## ABSTRACT

Luminescent Supramolecular Silver(I) Coordination Complexes of Pyridyl-substituted Phosphinites, Phosphonites and Amines

Rodney P. Feazell

Mentor: Kevin K. Klausmeyer, Ph.D.

Interest in the design and synthesis of supramolecular metal-organic coordination polymers has increased exponentially in the last decade. This attraction comes along with advances in crystallographic instrumentation that has made the collection and processing of crystal data sets faster and more automated than ever. As a result, our understanding of the intra- and intermolecular forces that exist within the confines of the crystalline lattice is at a historic high. In this work we use several new bi- and tridentate pyridyl-substituted phosphinite ligands as well as a series of isomeric aminomethylpyridines to construct discrete, one-, two, and three-dimensional metalorganic coordination architectures with salts of the silver(I) cation. These complexes were then analyzed and discussed in terms of the variables (metal/ligand ratio, anion, temperature, solvent) and forces (donor-metal bonding, hydrogen-bonding,  $\pi$ -stacking, dispersion forces) that cause the structural motifs that are observed. The luminescence of these complexes was also studied and was seen to be variable with changes in structure and metal environment. Luminescent Supramolecular Silver(I) Coordination Complexes of Pyridyl-substituted Phosphinites, Phosphonites and Amines

by

Rodney P. Feazell, B.S.

A Dissertation Approved by the Department of Chemistry and Biochemistry

VIV de celle

Marlanna A. Busch, Ph.D., Chairperson

Submitted to the Graduate Faculty of Baylor University in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Approved by the Dissertation Committee

Keron Klousm

Kevin K. Klausmeyer, Ph.D., Chairperson

Stores F. Gordon<sup>4</sup>A. Stone, Ph.D David E. Pennington, Ph.D Darrin J. Bellert, Ph.D.

Stephen I. Dworkin, Ph.D.

Accepted by the Graduate School December 2005 Ph.D., Dear

Copyright © 2005 Rodney P. Feazell

All rights reserved

# TABLE OF CONTENTS

| LIST OF FIGURES  |                                                                                                                                                            | vii            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| LIST OF SCHEMES  |                                                                                                                                                            | xiii           |
| LIST OF TABLES   |                                                                                                                                                            | xiv            |
| LIST OF ABBREVIA | ATIONS                                                                                                                                                     | xix            |
| ACKNOWLEDGME     | ENTS                                                                                                                                                       | xxii           |
| CHAPTER ONE      | General Introduction                                                                                                                                       | 1              |
|                  | Coordination Polymers by Definition<br>Ligand Constraints<br>Applications                                                                                  | 2<br>7<br>8    |
|                  | Host-Guest Properties / Catalysis<br>Luminescence<br>Conductivity                                                                                          | 8<br>9<br>10   |
| CHAPTER TWO      | Two, Three, and Four Coordinate Ag(I) Coordination<br>Polymers Formed by the Novel Phosphinite,<br>PPh <sub>2</sub> (3-OCH <sub>2</sub> py)                | 12             |
|                  | Introduction<br>Results and Discussion                                                                                                                     | 12<br>13       |
|                  | Synthesis and NMR Spectroscopy<br>X-ray Crystal Structures<br>Luminescence Properties                                                                      | 13<br>19<br>26 |
|                  | Conclusions<br>Experimental                                                                                                                                | 28<br>29       |
|                  | General Considerations<br>Preparations<br>Crystallography                                                                                                  | 29<br>29<br>31 |
| CHAPTER THREE    | Anion Dependent Silver(I) Coordination Polymers of the Tridentate Pyridylphosphonite: PPh(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N) <sub>2</sub> | 33             |

|              | Introduction                                                                                                          | 33  |
|--------------|-----------------------------------------------------------------------------------------------------------------------|-----|
|              | Results and Discussion                                                                                                | 34  |
|              | Synthesis and NMR Spectroscopy                                                                                        | 34  |
|              | X-ray Crystal Structures                                                                                              | 40  |
|              | Luminescence Properties                                                                                               | 52  |
|              | Conclusions                                                                                                           | 54  |
|              | Experimental                                                                                                          | 54  |
|              | General Considerations                                                                                                | 54  |
|              | Preparations                                                                                                          | 55  |
|              | Crystallography                                                                                                       | 57  |
| CHAPTER FOUR | Variability in the Structures of Luminescent Silver(I)<br>2-aminomethylpyridine Complexes: Effect of                  |     |
|              | Ligand Ratio, Anion, Hydrogen bonding, and $\pi$ -stacking                                                            | 60  |
|              | Introduction                                                                                                          | 60  |
|              | Results and Discussion                                                                                                | 62  |
|              | Synthesis and NMR Spectroscopy                                                                                        | 62  |
|              | X-ray Crystallography                                                                                                 | 65  |
|              | Luminescence Properties                                                                                               | 81  |
|              | Conclusions                                                                                                           | 83  |
|              | Experimental                                                                                                          | 84  |
|              | General Considerations                                                                                                | 84  |
|              | Preparations                                                                                                          | 84  |
|              | Crystallography                                                                                                       | 87  |
| CHAPTER FIVE | Silver(I) 3-aminomethylpyridine Complexes Part 1: Effect of Ligand Ratio, $\pi$ -stacking and Temperature with a Non- |     |
|              | interacting Anion                                                                                                     | 90  |
|              | Introduction                                                                                                          | 90  |
|              | Results and Discussion                                                                                                | 91  |
|              | Synthesis and NMR Spectroscopy                                                                                        | 91  |
|              | X-ray Crystallography                                                                                                 | 94  |
|              | Luminescence Properties                                                                                               | 108 |
|              | Conclusions                                                                                                           | 109 |
|              | Experimental                                                                                                          | 110 |
|              | General Procedures                                                                                                    | 110 |

|               | General Synthesis<br>Preparations<br>Crystallography                                                                                                         | 110<br>111<br>112        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| CHAPTER SIX   | Silver(I) 3-aminomethylpyridine Complexes Part 2: Effect<br>of Ligand Ratio, Hydrogen bonding and $\pi$ -stacking with<br>an Interacting Anion               | 112                      |
|               | Introduction                                                                                                                                                 | 115                      |
|               | Results and Discussion                                                                                                                                       | 116                      |
|               | Synthesis<br>X-ray Crystal Structures<br>Luminescence Properties                                                                                             | 116<br>119<br>135        |
|               | Conclusions<br>Experimental                                                                                                                                  | 136<br>137               |
|               | General Procedures<br>General Synthesis<br>Preparations<br>Crystallography                                                                                   | 137<br>137<br>138<br>140 |
| CHAPTER SEVEN | Variability in the Structures of [4-(aminomethyl)pyridine] silver(I) Complexes through effects of Ligand Ratio, Anion, Hydrogen Bonding, and $\pi$ -Stacking | 143                      |
|               | Introduction<br>Results and Discussion                                                                                                                       | 143<br>145               |
|               | Synthesis<br>X-ray Crystal Structures<br>Luminescence Properties                                                                                             | 145<br>145<br>162        |
|               | Conclusions<br>Experimental                                                                                                                                  | 163<br>163               |
|               | General Procedures<br>General Preparations<br>Preparations<br>Crystallography                                                                                | 163<br>164<br>164<br>167 |
| CHAPTER EIGHT | Summary                                                                                                                                                      | 169                      |

v

| APPENDIX A | General Considerations                 | 171 |
|------------|----------------------------------------|-----|
|            | Synthetic procedures                   | 171 |
|            | Spectroscopic Characterization         | 171 |
|            | Procedures for X-ray Crystal Structure |     |
|            | Determinations                         | 172 |
|            | Crystal Preparation                    | 172 |
|            | Data Collection                        | 172 |
|            | Data Reduction                         | 173 |
|            | Structure Solution and Refinement      | 173 |
| APPENDIX B | Crystallographic Data                  | 175 |
| REFERENCES |                                        | 273 |

# LIST OF FIGURES

| 1.1 | Bis-(BDA) $Mn^{II}$ polymers. L = MeOH.                                                                                                                                                                                | 4  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2 | a) The silver(I)-bound 1-phenyl-3-pyridine-3-yl-urea hydrogen bonding to a central $PF_6^-$ anion. b) a stick diagram of (a), shown two molecules deep. c) the linear growth of this polymer as an anion-centered rod. | 5  |
| 1.3 | A view of the extended network that is formed by linking 1-D polymers with S…S interactions. $M = Cd^{II}$ , $Co^{II}$ , or $Zn^{II}$ .                                                                                | 6  |
| 1.4 | Common bidentate ligands used in the construction of coordination networks.                                                                                                                                            | 7  |
| 1.5 | Generic 4,4'-bipy / Zn / $RO_2^-$ polymer. The emission spectrum is shown for R = 4-sulfoisothalic acid.                                                                                                               | 8  |
| 1.6 | Structural diagram of $[Cd(NO_3)_2(4,4'-bipy)_2]_n$ . Eq. 1 shows the cyanosilation of an aldehyde by that this complex catalyzes.                                                                                     | 9  |
| 2.1 | Molecular diagram of the cationic polymer of <b>2.2</b> with the unique portion and important symmetry generated atoms labeled. Ellipsoids are drawn at the 50% probability level.                                     | 20 |
| 2.2 | Molecular diagram of the unique portion of <b>2.3</b> . Ellipsoids are drawn at the 30% probability level. Hydrogen atoms and all but the bound oxygen of the terminal triflates have been removed for clarity.        | 22 |
| 2.3 | Ball and stick diagram of <b>2.3</b> showing the hexasilver-containing rings. Triflate oxygens bound to Ag are labeled. Phenyl rings and hydrogen atoms are removed for clarity.                                       | 23 |
| 2.4 | Molecular diagram of <b>2.4</b> with the unique portion and important symmetry generated atoms labeled. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been removed for clarity.               | 25 |
| 2.5 | Ball and stick diagram of the ring formed by <b>2.1</b> and Ag, which is linked by tfa <sup>-</sup> ions to form an infinite chain. Phenyl groups and hydrogen atoms have been removed for clarity.                    | 26 |

| 2.6  | Normalized excitation and emission spectra of compounds 2.1–2.4<br>taken in acetonitrile glasses at 1 X $10^{-4}$ M concentration at 77 K.<br>= PCP-31AgBF <sub>4</sub> , = = = PCP-31AgOTf,                                                                      | 27 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | $\dots = PCP-31Agtta, - \cdot - \cdot = PCP-31.$                                                                                                                                                                                                                  | 27 |
| 3.1  | Molecular diagram of the unique portion of the <b>PCP-32AgOTf</b> polymer. Ellipsoids are drawn at the 30% probability level.                                                                                                                                     | 42 |
| 3.2  | A view of the one-dimensional chain of <b>3.2</b> . Hydrogen atoms and the non-coordinating portion of the triflates have been removed for clarity.                                                                                                               | 43 |
| 3.3  | Molecular diagram of the cationic unique portion of the polymer of <b>3.3</b> . The partial spiral of the pyridyl linkages through the linear chain is apparent. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been removed for clarity. | 45 |
| 3.4  | A view of the chain of <b>3.3</b> perpetuated in one dimension. The partial spiral of the pyridyl linkages can be seen to abruptly restart at the end of the unique portion. Hydrogen atoms have been removed for clarity                                         | 46 |
| 3.5  | A view down the <i>a</i> -axis of how the two-dimensional sheets of <b>3.3</b> stack together encompassing the $BF_4^-$ anions. Hydrogen atoms have been removed for clarity.                                                                                     | 46 |
| 3.6  | Molecular diagram of the unique portion of <b>3.4</b> . Ellipsoids are drawn at the 30% probability level. As shown, N4 is seen to be non-coordinating. All other pyridyl donors are metal bound.                                                                 | 48 |
| 3.7  | Packing structure of complex <b>3.4</b> showing the three-dimensional growth of the polymer. hydrogen atoms, trifluoromethyls, and all but the <i>ipso</i> portion of the phenyl rings have been removed for clarity.                                             | 49 |
| 3.8  | Coordination environment of Ag1 in the polymer of <b>3.4</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                 | 51 |
| 3.9  | Coordination environment of Ag2 in the polymer of <b>3.4</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                 | 52 |
| 3.10 | Normalized excitation and emission spectra of compounds <b>3.1–3.4</b> taken in acetonitrile glasses at $1 \times 10^{-4}$ M concentration at 77 K.                                                                                                               |    |
|      | = PCP-32Ag(tfa), $=$ $=$ PCP-32AgOTf, = PCP-32AgBF <sub>4</sub> , $=$ $=$ PCP-32.                                                                                                                                                                                 | 53 |
| 4.1  | Molecular structure of one of the unique cationic monomers of <b>4.1</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                     | 66 |

| 4.2  | Molecular structure of one of the unique metal dimers of <b>4.2</b> showing<br>how H–bonding to the anions hold the "sandwich" together. Ellipsoids<br>are drawn at the 50% probability level. All hydrogens except for those<br>on the amine nitrogens have been removed for clarity.                                                | 68 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.3  | Molecular structure of the monopositive cation in <b>4.3</b> . Ellipsoids are drawn at the 50% probability level. All hydrogens except for those on the amine nitrogens have been removed for clarity.                                                                                                                                | 71 |
| 4.4  | A view of the cationic complex of <b>4.4</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                                                                                                     | 74 |
| 4.5  | A view of the cationic complex of <b>4.5</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                                                                                                     | 76 |
| 4.6  | A view of the unique portion of the polymer of <b>4.6</b> with the coordination environment about silver shown complete. Ellipsoids are drawn at the 50% probability level.                                                                                                                                                           | 78 |
| 4.7  | A view of the 1–D polymer of <b>4.6</b> showing the intrapolymeric H–<br>bonding.                                                                                                                                                                                                                                                     | 79 |
| 4.8  | Molecular diagram of the unique portion of <b>4.7</b> with the coordination environment about silver shown complete. Ellipsoids are drawn at the 50% probability level.                                                                                                                                                               | 80 |
| 4.9  | A view of the helical 1–D polymer formed by compound <b>4.7</b> showing the intrapolymeric H–bonding.                                                                                                                                                                                                                                 | 81 |
| 4.10 | Normalized excitation and emission spectra of compounds <b>4.1,4.3,4.6</b><br>and <b>4.7</b> taken in acetonitrile glasses at 1 X 10 <sup>-4</sup> M concentration at 77 K.<br>= Ag(2-amp)OTf, $=$ $=$ Ag(2-amp)(tfa), $=$ Ag(2-amp) <sub>2</sub> BF <sub>4</sub> , $=$ $=$ Ag <sub>2</sub> (2-amp) <sub>3</sub> (OTf) <sub>2</sub> . | 82 |
| 5.1  | Thermal ellipsoid plot of the unique portion of the cationic polymer <b>5.1.1</b> . The disordered amine and silver have been omitted for clarity. Ellipsoids are drawn at the 50 % probability level.                                                                                                                                | 96 |
| 5.2  | Extended ball-and-stick view of the cationic polymeric structure of <b>5.1.1</b> . Hydrogen atoms and disorder have been removed for clarity.                                                                                                                                                                                         | 97 |
| 5.3  | Thermal ellipsoid plot of the cationic portion of <b>5.1.2</b> . Ellipsoids are drawn at the 50 % probability level. All hydrogen atoms except for those on the amines have been removed for clarity.                                                                                                                                 | 99 |

| 5.4  | Thermal ellipsoid of the unique portion of the cationic polymer of <b>5.2</b> with the silver coordination environments shown complete.<br>Ellipsoids are drawn at the 50 % probability level. The disorder of N3 has been removed for clarity.                                                                           | 100 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.5  | A view of the extended two-dimensional network of <b>5.2</b> . H atoms, anions and disorder have been removed for clarity.                                                                                                                                                                                                | 102 |
| 5.6  | A view of the two-dimensional network of <b>5.3.1</b> . Hydrogen atoms and anions have been removed for clarity.                                                                                                                                                                                                          | 103 |
| 5.7  | Thermal ellipsoid plot of the unique cationic portion of <b>5.3.1</b> . Ellipsoids are drawn at the 50 % probability level.                                                                                                                                                                                               | 104 |
| 5.8  | A view of the extended polymer of <b>5.3.2</b> . Hydrogen atoms have been removed for clarity.                                                                                                                                                                                                                            | 105 |
| 5.9  | Thermal ellipsoid plot of the unique portion of the cationic polymer <b>5.3.2</b> . Ellipsoids are drawn at the 50 % probability level.                                                                                                                                                                                   | 106 |
| 5.10 | Thermal ellipsoid of the cationic structure of <b>5.4</b> . Hydrogen atoms have been removed for clarity. The symmetry equivalent portion is shown dashed.                                                                                                                                                                | 107 |
| 5.11 | Representative Luminescence spectra of the 3-amp AgBF <sub>4</sub> compounds<br>taken in acetonitrile glasses at 1 X 10 <sup>-4</sup> M concentration at 77 K.<br>= Ag(3-amp)BF <sub>4</sub> , $=$ $=$ Ag <sub>2</sub> (3-amp) <sub>3</sub> (BF <sub>4</sub> ) <sub>2</sub> ,<br>= Ag(3-amp) <sub>2</sub> BF <sub>4</sub> | 109 |
| 6.1  | A view of the charge separated polymers of <b>6.1</b> . Only the bound oxygens are shown and all H atoms except for those of the amines have been removed for clarity.                                                                                                                                                    | 120 |
| 6.2  | Thermal ellipsoid view of the unique portion of compound <b>6.1</b> . The fluorine atoms and all hydrogens except for those on the amines have been removed for clarity. Ellipsoids are drawn at the 50 % probability level.                                                                                              | 121 |
| 6.3  | Thermal ellipsoid plot of the unique portion of the polymer <b>6.2</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                                                               | 123 |
| 6.4  | Expanded view of the 2-Dimensional growth of the cationic polymer of <b>6.2</b> .                                                                                                                                                                                                                                         | 124 |
| 6.5  | A view of the 2-dimensional cationic network of <b>6.3</b> . All H atoms except for those on the amines have been removed for clarity.                                                                                                                                                                                    | 126 |

| 6.6  | Thermal ellipsoid plot of the unique portion of <b>6.3</b> . Ellipsoids are drawn at the 50 % probability level.                                                                                                                                                                                                                            | 127 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.7  | Thermal ellipsoid plot of the unique portion of the 3-dimensional polymer of <b>6.4</b> . Ellipsoids are drawn at the 50 % probability level.                                                                                                                                                                                               | 128 |
| 6.8  | An extended view of the 3-dimensional cationic network of <b>6.4</b> . All hydrogen atoms except for those on the amines have been omitted for clarity.                                                                                                                                                                                     | 130 |
| 6.9  | Thermal ellipsoid plot of the tetrametallic ring of <b>6.5</b> showing the H–bonding of the tfa <sup><math>-</math></sup> anions to the amine hydrogens. The symmetry generated portion of the structure is shown dashed. All other hydrogens and anions have been removed for clarity. Ellipsoids are drawn at the 50 % probability level. | 131 |
| 6.10 | An extended view of the cationic polymer of $Ag_4$ units formed by the metal-metal interactions of <b>6.5</b> . Anions and H-atoms have been removed for clarity.                                                                                                                                                                           | 133 |
| 6.11 | Thermal ellipsoid plot of the two different cationic parts of <b>6.6</b> with the unique portion labeled. Symmetry generated atoms are shown dashed. Anions and all hydrogen atoms except for those on the amines have been removed for clarity. Ellipsoids are drawn at the 50 % probability level.                                        | 134 |
| 6.12 | Normalized excitation and emission spectra of representative 3-amp Ag(I) compounds taken in acetonitrile glasses at $1 \times 10^{-4}$ M concentration at 77 K = Ag(3-amp)_2OTf, = = Ag(3-amp)(tfa), = Ag_2(3-amp)(BF_4)_2(2,2'-bipy)_2, = = Ag(3-amp)(OTf).                                                                                | 136 |
| 7.1  | Molecular diagram of the cationic polymer <b>7.1</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                                                                                                                                   | 150 |
| 7.2  | 50% thermal ellipsoid representation of the parallel polymers of <b>7.2</b> .<br>Hydrogen atoms have been removed for clarity. Inset is a view down<br>the length of the polymers showing the different approaches of<br>the anions.                                                                                                        | 151 |
| 7.3  | A view of the cationic chain of <b>7.3</b> . Ellipsoids are drawn at the 30% probability level. All hydrogen atoms except for those on the amines have been removed for clarity.                                                                                                                                                            | 153 |
| 7.4  | A view of the cationic "box-in-box" structure of <b>7.4</b> . All hydrogen atoms except for those on the amines have been removed for clarity.                                                                                                                                                                                              | 154 |

| 7.5  | Thermal ellipsoid plot of the unique cationic portion of <b>7.4</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                                    | 155 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7.6  | An extended view of the cationic "box-in-box" network of <b>7.5</b> . All hydrogen atoms except for those on the amines have been removed for clarity.                                                                                      | 157 |
| 7.7  | Molecular diagram of the unique portion of the cationic polymer of <b>7.5</b> . Ellipsoids are drawn at the 50% probability level.                                                                                                          | 158 |
| 7.8  | Molecular diagram of the bimetallic monomer of <b>7.6.2</b> . Ellipsoids are drawn at the 50% probability level. All hydrogen atoms except for those on the amine have been removed for clarity.                                            | 160 |
| 7.9  | Ball and stick diagram showing the polymeric nature of <b>7.6.2</b> . Anions and hydrogen atoms have been removed for clarity.                                                                                                              | 161 |
| 7.10 | Normalized excitation and emission spectra of representative 3-amp Ag(I) compounds taken in acetonitrile glasses at $1 \times 10^{-4}$ M concentration at 77 K = Ag(4-amp)_2OTf, = Ag(4-amp)(OTf), = Ag(4-amp)_2(BF_4), = Ag(4-amp)_2(tfa). | 162 |

# LIST OF SCHEMES

| 1.1 | The defining characteristics of the simplest possible one-, two-, and three-dimensional coordination polymers. Terminal ends are linked to equivalent units. $D = (typically) N \text{ or } O$ . | 2   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.2 | Diagram of the common extended metal-organic motifs seen in coordination chemistry.                                                                                                              | 3   |
| 2.1 | General Synthetic Scheme for the carbinol-substituted phosphine coordination complexes of the silver(I) salts. In a, $X = BF_4^-$ or tfa <sup>-</sup> and in b, $X = OTf^-$ .                    | 14  |
| 3.1 | Binding modes of PCP-32 with silver(I) salts.                                                                                                                                                    | 40  |
| 4.1 | The binding modes that are seen with the 2-aminomethylpyridine ligand in the silver(I) structures described herein.                                                                              | 61  |
| 7.1 | Typical coordination modes of amp ligands with silver(I) salts.                                                                                                                                  | 144 |

# LIST OF TABLES

| 2.1 | Analytical and Physical Data                                                                                                           | 15 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2 | Hydrogen-1 and Phosphorus-31 NMR Data                                                                                                  | 16 |
| 2.3 | Selected Bond Lengths (Å), Angles (°), Torsion Angles(°), and<br>Important Distances for <b>PCP-31AgBF</b> <sub>4</sub> ( <b>2.2</b> ) | 20 |
| 2.4 | Selected Bond Lengths (Å), Angles (°), Torsion Angles(°), and Important Distances for <b>PCP-31AgOTf</b> (2.3)                         | 22 |
| 2.5 | Selected Bond Lengths (Å), Angles (°), Torsion Angles(°), and Important Distances for <b>PCP-31Agtfa</b> (2.4)                         | 25 |
| 2.6 | Luminescent Spectral Data for compounds <b>2.1–2.4</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN                        | 27 |
| 2.7 | Crystallographic Data for 2.2, 2.3 and 2.4                                                                                             | 32 |
| 3.1 | Analytical and Physical Data                                                                                                           | 36 |
| 3.2 | Hydrogen-1 and Phosphorus-31 NMR Data                                                                                                  | 37 |
| 3.3 | Selected Bond Lengths (Å), Angles (°), and Important Distances for 3.2                                                                 | 42 |
| 3.4 | Selected Bond Lengths (Å), Angles (°), and Important Distances for 3.3                                                                 | 45 |
| 3.5 | Selected Bond Lengths (Å), Angles (°), and Important Distances for 3.4                                                                 | 48 |
| 3.6 | Luminescent Spectral Data for compounds <b>3.1–3.4</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN                        | 54 |
| 3.7 | Crystallographic Data for <b>3.2</b> , <b>3.3</b> and <b>3.4</b>                                                                       | 58 |
| 4.1 | Analytical and Physical Data                                                                                                           | 63 |
| 4.2 | Hydrogen-1 NMR Data                                                                                                                    | 64 |
| 4.3 | Selected bond lengths (Å), angles (deg), and important distances for $Ag(2-amp)_2BF_4$ , ( <b>4.1</b> )                                | 66 |

| 4.4  | Selected bond lengths (Å), angles (deg), and important distances for $Ag(2-amp)_2$ tfa, (4.2)                                                             | 68  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.5  | Selected bond lengths (Å), angles (deg), and important distances for $Ag_2(2-amp)_3(OTf)_2$ , (4.3)                                                       | 71  |
| 4.6  | Selected bond lengths (Å), angles (deg), and important distances for $Ag_2(2-amp)_3(BF_4)_2$ , (4.4)                                                      | 74  |
| 4.7  | Selected bond lengths (Å), angles (deg), and important distances for $Ag_22,2$ '-bpy <sub>2</sub> (2-amp)(BF <sub>4</sub> ) <sub>2</sub> , ( <b>4.5</b> ) | 76  |
| 4.8  | Selected bond lengths (Å), angles (deg), and important distances for Ag(2-amp)OTf, ( <b>4.6</b> )                                                         | 78  |
| 4.9  | Selected bond lengths (Å), angles (deg), and important distances for $Ag(2-amp)(tfa)$ (4.7)                                                               | 80  |
| 4.10 | Luminescent Spectral Data for 2-amp and compounds <b>4.1–4.7</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN                                 | 82  |
| 4.11 | Crystallographic Data for compounds <b>4.1</b> to <b>4.7</b>                                                                                              | 88  |
| 5.1  | Analytical and Physical Data                                                                                                                              | 92  |
| 5.2  | Hydrogen-1 NMR Data                                                                                                                                       | 93  |
| 5.3  | Selected bond lengths (Å), angles (°), and important distances for $Poly(Ag[3-amp]BF_4)$ (5.1.1)                                                          | 96  |
| 5.4  | Selected bond lengths (Å), angles (°), and important distances for $Poly(Ag[3-amp]BF_4)$ (5.1.2)                                                          | 99  |
| 5.5  | Selected bond lengths (Å), angles (°), and important distances for $Ag_2(3-amp)_3(BF_4)_2$ (5.2)                                                          | 100 |
| 5.6  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)_2BF_4$ ( <b>5.3.1</b> )                                                     | 104 |
| 5.7  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)_2BF_4$ ( <b>5.3.2</b> )                                                     | 106 |
| 5.8  | Selected bond lengths (Å), angles (°), and important distances for $Ag_2(2,2'-bipy)_2-\mu-(3-amp)(BF_4)_2$ (5.4)                                          | 107 |

| 5.9  | Luminescent Spectral Data for 3-amp and the compounds <b>5.1.1–5.4</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN | 109 |
|------|---------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.10 | Crystallographic Data for compounds 5.1.1 to 5.4                                                                                | 113 |
| 6.1  | Analytical and Physical Data                                                                                                    | 117 |
| 6.2  | Hydrogen-1 NMR Data                                                                                                             | 118 |
| 6.3  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)tfa$ (6.1)                                         | 121 |
| 6.4  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)OTf(6.2)$                                          | 123 |
| 6.5  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)_2$ tfa (6.3)                                      | 127 |
| 6.6  | Selected bond lengths (Å), angles (°), and important distances for $Ag(3-amp)_2OTf(6.4)$                                        | 128 |
| 6.7  | Selected bond lengths (Å), angles (°), and important distances for $Ag_2(2,2)^2-\mu-(3-amp)(tfa)_2$ (6.5)                       | 131 |
| 6.8  | Selected bond lengths (Å), angles (°), and important distances for $Ag_2(2,2)^2-\mu-(3-amp)(OTf)_2$ (6.6)                       | 134 |
| 6.9  | Luminescent Spectral Data for compounds <b>6.1–6.6</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN                 | 136 |
| 6.10 | Crystallographic Data for compounds 6.1 to 6.6                                                                                  | 141 |
| 7.1  | Analytical and Physical Data                                                                                                    | 146 |
| 7.2  | Hydrogen-1 NMR Data                                                                                                             | 147 |
| 7.3  | Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp)OTf ( <b>7.1</b> )                                  | 150 |
| 7.4  | Selected bond lengths (Å), angles (°), and important distances for $Ag(4-amp)tfa$ (7.2)                                         | 151 |
| 7.5  | Selected bond lengths (Å), angles (°), and important distances for $Ag(4-amp)_2 tfa$ (7.3)                                      | 153 |

| Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp) <sub>2</sub> (OTf) ( <b>7.4</b> )              | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selected bond lengths (Å), angles (°), and important distances for $Ag(4-amp)_2BF_4$ (7.5)                                  | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selected bond lengths (Å), angles (°), and important distances for $Ag_2(5,5'-bis methyl-2,2'-bpy)_2(4-amp)(BF_4)_2(7.6.2)$ | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Luminescent Spectral Data for compounds <b>7.1–7.6.2</b> , at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN           | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crystallographic Data for compounds 7.1 to 7.6.2                                                                            | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 2.2                                                                           | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 2.3                                                                           | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 2.4                                                                           | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for <b>3.2</b>                                                                    | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for <b>3.3</b>                                                                    | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 3.4                                                                           | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.1                                                                           | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.2                                                                           | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.3                                                                           | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.4                                                                           | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.5                                                                           | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.6                                                                           | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 4.7                                                                           | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 5.1.1                                                                         | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 5.1.2                                                                         | 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental and statistical crystal data for 5.2                                                                           | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                             | Selected bond lengths (Å), angles (°), and important distances for<br>Ag(4-amp) <sub>2</sub> (OTI) (7.4)<br>Selected bond lengths (Å), angles (°), and important distances for<br>Ag(4-amp) <sub>2</sub> BF <sub>4</sub> (7.5)<br>Selected bond lengths (Å), angles (°), and important distances for<br>Ag <sub>2</sub> (5,5 <sup>°</sup> -bis methyl-2,2 <sup>°</sup> -bpy) <sub>2</sub> (4-amp)(BF <sub>4</sub> ) <sub>2</sub> (7.6.2)<br>Luminescent Spectral Data for compounds 7.1–7.6.2, at 77 K and<br>$1 \times 10^{-4}$ M in CH <sub>3</sub> CN<br>Crystallographic Data for compounds 7.1 to 7.6.2<br>Experimental and statistical crystal data for 2.3<br>Experimental and statistical crystal data for 2.4<br>Experimental and statistical crystal data for 3.2<br>Experimental and statistical crystal data for 3.3<br>Experimental and statistical crystal data for 3.4<br>Experimental and statistical crystal data for 4.1<br>Experimental and statistical crystal data for 4.2<br>Experimental and statistical crystal data for 4.3<br>Experimental and statistical crystal data for 4.3<br>Experimental and statistical crystal data for 4.4<br>Experimental and statistical crystal data for 4.5<br>Experimental and statistical crystal data for 4.6<br>Experimental and statistical crystal data for 4.7<br>Experimental and statistical crystal data for 5.1.1<br>Experimental and statistical crystal data for 5.1.2<br>Experimental and statistical crystal data for 5.1.2 |

| B.17 | Experimental and statistical crystal data for 5.3.1 | 235 |
|------|-----------------------------------------------------|-----|
| B.18 | Experimental and statistical crystal data for 5.3.2 | 237 |
| B.19 | Experimental and statistical crystal data for 5.4   | 239 |
| B.20 | Experimental and statistical crystal data for 6.1   | 241 |
| B.21 | Experimental and statistical crystal data for 6.2   | 245 |
| B.22 | Experimental and statistical crystal data for 6.3   | 247 |
| B.23 | Experimental and statistical crystal data for 6.4   | 249 |
| B.24 | Experimental and statistical crystal data for 6.5   | 251 |
| B.25 | Experimental and statistical crystal data for 6.6   | 254 |
| B.26 | Experimental and statistical crystal data for 7.1   | 259 |
| B.27 | Experimental and statistical crystal data for 7.2   | 261 |
| B.28 | Experimental and statistical crystal data for 7.3   | 263 |
| B.29 | Experimental and statistical crystal data for 7.4   | 264 |
| B.30 | Experimental and statistical crystal data for 7.5   | 266 |
| B.31 | Experimental and statistical crystal data for 7.6.2 | 268 |

# LIST OF ABBREVIATIONS

# General Abbreviations and Symbols

| CCD               | charge coupled device                               |
|-------------------|-----------------------------------------------------|
| MOF               | metal-organic framework                             |
| R, R'             | H, alkyl, aryl                                      |
| L, L'             | ligand                                              |
| M, M'             | metal                                               |
| D, D'             | donor atom                                          |
| BDA               | 6,6'-dicarboxylate-2,2'-dihydroxy-1,1'-binapthylene |
| AgPF <sub>6</sub> | silver hexafluorophosphate                          |
| Agtfa             | silver trifluoroacetate                             |
| AgOTf             | silver trifluoromethanesulfonate (triflate)         |
| AgBF <sub>4</sub> | silver tetrafluoroborate                            |
| 4,4'-bipy         | 4,4'-bipyridyl                                      |
| 2,2'-bipy         | 2,2'-bipyridyl                                      |
| LED               | light emitting device                               |
| OLED              | organic light emitting device                       |
| NLO               | non-linear optics                                   |
| ру                | pyridyl                                             |
| PCP-31            | diphenylphosphino-3-pyridylcarbinol                 |
| PCP-32            | phenylphosphino-bis(3-pyridnylcarbinol)             |
| 2-amp             | 2-aminomethylpyridine                               |

- 3-amp 3-aminomethylpyridine
- 3-amp 3-aminomethylpyridine

# Spectroscopy

| NMR        | nuclear magnetic resonance                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------|
| δ          | chemical shift                                                                                                       |
| ppm        | parts per million                                                                                                    |
| J          | coupling constant                                                                                                    |
| Hz         | hertz                                                                                                                |
| MHz        | megahertz                                                                                                            |
| S          | singlet                                                                                                              |
| d          | doublet                                                                                                              |
| dd         | doublet of doublets                                                                                                  |
| t          | triplet                                                                                                              |
| q          | quartet                                                                                                              |
| m          | multiplet                                                                                                            |
|            | Crystallography                                                                                                      |
| Κα         | maxima in the X-ray emission spectrum (Mo $K\alpha 1 = 0.71073$ Å)                                                   |
| λ          | monochromated X-ray wavelength taken as weighted average of $K\alpha$                                                |
|            | emission                                                                                                             |
| θ, χ, φ, ω | angles variable of the X-ray diffraction experiment                                                                  |
| h, k, l    | Miller indices, reciprocals of the fractional intercepts which a particular plane makes with a crystallographic axis |

| a, b, c            | lattice parameters defining unit cell dimensions                                                                                                  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| α, β, γ            | lattice parameters defining unit cell angles                                                                                                      |
| D <sub>calcd</sub> | calculated density                                                                                                                                |
| <i>F</i> (000)     | represents total number of electrons per unit cell                                                                                                |
| GooF               | Goodness-of-fit: the error in the weighting scheme that provides an indication of the agreement between observed and calculated structure factors |
| <i>R</i> 1         | conventional agreement factor based on refinement of $F$ data                                                                                     |
| wR2                | weighted agreement factor based on refinement of all $F^2$ data                                                                                   |
| R <sub>int</sub>   | agreement factor between observed and averaged intensities                                                                                        |
| μ                  | linear absorption coefficient                                                                                                                     |
| V                  | volume of the unit cell                                                                                                                           |
| Z                  | number of molecules per unit cell                                                                                                                 |
| $2\theta_{\max}$   | maximum value of $2\theta$ collected in a crystallographic experiment                                                                             |
| e.s.d.             | estimated standard deviation                                                                                                                      |

#### ACKNOWLEDGMENTS

I thank God for allowing me to see that things are not always as they seem, for showing me that even the dreariest path may have the most spectacular destination, and for blessing me with all the gifts that life has to offer.

I thank Kevin Klausmeyer for being a most supportive advisor and a good friend. Under his direction I have gained the knowledge and confidence in myself and in my science to stand proudly as equals with those who preceded me.

I thank the Robert A. Welch Foundation for financial support.

I thank my colleagues in the Department of Chemistry at Baylor University, in particular Cody Carson, Dr. Thomas McGrath, Dr. Bruce Hodson and Dr. Andreas Franken for stimulating conversation on topics ranging from the photophysical properties of bipyridyl ruthenium complexes to the eating habits of the Loch Ness Monster. Without them the process might have been unbearable.

I thank my parents, my sister, Rita, Bernardo, Jeannette, Kaki, Abuela Mery and the rest of my family for their unwavering love and support no matter how many times my life changed direction (this was more than once). They would have been just as proud had I ended up flipping burgers as long as I did my best.

And finally I thank Monica. My best friend, my harshest critic, my strongest competitor, my life partner and my Loving Wife. God Himself must have carried this woman to me, there is no other explanation. She completes me . . . and for this I am grateful.

xxii

## CHAPTER ONE

## General Introduction

Knowledge of single-crystal X-ray diffraction developed some eight decades ago and has been an active research topic since shortly after the discovery of X-ray radiation. However, the subjects of supramolecular design and crystal engineering have only seen rapid growth in the last ten years of this era.<sup>1-4</sup> This sudden surge in investigation can be accounted for as the result of a combination of two important scientific achievements; first and foremost was the development of a microprocessor with sufficient computational power to manage the tremendous amount of data that is unavoidably compiled in the collection of a crystal's reflection data set. This, coupled with the incorporation of the CCD (charge-coupled device) area detector in the mid-nineties reduced the time necessary for the collection of a complete data set from days or weeks to mere hours. This has allowed for X-ray crystallography to take a commanding position as the principal technique for the absolute structural determination of molecular arrangements. As a result, studies now abound on the intra- and intermolecular forces that are present within the crystalline confines of any pure substance. This everincreasing collection of knowledge has allowed for the rational design and synthesis of countless coordination architectures which display interesting and useful properties.<sup>5-9</sup> What follows is a brief overview of the current state of knowledge in the area of supramolecular coordination chemistry, emphasizing those achievements made with infinitely extended coordination networks.

1

#### Coordination Polymers by Definition

Coordination polymers, also referred to as metal-organic frameworks (MOFs), are ligand-bound metal complexes that extend "infinitely" in one-, two-, or three-dimensions through covalent ligand-donor to metal interactions as shown in Scheme 1.1.<sup>10</sup> Strictly



Scheme 1.1. The defining characteristics of the simplest possible one-, two-, and three-dimensional coordination polymers. Terminal ends are linked to equivalent units. D = (typically) N or O.

speaking, in order to have a true coordination polymer, a bridging ligand must have at least one carbon atom in the backbone of that polymer as seen perpetuated in at least one dimension.<sup>11</sup> Also, in that same dimension, the polymer must be bridged solely by this organic ligand. This definition separates the coordination polymers from other types of similar extended metal-ligand (be it organic or inorganic) networks, examples of which are shown in Scheme 1.2. Contained within this excluded group are the polymers based



a) true coordination polymer

b) organic-inorganic hybrid materials



(bridging organic and inorganic ligands)



(bridging inorganic and terminal organic ligands)

c) hydrogen-bonded networks



Scheme 1.2. Diagram of the common extended metal-organic motifs seen in coordination chemistry.

on metals bridged by the inorganic heads of organic oxides (RO<sup>-</sup>), phosphonates (RPO<sub>3</sub><sup>2-</sup>) or sulfonates (RSO<sub>3</sub><sup>-</sup>) or of the strictly inorganic bridging ligands such as X<sup>-</sup>, CN<sup>-</sup>, N<sub>3</sub><sup>-</sup>, PO<sub>4</sub><sup>3-</sup>, or SO<sub>4</sub><sup>2-.12,13</sup> Also rejected from the coordination polymer definition are

those of the extended hydrogen-bonded networks and those complexes which contain organic bridging ligands that do not continue infinitely in any one dimension but are separated by inorganic spacers (Scheme 1.2, part b and c).<sup>12,14,15</sup>

Besides the covalent donor-metal bonds that form the basis of the extended metal/ligand framework there are a number of weaker secondary interactions including  $\pi$ -stacking, hydrogen-bonding, solvent effects and anion interactions that must be taken into consideration when examining the overall structural conformation of these complexes.<sup>16-22</sup> Quite often, these features are engineered into coordination networks in attempts to construct predetermined (designed) architectures.<sup>23-25</sup> A recent example of this is given by Lin, et al.<sup>26</sup> in which the neutral 6,6'-dicyano-2,2'-dihydroxy-1,1'-binapthalene ligand was functionalized into an anionic (-2) 6,6'-dicarboxylate (BDA) via oxidation of



Figure 1.1. bis-(BDA)  $Mn^{II}$  polymers. L = MeOH.

the cyano groups. This was then bound to  $Mn^{2+}$  constructing charge neutral linear zigzag coordination polymers shown in Figure 1.1. In addition to balancing the charge of the metal centers, the carboxylates are seen to be hydrogen bound to the hydroxyl groups of neighboring polymers constructing an overall two-dimensional network motif.

In a similar example, Barboiu and coworkers<sup>27</sup> demonstrate how the secondary interactions of hydrogen-bonding and  $\pi$ -stacking can be used to construct supramolecular pipes with AgPF<sub>6</sub>. Once coordinated to a metal, the hydrogen-bonding of Barboui's urea-based ligand to a typically innocent PF<sub>6</sub><sup>-</sup> anion causes the construction of an anion-centered "flower" as shown in Figure 1.2. These monomers are then stacked one on top of another into rods held together by  $\pi$ - $\pi$  interactions.



Figure 1.2. a) The silver(I)-bound 1-phenyl-3-pyridine-3-yl-urea hydrogen bonding to a central  $PF_6^-$  anion. b) a stick diagram of (a), shown two molecules deep. c) the linear growth of this polymer as an anion-centered rod.

Still other secondary interactions have been used in creative techniques to modify the supramolecular structure of coordination polymers. The ligand 1,3-di(4pyridyl)propane has been used to construct numerous extended coordination networks and even some discrete, ligand-bridged dimetallic clusters with many different d-block metals.<sup>28-30</sup> However, the ethane based ligand itself is limited in the interpolymeric interactions in which it can involve itself. In attempts to increase the dimensionality that this ligand has and further study the effects of non-covalent interactions on macromolecular topologies Bu and associates replaced carbon atoms in the backbone of



Figure 1.3. A view of the extended network that is formed by linking 1-D polymers with S…S interactions.  $M = Cd^{II}$ ,  $Co^{II}$ , or  $Zn^{II}$ .

the 1,3-di(4-pyridyl)propane ligand with sulfur atoms, Figure 1.3.<sup>31</sup> The resulting structures displayed a primary polymer similar to the hydrocarbon ligand. However, secondary S…S interactions gave an added degree of dimensionality to the complexes, creating several new two and three dimensional networks.

#### Ligand Constraints

Ligands that are used in the construction of extended coordination networks must bridge between two or more metal ions and are therefore necessarily multidentate. <sup>32-35</sup> Unidentate alkoxides, thiolates, etc. may bridge  $\mu_{2-3}$ , but these linkages typically are seen to form small metal clusters or are used in conjunction with larger organic ligands in the formation of polymeric species.<sup>36-39</sup> Several common neutral and anionic bidentate ligands used in the synthesis of coordination polymers are shown in Figure 1.4. Ligands are chosen for specific applications based on factors such as rigidity, conjugation, conformation, charge and donor atom.<sup>40</sup> Each ligand imparts specific characteristics



Figure 1.4. Common bidentate ligands used in the construction of coordination networks.

to the polymer of which it is a part and can be used in conjunction with chosen metals to design materials which have desirable characteristics.<sup>41-51</sup> The 4,4'-bipyridyl (4,4'-bipy and its derivatives) ligand, for instance, is one of the most applied linkages for construction of coordination networks due to its predictable binding modes and conformations. These bipy ligands have been used to build one-dimensional chains and ladders, two-dimensional sheets, and three-dimensional scaffolds.<sup>52-55</sup> The complete conjugation of the aromatic ligand also allows for at least partial electronic communication between the opposing metal centers. As a result, the 4,4'-bipy ligand has

been used numerous times in the construction of coordination polymers and networks that are to be studied for specific electronic and luminescent characteristics.<sup>56-59</sup> A recent study by Tao and coworkers outlined the use of 4,4'-bipy as a coligand in the assembly of several luminescent extended Zn<sup>II</sup> networks similar to that shown in Figure 1.5.<sup>58</sup> They were able to tune the structures and the emission maxima of their polymers by altering the R group of the bridging acid.



Figure 1.5. Generic 4,4'-bipy / Zn /  $RO_2^-$  polymer. The emission spectrum is shown for R = 4-sulfoisothalic acid.

## **Applications**

## Host-Guest properties / Catalysis

A common goal of many studies of supramolecular coordination networks is the acquisition of new microporous materials that might have zeolitic properties.<sup>60,61</sup> These porous coordination polymers would have uses in size selective absorption, molecular recognition and gas storage, as well as others. However, as a group, metal-organic coordination polymers tend to be less stable than their inorganic oxide counterparts due to the more labile nature of the metal-ligand bond.<sup>62</sup> This imposes inherent limitations on their usefulness in the aforementioned areas. Despite these shortcomings, designed porous coordination networks have found application under specialized circumstances

such as size- or shape-specific catalysis.<sup>11</sup> Fujita, et al. have reported on the ability of the simple porous network structure made of  $Cd(NO_3)_2$  and 4,4'-bipy to catalyze the cyanosilylation of aldehydes according to Equation 1 (Figure 1.6).<sup>63</sup> The structure is



Figure 1.6. Structural diagram of  $[Cd(NO_3)_2(4,4'-bipy)_2]_n$ . Eq. 1 shows the cyanosilation of an aldehyde that this complex catalyzes.

built into a grid of bipy-walled squares which are presumed to hold the reactants in suitable proximity and position to facilitate the reaction. Cyanosilation of aldehydes typically does not proceed in the absence of a homogeneous Lewis acid catalyst.<sup>64</sup>

#### Luminescence

The use of coordination polymers as potential new light-emitting devices (LEDs) is of great interest due to the seemingly endless possibilities of ligand / metal combinations.<sup>58,65-71</sup> A major advantage that these new metal-organic hybrid LEDs have over the traditional organic light-emitting device (OLED) is that they tend to have a much greater thermal stability.<sup>71</sup> This translates into a wider range of applications as well as a

longer lifetime. There is also more room for fine tuning of the emission wavelengths via alterations in both metal environment and ligand properties.

# Conductivity

Electrical conductivity, or lack thereof, has traditionally been one of the more sought after properties by materials chemists.<sup>72-74</sup> Coordination chemists have now joined in the effort with the realization that coordination polymers possess the ability to be altered as to allow for regulation of their conductivities.<sup>75</sup> A stacked coordination polymer of the type  $[Fe^{II}(pc)(\mu-pyz)]_n$  (pc = phthalocyaninato; pyz = pyrazine) was found to have a conductivity on the order of  $1 \times 10^{-6}$  S cm<sup>-1</sup>. Doping of this same polymer with iodine increases the conductivity to  $2 \times 10^{-1}$  S cm<sup>-1</sup>.<sup>76,77</sup> Coordination polymers with Ag–Ag interactions are also seen to display a temperature dependent semiconductivity.<sup>67,78,79</sup> This electrical activity is thought to stem from the close metal– metal interactions (often less than 3.0Å) that are along the lines of that seen in metallic silver (2.89Å).

Other fields that are seeing advancement from the progression of coordination polymers include those of molecular magnetism<sup>75,80,81</sup>, which holds great promise as a basis for future generations of computers and information technology, and non-linear optics (NLOs).<sup>82,83</sup> Several reports of coordination polymers displaying NLO properties are already known, though at present their stability in the laser light used to test them is still inferior to the common inorganic metal oxides presently in service.

In the pages that follow a variety of new extended coordination networks are presented based on a series of pyridyl-substituted phosphinites and amines. All of these complexes have been characterized structurally by X-ray diffraction. This work adds to the current state of knowledge through the description of new ligands and discussions on structural variability by the use of the intra- and inter-molecular interactions of hydrogenbonding,  $\pi$ -stacking, temperature and solvent effects. Later chapters also outline what has come to be the first comprehensive study of the ratio dependence of structural motifs in a series of silver(I) salts with the isomeric aminomethylpyridine (amp) ligands; work that readily complements the well-explored area of anion-dependent structural variability.

## CHAPTER TWO

# Two, Three, and Four Coordinate Ag(I) Coordination Polymers Formed by the Novel Phosphinite, PPh<sub>2</sub>(3-OCH<sub>2</sub>py)

#### Introduction

Silver-based coordination polymers have received great attention lately.<sup>3,4,84-92</sup> This is owed to the rich chemistry that is available to this versatile metal. Silverphosphine/silver-pyridine complexes have repeatedly demonstrated interesting electronic, medicinal, and structural properties.<sup>12,93-113</sup> Part of what gives silver the ability to produce such intriguing structural motifs is the ease with which it varies its coordination number, generally from 2 to 4.<sup>103</sup> Thus far the vast majority of silver coordination polymers employ ligands that are symmetric, very often using some isomer of bipyridine.<sup>4</sup>

Pyridyl-substituted phosphines, which were first reported nearly 60 years ago, have been commonplace and thoroughly explored since their introduction.<sup>91,104,112-133</sup> They are an interesting family of ligands because they have the potential to display both the harder and softer donating abilities of the nitrogen and phosphorus, respectively, in a single moiety. The majority of reports in this area have been that of the 2-pyridyl phosphines; their chelating, or their bimetallic/ biligand ring forming abilities.<sup>131-136</sup> Relatively little work has been reported for the 3- and 4-pyridyl phosphines, most likely due to the difficulty with which they are synthesized.<sup>114,117,129</sup> Using only 2-pyridyl substituents, the arrangement of complexes formed is inherently limited to those discrete structures that can be obtained with the acute angles present. This excludes a vast array

12

of complexes that could be formed by separating the nitrogen and phosphorus to the point of minimal interaction.

In order to provide an easier entry into new pyridyl containing phosphines and in an attempt to open a new area of coordination polymer chemistry using ligands with different binding functionalities, an –OCH<sub>2</sub>– "spacer" has been inserted between the P and 3-pyridyl components, thereby achieving the goal of P-N isolation with added benefit of inherent flexibility in the P-N distance. From this, several new coordination compounds of silver that have been prepared with a novel pyridylcarbinol substituted phosphine ligand, **PCP-31**, are now reported. The **PCP–nm** naming convention that we have adopted allows for ease in discussion of this and similar pyridylmethylphosphinites, as there are many substitutions that can be made and systematic nomenclature can be cumbersome. As such, **PCP** indicates the **P**yridylCarbinol class of **P**hosphorus ligands, where **n** is the position of substitution on the pyridyl ring and **m** is the number of carbinol substitutions on the phosphorus. This work has recently been published.<sup>147</sup>

## Results and Discussion

#### Synthesis and NMR Spectroscopy

Compound 2.1 (PCP-31) is made by the  $S_N^2$  type substitution of a chlorophosphine with an alkoxy-pyridine in a modified version of the phenol-derived analog reported by Bedford and Welch.<sup>137</sup> Deprotonation of the carbinol to make the <sup>-</sup> OCH<sub>2</sub>C<sub>5</sub>H<sub>4</sub>N nucleophile is facile in toluene with the base triethylamine. Great care must be taken in the synthesis of 2.1 as a result of the observation that in the intermediate stages of reaction, all reaction components are extremely sensitive to factors such as
temperature, light, addition rate, concentration, and solvent. High temperatures, rapid or extremely slow addition rate, and ion-stabilizing solvents, such as THF, tend to favor the production of the well known phosphorus-phosphine oxide by-product PPh<sub>2</sub>P(O)Ph<sub>2</sub>.<sup>138</sup> Exposure to light at any stage of the synthesis leads to the accelerated formation of the yellow decomposition product. Once isolated, **2.1** is stable to moisture but unstable to air, heat, or light. Decomposition can be slowed, though not completely halted, by keeping it shielded from light and refrigerated under an inert atmosphere. <sup>1</sup>H and <sup>31</sup>P NMR spectra of **2.1** were obtained in CDCl<sub>3</sub> and demonstrate the very pronounced 3bond coupling of phosphorus to the phenyl and methylene protons. A defined phosphorus septet is found centered at  $\delta = 116.3$ , which is in the region expected for aromatic substituted phosphinites.

The silver compounds **2.2-2.4** were synthesized by reaction with simple silver salts under ambient conditions in an inert atmosphere as outlined in Scheme 2.1. These were characterized by the analytical data given in Tables 2.1 and 2.2. Upon coordination, all of the silver compounds reported herein are white powders that noticeably decompose within several hours upon exposure to light. Solutions of the metal compounds **2.2-2.4** in organic solvents undergo reduction of the silver to precipitate metallic silver and an oily



Scheme 2.1. General Synthetic Scheme for the carbinol-substituted phosphine coordination complexes of the silver(I) salts. In a,  $X = BF_4^-$  or tfa<sup>-</sup> and in b,  $X = OTf^-$ .

|     | compound <sup>a</sup>                                                                          | yield |             | analytical (%) <sup>b</sup> |           |  |
|-----|------------------------------------------------------------------------------------------------|-------|-------------|-----------------------------|-----------|--|
|     |                                                                                                | (%)   | С           | Н                           | Ν         |  |
| 2.1 | $Ph_2P(3-OCH_2C_5H_4N)$                                                                        | 81    |             |                             |           |  |
| 2.2 | poly-[Ph <sub>2</sub> P(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N)AgBF <sub>4</sub> ] | 91    | 45.1 (44.3) | 3.4 (3.3)                   | 3.1 (2.9) |  |
| 2.3 | poly-[Ph <sub>2</sub> P(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N)AgOTf]              | 92    | 40.9 (41.4) | 2.8 (2.9)                   | 2.7 (2.6) |  |
| 2.4 | poly-[ Ph <sub>2</sub> P(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N)Agtfa]             | 98    | 46.7 (46.7) | 3.1 (3.1)                   | 2.9 (2.7) |  |

Table 2.1. Analytical and Physical Data

<sup>a</sup> All compounds are white or off white solids except for **2.1**, which is a colorless oil. <sup>b</sup> Calculated values are given in parenthesis.

|     | $^{1}\mathrm{H}/\delta^{a}$                                                                          | $^{31}\mathrm{P}/\delta^\mathrm{b}$                                  |
|-----|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2.1 | 4.93 d, 2H J(PH ) = 9.10Hz; 7.28 m, 1H; 7.39 m, 6H; 7.53 m, 4H; 7.68 dt, 1H; 8.56 d, 1H; 8.63 s, 1H. | 116.29 m, J(PH) = 8.14Hz                                             |
| 2.2 | 5.05 d, 2H; 7.37 m, 7H; 7.58 t, 4H; 7.78 d, 1H; 8.43 d, 1H; 8.69 s, 1H.                              | 111.905 dd, $J(^{107}Ag-P) = 790.13Hz$ , $J(^{109}Ag-P) = 685.16Hz$  |
| 2.3 | 5.07 d, 2H; 7.34 m, 7H; 7.57 t, 4H; 7.86 d, 1H; 8.46 d, 1H; 8.66 s, 1H.                              | 112.113 dd, $J(^{107}Ag-P) = 788.67$ Hz, $J(^{109}Ag-P) = 688.08$ Hz |
| 2.4 | 5.05 d, 2H; 7.43 m, 7H; 7.58 t, 4H; 7.83 d, 1H; 8.51 d, 1H; 8.59 s, 1H.                              | 117.54 d, J(Ag-P) = 518.96 Hz                                        |

Table 2.2. Hydrogen-1 and Phosphorus-31 NMR Data

<sup>a</sup> <sup>1</sup>H NMR spectra of **2.1** and **2.4** were recorded in CD<sub>3</sub>Cl at 298 K; <sup>1</sup>H NMR spectra of **2.2** and **2.3** were recorded in CD<sub>3</sub>CN at 298 K. <sup>b</sup> <sup>31</sup>P NMR spectrum of **2.1** was recorded in CD<sub>3</sub>Cl at 298 K; <sup>31</sup>P NMR spectra of **2.2** and **2.3** were recorded in CD<sub>3</sub>CN at 238 K; <sup>31</sup>P spectrum of **2.4** was recorded in CD<sub>3</sub>Cl at 219 K.

black phosphorus by-product. Compounds **2.2-2.4** appear to be stable indefinitely in the solid state when kept in the absence of light and refrigerated under inert atmosphere.

Compound 2.2 is the most robust of the coordination complexes presented. Though it still suffers from decomposition in solution, under similar conditions as 2.3 and 2.4, it is at a notably slower rate; the rapid rate of decomposition of 2.3 and 2.4 may be due to having a counterion bound to the silver which makes reduction of the metal more facile. Compound 2.2 is prepared from the mixing of 1 equivalent  $AgBF_4$  in  $CH_2Cl_2$  with a solution of **2.1**. The 2-coordinate coordination polymer is collected as a white solid by removal of the CH<sub>2</sub>Cl<sub>2</sub> under vacuum after less than five minutes of reaction. The precipitation of metallic silver from solutions of 2.2 is at such a rate that after 24 hours layered in a crystallization tube at 5 °C, there is only a slightly dark appearance to the tube; whereas under similar conditions, compounds 2.3 and 2.4 would have released the majority of their solute as a black precipitate. <sup>31</sup>P spectra of **2.2** were recorded in CD<sub>3</sub>CN down to 238 K. At room temperature, <sup>31</sup>P spectra show a doublet of broad peaks centered at 114.0, owing to the silver-phosphorus coupling. This indicates at least some degree of coordination of the ligand to silver in room temperature solutions, though the process does appear to be dynamic on the NMR timescale. Slowing the dissociation of the Ag-P bond by lowering the temperature, causes the doublet peaks to sharpen and move slightly upfield, and eventually to split revealing the coupling of the separate isotopes of Ag.

A solution of Ag triflate in THF added to a single equivalent of **2.1** in THF yields the mixed coordination complex **2.3** as a white powder upon drying. Stirring for a period of time longer than a few minutes, however, results in a precipitate of metallic silver from an unknown redox reaction. Saturated  $CH_2Cl_2$  solutions of **2.3** turn dark and form a brown precipitate within hours, but still manage to grow X-ray quality crystals over several days when layered with diethyl ether at 5°C. <sup>31</sup>P NMR spectra of this compound were obtained using CDCl<sub>3</sub> and were collected to 238 K. Again, some degree of coordination of phosphorus to silver is seen at room temperature, though dissociation is rapid. Cooling the sample to 238 K, the isotopic coupling of silver can be observed to form a doublet of doublets that is centered slightly upfield of the original doublets 114.6 ppm position.

All attempts to synthesize the coordination compound **2.4** using the ligand **2.1** and completely dissolved silver trifluoroacetate were unsuccessful; the result of such reactions consistently being brown solutions with a rapid precipitation of silver in the flask. It was found that the most productive route to compound 2.4 was to allow the ligand **2.1** to solubilize the silver trifluoroacetate directly into solution from its solid state. The dissolved ligand, upon addition to a CH<sub>2</sub>Cl<sub>2</sub> suspension of the silver salt, immediately draws the silver salt into solution. Following several minutes of vigorous stirring, the slightly soluble complex 2.4, precipitates from solution. The precipitate is collected and washed with several aliquots of CH<sub>2</sub>Cl<sub>2</sub>. The product is a white solid that noticeably decomposes in solution within minutes at room temperature. Single crystals of 2.4 were grown with some difficulty from saturated solutions of CH<sub>2</sub>Cl<sub>2</sub>, layered with diethyl ether at 5°C. <sup>1</sup>H and <sup>31</sup>P NMR spectra were obtained in CDCl<sub>3</sub> by keeping the sample in an ice bath until injection into the spectrometer. <sup>31</sup>P spectra were recorded to 219 K. The <sup>31</sup>P spectrum of **2.4** indicates a P-Ag bond that is considerably more labile than those of compounds 2.2 and 2.3, with the room temperature resonance showing no

sign of Ag coupling. A single peak is observed at 116.9 ppm that, upon cooling to 219 K, first broadens, then splits to form a doublet centered at 117.5 ppm.

