1129.

4.1.7. 2-(4'-Methoxyphenyl)-6-methoxy-7-tert-butyldimethylsilyloxyindole (10)

To a solution of free phenol indole 9 (0.08 g, 0.28 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added Et₃N (0.04 mL, 0.31 mmol) and DMAP (0.01 g, 0.11 mmol). The reaction mixture was stirred for 10 min, and TBSCI (0.05 g, 0.31 mmol) was added gradually. The solution was allowed to warm to room temperature over 12 h. Upon completion of the reaction, water (10 mL) was added, and the reaction mixture was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 2%A / $98\%B (4 \text{ CV}), 2\%A / 98\%B \rightarrow 20\%A / 80\%B (10 \text{ CV}), 20\%A / 80\%B (5.2 \text{ CV}); flow$ rate: 35 mL/min; monitored at 254 and 280 nm] resulted in the TBS indole product 10 $(0.05 \text{ g}, 0.02 \text{ mmol}, 45\%, \text{R}_{\text{f}} = 0.64 (70:30 \text{ hexanes:EtOAc})))$ as a light tan solid. ¹H **NMR** (CDCl₃, 500 MHz): δ 8.03 (br s, 1H, NH), 7.53 (d, J = 8.7, 2H, ArH), 7.13 (d, J =8.5 Hz, 1H, ArH), 6.98 (d, J = 8.7 Hz, 2H, ArH), 6.80 (d, J = 8.5 Hz, 1H, ArH), 6.61 (d, J $= 2.2 \text{ Hz}, 1\text{H}, \text{ArH}, 3.86 (s, 6\text{H}, \text{OCH}_3), 1.11 (s, 9\text{H}, \text{C}(\text{CH}_3)_3), 0.24 (s, 6\text{H}, \text{Si}(\text{CH}_3)_3).$ ¹³C NMR (CDCl₃, 125 MHz): δ 159.3, 145.2, 137.5, 131.2, 130.2, 126.2, 125.9, 125.6, 114.6, 112.9, 108.5, 99.0, 57.0, 55.5, 26.3, 18.8, -4.2. HPLC: 21.73 min., purity at 254

nm 93.7%. **HRMS** (**ESI**⁺): m/z calculated for C₂₂H₃₀NO₃Si [M+H]⁺ 384.1989, found 384.1990.

4.1.8. 2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6,7-dimethoxyindole (11)

To a solution of 2,3-dimethoxyaniline (2.19 mL, 16.3 mmol) dissolved in N,Ndimethylaniline (20 mL) was added bromoacetophenone 3 (2.93 g, 8.16 mmol). The solution was heated to reflux and stirred at 150 °C for 12 h. Upon completion of the reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 x 50 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 5%A / 95%B (4 CV), 5%A / 95%B $\rightarrow 40\%$ A / 60%B (10 CV), 40%A / 60%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] resulted in the desired 6,7-dimethoxy-2-phenylindole 11 $(1.43 \text{ g}, 3.47 \text{ mmol}, 43\%, \text{R}_{\text{f}} = 0.40 \text{ (80:20 hexanes:EtOAc))}$ as a tan solid. ¹**H NMR** $(CDCl_3, 500 \text{ MHz})$: δ 8.63 (br s, 1H, NH), 7.33 (d, J = 8.5 Hz, 1H, ArH), 7.28 (d, <math>J = 2.2Hz, 1H, ArH), 7.26 (dd, J = 8.5 Hz, 2.2 Hz 1H, ArH), 6.92 (dd, J = 8.4 Hz, 1.4 Hz, 2H, ArH), 6.71 (d, J = 2.2 Hz, 1H, ArH), 4.15 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 1.15 (s, 9H, C(CH₃)₃), 0.31 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 150.7, 147.1, 145.4, 137.9, 134.2, 131.2, 126.0, 125.7, 118.4, 118.1, 115.2, 112.3, 108.7, 99.0, 60.9, 57.3, 55.4, 25.8, 18.5, -4.5. HPLC: 21.28 min., purity at 254 nm >99%. **HRMS (ESI⁺)**: m/z calculated for C₂₃H₃₂NO₄Si [M+H]⁺ 414.2095, found 414.2095.

4.1.9. 2-(3'-*tert*-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',5''dinitrobenzoyl)-6methoxyindole (13)

To a solution of compound **5** (0.50 g, 1.30 mmol) in *o*-dichlorobenzene (20 mL) was added 3,5-dinitrobenzoylchloride (0.45 g, 1.90 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The o-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (11 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole 13 as a pale yellow powder (0.40 g, 0.69 mmol, 53%, $R_f = 0.59$ (70:30 hexanes:EtOAc)). ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 8.85 \text{ (t, } J = 2.0 \text{ Hz}, 1\text{H}, \text{ArH}), 8.62 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}, \text{ArH}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}, 100 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}, 100 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{H}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{Hz}, 2\text{Hz}), 8.60 \text{ (d, } J = 2.0 \text{ Hz}, 2\text{Hz}, 2\text{Hz}), 8.60 \text{$ (br s, 1H, NH) 8.15 (d, J = 8.5 Hz, 1H, ArH), 7.00 (dd, J = 8.5 Hz, 2.0 Hz, 1H, ArH), 6.95 (d, 2.0 Hz, 1H, ArH), 6.87 (dd, J = 8.0 Hz, 2.0 Hz, 1H, ArH), 6.61 (d, J = 8.5 Hz, 1H, ArH), 6.56 (d, J = 2.5 Hz, 1H, ArH), 3.90 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 0.89 (s, 9H, C(CH₃)₃), 0.00 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 187.3, 158.1, 152.1, 147.8, 145.3, 145.1, 143.1, 136.5, 129.1, 123.5, 123.4, 122.7, 122.4, 122.3, 120.1, 112.8, 112.5, 111.8, 95.0, 55.9, 55.5, 25.6, 18.4, -4.8. **HPLC**: 20.28 min., purity at 254 nm 93.1%. **HRMS (ESI⁺)**: m/z calculated for C₂₉H₃₂N₃O₈Si [M+H]⁺ 578.1953, found 578.1950.

4.1.10. 2-(3'-*tert*-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(4''-nitrobenzoyl)-6methoxyindole (14)

To a solution of compound **5** (0.20 g, 0.52 mmol) in *o*-dichlorobenzene (10 mL) was added 3-nitrobenzoylchloride (0.15 g, 0.78 mmol). The reaction mixture was heated

to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (8.8 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **14** as a yellow powder (0.14 g, 0.28 mmol, 51%, R_f = 0.36 (70:30 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.37 (br s, 1H, N<u>H</u>), 8.06 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 7.97 (d, *J* = 8.5 Hz, 2H, Ar<u>H</u>) 7.69 (d, *J* = 8.5 Hz, 2H, Ar<u>H</u>), 6.97 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.93 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.75 (m, 2H, Ar<u>H</u>), 6.58 (d, *J* = 8.0 Hz, 1H, Ar<u>H</u>), 3.89 (s, 3H, OC<u>H₃</u>), 3.71 (s, 3H, OC<u>H₃</u>), 0.97 (s, 9H, C(C<u>H₃</u>)₃), 0.07 (s, 6H, Si(C<u>H₃</u>)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 190.9, 157.8, 152.1, 148.9, 145.6, 145.2, 144.4, 136.5, 130.3, 124.1, 123.7, 123.0, 122.69, 122.67, 121.7, 113.0, 112.3, 111.7, 94.9, 55.9, 55.6, 25.8, 18.6, -4.6. HPLC: 20.23 min., purity at 254 nm >99%. HRMS (ESI⁺): *m/z* calculated for C₂₉H₃₃N₂O₆Si [M+H]⁺ 533.2102, found 533.2100.

4.1.11. 2-(3'-*tert*-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3''-nitrobenzoyl)-6methoxyindole (15)

To a solution of compound **5** (0.10 g, 0.26 mmol) in *o*-dichlorobenzene (10 mL) was added 3-nitrobenzoylchloride (0.07 g, 0.39 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2.8 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **15** as pale

yellow crystals (0.13 g, 0.25 mmol, 94%, $R_f = 0.63$ (50:50 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 9.15 (br s, 1H, N<u>H</u>), 8.30 (t, J = 2.0 Hz, 1H, Ar<u>H</u>), 8.06 (ddd, J =8.0 Hz, 2.0 Hz, 1.0 Hz, 1H, Ar<u>H</u>) 8.03 (d J = 9.5 Hz, 1H, Ar<u>H</u>), 7.88 (dt, J = 8.0 Hz, 1.0 Hz, 1H, Ar<u>H</u>), 7.29 (t, J = 8.0 Hz, 1H, Ar<u>H</u>), 6.92 (dd, J = 7.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.91 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.78 (dd, J = 8.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.66 (d, J = 2.5 Hz, 1H, ArH), 6.50 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.82 (s, 3H, OC<u>H</u>₃), 3.65 (s, 3H, OC<u>H</u>₃), 0.91 (s, 9H, C(C<u>H</u>₃)₃), 0.00 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 190.4, 157.6, 151.7, 147.4, 144.9, 144.6, 141.3, 136.6, 135.0, 128.9, 125.4, 124.7, 124.1, 123.4, 122.7, 122.3, 122.0, 112.4, 112.3, 111.6, 94.9, 55.7, 55.4, 25.7, 18.4, -4.7. HPLC: 20.13 min., purity at 254 nm >99%. HRMS (ESI⁺): *m*/*z* calculated for C₂₉H₃₃N₂O₆Si [M+H]⁺ 533.2102, found 533.2100.

4.1.12. 2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',4'',5''-

trifluorobenzoyl)-6-methoxyindole (16)

To a solution of compound **5** (0.61 g, 1.59 mmol) in *o*-dichlorobenzene (10 mL) was added 3,4,5-trifluorobenzoylchloride (3.12 mL, 2.38 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: $7\%A / 93\%B (4 \text{ CV}), 7\%A / 97\%B \rightarrow 60\%A / 40\%B (10 \text{ CV}), 60\%A / 40\%B (5.5 \text{ CV});$ flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **16** as a white powder (0.70 g, 1.29 mmol, 81\%, R_f = 0.48 (50:50 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.44 (br s, 1H, N<u>H</u>), 7.95 (d, *J* = 9.0 Hz, 1H, Ar<u>H</u>), 7.25 (m, 2H, Ar<u>H</u>) 6.94 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 6.91 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.83 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.79 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.70 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.87 (s, 3H, OC<u>H</u>₃), 3.78 (s, 3H, OC<u>H</u>₃), 0.97 (s, 9H, C(C<u>H</u>₃)₃), 0.09 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 189.1, 157.7, 152.1, 150.6 (ddd, $J_{C.F} = 250.0$ Hz, 10.0 Hz, 3.1 Hz), 145.4, 143.5, 141.8 (dt, $J_{C.F} = 255.9$ Hz, 15.5 Hz), 136.5, 135.6 (d, $J_{C.F} = 3.9$ Hz), 124.4, 123.2, 122.8, 121.4, 121.6, 114.1 (dd, $J_{C.F} = 16.9$ Hz, 5.1 Hz), 112.3, 112.2, 112.0, 94.8, 55.9, 55.6, 25.7, 18.5, -4.8. ¹⁹F NMR (CDCl₃, 470 MHz): δ -134.0 (dd, J = 21.2 Hz, 7.5 Hz, 2F, Ar<u>F</u>), -155.6 (tt, J = 20.2 Hz, 6.6 Hz, 1F, Ar<u>F</u>). HPLC: 21.32 min., purity at 254 nm >99%. HRMS (ESI⁺): m/z calculated for C₂₉H₃₀F₃NNaO₄Si [M+Na]⁺ 564.1788, found 564.1786.

4.1.13. 2-(3'-*tert*-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(4''-fluorobenzoyl)-6methoxyindole (17)

To a solution of compound **5** (0.10 g, 0.26 mmol) in *o*-dichlorobenzene (10 mL) was added 4-fluorobenzoylchloride (0.05 mL, 0.39 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: $12\%A / 88\%B (4 \text{ CV}), 12\%A / 88\%B \rightarrow 100\%A / 0\%B (10 \text{ CV}), 100\%A / 0\%B (2 \text{ CV});$ flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **17** as pale yellow crystals (0.09 g, 0.18 mmol, 69%, R_f = 0.73 (50:50 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.59 (br s, 1H, N<u>H</u>), 7.88 (d, *J* = 9.5 Hz, 1H, Ar<u>H</u>), 7.65 (m, 2H, Ar<u>H</u>), 6.89 (m, 2H, Ar<u>H</u>), 6.82 (m, 4H, Ar<u>H</u>), 6.60 (d, *J* = 8.0 Hz, 1H, Ar<u>H</u>), 3.84 (s, 3H, OC<u>H₃), 3.73 (s, 3H, OC<u>H₃), 0.96 (s, 9H, C(C<u>H₃)₃), 0.08 (s, 6H, Si(C<u>H₃)₂)</u>. ¹³C NMR (CDCl₃, 125 MHz): δ 191.7, 164.8 (d, *J_{C+F}* = 251 Hz), 157.4, 151.7, 145.1, 142.8, 136.4,</u></u></u> 136.09, 136.06, 132.2 (d, $J_{C-F} = 9$ Hz), 124.6, 123.4, 123.1, 122.4, 121.6, 114.9 (d, $J_{C-F} = 22$ Hz), 113.0, 111.8, 94.7, 55.8, 55.5, 25.8, 18.6, -4.6. ¹⁹F NMR (CDCl₃, 470 MHz): δ - 108.1 (m, 1F, Ar<u>F</u>). HPLC: 20.59 min., purity at 254 nm >99%. HRMS (ESI⁺): m/z calculated for C₂₉H₃₃FNO₄Si [M+H]⁺ 506.2157, found 506.2155.

4.1.14. 2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',5''-bis-

trifluoromethylbenzoyl)-6-methoxyindole (18)

To a solution of compound 5 (0.20 g, 0.52 mmol) in o-dichlorobenzene (15 mL) was added 3,5-bis-trifluoromethylbenzoyl chloride (0.14 mL, 0.78 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The o-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBSindole **18** as pale orange crystals (0.26 g, 0.42 mmol, 81%, $R_f = 0.47$ (70:30 hexanes:EtOAc)). ¹**H NMR** (CDCl₃, 500 MHz): δ 8.70 (br s, 1H, NH), 8.07 (d, J = 9.0Hz, 1H, ArH), 8.03 (s, 2H, ArH) 7.74 (s, 1H, ArH), 6.96 (dd, J = 9.0 Hz, 2.5 Hz, 1H, ArH), 6.92 (d, *J* = 2.0 Hz, 1H, ArH), 6.85 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H, ArH), 6.65 (d, *J* = 8.5 Hz, 1H, ArH), 6.62 (d, J = 2.5 Hz, 1H, ArH), 3.86 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 0.91 (s, 9H, C(C<u>H</u>₃)₃), 0.00 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 189.5, 157.8, 152.0, 145.3, 144.5, 141.5, 136.6, 131.3 (q, $J_{C-F} = 33$ Hz), 129.7 (m), 124.47 (q, J_{C-F} = 33 Hz), 129.7 (m), 129.7 ($_{F}$ = 7 Hz), 124.46, 124.0, 123.1 (q, J_{C-F} = 275 Hz), 122.9, 122.7, 122.5, 122.2, 112.4, 112.1, 94.9, 55.8, 55.5, 25.6, 18.4, -4.8. ¹⁹F NMR (CDCl₃, 470 MHz): δ -62.8 (s, 6F,

C<u>F</u>₃). **HPLC**: 22.22 min., purity at 254 nm 96.3%. **HRMS** (**ESI**⁺): m/z calculated for C₃₁H₃₂F₆NO₄Si [M+H]⁺ 624.1999, found 624.1997.

4.1.15. (2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-3-(3''-

trifluoromethoxybenzoyl)-6-methoxyindole (19)

To a solution of compound 5 (1.14 g, 2.97 mmol) in o-dichlorobenzene (15 mL) was added 3-trifluoromethoxybenzoylchloride (0.70 mL, 4.45 mmol). The reaction mixture was heated to reflux at 170 °C for 12 h. The o-dichlorobenzene was removed by simple distillation, and the resulting dark green colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A /40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBSindole **19** as a yellow powder (1.21 g, 2.11 mmol, 71%, $R_f = 0.43$ (70:30) hexanes:EtOAc)). ¹**H NMR** (CDCl₃, 500 MHz): δ 8.31 (br s, 1H, NH), 7.96 (d, J = 8.4 Hz, 1H, ArH), 7.52 (dt, J = 7.5 Hz, 1.3 Hz, 1H, ArH) 7.48 (s, 1H, ArH), 7.17 (t, J = 7.8 Hz, 1H, ArH), 7.13 (d, J = 8.2 Hz, 1H, ArH), 6.93 (m, 2H, ArH), 6.81 (m, 2H, ArH), 6.62 (d, J = 9.0 Hz, 1H, ArH), 3.88 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 0.97 (s, 9H, C(CH₃)₃), 0.08 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 191.8, 157.4, 151.6, 148.8, 144.9, 144.1, 142.1, 136.6, 129.2, 128.0, 124.3, 123.6, 123.5, 122.9, 122.2, 122.0, 121.4, 120.4 (q, J_{C-F} = 256 Hz), 112.6, 112.0, 111.6, 94.8, 55.7, 55.3, 25.7, 18.4, -4.7. ¹⁹F NMR (CDCl₃, 470 MHz): δ -57.8 (s, 3F, OCF₃). **HPLC**: 21.53 min., purity at 254 nm >99%. **HRMS (ESI⁺)**: m/z calculated for C₃₀H₃₃F₃NO₅Si [M+H]⁺ 572.2075, found 572.2071.

78

4.1.16. (2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-3-(4''-

trifluoromethoxybenzoyl)-6-methoxyindole (20)

To a solution of compound **5** (1.14 g, 2.97 mmol) in *o*-dichlorobenzene (15 mL) was added 3-trifluoromethylbenzoylchloride (0.70 mL, 4.45 mmol). The reaction mixture was heated to reflux at 170 °C for 12 h. The o-dichlorobenzene was removed by simple distillation, and the resulting dark green colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (1.1 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in TBSindole **20** as a yellow powder (0.92 g, 1.61 mmol, 54%, $R_f = 0.43$ (70:30 hexanes:EtOAc)). ¹**H** NMR (CDCl₃, 500 MHz): δ 8.29 (br s, 1H, NH), 8.00 (d, J = 8.6 Hz, 1H, ArH), 7.64 (d, J = 8.7 Hz, 2H, ArH) 6.97 (d, J = 8.0 Hz, 2H, ArH), 6.93 (m, 2H, ArH), 6.83 (d, *J* = 2.2 Hz, 1H, ArH), 6.73 (dd, *J* = 8.3 Hz, 2.2 Hz, 1H, ArH), 6.58 (d, *J* = 8.4 Hz, 1H, ArH), 3.88 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 0.98 (s, 9H, C(CH₃)₃), 0.10 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 191.9, 157.3, 151.6, 151.0, 144.8, 144.1, 138.4, 136.6, 131.3, 124.2, 123.8, 122.8, 122.2, 121.4, 120.3 (q, $J_{C-F} = 256$ Hz), 119.7, 112.6, 111.9, 111.3, 94.8, 55.6, 55.1, 25.6, 18.4, -4.8. ¹⁹F NMR (CDCl₃, 470 MHz): δ -57.7 (s, 3F, OCF₃). **HPLC**: 21.61 min., purity at 254 nm >99%. **HRMS** (ESI⁺): m/zcalculated for $C_{30}H_{33}F_{3}NO_{5}Si [M+H]^{+} 572.2075$, found 572.2075.

4.1.17. 2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',4'',5''-

trimethoxybenzoyl)-6-tert-butyldimethylsiloxyindole (21)

To a solution of compound **6** (0.19 g, 0.39 mmol) in o-dichlorobenzene (20 mL) was added 3,4,5-trimethoxybenzoylchloride (0.13 g, 0.58 mmol). The reaction mixture

was heated to reflux at 160 °C for 12 h. The o-dichlorobenzene was removed by simple distillation, and the resulting dark colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting in di-TBS-indole 21 as a pale yellow powder (0.04 g, 0.59 mmol, 20%, $R_f = 0.33$ (70:30 hexanes:EtOAc)). ¹H **NMR** (CDCl₃, 500 MHz): δ 8.31 (br s, 1H, NH), 7.90 (d, J = 8.5 Hz, 1H, ArH), 6.99 (s, 2H, Ar<u>H</u>) 6.94 (dd, J = 8.5 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.89 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.82 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H, ArH), 6.76 (d, *J* = 2.5 Hz, 1H, ArH), 6.70 (d, *J* = 8.0 Hz, 1H, ArH), 3.79 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.69 (s, 6H, OCH₃), 1.01 (s, 9H, C(CH₃)₃), $0.94 (s, 9H, C(CH_3)_3), 0.22 (s, 6H, Si(CH_3)_2), 0.04 (s, 6H, Si(CH_3)_2).$ ¹³C NMR (CDCl₃, 125 MHz): § 191.8, 153.0, 152.6, 151.7, 145.2, 142.3, 141.3, 136.5, 134.6, 125.2, 123.9, 122.3, 121.9, 116.7, 112.9, 111.8, 107.4, 105.1, 101.6, 60.9, 56.1, 55.5, 25.9, 25.8, 18.46, 18.45, -4.2, -4.8. **HPLC**: 23.31 min., purity at 254 nm 90.6%. **HRMS (ESI⁺)**: m/zcalculated for $C_{37}H_{52}NO_7Si_2[M+H]^+$ 678.3277, found 678.3279.

4.1.18. 2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',4'',5''-

trimethoxybenzoyl)-4,5,6-trimethoxyindole (22)

To a solution of compound 7 (0.05 g, 0.11 mmol) in *o*-dichlorobenzene (10 mL) was added 3,4,5-trimethoxybenzoylchloride (0.04 g, 0.17 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark green colored solid was subjected to flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B $\rightarrow 100\%$ A / 0%B (10 CV),

100%A / 0%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **22** as a pale yellow powder (0.03 g, 0.05 mmol, 46%, $R_f = 0.50$ (50:50 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.25 (br s, 1H, N<u>H</u>), 7.19 (s, 2H, Ar<u>H</u>), 6.99 (dd, J = 8.5 Hz, 2.5 Hz, 1H, Ar<u>H</u>) 6.88 (d, J = 2.5 Hz, 1H, Ar<u>H</u>), 6.75 (d, J = 8.0 Hz, 1H, Ar<u>H</u>), 6.69 (s, 1H, Ar<u>H</u>), 3.90 (s, 3H, OC<u>H₃</u>), 3.85 (s, 3H, OC<u>H₃</u>), 3.82 (s, 3H, OC<u>H₃</u>), 3.76 (s, 3H, OC<u>H₃</u>), 3.74 (s, 6H, OC<u>H₃</u>), 3.72 (s, 3H, OC<u>H₃</u>), 0.93 (s, 9H, C(C<u>H₃</u>)₃), 0.04 (s, 6H, Si(C<u>H₃</u>)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 193.4, 152.9, 152.1, 151.4, 146.4, 145.3, 142.2, 137.8, 136.6, 134.2, 132.4, 124.7, 121.1, 120.5, 116.7, 114.4, 112.3, 107.6, 89.8, 61.4, 61.0, 60.8, 56.4, 56.3, 55.6, 25.8, 18.5, -4.7. HPLC: 18.60 min., purity at 254 nm 90.7%. HRMS (ESI⁺): *m*/*z* calculated for C₃₄H₄₄NO₉Si [M+H]⁺ 638.2780, found 638.2780.

4.1.19. 2-(4'-Methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-6-methoxy-7-*tert*butyldimethylsilyloxyindole (23)

To a solution of compound **10** (0.05 g, 0.13 mmol) in *o*-dichlorobenzene (10 mL) was added 3,4,5-trimethoxybenzoylchloride (0.05 g, 0.20 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark green colored solid was subjected to flash chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (4 CV), 10%A / 90%B \rightarrow 80%A / 20%B (10 CV), 80%A / 20%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **23** as a yellow powder (0.06 g, 0.10 mmol, 76%, R_f = 0.36 (60:40 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.20 (br s, 1H, N<u>H</u>), 7.56 (d, *J* = 8.7 Hz, 1H, Ar<u>H</u>), 7.26 (d, *J* = 9.0 Hz, 2H, Ar<u>H</u>), 6.96 (s, 2H, Ar<u>H</u>), 6.94 (d, *J* = 8.7 Hz, 1H,

Ar<u>H</u>), 6.78 (d, J = 8.6 Hz, 2H, Ar<u>H</u>), 3.88 (s, 3H, OC<u>H</u>₃), 3.80 (s, 3H, OC<u>H</u>₃), 3.76 (s, 3H, OC<u>H</u>₃), 3.70 (s, 6H, OC<u>H</u>₃), 1.09 (s, 9H, C(C<u>H</u>₃)₃), 0.26 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 192.0, 160.2, 152.6, 146.0, 142.8, 141.3, 134.9, 130.3, 129.99, 129.95, 125.0, 124.8, 114.4, 114.2, 113.4, 109.9, 107.5, 61.0, 56.7, 56.2, 55.5, 26.3, 18.8, -4.1. HPLC: 20.21 min., purity at 254 nm >99%. HRMS (ESI⁺): *m/z* calculated for C₃₂H₃₉NNaO₇Si [M+Na]⁺ 600.2388, found 600.2383.

4.1.20. 2-(3'-tert-Butyldimethylsiloxy-4'-methoxyphenyl)-3-(3'',4'',5''-

trimethoxybenzoyl)-6,7-dimethoxyindole (24)

To a solution of compound **11** (0.25 g, 0.60 mmol) in *o*-dichlorobenzene (10 mL) was added 3,4,5-trimethoxybenzoylchloride (0.15 g, 0.66 mmol). The reaction mixture was heated to reflux at 160 °C for 12 h. The *o*-dichlorobenzene was removed by simple distillation, and the resulting dark green colored solid was subjected to flash chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (5.2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] resulting in TBS-indole **24** as a yellow powder (0.08 g, 0.14 mmol, 23%, R_f = 0.17 (70:30 hexanes:EtOAc)). ¹H NMR (CDCl₃, 500 MHz): δ 8.53 (br s, 1H, NH), 7.71 (d, *J* = 8.5 Hz, 1H, ArH), 6.98 (m, 4H, ArH), 6.77 (d, *J* = 2.0 Hz, 1H, ArH), 6.73 (d, *J* = 8.5 Hz, 1H, ArH), 4.06 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.69 (s, 6H, OCH₃), 0.94 (s, 9H, C(CH₃)₃), 0.03 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 191.8, 152.6, 151.8, 148.0, 145.2, 142.8, 141.3, 134.6, 134.0, 130.2, 125.2, 125.1, 122.3, 122.2, 116.8, 113.1, 111.8, 110.4, 107.4, 61.3, 60.9, 57.3, 56.1, 55.5, 25.8,

18.5, -4.7. **HPLC**: 19.24 min., purity at 254 nm >99%. **HRMS** (**ESI**⁺): m/z calculated for C₃₃H₄₁NNaO₈Si [M+Na]⁺ 630.2494, found 630.2491.

4.1.21. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',5''-dinitrobenzoyl)-6-

methoxyindole (25)

To a well-stirred solution of compound 13 (0.40 g, 0.69 mmol) in THF (10 mL) at 0 °C was added tetrabutylammonium fluoride (TBAF) (1.03 mL, 1.03 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B $\rightarrow 60\%$ A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **25** (0.15 g, 0.33 mmol, 47%, $R_f = 0.12$ (70:30 hexanes:EtOAc)) as a yellow powder. ¹**H NMR** ((CD₃)₂SO, 500 MHz): δ 12.21 (br s, 1H, NH), 9.06 (br s, 1H, OH), 8.68 (t, J = 2.0 Hz, 1H, ArH), 8.41 (d, J = 2.0 Hz, 2H, ArH), 8.05 (d, J = 8.5 Hz, 1H, ArH), 6.97 (d, *J* = 2.0 Hz, 1H, ArH), 6.92 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H, ArH), 6.71 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H, ArH, 6.68 (d, J = 8.5 Hz, 1H, ArH), 6.54 (d, J = 2.0 Hz, 1H, ArH),3.83 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃. ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 186.7, 156.8, 148.2, 147.1, 146.7, 146.1, 142.8, 136.7, 128.5, 123.3, 121.77, 121.75, 121.7, 119.3, 117.2, 112.0, 111.7, 111.1, 95.0, 55.7, 55.3. **HPLC**: 13.87 min., purity at 254 nm 93.4%. **HRMS (ESI⁺)**: m/z calculated for C₂₃H₁₈N₃O₈ [M+H]⁺ 464.1088, found 464.1087.

4.1.22. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(4''-nitrobenzoyl)-6-methoxyindole (26)

To a well-stirred solution of compound 14 (0.14 g, 0.27 mmol) in THF (10 mL) at 0 °C was added TBAF (0.40 mL, 0.40 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (3 CV), 12%A / $88\%B \rightarrow 100\%A / 0\%B$ (11 CV), 100%A / 0%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole phenol ligand 26 (0.02 g, 0.05 mmol, 19%, R_f 0.23 (50:50 hexanes:EtOAc)) as a yellow powder. ¹H NMR ((CD₃)₂SO, 500 MHz): δ 12.04 (br s, 1H, NH), 9.05 (s, 1H, OH), 7.98 (d, J = 8.0 Hz, 2H, ArH), 7.83 (d, J = 8.5 Hz, 1H, ArH), 7.61 (d, J = 8.5 Hz, 2H, ArH), 6.95 (d, J = 1.0 Hz, 1H, ArH),6.85 (dd, J = 8.5 Hz, 1.5 Hz, 1H, ArH), 6.71 (s, 1H, ArH), 6.68 (d, J = 8.5 Hz, 1H, ArH), 6.63 (d, J = 8.5 Hz, 1H, ArH), 3.81 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 190.1, 156.6, 148.3, 148.0, 146.1, 146.0, 145.6, 136.6, 129.8, 123.9, 122.6, 122.0, 121.47, 121.45, 116.8, 111.62, 111.55, 111.4, 94.9, 55.7, 55.3. **HPLC**: 13.19 min., purity at 254 nm >99%. **HRMS** (**ESI**⁺): m/z calculated for $C_{23}H_{19}N_2O_6$ [M+H]⁺ 419.1238, found 419.1237.

4.1.23. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3''-nitrobenzoyl)-6-methoxyindole (27)

To a well-stirred solution of compound **15** (0.13 g, 0.25 mmol) in THF (10 mL) at 0 °C was added TBAF (0.38 mL, 0.38 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction

mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na2SO4 and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 15%A / 85%B (4.5 CV), 40%A $/60\%B (16 \text{ CV}), 40\%A / 60\%B \rightarrow 100\%A / 0\%B (2 \text{ CV}), 100\%A / 0\%B (10.5 \text{ CV});$ flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole phenol ligand 27 (0.10 g, 0.25 mmol, $R_f = 0.28$ (50:50 hexanes:EtOAc)) quantitatively as a yellow powder. ¹**H NMR** ((CD₃)₂CO, 500 MHz): δ 10.95 (br s, 1H, N<u>H</u>), 8.25 (t, J = 2.0 Hz, 1H, ArH), 8.13 (ddd, J = 8.0 Hz, 2.0 Hz, 1.0 Hz, 1H, ArH), 8.02 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 7.93 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H, Ar<u>H</u>), 7.69 (s, 1H, O<u>H</u>), 7.49 (t, *J* = 8.0 Hz, 1H, ArH), 7.06 (d, J = 2.0 Hz, 1H, ArH), 6.91 (dd, J = 9.0 Hz, 2.5 Hz, 1H, ArH), 6.81 (d, J = 2.0 Hz, 1H, ArH), 6.78 (dd, J = 8.5 Hz, 2.0 Hz, 1H, ArH), 6.73 (d, J = 8.0 Hz, 1H, ArH), 3.86 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃). ¹³C NMR ((CD₃)₂CO, 125 MHz): δ 190.5, 158.5, 149.2, 148.5, 147.4, 146.0, 143.1, 138.0, 135.9, 130.1, 125.8, 125.7, 124.8, 123.7, 123.0, 122.9, 117.5, 113.0, 112.7, 112.3, 95.8, 56.5, 56.0. HPLC: 12.97 min., purity at 254 nm >99%. **HRMS (ESI⁺)**: m/z calculated for $C_{23}H_{19}N_2O_6$ [M+H]⁺ 419.1238, found 419.1236.