## *X-ray Crystal Structures*

The coordination of the silver centers in each of the compounds 2.2-2.4 are notably different. We were able to achieve compounds demonstrating each of the common coordination numbers of silver, 2, 3 and 4, by changing only the counterion in each case. Variations in coordination have also been observed by changing the crystallization solvent; for instance, a different structural isomer of compound 3, obtained by crystallization from THF, has been observed that contains only 3-coordinate silver centers. The crystal structure data for this isomer is of very poor quality and is therefore not included in this report; efforts are continuing to crystallize the compound from THF. As the coordination number about the silver center increases there is a concomitant increase in the Ag-N and Ag-P bond lengths; all of these bond lengths fall well within the expected ranges.<sup>86,88</sup> For compounds **2.2-2.4** varying only the anion between the structures, we can see the N-Ag-P bond angle increase from 133.4° in 2.4, to nearly linear with a 167.3° angle in the two coordinate  $BF_4$  complex, 2.2. All compounds have the one structural feature in common in that the phosphinite ligand coordinates head-to-tail, P-Ag-N, rather than in a head to head fashion that would form different P-Ag-P and N-Ag-N localities in the polymer. In each of the structures the phosphinite ligand is able to adopt different conformations in the polymer. The P-N distance across the ligand varies from 5.33Å to 6.11Å; this ability to adapt the distance between the bonding moieties in the ligand allows the Ag-Ag distances bridged by the same ligand to vary from 5.93Å to 9.26Å.



Figure 2.1. Molecular diagram of the cationic polymer of **2.2** with the unique portion and important symmetry generated atoms labeled. Ellipsoids are drawn at the 50% probability level.

|                 | und important Distar |               |             |  |
|-----------------|----------------------|---------------|-------------|--|
|                 |                      |               |             |  |
| Ag(1)-N(1)      | 2.1711(14)           | Ag(1)-P(1)    | 2.3543(5)   |  |
| Ag(1)-Ag(1)#1   | 7.1914(9)            | Ag(1)#2-F(2)  | 2.7850(11)  |  |
| P(1)#1-N(1)     | 5.5691(15)           | P(1)#1-C2     | 3.8830(15)  |  |
|                 |                      |               |             |  |
| N(1)-Ag(1)-P(2) | 167.28(4)            | P1#1-O1-C1-C2 | -155.05(10) |  |
|                 |                      |               |             |  |

Table 2.3. Selected Bond Lengths (Å), Angles (°), Torsion Angles(°), and Important Distances for **PCP-31AgBF**<sub>4</sub> (2.2)<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = x, -y+2, z+1/2, #2 = x, y-1, z

Compound **2.2** makes use of the non-coordinating  $BF_4$  anion to display nearly exclusive ligand-metal interactions. A thermal ellipsoid plot of the one dimensional polymeric structure of zigzag chains of **2.2** is presented in Figure 2.1 and selected bond lengths and angles are in Table 2.3. Without a coordinating counterion, the silver centers take on a near-linear geometry with respect to the head-to-tail linking by **2.1**. The N-Ag-P angle is slightly off linear at 167.3°; the distortion from 180° is likely caused by the long-range interaction of the  $BF_4^-$  with the  $Ag^+$ . The shortest contact is Ag1-F2 with a

distance of 2.785(1)Å, slightly longer than the sum of the van der Waals radii for the ions. The Ag-P bond length is 2.3543(5)Å, and the N-Ag distance is 2.171(1)Å. All other bond lengths and angles fall well within expected ranges. The Ag-Ag distance across the bridging ligand is 7.1914(9)Å One and a half molecules of  $CH_2Cl_2$  are present per asymmetric unit.

The X-ray crystal structure of compound **2.3** reveals the triflate anion playing an integral part in deciding the geometry of the silver ions. A thermal ellipsoid plot is shown in Figure 2.2 and selected bond lengths and angles are given in Table 2.4. The asymmetric unit of 2.3 contains 4 unique silver centers, which upon further inspection reveals a cross-linked polymer structure. Cross-linking is achieved by bridging of Ag2 and Ag3 through a triflate (S2). Each phosphinite ligand acts as a bridge that connects two silver cations as in 2.2. Ag1, Ag3 and Ag4 each have a terminal triflate bound through a single sulfonate oxygen. The triflate bound to Ag2 also forms a bridge to Ag3, resulting in 4 coordination about Ag3. The other three silvers display a distorted trigonal arrangement resulting from the single anion and two ligands coordinating to each giving an O, P, N environment. The cross-linked polymer structure contains repeating 6 Ag containing rings as shown in Figure 2.3. The Ag-Ag distances range from 4.806(1)Å in the triflate bridged atoms, Ag2 and Ag3, to the more than doubled distance of 10.678(3)Å in the diagonal silvers, Ag1 and Ag3. While not bridged by triflate, the Ag1-Ag4 distance is only 4.460(1), probably as a result of packing or a pseudo  $\pi$ -stacking interaction of the pyridine rings. The Ag-N bonds range from 2.217(7) to 2.255(7)Å, slightly longer than that observed in 2.2, and the Ag-P bonds average 2.34Å, nearly the same as in 2.2. The intra-ligand P-N distances range from 5.933(7)Å for P1-N1 to



Figure 2.2. Molecular diagram of the unique portion of **2.3**. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms and all but the bound oxygen of the terminal triflates have been removed for clarity.

| Ag(1)-N(2)#1 | 2.232(7)    | Ag(1)-P(1)  | 2.334(2)   |
|--------------|-------------|-------------|------------|
| Ag(1)-O(5)   | 2.494(8)    | Ag(2)-N(1)  | 2.217(7)   |
| Ag(2)-P(2)   | 2.341(2)    | Ag(2)-O(8)  | 2.470(7)   |
| Ag(3)-N(4)#2 | 2.255(7)    | Ag(3)-P(3)  | 2.355(2)   |
| Ag(3)-O(11)  | 2.490(6)    | Ag(3)-O(9)  | 2.524(7)   |
| Ag(4)-N(3)   | 2.241(7)    | Ag(4)-P(4)  | 2.359(2)   |
| Ag(4)-O(14)  | 2.515(6)    | Ag(1)-Ag(2) | 9.1646(23) |
| Ag(1)-Ag(3)  | 10.6784(29) | Ag(1)-Ag(4) | 4.4604(13) |
| Ag(2)-Ag(3)  | 4.8058(13)  | Ag(2)-Ag(4) | 8.9123(18) |
| Ag(3)-Ag(4)  | 9.2645(23)  | P(1)-N(1)   | 5.933(7)   |
| P(2)-N(2)    | 6.119(7)    | P(3)-N(3)   | 5.979(7)   |

Table 2.4. Selected Bond Lengths (Å), Angles (°), Torsion Angles(°),and Important Distances for **PCP-31AgOTf** (2.3)<sup>a</sup>

| Table 2.4. Continued  |             |                       |            |  |  |
|-----------------------|-------------|-----------------------|------------|--|--|
| P(4)-N(4)             | 6.014(7)    | P(1)-C(2)             | 3.902(8)   |  |  |
| P(2)-C(21)            | 3.866(9)    | P(3)-C(40)            | 3.891(8)   |  |  |
| P(4)-C(59)            | 3.865(8)    |                       |            |  |  |
|                       |             |                       |            |  |  |
| N(2)#1-Ag(1)-O(6)     | 86.5(3)     | P(1)-Ag(1)-O(6)       | 119.44(19) |  |  |
| N(1)-Ag(2)-P(2)       | 145.5(2)    | N(1)-Ag(2)-O(8)       | 83.8(3)    |  |  |
| P(2)-Ag(2)-O(8)       | 119.93(16)  | N(4)#2-Ag(3)-P(3)     | 140.15(19) |  |  |
| N(4)#2-Ag(3)-O(11)    | 86.7(2)     | P(3)-Ag(3)-O(11)      | 119.94(15) |  |  |
| N(4)#2-Ag(3)-O(9)     | 82.3(2)     | P(3)-Ag(3)-O(9)       | 124.08(16) |  |  |
| O(11)-Ag(3)-O(9)      | 88.2(2)     | N(3)-Ag(4)-P(4)       | 146.9(2)   |  |  |
| N(3)-Ag(4)-O(14)      | 83.3(2)     | P(4)-Ag(4)-O(14)      | 119.87(15) |  |  |
| N(2)#1-Ag(1)-P(1)     | 142.75(17)  | P(2)-O(2)-C(20)-C(21) | 166.74(64) |  |  |
| P(3)-O(3)-C(39)-C(40) | -169.61(53) | P(4)-O(4)-C(58)-C(59) | 167.34(53) |  |  |
| P(1)-O(1)-C(1)-C(2)   | -169.39(54) |                       |            |  |  |
|                       |             |                       |            |  |  |

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = x+1, y, z; #2 = x-1, y, z.



Figure 2.3. Ball and stick diagram of **2.3** showing the hexasilver-containing rings. Triflate oxygens bound to Ag are labeled. Phenyl rings and hydrogen atoms are removed for clarity.

6.119(7)Å for P2-N2, about 0.4Å longer than that observed in **2.2**. This observation helps to account for the much longer Ag-Ag distances across the same ligand which range from 9.164(2), for Ag1-Ag2 to 9.265(2), for Ag3-Ag4. The N-Ag-O bond angles around the Ag centers range from 82.3° to 86.5°, the P-Ag-O angles for Ag1, Ag2 and

Ag4, are all near the ideal trigonal planar angle of  $120^{\circ}$ , ranging from  $119.4(1)^{\circ}$  to  $119.9(2)^{\circ}$ ; the exception is the P-Ag-O angle for Ag3 which is a bit wider at  $124.1(2)^{\circ}$ . The N-Ag-P angle is consistently the widest in the structure from  $140.1(2)^{\circ}$  for Ag3 to  $146.9(2)^{\circ}$  for Ag4. For the three coordinate Ag centers the sum of the angles averages  $349^{\circ}$ , showing the distortion from trigonal planar geometry. The polymer chains are continued to the next unit by the pendent N2 and N4 pyridine rings. The fluorine atoms of the triflate groups are highly disordered about the C-S axis; due to this disorder they were refined isotropically and each group was restrained to have the same C-F bond lengths, angles and thermal parameters. There are two molecules of CH<sub>2</sub>Cl<sub>2</sub> solvent in the lattice one of which (C78) is disordered, this carbon was refined isotropically.

The crystal structure of compound **2.4** reveals a diamond–like binuclear silver center with each Ag bridged by two trifluoroacetate ions. There are two independent Ag centers in the structure with only minor differences between the two. A thermal ellipsoid plot of one of the independent units is shown in Figure 2.4 and selected bond lengths and angles are given in Table 2.5. Each silver has near tetrahedral geometry with a Ag1-Ag1A distance of 3.8686(9)Å and slightly longer for Ag2-Ag2A at 3.9404(9)Å. Each Ag is also bound by two ligands with opposing ends facing each other in a head to tail fashion. The pendent ends of the ligands bound to the Ag<sup>+</sup> then bind another Ag<sup>+</sup> making a ring as shown in Figure 2.5. The Ag-Ag distance across this ring is 6.068(1)Å for Ag1-Ag1B and 5.937(1)Å for Ag2-Ag2B. Therefore for **2.4**, the coordination polymer formed is not by linking through the phosphinite ligand, but through the trifluoroacetate bridged Ag<sup>+</sup> centers. The coordination about the Ag ions in **2.4** is the most electron rich of those presented here being ligated by two O's, an N and a P. The Ag-N bonds of **2.4** reflect the



Figure 2.4. Molecular diagram of **2.4** with the unique portion and important symmetry generated atoms labeled. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been removed for clarity.

| Ag(1)-N(1)#1        | 2.269(4)   | Ag(1)-P(1)            | 2.3556(13) |
|---------------------|------------|-----------------------|------------|
| Ag(1)-O(2)#2        | 2.375(4)   | Ag(1)-O(2)            | 2.549(4)   |
| Ag(2)-N(2)#3        | 2.264(5)   | Ag(2)-P(2)            | 2.3681(13) |
| Ag(2)-O(5)#4        | 2.419(4)   | Ag(2)-O(5)            | 2.576(4)   |
| Ag(1)-Ag(1)#1       | 3.8686(9)  | Ag(1)-Ag(1)#2         | 6.0676(11) |
| Ag(2)-Ag(2)#4       | 3.9404(9)  | Ag(2)-Ag(2)#3         | 5.9368(11) |
| P(1)-N(1)           | 5.370(4)   | P(1)-C(2)             | 3.794(5)   |
| P(2)-N(2)           | 5.337(4)   | P(2)-C(22)            | 3.784(5)   |
|                     |            |                       |            |
| N(1)#1-Ag(1)-P(1)   | 133.36(11) | N(1)#1-Ag(1)-O(2)#2   | 103.06(15) |
| P(1)-Ag(1)-O(2)#2   | 119.72(10) | N(1)#1-Ag(1)-O(2)     | 91.60(14)  |
| P(1)-Ag(1)-O(2)     | 114.52(10) | O(2)#2-Ag(1)-O(2)     | 76.48(13)  |
| N(2)#3-Ag(2)-P(2)   | 136.26(12) | N(2)#3-Ag(2)-O(5)#4   | 107.22(15) |
| P(2)-Ag(2)-O(5)#4   | 112.73(10) | N(2)#3-Ag(2)-O(5)     | 92.18(14)  |
| P(2)-Ag(2)-O(5)     | 113.91(9)  | O(5)#4-Ag(2)-O(5)     | 75.88(14)  |
| P(1)-O(1)-C(1)-C(2) | -136.7(3)  | P(2)-O(2)-C(21)-C(22) | -134.4(3)  |
|                     |            |                       |            |

Table 2.5. Selected Bond Lengths (Å), Angles (°), Torsion Angles(°), and Important Distances for **PCP-31Agtfa** (**2.4**)<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x, -y+2, -z; #2 = -x, -y+1, -z; #3 = -x+1, -y+2, -z+1; #4 = -x+2, -y+2, -z+1



Figure 2.5. Ball and stick diagram of the ring formed by **2.1** and Ag, which is linked by tfa<sup>-</sup> ions to form an infinite chain. Phenyl groups and hydrogen atoms have been removed for clarity.

effect of increased coordination by lengthening to 2.269(4)Å for Ag1-N1 and 2.264(5)Å for Ag2-N2, nearly a 0.1Å increase from **2.2**. The Ag-P bond lengths are less impacted being at 2.356(1) for Ag1-P1 and 2.368(1)Å for Ag2-P2. In adopting the conformation for the ring structure the P-N distance displays its shortest distance observed at 5.370(4)Å for P1-N1 and 5.337(4)Å for P2-N2. The P-Ag-N angles are the most acute of the examples presented here being 133.4(1)° for N1-Ag-P1 and 136.3(1) for N2-Ag2-P2. The fluorine atoms of the trifluoracetate groups are disordered about the C-C axis and were thus restrained to have the same C-F bond lengths and thermal parameters.

## Luminescence Properties

Mixed metal-organic hybrid polymers are of considerable interest because of their potential use for the construction of novel light-emitting devices, or LEDs. These



Figure 2.6. Normalized excitation and emission spectra of compounds 2.1–2.4 taken in acetonitrile glasses at  $1 \times 10^{-4}$ M concentration at 77 K. \_\_\_\_\_ = PCP-31AgBF<sub>4</sub>, \_\_\_\_ = PCP-31AgOTf, \_\_\_\_\_ = PCP-31Agtfa, \_\_\_\_ = PCP-31.

| Compound | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$ |
|----------|----------------------------|--------------------------------|
| 2.1      | 351                        | 462, 499                       |
| 2.2      | 313, 319                   | 447, 477, 501, 512, 593        |
| 2.3      | 292                        | 396, 410, 439, 470, 505        |
| 2.4      | 300                        | 393, 404, 425, 437, 515        |
|          |                            |                                |

Table 2.6. Luminescent Spectral Data for compounds 2.1–2.4, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.

materials are seen to have advantages over traditional organic LEDs in that their emission spectra can, in many cases, be tuned by altering the metal environment. This is typically done through changes in ligand, counterion, and oxidation state as well as other methods. We have examined the photoluminescent characteristics of compounds **2.1-2.4** in acetonitrile glasses at low temperatures and have found that the metal complexes exhibit emission curves over a broad area of the visible spectrum as seen in Figure 2.6. The intensities of these emissions are several times greater than that displayed by the free PCP-31 ligand itself, with the BF<sub>4</sub><sup>-</sup> salt, **2.2**, being the most strongly emissive. The emission spectra of **2.2-2.4** all contain several strong features that are also not as

prevalent in the spectrum of the **2.1**, indicating that these are relics of a metal-based decay likely brought on by ligand-to-metal charge transfer (LMTC). The most intense of the compounds, **2.2**, displays several defining peaks at 447, 477 and 501 nm when excited at its excitation maximum of 351 nm, then decays towards the red end of the spectrum accounting for the light green-yellow color of the luminescent complex. **2.3** and **2.4** display similar excitation maxima at 292 and 300 nm, respectively. This relation is also apparent in the emission curves with both having similar intensities and placement on the electromagnetic (EM) spectrum. **2.3** shows intense emissions at 396, 410 and 439 nm and **2.4** shows high peaks at 393, 404 and 425 nm. A complete tabulation of the spectral features of **2.1-2.4** is presented in Table 2.6.

# Conclusions

We have reported the synthesis of a novel pyridyl containing phosphinite which shows the ability to bind silver ions through both the phosphorus and nitrogen moieties. Several new coordination polymers of Ag(I) have been characterized using X-ray crystallography which reveal a structure dependence on the anion used for crystallization. The inherent flexibility of the **PCP-31** ligand is manifested in the wide ranging difference in Ag-Ag distances across the ligand from 5.937(1)Å to 9.265(2)Å. The complexes also demonstrate the wide range of coordination environments that the silver(I) cation can adopt under the simple pressures of anion replacement. What's more, the structures display a large variance from the typical coordination modes of the 2-pyridyl-substituted phosphines by easily constructing several new coordination polymers via outward orientation of the ligand donors.

#### Experimental

### General Considerations

All experiments were carried out under an argon atmosphere, using a Schlenk line and standard Schlenk techniques. All glassware was dried at 120°C for several hours prior to use. All reagents were stored in an inert atmosphere glovebox; solvents were distilled under nitrogen from the appropriate drying agent immediately before use. Triethylamine was purchased from Aldrich and purged with argon before use by bubbling gas through the liquid. 3-pyridyl carbinol was purchased from Aldrich and used as received. Chlorodiphenylphosphine, silver(I) trifluoroacetate, silver(I) triflate, and silver(I) tetrafluoroborate were purchased from Strem Chemicals Inc. and used as received. Celite was purchased from Aldrich and dried at 120°C prior to use. NMR spectra were collected at 298K on a Bruker Spectrospin 300 MHz spectrometer. <sup>1</sup>H and room temp <sup>31</sup>P were recorded at 300.13 MHz, and 121.49MHz on a Bruker Spectrospin 300MHz Spectrometer. Low temperature <sup>31</sup>P NMR was recorded at 145.78 MHz on a Bruker Spectrospin 360 MHz Spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, Georgia.

### Preparations

*Diphenylphoshino-3-pyridylcarbinol,* (*PPh*<sub>2</sub>*3-OCH*<sub>2</sub>*py*), **PCP-31** (2.1). In an argon purged addition funnel, 1.3 mL of degassed triethylamine (9.33 mmol) was added via syringe to a stirred solution of 1.00 g 3-pyridylcarbinol (9.16 mmol) in 20 mL toluene at room temperature. The solution was then cooled to 0°C and wrapped with aluminum foil to shield it from light. A solution of 2.02 g (9.16 mmol) chlorodiphenylphosphine in

20 mL toluene was then added dropwise over 10 minutes. The solution was stirred for 1 hour then allowed to warm to room temperature and stirred for an additional hour. The resultant cloudy mixture was reduced to 3/4 its original volume under vacuum and immediately filtered through Celite. The triethylammonium chloride salts were washed with an additional 5 mL of cold toluene to extract any yellow colored compounds remaining. The solvent was removed from the yellow liquid at reduced pressure to leave a pale yellow oil which is the crude diphenylphosphino-3-pyridylcarbinol product in 96% yield. The oil was then extracted several times with hexanes. Drying of the hexane wash in vacuo yielded the clear, colorless oil, **2.1**, in 81% yield (2.18g, 7.44mmol).

*poly-[PCP-31AgBF*<sub>4</sub>] (2.2). To a stirred solution of 0.300 g AgBF<sub>4</sub> (1.54 mmol) in 5mL CH<sub>2</sub>Cl<sub>2</sub> was added 0.452 g (1.54 mmol) of 2.1 in 5 mL CH<sub>2</sub>Cl<sub>2</sub>. The resulting solution remains clear and colorless, and the solvent is removed by vacuum after 5 minutes of stirring. Upon drying, the white powder, 2.2 is reclaimed in 91.2% yield (0.686 g, 1.406 mmol). Crystals of 2.2 were obtained by vapor diffusion of ether into a solution of 2.2 in CH<sub>2</sub>Cl<sub>2</sub> at 5°C.

*poly-[PCP-31AgOTf]* (2.3). To a stirred solution of 0.088 g (0.342 mmol) AgOTf in 10 mL THF was added 0.100 g (0.341 mmol) 2.1 in 5 mL THF. This solution was stirred for 5 minutes, and then the solvent was removed in vacuo to leave a white, fluffy powder, 2.3, in 91.5% yield (0.172 g, 0.312 mmol). Crystals of 2.3 were grown by slow diffusion of diethyl ether into a solution of 2.3 in  $CH_2Cl_2$  at 5°C.

*poly-[PCP-31Agtfa]* (**2.4**). To a stirred suspension of 0.076 g (0.344 mmol) Agtfa in 10 mL CH<sub>2</sub>Cl<sub>2</sub> was added 0.100 g (0.341 mmol) **2.1** in 5 mL CH<sub>2</sub>Cl<sub>2</sub>. The solid Agtfa

dissolved immediately upon introduction of the ligand. After approximately 5 minutes of vigorous stirring, a precipitate formed. The brown-yellow solvent was removed *via* cannula and the solid **2.4** was washed with another 5 mL aliquot of  $CH_2Cl_2$ . The residual solvent was then removed in vacuo to leave a white solid, **2.4**, in 97.7% yield (0.172 g, 0.334 mmol). Crystals of **2.4** were obtained by slow diffusion of diethyl ether into a solution of **2.4** in  $CH_2Cl_2$  at 5°C.

# Crystallography

A summary of the crystallographic experimental data for 2.2, 2.3 and 2.4 is shown in Table 2.7. Full tables of bond lengths, angles and other important distances can be found in Appendix B, Tables B.1 to B.3. Crystallographic data were collected on crystals with dimensions  $0.29 \times 0.28 \times 0.25$  mm for 2.2,  $0.22 \times 0.17 \times 0.13$  mm for 2.3, and  $0.26 \times$  $0.22 \times 0.15$  mm for 2.4. Data for 2.3 and 2.4 were collected at 110K on a SMART 1000 and Bruker Apex diffractometer, respectively. Data for 2.2 was collected on a Bruker X8 Apex at 110K. All structures were solved by direct methods after correction of the data using SADABS.<sup>139</sup> All data were processed using Bruker AXS SHELXTL software, version 6.10.<sup>140</sup> Unless otherwise noted, all non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions.

|                                 | 2.2                  | 2.3                    | 2.4               |
|---------------------------------|----------------------|------------------------|-------------------|
| Formula                         | C10 50H10A2BCl3F4NOP | C30H34Ag2Cl2F6N2O8P2S2 | C40H32Ag2F6N2O6P2 |
| Formula weight                  | 615.36               | 2370.76                | 1028.36           |
| a (Å)                           | 29.399(5)            | 17.972(5)              | 8,9906(14)        |
| b (Å)                           | 11.2041(15)          | 10.191(3)              | 9.1032(14)        |
| c (Å)                           | 14.1888(18)          | 27.936(8)              | 25.965(4)         |
| $\alpha$ (°)                    |                      |                        | 96.721(2)         |
| β(°)                            | 94.266(9)            | 115.441(4)             | 95.492(2)         |
| γ (°)                           |                      |                        | 105.485(2)        |
| $V(Å^3)$                        | 4660 7(11)           | 4620(2)                | 2015 9(5)         |
| Z                               | 8                    | 2                      | 2                 |
| space group                     | C2/c                 | Pc                     | –<br>P-1          |
| T (K)                           | 110                  | 110                    | 110               |
| $\lambda$ (Å)                   | 0.71073              | 0.71073                | 0.71073           |
| $D_{calcd}(g \text{ cm}^{-3})$  | 1.754                | 1.704                  | 1.694             |
| $\mu (mm^{-1})$                 | 1.323                | 1.198                  | 1.127             |
| $2\theta_{max}$ , deg           | 66°                  | 55°                    | 55°               |
| reflns measured                 | 34150                | 47570                  | 27968             |
| reflns used (R <sub>int</sub> ) | 8789                 | 18852                  | 8965              |
| Restraints / Parameters         | 0 / 285              | 201 / 1106             | 125 / 546         |
| R1, $[I \ge 2\sigma(I)]$        | 0.0301               | 0.0624                 | 0.0531            |
| $wR^{2}$ , [I>2 $\sigma$ (I)]   | 0.0812               | 0.1531                 | 0.1260            |
| $R(F_0^{(2)})$ , (all data)     | 0.0402               | 0.0693                 | 0.0567            |
| $R_{w}(F_{0}^{2})$ , (all data) | 0.0834               | 0.1531                 | 0.1278            |
| GooF on $F^2$                   | 1.073                | 1.088                  | 1.105             |

Table 2.7. Crystallographic Data for 2.2, 2.3 and 2.4

## CHAPTER THREE

# Anion Dependent Silver(I) Coordination Polymers of the Tridentate Pyridylphosphonite: $PPh(3-OCH_2C_5H_4N)_2$

#### Introduction

The self-assembly of coordination polymers that offer a variety of novel structural, electronic, optical, catalytic and medicinal properties is currently an intense area of study in supramolecular chemistry.<sup>3,4,7,11,25,141</sup> Specific attention has been given to those structures based upon the coinage metals.<sup>142,143</sup> In particular, coordination polymers involving the silver (I) ion have made a large contribution to this field due in part to the ease with which it varies its coordination number.<sup>14,16,18-20,23,33-35,41-45,47,48,65,144-147</sup> The fact that silver (I) can readily vary its coordination number from 2 to 6 by merely changing the size or concentration in solution of a ligating species makes it an appealing candidate for use in deliberately designed or "tailored" polymeric coordination complexes.<sup>49,148</sup> Other options for controlling structural growth that have proven useful include varying anions to achieve different degrees of interaction or changing the bridging ligand itself to make it more or less rigid.<sup>92,146</sup>

Silver(I) coordination polymers of pyridyl-substituted phosphines are virtually unknown. This could be owed to the fact that the majority of work done with pyridyl-substituted phosphines has involved 2-pyridyl substitution.<sup>104-108,110,112,113,118,127,128</sup> The small bite angle associated with the 2-pyridyl substitution inherently limits such a ligand's ability to bridge and as a result most complexes of the 2-pyridyl-substituted phosphines are small, discrete structures.<sup>104-108,110,112,113,128</sup> The few reported 3- and 4-

33

pyridyl-substituted phosphines have been sparsely explored in terms of their coordination chemistry and polymer forming abilities given, at least in part, to the difficulty by which these ligands are synthesized and handled.<sup>114,117,119,149</sup> With the synthesis of the 3pyridyl-substituted phosphinite,  $Ph_2P(3-OCH_2C_5H_4N)$  or **PCP-31**, we demonstrated that opening the bite angle of these heterobidentate ligands to the point of minimal interaction between the hard and soft binding sites allows the synthesis of some very interesting coordination polymers of various silver(I) salts.<sup>147</sup> As shown in the previous chapter, the flexibility imparted upon the pyridyl phosphinite ligand by the addition of an -OCH<sub>2</sub>spacer, as well as the outwardly oriented binding sites of the meta- and para-nitrogen donors allow for amazing versatility in the coordination modes achievable. We have taken our inquiry of the **PCP**s a step further by adding a second pyridyl substitution, effecting a tridentate pyridyl/phosphine donor ligand, PCP-32, and expanding the dimensionality available to the coordination polymers formed by ligation to silver(I) salts of various anions. These polymers display a variety of interesting structural and electronic characteristics. The molecular structures and luminescence properties are discussed herein. The results which appear below have been recently published.<sup>159</sup>

# Results and Discussion

## Synthesis and NMR Spectroscopy

Compound **3.1** is made by a similar procedure as reported for the synthesis of the singly substituted derivative, diphenylphosphino-3-pyridylcarbinol, adjusting for the addition of a second equivalent of carbinol to the phosphine. **PCP–32** is seen to be quite a bit more sensitive to reaction conditions than its singly substituted counterpart, and

decomposes at a more rapid rate in solution at room temperature. After isolation as a colorless oil, **3.1** is found to be readily hydrolyzed, oxidizes in air and decomposes with exposure to heat or light. The thermal instability is such that storage at a temperature of – 35 °C is insufficient to halt the degradation of the fluid, colorless oil into a thick, dark-yellow cloudy oil over time. Pure **3.1** can be separated at any point, when necessary, from its decomposition products by extraction into hexanes. The ligand is, however, formed in sufficient purity to allow for further use without the final hexane extraction. <sup>1</sup>H and <sup>31</sup>P NMR spectra of **3.1** were obtained in CDCl<sub>3</sub> and show the pronounced three-bond coupling of phosphorus to the phenyl and methylene protons; a well-defined phosphorus septet is thus found centered at 159.9 ppm.

The silver compounds 3.2 - 3.4 were made by reaction of 3.1 with silver salts of the respective anions under ambient conditions and inert atmosphere. Analytical data for these compounds are presented in Tables 3.1 and 3.2. Solutions of the three compounds readily decompose to leave metallic silver and an unidentifiable black by-product. However, the powders of each complex have proven themselves to be quite robust, withstanding long exposure to air and room temperatures with little signs of decomposition. They demonstrate a concomitant increase in photostability, defending against signs of decomposition for days upon exposure to light as opposed to hours for the analogous complexes of the mono-substituted PPh<sub>2</sub>(3-OCH<sub>2</sub>C<sub>5</sub>H<sub>4</sub>N). This relative increase in solid-state stability could be accredited to the extra dimensionality that the second carbinol substitution imparts on the coordination of the ligand. Compounds **3.2** – **3.4** appear to be stable indefinitely in the solid state if stored in the dark and refrigerated under inert atmosphere. Variable temperature <sup>31</sup>P NMR spectra were recorded to -35 °C

|     | compound <sup>a</sup>                                                                          | yield |             | analytical (%) <sup>b</sup> |           |  |
|-----|------------------------------------------------------------------------------------------------|-------|-------------|-----------------------------|-----------|--|
|     |                                                                                                | (%)   | С           | Н                           | Ν         |  |
| 3.1 | PhP(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N) <sub>2</sub> , PCP–32                  | 77    |             |                             |           |  |
| 3.2 | poly-[PhP(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N) <sub>2</sub> AgBF <sub>4</sub> ] | 86    | 30.7 (30.9) | 2.4 (2.3)                   | 3.6 (3.9) |  |
| 3.3 | poly-[PhP(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N) <sub>2</sub> AgOTf]              | 93    | 41.2 (41.7) | 3.3 (3.3)                   | 5.3 (5.4) |  |
| 3.4 | poly-[PhP(3-OCH <sub>2</sub> C <sub>5</sub> H <sub>4</sub> N) <sub>2</sub> Agtfa]              | 94    | 35.8 (35.6) | 2.4 (2.4)                   | 3.8 (4.0) |  |

<sup>a</sup> All compounds are white or off white solids except for **3.1**, which is a colorless oil. <sup>b</sup> Calculated values are given in parenthesis.

|     | $^{1}\mathrm{H}/\delta^{a}$                                                                     | $^{31}P/\delta^b$                    |  |
|-----|-------------------------------------------------------------------------------------------------|--------------------------------------|--|
| 3.1 | 4.87 d,m, 4 H, <i>J</i> (PH) = 8.28 Hz; 7.34 m, 2 H; 7.48 m, 3 H;<br>7.681 m, 4 H; 8.59 m, 4 H. | 160.4 sep, $J(PH) = 7.27$ Hz.        |  |
| 3.2 | 5.11 d,m, 4H; 7.47 m, 2H; 7.65 m, 3H; 7.85 m, 4H; 8.12 m, 4H.                                   | 146.4 d, <i>J</i> (Ag–P) = 908.2 Hz. |  |
| 3.3 | 5.07 d,m, 4H; 7.45 m, 2H; 7.65 m, 3H; 7.85 m, 4H; 8.48 d, 2H; 8.55 s, 2H.                       | 149.8 d, <i>J</i> (Ag–P) = 804.7 Hz. |  |
| 3.4 | 5.12 d,m, 4H; 7.39 m, 2H; 7.59 m, 3H; 7.82 m, 4H; 8.50 d, 2H; 8.59 s 2H.                        | 152.2.                               |  |

Table 3.2. Hydrogen-1 and Phosphorus-31 NMR Data

<sup>a</sup> <sup>1</sup>H NMR spectrum of **3.1** was recorded in CD<sub>3</sub>Cl at 298 K. <sup>1</sup>H NMR spectra of **3.2-3.4** were recorded in CD<sub>3</sub>CN at 298 K. <sup>b</sup> <sup>31</sup>P NMR spectrum of **3.1** was recorded in CD<sub>3</sub>Cl at 298 K. <sup>31</sup>P NMR spectra of **3.2-3.4** were recorded in CD<sub>3</sub>CN at 298 K.

in deuterated acetonitrile. At this temperature the dissociation of the Ag–P bond is slowed to a timescale where significant polymeric character is observed and the various Ag–P couplings can be readily seen.

Compound **3.2** is made by the mixing of two equivalents of AgOTf with a solution of **3.1** in acetonitrile. A light brown color appears almost immediately upon mixing and is indicative of the reactions of **3.1** with the various silver salts. If left stirring at room temperature, this color rapidly grows more intense and eventually becomes cloudy signifying the decomposition of the coordination complex. Drying of the solution in vacuo yields a crude, oily brown powder that is purified with acetonitrile and ether. Upon drying of the precipitate, **3.2** is collected as a white powder. Solutions of **3.2** in various solvents noticeably decompose within minutes at room temperature. However, when dichloromethane solutions layered with ether are kept at 5 °C, they are sufficiently stable to allow the growth of diffraction quality crystals. Over time, oxidation of the ligand in solution results in precipitation of metallic silver. At room temperature, a very broad phosphorus resonance is evident centered at 148.0 ppm in the <sup>31</sup>P spectrum, indicating at least some degree of Ag–P coupling in solution. Upon cooling to -35 °C, this broad signal splits into a doublet of very sharp peaks centered slightly upfield at 146.4 ppm.

The coordination polymer, **3.3**, is obtained as an off-white powder by the reaction of AgBF<sub>4</sub> with a solution of one molar equivalent of **3.1** in acetonitrile. Solutions of **3.3** also quickly develop a brown tint but do not undergo the extensive decomposition in such a short time as **3.2**. This increase in stability of the BF<sub>4</sub><sup>-</sup> complex is analogous to the behavior of the Ph<sub>2</sub>P(3-OCH<sub>2</sub>C<sub>5</sub>H<sub>4</sub>N)AgBF<sub>4</sub> coordination polymer; the reasoning behind

38

this has been previously theorized.<sup>147</sup> Tiny, colorless parallelpiped shaped crystals of **3.3** were grown by the slow diffusion of ether into a solution of **3.3** in acetonitrile at 5 °C. Room temperature <sup>31</sup>P NMR spectra of **3.3** reveal a shouldered peak, due to Ph–H coupling, centered upfield from the free ligand at 149.0 ppm. The Ag–P coupling is hardly apparent in acetonitrile solution at 23 °C. Upon cooling to -35 °C, a silver–split phosphorus doublet is again noticed, now centered at 149.8 ppm.

Complex 3.4 is seen to be overly prone to decomposition in solution, rapidly precipitating metallic silver and an oily black by-product. To circumvent this difficulty, the ligand was added to a suspension of Ag(tfa) in  $CH_2Cl_2$ , in which 3.4 is only sparingly soluble. In this manner, as the silver salt is drawn into solution by the forming coordination polymer it is immediately precipitated back out of solution, reducing the chance for decomposition. Reaction is apparent from the rapid replacement of the Ag(tfa) granules with a light-brown oily precipitate, along with a slight darkening of solution. Upon purification the compound is reclaimed as a finely divided colorless powder that quickly deposits metallic silver from solutions. Crystals of **3.4** were grown with some difficulty by vapor diffusion of ether into dilute solutions of **3.4** in acetonitrile at 5 °C. Solutions in high concentrations of 3.4 typically resulted in precipitation versus crystallization. <sup>31</sup>P NMR spectra of **3.4** show a single broadened phosphorus peak approximately 8 ppm upfield of the free ligand at 152.0 ppm. Lowering the NMR operating temperature to -35 °C shows a slight broadening (~ 1 ppm) of the <sup>31</sup>P resonance, though the Ag-P coupling can still not be discerned.



Scheme 3.1. Binding modes of PCP-32 with silver(I) salts.

## X-Ray Crystal Structures

The silver coordination environments as well as the twisted conformations of the carbinol portions of the ligand in each of the structures are quite diverse. Silver geometries range from the near linear 172.3(1)° of Ag2 in **3.2** to the distorted tetrahedrons of the silvers in **3.4**. Scheme 3.1 gives a representation of the different binding modes displayed by PCP–32. The two carbinol substitutions of each ligand are, as expected, capable of a variety of rotations and extensions allowing the py–Ag binding of the two "arms", in relation to one another, to go from nearly parallel in **3.2** to nearly perpendicular in **3.3**. The flexibility of the OCH<sub>2</sub> spacer groups also allow for a broad range of metal–metal distances to be had by the N–bound silvers of the ligand. This

interval spans from the very close Ag–Ag interaction of **3.2** at 3.1918(8) Å to the outstretching reach of 14.015(2) Å in **3.4**. With the 1:2 ratio of P to N in the ligand, a strict head-to-tail type coordination throughout the polymer analogous to those seen in the **PCP-31** structures is difficult to achieve and is therefore not observed in any of the structures. There is instead a mixture of Ag coordination environments within **3.2** and **3.4**, and a repetitive head-to-tail-to-tail motif apparent in **3.3**. All of these structural arrangements are spawned from the varying degrees of interaction that are seen by the different anions. With both of the structures containing oxygen donor anions, at least partial oxide bridging is apparent between some of the silver atoms. Conversely, in the case of BF<sub>4</sub><sup>-</sup>, there is no anionic bridge and only a slight M–anion interaction that merely serves to hold the BF<sub>4</sub><sup>-</sup> in position in the lattice.

The molecular structure of compound **3.2** contains two distinct silver environments representative of the coordination extremes shown herein. Both a pseudo-2-coordinate and a four-coordinate arrangement are displayed. A thermal ellipsoid plot of the unique portion of this structure is shown in Figure 3.1 and selected bonds and angles are given in Table 3.3. The two unique metal centers are repeated in one dimension, linked by bridging anions, to form the linear coordination polymer as demonstrated in Figure 3.2. Ag1 is bridged via one oxygen atom of each of two separate triflates to an opposing, symmetry equivalent P-bound Ag. The tetrahedron of P and O around Ag1 is completed by a terminal triflate bound to each metal. This effectively imposes a 2– charge on the Ag<sub>2</sub>OTf<sub>4</sub> cluster that balances the positive charge levied across the ligand at the N-bound silvers. It is seen that the coordinating triflates are only observed at the phosphorus-bound Ag centers. This enforces a very prominent trans-



Figure 3.1. Molecular diagram of the unique portion of the **PCP-32AgOTf** polymer, **3.2**. Ellipsoids are drawn at the 30% probability level.

| Ag1-06       | 2.287(3)  | Ag1-P1       | 2.323(1)  |
|--------------|-----------|--------------|-----------|
| Ag1-O3#1     | 2.434(3)  | Ag1–O3       | 2.456(3)  |
| Ag2–N2       | 2.152(4)  | Ag2–N1       | 2.156(3)  |
| Ag2–Ag2#2    | 3.1918(8) | P1-N1        | 5.161(3)  |
| P1-N2#2      | 5.487(4)  | N1–N2#2      | 3.466(5)  |
| Ag1–Ag1#1    | 3.8137(7) | Ag1–Ag2      | 6.5088(7) |
| Ag1–Ag2#2    | 6.7435(7) |              |           |
|              |           |              |           |
| O6-Ag1-O3#1  | 84.0(1)   | P1-Ag1-O3#1  | 122.30(7) |
| O6-Ag1-O3    | 82.6(1)   | P1–Ag1–O3    | 122.99(7) |
| O3#1-Ag1-O3  | 77.5(1)   | N2-Ag2-N1    | 172.3(1)  |
| N2-Ag2-Ag2#2 | 112.5(1)  | N1-Ag2-Ag2#2 | 75.2(1)   |
| O6–Ag1–P1    | 144.84(7) |              |           |
|              |           |              |           |

Table 3.3. Selected Bond Lengths (Å), Angles (°), and Important Distances for **3.2**<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: For **2**: #1 = -x+1, -y, -z+2; #2 = -x+1, -y, -z+1.



Figure 3.2. A view of the one-dimensional chain of **3.2**. Hydrogen atoms and the non-coordinating portion of the triflates have been removed for clarity.

ligand static charge separation. The two pyridyl rings of each ligand are brought within close proximity of one another at 3.466(5) Å, possibly by slight  $\pi$ - $\pi$  interactions of the adjacent aromatic rings. The planes of these rings are seen to be nearly parallel though the N2 pyridyl is disordered over two positions as it hinges about the N-Ag bond. This close positioning of pyridyl donors allows for the N-bound silvers to come within 3.1918(8) Å of each other, leading to a respectable Ag–Ag interaction that likely has influence on the luminescence of this species. The average cross-ligand distance observed separating the P- and N-bound silvers is 6.626 Å, from which is given some indication of the amount of charge separation present. Intraligand P–N distances vary slightly from P1–N1 to P1–N2A being given at 5.161(3) and 5.487(4) Å, respectively. The Ag–P bonds display typical values at 2.323(1) Å, while the N–Ag bonds are noticeably short with an average of 2.155 Å. This is undoubtedly due to the charge density present on the N-bound silvers that are not balanced by a closely associated anion. Ag(1)–O distances vary from 2.287(3) to 2.456(3) Å, with the shorter value represented by the terminal bound triflate. Ag1 is in a severely distorted tetrahedral

arrangement, with its oxygen-only face being constricted by the bridging trifluoroacetates and displaying O–Ag–O angles from 77.5(1)° to 84.0(1)°. The O–Ag–P angles are inturn exaggerated from 122.30(7)° to 144.84(7)°. The environment of Ag2 is nearly linear with respect to pyridyl coordination, with an N–Ag–N angle of 172.2(1)°. This slight distortion results from the movement of the Ag towards its symmetry equivalent which is slightly askew from Ag2. The N–Ag–Ag angles, at 75.2(1)° and 112.5(1)° show one silver to be oriented slightly above the other.

A thermal ellipsoid plot of the unique portion of **3.3** is shown in Figure 3.3 along with selected bond lengths and angles in Table 3.4. In the structure of **3.3** we see four unique silver centers arranged linearly whose differences arise from a slight twisting of the ligands through the length of the unique portion. However, rather than a fully spiraling polymer only a partial helix is seen to repeat throughout the lattice. This partial spiral is evident in either of the two dimensions in which the polymer is perpetuated and is demonstrated in Figure 3.4. This two dimensional growth of **3.3** gives rise to an infinite pleated sheet structure with anions dispersed throughout the crevices of the layers. A view of how these 2-D layers pack together is shown in Figure 3.5. Opposing the trend of structures **3.2** and **3.4**, all silvers in **3.3** are identical in connectivity, being coordinated by two pyridyl and one phosphorus donor in a doubly distorted trigonal arrangement. The N–Ag–N angles of the pyridyls are all acute from 93.1(2) to 107.3(2)°, while the other two N–Ag–P angles are increased to values of 124.1(2) to  $136.4(2)^{\circ}$ . The second distortion stems from the long distance interaction of a BF<sub>4</sub><sup>-</sup> fluorine approaching at an average proximity of 2.786 Å to the metal. As the metal centers are pulled out of their N–N–P coordination planes, a resulting mean perturbance of 0.121 Å is seen. All



Figure 3.3. Molecular diagram of the cationic unique portion of the polymer of **3.3**. The partial spiral of the pyridyl linkages through the linear chain is apparent. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been removed for clarity.

Table 3.4. Selected Bond Lengths (Å), Angles (°), and Important Distances for 3.3<sup>a</sup>

| Ag1–N1          | 2.289(6)   | Ag1-N2          | 2.296(6) |
|-----------------|------------|-----------------|----------|
| Ag1–P1          | 2.3363(19) | Ag2–N3          | 2.274(6) |
| Ag2–N4          | 2.318(7)   | Ag2–P2          | 2.348(2) |
| Ag3–N5          | 2.265(6)   | Ag3–N6          | 2.285(6) |
| Ag3–P3          | 2.362(2)   | Ag4–N7          | 2.268(6) |
| Ag4–N8          | 2.295(6)   | Ag4–P4          | 2.352(2) |
| P1-N3           | 6.195(6)   | P1-N8#4         | 5.906(7) |
| N3–N8#4         | 8.743(8)   | P2-N5           | 6.165(7) |
| P2-N2#1         | 5.860(7)   | N5-N2#1         | 8.541(9) |
| P3-N7           | 6.145(6)   | P3-N4#11        | 5.999(7) |
| N7-N4#11        | 8.444(9)   | P4-N1#6         | 6.061(6) |
| P4-N6#3         | 5.956(7)   | N1#6-N6#3       | 8.769(9) |
| Ag1–Ag2         | 9.287(1)   | Ag1–Ag4#5       | 9.024(1) |
| Ag2–Ag4#5       | 8.648(1)   | Ag2–Ag3         | 9.454(1) |
| Ag2–Ag1#1       | 9.099(1)   | Ag3–Ag1#1       | 8.763(1) |
| Ag3–Ag4         | 9.597(1)   | Ag3–Ag2#2       | 9.324(1) |
| Ag4–Ag2#2       | 8.648(1)   | Ag4–Ag1#6       | 9.263(1) |
| Ag4–Ag3#4       | 9.208(1)   | Ag1#7–Ag3#4     | 8.763(1) |
| Ag1-F16#8       | 2.90(1)    | Ag2–F7#9        | 2.92(1)  |
| Ag3-F8#10       | 2.87(2)    | Ag4–F15#11      | 2.73(1)  |
|                 |            |                 |          |
| N(1)-Ag(1)-N(2) | 93.1(2)    | N(1)-Ag(1)-P(1) | 132.4(2) |
| N(2)-Ag(1)-P(1) | 133.1(2)   | N(3)-Ag(2)-N(4) | 99.4(2)  |
| N(3)–Ag(2)–P(2) | 134.4(2)   | N(4)-Ag(2)-P(2) | 125.6(2) |
| N(5)-Ag(3)-N(6) | 107.3(2)   | N(5)-Ag(3)-P(3) | 127.8(2) |
| N(6)–Ag(3)–P(3) | 124.1(2)   | N(7)-Ag(4)-N(8) | 98.3(2)  |
| N(7)-Ag(4)-P(4) | 136.4(2)   | N(8)-Ag(4)-P(4) | 124.4(1) |
|                 |            |                 |          |

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x+1,y+1/2,-z+1/2; #2 = -x,y+1/2,-z+1/2; #3 = -x+1,y-1/2,-z+1/2; #4 = -x-1,y+1/2,-z+1/2; #5 = -x,y-1/2,-z+1/2; #6 = -x-1,y-1/2,-z+1/2; #8 = x-2,y-1,z; #9 = x-0.5, -y+0.5, -z+1; #10 = x-1, y, z-1; #11 = -x, y-0.5, -z+0.5.



Figure 3.4. A view of the chain of **3.3** perpetuated in one dimension. The partial spiral of the pyridyl linkages can be seen to abruptly restart at the end of the unique portion. Hydrogen atoms have been removed for clarity.



Figure 3.5. A view down the *a*-axis of how the two-dimensional sheets of **3.3** stack together encompassing the  $BF_4^-$  anions. Hydrogen atoms have been removed for clarity.

Ag–N and Ag–P bonds show typical lengths with ranges of 2.265(6) to 2.318(7) Å and 2.336(2) to 2.362(2) Å, respectively. Overall intraligand P–N distances show an increase in length of close to one angstrom from **3.2**. Averages are 5.932 Å on the outstretched

pyridyl arms and 6.142 Å on the collinear pyridyls. This results in an increase in separation of P– and N–bound silvers; the magnitude of this separation depending upon the orientation of the pyridyl extension. Those silvers contained within the collinear backbone of the structure have separations from 9.263(1) to 9.597(1) Å, while those arranged perpendicular have slightly smaller values of 9.024(1) to 9.324(1) Å. This accompanies a substantial increase in cross-ligand metal-metal separation of the N–bound silvers, whose distance in **3.3** averages at 8.7055 Å. **3.3** crystallizes in the noncentrosymmetric space group  $P2_12_12_1$  with a refined Flack parameter of 0.00(2).

Compound 3.4 forms a structurally complicated polymer that displays a variety of interesting attributes. Figure 3.6 shows the molecular structure of the unique portion of 3.4 and Table 3.5 gives selected interatomic distances and angles. The winding 3-D growth of this polymer is displayed in Figure 3.7. Growth occurs in three dimensions due to the bridging actions of both the ligand and the trifluoroacetates. The ligand in this case occupies two separate roles within the structure. In the first instance the phosphonite is tridentate using all three binding sites to coordinate to two different types of metal centers. Using one pyridyl "arm" and the phosphorus, two equivalent silvers, Ag1 and Ag1#1, are bound by two symmetry equivalent ligands in a head-to-tail fashion forming a ring. Each of these silvers are subsequently bridged by two  $\eta^1, \mu_2$ trifluoroacetates to yet another equivalent metal. The remaining "arm" of the ligand extends from the ring and acts as a bridge to the other unique silver of the polymer, Ag2. It is as a result of this outstretching reach that we see the greatest cross ligand metalmetal distance of the three polymers. The N-bound silvers of these oppositely directed donors are separated by a distance of 14.015(2) Å across the breadth of the ligand. The



Figure 3.6. Molecular diagram of the unique portion of **3.4**. Ellipsoids are drawn at the 30% probability level. As shown, N4 is seen to be non-coordinating. All other pyridyl donors are metal bound.

| Ag1-N2#1          | 2.297(4)  | Ag1–P1              | 2.357(1)  |
|-------------------|-----------|---------------------|-----------|
| Ag1–O3            | 2.386(4)  | Ag1–O3#2            | 2.509(4)  |
| Ag2–N3#3          | 2.322(4)  | Ag2–P2              | 2.329(1)  |
| Ag2–O7            | 2.344(4)  | Ag2–N1              | 2.355(4)  |
| P1-N1             | 6.203(4)  | P1-N2               | 5.520(5)  |
| P2-N3             | 6.108(4)  | P2-N4               | 5.651(5)  |
| N1-N2             | 10.774(6) | N3–N4               | 10.026(6) |
| Ag1–Ag2           | 9.112(1)  | Ag1–Ag1#1           | 6.466(1)  |
| Ag1#1–Ag2         | 14.015(2) | Ag2–Ag2#3           | 9.227(1)  |
| N(2)#1-Ag(1)-P(1) | 132.5(1)  | N(2)#1-Ag(1)-O(3)   | 94.1(1)   |
| P(1)-Ag(1)-O(3)   | 126.8(1)  | N(2)#1-Ag(1)-O(3)#2 | 87.9(1)   |
| P(1)-Ag(1)-O(3)#2 | 122.5(1)  | O(3)-Ag(1)-O(3)#2   | 74.4(1)   |
| N(3)#3–Ag(2)–P(2) | 125.4(1)  | N(3)#3-Ag(2)-O(7)   | 86.8(1)   |
| P(2)–Ag(2)–O(7)   | 133.3(1)  | N(3)#3-Ag(2)-N(1)   | 98.2(1)   |
| P(2)-Ag(2)-N(1)   | 116.3(1)  | O(7)–Ag(2)–N(1)     | 86.4(1)   |
|                   |           |                     |           |

Table 3.5. Selected Bond Lengths (Å), Angles (°), and Important Distances for **3.4**<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x+1, -y+1, -z+1; #2 = -x+2, -y+1, -z+1; #3 = x-1/2, -y+3/2, z-1/2



Figure 3.7. Packing structure of complex **3.4** showing the three-dimensional growth of the polymer. hydrogen atoms, trifluoromethyls, and all but the *ipso* portion of the phenyl rings have been removed for clarity.

P-bound to N-bound metal distances across this ligand show separations of 9.112(1) and 6.466(1) Å for Ag1-Ag2 and Ag1-Ag1A, respectively. Ag2 is bound by the phosphorus and nitrogen of two separate, but equivalent, ligands that are in a similar conformation to that of the one P-bound to Ag1 and the pyridyl that bridges to Ag1 to achieve a head-to-tail-to-tail motif. In this case however, the ligands are not involved in ring formation. The attached ligands instead continue off via one pyridyl extension each in two separate
polymeric strands that run parallel to one another. The remaining "arm" of this ligand is a curious feature in that it has a non-coordinating "dangling" pyridyl that sits comfortably within the space between ligands. It is believed that the steric packing that encapsulates this particular pyridyl ring is responsible for its unsaturated coordination state, since even when an excess of Ag(tfa) is used the non-coordinating nitrogen is present in the crystal structure. The similar conformations of the two unique ligands in the structure of **3.4** likewise display similar intraligand N–N distances at 10.774(6) Å for the P1 ligand and 10.026(6) Å for that of P2. Comparable P–N distances are also noticed with each ligand having a short and a long stretch: P1–N2 and P1–N1 separations are 5.520(5) and 6.203(4) Å, respectively, while the analogous P2–N4 and P2–N3 distances are 5.651(5) and 6.108(4) Å. The single cross-ligand metal-metal distance of the P2 ligand is that of the P2 to N3 silvers, which is slightly longer than that of the P1 ligand at 9.227(1)Å. Both silver centers here are in distorted tetrahedral arrangements. The coordination around Ag1 is completed by one each pyridyl and phosphorus donors, as well two bridging trifluoroacetate oxygens and is shown in a close-up view in Figure 3.8. The Ag1–N2#1 bond is only slightly stretched for a Ag–pyridyl distance at 2.297(4) Å while the Ag1–P1 bond is a typical 2.357(2) Å. Bonds to the bridging trifluoroacetates are seen to be inequivalent with Ag1–O3 at 2.386(4) Å, and Ag1–O3#2 at 2.509(4) Å. It is also noticed that the small bridging distance of the  $\eta^1, \mu_2$ -trifluoroacetates constrict the angle they create with the metal to an acute  $74.4(1)^{\circ}$ . As a result, the P1–Ag1–N1 angle has room to spread apart which is apparent with a 132.5(1)° angle. The remaining angles around Ag1 are also distorted from the ideal tetrahedral geometry and have values interspersed between the aforementioned extremes. In the absence of the bridging



Figure 3.8. Coordination environment of Ag1 in the polymer of **3.4**. Ellipsoids are drawn at the 50% probability level.

trifluroacetates displayed by Ag1, the distortions of the tetrahedral coordination sphere of Ag2 are not seen to be as severe. The environment of Ag2 is displayed in Figure 3.9 and includes two pyridyl donors, the phosphorus atom P2 and a terminal bound  $\eta^{1}$ -trifluoroacetate. The silver–pyridyl linkages in this case are uncommonly lengthy at 2.355(4) and 2.322(4) Å for Ag2–N1 and Ag2–N3#3, while the Ag2–P2 and Ag2–O7 bonds are in the typical range at 2.329(1) and 2.344(4) Å, respectively. The angles about Ag2 however are still shown to be rather extreme from 86.4(1) to 133.3(1)°.



Figure 3.9. Coordination environment of Ag2 in the polymer of **3.4**. Ellipsoids are drawn at the 50% probability level.

### Luminescent Properties

Mixed inorganic–organic coordination polymers have been recently explored as potentials for new "organic" light emitting devices, OLEDs. The advantage of these hybrids over the strictly organic luminescent materials is the ability to tune their absorption and emission by altering the metal environment. This variability stems from either metal-to-ligand or ligand-to-metal charge transfer, which is obviously not an option with the traditional organic LED.<sup>150</sup> All excitation and emission spectra were recorded at

concentrations of  $1 \times 10^{-4}$  M in acetonitrile glasses at 77 K. These spectra are demonstrated in Figure 3.10. The resemblance of the excitation spectra of compounds **3.2–3.4** with that of the free PhP(3-OCH<sub>2</sub>C<sub>5</sub>H<sub>4</sub>N)<sub>2</sub> ligand are suggestive of a ligand based absorption which then decays by means of ligand-to-metal charge transfer. The excitation spectrum of the free ligand **3.1** shows two maxima at 298 and 352 nm. Excitation maxima for **3.2–3.4** are 295, 297 and 305 nm, respectively. Emission spectra for all compounds **3.1–3.4** show multiple maxima, illustrating the complexity of the decay transitions associated with such a complicated system. The ligand itself demonstrates several emission maxima across a wide section of the spectrum. Peaks are seen at 412, 442, 474 and 544 nm. A great deal of free ligand character is seen in the spectrum of **3.3**, which is the weakest emitter of the silver complexes. Peaks are seen at 412, 441, 477 and a shoulder is noticed at ~ 547 nm. This suggests that the emission is mainly a ligand–based one intensified by metal coordination. The emission of the silver triflate complex, **3.2**, is much more intense and covers a broader spectral range than



Figure 3.10. Normalized excitation and emission spectra of compounds **3.1–3.4** taken in acetonitrile glasses at 1 X 10<sup>-4</sup>M concentration at 77 K. = **PCP-32Ag(tfa)**, = **= PCP-32AgOTf**, = **PCP-32AgBF**<sub>4</sub> = = = **= PCP-32**.

| Compound | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$    |
|----------|----------------------------|-----------------------------------|
| 3.1      | 298, 352                   | 412, 442, 474, 544                |
| 3.2      | 295                        | 363, 404, 423, 438, 452, 501, 547 |
| 3.3      | 297                        | 412, 441, 477, 547                |
| 3.4      | 305                        | 449, 465, 487, 513                |
|          |                            |                                   |

Table 3.6. Luminescent Spectral Data for compounds **3.1–3.4**, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.

either **3.1** or **3.3**. Peaks are displayed at 363, 404, 423, 438, 452 and 501 nm and again a shoulder is noticed at 547nm. The emission spectrum of complex **3.4** is noticeably more intense than the others, as expected from visual observations, and is also slightly red–shifted. The local maxima for this complex are seen at 449, 465, 487 and 513 nm. Full luminescence data are presented in Table 3.6

# Conclusions

We have demonstrated in this study the versatility of the phosphonite PhP(3-OCH<sub>2</sub>C<sub>5</sub>H<sub>4</sub>N)<sub>2</sub> in the formation of anion-dependent, luminescent coordination polymers. The flexibility of the pyridyl extensions allowed trans-ligand metal-metal distances to span a range of over 10 Å from 3.1918(8) to 14.015(2) Å. These pyridyl arms were seen to adopt conformations ranging from parallel to perpendicular. The silver coordination environment, dimensionality of the polymers and luminescence characteristics are all seen to be dependent upon the anion present.

### Experimental

# General Considerations

All experiments were carried out under an argon atmosphere, using a Schlenk line and standard Schlenk techniques. Glassware was dried at 120°C for several hours prior to use. All reagents were stored in an inert atmosphere glovebox; solvents were distilled under nitrogen from the appropriate drying agent immediately before use. Triethylamine was purchased from Aldrich and purged with argon before use. 3-pyridylcarbinol was purchased from Aldrich and used as received. Dichlorophenylphosphine, silver(I) trifluoroacetate, silver(I) triflate, and silver(I) tetrafluoroborate were purchased from Strem Chemicals Inc. and used as received. Celite was purchased from Aldrich and dried at 120°C prior to use. <sup>1</sup>H and variable temperature <sup>31</sup>P NMR were recorded at 360.13 MHz and 145.78 MHz respectively, on a Bruker Spectrospin 360 MHz Spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, Georgia. Excitation and emission spectra were recorded on an Instruments S. A. Inc. model Fluoromax–2 spectrometer, using band pathways of 5 nm for both excitation and emission and are presented uncorrected.

### Preparations

*Phenylphosphino-bis-3-pyridylcarbinol,*  $PPh(3-OCH_2C_5H_4N)_2$ , **PCP–32 (3.1)**. In an argon purged addition funnel degassed triethylamine (2.28 mL, 16.36 mmol) was added via syringe to a stirred solution of 3-pyridylcarbinol (1.50 g, 13.75 mmol) in 20 mL toluene at room temperature. The solution was stirred for 15 minutes, then cooled to 0°C and shielded from light with aluminum foil. A solution of dichlorophenylphosphine (1.23 g, 6.87 mmol) in 15 mL toluene was then added over 15 minutes. The solution was stirrred for 1 h, and then warmed to room temperature. The resultant, thick cloudy mixture was reduced to <sup>3</sup>/<sub>4</sub> of its original volume under vacuum and immediately filtered through Celite and washed with 5 mL of cold toluene. The solvent was removed from the yellow solution in vacuo to leave the crude product as a pale yellow oil in 95 % yield (2.12 g, 6.26 mmol). The oil was then extracted with 180 mL of hexanes to leave the final product, **3.1**, as a colorless oil in 77% yield (1.71g, 5.28 mmol). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 298 K)  $\delta$ : 4.87 d,m, 4 H, *J*(PH) = 8.8 Hz; 7.34 m, 2 H; 7.48 m, 3 H; 7.681 m, 4 H; 8.59 m, 4 H. <sup>31</sup>P NMR (CDCl<sub>3</sub>, 298 K)  $\delta$ : 160.4 sep, *J*(PH) = 7.3 Hz.