4.1.24. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''-trifluorobenzoyl)-6methoxyindole (28)

To a well-stirred solution of compound **16** (0.70 g, 1.29 mmol) in THF (10 mL) at 0 °C was added TBAF (1.94 mL, 1.94 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The

combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / $88\%B \rightarrow 100\%A / 0\%B$ (10 CV), 100%A / 0%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **28** (0.35 g, 0.41 mmol, 64%, $R_f = 0.18$ (50:50 hexanes:EtOAc)) as a tan powder. ¹H NMR $((CD_3)_2SO, 500 \text{ MHz}): \delta 12.02 \text{ (br s, 1H, NH)}, 9.12 \text{ (br s, 1H, OH)}, 7.85 \text{ (d, } J = 8.5 \text{ Hz},$ 1H, Ar<u>H</u>), 7.28 (m, 2H, Ar<u>H</u>), 6.94 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.86 (dd, J = 9.0 Hz, 2.0 Hz, 1H, ArH), 6.80 (d, J = 8.0 Hz, 1H, ArH), 6.71 (d, J = 2.0 Hz, 1H, ArH), 6.69 (dd, J = 8.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 3.81 (s, 3H, OC<u>H</u>₃), 3.73 (s, 3H, OC<u>H</u>₃). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 188.0, 156.6, 149.5 (ddd, J_{CF} = 247.6 Hz, 10.2 Hz, 3.0 Hz), 148.2, 146.1, 145.5, 140.0 (dt, J_{C-F} = 251.4 Hz, 15.5 Hz), 136.71 (d, J_{C-F} = 5.6 Hz), 136.65, 124.2, 122.0, 121.4, 121.2, 116.8, 113.5 (dd, J_{CF} = 16.6 Hz, 4.8 Hz), 111.8, 111.5, 110.8, 94.9, 55.8, 55.3. ¹⁹**F NMR** ((CD₃)₂SO, 470 MHz): δ -135.5 (dd, J = 21.6 Hz, 8.5 Hz, 2F, ArF), -158.6 (tt, J = 21.2 Hz, 6.6 Hz, 1F, ArF). **HPLC**: 14.33 min., purity at 254 nm >99%. **HRMS (ESI⁺)**: m/z calculated for C₂₃H₁₇F₃NO₄ [M+H]⁺ 428.1104, found 428.1104. 4.1.25. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(4''-fluorobenzoyl)-6-methoxyindole (29)

To a well-stirred solution of compound **17** (0.09 g, 0.18 mmol) in THF (10 mL) at 0 °C was added TBAF (0.30 mL, 0.38 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced

pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 35%A / 65%B (5 CV), 35%A / 65%B → 50%A / 50%B (17.5 CV), 100%A / 0%B (7 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole phenol ligand **29** (0.05 g, 0.12 mmol, 64%, R_f = 0.31 (50:50 hexanes:EtOAc)) as a tan powder. ¹H NMR ((CD₃)₂CO, 500 MHz): δ 10.78 (br s, 1H, N<u>H</u>), 7.77 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 7.66 (m, 3H, 2 Ar<u>H</u>, 1 O<u>H</u>), 7.03 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.96 (m, 2H, Ar<u>H</u>), 6.92 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.84 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 6.81 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H, Ar<u>H</u>), 6.78 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 3.84 (s, 3H, OC<u>H</u>₃), 3.79 (s, 3H, OC<u>H</u>₃. ¹³C NMR ((CD₃)₂CO, 125 MHz): δ 190.6, 164.3 (d, *J_{C-F}* = 248 Hz), 157.2, 147.9, 146.3, 143.0, 137.00, 136.98, 136.9, 131.8 (d, *J_{C-F}* = 9 Hz), 125.1, 123.0, 121.7, 121.5, 116.0, 114.4 (d, *J_{C-F}* = 22 Hz), 111.17, 111.15, 94.5, 55.4, 55.9. ¹⁹F NMR ((CD₃)₂CO, 470 MHz): δ -110.8 (m, 1F, Ar<u>F</u>). **HPLC**: 12.91 min., purity at 254 nm >99%. **HRMS (ESI⁺**): *m/z* calculated for C₂₁H₁₀FNO₄ [M+H]⁺ 392.1293, found 392.1291.

4.1.26. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',5''-bis-trifluoromethylbenzoyl)-6methoxyindole (30)

To a well-stirred solution of compound **18** (0.26 g, 0.42 mmol) in THF (10 mL) at 0 °C was added TBAF (0.63 mL, 0.63 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A /

93%B → 60%A / 40%B (10 CV), 60%A / 40%B (5.2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **30** (0.22 g, 0.42 mmol, $R_f = 0.21$ (70:30 hexanes:EtOAc)) quantitatively as an orange powder. ¹H NMR ((CD₃)₂SO, 500 MHz): δ 12.10 (br s, 1H, N<u>H</u>), 9.00 (br s, 1H, O<u>H</u>), 7.99 (m, 2H, 1 Ar<u>H</u>, 1 O<u>H</u>), 7.90 (s, 2H, Ar<u>H</u>), 6.96 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.89 (dd, J = 9.0 Hz, 2.5 Hz, 1H, Ar<u>H</u>), 6.64 (m, 3H, Ar<u>H</u>), 3.82 (s, 3H, OC<u>H</u>₃), 3.66 (s, 3H, OC<u>H</u>₃). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 188.4, 156.7, 148.2, 146.3, 146.2, 142.2, 136.7, 129.7 (q, $J_{CF} =$ 33 Hz), 128.9 (m), 123.7 (m), 123.5, 123.0 (q, $J_{CF} = 272$ Hz), 122.0, 121.6, 121.4, 116.9, 111.7, 111.6, 111.0, 94.9, 55.6, 55.3. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ -61.4 (s, 6F, C<u>F</u>₃). **HPLC**: 16.17 min., purity at 254 nm >99%. **HRMS (ESI**⁺): *m/z* calculated for C₂₅H₁₈F₆NO₄ [M+H]⁺ 510.1135, found 510.1134.

4.1.27. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3''-trifluoromethoxybenzoyl)-6methoxyindole (31)

To a well-stirred solution of compound **19** (1.21 g, 2.11 mmol) in THF (10 mL) at 0 °C was added TBAF (3.20 mL, 3.17 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (4 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **31** (0.67 g, 1.51 mmol, 71%, R_f = 0.33 (50:50 hexanes:EtOAc)) as an orange powder. ¹H NMR

((CD₃)₂CO, 500 MHz): δ 10.89 (br s, 1H, N<u>H</u>), 7.89 (d, J = 8.7 Hz, 1H, Ar<u>H</u>), 7.72 (s, 1H, O<u>H</u>), 7.55 (d, J = 7.4 Hz, 1H, Ar<u>H</u>), 7.47 (s, 1H, Ar<u>H</u>), 7.30 (t, J = 7.8 Hz, 1H, Ar<u>H</u>), 7.26 (d, J = 8.3 Hz, 1H, Ar<u>H</u>), 7.04 (d, J = 2.2 Hz, 1H, Ar<u>H</u>), 6.93 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.88 (dd, J = 8.7, 2.3 Hz, 1H, Ar<u>H</u>), 6.78 (dd, J = 8.3, 2.0 Hz, 1H, Ar<u>H</u>), 6.72 (d, J = 8.3 Hz, 1H, Ar<u>H</u>), 3.84 (s, 3H, OC<u>H₃</u>), 3.76 (s, 3H, OC<u>H₃</u>). ¹³C NMR ((CD₃)₂CO, 125 MHz): δ 191.4, 158.1, 149.4 (q, $J_{C-F} = 2$ Hz), 148.9, 147.2, 145.2, 143.8, 137.8, 130.3, 128.9, 125.6, 123.9, 123.7, 122.63, 122.59, 122.2, 121.3 (q, $J_{C-F} = 254.75$ Hz), 116.9, 112.8, 112.3, 112.0, 95.6, 56.2, 55.8. ¹⁹F NMR ((CD₃)₂CO, 470 MHz): δ -58.5 (s, 6F, OC<u>F₃</u>). HPLC: 14.71 min., purity at 254 nm >99%. HRMS (ESI⁺): m/z calculated for C₂₄H₁₉F₃NO₅ [M+H]⁺ 458.1210, found 458.1210.

4.1.28. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(4''-trifluoromethoxybenzoyl)-6methoxyindole (32)

To a well-stirred solution of compound **20** (0.92 g, 1.60 mmol) in THF (5 mL) at 0 °C was added TBAF (2.5 mL, 2.40 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (4 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **32** (0.43 g, 0.96 mmol, 60%, R_f = 0.33 (50:50 hexanes:EtOAc)) as a yellow powder. ¹H NMR ((CD₃)₂CO, 500 MHz): δ 10.86 (br s, 1H, N<u>H</u>), 7.91 (d, *J* = 8.8 Hz, 1H, Ar<u>H</u>), 7.69 (s, 1H, O<u>H</u>), 7.65 (d, *J* = 8.5 Hz, 2H, Ar<u>H</u>), 7.10 (d, *J* = 8.5 Hz, 2H, Ar<u>H</u>), 7.03 (d, *J* = 2.2 Hz, 1H, Ar<u>H</u>), 6.90 (s, 1H, Ar<u>H</u>), 6.87 (dd, *J* = 8.8 Hz, 2.2 Hz, 1H, Ar<u>H</u>), 6.71 (m, 2H, Ar<u>H</u>), 3.84 (s, 3H, OC<u>H</u>₃), 3.77 (s, 3H, OC<u>H</u>₃). ¹³C NMR ((CD₃)₂CO, 125 MHz): δ 191.6, 158.1, 151.3 (q, $J_{C-F} = 2$ Hz), 148.9, 147.2, 145.1, 140.5, 137.8, 132.0, 125.7, 123.7, 122.72, 122.67, 121.7 (q, $J_{C-F} = 254.75$ Hz), 120.7, 116.9, 113.0, 112.3, 111.8, 95.5, 55.1, 55.8. ¹⁹F NMR ((CD₃)₂CO, 470 MHz): δ -58.5 (s, 6F, OC<u>F</u>₃). HPLC: 14.80 min., purity at 254 nm >99%. HRMS (ESI⁺): *m/z* calculated for C₂₄H₁₉F₃NO₅ [M+H]⁺ 458.1210, found 458.1210.

4.1.29. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-6hydroxyindole (33)

To a well-stirred solution of compound **21** (0.40 g, 0.59 mmol) in THF (10 mL) at 0 °C was added TBAF (1.00 mL, 0.89 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted using EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (1.4 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole free phenol ligand **33** (0.11 g, 0.25 mmol, 42%, R_f = 0.03 (70:30 hexanes:EtOAc)) as a yellow powder. ¹H NMR ((CD₃)₂SO, 500 MHz): δ 11.62 (br s, 1H, N<u>H</u>), 9.19 (br s, 1H, O<u>H</u>), 9.00 (br s, 1H, O<u>H</u>), 7.66 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 6.82 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.78 (s, 2H, Ar<u>H</u>), 6.74 (d, *J* = 9.0 Hz, 2H, Ar<u>H</u>), 6.67 (t, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.65 (t, *J* = 3.0 Hz, 1H, Ar<u>H</u>), 3.69 (s, 3H, OC<u>H</u>₃), 3.61 (s, 6H, OC<u>H</u>₃), 3.59 (s, 3H, OC<u>H</u>₃). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ 192.0, 155.2, 153.4, 148.5, 147.0, 143.7, 141.8, 138.0, 136.4, 126.5, 123.4, 122.7, 122.0, 116.9, 113.1, 112.3, 111.8, 106.0, 97.4, 60.4, 56.18, 56.17. HPLC: 8.95 min., purity at 254 nm 90.7%. HRMS (ESI⁺): *m/z* calculated for C₂₅H₂₄NO₇ [M+H]⁺ 450.1547, found 450.1547.

4.1.30. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-4,5,6methoxyindole (34)

To a well-stirred solution of compound 22 (0.03 g, 0.05 mmol) in THF (10 mL) at 0 °C was added TBAF (0.1 mL, 0.08 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] afforded the desired indole phenol ligand **34** (0.02 g, 0.03 mmol, 60%, $R_f = 0.10 (50:50 \text{ hexanes:EtOAc})$) as a yellow powder. ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (br s, 1H, NH), 7.15 (s, 2H, ArH), 6.99 (d, J = 2.0 Hz, 1H, ArH), 6.89 (dd, J = 8.0Hz, 2.0 Hz, 1H, ArH), 6.71 (d, *J* = 8.5 Hz, 1H, ArH), 6.68 (s, 1H, ArH), 5.62 (s, 1H, OH), 3.90 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.74 (s, 6H, OCH₃), 3.69 (s, 3H, OCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 193.4, 152.8, 152.2, 146.8, 146.5, 145.8, 142.1, 137.8, 137.0, 134.6, 132.4, 125.1, 120.5, 116.1, 113.7, 112.6, 110.9, 107.5, 89.7, 61.4, 61.0, 60.8, 56.4, 56.3, 56.1. HPLC: 11.13 min., purity at

254 nm >99%. **HRMS (ESI**⁺): m/z calculated for C₂₈H₃₀NO₉ [M+H]⁺ 524.1915, found 524.1912.

4.1.31. 2-(4'-Methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-6-methoxy-7hydroxyindole (35)

To a well-stirred solution of compound 23 (0.008 g, 0.014 mmol) in THF (10 mL) at 0 °C was added TBAF (0.01 mL, 0.01 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 10 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (4 CV), 7%A / $93\%B \rightarrow 60\%A / 40\%B$ (10 CV), 60%A / 40%B (5 CV); flow rate: 12 mL/min; monitored at 254 and 280 nm] resulting in free phenol indole 35 as a dark brown powder $(0.006 \text{ g}, 0.013 \text{ mmol}, 90\%, \text{R}_{\text{f}} = 0.22 (50:50 \text{ hexanes:EtOAc}))$. ¹**H NMR** (CDCl₃, 500 MHz): δ 8.57 (br s, 1H, NH), 7.52 (d, J = 8.4 Hz, 1H, ArH), 7.29 (d, J = 8.1 Hz, 2H, ArH), 6.95 (br s, 3H, ArH), 6.74 (d, J = 8.1 Hz, 2H, ArH), 5.76 (br s, 1H, OH), 3.97 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.69 (s, 6H, OCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 192.2, 160.1, 152.6, 143.7, 142.3, 141.3, 134.8, 131.0, 130.4, 125.5, 125.3, 124.5, 114.0, 113.0, 112.8, 108.7, 107.5, 61.0, 57.6, 56.2, 55.4. HPLC: 11.67 min., purity at 254 nm 96.9%. HRMS (ESI⁺): m/z calculated for C₂₆H₂₆NO₇ [M+H]⁺ 464.1704, found 464.1704.

92

4.1.32. 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''-trimethoxybenzoyl)-6,7dimethoxyindole (36)

To a well-stirred solution of compound 24 (0.08 g, 0.14 mmol) in THF (10 mL) at 0 °C was added TBAF (0.21 mL, 0.21 mmol, 1 M in THF) dropwise. The reaction mixture was stirred for 30 min while warming to room temperature. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extract was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (4 CV), 12%A / $88\%B \rightarrow 100\%A / 0\%B$ (10 CV), 100%A / 0%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in free phenol indole 36 as a dark brown powder $(0.02 \text{ g}, 0.04 \text{ mmol}, 27\%, R_f = 0.14 (50:50 \text{ hexanes:EtOAc}))$. ¹**H NMR** (CDCl₃, 500 MHz): δ 8.57 (br s, 1H, NH), 7.71 (d, J = 9.0 Hz, 1H, ArH), 6.972 (d, J = 9.0 Hz, 1H, ArH), 6.971 (d, J = 2.0 Hz, 1H, ArH), 6.94 (s, 2H, ArH), 6.79 (dd, J = 8.3 Hz, 2.0 Hz, 1H, ArH), 6.64 (d, J = 8.3 Hz, 1H, ArH), 5.63 (br s, 1H, OH), 4.06 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.71 (s, 6H, OCH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 192.0, 152.6, 148.1, 147.2, 145.7, 143.2, 141.1, 135.0, 134.0, 130.2, 125.4, 125.0, 122.0, 116.8, 114.8, 113.4, 110.52, 110.45, 107.3, 61.3, 60.9, 57.4, 56.17, 56.15. HPLC: 11.45 min., purity at 254 nm >99%. HRMS (ESI⁺): m/z calculated for C₂₇H₂₇NNaO₈ [M+Na]⁺ 516.1629, found 516.1626.

93

4.2 Biological evaluation

4.2.1. SRB Assay⁵²⁻⁵³

We assessed inhibition of human cancer cell growth using the National Cancer Institute's standard sulforhodamine B assay, as previously described.⁵² Briefly, cancer cell lines in a 5% fetal bovine serum/RPMI1640 medium, 1% gentamicin solution were plated in 96-well plates and incubated for 24 h. Serial dilutions of the compounds were then added. After 48 h, the cells were fixed with trichloroacetic acid, stained with sulforhodamine B, and read with an automated Biotek plate reader. A growth inhibition of 50% (GI₅₀ or the drug concentration causing a 50% reduction in the net protein increase) was calculated from optical density data.

4.2.2. Colchicine Binding Assay

Inhibition of [³H]colchicine binding was determined using 100 mL reaction mixtures containing 1.0 mM tubulin, 5.0 μ M [³H]colchicine (from Perkin-Elmer), 5% (v/v) dimethyl sulfoxide, and potential inhibitors at 1.0 or 5.0 μ M. Reaction mixtures also contained components shown to potently stabilize the colchicine binding activity of tubulin:⁵⁴ 1.0 M monosodium glutamate (pH 6.6 as above), 0.5 mg/mL bovine serum albumin, 0.1 M glucose-1-phosphate, 1.0 mM MgCl₂, and 1.0 mM GTP. Incubation was for 10 min at 37 °C, a time point at which the reaction in the control is 40-60% complete. Reactions were stopped by adding 2.0 mL of ice-cold water and placing the samples on ice prior to filtration. Each sample was poured onto a stack of two DEAE-cellulose filters, followed immediately by 6 mL of ice-cold water, and the water was aspirated under reduced vacuum. The filters were washed with additional water and placed into vials containing 5 mL of Biosafe II scintillation cocktail. The samples were counted the next day in a Beckman scintillation counter. Samples with potential inhibitors were compared to controls with no inhibitor to determine percent inhibition.

4.2.3. Inhibition of Tubulin Polymerization

Tubulin assembly experiments were performed with 0.25 mL reaction mixtures (final volume). The mixtures contained 1 mg/mL (10 μ M) purified bovine brain tubulin, 0.8 M tubulin monosodium glutamate (adjusted to pH 6.6 with HCl in 2.0 M stock solution), 4% (v/v) dimethyl sulfoxide, 0.4 mM GTP, and varying concentrations of compound. Initially, all components except GTP were preincubated for 15 min at 30 °C in a 0.24 mL volume. After chilling the mixtures on ice, 10 μ L of 10 mM GTP was added to each sample. The reaction mixtures were then transferred to cuvettes held at 0 °C in Beckman DU-7400 and DU-7500 spectrophotometers equipped with electronic temperature controllers. The temperature was jumped to 30 °C over about 30 s, and polymerization was followed turbidimetrically at 350 nM for 30 min. Each reaction set included a reaction mixture without compound, and the IC₅₀ was defined as the concentration of compound that inhibited the extent of assembly versus the control after 20 min at 30 °C. These values were obtained by interpolation between the actual experimental values.

Supplementary Data.

Characterization data (¹H NMR, ¹³C NMR, ¹⁹F NMR, HPLC, and HRMS) for final compounds and X-ray crystallography for compound **10** are available free of charge via the internet at http://pubs.acs.org.

Acknowledgements.

The authors are grateful to the National Cancer Institute of the National Institutes

of Health (grant no. 5R01CA140674 to K.G.P. and M.L.T.) and Oxigene Inc. (grant to K.G.P. and M.L.T.) for their financial support of this project, and to the NSF for funding the Varian 500 MHz NMR spectrometer (grant no. CHE- 0420802). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health. The authors also thank Dr. James Karban and Dr. Michelle Nemec (Director) for the use of the shared Molecular Biosciences Center at Baylor University, Dr. Alejandro Ramirez (Mass Spectrometry Core Facility, Baylor University), and Dr. Kevin Klausmeyer (X-ray analysis). The authors are grateful to Mr. Robert Harris, Ms. Priscilla Hor, and Ms. Siri Ancha for their valuable contributions to the synthesis of certain analogues.

References and notes.

- 1. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253–265.
- 2. Lopus, M.; Yenjerle, M.; Wilson, L. In Wiley Encyclopedia of Chemical Biology;
- Begley, T. P.; Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, 2008; 3, 153-160.
- 3. Etienne-Manneville, S. Curr. Opin. Cell Biol. 2010, 22, 104–111.
- 4. Wade, R. H. Mol. Biotechnol. 2009, 43, 177–191.
- 5. Valiron, O.; Caudron, N.; Job, D. Cell. Mol. Life Sci. 2001, 58, 2069–2084.
- 6. Mason, R. P.; Zhao, D.; Liu, L.; Trawick, M. L.; Pinney, K. G. *Integr. Biol.* **2011**, *3*, 375-387.
- 7. Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423-435.
- 8. Hida, K.; Hida, Y.; Shindoh, M. Cancer Sci. 2008, 99(3), 459-466.
- 9. Kanthou, C.; Tozer, G. M. Exp. Opin. Ther. Targets 2007, 11(11), 1443-1457.
- 10. Siemann, D. W.; Bibby, M. C.; Dark, G. G.; Dicker, A. P.; Eskens, F. A.; Horsman,
- M. R.; Marme, D.; Lorusso, P. M. Clin. Cancer Res. 2005, 11, 416-420.
- 11. Dougherty, G. J.; Chaplin, D. J. in Vascular Disruptive Agents for the Treatment of Cancer, ed. T. Meyer, Springer, New York, **2010**, ch. 1, 1-27.
- 12. Siemann, D. W. in Vascular-Targeted Therapies in Oncology, ed. Siemann, D. John Wiley & Sons, London, UK, **2006**, ch. 1, 1-8.
- 13. Patil, S. A.; Patil, R.; Miller, D. D. Future Med. Chem. 2012, 4(16), 2085-2115.
- 14. Weisenberg, R. C.; Borisy, G. G.; Taylor, W. Biochemistry 1968, 7, 4466-4477.
- 15. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. *Experientia* **1989**, *45*(2), 209-211.
- 16. Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod.
 1987, 50(1), 119-131.
- 17. Hasani, A.; Leighl, N. Clinical Lung Cancer 2011, 12(1), 18-25.
- 18. Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.;
- Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.;
- McCrae, K. R.; Remick, S. C. J. Clin. Oncol. 2003, 62(12), 3408-3416.
- Rustin, G. J.; Galbraith, S. M.; Anderson, H.; Stratford, M.; Folkes, L. K.; Sena, L.;
 Gumbrell, L.; Price, P. M. J. Clin. Oncol. 2003, 21(15), 2815-2822.
- 20. Lee, R. M.; Gewirtz, D. A. Drug Dev. Res. 2008, 69(6), 352-358.
- 21. Pinney, K. G. in Vascular-Targeted Therapies in Oncology, ed. Siemann, D. John Wiley & Sons, London, UK, **2006**, ch. 6, 95-121.
- 22. Pettit, G. R.; Singh, S. B.; Boyd, M. R. J. Med. Chem. 1995, 38, 1666-1672.
- 23. Oshumi, K.; Nakagawa, R.; Fukuda, Y. J. Med. Chem. 1998, 41, 3022-3032.

- 24. McGowan, A. T.; Fox, B. W. Cancer Chemother. Pharmacol. 1990, 26, 79-81.
- 25. El-Zayat, A. A. E.; Degan, D.; Drabek, S. Anticancer Drugs 1993, 4, 19-25.
- 26. Oshumi, K.; Hatanaka, R.; Nakagawa, R. Anticancer Drug Des. 1999, 14, 539-548.
- 27. Pettit, G. R.; Minardi, M. D.; Boyd, M. R.; Pettit, R. K. Anticancer Drug Des. 2000, 15, 397-403.
- 28. Pettit, G. R.; Lippert, J. W. III. Anticancer Drug Des. 2000, 15, 203-216.
- 29. Boehle, A. S.; Sipos, B.; Kliche, U.; Kalthoff, H.; Dohrmann, P. *Ann. Thorac. Surg.* 2001, *71*, 1657-1665.
- 30. Pettit, G. R.; Moser, B. R.; Boyd, M. R. Anticancer Drug Des. 2001, 16, 185-193.
- 31. Ohno, T.; Kawano, K.; Tahara, K. Gastroenterology 2001, 120, 2831.
- 32. Pinney, K. G.; Wang, F.; Hadimani, M. 2005, US Patent 6849656.
- 33. Hadimani, M. B.; Kessler, R. J.; Kautz, J. A.; Ghatak, A.; Shirali, R.; O'Dell, H.;
- Garner, C. M.; Pinney, K. G. Acta Crystallogr. 2002, C58, 330;
- 34. Pinney, K.; Wang, F.; Del Pilar Mejia, M. **2001**, From PCT Int. Appl. WO 0119794 A2.
- 35. Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670-2673.
- 36. Hadimani, M. B.; MacDonough, M. T.; Strecker, T. E.; Lopez, R.; Sriram, M.;
- Nguyen, B. L.; Kessler, R. J.; Ghatak, A.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettit, G.
- R.; Hamel, H.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. J. Nat. Prod. http://dx.doi.org/10.1021/np400374w.
- 37. Liou, J.-P.; Chang, Y.-C.; Kuo, F.-M.; Chang, C-.W.; Tseng, H.-Y.; Wang, C.-C.;
- Yang, Y.-N.; Chang, J.-Y.; Lee, S.-J.; Hsieh, H. P. J. Med. Chem. 2004, 47, 4247-4257.

38. Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai,
R.; Hamel, E. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1081–1086.

39. Mullica, D. F.; Pinney, K. G.; Mocharla, V. P.; Dingeman, K. M.; Bounds, A. D.;

Sappenfield, E. L. J. Chem. Crystallogr. 1998, 28, 289–295.

40. Kessler, R. J.; Hadimani, B.; Pinney, K. G.; Edvardsen, K. (Poster). 38th National

Organic Symposium Indiana University, Bloomington IN, June 8-12, 2003.

41. Kessler, R. J. Synthesis and Evaluation of New Inhibitors of Tubulin

Polymerization and Their Corresponding Prodrugs as Potential Vascular

Targeting Agents. M.S. Thesis, Baylor University, Waco, TX, 2002.42.

42. Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2341–2343.

43. Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.;

Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D. M.;

Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. J. Med. Chem. 2011, 54, 6014-6027.

44. Kremmidiotis, G.; Leske, A. F.; Lavranos, T. C.; Beaumont D.; Hall, A.;

- O'Callaghan, M.; Matthews, C. A.; Flynn, B. L. Mol. Cancer Ther. 2010, 6, 1562-1573.
- 45. La Regina, G.; Sarkar, T.; Bai, R.; Edler, M. C.; Saletti, R.; Coluccia, A.; Piscitelli,
- F.; Minelli, L.; Gatti, V.; Mazzoccoli, C.; Palermo, V.; Mazzoni, C.; Falcone, C.;

Scovassi, A. I.; Giansanti, V.; Campiglia, P.; Porta, A.; Maresca, B.; Hamel, E.; Brancale,

- A.; Novellino, E.; Silvestri, R. J. Med. Chem. 2009, 52, 7512-7527.
- 46. La Regina, Bai, R.; Rensen, W. M.; Cesare, E. D.; Coluccia, A.; Piscitelli, F.;

Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Pozza, E. D.; Costa, B.; Granata, I.;

- Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Santoni, A.; Li, J.; Cona, M. M.;
- Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.;
- Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. J. Med. Chem. 2013, 56, 123-149.
- 47. Ty, N.; Dupeyre, G.; Chabot, G. G.; Seguin, J.; Tillequin, F.; Scherman, D.; Michel,
- S.; Cachet, X. Bioorg. Med. Chem. 2008, 16(15), 7494-7503.
- 48. Bischler, A.; Brion, H. Chem. Ber. 1892, 25, 2860.
- 49. Mohlau, H. Chem. Ber. 1881, 14, 173.
- 50. Kemperman, G. J.; Roeters, T. A.; Hilberink, P. W. *Eur. J. Org. Chem.* **2003**, 1681-1686.
- 51. Hall, J. J.; Sriram, M.; Strecker, T. E.; Tidmore, J. K.; Jelinek, C. J.; Kumar, G. D. K.;
- Hadimani, M. B.; Pettit, G. R.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Bioorg.
- Med. Chem. Lett. 2008, 18, 5146-5149.
- 52. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paul, K.; Vestica, D.; Hose, C.;
- Langley, J.; Cronise, P.; Vaigro-Wolf, A. J. Natl. Cancer Inst. 1991, 83, 767-766.
- 53. Vichai, V.; Kirtikara, K. Nature Protocols. 2006, 1(3), 1112-1116.
- 54. Hamel, E.; Lin, C. M. Biochim. Biophys. Acta. 1981, 675, 226-231.

CHAPTER FOUR

Indole-based Bioreductively Activatable Prodrug Conjugates

Synthesis of Bioreductive Prodrugs

As described in more detail, the selective targeting of tumor hypoxia is a useful strategy for the treatment of cancer. The selective cleavage of the parent VDA from the bioreductive trigger is achieved by upregulated reductase enzymes such as cyctochrome P450 and is depicted in figure 1.

Figure 4.1. Reductive Cleavage of Indole-based BAPCs.

The synthetic route to bioreductively activatable prodrug conjugates (BACPs) 8-10 was achieved through the coupling of the parent indole-based VDA **OXi8006** and bioreductive nitrothiophene triggers 2, 4, or 7 under Mitsunobu conditions. This required both the scale up synthesis of **OXi8006** (Chapter 2) and generation of the *nor*-methyl-, *mono*-methyl-, and *gem*-dimethyl-nitrothiophenes **2**, **4**, and **7** (Scheme 1). The *nor*methyl- and *mono*-methyl-nitrothiophenes **2** and **4** were attained by the selective reduction of their commercially available carbonyl precursors (aldehyde **1** for the *nor*methyl and ketone **3** for the *mono*-methyl) with NaBH₄ in MeOH at 0 °C for 2 h and resulted in the reduced alcohol nitrothiophene triggers **2** and **4** in good yield. Additional synthetic modification was necessary to obtain *gem*-dimethyl-nitrothiophene bioreductive trigger **7** from commercially available 2-acetylthiophene **5** and entailed the initial methylation with CH₃Li in THF at 0 °C for 12 h to yield tertiary alcohol **6**. Tertiary alcohol **6** was subjected to nitration conditions in acetic anhydride and fuming nitric acid at -70 °C to afford *gem*-dimethyl-nitrothiophene **7**. The nitration reaction proceeded in low yields and was therefore repeated several times in small scale portions in order to obtain a sufficient quantity for subsequent Mitsunobu coupling as well as limit the safety concerns associated with large scale nitration reactions of aromatic compounds.

Scheme 4.1. Synthesis of nitrothiophene bioreductive triggers.

The coupling between nitrothiophene triggers 2, 4, and 7 and OXi8006 was accomplished with representative Mitsunobu reagents which included the two requisite alcohols (a nitrothiophene and the parent VDA **OXi8006**), a tertiary phosphine, and an azodicarboxylate (Scheme 2). BAPC 8 was obtained from *nor*-methyl-nitrothiophene 2 and **OXi8006** upon the addition of DIAD to a solution of PPh₃, **OXi8006**, and thiophene **2** in CH_2Cl_2 . The synthesis of BAPC **9** involved a similar sequence in which DIAD was added to a solution of **OXi8006**, *mono*-methyl-nitrothiophene 4, and PPh₃ in CH₂Cl₂ to yield BAPC 9. The gem-dimethyl coupled BAPC 10 involved analogous Mitsunobu conditions as the *nor*-methyl- and *mono*-methyl- derivatives, however, PBu₃ was added to a solution of OXi8006, tertiary thiophene alcohol 7, and ADDP in benzene and resulted in the desired BAPC 10. Although all three Mitsunobu couplings were successful, it should be noted that all proceeded with low yields 5-32% and required a total of 1.5 grams of non-commercially available OXi8006 (0.5 g per reaction) in order to isolate sufficient quantities of BAPCs 8-10 for biological evaluation in addition to arduous purifications that each compound demanded. BACPs 8-10 will be evaluated through an established collaboration with the Trawick Research Group at Baylor University to determine their hypoxic cytotoxicity ratio (HCR), which is described as the IC_{50} of the prodrug under oxic conditions divided by the IC_{50} of the prodrug under anoxic conditions. A larger HCR value suggests an increase in the enzymatic cleavage that releases the parent anticancer agent under anoxic conditions (as anticipated) evidenced by an increase in cytotoxicity (decrease in IC_{50} value under anoxia).

Scheme 4.2. Synthesis of bioreductively activatable prodrug conjugates (BAPCs).

Materials and Methods

General Section

CH₂Cl₂, THF, MeOH, and benzene were used in their anhydrous forms as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen gas, unless specified otherwise. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system (Biotage Isolera 4) using silica gel (200-400 mesh, 60 Å) prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data using a Varian VNMRS 500 MHz instrument. Spectra were recorded in CDCl₃. All of the chemical shifts are expressed in ppm (δ), coupling constants (*J*) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), double doublet (dd), quartet (q), and multiplet (m). Purity of the final compounds was further analyzed at 25 °C using an Agilent 1200 HPLC system with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 HPLC column (4.6 mm - 150 mm, 5 µm), and a Zorbax reliance cartridge guard-column; solvent A: acetonitrile, solvent B: H₂O; gradient: 10%A / 90%B to 100%A / 0%B over 0 to 40 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 µL; monitored at wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out under positive ESI (electrospray ionization) using a Thermo scientific LTQ Orbitrap Discovery instrument.

1-(5'-Nitrothiophen-2'-yl)ethanol 4^{1}

To a clean dry round bottom flask 1-(5-nitrothiophe-2-yl)ethanone **3** (1.00 g, 5.84 mmol) was dissolved in MeOH (20 mL). The solution was cooled to 0 °C and NaBH₄ (0.33 g, 8.76 mmol) was added. The reaction mixture was stirred for 2 h. Upon completion, the reaction was quenched with water (10 mL), transferred to a separatory funnel, and extracted with EtOAc. The organic extracts were combined, dried over

¹ Thompson, P.; Naylor, M. A.; Everett, S. A.; Stratford, M. R. L.; Lewis, G.; Hill, S.; Patel, K. B.; Wardman, P.; Davis, P. D. Synthesis and Biological Properties of Bioreductively Targeted Nitrothienyl Prodrugs of Combretastatin A-4. *Mol. Cancer Ther.* **2006**, *5*(11), 2886-2894.

 Na_2SO_4 , filtered, and concentrated under reduced pressure. The alcohol product 4 (1.01 g, 5.84 mmol) was isolated quantitatively as a brown oil.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.72 (d, J = 4.5 Hz, 1H, Ar<u>H</u>), 6.84 (d, J = 4.5 Hz, 1H, Ar<u>H</u>), 5.07 (q, J = 6.5 Hz, 1H, C<u>H</u>), 3.71 (br s, 1H, O<u>H</u>), 1.54 (d, J = 6.5 Hz, 3H, C<u>H</u>₃. ¹³**C NMR** (CDCl₃, 125 MHz): δ 159.9, 149.9, 129.1, 122.2, 66.3, 25.0.

2-(Thiophen-2-yl)propan-2-ol 6^{1}

To a clean, dry round-bottom flask, 1-(2-thiophenyl)ethanone **5** (20.0 g, 157 mmol) was dissolved in THF (500 mL). The solution was cooled to 0 °C and CH₃Li (129 mL, 206 mmol) was added drop wise. The reaction mixture was stirred for 12 h allowing the reaction mixture to warm to room temperature. Upon completion, the reaction was quenched with water (150 mL), transferred to a separatory funnel, and extracted with EtOAc. The organic extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The alcohol product **6** (15.1 g, 106 mmol, 67%) was isolated as a colorless oil.

¹**H** NMR (CDCl₃, 500 MHz): δ 7.15 (dd, *J* = 4.9, 1.4 Hz, 1H, Ar<u>H</u>), 6.93 – 6.89 (m, 2H, Ar<u>H</u>), 2.53 (s, 1H, O<u>H</u>), 1.63 (s, 9H, C<u>H</u>₃).

¹³C NMR (CDCl₃, 125 MHz): δ 154.5, 126.6, 123.8, 122.0, 71.3, 32.2.

2-(5'-Nitrothiophen-2-yl)propan-2-ol 7¹

To a clean, dry round-bottom flask, 2-(thiophen-2-yl)propan-2-ol **6** (3.0 g, 21.1 mmol) was dissolved in Ac_2O (70 mL). The solution was cooled to -70 °C and fuming nitric acid (0.96 mL, 21.1 mmol) was added drop wise. The reaction mixture was stirred for 2 h allowing the reaction mixture to warm to -40 °C. Ice (20 g) was added to the

solution and was stirred for 45 min. The reaction mixture was transferred to a separatory funnel and extracted with EtOAc. The organic extracts were combined, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The alcohol product **7** (0.16 g, 0.85 mmol, 8%) was isolated as an orange wax.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.75 (d, *J* = 4.2 Hz, 1H, Ar<u>H</u>), 6.85 (d, *J* = 4.2 Hz, 1H, Ar<u>H</u>), 1.64 (s, 6H, C<u>H</u>₃).

¹³**C NMR** (CDCl₃, 125 MHz): δ 164.1, 129.1, 121.4, 72.0, 32.0.

(6-methoxy-2-(4-methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)-1H-indol-3-yl)(3,4,5-trimethoxyphenyl)methanone

To a clean, dry round-bottom flask, nitrothiophenyl alcohol **2** (0.14 g, 0.90 mmol) obtained from pervious Pinney group member Dr. Clinton George, was dissolved in CH_2Cl_2 (10 mL). **OXi8006** (0.47 g, 1.01 mmol) and PPh₃ (0.46 g, 1.75 mmol) were added and the solution was stirred for 5 min. Diisopropylazodicarboxylate (DIAD) (0.24 mL, 1.22 mmol) was added drop wise and the reaction mixture was stirred for 12 h. The CH_2Cl_2 was removed under reduced pressure and the crude mixture was subjected to flash column chromatography using a pre-packed 50 g silica gel column [solvent A, EtOAc, solvent B, hexanes; gradient 15%A / 85%B (4 CV), 15%A / 85%B \rightarrow 100%A / 0%B (8 CV), 100%A / 0%B (7.2 CV); flow rate, 40 mL/min; monitored at 254 and 280 nm]. BAPC **8** (0.08 g, 0.13 mmol, 13%) was isolated as a yellow solid.

¹H NMR (CDCl₃, 500 MHz): δ 8.62 (br s, 1H, N<u>H</u>), 7.81 (d, J = 9.5 Hz, 1H, Ar<u>H</u>), 7.78
(d, J = 4.0 Hz, 1H, Ar<u>H</u>), 7.10 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.99 (s, 2H, Ar<u>H</u>),
6.95 (d, J = 4.0 Hz, 1H, Ar<u>H</u>), 6.89 (m, 2H, Ar<u>H</u>), 6.85 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.81 (d,

 $J = 8.0 \text{ Hz}, 1\text{H}, \text{Ar}\underline{\text{H}}), 4.91 \text{ (s}, 2\text{H}, C\underline{\text{H}}_2), 3.85 \text{ (s}, 3\text{H}, \text{OC}\underline{\text{H}}_3), 3.83 \text{ (s}, 3\text{H}, \text{OC}\underline{\text{H}}_3), 3.82 \text{ (s}, 3\text{H}, \text{OC}\underline{\text{H}}_3), 3.67 \text{ (s}, 6\text{H}, \text{OC}\underline{\text{H}}_3).$

¹³**C NMR** (CDCl₃, 125 MHz): δ 192.0, 157.5, 152.8, 151.8, 150.6, 148.1, 147.0, 141.8, 141.6, 136.5, 134.9, 128.5, 125.1, 124.9, 123.1, 122.9, 122.5, 117.3, 113.0, 111.94, 111.87, 107.5, 94.7, 66.9, 61.1, 56.2, 56.1, 55.8.

HPLC: 15.21 min.

HRMS (ESI⁺): m/z calculated for $C_{31}H_{29}N_2O_9S$ [M+H]⁺ 605.1588, found 605.1587.

(6-methoxy-2-(4-methoxy-3-(1-(5-nitrothiophen-2-yl)ethoxy)phenyl)-1H-indol-3-yl)(3,4,5-trimethoxyphenyl)methanone **9**

To a clean, dry round-bottom flask, nitrothiophenyl alcohol **4** (0.17 g, 0.96 mmol) was dissolved in CH₂Cl₂ (10 mL). **OXi8006** (0.50 g, 1.08 mmol) and PPh₃ (0.49 g, 1.86 mmol) were added and the solution was stirred for 5 min. Diisopropylazodi-carboxylate (DIAD) (0.26 mL, 1.30 mmol) was added drop wise and the reaction mixture was stirred for 12 h. The CH₂Cl₂ was removed under reduced pressure, and the crude mixture was subjected to flash column chromatography using a pre-packed 50 g silica gel column [solvent A, EtOAc, solvent B, hexanes; gradient 15%A / 85%B (4 CV), 15%A / 85%B \rightarrow 100%A / 0%B (8 CV), 100%A / 0%B (4 CV); flow rate, 40 mL/min; monitored at 254 and 280 nm]. BAPC **9** (0.19 g, 0.31 mmol, 32 %) was isolated as a yellow solid. ¹**H NMR** (CDCl₃, 500 MHz): δ 8.97 (br s, 1H, NH), 7.75 (d, *J* = 9.5 Hz, 1H, ArH), 7.68 (d, *J* = 4.0 Hz, 1H, ArH), 7.05 (dd, *J* = 8.0 Hz, *J* = 2.0 Hz, 1H, ArH), 6.99 (s, 2H, ArH), 6.86 (d, *J* = 2.0 Hz, 1H, ArH), 5.13 (q, *J* = 6.0 Hz, 1H, CH), 3.82 (s, 3H, OCH₃),

3.80 (s, 3H, OC<u>H</u>₃), 3.78 (s, 3H, OC<u>H</u>₃), 3.66 (s, 6H, OC<u>H</u>₃), 1.53 (d, *J* = 6.0 Hz, 3H, C<u>H</u>₃).

¹³**C NMR** (CDCl₃, 125 MHz): δ 191.9, 157.4, 155.3, 152.7, 151.4, 150.9, 146.1, 141.7, 141.5, 136.5, 134.7, 128.6, 124.8, 123.4, 123.13, 123.09, 122.4, 119.7, 112.9, 112.1, 111.8, 107.4, 94.6, 74.5, 61.0, 56.2, 56.0, 55.7, 22.9.

HPLC: 15.73 min.

HRMS (ESI⁺): m/z calculated for $C_{32}H_{31}N_2O_9S$ [M+H]⁺ 619.1745, found 619.1742.

(6-methoxy-2-(4-methoxy-3-((2-(5-nitrothiophen-2-yl)propan-2-yl)oxy)phenyl)-1H-indol-3-yl)(3,4,5-trimethoxyphenyl)methanone **10**

To a clean, dry round-bottom flask was dissolved nitrothiophenyl alcohol **7** (0.22 g, 1.15 mmol), **OXi8006** (0.50 g, 1.08 mmol), and 1,1'-(azodicarbonyl)-dipiperidine (ADDP) (0.27 g, 1.08 mmol) in benzene (10 mL). PBu₃ (0.27 mL, 1.08 mmol) was added drop wise and the reaction mixture was stirred for 24 h. The benzene was removed under reduced pressure, and the crude mixture was subjected to flash column chromatography using a pre-packed 50 g silica gel column [solvent A, EtOAc, solvent B, hexanes; gradient 5%A / 95%B (1 CV), 5%A / 95%B \rightarrow 40%A / 60%B (12 CV), 40%A / 60%B (1 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm]. BAPC **10** (0.03 g, 0.05 mmol, 5%) was isolated as a yellow solid.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.68 (br s, 1H, N<u>H</u>), 7.67 (d, *J* = 9.0 Hz, 1H, Ar<u>H</u>), 7.65 (d, *J* = 4.0 Hz, 1H, Ar<u>H</u>), 7.16 (dd, *J* = 8.5 Hz, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 7.03 (s, 2H, Ar<u>H</u>), 6.87 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.84 (m, 2H, Ar<u>H</u>), 6.78 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 6.76 (d, *J* = 4.5 Hz, 1H, Ar<u>H</u>), 3.85 (s, 3H, OC<u>H</u>₃), 3.83 (s, 3H, OC<u>H</u>₃), 3.74 (s, 3H, OC<u>H</u>₃), 3.71 (s, 6H, OC<u>H</u>₃), 1.51 (s, 6H, C<u>H</u>₃).

¹³C NMR (CDCl₃, 125 MHz): δ 191.5, 161.1, 157.4, 154.1, 152.8, 150.7, 143.4, 141.6, 141.3, 136.4, 134.5, 128.4, 125.4, 124.83, 124.76, 123.1, 122.4, 122.2, 112.9, 112.2, 111.8, 107.6, 94.6, 80.7, 61.0, 55.3, 55.84, 55.79, 28.7.

HPLC: 16.37 min.

HRMS (ESI⁺): m/z calculated for $C_{33}H_{33}N_2O_9S$ [M+H]⁺ 633.1901, found 633.1899.

CHAPTER FIVE

Mechanisms of Heterocyclic Ring Formation

Synthesis of ¹³C labeled indoles

To further explore the mechanistic pathway of the Bischler-Mohlau indole formation reaction the key bromoacetophenone intermediate **6** was isotopically labeled with the carbon-13 isotope at the alpha position to the carbonyl (Scheme 1). This carbon then provides evidence for which mechanistic pathway is predominating within our system according to the key distinct ¹³C NMR signature. A similar approach utilizing deuterium atoms at the same position proved to be inconclusive presumably due to proton transfer during tautomerization (see Appendix F for NMR results).

Scheme 5.1. Synthetic route to 13 C-labeled bromoacetophenone intermediate 6.

The synthetic route to ¹³C-labeled bromoacetophenone intermediate **6** followed a similar sequence as the non-labeled bromoacetophenone intermediate en route to **OXi8006** (Chapter 2) and simply replaces the transitional methylation step reagents to

install the ¹³C carbon atom at the alpha position. The first step of the synthesis was the phenolic protection of 3-hydroxy-4-methoxybenzaldehyde (also known as *iso*vanillin) with TBSCl in the presence of Et_3N and catalytic DMAP to afford TBS-aldehyde 2 in good yield. TBS-aldehyde 2 was treated with *in situ* generated ¹³CH₃MgI (from commercially available ${}^{13}CH_{3}I$ to yield ${}^{13}C$ -labeled secondary alcohol 3, which was oxidized with PCC to generated 13 C-labeled acetophenone 4. Acetophenone 4 was treated with a solution of LDA and the resulting enolate was trapped as the enol ether with TMSCl to provide ¹³C-labled enol ether **5** which was subjected to bromination with Br_2 to afford key ¹³C-labeled bromoacetophenone intermediate 6. The synthetic pathway to ¹³C-labeled indole 8 employed the ¹³C-labeled bromoacetophenone intermediate 6 and *m*-anisidine under Bishler-Mohlau conditions to generated 13 C-labeled indole 8 (Scheme 2). The ¹³C-labeled bromoacetophenone **6** and 3 equivalents of 3-methoxyaniline (manisidine) 7 were dissolved in N,N-dimethylaniline and heated to 170 °C (Bishler-Mohlau conditions) for 12 h to afford 13 C-labeled indole 8 in which the 13 C atom was located at the 3 position of the indole core, suggesting the system moves through pathway B (imine intermediate formation, see chapter one for scheme).

Scheme 5.2. Synthesis of ¹³C-labeled indole 8.

These preliminary results were established by ¹H NMR, ¹³C NMR, and DEPT ¹³C NMR analysis of intermediate **8** (see Appendix E).

Synthesis of ¹³C labeled benzo[b]furans

A similar labeling strategy was applied to the cyclization of benzo[*b*]furans to explore the mechanistic pathways of formation. The same sequence was employed to generate bromoacetophenone **6** (Scheme 1) and once achieved **6** was treated with KOH in the presence of 3-methoxyphenol **9** to afford ¹³C-labeled ether intermediate **10** which was then cyclized to ¹³C-labeled benzo[*b*]furan **11** by treatment with PPA. Preliminary ¹H NMR, ¹³C NMR, and DEPT ¹³C NMR results (Appendix E), suggest the mechanism moves through pathway A, without migration of the aryl ring to the two position, which is consistent with previously synthesized non-labeled benzo[*b*]furans within the Pinney group for which the structures were determined by X-ray crystallographic diffraction analysis.

Scheme 5.3. Synthesis of benzo[*b*]furan **11**.

Synthesis of ¹³C labeled benzo[b]thiophenes

A paralleled approach was employed to examine the cyclization pathway of benzo[*b*]thiophenes. Key ¹³C-labeled bromoacetophenone **6** was added to a solution of 3-methoxybenzenethiol **12** and KOH in EtOH to afford the intermediate thio-ester **13**. ¹³C-

labeled thio-ester intermediate **13** was cyclized with PPA resulting in ¹³C-labeled benzo[*b*]thiophene **14**. Preliminary ¹H NMR, ¹³C NMR, and DEPT ¹³C NMR results (Appendix E), suggest the mechanic pathway is the same as the benzo[*b*]furan (pathway A), without migration of the aryl ring to the two position, this contradicts previously synthesized non-labeled benzo[*b*]thiophenes within the Pinney group for these specific substrates. Previous work in the Pinney group has established aryl migration to the 2position as determined by X-ray crystallographic diffraction analysis however this migration was observed for a substrate that lacked the protected 3-phenolic moiety of the bromoacetophenone intermediate. In addition, previous work in the Pinney group employing the same substrates includes the aryl ring migration to the 2-position however this was not confirmed by X-ray crystallographic diffraction analysis and further studies are now underway to determine the structural evidence for the previously observed aryl ring migration.

Scheme 5.4. Synthesis of benzo[*b*]thiophene 14.

Materials and Methods

General Section

CH₂Cl₂, THF, EtOH, and Et₂O were used in their anhydrous forms as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using

nitrogen gas, unless specified otherwise. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system (Biotage Isolera 1 or 4) using silica gel (200-400 mesh, 60 Å) prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz), ¹³C NMR (125 MHz), and DEPT ¹³C NMR (125 MHz) spectroscopic data using a Varian VNMRS 500 MHz instrument. Spectra were recorded in CDCl₃. All of the chemical shifts are expressed in ppm (δ), coupling constants (*J*) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), double doublet (dd), doublet of quartets (dq), quartet (q), and multiplet (m).

3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde 2

To a clean dry round bottom flask 3-hydroxy-4-methoxybenaldehyde 1 (25.0 g, 164 mmol) was dissolved in CH_2Cl_2 (250 mL). The solution was cooled to 0 °C and Et_3N (25.2 mL, 181 mmol) was added followed by the addition of *N*,*N*-dimethylaminopyridine (DMAP) (2.01 g, 16.4 mmol). The reaction mixture was stirred for 10 min and *tert*-butyldimethylsilyl chloride (TBSCl) (27.3 g, 181 mmol) was added gradually. The solution was allowed to warm to room temperature and was stirred for 12 hrs. The reaction was diluted with water (150 mL), transferred to a separatory funnel, and was extracted with CH_2Cl_2 . The organic extracts were combined, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The TBS benzaldehyde product 2 (47.1 g, 177 mmol) was isolated quantitatively as a yellow oil and was taken to the next step without further purification.

¹H NMR (CDCl₃, 500 MHz): δ 9.80 (s, 1H, CHO), 7.45 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H, ArH), 7.35 (d, J = 2.0 Hz, 1H, ArH), 6.93 (d, J = 8.5 Hz, 1H, ArH), 3.87 (s, 3H, OCH₃), 0.99 (s, 9H, C(CH₃)₃), 0.16 (s, 6H, Si(CH₃)₂).
¹³C NMR (CDCl₃, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 55.1, 25.3, 18.0, -5.0.

3-tert-Butyldimethylsilyloxy-1-(1'-hydroxyethyl)-4-methoxybenzene 3

To a solution of magnesium turnings (0.40 g, 16.7 mmol) in diethyl ether (Et₂O) was added ¹³C-labeled methyl iodide (1.00 mL, 16.0 mmol). The solution was refluxed until the turnings were dissolved. The solution was cooled to room temperature and TBS benzaldehyde **2** (1.94 g, 7.28 mmol) in Et₂O was added drop wise. The reaction mixture was stirred for 5 hours. Upon completion the reaction mixture was slowly quenched with water and extracted with Et₂O. The organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure resulting in ¹³C-labeled alcohol **3** (1.57 g, 5.54 mmol, 76%, R_f = 0.47 (70:30 hexanes:EtOAc)) as a yellow oil which was taken to the next step without further purification.

¹**H NMR** (CDCl₃, 500 MHz): δ 6.85 (m, 2H, Ar<u>H</u>), 6.76 (m, 1H, Ar<u>H</u>), 4.70 (dq, *J* = 1.5 Hz, 6.5 Hz, 1H, C<u>H</u>), 3.75 (s, 3H, OC<u>H</u>₃), 2.75 (s, 1H, O<u>H</u>), 1.39 (dd, *J* = 6.5 Hz, *J*_{*C*-*H*} = 126.4 Hz, 3H, C<u>H</u>₃), 1.01 (s, 9H, (C<u>H</u>₃)₃), 0.16 (s, 6H, Si(C<u>H</u>₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 150.1, 144.8, 138.9, 118.5 (d, *J* = 1.8 Hz), 118.3 (d, *J* = 1.6 Hz), 111.9, 69.6 (d, 38.4 Hz), 55.5, 25.7, **25.0**, 18.4, -4.6.

3-tert-Butyldimethylsilylox)-4-methoxyacetophenone 4

The crude alcohol **3** (1.50 g, 5.29 mmol) was dissolved in CH_2Cl_2 (50 mL). Celite (5 g) was added and the solution was cooled to 0 °C. Pyridiniumchlorochromate (PCC) (1.25 g, 5.82 mmol) was added in small increments allowing 10 minutes of stirring between each addition. The reaction was allowed to warm to room temperature and stirred for 12 hrs. The reaction mixture was filtered through a 50/50 mixture of silica gel/celite rinsing well with CH_2Cl_2 . The filtrate was concentrated under reduced pressure providing the desired ¹³C-labeled acetophenone **4** (1.30 g, 4.62 mmol, 87%) as a pale yellow solid.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.51 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H, Ar<u>H</u>), 7.43 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.81 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.80 (s, 3H, OC<u>H</u>₃), 2.46 (d, $J_{C-H} = 127.2$ Hz, 3H, C<u>H</u>₃), 0.96 (s, 9H, C(C<u>H</u>₃)₃), 0.12 (s, 6H, Si(C<u>H</u>₃)₂). ¹³**C NMR** (CDCl₃, 125 MHz): δ 196.2 (d, J = 42.5 Hz), 155.1, 144.7, 130.4 (d, J = 13.8 Hz), 123.4, 120.1, 110.6, 55.2, **26.0**, 25.5, 18.2, -4.8.

1-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1-trimethylsilylethene 5

To a solution of diisopropylamine (0.9 mL, 6.39 mmol) in THF (50 mL) at 0 °C was added *n*-butyllithium (2.56 mL, 6.39 mmol) drop wise. The LDA solution was allowed to stir for 15 and a solution of TBS acetophenone **4** (1.20 g, 4.26 mmol) in THF (5 mL) was added drop wise. The solution was stirred for 10 min and TMSCl (0.81 mL, 6.39 mmol) was added drop wise and the reaction was allowed to warm to room temperature. The solution was stirred for 12 hrs and was quenched using 10% NaHCO₃ (100 mL). The reaction mixture was extracted with Et₂O, dried over Na₂SO₄, and concentrated under reduced pressure resulting in ¹³C-labeled TMS enol ether **5** (1.55 g,

4.39 mmol) quantitatively as a dark yellow oil which was taken to the next step without purification.

¹**HNMR** (CDCl₃, 500 MHz): δ 7.23 (dd, J = 8.5 Hz, J = 2.0 Hz, 1H Ar<u>H</u>), 7.18 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.82 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 4.83 (dd, J = 1.5 Hz, $J_{C-H} = 159.5$ Hz, 1H, C<u>H</u>₂), 4.38 (dd, J = 1.5 Hz, $J_{C-H} = 159.0$ Hz, 1H, C<u>H</u>₂), 3.83 (s, 3H, OC<u>H</u>₃), 1.08 (s, 9H, C(C<u>H</u>₃)₃), 0.32 (s, 9H, Si(C<u>H</u>₃)₃), 0.23 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 155.4 (d, J = 82.0 Hz), 151.3, 144.6, 130.8 (d, J = 6.9 Hz), 118.9 (d, J = 2.4 Hz), 118.2 (d, J = 2.3 Hz), 111.3 (d, J = 42.6 Hz), **89.6**, 55.5, 25.9, 18.6, 0.2, -4.5.

3'-(tert-Butyldimethylsilyloxy)-4'-methoxy-2-bromoacetophenone 6

A solution of crude **5** (1.56 g, 4.39 mmol) in CH₂Cl₂ (50 mL) and K₂CO₃ (0.03 g, 0.19 mmol) was cooled to 0° C. Bromine (0.14 mL, 2.6 mmol) was added drop wise and the solution was allowed to stir for 30 minutes. The reaction was quenched with10 % sodium thiosulfate solution, transferred to separatory funnel, and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was subjected to flash chromatography using a prepacked 50 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 5%A / 95%B (4 CV), 5%A / 95%B \rightarrow 10%A / 90%B (12 CV), 45%A / 55%B (3.7 CV); flow rate, 40 mL/min; monitored at 254 and 280 nm] to yield ¹³C-labeled bromoacetophenone **6** as a tan solid (0.36 g, 1.01 mmol, 23%, R_f = 0.29 (80:20 hexanes:EtOAc)).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.61 (dd, J = 2.5 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 7.48 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.89 (d, J = 9.0 Hz, 1H, Ar<u>H</u>), 4.37 (d, $J_{C\cdot H}$ = 151.2 Hz, 2H, C<u>H</u>₂), 3.88 (s, 3H, OC<u>H</u>₃), 1.00 (s, 9H, C(C<u>H</u>₃)₃), 0.17 (s, 6H, Si(C<u>H</u>₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 190.0 (d, *J* = 48.5 Hz), 156.2, 145.2, 127.2 (d, *J* = 17.3 Hz), 124.4, 121.2, 111.1, 55.7, **30.8**, 25.6, 18.6, -4.6.

2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6-methoxyindole 8

A solution of *m*-anisidine (0.24 mL, 2.10 mmol) was dissolved in N,Ndimethylaniline (20 mL) and was heated to reflux at 170° C. A solution of **6** (0.23 g, 0.64 mmol) in EtOAc (5 mL) was added drop wise. The reaction mixture was stirred at 170° C for 12 hours. The reaction mixture was allowed to cool to room temperature and was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 12%A / 88%B (4 CV), 12%A / 88%B \rightarrow 100%A / 0%B (10 CV), 100%A / 0%B (2.6 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm] resulted in the desired ¹³Clabeled phenylindole **8** (R_f = 0.48 (50:50 hexanes:EtOAc)) as a light tan solid.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.13 (br s, 1H, N<u>H</u>), 7.47 (dd, *J* = 2.5 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 7.15 (m, 2H, Ar<u>H</u>), 6.89 (m, 2H, Ar<u>H</u>), 6.79 (dd, *J* = 2.5 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 6.79-6.44 (d, *J* = 1.5 Hz, *J*_{*C*-*H*} = 171 Hz 1H, Ar<u>H</u>), 3.86 (s, 3H, OC<u>H</u>₃), 3.84 (s, 3H, OC<u>H</u>₃), 1.04 (s, 9H, C(C<u>H</u>₃)₃), 0.21 (s, 6H, Si(C<u>H</u>₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 98.3.

1-(3-(((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-2-(3-methoxyphenoxy)ethanone 10

To a solution of KOH (0.02 g, 0.28 mmol) in EtOH:H₂O (2.5:1) (2 mL) at 5 °C was added ¹³C-labeled bromoacetonphenone **6** (0.10 g, 0.28 mmol) drop wise. The reaction mixture was allowed to warm to room temperature over 12 h. The reaction

mixture was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 2%A / 98%B (4 CV), 2%A / 98%B \rightarrow 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm] resulted in the desired ¹³C-labeled ether **10** (R_f = 0.31 (90:10 hexanes:EtOAc)) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.64 (dd, *J* = 2.0 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 7.52 (d, *J* = 2.0 Hz, 2H, Ar<u>H</u>), 7.17 (m, 1H, Ar<u>H</u>), 6.89 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 6.53 (m, 3H, Ar<u>H</u>), 5.17 (d, *J_{C-H}* = 143.5 Hz), 3.88 (s, 3H, OC<u>H₃</u>), 3.77 (s, 3H, OC<u>H₃</u>), 1.00 (s, 9H, C(C<u>H₃</u>)₃), 0.17

 $(s, 6H, Si(C\underline{H}_3)_2).$

¹³C NMR (CDCl₃, 125 MHz): δ 193.0 (d, *J* = 44.8 Hz), 160.9, 159.4, 156.1, 145.2, 130.1, 127.9 (d, *J* = 15.9 Hz), 123.4, 120.5, 111.1, 107.3, 106.7 (d, *J* = 3.6 Hz), 101.6 (d, *J* = 3.6 Hz), **70.8**, 55.6, 55.4, 25.8, 18.6, -4.5.

2-methoxy-5-(6-methoxybenzofuran-3-yl)phenol 11

¹³C-labeled ether intermediate **10** (0.06 g, 0.15 mmol) was added to PPA (0.38 g, 0.93 mmol) and the reaction was heated to 50 °C. The reaction was stirred for 12 h and cooled to room temperature. The reaction mixture was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 7%A / 93%B (4 CV), 7%A / 93%B \rightarrow 60%A / 40%B (10 CV), 60%A / 40%B (5.2 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm] resulted in the desired ¹³C-labeled benzo[*b*]furan **11** (R_f = 0.53 (70:30 hexanes:EtOAc)) as a yellow oil.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.64 (d, $J_{C\cdot H}$ = 201.0 Hz, 1H, Ar<u>H</u>), 7.64 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 7.46 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 7.30 (s, 1H, Ar<u>H</u>), 7.06 (m, 2H, Ar<u>H</u>), 6.93 (d, J = 8.0 Hz), 3.89 (s, 3H, OC<u>H</u>₃), 3.78 (s, 3H, OC<u>H</u>₃).

¹³C NMR (CDCl₃, 125 MHz): δ **140.1**.

1-(3-(((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-2-(3-methoxyphenyl)thio)ethanone 13

To a solution of KOH (0.02 g, 0.28 mmol) in EtOH:H₂O (2.5:1) (2 mL) at 5 °C was added 13 C-labeled bromoacetonphenone 6 (0.10 g, 0.28 mmol) drop wise. The reaction mixture was allowed to warm to room temperature over 12 h. The reaction mixture was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 2%A / 98%B (4 CV), $2\%A / 98\%B \rightarrow 20\%A / 80\%B (10 \text{ CV})$, 20%A/ 80%B (2 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm] resulted in the desired ¹³C-labeled thio-ether **13** ($R_f = 0.34$ (90:10 hexanes:EtOAc)) as a colorless oil. ¹**H NMR** (CDCl₃, 500 MHz): δ 7.57 (dd, J = 2.5 Hz, 8.5 Hz, 1H, ArH), 7.47 (d, J = 2.0Hz, 1H, ArH), 7.18 (m, 1H, ArH), 6.96 (m, 1H, ArH), 6.94 (ddd, J = 1.0 Hz, 1.5 Hz, 8.0 Hz, 1H, Ar<u>H</u>), 6.74 (ddd, J = 1.0 Hz, 2.5 Hz, 8.0 Hz, 1H, Ar<u>H</u>), 4.22 (d, $J_{CH} = 139.5$ Hz), 3.87 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 1.00 (s, 9H, C(CH₃)₃), 0.16 (s, 6H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz): δ 192.8 (d, J = 42.3 Hz), 159.9, 155.8, 145.1, 136.6, 129.3, 128.7 (d, J = 15.3 Hz), 124.0, 122.1 (d, J = 2.5 Hz), 121.0, 115.2 (d, J = 2.5 Hz), 112.8, 111.0, 55.6, 55.4, **40.6**, 25.8, 18.6, -4.5.

2-methoxy-5-(6-methoxybenzo[b]thiophen-3-yl)phenol 14

¹³C-labeled thio-ether intermediate **13** (0.02 g, 0.06 mmol) was added to PPA (0.15 g, 0.37 mmol) and the reaction was heated to 50 °C. The reaction was stirred for 12 h and cooled to room temperature. The reaction mixture was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 2%A / 98%B (4 CV), 2%A / 98%B \rightarrow 20%A / 60%B (10 CV), 20%A / 60%B (4 CV); flow rate, 25 mL/min; monitored at 254 and 280 nm] resulted in the desired ¹³C-labeled benzo[*b*]thiophene **14** (R_f = 0.61 (90:10 hexanes:EtOAc)) as a colorless oil.