*poly-[PCP–32AgOTf]* (**3.2**). To a stirred solution of AgOTf (0.158 g, 0.612 mmol) in 3 mL CH<sub>3</sub>CN was added **3.1** (0.100 g, 0.310 mmol) in 3 mL CH<sub>3</sub>CN. The resulting solution was stirred for 3 minutes then dried in vacuo to leave a fluffy, off-white solid. The solid was then repeatedly redissolved in a small amount of CH<sub>3</sub>CN and precipitated with ether until compound **3.2** was obtained as a white powder in 86 % (0.222 g, 0.263 mmol) yield upon drying. Colorless plates of **3.2** were obtained by slow diffusion of ether into a solution of **3.2** in CH<sub>2</sub>Cl<sub>2</sub> at 5 °C. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 5.11 d,m, 4H; 7.47 m, 2H; 7.65 m, 3H; 7.85 m, 4H; 8.12 m, 4H. <sup>31</sup>P NMR (238 K)  $\delta$ : 146.4 d, *J*(Ag–P) = 908.2 Hz. Elem anal. Calcd for C<sub>23</sub>H<sub>20.5</sub>N<sub>2.5</sub>O<sub>8.5</sub>PS<sub>2</sub>F<sub>6</sub>Ag<sub>2</sub>: C, 30.94; H, 2.31; N, 3.92. Found: C, 30.66; H, 2.37; N, 3.61.

*poly-[PCP–32AgBF*<sub>4</sub>] (3.3). To a stirred solution of AgBF<sub>4</sub> (0.120 g, 0.624 mmol) in 3 mL CH<sub>3</sub>CN was added 3.1 (0.198 g, 0.611 mmol) in 3 mL CH<sub>3</sub>CN. The resulting solution was stirred for 2 minutes then dried in vacuo to leave an off-white powder. This was then dissolved in a small amount of CH<sub>3</sub>CN and precipitated with ether, repeating this until compound 3.3 is obtained as a white powder upon drying, in 93 % (0.295 g, 0.574 mmol) yield. Colorless plates of 3.3 were obtained by slow diffusion of ether into a solution of 3.3 in CH<sub>3</sub>CN at 5 °C. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 5.07 d,m,

4H; 7.45 m, 2H; 7.65 m, 3H; 7.85 m, 4H; 8.48 d, 2H; 8.55 s, 2H. <sup>31</sup>P NMR (238 K)  $\delta$ : 149.8 d, *J*(Ag–P) = 804.7 Hz. Elem anal. Calcd for C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>PAgBF<sub>4</sub>: C, 41.66; H, 3.30; N, 5.40. Found: C, 41.15; H, 3.27; N, 5.30.

*poly*-[*PCP*–*32Ag(tfa)*] (**3.4**). To a stirred suspension of Ag(tfa) (0.136 g, 0.626 mmol) in 5 mL CH<sub>2</sub>Cl<sub>2</sub> was added **3.1** (0.100 g, 0.312 mmol) in 5 mL CH<sub>2</sub>Cl<sub>2</sub>. This was stirred for 5 minutes until the solid Ag(tfa) was dissolved, after which time a brown oil precipitated. The solution was dried in vacuo to leave a fluffy brown powder. This was then dissolved in a small amount of CH<sub>3</sub>CN and precipitated with ether. This was repeated until the off-white powder, **3.4**, was obtained in 94 % (0.223 g, 0.294 mmol) yield. Colorless blocks of **3.4** were obtained by the vapor diffusion of ether into a solution of **3.4** in CH<sub>3</sub>CN at 5 °C. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 5.12 d,m, 4H; 7.39 m, 2H; 7.59 m, 3H; 7.82 m, 4H; 8.50 d, 2H; 8.59 s 2H. <sup>31</sup>P NMR (238 K)  $\delta$ : 152.2. Elem anal. Calcd for C<sub>23.5</sub>H<sub>18.75</sub>N<sub>2.25</sub>O<sub>6.25</sub>PAg<sub>2</sub>F<sub>6</sub>: C, 35.58; H, 2.38; N, 3.97. Found: C, 35.86; H, 2.40; N, 3.78.

# Crystallography

A summary of crystallographic experimental data for **3.2**, **3.3** and **3.4** is presented in Table 3.7. Complete listings of interatomic distances and angles can be found in Appendix B, Tables B.4 to B.6. Crystallographic data were collected on crystals with dimensions 0.081 x 0.097 x 0.196 mm for **3.2**, 0.168 x 0.140 x 0.041 mm for **3.3**, and 0.070 x 0.090 x 0.100 mm for **3.4**. Data were collected at 110 K on a Bruker X8 Apex using MoK $\alpha$  radiation ( $\lambda$  =0.71073 Å). All structures were solved by direct methods after the correction of the data using SADABS.<sup>139</sup> All of the data were processed using

|                                 | 3.2                                         | 3.3                   | 3.4                                                             |
|---------------------------------|---------------------------------------------|-----------------------|-----------------------------------------------------------------|
| Formula                         | C20H17Ag2F6N2O8PS2 (CH3CN)0 33 (CH2Cl2)0 66 | C80H80Ag4B4F16N12O8P4 | $C_{40}H_{34}Ag_{2}F_{6}N_{4}O_{8}P_{2}\cdot(C_{4}H_{10}O)_{0}$ |
| Formula weight                  | 914.92                                      | 2240.16               | 1127.45                                                         |
| a (Å)                           | 10.8716(9)                                  | 15.565(2)             | 9.343(1)                                                        |
| b (Å)                           | 11.9998(9)                                  | 20.999(3)             | 31.912(5)                                                       |
| c (Å)                           | 12.170(1)                                   | 28.131(4)             | 15.157(3)                                                       |
| α(°)                            | 94.502(5)                                   |                       |                                                                 |
| β(°)                            | 100.834(5)                                  |                       | 95.63(1)                                                        |
| γ (°)                           | 93.599(4)                                   |                       |                                                                 |
| $V(Å^3)$                        | 1549.7(2)                                   | 9195(2)               | 4497(1)                                                         |
| Z                               | 2                                           | 4                     | 4                                                               |
| space group                     | <i>P</i> -1                                 | $P2_{1}2_{1}2_{1}$    | $P2_1/n$                                                        |
| T (K)                           | 110                                         | 110                   | 110                                                             |
| $D_{calcd}(g \text{ cm}^{-3})$  | 1.961                                       | 1.618                 | 1.665                                                           |
| $\mu$ (mm <sup>-1</sup> )       | 1.671                                       | 1.000                 | 1.024                                                           |
| $2\theta_{\rm max}$ , deg       | 62.40                                       | 46.52                 | 52.00                                                           |
| reflns measured                 | 20219                                       | 67540                 | 38630                                                           |
| reflns used (R <sub>int</sub> ) | 9442 (0.0400)                               | 13167(0.0836)         | 8838(0.0809)                                                    |
| Restraints / Parameters         | 56/431                                      | 0/1147                | 6/601                                                           |
| R1, $[I \ge 2\sigma(I)]$        | 0.0459                                      | 0.0464                | 0.0497                                                          |
| $wR^2$ , $[I > 2\sigma(I)]$     | 0.1136                                      | 0.1126                | 0.1073                                                          |
| $R(F_o^2)$ , (all data)         | 0.0755                                      | 0.0543                | 0.0797                                                          |
| $R_w(F_o^2)$ , (all data)       | 0.1281                                      | 0.1177                | 0.1204                                                          |
| GooF on $F^2$                   | 1.016                                       | 1.112                 | 1.027                                                           |

Table 3.7 Crystallographic Data for 3.2 3.3 and 3.4

the Bruker AXS SHELXTL software, version  $6.10^{.140}$  Unless otherwise noted, all nonhydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions. The crystal structure of **3.2** contains a disordered solvent position that is occupied in part by a molecule of dichloromethane and in part by a molecule of acetonitrile. The crystal structure of **3.3** contains four solvent molecules of acetonitrile and four noncoordinating  $BF_4^-$  anions, two of which are disordered over two positions. Compound **3.4**'s crystal structure contains an ether solvent molecule whose disorder is linked to the disorder of the C32 phenyl ring.

### CHAPTER FOUR

# Variability in the Structures of Luminescent Silver(I) 2-aminomethylpyridine Complexes: Effect of Ligand Ratio, Anion, Hydrogen-bonding, and π-stacking

# Introduction

Progress in the field of crystal engineering has been greatly complemented by coordination studies of the coinage metals.<sup>7,11,88,146,151-154</sup> Studies of silver, in particular, have had much to offer. This is due to the flexibility in its coordination sphere and the ease with which it varies coordination number.<sup>4,25,49,142,148</sup> Many silver coordination architectures are readily obtainable through slight variations in ligand and / or anion and include discrete, small molecules, supramolecular arrays, and 1-, 2-, and 3-dimensional coordination networks.<sup>155-158</sup> Several systematic studies of the structural dependence on anions have been nicely demonstrative of the diversity possible with small changes in counterion properties such as coordinating or hydrogen bonding ability.<sup>91,92,147,159-161</sup> A related area of this research that has proved lacking however is that concerned with the ligand to metal ratio dependence of these structures.<sup>22</sup> To the best of our knowledge, no thorough report has been given that shows the effects of changing the ratio of ligand to metal in bidentate silver(I) systems of various anions. This led us to investigate the changes in the solid state structures of silver(I) 2-aminomethylpyridyl complexes that are caused by altering the ratio of ligand-to-metal in the reaction mixtures. One resulting feature that is of particular interest in these and other silver complexes is the closed shell metal-metal interaction that is very well known to occur in the monovalent group 11 elements.<sup>1,162-167</sup> While not as broadly represented or studied as the aurophilic attraction

60

that holds the gold–gold interaction intact, a small surge of recent work has been dedicated to examining the properties of this argentophilic contact.<sup>15,98,162,168-170</sup> Included in this group are a handful of theoretical studies that put the strength of the interaction along the same intensity as that of a hydrogen bond with an idealized internuclear separation of 3.137 - 3.208Å.<sup>163,171-173</sup>

Herein we demonstrate that not only can the molecular architecture of silver(I) coordination complexes be altered by changes in the counterion, but they can also be largely affected by the ratio of ligand to metal. The 2-aminomethylpyridine ligand, whose small bite angle imposes a predisposition for chelation, is seen to construct a range of coordination motifs, shown in Scheme 4.1, from simple monomers to coordination



Scheme 4.1. The binding modes that are seen with the 2-aminomethylpyridine ligand in the silver(I) structures described herein.

polymers with various silver(I) salts simply by changing its ratio in solution. The resulting complexes contain a number of interesting structural features and physical properties including several short, sterically unfavored Ag–Ag interactions, bridging 2-amp ligands and a pronounced luminescence. This work has been recently published.<sup>177</sup>

#### Results and Discussion

### Synthesis and NMR Spectroscopy

The 2-aminomethylpyridine complexes **4.1–4.7** were all made by the direct reaction of the ligand with silver(I) salts in varying ratios. Characteristic analytical data for these complexes are presented in Tables 4.1 and 4.2. The 1:1 AgBF<sub>4</sub> structure has already been discussed in a previous study.<sup>91</sup> The many intriguing structural features of the complexes presented here are seen to stem directly from the ratio of ligand to metal, with the ratio itself often being influenced by the properties of the anion present. An example of this is the silver triflate complex which we have been unable to force beyond a 3:2 ratio of ligand to metal, while that of the trifluoroacetate has not been isolable at 3:2 but proceeds directly to 2:1. Hydrogen bonding between the amine protons and the anions are a major determining factor in the structure, orientation, and 3-dimensional growth of the complexes.

The <sup>1</sup>H NMR spectra of all the compounds were, as expected, generally similar. Shifts in the amine protons as well as the ortho-N hydrogens on the pyridyl rings are demonstrative of the differences in coordinated silver environments caused by the different anions present. The greatest shifts are seen examining the  $-NH_2$ - protons in the presence of silver, ranging from 1.3 to 2.0 ppm downfield of the 1.67 ppm chemical shift of free 2-amp ligand in solution (NMR data for the free ligand is available in supporting information). These shifts are implicative of solution–state complexation. Low temperature NMR spectra of representative compounds collected to <sup>-35</sup> °C reveal no dramatic shift in resonances.

|     | compound <sup>a</sup> yield     |     |             | analytical (%) <sup>b</sup> |             |  |
|-----|---------------------------------|-----|-------------|-----------------------------|-------------|--|
|     |                                 | (%) | С           | Н                           | Ν           |  |
| 4.1 | $Ag(2-amp)_2BF_4$               | 92  | 35.0 (35.0) | 3.8 (3.9)                   | 13.3 (13.6) |  |
| 4.2 | $Ag(2-amp)_2(tfa)$              | 82  | 38.2 (38.4) | 3.6 (3.7)                   | 12.5 (12.8) |  |
| 4.3 | $Ag_2(2-amp)_3(OTf)_2$          | 76  | 29.2 (28.9) | 2.9 (2.9)                   | 10.0 (10.0) |  |
| 4.4 | $Ag_2(2-amp)_3(BF_4)_2$         | 84  | 30.4 (30.3) | 3.3 (3.3)                   | 11.6 (11.7) |  |
| 4.5 | $Ag_22,2'-bpy_2(2-amp)(BF_4)_2$ | 90  | 40.7 (40.4) | 3.3 (3.3)                   | 11.2 (11.4) |  |
| 4.6 | poly-[Ag(2-amp)OTf]             | 85  | 26.2 (25.8) | 2.3 (2.4)                   | 8.7 (8.6)   |  |
| 4.7 | poly-[Ag(2-amp)(tfa)]           | 75  | 29.4 (29.2) | 2.4 (2.4)                   | 8.4 (8.5)   |  |

Table 4.1. Analytical and Physical Data

<sup>a</sup> All compounds are white or off white solids. <sup>b</sup> Calculated values are given in parenthesis.

|     | Table 4.2. Hydrogen-1 NMR Data                                                                                                                                                   |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | $^{1}\text{H}/\delta^{a}$                                                                                                                                                        |  |  |  |  |
| 4.1 | 2.93 (s, br, 4H, -NH <sub>2</sub> ); 4.14 (s, 4H, -CH <sub>2</sub> ); 7.28 (m, 2H); 7.739 (t,d, $J_{H-Ho} = 7.5$ Hz, $J_{H-Hm} = 1.5$ Hz, 4H); 8.49 (d, $J_{H-Ho} = 6.0$ Hz, 2H) |  |  |  |  |
| 4.2 | 3.47 (s, br, 4H, -NH <sub>2</sub> ); 3.83 (s, 4H, -CH <sub>2</sub> ); 7.29 (m, 2H); 7.77 (d, $J_{H-Ho} = 6.0 \text{ Hz}$ , 4H); 8.48 (s, 2H)                                     |  |  |  |  |
| 4.3 | 3.32 (s, br, 6H, -NH <sub>2</sub> ); 4.11 (s, 6H, -CH <sub>2</sub> ); 7.28 (m, 3H); 7.74 (t,d, $J_{H-Ho} = 7.5$ Hz, $J_{H-Hm} = 1.5$ Hz, 6H); 8.49 (d, $J_{H-Ho} = 6.0$ Hz, 3H)  |  |  |  |  |
| 4.4 | 3.12 (s, br, 6H, -NH <sub>2</sub> ); 4.15 (s, 6H, -CH <sub>2</sub> ); 7.29 (m, 3H); 7.75 (t,d, $J_{H-Ho} = 7.4$ Hz, $J_{H-Hm} = 1.5$ Hz, 6H); 8.50 (s, 3H)                       |  |  |  |  |
| 4.5 | $3.19$ (s,br, 2H, -NH <sub>2</sub> ); 4.05 (s, 2H, -CH <sub>2</sub> ); 7.43 (m, 8H); 7.89 (m, 9H); 7.98 (d, $J_{H-Ho} = 8.1$ Hz, 2H); 8.36 (d, $J_{H-Ho} = 4.8$ Hz, 1H)          |  |  |  |  |
| 4.6 | 3.42 (s, br, 2H, -NH <sub>2</sub> ); 4.16 (s, 2H, -CH <sub>2</sub> ); 7.25 (m, 1H); 7.77 (t,d, $J_{H-Ho} = 6.9$ Hz, $J_{H-Hm} = 1.0$ Hz, 2H); 8.52 (d, $J_{H-Ho} = 3.6$ Hz, 1H)  |  |  |  |  |
| 4.7 | 3.68 (s, 2H, -NH <sub>2</sub> ); 4.11 (s, 2H, -CH <sub>2</sub> ); 7.28 (m, 1H); 7.75 (t,d, $J_{H-Ho} = 7.5$ Hz, $J_{H-Hm} = 1.5$ Hz, 2H); 8.53 (d, $J_{H-Ho} = 6.0$ Hz, 1H)      |  |  |  |  |

<sup>a</sup> <sup>1</sup>H NMR spectra were recorded in CD<sub>3</sub>CN at 298 K.

# X-ray Crystallography

The ratio of 2-amp ligand to Ag in the structures of both compounds **4.1** and **4.2** is 2:1. A significant change in both the metal geometries and the ligand to metal bond distances are seen when going from **4.1** to **4.2**, and are the result of differences in interaction of the  $BF_4^-$  and tfa<sup>-</sup> anions. The structure of **4.2** contains a rather short Ag-Ag interaction<sup>163</sup> that is obtained at the expense of the relaxed tetrahedral environment of the metal separated structure of **4.1**.

The expansion of the silver coordination environment from linear in a 2coordinate polymeric setting<sup>91</sup> to near tetrahedral upon the addition of 2 equivalents of the chelating 2-aminomethylpyridyl ligand to produce compound 4.1 was as expected. In the former structure, the only way to achieve the two-coordinate environment necessary to accommodate a 1:1 ratio of 2-amp to AgBF<sub>4</sub> is with an outward twisting of the ligand. In this way the amino and pyridyl donors of separate 2-amp ligands are utilized, linking the linearly coordinated silvers into a one-dimensional coordination polymer. In the latter, the added donors crowd the metal center to the point where donor-metal-donor angle is within range of that easily achieved by the chelating action of the 2-amp ligand creating the distorted tetrahedron that is shown in Figure 4.1. The deformation of the tetrahedral bond angles in this compound is caused by the small bite angle of the coordinated 2-amps which averages 73°. The interligand angles are thus made more obtuse, ranging from  $125.9(2)^{\circ}$  to  $133.9(2)^{\circ}$ . BF<sub>4</sub><sup>-</sup> ions are held in place in the lattice by H-bonding with the amine protons. The crystal structure of compound 4.1 contains two independent molecules of bis(2-amp)AgBF<sub>4</sub> caused by slight differences in conformation. Amine–Ag and pyridyl–Ag bonds cannot be distinguished from one another in this



Figure 4.1. Molecular structure of one of the unique cationic monomers of **4.1**. Ellipsoids are drawn at the 50% probability level.

| Ag1–N1              | 2.262(6) | Ag1–N3               | 2.319(5) |
|---------------------|----------|----------------------|----------|
| Ag1–N4              | 2.336(6) | Ag1–N2               | 2.371(5) |
| Ag2–N6              | 2.293(6) | Ag2–N7               | 2.310(5) |
| Ag2–N8              | 2.322(5) | Ag2–N5               | 2.368(4) |
|                     |          |                      |          |
| N1-Ag1-N3           | 125.6(2) | N1-Ag1-N4            | 131.9(2) |
| N3-Ag1-N4           | 72.5(2)  | N1-Ag1-N2            | 74.61(2) |
| N3-Ag1-N2           | 133.9(2) | N4-Ag1-N2            | 128.3(2) |
| N6-Ag2-N7           | 133.4(2) | N6-Ag2-N8            | 126.5(2) |
| N7-Ag2-N8           | 74.4(2)  | N6-Ag2-N5            | 73.3(2)  |
| N7-Ag2-N5           | 125.9(2) | N8-Ag2-N5            | 133.3(2) |
| $N2-H\cdots F2^{1}$ | 3.123(7) | $N6-H\cdots F7^4$    | 3.146(6) |
| $N2-H\cdots F3^2$   | 3.068(6) | N6–H…F8 <sup>5</sup> | 3.031(6) |
| $N4-H\cdots F1^{1}$ | 3.049(6) | N8–H…F6 <sup>6</sup> | 3.070(7) |
| $N4-H\cdots F4^3$   | 3.101(6) | N8–H…F5 <sup>5</sup> | 3.090(7) |
|                     |          |                      |          |

Table 4.3. Selected bond lengths (Å), angles (deg), and important distances for Ag(2-amp)<sub>2</sub>BF<sub>4</sub>, (**4.1**)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = x-1, y, z+1; #2 = x-1, y, z; #3 = x, y, z+1; #4 x, y, z-1; #5 = x+1, y, z-1; #6 = x+1, y, z

structure by bond lengths alone. Considerable overlap is seen with the amine–Ag distances ranging from 2.293(6) to 2.371(5) Å and the pyridyl–Ag distances ranging from 2.262(6) to 2.368(4) Å. Selected bond lengths and angles for this compound are found in Table 4.3.

The crystal structure of complex 4.2 is shown in Figure 4.2, with selected interatomic parameters in Table 4.4, and is demonstrative of the strong effects that hydrogen bonding and the exchange of anion can have upon the structural characteristics of these compounds. Stoichiometrically identical to 4.1, the use of the strong H-bond accepting trifluoroacetate results in an unexpected sandwiching of two of the cationic units that were present in 4.1. The increased propensity of the trifluoroacetate to hydrogen bond enables it to act as a bridge pulling two amine groups of what would be separate units into close proximity of one another. This bridging activity is seen to occur on both sides of a now dimetallic cluster utilizing all four amine groups. The result is that the metal centers are pulled into such proximity to one another as to form a significant metal-to-metal interaction at 3.0077(4) Å. Similar distances are normally found only in complexes where the interacting silvers are being bridged directly by another donor or anion.<sup>171</sup> This is a noteworthy interaction seeing as how the tetrahedral environments of the individual metal centers have to undergo considerable distortions in order to achieve a geometry that allows for the contact to occur. The resulting metalmetal interaction hence seems not only to be lightly supported, but even unfavored. The reasoning behind the fact that the complex does not snap apart to become isostructural with **4.1** lies in the fact that the silver(I) ion is extremely flexible in its coordination sphere. In order to accommodate the silver-silver interaction the two metal centers must



Figure 4.2. Molecular structure of one of the unique metal dimers of **4.2** showing how H–bonding to the anions hold the "sandwich" together. Ellipsoids are drawn at the 50% probability level. All hydrogens except for those on the amine nitrogens have been removed for clarity.

| Ag1–N2     | 2.309(3)  | Ag1–N4     | 2.326(3)  |
|------------|-----------|------------|-----------|
| Ag1–N3     | 2.402(3)  | Ag1–N1     | 2.418(3)  |
| Ag2–N–8    | 2.265(3)  | Ag2–N6     | 2.273(3)  |
| Ag2–N5     | 2.499(3)  | Ag2–N7     | 2.558(3)  |
| Ag3-N10    | 2.298(3)  | Ag3-N12    | 2.339(3)  |
| Ag3-N11    | 2.390(3)  | Ag3–N9     | 2.425(3)  |
| Ag4–N16    | 2.277(3)  | Ag4–N14    | 2.292(3)  |
| Ag4-N13    | 2.459(3)  | Ag4–N15    | 2.516(3)  |
| Ag1–Ag2    | 3.0077(4) | Ag3–Ag4    | 3.0305(4) |
|            |           |            |           |
| N2-Ag1-N4  | 146.3(1)  | N2-Ag1-N3  | 119.4(1)  |
| N4-Ag1-N3  | 71.5(1)   | N2-Ag1-N1  | 72.6(1)   |
| N4-Ag1-N1  | 113.8(1)  | N3-Ag1-N1  | 151.7(1)  |
| N2-Ag1-Ag2 | 105.64(8) | N4–Ag1–Ag2 | 107.98(7) |
| N3-Ag1-Ag2 | 76.79(7)  | N1-Ag1-Ag2 | 75.17(7)  |
| N8-Ag2-N6  | 174.6(1)  | N8-Ag2-N5  | 112.8(1)  |

Table 4.4. Selected bond lengths (Å), angles (deg), and important distances for  $Ag(2-amp)_2 tfa$ , (4.2)<sup>a</sup>

| N6–Ag2–N5            | 72.5(1)   | N8-Ag2-N7               | 71.7(1)   |
|----------------------|-----------|-------------------------|-----------|
| N6–Ag2–N7            | 106.1(1)  | N5-Ag2-N7               | 124.9(1)  |
| N8–Ag2–Ag1           | 91.69(8)  | N6–Ag2–Ag1              | 84.96(8)  |
| N5-Ag2-Ag1           | 116.92(7) | N7–Ag2–Ag1              | 117.73(7) |
| N10-Ag3-N12          | 147.3(1)  | N10-Ag3-N11             | 118.9(1)  |
| N12-Ag3-N11          | 71.2(1)   | N10-Ag3-N9              | 73.5(1)   |
| N12-Ag3-N9           | 113.5(1)  | N11-Ag3-N9              | 151.3(1)  |
| N10-Ag3-Ag4          | 108.08(8) | N12-Ag3-Ag4             | 104.59(7) |
| N11–Ag3–Ag4          | 73.78(7)  | N9-Ag3-Ag4              | 77.76(7)  |
| N16-Ag4-N14          | 176.1(1)  | N16-Ag4-N13             | 110.8(1)  |
| N14-Ag4-N13          | 72.7(1)   | N16-Ag4-N15             | 72.7(1)   |
| N14-Ag4-N15          | 107.0(1)  | N13-Ag4-N15             | 124.3(1)  |
| N16-Ag4-Ag3          | 90.13(8)  | N14-Ag4-Ag3             | 86.76(8)  |
| N13-Ag4-Ag3          | 113.12(7) | N15-Ag4-Ag3             | 122.55(7) |
|                      |           |                         |           |
| $N2-H\cdots O8^{1}$  | 2.993(4)  | N10-H…O1                | 2.905(4)  |
| $N2-H\cdots O5^2$    | 2.945(4)  | N10–H…O3                | 2.988(4)  |
| $N4-H.V7^3$          | 3.380(4)  | N12-H…O6                | 2.949(4)  |
| N4–H…O2              | 3.087(4)  | N12–H…N13 <sup>3</sup>  | 3.144(4)  |
| N6–H…O4 <sup>4</sup> | 2.965(4)  | N14–H…O6                | 3.076(4)  |
| N6–H…O2              | 3.060(4)  | N14–H…O7 <sup>6</sup>   | 2.974(4)  |
| N8–H…O8 <sup>5</sup> | 2.965(4)  | N16–H…O1                | 3.049(4)  |
| $N8-H\cdots O5^2$    | 3.060(4)  | N16–H···O3 <sup>4</sup> | 2.960(4)  |
|                      |           |                         |           |

Table 4.4. Continued

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = x, y, z -1; #2 = x, y+1, z-1; #3 = x-1, y, z; #4 = x + 1, y, z; #5 = x+1, y, z-1; #6 = x+1, y-1, z

contort into two quite different conformations. The top silver adopts a distorted squarebased pyramidal arrangement. For this to occur the N-Ag bond lengths are stretched to suit the new setting with the pyridyl–silver bonds being stretched more, making it now possible to distinguish between the two types of donors based on bond distances. Amine–silver lengths range from 2.298(3) to 2.339 (3) Å whereas the pyridyl–silver lengths are stretched slightly longer to between 2.390(3) and 2.425(3) Å. The bottom silver suffers a similar contortion that leaves it in a trigonal bipyramidal setting with both amines occupying the axial positions. Pyridyl donors and the metal–metal interaction hold the equatorial spaces. This distinct difference in coordination sites assists in broadening the division between the lengths of the amine– and pyridyl–silver separations; the axial amine–silver distances range from 2.265(3) to 2.292(3) Å while the equatorial pyridyl–silver distances range from 2.459(3) to 2.558(3) Å. Looking outward from the initial interdimeric H-bonded bridge it is noticed that each oxygen of the trifluoroacetate is used to hold a separate set of these stacked complexes on top of each other such that the anion acts  $\eta^2$ , $\mu_4$ . This effectively constructs a linear chain of dimetallic clusters held together by hydrogen bonds.

The molecular structures of compounds **4.3** and **4.4** offer another example of the marked effect that changes in H–bond accepting ability of the anion has upon the conformation of the molecule. Ratios of ligand to metal in both complexes are 3:2 such that the structural differences again are being caused solely by the anion. The addition of a more strongly interacting anion has the effect of closing the 3:2 structure onto itself.

In **4.3**, the ratio itself of ligand to metal is controlled, or at least limited, by the anion. It is seen that even a 5-fold excess of 2-amp does not force a ratio higher than 3:2 in the crystal structure shown in Figure 4.3. This is accredited to a bifunctional role of the triflate in the molecule: its first function is to act as a coordinating anion to one of the metals, and second is to concomitantly engage in an intramolecular H–bond through a separate oxygen. The addition of more than one equivalent of 2-amp disrupts the linear coordination environment that silver has when the ligand is present in only a single equivalent (as in compound **4.6**). The first  $\frac{1}{2}$  an equivalent of ligand that is added past an



Figure 4.3. Molecular structure of the monopositive cation in **4.3**. Ellipsoids are drawn at the 50% probability level. All hydrogens except for those on the amine nitrogens have been removed for clarity.

| Table 4.5. Select    | ed bond lengths (Å), an | gles (deg), and important distances for Ag | $g_2(2-amp)_3(OTf)_2, (4.3)^a$ |
|----------------------|-------------------------|--------------------------------------------|--------------------------------|
|                      |                         |                                            |                                |
| Ag1–N3               | 2.211(1)                | Ag1–N2                                     | 2.277(1)                       |
| Ag1–N1               | 2.396(1)                | Ag1–O1                                     | 2.591(1)                       |
| Ag2–N4               | 2.199(1)                | Ag2–N6                                     | 2.236(1)                       |
| Ag2–N5               | 2.403(1)                | Ag1–Ag2                                    | 2.9137(3)                      |
| N3-Ag1-N2            | 159.77(4)               | N3-Ag1-N1                                  | 122.35(4)                      |
| N2-Ag1-N1            | 73.09(4)                | N3–Ag1–O1                                  | 88.42(4)                       |
| N2-Ag1-O1            | 96.65(4)                | N1–Ag1–O1                                  | 114.76(4)                      |
| N3–Ag1–Ag2           | 74.26(3)                | N2–Ag1–Ag2                                 | 85.69(3)                       |
| N1–Ag1–Ag2           | 130.76(3)               | O1–Ag1–Ag2                                 | 111.41(2)                      |
| N4-Ag2-N6            | 165.33(5)               | N4-Ag2-N5                                  | 119.63(4)                      |
| N6-Ag2-N5            | 74.73(4)                | N4–Ag2–Ag1                                 | 80.05(4)                       |
| N6–Ag2–Ag1           | 91.03(3)                | N5-Ag2-Ag1                                 | 115.98(3)                      |
| $N2-H \cdots 02^{1}$ | 3.1438(17)              | N4–H …04                                   | 2.9911(17)                     |
| $N2-H \cdots 06^{2}$ | 3.1422(17)              | N6-H …02                                   | 3.0426(18)                     |
| $N4-H \cdots 05^2$   | 2.9799(17)              | $N6-H \cdots 03^{1}$                       | 3.0810(18)                     |
|                      |                         |                                            |                                |

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = -x+1, -y, -z; #2 = -x+1, -y, -z+1

initial 1:1 ratio forms a bridge joining two 2-amp chelated silver(I) units. After this point a triflate that binds to one of the metal centers through a single oxygen halts the addition of a full second equivalent of 2-amp ligand to the silvers. In this orientation the triflate is then able to H-bond *via* a second oxygen to the amine protons of the ligand chelating the opposite silver. The effect is similar to that seen in compound 4.2; H-bonding with the anion holds the N-only bound silver sufficiently close to the anion-bound silver to create a strong metal-metal interaction. However, the geometry of the SO<sub>3</sub> portion of the triflate allows it to be involved in both coordination and H-bonding thus forcing the structural difference with **4.2**. The bridging 2-amp acts as a hinge as the H–bonded anion squeezes the silvers to within 2.9137(3) Å of one another. In this structure there is a notable difference in bond lengths between the two types of ligand present. This should be expected as the stress of the 5-membered ring is relieved in going from a chelating to a more relaxed bridging 6-membered system. The chelated amine-silver distances are 2.277(1) and 2.236(1) Å and the chelated pyridyl-silver distances are 2.396(1) and 2.403(1) Å. The same distances measured for the bridging ligand are noticeably shorter at 2.199(1) and 2.211(1) Å respectively. The coordinating O1 has a bond length to Ag1 of 2.590(1) Å. A selection of bond lengths and angles is presented in Table 4.5. In this structure, as in the last two, intermolecular H-bonding again plays a role in determining the packing of the complex with another 1-D "polymer" being constructed of the bimetallic units held together by H-bonds to the anions. H-bonds to O2 and O3 fashion a sort of dimer, while those to the noncoordinating anions assemble these dimers into a chain.

In the absence of an anion capable of strongly receiving an H–bond the cationic closed structure of compound 4.3 opens to form the flat 3:2 complex, 4.4. The structure, as shown in Figure 4.4, is an intermediate one that bridges the gap between the polymer formed by 2-amp and AgBF<sub>4</sub> in the 1:1 ratio and the discrete structure of compound **4.1** with its 2:1 ratio, making  $AgBF_4$  the only silver salt studied with which all three of these ratios were able to be achieved. Selected interatomic distances and angles for 4.4 are given in Table 4.6. Without the H–bonding of the anion to hold them together, the metal centers situate themselves widely separated by 5.794(2) Å on opposite sides of the bridging ligand. Each silver is then chelated by another 2-amp creating a nearly planar bimetallic complex. Although twists and rotations about the center bridging ligand are likely to be occurring in solution, stacking of the molecules into sheets, as well as  $\pi - \pi$ interactions help keep them flat in the solid state. The distance between the planes of the aromatic rings averages around 3.2 Å from one layer to the next in the crystal structure. The BF<sub>4</sub><sup>-</sup> anions can be seen to fit nicely into holes formed by this stacking of molecules and are held in place by weak H-bonds to the amine nitrogens. The chelating aminesilver distances in 4.4 are 2.267(2) and 2.287(2) Å and the pyridyl–silver distances are 2.313(2) and 2.355(2) Å. The bridging amine–silver and pyridyl–silver distances are again seen to be quite a bit shorter at 2.186(2) and 2.185(2) Å. Angles around the silvers are distorted from the ideal 120° trigonal geometry due to the small bite angle of the chelating 2-amp and have values ranging from 74.97(7) to 154.73(8)°. However, deviations of the silvers from their respective three-nitrogen planes are small at 0.054(1)Å for Ag1 and 0.170(1) Å for Ag2, showing that they are still very much in a planar environment.



Figure 4.4. A view of the cationic complex of 4.4. Ellipsoids are drawn at the 50% probability level.

| Ag1–N3              | 2.185(2)  | Ag1-N2                        | 2.267(2)  |
|---------------------|-----------|-------------------------------|-----------|
| Ag1–N1              | 2.355(2)  | Ag2–N4                        | 2.186(2)  |
| Ag2–N6              | 2.287(2)  | Ag2–N5                        | 2.313(2)  |
| Ag1–Ag2             | 5.794(2)  |                               |           |
|                     |           |                               |           |
| N3-Ag1-N2           | 154.73(8) | N3-Ag1-N1                     | 130.16(7) |
| N2-Ag1-N1           | 74.86(8)  | N4-Ag2-N6                     | 146.26(8) |
| N4-Ag2-N5           | 135.55(7) | N6-Ag2-N5                     | 74.97(7)  |
|                     |           |                               |           |
| $N2-H \cdots F8A^1$ | 3.055(16) | N4–H …F4                      | 3.112(3)  |
| $N2-H \cdots F5^1$  | 3.094(3)  | $N4-H \cdots F1^1$            | 2.982(3)  |
| $N2-H \cdots F8^1$  | 3.330(4)  | N6–H $\cdots$ F4 <sup>2</sup> | 3.133(3)  |
| N2–H …F7A           | 2.97(3)   | $N6-H \cdots F1^2$            | 3.384(3)  |
| N2–H …F7            | 3.211(5)  | N6–H …F2                      | 3.000(3)  |
|                     |           |                               |           |

Table 4.6. Selected bond lengths (Å), angles (deg), and important distances for  $Ag_2(2-amp)_3(BF_4)_2$ , (4.4)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = x+1, y, z; #2 = -x+2, -y, -z+1

Compound **4.5** was made in an attempt to mimic the structural characteristics of **4.4** using 2,2'-bipyridine as the chelating ligand that caps the ends of the bimetallic structure. The addition of two equivalents of 2,2'-bipyridine to a solution that is 1:2 in 2-amp to  $AgBF_4$  does indeed produce a compound that is stoichiometrically identical to **4.4** (when the bipyridine is substituted for the chelating 2-amps). However, what resulted

was the unexpected hybrid shown in Figure 4.5 that contains features of both 4.3 and 4.4. The 2-amp ligand acts as expected in the presence of an excess of AgBF<sub>4</sub>, bridging two separate metal centers. The addition of 2,2'-bipyridine results in two 2,2'-bipyridyl chelated silvers separated by the bridging 2-amp ligand. The connectivity of the structure formed is analogous to that seen in **4.4**. Otherwise, the similarities between this and **4.4** are few. Instead of opening up to make a flat structure, the amine-bound silver twists back around to form an interaction with the pyridyl-bound silver. The resulting hairpin structure bears closer resemblance to the triflate salt in **4.3**. A major difference here is that there are no good H-bond donors on the bipyridyl ligands and no strongly H-bond accepting anion to link the chelating ligands, as in 4.2 and 4.3. This leaves only the weaker  $\pi$ -stacking forces of the two bipyridyl ligands to account for the conformation of this compound. Selected interatomic distances and angles are shown in Table 4.7. The angle of the bipyridyl planes from one another is a rather obtuse 28.4° and the ring centers are separated by an average of 4.546 Å. This lends itself to the observation that the argentophilic interaction in these compounds is a highly favored one and the 2-amp ligand bridging two interacting silvers appears to be only slightly higher in energy than the conformation in which the silvers are completely separated. There is also fairly prominent intermolecular  $\pi$ -stacking of the bipyridyl rings both above and below each molecule with the parallel ring planes averaging only 3.316 Å from one another. The N-Ag distances here are quite short, second only to those seen in the polymer complex 4.6. The Ag1–pyridyl bond length is 2.150(2) Å and the Ag2–amine distance is 2.178(2) Å. The bipyridyl N–Ag distances are more along the lines of the lengths that have been displayed so far and range from 2.271(1) to 2.330(2) Å.



Figure 4.5. A view of the cationic complex of 4.5. Ellipsoids are drawn at the 50% probability level.

|                        | distances for 11522,2 | $0 p y_2(2 u m p)(D 1 4)_2, (400)$ |            |
|------------------------|-----------------------|------------------------------------|------------|
|                        |                       |                                    |            |
| Ag1–N1                 | 2.150(2)              | Ag1–N3                             | 2.270(1)   |
| Ag1–N4                 | 2.284(2)              | Ag2–N2                             | 2.178(2)   |
| Ag2–N6                 | 2.287(2)              | Ag2–N5                             | 2.329(2)   |
| Ag1–Ag2                | 2.8958(3)             | c                                  |            |
| 0 0                    |                       |                                    |            |
| N1-Ag1-N3              | 136.91(6)             | N1-Ag1-N4                          | 148.32(6)  |
| N3-Ag1-N4              | 73.34(5)              | N1–Ag1–Ag2                         | 82.92(4)   |
| N3-Ag1-Ag2             | 100.56(4)             | N4–Ag1–Ag2                         | 81.52(4)   |
| N2-Ag2-N6              | 142.97(6)             | N2-Ag2-N5                          | 145.38(6)  |
| N6-Ag2-N5              | 71.65(5)              | N2–Ag2–Ag1                         | 86.46(4)   |
| N6-Ag2-Ag1             | 85.99(4)              | N5-Ag2-Ag1                         | 99.82(4)   |
|                        |                       |                                    |            |
| N2-H···F5 <sup>1</sup> | 2.977(2)              | $N2-H\cdots F2^{1}$                | 3.1257(19) |
| $N2-H\cdots F3^{1}$    | 3.099(2)              |                                    |            |
|                        |                       |                                    |            |

Table 4.7. Selected bond lengths (Å), angles (deg), and important distances for Ag<sub>2</sub>2,2'-bpy<sub>2</sub>(2-amp)(BF<sub>4</sub>)<sub>2</sub>, (**4.5**)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate atoms: #1= x, y+1, z

Compounds **4.6** and **4.7** show the result of the addition of the 2-amp ligand to silver triflate and trifluoroacetate salts in a 1:1 ratio. In the absence of a sufficient amount of strong donor sites to construct at least a 3-coordinate environment around the metal center (in this case N–donors), each silver attempts to adopt its desired linear coordination environment. Since a maximum bite angle of around only 75° is obtainable with the chelating 2-amp, donors from two separate ligands must be used in order to achieve this arrangement. The results are linear zigzag coordination polymers similar to those seen previously with non-coordinating anions.<sup>91</sup> In the case of **4.6** and **4.7**, the anions display an increasing coordination ability resulting in varying degrees of perturbation of the metal centers from their ideal linear geometry. They also allow for H–bonding within the polymer and to adjacent polymers, adding to the dimensionality of the structure.

2-aminomethylpyridine together with one equivalent of silver triflate assembles into a zigzagging 1-dimensional coordination polymer of slightly bent silvers, compound **4.6**. Selected interatomic distances and angles for this compound are given in Table 4.8. The unique portion of the polymer, shown in Figure 4.6, contains one silver bound in near-linear coordination by an amine and its symmetry equivalent pyridyl. The triflate anion is coordinated as well through a stretched bond to O1. When perpetuated, the aminomethylpyridyl backbone of the polymer, shown in Figure 4.7, is seen to be nearly planar both perpendicular to and in the direction of its growth. This is similar to the conformation displayed in compound **4.4** and is likely the result of a combination of ring stacking and hydrogen bonding. The linear chains are stacked one on top of another with each row slightly offset from the previous as to accommodate the anions protruding into



Figure 4.6. A view of the unique portion of the polymer of **4.6** with the coordination environment about silver shown complete. Ellipsoids are drawn at the 50% probability level.

| Table 4.8. Selected bond lengths (Å), angles (deg), and important distances for Ag(2-amp)OTf, ( <b>4.6</b> ) <sup>a</sup> |                      |                                |                      |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|----------------------|--|
| Ag1–N2 <sup>1</sup><br>Ag1–O2                                                                                             | 2.144(2)<br>2.644(2) | Ag1–N1<br>Ag1–Ag1 <sup>2</sup> | 2.145(2)<br>5.977(2) |  |
| N2 <sup>1</sup> -Ag1-N1                                                                                                   | 171.93(6)            |                                |                      |  |
| $N2-H\cdotsO1^3$<br>$N2-H\cdotsO3^4$                                                                                      | 2.913(2)<br>2.967(3) | N2–H…O1 <sup>5</sup>           | 2.993(3)             |  |

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = -x+2, y+1/2, -z+1/2; #2 = -x+2, y-1/2, -z+1/2; #3 = -x+1, y-1/2, -z+1/2; #4 = -x+1, -y+1, -z; #5 = -x+1, -y+1, -z+1

the next layer. The layers are held together throughout the length of the polymers by the interpolymeric hydrogen bonding of each triflate to an amine both above and below the plane in which it is in. The triflates themselves are held in the plane of the polymer by



Figure 4.7. A view of the 1–D polymer of 4.6 showing the intrapolymeric H–bonding.

intrapolymeric H–bonding to an amine in the next unit. This also likely assists in keeping the planarity of the polymer. The triflate's O–Ag bond is a weak one at 2.644 Å, which is apparent from the only slight bending of the amine–Ag–pyridyl angle of 171.93(6)°. The N–Ag distances of this polymer are the shortest displayed herein at 2.145(2) Å for the pyridyl–Ag length and 2.144(2) Å for the amine–silver distance.

The unique portion of compound **4.7**, shown in Figure 4.8, again contains a single silver, 2-amp ligand, and anion. Selected bond lengths and angles for **4.7** are given in Table 4.9. It is made apparent here that trifluoroacetate acts as a stronger coordinating anion than triflate when there are insufficient N–donors to saturate the coordination sites of silver. The 1-dimensional coordination polymer backbone of **4.7** that is seen in Figure 4.9 is connectively very similar to that of **4.6**. The more strongly interacting anion, while generally occupying the same spaces in the polymer as those held by triflate in the previous structure, imparts structural features not formerly seen. O1 coordinates strongly to Ag with a bond length of 2.498(2) Å, distorting the pyridyl–Ag–amine angle to 152.96(9)°. This distortion causes the amino nitrogen to be pushed out of its planar position to give the linear polymer an overall helical appearance seen looking down the length of the polymer. With its remaining oxygen atom, the trifluoroacetate extends a



Figure 4.8. Molecular diagram of the unique portion of **4.7** with the coordination environment about silver shown complete. Ellipsoids are drawn at the 50% probability level.

| Table 4.9. Selected bond leng        | ths (A), angles (deg), and 1 | mportant distances for Ag(2-am | p)(tfa) ( <b>4.</b> 7)" |
|--------------------------------------|------------------------------|--------------------------------|-------------------------|
| Ag1–N2 <sup>1</sup><br>Ag1–O1        | 2.186(2)<br>2.498(2)         | Ag1–N1<br>Ag1–Ag1 <sup>2</sup> | 2.188(2)<br>5.437(1)    |
| N2 <sup>1</sup> –Ag1–N1<br>N1–Ag1–O1 | 152.96(9)<br>110.63(8)       | N2 <sup>1</sup> –Ag1–O1        | 94.27(8)                |
| N2–H…O2                              | 2.922(3)                     | N2–H···O1 <sup>3</sup>         | 2.904(3)                |

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = -x+1, y+1/2, -z+1/2; #2 = -x+1, y-1/2, -z+1/2; #3 = -x+2, y-1/2, -z+1/2

bridge both above and, via symmetry equivalent, below the original polymer to link to silvers of adjacent polymers. This stretched interaction at 2.715(2) Å crosslinks the helical polymers into a pseudo 2-dimensional pleated sheet structure. The intrapolymeric H-bonding here serves to help hold the 1-dimensional polymer into its spiraling conformation. The N–Ag bond lengths are quite short in this polymer as they were in



Figure 4.9. A view of the helical 1–D polymer formed by compound **4.7** showing the intrapolymeric H–bonding.

compound **4.6**, though the presence of the more strongly donating anion causes them to lengthen slightly. The pyridyl–Ag distance is 2.188(2) Å and the amine–Ag distance is 2.186(2) Å.

### Luminescent Properties

Interest in hybrid inorganic-organic polymers for application as potential new "organic" light emitting devices, OLEDs, has been on a steady upward incline over the past decade. Their versatility comes from the ability to tune their absorption and emission spectra by (typically) facile modifications to the metal environment. Such tuning is not an easy option for the strictly organic LEDs, which often require drastic synthesis and modifications to alter their photoluminescent properties.<sup>150</sup> All excitation and emission spectra were recorded at concentrations of  $1 \times 10^{-4}$  M in acetonitrile glasses as 77 K. The low temperature solution luminescence was collected to give a general representation of what the solid state excitation and emission would be, given that in the77 K glasses there is substantial complex character (polymeric character in the case of compounds **4.6** and **4.7**). <sup>153,174,175</sup> Luminescence spectra of representative compounds are displayed in Figure 4.10.



Figure 4.10. Normalized excitation and emission spectra of compounds 4.1, 4.3, 4.6 and 4.7 taken in acetonitrile glasses at 1 X 10<sup>-4</sup>M concentration at 77 K. = Ag(2-amp)OTf, = Ag(2-amp)(tfa), .... = Ag(2-amp)<sub>2</sub>BF<sub>4</sub>, = . = Ag<sub>2</sub>(2-amp)<sub>3</sub>(OTf)<sub>2</sub>.

| at 77 K and $1 \times 10^{-4}$ M in CH <sub>3</sub> CN. |                            |                                |
|---------------------------------------------------------|----------------------------|--------------------------------|
| Compound                                                | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$ |
| 2-amp                                                   | 318                        | 378                            |
| 4.1                                                     | 303                        | 472, 483, 500, 516             |
| 4.2                                                     | 303                        | 460, 470, 495                  |
| 4.3                                                     | 307                        | 454, 468, 477, 492             |
| 4.4                                                     | 300                        | 446, 454, 462, 475             |

392, 435

440, 452, 462

422, 437, 449, 476

369

290

302

4.5

4.6

4.7

Table 4.10. Luminescent Spectral Data for 2-amp and compounds **4.1–4.7**, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.

The resemblance of the excitation spectra of compounds **4.1–4.7** with that of free 2-aminomethylpyridine ligand suggest that the luminescent behavior of these complexes is initiated by a ligand-based absorption followed by ligand-to-metal charge transfer, and then undergoes a metal-based decay. Excitation maxima of all compounds are presented in Table 4.10 along with the local emission maxima. The emission spectra of the various compounds cover a modest range of the spectrum with local maxima spanning

approximately 100 nm. The strongest emissions are seen to be produced by the compounds that have the most interacting anions, OTf and (tfa), and of these the coordination polymer, **4.7**, likely accredited to the extended networks of electronic interaction, shows a stronger emission. It is seen that the most intense luminescence, that of the 1:1 2-ampAg(tfa) polymer, also occurs at the most energetic wavelengths with three strong transitions at 422, 436 and 448 nm. As a general trend, as the intensity of the luminescence drops off, so does the energy of the transitions. The next most intense emission comes from the 3:2 2-ampAgOTf cluster, **4.3**, with its strongest maxima at 453 nm, followed by the silver "sandwich" complex, **4.2**, at 460 nm. The triflate polymer, **4.6**, and the tetrafluoroborate monomers of **4.1** show similar intensity with maxima at 441 and 473 nm, respectively.

# Conclusions

We have demonstrated here that a variety of silver(I) complexes can be formed with the bidentate nitrogen ligand, 2-aminomethylpyridine. The complexes, their structures and luminescent characteristics are seen to be highly dependant not only on the hydrogen–bonding and coordinating ability of the anion but also on the ratio of ligand to metal present. The simplicity of the 2-amp ligand made it a desirable prospect for this concentration/ counter ion study that produced molecular structures ranging from simple monomers to folded bimetallic metal–metal interacting species to elaborate multidimensional polymers.

#### Experimental

#### General Considerations

All experiments were carried out under an argon atmosphere using a Schlenk line and standard Schlenk techniques. Glassware was dried at 120 °C for several hours prior to use. All reagents except 2,2'-bipyridine, which was stored in a bench top dessicator, were stored in an inert atmosphere glovebox. Acetonitrile and diethyl ether were distilled from calcium hydride and sodium/bezophenone ketyl, respectively, immediately before use. 2-aminomethylpyridine and 2,2'-bipyridine were purchased from Aldrich and used as received. Silver(I) trifluoroacetate, silver(I) trifluoromethanesulfonate, and silver(I) tetrafluoroborate were purchased from Strem Chemicals Inc. and used as received. <sup>1</sup>H NMR spectra were recorded at 300.13 MHz on a Bruker Spectrospin 300 MHz spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc. in Norcross Georgia. Excitation and emission spectra were recorded on an Instruments S. A. Inc. Fluoromax-2 model spectrometer using band pathways of 5 nm for both excitation and emission and are presented uncorrected.

#### Preparations

*General Preparations.* General procedures for the synthesis of compounds **4.1**-**4.4**, **4.6** and **4.7** involve the addition of a 5 mL acetonitrile solution of 2-aminomethylpyridine to a stirred solution of the appropriate silver salt in 5 mL acetonitrile. The mixtures are stirred for 10 minutes then dried in vacuo to leave white to off-white powders. All flasks are shielded from light with aluminum foil to prevent the photodecomposition of the silver compounds. Crystals of compound **4.2** were grown by

slow diffusion of hexanes into a dichloromethane solution at 5 °C. Crystals of compound **4.5** were grown by slow diffusion of ether into a dichloromethane solution at 5 °C. Crystals of all other compounds were obtained by the slow diffusion of ether into acetonitrile solutions at 5 °C. The amount of reagents used, yields, and analytical data are presented in the following paragraphs as well as any modifications to the general synthetic procedure. Percent yields are based upon the amount of silver salt used.

*Ag*(2-*amp*)<sub>2</sub>*BF*<sub>4</sub> (**4.1**). This reaction used 2 equivalents of 2-aminomethylpyridine (0.111 g, 1.03 mmol) added to AgBF<sub>4</sub> (0.100 g, 0.514 mmol) to leave a white flaky solid in 92 % (0.190 g, 0.471 mmol) yield upon solvent evaporation. Colorless block shaped crystals were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K) δ: 2.93 (s, br, 4H, -NH<sub>2</sub>); 4.14 (s, 4H, -CH<sub>2</sub>); 7.28 (m, 2H); 7.739 (t,d,  $J_{H-Ho} = 7.5$  Hz,  $J_{H-Hm} = 1.5$  Hz, 4H); 8.49 (d,  $J_{H-Ho} = 6.0$  Hz, 2H). Anal. Calcd for AgC<sub>12</sub>H<sub>16</sub>N<sub>4</sub>BF<sub>4</sub>: C, 35.07; H, 3.92; N, 13.63. Found: C, 35.03; H, 3.78; N, 13.33.

 $Ag(2-amp)_2(tfa)$  (4.2). This reaction used 2 equivalents of 2-aminomethylpyridine (0.098 g, 0.906 mmol) added to Ag(tfa) (0.100 g, 0.453 mmol) to leave a light-brown fluffy solid in 82 % (0.162 g, 0.371 mmol) yield upon evaporation of the solvent. Colorless block shaped crystals were grown from dichloromethane and hexanes. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.47 (s, br, 4H, -NH<sub>2</sub>); 3.83 (s, 4H, -CH<sub>2</sub>); 7.29 (m, 2H); 7.77 (d,  $J_{H-Ho} = 6.0$  Hz , 4H); 8.48 (s, 2H). Anal. Calcd for AgC<sub>14</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>F<sub>3</sub>: C, 38.46; H, 3.69; N, 12.82. Found: C, 38.24; H, 3.57; N, 12.54.

 $Ag_2(2-amp)_3(OTf)_2$  (**4.3**). This reaction used 3 equivalents of 2-aminomethylpyridine (0.063 g, 0.577 mmol) added to 2 equivalents of AgOTf
(0.100 g, 0.389 mmol). An oily yellow solid was left upon evaporation of the solvent in vacuo. This was then redissolved in a small amount of CH<sub>3</sub>CN and precipitated with ether to leave a fluffy white solid in 76 % (0.123 g, 0.154 mmol) yield upon drying. Colorless block shaped crystals were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.32 (s, br, 6H, -NH<sub>2</sub>); 4.11 (s, 6H, -CH<sub>2</sub>); 7.28 (m, 3H); 7.74 (t,d, *J*<sub>H-Ho</sub> = 7.5 Hz, *J*<sub>H-Hm</sub> = 1.5 Hz, 6H); 8.49 (d, *J*<sub>H-Ho</sub> = 6.0 Hz, 3H). Anal. Calcd for Ag<sub>2</sub>C<sub>20</sub>H<sub>24</sub>N<sub>6</sub>O<sub>6</sub>F<sub>6</sub>S<sub>2</sub>: C, 28.86; H, 2.89; N, 10.02. Found: C, 29.29; H, 2.92; N, 10.00.

 $Ag_2(2-amp)_3(BF_4)_2$  (4.4). This reaction used 3 equivalents of

2-aminomethylpyridine (0.150 g, 1.39 mmol) added to 2 equivalents AgBF<sub>4</sub> (0.180 g, 0.925 mmol). A white powder was left in 84% yield (0.278 g, 0.398 mmol) upon evaporation of the solvent in vacuo. Colorless block shaped crystals were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298K)  $\delta$ : 3.12 (s, br, 6H, -NH<sub>2</sub>); 4.15 (s, 6H, -CH<sub>2</sub>); 7.29 (m, 3H); 7.75 (t,d, *J*<sub>H-Ho</sub> = 7.4 Hz, *J*<sub>H-Hm</sub> = 1.5 Hz, 6H); 8.50 (s, 3H).

 $Ag_22,2'$ - $bpy_2(2-amp)(BF_4)_2$  (**4.5**). This reaction used 2-aminomethylpyridine (0.050 g, 0.463 mmol) added to 2 equivalents of AgBF<sub>4</sub> (0.180 g, 0.925 mmol). This solution was stirred for 10 minutes then 2 equivalents of 2,2'-bipyridyl (0.144 g, 0.922 mmol) in 5 mL CH<sub>3</sub>CN was added. This was stirred an additional 5 minutes then dried in vacuo to leave an off-white powder in 90 % (0.126 g, 0.221 mmol) yield. Colorless block shaped crystals were grown from dichloromethane and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.19 (s,br, 2H, -NH<sub>2</sub>); 4.05 (s, 2H, -CH<sub>2</sub>); 7.43 (m, 8H); 7.89 (m, 9H); 7.98 (d,  $J_{H-Ho} = 8.1$  Hz, 2H); 8.36 (d,  $J_{H-Ho} = 4.8$  Hz, 1H). *poly-[Ag(2-amp)OTf]* (**4.6**). This reaction used 2-aminomethylpyridine (0.042 g, 0.388 mmol) added to AgOTf (0.100 g, 0.389 mmol) to leave an oily brown solid upon evaporation of the solvent. This solid was then redissolved in a small amount of CH<sub>3</sub>CN and precipitated with ether to leave a brown solid in 85 % (0.120 g, 0.334 mmol) yield. Colorless block shaped crystals were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.42 (s, br, 2H, -NH<sub>2</sub>); 4.16 (s, 2H, -CH<sub>2</sub>); 7.25 (m, 1H); 7.77 (t,d, *J*<sub>H-Ho</sub> = 6.9 Hz, *J*<sub>H-Hm</sub> = 1.0 Hz, 2H); 8.52 (d, *J*<sub>H-Ho</sub> = 3.6 Hz, 1H). Anal. Calcd for AgC<sub>7</sub>H<sub>8</sub>N<sub>2</sub>O<sub>3</sub>SF<sub>3</sub>: C, 25.80; H, 2.47; N, 8.56. Found: C, 26.27; H, 2.33; N, 8.77.

*poly-[Ag(2-amp)(tfa)]* (**4.7**). This reaction used 2-aminomethylpyridine (0.049 g, 0.453 mmol) added to Ag(tfa) (0.100 g, 0.452 mmol) to leave an off-white powder in 75 % (0.116 g, 0.338 mmol) yield upon evaporation of the solvent. Colorless plates were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.68 (s, 2H, -NH<sub>2</sub>); 4.11 (s, 2H, -CH<sub>2</sub>); 7.28 (m, 1H); 7.75 (t,d, *J*<sub>H-Ho</sub> = 7.5 Hz, *J*<sub>H-Hm</sub> = 1.5 Hz, 2H); 8.53 (d, *J*<sub>H-Ho</sub> = 6.0 Hz, 1H). Anal. Calcd for AgC<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>F<sub>3</sub>: C, 29.20; H, 2.45; N, 8.51. Found: C, 29.38; H, 2.39; N, 8.40.