¹H NMR (CDCl₃, 500 MHz): δ 7.80 (d, J = 9.0 Hz, 1H, ArH), 7.36 (d, J = 2.5 Hz, 1H, ArH), 7.34-6.97 (d, J_{C-H} = 195.5 Hz, 1H, ArH), 7.16 (d, J = 2.0 Hz, 1H, ArH), 7.07 (dd, J = 2.0 Hz, 8.0 Hz, 1H, ArH), 7.01 (dd, J = 2.5 Hz, 9.0 Hz, 1H, ArH), 6.95 (d, J = 8.0 Hz, 1H, ArH), 5.69 (s, 1H, OH), 3.96 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃).
¹³C NMR (CDCl₃, 125 MHz): δ 120.2.

C INFIN (CDCI₃, 125 WITE): 0 120.2.

CHAPTER SIX

Conclusions

Functionalized indole ring systems have a rich history as either the pharmacophore itself or a key molecular component of numerous drugs and drug candidates. A significant portion of the studies described herein involve small-molecule anticancer agents that feature indole-based molecular templates. For example, a scale up synthesis of the lead indole-based vascular disrupting agent (VDA) **OXi8006** and its corresponding water-soluble phosphate prodrug salt **OXi8007** was achieved in order to supply sufficient quantities of each of these compounds for further biological evaluation, including color doppler ultrasound to assess blood-flow disruption in real time using a mouse model (collaboration with Ralph Mason, University of Texas Southwestern Medical Center).

In addition, a small library of **OXi8006** analogues was synthesized in which functional group modifications were explored at the 2-aryl position, the 3-aroyl position, and within the indole core. These analogues provide a foundation for advancing our understanding of salient structure-activity relationship (SAR) consideration with respect to 2-aryl-3-aroyl indole-based VDAs and related anticancer agents.

In an effort to target tumor hypoxia for selective drug delivery and release, three **OXi8006** bioreductively activatable prodrug conjugates (BAPCs) were prepared by chemical synthesis in which the ether bridge between the nitrophenyl trigger and the parent VDA, **OXi8006**, was functionalized to incorporate *nor*-methyl, mono-methyl, and *gem*-dimethyl substitution patterns.

Finally, an isotopic labeling strategy was used to explore the mechanistic pathway of the Bischler-Mohlau indole reaction. A similar method was also applied to the formation of benzo[*b*]thiophenes and benzo[*b*]furans. Key ¹³C NMR signatures of the final products provided insight into the mechanistic pathways of indole formation via the Bischler-Mohlau reaction as well as formation of benzo[*b*]thiophene and benzo[*b*]furan derivatives.

APPENDICES

APPENDIX A

Indole-based Vascular Disrupting Agents

This appendix represents a comprehensive literature review of indole-based tubulin binding agents from 2007 to present. It is organized by publication with the structures of each derivative from each publication depicted in addition to the corresponding biological data. Each publication also depicts the structures and biological data of the standards for which the indolebased analogues are compared to.

3-Substitued indoles: One-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities

V. Kameshwara Rao, Bhupender S. Chhikara, Amir Nasrolahi Shirazi, Rakesh Tiwari, Keykavous Parang, Anil Kumar

Bioorganic & Medicinal Chemistry Letters 21 (2011) 3511-3514

4- and 5-Aroylindoles as Novel Classes of Potent Antitubulin Agents

Jing-Ping Liou, Chang-Ying Wu, Hsing-Pang Hsieh, Chi-Yen Chang, Chi-Ming Chen, Ching-Chuan Kuo, and Jang-Yang Chang

J. Med. Chem. 2007, 50, 4548-4552

KB-vin10: MDR-positive

KB: >10,000 KB-vin10: >10,000 H460: > 10,000 HT29: 9600 ± 510 TSGH: 8400 ± 350 MKN45: 5200 ± 420

KB: 2900 <u>+</u> 150 KB-vin10: 2800 ± 120 H460: 2100 ± 250 HT29: 1700 ± 280 TSGH: 1800 ± 320 MKN45: 1500 ± 80

KB: 1600 <u>+</u> 110 KB-vin10: 1500 + 70 H460: 1700 + 70 HT29: 1000 ± 120 TSGH: 1100 ± 130 MKN45: 980 ± 90

KB: 50.7 + 8 KB-vin10: 51.4 ± 2 H460: 53.8 ± 7 HT29: 46.4 + 4 TSGH: 54.4 ± 6 MKN45: 49.1 ± 8 Tubulin: 2.0 ± 0.2 μM

KB: 104 ± 15

H₃CO

KB-vin10: 111 ± 6 H460: 112 ± 12 HT29: 100 ± 7 TSGH: 103 ± 8 MKN45: 88 ± 11

Tubulin: 2.2 ± 0.3 μM

KB: 510 ± 21 KB-vin10: 452 ± 8 H460: 520 ± 120 HT29: 330 ± 18 TSGH: 430 ± 31 MKN45: 480 ± 22

KB: 310 ± 25 KB-vin10: 284 ± 12 H460: 295 ± 19 HT29: 250 <u>+</u> 24 TSGH: 310 ± 18 MKN45: 210 ± 11

KB: 22.1 ± 6 KB-vin10: 26.1 ± 2 H460: 28.8 <u>+</u> 3 HT29: 22.4 ± 4 TSGH: 26.9 ± 3 MKN45: 21.6 ± 4

Tubulin: 1.9 ± 0.2 μM

9-Benzylidene-naphtho[2,3-b]thiophen-4-ones as Novel Antimicrotubule AgentssSynthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization

Anne Zuse, Peter Schmidt, Silke Baasner, Konrad J. Bohm, Klaus Muller, Matthias Gerlach, Eckhard G. Gunther, Eberhard Unger, and Helge Prinz

J. Med. Chem. 2006, 49, 7816-7825

K562: 0.72 ITP: 2.80

K562: 0.25 ITP: nd

K562: 0.24 ITP: nd

A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1á mediated signaling

Ming-Chu Hsieh, Wan-Ping Hu, Hsin-Su Yu, Wen-Chuan Wu, Long-Sen Chang, Ying Hsien Kao, Jeh-Jeng Wang

Toxicology and Applied Pharmacology 255 (2011) 150–159

Effect of DC-81 and IN4CPBD on cell cycle distribution of A375 melanoma cells a. Groups (dose) % G1/G0 % S % G2/M Control 67.4±1.0 b 18.9±3.9 13.7±3.0 DC-81 (5 iM) 69.4±1.5 13.5±0.9. 17.1±0.6 IN4CPBD (0.1 iM) 81.0±1.0. 11.6±1.6. 7.4±1.2. IN4CPBD (0.5 iM) 74.5±1.9. 14.7±0.4. 10.9±1.8 a Human A375 melanoma cells were treated with DC-81 or its indole conjugate, cycle analysis by using flow cytometer. b Values are represented as mean±SD. . Pb0.05 (n=3) compared to control.
Antiangiogenic Effects of Indole-3-Carbinol and 3,3-DiindolyImethane Are Associated with Their Differential Regulation of ERK1/2 and Akt in Tube-Forming HUVEC

Kazuhiro Kunimasa, Tomomi Kobayashi, Kazuhiko Kaji, and Toshiro Ohta

J. Nutr. 140: 1–6, 2010

HUVEC tube area: 31 <u>+</u> 1 % apoptosis: 15 <u>+</u> 2 %

ĥ т

indole-3-carbinol (I3C)

tube area: 12.5 μM: 24 <u>+</u> 2 25 μM: 21 <u>+</u> 1 apoptosis: 12.5 μM: 19 <u>+</u> 3 25 μM: 22 <u>+</u> 2

Т

3,3'-diindolylmethane (DIM)

tube area: 12.5 μM: 14 <u>+</u> 4 25 μM: 10 <u>+</u> 2 apoptosis: 12.5 μM: 30 <u>+</u> 3 25 μM: 40 <u>+</u> 3

Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structure-Activity Relationships and Molecular Modeling Studies

Giuseppe La Regina, Michael C. Edler, Andrea Brancale, Sahar Kandil, Antonio Coluccia, Francesco Piscitelli, Ernest Hamel, Gabriella De Martino, Ruth Matesanz, Jose Fernando Diaz, Anna Ivana Scovassi, Ennio Prosperi, Antonio Lavecchia, Ettore Novellino, Marino Artico, and Romano Silvestri

134

Arylthioindoles, Potent Inhibitors of Tubulin Polymerization

Gabriella De Martino, Giuseppe La Regina, Antonio Coluccia, Michael C. Edler, Maria Chiara Barbera, Andrea Brancale, Elizabeth Wilcox, Ernest Hamel, Marino Artico, and Romano Silvestri

J. Med. Chem. 2004, 47, 6120-6123

BPR0L075, a Novel Synthetic Indole Compound with Antimitotic Activity in Human Cancer Cells, Exerts Effective Antitumoral Activity in Vivo

Ching-Chuan Kuo, Hsing-Pang Hsieh, Wen-Yu Pan, Ching-Ping Chen, Jing-Ping Liou, Shiow-Ju Lee, Yi-Ling Chang, Li-Tzong Chen, Chiung-Tong Chen, and Jang-Yang Chang

CANCER RESEARCH 64, 4621-4628, July 1, 2004

paclitaxel

Growth inhibition IC₅₀ - nM

KB: human cervical KB-VIN10 (P-gp170/MDR): KB-TAX50 (P-gp170/MDR):

KB-7D (MRP):

KB: 4.1 <u>+</u> 1.6 KB-VIN10 (P-gp170/MDR): 16500 <u>+</u> 707 KB-TAX50 (P-gp170/MDR): 130 <u>+</u> 6.9 KB-7D (MRP): 7.9 <u>+</u> 0.5

vincristine

KB: 0.6 <u>+</u> 0.2 KB-VIN10 (P-gp170/MDR): 90 <u>+</u> 7.4 KB-TAX50 (P-gp170/MDR): 1.8 <u>+</u> 0.5 KB-7D (MRP): 1.2 <u>+</u> 0.4

colchicine

KB: 10.5 ± 2.2 KB-VIN10 (P-gp170/MDR): 115 ± 7.2 KB-TAX50 (P-gp170/MDR): 31.9 ± 2.4 KB-7D (MRP): 55.2 ± 7.8

P-gp170/MDR and MRP: overexpression of efflux pump

BPR0L075

KB: 3.6 ± 1.8 KB-VIN10 (P-gp170/MDR): 2.9 ± 1.5 KB-TAX50 (P-gp170/MDR): 3.1 ± 0.3 KB-7D (MRP): 4.2 ± 1.9

COMPARATIVE MOLECULAR FIELD ANALYSIS OF ANTI-TUBULIN AGENTS WITH INDOLE RING BINDING AT THE COLCHICINE BINDING SITE

I-HUNG LIN, CHENG-CHANG HSU, SHIH-HONG WANG, HSING-PANG HSIEH, and YING-CHIEH SUN

Journal of Theoretical and Computational Chemistry Vol. 9, No. 1 (2010) 279-291

Concise Synthesis and Structure-Activity Relationships of Combretastatin A-4 Analogues, 1-Aroylindoles and 3-Aroylindoles, as Novel Classes of Potent Antitubulin Agents

Jing-Ping Liou, Yi-Ling Chang, Fu-Ming Kuo, Chun-Wei Chang, Huan-Yi Tseng, Chiung-Chiu Wang, Yung-Ning Yang, Jang-Yang Chang, Shiow-Ju Lee, and Hsing-Pang Hsieh

J. Med. Chem. 2004, 47, 4247-4257 OCH₃ H₃CO H₃CO NUGC3: stomach MKN45: stomach H₃CO **MESSA: uterine** H₃CO

Cells: nM Tubulin: μM

NUGC3: 42 ± 5 MKN45: 111 ± 54 MESSA: 160 ± 93 A549: 596 ± 294 MCF-7: 50 ± 18

MKN45: 3 ± 2 MESSA: 4 ± 1 A549: 6 ± 2 MCF-7: 0.9 ± 0.1 Tubulin: 0.90 ± 0.10

A549: >10,000 MCF-7: >10,000

NUGC3: >10,000

MKN45: 1 ± 0 MESSA: 24 ± 9

A549: 23 ± 7

MCF-7: 20 ± 8

Tubulin: 2.69 ± 0.43

NUGC3: >10,000 MKN45: 3939 <u>+</u> 689 MESSA: 8064 <u>+</u> 2037 A549: 8562 <u>+</u> 2491 MCF-7: >10,000

NUGC3: 2 ± 2 MKN45: 38 ± 4 MESSA: 50 ± 13 A549: 52 ± 14 MCF-7: 6 ± 0

NUGC3: >10,000 MKN45: 3924 <u>+</u> 1219 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: >10,000 MKN45: 3615 <u>+</u> 859 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: >10,000 MKN45: 4074 <u>+</u> 1100 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: >10,000 MKN45: >10,000 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: >10,000 MKN45: 5050 ± 1709 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: >10,000 MKN45: >10,000 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

NUGC3: 75 ± 17 MKN45: 39 ± 40 MESSA: 102 ± 72 A549: 62 ± 25 MCF-7: 28 ± 28 Tubulin: 3.31 ± 0.09

NUGC3: >10,000 MKN45: 432 ± 101 MESSA: >10,000 A549: 7533 ± 2932 MCF-7: 7908 ± 1087

NUGC3: 9625 <u>+</u> 867 MKN45: 4488 <u>+</u> 528 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

n

NUGC3: >10,000

MKN45: >10,000

MESSA: >10,000

A549: >10,000

MCF-7: >10,000

H₃CO.

NUGC3: >10,000 MKN45: >10,000 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

н₃со́

NUGC3: >10,000 MKN45: >10,000 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

H₃CO.

NUGC3: >10,000 MKN45: 7610 <u>+</u> 2368 MESSA: >10,000 A549: >10,000 MCF-7: >10,000

H₃CO H₃CO H₃CO осн₃

NUGC3: 2907 ± 185 MKN45: 649 ± 128 MESSA: 9297 ± 1217 A549: 9212 ± 1365 MCF-7: 8723 ± 2212

D-24851, a Novel Synthetic Microtubule Inhibitor, Exerts Curative Antitumoral Activity *in Vivo*, Shows Efficacy toward Multidrug-resistant Tumor Cells, and Lacks Neurotoxicity

Gerald Bacher, Bernd Nickel, Peter Emig, Udo Vanhoefer, Siegfried Seeber, Alexei Shandra, Thomas Klenner, and Thomas Beckers

CANCER RESEARCH 61, 392-399, January 1, 2001

SKOV3: 0.036 KB/HeLa: 0.115 HT 29: 0.072 A549: 0.164 PC-3: 0.064 DU145: 0.148 AsPC-1: 0.285 C6: 0.200 U 87: 0.077 MDA-MB 231: 0.074 L1210: 0.089 MDR1 L1210: 0.089 L1210/VCR: 0.080 MDR1 LT12: 0.035 LT12/mdr: 0.042 MDR1 MCF-7: 0.057 MCF-7/adr: 0.083 MDR1 A2780: 0.026 A2780/Dx5: 0.041 MRP HT1080: 0.031 HT1080/DR4: 0.030 Cisplatin A2780: 0.026 A2790/CP2: 0.048 5-FU HT29: 0.059 Bolus HT29-R1: 0.057 Continous HT29-R24: 0.065 Raltitrexed HT29/ICID: 0.064 Topoisomerase-I HT29/SN38: 0.070 Topoisomerase-I HCT-8: 0.037 HCT-8/SN38: 0.037

Eur. J. Org. Chem. 2001, 384323847

Martin Knaack, Peter Emig, Jan W. Bats, Michael Kiesel, Arndt Müller, and Eckhard Günther

Synthesis and Characterization of the Biologically Active 2-[1-(4-Chlorobenzyl)-1H-indol-3-yl]-2-oxo-N-pyridin-4-yl Acetamide

For synthesis see:

Bolus HT29-R1: Continous HT29-R24: Ratitrexed HT29/ICID: Topoisomerase-I HT29/SN38: Topoisomerase-I HCT-8: (parental) HCT-8/SN38: Cisplatin A2780: (parental) A2790/CP2: 5-FU HT29: (parental) growth inibition constant rF- μM different resistance phenotypes MDR1 L1210: (parental) L1210/VCR: MDR1 L112: (parental) L112: (parental) MDR1 MDR1 MCF-7: (parental) MCF-7: (parental) A2780: (parental) MRP HT1080: (parental) HT1080/DR4: 0.005

> C6: rat brain U 87: human brain MDA-MB 231: human breast L1210: mouse leukemia A549: human lung PC-3: human prostate DU145: human prostate AsPC-1: human pacreas SKOV3: human ovary KB/HeLa: human cervix HT 29: human colon

growth inhibition IC $_{50}$ - μM

Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability

Giuseppe La Regina, Ruoli Bai, Willeke Rensen, Antonio Coluccia, Francesco Piscitelli, Valerio Gatti, Alessio Bolognesi, Antonio Lavecchia, Ilaria Granata, Amalia Porta, Bruno Maresca, Alessandra Soriani, Maria Luisa Iannitto, Marisa Mariani,> Angela Santoni,, Andrea Brancale, Cristiano Ferlini, Giulio Dondio, Mario Varasi, Ciro Mercurio, Ernest Hamel, Patrizia Lavia, Ettore Novellino, and Romano Silvestri

J. Med. Chem. 2011, 54, 8394-8406

OVCAR-8: ovarian tumor cell line NCI/ADR-RES: DOX-resistant cell line derived from OVCAR-8

HAOSMC: human aortic smooth muscle cells

A10: rat embryonic aortic smooth muscle cells

PtK2: Potorous tridactylis kidney epithelial cells HUVEC: human umbilical vein endothelial cells

Tubulin: $1.2 \pm 0.2 \mu$ M MCF-7: 20 ± 0 nM HeLa: $0.4 \pm 0.02 \mu$ M PC3: $0.5 \pm 0.1 \mu$ M HT-29: $0.1 \pm 0.03 \mu$ M A549: $0.08 \pm 0.02 \mu$ M A2780wt: 21.5 ± 1.2 nM A2780-CIS: 6.3 ± 1.8 nM OVCAR-3: 81 ± 21 nM OVCAR-8: 70 ± 30 nM NCI/ADR-RES: 25 ± 7 nM HAOSMC: 33 ± 10 nM A10: 40 ± 30 nM PtK2: 60 ± 0 nM HUVEC: 30 ± 0 nM

Tubulin: $1.1 \pm 0.1 \mu M$ MCF-7: $36 \pm 6 nM$ HeLa: $0.07 \pm 0.004 \mu M$ PC3: $0.1 \pm 0.08 \mu M$ HT-29: $0.08 \pm 0.01 \mu M$ A549: $0.08 \pm 0.01 \mu M$ A2780wt: $30.5 \pm 0.7 nM$ A2780wt: $30.5 \pm 0.7 nM$ A2780ct: $29.3 \pm 3.2 nM$ OVCAR-3: $117 \pm 18 nM$ OVCAR-8: $20 \pm 10 nM$ NCI/ADR-RES: $15 \pm 7 nM$

OCH₃

H₃CO

H₃CO

 $\begin{array}{l} \text{Tubulin: } 0.98 \pm 0.08 \ \mu\text{M} \\ \text{MCF-7: } 58 \pm 4 \ n\text{M} \\ \text{HeLa: } 0.4 \pm 0.02 \ \mu\text{M} \\ \text{PC3: } 0.8 \pm 0.08 \ \mu\text{M} \\ \text{HT-29: } 0.4 \pm 0.02 \ \mu\text{M} \\ \text{A549: } 0.3 \pm 0.09 \ \mu\text{M} \end{array}$

Tubulin: 1.0 <u>+</u> 0.1 μM MCF-7: 45 <u>+</u> 4 nM

H₃CO

Tubulin: $0.74 \pm 0.05 \mu$ M MCF-7: $39 \pm 10 n$ M HeLa: $0.09 \pm 0.002 \mu$ M PC3: $0.2 \pm 0.05 \mu$ M HT-29: $0.15 \pm 0.03 \mu$ M A549: $0.09 \pm 0.02 \mu$ M OVCAR-8: $45 \pm 20 n$ M NCI/ADR-RES: $25 \pm 7 n$ M H Tubulin: $1.9 \pm 0.2 \mu$ M MCF-7: 200 nM HeLa: $1 \pm 0.03 \mu$ M PC3: $2 \pm 0.1 \mu$ M HT-29: $1 \pm 0.05 \mu$ M A549: $2 \pm 0.08 \mu$ M HAOSMC: 250 ± 90 nM A10: 150 ± 90 nM PtK2: 300 ± 0 nM HUVEC: 180 ± 40 nM

o

OCH₃

OCH₃

 Tubulin: 2.9 ± 0.1 μM
 Tu

 MCF-7: 40 ± 2 nM
 M

Tubulin: 1.1 ± 0.05 μM MCF-7: 18 ± 6 nM H₃CO H₃CO

Tubulin: 0.91 <u>+</u> 0.2 μM MCF-7: 60 <u>+</u> 20 nM Tubulin: 1.0 <u>+</u> 0.1 μM MCF-7: 33 <u>+</u> 5 nM

Discovery and SAR of indole-2-carboxylic acid benzylidenehydrazides as a new series of potent apoptosis inducers using a cellbased HTS assay

Han-Zhong Zhang, John Drewe, Ben Tseng, Shailaja Kasibhatla and Sui Xiong Cai Bioorganic & Medicinal Chemistry 12 (2004) 3649–3655

screening hit (commerical)

CH₃ CI O N NO₂ Ъ н

T47D: 2.2 <u>+</u> 0.2 H-1299: 1.4 <u>+</u> 0.14 DLD: 2.0 <u>+</u> 0.3

CH₃ CI Ĥ H CI

T47D: 2.5 <u>+</u> 0.07 H-1299: 2.0 <u>+</u> 0.4 DLD: 1.5 <u>+</u> 0.07

T47D: >10 H-1299: >10 DLD: >10

CH₃ CI N н H.

T47D: 4.0 <u>+</u> 0.4 H-1299: 3.5 <u>+</u> 0.3 DLD: 4.3 <u>+</u> 0.5

CH₃ СІ OCH₃ Ĥ н

T47D: 2.4 <u>+</u> 0.3 H-1299: 0.98 <u>+</u> 0.3 DLD: 2.7 <u>+</u> 0.09

T47D: >10 H-1299: >10 DLD: >10

CI NO₂ H. н

T47D: 5.8 <u>+</u> 0.4 H-1299: 4.9 <u>+</u> 0.4 DLD: >10

T47D: 2.1 <u>+</u> 0.4 H-1299: 2.6 <u>+</u> 0.07 DLD: 2.7 <u>+</u> 0.1

T47D: 0.1 ± 0.03 H-1299: 0.5 ± 0.07 DLD: 0.4 ± 0.1

T47D: 1.04 <u>+</u> 0.1 H-1299: 0.7 <u>+</u> 0.1 DLD: 0.7 <u>+</u> 0.4

T47D: 0.2 <u>+</u> 0.03 H-1299: 0.2 <u>+</u> 0.03 DLD: 0.4 <u>+</u> 0.07

T47D: 1.3 <u>+</u> 0.1 H-1299: 2.8 <u>+</u> 0.4 DLD: 1.6 <u>+</u> 0.2

СІ 0 N 'n н́ -NO₂

T47D: 0.1 <u>+</u> 0.06 H-1299: 0.2 <u>+</u> 0.07 DLD: 0.6 <u>+</u> 0.1

T47D: >10 H-1299: >10 DLD: >10

ÇH₃ H₃C ĥН CI

T47D: 0.5 <u>+</u> 0.08 H-1299: 1.5 <u>+</u> 0.1 DLD: 2.2 <u>+</u> 0.5

Discovery of 4-Amino and 4-Hydroxy-1-aroylindoles as Potent Tubulin Polymerization Inhibitors

Jing-Ping Liou, Zi-Yi Wu, Ching-Chuan Kuo, Chi-Yen Chang, Pei-Yi Lu, Chi-Ming Chen, Hsing-Pang Hsieh, and Jang-Yang Chang

H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

KB: 89 ± 2.9 H460: 98 ± 1 MKN45: 53 ± 1.4 KB-vin10: 84 ± 11 tubulin: 2.6 ± 0.3

KB: 596 <u>±</u> 123 H460: 652 <u>±</u> 32 MKN45: 395 <u>±</u> 51 KB-vin10: 586 <u>±</u> 82 tubulin: >5

KB: 370 <u>+</u> 33 H460: 413 <u>+</u> 6 MKN45: 257 <u>+</u> 30 KB-vin10: 372 <u>+</u> 18 tubulin: nd

KB: 208 ± 58 H460: 232 ± 21 MKN45: 198 ± 13 KB-vin10: 197 ± 20 tubulin: 2.5 ± 0.6

KB: 371 <u>+</u> 111 H460: 353 <u>+</u> 75 MKN45: 314 <u>+</u> 35 KB-vin10: 400 <u>+</u> 80 tubulin: nd

O H₃CO H₃CO осн₃

KB: 575 ± 55 H460: 559 ± 81 MKN45: 521 ± 51 KB-vin10: 587 ± 42 tubulin: nd

KB: >5000 H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

KB: >5000 H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

KB: 345 ± 17 H460: 334 ± 84 MKN45: 156 ± 54 KB-vin10: 312 ± 20 tubulin: nd

H₃CO

H₃CO

H₃CO

KB: >5000

H460: >5000

tubulin: nd

MKN45: >5000

KB-vin10: >5000

H₃C

O

осн₃

N-CH₃

ĊΝ

H₃CO

H₃CO-

H₃CO

KB: >5000

H460: >5000

tubulin: nd

MKN45: >5000

KB-vin10: >5000

KB: >5000 H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

KB: 42 ± 21 H460: 52 ± 7 MKN45: 41 ± 13 KB-vin10: 38 ± 14 tubulin: 1.5 ± 0.5

OEt

CH₃

20

осн3

H₃CO OCH₃ KB: >5000 H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd H₃CO OEt

H₃C、_N

ĊH₃

H₃CO

KB: 230 ± 71 H460: 198 ± 1.4 MKN45: 101 ± 19 KB-vin10: 185 ± 21 tubulin: nd

H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

H₃CO

KB: >5000 H460: >5000 MKN45: >5000 KB-vin10: >5000 tubulin: nd

151

Domino approach to 2-aroyltrimethoxyindoles as novel heterocyclic combretastatin A4 analogues

Martin Arthuis, Renée Pontikis, Guy G. Chabot, Lionel Quentin, Daniel Scherman, Jean-Claude Florent European Journal of Medicinal Chemistry 46 (2011) 95-100

Exploring the effect of 2,3,4-trimethoxy-phenyl moiety as a component of indolephenstatins

Concepcion A Ivarez, Raquel A Ivarez, Purificacion Corchete, Concepcion Perez-Melero, Rafael Pelaez, Manuel Medarde

Generation of Ligand-Based Pharmacophore Model and Virtual Screening for Identification of Novel Tubulin Inhibitors with Potent Anticancer Activity

Yi-Kun Chiang, Ching-Chuan Kuo, Yu-Shan Wu, Chung-Tong Chen, Mohane Selvaraj Coumar, Jian-Sung Wu, Hsing-Pang Hsieh, Chi-Yen Chang, Huan-Yi Jseng, Ming-Hsine Wu, Jiun-Shyang Leou, Jen-Shin Song, Jang-Yang Chang, Ping-Chiang Lyu, Yu-Sheng Chao, and Su-Ying Wu

J. Med. Chem. 2009, 52, 4221-4233

KB: human oral squamous carcinoma

OCH₃

55 nM

OH

H₃CO

H₃CO

H₃CO

OH

H

38 nM

H₃CO

H₃CO

Ó

H

3.9 nM

64 nM

H₃CO

H₃CO

H₃CO²

осн₃

0

осн₃

73 nM

207 nM

92 nM

222 nM

331.6 nM

455 nM

500 nM

1800 nM

Inhibition of Tubulin Polymerization by 5,6-Dihydroindolo[2,1-a]isoquinoline Derivatives

Michael Goldbrunner, Gunther Loidl, Thomas Polossek, Albrecht Mannschreck, and Erwin von Angerer J. Med. Chem. 1997, 40, 3524-3533

Methoxy-Substituted 3-FormyI-2-phenylindoles Inhibit Tubulin Polymerization

Robert Gastpar, Michael Goldbrunner, Doris Marko, and Erwin von Angerer

J. Med. Chem. 1998, 41, 4965-4972

MDA: 0.03 ± 0.01 MCF: nd tubulin: 1.9

MDA: 0.42 <u>+</u> 0.07 MCF: 0.65 <u>+</u> 0.08

MDA: 0.47 ± 0.02 MCF: 0.18 ± 0.04 tubulin: 3.3

Ъ

OCH₃

H₃CO.

H₃CO

MDA: 0.26 <u>+</u> 0.03 MCF: 0.18 <u>+</u> 0.07 tubulin: 4.0

OCH₃

MDA: 0.035 ± 0.004 MCF: 0.16 ± 0.03 tubulin: 1.5

MDA: 2.8 ± 0.2 MCF: 1.7 ± 0.1

0

н

MDA: 0.049 + 0.006 MCF: 0.043 + 0.009 tubulin: 1.8

н

'n

MDA: 0.22 ± 0.05 MCF: 0.23 ± 0.01

MDA: >10 MCF: >10

MDA: 0.99 ± 0.12 MCF: 0.23 ± 0.03 tubulin: 1.8

MDA: 2.5 ± 0.4 MCF: 6.7 ± 0.2

MDA: 7.9 ± 0.4 MCF: 3.3 ± 0.1

MDA: 9.3 <u>+</u> 0.2 MCF: >10

MDA: >10 MCF: >10

MDA: 7.9 <u>+</u> 0.4 MCF: 7.0 <u>+</u> 0.1

MDA: 8.7 MCF: nd

MDA: 0.3 MCF: 0.29 tubulin: 19

MDA: 1.4 MCF: 0.22 tubulin: 8.9

Molecule Tubulin Inhibitors 2-Aroylindoles, a Novel Class of Potent, Orally Active Small

Thomas Beckers, Thomas Reissmann, Mathias Schmidt, Angelika M. Burger, Heinz H. Fiebig, Udo Vanhoefer, Herwig Pongratz, Harald Hufsky, Jorg Hockemeyer, Markus Frieser, and Siavosh Mahboobi

CANCER RESEARCH 62, 3113-3119, June 1, 2002

colchicine

MDA-MB 231: 25 Hec1A: >1000 A431: 19 SKOV3: 20 HeLa/KB: 23 HT 29: 23 A549: 56 PC-3: 19 AsPC-1: >1000 Cal27: 21 U 87: 16 Saos-2: 11 Renca: 33 T24: 24 MDR1 L1210: 0.051 L1210^{VCR}: 5.48 MDR1 MCF-7: nd MCF-7/adr: nd MDR1 A2780: nd A2780/Dx5: nd MRP HT1080: nd HT1080/DR4: nd 5-FU HT29: nd 5-FU Bolus HT29/R1: nd 5-FU Continous HT29/R24: nd Raltitrexed HT29/ICID: nd Topoisomerase I HCT-8: nd HCT-8: nd HCT-8/SN-38: nd

paclitaxel

RKO p21: >10 RKO: 0.006 G₂-M arrest: 0.025 MDA-MB 231: 11 Hec1A: >1000 A431: 3.3 SKOV3: 7.0 HeLa/KB: 7.0 HT 29: 10 A549: 13 PC-3: 12 AsPC-1: 12 Cal27: 8.9 U 87: 13 Saos-2: 8.8 Renca: 14 T24: 10

MDR1 L1210: 0.140 L1210^{VCR}: 15.3 MDR1 MCF-7: 0.003 MCF-7/adr: 2.1 MDR1 A2780: 0.005 A2780/Dx5: 0.145 MRP HT1080: 0.003 HT1080/DR4: 0.005 5-FU HT29: 0.007 5-FU Bolus HT29/R1: 0.006 5-FU Continous HT29/R24: 0.006 Raltitrexed HT29/ICID: 0.016 Topoisomerase I HCT-8: 0.033 HCT-8/SN-38: 0.133

$ \begin{array}{c} & & & & \\ & & & \\ HN \\ H_{3}CO \\ H_{3}CO \\ \end{array} $	RKO p21: >10 RKO: 0.001 G ₂ -M arrest: 0.002 MDA-MB 231: 8.0 Hec1A: >1000 A431: 1.0 SKOV3: 2.0 HeLa/KB: 1.0 HT 29: 5.0 A549: 27 PC-3: 4.0 AsPC-1: 17 Cal27: 1.9 U 87: 3.0 Saos-2: 4.2 Renca: 1.0 T24: 5.3	MDR1 L1210: 0.021 L1210 ^{VCR} : 1.46 MDR1 MCF-7: 0.001 MCF-7/adr: 1.2 MDR1 A2780: 0.0006 A2780/Dx5: 0.024 MRP HT1080: 0.0008 HT1080/DR4: 0.018	5-FU HT29: 0.003 5-FU Bolus HT29/R1: 0.002 5-FU Continous HT29/R24: 0.003 Raltitrexed HT29/ICID: 0.006 Topoisomerase I HCT-8: 0.013 HCT-8/SN-38: 0.02
$H_{3}CO + \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+ \underbrace{+$	RKO p21: >10 RKO: 0.042 G ₂ -M arrest: 0.092 MDA-MB 231: 62 Hec1A: >1000 A431: 48 SKOV3: 24 HeLa/KB: 48 HT 29: 37 A549: 63 PC-3: 56 AsPC-1: >1000 Cal27: 65 U 87: 88 Saos-2: 42 Renca: 144 T24: 63	MDR1 L1210: 0.102 L1210 ^{VCR} : 0.077 MDR1 MCF-7: 0.04 MCF-7/adr: 0.06 MDR1 A2780: 0.024 A2780/Dx5: 0.02 MRP HT1080: 0.027 HT1080/DR4: 0.02	5-FU HT29: 0.055 5-FU Bolus HT29/R1: 0.076 5-FU Continous HT29/R24: 0.058 Raltitrexed HT29/ICID: 0.093 Topoisomerase I HCT-8: 0.028 HCT-8/SN-38: 0.038
H ₃ CO H ₃ CO H H HeLa/KB: 0.027 U373: 0.028 tubulin: 0.53 colchocine: 0.28	RKO p21: >10 RKO: 0.018 G ₂ -M arrest: 0.028 MDA-MB 231: 25 Hec1A: >1000 A431: 19 SKOV3: 11 HeLa/KB: 29 HT 29: 22 A549: 28 PC-3: 25 AsPC-1: >1000 Cal27: 19 U 87: 31 Saos-2: 18 Renca: 37 T24: 27	MDR1 L1210: 0.027 L1210 ^{VCR} : 0.045 MDR1 MCF-7: nd MCF-7/adr: nd MDR1 A2780: nd A2780/Dx5: nd MRP HT1080: nd HT1080/DR4: nd	5-FU HT29: nd 5-FU Bolus HT29/R1: nd 5-FU Continous HT29/R24: nd Raltitrexed HT29/ICID: nd Topoisomerase I HCT-8: nd HCT-8/SN-38: nd

New Arylthioindoles: Potent Inhibitors of Tubulin Polymerization. 2. Structure-Activity Relationships and Molecular Modeling Studies

Gabriella De Martino, Michael C. Edler, Giuseppe La Regina, Antonio Coluccia, Maria Chiara Barbera, Denise Barrow, Robert I. Nicholson, Gabriela Chiosis, Andrea Brancale, Ernest Hamel, Marino Artico, and Romano Silvestri J. Med. Chem. 2006, 49, 947-954

Novel potent antimitotic heterocyclic ketones: Synthesis, antiproliferative activity, and structure–activity relationships

Laixing Hu, Jian-dong Jiang, Jinrong Qu, Yan Li, Jie Jin, Zhuo-rong Li, and David W. Boykina

Bioorganic & Medicinal Chemistry Letters 17 (2007) 3613-3617

CEM: 1012

One-Pot Synthesis of Benzo[b]furan and Indole Inhibitors of Tubulin Polymerization Bernard L. Flynn, Ernest Hamel, and M. Katherine Jung

J. Med. Chem. 2002, 45, 2670-2673

Scaffold-Hopping Strategy: Synthesis and Biological Evaluation of 5,6-Fused Bicyclic Heteroaromatics To Identify Orally Bioavailable Anticancer Agents

Yen-Shih Tung, Mohane Selvaraj Coumar, Yu-Shan Wu, Hui-Yi Shiao, Jang-Yang Chang, Jing-Ping Liou, Paritosh Shukla, Chun-Wei Chang, Chi-Yen Chang, Ching-Chuan Kuo, Teng-Kuang Yeh, Chin-Yu Lin, Jian-Sung Wu, Su-Ying Wu, Chun-Chen Liao, and Hsing-Pang Hsieh

J. Med. Chem. 2011, 54, 3076–3080

KB: cervical-nM MKN-45: gastric carcinoma-nM metabolic stability: % compound remaining after 30 min incubation with human liver microsome

KB: 6 MKN-45: 5 metabolic stability: 54.1

KB: 284 MKN-45: 80 metabolic stability: nd

KB: 70 MKN-45: 95 metabolic stability: nd

KB: 31 MKN-45: 26 metabolic stability: 35.4

KB: 770 MKN-45: 730 metabolic stability: nd

KB: >1000 MKN-45: 354 metabolic stability: nd

KB: 20 MKN-45: 16 metabolic stability: 88.3

ő

т 2 /

ocH₃

H₃CO

KB: >1000 MKN-45: >1000 metabolic stability: 99.6

175

Structure-activity relationships of indole compounds derived from combretastatin A4: Synthesis and biological screening of 5-phenylpyrrolo[3,4-a] carbazole-1,3-diones as potential antivascular agents

Nancy Ty, Grégory Dupeyre, Guy G. Chabot, Johanne Seguin, Lionel Quentin, Angèle Chiaroni, François Tillequin, Daniel Scherman, Sylvie Michel, Xavier Cachet European Journal of Medicinal Chemistry 45 (2010) 3726e3739

B16: >50 Morph: na

Morph: na

Morph: na

O

178

Synthesis and antineoplastic activity of combretastatin analogues: Heterocombretastatins

Manuel Medarde, Angel Ramos, Esther Caballero, Rafael Pelaez-Lamamie de Clairac, Jose Luis Lopez, Dolores Garcia Gravalos, Arturo San Feliciano

Eur. J. Med. Chem. 33 (1998) 71-77

P-388: lymphoid neoplasm -μM A-549: human lung -μM HT-29: human colon -μM MEL-28: human melanoma -μM

podophyllotoxin

P-388: 0.05 A-549: 0.05 HT-29: 0.05 MEL-28: 0.06

Synthesis and biological evaluation of (3,4,5-trimethoxyphenyl)indol-3-ylmethane derivatives as potential antivascular agents

Gregory Dupeyre, Guy G. Chabot, Sylviane Thoret, Xavier Cachet, Johanne Seguin, Daniel Guenard, Francois Tillequin, Daniel Scherman, Michel Kocha and Sylvie Michel

Bioorganic & Medicinal Chemistry 14 (2006) 4410-4426

OCH₃

Synthesis and biological evaluation of 1-(4-Indolyl and 6-Quinolinyl) indoles as a new class of potent anticancer agents

Mei-Jung Lai, Jang-Yang Chang, Hsueh-Yun Lee, Ching-Chuan Kuo, Mei-Hsiang Lin, Hsing-Pang Hsieh, Chi-Yen Chang, Jian-Sung Wu, Su-Ying Wu, Kuang-Shing Shey, Jing-Ping Liou

European Journal of Medicinal Chemistry 46 (2011) 3623e3629

KB: 900 ± 8 KB-VIN10: 535 ± 71 H460: 955 ± 101 HT29: 921 ± 108 MKN45: 682 ± 223

KB: 7950 <u>+</u> 636 KB-VIN10: 3449 <u>+</u> 1153 H460: 7515 <u>+</u> 200 HT29: 8136 <u>+</u> 371 MKN45: 4309 <u>+</u> 144 KB: 148 ± 33 KB-VIN10: 63 ± 8 H460: 172 ± 27 HT29: 148 ± 33 MKN45: 105 ± 21

not tested

not tested

not tested

KB: 3250 ± 212 KB-VIN10: 1378 ± 180 H460: 2393 ± 13 HT29: 4146 ± 75 MKN45: 1544 ± 19

KB: 216 ± 23 KB-VIN10: 130 ± 9 H460: 318 ± 99 HT29: 329 ± 63 MKN45: 197 ± 44

KB: 102 ± 12 KB-VIN10: 50 ± 2 H460: 96 ± 10 HT29: 101 ± 16 MKN45: 49 ± 15 Tubulin: 4.7 ± 0.5

Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(Nhydroxyacrylamide) indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo

Mei-Jung Lai, Han-Li Huang, Shiow-Lin Pan, Yi-Min Liu, Chieh-Yu Peng, Hsueh-Yun Lee, Teng-Kuang Yeh, Po-Hsien Huang, Che-Ming Teng, Ching-Shih Chen, Hsun-Yueh Chuang, and Jing Ping Liou

J. Med. Chem. 2012, 55, 3777-3791

Hep3B: 8.87 ± 0.2 MDA-MB-231: 8.14 ± 0.7 PC-3: 5.77 ± 0.5 A549: 7.06 ± 0.1

Hep3B: 4.32 ± 0.1 MDA-MB-231: 4.16 ± 0.3 PC-3: 3.67 ± 0.3 A549: 6.70 ± 0.2

Hep3B: 0.41 ± 0.1 MDA-MB-231: 0.48 ± 0.1 PC-3: 0.62 ± 0.2 A549: 1.02 ± 0.2

Hep3B: 2.12 ± 0.1 MDA-MB-231: 2.41 ± 0.3 PC-3: 2.40 ± 0.3 A549: 5.30 ± 0.7

O' 0 н_{`n´} он ò

Hep3B: 3.82 ± 0.4 MDA-MB-231: 7.71 ± 0.6 PC-3: 4.75 ± 0.4

A549: 5.50 ± 0.4

C

Hep3B: 0.55 ± 0.1 MDA-MB-231: 0.75 ± 0.1 PC-3: 0.80 ± 0.2 A549: 1.18 ± 0.2

Hep3B: 0.36 ± 0.1 MDA-MB-231: 0.37 ± 0.1 PC-3: 0.93 ± 0.3 A549: 0.56 ± 0.1

Hep3B: 0.64 ± 0.1 MDA-MB-231: 0.66 ± 0.2 PC-3: 0.39 ± 0.1 A549: 0.75 ± 0.7

Hep3B: 0.56 ± 0.1 MDA-MB-231: 0.75 ± 0.2 PC-3: 0.85 ± 0.2 A549: 1.21 ± 0.2

Hep3B: >10 MDA-MB-231: 5.68 <u>+</u> 0.3 PC-3: 7.26 <u>+</u> 0.6 A549: >10

Hep3B: 2.40 ± 0.3 MDA-MB-231: 3.18 ± 0.4 PC-3: 2.32 ± 0.2 A549: 5.80 ± 0.8

Hep3B: 0.86 ± 0.1 MDA-MB-231: 1.18 ± 0.2 PC-3: 1.23 ± 0.2 A549: 2.37 ± 0.1

Hep3B: 1.32 ± 0.2 MDA-MB-231: 1.73 ± 0.1 PC-3: 1.54 ± 0.2 A549: 2.85 ± 0.8

Hep3B: 1.27 ± 0.1 MDA-MB-231: 1.25 ± 0.1 PC-3: 1.26 ± 0.1 A549: 3.33 ± 0.2

HO. N Ĥ Ń 'n

Hep3B: 3.65 ± 0.4 MDA-MB-231: 4.37 ± 0.5 PC-3: 4.80 ± 0.1 A549: 9.07 ± 0.9

Hep3B: 2.56 ± 0.3 MDA-MB-231: 2.21 ± 0.4 PC-3: 2.07 ± 0.1 A549: 4.04 ± 0.2

Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors

Romeo Romagnoli, Pier Giovanni Baraldi, Taradas Sarkar, Maria Dora Carrion, Carlota Lopez Cara, Olga Cruz-Lopez, Delia Preti, Mojgan Aghazadeh Tabrizi, Manlio Tolomeo, Stefania Grimaudo, Antonella Di Cristina, Nicola Zonta, Jan Balzarini, Andrea Brancale, Hsing-Pang Hsieh, and Ernest Hamel

Synthesis and biological evaluation of new disubstituted analogues of 6-methoxy-3 (3,4,5-trimethoxybenzoyl)-1Hindole (BPR0L075), as potential antivascular agents

Nancy Ty, Grégory Dupeyre, Guy G. Chabot, Johanne Seguin, François Tillequin, Daniel Scherman, Sylvie Michel, Xavier Cachet

Bioorganic & Medicinal Chemistry 16 (2008) 7494-7503

SYNTHESIS AND PHARMACOLOGICAL ACTIVITY OF DIARYLINDOLE DERIVATIVES. CYTOTOXIC AGENTS **BASED ON COMBRETASTATINS**

Manuel Medarde, Angel C. Ramos, Esther Caballero, Rafael Pelaez-Lamamie de Clairac, Jose Luis Lopez, Dolores G Gravalos and Arturo San Feliciano

Bioorganic & Medicinal Chemistry Letters 9 (1999) 2303-2308

Log₁₀ Gl₅₀: cytostatic Log₁₀ LC₅₀: cytotoxic HL-60: leukemia RPMI-8226: leukemia NCI-H522: non-small lung COLO 205: colon HTC-116: colon SF-295: CNS SF-539: CNS SNB-19: CNS SK-MEL-5: melanoma OVCAR-3: ovarian

podophyllotoxin

Log₁₀ IC₅₀ = -7.22 M tubulin inhinition

P-388: 0.05 μ**M** A-549: 0.05 μM HT-29: 0.05 μM MEL-28: 0.06 μM

 Log_{10} IC₅₀ M P-388: lymphoid neoplasm A-549: human lung HT-29: human colon MEL-28: human melanoma

P-388: -6.15 A-549: -5.88 HT-29: -5.88 MEL-28: -5.88

Cell line: Log₁₀ Gl₅₀ ; Log₁₀ LC₅₀ HL-60: -7.29; >-4.0 RPMI-8226: -7.04; -4.12 NCI-H522: -7.12; -5.47 COLO 205: -6.73; -6.17 HTC-116: -6.86; -5.60 SF-295: -6.86; -4.63 SF-539: -6.93; -6.03 SNB-19: -7.64; -6.01 SK-MEL-5: -6.61; -4.54 OVCAR-3: -6.77; -5.14

OCH₃

P-388: -5.49 A-549: -5.49 HT-29: -5.49 MEL-28: -5.49

P-388: -5.29 A-549: -5.29 HT-29: -5.19 MEL-28: -5.29

P-388: -5.95 A-549: -5.95 HT-29: -5.95 MEL-28: -5.95

P-388: -5.64 A-549: -5.20 HT-29: -5.20 MEL-28: -5.20

Synthesis and structure-activity relationships of N-aryl(indol-3-yl)glyoxamides as antitumor agents

Pascal Marchand, Maud Antoine, Guillaume Le Baut, Michael Czech, Silke Baasner, Eckhard Günther Bioorganic & Medicinal Chemistry 17 (2009) 6715–6727

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: >10000 L1210: 3955 <u>+</u> 270 SKOV3: >10000

Hela/KB: 378 <u>+</u> 31 L1210: 378 <u>+</u> 42 SKOV3: 3784 <u>+</u> 390

н

N

ò

OCH₃

٠F

OCH3

`OCH₃

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: 141 ± 15 L1210: 253 ± 34 SKOV3: 4924 ± 390

Hela/KB: 4489 ± 290 L1210: 4489 ± 310 SKOV3: 4489 ± 350

Hela/KB: 4489 <u>+</u> 340 L1210: 4489 <u>+</u> 350

SKOV3: 6618 ± 590

Hela/KB: 469 <u>+</u> 26 L1210: 469 <u>+</u> 31 SKOV3: 469 ± 37

Hela/KB: 4687 <u>+</u> 320 L1210: 3687 <u>+</u> 340 SKOV3: >10000

н Ó Br

Hela/KB: 403 <u>+</u> 22 L1210: 403 <u>+</u> 27 SKOV3: 403 ± 34

Hela/KB: 4029 <u>+</u> 310 L1210: >10000 SKOV3: >10000

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: 7464 <u>+</u> 610 L1210: 7464 <u>+</u> 650 SKOV3: 7464 <u>+</u> 670

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: 4541 <u>+</u> 310 L1210: 454 <u>+</u> 36 SKOV3: 4541 <u>+</u> 340

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: 474 <u>+</u> 42 L1210: 474 <u>+</u> 48 SKOV3: 471 <u>+</u> 54

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: >10000

L1210: >10000

ela/KB: 7448 ± 670

Hela/KB: >10000

Hela/KB: 39 ± 4 L1210: 51 ± 8

SKOV3: 11 + 2

CI

Hela/KB: >10000 L1210: >10000 SKOV3: >10000

Hela/KB: 701 <u>+</u> 55 L1210: 706 <u>+</u> 64 SKOV3: 1213 <u>+</u> 120

Hela/KB: 7448 <u>+</u> 670 L1210: 7448 <u>+</u> 680 SKOV3: 7448 <u>+</u> 690

Hela/KB: 462 ± 47 L1210: 574 ± 52 SKOV3: 338 ± 34

Hela/KB: >10000

SKOV3: >10000

L1210: 3510 ± 190

NH₂

Hela/KB: >10000 L1210: 6580 <u>+</u> 560 SKOV3: >10000

Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents

Siavosh Mahboobi, Herwig Pongratz, Harald Hufsky, Jorg Hockemeyer, Markus Frieser, Alexei Lyssenko, Dietrich H. Paper, Jutta Burgermeister, Frank-D. Bohmer, Heinz-Herbert Fiebig, Angelika M. Burger, Silke Baasner, and Thomas Beckers

J. Med. Chem. 2001, 44, 4535-4553

Tandem Heck–Suzuki–Miyaura reaction: Application to the synthesis of constrained analogues of combretastatin A-4

Martin Arthuis, Rene'e Pontikis and Jean-Claude Florent

Tetrahedron Letters 48 (2007) 6397-6400

APPENDIX B

Supporting Information: Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent

This appendix published as supporting information: Hadimani, M. B.; MacDonough, M. T.; Strecker, T. E.; Lopez, R.; Sriram, M.; Nguyen, B. L.; Kessler, R. J.; Ghatak, A.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettie, G. R.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent. *J. Nat. Prod.* **2013**, http://dx.doi.org/10.1021/np400374w.

The author M. T. MacDonough contributed to this manuscript through the synthesis of two of the final four compounds including full characterization analysis of both in addition to the synthesis and characterization of two key intermediates en route to the other two final compounds. Furthermore, M. T. MacDonough played a significant role in the preparation of the manuscript including writing and editing.

Supporting Information

Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) Resembling Combretastatin A-4 with Application as a Vascular Disrupting Agent

Mallinath B. Hadimani,[†] Matthew T. MacDonough,[†] Tracy E. Strecker,[†] Ramona Lopez,[‡] Madhavi Sriram,[†] Benson L. Nguyen,[†] Raymond J. Kessler,[†] Anjan Ghatak,^{†⊽} Anupama R. Shirali,[†] Li Liu, [‡] Charles M. Garner,[†] George R. Pettit,[§] Ernest Hamel,[⊥] David J. Chaplin,[∥] Ralph P. Mason,[‡] Mary Lynn Trawick,[†] and Kevin G. Pinney[†]*

[†] Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA

[‡] Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA

[§] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604, USA

 Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Caner Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, 21702, USA

^{II} Oxigene Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California, 94080, USA

^v Dedicated to the memory of Dr. Anjan Ghatak, who passed away on July 22, 2003

*Corresponding Author: Kevin G. Pinney Telephone: 1-254-710-4117 Fax: 1-254-710-4272 Email: <u>Kevin Pinney@baylor.edu</u>

S1

Table of Contents

¹ H, ¹³ C NMR Spectra, HPLC Traces, and HRMS for compound 24	Pages S3-S9
¹ H, ¹³ C NMR Spectra, HPLC Traces, and HRMS for compound 25	Pages S10-S16
¹ H, ¹³ C, ³¹ P NMR Spectra, HPLC Traces, and HRMS for compound 31	Pages S17-S24
¹ H, ¹³ C NMR Spectra, HPLC Traces, and HRMS for 8 (OXi8006)	Pages S25-S31
¹ H, ¹³ C, ³¹ P NMR Spectra, HPLC Traces, and HRMS for 33 (OXi8007)	Pages S32-S39
¹ H, ¹³ C NMR Spectra, HPLC Traces, and HRMS for compound 30	Pages S40-S46
¹ H, ¹³ C, ³¹ P NMR Spectra, HPLC Traces, and HRMS for compound 34	Pages S47-S54

Data File C:\CHEM32\1\DATA\MATT MAC\BROMO-2000006.D Sample Name: run1

Instrument 1 4/19/2013 4:59:48 PM Matt Mac

Page 1 of 4

206

Data File C:\CHEM32\1\DATA\MATT MAC\BROMO-2000006.D Sample Name: run1

Instrument 1 4/19/2013 4:59:48 PM Matt Mac

Page 2 of 4

207

Data File C:\CHEM32\1\DATA\MATT MAC\BROMO-2000006.D Sample Name: run1

HPLC traces of compound 24

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-	9.098	BV	0.0764	631.17712	126.04517	100.0000
Totals	s:			631.17712	126.04517	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo -
1	9.098	BB	0.0782	795.44574	154.09218	100.0000

Totals :	795.44574	154.09218
----------	-----------	-----------

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime Ty	pe Width	Area	Height	Area	
#	[min]	[min]	[mAU*s]	[mAU]	0,0	
1	9.098 BB	0.0779	2506.93262	488.09872	100.0000	

Totals: 2506.93262 488.09872

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak Re	etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	9.098 BB	0.0777	2310.07349	451.59116	100.0000
Totals	:		2310.07349	451.59116	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak RetTim	е Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	90
	- -				
1 9.09	8 BB	0.0774	1806.34863	354.52115	100.0000
Totals :			1806.34863	354.52115	
Instrument 1 4	/19/2013	4:59:4	48 PM Matt	Mac	

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\BROMO-2000006.D Sample Name: run1

HPLC traces of compound 24

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.098	BB	0.0774	1806.34863	354.52115	100.0000

Totals: 1806.34863 354.52115

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.098	BB	0.0773	1658.41321	326.37286	100.0000

Totals : 1658.41321 326.37286

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	o _{fo}
		-		-		
1	9.098	BB	0.0773	1638.77759	322.66156	100.0000
Total	.s :			1638.77759	322.66156	

*** End of Report ***

Instrument 1 4/19/2013 4:59:48 PM Matt Mac

Page 4 of 4

210

S9

Data File C:\CHEM32\1\DATA\MATT MAC\TBS-INDOLE00016.D Sample Name: run1

Instrument 1 4/23/2013 2:28:57 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\TBS-INDOLE00016.D Sample Name: run1

Instrument 1 4/23/2013 2:28:57 PM Matt Mac

S13

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\TBS-INDOLE00016.D Sample Name: run1

HPLC traces of compound 25

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.088	BV	0.0808	7048.01367	1353.30042	92.2446
2	22.397	VB	0.0813	592.55328	105.83783	7.7554

Totals : 7640.56696 1459.13824

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	21.088	BV	0.0807	6934.87109	1332.94495	92.1334
2	22.397	VB	0.0809	592.11774	106.44548	7.8666

Totals : 7526.98883 1439.39043

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ	
1	21.088	BV	0.0989	1.31208e4	2159.70190	91.7169	
2	22.397	VB	0.0810	1184.95386	212.75230	8.2831	

Totals: 1.43057e4 2372.45421

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				
1	21.088	BV	0.0899	1.17001e4	2071.15112	91.2732
2	22.397	VB	0.0817	1118.66235	204.91919	8.7268
Total	s:			1.28188e4	2276.07031	

Instrument 1 4/23/2013 2:28:57 PM Matt Mac

S14

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\TBS-INDOLE00016.D Sample Name: run1

HPLC traces of compound 25

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	21.088	BB	0.0803	4049.49487	782.92035	91.0860
2	22.397	VB	0.0817	396.29663	72.56457	8.9140

Totals : 4445.79150 855.48492

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		-				
1	21.088	BB	0.0803	4049.49487	782.92035	91.0860
2	22.397	VB	0.0817	396.29663	72.56457	8.9140
Total	s:			4445.79150	855.48492	

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	21.088	BB	0.0811	6833.25537	1304.07190	93.7372
2	22.397	VB	0.0796	456.54562	86.49632	6.2628

Totals : 7289.80099 1390.56821

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.088	BB	0.0904	1.18015e4	2073.40820	94.4001
2	22.397	VB	0.0763	700.07214	140.10805	5.5999
Total	ls :			1.25016e4	2213.51625	

------ *** End of Report ***

Instrument 1 4/23/2013 2:28:57 PM Matt Mac

S15

Page 4 of 4

HRMS of compound 25

217

S16

	- 30
	- 25
	 -20
	- 15
	- 1-
≠l.∂-—	 - φ
	- 0
	 - u
	 - 6
	 - 15
	- 20
	 - 25
	- - 8
	35 35 819 S19
	- 4
	45
	 20
	 55
	- 09
	- 65
OBn OBn	- 2
	75
G T T S C T	- 08
	- 85
СО 2° ^ї ї 1 ³ СО 1 ³ С 1 ³ С	- 06
	95
	- 00

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-IV-12300001.D Sample Name: run1

HPLC traces of compound **31**

Instrument 1 4/19/2013 11:04:55 AM Matt Mac

S20

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-IV-12300001.D Sample Name: run1

Instrument 1 4/19/2013 11:04:55 AM Matt Mac

S21

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-IV-12300001.D Sample Name: run1

HPLC traces of compound 31

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak H #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
- 1	16.399	- BB	0.1077	 5895.92139	802.57043	100.0000
Totals	s :			5895.92139	802.57043	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.399	BB	0.1077	5895.67969	802.37427	100.0000

Totals: 5895.67969 802.37427

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	16.399	BV	0.1254	1.75157e4	2098.39795	100.0000

Totals : 1.75157e4 2098.39795

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	0/0	
1	16.399	BV	0.1089	9433.00391	1266.84875	100.0000	

Totals : 9433.00391 1266.84875

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	16.399	BV	0.1078	5649.78125	768.28760	100.0000
Total	s:			5649.78125	768,28760	

Instrument 1 4/19/2013 11:04:55 AM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-IV-12300001.D Sample Name: run1

HPLC traces of compound 31

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0/0
1	16.399	BV	0.1078	5649.78125	768.28760	100.0000

Totals : 5649.78125 768.28760

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.399	BB	0.1080	7557.41553	1024.94617	100.0000

Totals : 7557.41553 1024.94617

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	16.399	BB	0.1077	4676.26318	636.32965	100.0000
Total	ls :			4676.26318	636.32965	

*** End of Report ***

Instrument 1 4/19/2013 11:04:55 AM Matt Mac

S23

Page 4 of 4

HRMS of compound 31

Data File C:\CHEM32\1\DATA\MATT MAC\OXI8006000029.D Sample Name: run1

HPLC traces of compound **8** (OXi8006)

```
Acq. Operator : Matt Mac

Acq. Instrument : Instrument 1 Location : -

Injection Date : 8/31/2012 11:53:26 AM

Acq. Method : C:\CHEM32\1\METHODS\MASTERMETHOD.M

Last changed : 8/31/2012 11:42:10 AM by Matt Mac

(modified after loading)

Analysis Method : C:\CHEM32\1\DATA\MATT MAC\0XI8006000029.D\DA.M (MASTERMETHOD.M)

Last changed : 8/31/2012 12:43:41 PM by Matt Mac

Sample Info :
```


Instrument 1 4/23/2013 3:02:43 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\OXI8006000029.D Sample Name: run1

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\OXI8006000029.D Sample Name: run1

HPLC traces of compound 8 (OXi8006)

	i	Area Percen	t Report	
Sorted By Multiplier Dilution Use Multiplier & Di	: : : lution	Signal 1.0000 1.0000 Factor wit	h ISTDs	
Signal 1: DAD1 A, S	ig=254	,4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.430 BV	0.1062	1.73226e4	2584.75806	100.0000
Totals :		1.73226e4	2584.75806	
Signal 2: DAD1 B, S	ig=254	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
- 1 11.430 BV	0.1062	1.73567e4	2590.07788	100.0000
Totals :		1.73567e4	2590.07788	
Signal 3: DAD1 C, S	ig=210	,8 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.434 BV	0.1610	2.48943e4	2525.35937	100.0000
Totals :		2.48943e4	2525.35937	
Signal 4: DAD1 D, S	ig=230	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.430 BV	0.1358	2.26553e4	2702.47852	100.0000
Totals :		2.26553e4	2702.47852	

Instrument 1 4/23/2013 3:02:43 PM Matt Mac

S29

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\0XI8006000029.D Sample Name: run1

HPLC traces of compound 8 (OXi8006)

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.430	BV	0.1071	1.73240e4	2554.55151	100.0000

Totals : 1.73240e4 2554.55151

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.430	BV	0.1071	1.73240e4	2554.55151	100.0000

Totals : 1.73240e4 2554.55151

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo .
1	11.431	BV	0.1254	2.02066e4	2579.51099	100.0000

Totals : 2.02066e4 2579.51099

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.430	BV	0.1019	1.51963e4	2336.06787	100.0000

Totals : 1.51963e4 2336.06787

*** End of Report ***

Instrument 1 4/23/2013 3:02:43 PM Matt Mac

S30

Page 4 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\8007000037.D Sample Name: 8007

HPLC traces of compound **33** (OXi8007)

	-=-			======
Acq. Operator	:	Matt Mac		
Acq. Instrument	:	Instrument 1	Location :	-
Injection Date	:	5/4/2012 10:23:02 AM		
Acq. Method	:	C:\CHEM32\1\METHODS\MA	ASTERMETHOD.M	
Last changed	:	5/4/2012 10:16:05 AM k	by Matt Mac	
		(modified after loadir	ng)	
Analysis Method	:	C:\CHEM32\1\DATA\MATT	MAC\8007000037.D\DA.M	(MASTERMETHOD.M)
Last changed	:	4/19/2013 10:08:53 AM	by Matt Mac	
		(modified after loadir	ng)	
Sample Info	:	8007 (0.1% TFA in H20))	

Instrument 1 4/19/2013 10:11:17 AM Matt Mac

Data File C:\CHEM32\1\DATA\MATT MAC\8007000037.D Sample Name: 8007 HPLC traces of compound **33** (OXi8007)

Instrument 1 4/19/2013 10:11:17 AM Matt Mac

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\8007000037.D Sample Name: 8007

HPLC traces of compound **33** (OXi8007)

	i	Area Percent	t Report	
Sorted By Multiplier Dilution Use Multiplier & D	ilution	Signal 1.0000 1.0000 Factor with	n ISTDs	
Signal 1: DAD1 A,	Sig=254	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 8.322 BB	0.1027	4736.21777	651.99268	100.0000
Totals :		4736.21777	651.99268	
Signal 2: DAD1 B,	Sig=254	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 8.322 BB	0.1027	4736.21777	651.99268	100.0000
Totals :		4736.21777	651.99268	
Signal 3: DAD1 C,	Sig=210	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 8.322 BV	0.1171	1.28711e4	1547.13928	100.0000
Totals :		1.28711e4	1547.13928	
Signal 4: DAD1 D,	Sig=230	,16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 8.322 BV	0.1074	8262.35937	1078.22693	100.0000
Totals :		8262.35937	1078.22693	

Instrument 1 4/19/2013 10:11:17 AM Matt Mac

S37

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\8007000037.D Sample Name: 8007

HPLC traces of compound 33 (OXi8007)

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak RetTime Typ	pe Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 8.322 BV	0.1020	4969.80322	690.56696	100.0000

Totals : 4969.80322 690.56696

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	8.322	BV	0.1020	4969.80322	690.56696	100.0000

Totals: 4969.80322 690.56696

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	8.322	BB	0.1056	6794.81299	904.99524	100.0000

Totals : 6794.81299 904.99524

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak 1 #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	8.322	 BB	0.1029	3886.76294	533.83514	100.0000
Total	s:			3886.76294	533.83514	

*** End of Report ***

Instrument 1 4/19/2013 10:11:17 AM Matt Mac

S38

Page 4 of 4

239

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-123000017.D Sample Name: run1

HPLC traces of compound **30**

Instrument 1 4/23/2013 3:34:07 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-123000017.D Sample Name: run1

Instrument 1 4/23/2013 3:34:07 PM Matt Mac

S43

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-123000017.D Sample Name: run1

HPLC traces of compound 30

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.379	BB	0.0824	5719.47656	1068.60681	100.0000

Totals : 5719.47656 1068.60681

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.379	BB	0.0824	5699.11182	1064.78992	100.0000

Totals : 5699.11182 1064.78992

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	12.379	BV	0.0972	1.29636e4	2125.26245	100.0000

Totals : 1.29636e4 2125.26245

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.379	BB	0.0869	9904.25781	1779.95203	100.0000

Totals : 9904.25781 1779.95203

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.379	BV	0.0826	5410.01904	1008.05243	100.0000
Total	s:			5410.01904	1008.05243	

Instrument 1 4/23/2013 3:34:07 PM Matt Mac

S44

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-123000017.D Sample Name: runl

HPLC traces of compound 30

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.379	BV	0.0826	5410.01904	1008.05243	100.0000

Totals : 5410.01904 1008.05243

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.379	BV	0.0829	6736.20020	1249.14526	100.0000

Totals : 6736.20020 1249.14526

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	12.379	BB	0.0825	3998.25464	746.37738	100.0000
Total	ls :			3998.25464	746.37738	

*** End of Report ***

Instrument 1 4/23/2013 3:34:07 PM Matt Mac

S45

Page 4 of 4

HRMS of compound 30

247

,o[⊖]_{Na}⊕ o[⊖]_{Na}⊕

ò

34

ĊH³

z

H₃CO

ocH₃

ő

joch₃

H₃CO

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-127000046.D Sample Name: run2

HPLC traces of compound 34

	==:	
Acq. Operator	:	Matt Mac
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	9/6/2012 10:27:00 AM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	9/6/2012 10:15:31 AM by Matt Mac
		(modified after loading)
Analysis Method	:	$\texttt{C:\CHEM32\1\DATA\MATT\ MAC\MBH-V-127000046.D\DA.M\ (MASTERMETHOD.M)}$
Last changed	:	4/19/2013 11:09:00 AM by Matt Mac
Sample Info	:	

Instrument 1 4/19/2013 11:10:19 AM Matt Mac

S50

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-127000046.D Sample Name: run2 HDLC traces of cor

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-127000046.D Sample Name: run2

HPLC traces of compound 34

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.817	BB	0.1052	847.97809	113.49478	2.5929
2	8.736	BV	0.1639	3.03989e4	2863.14014	92.9509
3	10.599	VV	0.1089	1457.37646	186.94902	4.4562

Totals : 3.27043e4 3163.58394

Signal 3: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.817	BV	0.1156	954.00940	113.99458	3.0209
2	8.739	VB	0.1637	2.98201e4	2812.08154	94.4265
3	10.598	VV	0.1121	806.10425	102.11512	2.5526

Totals : 3.15802e4 3028.19125

Signal 4: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	7.817	BV	0.1156	954.00940	113.99458	3.0209
2	8.739	VB	0.1637	2.98201e4	2812.08154	94.4265
3	10.598	VV	0.1121	806.10425	102.11512	2.5526

Totals : 3.15802e4 3028.19125

Signal 5: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.817	BV	0.1147	1202.43677	145.03081	3.6154
2	8.736	VB	0.1731	3.09650e4	2755.52661	93.1029
3	10.598	VV	0.1101	1091.45081	138.21220	3.2817

Totals : 3.32588e4 3038.76962

Instrument 1 4/19/2013 11:10:19 AM Matt Mac

S52

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MBH-V-127000046.D Sample Name: run2

HPLC traces of compound 34

*** End of Report ***

Instrument 1 4/19/2013 11:10:19 AM Matt Mac

S53

Page 4 of 4

APPENDIX C

Supplementary Data: Synthesis and Biological Evaluation of Indole-based, Anti-cancer Agents Inspired by the Vascular Disrupting Agent 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3", 4", 5"-trimethoxybenzoyl)-6-methoxyindole (OXi8006)

This appendix published as supplementary Data: MacDonough, M. T.; Strecker, T. E.; Hamel, E.; Hall, J. J.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Synthesis and Biological Evaluation of Indole-based, Anti-cancer Agents Inspired by the Vascular Disrupting Agent 2-(3 '-Hydroxy-4 '-methoxyphenyl)-3-(3 ' ', 4 ' ', 5 ' '- trimethoxybenzoyl)-6-methoxyindole (OXi8006). *Bioorg. Med. Chem.* **2013**, http://dx.doi.org/10.1016/j.bmc.2013.07.028.