#### Crystallography

A summary of the experimental crystallographic data for **4.1** through **4.7** is given in Table 4.11. Full tables of bond lengths and angles can be found in Appendix B, Tables B.7 through B.13. Crystallographic data were collected on crystals with dimensions  $0.181 \times 0.150 \times 0.100$  mm for **4.1**,  $0.210 \times 0.150 \times 0.090$  mm for **4.2**,  $0.279 \times 0.216 \times$ 0.202 mm for **4.3**,  $0.310 \times 0.270 \times 0.250$  mm for **4.4**,  $0.245 \times 0.231 \times 0.199$  mm for **4.5**,  $0.167 \times 0.143 \times 0.094$  mm for **4.6**, and  $0.240 \times 0.150 \times 0.080$  mm for **4.7**. Crystals of all

|                                 | 4.1 4.2 4.3 4.4 4.5 4.6 4.7 |                                                                                                |                             |                             |                             |                                                                                |                                                                              |
|---------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                 |                             |                                                                                                |                             |                             |                             |                                                                                | -                                                                            |
| formula                         | $Ag_2C_{24}H_{32}B_2F_8N_8$ | Ag <sub>4</sub> C <sub>56</sub> H <sub>64</sub> F <sub>12</sub> N <sub>16</sub> O <sub>8</sub> | $Ag_2C_{20}H_{24}F_6O_6S_2$ | $Ag_2C_{18}H_{24}B_2F_8N_6$ | $Ag_2C_{26}H_{24}B_2F_8N_6$ | AgC <sub>7</sub> H <sub>8</sub> F <sub>3</sub> N <sub>2</sub> O <sub>3</sub> S | AgC <sub>8</sub> H <sub>8</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub> |
| fw                              | 821.94                      | 1748.71                                                                                        | 838.31                      | 713.79                      | 809.87                      | 365.08                                                                         | 329.03                                                                       |
| a(Å)                            | 7.8817(5)                   | 7.4205(6)                                                                                      | 8.1167(9)                   | 7.112(1)                    | 10.5634(6)                  | 12.982(6)                                                                      | 4.7270(8)                                                                    |
| b(Å)                            | 14.0058(8)                  | 13.284(1)                                                                                      | 22.930(4)                   | 8.335(2)                    | 13.6804(9)                  | 11.458(4)                                                                      | 9.898(2)                                                                     |
| c(Å)                            | 7.2894(4)                   | 18.049(2)                                                                                      | 15.625(2)                   | 21.471(4)                   | 19.709(1)                   | 7.709(5)                                                                       | 22.111(4)                                                                    |
| $\alpha(\text{deg})$            | 106.208(2)                  | 69.342(4)                                                                                      |                             | 97.23(3)                    |                             | . ,                                                                            |                                                                              |
| β(deg)                          | 93.211(2)                   | 89.255(4)                                                                                      | 97.430(5)                   | 98.51(3)                    |                             | 101.40(3)                                                                      |                                                                              |
| $\gamma(\text{deg})$            | 100.710(3)                  | 80.621(4)                                                                                      | ( )                         | 99.10(3)                    |                             |                                                                                |                                                                              |
| $V(Å^3)$                        | 754.25(8)                   | 1640.8(2)                                                                                      | 2883.7(7)                   | 1228.4(4)                   | 2848.3(3)                   | 1124(1)                                                                        | 1034.6(3)                                                                    |
| Z                               | 1                           | 1                                                                                              | 4                           | 2                           | 4                           | 4                                                                              | 4                                                                            |
| space group                     | P1                          | P1                                                                                             | $P2_1/n$                    | P-1                         | $P2_12_12_1$                | $P2_1/c$                                                                       | $P2_{1}2_{1}2_{1}$                                                           |
| T(K)                            | 110(2)                      | 110(2)                                                                                         | 110(2)                      | 110(2)                      | 110(2)                      | 110(2)                                                                         | 110(2)                                                                       |
| $Dcalcd(g cm^{-3})$             | 1.810                       | 1.770                                                                                          | 1.931                       | 1.930                       | 1.889                       | 2.157                                                                          | 2.112                                                                        |
| $\mu(\text{mm}^{-1})$           | 1.379                       | 1.275                                                                                          | 1.588                       | 1.675                       | 1.457                       | 2.017                                                                          | 1.978                                                                        |
| $2\theta_{\rm max}$ , deg       | 28.31                       | 26.43                                                                                          | 28.30                       | 28.39                       | 28.29                       | 28.37                                                                          | 26.45                                                                        |
| reflns measured                 | 15414                       | 54807                                                                                          | 66994                       | 14615                       | 33450                       | 39350                                                                          | 13577                                                                        |
| reflns used (R <sub>int</sub> ) | 5828(0.0267)                | 12763(0.0401)                                                                                  | 7095(0.0308)                | 5935(0.0226)                | 7004(0.0291)                | 2751(0.0310)                                                                   | 2121(0.0626)                                                                 |
| restraints/params               | 7/391                       | 3/865                                                                                          | 0/397                       | 10/341                      | 0/397                       | 0/154                                                                          | 0/145                                                                        |
| $R1, [I > 2\sigma(I)]$          | 0.0174                      | 0.0274                                                                                         | 0.0177                      | 0.0274                      | 0.0174                      | 0.0194                                                                         | 0.0200                                                                       |
| $wR^{2}$ , [I > 2 $\sigma$ (I)] | 0.0465                      | 0.0635                                                                                         | 0.0432                      | 0.0678                      | 0.0408                      | 0.0491                                                                         | 0.0443                                                                       |
| $R(F_o^2)$ (all data)           | 0.0184                      | 0.0364                                                                                         | 0.0226                      | 0.0317                      | 0.0194                      | 0.0232                                                                         | 0.0229                                                                       |
| $R_w(F_o^2)$ (all data)         | 0.0472                      | 0.0675                                                                                         | 0.0443                      | 0.0705                      | 0.0412                      | 0.0502                                                                         | 0.0450                                                                       |
| GooF on F <sup>2</sup>          | 1.028                       | 1.016                                                                                          | 1.063                       | 1.034                       | 1.067                       | 1.067                                                                          | 1.067                                                                        |

Table 4.11. Crystallographic Data for compounds 4.1 to 4.7

compounds were immobilized on a cryoloop by encasing them in Paratone-N<sup>®</sup> oil then cooling them in a nitrogen coldstream. Data were collected at 110 K on a Bruker X8 Apex. Graphite-monochromated Mo- $K_a$  radiation ( $\lambda = 0.71073$  Å) was used throughout. All structures were solved by direct methods after processing with SAINT-Plus and correction of the data using SADABS.<sup>139</sup> All of the data were processed using the Bruker AXS SHELXTL software, version 6.10.<sup>140</sup> All non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions except for the amine hydrogens of compound **4.3**, whose positions were allowed to refine. The crystal structures of compounds **4.1** and **4.2** each contain 2 unique monomers of their respective compounds. The structure of compound **4.4** contains a BF<sub>4</sub><sup>-</sup> anion disordered over 2 positions. The anisotropic displacement parameters for the two orientations of the disorder are constrained to be equal and the site occupancies were refined as 0.825(3)/(0.173(3)) [for B(1/1a), F(1/1a), F(2/2a), F(3/3a), F(4/4a)].

## CHAPTER FIVE

# Silver(I) 3-aminomethylpyridine Complexes Part 1: Effect of Ligand Ratio, π-stacking and Temperature with a Non-interacting Anion

### Introduction

Progress in the area of crystal engineering has many far reaching effects whose importance often greatly surpass the novelty of the basic investigations from whence they came. A few of the more interesting, and potentially profitable, applications that have accepted advancements from the field include catalysis, molecular recognition, molecular sieving and separations.<sup>10,63,83,176</sup> Much of the usefulness that is obtained from these polymers stems from the ability to control internal features of the structures such as coordination geometry of the metal centers, pore size, and magnetism.<sup>3,4,7,25,141</sup> During the past few decades numerous examples of designed and constructed coordination architectures that span from discrete macromolecules to multidimensional coordination networks have been demonstrated, most of which were built on the basis of controlling functionality, rigidity, or geometry of the ligand or by using modifications to the counterion or solvent system.<sup>11,21,49,88,142,146-148,151-154,159,177</sup> Despite the wealth of literature that has been generated describing crystal engineering studies of the aforementioned methods, the equally effective technique of stoichiometry control has been largely overlooked.<sup>68,69</sup> Only recently have a handful of investigators begun to examine the metal/ligand ratio dependence of structural features with regards to design and growth of supramolecular coordination entities.<sup>70,71,91,178,179</sup> Recent studies published by Mirkin, et al.<sup>70</sup> and Dong, et al.<sup>71</sup> both focus on the ratio dependence of metal

complexes of flexible mixed donor ligands and assist in demonstrating the practicality of this seldom used method. The previous chapter reported on the structural modifications that could be had by variations in the ratio of ligand to metal in the reactions of silver(I) complexes of 2-aminomethylpyridine.<sup>159</sup> This is now followed with an inquiry of the meta-substituted 3-aminomethylpyridine ligand.

Herein we describe the dramatic changes that can be brought about in the flexible coordination sphere of the silver(I) cation merely by altering the ratio of the bifunctional 3-aminomethylpyridine ligand. In this study only the tetrafluoroborate salt of silver was used in order to keep counterion interactions to a minimum. As a result, we were able to obtain a number of exceedingly varied structural motifs whose differences stem only from the ratio of ligand to metal in the reactions from which they were produced. As an added feature, two of the ratios were also seen to display a temperature dependent morphology with separate structures of each consistently being obtained when crystallized at temperature differences of only 40 K.

# Results and Discussion

#### Synthesis and NMR Spectroscopy.

The 3-aminomethylpyridyl complexes **5.1.1–5.4** were made by the direct reaction of the ligand with silver(I) tetrafluoroborate and 2,2'-bipyridine in varying ratios. Analytical data for these compounds are presented in Tables 5.1 and 5.2. It is seen that when using the same noncoordinating  $BF_4^-$  anion the structural features of the silver(I) complexes made can be varied greatly by changes in ratio of ligand to metal and by

|       | compound <sup>a</sup>                                                     | yield <sup>b</sup>    |             | analytical (%) <sup>c</sup> |             |
|-------|---------------------------------------------------------------------------|-----------------------|-------------|-----------------------------|-------------|
|       |                                                                           | (%)                   | С           | Н                           | Ν           |
| 5.1.1 | <i>poly</i> (Ag[3-amp]BF <sub>4</sub> )                                   | 91                    | 35.0 (35.0) | 3.8 (3.9)                   | 13.3 (13.6) |
| 5.1.2 | $Ag_4(3-amp)_4(BF_4)_4$                                                   | verbatim <b>5.1.1</b> |             |                             |             |
| 5.2   | poly-Ag <sub>2</sub> (3-amp) <sub>3</sub> (BF <sub>4</sub> ) <sub>2</sub> | 88                    | 30.4 (30.3) | 3.3 (3.3)                   | 11.6 (11.8) |
| 5.3.1 | poly-Ag(3-amp) <sub>2</sub> BF <sub>4</sub>                               | 84                    | 35.2 (35.1) | 3.8 (3.9)                   | 13.5 (13.6) |
| 5.3.2 | poly-Ag(3-amp) <sub>2</sub> BF <sub>4</sub>                               | verbatim <b>5.3.1</b> |             |                             |             |
| 5.4   | $Ag_2(2,2'-bipy)_2-\mu-(3-amp)(BF_4)_2$                                   | 92                    | 40.6 (40.3) | 3.3 (3.3)                   | 11.2 (11.4) |

Table 5.1. Analytical and Physical Data

<sup>a</sup> All compounds are white or off white solids. <sup>b</sup> Compounds **5.1.1** and **5.1.2**, as well as **5.3.1** and **5.3.2** were derived from the same reaction and were thus analyzed only once per set. <sup>c</sup> Calculated values are given in parenthesis.

| Table 5.2. | Hydrogen-1 | NMR Data |
|------------|------------|----------|
|------------|------------|----------|

|       | $^{1}\mathrm{H}/\delta^{a}$                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------|
| 5.1.1 | 3.13 s, br, 8H (-NH <sub>2</sub> -); 3.92 s, 8H (-CH <sub>2</sub> -); 7.47 q,d, 4H; 7.88 d,t, 8H; 8.41 d,d, 4H |
| 5.1.2 | verbatim 5.1.1                                                                                                 |
| 5.2   | 2.93 s, br, 6H, (-NH <sub>2</sub> -); 3.875 s, 6H, (-CH <sub>2</sub> -); 7.38 m, 3H; 7.739 d,d, 6H; 8.34 d, 3H |
| 5.3.1 | 3.20 s, br, 4H, (-NH <sub>2</sub> -); 3.90 s, 4H, (-CH <sub>2</sub> -); 7.42 m, 2H; 7.86 t,d, 4H; 8.32 d, 2H   |
| 5.3.2 | verbatim 5.3.1                                                                                                 |
|       |                                                                                                                |

**5.4** 2.48 s,br, 2H, (-NH<sub>2</sub>-); 3.79 s, 2H, (-CH<sub>2</sub>-); 7.42 m, 8H; 7.89 t, 9H; 8.26 d, 2H; 8.55 d, 1H

<sup>a</sup> <sup>1</sup>H NMR spectra were recorded in CD<sub>3</sub>CN at 298 K. The spectra of **5.1.1** and **5.1.2** as well as **5.3.1** and **5.3.2** are identical in room temperature solution, as a result each set is reported only once.

changes in crystallization temperature. However, it should be noted that modifications in crystallization method do not cause changes in connectivity, merely in the conformation of the product implying a separate thermodynamic product versus a kinetic one. The synthesis of the 1:1 ratio 3-ampAgBF<sub>4</sub> complex has been previously described by an alternate route in an anion dependent study<sup>91</sup>; though in the earlier investigation the researchers were unable to obtain satisfactory samples for study by X-ray diffraction. The five 3-amp only compounds mentioned herein display three different ligand to metal ratios. When in solution, the two 1:1 and the two 2:1 structures are indistinguishable by room temperature <sup>1</sup>H NMR. This is indicative that the two connectively identical structures of each pair lose the structural differences that separate them when dissolved in room temperature solution.

# X-ray Crystallography

The silver coordination environments that are seen in structures **5.1.1–5.4** differ greatly from one structure to the next. Geometries of the metal centers range from the near linear  $175(1)^{\circ}$  of Ag2 in compound **5.1.1** to the distorted tetrahedrons of **5.3.1** and **5.3.2**. Median to these are several structures containing trigonal environments with some displaying very short metal–metal interactions. Interestingly, the silver–silver interactions are only seen to be present on those metals bound by pyridyl donors, even if more crowded. This is likely reasoned to the ease of accessibility that the planar pyridyl rings allow for the metals to come close to one another, as well as the attractive force of the ring  $\pi$ –systems themselves for one another.

Ligand to metal ratios in the structures of **5.1.1** and **5.1.2** are 1:1. The silver environments of both structures are connectively similar with each containing

3-coordinate, pyridyl-only bound silvers as well as linear, amine-only bound silvers. In both cases, the pyridyl-only bound silvers each contain a bound acetonitrile that fills in a third coordination site. Differences between the two structures stem solely from the method of crystallization. Using identical solvent systems, the polymeric conformation of **5.1.1** develops when crystallization is allowed to occur rapidly within several hours at 5 °C. A slower crystallization over several days at -35 °C results in the folded macrocycle of **5.1.2**.

The unique portion of the linear polymer formed by the rapid crystallization of a 1:1 mixture of 3-amp with AgBF<sub>4</sub> is shown in Figure 5.1 along with selected bond lengths and angles in Table 5.3. Each of the amine bound silvers are  $\frac{1}{2}$  occupied, keeping a 1:1 ratio with the two 3-amp ligands in the asymmetric unit. Perpetuation of the polymer of **5.1.1** occurs in one dimension as the 3-amp ligands coordinate in a head to head fashion to the metal centers. What results is a zigzagging coordination polymer of two coordinate amine bound silvers and three coordinate pyridyl bound silvers, with the pyridyl only bound silvers being also connected to an acetonitrile molecule. This polymer is then linked to a second, symmetry equivalent one by silver-silver interactions at every pyridyl-only bound silver. This forms the chain-like structure shown in Figure 5.2 that is constructed of alternating circular and oval "links" joined at every other metal center. The more circular links are forced to be so by the coordinated acetonitriles present on every pyridyl-bound metal that protrude into the center of the ring forcing the amine-bound silvers here outward and away from the center of the polymer. The aminebound silvers of the oval rings have no such steric push and, as a result, are allowed to twist back in towards the center of the polymer. A C2 axis running the length of the



Figure 5.1. Thermal ellipsoid plot of the unique portion of the cationic polymer **5.1.1**. The disordered amine and silver have been omitted for clarity. Ellipsoids are drawn at the 50 % probability level.

| Ag1-N1       | 2.181(7)  | Ag1-N3       | 2.183(7)  |
|--------------|-----------|--------------|-----------|
| Ag1-N5       | 2.515(9)  | Ag1-Ag1#1    | 3.2896(1) |
| Ag2-N2       | 2.146(7)  | Ag2-N2#2     | 2.146(7)  |
| Ag3-N4       | 2.154(15) | Ag3-N4#3     | 2.154(1)  |
|              |           |              |           |
| N1-Ag1-N3    | 164.3(3)  | N1-Ag1-N5    | 99.9(3)   |
| N3-Ag1-N5    | 95.8(3)   | N1-Ag1-Ag1#1 | 113.25(2) |
| N3-Ag1-Ag1#1 | 68.27(2)  | N5-Ag1-Ag1#1 | 82.5(2)   |
| N2-Ag2-N2#2  | 172.7(4)  | N4-Ag3-N4#3  | 174.9(9)  |
|              |           |              |           |

Table 5.3. Selected bond lengths (Å), angles (°), and important distances for Poly(Ag[3-amp]BF<sub>4</sub>) (**5.1.1**)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = -x+2, y, -z+3: #2 = x, -y+3, z = x, -y+2, z.

polymer relates the two halves. The metal-metal distance contained herein is a bit lengthy at 3.289(1) Å but appears to be completely unsupported with virtually no  $\pi$ stacking occurring between the rings of the connected silvers. There does appear to be, however, substantial  $\pi$ -interactions of the metals with the pyridyl rings of the polymer



Figure 5.2. Extended ball-and-stick view of the cationic polymeric structure of **5.1.1**. Hydrogen atoms and disorder have been removed for clarity.

strands stacked above and below those silvers that hold the two halves of the polymer chain together. The  $\pi$  cloud of the pyridyl rings approach to within 3.03 Å (Ag-ring) atom distances range from 3.031(9) to 4.176(9) Å) from the silvers constructing a pseudo double-metal sandwich arrangement. This is comparable to other known compounds with aromatic Ag– $\pi$  interactions. <sup>101,180,181</sup> The stacking of the rings onto the sides of the metal centers effectively flattens out the ligands surrounding Ag1 into a near perfectly planar environment with respect to both the donor-metal geometry and the planes of the two coordinated pyridyl rings themselves. The rings vary from being coplanar by an angle of 7.3(4)°. The Ag–amine and Ag–pyridyl distances are seen to be nearly identical in this structure with ranges of 2.146(7) to 2.15(1) Å and 2.181(7) to 2.183(7) Å, respectively. The bound acetonitrile has a much longer bond to Ag1 at 2.515(9) Å. This weaker bond helps to account for the fact that this three coordinate silver is quite far from the ideal trigonal geometry with a pyridyl–Ag–pyridyl angle of 164.3(3)°. The acetonitrile N-Ag-pyridyl angles are 95.8(3) and 99.9(3)°. The two coordinate silvers are closer to a linear geometry with N-Ag-N angles of 172.7(4) and 174.9(9)° for Ag2 and Ag3, respectively. A smaller disordered part of these linear amine bound silvers also contains a coordinated acetonitrile that is oriented away from the center of the polymer.

It is seen that when the 1:1 ratio of 3-amp to AgBF<sub>4</sub> is crystallized at a lower temperature and over a longer period of time the polymeric structure of 5.1.1 is no longer the more favorable one. The structure that instead is formed, 5.1.2, is a discrete unit that is connectively identical to its polymeric relative. A view of the folded tetramer of 5.1.2 is shown in Figure 5.3 and selected interatomic lengths and angles are given in Table 5.4. The unique portion of **5.1.2** can be thought of as one of the larger links of the chain of compound **5.1.1** truncated on either end with the dangling pyridyl ends tied together to the same silver (as opposed to a silver on an adjacent polymer unit). The macrocycle that results contains four silvers; two each bound head to head and tail to tail by four 3-amp ligands as in the original polymer. However, without the polymeric backbone stretching the ring open, the propensity of the silver to engage in its closed shell metal-metal interaction causes the loop to fold over onto itself allowing the two pyridyl-bound silvers to come to within 3.2543(8) Å of one another. Contrary to the metal-metal interaction seen in **5.1.1**, it is apparent that the one occurring between Ag3 and Ag4 has substantially more support by the intramolecular stacking of the  $\pi$ -systems. Intermolecular sandwiching of the silvers by pyridyl rings is not pronounced in this case and is made obvious by the distortions of the rings from the planarity that they displayed in the previous structure. Nitrogen-Ag distances are similar to those displayed in 5.1.1 with the amine–Ag distances again being slightly shorter and ranging from 2.111(6) to 2.132(5)Å. Pyridyl–Ag distances have lengths of 2.142(5) to 2.195(5) Å. The coordinated acetonitriles are quite different with respect to their bond strengths to the metals to which they are bound. The Ag3–N<sub>acetonitrile</sub> bond length is quite a bit longer at 2.609(7) Å than that of the Ag4–Nacetonitrile which is 2.374(7) Å. Effects of this increase in bond strength



Figure 5.3. Thermal ellipsoid plot of the cationic portion of **5.1.2**. Ellipsoids are drawn at the 50 % probability level. All hydrogen atoms except for those on the amines have been removed for clarity.

| Ag1-N1      | 2.130(5)  | Ag1-N3     | 2.132(5)  |
|-------------|-----------|------------|-----------|
| Ag2-N5      | 2.111(6)  | Ag2-N7     | 2.130(6)  |
| Ag3-N8      | 2.142(5)  | Ag3-N4     | 2.145(5)  |
| Ag3-N10     | 2.609(7)  | Ag3-Ag4    | 3.2543(8) |
| Ag4-N2      | 2.189(5)  | Ag4-N6     | 2.195(5)  |
| Ag4-N9      | 2.374(7)  |            |           |
|             |           |            |           |
| N5-Ag2-N7   | 174.4(2)  | N8-Ag3-N4  | 163.6(2)  |
| N8-Ag3-N10  | 94.8(2)   | N4-Ag3-N10 | 101.5(2)  |
| N8-Ag3-Ag4  | 84.16(1)  | N4-Ag3-Ag4 | 104.97(1) |
| N10-Ag3-Ag4 | 62.6(2)   | N2-Ag4-N6  | 143.53(2) |
| N2-Ag4-N9   | 102.7(2)  | N6-Ag4-N9  | 109.5(2)  |
| N2-Ag4-Ag3  | 74.31(13) | N6-Ag4-Ag3 | 103.89(1) |
| N9-Ag4-Ag3  | 118.16(2) | N1-Ag1-N3  | 174.4(2)  |
|             |           |            |           |

Table 5.4. Selected bond lengths (Å), angles (°), and important distances for Poly(Ag[3-amp]BF<sub>4</sub>) (5.1.2)<sup>a</sup>



Figure 5.4. Thermal ellipsoid of the unique portion of the cationic polymer of **5.2** with the silver coordination environments shown complete. Ellipsoids are drawn at the 50 % probability level. The disorder of N3 has been removed for clarity.

| Table 5.5. Selected | bond lengths (Å), angles ( | °), and important distances for $Ag_2(3)$ | $-amp)_3(BF_4)_2 (5.2)^a$ |
|---------------------|----------------------------|-------------------------------------------|---------------------------|
| Ag1-N5              | 2.235(3)                   | Ag1-N4                                    | 2.246(3)                  |
| Ag1-N6#1            | 2.265(3)                   | Ag2-N3                                    | 2.222(4)                  |
| Ag2-N1#2            | 2.246(2)                   | Ag2-N2                                    | 2.262(3)                  |
|                     |                            |                                           |                           |
| N5-Ag1-N4           | 121.84(1)                  | N5-Ag1-N6#1                               | 119.78(1)                 |
| N4-Ag1-N6#1         | 117.26(1)                  | N3-Ag2-N1#2                               | 124.0(2)                  |
| N3-Ag2-N2           | 119.5(2)                   | N1#2-Ag2-N2                               | 116.37(1)                 |
|                     |                            |                                           |                           |

<sup>a</sup>Symmetry transformations used to generate atoms: #1 = x+1, y, z: #2 = x, y+1, z

are made apparent when examining the angles of the pyridyl nitrogens with respect to one another; the more constricted angle of N2–Ag4–N6 at 143.5(2)° is seen for Ag4 which has the shorter Ag–N<sub>acetonitrile</sub> bond. The N4–Ag3–N8 angle is 163.6(2)°. The two linearly coordinated silvers have identical N–Ag–N angles of 174.4(2)°.

Compound **5.2** is representative of an intermediate structural motif that can be isolated when moving from the 1:1 to 2:1 ratios of 3-amp ligand to metal. When 3-amp and  $AgBF_4$  are mixed in a 3:2 ratio the resulting two-dimensional polymer contains two different three-coordinate silver environments. As shown in Figure 5.4, the coordination

sphere of Ag1 is completed by two pyridyl donors and an amine while that of Ag2 is the opposite with a single pyridyl and two amines bound to the metal center. Selected geometric parameters for this compound are given in Table 5.5. The amp-nitrogen-only environments of the two unique silvers are both very nicely trigonal with acute ranges of N-Ag-N angles from 117.26(9) to 121.82(9)° about Ag1 and 117.7(2) to 124.9(2)° about Ag2. Both metals also sit well within their respective N-donor planes with only small deviations of 0.103(1) and 0.097(1) Å for Ag1 and Ag2, respectively. The exclusion of solvent acetonitrile from the coordination sphere of the silvers of this and the following structures is demonstrative of the contented nature of the three-coordinate silver to stay as such even in the presence of an excess of weak donors. With two similar, but distinctly different silver environments, the effects of the differences in electron donation of the amines versus the pyridines are barely made apparent. Bond lengths around Ag1 range from 2.236(3) to 2.265(3) Å, the longest of which is to an amine nitrogen. Ag2 is involved in slightly longer bonds from 2.245(2) to 2.289(5) Å, with the lengthiest bond again being with an amine donor. The central 3-amp ligand of Figure 5.4 serves to connect the two unique silver centers of the "planar" portion of the polymer. When the terminal ends of this structure are grown out, it is seen that each of the end amines serves a different purpose in the polymer. The N1 amine bridges to a symmetry equivalent, slightly offset Ag2 to construct a looping one-dimensional saw tooth polymer. The N6 "teeth" of this polymer then reach upward to join the linear sections into the two dimensional pseudocorrogated sheets shown in Figure 5.5. Interestingly, there was not seen to be a temperature dependence upon the conformation of the present structure as was seen in the 1:1 or 2:1 ratios of ligand to metal.



Figure 5.5. A view of the extended two-dimensional network of **5.2**. H atoms, anions and disorder have been removed for clarity.

Compounds **5.3.1** and **5.3.2** again demonstrate the ability of the bifunctional 3-amp ligand to form connectively identical coordination complexes with different topologies that are solely dependent upon the method of crystallization. Both **5.3.1** and **5.3.2** contain 3-amp and AgBF<sub>4</sub> in a 2:1 ratio formed from the combination of its constituents in acetonitrile, followed by recrystallization with ether. However, as was the case with compounds **5.1.1** and **5.1.2**, variances in temperature of the crystallizing solution caused pronounced structural differences in the crystals that are obtained. The results are both polymeric in nature and span one and two dimensions.

Crystallization of a 2:1 mixture of 3-amp and AgBF<sub>4</sub> at 5 °C produces the twodimensional polymeric sheet of tetrahedral silvers, **5.3.1**, shown in Figure 5.6. As can be seen in the figure, there are two unique 3-amp ligands in the structure that perform separate tasks. One ligand coordinates in a head-to-tail fashion with a symmetry equivalent one to bridge two silvers into a bimetallic rectangular box. A second ligand extends outward to join each of these small units together forming larger rectangles. The resulting box-in-box motif sets two of the smaller units at opposing corners of the larger boxes. The remaining large box corners are occupied by silvers of adjacent polygons to give large hexametallic rectangles. Figure 5.7 shows the two unique ligands bound to



Figure 5.6. A view of the two-dimensional network of **5.3.1**. Hydrogen atoms and anions have been removed for clarity.

Ag1. The planes of the pyridyl rings manage to orient themselves parallel to one another throughout the structure, being concomitantly perpendicular to the growth of the polymer. This effectively forms a honeycomb of alternating cells one ligand thick the breadth of the polymeric sheet. It is within these cells that the  $BF_4^-$  "bees" sit, held in place by weak H–bonds to the amine hydrogens. Ligand N–Ag bond lengths lengthen with the increased coordination number with pyridyl–Ag distances of 2.305(1) to 2.377(1) Å and amine–Ag distances of 2.334(2) to 2.357(1) Å. The four donor sites available for each metal center give the silvers of **5.3.1** a slightly distorted tetrahedral



Figure 5.7. Thermal ellipsoid plot of the unique cationic portion of **5.3.1**. Ellipsoids are drawn at the 50 % probability level.

| Ag1-N1                       | 2.3057(1)              | Ag1-N2#1                 | 2.3341(2)              |
|------------------------------|------------------------|--------------------------|------------------------|
| Ag1-N4#2                     | 2.3572(1)              | Ag1-N3                   | 2.3776(1)              |
| N1-Ag1-N2#1<br>N2#1-Ag1-N4#2 | 123.50(6)<br>112.60(6) | N1-Ag1-N4#2<br>N1-Ag1-N3 | 100.71(6)<br>115.12(5) |
| N2#1-Ag1-N3                  | 95.97(5)               | N4#2-Ag1-N3              | 108.90(6)              |

Table 5.6. Selected bond lengths (Å), angles (°), and important distances for Ag(3-amp)<sub>2</sub>BF<sub>4</sub> (5.3.1)<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x, -y+2, -z+1; #2 = -x, y+1/2, -z+1/2.

geometry with N–Ag–N angles ranging from 95.97(5) to  $123.50(6)^{\circ}$ . Selected interatomic distances and angles for **5.3.1** are given in Table 5.6.

When the solution that produced compound **5.3.1** is allowed to crystallize over a longer period of time at a reduced temperature of -35 °C the structure that results is a degree of dimensionality less than that seen in **5.3.1**. The connectivity and activity of the ligands and metal of **5.3.2** are similar to that seen in the previous structure; one of the two unique ligands is used to construct a bimetallic head-to-tail ring while the other is used as



Figure 5.8. A view of the extended polymer of **5.3.2**. Hydrogen atoms have been removed for clarity.

a bridge to adjacent units. However, as seen in Figure 5.8, lower temperatures cause a constriction in the size of the larger ring that is formed by the bridging 3-amps. This smaller, more constrained bridge preferentially grows into a one-dimensional polymer as opposed to the two-dimensional network of **5.3.2**. Viewing the polymer down its long axis reveals that the structure is actually a rectangular tube that is not quite of sufficient volume to contain the anions. The  $BF_4^-$  ions instead sit within the spaces formed by the stacking of the polymers on top of one another. Figure 5.9 shows the unique portion of the polymer of **5.3.2** having the same ratio as **5.3.1**. The ligand bonds to silver are the longest displayed herein with distances of 2.438(1) to 2.381(1) Å and 2.307(1) to 2.354(1) Å for the pyridyl–Ag and amine–Ag distances, respectively. The distorted tetrahedral geometry about Ag1 is similar to that of the previous structure. N–Ag–N angles range here from 93.38(5) to 123.01(5)°. Selected bond lengths and angles for 5.3.2 are given in Table 5.7.

When 2,2'-bipyridyl (bipy) is added in at least a 1:1 ratio with silver in solutions of 3-amp and  $AgBF_4$  it effectively stops the formation of the other structural motifs by capping each of the silvers. The polymeric motifs that were typically seen with 1:1 to 2:1 ratios of 3-amp to  $AgBF_4$  are truncated by the chelating bipyridyls such that introduction



Figure 5.9. Thermal ellipsoid plot of the unique portion of the cationic polymer **5.3.2**. Ellipsoids are drawn at the 50 % probability level.

| Table 5.7. Selected | bond lengths (Å), angles (°), and impo | rtant distances for Ag(3-a | $amp)_2BF_4 (5.3.2)^a$ |
|---------------------|----------------------------------------|----------------------------|------------------------|
| Ag1-N4#1            | 2.3071(1)                              | Ag1-N2#2                   | 2.3482(1)              |
| Ag1-N1              | 2.3537(1)                              | Ag1-N3                     | 2.3807(1)              |
|                     |                                        |                            |                        |
| N4#1-Ag1-N2#2       | 109.26(5)                              | N4#1-Ag1-N1                | 123.01(5)              |
| N2#2-Ag1-N1         | 108.75(5)                              | N4#1-Ag1-N3                | 114.96(5)              |
| N2#2-Ag1-N3         | 105.53(5)                              | N1-Ag1-N3                  | 93.38(5)               |
|                     |                                        |                            |                        |

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = x-1, y, z; #2 = -x+1, -y+2, -z+2.

of 2,2'-bipy to any of the solutions that produced the previous structures gives rise to the discrete, singly 3-amp bridged structure of **5.4** shown in Figure 5.10. The 1:2:2 ratio of 3-amp to Ag to 2,2'bipy in **5.4** has been shown to be the most favorable structure available and is the one isolatable from the several different ratios of reaction mixtures. The effect is similar to that seen previously where the chelating ability of the 2-amp ligand was used to cap the ends of a would-be polymer.<sup>177</sup> A symmetry equivalent unit is held close together with the first by a silver–silver interaction of 2.9875(4) Å. This



Figure 5.10. Thermal ellipsoid of the cationic structure of 5.4. Hydrogen atoms have been removed for clarity. The symmetry equivalent portion is shown dashed.

Table 5.8. Selected bond lengths (Å), angles (°), and important distances for  $Ag_2(2,2^2-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)_2-\mu-(3-bipy)$  $amp)(BF_4)_2 (5.4)^a$ 

| Ag1-N4       | 2.1457(2) | Ag1-N5       | 2.286(2)  |
|--------------|-----------|--------------|-----------|
| Ag1-N6       | 2.291(2)  | Ag1-Ag1#1    | 2.9875(4) |
| Ag2-N3       | 2.1610(2) | Ag2-N2       | 2.287(2)  |
| Ag2-N1       | 2.2908(2) |              |           |
|              |           |              |           |
| N4-Ag1-N6    | 141.39(7) | N5-Ag1-N6    | 72.81(7)  |
| N4-Ag1-Ag1#1 | 98.38(5)  | N5-Ag1-Ag1#1 | 89.30(5)  |
| N6-Ag1-Ag1#1 | 83.86(5)  | N3-Ag2-N2    | 145.57(7) |
| N3-Ag2-N1    | 141.44(7) | N2-Ag2-N1    | 72.90(7)  |
| N4-Ag1-N5    | 145.36(8) |              |           |
|              |           |              |           |

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x,-y+1,-z+2

relatively short Ag-Ag interaction, which is over 0.3 Å closer than the others described herein, is held tightly together by the resonance stacking of the three coordinated rings with those on the adjacent silver; an interaction not possible on the opposing amine bound silvers due to the protrusion of the amine hydrogens into the area of space needed for the ring stacking. Each of the Ag environments is nicely planar with respect to its surrounding nitrogens, with the bipy N-Ag-N angle of both being expectedly acute from trigonal at 72.81(7) and 72.90(7)° for Ag1 and Ag2, respectively. The pyridyl-Ag and

amine–Ag distances are of an average length here at 2.287(2) and 2.291(2) Å. Geometric parameters for **5.4** are given in Table 5.8.

## Luminescent Properties

The compounds of this chapter were tested for photoluminescent properties as a consequence of a recent surge in interest in the use of supramolecular coordination assemblies as LEDs. Coordination polymers of the type described herein are thought to be superior to traditional organic LEDs (OLEDs) due to the enhanced structural flexibility and electronic characteristics that the d-block metals impart. The maximum excitation wavelengths for compounds **5.1.1-5.4** that are compiled in Table 5.9 are seen to be similar to that of the free 3-amp ligand, all of which are around 300 nm. It is thus surmised that the luminescent properties of these complexes have origins in a ligand based absorption followed by a ligand-to-metal charge transfer and then a metal-based decay. This is supported by the observation that the emission spectra of the metal complexes are quite far removed from that of the ligand with red-shifts of nearly 200 nm in wavelength difference in some cases. Representative spectra of the complexes 5.1.1-**5.4** taken in acetonitrile glasses at 77 K are displayed in Figure 5.11. The most intense emission was seen to come from the 2:1 3-ampAgBF<sub>4</sub> polymers, which displays peaks in the emission spectrum at 413, 458, 489 and 546 nm. The next highest intensities come from the 1:1 and 3:2 ratios, in decreasing order. Surprisingly, the luminescence of the 3-ampAgBF<sub>4</sub> complex was actually quenched by the presence of the chelating 2,2'-bipyridyl ligand in compound 5.4, with the metal complex showing a less intense spectrum than that of the free ligand.



Figure 5.11. Representative Luminescence spectra of the 3-amp  $AgBF_4$  compounds taken in acetonitrile glasses at 1 X 10<sup>-4</sup>M concentration at 77 K.  $= Ag(3-amp)BF_4$ ,  $= Ag_2(3-amp)_3(BF_4)_2$ ,  $= Ag(3-amp)_2BF_4$ 

|          | 0113013.                   |                                |
|----------|----------------------------|--------------------------------|
| Compound | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$ |
| 3-amp    | 313, 342                   | 347, 365, 391                  |
| 5.1.1    | 290                        | 413, 458, 489, 546             |
| 5.1.2    | verbatim 5.1.1             |                                |
| 5.2      | 294                        | 436, 452, 456, 487, 513        |
| 5.3.1    | 297                        | 467, 483, 518                  |
| 5.3.2    | verbatim 5.3.1             |                                |
| 5.4      | 328                        | 399, 461, 505                  |
|          |                            |                                |

Table 5.9. Luminescent Spectral Data for 3-amp and the compounds **5.1.1–5.4**, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.<sup>a</sup>

<sup>a</sup> Luminescence spectra were only collected once each on the two sets of structural isomers given that at the same temperature the two compounds would be structurally identical.

# Conclusions

This study demonstrates that changes in the ratio of ligand to metal can have significant effects on the structural characteristics of coordination complexes of silver with a noncoordinating anion. The results of this work add to the relatively unexplored area of ratio dependence which complements nicely the well surveyed field of anion dependent structures of the coinage metals. It was shown herein how several of the common silver structural motifs including discrete structures (**5.1.2** and **5.4**), one dimensional (**5.1.1** and **5.3.2**) and two dimensional polymers (**5.2** and **5.3.1**) can be achieved by changes in stoichiometry. It was also demonstrated how different conformations of the same ratio can be isolated by crystallization at different temperatures obtaining both a kinetic product and a more thermodynamically favored product.

#### *Experimental*

# General Procedures

All experiments were carried out under an argon atmosphere, using a Schlenk line and standard Schlenk techniques. Glassware was dried at 120°C for several hours prior to use. All reagents were stored in an inert atmosphere glovebox; solvents were distilled under nitrogen from the appropriate drying agent immediately before use. 3-Aminomethylpyridine and 2,2'-bipyridine were purchased from Aldrich and used as received. Silver(I) tetrafluoroborate was purchased from Strem Chemicals Inc. and used as received. <sup>1</sup>H NMR spectra were recorded at 300.13 MHz on a Bruker Spectrospin 300 MHz spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc.,

Norcross, Georgia.

# General Synthesis

General procedures for the synthesis of compounds **5.1.1-5.3.2** involve the addition of a 5 mL acetonitrile solution of 3-aminomethylpyridine to a stirred solution of AgBF<sub>4</sub> in 5 mL acetonitrile. The mixtures are stirred for 10 minutes, then dried in vacuo

to leave white or off-white powders. All flasks are shielded from light with aluminum foil to prevent the photodecomposition of the silver compounds. Crystals of **5.1.1**, **5.2**, **5.3.1** and **5.4** were grown by layering ether over acetonitrile solutions at 5 °C. Crystals of **5.1.2** and **5.3.2** were grown by layering ether over dilute acetonitrile solutions at -35 °C. The amounts of reagents used, yields, and analytical data are presented below as well as any modifications to the general synthetic procedure. Percent yields are based upon the amount of silver salt used.

## Preparations

poly( $Ag[3-amp]BF_4$ ) (5.1.1) and  $Ag_4(3-amp)_4(BF_4)_4$  (5.1.2). This reaction used 3-aminomethylpyridine (0.052 g, 0.481 mmol) added to  $AgBF_4$  (0.100 g, 0.514 mmol) to leave a white powder in 91 % yield (0.142 g, 0.464 mmol) upon evaporation of the solvent. Colorless plates of 5.1.1 were grown at 5 °C and colorless blocks of 5.1.2 were grown at -35 °C from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.13 s, br, 8H (-NH<sub>2</sub>-); 3.92 s, 8H (-CH<sub>2</sub>-); 7.47 q,d, 4H; 7.88 d,t, 8H; 8.41 d,d, 4H.

*poly-Ag*<sub>2</sub>(*3-amp*)<sub>3</sub>(*BF*<sub>4</sub>)<sub>2</sub> (**5.2**). This reaction used 3 equivalents of 3-aminomethylpyridine (0.150 g, 1.40 mmol) added to 2 equivalents of AgBF<sub>4</sub> (0.180 g, 0.925 mmol). A clear, colorless oil was left upon evaporation of the solvent. Dissolution of this oil in a small amount of CH<sub>2</sub>Cl<sub>2</sub> followed by precipitation with ether leaves a white fluffy solid in 88 % yield (0.290 g, 0.407 mmol) upon isolation of the precipitate. Colorless blocks were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 2.93 s, br, 6H, (-NH<sub>2</sub>-); 3.875 s, 6H, (-CH<sub>2</sub>-); 7.38 m, 3H; 7.739 d,d, 6H; 8.34 d, 3H. Anal. Calcd for Ag<sub>2</sub>C<sub>18</sub>H<sub>24</sub>N<sub>6</sub>B<sub>2</sub>F<sub>8</sub>: C, 30.29; H, 3.25; N, 11.77. Found: C, 30.39; H, 3.25; N, 11.56.

*poly-Ag*(3-*amp*)<sub>2</sub>*BF*<sub>4</sub> (**5.3.1**) *and poly-Ag*(3-*amp*)<sub>2</sub>*BF*<sub>4</sub> (**5.3.2**). This reaction used 2 equivalents of 3-aminomethylpyridine (0.150 g, 1.40 mmol) added to AgBF<sub>4</sub>(0.135 g, 0.694 mmol). Evaporation of the solvent left a white powder in 84% yield (0.239 g, 0.583 mmol). Colorless plates of **5.3.1** were grown at 5 °C and colorless blocks of **5.3.2** were grown at -35 °C from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.20 s, br, 4H, (-NH<sub>2</sub>-); 3.90 s, 4H, (-CH<sub>2</sub>-); 7.42 m, 2H; 7.86 t,d, 4H; 8.32 d, 2H. Anal. Calcd for AgC<sub>12</sub>H<sub>16</sub>N<sub>4</sub>BF<sub>4</sub>: C, 35.07; H, 3.92; N, 13.63. Found: C, 35.20; H, 3.84; N, 13.51.

 $Ag_2(2,2'-bipy)_{2}-\mu$ -(3-amp)(BF<sub>4</sub>)<sub>2</sub> (**5.4**). To a stirred solution of one equivalent of 3-aminomethylpyridine (0.100 g, 0.926 mmol) in 5 mL CH<sub>3</sub>CN was added 2 equivalents of AgBF<sub>4</sub> (0.360 g, 1.82 mmol) in 5 mL CH<sub>3</sub>CN. This was stirred for 5 minutes then a solution of 2,2'-bipyridine (0.289 g, 1.82 mmol) in 5 mL CH<sub>3</sub>CN was added. This mixture was stirred for 10 minutes then the solvent was removed in vacuo to leave a light yellow powder in 92 % yield (0.689 g, 0.848 mmol). Crystallization from acetonitrile and ether formed colorless blocks. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 2.48 s,br, 2H, (-NH<sub>2</sub>-); 3.79 s, 2H, (-CH<sub>2</sub>-); 7.42 m, 8H; 7.89 t, 9H; 8.26 d, 2H; 8.55 d, 1H. Anal. Calcd for Ag<sub>2</sub>C<sub>29</sub>H<sub>28</sub>N<sub>7</sub>B<sub>2</sub>F<sub>8</sub>: C, 40.32; H, 3.27; N, 11.35. Found: C, 40.68; H, 3.26; N, 11.20.

# Crystallography

A summary of crystallographic experimental data for **5.1.1** through **5.4** is given in Table 5.10. Complete listings of bond lengths and angles can be found in Appendix B, Tables B.14 to B.19. Crystallographic data were collected on crystals with dimensions

|                                   | 5.1.1            | 5.1.2             | 5.2             | 5.3.1         | 5.3.2         | 5.4             |
|-----------------------------------|------------------|-------------------|-----------------|---------------|---------------|-----------------|
| Formula                           | C14H10Ag2B2F8N5O | C28H28Ag4B4F16N10 | C18H24Ag2B2F8N6 | C12H16AgBF4N4 | C12H16AgBF4N4 | C26H24Ag2B2F8N6 |
| Formula weight                    | 662.68           | 1293.40           | 713.79          | 410.97        | 410.97        | 809.87          |
| a (Å)                             | 13.592(2)        | 7.8143(7)         | 6.850(1)        | 15.318(1)     | 8.6991(4)     | 7.1224          |
| b (Å)                             | 27.841(3)        | 25.736(2)         | 8.409(1)        | 10.489(1)     | 14.1060(7)    | 10.618(1)       |
| c (Å)                             | 13.281(2)        | 21.193(2)         | 11.598(1)       | 18.819(2)     | 12.9311(7)    | 19.166(2)       |
| α                                 |                  |                   | 110.934(6)      |               |               | 92.490(5)       |
| β (°)                             | 113.100(2)       | 96.381(2)         | 97.226(6)       |               | 109.607       | 96.249(5)       |
| γ (°)                             |                  |                   | 96.238(6)       |               |               | 93.248(5)       |
| space group                       | C2/m             | $P2_1/c$          | P1              | Pbca          | $P2_1/c$      | P-1             |
| $D_{calcd}$ (g cm <sup>-3</sup> ) | 1.973            | 2.028             | 1.941           | 1.805         | 1.826         | 1.872           |
| $\mu (mm^{-1})$                   | 1.781            | 1.929             | 1.685           | 1.375         | 1.391         | 1.444           |
| $2\theta_{max}$ (°)               | 51.36            | 52.7              | 53.06           | 52.9          | 52.74         | 56.56           |
| reflns measured                   | 12024            | 36620             | 15095           | 40167         | 29846         | 21440           |
| reflns used (R <sub>int</sub> )   | 4433 (0.0463)    | 8655 (0.0436)     | 4220 (0.0259)   | 3087 (0.0391) | 3040 (0.0316) | 6988            |
| restraints/param                  | 10/378           | 6/574             | 5/329           | 0/211         | 0/199         | 10/443          |
| R1, $[I > 2\sigma(I)]$            | 0.0679           | 0.0530            | 0.0185          | 0.0187        | 0.0155        | 0.0291          |
| $wR^2$ , $[I > 2\sigma(I)]$       | 0.1730           | 0.1156            | 0.0476          | 0.0452        | 0.0413        | 0.0638          |
| $R(F_0^2)$ , (all data)           | 0.0980           | 0.0655            | 0.0187          | 0.0274        | 0.0171        | 0.0433          |
| $R_w(F_0^2)$ , (all data)         | 0.1959           | 0.1215            | 0.0478          | 0.0471        | 0.0420        | 0.0663          |
| GooF on F <sup>2</sup>            | 1.037            | 1.128             | 1.060           | 1.069         | 1.080         | 1.075           |

Table 5.10. Crystallographic Data for compounds **5.1.1** to **5.4** 

 $0.128 \times 0.091 \times 0.062$  mm for **5.1.1**,  $0.091 \times 0.105 \times 0.192$  mm for **5.1.2**,  $0.200 \times 0.210 \times 0.350$  mm for **5.2**,  $0.046 \times 0.112 \times 0.232$  mm for **5.3.1**,  $0.151 \times 0.222 \times 0.232$  mm for **5.3.2** and  $0.062 \times 0.169 \times 0.177$  mm for **5.4**. Data were collected at 110 K on a Bruker X8 Apex diffractometer using MoK $\alpha$  radiation ( $\lambda$ =0.71073 Å). All structures were solved by direct methods after the correction of the data using SADABS.<sup>139</sup> All of the data were processed using the Bruker AXS SHELXTL software, version 6.10.<sup>140</sup> Unless otherwise noted, all non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions. The crystal structure of compound **5.1.1** contains two molecules of water, one of which is disordered over two positions. It also contains a disordered amine and silver atom with a 37:63 occupancy ratio. The smaller occupancy disorder contains a coordinated acetonitrile and which is refined isotropically along with the silver and nitrogen. The crystal structures of compound **5.1.2** and **5.4** both contain BF<sub>4</sub><sup>-</sup> anions disordered over two positions. One of the amine nitrogens in the structure of compound **5.2** is disordered over two positions.

# CHAPTER SIX

# Silver(I) 3-aminomethylpyridine Complexes Part 2: Effect of Ligand Ratio, Hydrogen bonding and π-stacking with an Interacting Anion

# Introduction

Advances that are being made in the field of crystal engineering have numerous applications including catalysis, molecular recognition, molecular sieving, separations and optics. <sup>10,63,83,176</sup> A large portion of the knowledge associated with this area can be attributed to coordination studies of the group 11 metals, silver in particular. <sup>4,7,11,35,49,88,142,148,151-154,159,177</sup> Coordination complexes of silver are known to be alterable via several methods; typically by changes in ligand geometry, rigidity or functionality or by modifications to the counterion or solvent system. <sup>25,141,147</sup> Despite the wealth of literature that is to be had on methods of forcing variations in coordination complexes the technique of stoichiometry control has gone largely overlooked. <sup>68,69</sup> Only recently has our group and a few others endeavored to give a comprehensive exploration on the ratio dependence of coordination complexes of variable-coordination metals. <sup>70,71,91,177-179,182</sup>

Herein we describe the remarkable changes in structure that can be achieved through variances in relative amount of ligand to metal in the presence of the interacting anions OTf<sup>-</sup> and tfa<sup>-</sup>. Both of these anions have been previously shown to affect the supramolecular growth of coordination complexes of silver through direct interaction with the metal as well as H–bonding when a suitable donor is present. In the present study, both the degree of interaction of the anion with the metal and the degree of

115

H–bonding existing are themselves controlled by the ratio in which the heterobidentate 3-aminomethylpyridine ligand is present. The coordination sphere of the metal and, as a result, the overall structural growth are seen to be readily altered by the addition of a greater than stoichiometric amount of 3-amp ligand.

# Results and Discussion

## Synthesis

The 3-aminomethylpyridine complexes **6.1-6.4** are the result of the direct reaction of 3-amp with either of the two silver salts, triflate or trifluoroacetate. All of the compounds synthesized herein are isolable as white or off-white powders that appear to be stable indefinitely when kept shielded from light in a sealed container. In the presence of light compounds 6.1-6.6 tend to photodecompose over time. Analytical data for these compounds are presented in Tables 6.1 and 6.2. The ratios of ligand to metal in the crystal structures are easily controlled by varying the stoichiometry in which the reactants are mixed. Interestingly, the intermediate 3:2 ratio of 3-amp ligand to metal that we have been able to isolate using 2-amp<sup>177</sup> and again with 3-amp<sup>178</sup> and a non-interacting anion has been so far elusive in the current case using a more coordinating anion. Both 1:1 and 2:1 ratios of 3-amp to silver were achieved with AgOTf and Agtfa by reaction in the correct proportions followed by crystallization. The bipyridyl complexes 6.5 and 6.6 were formed by the addition of 2,2'-bipyridine to solutions of 3-amp and the appropriate silver salt. It is interesting to note that when bipyridine is present in a 1:1 ratio with Ag a tetrahedral metal environment seems unfavorable. They are instead all trigonal even with an excess of 3-amp which, when used, must be removed in order to obtain a solid.

|     | compound <sup>a</sup>                                                               | yield |             | analytical (% | ) <sup>b</sup> |  |
|-----|-------------------------------------------------------------------------------------|-------|-------------|---------------|----------------|--|
|     |                                                                                     | (%)   | С           | Н             | Ν              |  |
| 6.1 | poly-[Ag(3-amp)tfa]                                                                 | 91    | 29.4 (29.2) | 2.4 (2.5)     | 8.4 (8.5)      |  |
| 6.2 | poly-[Ag(3-amp)OTf]                                                                 | 96    | 26.2 (25.8) | 2.3 (2.5)     | 8.8 (8.6)      |  |
| 6.3 | poly-[Ag(3-amp) <sub>2</sub> tfa]                                                   | 73    | 38.2 (38.4) | 3.6 (3.7)     | 12.5 (12.8)    |  |
| 6.4 | poly-[Ag(3-amp) <sub>2</sub> Otf]                                                   | 73    | 33.2 (33.0) | 3.2 (3.4)     | 11.8 (11.8)    |  |
| 6.5 | poly-[Ag <sub>2</sub> (2,2'-bipy) <sub>2</sub> - $\mu$ -(3-amp)(tfa) <sub>2</sub> ] | 92    | 40.5 (40.5) | 2.8 (2.8)     | 9.4 (9.3)      |  |
| 6.6 | Ag <sub>2</sub> (2,2'-bipy) <sub>2</sub> -µ-(3-amp)(OTf) <sub>2</sub>               | 89    | 36.0 (36.0) | 2.7 (2.6)     | 9.4 (9.0)      |  |

Table 6.1. Analytical and Physical Data

<sup>a</sup> All compounds are white or off white solids. <sup>b</sup> Calculated values are given in parenthesis.

|     | $^{1}\mathrm{H}/\delta^{a}$                                                                                         |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     |                                                                                                                     |  |  |  |  |  |
| 6.1 | 3.19 s, br, 2H, (-NH <sub>2</sub> ); 3.89 s, 2H, (-CH <sub>2</sub> ); 7.41 m, 1H; 7.83 t,d, 2H; 8.45 d, 1H          |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |
| 6.2 | 3.00 s, br, 2H, (-NH <sub>2</sub> ); 3.87 s, 2H, (-CH <sub>2</sub> ); 7.43 m, 1H; 7.81 t,d, 2H; 8.49 m, 1H          |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |
| 6.3 | 3.27 s, br, 4H, (-NH <sub>2</sub> ); 3.85 s, 4H, (-CH <sub>2</sub> ); 7.31 m, 2H; 7.78 t,d, 4H; 8.43 d, 2H          |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |
| 6.4 | 3.02 s, br, 4H, (-NH <sub>2</sub> ); 3.89 s, 4H, (-CH <sub>2</sub> ); 7.38 m, 2H; 7.78 t,d, 4H; 8.47 d, 2H          |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |
| 6.5 | 3.91 s,br, 2H, (-NH <sub>2</sub> ); 4.75 s, 2H, (-CH <sub>2</sub> ); 7.40 m, 8H; 7.89 m, 9H; 8.10 d, 2H; 8.55 d, 1H |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |
| 6.6 | 4.22 s,br, 2H, (-NH <sub>2</sub> ); 4.82 s, 2H, (-CH <sub>2</sub> ); 7.55 m, 8H; 8.05 m, 9H; 8.26 d, 2H; 8.65 d, 1H |  |  |  |  |  |
|     |                                                                                                                     |  |  |  |  |  |

Table 6.2. Hydrogen-1 NMR Data

a <sup>1</sup>H NMR spectra were recorded in CD<sub>3</sub>CN at 298 K.

# X-Ray Crystal Structures

The crystal structures of compounds 6.1 to 6.6 contain the silver(I) cation in a variety of settings and with coordination numbers from 2 to 5. This variability in structure and bonding is demonstrative of the effects of two variables that were explored herein: anion dependence and ratio dependence of structural features. The former has been thoroughly explored and is a well documented feature of the coordination chemistry of the group 11 triad while the latter, still in its infancy, has only recently aroused interest and, as a result, is still relatively unknown. It is seen that by using anions with comparable basicity and structure (triflate versus trifluoroacetate) small changes in geometry around the H-bonding oxygen containing portion of the anion can have drastic effects on the dimensionality of the resulting complexes, particularly in the current case where the ligand used has the strongly H-bonding amine functionality. Perhaps even more interesting is the observation that these same types of structural reformations can be had by simply changing the ratio of ligand to metal in the reactions. These alterations are very pronounced in the following silver(I) complexes due to the ease with which it varies its coordination sphere to accept the number of donors present. A feature that is seen to occur with the non-interacting tetrafluoroborate anion but was not observed here is the temperature dependence of morphology caused by lowering the crystallization temperature. In the present case strong H-bonding to the anions likely overwhelms any temperature effects that would be had on the structures.

The structures of compounds **6.1** and **6.2** both contain the ligand 3-amp and a silver(I) salt in a 1:1 ratio. Differences between the two structures stem from the



Figure 6.1. A view of the charge separated polymers of **6.1**. Only the bound oxygens are shown and all H atoms except for those of the amines have been removed for clarity.

coordinating ability as well as the H-bonding geometry of the trifluoroacetate anion versus triflate, with the result being either a one- or two-dimensional polymer.

When 3-amp is reacted in a 1:1 ratio with Agtfa the lack of sufficient donors from the ligand to fill out the coordination sphere allows the anion to crowd the metal and coordinate through the oxygen atoms. As a result, the two inequivalent polymers of **6.1**, shown in Figure 6.1, are formed. The 3-amp ligand coordinates in a head-to-tail fashion down the length of both polymers which are differentiated from one another by the degree of interaction of the anions with the silvers contained within each strand. It is seen that one contains three coordinated anions (O1, O3, and O5) for each two silvers of the chain while the adjacent polymer contains only one (O7) per two silvers.

Consequently the former polymer has associated with it a negative charge and the latter a positive one. They are then stacked so that two of the cationic strands are adjacent to one another bridged by the single coordinated anion. These are then bordered on either side by the anionic polymers. The unique part of these polymers is shown in Figure 6.2 and geometric parameters are given in Table 6.3. As a general trend on the singly anion-bound silvers (those of the cationic strand and Ag1), the Ag–amine distances are quite similar to the the Ag–pyridyl distances with bond lengths of 2.147(2) to 2.161(2) Å and 2.157(2) to 2.164(2) Å, respectively. For Ag2, which has two closely associated anions,



Figure 6.2. Thermal ellipsoid view of the unique portion of compound **6.1**. The fluorine atoms and all hydrogens except for those on the amines have been removed for clarity. Ellipsoids are drawn at the 50 % probability level.

| Table 6.3. Selected bond lengths (A), angles (°), and important distances for Ag(3-amp)tfa (6.1) <sup>a</sup> |           |                   |           |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------|--|--|--|
|                                                                                                               |           |                   |           |  |  |  |
| Ag(1)-N(4)#1                                                                                                  | 2.147(2)  | Ag(1)-N(1)        | 2.157(2)  |  |  |  |
| Ag(1)-O(1)                                                                                                    | 2.542(2)  | Ag(2)-N(3)        | 2.165(2)  |  |  |  |
| Ag(2)-N(2)                                                                                                    | 2.177(2)  | Ag(2)-O(5)        | 2.585(2)  |  |  |  |
| Ag(2)-O(3)                                                                                                    | 2.595(2)  | Ag(3)-N(5)        | 2.158(2)  |  |  |  |
| Ag(3)-N(8)                                                                                                    | 2.161(2)  | Ag(3)-O(8)#2      | 2.549(2)  |  |  |  |
| Ag(4)-N(6)                                                                                                    | 2.153(2)  | Ag(4)-N(7)#1      | 2.164(2)  |  |  |  |
| Ag(4)-O(7)                                                                                                    | 2.567(2)  |                   |           |  |  |  |
| N(4)#1-Ag(1)-N(1)                                                                                             | 165.07(9) | N(4)#1-Ag(1)-O(1) | 98.49(8)  |  |  |  |
| N(1)-Ag(1)-O(1)                                                                                               | 96.42(8)  | N(3)-Ag(2)-N(2)   | 159.12(9) |  |  |  |
| N(3)-Ag(2)-O(5)                                                                                               | 106.28(8) | N(2)-Ag(2)-O(5)   | 89.35(8)  |  |  |  |
| N(3)-Ag(2)-O(3)                                                                                               | 93.01(8)  | N(2)-Ag(2)-O(3)   | 101.03(8) |  |  |  |
| O(5)-Ag(2)-O(3)                                                                                               | 89.54(7)  | N(5)-Ag(3)-N(8)   | 164.27(9) |  |  |  |
| N(5)-Ag(3)-O(8)#2                                                                                             | 101.33(9) | N(8)-Ag(3)-O(8)#2 | 92.93(9)  |  |  |  |
| N(6)-Ag(4)-N(7)#1                                                                                             | 166.19(9) | N(6)-Ag(4)-O(7)   | 104.56(8) |  |  |  |
| N(7)#1-Ag(4)-O(7)                                                                                             | 87.20(8)  |                   |           |  |  |  |
| N(2)-H(2A)O(1)#5                                                                                              | 3.024(3)  | N(2)-H(2B)O(7)    | 2.870(3)  |  |  |  |
| N(4)-H(4A)O(6)#6                                                                                              | 2.914(3)  | N(4)-H(4A)O(5)#6  | 3.359(4)  |  |  |  |
| N(4)-H(4B)O(3)#6                                                                                              | 3.001(3)  | N(6)-H(6A)O(4)    | 2.886(3)  |  |  |  |
| N(6)-H(6B)O(2)#7                                                                                              | 3.126(3)  | N(8)-H(8A)O(4)#3  | 3.109(3)  |  |  |  |
| N(8)-H(8B)O(2)#4                                                                                              | 2.907(3)  |                   | . /       |  |  |  |
|                                                                                                               |           |                   |           |  |  |  |

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = x,y+1,z: #2 = x-1/2,-y+1/2,-z #3 = x+1/2,-y+1/2,-z: #4 = x,y-1,z: #5 = -x+2,y-1/2,-z+1/2: #6 = -x+1,y-1/2,-z+1/2: #7 = x-1/2,-y+3/2,-z.
the Ag–N distances are, as expected, slightly above the average lengths at 2.165(2) Å for Ag2–N3(pyridyl) and 2.1774(2) Å for Ag2–N2(amine). Another result of the close association of two anions with Ag2 is a greater distortion of its N–Ag–N angle from linear at 159.12(9) °. The remaining 3 unique silvers (Ag1, Ag3, and Ag4) have N–Ag–N angles ranging from 164.27(9) to 166.19(9) °. Hydrogen bonding between the anions and amines also assist in holding the chains together.