Supplementary Data

Synthesis and Biological Evaluation of Indole-based, Anti-cancer Agents Inspired by the Vascular Disrupting Agent 2-(3'-Hydroxy-4'-methoxyphenyl)-3-(3'',4'',5''trimethoxybenzoyl)-6-methoxyindole (OXi8006)

Matthew T. MacDonough,^a Tracy E. Strecker,^a Ernest Hamel,^b John J. Hall,^a David J. Chaplin,^c Mary Lynn Trawick,^a and Kevin G. Pinney^{a*}

^a Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA

^b Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Caner Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, 21702, USA

^c Oxigene Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California, 94080, USA

*Corresponding Author: Kevin G. Pinney

Telephone: 1-254-710-4117

Fax: 1-254-710-4272

Email: Kevin Pinney@baylor.edu

Table of Contents

NMR Spectra, HPLC Traces, and HRMS for compound 25	Pages S3-S10
NMR Spectra, HPLC Traces, and HRMS for compound 26	Pages S11-S17
NMR Spectra, HPLC Traces, and HRMS for compound 27	Pages S18-S24
NMR Spectra, HPLC Traces, and HRMS for compound 28	Pages S25-S32
NMR Spectra, HPLC Traces, and HRMS for compound 29	Pages S33-S40
NMR Spectra, HPLC Traces, and HRMS for compound 30	Pages S41-S48
NMR Spectra, HPLC Traces, and HRMS for compound 31	Pages S49-S56
NMR Spectra, HPLC Traces, and HRMS for compound 32	Pages S57-S64
NMR Spectra, HPLC Traces, and HRMS for compound 33	Pages S65-S72
NMR Spectra, HPLC Traces, and HRMS for compound 34	Pages S73-S79
NMR Spectra, HPLC Traces, and HRMS for compound 35	Pages S80-S87
NMR Spectra, HPLC Traces, and HRMS for compound 36	Pages S88-S94
X-ray crystallography data of compound 10	Pages S95-S102

258

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-05000001.D Sample Name: run1

Instrument 1 1/9/2013 6:52:45 PM Matt Mac

Page 1 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-05000001.D Sample Name: run1 HPLC traces of compound 25

Mult	tiplier		:	1.00	000	
Dilu	ution		:	1.00	000	
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Instrument 1 1/9/2013 6:52:45 PM Matt Mac

S6

Page 2 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-05000001.D Sample Name: run1

HPLC traces of compound 25

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.869	BV	0.0999	1.47072e4	2260.91943	93.3598
2	15.004	BV	0.0927	533.26215	85.62164	3.3851
3	16.897	BB	0.0934	422.24030	67.12388	2.6803
4	17.747	VB	0.0792	90.54961	17.25830	0.5748

Totals : 1.57532e4 2430.92325

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.869	BV	0.0999	1.48180e4	2276.77466	93.4310
2	15.004	BV	0.0925	527.65247	84.90611	3.3270
3	16.897	BB	0.0934	423.42865	67.28013	2.6698
4	17.747	VB	0.0792	90.75919	17.31082	0.5723

Totals: 1.58598e4 2446.27172

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.870	BV	0.1375	1.91453e4	2200.73096	89.8328
2	15.004	BV	0.0924	1104.12341	177.90869	5.1807
3	16.897	BV	0.0923	923.61694	148.94827	4.3337
4	17.747	VB	0.0799	139.10408	26.22550	0.6527

Totals : 2.13122e4 2553.81342

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	13.870	BV	0.1274	1.90738e4	2383.21851	92.0747
2	15.004	BV	0.0912	840.35529	137.73363	4.0566
3	16.897	BB	0.0935	663.92902	105.42035	3.2050
4	17.747	VB	0.0790	137.49413	26.29313	0.6637

Instrument 1 1/9/2013 6:52:45 PM Matt Mac

Page 3 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-05000001.D Sample Name: run1 HPLC traces of compound 25

Totals : 2.07156e4 2652.66561

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.869	BV	0.0915	1.14248e4	1918.42883	94.3685
2	15.004	BV	0.0925	267.09799	42.97807	2.2062
3	16.898	BB	0.0918	361.20950	58.69957	2.9836
4	17.746	VB	0.0793	53.48040	10.17261	0.4417
Total	s:			1.21066e4	2030.27908	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	13.869	BV	0.0915	1.14248e4	1918.42883	94.3685
2	15.004	BV	0.0925	267.09799	42.97807	2.2062
3	16.898	BB	0.0918	361.20950	58.69957	2.9836
4	17.746	VB	0.0793	53.48040	10.17261	0.4417

Totals : 1.21066e4 2030.27908

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	13.869	BV	0.0926	1.17744e4	1945.19104	94.6889
2	15.004	BV	0.0924	307.58649	49.56367	2.4736
3	16.898	BB	0.0924	309.97372	49.95343	2.4928
4	17.746	VB	0.0794	42.87123	8.13978	0.3448

Totals : 1.24348e4 2052.84792

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.869	BV	0.0868	8205.55176	1432.52271	93.2305
2	15.004	BV	0.0903	388.63116	64.46502	4.4156

Instrument 1 1/9/2013 6:52:45 PM Matt Mac

S8

Page 4 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-05000001.D Sample Name: run1

HPLC traces of compound 25

Peak Re	tTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	00
		-				
3 1	6.897	BB	0.0936	179.76132	28.50370	2.0424
4 1	7.746	VB	0.0795	27.41720	5.20166	0.3115
Totals	:			8801.36144	1530.69308	

*** End of Report ***

Instrument 1 1/9/2013 6:52:45 PM Matt Mac

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-54000001.D Sample Name: run1

HPLC traces of compound **26**

Instrument 1 1/9/2013 9:04:57 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-54000001.D Sample Name: run1

Instrument 1 1/9/2013 9:04:57 PM Matt Mac

S14

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-54000001.D Sample Name: run1

HPLC traces of compound 26

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	13.186	BV	0.1094	1.52234e4	2080.05469	100.0000

Totals : 1.52234e4 2080.05469

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.186	BV	0.1089	1.50116e4	2063.30054	100.0000

Totals : 1.50116e4 2063.30054

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	13.187	BV	0.1346	1.90632e4	2167.22290	100.0000

Totals: 1.90632e4 2167.22290

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.186	BV	0.1104	1.54060e4	2079.89819	100.0000

Totals : 1.54060e4 2079.89819

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	13.186	BV	0.1036	1.22133e4	1745.71863	100.0000
Total	ls :			1.22133e4	1745.71863	

Instrument 1 1/9/2013 9:04:57 PM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-54000001.D Sample Name: run1

HPLC traces of compound 26

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	13.186	BV	0.1036	1.22133e4	1745.71863	100.0000

Totals : 1.22133e4 1745.71863

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.186	BV	0.1009	1.07514e4	1549.86780	100.0000

Totals : 1.07514e4 1549.86780

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.186	 BV	0.1004	1.02645e4	1488.61096	 100.0000
Total	s:			1.02645e4	1488.61096	

*** End of Report ***

Instrument 1 1/9/2013 9:04:57 PM Matt Mac

S16

Page 4 of 4

HRMS of compound 26

273

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-8900002.D Sample Name: run1

Instrument 1 1/8/2013 8:33:18 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-8900002.D Sample Name: run1

Instrument 1 1/8/2013 8:33:18 PM Matt Mac

S21

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-8900002.D Sample Name: run1

HPLC traces of compound 27

Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!

Peak #	RetTime	Туре	Width	Area	Height	Area
π 	[m±11]		[m±11]	[IIIAO 3]	[III20]	·~
1	12.965	BV	0.1527	5005.44141	446.85699	100.0000

Totals: 5005.44141 446.85699

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.965	BV	0.1526	5166.09326	461.32089	100.0000

Totals : 5166.09326 461.32089

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.965	BV	0.1532	1.00692e4	895.34930	100.0000

Totals: 1.00692e4 895.34930

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.965	BV	0.1531	9635.51758	857.25806	100.0000

Totals: 9635.51758 857.25806

Instrument 1 1/8/2013 8:33:18 PM Matt Mac

S22

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-8900002.D Sample Name: run1

HPLC traces of compound 27

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	12.965	BV	0.1523	4463.91895	399.77322	100.0000

Totals: 4463.91895 399.77322

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.965	BV	0.1523	4463.91895	399.77322	100.0000

Totals: 4463.91895 399.77322

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.965	BV	0.1524	5404.95215	483.64343	100.0000

Totals: 5404.95215 483.64343

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.965	BV	0.1526	3091.80371	276.23389	100.0000

Totals : 3091.80371 276.23389

------ *** End of Report ***

Instrument 1 1/8/2013 8:33:18 PM Matt Mac

S23

Page 4 of 4

279

HPLC traces of compound 27

280

-300	-280	-260	-240	-220	-200	-180	-160	-140	-120	-100	-80	-60	-40	-20	0	20	
															and the second second		-230
															evine na superiore		-220
															Aleptermenteliser		-210
															سيابالبسمومه		-200
															di l'adhean ia dheanna		-190
															สารเราะสุปที่หมู่หมู		-180
															destrokt kitegenerature		-170
4 9.	851														surfit highware balance and		-160
															n dilan unda seda		-150
															فبالجازاة يعتملها ليقدمهم		-140 :27
63.	961		-												n hudstylinderinger		 -130 f1 (ppm) S
															le sur propriet presidente		-120
															lfrærst um tit en lyv		-110
															dariya ya katika da		-100
															a fulf-barrandamber ang		- - 06-
															الاستبليليسيا		- 8
					-ocH ₃	-									بإبارها والمعامل		. 02-
				•	Ţ	,									antinina disertation		- - 9
		ш	T.	ŢŢ.	∕_z-⊐ ⊢√	28									a Alfred Construction		-20
			Ľ	. «	_∕°										rd phrugaljer, withen		- 4
					H ₃ C										A MARKAN THE REPORT		-30

Data File C:\CHEM32\1\DATA\MATT MAC\SA-I-06000001.D Sample Name: run1

Instrument 1 1/9/2013 3:46:28 PM Matt Mac

Page 1 of 4

284

Data File C:\CHEM32\1\DATA\MATT MAC\SA-I-06000001.D Sample Name: run1

Instrument 1 1/9/2013 3:46:28 PM Matt Mac

S29

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\SA-I-06000001.D Sample Name: run1

HPLC traces of compound 28

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	80
1	14.332	BV	0.1353	1.37124e4	1463.69946	100.0000

Totals : 1.37124e4 1463.69946

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.332	BV	0.1354	1.39932e4	1492.83130	100.0000

Totals : 1.39932e4 1492.83130

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	14.333	BV	0.1830	2.61008e4	2190.66382	100.0000

Totals: 2.61008e4 2190.66382

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.333	BV	0.1573	2.27137e4	2185.28418	100.0000

Totals : 2.27137e4 2185.28418

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0,0
		-				()
1	14.332	BV	0.1345	1.10130e4	1183.79114	100.0000
Total	ls :			1.10130e4	1183.79114	

Instrument 1 1/9/2013 3:46:28 PM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\SA-I-06000001.D Sample Name: run1

HPLC traces of compound 28

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	14.332	BV	0.1345	1.10130e4	1183.79114	100.0000

Totals : 1.10130e4 1183.79114

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	14.333	BB	0.1388	1.58261e4	1666.54199	100.0000

Totals : 1.58261e4 1666.54199

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	14.332	BV	0.1344	9783.57031	1052.70361	100.0000
Total	ls :			9783.57031	1052.70361	

*** End of Report ***

Instrument 1 1/9/2013 3:46:28 PM Matt Mac

S31

Page 4 of 4

288

-230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 ppm S35 -120 -110 -100 -90 -80 -OCH₃ ЮH -70 -60 no L S H N -20 H₃CO -40 -30

97.011---

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9000006.D Sample Name: run1

Instrument 1 1/8/2013 4:02:20 PM Matt Mac

S36

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9000006.D Sample Name: run1 HPLC traces of compound **29**

Instrument 1 1/8/2013 4:02:20 PM Matt Mac

S37

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9000006.D Sample Name: run1

HPLC traces of compound 29

Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.914	BV	0.1192	1.93264e4	2528.52637	100.0000

Totals: 1.93264e4 2528.52637

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.914	BV	0.1185	1.93178e4	2547.96143	100.0000

Totals: 1.93178e4 2547.96143

Signal 3: DAD1 C, Sig=210,8 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.917	BV	0.1595	2.43604e4	2378.69629	100.0000

Totals: 2.43604e4 2378.69629

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90

Totals: 2.25143e4 2565.28882

Instrument 1 1/8/2013 4:02:20 PM Matt Mac

S38

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9000006.D Sample Name: run1

HPLC traces of compound 29

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.913	BV	0.1006	1.53996e4	2346.69971	100.0000

Totals: 1.53996e4 2346.69971

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.913	BV	0.1006	1.53996e4	2346.69971	100.0000

Totals: 1.53996e4 2346.69971

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.914	BV	0.1206	1.89096e4	2435.48779	100.0000

Totals: 1.89096e4 2435.48779

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				
1	12.913	BV	0.0976	1.38327e4	2135.87988	100.0000
Total	ls :			1.38327e4	2135.87988	

------ *** End of Report ***

Instrument 1 1/8/2013 4:02:20 PM Matt Mac

S39

Page 4 of 4

HRMS of compound 29

296

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-06000001.D Sample Name: run1

Instrument 1 1/9/2013 4:41:43 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-06000001.D Sample Name: run1 HDI C traces of

Instrument 1 1/9/2013 4:41:43 PM Matt Mac

S45

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-06000001.D Sample Name: run1

HPLC traces of compound 30

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak RetTime Typ # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 16.167 BV	0.0852	2759.49121	493.87103	100.0000
Totals :		2759.49121	493.87103	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	16.167	BV	0.0852	2894.88745	518.10498	100.0000

Totals : 2894.88745 518.10498

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.167	BV	0.0860	7422.78369	1312.45374	100.0000

Totals : 7422.78369 1312.45374

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.167	BV	0.0856	6530.87451	1161.71985	100.0000

Totals : 6530.87451 1161.71985

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	16.167	BV	0.0851	2305.04321	413.06256	100.0000
Total	s:			2305.04321	413.06256	

Instrument 1 1/9/2013 4:41:43 PM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\RH-I-06000001.D Sample Name: run1

HPLC traces of compound 30

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	16.167	BV	0.0851	2305.04321	413.06256	100.0000

Totals: 2305.04321 413.06256

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	16.167	BV	0.0852	3709.70337	663.46100	100.0000

Totals : 3709.70337 663.46100

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	୫
		-				
1	16.167	BV	0.0852	2500.62109	447.69040	100.0000
Total	s:			2500.62109	447.69040	

*** End of Report ***

Instrument 1 1/9/2013 4:41:43 PM Matt Mac

S47

Page 4 of 4

304

-100 -10 -95 06--85 -80 -75 -70 -65 -60 -55 -45 -50 ppm S51 -40 -35 -30 -25 -20 -15 -10 . ų 0 2 _ 0

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-33000001.D Sample Name: run1

HPLC traces of compound **31**

Instrument 1 1/10/2013 12:00:08 PM Matt Mac

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-33000001.D Sample Name: run1

Instrument 1 1/10/2013 12:00:08 PM Matt Mac

S53

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-33000001.D Sample Name: run1

HPLC traces of compound 31

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	14.707	BV	0.1464	2.17409e4	2383.37598	100.0000

Totals : 2.17409e4 2383.37598

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo .
1	14.703	BV	0.1489	2.21007e4	2411.10132	100.0000

Totals : 2.21008e4 2411.10132

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	14.703	BV	0.1598	2.59557e4	2230.39380	100.0000

Totals : 2.59557e4 2230.39380

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.700	BV	0.1769	2.63170e4	2418.76001	100.0000

Totals : 2.63170e4 2418.76001

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	14.703	BV	0.1372	2.00450e4	2357.87817	100.0000
Total	Ls :			2.00450e4	2357.87817	

Instrument 1 1/10/2013 12:00:08 PM Matt Mac

Page 3 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-33000001.D Sample Name: run1

HPLC traces of compound **31**

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.703	BV	0.1372	2.00450e4	2357.87817	100.0000

Totals : 2.00450e4 2357.87817

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1			0 1 5 7 5	0 0 1 0 0 7 1	0000 00000	100 0000

Totals : 2.24037e4 2303.29663

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.702	BV	0.1321	1.93282e4	2345.59521	 100.0000
Total	s:			1.93282e4	2345.59521	

*** End of Report ***

Instrument 1 1/10/2013 12:00:08 PM Matt Mac

312

S56

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 -80 -90 ppm S59 -70 -60 -50 40 -30 -20 -10 0 10 20 - 2

HPLC traces of compound **32**

Instrument 1 1/9/2013 11:54:47 PM Matt Mac

S60

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-32000001.D Sample Name: run1 HPLC traces of compound 32

Use Multiplier & Dilution Factor with ISTDs

Instrument 1 1/9/2013 11:54:47 PM Matt Mac

S61

Page 2 of 4

HPLC traces of compound 32

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	14.801	BV	0.1293	1.86964e4	2338.97241	100.0000

Totals : 1.86964e4 2338.97241

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.801	BV	0.1292	1.88715e4	2362.03735	100.0000

Totals : 1.88715e4 2362.03735

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	14.805	BV	0.1658	2.20478e4	2183.30298	100.0000

Totals : 2.20478e4 2183.30298

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.799	BV	0.1507	2.20887e4	2369.97437	100.0000

Totals : 2.20887e4 2369.97437

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
		-				
1	14.800	BV	0.1131	1.63461e4	2295.18311	100.0000
Total	s:			1.63461e4	2295.18311	

Instrument 1 1/9/2013 11:54:47 PM Matt Mac

Page 3 of 4

HPLC traces of compound **32**

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.800	BV	0.1131	1.63461e4	2295.18311	100.0000

Totals : 1.63461e4 2295.18311

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	14.800	BV	0.1317	1.84678e4	2251.13892	100.0000

Totals : 1.84678e4 2251.13892

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	14.800	BV	0.1063	1.49695e4	2231.31665	100.0000
Total	s:			1.49695e4	2231.31665	

*** End of Report ***

Instrument 1 1/9/2013 11:54:47 PM Matt Mac

S63

Page 4 of 4

HRMS of compound 32

320

Instrument 1 1/8/2013 11:20:21 PM Matt Mac

Page 1 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\PSH-I-48000001.D Sample Name: run1 HPLC traces of compound **33**

Instrument 1 1/8/2013 11:20:21 PM Matt Mac

S68

Page 2 of 5

HPLC traces of compound 33

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	8.952	BV	0.1133	1.74400e4	2503.49414	90.6932
2	10.507	BB	0.1183	610.17493	70.97384	3.1731
3	12.625	VV	0.0842	406.46713	73.85258	2.1138
4	13.837	VV	0.1047	393.10352	54.14516	2.0443
5	14.778	BV	0.1371	379.91687	43.85746	1.9757
Total	s:			1.92296e4	2746.32318	

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.952	BV	0.1130	1.75295e4	2525.12695	90.7013
2	10.507	BB	0.1182	618.83783	72.06956	3.2020
3	12.625	VV	0.0841	405.30692	73.71142	2.0971
4	13.837	VV	0.1050	394.96179	54.20537	2.0436
5	14.779	BV	0.1377	378.02029	43.34686	1.9560

Totals : 1.93266e4 2768.46016

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	8.950	BV	0.1577	2.28634e4	2345.01953	83.7926
2	10.507	BV	0.0861	1096.52075	187.73811	4.0187
3	12.624	VV	0.0843	1212.12024	219.94164	4.4423
4	13.838	BV	0.1033	1167.94214	163.60349	4.2804
5	14.781	BV	0.1384	945.71265	107.69555	3.4660

Totals : 2.72857e4 3023.99831

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.953	BV	0.1354	2.11507e4	2534.16040	87.2935
2	10.507	BB	0.1178	1058.27429	123.76330	4.3677

Instrument 1 1/8/2013 11:20:21 PM Matt Mac

S69

Page 3 of 5

HPLC traces of compound 33

Peak RetTim	е Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	olo
	-				
3 12.62	4 VV	0.0846	639.06421	115.47739	2.6376
4 13.83	8 BV	0.1035	740.73499	103.53637	3.0572
5 14.77	6 BV	0.1350	640.64758	75.48686	2.6441

Totals :	2.42294e4	2952.42432
----------	-----------	------------

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.952	BV	0.1131	1.71869e4	2472.61279	90.5848
2	10.507	BV	0.0859	419.13235	72.05910	2.2091
3	12.625	VV	0.0840	451.04239	82.25859	2.3773
4	13.838	BV	0.1015	549.10632	78.58857	2.8941
5	14.793	BV	0.1445	367.09229	40.21583	1.9348
Total	s:			1.89733e4	2745.73488	

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.952	BV	0.1131	1.71869e4	2472.61279	90.5848
2	10.507	BV	0.0859	419.13235	72.05910	2.2091
3	12.625	VV	0.0840	451.04239	82.25859	2.3773
4	13.838	BV	0.1015	549.10632	78.58857	2.8941
5	14.793	BV	0.1445	367.09229	40.21583	1.9348

Totals : 1.89733e4 2745.73488

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.952	BV	0.1265	1.91870e4	2420.31030	89.6657
2	10.507	BB	0.1181	743.72498	86.64207	3.4756
3	12.625	VB	0.0835	472.35669	86.76642	2.2074
4	13.838	VV	0.1002	582.41565	84.67338	2.7218
5	14.777	BV	0.1360	412.87323	48.15561	1.9295

Totals: 2.13983e4 2726.54778

Instrument 1 1/8/2013 11:20:21 PM Matt Mac

Page 4 of 5

HPLC traces of compound 33

*** End of Report ***

Instrument 1 1/8/2013 11:20:21 PM Matt Mac

HRMS of compound 33

328

HPLC traces of compound **34**

Instrument 1 1/8/2013 8:58:28 AM Matt Mac

Page 1 of 4

331

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-8600002.D Sample Name: run1

Instrument 1 1/8/2013 8:58:28 AM Matt Mac

S76

Page 2 of 4

HPLC traces of compound 34

Signal 1: DAD1 A, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.133	BB	0.0810	2210.16919	409.56378	100.0000

Totals: 2210.16919 409.56378

Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.133	BB	0.0810	2210.16919	409.56378	100.0000

Totals: 2210.16919 409.56378

Signal 3: DAD1 C, Sig=210,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.133	VB	0.0817	6658.21045	1218.85291	100.0000

Totals : 6658.21045 1218.85291

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00

Totals: 5278.77148 970.38177

Instrument 1 1/8/2013 8:58:28 AM Matt Mac

S77

Page 3 of 4

HPLC traces of compound 34

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1	11.133	 ВВ	0.0809	 2644.89453	490.63278	 100.0000

Totals: 2644.89453 490.63278

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.133	BB	0.0809	2644.89453	490.63278	100.0000

Totals : 2644.89453 490.63278

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.133	BV	0.0816	3745.30640	686.99261	100.0000

Totals: 3745.30640 686.99261

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.133	BV	0.0815	2904.22461	533.46991	100.0000

Totals : 2904.22461 533.46991

------ *** End of Report ***

Instrument 1 1/8/2013 8:58:28 AM Matt Mac

S78

Page 4 of 4

HPLC traces of compound 35

```
Acq. Operator : Matt Mac

Acq. Instrument : Instrument 1 Location : -

Injection Date : 1/25/2013 3:29:20 PM

Acq. Method : C:\CHEM32\1\METHODS\MASTERMETHOD.M

Last changed : 1/25/2013 3:22:08 PM by Matt Mac

Analysis Method : C:\CHEM32\1\DATA\MATT MAC\MTM-V-58000002.D\DA.M (MASTERMETHOD.M)

Last changed : 1/25/2013 4:52:52 PM by Matt Mac

Sample Info :
```


Instrument 1 1/25/2013 4:54:21 PM Matt Mac

S82

Page 1 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-58000002.D Sample Name: run1 HPLC traces of compound 35

Instrument 1 1/25/2013 4:54:21 PM Matt Mac

Page 2 of 5

HPLC traces of compound 35

	2	Area Percen	t Report ======	
Sorted By Multiplier Dilution Use Multiplier & E	: : vilution	Signal 1.0000 1.0000 Factor with	n ISTDs	
Signal 1: DAD1 A,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.670 BV 2 12.663 BV	0.1366 0.1233	2.06994e4 669.79010	2400.60474 77.10614	96.8656 3.1344
Fotals :		2.13692e4	2477.71088	
Signal 2: DAD1 B, Peak RetTime Type # [min]	Sig=254, Width [min]	,16 Ref=off Area [mAU*s]	Height [mAU]	Area %
1 11.672 BV 2 12.663 BV	0.1390 0.1241	2.09971e4 664.80243	 2425.36963 75.93778	96.9310 3.0690
Totals :		2.16619e4	2501.30741	
Signal 3: DAD1 C,	Sig=210,	,8 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.684 BV 2 12.663 BV	0.1768 0.1273	2.49809e4 1225.71509	2228.70850 135.74158	95.3229 4.6771
Totals :		2.62066e4	2364.45007	
Signal 4: DAD1 D,	Sig=230,	,16 Ref=off		
	Width	Area	Height	Area
Peak RetTime Type # [min] 	[min]	[mAU*s]	[mau] 	

Page 3 of 5

HPLC traces of compound 35

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
Total	Ls :			2.43920e4	2516.60730	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	11.673	BV	0.1442	2.16120e4	2373.22510	97.4647
2	12.663	BV	0.1249	562.18378	63.75766	2.5353

Totals : 2.21741e4 2436.98276

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.673	BV	0.1442	2.16120e4	2373.22510	97.4647
2	12.663	BV	0.1249	562.18378	63.75766	2.5353

Totals : 2.21741e4 2436.98276

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	20
1	11.672	BV	0.1341	1.95065e4	2319.21680	96.0807
2	12.663	BV	0.1414	795.70215	76.45817	3.9193

Totals: 2.03022e4 2395.67496

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.670	BV	0.1026	1.46092e4	2224.54712	97.2378
2	12.663	BV	0.1257	415.00085	45.78540	2.7622

Totals : 1.50242e4 2270.33252

Instrument 1 1/25/2013 4:54:21 PM Matt Mac

S85

Page 4 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-58000002.D D11-Sample Name: run1

HPLC traces of compound 35

*** End of Report ***

Instrument 1 1/25/2013 4:54:21 PM Matt Mac

S86

Page 5 of 5

HRMS of compound 35

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-63000003.D Sample Name: run1

HPLC traces of compound **36**

Instrument 1 3/4/2013 2:27:28 PM Matt Mac

S90

Page 1 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-63000003.D Sample Name: run1 HPLC traces of compound **36**

Instrument 1 3/4/2013 2:27:28 PM Matt Mac

S91

Page 2 of 4

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-63000003.D Sample Name: run1

HPLC traces of compound 36

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.452	VV	0.0809	2782.00977	516.37561	100.0000

Totals : 2782.00977 516.37561

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	11.452	VV	0.0809	2812.19629	521.91907	100.0000

Totals: 2812.19629 521.91907

Signal 3: DAD1 C, Sig=210,8 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	11.452	BV	0.0858	7160.16650	1269.44250	100.0000

Totals : 7160.16650 1269.44250

Signal 4: DAD1 D, Sig=230,16 Ref=off

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	90
1 11.452 VV	0.0813	5182.18311	954.98956	100.0000
Totals :		5182.18311	954.98956	

Signal 5: DAD1 E, Sig=280,16 Ref=off

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	90
		-		
1 11.452 VV	0.0809	3076.47729	570.49207	100.0000
Totals :		3076.47729	570.49207	

Instrument 1 3/4/2013 2:27:28 PM Matt Mac

Page 3 of 4
Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-63000003.D Sample Name: run1

HPLC traces of compound 36

Signal 6: DAD1 F, Sig=280,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.452	VV	0.0809	3076.47729	570.49207	100.0000

Totals: 3076.47729 570.49207

Signal 7: DAD1 G, Sig=300,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ojo
1	11.452	VV	0.0809	3278.34961	607.59808	100.0000

Totals : 3278.34961 607.59808

Signal 8: DAD1 H, Sig=320,16 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		·				
1	11.452	VV	0.0808	1831.79126	340.07983	100.0000
Total	ls :			1831.79126	340.07983	

*** End of Report ***

Instrument 1 3/4/2013 2:27:28 PM Matt Mac

S93

Page 4 of 4

HRMS of compound 36

350

X-ray Crystallographic Analysis:

X-ray crystallographic analysis of compound 10.^{S1} Crystallographic data were collected on a crystal of 10 with dimensions $0.27 \ge 0.15 \ge 0.13 \text{ mm}^3$. Data were collected at 110 K on a Bruker X8 Apex using Mo KR radiation ($\lambda = 0.71073 \text{ Å}$). The structure was solved by direct methods after correction of the data using SADABS. Crystallographic data and refinement details for the complex mentioned herein is found in the Supporting Information (Table S1-S4). The thermal ellipsoid plots at 50% probability for compound 10 is displayed in Figure S1. All data were processed using the Bruker AXS SHELXTL software, version 6.10.

Figure S1. X-ray crystallography of compound 10.

Table S1. Crystal data and structure refinement for 10.

Identification code	kp50			
Empirical formula	C22 H29 N O3 Si			
Formula weight	383.55			
Temperature	110(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 7.3314(5) Å	$\Box = 97.114(2)^{\circ}.$		
	b = 9.6558(5) Å	$\Box = 94.927(2)^{\circ}.$		
	c = 15.1609(9) Å	$\Box = 99.888(2)^{\circ}.$		
Volume	1042.84(11) Å ³			
Z	2			
Density (calculated)	1.221 Mg/m ³			
Absorption coefficient	0.134 mm ⁻¹			
F(000)	412			
Crystal size	0.27 x 0.15 x 0.13 mm ³			
Theta range for data collection	1.36 to 26.37°.			
Index ranges	-9<=h<=9, -8<=k<=12, -18<=l<=18			
Reflections collected	17172			
Independent reflections	4231 [R(int) = 0.0490]			
Completeness to theta = 26.37°	99.2 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.9823 and 0.9647			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	4231 / 0 / 255			
Goodness-of-fit on F ²	1.037			
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.1042			
R indices (all data)	R1 = 0.0564, $wR2 = 0.1142$			
Largest diff. peak and hole	0.340 and -0.313 e.Å ⁻³			

	х	у	Z	U(eq)	
Si(1)	4713(1)	9097(1)	1851(1)	21(1)	
O(1)	4220(2)	7418(1)	2037(1)	26(1)	
O(2)	3856(2)	6872(1)	191(1)	28(1)	
O(3)	768(2)	2922(1)	6726(1)	28(1)	
N(1)	2658(2)	5171(2)	2980(1)	20(1)	
C(1)	3300(2)	6151(2)	1571(1)	20(1)	
C(2)	3079(2)	5808(2)	644(1)	21(1)	
C(3)	2156(2)	4453(2)	238(1)	23(1)	
C(4)	1451(2)	3422(2)	740(1)	23(1)	
C(5)	1660(2)	3736(2)	1675(1)	20(1)	
C(6)	2594(2)	5099(2)	2067(1)	19(1)	
C(7)	1117(2)	2997(2)	2405(1)	20(1)	
C(8)	1734(2)	3898(2)	3191(1)	20(1)	
C(9)	1561(2)	3677(2)	4120(1)	19(1)	
C(10)	443(2)	2452(2)	4313(1)	23(1)	
C(11)	226(2)	2227(2)	5182(1)	25(1)	
C(12)	1118(2)	3234(2)	5895(1)	22(1)	
C(13)	2259(2)	4445(2)	5724(1)	25(1)	
C(14)	2468(2)	4661(2)	4844(1)	24(1)	
C(15)	3613(3)	6623(2)	-762(1)	27(1)	
C(16)	1662(3)	3927(2)	7474(1)	29(1)	
C(17)	6965(3)	9383(2)	1362(1)	34(1)	
C(18)	2779(3)	9591(2)	1155(1)	33(1)	
C(19)	4968(2)	10083(2)	3024(1)	23(1)	
C(20)	3072(3)	9877(2)	3394(1)	31(1)	
C(21)	6344(3)	9509(2)	3636(1)	32(1)	
C(22)	5653(3)	11685(2)	3021(1)	28(1)	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **10**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Si(1)-O(1)	1.6635(12)
Si(1)-C(18)	1.8580(19)
Si(1)-C(17)	1.860(2)
Si(1)-C(19)	1.8879(18)
O(1)-C(1)	1.367(2)
O(2)-C(2)	1.375(2)
O(2)-C(15)	1.426(2)
O(3)-C(12)	1.367(2)
O(3)-C(16)	1.428(2)
N(1)-C(6)	1.374(2)
N(1)-C(8)	1.386(2)
C(1)-C(2)	1.393(2)
C(1)-C(6)	1.393(2)
C(2)-C(3)	1.404(2)
C(3)-C(4)	1.384(2)
C(4)-C(5)	1.403(2)
C(5)-C(6)	1.407(2)
C(5)-C(7)	1.437(2)
C(7)-C(8)	1.377(2)
C(8)-C(9)	1.464(2)
C(9)-C(14)	1.396(2)
C(9)-C(10)	1.396(2)
C(10)-C(11)	1.379(2)
C(11)-C(12)	1.394(2)
C(12)-C(13)	1.382(2)
C(13)-C(14)	1.392(2)
C(19)-C(21)	1.532(2)
C(19)-C(20)	1.534(2)
C(19)-C(22)	1.543(2)
O(1)-Si(1)-C(18)	111.85(8)
O(1)-Si(1)-C(17)	108.82(8)
C(18)-Si(1)-C(17)	113.09(9)
O(1)-Si(1)-C(19)	101.50(7)

Table S3. Bond lengths [Å] and angles [°] for 10.

C(18)-Si(1)-C(19)	110.31(8)
C(17)-Si(1)-C(19)	110.67(9)
C(1)-O(1)-Si(1)	136.84(11)
C(2)-O(2)-C(15)	118.03(14)
C(12)-O(3)-C(16)	117.14(14)
C(6)-N(1)-C(8)	109.35(14)
O(1)-C(1)-C(2)	125.36(15)
O(1)-C(1)-C(6)	117.24(15)
C(2)-C(1)-C(6)	117.35(15)
O(2)-C(2)-C(1)	114.75(15)
O(2)-C(2)-C(3)	124.85(15)
C(1)-C(2)-C(3)	120.38(16)
C(4)-C(3)-C(2)	121.61(16)
C(3)-C(4)-C(5)	119.27(16)
C(4)-C(5)-C(6)	118.14(16)
C(4)-C(5)-C(7)	135.97(16)
C(6)-C(5)-C(7)	105.88(14)
N(1)-C(6)-C(1)	128.28(15)
N(1)-C(6)-C(5)	108.47(15)
C(1)-C(6)-C(5)	123.25(15)
C(8)-C(7)-C(5)	108.16(15)
C(7)-C(8)-N(1)	108.11(14)
C(7)-C(8)-C(9)	130.51(15)
N(1)-C(8)-C(9)	121.37(15)
C(14)-C(9)-C(10)	117.27(16)
C(14)-C(9)-C(8)	122.51(15)
C(10)-C(9)-C(8)	120.22(15)
C(11)-C(10)-C(9)	121.54(16)
C(10)-C(11)-C(12)	120.31(16)
O(3)-C(12)-C(13)	125.15(16)
O(3)-C(12)-C(11)	115.49(15)
C(13)-C(12)-C(11)	119.35(16)
C(12)-C(13)-C(14)	119.81(16)
C(13)-C(14)-C(9)	121.69(16)
C(21)-C(19)-C(20)	108.49(15)
C(21)-C(19)-C(22)	109.60(15)

S99

C(20)-C(19)-C(22)	108.58(14)
C(21)-C(19)-Si(1)	110.38(12)
C(20)-C(19)-Si(1)	109.42(12)
C(22)-C(19)-Si(1)	110.33(12)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
 Si(1)	27(1)	19(1)	17(1)	4(1)	5(1)	3(1)	
O(1)	41(1)	18(1)	16(1)	1(1)	1(1)	-1(1)	
O(2)	43(1)	25(1)	16(1)	4(1)	6(1)	1(1)	
O(3)	38(1)	27(1)	16(1)	2(1)	5(1)	2(1)	
N(1)	26(1)	17(1)	16(1)	1(1)	1(1)	1(1)	
C(1)	22(1)	18(1)	20(1)	1(1)	2(1)	4(1)	
C(2)	24(1)	22(1)	18(1)	4(1)	4(1)	6(1)	
C(3)	26(1)	26(1)	16(1)	-1(1)	0(1)	7(1)	
C(4)	25(1)	23(1)	20(1)	-2(1)	0(1)	4(1)	
C(5)	21(1)	20(1)	20(1)	1(1)	2(1)	5(1)	
C(6)	21(1)	21(1)	17(1)	2(1)	2(1)	7(1)	
C(7)	22(1)	18(1)	21(1)	2(1)	2(1)	2(1)	
C(8)	18(1)	19(1)	22(1)	5(1)	2(1)	4(1)	
C(9)	20(1)	20(1)	20(1)	4(1)	1(1)	5(1)	
C(10)	26(1)	21(1)	21(1)	0(1)	3(1)	0(1)	
C(11)	29(1)	22(1)	22(1)	4(1)	6(1)	0(1)	
C(12)	25(1)	24(1)	19(1)	5(1)	5(1)	8(1)	
C(13)	28(1)	24(1)	20(1)	0(1)	-1(1)	2(1)	
C(14)	28(1)	20(1)	23(1)	5(1)	0(1)	0(1)	
C(15)	34(1)	32(1)	15(1)	6(1)	4(1)	8(1)	
C(16)	37(1)	33(1)	17(1)	1(1)	1(1)	8(1)	
C(17)	39(1)	33(1)	33(1)	6(1)	15(1)	4(1)	
C(18)	42(1)	33(1)	23(1)	3(1)	0(1)	11(1)	
C(19)	28(1)	19(1)	20(1)	3(1)	2(1)	2(1)	
C(20)	39(1)	31(1)	24(1)	2(1)	12(1)	4(1)	
C(21)	44(1)	24(1)	24(1)	4(1)	-5(1)	3(1)	
C(22)	34(1)	20(1)	28(1)	3(1)	2(1)	4(1)	

Table S4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **10**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

S1. Crystallographic data for structure **10** (deposition number CCDC 935741) reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0) 1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

APPENDIX D

Indole-based Bioreductively Activatable Prodrug Conjugates

¹ H NMR of compound 4	
¹³ C NMR of compound 4	
¹ H NMR of compound 6	
¹³ C NMR of compound 6	
¹ H NMR of compound 7	
¹³ C NMR of compound 7	
¹ H NMR of compound 8	
¹³ C NMR of compound 8	
HPLC of compound 8	
HRMS of compound 8	
¹ H NMR of compound 9	
¹³ C NMR of compound 9	
HPLC of compound 9	
HRMS of compound 9	
¹ H NMR of compound 10	
¹³ C NMR of compound 10	
HPLC of compound 10	
HRMS of compound 10	

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9500035.D Sample Name: run1

		==					
Acq. Op	erator	:	Matt Mac				
Acq. In	strument	:	Instrument 1 Location : -				
Injecti	on Date	:	8/31/2012 5:23:34 PM				
Acq. Me	thod	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M				
Last ch	anged	:	8/31/2012 5:17:17 PM by Matt Mac				
			(modified after loading)				
Analysi	s Method	:	C:\CHEM32\1\DATA\MATT MAC\MTM-III-9500035.D\DA.M (MASTERMETHOD.M)				
Last ch	anged	:	8/31/2012 6:13:49 PM by Matt Mac				
Sample	Info	:					

Instrument 1 8/31/2012 6:18:25 PM Matt Mac

Page 1 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9500035.D Sample Name: run1

Instrument 1 8/31/2012 6:18:25 PM Matt Mac

Page 2 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9500035.D Sample Name: run1

	Area Percent	Report	
Sorted By : Multiplier : Dilution : Use Multiplier & Dilution	Signal 1.0000 1.0000 Factor with	1 ISTDs	
Signal 1: DAD1 A, Sig=254 Signal has been modified	,4 Ref=off after loadi	ng from raw.	data file!
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.214 VV 0.1001 2 16.536 BV 0.1007	6063.56348 1140.43201	929.57355 173.51051	84.1695 15.8305
Totals :	7203.99548	1103.08406	
Signal 2: DAD1 B, Sig=254 Signal has been modified	,16 Ref=off after loadi	ng from raw	data file!
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.214 VV 0.1001 2 16.536 BV 0.1008	6153.04248 1153.86731	943.16779 175.39597	84.2085 15.7915
Totals :	7306.90979	1118.56375	
Signal 3: DAD1 C, Sig=210 Signal has been modified	,8 Ref=off after loadi	ng from raw	data file!
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.215 VV 0.1076 2 16.536 BV 0.1009	1.52843e4 3009.93872	2184.93066 456.42361	83.5471 16.4529

Totals : 1.82942e4 2641.35428

Instrument 1 8/31/2012 6:18:25 PM Matt Mac

Page 3 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-III-9500035.D Sample Name: run1

Signal 4: DAD1 D, Sig=230,16 Ref=off Signal has been modified after loading from rawdata file!

Totals: 1.31859e4 1978.62442

Signal 5: DAD1 E, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	15.215	VV	0.1002	7223.75781	1105.92590	84.6893
2	16.536	BV	0.1009	1305.95715	198.03979	15.3107

Totals : 8529.71497 1303.96570

Signal 6: DAD1 F, Sig=280,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	15.215	VV	0.1002	7223.75781	1105.92590	84.6893
2	16.536	BV	0.1009	1305.95715	198.03979	15.3107

Totals : 8529.71497 1303.96570

Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	15.215	VV	0.1007	9901.29590	1506.61536	83.6760
2	16.536	BV	0.1067	1931.59778	272.64737	16.3240

Totals: 1.18329e4 1779.26273

Instrument 1 8/31/2012 6:18:25 PM Matt Mac

Page 4 of 5

*** End of Report ***

Instrument 1 8/31/2012 6:18:25 PM Matt Mac

Page 5 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D Sample Name: run1

	==:	
Acq. Operator	:	Matt Mac
Acq. Instrument	:	Instrument 1 Location : -
Injection Date	:	8/31/2012 3:34:49 PM
Acq. Method	:	C:\CHEM32\1\METHODS\MASTERMETHOD.M
Last changed	:	8/31/2012 3:29:16 PM by Matt Mac
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D\DA.M (MASTERMETHOD.M)
Last changed	:	8/31/2012 4:27:39 PM by Matt Mac
Sample Info	:	

Instrument 1 8/31/2012 4:28:54 PM Matt Mac

Page 1 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D Sample Name: run1

Instrument 1 8/31/2012 4:28:54 PM Matt Mac

Page 2 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D Sample Name: run1

Area Percent Report						
Sorted By : Multiplier : Dilution : Use Multiplier & Dilution	Signal 1.0000 1.0000 n Factor with ISTDs					
Signal 1: DAD1 A, Sig=254 Signal has been modified	1,4 Ref=off d after loading from rawdata file!					
Peak RetTime Type Width # [min] [min]	Area Height Area [mAU*s] [mAU] %					
1 15.729 VB 0.1049	9 9837.97559 1454.12830 100.0000					
Totals :	9837.97559 1454.12830					
Signal 2: DAD1 B, Sig=254 Signal has been modified	4,16 Ref=off d after loading from rawdata file!					
Peak RetTime Type Width # [min] [min]	Area Height Area [mAU*s] [mAU] %					
1 15.729 VV 0.1053	L 1.00002e4 1474.76697 100.0000					
Totals :	1.00002e4 1474.76697					
Signal 3: DAD1 C, Sig=210 Signal has been modified Peak RetTime Type Width # [min] [min]),8 Ref=off d after loading from rawdata file! Area Height Area [mAU*s] [mAU] %					
2 15.730 VB 0.1372	2 2.09122e4 2459.61768 99.9447					
Totals :	2.09238e4 2461.86769					
Signal 4: DAD1 D, Sig=230 Signal has been modified),16 Ref=off d after loading from rawdata file!					

Instrument 1 8/31/2012 4:28:54 PM Matt Mac

Page 3 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D Sample Name: run1

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.730 VB	0.1188	1.70194e4	2288.63818	100.0000
Totals :		1.70194e4	2288.63818	
Signal 5: DAD1 E, Signal has been mo	Sig=280, odified	,16 Ref=off after load	ing from rav	vdata file!
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.729 VV	0.1056	1.14876e4	1684.72949	100.0000
Totals :		1.14876e4	1684.72949	
Signal 6: DAD1 F, Signal has been mo	Sig=280, odified	,16 Ref=off after load	ing from rav	vdata file!
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 15.729 VV	0.1056	1.14876e4	1684.72949	100.0000
Totals :		1.14876e4	1684.72949	
Signal 7: DAD1 G, Signal has been mo	Sig=300, odified	,16 Ref=off after load	ing from rav	vdata file!
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 15.730 VV	0.1105	1.52888e4	2162.58813	100.0000

Totals : 1.52888e4 2162.58813

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	15.730	VV	0.1062	1.27597e4	1855.55859	100.0000

Instrument 1 8/31/2012 4:28:54 PM Matt Mac

Page 4 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-IV-74000033.D Sample Name: run1

Totals : 1.27597e4 1855.55859

*** End of Report ***

Instrument 1 8/31/2012 4:28:54 PM Matt Mac

Page 5 of 5

Data File C:\CHEM32\1\DATA\MATT MAC\MTM-V-23000031.D Sample Name: run1

		==			====		===
Acq. Oper	ator	:	Matt Mac				
Acq. Inst	rument	:	Instrument 1	Location	:	-	
Injection	Date	:	8/31/2012 1:46:10 PM				
Acq. Meth	od	:	C:\CHEM32\1\METHODS\MASTERMETHO	D.M			
Last chan	ged	:	8/31/2012 1:44:19 PM by Matt Ma	с			
			(modified after loading)				
Analysis	Method	:	C:\CHEM32\1\DATA\MATT MAC\MTM-V	-23000031.	D∖D₽	A.M	(MASTERMETHOD.M)
Last chan	ged	:	8/31/2012 2:39:30 PM by Matt Ma	с			
Sample In	fo	:					

Instrument 1 8/31/2012 2:41:38 PM Matt Mac

Page 1 of 5

Instrument 1 8/31/2012 2:41:38 PM Matt Mac

Page 2 of 5

Area Percent Report				
Sorted By : Multiplier : Dilution : Use Multiplier & Dilution	Signal 1.0000 1.0000 Factor wit	h ISTDs		
Signal 1: DAD1 A, Sig=254,4 Ref=off Signal has been modified after loading from rawdata file!				
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %	
1 16.374 VB 0.1033	1.45361e4	2137.30200	100.0000	
Totals :	1.45361e4	2137.30200		
Signal 2: DAD1 B, Sig=254,16 Ref=off Signal has been modified after loading from rawdata file!				
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %	
1 16.374 VB 0.1036	1.47351e4	2160.42700	100.0000	
Totals :	1.47351e4	2160.42700		
Signal 3: DAD1 C, Sig=210 Signal has been modified	,8 Ref=off after load	ing from raw	vdata file!	
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %	
1 16.374 VB 0.1635	2.48179e4	2463.75830	100.0000	
Totals :	2.48179e4	2463.75830		
Signal 4: DAD1 D, Sig=230 Signal has been modified	,16 Ref=off after load	ing from rav	vdata file!	

Instrument 1 8/31/2012 2:41:38 PM Matt Mac

Page 3 of 5

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 16.375 VB	0.1348	2.20597e4	2606.19116	100.0000	
Totals :		2.20597e4	2606.19116		
Signal 5: DAD1 E, S Signal has been mo	Sig=280, odified	,16 Ref=off after load:	ing from rav	vdata file!	
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 16.375 VB	0.1087	1.67091e4	2357.75903	100.0000	
Totals :		1.67091e4	2357.75903		
Signal 6: DAD1 F, S Signal has been mo Peak RetTime Type # [min]	Sig=280, odified Width [min]	,16 Ref=off after load: Area [mAU*s]	ing from rav Height [mAU]	vdata file! Area %	
1 16.375 VB	0.1087	1.67091e4	2357.75903	100.0000	
Totals :		1.67091e4	2357.75903		
Signal 7: DAD1 G, Sig=300,16 Ref=off Signal has been modified after loading from rawdata file! Peak RetTime Type Width Area Height Area					
# [min]	[min]	[mAU*s]	[mAU]	%	
1 16.375 VB	0.1275	2.01742e4	2516.56909	100.0000	
Totals :		2.01742e4	2516.56909		

Signal 8: DAD1 H, Sig=320,16 Ref=off Signal has been modified after loading from rawdata file!

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.375	VB	0.1163	1.81833e4	2458.02002	100.0000

Instrument 1 8/31/2012 2:41:38 PM Matt Mac

Page 4 of 5

Totals : 1.81833e4 2458.02002

*** End of Report ***

Instrument 1 8/31/2012 2:41:38 PM Matt Mac

Page 5 of 5

APPENDIX E

Mechanisms of Heterocyclic Ring Formation

¹ H NMR of compound 2	
¹³ C NMR of compound 2	
¹ H NMR of compound 3	
¹³ C NMR of compound 3	
¹ H NMR of compound 4	
¹³ C NMR of compound 4	
¹ H NMR of compound 5	401
¹³ C NMR of compound 5	
¹ H NMR of compound 6	404
¹³ C NMR of compound 6	
¹ H NMR of compound 8	407
¹³ C NMR of compound 8	
DEPT ¹³ C NMR of compound 8	410
¹ H NMR of compound 10	411
¹³ C NMR of compound 10	412
DEPT ¹³ C NMR of compound 10	414
¹ H NMR of compound 11	415
¹³ C NMR of compound 11	416
DEPT ¹³ C NMR of compound 11	417

¹ H NMR of compound 13	418
¹³ C NMR of compound 13	419
DEPT ¹³ C NMR of compound 13	421
¹ H NMR of compound 14	
¹³ C NMR of compound 14	
DEPT ¹³ C NMR of compound 14	

-10

OCH3

Nyarejuniki nisiri di Mijuri Payani kati puterin Ministruch meningkeh (turu -10 ppm sing or the state of the state H₃co her by the sector of the her the sector of the

16.92 91.77 14.77

-140.13

CH3

-10

APPENDIX F

Deuterium Labeled Indole Attempt

Scheme 1	
Experimental	
¹ H NMR of compound 3	
¹³ C NMR of compound 3	
¹ H NMR of compound 4	
¹³ C NMR of compound 4	
¹ H NMR of compound 5	
¹³ C NMR of compound 5	
¹ H NMR of compound 6	
¹³ C NMR of compound 6	
¹ H NMR of compound 8	
¹³ C NMR of compound 8	
DEPT ¹³ C NMR of compound 8	

Scheme 1. Synthetic attempt to D-labeled indole 8.

General Section

CH₂Cl₂, THF, EtOH, and Et₂O were used in their anhydrous forms as obtained from the chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen gas, unless specified otherwise. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system (Biotage Isolera 1 or 4) using silica gel (200-400 mesh, 60 Å) prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz), ¹³C NMR (125 MHz), and DEPT ¹³C NMR (125 MHz) spectroscopic data using a Varian VNMRS 500 MHz instrument. Spectra were recorded in CDCl₃. All of the chemical shifts are expressed in ppm (δ), coupling constants (*J*) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), doublet (dd), doublet of quartets (dq), quartet (q), and multiplet (m).

3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde 2

To a clean dry round bottom flask 3-hydroxy-4-methoxybenaldehyde 1 (25.0 g, 164 mmol) was dissolved in CH_2Cl_2 (250 mL). The solution was cooled to 0 °C and Et_3N (25.2 mL, 181 mmol) was added followed by the addition of *N*,*N*-dimethylaminopyridine (DMAP) (2.01 g, 16.4 mmol). The reaction mixture was stirred for 10 min and *tert*-butyldimethylsilyl chloride (TBSCl) (27.3 g, 181 mmol) was added gradually. The solution was allowed to warm to room temperature and was stirred for 12 hrs. The reaction was diluted with water (150 mL), transferred to a separatory funnel, and was extracted with CH_2Cl_2 . The organic extracts were combined, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The TBS benzaldehyde product **2** (47.1 g, 177 mmol) was isolated quantitatively as a yellow oil and was taken to the next step without further purification.

¹**H** NMR (CDCl₃, 500 MHz): δ 9.80 (s, 1H, C<u>H</u>O), 7.45 (dd, *J* = 8.5 Hz, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 7.35 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 6.93 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 3.87 (s, 3H, OC<u>H₃</u>), 0.99 (s, 9H, C(CH₃)₃), 0.16 (s, 6H, Si(CH₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 55.1, 25.3, 18.0, -5.0.

3-tert-Butyldimethylsilyloxy-1-(1'-hydroxyethyl)-4-methoxybenzene 3 Crude TBS benzaldehyde 2 (2.00 g, 7.52 mmol) was dissolved in dry tetrahydrofuran (50 mL) and was cooled to 0 °C under nitrogen. Once at 0 °C, CD₃Li (19.5 mL, 9.77 mmol) was added dropwise and the solution was then allowed to come to room temperature while stirring for 12 hrs. Upon completion, the reaction was slowly quenched with water and the organic layers were extracted with EtOAc. The extracted layers were then dried over Na₂SO₄, filtered, and concentrated under reduced pressure resulting in alcohol **3** (1.70 g, 5.95 mmol, 79%, $R_f = 0.47$ (70:30 hexanes:EtOAc)) as a yellow oil which was taken to the next step without further purification.

¹H NMR (CDCl₃, 500 MHz): δ 6.86 (m, 2H, Ar<u>H</u>), 6.78 (m, 1H, Ar<u>H</u>), 4.71 (s, 1H, C<u>H</u>),
3.76 (s, 3H, OC<u>H₃</u>), 2.51 (s, 1H, O<u>H</u>), 1.01 (s, 9H, (C<u>H₃</u>)₃), 0.16 (s, 6H, Si(C<u>H₃</u>)₂).
¹³C NMR (CDCl₃, 125 MHz): δ 150.2, 144.9, 138.8, 118.6, 118.3, 112.0, 69.6, 55.5,

3-tert-Butyldimethylsilylox)-4-methoxyacetophenone 4

25.8, 18.5, -4.6.

The crude alcohol **3** (1.50 g, 5.25 mmol) was dissolved in anhydrous CH_2Cl_2 (50 mL). Celite (5 g) was added and the solution was then cooled to 0 °C in an ice bath under nitrogen. Once at 0 °C, pyridiniumchlorochromate (PCC) (1.25 g, 5.82 mmol) was added in small increments allowing 10 minutes of stirring between each addition. The reaction was then allowed to warm to room temperature and stirred for 12 hrs. Upon completion the reaction mixture was filtered through through a 50/50 mixture of silica gel/celite rinsing well with CH_2Cl_2 . The filtrate was then concentrated under reduced pressure providing the desired acetophenone **4** (1.29 g, 4.54 mmol, 86%) as a pale yellow solid.

¹**H** NMR (CDCl₃, 500 MHz): δ 7.58 (dd, *J* = 2.0 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 7.49 (d, *J* = 2.5 Hz, 1H, Ar<u>H</u>), 6.88 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 3. 87 (s, 3H, OC<u>H</u>₃), 1.03 (s, 9H, C(C<u>H</u>₃)₃), 0.19 (s, 6H, Si(C<u>H</u>₃)₂).

¹³**C NMR** (CDCl₃, 125 MHz): δ 196.7, 155.3, 144.8, 130.6, 123.5, 120.3, 110.8, 55.4, 25.7, 18.4, -4.7.

1-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1-trimethylsilylethene 5

To a well stirred solution of diisopropylamine (0.9 mL, 6.33 mmol) in dry tetrahydrofuran (50 mL) at 0 °C was added n-butyllithium (2.53 mL, 6.33 mmol) drop wise. The LDA solution was then allowed to stir for 15 min upon which a solution of TBS acetophenone **4** (1.20 g, 4.22 mmol) in dry tetrahydrofuran (5 mL) was added drop wise. The solution was then stirred for 10 min where TMSCl (0.81 mL, 6.33 mmol) was then added drop wise and the reaction was allowed to warm to room temperature. The solution was then stirred for 12 hrs and after completion was quenched using a 10% NaHCO₃ (50 mL). The organic layers were then extracted with diethyl ether, dried over Na₂SO₄, and concentrated under reduced pressure resulting in TMS enol ether **5** (1.57 g, 4.42 mmol) quantitatively as a dark yellow oil which was taken to the next step without purification.

¹**HNMR** (CDCl₃, 500 MHz): δ 7.20 (dd, J = 2.5, Hz, 8.5 Hz, 1H Ar<u>H</u>), 7.15 (d, J = 2.5 Hz, 1H, Ar<u>H</u>), 6.81 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.82 (s, 3H, OC<u>H</u>₃), 1.06 (s, 9H, C(C<u>H</u>₃)₃), 0.30 (s, 9H, Si(CH₃)₃), 0.21 (s, 6H, Si(CH₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 155.3, 151.3, 144.6, 130.8, 118.9, 118.3, 111.5, 89.6, 55.5, 25.9, 18.6, 0.2, -4.5.

3'-(tert-Butyldimethylsilyloxy)-4'-methoxy-2-bromoacetophenone 6
A solution of crude 5 (1.57 g, 4.42 mmol) in dry CH₂Cl₂ (50 mL) and anhydrous
K₂CO₃ (0.03 g, 0.91 mmol) was cooled to 0° C under nitrogen. Bromine (0.14 mL, 2.65

mmol) was added drop wise and the solution was allowed to stir for 30 minutes. The reaction was then quenched using 10 % sodium thiosulfate solution and transferred to separatory funnel where the organic layers were extracted with CH_2Cl_2 . The crude solution was then dried over Na_2SO_4 and concentrated under reduced pressure. The crude was then subjected to flash chromatography using a prepacked 50 g silica column [eluents: solvent A, EtOAc, solvent B, hexanes; gradient, 5% A/95% B (4 CV), 5% A/95% B \rightarrow 10% A/90% B (12 CV), 45% A/55% B (5.7 CV); flow rate, 25 mL/min; monitored at λ 's 254 and 280 nm] to yield bromoacetophenone **6** as a tan solid (0.82 g, 2.26 mmol, 51%, $R_f 0.29$ (80:20 hexanes:EtOAc)).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.57 (dd, J = 2.5 Hz, 8.5 Hz, 1H, Ar<u>H</u>), 7.46 (d, J = 2.0 Hz, 1H, Ar<u>H</u>), 6.85 (d, J = 8.5 Hz, 1H, Ar<u>H</u>), 3.84 (s, 3H, OC<u>H</u>₃), 0.98 (s, 9H, C(C<u>H</u>₃)₃), 0.15 (s, 6H, Si(C<u>H</u>₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 189.9, 156.1, 145.1, 127.1, 124.3, 121.0, 111.0, 55.6, 25.7, 18.4, -4.6.

2-(3'-tert-Butyldimethylsilyloxy-4'-methoxyphenyl)-6-methoxyindole 8

A solution of *m*-anisidine (0.70 mL, 6.27 mmol) was dissolved in *N*,*N*dimethylaniline (20 mL) and was heated to reflux at 170 °C. Then a solution of **6** (0.69 g, 1.90 mmol) in EtOAc (5 mL) was added dropwise. The reaction mixture was then allowed to stir at 170 °C for 12 hours. Upon completion, water was added, the phases were separated, and the organic layers were extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash chromatography using a prepacked 25 g silica column [eluents: solvent A, EtOAc, solvent B, hexanes; gradient, 12% A/88% B (4 CV), 12% A/88% B \rightarrow 100% A/0% B (10 CV), 100% A/0% B (2.6 CV); flow rate, 25 mL/min; monitored at λ 's 254 and 280 nm] resulted in the desired phenylindole **8** (0.54 g, 1.40 mmol, 73%, R_f 0.48 (50:50 hexanes:EtOAc)) as light tan crystals.

¹**H NMR** (CDCl₃, 500 MHz): δ 8.18 (br s, 1H, N<u>H</u>), 7.49 (d, *J* = 8.5 Hz, 1H, Ar<u>H</u>), 7.16 (d, *J* = 2.0 Hz, 1H, Ar<u>H</u>), 7.14 (dd, *J* = 2.5 Hz, 8.0 Hz, 1H, Ar<u>H</u>), 6.87 (m, 2H, Ar<u>H</u>), 6.81 (dd, *J* = 2.5 Hz, 9.0 Hz, 1H, Ar<u>H</u>), 6.63 (d, *J* = 1.5 Hz, 1H, Ar<u>H</u>), 3.85 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 1.07 (s, 9H, C(CH₃)₃), 0.23 (s, 6H, Si(CH₃)₂).

¹³C NMR (CDCl₃, 125 MHz): δ 156.5, 150.7, 145.5, 137.6, 137.0, 125.9, 123.9, 121.0, 118.3, 118.0, 112.5, 110.1, 98.8, 94.7, 55.8, 55.6, 25.9, 18.6, -4.4.