Upon changing to the less strongly coordinating triflate anion a 1:1 ratio of 3-amp with Ag(I) still results in the formation of polymers containing two distinctly different types of metal center. However, in this case the differences are not caused by coordinating anions but rather by the preference of the ligand to coordinate in a head-tohead fashion. The unique portion of complex 6.2, displayed in Figure 6.3 with geometric parameters given in Table 6.4, shows these two coordinatively different silvers; one bound by amines only and the other by pyridyls only but both linearly coordinated by the N-donors. We have demonstrated this type of donor segregation of the aminomethylpyridine ligand in our previous study of non-interacting anions. In a fashion similar to that described in the preceding work, it is seen that the two pyridyl donors of the pyridyl-only bound silvers manage to orient themselves in a nearly coplanar arrangement allowing two metals from adjacent polymers to come close enough to one another to form a closed shell metal-metal interaction. In this instance (more than in the previous) the interaction appears to be supported by interpolymeric  $\pi$ -stacking of the pyridyl rings which helps hold the metals to within 3.1820(4) Å of one another. The effect that this interaction has is to join the would-be isolated polymers into twodimensional sheets linked at every other silver to a neighboring polymer on either side of



Figure 6.3. Thermal ellipsoid plot of the unique portion of the polymer **6.2**. Ellipsoids are drawn at the 50% probability level.

| Table 6.4. Selected bond lengths (Å), angles (°), and important distances for Ag(3-amp)OTf (6.2) <sup>a</sup> |           |              |           |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|--|--|
| Δ α1-N/4#1                                                                                                    | 2 1235(2) | Δ σ1-N1      | 2 1283(2) |  |  |
| A 2 112                                                                                                       | 2.1235(2) | Agi-Ni       | 2.1205(2) |  |  |
| Ag2-N2                                                                                                        | 2.1640(2) | Ag2-N3       | 2.16/5(2) |  |  |
| Ag2-Ag2#2                                                                                                     | 3.1820(4) |              |           |  |  |
|                                                                                                               |           |              |           |  |  |
| N4#1-Ag1-N1                                                                                                   | 177.85(8) | N2-Ag2-N3    | 165.38(7) |  |  |
| N2-Ag2-Ag2#2                                                                                                  | 83.98(5)  | N3-Ag2-Ag2#2 | 101.56(5) |  |  |
|                                                                                                               |           |              |           |  |  |
| N4-H4AO6                                                                                                      | 3.144(3)  | N4-H4AO4     | 3.090(3)  |  |  |
| N4-H4BO3                                                                                                      | 3.001(3)  | N1-H1AO2#3   | 3.022(3)  |  |  |
| N1-H1BO4#3                                                                                                    | 3.010(3)  |              |           |  |  |
|                                                                                                               |           |              |           |  |  |

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = x-1,-y+3/2,z+1/2: #2 = -x,-y+1,-z+1: #3 = x-1,y,z.



Figure 6.4. Expanded view of the 2-Dimensional growth of the cationic polymer of 6.2.

the original. As shown in Figure 6.4, the resulting sheets exhibit a staggered array of interlaced hexagons similar to that of a chain-link fence. Adding a third dimension to this structure is the activity of the anion which sits inside the cavities of the fence connecting stacked layers using H-bonds to the amine nitrogens. The Ag–N<sub>amine</sub> and Ag–N<sub>pyridyl</sub> bonds distances are quite similar in this case with respective values of 2.123(2) to 2.128(2) Å and 2.164(2) to 2.168(2) Å for the two sets. The N–Ag–N angle of Ag2 is slightly more off-linear at 165.38(7) ° than that of Ag1 due to the distortion of the pyridyl rings away from the Ag–Ag interaction. Ag1, which has no such distortion, is very nearly linear in its coordination environment with an N–Ag–N angle of 177.85(8) °.

Compounds **6.3** and **6.4** again contain the anions trifluoroacetate and triflate. However, altering the ratios of ligand to metal from 1:1 to 2:1 has profound effects on the coordination environment of the metal as well as the dimensionality of the coordination polymers that result. The linear charge-separated polymers of **6.1** grow into the square nets of **6.3** while the two-dimensional chain-link fence of **6.2** morphs into the three-dimensional network of **6.4**. It is also interesting to note that the 3-amp Ag complexes of OTf<sup>-</sup> and tfa<sup>-</sup> have been as yet unobtainable in the 3:2 ratio that is readily crystallized in the case of the non-interacting anion  $BF_4^{-.178}$ 

In the presence of more than one equivalent of 3-amp ligand the stronger amine and pyridyl donors readily displace the weakly bound tfa<sup>-</sup> anions from the metals of **6.1** to form a tetrahedral environment of only N-donors. These 4-coordinate silvers sit at the corners of squares that are then woven into the net of 6.3 shown in Figure 6.5. The walls of the "squares" are constructed of bridging 3-amp ligands that coordinate head-to-tail with the previous ligand when the polymerization is followed in any one direction. The anion, though no longer coordinating, still influences the overall structure of the polymer through H-bonding to the amine nitrogens. Similar in mannerism to the vertical supports in a wall, the tfa<sup>-</sup> anions sit within the cavities of the polymer bridging two opposing parallel "walls"  $\eta^2$ , $\mu_2$ - via H-bonds. The unique cationic portion of this structure is shown in Figure 6.6 and selected bond lengths and angles are given in Table 6.5. In this instance, a much better distinction can be made between the amine-Ag and pyridyl-Ag bonds based upon distance than in the previous cases where all of the N-donor-silver distances were more or less similar. The Ag–amine bonds range in lengths from 2.285(1) to 2.303(1) Å and are slightly shorter than those to pyridyl donors; these have distances



Figure 6.5. A view of the 2-dimensional cationic network of **6.3**. All H atoms except for those on the amines have been removed for clarity.

of 2.376(1) to 2.446(1) Å. The environment of Ag1 is distorted from the ideal tetrahedral geometry by the H-bonded supports of the anions showing a range of N–Ag–N angle from 93.80(4) to 130.93(4) °.

Two equivalents of 3-amp ligand has the same effect of taking a metal from a two coordinate environment to one that is pseudotetrahedral in the case of AgOTf as it did with Agtfa. The four N-donors for each silver surround the metal in a manner so that the unique portion of compound **6.4**, shown in Figure 6.7, is similar in appearance to that of **6.3**. However, H-bonding to the anion again plays a part in determining the overall



Figure 6.6. Thermal ellipsoid plot of the unique portion of **6.3**. Ellipsoids are drawn at the 50 % probability level.

| Table 6.5. Selec | ted bond lengths (Å), angles (°), and imp | ortant distances for Ag(3-a | mp) <sub>2</sub> tfa ( <b>6.3</b> ) <sup>a</sup> |
|------------------|-------------------------------------------|-----------------------------|--------------------------------------------------|
| Ag1-N2#1         | 2.2851(1)                                 | Ag1-N4#2                    | 2.3028(1)                                        |
| Ag1-N3           | 2.3765(1)                                 | Ag1-N1                      | 2.4460(1)                                        |
| N2#1-Ag1-N4#2    | 130.93(4)                                 | N2#1-Ag1-N3                 | 113.77(4)                                        |
| N4#2-Ag1-N3      | 99.83(4)                                  | N2#1-Ag1-N1                 | 103.69(4)                                        |
| N4#2-Ag1-N1      | 108.81(4)                                 | N3-Ag1-N1                   | 93.80(4)                                         |
| N2-H2AO2#3       | 3.0692(1)                                 | N2-H2BO2#5                  | 3.0282(1)                                        |
| N4-H4AO1#6       | 3.1528(1)                                 | N4-H4BO1#4                  | 3.1525(1)                                        |

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = -x+3/2, y-1/2, -z+1/2: #2 = -x+1/2, y-1/2, -z+1/2: #3 = -x+3/2, y+1/2, -z+1/2: #4 = -x+1/2, y+1/2, -z+1/2: #5 = x+1/2, -y+3/2, z+1/2: #6 = x, y+1, z.



Figure 6.7. Thermal ellipsoid plot of the unique portion of the 3-dimensional polymer of **6.4**. Ellipsoids are drawn at the 50 % probability level.

| Table 6.6. Selected bond lengths (Å), angles (°), and important distances for Ag(3-amp) <sub>2</sub> OTf (6.4) <sup>a</sup> |           |             |           |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|--|
| Ag1-N2                                                                                                                      | 2.3065(2) | Ag1-N3#1    | 2.3273(2) |  |
| Ag1-N4                                                                                                                      | 2.3352(2) | Ag1-N1#2    | 2.3483(2) |  |
| N2-Ag1-N3#1                                                                                                                 | 119.86(7) | N2-Ag1-N4   | 105.34(6) |  |
| N3#1-Ag1-N4                                                                                                                 | 119.58(7) | N2-Ag1-N1#2 | 104.74(7) |  |
| N3#1-Ag1-N1#2                                                                                                               | 96.63(7)  | N4-Ag1-N1#2 | 108.92(7) |  |
| N1-H1AO2#5                                                                                                                  | 3.076(3)  | N1-H1BO1#3  | 2.980(3)  |  |
| N3-H3AO3#4                                                                                                                  | 3.225(3)  | N3-H3BO2#6  | 3.318(3)  |  |
|                                                                                                                             |           |             |           |  |

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = x-1/2, -y+3/2, -z: #2 = -x+2, y-1/2, -z+1/2: #3 = -x+2, y+1/2, -z+1/2: #4 = x+1/2, -y+3/2, -z: #5 = x+1, y+1, z: #6 = -x+3/2, -y+1, z-1/2

appearance of the resulting polymer. In this case, the  $SO_3^-$  head of the triflate causes the aminomethyl tails of the ligand to twist in opposing directions such that the growth of the complex occurs in three dimensions rather than two. An expanded view of this growth is shown in Figure 6.8. The same type of distortions that were seen in the tetrahedral metal environments of **6.3** are again displayed in **6.4**, though not as severe, with the N–Ag–N angles ranging from 96.63(7) to 119.87(7) °. Likely due to this more relaxed conformation, the Ag–N bonds settle into a position to where they are again more comparable in length. The Ag–amine distances show a range of 2.327(2) to 2.348(2) Å while the Ag–pyridyl distances are 2.307(2) to 2.348(2) Å. Geometric parameters are given in Table 6.6.

Compounds **6.5** and **6.6** result when 2,2'-bipyridine is added to solutions of the 3-amp ligand with either of the previous silver salts. The strong chelating action of the bipy ligand acts as a scissor to truncate the polymers at each metal center. In the resulting structures all of the silvers are three-coordinate with two of the donors being those of the 2,2'-bipy. The planarity of the metal environments is conducive to the formation of the  $d^{10}$  metal-metal interaction that is currently the object of much scrutiny from the theoretical community.<sup>163,171-173</sup> It is interesting to note that the ratio of 3-amp ligand in the present cases is insignificant; provided that there is at least  $\frac{1}{2}$  equivalent present to bridge the metal centers, compounds **6.5** and **6.6** will be formed. An excess of 3-amp has been so far unable to force a greater ratio of ligand-to-metal than 1:2 in either structure.

When 2,2'-bipy is added to either of the solutions that produced **6.2** or **6.3** a stoichiometric amount of silver is bound by its chelating bite. It was assumed that as



Figure 6.8. An extended view of the 3-dimensional cationic network of **6.4**. All hydrogen atoms except for those on the amines have been omitted for clarity.

long as there is no more than a single equivalent of the 2,2'-bipy present, there should be at least two available binding sites on each metal center from which polymerization by 3-amp can occur. Contrary to this supposition, it was seen that no more than ½ of an equivalent of 3-amp ligand could be incorporated into the structures obtained when the bidentate bipyridine is present. Crystallization of 3-amp with Agtfa and 2,2'-bipy occurs in a 1:2:2 ratio to form compound **6.5** which is seen in Figure 6.9 with selected geometric data shown in Table 6.7. The single 3-amp ligand that is present acts to bridge two metal centers that are themselves capped by the bipyridyl creating two coordinatively unique silvers. This unit is then connected to an identical one via Ag–Ag interactions such that



Figure 6.9. Thermal ellipsoid plot of the tetrametallic ring of **6.5** showing the H–bonding of the tfa<sup>-</sup> anions to the amine hydrogens. The symmetry generated portion of the structure is shown dashed. All other hydrogens and anions have been removed for clarity. Ellipsoids are drawn at the 50 % probability level.

| Ag1-N1       | 2.1487(2) | Ag1-N4          | 2.2552(2)  |
|--------------|-----------|-----------------|------------|
| Ag1-N3       | 2.3313(2) | Ag1-Ag2#1       | 3.0583(3)  |
| Ag2-N2       | 2.1481(2) | Ag2-N6          | 2.2143(2)  |
| Ag2-N5       | 2.382(2)  | Ag2-Ag1#1       | 3.0583(3)  |
| Ag2-Ag2#2    | 3.1615(4) |                 |            |
|              |           |                 |            |
| N1-Ag1-N4    | 154.80(7) | N1-Ag1-N3       | 131.65(7)  |
| N4-Ag1-N3    | 72.58(7)  | N1-Ag1-Ag2#1    | 95.43(5)   |
| N4-Ag1-Ag2#1 | 91.29(5)  | N3-Ag1-Ag2#1    | 89.05(4)   |
| N2-Ag2-N6    | 161.15(7) | N2-Ag2-N5       | 125.99(7)  |
| N6-Ag2-N5    | 72.31(7)  | N2-Ag2-Ag1#1    | 83.18(5)   |
| N6-Ag2-Ag1#1 | 89.56(5)  | N5-Ag2-Ag1#1    | 99.40(5)   |
| N2-Ag2-Ag2#2 | 113.37(5) | N6-Ag2-Ag2#2    | 75.15(5)   |
| N5-Ag2-Ag2#2 | 70.00(5)  | Ag1#1-Ag2-Ag2#2 | 163.358(1) |
|              |           |                 |            |
| N1-H1AO3#3   | 2.893(3)  | N1-H1BO4#4      | 2.868(2)   |
|              |           |                 |            |

Table 6.7. Selected bond lengths (Å), angles (°), and important distances for Ag<sub>2</sub>(2,2'-bipy)<sub>2</sub>-μ-(3-amp)(tfa)<sub>2</sub> (**6.5**)<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = -x, -y+1, -z+2: #2 = -x+1, -y+1, -z+2: #3 = x-1, y, z+1: #4 = -x+1, -y+1, -z+1.

the two 3-amp bridges are arranged head-to-tail with respect to one another. A tfa<sup>-</sup> anion sits comfortably in the void on each side of the resulting tetrametallic ring and forms a H-bond bridge through both oxygen atoms to each of the amines. The metal-metal interaction of this loop appears to be supported by the  $\pi$ -stacking of the aromatic bipy rings which assists Ag1 and Ag2A to stay within 3.0583(3) Å of one another. A second Ag–Ag interaction involving Ag2 and its symmetry equivalent joins this cycle to an identical one both above and below the original, effectively constructing a polymer held together by metal–metal interactions that is demonstrated in Figure 6.10. This second interaction is a bit longer than the first at 3.1615(4) Å, likely due to the lack of H-bonding assistance, though they are again assisted by  $\pi$ -stacking of the pyridyl donors. The four silver stacked chain of trigonal metals appears to be an unusually stable configuration of this particular coinage metal and has been demonstrated previously.<sup>17,66,145,183</sup> Each of the silvers of this structure are in a distorted trigonal geometry caused by the acute bite angle of the bipyridyl ligand. Angles around Ag1 and Ag2 range from 72.31(7) ° on the low end to 161.15(7) °. However, the N-donor environments of both metals are nicely planar with the metal being only removed from the nitrogen plane by a miniscule degree (< 0.04 Å) by attractive interactions with the adjoining metals. The Ag1-amine and Ag2-pyridyl distances are identical here at 2.148(2) Å. However, the Ag–N<sub>bipy</sub> distances are not as symmetric, ranging from 2.148(2) to 2.382(2) Å.

Due to the same factors that caused the stoichiometric limitations on compound **6.5**, compound **6.6** has only been obtainable in a 1:2:2 ratio of 3-amp ligand with AgOTf and 2,2'-bipy. **6.6** was obtained in an analogous manner to **6.5** by the addition of a single



Figure 6.10. An extended view of the cationic polymer of  $Ag_4$  units formed by the metal-metal interactions of **6.5**. Anions and H-atoms have been removed for clarity.

equivalent of 2,2'-bipy to a solution of 3-amp and AgOTf, where again the relative stoichiometries of 3-amp and Ag were irrelevant. A thermal displacement plot of **6.6** is shown in Figure 6.11 and selected bond lengths and angles in Table 6.8. The structure contains two of the 3-amp bridged Ag-bipy units similar to that seen in **6.5**. However, in this case the change in geometry about the hydrogen bonding head of the anion results in the creation of an overall structural motif that is somewhat of a combination of two others that we have described. The first similarity is to that of the previous structure: one of the units, when expanded, is seen to form a tetrametallic ring comparable to that of **6.5**. Here again the anion sits within the space created on either side of the ring drawing the amine groups together through H–bonds. In this case, however, the ring stands alone and is not part of a polymeric network due to the lack of metal–metal interactions extending above



Figure 6.11. Thermal ellipsoid plot of the two different cationic parts of **6.6** with the unique portion labeled. Symmetry generated atoms are shown dashed. Anions and all hydrogen atoms except for those on the amines have been removed for clarity. Ellipsoids are drawn at the 50 % probability level.

| Ag1-N1        | 2.166(2)  | Ag1-N3        | 2.260(2)  |
|---------------|-----------|---------------|-----------|
| Ag1-N4        | 2.341(2)  | Ag1-Ag2#1     | 3.0846(3) |
| Ag2-N2        | 2.141(2)  | Ag2-N6        | 2.221(2)  |
| Ag2-N5        | 2.357(2)  | Ag2-Ag1#1     | 3.0846(3) |
| Ag3-N7        | 2.150(2)  | Ag3-N9        | 2.233(2)  |
| Ag3-N10       | 2.350(3)  | Ag4-N8        | 2.139(2)  |
| Ag4-N12       | 2.275(2)  | Ag4-N11       | 2.277(2)  |
| Ag4-Ag4#2     | 3.0399(4) | -             |           |
|               |           |               |           |
| N1-Ag1-N3     | 155.92(8) | N1-Ag1-N4     | 131.85(8) |
| N3-Ag1-N4     | 72.14(8)  | N1-Ag1-Ag2#1  | 99.96(6)  |
| N3-Ag1-Ag2#1  | 79.60(6)  | N4-Ag1-Ag2#1  | 81.63(6)  |
| N2-Ag2-N6     | 153.20(8) | N2-Ag2-N5     | 132.81(8) |
| N6-Ag2-N5     | 73.00(8)  | N2-Ag2-Ag1#1  | 85.77(6)  |
| N6-Ag2-Ag1#1  | 91.92(6)  | N5-Ag2-Ag1#1  | 109.17(5) |
| N7-Ag3-N9     | 152.96(9) | N7-Ag3-N10    | 134.85(9) |
| N9-Ag3-N10    | 72.15(8)  | N8-Ag4-N12    | 142.39(8) |
| N8-Ag4-N11    | 143.89(8) | N12-Ag4-N11   | 73.10(8)  |
| N8-Ag4-Ag4#2  | 94.98(6)  | N12-Ag4-Ag4#2 | 83.48(6)  |
| N11-Ag4-Ag4#2 | 96.34(6)  |               |           |
|               |           |               |           |
| N1-H1AO3#1    | 3.073(3)  | N1-H1BO1      | 3.061(3)  |
| N7-H7AO5#3    | 3.208(3)  | N7-H7BO7      | 3.034(3)  |
|               |           |               |           |

Table 6.8. Selected bond lengths (Å), angles (°), and important distances for  $Ag_2(2,2'-bipy)_2-\mu-(3-amp)(OTf)_2$  (6.6)<sup>a</sup>

<sup>a</sup> Symmetry transformations used to generate atoms: #1 = -x+1, -y, -z+2: #2 = -x+1, -y+2, -z+1: #3 = x-1, y, z.

the pyridyl bound silvers. The Ag–Ag interactions here are similar in distance to those previously seen at 3.0846(3) Å. The second similarity involves the second unit and bears resemblance to the compound formed by reacting 3-amp with 2,2'-bipy and silver with a non-interacting anion. In the absence of the assistance of the H–bonding bridge across the opposing amines, the 4-silver ring opens and twists 180 ° about the Ag4–Ag4(A) bond. This leaves a spread open conformer held together by the single  $\pi$ –stacking assisted metal–metal interaction which is comparable to those seen in the closed ring at 3.0399(4) Å. H–bonding to the anions here occurs through only a single oxygen and merely serve to hold its place in the lattice. This mixed conformation motif appears to be the most favored in the case of triflate as we have been yet unable to force crystallization of either isolated structure through temperature changes. All of the silvers present are again seen to be in a bipy distorted trigonal environment.

#### Luminescence Properties

In examining the luminescence properties of **6.1-6.6** it is noticed that the emission bands occur along the same area of the spectrum as those of the 3-ampAgX compounds shown in Figure 6.12 most of the fluorescence occurs in the region centered at approximately 470 nm. The less strongly emitting 1:1 3-ampAgOTf compound is where X is a noncoordinating ligand, though those of the more coordinating ligand tend to be a bit more intense. It can be seen by the emission spectra of representative slightly removed from the others and is centered at around 410 nm. The excitation spectra of all the compounds were also expectedly similar. A full tabulation of all the features of the luminescence spectra of **6.1-6.6** are presented in Table 6.9.



Figure 6.12. Normalized excitation and emission spectra of representative 3-amp Ag(I) compounds taken in acetonitrile glasses at 1 X 10<sup>-4</sup>M concentration at 77 K. = Ag(3-amp)<sub>2</sub>OTf, = = Ag(3-amp)<sub>2</sub>OTf, = = Ag(3-amp)(tfa), ... = Ag<sub>2</sub>(3-amp)(BF<sub>4</sub>)<sub>2</sub>(2,2'-bipy)<sub>2</sub>, = = Ag(3-amp)(OTf).

| Compound | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$    |
|----------|----------------------------|-----------------------------------|
| 6.1      | 292, 297                   | 443, 463, 486                     |
| 6.2      | 300, 321                   | 383, 422, 423                     |
| 6.3      | 297                        | 443, 452, 470, 482, 502           |
| 6.4      | 293                        | 437, 464, 481, 508, 521, 544      |
| 6.5      | 290                        | 428, 437, 459, 476, 505, 518, 535 |
| 6.6      | 335                        | 412, 443, 465                     |
|          |                            |                                   |

Table 6.9. Luminescent Spectral Data for compounds 6.1–6.6, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.

# Conclusions

We have demonstrated here that a variety of silver(I) complexes can be formed by using the mixed-donor ligand 3-aminomethylpyridine with silverX, where  $X = OTf^-$  or tfa<sup>-</sup>, with structural features such as dimensionality of the overall complex, coordination number, and coordination environment being controlled by variations in counterion and ratio of ligand to metal. It is seen that with the highly flexible coordination sphere of the silver(I) cation changes in stoichiometry can be an effective way of manipulating the structures and properties of the resulting compounds. The results of this work add to the relatively unexplored area of ratio dependence which nicely supplements the thoroughly explored field of anion dependent structures of the coinage metals. It was shown here how the common silver coordination numbers from 2–4 can easily be obtained producing structural motifs ranging from discrete structures to three-dimensional networks.

### Experimental

## **General Procedures**

All experiments were carried out under an argon atmosphere, using a Schlenk line and standard Schlenk techniques. Glassware was dried at 120°C for several hours prior to use. All reagents were stored in an inert atmosphere glovebox; solvents were distilled under nitrogen from the appropriate drying agent immediately before use. 3-aminomethylpyridine and 2,2'-bipyridine were purchased from Aldrich and used as received. Silver(I) trifluoroacetate and silver(I) triflate were purchased from Strem Chemicals Inc. and used as received. <sup>1</sup>H NMR spectra were recorded at 300.13 MHz on a Bruker Spectrospin 300 MHz spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, Georgia.

#### General Synthesis

General procedures for the synthesis of compounds **6.1-6.4** involve the addition of a 5 mL acetonitrile solution of 3-aminomethylpyridine to a stirred solution of the appropriate silver salt in 5 mL of acetonitrile. The mixtures are then stirred for 10 minutes then dried in vacuo to leave white or off-white powders. All flasks are shielded from light with aluminum foil to prevent the photodecomposition of the silver compounds. Crystals of **6.2**, **6.2**, **6.5** and **6.6** were obtained by the slow diffusion of ether into acetonitrile solutions at 5 °C. Crystals of **6.3** and **6.4** were grown by vapor diffusion of ether into acetonitrile solutions at 5 °C. The amounts of reagents used, yields, and analytical data are presented below as well as any modifications to the general synthetic procedure. Percent yields are based upon the amount of silver salt used.

### Preparations

*poly-[Ag(3-amp)tfa]* (6.1). This reaction used 3-aminomethylpyridine (0.150 g, 1.40 mmol) added to Agtfa (0.306 g, 1.40 mmol) to leave a white powder in 91 % yield (0.415 g, 1.26 mmol) upon evaporation of the solvent. Colorless blocks of 6.1 were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.19 s, br, 2H, (-NH<sub>2</sub>); 3.89 s, 2H, (-CH<sub>2</sub>); 7.41 m, 1H; 7.83 t,d, 2H; 8.45 d, 1H. Anal. Calcd for AgC<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>F<sub>3</sub>: C, 29.20; H, 2.45; N, 8.51. Found: C, 29.38; H, 2.39; N, 8.40.

*poly-[Ag(3-amp)OTf]* (6.2). This reaction used 3-aminomethylpyridine (0.075 g, 0.694 mmol) added to AgOTf (0.178 g, 0.693 mmol) to leave a white powder in 96 % yield (0.239 g, 0.674 mmol) upon evaporation of the solvent. Colorless plates of 6.2 were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.00 s, br, 2H, (-NH<sub>2</sub>); 3.87 s, 2H, (-CH<sub>2</sub>); 7.43 m, 1H; 7.81 t,d, 2H; 8.49 m, 1H. Anal. Calcd for AgC<sub>7</sub>H<sub>8</sub>N<sub>2</sub>O<sub>3</sub>SF<sub>3</sub>: C, 25.80; H, 2.47; N, 8.56. Found: C, 26.27; H, 2.33; N, 8.77.

poly-[ $Ag(3-amp)_2tfa$ ] (6.3). In this reaction two equivalents of 3-aminomethylpyridine (0.150 g, 1.40 mmol) were added to Agtfa (0.153 g, 0.693 mmol). Removal of the solvent in vacuo left an oily brown solid. Dissolution of this solid in 1 mL of acetonitrile followed by precipitation with 15 mL of ether resulted in **6.3** being obtained as a white powder in 73 % yield (0.221 g, 0.514 mmol). Colorless blocks were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ 3.27 s, br, 4H, (-NH<sub>2</sub>); 3.85 s, 4H, (-CH<sub>2</sub>); 7.31 m, 2H; 7.78 t,d, 4H; 8.43 d, 2H. Anal. Calcd for AgC<sub>14</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>F<sub>3</sub>: C, 38.46; H, 3.69; N, 12.82. Found: C, 38.24; H, 3.57; N, 12.54.

*poly-[Ag(3-amp)<sub>2</sub>Otf]* (6.4). This reaction used 2 equivalents of 3-aminomethylpyridine (0.150 g, 1.40 mmol) added to AgOTf (0.178 g, 0.693 mmol). Removal of the solvent in vacuo leaves a yellow oil. Dissolution of this oil in a small aliquot of ether followed by precipitation with 15 mL of ether leaves 6.4 as a white powder in 73 % yield (0.174 g, 0.508 mmol). Colorless blocks were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.02 s, br, 4H, (-NH<sub>2</sub>); 3.89 s, 4H, (-CH<sub>2</sub>); 7.38 m, 2H; 7.78 t,d, 4H; 8.47 d, 2H. Anal. Calcd for AgC<sub>13</sub>H<sub>16</sub>N<sub>4</sub>O<sub>3</sub>SF<sub>3</sub>: C, 33.00; H, 3.41; N, 11.84. Found: C, 33.18; H, 3.24; N, 11.75.

poly-[ $Ag_2(2,2'-bipy)_2-\mu-(3-amp)(tfa)_2$ ] (6.5). A solution of one equivalent of 3-aminomethylpyridine (0.100 g, 0.926 mmol) in 5 mL CH<sub>2</sub>Cl<sub>2</sub> was added to a stirred suspension of 2 equivalents of Agtfa (0.408 g, 1.86 mmol) in 5 mL CH<sub>2</sub>Cl<sub>2</sub>. This solution was stirred for 10 minutes then 2 equivalents of 2,2'-bipyridine (0.288 g, 1.90 mmol) in 5 mL CH<sub>2</sub>Cl<sub>2</sub> were added. This mixture was stirred an additional 10 minutes then dried in vacuo to leave **6.5** as an off-white powder in 92 % (0.725 g, 0.852 mmol) yield. Colorless block shaped crystals were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.91 s,br, 2H, (-NH<sub>2</sub>); 4.75 s, 2H, (-CH<sub>2</sub>); 7.40 m, 8H; 7.89 m, 9H; 8.10 d, 2H; 8.55 d, 1H. Anal. Calcd for Ag<sub>4</sub>C<sub>60</sub>H<sub>48</sub>N<sub>12</sub>O<sub>8</sub>F<sub>12</sub>·CH<sub>2</sub>Cl<sub>2</sub>: C, 40.49; H, 2.79; N, 9.29. Found: C, 40.45; H, 2.82; N, 9.37.

 $Ag_2(2,2'-bipy)_{2-\mu-(3-amp)}(OTf)_2$  (6.6). To a stirred solution of one equivalent of 3-aminomethylpyridine (0.100 g, 0.926 mmol) in 5 mL CH<sub>3</sub>CN was added 2 equivalents of AgOTf (0.474 g, 1.84 mmol) in 5 mL CH<sub>3</sub>CN. This was stirred for 10 minutes then a solution of 2,2'-bipyridine (0.288g, 1.84 mmol) in 5 mL CH<sub>3</sub>CN was added. The mixture was stirred an additional 10 minutes then dried in vacuo to leave a fluffy white powder in 89 % (0.759 g, 0.818 mmol) yield. Colorless prisms were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 4.22 s,br, 2H, (-NH<sub>2</sub>); 4.82 s, 2H, (-CH<sub>2</sub>); 7.55 m, 8H; 8.05 m, 9H; 8.26 d, 2H; 8.65 d, 1H. Anal. Calcd for Ag<sub>2</sub>C<sub>28</sub>H<sub>24</sub>N<sub>6</sub>O<sub>6</sub>F<sub>6</sub>S<sub>2</sub>: C, 35.99; H, 2.59; N, 8.99. Found: C, 35.93; H, 2.72; N, 9.47.

# Crystallography

A summary of the experimental crystallographic data for **6.1** to **6.6** is given in Table 6.10. Tables of full bond lengths and angles can be found in Appendix B, Tables B.20 to B.25. Crystallographic data were collected on crystals with dimensions  $0.289 \times$  $0.189 \times 0.169$  mm for **6.1**,  $0.140 \times 0.090 \times 0.060$  mm for **6.2**,  $0.190 \times 0.070 \times 0.070$  mm for **6.3**,  $0.293 \times 0.270 \times 0.119$  mm for **6.4**,  $0.195 \times 0.172 \times 0.140$  mm for **6.5** and  $0.238 \times$  $0.187 \times 0.180$  mm for **6.6**. Data were collected at 110 K on a Bruker X8 Apex using MoK $\alpha$  radiation ( $\lambda$  =0.71073 Å). All structures were solved by direct methods after the correction of the data using SADABS.<sup>139</sup> All of the data were processed using the Bruker AXS SHELXTL software, version 6.10.<sup>140</sup> Unless otherwise noted, all non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated

|                                   | 6.1                            | 6.2                            | 6.3                       | 6.4                        | 6.5                         | 6.6                                     |
|-----------------------------------|--------------------------------|--------------------------------|---------------------------|----------------------------|-----------------------------|-----------------------------------------|
|                                   |                                |                                |                           |                            |                             |                                         |
| Formula                           | $C_{32}H_{32}Ag_4F_{12}N_8O_8$ | $C_{14}H_{16}Ag_2F_6N_4O_6S_2$ | $C_{14}H_{16}AgF_3N_4O_2$ | $C_{13}H_{16}AgF_3N_4O_3S$ | $C_{32}H_{27}Ag_2F_6N_7O_4$ | $C_{56}H_{48}Ag_4F_{12}N_{12}O_{12}S_4$ |
| Formula weight                    | 1316.14                        | 730.17                         | 437.18                    | 473.23                     | 903.35                      | 1868.78                                 |
| a (Å)                             | 10.3431(4)                     | 10.255(1)                      | 12.5447(9)                | 7.5817(8)                  | 11.682(1)                   | 12.552(1)                               |
| b (Å)                             | 17.0246(5)                     | 23.941(2)                      | 10.5573(7)                | 10.478(1)                  | 12.249(1)                   | 14.036(1)                               |
| c (Å)                             | 23.3149(8)                     | 9.1244(8)                      | 12.9994(9)                | 21.663(2)                  | 13.297)1)                   | 19.713(2)                               |
| α                                 |                                |                                |                           | × /                        | 78.317(2)                   | 100.968(2)                              |
| β (°)                             |                                | 91.743                         | 108.001(2)                |                            | 64.335(2)                   | 97.572(2)                               |
| γ (°)                             |                                |                                |                           |                            | 75.003(2)                   | 102.963(2)                              |
| space group                       | $P2_{1}2_{1}2_{1}$             | $P2_1/c$                       | $P2_1/n$                  | $P2_{1}2_{1}2_{1}$         | P-1                         | P-1                                     |
| $D_{calcd}$ (g cm <sup>-3</sup> ) | 2.129                          | 2.166                          | 1.773                     | 1.826                      | 1.821                       | 1.900                                   |
| $\mu (mm^{-1})$                   | 1.994                          | 2.025                          | 1.277                     | 1.344                      | 1.272                       | 1.413                                   |
| $2\theta_{max}$ (°)               | 52.74                          | 52.74                          | 56.74                     | 51.50                      | 56.62                       | 53.02                                   |
| reflns measured                   | 51253                          | 58756                          | 60463                     | 13609                      | 22035                       | 49261                                   |
| reflns used (R <sub>int</sub> )   | 8358 (0.0386)                  | 4576 (0.0404)                  | 4039 (0.0329)             | 3284 (0.0252)              | 8117 (0.0318)               | 13372 (0.0340)                          |
| restraints/param                  | 0/577                          | 0/307                          | 19/274                    | 0/226                      | 6/489                       | 0/901                                   |
| R1, $[I \ge 2\sigma(I)]$          | 0.0209                         | 0.0204                         | 0.0159                    | 0.0178                     | 0.0277                      | 0.0279                                  |
| $wR^2$ , [I>2 $\sigma$ (I)]       | 0.0490                         | 0.0510                         | 0.0427                    | 0.0433                     | 0.0608                      | 0.0679                                  |
| $R(F_0^2)$ , (all data)           | 0.0233                         | 0.0258                         | 0.0185                    | 0.0191                     | 0.0399                      | 0.0357                                  |
| $R_w(F_o^2)$ , (all               | 0.0497                         | 0.0532                         | 0.0436                    | 0.0436                     | 0.0663                      | 0.0724                                  |
| data)                             |                                |                                |                           |                            |                             |                                         |
| $GooF on F^2$                     | 1.054                          | 1.061                          | 1.056                     | 1.061                      | 1.020                       | 1.021                                   |
|                                   |                                |                                |                           |                            |                             |                                         |

Table 6.10. Crystallographic Data for compounds 6.1 to 6.6

positions. The trifluoromethyl portion of the non-coordinated anion of **6.3** is disordered over 3 positions. The structure of **6.5** contains a disordered trifluoroacetate as well as a solvent acetonitrile molecule.

## CHAPTER SEVEN

# Variability in the Structures of [4-(aminomethyl)pyridine]silver(I) Complexes through effects of Ligand Ratio, Anion, Hydrogen Bonding, and π-Stacking

# Introduction

Recent interest in the rational design and construction of novel discrete and polymeric metal-organic coordination complexes has reached a new high due to the realization of their potential for use as functional materials.<sup>3,8,12,24,26,31,40,50,51,60,61,83,151,184-<sup>187</sup> Designed coordination architectures have found application in fields as far spread as catalysis, molecular recognition, sieving, separation and non-linear optics.<sup>4,7,10,25,63,141,176</sup> Supramolecular chemists have typically fine tuned the properties of these complexes by using modifications in functionality, rigidity, or geometry of the basis ligand or by changes in solvent or counterion in charged systems.<sup>11,13,21,31,49,69,88,92,142,146-148,154,159,177-<sup>179,182</sup> Others still have made notable contributions to the field utilizing the non-covalent  $\pi$ -stacking or H-bonding interactions to impart desired characteristics on coordination</sup></sup>

complexes.<sup>2,62,188,189</sup> Though a wealth of information is available on crystal engineering studies employing the aforementioned methods the equally effectual practice of stoichiometric control has gone largely unexplored and thus unexploited.<sup>68,69</sup> Only recently have we and a handful of other researchers taken interest in investigating the effect that ratio dependence can impart upon conformation, dimensionality, and physical properties of supramolecular species.<sup>70,71,91,177-179</sup> In several of the previous chapters we have demonstrated that drastic structural modifications can be forced upon coordination complexes through variations in the ratio of ligand to metal; particularly in silver which



Scheme 7.1. Typical coordination modes of amp ligands with silver(I) salts.

has the capacity to readily accept changes in its coordination number and geometry.<sup>46,154,178,182</sup>

Herein we continue our comprehensive study of the structural effects brought on by changes in ratio of the series of isomeric aminomethylpyridine (amp) ligands shown in Scheme 7.1 with various silver(I) salts. With the factors effecting the structural characteristics of the 2- and 3-ampAgX ( $X = BF_4^-$ , tfa<sup>-</sup>, or OTf<sup>-</sup>) complexes being previously discussed<sup>177-179,182</sup> we now report on the ratio dependence of 4-ampAgX, with the present account also illustrating the relationship between anion and stoichiometric effects. It is seen that the degree of interaction that the anions (particularly those of oxygen) have with the metal centers as well as the extent of the H-bonding network present is related to the ratio of ligand to metal present in the structure. Also affecting the overall growth of the complexes is the  $\pi$ -stacking interactions that occur between adjacent pyridyl rings.

#### Results and Discussion

#### Synthesis

The 4-aminomethylpyridine complexes **7.1–7.5** were synthesized by the direct reaction of the 4-amp ligand with the appropriate silver(I) salt (OTf<sup>-</sup>, tfa<sup>-</sup>, or BF<sub>4</sub><sup>-</sup>) in varying ratios. All of the compounds containing only 4-amp and silver were isolated as fine white to off-white powders. The 2:1 complex, **7.3**, is the only compound reported herein which shows only sparing solubility in acetonitrile and precipitates in the correct ratio upon formation. As a result, crystallization of **7.3** was achieved with some difficulty from saturated CH<sub>3</sub>CN solutions grown over several weeks and the <sup>1</sup>H NMR spectrum are reported in CD<sub>3</sub>OD solvent. Compounds **7.6.1** and **7.6.2** were isolated as fine yellow and off-white powders, respectively. Both were formed by the addition of the corresponding bipyridyl ligand to solutions of 4-amp and AgBF<sub>4</sub><sup>-</sup>. The formation of **7.6.1** and **7.6.2** was seen to be independent of the ratio of 4-amp to Ag<sup>+</sup>, so long as there was sufficient 4-amp present to bridge each pair of bipy-capped silver ions. 4-amp in excess of  $\frac{1}{2}$  equivalent was always isolated in the crude product as uncoordinated ligand. Analytical data for compounds **7.1** to **7.6.2** are presented in Tables 7.1 and **7.2**.

## X-Ray Crystal Structures

The range of metal coordination environments in the crystal structures of compounds **7.1–7.6.2** is demonstrative of the facility with which the silver(I) cation varies its coordination sphere to accept the number and type of donors required of it.

|       | compound <sup>a</sup>                                                                                  | yield |             | analytical (% | ) <sup>b</sup> |  |
|-------|--------------------------------------------------------------------------------------------------------|-------|-------------|---------------|----------------|--|
|       |                                                                                                        | (%)   | С           | Н             | Ν              |  |
| 7.1   | poly-[Ag(4-amp)OTf]                                                                                    | 96    | 26.2 (25.8) | 2.3 (2.4)     | 8.7 (8.6)      |  |
| 7.2   | poly-[Ag(4-amp)tfa]                                                                                    | 97    | 29.4 (29.2) | 2.4 (2.5)     | 8.4 (8.5)      |  |
| 7.3   | poly-[Ag(4-amp) <sub>2</sub> tfa]                                                                      | 94    | 38.2 (38.4) | 3.6 (3.7)     | 12.5 (12.8)    |  |
| 7.4   | poly-[Ag(4-amp) <sub>2</sub> (OTf)]                                                                    | 78    | 33.2 (33.0) | 3.3 (3.4)     | 11.7 (11.8)    |  |
| 7.5   | poly-[Ag(4-amp) <sub>2</sub> BF <sub>4</sub> ]                                                         | 84    | 35.0 (35.1) | 3.8 (3.9)     | 13.3 (13.6)    |  |
| 7.6.1 | Ag <sub>2</sub> (2,2'-bipy) <sub>2</sub> -µ-(4-amp)(BF <sub>4</sub> ) <sub>2</sub>                     | 84    | 40.6 (40.3) | 3.2 (3.3)     | 11.2 (11.3)    |  |
| 7.6.2 | poly-[Ag <sub>2</sub> (5,5'-bis methyl-2,2'-bpy) <sub>2</sub> (4-amp)(BF <sub>4</sub> ) <sub>2</sub> ] | 89    | (41.6)      | (3.7)         | (9.7)          |  |

Table 7.1. Analytical and Physical Data

<sup>a</sup> All compounds are white or off white solids. <sup>b</sup> Calculated values are given in parenthesis. Percent compositions were not obtained for **7.6.2** as it was used only as a structural model for compound **7.6.1**.

|                    | $^{1}\text{H}/\delta^{a}$                                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1                | 3.81 s, br, 2H, (-NH <sub>2</sub> -); 3.97 s, 2H, (-CH <sub>2</sub> -); 7.46 m, 2H; 8.43 m, 2H                                                             |
| 7.2                | 3.81 s, br, 2H, (-NH <sub>2</sub> -); 3.97 s, 2H, (-CH <sub>2</sub> -); 7.54 m, 2H; 8.43 m, 2H                                                             |
| 7.3                | 4.57 s, br, 2H, (-NH <sub>2</sub> -); 5.46 s, 2H, (-CH <sub>2</sub> -); 8.11 m, 2H; 9.07 2H                                                                |
| 7.4                | 3.26 s, br, 4H, (-NH <sub>2</sub> -); 3.91 s, 24, (-CH <sub>2</sub> -); 7.36 m, 4H; 8.46 m, 4H                                                             |
| 7.5                | 2.79 s, br, 4H, (-NH <sub>2</sub> -); 3.89 s, 4H, (-CH <sub>2</sub> -); 7.36 m, 2H; 8.38 m, 2H                                                             |
| 7.6.1              | 2.17 s,br, 2H, (-NH <sub>2</sub> -); 3.98 s, 2H, (-CH <sub>2</sub> -); 8.69 m, 8H; 8.44 m, 9H; 8.08 m, 2H; 7.59 m, 1H                                      |
| 7.6.2              | 2.39 s, 12H (Me); 2.57 2s, br, 2H (-NH <sub>2</sub> -); 3.87 s, 2H (-CH <sub>2</sub> -); 7.33 m, 4H; 7.81 dd, 2H; 8.05 dd, 2H; 8.42 m, 6H                  |
| <sup>a 1</sup> H N | MR spectra of Compound 7.3 was recorded in CD <sub>3</sub> OD at 298 K. All other <sup>1</sup> H NMR spectra were recorded in CD <sub>3</sub> CN at 298 K. |

Table 7.2. Hydrogen-1 NMR Data

Coordination numbers from 2-5 are seen encompassing geometries of linear (7.1, 7.2), T-shaped (7.2), trigonal (7.6.2), tetrahedral (7.3–7.5), and trigonal bipyramidal (7.6.2). The conformation of the ligands is seen to be quite sensitive to counterion effects due to the strong H-bonding propensity of the amine donor when oxygen containing anions are present. However, the silver environment seems to be just as susceptible, if not more so, to change when added equivalents of ligand are presented to it. Compounds 7.1 and 7.2 both display a 1:1 ratio of 4-amp ligand to metal with variances between the two arising from the difference in basicity of triflate versus trifluoroacetate. The less strongly interacting tetrafluoroborate 1:1 complex with 4-amp has previously been reported and displays a similar structural motif to those of the first two compounds reported herein.<sup>91</sup> A second equivalent of 4-amp effectively forces the metal center to accept a tetrahedral geometry to receive the two added N-donors present. As a result, compounds 7.3–7.5 all adopt similar 4-coordinate metal environments of two each amine and pyridyl donors. However, the supramolecular structures of these compounds are again quite varied due to the differences in interactions of the anions with the amine protons. Interestingly, the intermediate 3:2 ratio of ligand to metal which we were able to achieve with both 2-amp and 3-amp has been thus far elusive to isolation. This is likely due to the inordinately stable 4-ampAg "box" displayed in Scheme 7.1 that is formed when a 2:1 ratio is achieved. This "box" is constructed of a pair of head-to-tail coordinated 4-amp ligands bound to two symmetry equivalent silvers. In this arrangement the pyridyl  $\pi$ -systems of the opposing ligands are conveniently situated to interact with one another forming an exceptionally sound bimetallic cycle. This "box" is the common unit relating all three 2:1 structures. Compound **7.6.1** consistently produced poor quality crystals and therefore was modeled by its methylated relative, **7.6.2**, in order to study the solid state structure of the 4-amp bridged bis-[Ag(I)2,2'-bipy] unit.

The 1:1 ratio of ligand to metal in compounds **7.1** and **7.2** causes a 2:1 ratio of N to Ag. This results in both structures adopting a preferred one-dimensional growth due to the propensity of the Ag(I) cation to come to be linear in a two-coordinate environment. Differences between the two structures seem to stem more from the slight differences in coordinating ability of the anions here than in the geometry about the H-bonding head of the anion as was seen in the studies of the other amp isomers.<sup>177-179</sup>

A molecular diagram showing the straight line growth of **7.1** is shown in Figure 7.1 and selected bond lengths and angles are shown in Table 7.3. The *para*-substitution of the aminomethyl group on the pyridyl ring allows for a more outward conformation of the ligand in the direction of perpetuation of the structure than was achieved with the 2- or 3-amps. What results is a polymer which is relatively thin in comparison with the bulky helical and zigzag silver(I) polymers constructed using 2- and 3-amp bridges.<sup>177-179</sup> A general planarity of the polymer is also noticed due to the orientation of the methylene-nitrogen bond nearly parallel to the plane of the pyridyl ring. This is given by the C3-C2-C1-N2 torsion angle of only 5.2(3)°. The triflate anion in this instance acts non-coordinating, preferring to hydrogen bond to the amines rather than link to the metal center, joining the polymers into a pseudo 2-D sheet. Pyridyl-Ag and amine-Ag distances are similar and have typical values at 2.158(2) and 2.164(2)Å, respectively. The N–Ag–N angle is only slightly off linear at 172.73(7)°.

The 1:1 ratio of 4-amp to Agtfa produces another one-dimensional coordination polymer, **7.2**. In this instance, however, the structure is actually composed of two unique



Figure 7.1. Molecular diagram of the cationic polymer **7.1**. Ellipsoids are drawn at the 50% probability level.

| Table 7.3. Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp)OTf (7.1) <sup>a</sup> |           |             |          |  |
|---------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|--|
| Ag1-N1                                                                                                        | 2.158(2)  | Ag1-N2#1    | 2.164(2) |  |
| N1-Ag1-N2#1                                                                                                   | 172.73(7) | C2-C3-C6-N2 | 5.2(3)   |  |
| N2-H…O1#2                                                                                                     | 3.134(3)  | N2-H…O3#3   | 2.986(3) |  |

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = x,y,z-1: #2 = -x+1,-y+1,-z+2: #3 = -x,-y+1,-z+2.

polymers running parallel to one another as shown in Figure 7.2. Selected bond lengths and angles for these polymers are given in Table 7.4. The polymer strands are differentiated from each other by the degree of interaction that each strand has with its associated anion. As seen in the diagram, the upper strand has a non-coordinated anion caused by the angle of approach of the tfa<sup>-</sup> to the polymer in which the  $CO_2^-$  head of the anion is bisected by the plane of that polymer. In the lower strand, the anion approaches from atop the pyridyl plane and is allowed within close enough proximity to bind to the metal centers with a Ag2–O1 bond length of 2.565(2)Å. As a result, both charge neutral and formally positively charged chains are used in the construction of **7.2**. It is also seen that the cationic polymer is more closely related to that of **7.1** than the anion bound polymer in terms of its planarity. In the charged polymer the  $-CH_2-NH_2-$  bond is again relatively close to planar with the pyridyl rings of the chain, showing an acute C2-C3-C6-N2 torsion angle of 7.4(4)°. Distortions in the opposing polymer likely



Figure 7.2. 50% thermal ellipsoid representation of the parallel polymers of **7.2**. Hydrogen atoms have been removed for clarity. Inset is a view down the length of the polymers showing the different approaches of the anions.

| Table 7.4. Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp)tfa (7.2) <sup>a</sup> |                                  |                    |                      |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|----------------------|--|
| Ag1-N2#1<br>Ag2-N3<br>Ag2-O1                                                                                  | 2.143(2)<br>2.157(2)<br>2.565(2) | Ag1-N1<br>Ag2-N4#2 | 2.146(2)<br>2.173(2) |  |
| N3-Ag2-N4#2                                                                                                   | 169.99(9)                        | N3-Ag2-O1          | 103.51(8)            |  |
| N4#2-Ag2-O1                                                                                                   | 81.52(8)                         | C2-C3-C6-N2        | 7.4(4)               |  |
| C8-C9-C12-N4                                                                                                  | 23.1(4)                          | N2#1-Ag1-N1        | 170.68(9)            |  |
| N2-H…O2#4                                                                                                     | 2.837(3)                         | N4-H…O4#5          | 2.973(3)             |  |
| N4-H…O4#6                                                                                                     | 2.979(3)                         | N2-H…O3#3          | 2.859(3)             |  |

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = x+1,y,z: #2 = x-1,y,z: #3 = -x,-y+1,-z+1: #4 = -x,-y+2,-z+1: #5 = x,y,z-1: #6 = -x+1,-y+1,-z+1.

caused by the coordinated tfa<sup>-</sup> result in the analogous C8-C9-C12-N4 angle being made more obtuse at 23.1(4)°. The pyridyl-Ag and amine-Ag bond distances of the neutral polymer are comparable to those seen in **7.1** at 2.157(2) and 2.173(2)Å, respectively. The same distances in the absence of a closely associated anion are, as expected, slightly shorter at 2.146(2) and 2.143(2)Å. An interesting observation of the N-Ag-N bond angles about silvers 1 and 2 sees them nearly identical at 170.68(9) and  $169.99(9)^{\circ}$ , respectively. This distortion is implicative of at least partial interaction between the non-coordinating tfa<sup>-</sup> and the metal center. Hydrogen-bonding to O2 of the coordinated anion and to both oxygens of the non-coordinated anion serve to hold the trifluoroacetates in place as well as acting as a bridge between the parallel polymer strands.

Compounds **7.3-7.5** all display a 2:1 ratio of 4-amp to silver(I) and result from the addition of two equivalents of ligand to the appropriate silver salt. All are based around the bimetallic "box" described previously though these smaller units are connected in different ways to construct the separate structures.

When more than a single equivalent of 4-amp is added to a solution of Agtfa the sparingly soluble compound **7.3** precipitates from the solution. Recrystallization of this solid yields the structure shown in Figure 7.3. Selected geometric parameters for **7.3** are presented in Table 7.5. The unique portion of this structure is labeled in the figure and contains one ligand and one half-occupied silver(I) ion, keeping the correct ratio. When this unique part is grown through an inversion center, the biligand, bimetallic "box" that forms the basis for this and the subsequent two structures can be seen. In the construction of this box the  $-CH_2-NH_2-$  bond rotates normal to the pyridyl plane, displaying a C2-C3-C6-N2 torsion angle of 91.6(4)° and linking two symmetry equivalent silvers with a cross-box Ag-Ag distance of 6.7848(7)Å. In this orientation the opposing pyridyl rings are situated directly adjacent to one another such that they achieve a  $\pi$ - $\pi$  separation of approximately 3.34Å. This favorable  $\pi$ -stacking helps account for the preference of the 4-amp AgX compounds to bypass the 3:2 ratio of ligand to metal and proceed directly to the 2:1 structures. The polymerization of **3** occurs in one



Figure 7.3. A view of the cationic chain of **7.3**. Ellipsoids are drawn at the 30% probability level. All hydrogen atoms except for those on the amines have been removed for clarity.

| Ag1-N2#1                   | 2.321(3)              | Ag1-N2#2      | 2.321(3)  |
|----------------------------|-----------------------|---------------|-----------|
| Ag1-N1#3                   | 2.324(3)              | Ag1-N1        | 2.324(3)  |
| N2#1-Ag1-N2#2              | 100.2(2)              | N2#1-Ag1-N1#3 | 101.3(1)  |
| N2#2-Ag1-N1#3              | 121.26(9)             | N2#1-Ag1-N1   | 121.26(9) |
| N2#2-Ag1-N1<br>C2-C3-C6-N2 | 101.3(1)<br>91.6(4)   | N1#3-Ag1-N1   | 112.1(1)  |
| N2-H…O1#1<br>Ag1…Ag1#1     | 3.008(4)<br>6.7848(7) | N2-H…O2#4     | 3.169(3)  |

Table 7.5. Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp)<sub>2</sub>tfa (7.3)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: For **3**: #1 = -x+1/2, -y+1/2, -z+1: #2 = x-1/2, -y+1/2, z: #3 = -x, y, -z+1: #4 = x+1/2, y-1/2, z.

dimension, forming a linear chain. The back and forth twisting of this chain is assisted by the H-bonding of trifluoroacetates across the face of each link. The chain itself is joined together by the sharing of the two silver occupied corners of each link with the next in line. The metal centers are in slightly distorted tetrahedral environments with N-Ag-N angles ranging from 100.19(2) to 121.26(9)°. Ag-N bond lengths display the



Figure 7.4. A view of the cationic "box-in-box" structure of **7.4**. All hydrogen atoms except for those on the amines have been removed for clarity.

result of this change in coordination number with a corresponding lengthening to 2.324(3)Å for the Ag-N<sub>pvridine</sub> distances and 2.321(3)Å for the Ag-N<sub>amine</sub> distances.

Compound **7.4** is the consequence of a second equivalent of 4-amp being added to solutions that produced the one-dimensional polymer **7.1**. The resulting linear polymer seen in Figure 7.4 displays a 2:1 ratio of ligand to metal, as well as the small 4-amp box building block reminiscent of the previous structure, **7.3**. The polymer in this case, however, is much bulkier due to the formation of the "box-in-box" network shown. The unique portion of this structure is shown in Figure 7.5 and selected geometric parameters are given in Table 7.6. The C9-C8-C7-N3 torsion angle here is  $66.0(2)^{\circ}$  corresponding to a rotation of the methylene-amine bond away from perpendicular to the pyridyl. This assists in causing a lengthening of the cross-box Ag-Ag distance to 6.9946(4)Å as well as a concomitant separation of the adjacent pyridyl  $\pi$ -systems to around 3.45Å. Opposing silver occupied corners of two separate small boxes are subsequently bridged by another 4-amp ligand to construct the box-in-box motif seen in the figure. The open corners of this larger box are occupied by amine nitrogens which have a much greater diagonal distance at 13.577(3)Å. The conformation of this second ligand is different from that of



Figure 7.5. Thermal ellipsoid plot of the unique cationic portion of **7.4**. Ellipsoids are drawn at the 50% probability level.

| Table. 7.6. Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp) <sub>2</sub> (OTf) (7.4) <sup>a</sup> |           |             |           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|
| Ag1-N3                                                                                                                         | 2.276(1)  | Ag1-N1#1    | 2.346(1)  |
| Ag1-N4#2                                                                                                                       | 2.391(1)  | Ag1-N2      | 2.431(1)  |
|                                                                                                                                |           |             |           |
| N3-Ag1-N1#1                                                                                                                    | 119.90(5) | N3-Ag1-N4#2 | 117.91(5) |
| N1#1-Ag1-N4#2                                                                                                                  | 109.55(5) | N3-Ag1-N2   | 118.19(5) |
| N1#1-Ag1-N2                                                                                                                    | 93.50(4)  | N4#2-Ag1-N2 | 92.07(4)  |
| C9-C8-C7-N3                                                                                                                    | 66.0(2)   | C3-C2-C1-N1 | 39.8(2)   |
|                                                                                                                                |           |             |           |
| N1-H…O1#3                                                                                                                      | 3.021(2)  | N1-H…O1#4   | 3.259(2)  |
| N3-H…O(2)#5                                                                                                                    | 3.053(2)  | N3-H…O3#6   | 3.037(2)  |
| Ag1···Ag1#7                                                                                                                    | 6.9946(4) | N1#1…N1#7   | 13.577(3) |
|                                                                                                                                |           |             |           |

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = x-1,y,z: #2 = -x,-y+1,-z+1: #3 = x+1,y,z+1: #4 = -x+2,-y+2,-z+1: #5 = -x+1,-y+1,-z+1: #6 = x,y,z+1: #7 = -x,-y+1,-z+1.

the first as seen by the change in the analogous torsion angle, C3-C2-C1-N1, to a more acute  $39.8(2)^{\circ}$ . A difference in bond lengths are also seen between silver and those ligands that are either involved in the construction of the small box or those that bridge the smaller boxes together, with the intrabox bonds apparently being a bit stronger.

In-box silver-pyridyl and silver-amine distances are 2.391(1) and 2.276(1)Å,

respectively, whereas the bridging 4-amp has corresponding distances a bit longer at 2.431(1) and 2.346(1)Å. The tetrahedral environment of the metal center here is also slightly more distorted than in the previous structure with N-Ag-N angles ranging from 92.07(4) to 119.90(5)°. The non-coordinating OTf<sup>-</sup> anions sit within the cavities formed by the larger box and are held in place by H–bonding to the amine nitrogens.

Keeping with the box-in-box motif is compound 7.5 which is again based upon the symmetric biligand, bimetallic box of the previous two structures. Polymeric growth in this case, however, extends to form a two-dimensional box-in-box network as shown in Figure 7.6. The small box is once more seen to occupy opposite corners of a larger box constructed of linkages formed by an outward facing 4-amp ligand. In the current case the larger box is of much greater size due to the incorporation of two bridging ligands each being used to form the remaining two corners of the box. These corners both terminate with a silver(I) cation; the two metals being separated by a 20.0112(6)Å span. The smaller box sees its shortest Ag-Ag separation discussed herein at 6.5094(3)Å. This is associated with a rotation of the  $-CH_2-NH_2$  bond closer to perpendicular to the pyridyl plane with the C6-C2-C1-N2 torsion angle being  $73.0(3)^{\circ}$ . Interestingly, the adjacent pyridyl rings in this case are along the same separation as those in the structure of 7.4, with an approximate division of 3.45Å. The unique portion of 7.5 is displayed in Figure 7.7, with geometric parameters in Table 7.7, and shows the similarities between the conformations of the N1 (small box) ligand and the N3 (bridging) ligand with only a rotation of the methylene-amine vector differentiating the two; the C9-C8-C7-N4 torsion angle is 92.4(3). Silver-pyridyl and silver-amine bond distances of the small box are



Figure 7.6. An extended view of the cationic "box-in-box" network of **7.5**. All hydrogen atoms except for those on the amines have been removed for clarity.

again seen to be shorter at 2.280(2) and 2.327(2)Å than the open ligand with analogous lengths of 2.380(2) and 2.347(2)Å, respectively. Tetrahedral N-Ag-N angles range from 99.86(7) to 126.6(7)°.