REFERENCES

- Alhasan, M. K.; Liu, L.; Lewis, M. A.; Magnusson, J.; Mason, R. P. Comparison of Optical and Power Doppler Ultrasound Imaging for Non-Invasive Evaluation of Arsenic Trioxide as a Vascular Disrupting Agent in Tumors. *PLoS ONE* 2012, 7, e46106.
- Bischler, A.; Brion, H. Chem. Ber. 1892, 25, 2860.
- Boehle, A. S.; Sipos, B.; Kliche, U.; Kalthoff, H.; Dohrmann, P. Ann. Thorac. Surg. 2001, 71, 1657-1665.
- Boehm, S.; Rothermundt, C.; Hess, D.; Joerger, M. Antiangiogenic Drugs in Oncology: A Focus on Drug Safety and the Elderly- A Mini Review. Gerontology, 2010, 56, 303-309.
- Boyland, E.; Boyland, M. E. Studies in Tissue Metabolism: The Action of Colchicine and B. Typhosus Extract. Biochemistry, 1937, 31(3), 454-460.
- Brancale, A.; Silvestri, R. Indole, A Core Nucleus for Potent Inhibitors of Tubulin Polymerization. Med. Res. Rev. 2007, 27(2), 209-238.
- Brem, S.; Brem, H.; Folkman, J.; Finkelstein, D.; Patz, A. Prolonged Tumor Dormancy by Prevention of Neovascularization in the Vitreous. Cancer Res. 1976, 36, 2807-2812.
- Brown, J. M.; SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 1993, 67, 1163–1170.
- Carmeliet, P. Angiogenesis in Helath and Disease. *Nat. Med.* **2003**, *9*, 653-660.
- Carmeliet, P.; Jain, R. K. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 2011, 473, 298-307.
- Carmeliet, P.; Jain, R. K.; Angiogenesis in Cancer and Other Diseases. Nature, 2000, 407, 249-257.
- Chamberlain, M. C. Bevacizumab for the Treatment of Recurrent Glioblastoma. Clin. Med. Insights Oncol. 2011, 5, 117-129.
- Chaplin, D. J.; Pettit, G. R.; Hill, S. A. Anti-vascular Approaches to Solid Tumour Therapy: Evaluation of Combretastatin A4 Phosphate. Anticancer Res. 1999, 19, 189-195.

- Chaudhary, A.; Pandeya, S. N.; Kumar, P.; Sharma, P. P.; Gupta, S.; Soni, N.; Verma, K. K.; Bhardwaj, G. Combretastatin A-4 Analogs as Anticancer Agents. Mini-Rev. Med. Chem. 2007, 7, 1186-1205.
- Chowdhury, G.; Junnotula, V.; Daniels, J. S.; Greenberg, M. M.; Gates, K. S. DNA strand damage product analysis provides evidence that the tumor cell specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O2. J. Am. Chem. Soc. 2007, 129, 12870–12877.
- Cragg, G. M.; Newman, D. J. Plants as a Source of Anti-cancer Agents. J. Ethnopharmacol. 2005, 100, 72-79.
- Dalal, S.; Burchill, S. A. Preclinical Evaluation of Vascular-disrupting Agents in Ewing's Sarcoma Family of Tumours. Eur. J. Cancer 2009, 45, 713-722.
- Denekamp, J.; Hill, S. A.; Hobson, B. Vascular Occlusion and Tumor Cell Death. Eur. J. Cancer Clin. Oncl. 1983, 19, 271-275.
- Dewhirst, M. W.; Kimura, H.; Rehmus, S. W.; Braun, R. D.; Papahadjopoulos, D.; Hong, K.; Secomb, T. W. Microvascular Studies on the Origins of Perfusion-limited Hypoxia. Br. J. Cancer. 1996, 27, S247-S251.
- Dougherty, G. J.; Chaplin, D. J. in Vascular Disruptive Agents for the Treatment of Cancer, ed. T. Meyer, Springer, New York, 2010, ch. 1, 1-27.
- Dowlati, A.; Robertson, K. Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.; McCrae, K. R.; Remick, S. C. A Phase I Pharmacokinetic and Translational Study of the Novel Vascular Targeting Agent Combretastatin A-4 Phosphate on a Single-dose Intravenous Schedule in Patients with Advanced Cancer. Cacner Res. 2002, 62(12), 3408-3416.
- Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W. P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J. S.; McCrae, K. R.; Remick, S. C. J. Clin. Oncol. 2003, 62(12), 3408-3416.
- El-Zayat, A. A. E.; Degan, D.; Drabek, S. Anticancer Drugs 1993, 4, 19-25.
- Etienne-Manneville, S. Curr. Opin. Cell Biol. 2010, 22, 104–111.
- Ferrara, N. Vascular Endothelial Growth Factor. Arterioscler Thromb. Vasc. Biol. 2009, 29, 789-791.
- Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett. 2001, 11, 2341–2343.

- Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.;
 Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D.
 M.; Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. Discovery of 7Hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan
 (BNC105), a Tubulin Polymerization Inhibitor with Potent Antiproliferative and
 Tumor Vascular Disrupting Properties. J. Med. Chem. 2011, 54, 6014-6027.
- Flynn, B. L.; Hamel, E.; Jung, M. K. One-Pot Synthesis of Benzo[b]furan and Indole Inhibitors of Tubulin Polymerization. J. Med. Chem. 2002, 45, 2670-2673.
- Folkman J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186.
- Gastpar, R.; Goldbrunner, M.; Marko, D.; von Angerer, E. Methoxy-Substituted 3-Formyl-2-phenylindoles Inhibit Tubulin Polymerization. J. Med. Chem. 1998, 41, 4965-4972.
- Gee M. S.; Procopio, W. N.; Makonnen, S.; Feldman, M. D.; Yeilding, N. M.; Lee, W. M. Tumor Vessel Development and Maturation Impose Limits on the Effectiveness of Anti-vascular Therapy. Am. J. Pathol. 2003, 162, 183-193.
- Goertz, D. E.; Yu, J. L.; Kerbel, R. S.; Burns, P. N.; Foster, F. S. High-frequency Doppler Ultrasound Monitors the Effects of Antivascular Therapy on Tumor Blood Flow. Cancer Res. 2002, 62, 6371-6375.
- Hadimani, M. B.; Kessler, R. J.; Kautz, J. A.; Ghatak, A.; Shirali, A. R.; O'dell, H.; Garner, C. M.; Pinney, K. G. 2-(3-tert-Butyldimethylsiloxy-4-methoxyphenyl)-6methoxy-3-(3, 4, 5-trimethoxybenzoyl)indole. Acta. Cryst. 2002, C58, 330-332.
- Hadimani, M. B.; MacDonough, M. T.; Strecker, T. E.; Lopez, R.; Sriram, M.; Nguyen, B. L.; Kessler, R. J.; Ghatak, A.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettit, G. R.; Hamel, H.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Manuscript submitted to J. Nat. Prod. (May 9, 2013).
- Hall, J. J.; Sriram, M.; Strecker, T. E.; Tidmore, J. K.; Jelinek, C. J.; Kumar, G. D. K.; Hadimani, M. B.; Pettit, G. R.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Bioorg. Med. Chem. Lett. 2008, 18, 5146-5149.
- Hamel, E. An Overview of Compounds and their Effects on Microtubule Assembly. In Microtubule Targets in Cancer Therapy, Fojo, A. T., Ed.; Humana Press: Towota, New Jersey, 2008; pp. 1-20.
- Hamel, E. Evaluation of Antimitotic Agents by Quantitative Comparisons of Their Effects on the Polymerization of Purified Tubulin. Cell Biochem. Biophys. 2003, 38, 1-21.

Hamel, E.; Lin, C. M. Biochim. Biophys. Acta. 1981, 675, 226-231.

- Hamel, E.; Lin, C. M. Separation of Active Tubulin and Microtubule-associated Proteins by Ultracentrifugation and Isolation of a Component Causing the Formation of Microtubule Bundles. Biochemistry 1984, 23, 4173-4184.
- Hamel, E.; Lin, C. M. Stabilization of the Colchicine Binding Activity of Tubulin by Organic Acids. Biochim. Biophys. Acta 1981, 675, 226-231.
- Hasani, A.; Leighl, N. Classification and Toxicities of Vascular Disrupting Agents. Clin. Lung Cancer. 2011, 12(1), 18-25.
- Heidemann, S. Microtubules, Leukemia, and Cough Syrup. Blood, 2006, 107, 2216-2217.
- Hida, K.; Hida, Y.; Shindoh, M. Cancer Sci. 2008, 99(3), 459-466.
- Horsman, M. R.; Bohn, A. B.; Busk, M. Vascular Targeting Therapy: Potential Benefit Depends of Tumor and Host Related Effects. Exp. Oncol. 2010, 32(3), 143-148.
- Jain, R. K. Determinants of Tumor Blood Flow: A Review. Cancer Res. 1988, 48, 2641-2658.
- Jain, R. K. Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science, 2005, 307, 58-62.
- Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. Antiestrogens. 2. Structure-Activity Studies in a Series of 3-Aroyl-2-arylbenzo[b]thiophene Derivatives Leading to [6-Hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-yl]-[4-[2-(1piperidinyl)ethoxy]phenyl]methanone Hydrochloride (LY 156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity. J. Med. Chem. 1984, 27, 1057-1066.

Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253–265.

Kanthou, C.; Tozer, G. M. Exp. Opin. Ther. Targets 2007, 11(11), 1443-1457.

Kaufmann, D.; Pojarova, M.; Vogel, S.; Liebl, R.; Gastpar, R.; Gross, D.; Nishino, T.; Pfaller, T.; von Angerer, E.; Antimitotic Activities of 2-Phenylindole-3carbaldehydes in Human Breast Cancer Cells. Bioorg. Med. Chem. 2007, 15, 5122-5136.

Kemperman, G. J.; Roeters, T. A.; Hilberink, P. W. Eur. J. Org. Chem. 2003, 1681-1686.

Kerbel, R.; Folkman, J. Clinical Translation of Angiogenesis Inhibitors. Nat. Revs. Cancer, 2002, 2, 727-739.

- Kessler, R. J.; Arambula, J. F.; Nguyen, B. L.; Hadimani, M. B.; Pinney, K. G. (Poster). 4th Annual Spring Research Symposium, Department of Chemistry & Biochemistry & The Center for Drug Discovery, Baylor University, Waco, TX, March 2003.
- Kessler, R. J.; Hadimani, B.; Pinney, K. G.; Edvardsen, K. (Poster). 38th National Organic Symposium Indiana University, Bloomington IN, June 8-12, 2003.
- Konerding, M. A.; Fait, E.; Gaumann, A. 3D Microvascular Architecture of Precancerous Lesions and Invasive Carcinomas of the Colon. Br. J. Cancer. 2001, 84, 1354-1362.
- Kremmidiotis, G.; Leske, A. F.; Lavranos, T. C.; Beaumont D.; Hall, A.; O'Callaghan, M.; Matthews, C. A.; Flynn, B. L. Mol. Cancer Ther. 2010, 6, 1562-1573.
- Kremmidiotis, G.; Leske, A. F.; Lavranos, T. C.; Beaumont, D.; Gasic, J.; Hall, A.; O'Callaghan, M.; Matthews, C. A.; Flynn, B. BNC105: A Novel Tubulin Polymerization Inhibitor that Selectively Disrupts Tumor Vasculature and Displays Single-Agent Antitumor Efficacy. Mol. Cancer Ther. 2010, 9, 1562-1573.
- Kuo, C.-C.; Hsieh, H.-P.; Pan, W.-Y.; Chen, C.-P.; Liou, J.-P.; Lee, S.-J.; Chang, L.-Y.; Chen, L.-T.; Chen, C.-T.; Chang, J.-Y. BPR0L075, A Novel Synthetic Indole Compound with Antimitotic Activity in Human Cancer Cells, Exerts Effective Antitumoral Activity in Vivo. Cancer Res. 2004, 64, 4621-4628.
- Kym, P. R.; Anstead, G. M.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A. Structural and Computational Modeling Studies on 3-aroyl-2arylbenzo[b]thiophene Estrogen Receptor Ligands: LY117018 and Aryl Azide Photoaffinity Labeling Analogs; Investigation of Conformational Preferences, Differential Photoreactivity, and Preferential Modes of Binding. J. Med. Chem. 1993, 36, 3910-3922.
- La Regina, Bai, R.; Rensen, W. M.; Cesare, E. D.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Pozza, E. D.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Santoni, A.; Li, J.; Cona, M. M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. J. Med. Chem. 2013, 56, 123-149.
- La Regina, G.; Sarkar, T.; Bai, R.; Edler, M. C.; Saletti, R.; Coluccia, A.; Piscitelli, F.; Minelli, L.; Gatti, V.; Mazzoccoli, C.; Palermo, V.; Mazzoni, C.; Falcone, C.; Scovassi, A. I.; Giansanti, V.; Campiglia, P.; Porta, A.; Maresca, B.; Hamel, E.; Brancale, A.; Novellino, E.; Silvestri, R. J. Med. Chem. 2009, 52, 7512-7527.

- Lee, H.-Y.; Chang, J.-Y.; Chang, L.-Y.; Lai, W.-Y.; Lai, M.-J.; Shih, K.-H.; Kuo, C.-C.; Chang, C.-Y.; Liou, J.-P. Concise Syntheses of N-Aryl-5,6,7-trimethoxyindoles as Antimitotic and Vascular Disrupting Agents: Application of the Copper-Mediated Ullmann-Type Arylation. Org. Biomol. Chem. 2011, 9, 3154-3157.
- Lee, R. M.; Gewirtz, D. A. Colchicine Site Inhibitors of Microtubule Integrity as Vascular Disrupting Agents. Drug Dev. Res. 2008, 69(6), 352-358.
- Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K. Absence of Functional Lymphatics Within a Murine Sarcoma: a Molecular and Functional Evaluation. Cancer Res. 2000, 60, 4324-4327.
- Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. The Antimitotic Natural Products Combretastatin A-2 and Combretastatin A-4: Studies on the Mechanism of Their Inhibition of the Binding of Colchicine to Tubulin. Biochemistry, 1989, 28, 6984-6991.
- Liou, J.-P.; Chang, Y.-L.; Kuo, F.-M.; Chang, C.-W.; Tseng, H.-Y.; Wang, C.-C.; Yang, Y.-N.; Chang, J.-Y.; Lee, S.-J.; Hsieh, H.-P. Concise Synthesis and Structure-Activity Relationships of Combretastatin A-4 Analogues, 1-Aroylindoles and 3-Aroylindoles, as Novel Classes of Potent Antitubulin Agents. J. Med. Chem. 2004, 47, 4247-4257.
- Liou, J.-P.; Wu, C.-Y.; Hsieh, H.-P.; Chang, C.-Y.; Chen, C.-M.; Kuo, C.-C.; Chang, J.-Y. 4- and 5-Aroylindoles as Novel Classes of Potent Antitubulin Agents. J. Med. Chem. 2007, 50, 4548-4552.
- Liou, J.-P.; Wu, Z.-Y.; Kuo, C.-C.; Chang, C.-Y.; Lu, P.-Y.; Chen, C.-M.; Hsieh, H.-P.; Chang, J.-Y. Discovery of 4-Amino and 4-Hydroxy-1-aroylindoles as Potent Tubulin Polymerization Inhibitors. J. Med. Chem. 2008, 51, 4351–4355.
- Liu, L.; Beck, H.; Wang, X.; Hsieh, H.-P.; Mason, R. P.; Liu, X. Tubulin-Destabilizing Agent BPR0L075 Induces Vascular-Disruption in Human Breast Cancer Mammary Fat Pad Xenografts. PLoS ONE, published online August 24, 2012; DOI: 10.1371/journal.pone.0043314.
- Lopus, M.; Yenjerle, M.; Wilson, L. In Wiley Encyclopedia of Chemical Biology; Begley, T. P.; Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, 2008; 3, 153-160.
- Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D. H.; Burgermeister, J.; Bohmer, F.-D.; Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents. J. Med. Chem. 2001, 44, 4535-4553.

- Martino, G. D.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera, M. C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, Potent Inhibitors of Tubulin Polymerization. J. Med. Chem. 2004, 47, 6120-6123.
- Mason, R. P.; Zhao, D.; Liu, L.; Trawick, M. L.; Pinney, K. G. A Perspective on Vascular Disrupting Agents that Interact with Tubulin: Preclinical Tumor Imaging and Biological Assessment. Integr. Biol., 2011, 3, 375-387.
- McDonald, D.; Choyke, P. Imaging of Agiogenesis: From Microscope to Clinic. Nature Med. 2003, 9, 713-725.
- McGowan, A. T.; Fox, B. W. Cancer Chemother. Pharmacol. 1990, 26, 79-81.
- Mohlau, H. Chem. Ber. 1881, 14, 173.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a High-flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J. Natl. Cancer Inst. 1991, 83, 757-766.
- Mullica, D. F.; Pinney, K. G.; Dingeman, K. M.; Bounds, A. D.; Sappenfield, E. L. X-ray Structures of Two Methoxybenzo[b]thiophenes. J. Chem. Crystallogr. 1996, 26, 801-806.
- Mullica, D. F.; Pinney, K. G.; Mocharla, V. P.; Dingeman, K. M.; Bounds, A. D.; Sappenfield, E. L. Characterization and Structural Analyses of Trimethoxy and Triethoxybenzo[b]thiophene. J. Chem. Crystallogr. 1998, 28, 289-295.
- Ohno, T.; Kawano, K.; Tahara, K. Gastroenterology 2001, 120, 2831.
- Oshumi, K.; Hatanaka, R.; Nakagawa, R. Anticancer Drug Des. 1999, 14, 539-548.
- Oshumi, K.; Nakagawa, R.; Fukuda, Y. J. Med. Chem. 1998, 41, 3022-3032.
- Owellen, R. J.; Hartke, C. A.; Dickerson, R. M.; Hains, F. O. Inhibition of Tubulinmicrotubule Polymerization by Drugs of the Vinca Alkaloid Class. Cancer Res. 1976, 36, 1499-1502.
- Padera, T. P.; Kadambi, A.; di Tomaso, E.; Carrerira, C. M.; Brown, E. B.; Boucher, Y.; Choi, N. C.; Mathisen, D.; Wain, J.; Mark, E. J.; Munn, L. L.; Jain, R. K. Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics. Scicence, 2000, 296, 1883-1886.

- Patil, S. A.; Patil, R.; Miller, D. D. Indole Moleceules as Inhibitors of Tubulin Polymerization: Potential New Anitcancer Agents. Future Med. Chem. 2012, 4(16), 2085-2115.
- Pettit G. R.; Pinney, K. G. Major Milestones. In American Society of Pharmacognosy History. Cragg, G., Ed.; 2009.
- Pettit, G. R.; Cragg, G. M.; Herald, D. L.; Schmidt, J. M.; Lohavanijaya, P. Antineoplastic agents. 84. Isolation and Structure of Combretastatin. Can. J. Chem. 1982, 60, 1374-1376.
- Pettit, G. R.; Cragg, G. M.; Singh, S. B. Antineoplastic Agents, 112. Constituents of Combretum Caffrum. J. Nat. Prod. 1987, 50, 386-391.
- Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. Antineoplastic Agents. 443. Synthesis of the Cancer Cell Growth Inhibitor Hydroxyphenstatin and Its Sodium Diphosphate Prodrug. J. Med. Chem. 2000, 43, 2731-2737.
- Pettit, G. R.; Lippert, J. W. III. Anticancer Drug Des. 2000, 15, 203-216.
- Pettit, G. R.; Minardi, M. D.; Boyd, M. R.; Pettit, R. K. Anticancer Drug Des. 2000, 15, 397-403.
- Pettit, G. R.; Moser, B. R.; Boyd, M. R. Anticancer Drug Des. 2001, 16, 185-193.
- Pettit, G. R.; Rhodes, M. R. Antineoplastic Agents 389. New Syntheses of the Combretastatin A-4 Prodrug. Anticancer Drug. Des. 1998, 13, 183-191.
- Pettit, G. R.; Rosenberg, H. J.; Dixon, R.; Knight, J. C.; Hamel, E.; Chapuis, J.-C.; Pettit, R. K.; Hogan, F.; Sumner, B.; Ain, K. B.; Trickey-Platt, B. Antineoplastic Agents. 548. Synthesis of Iodo- and Diiodocombstatin Phosphate Prodrugs. J. Nat. Prod. 2012, 75, 385-393.
- Pettit, G. R.; Singh, S. B.; Boyd, M. R. J. Med. Chem. 1995, 38, 1666-1672.
- Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia 1989, 45(2), 209-211.
- Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod. 1987, 50(1), 119-131.
- Pinney, K. G. in Vascular-Targeted Therapies in Oncolgy, ed. Siemann, D. John Wiley & Sons, London, UK, 2006, ch. 6, 95-121.

- Pinney, K. G.; Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai, R.; Hamel, E. A New Anti-tubulin Agent Containing the Benzo[b]thiophene Ring System. Bioorg. Med. Chem. Lett. 1999, 9, 1081-1086.
- Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. Tubulin Binding Ligands and Corresponding Prodrug Constructs. US6593374 B2, 2003.
- Pinney, K. G.; Mocharla, V. P.; Chen, Z.; Garner, C. M.; Ghatak, A.; Hadimani, M.; Kessler, J.; Dorsey, J. M. Preparation of Trimethoxyphenyl-containing Tubulin Binding Ligands and Corresponding Prodrug Constructs as Inhibitors of Tubulin Polymerization and Antimitotic Agents. From PCT Int. Appl. 2001, WO 2001068654 A2 20010920.
- Pinney, K. G.; Pettie, G. R.; Mocharla, V. P.; Pilar, M.; Shirali, A. Description Antimitotic Agents Which Inhibit Tubulin Polymerization. US6350777 B2, 2002.
- Pinney, K. G.; Pettit, G. R.; Trawick, M. L.; Jelinek, C.; Chaplin, D. J. The Discovery and Development of the Combretastatins. In Antitumor Agents from Natural Products, 2nd ed.; Kingston, D., Newman, D., Cragg, G., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, Florida, 2011; pp 27-64.
- Pinney, K. G.; Pilar, M.; Mocharla, V. P.; Shirali, A.; Pettie, G. R. Anti-mitotic Agents Which Inhibit Tubulin Polymerization. US06162930, 2000.
- Pinney, K. G.; Sriram, M. Combretastatin Analogs with Tubulin Binding Activity. US8394859 B2, 2013.
- Pinney, K. G.; Wang, F.; Del Pilar Mejia, M. Preparation of Indole-containing and Combretastatin-related Anti-mitotic and Anti-tubulin Polymerization Agents. From PCT Int. Appl. 2001, WO 2001019794 A2 20010322.
- Pinney, K. G.; Wang, F.; Hadimani, M. B. Indole-containing and Combretastatin-related Anti-mitotic and Anti-tubulin Polymerization Agents. US6849656 B1, 2005.
- Pinney, K.; Wang, F.; Hadimani, M.; Del Pilar Mejia, M.; Preparation of Trimethoxyphenyl-substituted Indoles with Anti-tubulin and Vascular Targeting Activity for Treatment of Cancer. From PCT Int. Appl. 2004, WO 2004099139 A1 20041118.
- Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; Manegold, C. Phase III of Cisplatin Plus Gemcitabine with Either Placebo or Bevacizumab as First-line Therapy For Nonsquamous Non-small-cell Lung Cacner: AVAiL. J. Clin. Oncol. 2009, 27(8), 1227-1234.

- Regina, G. L.; Bai, R.; Rensen, W.; Coluccia, A.; Piscitelli, F.; Gatti, V.; Bolognesi, A.; Lavecchia, A.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Mariani, M.; Santoni, A.; Brancale, A.; Ferlini, C.; Dondio, G.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. J. Med. Chem. 2011, 54, 8394-8406.
- Rini, B. I. Vascular Endothelial Growth Factor-targeted Therapy in Renal Cell Carcinoma: Current Status and Future Directions. Clin. Cancer Res. 2007, 13, 1098-1106.
- Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Cristina, A. D.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.-P.; Hamel, E. Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors. J. Med. Chem. 2008, 51, 1464–1468.
- Roughley, S. D.; Jordan, A. M. The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 54, 3451-3479.
- Rustin, G. J.; Galbraith, S. M.; Anderson, H.; Stratford, M.; Folkes, L. K.; Sena, L.; Gumbrell, L.; Price, P. M. Phase I Clinical Trial of Weekly Combretastatin A-4 Phosphate: Clinical and Pharmacokinetic Results. J. Clin. Oncol. 2003, 21(15), 2815-2822.
- Sandler, A.; Gray, R.; Perry, M. C.; Brahmer, J.; Schiller, J. H.; Dowiati, A.; Lilenbaum, R.; Johnson, D. H. Paclitaxel-carboplatin Alone or with Bevacizumab for Nonsmall-cell Lung Cancer. N. Engl. J. Med. 2006, 355(24), 2542-2550.
- Shinde, S. S.; Hay, M. P.; Patterson, A. V.; Denny, W. A.; Anderson, R. F. Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase. J. Am. Chem. Soc. 2009, 131, 14220–14221.
- Siemann, D. W. in Vascular-Targeted Therapies in Oncology, ed. Siemann, D. John Wiley & Sons, London, UK, 2006, ch. 1, 1-8.
- Siemann, D. W. The Unique Characteristics of Tumor Vasculature and Preclinical Evidence for its Selective Disruption by Tumor-Vascular Disrupting Agents. Cancer Treatment Reviews. 2011, 37, 63-74.

- Siemann, D. W.; Bibby, M. C.; Dark, G. G.; Dicker, A. P.; Eskens, F. A. L. M.; Horsman, M. R.; Marme, D.; LoRusso, P. M. Differentiation and Definition of Vascular-Targeting Therapies. Clin. Cancer Res. 2005, 11, 416-420.
- Siemann, D. W.; Warrington, K. H.; Horsman, M. R. Targeting Tumor Blood Vessels: An Adjuvant Strategy for Radiation Therapy. Radiother. Oncol. 2000, 57, 5-12.
- Siles, R.; Ackley, J. F.; Hadimani, M. B.; Hall, J. J.; Mugabe, B. E.; Guddneppanavar, R.; Monk, K. A.; Chapuis, J.; Pettit, G. R.; Chaplin, D. J.; Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Pinney, K. G. Combretastatin Dinitrogen-substituted Stilbene Analogues as Tubulin-binding and Vascular-disrupting Agents. J. Nat. Prod. 2008, 71, 313-320.
- Sriram, M.; Hall, J. J.; Grohmann, N. C.; Strecker, T. E.; Wootton, T.; Franken, A.; Trawick, M. L.; Pinney, K. G. Design, Synthesis, and Biological Evaluation of Dihydronaphthalene and Benzosuberene Analogs of Combretastatins as Inhibitors of Tubulin Polymerization in Cancer Chemotherapy. Bioorg. Med. Chem. 2008, 16(17), 8161-8171.
- Stanton, R. A.; Gernert, K. M.; Nettles, J. H.; Aneja, R. Drugs that Target Dynamic Microtubules: A New Molecular Perspective. Med. Res. Rev. 2011, 31(3), 443-481.
- Tanpure, R. P.; Harkrider, A. R.; Strecker, T. E.; Hamel, E.; Trawick, M. L.; Pinney, K. G. Application of the McMurry Coupling Reaction in the Synthesis of Tri- and Tetra-arylethylene Analogues as Potential Cancer Chemotherapeutic Agents. Bioorg. Med. Chem. 2009, 17, 6993-7001.
- Tapure, R. P.; George, C. S.; Sriram, M.; Strecker, T.; Tidmore, J. K.; Hamel, E.; Charlton-Sevcik, A. K.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G.; Med. Chem. Comm. 2012, 3, 720-724.
- Thompson, P.; Naylor, M. A.; Everett, S. A.; Stratford, M. R. L.; Lewis, G.; Hill, S.; Patel, K. B.; Wardman, P.; Davis, P. D. Synthesis and Biological Properties of Bioreductively Targeted Nitrothienyl Prodrugs of Combretastatin A-4. Mol. Cancer Ther. 2006, 5(11), 2886-2894.
- Tong, R. T.; Boucher, Y.; Kozin, S. V.; Winkler, F.; Hicklin, D. J.; Jain, R. K. Vascular Normalization by Vascular Endothelial Growth Factor Receptor 2 Blockade Induces a Pressure Gradient Across the Vasculature and Improves Drug Penetration in Tumors. Cancer Res. 2004, 64, 3731-3736.
- Tozer, G. M.; Kanthou, C.; Baguley, B. C. Disrupting Tumour Blood Vessels. Nat. Rev. Cancer 2005, 5, 423-435.

- Ty, N.; Dupeyre, G.; Chabot, G. G.; Seguin, J.; Tillequin, F.; Scherman, D.; Michel, S.; Cachet, X. Synthesis and Biological Evaluation of New Disubstituted Analogues of 6-Methoxy-3-(3,4,5-trimethoxybenzoyl)-1H-indole (BPR0L075), as Potential Antivascular Agents. Bioorg. Med. Chem. 2008, 16, 7494–7503.
- Ty, N.; Dupeyre, G.; Chabot, G. G.; Seguin, J.; Tillequin, F.; Scherman, D.; Michel, S.; Cachet, X. Bioorg. Med. Chem. 2008, 16(15), 7494-7503.

Valiron, O.; Caudron, N.; Job, D. Cell. Mol. Life Sci. 2001, 58, 2069–2084.

- Vara, Y.; Aldaba, E.; Arrieta, A.; Pizarro, J. L.; Arriortua, M. I.; Cossio, F. P. Regiochemistry of the Microwave-assisted Reaction Between Aromatic Amines and a-Bromoketones to Yield Substituted 1H-indoles. Org. Biomol. Chem. 2008, 6, 1763-1772.
- Vaupel, P.; Fortmeyer, H. P.; Runkel, S.; Kallinowski, F. Blood Flow, Oxygen Consumption, and Tissue Oxygenation of Human Breast Cancer Xenografts in Nude Rats. Cancer Res. 1987, 47, 3496-3503.
- Vaupel, P.; Hockel, M. Blood Supply, Oxygenation Status and Metabolic Mircomilieu of Breast Cancers: Characterization and Therapeutic Relevance. Int. J. Oncol. 2000, 17, 869-879.
- Vaupel, P.; Schlenger, K.; Knoop, C.; Hockel, M. Oxygenation of Human Tumors: Evaluation of Tissue Oxygen Distribution in Breast Cancers by Computerized O2 Tension Measurements. Cancer Res. 1991, 51(12), 3316-3322.
- Verdier-Pinard, P.; Lai, J. Y.; Yoo, H. D.; Yu, J.; Marquez, B.; Nagle, D. G.; Nambu, M.; White, J. D.; Falck, J. R.; Gerwick, W. H.; Day, B. W.; Hamel, E. Structureactivity Analysis of the Interaction of Curacin A, The Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. Mol. Pharmacol. 1998, 53, 62-76.
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protocols 2006, 1, 1112-1116.
- Vogelstein, B.; Kinzler, K. W.; Cancer Genes and the Pathways They Control. Nat. Med. 2004, 10, 789-799.
- von Angerer, E.; Prekajac, J.; Strohmeier, J. 2-Phenylindoles. Relationship between Structure, Estrogen Receptor Affinity, and Mammary Tumor Inhibiting Activity in the Rat. J. Med. Chem. 1984, 27, 1439-1447.
- Wade, R. H. Mol. Biotechnol. 2009, 43, 177–191.

- Walker, R. A.; O'Brien, E. T.; Pryer, N. K.; Soboeiro, M. F.; Voter, W. A.; Erickson, H. P.; Salmon, E. D. Dynamic Instability of Individual Microtubules Analyzed by Video Light Microscopy: Rate Constants and Transition Frequencies. J. Cell Biol. 1988, 107, 1437-1448.
- Weisenberg, R. C.; Borisy, G. G.; Taylor, W. Biochemistry 1968, 7, 4466-4477.
- Wilson, W. P.; Hay, M. P. Targeting Hypoxia in Cancer Therapy. Nature Reviews. 2011, 11, 393-410.
- Wu, J. M.; Staton, C. A. Anti-angiogenic Drug Discovery: Lessons From the Past and Thoughts for the Furture. Expert Opin. Drug Discov. 2012, 7(8), 723-743.
- Yang, J. C.; Haworth, L.; Sherry, R. M.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.; Steinberg, S. M.; Chen, H. X.; Rosenberg, S. A. A Randomized Trial of Bevacizumab, An Anti-vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. N. Engl. J. Med. 2003, 349(5), 427-434.
- Zhao, D.-G.; Chen, J. J.; Du, Y.-R.; Ma, Y.-Y.; Chen, Y.-X.; Gao, K.; Hu, B.-R. Synthesis and Structure-Activity Relationships of N-Methyl-5,6,7trimethoxyindoles as Novel Antimitotic and Vascular Disrupting Agents. J. Med. Chem. 2013, 56, 1467-1477.