Compound **7.6.1** was synthesized in order to study the effects of adding a strongly chelating ligand on the polymerization of the 4-amp complexes. However, repeated attempts at crystallization consistently produced poor quality crystals from which little could be established. As a result, 5,5'-dimethyl-2,2'-bipyridine was used as a model which was expected to have similar coordination properties and we were able to obtain satisfactory diffraction quality crystals of **7.6.2**.


Figure 7.7. Molecular diagram of the unique portion of the cationic polymer of **7.5**. Ellipsoids are drawn at the 50% probability level.

| Table 7.7. Selected bond lengths (Å), angles (°), and important distances for Ag(4-amp) <sub>2</sub> BF <sub>4</sub> (7.5) <sup>a</sup> |            |             |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------|--|--|
| Ag1-N1                                                                                                                                  | 2.280(2)   | Ag1-N2#1    | 2.327(2)  |  |  |
| Ag1-N4#2                                                                                                                                | 2.346(2)   | Ag1-N3      | 2.380(2)  |  |  |
| N1-Ag1-N2#1                                                                                                                             | 126.60(7)  | N1-Ag1-N4#2 | 116.96(7) |  |  |
| N2#1-Ag1-N4#2                                                                                                                           | 99.86(7)   | N1-Ag1-N3   | 105.85(6) |  |  |
| N2#1-Ag1-N3                                                                                                                             | 102.97(7)  | N4#2-Ag1-N3 | 101.23(7) |  |  |
| C6-C2-C1-N2                                                                                                                             | 73.0(3)    | C9-C8-C7-N4 | 92.4(3)   |  |  |
|                                                                                                                                         |            |             |           |  |  |
| N2-H…F1#3                                                                                                                               | 3.072(3)   | N2-H…F4     | 3.090(2)  |  |  |
| N4-H…F4#4                                                                                                                               | 3.156(2)   | N4-H…F2#4   | 3.118(2)  |  |  |
| N4-H…F1#5                                                                                                                               | 3.282(3)   | Ag1…Ag1#1   | 6.5094(3) |  |  |
| Ag1…Ag1#6                                                                                                                               | 20.0112(6) |             |           |  |  |
|                                                                                                                                         |            |             |           |  |  |

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = -x+1, -y+1, -z+1: #2 = -x+2, y-1/2, -z+1/2: #3 = -x+1, -y+1, -z+2: #4 = -x+2, -y+1, -z+1: #5 = -x+2, y+1/2, -z+3/2: #6 = -x+3, -y+1, -z.

When 5,5'-dimethyl-2,2'-bipyridine is added to solutions of 4-amp with silver(I)  $BF_4^-$ , ligand bridged polymerization into the structures seen previously<sup>91</sup> and in **7.5** is impeded. Instead, the bipy-truncated structure shown in Figure 7.8 is formed. Selected bond lengths and angles for this compound are given in Table 7.8. As expected, the chelating bipyridine preferentially binds the silver(I) cation, displacing the monodentate

amine or pyridine of the 4-amp ligand from its coordination sphere to form the bridged bimetallic monomer of 7.6.2. It is seen that as long as there is sufficient 5,5'-dimethyl-2,2'-bipy present to make a 1:1 ratio of bipy to metal the stoichiometry of 4-amp in the reaction is irrelevant. A bipyridyl complex with a higher ratio of 4-amp to silver than 0.5:1 has been so far elusive, even in the presence of a large excess ( $\sim 4$  fold) of the aminomethylpyridine. There are two unique silver(I) environments present in 7.6.2 due to the asymmetric nature of the 4-amp bridge. The amine-bound silver is in a slightly distorted trigonal environment with variance from the ideal 120° angles a result of the small bite angle of the bidentate bipyridyl. Angles around Ag1 range from 72.8(1) to  $150.2(1)^{\circ}$ . However, the metal cation is only slightly removed from its N<sub>3</sub> plane by 0.033(2)Å. Ag2 sees similar deviations from the ideal with N-Ag-N angles of 73.1(1) to  $153.94(1)^{\circ}$  and an N<sub>3</sub> plane displacement of 0.042(2)Å. The three aromatic rings bound to Ag2 give the metal a planar surrounding allowing easier access to it than Ag1, which has the amine protons protruding above and below the plane. As a result, the coordination sphere of Ag2 also contains a symmetry equivalent metal situated both directly above and below the plane of the molecule giving the pyridyl-bound silver a metal-capped trigonal bipyramidal environment. The Ag-Ag interactions are typical lengths<sup>163,171-173</sup> at 3.348(1)Å and appear to be supported by the  $\pi$ -stacking of pyridyl and bipyridyl rings bound to the metals. A particularly unique and interesting feature of this structure that is seen when the molecule is expanded along the direction of the metalmetal interactions, as in Figure 7.9, is that it is actually a linear polymer connected by an infinite metal-metal backbone. This backbone shows only a slight bend at each metal center with a Ag-Ag-Ag angle of 174.85(2)°. Relevant literature and CCDC searches



Figure 7.8. Molecular diagram of the bimetallic monomer of **7.6.2**. Ellipsoids are drawn at the 50% probability level. All hydrogen atoms except for those on the amine have been removed for clarity.

| Ag1-N1          | 2.161(3)  | Ag1-N3       | 2.256(3)  |
|-----------------|-----------|--------------|-----------|
| Ag1-N4          | 2.335(3)  | Ag2-N2       | 2.138(3)  |
| Ag2-N5          | 2.240(3)  | Ag2-N6       | 2.339(3)  |
| Ag2-Ag2#1       | 3.348(1)  | Ag2-Ag2#2    | 3.348(1)  |
|                 |           |              |           |
| N1-Ag1-N3       | 150.2(1)  | N1-Ag1-N4    | 136.7(1)  |
| N3-Ag1-N4       | 72.8(1)   | N2-Ag2-N5    | 153.9(1)  |
| N2-Ag2-N6       | 132.8(1)  | N5-Ag2-N6    | 73.1(1)   |
| N2-Ag2-Ag2#1    | 83.21(8)  | N5-Ag2-Ag2#1 | 104.44(7) |
| N6-Ag2-Ag2#1    | 85.93(7)  | N2-Ag2-Ag2#2 | 100.32(8) |
| N5-Ag2-Ag2#2    | 74.00(7)  | N6-Ag2-Ag2#2 | 88.93(7)  |
| Ag2#1-Ag2-Ag2#2 | 174.85(2) | C3-C2-C1-N1  | 7.4(6)    |
|                 |           |              |           |
| N1-H…F7#3       | 2.960(4)  | N1-H…F(8)#4  | 2.978(4)  |
|                 |           |              |           |

Table 7.8. Selected bond lengths (Å), angles (°), and important distances for  $Ag_2(5,5)^{a}$ -bis methyl-2,2'bpy)<sub>2</sub>(4-amp)(BF<sub>4</sub>)<sub>2</sub>(**7.6.2**)<sup>a</sup>

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = x,-y+3/2,z+1/2: #2 = x,-y+3/2,z-1/2: #3 = -x+1,-y+1,-z: #4 = -x+1,-y+1,-z+1.



Figure 7.9. Ball and stick diagram showing the polymeric nature of **7.6.2**. Anions and hydrogen atoms have been removed for clarity.

reveal this type of polymerization to be previously unseen, with the only other infinite silver-linked polymers known being held together by bridging ligands.<sup>17,66</sup> Perpetuation of the polymer sees the molecular axis of each monomer shifted nearly perpendicular to those adjacent to it to give the overall polymer a saw tooth appearance. The C3-C2-C1-N1 torsion angle of the bridging 4-amp ligand has a value similar to that seen in the 1:1 structures at 7.4(6)°. Ag-pyridyl and Ag-amine distances are also reminiscent of **7.1** and **7.2** at 2.138(3) and 2.161(3)Å, respectively. Ag-N<sub>bipy</sub> distances are slightly longer at 2.256(3) and 2.335(3)Å to Ag1 and 2.240(3) and 2.339(3)Å to Ag2, which are typical for Ag-N<sub>bipy</sub> bonds.<sup>177-179</sup> The BF<sub>4</sub><sup>-</sup> anions here sit in the space formed directly behind the amines in the polymer and are held in place by weak H–bonds.

#### Luminescence Properties

A representative collection of excitation and emission spectra of the compounds discussed herein is displayed in Figure 7.10. It can be seen by the remarkable resemblance of the features of the spectra that the coordination complexes **7.1-7.5** are not only structurally similar but also electronically similar. This is not completely unexpected seeing as most of the luminescent silver(I) centers are in nearly identical



Figure 7.10. Normalized excitation and emission spectra of representative 3-amp Ag(I) compounds taken in acetonitrile glasses at 1 X 10<sup>-4</sup>M concentration at 77 K. = Ag(4-amp)<sub>2</sub>OTf, = = Ag(4-amp)<sub>2</sub>OT

| Compound | Excitation $\lambda_{max}$ | Emission local $\lambda_{min}$              |
|----------|----------------------------|---------------------------------------------|
| 4-amp    | 375                        | 394                                         |
| 7.1      | 291                        | 402, 434, 443, 453, 462, 485, 498, 525, 540 |
| 7.2      | 294                        | 437, 449, 456, 467, 484, 499, 556           |
| 7.3      | 298                        | 444, 463, 475, 492,                         |
| 7.4      | 290                        | 443, 459, 470, 480                          |
| 7.5      | 292                        | 455, 485, 498, 540                          |
| 7.6.1    | 364                        | 357, 371, 390                               |
| 7.6.2    | 365                        | 341, 350                                    |
|          |                            |                                             |

Table 7.9. Luminescent Spectral Data for compounds 7.1–7.6.2, at 77 K and  $1 \times 10^{-4}$  M in CH<sub>3</sub>CN.

tetrahedral environments of amine and pyridyl donors. The fluorescence of the complexes **7.6.1** and **7.6.2** is seen to be diminished considerably with respect to the amponly complexes in the presence of the bipy-based ligands. A full collection of excitation and emission features is presented in Table 7.9.

#### Conclusions

Herein we have shown how the structures of supramolecular compounds of the ligand 4-aminomethylpyridine with salts of the silver(I) cation are able to be varied not only by the traditional methods such as anion control but also by changes in ratio of ligand to metal. The amine group present on the ligand allowing for H-bonding of the resultant complexes as well as an inclination for the 4-amp ligand to participate in  $\pi$ -stacking interactions also contribute to the overall conformations of the structures presented which display several different one- and two-dimensional motifs. Studies of the amp ligands are to be continued with mixed ligand systems as well as the asymmetric methylpyridine- and bis(methylpyridine)-aminomethylpyridines.

#### Experimental

## General Procedures.

All experiments were carried out under an argon atmosphere, using a Schlenk line and standard Schlenk techniques. Glassware was dried at 120°C for several hours prior to use. All reagents were stored in an inert atmosphere glovebox; solvents were distilled under nitrogen from the appropriate drying agent immediately before use. 4aminomethylpyridine, 5,5'-dimethyl-2,2'-bipyridine, and 2,2'-bipyridine were purchased from Aldrich and used as received. Silver(I) tetrafluoroborate, silver(I) trifluoroacetate, and silver(I) trifluoromethanesulfonate were purchased from Strem Chemicals Inc. and used as received. <sup>1</sup>H NMR spectra were recorded at 360.13 MHz on a Bruker Spectrospin 360 MHz spectrometer. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, Georgia.

### General Preparations

General procedures for the synthesis of compounds **7.1-7.6.2** involve the addition of a 5 mL acetonitrile solution of 4-aminomethylpyridine to a stirred solution of the appropriate silver salt in 5 mL acetonitrile. The mixtures are then stirred for 10 minutes then dried in vacuo to leave white or off-white powders. All flasks are shielded from light with aluminum foil to prevent the photodecomposition of the silver compounds. Crystals of compounds **7.2–7.5** were grown by layering ether over acetonitrile solutions at 5 °C. Crystals of compound **7.1** and **7.6.2** were grown by vapor diffusion of ether into acetonitrile solutions at 5 °C. The amounts of reagents used, yields, and analytical data are presented below as well as any modifications to the general synthetic procedure. Percent yields are based upon the amount of silver salt used.

#### Preparations

*poly-[Ag(4-amp)OTf]* (7.1). This reaction used 4-aminomethylpyridine (0.100 g, 0.924 mmol) added to AgOTf (0.237 g, 0.922 mmol) to leave a white powder in 96 % yield (0.323 g, 0.893 mmol) upon evaporation of the solvent. Colorless plates of 7.1 were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.81 s, br, 2H, (-NH<sub>2</sub>-); 3.97 s, 2H, (-CH<sub>2</sub>-); 7.46 m, 2H; 8.43 m, 2H. Anal. Calcd for AgC<sub>7</sub>H<sub>8</sub>N<sub>2</sub>O<sub>3</sub>SF<sub>3</sub>: C, 25.80; H, 2.47; N, 8.56. Found: C, 26.27; H, 2.33; N, 8.77.

*poly-[Ag(4-amp)tfa]* (7.2) This reaction used 4-aminomethylpyridine (0.100 g, 0.924 mmol) and Agtfa (0.204 g, 0.925 mmol). Solvent was removed *in vacuo* and the resulting white powder was recovered in 97% yield (0.295 g, 0.897 mmol). Colorless blocks were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.81 s, br, 2H, (-NH<sub>2</sub>-); 3.97 s, 2H, (-CH<sub>2</sub>-); 7.54 m, 2H; 8.43 m, 2H. Anal. Calcd for AgC<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>F<sub>3</sub>: C, 29.20; H, 2.45; N, 8.51. Found: C, 29.38; H, 2.39; N, 8.40.

 $poly-[Ag(4-amp)_2tfa]$  (7.3) The reaction was done in a 2:1 ratio of

4-aminomethylpyridine (0.100 g, 0.924 mmol) to Agtfa (0.102 g, 0.462 mmol). A white precipitate was observed upon addition of the 4-aminomethylpyridine. After the solvent was removed *in vacuo* a white powder was obtained in 94% yield (0.190 g, 0.432 mmol). Colorless blocks were formed by layering ether over an acetonitrile suspension of **7.3** at 5 °C. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 298 K)  $\delta$ : 4.57 s, br, 2H, (-NH<sub>2</sub>-); 5.46 s, 2H, (-CH<sub>2</sub>-); 8.11 m, 2H; 9.07 2H. Anal. Calcd for AgC<sub>14</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>F<sub>3</sub>: C, 38.46; H, 3.69; N, 12.82. Found: C, 38.24; H, 3.57; N, 12.54

*poly-[Ag(4-amp)*<sub>2</sub>(*OTf)]* (7.4) This reaction used 2 equivalents of 4-aminomethylpyridine (0.100 g, 0.924 mmol) added to AgOTf (0.118 g, 0.462 mmol). A clear, colorless oil was left upon evaporation of the solvent. The oil was dissolved in a small amount of CH<sub>3</sub>CN then precipitated with ether resulting in a white fluffy powder in 78% yield (0.171 g, 0.180 mmol). Colorless blocks were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 3.26 s, br, 4H, (-NH<sub>2</sub>-); 3.91 s, 24, (-CH<sub>2</sub>-); 7.36 m, 4H; 8.46 m, 4H. Anal. Calcd for AgC<sub>13</sub>H<sub>16</sub>N<sub>4</sub>O<sub>3</sub>SF<sub>3</sub>: C, 33.00; H, 3.41; N, 11.84. Found: C, 33.18; H, 3.24; N, 11.75.  $poly-[Ag(4-amp)_2BF_4]$  (7.5) This reaction used 2 equivalents of

4-aminomethylpyridine (0.100 g, 0.924 mmol) added to AgBF<sub>4</sub> (.090 g, 0.462 mmol). Upon evaporation of the solvent an off-white powder was isolated in 84% yield (0.160 g, 0.389 mmol). Colorless plates were grown from acetonitrile and ether. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 2.79 s, br, 4H, (-NH<sub>2</sub>-); 3.89 s, 4H, (-CH<sub>2</sub>-); 7.36 m, 2H; 8.38 m, 2H. Anal. Calcd for AgC<sub>12</sub>H<sub>16</sub>N<sub>4</sub>BF<sub>4</sub>: C, 35.07; H, 3.92; N, 13.63. Found: C, 35.03; H, 3.78; N, 13.33

 $Ag_2(2,2'-bipy)_{2}-\mu$ -(4-amp)( $BF_4$ )<sub>2</sub> (**7.6.1**). To a stirred solution of one equivalent of 4-aminomethylpyridine (0.100 g, 0.926 mmol) in 5 mL CH<sub>3</sub>CN was added 2 equivalents of AgBF<sub>4</sub> (0.360 g, 1.82 mmol) in 5 mL CH<sub>3</sub>CN. This was stirred for 5 minutes then a solution of 2,2'-bipyridine (0.289 g, 1.82 mmol) in 5 mL CH<sub>3</sub>CN was added. This mixture was stirred for 10 minutes more then the solvent was removed *in vacuo* to leave a light yellow powder in 84% yield (0.631 g, 0.776 mmol). <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298 K)  $\delta$ : 2.17 s,br, 2H, (-NH<sub>2</sub>-); 3.98 s, 2H, (-CH<sub>2</sub>-); 8.69 m, 8H; 8.44 m, 9H; 8.08 m, 2H; 7.59 m, 1H. Anal. Calcd for Ag<sub>2</sub>C<sub>29</sub>H<sub>28</sub>N<sub>7</sub>B<sub>2</sub>F<sub>8</sub>: C, 40.32; H, 3.27; N, 11.35. Found: C, 40.68; H, 3.26; N, 11.20.

 $poly-[Ag_2(5,5'-bis methyl-2,2'-bpy)_2(4-amp)(BF_4)_2]$  (7.6.2) The procedure for this reaction is the same as that used for the preparation of 7.6.1 and used an equivalent of 4-aminomethylpyridine (0.150 g, 1.39 mmol) added to 2 equivalents of AgBF<sub>4</sub> (0.540 g, 2.77 mmol). After stirring for 5 minutes, 2 equivalents of 5,5'-dimethyl-2,2'-bipyridine was added (0.510 g, 2.77 mmol). After an additional 10 minutes of stirring the solvent was removed *in vacuo* to leave a white powder in 89% yield (1.07g, 1.23mmol).

Colorless blocks were grown from acetonitrile and ether <sup>1</sup>H NMR (CD<sub>3</sub>CN, 298K) δ: 2.39 s, 12H (Me); 2.57 2s, br, 2H (-NH<sub>2</sub>-); 3.87 s, 2H (-CH<sub>2</sub>-); 7.33 m, 4H; 7.81 dd, 2H; 8.05 dd, 2H; 8.42 m, 6H.

### Crystallography

A summary of the experimental crystallographic data for 7.1 to 7.6.2 is given in Table 7.10. Full collections of interatomic distances and angles can be found in Appendix B, Tables B.26 to B.31. Crystallographic data were collected on crystals with dimensions  $0.171 \times 0.109 \times 0.047$  mm for **7.1**,  $0.110 \times 0.100 \times 0.070$  mm for **7.2**, 0.090  $\times 0.060 \times 0.060$  mm for **7.3**,  $0.249 \times 0.230 \times 0.153$  mm for **7.4**,  $0.152 \times 0.114 \times 0.112$ mm for 7.5 and  $0.264 \times 0.220 \times 0.189$  mm for 7.6.2. Data were collected at 110 K on a Bruker X8 Apex using MoK $\alpha$  radiation ( $\lambda$  =0.71073 Å). All structures were solved by direct methods after the correction of the data using SADABS.<sup>139</sup> All of the data were processed using the Bruker AXS SHELXTL software, version 6.10.<sup>140</sup> Unless otherwise noted, all non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions. The structure of **7.1** contains two solvent acetonitrile molecules in the lattice. The trifluoroacetate anion of compound 7.3 is disordered over two positions across a mirror plane. The structure of compound 7.6.2 contains two solvent acetonitrile molecules and a  $BF_4^-$  anion which is disordered over three positions. The smaller two occupancies of the disorder are refined as isotropic spheres.

|                                      | 7.1                        | 7.2                         | 7.3                       | 7.4                        | 7.5                     | 7.6.2                       |
|--------------------------------------|----------------------------|-----------------------------|---------------------------|----------------------------|-------------------------|-----------------------------|
| Formula                              | $C_{11}H_{14}AgF_3N_4O_3S$ | $C_{16}H_{16}Ag_2F_6N_4O_4$ | $C_{14}H_{16}AgF_3N_4O_2$ | $C_{13}H_{16}AgF_3N_4O_3S$ | $C_{12}H_{16}AgBF_4N_4$ | $C_{34}H_{38}Ag_2B_2F_8N_8$ |
| Formula weight                       | 447.19                     | 658.07                      | 437.18                    | 473.23                     | 410.97                  | 948.08                      |
| a (Å)                                | 6.6871(7)                  | 9.3793(7)                   | 12.4623(14)               | 7.9279(4)                  | 10.2034(3)              | 18.76(1)                    |
| b (Å)                                | 25.806(2)                  | 10.5770(7)                  | 18.273(2)                 | 10.0058(4)                 | 13.3334(4)              | 30.12(1)                    |
| c (Å)                                | 9.3785(8)                  | 11.6814(8)                  | 7.4106(8)                 | 11.5612(5)                 | 12.3596(4)              | 6.690(3)                    |
| α (°)                                |                            | 95.210(2)                   |                           | 98.964(2)                  |                         |                             |
| β (°)                                | 92.135(3)                  | 91.393(2)                   | 92.986(4)                 | 108.141(2)                 | 103.690(2)              | 91.96(1)                    |
| γ (°)                                |                            | 114.234(2)                  |                           | 95.402(2)                  |                         |                             |
| space group                          | $P2_1/c$                   | P-1                         | C2/m                      | P-1                        | $P2_1/c$                | $P2_1/c$                    |
| $D_{calcd} (g \ cm^{-3})$            | 1.837                      | 2.082                       | 1.723                     | 1.847                      | 1.671                   | 1.666                       |
| $\mu (mm^{-1})$                      | 1.424                      | 1.949                       | 1.241                     | 1.359                      | 1.273                   | 1.113                       |
| $2\theta_{\max}$ (°)                 | 32.15                      | 26.35                       | 25.30                     | 25.00                      | 28.27                   | 25.00                       |
| reflns measured                      | 26679                      | 15985                       | 7120                      | 29250                      | 21977                   | 29173                       |
| reflns used (R <sub>int</sub> )      | 4711(0.0318)               | 4258(0.0325)                | 1572(0.0301)              | 4113(0.0344)               | 3961(0.0299)            | 7788(0.0446)                |
| restraints/param                     | 0/216                      | 0/289                       | 0/133                     | 0/226                      | 0/199                   | 31/528                      |
| R1, [I>2σ(I)]                        | 0.0344                     | 0.0248                      | 0.0288                    | 0.0187                     | 0.0255                  | 0.0394                      |
| wR <sup>2</sup> , [I>2 $\sigma$ (I)] | 0.0538                     | 0.0585                      | 0.0624                    | 0.0473                     | 0.0624                  | 0.1039                      |
| $R(F_o^2)$ , (all data)              | 0.0493                     | 0.0328                      | 0.0408                    | 0.0199                     | 0.0364                  | 0.0448                      |
| $R_w(F_o^2)$ , (all data)            | 0.0578                     | 0.0609                      | 0.0674                    | 0.0477                     | 0.0698                  | 0.1072                      |
| GooF on F <sup>2</sup>               | 1.075                      | 1.073                       | 1.012                     | 1.052                      | 1.042                   | 1.078                       |

#### CHAPTER EIGHT

## Summary

The preceding work has described the synthesis and characterization of a series of silver(I) complexes with the novel pyridyl-substituted phosphinite ligands PCP-31 and PCP-32 and the three isomeric aminomethylpyridine ligands, 2-, 3-, and 4-amp. The study has focused on the structural dependence of these complexes on the inter- and intramolecular strong (covalent) and weak (non-covalent) interactions of metal-ligand bonding, hydrogen-bonding,  $\pi$ -stacking, anion interactions (through hydrogen-bonding, coordination or a combination of both), and temperature effects. In addition, the structural analysis of the silver(I)-amp complexes comprises the first known comprehensive study of stoichiometry control over the supramolecular features of extended coordination networks. This ratio-dependent investigation, in conjunction with the concomitantly discussed anion dependence, relates nicely the two areas which are seen to have equally pronounced effects with regards to forced structural modifications. This inquiry of such a coordinatively versatile metal will no-doubt form a basis for similar ratio studies to follow, extending to the metals with a more defined coordination number and geometry, thus furthering our knowledge and ability to design, construct, and apply these complexes to current and future technologies in which they are required.

APPENDICES

#### APPENDIX A

#### General Considerations

The following material describes the general experimental procedures, instrumentation, and software used in the characterization and X-ray crystallographic structure determinations of the compounds discussed herein. Any deviations from these general procedures have been detailed in the Experimental section of the appropriate chapter.

### Synthetic Procedures

All experiments were conducted under an atmosphere of either dry nitrogen or high-purity argon using standard Schlenk techniques. Silver(I) salts were purchased from Strem Chemicals, Inc. and all other reagents were purchased from Aldrich Chemical Co. and stored in an inert atmosphere chamber under an atmosphere of high-purity argon. Synthesized ligands and metal complexes were stored under nitrogen in aluminum foil wrapped Schlenk vessels at -35 °C. Solvents were freshly distilled under the appropriate drying agent prior to use.

#### Spectroscopic Characterization

NMR measurements were recorded on either a Bruker Spectrospin 300 MHz or a Bruker Spectrospin 360 MHz spectrometer and spectra were referenced to residual solvent peaks. Measurements were collected at the following frequencies: <sup>1</sup>H at 300.13 and 360.13 MHz; <sup>31</sup>P at 129.49 and 145.78 MHz. All variable temperature <sup>31</sup>P spectra

were taken at the higher frequency. Luminescence spectra were recorded on an Instruments S. A. Inc. model Fluoromax–2 spectrometer, using band pathways of 5 nm for both excitation and emission and are presented uncorrected. Low temperature measurements were achieved by inserting an NMR sample tube of a 1 X  $10^{-4}$  M solution (based on Ag) into a custom designed vacuum cell filled with liquid nitrogen. Spectra were acquired after temperature stabilization of the apparatus.

## Procedures for X-ray Crystal Structure Determinations

### Crystal Preparation

Suitable diffraction quality crystals were obtained by isolation on a binocular nonpolarized microscope in chemically inert Paratone-N<sup>®</sup> oil. Ideal crystals were perfectly single, optically transparent, and displayed dimensions on the order of 0.15 to 0.25 mm<sup>3</sup>. The chosen crystal was then immobilized on a polymer-fiber cryoloop in a nitrogen cold stream. The cryoloop was mounted on the goniometer head by means of a magnetic base and centered in the X-ray beam using a digital camera.

#### Data Collection

Data collection was carried out at 110(2) K to reduce lattice vibrations and prevent sample decomposition on a on a Bruker X8 Apex using MoK $\alpha$  radiation ( $\lambda$ =0.71073 Å). Unit cell dimensions were established by indexing reflections collected from a three run matrix set (3 X 12 frames). A data collection strategy was then determined by COSMO that would acquire > 99% of the unique reflections to  $\theta \ge 25.00^{\circ}$ using a combination of  $\varphi$  and  $\omega$  scans.

#### Data Reduction

All computations were carried out on either an Omnitech or Dell Optiplex GX270 PC using the SHELXTL vs 6.10 or vs 6.3.<sup>140</sup> Data reduction were performed using SAINT-PLUS 7.12A. Raw data were corrected for absorption effects using SADABS.<sup>139</sup>

## Structure Solution and Refinement

All structures were solved using direct methods. Typically, positional and anisotropic thermal displacement parameters were refined for all non-hydrogen atoms. Carbon- and nitrogen-bound hydrogens were placed in calculated positions (C–H = 0.96Å; N–H = 0.93Å) with fixed isotropic parameters [ $U_{iso}$ (H) = 1.2(C);  $U_{iso}$ (H) = 1.2(N)].

Structure refinements were made by full-matrix least-squares on all  $F^2$  data. Both conventional indices (*R*1) based on observed *F* values with *F*>4 $\sigma$ *F* and residual indices (*R*1 and *wR*2) are reported. Residual indices and Goodness of fit ( $\Sigma_2$ ) were calculated as follows:

$$wR2 = \left[\frac{\sum[w(F_o^2 - F_c^2)^2]}{\sum[w(F_o^2)^2]}\right]^{\frac{1}{2}}$$

$$R1 = \frac{\sum \left\| F_o \right| - \left| F_c \right\|}{\sum \left| F_o \right|}$$

$$GooF = \sum_{2} = \left[\frac{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]}{(n-p)}\right]^{\frac{1}{2}}$$

## APPENDIX B

# Crystallographic Data

The following tables are provided to supplement the tables of selected

crystallographic parameters presented in the text. Included are statistical data, full bond

lengths, full bond angles, torsion angles and hydrogen bonding distances (where

appropriate).

| Empirical formula                        |             | $C_{19,50}H_{19}AgBCl_3F_4NP$                             |            |  |
|------------------------------------------|-------------|-----------------------------------------------------------|------------|--|
| Formula weight                           |             | 615.36                                                    |            |  |
| Temperature                              |             | 110(2) K                                                  |            |  |
| Wavelength                               |             | 0.71073 Å                                                 |            |  |
| Crystal system                           |             | Monoclinic                                                |            |  |
| Space group                              |             | C2/c                                                      |            |  |
| Unit cell dimensions                     |             | a = 29399(5) Å                                            |            |  |
| enit een uniensions                      |             | h = 11.2041(15) Å $B = 94.266$                            | (0)°       |  |
|                                          |             | c = 14.1888(18) Å                                         | ())        |  |
| Volume 7                                 |             | 46607(11) Å <sup>3</sup> 8                                |            |  |
| $\nabla$ of unite, $\Sigma$              |             | $1.754 \text{ Mg/m}^3$                                    |            |  |
| Absorption coefficient                   |             | 1.734  Wg/m<br>$1.223 \text{ mm}^{-1}$                    |            |  |
| E(000)                                   |             | 2440                                                      |            |  |
| r(000)<br>Crystal size                   |             | 2440<br>0.20 x 0.28 x 0.25 mm                             |            |  |
| A range for data collection              |             | 0.29 X 0.28 X 0.25 mm                                     |            |  |
| l'initia sindiasa                        |             | $1.95 \text{ to } 33.10^{\circ}$                          |            |  |
| Limiting indices                         |             | $-30 \le n \le 45, -17 \le K \le 17, -20 \le 1 \le 21$    |            |  |
| Reflections collected                    |             | 34150                                                     |            |  |
| Independent reflections                  |             | $(R_{int} = 0.0330)$                                      |            |  |
| Completeness to $\theta = 33.10^{\circ}$ |             | 99.2 %<br>Multi scop (SADADS)                             |            |  |
| Absorption correction                    |             | Multi-scan (SADABS)<br>Full matrix logat squares on $F^2$ |            |  |
| Refinement method                        |             | Full-matrix least-squares on F <sup>-</sup>               |            |  |
| Data / restraints / parameters           |             | 8/89/0/285                                                |            |  |
| Goodness-of-fit on F <sup>2</sup>        |             | 1.073                                                     |            |  |
| Final R indices [I> $2\sigma(I)$ ]       |             | R1 = 0.0301, $wR2 = 0.0812$                               |            |  |
| R indices (all data)                     |             | R1 = 0.0402, WR2 = 0.0834                                 |            |  |
| Largest diff. peak and hole              |             | 2.268 and -0.393 eÅ <sup>-3</sup>                         |            |  |
| Bond Lengths (Å)                         |             |                                                           |            |  |
| Ag(1)-N(1)                               | 2.1711(14)  | Ag(1)-P(1)                                                | 2.3543(5)  |  |
| B(1)-F(3)                                | 1.393(2)    | B(1)-F(2)                                                 | 1.3944(19) |  |
| B(1)-F(4)                                | 1 398(2)    | B(1)-F(1)                                                 | 1 400(2)   |  |
| C(1)-O(1)                                | 1.4425(19)  | C(1)-C(2)                                                 | 1.506(2)   |  |
|                                          | 1.1 (23(17) | $\mathcal{C}(1)$ $\mathcal{C}(2)$                         | 1.500(2)   |  |

#### Table B.1. Experimental and statistical crystal data for 2.2

Table B.1. Continued

| C(2)-C(6)<br>C(3)-N(1)<br>C(4)-C(5)<br>C(7)-C(8)<br>C(7)-P(1)<br>C(9)-C(10)<br>C(11)-C(12)<br>C(13)-C(18)<br>C(14)-C(15)<br>C(16)-C(17)<br>C(19)-Cl(2)<br>C(20)-Cl(1)#1<br>O(1)-P(1)#2<br>Ag1_\$4 - F1<br>Ag1_\$4 - F2<br>Bond Angles (°)                                                                                                                                                                                                                                                                                               | 1.385(2)<br>1.3424(19)<br>1.380(2)<br>1.398(2)<br>1.8048(17)<br>1.383(2)<br>1.407(2)<br>1.393(2)<br>1.380(3)<br>1.7627(19)<br>1.7670(17)<br>1.6322(11)<br>3.0345 (0.0011)<br>2.7850 (0.0011)                                                                                                                                                          | C(2)-C(3)<br>C(4)-N(1)<br>C(5)-C(6)<br>C(7)-C(12)<br>C(8)-C(9)<br>C(10)-C(11)<br>C(13)-C(14)<br>C(13)-P(1)<br>C(15)-C(16)<br>C(17)-C(18)<br>C(19)-Cl(3)<br>C(20)-Cl(1)<br>P(1)-O(1)#3<br>N1 - P1_ $3$<br>P1_ $3$ - C2                                                                                                                                                                                                                            | $\begin{array}{c} 1.391(2)\\ 1.3509(19)\\ 1.393(2)\\ 1.400(2)\\ 1.391(2)\\ 1.390(3)\\ 1.388(2)\\ 1.8104(16)\\ 1.388(3)\\ 1.397(3)\\ 1.778(2)\\ 1.7670(17)\\ 1.6322(11)\\ 5.5691\ (0.0015)\\ 3.8830\ (0.0015) \end{array}$                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{split} & N(1)-Ag(1)-P(1) \\ & F(3)-B(1)-F(4) \\ & F(3)-B(1)-F(1) \\ & F(4)-B(1)-F(1) \\ & C(6)-C(2)-C(3) \\ & C(3)-C(2)-C(1) \\ & N(1)-C(4)-C(5) \\ & C(2)-C(6)-C(5) \\ & C(2)-C(6)-C(5) \\ & C(2)-C(6)-C(7) \\ & C(9)-C(10)-C(11) \\ & C(1)-C(12)-C(7) \\ & C(14)-C(13)-P(1) \\ & C(13)-C(14)-C(15) \\ & C(17)-C(16)-C(15) \\ & C(17)-C(16)-C(15) \\ & C(17)-C(16)-C(15) \\ & C(17)-C(18)-C(13) \\ & C(1)\#1-C(20)-Cl(1) \\ & C(3)-N(1)-Ag(1) \\ & C(1)\#3-P(1)-Ag(1) \\ & C(13)-P(1)-Ag(1) \\ & P1_{3}3-O1-C1-C2 \end{split}$ | $\begin{array}{c} 167.28(4)\\ 108.75(14)\\ 109.92(13)\\ 109.77(14)\\ 118.05(13)\\ 120.67(13)\\ 122.09(14)\\ 119.27(15)\\ 119.15(12)\\ 120.26(16)\\ 120.39(17)\\ 120.13(17)\\ 118.67(12)\\ 120.02(16)\\ 120.02(16)\\ 120.68(17)\\ 119.28(17)\\ 111.58(15)\\ 121.17(10)\\ 116.47(10)\\ 106.01(7)\\ 112.77(4)\\ 115.39(5)\\ -155.05(0.10)\\ \end{array}$ | $\begin{array}{l} F(3)-B(1)-F(2)\\ F(2)-B(1)-F(4)\\ F(2)-B(1)-F(1)\\ O(1)-C(1)-C(2)\\ C(6)-C(2)-C(1)\\ N(1)-C(3)-C(2)\\ C(4)-C(5)-C(6)\\ C(8)-C(7)-C(12)\\ C(12)-C(7)-P(1)\\ C(10)-C(9)-C(8)\\ C(12)-C(11)-C(10)\\ C(14)-C(13)-C(18)\\ C(12)-C(13)-P(1)\\ C(16)-C(15)-C(14)\\ C(16)-C(17)-C(18)\\ C(16)-C(17)-C(18)\\ C(2)-C(19)-C(13)\\ C(3)-N(1)-C(4)\\ C(4)-N(1)-Ag(1)\\ O(1)\#3-P(1)-C(7)\\ C(7)-P(1)-C(13)\\ C(7)-P(1)-Ag(1)\\ \end{array}$ | $110.19(14) \\109.17(13) \\109.04(14) \\109.75(13) \\121.22(14) \\123.11(14) \\119.18(14) \\119.26(15) \\121.32(13) \\119.97(17) \\120.00(16) \\120.03(15) \\121.30(13) \\119.83(17) \\120.16(17) \\110.46(10) \\118.30(14) \\120.24(10) \\100.84(7) \\105.46(7) \\114.96(5) \\$ |

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+3/2 #2 x,-y+2,z+1/2 #3 x,-y+2,z-1/2

| Empirical formula<br>Formula weight                                                                     |                      | $\begin{array}{c} C_{78}H_{68}Ag_4C_{14}F_{12}N_4O_{16}\\ 2370.73 \end{array}$ | $P_4S_4$               |
|---------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|------------------------|
| Temperature                                                                                             |                      | 110(2) K                                                                       |                        |
| Wavelength                                                                                              |                      | 0.71073 A                                                                      |                        |
| Crystal system                                                                                          |                      | Monoclinic                                                                     |                        |
| Space group                                                                                             |                      | Pc                                                                             |                        |
| Unit cell dimensions                                                                                    |                      | $a = 17.972(5) A \alpha = 90$                                                  | )°                     |
|                                                                                                         |                      | $b = 10.191 \text{ A} \beta = 115.4$                                           | 441(4)°                |
|                                                                                                         |                      | $c = 27.936 \text{ A} \gamma = 90^{\circ}$                                     |                        |
| Volume, Z                                                                                               |                      | $4620(2) \text{ A}^3, 2$                                                       |                        |
| Density (calculated)                                                                                    |                      | 1.704 Mg/m <sup>2</sup>                                                        |                        |
| Absorption coefficient                                                                                  |                      | 1.198 mm <sup>-</sup>                                                          |                        |
| F(000)                                                                                                  |                      | 2360                                                                           |                        |
| Crystal size                                                                                            |                      | $0.22 \times 0.17 \times 0.13 \text{ mm}$                                      |                        |
| e range for data collection                                                                             |                      | $2.31 \text{ to } 26.39^{\circ}$                                               | 12 24 - 1 - 24         |
| Limiting indices                                                                                        |                      | $-22 \leq h \leq 22, -12 \leq k \leq 47570$                                    | $12, -34 \le 1 \le 34$ |
| Reflections collected                                                                                   |                      | 4/3/0<br>18852 (D = 0.0444)                                                    |                        |
| Independent reflections<br>Completeness to $0 = 26.20^{\circ}$                                          |                      | $18852 (R_{int} = 0.0444)$                                                     |                        |
| $ \begin{array}{c} \text{Completeness to } \theta = 20.39 \\ \text{Absorption correction} \end{array} $ |                      | 99.870                                                                         |                        |
| Adsorption confection                                                                                   |                      | Eull matrix logat gauge                                                        | as an $\mathbf{F}^2$   |
| Data / restraints / parameters                                                                          |                      | 18852 / 201 / 1106                                                             | es on r                |
| $Goodness of fit on F^2$                                                                                |                      | 1 088                                                                          |                        |
| Einel <b>P</b> indices $[I > 2\pi (I)]$                                                                 |                      | $P_1 = 0.0624 \text{ wP}_2 = 0.0624$                                           | 1521                   |
| R indices (all data)                                                                                    |                      | $R_1 = 0.0624, WR_2 = 0.$<br>$R_1 = 0.0693, WR_2 = 0.$                         | 1531                   |
| Largest diff neak and hole                                                                              |                      | R1 = 0.0095, WR2 = 0.<br>2 776 and -0.972 eÅ <sup>-3</sup>                     | 1551                   |
| Bond Lengths (Å)                                                                                        |                      |                                                                                |                        |
| $\Delta \sigma(1) - N(2) \# 1$                                                                          | 2231(7)              | $\Delta \sigma(1) - P(1)$                                                      | 2 334(2)               |
| $Ag(1)-N(2)\pi 1$<br>Ag(1)-O(5)                                                                         | 2.231(7)<br>2 500(8) | Ag(1)-1(1)<br>Ag(2)-N(1)                                                       | 2.554(2)               |
| $A_{\sigma}(2) - P(2)$                                                                                  | 2.300(0)<br>2 343(2) | $A \sigma(2) - O(8)$                                                           | 2.217(0)<br>2 470(7)   |
| Ag(3)-N(4)#2                                                                                            | 2.319(2)<br>2.259(7) | Ag(3)-P(3)                                                                     | 2.356(2)               |
| Ag(3)-O(11)                                                                                             | 2.235(7)<br>2.486(7) | Ag(3)-O(9)                                                                     | 2.530(2)               |
| Ag(4)-N(3)                                                                                              | 2.100(7)<br>2.241(7) | Ag(4)-P(4)                                                                     | 2 357(2)               |
| Ag(4)-O(14)                                                                                             | 2.513(7)             | Cl(1)-C(77)                                                                    | 1.729(1)               |
| Cl(2)-C(77)                                                                                             | 1.794(14)            | S(1)-O(7)                                                                      | 1.356(9)               |
| S(1)-O(5)                                                                                               | 1.384(7)             | S(1)-O(6)                                                                      | 1.397(1                |
| S(1)-C(19)                                                                                              | 1.812(8)             | S(2)-O(9)                                                                      | 1.424(7)               |
| S(2)-O(10)                                                                                              | 1.434(7)             | S(2)-O(8)                                                                      | 1.437(7                |
| S(2)-C(38)                                                                                              | 1.835(7)             | S(3)-O(13)                                                                     | 1.420(6                |
| S(3)-O(12)                                                                                              | 1.428(7)             | S(3)-O(11)                                                                     | 1.433(7                |
| S(3)-C(57)                                                                                              | 1.824(9)             | S(4)-O(16)                                                                     | 1.404(7)               |
| S(4)-O(14)                                                                                              | 1.429(7)             | S(4)-O(15)                                                                     | 1.435(7)               |
| S(4)-C(76)                                                                                              | 1.825(8)             | P(1)-O(1)                                                                      | 1.625(6)               |
| P(1)-C(13)                                                                                              | 1.806(9)             | P(1)-C(7)                                                                      | 1.821(9)               |
| P(2)-O(2)                                                                                               | 1.636(6)             | P(2)-C(32)                                                                     | 1.791(9)               |
| P(2)-C(26)                                                                                              | 1.798(9)             | P(3)-O(3)                                                                      | 1.618(6)               |
| P(3)-C(51)                                                                                              | 1.806(8)             | P(3)-C(45)                                                                     | 1.820(8)               |
| P(4)-O(4)                                                                                               | 1.610(6)             | P(4)-C(64)                                                                     | 1.821(8)               |
| P(4)-C(70)                                                                                              | 1.831(9)             | C(19)-F(1)                                                                     | 1.303(5)               |
| C(19)-F(3)                                                                                              | 1.335(5)             | C(19)-F(2)                                                                     | 1.378(6)               |
| C(38)-F(4)                                                                                              | 1.302(5)             | C(38)-F(6)                                                                     | 1.335(5)               |
| C(38)-F(5)                                                                                              | 1.379(6)             | C(57)-F(9)                                                                     | 1.325(5)               |

2.334(2)2.217(8) 2.470(7) 2.356(2) 2.517(7) 2.357(2) 1.729(15) 1.356(9) 1.397(11) 1.424(7)1.437(7) 1.420(6) 1.433(7) 1.404(7)1.435(7) 1.625(6) 1.821(9) 1.791(9) 1.618(6) 1.820(8) 1.821(8) 1.303(5) 1.378(6) 1.335(5) 1.325(5)

Table B.2. Continued

| C(57)-F(7)                           | 1 328(5)               | C(57)-F(8)                         | 1 360(7)                |
|--------------------------------------|------------------------|------------------------------------|-------------------------|
| C(76)-F(12)                          | 1.322(5)               | C(76)-F(10)                        | 1 327(5)                |
| C(76)- $F(11)$                       | 1.322(0)<br>1.352(7)   | O(1)-C(1)                          | 1.327(3)<br>1.439(11)   |
| O(2)-C(20)                           | 1.332(7)<br>1 419(12)  | O(3)-C(39)                         | 1.433(10)               |
| O(2) = O(20)<br>O(4) = C(58)         | 1.119(12)<br>1 446(10) | N(1)-C(3)                          | 1.115(10)<br>1.317(11)  |
| N(1)-C(4)                            | 1.356(13)              | N(2)-C(23)                         | 1.317(11)<br>1.306(12)  |
| N(2) - C(22)                         | 1.356(11)              | $N(2) - \Delta g(1) \# 2$          | 2.231(7)                |
| N(2) C(22)<br>N(3) - C(42)           | 1.330(11)<br>1.321(12) | N(2) - C(41)                       | 1348(11)                |
| N(4) - C(60)                         | 1.321(12)<br>1.338(11) | N(4) - C(61)                       | 1.343(11)<br>1.343(11)  |
| N(4)-C(00)<br>$N(4)-\Delta g(3)#1$   | 2259(7)                | C(1)-C(2)                          | 1.545(11)<br>1 519(12)  |
| C(1) - H(1A)                         | 2.239(7)               | C(1)-C(2)<br>C(1)-H(1B)            | 0.0000                  |
| $C(1) - \Pi(1X)$<br>C(2) C(6)        | 1.344(14)              | $C(1) - \Pi(1D)$<br>C(2) - C(3)    | 1.397(12)               |
| C(2)-C(0)<br>C(3)-H(3A)              | 1.344(14)<br>0.9500    | C(2)- $C(5)$                       | 1.367(12)<br>1.353(15)  |
| C(3) - H(3R)                         | 0.9500                 | C(4) - C(5)                        | 1.555(15)<br>1.410(14)  |
| $C(4) - \Pi(4B)$<br>$C(5) - \Pi(5A)$ | 0.9500                 | C(5)-C(0)                          | 1.410(14)               |
| $C(3)$ - $\Pi(3A)$                   | 0.9300<br>1 207(12)    | $C(0)$ - $\Pi(0B)$<br>C(7) $C(12)$ | 0.9300<br>1 400(14)     |
| C(7)- $C(8)$                         | 1.397(13)<br>1.417(12) | C(7) - C(12)                       | 0.0500                  |
| C(0) - C(0)                          | 1.41/(15)<br>1.225(17) | C(0) = H(0A)                       | 0.9300                  |
| C(9)- $C(10)$                        | 1.323(17)<br>1.24(2)   | C(9)- $H(9A)C(10)$ $H(10B)$        | 0.9500                  |
| C(10)- $C(11)$                       | 1.34(2)<br>1.420(17)   | $C(10) - \Pi(10B)$                 | 0.9300                  |
| C(11)-C(12)                          | 1.430(17)              | C(11)-H(11A)                       | 0.9500                  |
| C(12)-H(12B)<br>C(12)-C(14)          | 0.9500                 | C(13)-C(18)                        | 1.38/(15)<br>1.402(14)  |
| C(13)-C(14)                          | 1.391(12)              | C(14)-C(15)                        | 1.402(14)<br>1.2(4(15)) |
| C(14)-H(14A)                         | 0.9500                 | C(15)-C(16)                        | 1.364(15)               |
| C(15)-H(15B)                         | 0.9500                 | C(16)-C(17)                        | 1.3/5(15)<br>1.200(15)  |
| C(10)-H(10B)                         | 0.9500                 | C(17) - C(18)                      | 1.399(15)               |
| C(1/)-H(1/A)                         | 0.9500                 | C(18)-H(18A)                       | 0.9500                  |
| C(20)-C(21)                          | 1.481(13)              | C(20)-H(20A)                       | 0.9900                  |
| C(20)-H(20B)                         | 0.9900                 | C(21)-C(25)                        | 1.36/(14)               |
| C(21)-C(22)                          | 1.405(12)              | C(22)-H(22A)                       | 0.9500                  |
| C(23)-C(24)                          | 1.385(12)              | C(23)-H(23A)                       | 0.9500                  |
| C(24)-C(25)                          | 1.359(15)              | C(24)-H(24A)                       | 0.9500                  |
| C(25)-H(25A)                         | 0.9500                 | C(26)-C(27)                        | 1.360(13)               |
| C(26)-C(31)                          | 1.39/(13)              | C(27)-C(28)                        | 1.424(13)               |
| C(27)-H(27A)                         | 0.9500                 | C(28)-C(29)                        | 1.340(18)               |
| C(28)-H(28A)                         | 0.9500                 | C(29)-C(30)                        | 1.351(17)               |
| C(29)-H(29A)                         | 0.9500                 | C(30)-C(31)                        | 1.439(14)               |
| C(30)-H(30A)                         | 0.9500                 | C(31)-H(31A)                       | 0.9500                  |
| C(32)-C(37)                          | 1.376(13)              | C(32)-C(33)                        | 1.419(13)               |
| C(33)-C(34)                          | 1.382(15)              | C(33)-H(33A)                       | 0.9500                  |
| C(34)-C(35)                          | 1.388(18)              | C(34)-H(34A)                       | 0.9500                  |
| C(35)-C(36)                          | 1.396(16)              | C(35)-H(35A)                       | 0.9500                  |
| C(36)-C(37)                          | 1.401(15)              | C(36)-H(36A)                       | 0.9500                  |
| C(37)-H(37A)                         | 0.9500                 | C(39)-C(40)                        | 1.498(12)               |
| C(39)-H(39A)                         | 0.9900                 | С(39)-Н(39В)                       | 0.9900                  |
| C(40)-C(44)                          | 1.355(13)              | C(40)-C(41)                        | 1.395(12)               |
| C(41)-H(41A)                         | 0.9500                 | C(42)-C(43)                        | 1.386(13)               |
| C(42)-H(42A)                         | 0.9500                 | C(43)-C(44)                        | 1.383(14)               |
| C(43)-H(43A)                         | 0.9500                 | C(44)-H(44A)                       | 0.9500                  |
| C(45)-C(46)                          | 1.371(12)              | C(45)-C(50)                        | 1.396(11)               |
| C(46)-C(47)                          | 1.379(14)              | C(46)-H(46A)                       | 0.9500                  |
| C(47)-C(48)                          | 1.366(14)              | C(47)-H(47A)                       | 0.9500                  |
| C(48)-C(49)                          | 1.393(15)              | C(48)-H(48A)                       | 0.9500                  |
| C(49)-C(50)                          | 1.347(14)              | C(49)-H(49A)                       | 0.9500                  |
| C(50)-H(50A)                         | 0.9500                 | C(51)-C(52)                        | 1.363(13)               |

Table B.2. Continued

| C(51)-C(56)                                        | 1.382(13)              | C(52)-C(53)                            | 1.391(15)               |
|----------------------------------------------------|------------------------|----------------------------------------|-------------------------|
| C(52)-H(52A)                                       | 0.9500                 | C(53)-C(54)                            | 1.394(16)               |
| C(53)-H(53A)                                       | 0.9500                 | C(54)-C(55)                            | 1.403(15)               |
| C(54)-H(54A)                                       | 0.9500                 | C(55)-C(56)                            | 1.328(13)               |
| C(55)-H(55)                                        | 0.9500                 | C(56)-H(56A)                           | 0.9500                  |
| C(58)-C(59)                                        | 1.475(11)              | C(58)-H(58A)                           | 0.9900                  |
| C(58)-H(58B)                                       | 0.9900                 | C(59)-C(60)                            | 1.388(12)               |
| C(59)-C(63)                                        | 1.411(12)              | C(60)-H(60A)                           | 0.9500                  |
| C(61)-C(62)                                        | 1.403(12)              | C(61)-H(61A)                           | 0.9500                  |
| C(62)-C(63)                                        | 1.359(13)              | C(62)-H(62A)                           | 0.9500                  |
| C(63)-H(63A)                                       | 0.9500                 | C(64)-C(69)                            | 1.356(13)               |
| C(64)-C(65)                                        | 1.422(12)              | C(65)-C(66)                            | 1.376(14)               |
| C(65)-H(65A)                                       | 0.9500                 | C(66)-C(67)                            | 1.389(17)               |
| C(66)-H(66A)                                       | 0.9500                 | C(67)-C(68)                            | 1.335(18)               |
| C(67)-H(67A)                                       | 0.9500                 | C(68)-C(69)                            | 1.371(15)               |
| C(68)-H(68A)                                       | 0.9500                 | C(69)-H(69A)                           | 0.9500                  |
| C(70)-C(75)                                        | 1.380(12)              | C(70)-C(71)                            | 1.383(13)               |
| C(71)-C(72)                                        | 1.388(15)              | C(71)-H(71A)                           | 0.9500                  |
| C(72)-C(73)                                        | 1.354(17)              | C(72)-H(72A)                           | 0.9500                  |
| C(73)-C(74)                                        | 1.358(17)              | C(73)-H(73A)                           | 0.9500                  |
| C(74)-C(75)                                        | 1.387(14)              | C(74)-H(74A)                           | 0.9500                  |
| C(75)-H(75A)                                       | 0.9500                 | C(77)-H(77A)                           | 0.9900                  |
| C(77)-H(77B)                                       | 0.9900                 | C(78)-Cl(4)                            | 1.72(2)                 |
| C(78)-Cl(3)                                        | 1.80(2)                | C(78)-H(78A)                           | 0.9900                  |
| C(78)-H(78B)                                       | 0.9900                 | C(78A)-Cl(4A)                          | 1.73(3)                 |
| C(78A)-Cl(3A)                                      | 1.80(3)                | C(78A)-H(78C)                          | 0.9900                  |
| C(78A)-H(78D)                                      | 0.9900                 |                                        |                         |
|                                                    |                        |                                        |                         |
| Bond Angles (°)                                    |                        |                                        |                         |
| $N(2) # 1_A \sigma(1)_P(1)$                        | 142 78(18)             | $P(1) - \Lambda \alpha(1) - \Omega(5)$ | 110 5(2)                |
| N(2) # 1 - Ag(1) - 1(1)<br>N(2) # 1 - Ag(1) - O(5) | 86 5(3)                | N(1) - Ag(2) - O(3)                    | 83 8(3)                 |
| $N(1) - \Lambda \alpha(2) - P(2)$                  | 145 5(2)               | N(4) # 2 - A g(3) - P(3)               | 130.05(10)              |
| $P(2) = \Delta \sigma(2) = O(8)$                   | 143.3(2)<br>120 15(17) | $P(3) - \Delta \sigma(3) - O(11)$      | 119.94(16)              |
| $N(4) # 2 - A \sigma(3) - O(11)$                   | 86 6(2)                | $P(3) - \Delta g(3) - O(9)$            | 124 18(17)              |
| N(4)#2-Ag(3)-O(11)<br>N(4)#2-Ag(3)-O(9)            | 82.5(2)                | N(3) - Ag(3) - O(3)                    | 124.10(17)<br>147.0(2)  |
| O(11) - Ag(3) - O(9)                               | 88 2(2)                | P(4) = A g(4) = O(14)                  | 147.0(2)<br>119 77(16)  |
| N(3) - Ag(4) - O(14)                               | 83 5(2)                | O(7)-S(1)-O(6)                         | 113.77(10)<br>113.2(11) |
| O(7)-S(1)-O(5)                                     | 120.0(7)               | O(7)- $S(1)$ - $O(0)$                  | 107.3(5)                |
| O(5)-S(1)-O(6)                                     | 120.0(7)<br>107 0(10)  | O(6)-S(1)-C(19)                        | 107.3(5)<br>103.2(5)    |
| O(5)-S(1)-C(19)                                    | 107.0(10)<br>104 5(4)  | O(9)-S(2)-O(8)                         | 103.2(5)<br>112 4(5)    |
| O(9)-S(2)-O(10)                                    | 1153(4)                | O(9)-S(2)-C(38)                        | 103.0(4)                |
| O(10)- $S(2)$ - $O(8)$                             | 115.6(5)               | O(8)-S(2)-C(38)                        | 103.0(1)<br>101 3(4)    |
| O(10) - S(2) - C(38)                               | 107.1(4)               | O(13)-S(3)-O(11)                       | 116 4(4)                |
| O(13)- $S(3)$ - $O(12)$                            | 1150(4)                | O(13)-S(3)-C(57)                       | 101.2(4)                |
| O(12)- $S(3)$ - $O(11)$                            | 112.9(4)               | O(11)-S(3)-C(57)                       | 101.2(1)<br>100 3(4)    |
| O(12) - S(3) - C(57)                               | 108 8(5)               | O(16)-S(4)-O(15)                       | 116 7(4)                |
| O(12) S(3) O(37)<br>O(16) - S(4) - O(14)           | 1145(4)                | O(16)-S(4)-C(76)                       | 102.0(4)                |
| O(14)-S(4)-O(15)                                   | 113 2(5)               | O(15)-S(4)-C(76)                       | 104 0(4)                |
| O(14)-S(4)-C(76)                                   | 104.1(4)               | O(1)-P(1)-C(7)                         | 98 4(4)                 |
| O(1)-P(1)-C(13)                                    | 106.0(4)               | $O(1) - P(1) - A \sigma(1)$            | 116 7(2)                |
| C(13)-P(1)-C(7)                                    | 103 8(4)               | $C(7)-P(1)-A\sigma(1)$                 | 114 9(3)                |
| C(13)-P(1)-Ag(1)                                   | 114 9(3)               | O(2)-P(2)-C(26)                        | 101 1(4)                |
| O(2)-P(2)-C(32)                                    | 103.7(4)               | O(2)-P(2)-Ag(2)                        | 118.3(2)                |
|                                                    |                        |                                        | ·                       |

Table B.2. Continued

| C(32)-P(2)-C(26)                           | 104.8(4)             | C(26)-P(2)-Ag(2)                                       | 114.2(3)               |
|--------------------------------------------|----------------------|--------------------------------------------------------|------------------------|
| C(32)-P(2)-Ag(2)                           | 113.2(3)             | O(3)-P(3)-C(45)                                        | 104.9(4)               |
| O(3)-P(3)-C(51)                            | 97.5(3)              | O(3)-P(3)-Ag(3)                                        | 118.3(2)               |
| C(51)-P(3)-C(45)                           | 104.6(4)             | C(45)-P(3)-Ag(3)                                       | 113.2(3)               |
| C(51)-P(3)-Ag(3)                           | 116.3(3)             | O(4)-P(4)-C(70)                                        | 104.9(4)               |
| O(4)-P(4)-C(64)                            | 98.1(4)              | O(4) - P(4) - Ag(4)                                    | 118.8(2)               |
| C(64)-P(4)-C(70)                           | 104.9(4)             | C(70)-P(4)-Ag(4)                                       | 113.9(3)               |
| C(64)-P(4)-Ag(4)                           | 114.2(3)             | F(1)-C(19)-F(2)                                        | 109.2(5)               |
| F(1)-C(19)-F(3)                            | 110.4(5)             | F(1)-C(19)-S(1)                                        | 118.4(6)               |
| F(3)-C(19)-F(2)                            | 104.5(4)             | F(2)-C(19)-S(1)                                        | 107.8(6)               |
| F(3)-C(19)-S(1)                            | 105.6(6)             | F(4)-C(38)-F(5)                                        | 109.2(5)               |
| F(4)-C(38)-F(6)                            | 110 4(5)             | F(4)-C(38)-S(2)                                        | 116 1(6)               |
| F(6)-C(38)-F(5)                            | 104 4(4)             | F(5)-C(38)-S(2)                                        | 1072(5)                |
| F(6)-C(38)-S(2)                            | 108 9(6)             | F(9)-C(57)-F(8)                                        | 107 5(6)               |
| F(9)-C(57)-F(7)                            | 110.2(7)             | F(9)-C(57)-S(3)                                        | 105 3(9)               |
| F(7)-C(57)-F(8)                            | 107 5(6)             | F(8)-C(57)-S(3)                                        | 105.5(5)<br>118 8(10)  |
| F(7)-C(57)-S(3)                            | 107.4(9)             | F(12)-C(76)-F(11)                                      | 107.8(6)               |
| F(12)-C(76)-F(10)                          | 110 5(6)             | F(12) - C(76) - S(4)                                   | 107.0(0)               |
| F(10)-C(76)-F(11)                          | 109.4(6)             | F(11)-C(76)-S(4)                                       | 113.4(6)               |
| F(10)-C(76)-S(4)                           | 107.1(6)             | C(20)-O(2)-P(2)                                        | 115.4(0)<br>116.3(5)   |
| C(1) - O(1) - P(1)                         | 118 6(5)             | C(58) - O(4) - P(4)                                    | 110.3(5)<br>110.9(5)   |
| C(3) - O(3) - P(3)                         | 110.0(5)             | $S(2) - O(8) - \Lambda \sigma(2)$                      | 117.9(3)<br>117.3(4)   |
| S(1) O(5) Ag(1)                            | 119.0(5)<br>120.7(5) | S(2) - O(0) - Ag(2)<br>S(3) O(11) Ag(3)                | 117.3(4)<br>117.7(4)   |
| S(1) - O(3) - Ag(1)<br>S(2) - O(0) - Ag(2) | 120.7(3)<br>122.8(4) | S(3) - O(11) - Ag(3)                                   | 117.7(4)<br>115 $1(9)$ |
| S(2) - O(9) - Ag(3)<br>S(4) O(14) Ag(4)    | 122.0(4)<br>114.2(4) | C(3)-N(1)-C(4)<br>C(4) N(1) A g(2)                     | 113.4(6)<br>120.1(6)   |
| S(4) - O(14) - Ag(4)<br>C(2) N(1) Ag(2)    | 114.3(4)<br>124.2(7) | C(4) - N(1) - Ag(2)<br>$C(22) N(2) = A \alpha(1) \# 2$ | 120.1(0)<br>120.2(6)   |
| C(3)-N(1)-Ag(2)<br>C(22) N(2) C(22)        | 124.2(7)<br>110.2(8) | C(23)-N(2)-Ag(1)#2<br>C(42) N(2) C(41)                 | 120.3(0)<br>110.2(9)   |
| C(23)-N(2)-C(22)                           | 119.2(8)<br>120.0(6) | C(42)-N(3)- $C(41)$                                    | 118.3(8)<br>121.2(6)   |
| C(22)-N(2)-Ag(1)#2<br>C(42) N(2) A $c(4)$  | 120.0(0)<br>120.2(6) | C(41) - N(3) - Ag(4)                                   | 121.5(0)               |
| C(42)-N(3)-Ag(4)                           | 120.2(0)             | C(60)-N(4)-Ag(3)#1                                     | 121.0(0)               |
| C(60)-N(4)-C(61)                           | 118.9(/)             | O(1)-C(1)-C(2)                                         | 106.4(7)               |
| C(61)-N(4)-Ag(5)#1                         | 119.1(5)             | C(2)-C(1)-H(1A)                                        | 110.5                  |
| O(1)-C(1)-H(1A)                            | 110.5                | C(2)-C(1)-H(1B)                                        | 110.5                  |
| O(1)-C(1)-H(1B)                            | 110.5                | C(6)-C(2)-C(3)                                         | 118./(8)               |
| H(1A)-C(1)-H(1B)                           | 108.6                | C(3)-C(2)-C(1)                                         | 118.0(8)               |
| C(6)-C(2)-C(1)                             | 123.0(8)             | N(1)-C(3)-H(3A)                                        | 117.7                  |
| N(1)-C(3)-C(2)                             | 124.5(9)             | C(5)-C(4)-N(1)                                         | 124.7(9)               |
| C(2)-C(3)-H(3A)                            | 117.7                | N(1)-C(4)-H(4B)                                        | 117.7                  |
| C(5)-C(4)-H(4B)                            | 117.7                | C(4)-C(5)-H(5A)                                        | 121.2                  |
| C(4)-C(5)-C(6)                             | 117.5(10)            | C(2)-C(6)-C(5)                                         | 119.0(9)               |
| C(6)-C(5)-H(5A)                            | 121.2                | C(5)-C(6)-H(6B)                                        | 120.5                  |
| C(2)-C(6)-H(6B)                            | 120.5                | C(8)-C(7)-P(1)                                         | 118.2(7)               |
| C(8)-C(7)-C(12)                            | 121.2(9)             | C(7)-C(8)-C(9)                                         | 116.8(9)               |
| C(12)-C(7)-P(1)                            | 120.5(8)             | C(9)-C(8)-H(8A)                                        | 121.6                  |
| C(7)-C(8)-H(8A)                            | 121.6                | C(10)-C(9)-H(9A)                                       | 118.2                  |
| C(10)-C(9)-C(8)                            | 123.5(11)            | C(9)-C(10)-C(11)                                       | 119.4(11)              |
| C(8)-C(9)-H(9A)                            | 118.2                | C(11)-C(10)-H(10B)                                     | 120.3                  |
| C(9)-C(10)-H(10B)                          | 120.3                | C(10)-C(11)-H(11A)                                     | 118.7                  |
| C(10)-C(11)-C(12)                          | 122.7(13)            | C(7)-C(12)-C(11)                                       | 116.3(11)              |
| C(12)-C(11)-H(11A)                         | 118.7                | C(11)-C(12)-H(12B)                                     | 121.9                  |
| C(7)-C(12)-H(12B)                          | 121.9                | C(18)-C(13)-P(1)                                       | 119.4(7)               |
| C(18)-C(13)-C(14)                          | 119.9(8)             | C(13)-C(14)-C(15)                                      | 118.9(10)              |
| C(14)-C(13)-P(1)                           | 120.7(7)             | C(15)-C(14)-H(14A)                                     | 120.6                  |
| C(13)-C(14)-H(14A)                         | 120.6                | C(16)-C(15)-H(15B)                                     | 119.8                  |
| C(16)-C(15)-C(14)                          | 120.3(10)            | C(15)-C(16)-C(17)                                      | 121.6(10)              |

Table B.2. Continued

| C(14)-C(15)-H(15B)                                     | 119.8                 | C(17)-C(16)-H(16B)                                           | 119.2                |
|--------------------------------------------------------|-----------------------|--------------------------------------------------------------|----------------------|
| C(15)-C(16)-H(16B)                                     | 119.2                 | C(16)-C(17)-H(17A)                                           | 120.7                |
| C(16)-C(17)-C(18)                                      | 118 5(9)              | C(13)-C(18)-C(17)                                            | 120 7(9)             |
| C(18)-C(17)-H(17A)                                     | 120 7                 | C(17)- $C(18)$ - $H(18A)$                                    | 1197                 |
| C(13)-C(18)-H(18A)                                     | 1197                  | O(2)-C(20)-H(20A)                                            | 109.9                |
| O(2)-C(20)-C(21)                                       | 108 9(8)              | O(2) - C(20) - H(20R)                                        | 109.9                |
| C(21)-C(20)-H(20A)                                     | 100.9(0)              | H(20A)-C(20)-H(20B)                                          | 109.9                |
| C(21) - C(20) - H(20R)                                 | 109.9                 | C(25)-C(21)-C(20)                                            | 100.5                |
| C(25) - C(21) - C(22)                                  | 118 2(8)              | N(2) - C(22) - C(21)                                         | 122.0(9)<br>120.8(9) |
| C(22) - C(21) - C(22)                                  | 110.2(0)<br>110.2(10) | $\Gamma(2) - C(22) - C(21)$<br>$\Gamma(21) - C(22) - H(22A)$ | 110.6                |
| N(2) C(22) + C(21) + C(20)                             | 119.2(10)             | N(2) C(22) H(22A)                                            | 119.0                |
| $N(2) - C(22) - \Pi(22A)$<br>$N(2) - C(22) - \Pi(22A)$ | 119.0                 | $\Gamma(2)$ - $C(23)$ - $\Pi(23A)$<br>C(25) $C(24)$ $C(22)$  | 118.0<br>118.7(0)    |
| N(2)-C(23)-C(24)<br>C(24) C(23) H(23A)                 | 122.0(9)              | C(23) - C(24) - C(23)<br>C(23) - C(24) - U(24A)              | 110.7(9)             |
| C(24)-C(23)-H(23A)                                     | 110.0                 | C(24) - C(24) - H(24A)                                       | 120.0                |
| $C(24) - C(24) - \Pi(24A)$                             | 120.0                 | $C(24)-C(23)-\Pi(23A)$                                       | 119.9                |
| C(24)-C(25)-C(21)                                      | 120.5(8)              | C(21) - C(20) - C(31)                                        | 119.8(9)             |
| C(21)-C(25)-H(25A)                                     | 117.4(7)              | C(31)-C(20)-P(2)                                             | 122.0(7)             |
| C(27)-C(20)-P(2)                                       | 11/.4(7)<br>110.4(10) | C(20)-C(27)-H(27A)                                           | 120.5                |
| C(26)-C(27)-C(28)                                      | 119.4(10)             | C(29)-C(28)-C(27)                                            | 121.4(10)            |
| C(28)-C(27)-H(27A)                                     | 120.3                 | C(27)-C(28)-H(28A)                                           | 119.3                |
| C(29)-C(28)-H(28A)                                     | 119.3                 | C(28)-C(29)-H(29A)                                           | 119.7                |
| C(28)-C(29)-C(30)                                      | 120.5(10)             | C(29)-C(30)-C(31)                                            | 120.0(10)            |
| C(30)-C(29)-H(29A)                                     | 119.7                 | C(31)-C(30)-H(30A)                                           | 120.0                |
| C(29)-C(30)-H(30A)                                     | 120.0                 | C(26)-C(31)-H(31A)                                           | 120.6                |
| C(26)-C(31)-C(30)                                      | 118.9(10)             | C(37)-C(32)-C(33)                                            | 118.6(8)             |
| C(30)-C(31)-H(31A)                                     | 120.6                 | C(33)-C(32)-P(2)                                             | 121.6(7)             |
| C(37)-C(32)-P(2)                                       | 119.8(7)              | C(34)-C(33)-H(33A)                                           | 119.6                |
| C(34)-C(33)-C(32)                                      | 120.7(10)             | C(33)-C(34)-C(35)                                            | 120.6(10)            |
| C(32)-C(33)-H(33A)                                     | 119.6                 | C(35)-C(34)-H(34A)                                           | 119.7                |
| C(33)-C(34)-H(34A)                                     | 119.7                 | C(34)-C(35)-H(35A)                                           | 120.6                |
| C(34)-C(35)-C(36)                                      | 118.8(10)             | C(35)-C(36)-C(37)                                            | 120.8(11)            |
| C(36)-C(35)-H(35A)                                     | 120.6                 | C(37)-C(36)-H(36A)                                           | 119.6                |
| C(35)-C(36)-H(36A)                                     | 119.6                 | C(32)-C(37)-H(37A)                                           | 119.8                |
| C(32)-C(37)-C(36)                                      | 120.5(9)              | O(3)-C(39)-C(40)                                             | 106.4(7)             |
| C(36)-C(37)-H(37A)                                     | 119.8                 | C(40)-C(39)-H(39A)                                           | 110.4                |
| O(3)-C(39)-H(39A)                                      | 110.4                 | C(40)-C(39)-H(39B)                                           | 110.4                |
| O(3)-C(39)-H(39B)                                      | 110.4                 | C(44)-C(40)-C(41)                                            | 118.5(8)             |
| H(39A)-C(39)-H(39B)                                    | 108.6                 | C(41)-C(40)-C(39)                                            | 118.9(8)             |
| C(44)-C(40)-C(39)                                      | 122.7(8)              | N(3)-C(41)-H(41A)                                            | 119.0                |
| N(3)-C(41)-C(40)                                       | 122.0(8)              | N(3)-C(42)-C(43)                                             | 123.2(8)             |
| C(40)-C(41)-H(41A)                                     | 119.0                 | C(43)-C(42)-H(42A)                                           | 118.4                |
| N(3)-C(42)-H(42A)                                      | 118.4                 | C(44)-C(43)-H(43A)                                           | 121.1                |
| C(44)-C(43)-C(42)                                      | 117.8(9)              | C(40)-C(44)-C(43)                                            | 120.2(9)             |
| C(42)-C(43)-H(43A)                                     | 121.1                 | C(43)-C(44)-H(44A)                                           | 119.9                |
| C(40)-C(44)-H(44A)                                     | 119.9                 | C(46)-C(45)-P(3)                                             | 119.1(7)             |
| C(46)-C(45)-C(50)                                      | 119.9(8)              | C(45)-C(46)-C(47)                                            | 119.4(9)             |
| C(50)-C(45)-P(3)                                       | 121.0(7)              | C(47)-C(46)-H(46A)                                           | 120.3                |
| C(45)-C(46)-H(46A)                                     | 120.3                 | C(48)-C(47)-H(47A)                                           | 119.5                |
| C(48)-C(47)-C(46)                                      | 120.9(8)              | C(47)-C(48)-C(49)                                            | 119.0(9)             |
| C(46)-C(47)-H(47A)                                     | 119.5                 | C(49)-C(48)-H(48A)                                           | 120.5                |
| C(47)-C(48)-H(48A)                                     | 120.5                 | C(50)-C(49)-H(49A)                                           | 119.6                |
| C(50)-C(49)-C(48)                                      | 120.8(9)              | C(49)-C(50)-C(45)                                            | 119.8(9)             |
| C(48)-C(49)-H(49A)                                     | 119.6                 | C(45)-C(50)-H(50A)                                           | 120.1                |
| C(49)-C(50)-H(50A)                                     | 120.1                 | C(52)-C(51)-P(3)                                             | 119.6(7)             |
| C(52)-C(51)-C(56)                                      | 117.8(8)              | C(51)-C(52)-C(53)                                            | 120.2(9)             |
| , , - , - , - , - , - ,                                |                       |                                                              | · · · · /            |

Table B.2. Continued

| C(56)-C(51)-P(3)                    | 122.5(7)  | C(53)-C(52)-H(52A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.9                |
|-------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C(51)-C(52)-H(52A)                  | 119.9     | C(52)-C(53)-H(53A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.1                |
| C(52)-C(53)-C(54)                   | 119.8(10) | C(53)-C(54)-C(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7(10)            |
| C(54)-C(53)-H(53A)                  | 120.1     | C(55)-C(54)-H(54A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.2                |
| C(53)-C(54)-H(54A)                  | 120.2     | C(56)-C(55)-H(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.2                |
| C(56)-C(55)-C(54)                   | 117.5(10) | C(55)-C(56)-C(51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.9(10)            |
| C(54)-C(55)-H(55)                   | 121.2     | C(51)-C(56)-H(56A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.5                |
| C(55)-C(56)-H(56A)                  | 117.5     | O(4)-C(58)-H(58A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.3                |
| O(4)-C(58)-C(59)                    | 107 3(6)  | O(4)-C(58)-H(58B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.3                |
| C(59)- $C(58)$ - $H(58A)$           | 110.3     | H(58A)-C(58)-H(58B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.5                |
| C(59)-C(58)-H(58B)                  | 110.3     | C(60)-C(59)-C(58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 4(8)             |
| C(60) C(50) C(63)                   | 117 5(8)  | N(4) C(60) C(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.4(0)<br>122.2(8) |
| C(60)-C(59)-C(05)                   | 117.3(8)  | C(50) C(60) H(60A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.2(0)             |
| N(4) C(60) H(60A)                   | 122.0(8)  | N(4) C(61) H(61A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.4                |
| $N(4) - C(60) - \Pi(60A)$           | 110.4     | $N(4)-C(01)-\Pi(01A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.5                |
| N(4)-C(61)-C(62)                    | 121.0(8)  | C(03)-C(02)-C(01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(8)             |
| C(62)-C(61)-H(61A)                  | 119.5     | C(61)-C(62)-H(62A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.9                |
| C(63)-C(62)-H(62A)                  | 119.9     | C(62)-C(63)-H(63A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.5                |
| C(62)-C(63)-C(59)                   | 119.1(8)  | C(69)-C(64)-C(65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.4(8)             |
| C(59)-C(63)-H(63A)                  | 120.5     | C(65)-C(64)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.6(6)             |
| C(69)-C(64)-P(4)                    | 124.0(7)  | C(66)-C(65)-H(65A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.0                |
| C(66)-C(65)-C(64)                   | 118.0(9)  | C(65)-C(66)-C(67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.0(10)            |
| C(64)-C(65)-H(65A)                  | 121.0     | C(67)-C(66)-H(66A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.5                |
| C(65)-C(66)-H(66A)                  | 119.5     | C(68)-C(67)-H(67A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.3                |
| C(68)-C(67)-C(66)                   | 119.3(10) | C(67)-C(68)-C(69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.6(11)            |
| C(66)-C(67)-H(67A)                  | 120.3     | C(69)-C(68)-H(68A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.2                |
| C(67)-C(68)-H(68A)                  | 119.2     | C(64)-C(69)-H(69A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.8                |
| C(64)-C(69)-C(68)                   | 120.5(11) | C(75)-C(70)-C(71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1(8)             |
| C(68)-C(69)-H(69A)                  | 119.8     | C(71)-C(70)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.2(7)             |
| C(75)-C(70)-P(4)                    | 120.8(7)  | C(70)-C(71)-H(71A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0                |
| C(70)-C(71)-C(72)                   | 119.9(10) | C(73)-C(72)-C(71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.9(12)            |
| C(72)-C(71)-H(71A)                  | 120.0     | C(71)-C(72)-H(72A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.5                |
| C(73)-C(72)-H(72A)                  | 120.5     | С(72)-С(73)-Н(73А)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.0                |
| C(72)-C(73)-C(74)                   | 122.1(11) | C(73)-C(74)-C(75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.8(10)            |
| C(74)-C(73)-H(73A)                  | 119.0     | C(75)-C(74)-H(74A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.1                |
| C(73)-C(74)-H(74A)                  | 120.1     | C(70)-C(75)-H(75A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.4                |
| C(70)-C(75)-C(74)                   | 119 2(10) | Cl(1)-C(77)-Cl(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 4(8)             |
| C(74)-C(75)-H(75A)                  | 120.4     | $C_{1}(2)-C_{1}(77)-H_{1}(77A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.3                |
| $C_{1}(1) - C_{1}(77) - H_{1}(77A)$ | 109.3     | Cl(2)-C(77)-H(77B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.3                |
| $C_1(1) - C_1(77) - H_1(77B)$       | 109.3     | Cl(4)-C(78)-Cl(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1102(13)             |
| H(77A)-C(77)-H(77B)                 | 108.0     | $C_{1(3)} - C_{7(3)} - H_{7(3)} $ | 109.6                |
| $C_1(4) - C_1(78) - H_1(784)$       | 109.6     | $C_{1(3)} = C_{(78)} = H_{(78R)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.6                |
| $C_1(4) - C_1(78) - H(78P)$         | 109.0     | $C_{1}(A_{A}) - C_{1}(78A) - C_{1}(78A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117(3)               |
| U(78A) - C(78) - U(78D)             | 109.0     | $C_{1(3A)} - C_{(78A)} - C_{1(3A)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.1                |
| $\Pi(70A) - C(70) - \Pi(70D)$       | 100.1     | $C_{1(2A)} - C_{(70A)} - \Pi_{(70C)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.1                |
| $C_{(4A)} - C_{(78A)} - H_{(78D)}$  | 100.1     | $U(3A) - U(78A) - \Pi(78D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.1                |
| U(4A)-U(78A)-H(78D)                 | 108.1     | $\Pi(/\delta U) - U(/\delta A) - U(79D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.3                |
|                                     |           | н(78D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x-1,y,z

| Empirical formula                        |                 | $C_{40}H_{32}Ag_2F_6N_2O_6P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Formula weight                           |                 | 1028.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Temperature                              |                 | 110(2) K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Wavelength                               |                 | 0.71073 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Crystal system                           |                 | Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Space group                              |                 | P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Unit cell dimensions                     |                 | $a = 8.9906(14) \text{ Å} \alpha = 96.721($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)°             |
|                                          |                 | $b = 9.1032(14) \text{ Å } \beta = 95.492(14)  Å $ | 2)°              |
|                                          |                 | $c = 25.965(4)$ Å $\gamma = 105.485$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)°             |
| Volume, Z                                |                 | $2015.9(5)Å^3, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Density (calculated)                     |                 | $1.694 \text{ Mg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Absorption coefficient                   |                 | $1.127 \text{ mm}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| F(000)                                   |                 | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Crystal size                             |                 | .26 x .22 x .15 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| $\theta$ range for data collection       |                 | 0.80 to 27.61°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| Limiting indices                         |                 | $-11 \le h \le 11, -11 \le k \le 11, -33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\leq l \leq 33$ |
| Reflections collected                    |                 | 27968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Independent reflections                  |                 | $8965 (R_{int} = 0.0358)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Completeness to $\theta = 27.61^{\circ}$ |                 | 95.8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Absorption correction                    |                 | multi-scan (SADABS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                |
| Refinement method                        |                 | Full-matrix least-squares on F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                |
| Data / restraints / parameters           |                 | 8965 / 125 / 546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Goodness-of-fit on F <sup>2</sup>        |                 | 1.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Final R indices $[1>2\sigma(1)]$         |                 | R1 = 0.0531, $wR2 = 0.1260$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| R indices (all data)                     |                 | R1 = 0.0567, WR2 = 0.1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Largest diff. peak and hole              |                 | 2.177 and $-2.382$ eA <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Bond Lengths (Å)                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Ag(1)-N(1)#1                             | 2.269(4)        | Ag(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3556(13)       |
| Ag(1)-O(2)#2                             | 2.375(4)        | Ag(1)-O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.549(4)         |
| Ag(2)-N(2)#3                             | 2.264(5)        | Ag(2)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3681(13)       |
| Ag(2)-O(5)#4                             | 2.419(4)        | Ag(2)-O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.576(4)         |
| P(2)-O(4)                                | 1.643(4)        | P(2)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.820(5)         |
| P(2)-C(33)                               | 1.824(5)        | P(1)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.634(4)         |
| P(1)-C(7)                                | 1.817(5)        | P(1)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.818(5)         |
| O(1)-C(1)                                | 1.459(6)        | O(2)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.252(6)         |
| O(2)-Ag(1)#2                             | 2.375(4)        | O(3)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.230(7)         |
| O(4)-C(21)                               | 1.459(6)        | O(5)-C(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.262(6)         |
| O(5)-Ag(2)#4                             | 2.419(4)        | O(6)-C(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.228(7)         |
| N(1)-C(3)                                | 1.347(7)        | N(1)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.363(7)         |
| N(1)-Ag(1)#1                             | 2.269(4)        | N(2)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.338(6)         |
| N(2)-C(24)                               | 1.355(7)        | N(2)-Ag(2)#3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.264(4)         |
| C(1)-C(2)                                | 1.499(7)        | C(1)-H(1B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9700           |
| C(1)-H(1C)                               | 0.9700          | C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.397(7)         |
| C(2)-C(6)                                | 1.398(7)        | C(3)-H(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9300           |
| C(4)-C(5)                                | 1.377(8)        | C(4)-H(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9300           |
| C(5)- $C(6)$                             | 1.393(7)        | C(5)-H(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9300           |
| C(6)-H(6A)                               | 0.9300          | C(7)- $C(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.397(8)         |
| C(7)-C(12)                               | $1.401(\delta)$ | C(0) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.382(9)         |
| C(0)- $H(0A)$                            | 0.9300          | C(10) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.303(10)        |
| C(10) + H(10A)                           | 0.9300          | C(10)-C(11)<br>C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 388(8)         |
| C(11)-H(11A)                             | 0.9300          | C(12)-H(12A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0300           |
|                                          | 0.7500          | $C(12)^{-11}(12\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7500           |

Table B.3. Continued

| C(13)-C(14)                                                      | 1.397(7)             | C(13)-C(18)                                                                      | 1.403(7)               |
|------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|------------------------|
| C(14)-C(15)                                                      | 1.398(8)             | C(14)-H(14A)                                                                     | 0.9300                 |
| C(15)-C(16)                                                      | 1.388(9)             | C(15)-H(15A)                                                                     | 0.9300                 |
| C(16)-C(17)                                                      | 1.397(8)             | C(16)-H(16A)                                                                     | 0.9300                 |
| C(17)- $C(18)$                                                   | 1 396(7)             | C(17)-H(17A)                                                                     | 0 9300                 |
| C(18)-H(18A)                                                     | 0.9300               | C(19)-C(20)                                                                      | 1 503(7)               |
| C(21)-C(22)                                                      | 1 509(7)             | C(21)-H(21A)                                                                     | 0.9700                 |
| C(21) - H(21B)                                                   | 0.9700               | C(21) - C(26)                                                                    | 1.389(7)               |
| C(21) H(21D)                                                     | 1 402(7)             | C(22) = C(20)<br>C(23) = H(23A)                                                  | 0.0300                 |
| C(22) - C(23)                                                    | 1 375(8)             | C(24)-H(24A)                                                                     | 0.9300                 |
| C(25)-C(26)                                                      | 1 400(8)             | C(24)-H(25A)                                                                     | 0.9300                 |
| C(26)-H(26A)                                                     | 0.9300               | C(23)-H(23A)<br>C(27)-C(28)                                                      | 1 389(8)               |
| $C(20) - \Pi(20R)$<br>C(27) - C(32)                              | 1 398(7)             | C(28)- $C(28)$                                                                   | 1.305(0)               |
| C(27) - C(32)                                                    | 0.0200               | C(20) - C(20)                                                                    | 1.390(0)               |
| C(20) H(20A)                                                     | 0.9300               | C(29)-C(30)                                                                      | 1.303(9)<br>1.294(0)   |
| $C(29) - \Pi(29A)$                                               | 0.9300               | C(30)-C(31)                                                                      | 1.304(9)               |
| $C(30)$ - $\Pi(30A)$                                             | 0.9300               | C(31)-C(32)                                                                      | 1.393(8)               |
| C(31)-H(31A)                                                     | 0.9300               | C(32)- $H(32A)$                                                                  | 0.9300                 |
| C(33)-C(34)                                                      | 1.400(7)             | C(33)-C(38)                                                                      | 1.403(7)               |
| C(34)-C(35)                                                      | 1.403(8)             | C(34)-H(34A)                                                                     | 0.9300                 |
| C(35)-C(36)                                                      | 1.379(9)             | C(35)-H(35A)                                                                     | 0.9300                 |
| C(36)-C(37)                                                      | 1.378(9)             | C(36)-H(36A)                                                                     | 0.9300                 |
| C(37)-C(38)                                                      | 1.384(8)             | C(37)-H(37A)                                                                     | 0.9300                 |
| C(38)-H(38A)                                                     | 0.9300               | C(39)-C(40)                                                                      | 1.538(7)               |
| C(20)-F(3)                                                       | 1.3390(11)           | C(20)-F(2)                                                                       | 1.3391(11)             |
| C(20)-F(1)                                                       | 1.3417(11)           | C(40)-F(6)                                                                       | 1.3397(11)             |
| C(40)-F(5)                                                       | 1.3400(11)           | C(40)- $F(4)$                                                                    | 1.3406(11)             |
| Ag1-Ag1_\$1                                                      | 3.8686(0.0009)       | Ag1-Ag1_\$2                                                                      | 6.0676(0.0011)         |
| Ag1-Ag1_\$3                                                      | 24.2214(0.0035)      | Ag1-Ag1_\$4                                                                      | 27.2488(0.0033)        |
| Ag2-Ag2_\$1                                                      | 26.0238(0.0033)      | Ag2-Ag2_\$2                                                                      | 27.1730(0.0033)        |
| Ag2-Ag2_\$3                                                      | 5.9368(0.0011)       | Ag2-Ag2_\$4                                                                      | 3.9404(0.0009)         |
| P1-N1                                                            | 5.3704(0.0045)       | P2-N2                                                                            | 5.3372(0.0045)         |
| P1-C2                                                            | 3.7940(0.0050)       | P2-C22                                                                           | 3.7845(0.0052)         |
| Bond Angles (°)                                                  |                      |                                                                                  |                        |
|                                                                  |                      |                                                                                  |                        |
| N(1)#1-Ag(1)-P(1)                                                | 133.36(11)           | N(1)#1-Ag(1)-O(2)#2                                                              | 103.06(15)             |
| P(1)-Ag(1)-O(2)#2                                                | 119.72(10)           | N(1)#1-Ag(1)-O(2)                                                                | 91.60(14)              |
| P(1)-Ag(1)-O(2)                                                  | 114.52(10)           | O(2)#2-Ag(1)-O(2)                                                                | 76.48(13)              |
| N(2)#3-Ag(2)-P(2)                                                | 136.26(12)           | N(2)#3-Ag(2)-O(5)#4                                                              | 107.22(15)             |
| P(2)-Ag(2)-O(5)#4                                                | 112.73(10)           | N(2)#3-Ag(2)-O(5)                                                                | 92.18(14)              |
| P(2)-Ag(2)-O(5)                                                  | 113.91(9)            | O(5)#4-Ag(2)-O(5)                                                                | 75.88(14)              |
| O(4)-P(2)-C(27)                                                  | 97.8(2)              | O(4)-P(2)-C(33)                                                                  | 105.2(2)               |
| C(27)-P(2)-C(33)                                                 | 104.5(2)             | O(4)-P(2)-Ag(2)                                                                  | 115.24(14)             |
| C(27)-P(2)-Ag(2)                                                 | 117.52(17)           | C(33)-P(2)-Ag(2)                                                                 | 114.52(17)             |
| O(1)-P(1)-C(7)                                                   | 105.9(2)             | O(1)-P(1)-C(13)                                                                  | 98.6(2)                |
| C(7)-P(1)-C(13)                                                  | 103 6(2)             | O(1)-P(1)-Ag(1)                                                                  | 11501(14)              |
| C(7)-P(1)-Ag(1)                                                  | 115.05(18)           | C(13)-P(1)-Ag(1)                                                                 | 116 66(16)             |
| C(1)-O(1)-P(1)                                                   | 116 8(3)             | C(19)-O(2)-Ag(1)#2                                                               | 109 2(3)               |
| $C(19)-O(2)-A\sigma(1)$                                          | 138 6(3)             | $A_{\sigma}(1)#2-O(2)-A_{\sigma}(1)$                                             | 103.2(3)<br>103.52(13) |
| C(21) - O(4) - P(2)                                              | 116 6(3)             | $\Gamma(39) = \Omega(5) = \Delta \sigma(2) = 4$                                  | 108 5(3)               |
| $C(39) - O(5) - \Delta \sigma(2)$                                | 135 3(3)             | $\Delta \sigma(2) \# 4_{-} \Omega(5) = \Lambda \sigma(2)$                        | 104.12(13)             |
| C(3)-N(1)-C(4)                                                   | 117.6(4)             | $C(3) - N(1) - \Delta \sigma(1) = 1$                                             | 1204(3)                |
| $C(4) = N(1) - \Delta \sigma(1) + 1$                             | 121 2(3)             | C(23)-N(2)-C(24)                                                                 | 120.7(3)<br>117 9(5)   |
| $C(23) - N(2) - \Delta \sigma(2) = 3$                            | 121.2(3)<br>120.2(3) | C(24) = N(2) = C(24)<br>$C(24) = N(2) = \Delta \sigma(2) \# 3$                   | 121 5(3)               |
| $(\Delta J) = (\Delta J) = (\Delta J) = (\Delta J) = (\Delta J)$ | 140.4(2)             | $\sim (\Delta \tau f \pm \eta (\Delta f^{-} \Lambda \mathcal{L}) \Delta f \pi J$ | 141.0(0)               |

Table B.3. Continued

| O(1)-C(1)-C(2)                        | 109.5(4) | O(1)-C(1)-H(1B)           | 109.8    |
|---------------------------------------|----------|---------------------------|----------|
| C(2)-C(1)-H(1B)                       | 109.8    | O(1)-C(1)-H(1C)           | 109.8    |
| C(2)-C(1)-H(1C)                       | 109.8    | H(1B)-C(1)-H(1C)          | 108.2    |
| C(3)-C(2)-C(6)                        | 117.6(5) | C(3)-C(2)-C(1)            | 120.0(4) |
| C(6)-C(2)-C(1)                        | 122.3(5) | N(1)-C(3)-C(2)            | 123.6(5) |
| N(1)-C(3)-H(3A)                       | 118.2    | C(2)-C(3)-H(3A)           | 118.2    |
| N(1)-C(4)-C(5)                        | 122.5(5) | N(1)-C(4)-H(4A)           | 118.7    |
| C(5)-C(4)-H(4A)                       | 118.7    | C(4) - C(5) - C(6)        | 119.3(5) |
| C(4)-C(5)-H(5A)                       | 120.3    | C(6)-C(5)-H(5A)           | 120.3    |
| C(5)-C(6)-C(2)                        | 119.3(5) | C(5)-C(6)-H(6A)           | 120.3    |
| C(2)-C(6)-H(6A)                       | 120.3    | C(8)-C(7)-C(12)           | 119.1(5) |
| C(8)-C(7)-P(1)                        | 119.1(4) | C(12)-C(7)-P(1)           | 121.8(4) |
| C(9)-C(8)-C(7)                        | 120.4(6) | C(9)-C(8)-H(8A)           | 119.8    |
| C(7)-C(8)-H(8A)                       | 119.8    | C(8)-C(9)-C(10)           | 120.1(6) |
| C(8)-C(9)-H(9A)                       | 120.0    | C(10)-C(9)-H(9A)          | 120.0    |
| C(9)-C(10)-C(11)                      | 120.4(6) | C(9)-C(10)-H(10A)         | 119.8    |
| C(11)-C(10)-H(10A)                    | 119.8    | C(10)-C(11)-C(12)         | 119.9(6) |
| C(10)-C(11)-H(11A)                    | 120.1    | C(12)-C(11)-H(11A)        | 120.1    |
| C(11)-C(12)-C(7)                      | 120.1(6) | C(11)-C(12)-H(12A)        | 119.9    |
| C(7)-C(12)-H(12A)                     | 1199     | C(14)-C(13)-C(18)         | 119 3(5) |
| C(14)-C(13)-P(1)                      | 121 1(4) | C(18)-C(13)-P(1)          | 119.4(4) |
| C(13)-C(14)-C(15)                     | 120 2(5) | C(13)-C(14)-H(14A)        | 119.9    |
| C(15)-C(14)-H(14A)                    | 1199     | C(16)- $C(15)$ - $C(14)$  | 120 1(5) |
| C(16)-C(15)-H(15A)                    | 120.0    | C(14)- $C(15)$ - $H(15A)$ | 120.0    |
| C(15)-C(16)-C(17)                     | 120.3(5) | C(15)-C(16)-H(16A)        | 119.8    |
| C(17)- $C(16)$ - $H(16A)$             | 119.8    | C(18)- $C(17)$ - $C(16)$  | 119.6(5) |
| C(18)-C(17)-H(17A)                    | 120.2    | C(16)- $C(17)$ - $H(17A)$ | 120.2    |
| C(17)-C(18)-C(13)                     | 120.5(5) | C(17)- $C(18)$ - $H(18A)$ | 119.8    |
| C(13)-C(18)-H(18A)                    | 119.8    | O(3)-C(19)-O(2)           | 130 1(5) |
| O(3)-C(19)-C(20)                      | 114 8(4) | O(2)-C(19)-C(20)          | 1150(4)  |
| O(4)-C(21)-C(22)                      | 108 8(4) | O(4)-C(21)-H(21A)         | 109.9    |
| C(22)-C(21)-H(21A)                    | 109.9    | O(4)-C(21)-H(21B)         | 109.9    |
| C(22)-C(21)-H(21B)                    | 109.9    | H(21A)-C(21)-H(21B)       | 108.3    |
| C(26)-C(22)-C(23)                     | 118 0(5) | C(26)-C(22)-C(21)         | 122 3(5) |
| C(23)-C(22)-C(21)                     | 119 7(4) | N(2)-C(23)-C(22)          | 1233(5)  |
| N(2)-C(23)-H(23A)                     | 118.4    | C(22)-C(23)-H(23A)        | 118.4    |
| N(2)-C(24)-C(25)                      | 122.8(5) | N(2)-C(24)-H(24A)         | 118.6    |
| C(25)-C(24)-H(24A)                    | 118.6    | C(24)-C(25)-C(26)         | 119.0(5) |
| C(24)-C(25)-H(25A)                    | 120.5    | C(26)-C(25)-H(25A)        | 120.5    |
| C(22)-C(26)-C(25)                     | 119.1(5) | C(22)-C(26)-H(26A)        | 120.5    |
| C(25)-C(26)-H(26A)                    | 120.5    | C(28)-C(27)-C(32)         | 119.0(5) |
| C(28)-C(27)-P(2)                      | 122.3(4) | C(32)-C(27)-P(2)          | 118.6(4) |
| C(27)-C(28)-C(29)                     | 120.6(5) | C(27)-C(28)-H(28A)        | 119.7    |
| C(29)-C(28)-H(28A)                    | 119.7    | C(30)-C(29)-C(28)         | 120.2(6) |
| C(30)-C(29)-H(29A)                    | 119.9    | C(28)-C(29)-H(29A)        | 119.9    |
| C(31)-C(30)-C(29)                     | 119.3(5) | C(31)-C(30)-H(30A)        | 120.3    |
| C(29)-C(30)-H(30A)                    | 120.3    | C(30)-C(31)-C(32)         | 120.9(5) |
| C(30)-C(31)-H(31A)                    | 119.5    | C(32)-C(31)-H(31A)        | 119.5    |
| C(31)-C(32)-C(27)                     | 119.9(5) | C(31)-C(32)-H(32A)        | 120.1    |
| C(27)-C(32)-H(32A)                    | 120.1    | C(34)-C(33)-C(38)         | 119.0(5) |
| C(34)-C(33)-P(2)                      | 118.3(4) | C(38)-C(33)-P(2)          | 122.7(4) |
| C(33)-C(34)-C(35)                     | 119.9(5) | C(33)-C(34)-H(34A)        | 120.1    |
| C(35)-C(34)-H(34A)                    | 120.1    | C(36)-C(35)-C(34)         | 120.1(6) |
| C(36)-C(35)-H(35A)                    | 119.9    | C(34)-C(35)-H(35A)        | 119.9    |
| · · · · · · · · · · · · · · · · · · · |          | , , - ( ,( )              |          |

Table B.3. Continued

| C(37)-C(36)-C(35)  | 120.0(5)       | C(37)-C(36)-H(36A)  | 120.0           |
|--------------------|----------------|---------------------|-----------------|
| C(35)-C(36)-H(36A) | 120.0          | C(36)-C(37)-C(38)   | 120.9(5)        |
| C(36)-C(37)-H(37A) | 119.5          | C(38)-C(37)-H(37A)  | 119.5           |
| C(37)-C(38)-C(33)  | 120.0(5)       | C(37)-C(38)-H(38A)  | 120.0           |
| C(33)-C(38)-H(38A) | 120.0          | O(6)-C(39)-O(5)     | 129.9(5)        |
| O(6)-C(39)-C(40)   | 117.5(5)       | O(5)-C(39)-C(40)    | 112.5(4)        |
| F(3)-C(20)-F(2)    | 109.9(6)       | F(3)-C(20)-F(1)     | 100.7(5)        |
| F(2)-C(20)-F(1)    | 99.6(7)        | F(3)-C(20)-C(19)    | 115.8(5)        |
| F(2)-C(20)-C(19)   | 116.6(7)       | F(1)-C(20)-C(19)    | 111.8(5)        |
| F(6)-C(40)-F(5)    | 106.9(10)      | F(6)-C(40)-F(4)     | 100.7(8)        |
| F(5)-C(40)-F(4)    | 100.4(8)       | F(6)-C(40)-C(39)    | 118.6(9)        |
| F(5)-C(40)-C(39)   | 114.5(7)       | F(4)-C(40)-C(39)    | 113.5(6)        |
| P1 - O1 - C1 - C2  | -136.71 (0.36) | P2 - O4 - C21 - C22 | -134.47 ( 0.36) |
|                    |                |                     |                 |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z #2 -x,-y+1,-z #3 -x+1,y+2,-z+1 #4 -x+2,-y+2,-z+1

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions                                                                                                                                                                                                                                                                                                                                  |                                               | C21.24 H19.27 Ag2 Cl1.61 F<br>914.92<br>110(2) K<br>0.71073 A<br>Triclinic, P-1<br>$a = 10.8716(9)$ A $\alpha = 94.502$<br>$b = 11.9998(9)$ A $\beta = 100.8$<br>$c = 12.1706(10)$ A $\gamma = 93.59$                                                                                                                                                                                                                               | 2(5) deg.<br>34(5) deg.<br>99(4) deg.          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>F(000)<br>Crystal size<br>$\theta$ range for data collection<br>Limiting indices<br>Reflections collected / unique<br>Completeness to $\theta = 31.20$<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2<br>Final R indices [I>2 $\sigma$ (I)]<br>R indices (all data)<br>Largest diff. peak and hole |                                               | 1549.7(2) A <sup>3</sup><br>2, 1.961 Mg/m <sup>3</sup><br>1.671 mm <sup>-1</sup><br>897<br>0.196 x 0.097 x 0.081 mm<br>2.30 to 31.20 deg.<br>-15<=h<=13, -14<=k<=17, -1<br>20219 / 9442 [R(int) = 0.0400<br>99.9 %<br>Semi-empirical from equivale<br>0.873 and 0.823<br>Full-matrix least-squares on 1<br>9442 / 56 / 431<br>1.016<br>R1 = 0.0459, wR2 = 0.1136<br>R1 = 0.0755, wR2 = 0.1281<br>1.618 and -1.251 e.A <sup>-3</sup> | 17<=1<=17<br>0]<br>ents<br>F^2                 |
| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| Ag(1)-O(6)<br>Ag(1)-O(3)#1<br>Ag(2)-N(2)<br>Ag(2)-Ag(2)#2                                                                                                                                                                                                                                                                                                                                                                                                | 2.287(3)<br>2.434(3)<br>2.152(4)<br>3.1918(8) | Ag(1)-P(1)<br>Ag(1)-O(3)<br>Ag(2)-N(1)<br>C(1)-O(1)                                                                                                                                                                                                                                                                                                                                                                                 | 2.3230(10)<br>2.456(3)<br>2.156(3)<br>1.448(4) |

Table B.4. Experimental and statistical crystal data for **3.2** 

Table B.4. Continued

| C(1)-C(2)                      | 1.510(5)             | C(1)-H(1A)                              | 0.9900               |
|--------------------------------|----------------------|-----------------------------------------|----------------------|
| C(1)-H(1B)                     | 0.9900               | C(2)-C(6)                               | 1.368(5)             |
| C(2)-C(3)                      | 1.378(5)             | C(3)-C(4)                               | 1.373(6)             |
| C(3)-H(3)                      | 0.9500               | C(4)-C(5)                               | 1.379(6)             |
| C(4)-H(4)                      | 0 9500               | C(5)-N(1)                               | 1 337(6)             |
| C(5)-H(5)                      | 0.9500               | C(6)-N(1)                               | 1 352(5)             |
| C(6)-H(6)                      | 0.9500               | C(7) - O(2)                             | 1.332(5)<br>1 447(5) |
| C(7)- $C(8)$                   | 1 506(6)             | C(7) - H(7A)                            | 0.9900               |
| C(7)-H(7B)                     | 0.9900               | C(8)-C(9)                               | 1 371(6)             |
| C(8)-C(12A)                    | 1.38(4)              | C(8)-C(12)                              | 1 409(8)             |
| C(9) - N(2)                    | 1.351(5)             | C(9) - H(9)                             | 0.9500               |
| C(10)-N(2)                     | 1.331(8)             | C(10)-C(11)                             | 1 384(9)             |
| C(10) - H(10)                  | 0.9500               | C(11)-C(12)                             | 1.383(10)            |
| C(11)-H(11)                    | 0.9500               | C(12)-H(12)                             | 0.9500               |
| C(10A)-N(2)                    | 1.35(4)              | $C(12)^{-11}(12)$<br>$C(10A)^{-}C(11A)$ | 1 36(5)              |
| C(10A)-H(10A)                  | 0.9500               | C(11A)-C(12A)                           | 1.36(5)              |
| C(11A)-H(11A)                  | 0.9500               | C(12A)-H(12A)                           | 0.9500               |
| C(13)-C(14)                    | 1 3000               | $C(12A) - \Gamma(12A)$                  | 1 3000               |
| C(13)-C(14)<br>C(13)-P(1)      | 1.3900               | C(13)-C(15)                             | 1 3000               |
| C(13) - I(1)<br>C(14) + I(14)  | 0.0500               | C(15) C(16)                             | 1.3900               |
| C(14)-11(14)<br>C(15) H(15)    | 0.9500               | C(15)-C(10)<br>C(16) C(17)              | 1.3900               |
| $C(15)-\Pi(15)$<br>C(16) H(16) | 0.9500               | C(10)-C(17)<br>C(17) $C(18)$            | 1.3900               |
| C(10)-H(10)<br>C(17) H(17)     | 0.9500               | C(17)-C(18)<br>C(18) $H(18)$            | 0.0500               |
| $C(17) - \Pi(17)$              | 1 2000               | $C(10) - \Pi(10)$<br>C(12A) C(18A)      | 0.9300               |
| C(13A) - C(14A)<br>C(12A) P(1) | 1.3900               | C(13A) - C(18A)                         | 1.3900               |
| C(13A) - F(1)                  | 1.777(10)            | C(14A) - C(15A)                         | 1.3900               |
| $C(14A) - \Pi(14A)$            | 0.9500               | C(15A) - C(16A)                         | 1.3900               |
| $C(15A) - \Pi(15A)$            | 0.9500               | C(10A) - C(17A)                         | 1.3900               |
| $C(10A) - \Pi(10A)$            | 0.9500               | C(17A) - C(18A)                         | 1.5900               |
| C(1/A)-H(1/A)                  | 0.9500               | C(18A) - H(18A)                         | 0.9300               |
| C(20)-F(6)<br>C(20)-F(5)       | 1.311(6)<br>1.220(5) | C(20)-F(4)<br>C(20)-S(2)                | 1.314(4)             |
| C(20)-F(3)                     | 1.559(5)             | C(20)-S(2)                              | 1.814(4)             |
| C(21)- $CI(1)$                 | 1.0/42               | C(21)-Cl(2)                             | 1./8/8               |
| C(21)-H(21A)                   | 0.9900               | C(21)-H(21B)                            | 0.9900               |
| CI(1)- $CI(1A)$                | 0.5889               | CI(1)- $CI(1B)$                         | 0.6778               |
| CI(2)- $CI(2A)$                | 0.3057               | C(2)- $C(2B)$                           | 0.8/15               |
| CI(2)-N(3)                     | 1.09(3)              | C(21A)- $CI(1A)$                        | 1.4424               |
| C(21A)-C(2A)                   | 2.0109               | C(21A)- $H(21C)$                        | 0.9900               |
| C(21A)- $H(21D)$               | 0.9900               | CI(1A)-CI(1B)                           | 1.2159               |
| CI(2A)-N(3)                    | 1.00(3)              | CI(2A)-CI(2B)                           | 1.3623               |
| C(21B)- $CI(2B)$               | 1.3038               | C(21B)- $CI(1B)$                        | 1.8084               |
| C(21B)- $H(21E)$               | 0.9900               | C(21B)-H(21F)                           | 0.9900               |
| CI(2B)-C(23)                   | 1.12(2)              | CI(2B)-N(3)                             | 1.70(3)              |
| C(22)-C(23)                    | 1.85(4)              | C(22)-H(22A)                            | 0.9800               |
| C(22)-H(22B)                   | 0.9800               | C(22)-H(22C)                            | 0.9800               |
| C(23)-N(3)                     | 0.92(3)              | O(1)-P(1)                               | 1.604(3)             |
| O(2)-P(1)#2                    | 1.602(3)<br>1.452(5) | O(3)-S(1)                               | 1.442(6)             |
| O(3)-S(1B)                     | 1.452(5)             | O(3)- $S(1A)$                           | 1.520(10)            |
| O(3)-Ag(1)#1                   | 2.434(3)             | O(6)-S(2)                               | 1.456(3)             |
| O(7)-S(2)                      | 1.424(3)             | O(8)-S(2)                               | 1.42/(5)             |
| P(1)-O(2)#2                    | 1.002(3)             | O(4) - O(4A)                            | 0.72(2)              |
| U(4)-S(1A)                     | 1.224(13)            | O(4)-S(1)                               | 1.431(9)             |
| O(4)-S(1B)                     | 1.001(9)             | O(5) - O(5B)                            | 0.538(10)            |
| U(5)-U(5A)                     | 0.727(19)            | O(5)-S(1B)                              | 1.319(9)             |
| O(5)-S(1)                      | 1.452(9)             | O(5)-S(1A)                              | 1.669(13)            |

Table B.4. Continued

| S(1)-O(4B)                                       | 1.233(11)              | S(1)-O(5A)                       | 1.307(16)              |
|--------------------------------------------------|------------------------|----------------------------------|------------------------|
| S(1)-O(5B)                                       | 1.617(11)              | S(1)-O(4A)                       | 1.670(19)              |
| S(1)-C(19A)                                      | 1.821(17)              | S(1)-C(19)                       | 1 830(10)              |
| S(1)-C(19B)                                      | 1.868(11)              | C(19)-F(1A)                      | 1 085(19)              |
| C(19)-F(2B)                                      | 1 263(14)              | C(19)-F(3B)                      | 1 287(15)              |
| C(19)-F(2)                                       | 1.205(11)<br>1.315(12) | C(19)-F(1)                       | 1 351(15)              |
| C(19) - F(3)                                     | 1.362(11)              | C(19)-F(3A)                      | 1.551(15)<br>1 48(2)   |
| C(19) - F(1B)                                    | 1.562(11)              | C(19)-F(2A)                      | 1.66(2)                |
| C(19)-S(1B)                                      | 1.300(10)<br>1.736(12) | C(19)-S(1A)                      | 1.00(2)<br>1.784(15)   |
| $E(1)-E(1\Delta)$                                | 0.85(2)                | F(1)-C(19B)                      | 1.764(13)<br>1.141(14) |
| F(1)-F(2R)                                       | 1.697(12)              | F(1)-C(19A)                      | 1.141(14)<br>1.74(2)   |
| F(2) - F(2B)                                     | 0.524(10)              | F(2) - F(2A)                     | 1.74(2)<br>0.840(10)   |
| F(2) - F(2D)<br>F(2) - C(10A)                    | 1.118(18)              | F(2)-F(1A)                       | 1.340(19)              |
| F(2) - C(19R)<br>F(2) - C(10R)                   | 1.110(10)<br>1.452(14) | F(2) = F(1A)<br>F(3) = F(2A)     | 1.54(2)                |
| F(2) - C(19B)<br>F(3) - C(10B)                   | 1.433(14)<br>1.200(14) | F(3) - F(3A)<br>F(3) - C(10A)    | 1.44(2)                |
| O(4A) O(4B)                                      | 1.390(14)<br>1 11(2)   | O(4A) S(1A)                      | 1.44(2)<br>1.411(15)   |
| O(4A) S(1P)                                      | 1.11(2)<br>1.976(17)   | O(4A) - S(1A)<br>O(5A) O(5B)     | 1.411(13)<br>1.25(2)   |
| O(4A) - S(1B)                                    | 1.0/0(1/)<br>1.209(14) | O(3A) - O(3B)                    | 1.23(2)<br>1.41(2)     |
| O(5A) - S(1B)                                    | 1.298(14)<br>1.440(14) | O(3A)-O(4B)                      | 1.41(2)<br>1.001(11)   |
| O(3A)- $S(1A)$                                   | 1.449(14)              | S(1A) - O(4B)                    | 1.091(11)<br>1.021(14) |
| S(1A)-C(19B)                                     | 1.793(12)              | S(1A)-C(19A)                     | 1.831(14)              |
| S(1A)-O(5B)                                      | 1.856(13)              | C(19A) - C(19B)                  | 0.64(2)                |
| C(19A)-F(2B)                                     | 1.235(18)              | C(19A)-F(3B)                     | 1.30(2)                |
| C(19A)- $F(2A)$                                  | 1.299(17)              | C(19A)- $F(1A)$                  | 1.339(18)              |
| C(19A)- $F(3A)$                                  | 1.366(16)              | C(19A)-S(1B)                     | 1.679(16)              |
| F(1A)-F(2B)                                      | 0.90(2)                | F(1A)-C(19B)                     | 0.986(17)              |
| F(1A)- $F(1B)$                                   | 1.30(2)                | F(2A)- $F(2B)$                   | 1.35(2)                |
| F(2A)-C(19B)                                     | 1.87(2)                | F(3A)-C(19B)                     | 1.602(18)              |
| O(4B)-S(1B)                                      | 1.437(8)               | O(5B)-S(1B)                      | 1.420(8)               |
| S(1B)-C(19B)                                     | 1.800(9)               | C(19B)-F(2B)                     | 1.324(11)              |
| C(19B)-F(1B)                                     | 1.340(13)              | C(19B)-F(3B)                     | 1.354(10)              |
| Bond Angles (°)                                  |                        |                                  |                        |
| O(6)-Ag(1)-P(1)                                  | 144.84(7)              | O(6)-Ag(1)-O(3)#1                | 84.01(10)              |
| P(1)-Ag(1)-O(3)#1                                | 122.30(7)              | O(6)-Ag(1)-O(3)                  | 82.60(10)              |
| P(1)-Ag(1)-O(3)                                  | 122.99(7)              | O(3)#1-Ag(1)-O(3)                | 77.49(10)              |
| N(2)-Ag(2)-N(1)                                  | 172.27(14)             | N(2)-Ag(2)-Ag(2)#2               | 112 51(10)             |
| N(1) - Ag(2) - Ag(2) #2                          | 75 21(10)              | O(1)-C(1)-C(2)                   | 111 6(3)               |
| O(1)-C(1)-H(1A)                                  | 109.3                  | C(2)-C(1)-H(1A)                  | 109 3                  |
| O(1)-C(1)-H(1B)                                  | 109.3                  | C(2)-C(1)-H(1B)                  | 109.3                  |
| H(1A)-C(1)-H(1B)                                 | 108.0                  | C(6)-C(2)-C(3)                   | 118 6(4)               |
| C(6)-C(2)-C(1)                                   | 119 6(3)               | C(3)-C(2)-C(1)                   | 1217(3)                |
| C(4)-C(3)-C(2)                                   | 119.6(3)<br>119.6(4)   | C(4)-C(3)-H(3)                   | 120.2                  |
| C(2) - C(3) - H(3)                               | 120.2                  | C(3)-C(4)-C(5)                   | 120.2<br>118 7(4)      |
| C(2) - C(3) - H(3)<br>C(3) - C(4) - H(4)         | 120.2                  | C(5) - C(4) - C(5)               | 120.6                  |
| N(1) C(5) C(4)                                   | 120.0<br>122.4(4)      | N(1) C(5) H(5)                   | 120.0                  |
| N(1)-C(3)-C(4)<br>C(4) C(5) U(5)                 | 122.4(4)               | N(1) - C(3) - H(3)               | 110.0<br>122.5(4)      |
| $V(4) - V(3) - \Pi(3)$<br>$V(1) - C(6) - \Pi(6)$ | 110.0                  | N(1)-U(0)-U(2)<br>C(2) C(4) U(4) | 122.3(4)               |
| N(1)-C(0)-H(0)                                   | 110.0<br>109.4(2)      | C(2)-C(0)-H(0)                   | 110.0                  |
| O(2)-O(7)-O(8)                                   | 108.4(5)               | O(2)-O(7)-H(7A)                  | 110.0                  |
| C(8)-C(7)-H(7A)                                  | 110.0                  | U(2)-U(7)-H(7B)                  | 110.0                  |
| C(8)-C(7)-H(7B)                                  | 110.0                  | H(/A)-C(/)-H(/B)                 | 108.4                  |
| C(9)-C(8)-C(12A)                                 | 116.8(17)              | C(9)-C(8)-C(12)                  | 117.6(5)               |
| C(12A)-C(8)-C(12)                                | 29.0(17)               | C(9)-C(8)-C(7)                   | 122.1(4)               |
| C(12A)-C(8)-C(7)                                 | 116.1(17)              | C(12)-C(8)-C(7)                  | 119.9(4)               |

Table B.4. Continued

| N(2)-C(9)-C(8)                          | 123.2(4)   | N(2)-C(9)-H(9)                                    | 118.4               |
|-----------------------------------------|------------|---------------------------------------------------|---------------------|
| C(8)-C(9)-H(9)                          | 118.4      | N(2)-C(10)-C(11)                                  | 122 2(6)            |
| N(2)-C(10)-H(10)                        | 118.9      | C(11)-C(10)-H(10)                                 | 118.9               |
| C(12) - C(11) - C(10)                   | 118 9(6)   | C(12)-C(11)-H(11)                                 | 120.5               |
| C(12) - C(11) - C(10)                   | 120.5      | $C(12) - C(11) - \Pi(11)$<br>C(11) - C(12) - C(8) | 120.3<br>110 $A(6)$ |
| $C(10)-C(11)-\Pi(11)$                   | 120.3      | C(11)-C(12)-C(8)                                  | 119.4(0)            |
| C(11)-C(12)-H(12)                       | 120.3      | C(8)-C(12)-H(12)                                  | 120.3               |
| N(2)-C(10A)-C(11A)                      | 126(3)     | N(2)-C(10A)-H(10A)                                | 117.1               |
| C(11A)-C(10A)-H(10A)                    | 117.1      | C(10A)-C(11A)-                                    | 118(3)              |
|                                         |            | C(12A)                                            |                     |
| C(10A)-C(11A)-H(11A)                    | 120.9      | C(12A)-C(11A)-                                    | 120.9               |
|                                         |            | H(11A)                                            |                     |
| C(11A)-C(12A)-C(8)                      | 118(3)     | C(11A)-C(12A)-                                    | 121.1               |
|                                         |            | H(12A)                                            |                     |
| C(8)-C(12A)-H(12A)                      | 121.1      | C(14)-C(13)-C(18)                                 | 120.0               |
| C(14)-C(13)-P(1)                        | 117.0(2)   | C(18)-C(13)-P(1)                                  | 123.0(2)            |
| C(13)-C(14)-C(15)                       | 120.0      | C(13)-C(14)-H(14)                                 | 120.0               |
| C(15)-C(14)-H(14)                       | 120.0      | C(14)-C(15)-C(16)                                 | 120.0               |
| C(14)-C(15)-H(15)                       | 120.0      | C(16)-C(15)-H(15)                                 | 120.0               |
| C(17)-C(16)-C(15)                       | 120.0      | C(17)-C(16)-H(16)                                 | 120.0               |
| C(15) C(16) H(16)                       | 120.0      | C(16) C(17) C(18)                                 | 120.0               |
| C(15)-C(10)-H(10)                       | 120.0      | C(10) - C(17) - C(18)                             | 120.0               |
| C(16)-C(17)-H(17)                       | 120.0      | C(18)-C(17)-H(17)                                 | 120.0               |
| C(17)-C(18)-C(13)                       | 120.0      | C(17)-C(18)-H(18)                                 | 120.0               |
| C(13)-C(18)-H(18)                       | 120.0      | C(14A)-C(13A)-                                    | 120.0               |
|                                         |            | C(18A)                                            |                     |
| C(14A)-C(13A)-P(1)                      | 119.14(17) | C(18A)-C(13A)-P(1)                                | 120.81(16)          |
| C(15A)-C(14A)-C(13A)                    | 120.0      | C(15A)-C(14A)-                                    | 120.0               |
|                                         |            | H(14A)                                            |                     |
| C(13A)-C(14A)-H(14A)                    | 120.0      | C(14A)-C(15A)-                                    | 120.0               |
|                                         |            | C(16A)                                            |                     |
| C(14A)-C(15A)-H(15A)                    | 120.0      | C(16A)-C(15A)-                                    | 120.0               |
|                                         |            | H(15A)                                            |                     |
| C(17A)- $C(16A)$ - $C(15A)$             | 120.0      | C(17A)-C(16A)-                                    | 120.0               |
|                                         | 120.0      | H(16A)                                            | 120.0               |
| C(15A) - C(16A) - H(16A)                | 120.0      | C(18A) - C(17A)                                   | 120.0               |
|                                         | 120.0      | $C(16\Lambda)$ $C(17\Lambda)$                     | 120.0               |
| C(19A) C(17A) H(17A)                    | 120.0      | C(16A) $C(17A)$                                   | 120.0               |
| $C(10A)-C(17A)-\Pi(17A)$                | 120.0      | U(10A) - U(17A) - U(17A)                          | 120.0               |
| C(17A) $C(10A)$ $C(12A)$                | 120.0      | H(1/A)                                            | 120.0               |
| C(1/A)-C(18A)-C(13A)                    | 120.0      | C(1/A)-C(18A)-                                    | 120.0               |
|                                         | 100.0      | H(18A)                                            | 100 ((1)            |
| С(13А)-С(18А)-Н(18А)                    | 120.0      | F(6)-C(20)-F(4)                                   | 108.6(4)            |
| F(6)-C(20)-F(5)                         | 108.2(3)   | F(4)-C(20)-F(5)                                   | 108.4(4)            |
| F(6)-C(20)-S(2)                         | 110.7(3)   | F(4)-C(20)-S(2)                                   | 111.8(3)            |
| F(5)-C(20)-S(2)                         | 109.0(3)   | Cl(1)-C(21)-Cl(2)                                 | 112.3               |
| Cl(1)-C(21)-H(21A)                      | 109.1      | Cl(2)-C(21)-H(21A)                                | 109.1               |
| Cl(1)-C(21)-H(21B)                      | 109.1      | Cl(2)-C(21)-H(21B)                                | 109.1               |
| H(21A)-C(21)-H(21B)                     | 107.9      | Cl(1A)-Cl(1)-Cl(1B)                               | 147.3               |
| Cl(1A)-Cl(1)-C(21)                      | 57.2       | Cl(1B)-Cl(1)-C(21)                                | 90.2                |
| Cl(2A)-Cl(2)-Cl(2B)                     | 162.5      | Cl(2A)-Cl(2)-N(3)                                 | 73.2(14)            |
| Cl(2B)-Cl(2)-N(3)                       | 120.2(14)  | Cl(2A)-Cl(2)-C(21)                                | 109.9               |
| C[(2B)-C](2)-C(21)                      | 57 2       | N(3)-C(2)-C(21)                                   | 176 4(14)           |
| $C_{1}(1A) - C_{2}(21A) - C_{1}(2A)$    | 109.0      | C(1A) - C(21A) - H(21C)                           | 109.9               |
| $C_{2}(2A) - C_{2}(2A) - H_{2}(2A)$     | 109.9      | $C_{1}(1A) - C_{2}(21A) - H_{2}(21D)$             | 109.9               |
| $C[(2\Lambda)-C(21\Lambda)-H(21D)]$     | 109.9      | $H(21C)_C(21A)$                                   | 108.3               |
| $C_{1}(2A) - C_{1}(21A) - \Pi_{1}(21D)$ | 107.7      | H(210) - C(21A) - H(21D)                          | 100.3               |
|                                         |            | 11(21D)                                           |                     |

Table B.4. Continued

| Cl(1)-Cl(1A)-Cl(1B)                                | 17.5                     | Cl(1)-Cl(1A)-C(21A)                                      | 102.8                     |
|----------------------------------------------------|--------------------------|----------------------------------------------------------|---------------------------|
| Cl(1B)-Cl(1A)-C(21A)                               | 85.3                     | Cl(2)-Cl(2A)-N(3)                                        | 79.6(15)                  |
| Cl(2)-Cl(2A)-Cl(2B)                                | 11.1                     | N(3)-Cl(2A)-Cl(2B)                                       | 88.4(15)                  |
| Cl(2)-Cl(2A)-C(21A)                                | 56.5                     | N(3)-Cl(2A)-C(21A)                                       | 136.0(15)                 |
| Cl(2B)-Cl(2A)-C(21A)                               | 48.3                     | Cl(2B)-C(21B)-Cl(1B)                                     | 129.1                     |
| Cl(2B)-C(21B)-H(21E)                               | 105.0                    | Cl(1B)-C(21B)-H(21E)                                     | 105.0                     |
| Cl(2B)-C(21B)-H(21F)                               | 105.0                    | Cl(1B)-C(21B)-H(21F)                                     | 105.0                     |
| H(21E)-C(21B)-H(21F)                               | 105.9                    | Cl(1)- $Cl(1B)$ - $Cl(1A)$                               | 15.2                      |
| Cl(1)-Cl(1B)-C(21B)                                | 67.8                     | Cl(1A)- $Cl(1B)$ - $C(21B)$                              | 52.6                      |
| Cl(2)-Cl(2B)-C(23)                                 | 7.0(12)                  | Cl(2)- $Cl(2B)$ - $Cl(2A)$                               | 6.4                       |
| C(23)-Cl(2B)-Cl(2A)                                | 13.4(12)                 | Cl(2)-Cl(2B)-C(21B)                                      | 93.7                      |
| C(23)-Cl(2B)-C(21B)                                | 97.5(11)                 | Cl(2A)- $Cl(2B)$ - $C(21B)$                              | 89.2                      |
| Cl(2)-Cl(2B)-N(3)                                  | 33.5(9)                  | C(23)-Cl(2B)-N(3)                                        | 29.9(14)                  |
| Cl(2A)-Cl(2B)-N(3)                                 | 38.5(9)                  | C(21B)-Cl(2B)-N(3)                                       | 127.2(9)                  |
| C(23)-C(22)-H(22A)                                 | 109.5                    | C(23)-C(22)-H(22B)                                       | 109.5                     |
| H(22A)-C(22)-H(22B)                                | 109.5                    | C(23)-C(22)-H(22C)                                       | 109.5                     |
| H(22A)-C(22)-H(22C)                                | 109.5                    | H(22B)-C(22)-H(22C)                                      | 109.5                     |
| N(3)-C(23)-Cl(2B)                                  | 113(3)                   | N(3)-C(23)-C(22)                                         | 164(3)                    |
| Cl(2B)-C(23)-C(22)                                 | 51 0(15)                 | C(23)-N(3)-C(2A)                                         | 20.6(13)                  |
| C(23)-N(3)-C(22)                                   | 12 4(16)                 | Cl(2A)-N(3)-Cl(2)                                        | 272(7)                    |
| C(23)-N(3)-Cl(2B)                                  | 37.2(17)                 | Cl(2A)-N(3)-Cl(2B)                                       | 53.2(12)                  |
| $C_{(2)} N_{(3)} C_{(2B)}$                         | 263(7)                   | C(5)-N(1)-C(6)                                           | 1181(3)                   |
| $C(5)-N(1)-\Delta g(2)$                            | 125.2(3)                 | $C(6) - N(1) - \Delta g(2)$                              | 115.1(3)                  |
| C(10)-N(2)-C(10A)                                  | 20 6(16)                 | C(10) - N(2) - C(9)                                      | 113.0(3)<br>118.6(4)      |
| C(10A)-N(2)-C(9)                                   | 1110(16)                 | C(10)-N(2)-C(3)                                          | 120 4(4)                  |
| $C(10A)-N(2)-\Delta \alpha(2)$                     | 122 8(15)                | C(10) - N(2) - Ag(2)                                     | 120.4(4)<br>120.8(3)      |
| C(1) O(1) P(1)                                     | 122.0(13)<br>110.2(2)    | C(7) - R(2) - Rg(2)<br>C(7) - O(2) - R(1) + 2            | 120.8(3)<br>122.4(2)      |
| S(1) O(2) S(1P)                                    | 119.3(2)<br>0.7(3)       | S(1) O(2) - S(1A)                                        | 122.4(2)                  |
| S(1) - O(3) - S(1b)<br>S(1D) O(2) S(1A)            | 9.7(3)                   | S(1) - O(3) - S(1A)<br>$S(1) - O(2) - A_{\alpha}(1) + 1$ | $\frac{9.0(3)}{122.5(2)}$ |
| S(1D) - O(3) - S(1A)<br>S(1D) - O(2) - A = (1) + 1 | 10.4(4)<br>126 0(2)      | S(1) - O(3) - Ag(1) + 1<br>S(1A) - O(2) - Ag(1) + 1      | 133.3(3)<br>142.2(4)      |
| S(1D) - O(3) - Ag(1) + 1<br>S(1) - O(2) - Ag(1)    | 120.0(3)<br>122 5(4)     | S(1A) - O(3) - Ag(1) #1<br>S(1B) O(2) A c(1)             | 143.3(4)<br>121.1(2)      |
| S(1) - O(3) - Ag(1)                                | 122.3(4)<br>112.0(4)     | S(1B)-O(3)-Ag(1)                                         | 131.1(3)<br>102.51(10)    |
| S(1A) - O(3) - Ag(1)                               | 112.9(4)<br>115 59(15)   | Ag(1)#1-O(3)-Ag(1)                                       | 102.31(10)<br>106.44(15)  |
| S(2)=O(0)=Ag(1)                                    | 115.38(15)<br>106.7(2)   | O(2)#2-P(1)-O(1)<br>O(1) P(1) C(12A)                     | 100.44(15)<br>102.8(2)    |
| O(2)#2-P(1)- $O(13A)$                              | 100.7(5)<br>105.20(10)   | O(1) P(1) - C(13A)                                       | 102.0(2)                  |
| O(2)#2-P(1)-O(13)<br>O(12A) P(1) O(12)             | 105.20(19)               | O(1)-P(1)-C(13)<br>$O(2)\#2 P(1) = A_{2}(1)$             | 98.2/(17)                 |
| C(13A)-P(1)-C(13)                                  | 5.0(2)                   | O(2)#2-P(1)-Ag(1)                                        | 105.83(11)<br>117.96(19)  |
| O(1)-P(1)-Ag(1)                                    | 110.40(11)<br>102.20(12) | C(13A) - P(1) - Ag(1)                                    | 11/.80(18)                |
| C(13)-P(1)-Ag(1)                                   | 123.29(13)               | O(7)-S(2)-O(8)                                           | 116.2(3)                  |
| O(7)-S(2)- $O(6)$                                  | 114.03(19)               | O(8)-S(2)-O(6)                                           | 114.63(19)                |
| O(7)-S(2)-C(20)                                    | 105.0(2)                 | O(8)-S(2)-C(20)                                          | 102.28(15)                |
| O(6)-S(2)-C(20)                                    | 102.38(18)               | O(4A) - O(4) - S(1A)                                     | 89.0(15)                  |
| O(4A)-O(4)-S(1)                                    | 96.1(15)                 | S(1A)-O(4)-S(1)                                          | 7.1(6)                    |
| O(4A)-O(4)-S(1B)                                   | 95.7(15)                 | S(1A)-O(4)-S(1B)                                         | 7.9(4)                    |
| S(1)-O(4)-S(1B)                                    | 3.2(3)                   | O(5B)-O(5)-O(5A)                                         | 162(2)                    |
| O(5B)-O(5)-S(1B)                                   | 89.5(13)                 | O(5A)-O(5)-S(1B)                                         | 72.3(12)                  |
| O(5B)-O(5)-S(1)                                    | 97.9(13)                 | O(5A) - O(5) - S(1)                                      | 63.9(13)                  |
| S(1B)-O(5)-S(1)                                    | 8.5(3)                   | O(5B)-O(5)-S(1A)                                         | 101.8(13)                 |
| O(5A)-O(5)-S(1A)                                   | 60.0(12)                 | S(1B)-O(5)-S(1A)                                         | 12.7(4)                   |
| S(1)-O(5)-S(1A)                                    | 5.6(5)                   | O(4B)-S(1)-O(5A)                                         | 67.6(12)                  |
| O(4B)-S(1)-O(4)                                    | 19.4(5)                  | O(5A)-S(1)-O(4)                                          | 86.9(11)                  |
| O(4B)-S(1)-O(3)                                    | 127.5(6)                 | O(5A)-S(1)-O(3)                                          | 128.4(9)                  |
| O(4)-S(1)-O(3)                                     | 114.3(5)                 | O(4B)-S(1)-O(5)                                          | 96.7(7)                   |
| O(5A)-S(1)-O(5)                                    | 30.0(9)                  | O(4)-S(1)-O(5)                                           | 116.1(6)                  |
| O(3)-S(1)-O(5)                                     | 115.3(6)                 | O(4B)-S(1)-O(5B)                                         | 115.4(7)                  |

Table B.4. Continued

| O(5A)-S(1)-O(5B)                                                  | 49.2(10)             | O(4)-S(1)-O(5B)                                               | 134.6(6)                    |
|-------------------------------------------------------------------|----------------------|---------------------------------------------------------------|-----------------------------|
| O(3)-S(1)-O(5B)                                                   | 103.9(5)             | O(5)-S(1)-O(5B)                                               | 19.3(4)                     |
| O(4B)-S(1)-O(4A)                                                  | 41.9(9)              | O(5A)-S(1)-O(4A)                                              | 107.5(12)                   |
| O(4)-S(1)-O(4A)                                                   | 25.5(7)              | O(3)-S(1)-O(4A)                                               | 109.5(9)                    |
| O(5)-S(1)-O(4A)                                                   | 133.0(9)             | O(5B)-S(1)-O(4A)                                              | 146.6(9)                    |
| O(4B)-S(1)-C(19A)                                                 | 117 8(8)             | O(5A)-S(1)-C(19A)                                             | 108.8(11)                   |
| O(4)-S(1)-C(19A)                                                  | 114 9(8)             | O(3)-S(1)-C(19A)                                              | 103.6(7)                    |
| O(5)-S(1)-C(19A)                                                  | 89 4(8)              | O(5B)-S(1)-C(19A)                                             | 76 8(8)                     |
| O(4A)-S(1)-C(19A)                                                 | 93 5(10)             | O(4B) - S(1) - C(19)                                          | 1117(7)                     |
| O(5A)-S(1)-C(19A)                                                 | 118 A(10)            | O(4) - S(1) - C(19)                                           | 105.1(6)                    |
| O(3A) - S(1) - O(19)                                              | 101.4(5)             | O(4) - S(1) - C(19)<br>O(5) S(1) - C(19)                      | 103.1(0)<br>101.8(7)        |
| O(5P) S(1) - C(19)                                                | 101.4( <i>3</i> )    | O(3)-S(1)-C(19)                                               | 101.0(7)                    |
| C(10A) S(1) - C(19)                                               | 89.8(0)<br>12.0(7)   | O(4R) - S(1) - C(19)                                          | 62.1(9)<br>108 $6(7)$       |
| C(19A)-S(1)-C(19)                                                 | 13.0(7)              | O(4B)-S(1)-C(19B)                                             | 108.0(7)                    |
| O(5A) - S(1) - C(19B)                                             | 123.5(10)            | O(4)-S(1)-C(19B)                                              | 100.2(6)                    |
| O(3)-S(1)-C(19B)                                                  | 99.5(4)              | O(5)-S(1)-C(19B)                                              | 108.6(6)                    |
| O(5B)-S(1)-C(19B)                                                 | 96.7(6)              | O(4A)-S(1)-C(19B)                                             | 76.4(9)                     |
| C(19A)-S(1)-C(19B)                                                | 19.9(7)              | C(19)-S(1)-C(19B)                                             | 6.9(6)                      |
| F(1A)-C(19)-F(2B)                                                 | 44.2(13)             | F(1A)-C(19)-F(3B)                                             | 103.5(13)                   |
| F(2B)-C(19)-F(3B)                                                 | 109.3(10)            | F(1A)-C(19)-F(2)                                              | 67.0(14)                    |
| F(2B)-C(19)-F(2)                                                  | 23.4(5)              | F(3B)-C(19)-F(2)                                              | 102.1(11)                   |
| F(1A)-C(19)-F(1)                                                  | 38.8(13)             | F(2B)-C(19)-F(1)                                              | 80.9(9)                     |
| F(3B)-C(19)-F(1)                                                  | 106.6(10)            | F(2)-C(19)-F(1)                                               | 104.2(9)                    |
| F(1A)-C(19)-F(3)                                                  | 108.0(14)            | F(2B)-C(19)-F(3)                                              | 123.0(10)                   |
| F(3B)-C(19)-F(3)                                                  | 15.4(5)              | F(2)-C(19)-F(3)                                               | 117.5(11)                   |
| F(1)-C(19)-F(3)                                                   | 100.5(10)            | F(1A)-C(19)-F(3A)                                             | 118.0(14)                   |
| F(2B)-C(19)-F(3A)                                                 | 111.1(12)            | F(3B)-C(19)-F(3A)                                             | 18.1(7)                     |
| F(2)-C(19)-F(3A)                                                  | 97.2(11)             | F(1)-C(19)-F(3A)                                              | 124.6(11)                   |
| F(3)-C(19)-F(3A)                                                  | 26.7(7)              | F(1A)-C(19)-F(1B)                                             | 55.2(15)                    |
| F(2B)-C(19)-F(1B)                                                 | 97.4(10)             | F(3B)-C(19)-F(1B)                                             | 102.9(10)                   |
| F(2)-C(19)-F(1B)                                                  | 120.7(10)            | F(1)-C(19)-F(1B)                                              | 16.6(5)                     |
| F(3)-C(19)-F(1B)                                                  | 93.2(9)              | F(3A)-C(19)-F(1B)                                             | 119.5(11)                   |
| F(1A)-C(19)-F(2A)                                                 | 96.9(16)             | F(2B)-C(19)-F(2A)                                             | 52.9(10)                    |
| F(3B)-C(19)-F(2A)                                                 | 96.7(13)             | F(2)-C(19)-F(2A)                                              | 29.9(7)                     |
| F(1)-C(19)-F(2A)                                                  | 133.1(11)            | F(3)-C(19)-F(2A)                                              | 110.2(13)                   |
| F(3A)-C(19)-F(2A)                                                 | 84.1(12)             | F(1B)-C(19)-F(2A)                                             | 148.9(11)                   |
| F(1A)-C(19)-S(1B)                                                 | 137.1(14)            | F(2B)-C(19)-S(1B)                                             | 119.2(9)                    |
| F(3B)-C(19)-S(1B)                                                 | 118.8(9)             | F(2)-C(19)-S(1B)                                              | 107.7(9)                    |
| F(1)-C(19)-S(1B)                                                  | 115.6(9)             | F(3)-C(19)-S(1B)                                              | 111.2(8)                    |
| F(3A)-C(19)-S(1B)                                                 | 104 8(10)            | F(1B)-C(19)-S(1B)                                             | 105 5(8)                    |
| F(2A)-C(19)-S(1B)                                                 | 85.4(9)              | F(1A)-C(19)-S(1A)                                             | 133.1(16)                   |
| F(2B)-C(19)-S(1A)                                                 | 129 6(10)            | F(3B)-C(19)-S(1A)                                             | 116 8(9)                    |
| F(2)-C(19)-S(1A)                                                  | 122.0(10)            | F(1)-C(19)-S(1A)                                              | 103.7(10)                   |
| F(3)-C(19)-S(1A)                                                  | 105 8(8)             | F(3A)-C(19)-S(1A)                                             | 106.8(10)                   |
| F(1B)-C(19)-S(1A)                                                 | 91 6(8)              | F(2A)-C(19)-S(1A)                                             | 100.0(10)<br>101.0(10)      |
| S(1B)-C(19)-S(1A)                                                 | 15 6(4)              | F(1A)-C(19)-S(11)                                             | 135.7(15)                   |
| F(2B)-C(19)-S(1)                                                  | 124 2(9)             | F(3B)-C(19)-S(1)                                              | 118 2(8)                    |
| F(2) - C(19) - S(1)                                               | 124.2(9)<br>114 4(9) | F(1)-C(19)-S(1)                                               | 110.2(0)<br>110.1(9)        |
| F(3)-C(19)-S(1)                                                   | 108.9(7)             | $F(3\Delta) - C(10) - S(1)$                                   | 106.0(10)                   |
| F(1B)-C(19)-S(1)                                                  | 98.9(8)              | $F(2\Delta) - C(19) - S(1)$                                   | 92.7(10)                    |
| S(1B) - C(10) - S(1)                                              | 7 3(3)               | S(1A) - C(19) - S(1)                                          | 83(4)                       |
| E(1A) E(1) C(10D)                                                 | (.3(3))<br>57 2(12)  | S(1A) = C(17) = S(1)<br>E(1A) = E(1) C(10)                    | 53.3(4)                     |
| C(10R) = F(1) - C(19D)                                            | 37.2(12)<br>3 0(8)   | F(1A) - F(1) - C(19)<br>F(1A) - F(1) - F(2D)                  | $\frac{33.4(12)}{14.0(12)}$ |
| $C(19D) = \Gamma(1) = C(19)$<br>$C(10D) = \Gamma(1) = \Gamma(2D)$ | 5.7(0)               | $\Gamma(1A) - \Gamma(1) - \Gamma(2D)$<br>C(10) = E(1) = E(2D) | 14.0(13)                    |
| $C(19D) - \Gamma(1) - \Gamma(2D)$                                 | J1.1(0)<br>49.5(11)  | $C(19) - \Gamma(1) - \Gamma(2B)$                              | 47.5(0)                     |
| r(1A)-r(1)-C(19A)                                                 | 48.3(11)             | C(19B)-F(1)-C(19A)                                            | 9.1(8)                      |

Table B.4. Continued

| C(19)-F(1)-C(19A)        | 5.2(8)                      | F(2B)-F(1)-C(19A)     | 42.1(6)               |
|--------------------------|-----------------------------|-----------------------|-----------------------|
| F(2B)-F(2)-F(2A)         | 165(2)                      | F(2B)-F(2)-C(19A)     | 90.1(17)              |
| F(2A)-F(2)-C(19A)        | 81.8(14)                    | F(2B)-F(2)-C(19)      | 72.8(13)              |
| F(2A)-F(2)-C(19)         | 98.8(14)                    | C(19A)-F(2)-C(19)     | 17.3(11)              |
| F(2B)-F(2)-F(1A)         | 26.3(13)                    | F(2A)-F(2)-F(1A)      | 147.0(15)             |
| C(19A)-F(2)-F(1A)        | 65.3(12)                    | C(19)-F(2)-F(1A)      | 48.3(10)              |
| F(2B)-F(2)-C(19B)        | 65.4(12)                    | F(2A)-F(2)-C(19B)     | 105.9(14)             |
| C(19A)-F(2)-C(19B)       | 24.7(11)                    | C(19)-F(2)-C(19B)     | 7.4(8)                |
| F(1A)-F(2)-C(19B)        | 41.1(8)                     | F(3A)-F(3)-C(19)      | 86.6(15)              |
| F(3A)-F(3)-C(19B)        | 95.9(15)                    | C(19)-F(3)-C(19B)     | 9.4(8)                |
| F(3A)-F(3)-C(19A)        | 70 0(14)                    | C(19)-F(3)-C(19A)     | 16 7(9)               |
| C(19B)-F(3)-C(19A)       | 26 0(9)                     | O(4)-O(4A)-O(4B)      | 18.7(11)              |
| O(4)-O(4A)-S(1A)         | 602(13)                     | O(4B)-O(4A)-S(1A)     | 49 5(8)               |
| O(4)-O(4A)-S(1)          | 58.4(12)                    | O(4B)-O(4A)-S(1)      | 47 6(7)               |
| S(1A)-O(4A)-S(1)         | 19(5)                       | O(4)-O(4A)-S(1B)      | 61.8(12)              |
| O(4B)-O(4A)-S(1B)        | 49 9(7)                     | S(1A)-O(4A)-S(1B)     | 41(4)                 |
| S(1)-O(4A)-S(1B)         | 4 4(3)                      | O(5)-O(5A)-O(5B)      | 7 7(9)                |
| O(5)-O(5A)-S(1B)         | 75 5(15)                    | O(5B)-O(5A)-S(1B)     | 67.7(10)              |
| O(5)-O(5A)-S(1)          | 86 2(16)                    | O(5B)-O(5A)-S(1D)     | 78.4(11)              |
| S(1B)-O(5A)-S(1)         | 10.8(4)                     | O(5)-O(5A)-O(4B)      | 1377(17)              |
| O(5B) - O(5A) - O(4B)    | 130.2(11)                   | S(1B) - O(5A) - O(4B) | 63.8(8)               |
| S(1) - O(5A) - O(4B)     | 53.7(8)                     | O(5) - O(5A) - S(1A)  | 03.0(0)<br>04.3(15)   |
| O(5R) O(5A) S(1A)        | <i>35.7</i> (8)<br>86 6(10) | S(1P) O(5A) S(1A)     | 10.1(5)               |
| S(1) O(5A) S(1A)         | 0.0(10)                     | O(4R) O(5A) S(1A)     | 19.1(3)               |
| O(AB) S(1A) O(A)         | 9.5(0)                      | O(4B) - O(5A) - S(1A) | 44.8(0)<br>51.0(12)   |
| O(4) S(1A) O(4A)         | 23.3(0)<br>20.8(0)          | O(4B) - S(1A) - O(4A) | 51.0(12)              |
| O(4) - S(1A) - O(4A)     | 50.0(9)                     | O(4B) - S(1A) - O(5A) | 1140(12)              |
| O(4P) S(1A) O(3A)        | (11)                        | O(4A) - S(1A) - O(3A) | 114.9(13)<br>122.8(8) |
| O(4A) S(1A) O(3)         | 133.0(9)<br>120 5(11)       | O(4)-S(1A)-O(3)       | 122.0(0)<br>112.0(10) |
| O(4A)-S(1A)-O(5)         | 120.3(11)                   | O(3A) - S(1A) - O(3)  | 112.9(10)<br>114.6(0) |
| O(4B) - S(1A) - O(3)     | 91.2(9)<br>126 8(12)        | O(4)-S(1A)-O(5)       | 114.0(9)              |
| O(4A)-S(1A)-O(5)         | 130.0(12)<br>100.0(6)       | O(3A) - S(1A) - O(3)  | 23.7(8)<br>122.0(10)  |
| O(3)-S(1A)-O(3)          | 100.0(0)<br>119.5(0)        | O(4B)-S(1A)-C(19)     | 123.9(10)             |
| O(4)-S(1A)-C(19)         | 118.3(9)<br>112.2(11)       | O(4A) - S(1A) - C(19) | 91.4(11)              |
| O(5A)-S(1A)-C(19)        | 113.3(11)                   | O(3)-S(1A)-C(19)      | 100.4(6)              |
| O(5)-S(1A)-C(19)         | 95.0(8)                     | O(4B)-S(1A)-C(19B)    | 122.0(9)              |
| O(4)-S(1A)-C(19B)        | 113.8(8)<br>110.7(10)       | O(4A)-S(1A)-C(19B)    | 85.5(11)              |
| O(5A)-S(1A)-C(19B)       | 119.7(10)                   | O(3)-S(1A)-C(19B)     | 99.8(6)               |
| O(5)-S(1A)-C(19B)        | 102.8(7)                    | C(19)-S(1A)-C(19B)    | /.2(6)                |
| O(4B)-S(1A)-C(19A)       | 126.7(10)                   | O(4)-S(1A)-C(19A)     | 127.1(10)             |
| O(4A)-S(1A)-C(19A)       | 102.6(11)                   | O(5A)-S(1A)-C(19A)    | 102.0(11)             |
| O(3)-S(1A)-C(19A)        | 100.0(7)                    | O(5)-S(1A)-C(19A)     | 82.8(8)               |
| C(19)-S(1A)-C(19A)       | 13.1(7)                     | C(19B)-S(1A)-C(19A)   | 20.3(7)               |
| O(4B)- $S(1A)$ - $O(5B)$ | 107.4(9)                    | O(4)-S(1A)-O(5B)      | 130.9(8)              |
| O(4A)-S(1A)-O(5B)        | 148.9(11)                   | O(5A)-S(1A)-O(5B)     | 42.2(9)               |
| O(3)-S(1A)-O(5B)         | 90.6(6)                     | O(5)-S(1A)-O(5B)      | 16.5(3)               |
| C(19)-S(1A)-O(5B)        | 84.1(7)                     | C(19B)-S(1A)-O(5B)    | 91.3(6)               |
| C(19A)-S(1A)-O(5B)       | 71.0(8)                     | C(19B)-C(19A)-F(2)    | 108(2)                |
| C(19B)-C(19A)-F(2B)      | 83(2)                       | F(2)-C(19A)-F(2B)     | 25.1(6)               |
| C(19B)-C(19A)-F(3B)      | 81.0(19)                    | F(2)-C(19A)-F(3B)     | 113.6(14)             |
| F(2B)-C(19A)-F(3B)       | 110.4(13)                   | C(19B)-C(19A)-F(2A)   | 147(2)                |
| F(2)-C(19A)-F(2A)        | 39.8(10)                    | F(2B)-C(19A)-F(2A)    | 64.5(12)              |
| F(3B)-C(19A)-F(2A)       | 117.4(16)                   | C(19B)-C(19A)-F(1A)   | 44.1(17)              |
| F(2)-C(19A)-F(1A)        | 65.3(14)                    | F(2B)-C(19A)-F(1A)    | 40.6(11)              |
| F(3B)-C(19A)-F(1A)       | 90.2(15)                    | F(2A)-C(19A)-F(1A)    | 105.0(15)             |

Table B.4. Continued

| C(19B)-C(19A)-F(3A)                                           | 100(2)                 | F(2)-C(19A)-F(3A)                                                               | 115.0(14)              |
|---------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|------------------------|
| F(2B)-C(19A)-F(3A)                                            | 121.0(14)              | F(3B)-C(19A)-F(3A)                                                              | 20.3(8)                |
| F(2A)-C(19A)-F(3A)                                            | 104.7(15)              | F(1A)-C(19A)-F(3A)                                                              | 109.4(16)              |
| C(19B)-C(19A)-F(3)                                            | 72.4(18)               | F(2)-C(19A)-F(3)                                                                | 126.3(14)              |
| F(2B)-C(19A)-F(3)                                             | 118.8(14)              | F(3B)-C(19A)-F(3)                                                               | 13.9(6)                |
| F(2A)-C(19A)-F(3)                                             | 130.3(15)              | F(1A)-C(19A)-F(3)                                                               | 91.1(14)               |
| F(3A)-C(19A)-F(3)                                             | 27.2(8)                | C(19B)-C(19A)-S(1B)                                                             | 90.2(15)               |
| F(2)-C(19A)-S(1B)                                             | 123.3(14)              | F(2B)-C(19A)-S(1B)                                                              | 125.4(13)              |
| F(3B)-C(19A)-S(1B)                                            | 122.1(12)              | F(2A)-C(19A)-S(1B)                                                              | 100.7(14)              |
| F(1A)-C(19A)-S(1B)                                            | 121.3(14)              | F(3A)-C(19A)-S(1B)                                                              | 113.6(12)              |
| F(3)-C(19A)-S(1B)                                             | 110.3(11)              | C(19B)-C(19A)-F(1)                                                              | 16.3(13)               |
| F(2)-C(19A)-F(1)                                              | 92.2(13)               | F(2B)-C(19A)-F(1)                                                               | 67.0(10)               |
| F(3B)-C(19A)-F(1)                                             | 86.9(12)               | F(2A)-C(19A)-F(1)                                                               | 130.7(15)              |
| F(1A)-C(19A)-F(1)                                             | 28.3(10)               | F(3A)-C(19A)-F(1)                                                               | 107.0(14)              |
| F(3)-C(19A)-F(1)                                              | 81.3(11)               | S(1B)-C(19A)-F(1)                                                               | 100.0(9)               |
| C(19B)-C(19A)-S(1)                                            | 84.2(15)               | F(2)-C(19A)-S(1)                                                                | 128.0(14)              |
| F(2B)-C(19A)-S(1)                                             | 126 9(13)              | F(3B)-C(19A)-S(1)                                                               | 1182(12)               |
| F(2A)-C(19A)-S(1)                                             | 1072(14)               | F(1A)-C(19A)-S(1)                                                               | 117.6(14)              |
| F(3A)-C(19A)-S(1)                                             | 111 9(12)              | F(3)-C(19A)-S(1)                                                                | 105.8(11)              |
| S(1B)-C(19A)-S(1)                                             | 6 6(3)                 | F(1)-C(19A)-S(1)                                                                | 94 7(9)                |
| C(19B)-C(19A)-S(1A)                                           | 76 5(15)               | F(2)-C(19A)-S(1A)                                                               | 1331(14)               |
| F(2B)-C(19A)-S(1A)                                            | 127 8(13)              | F(3B)-C(19A)-S(1A)                                                              | 1132(12)               |
| F(2A)-C(19A)-S(1A)                                            | 127.0(13)<br>115 4(14) | F(1A)-C(19A)-S(1A)                                                              | 113.2(12)<br>112 3(14) |
| F(3A)-C(19A)-S(1A)                                            | 109.6(12)              | F(3)-C(19A)-S(1A)                                                               | 100.1(10)              |
| S(1B)-C(19A)-S(1A)                                            | 109.0(12)<br>14 9(4)   | F(1)-C(19A)-S(1A)                                                               | 87 9(9)                |
| S(1)-C(19A)-S(1A)                                             | 83(4)                  | F(1)-F(1A)-F(2B)                                                                | 153(2)                 |
| F(1)-F(1A)-C(10B)                                             | 76 6(18)               | F(2R) - F(1A) - C(10R)                                                          | 133(2)<br>80 1(17)     |
| F(1)-F(1A)-C(19B)                                             | 70.0(18)<br>87.8(18)   | F(2B)-F(1A)-C(19B)                                                              | 78 5(16)               |
| C(10R) - F(1A) - C(10)                                        | 11.3(11)               | F(2B)-F(1A)-F(1B)                                                               | 7 1 (8)                |
| E(19D) - F(1A) - E(19)                                        | 11.3(11)<br>151 6(18)  | C(10R) E(1A) E(1R)                                                              | 7.1(0)                 |
| C(10) E(1A) E(1B)                                             | 131.0(18)<br>81.5(16)  | E(1) E(1A) E(2)                                                                 | 147.0(18)              |
| $C(17)-\Gamma(1A)-\Gamma(1B)$<br>E(2D) E(1A) E(2)             | 31.3(10)<br>15.0(8)    | $\Gamma(1) - \Gamma(1A) - \Gamma(2)$<br>C(10D) = E(1A) = E(2)                   | 75.7(14)               |
| $\Gamma(2D) - \Gamma(1A) - \Gamma(2)$<br>C(10) = E(1A) = E(2) | 13.0(8)                | C(19D)-F(1A)-F(2)<br>E(1D)-E(1A)-E(2)                                           | 13.7(14)<br>142.6(12)  |
| $C(19)-\Gamma(1A)-\Gamma(2)$<br>E(1) E(1A) C(10A)             | 04.7(12)<br>102.2(17)  | $\Gamma(1D) - \Gamma(1A) - \Gamma(2)$<br>$\Gamma(2D) = \Gamma(1A) - \Gamma(2A)$ | 143.0(13)              |
| C(10D) E(1A) C(10A)                                           | 103.3(17)              | $\Gamma(2D) - \Gamma(1A) - C(19A)$                                              | 15.5(15)               |
| C(19D) - F(1A) - C(19A)                                       | 20.9(12)               | C(19)-F(1A)-C(19A)                                                              | 13.0(11)               |
| F(1D)-F(1A)-C(19A)<br>F(2), F(2A), C(10A)                     | 97.1(14)<br>59 $4(12)$ | F(2) - F(1A) - C(19A)<br>F(2) - F(2A) - F(2D)                                   | 49.4(10)<br>5.8(0)     |
| F(2)-F(2A)-C(19A)                                             | 56.4(15)               | F(2) - F(2A) - F(2D)                                                            | 5.0(9)                 |
| C(19A) - F(2A) - F(2B)                                        | 55.5(10)               | F(2)-F(2A)-C(19)                                                                | 51.5(10)               |
| C(19A)-F(2A)-C(19)<br>E(2) E(2A) C(10D)                       | /.0(9)                 | F(2B)-F(2A)-C(19)                                                               | 48.1(7)                |
| F(2)-F(2A)-C(19B)                                             | 48.5(10)               | C(19A) - F(2A) - C(19B)                                                         | 10.9(9)                |
| F(2B)-F(2A)-C(19B)                                            | 45.1(6)                | C(19)-F(2A)-C(19B)                                                              | 3.3(6)                 |
| F(3)-F(3A)-C(19A)                                             | 82.7(16)               | F(3)-F(3A)-C(19)                                                                | 66.7(14)               |
| C(19A) - F(3A) - C(19)                                        | 16.1(9)                | F(3)-F(3A)-C(19B)                                                               | 59.7(13)               |
| C(19A)-F(3A)-C(19B)                                           | 23.2(9)                | C(19)-F(3A)-C(19B)                                                              | /.1(/)                 |
| S(1A)-O(4B)-O(4A)                                             | 79.5(11)               | S(1A) - O(4B) - S(1)                                                            | 11.1(6)                |
| O(4A) - O(4B) - S(1)                                          | 90.6(11)               | S(1A) - O(4B) - O(5A)                                                           | 69.3(10)               |
| O(4A)-O(4B)-O(5A)                                             | 144.4(14)              | S(1)-O(4B)-O(5A)                                                                | 58.7(9)                |
| S(1A)-O(4B)-S(1B)                                             | 15.2(6)                | O(4A)-O(4B)-S(1B)                                                               | 93.8(10)               |
| S(1)-O(4B)-S(1B)                                              | 5.9(4)                 | O(5A)-O(4B)-S(1B)                                                               | 54.1(8)                |
| U(5)-U(5B)-U(5A)                                              | 10.5(12)               | O(5)-O(5B)-S(1B)                                                                | 68.2(12)               |
| O(5A)-O(5B)-S(1B)                                             | 57.8(7)                | O(5)-O(5B)-S(1)                                                                 | 62.8(12)               |
| O(5A)-O(5B)-S(1)                                              | 52.3(7)                | S(1B)-O(5B)-S(1)                                                                | 5.5(3)                 |
| O(5)-O(5B)-S(1A)                                              | 61.7(12)               | O(5A)-O(5B)-S(1A)                                                               | 51.2(7)                |
| S(1B)-O(5B)-S(1A)                                             | 7.0(3)                 | S(1)-O(5B)-S(1A)                                                                | 3.8(4)                 |
Table B.4. Continued

| O(5A)-S(1B)-O(5)                      | 32.2(9)               | O(5A)-S(1B)-O(5B)   | 54.5(10)                                 |
|---------------------------------------|-----------------------|---------------------|------------------------------------------|
| O(5)-S(1B)-O(5B)                      | 22.3(4)               | O(5A)-S(1B)-O(4B)   | 62.0(11)                                 |
| O(5)-S(1B)-O(4B)                      | 93.7(6)               | O(5B)-S(1B)-O(4B)   | 115.6(6)                                 |
| O(5A)-S(1B)-O(3)                      | 128.2(9)              | O(5)-S(1B)-O(3)     | 123.8(5)                                 |
| O(5B)-S(1B)-O(3)                      | 114.2(5)              | O(4B)-S(1B)-O(3)    | 112.4(5)                                 |
| O(5A)-S(1B)-O(4)                      | 78 1(11)              | O(5)-S(1B)-O(4)     | 109 9(6)                                 |
| O(5B)-S(1B)-O(4)                      | 131.7(6)              | O(4B)-S(1B)-O(4)    | 16.2(4)                                  |
| O(3)-S(1B)-O(4)                       | 101 4(4)              | O(5A)-S(1B)-C(19A)  | 118 1(10)                                |
| O(5)-S(1B)-C(19A)                     | 100 6(8)              | O(5B)-S(1B)-C(19A)  | 86 9(8)                                  |
| O(4B)-S(1B)-C(19A)                    | 115 1(8)              | O(3)-S(1B)-C(19A)   | 1104(7)                                  |
| O(4)-S(1B)-C(19A)                     | 110.7(8)              | O(5A)-S(1B)-C(19)   | 125.8(10)                                |
| O(5)-S(1B)-C(19)                      | 113 1(7)              | O(5B)-S(1B)-C(19)   | 100.7(7)                                 |
| O(4B)-S(1B)-C(19)                     | 107 1(6)              | O(3)-S(1B)-C(19)    | 105.7(7)                                 |
| O(4)-S(1B)-C(19)                      | 99 9(6)               | C(19A)-S(1B)-C(19)  | 13 8(8)                                  |
| O(5A)-S(1B)-C(19B)                    | 129 5(9)              | O(5)-S(1B)-C(19B)   | 119 7(6)                                 |
| O(5R)-S(1B)-C(19B)                    | 107 7(6)              | O(4B)-S(1B)-C(19B)  | 103.1(5)                                 |
| O(3)-S(1B)-C(19B)                     | 107.7(0)<br>102 2(4)  | O(4)-S(1B)-C(19B)   | 94 7(5)                                  |
| C(19A)- $S(1B)$ - $C(19B)$            | 20.8(8)               | C(19)-S(1B)-C(19B)  | 7 0(6)                                   |
| O(5A)-S(1B)-O(4A)                     | 97 1(11)              | O(5)-S(1B)-O(4A)    | 126 6(9)                                 |
| O(5R)-S(1B)-O(4A)                     | 145 3(8)              | O(4B)-S(1B)-O(4A)   | 364(8)                                   |
| O(3)-S(1B)-O(4A)                      | 99 0(7)               | O(4)-S(1B)-O(4A)    | 22 5(6)                                  |
| C(19A)-S(1B)-O(4A)                    | 91.2(9)               | C(19)-S(1B)-O(4A)   | 79 1(9)                                  |
| C(19R)- $S(1R)$ - $O(4A)$             | 73 2(8)               | C(19A)-C(19B)-F(1A) | 109(2)                                   |
| C(19A)- $C(19B)$ - $F(1)$             | 155(2)                | F(1A)-C(19B)-F(1)   | 462(14)                                  |
| C(19A)- $C(19B)$ - $F(2B)$            | 67 9(18)              | F(1A)-C(19B)-F(2B)  | 40.2(14)<br>42 8(14)                     |
| F(1)-C(19B)-F(2B)                     | 86 7(8)               | C(19A)-C(19B)-F(1B) | 1743(19)                                 |
| F(1A)-C(19B)-F(1B)                    | 66.0(16)              | F(1)-C(19B)-F(1B)   | 20.0(5)                                  |
| F(2B)-C(19B)-F(1B)                    | 106 5(9)              | C(19A)-C(19B)-F(3B) | 20.0(3)<br>71 1(18)                      |
| F(1A)-C(19B)-F(3B)                    | 100.5(9)<br>104 7(13) | F(1)-C(19B)-F(3B)   | 1156(10)                                 |
| F(2B)-C(19B)-F(3B)                    | 101.9(9)              | F(1B)-C(19B)-F(3B)  | 112.0(10)<br>112.3(9)                    |
| C(19A)-C(19B)-F(3)                    | 81 6(18)              | F(1A)-C(19B)-F(3)   | 112.3(1)                                 |
| F(1)-C(19B)-F(3)                      | 110 7(9)              | F(2B)-C(19B)-F(3)   | 112.5(14)<br>116 5(9)                    |
| F(1B)-C(19B)-F(3)                     | 1027(9)               | F(3B)-C(19B)-F(3)   | 15.1(5)                                  |
| C(19A)-C(19B)-F(2)                    | 46 8(17)              | F(1A)-C(19B)-F(2)   | 63.2(15)                                 |
| F(1)-C(19B)-F(2)                      | 107 8(9)              | F(2R)-C(19R)-F(2)   | 21.1(5)                                  |
| F(1B)-C(19B)-F(2)                     | 107.6(9)              | F(3B)-C(19B)-F(2)   | 922(9)                                   |
| F(3)-C(19B)-F(2)                      | 127.0(9)<br>107 2(9)  | C(19A)-C(19B)-F(3A) | 57.3(17)                                 |
| F(1A)-C(19B)-F(3A)                    | 107.2(9)<br>115 1(15) | F(1)-C(19B)-F(3A)   | 1315(11)                                 |
| F(2B)-C(19B)-F(3A)                    | 101 1(10)             | F(1B)-C(19B)-F(3A)  | 126.7(10)                                |
| F(3B)-C(19B)-F(3A)                    | 15 8(7)               | F(3)-C(19B)-F(3A)   | 244(7)                                   |
| F(2)-C(19B)-F(3A)                     | 86 7(9)               | C(19A)-C(19B)-S(1A) | $\frac{2}{83} \frac{2}{2} \frac{14}{14}$ |
| F(1A)-C(19B)-S(1A)                    | 142 8(14)             | F(1)-C(19B)-S(1A)   | 1135(9)                                  |
| F(2B)-C(19B)-S(1A)                    | 124 4(8)              | F(1B)-C(19B)-S(1A)  | 99 3(8)                                  |
| F(3B)-C(19B)-S(1A)                    | 112.5(8)              | F(3)-C(19B)-S(1A)   | $104\ 1(7)$                              |
| F(2)-C(19B)-S(1A)                     | 113 4(8)              | F(3A)-C(19B)-S(1A)  | 101.2(8)                                 |
| C(19A)-C(19B)-S(1B)                   | 68 9(14)              | F(1A)-C(19B)-S(1B)  | 140.5(14)                                |
| F(1)-C(19B)-S(1B)                     | 124 5(9)              | F(2B)-C(19B)-S(1B)  | 111 6(8)                                 |
| F(1B)-C(19B)-S(1B)                    | 112 9(7)              | F(3B)-C(19B)-S(1B)  | 111.0(7)                                 |
| F(3)-C(19B)-S(1B)                     | 106.4(7)              | F(2)-C(19B)-S(1B)   | 98.6(7)                                  |
| F(3A)-C(19B)-S(1B)                    | 97.2(8)               | S(1A)-C(19B)-S(1B)  | 15.3(4)                                  |
| C(19A)-C(19B)-F(2A)                   | 22.6(17)              | F(1A)-C(19B)-F(2A)  | 88.8(16)                                 |
| · · · · · · · · · · · · · · · · · · · |                       |                     |                                          |

|                     | 1 dole 1  | D.4. Continued           |           |
|---------------------|-----------|--------------------------|-----------|
|                     |           |                          |           |
| F(1)-C(19B)-F(2A)   | 132.6(10) | F(2B)-C(19B)-F(2A)       | 46.4(8)   |
| F(1B)-C(19B)-F(2A)  | 151.7(10) | F(3B)-C(19B)-F(2A)       | 85.5(10)  |
| F(3)-C(19B)-F(2A)   | 98.6(10)  | F(2)-C(19B)-F(2A)        | 25.6(6)   |
| F(3A)-C(19B)-F(2A)  | 74.5(9)   | S(1A)-C(19B)-F(2A)       | 93.3(8)   |
| S(1B)-C(19B)-F(2A)  | 77.9(8)   | F(1A)-F(1B)-C(19B)       | 43.8(8)   |
| F(1A)-F(1B)-C(19)   | 43.2(8)   | C(19B)-F(1B)-C(19)       | 0.6(7)    |
| F(2)-F(2B)-F(1A)    | 138.8(19) | F(2)-F(2B)-C(19A)        | 64.8(15)  |
| F(1A)-F(2B)-C(19A)  | 75.9(13)  | F(2)-F(2B)-C(19)         | 83.9(14)  |
| F(1A)-F(2B)-C(19)   | 57.3(13)  | C(19A)-F(2B)-C(19)       | 19.1(10)  |
| F(2)-F(2B)-C(19B)   | 93.5(14)  | F(1A)-F(2B)-C(19B)       | 48.2(11)  |
| C(19A)-F(2B)-C(19B) | 28.7(11)  | C(19)-F(2B)-C(19B)       | 9.7(9)    |
| F(2)-F(2B)-F(2A)    | 9.4(14)   | F(1A)- $F(2B)$ - $F(2A)$ | 135.8(14) |
| C(19A)-F(2B)-F(2A)  | 60.1(10)  | C(19)-F(2B)-F(2A)        | 79.0(10)  |
| C(19B)-F(2B)-F(2A)  | 88.5(10)  | F(2)-F(2B)-F(1)          | 135.7(14) |
| F(1A)-F(2B)-F(1)    | 13.2(12)  | C(19A)-F(2B)-F(1)        | 70.9(10)  |
| C(19)-F(2B)-F(1)    | 51.8(8)   | C(19B)-F(2B)-F(1)        | 42.2(6)   |
| F(2A)-F(2B)-F(1)    | 130.2(8)  | C(19)-F(3B)-C(19A)       | 18.4(10)  |
| C(19)-F(3B)-C(19B)  | 9.4(8)    | C(19A)-F(3B)-C(19B)      | 27.8(10)  |
|                     |           |                          |           |

Table B.4. Continued

| Symmetry transformations used to generate equivalent atoms: #1 -x | x+1,-y,-z+2 #2 | 2 -x+1,-y,-z+1 |
|-------------------------------------------------------------------|----------------|----------------|
|                                                                   |                |                |

| Empirical formula                    | $C_{53,33}H_{53,33}Ag_{2.67}B_{2.67}F_{10.67}N_8O_{5,33}P_{2.67}$ |
|--------------------------------------|-------------------------------------------------------------------|
| Formula weight                       | 1493.44                                                           |
| Temperature                          | 110(2) K                                                          |
| Wavelength                           | 0.71073 A                                                         |
| Crystal system                       | monoclinic                                                        |
| Space group                          | $P2_{l}/c$                                                        |
| Unit cell dimensions                 | $a = 15.565(2) \text{ Å}  \alpha = 90^{\circ}$                    |
|                                      | $b = 20.999(3) \text{ Å} \qquad \beta = 90^{\circ}$               |
|                                      | $c = 28.131(4) \text{ Å} \gamma = 90^{\circ}$                     |
| Volume, Z                            | 9195(2) Å <sup>3</sup> , 6                                        |
| Calculated density                   | $1.618 \text{ Mg/m}^3$                                            |
| Absorption coefficient               | 1.000 mm <sup>-1</sup>                                            |
| F(000)                               | 4480                                                              |
| Crystal size                         | 0.17 x 0.14 x 0.04 mm                                             |
| $\theta$ range for data collection   | 1.21 to 23.26 °                                                   |
| Limiting indices                     | $-17 \le h \le 17, -23 \le k \le 23, -31 \le 1 \le 31$            |
| Reflections collected                | 67540                                                             |
| Independent reflections              | $13167 (R_{int} = 0.0836)$                                        |
| Completeness to $\theta = 23.26$     | 99.8 %                                                            |
| Absorption correction                | multi-scan (SADABS)                                               |
| Refinement method                    | Full-matrix least-squares on F <sup>2</sup>                       |
| Data / restraints / parameters       | 13167 / 0 / 1147                                                  |
| Goodness-of-fit on F^2               | 1.112                                                             |
| Final R indices $[I \ge 2\sigma(I)]$ | R1 = 0.0464, WR2 = 0.1126                                         |
| R indices (all data)                 | R1 = 0.0543, $wR2 = 0.1177$                                       |
| Largest diff. peak and hole          | 0.996 and -0.641 $e^{-A^{-3}}$                                    |

Table B.5. Experimental and statistical crystal data for **3.3** 

| Bond Lengths (Å) |            |               |           |
|------------------|------------|---------------|-----------|
| Ag(1)-N(1)       | 2.289(6)   | Ag(1)-N(2)    | 2.296(6)  |
| Ag(1)-P(1)       | 2.3363(19) | Ag(2)-N(3)    | 2.274(6)  |
| Ag(2)-N(4)       | 2.318(7)   | Ag(2)-P(2)    | 2.348(2)  |
| Ag(3)-N(5)       | 2.265(6)   | Ag(3)-N(6)    | 2.285(6)  |
| Ag(3)-P(3)       | 2.3622(19) | Ag(4)-N(7)    | 2.268(6)  |
| Ag(4)-N(8)       | 2.295(6)   | Ag(4)-P(4)    | 2.352(2)  |
| B(1)-F(2)        | 1.372(11)  | B(1)-F(4)     | 1.393(12) |
| B(1)-F(1)        | 1.402(11)  | B(1)-F(3)     | 1.410(11) |
| B(2)-F(8)        | 1.38(2)    | B(2)-F(6)     | 1.401(15) |
| B(2)-F(5)        | 1.417(15)  | B(2)-F(7)     | 1.429(14) |
| B(3)-F(9)        | 1.366(11)  | B(3)-F(12)    | 1.389(11) |
| B(3)-F(10)       | 1.400(10)  | B(3)-F(11)    | 1.410(12) |
| B(4)-F(15)       | 1.366(15)  | B(4)-F(14)    | 1.385(15) |
| B(4)-F(16)       | 1.395(18)  | B(4)-F(13)    | 1.443(16) |
| C(1)-O(1)        | 1.455(9)   | C(1)-C(2)     | 1.524(11) |
| C(1)-H(1A)       | 0.9900     | C(1)-H(1B)    | 0.9900    |
| C(2)-C(6)        | 1.379(12)  | C(2)-C(3)     | 1.387(10) |
| C(3)-N(1)        | 1.340(9)   | C(3)-H(3)     | 0.9500    |
| C(4)-N(1)        | 1.341(11)  | C(4) - C(5)   | 1.384(12) |
| C(4)-H(4)        | 0.9500     | C(5)-C(6)     | 1.341(13) |
| C(5)-H(5)        | 0.9500     | C(6)-H(6)     | 0.9500    |
| C(7)-N(2)        | 1.305(11)  | C(7) - C(8)   | 1.417(12) |
| C(7)-H(7)        | 0.9500     | C(8) - C(9)   | 1.361(13) |
| C(8)-H(8)        | 0.9500     | C(9)-C(10)    | 1.406(12) |
| C(9)-H(9)        | 0.9500     | C(10)-C(11)   | 1.398(11) |
| C(10)-C(36)#1    | 1.473(11)  | C(11)-N(2)    | 1.334(10) |
| C(11)-H(11)      | 0.9500     | C(12)-C(13)   | 1.397(11) |
| C(12)-C(17)      | 1.401(11)  | C(12)-P(1)    | 1.813(8)  |
| C(13)-C(14)      | 1.344(11)  | C(13)-H(13)   | 0.9500    |
| C(14)-C(15)      | 1.452(12)  | C(14)-H(14)   | 0.9500    |
| C(15)-C(16)      | 1.340(13)  | C(15)-H(15)   | 0.9500    |
| C(16)-C(17)      | 1.379(11)  | C(16)-H(16)   | 0.9500    |
| C(17)-H(17)      | 0.9500     | C(18)-O(3)    | 1.468(8)  |
| C(18)-C(64)#2    | 1.495(10)  | C(18)-H(18A)  | 0.9900    |
| C(18)-H(18B)     | 0.9900     | C(19)-O(2)    | 1.456(8)  |
| C(19)-C(20)      | 1.498(10)  | C(19)-H(19A)  | 0.9900    |
| C(19)-H(19B)     | 0.9900     | C(20)-C(24)   | 1.372(12) |
| C(20)-C(21)      | 1.393(11)  | C(21)-N(3)    | 1.345(10) |
| C(21)-H(21)      | 0.9500     | C(22)-N(3)    | 1.359(10) |
| C(22)-C(23)      | 1.384(11)  | C(22)-H(22)   | 0.9500    |
| C(23)-C(24)      | 1.396(11)  | C(23)-H(23)   | 0.9500    |
| C(24)-H(24)      | 0.9500     | C(25)-N(4)    | 1.304(10) |
| C(25)-C(26)      | 1.374(12)  | C(25)-H(25)   | 0.9500    |
| C(26)-C(27)      | 1.376(12)  | C(26)-H(26)   | 0.9500    |
| C(27)-C(28)      | 1.414(12)  | C(27)-H(27)   | 0.9500    |
| C(28)-C(29)      | 1.380(11)  | C(28)-C(54)#2 | 1.503(11) |
| C(29)-N(4)       | 1.359(10)  | C(29)-H(29)   | 0.9500    |
| C(30)-C(35)      | 1.363(12)  | C(30)-C(31)   | 1.412(12) |
| C(30)-P(2)       | 1.814(7)   | C(31)-C(32)   | 1.374(12) |
| C(31)-H(31)      | 0.9500     | C(32)-C(33)   | 1.353(14) |
| C(32)-H(32)      | 0.9500     | C(33)-C(34)   | 1.396(14) |
| С(33)-Н(33)      | 0.9500     | C(34)-C(35)   | 1.403(13) |

Table B.5. Continued

| C(36)-H(36A)  | 0.9900    | C(36)-H(36B)  | 0.9900    |
|---------------|-----------|---------------|-----------|
| C(37)-O(4)    | 1.462(8)  | C(37)-C(38)   | 1.520(10) |
| C(37)-H(37A)  | 0.9900    | C(37)-H(37B)  | 0.9900    |
| C(38)-C(39)   | 1.360(11) | C(38)-C(42)   | 1.396(11) |
| C(39)-N(5)    | 1.355(10) | C(39)-H(39)   | 0.9500    |
| C(40)-N(5)    | 1.335(10) | C(40) - C(41) | 1.394(12) |
| C(40)-H(40)   | 0.9500    | C(41)-C(42)   | 1.379(12) |
| C(41)-H(41)   | 0.9500    | C(42)-H(42)   | 0.9500    |
| C(43)-N(6)    | 1.343(11) | C(43)-C(44)   | 1.357(13) |
| C(43)-H(43)   | 0.9500    | C(44)-C(45)   | 1.368(14) |
| C(44)-H(44)   | 0.9500    | C(45) - C(46) | 1.392(13) |
| C(45)-H(45)   | 0.9500    | C(46)-C(47)   | 1.365(11) |
| C(46)-C(72)#4 | 1.513(12) | C(47)-N(6)    | 1.350(10) |
| C(47)-H(47)   | 0.9500    | C(48) - C(49) | 1.397(11) |
| C(48) - C(53) | 1.405(11) | C(48)-P(3)    | 1.806(7)  |
| C(49)-C(50)   | 1.378(11) | C(49)-H(49)   | 0.9500    |
| C(50) - C(51) | 1.390(12) | C(50)-H(50)   | 0.9500    |
| C(51)-C(52)   | 1.388(12) | C(51)-H(51)   | 0.9500    |
| C(52)-C(53)   | 1.381(11) | C(52)-H(52)   | 0.9500    |
| C(53)-H(53)   | 0.9500    | C(54)-O(7)    | 1.474(9)  |
| C(54)-C(28)#5 | 1 503(11) | C(54)-H(54A)  | 0 9900    |
| C(54)-H(54B)  | 0.9900    | C(55)-O(6)    | 1.460(8)  |
| C(55)-C(56)   | 1.518(11) | C(55)-H(55A)  | 0.9900    |
| C(55)-H(55B)  | 0.9900    | C(56)-C(60)   | 1.370(12) |
| C(56)-C(57)   | 1.396(11) | C(57)-N(7)    | 1.338(10) |
| C(57)-H(57)   | 0.9500    | C(58)-N(7)    | 1.339(10) |
| C(58)-C(59)   | 1 408(12) | C(58)-H(58)   | 0.9500    |
| C(59)-C(60)   | 1.390(12) | C(59)-H(59)   | 0.9500    |
| C(60)-H(60)   | 0.9500    | C(61)-N(8)    | 1.352(10) |
| C(61)-C(62)   | 1.365(11) | C(61)-H(61)   | 0.9500    |
| C(62)-C(63)   | 1.373(11) | C(62)-H(62)   | 0.9500    |
| C(63)-C(64)   | 1.374(11) | C(63)-H(63)   | 0.9500    |
| C(64) - C(65) | 1.391(11) | C(64)-C(18)#5 | 1.495(10) |
| C(65)-N(8)    | 1.344(10) | C(65)-H(65)   | 0.9500    |
| C(66)-C(71)   | 1.359(12) | C(66)-C(67)   | 1.369(12) |
| C(66)-P(4)    | 1.822(7)  | C(67)-C(68)   | 1.395(13) |
| C(67)-H(67)   | 0.9500    | C(68)-C(69)   | 1.333(13) |
| C(68)-H(68)   | 0.9500    | C(69)-C(70)   | 1.331(13) |
| C(69)-H(69)   | 0.9500    | C(70)-C(71)   | 1.359(12) |
| C(70)-H(70)   | 0.9500    | C(71)-H(71)   | 0.9500    |
| C(72)-O(8)    | 1.471(9)  | C(72)-C(46)#6 | 1.513(12) |
| C(72)-H(72A)  | 0.9900    | C(72)-H(72B)  | 0.9900    |
| C(73)-C(74)   | 1.19(2)   | C(73)-H(73A)  | 0.9800    |
| C(73)-H(73B)  | 0.9800    | C(73)-H(73C)  | 0.9800    |
| C(74)-N(9)    | 1.46(2)   | C(75)-C(76)   | 1.459(17) |
| C(75)-H(75A)  | 0.9800    | C(75)-H(75B)  | 0.9800    |
| C(75)-H(75C)  | 0.9800    | C(76)-N(10)   | 1.110(13) |
| C(77)-C(78)   | 1.485(13) | C(77)-H(77A)  | 0.9800    |
| C(77)-H(77B)  | 0.9800    | C(77)-H(77C)  | 0.9800    |
| C(78)-N(11)   | 1.116(11) | C(79)-C(80)   | 1.451(13) |
| С(79)-Н(79А)  | 0.9800    | С(79)-Н(79В)  | 0.9800    |
| С(79)-Н(79С)  | 0.9800    | C(80)-N(12)   | 1.145(12) |
| O(1)-P(4)#7   | 1.609(5)  | O(2)-P(1)     | 1.626(5)  |
| O(3)-P(1)     | 1.601(5)  | O(4)-P(2)     | 1.595(6)  |

Table B.5. Continued

| O(5)-P(2)           | 1.616(5)   | O(6)-P(3)            | 1.603(5)   |
|---------------------|------------|----------------------|------------|
| O(7)-P(3)           | 1.608(6)   | O(8)-P(4)            | 1.609(6)   |
| P(4)-O(1)#8         | 1.609(5)   |                      |            |
|                     |            |                      |            |
| Bond Angles (°)     |            |                      |            |
|                     |            |                      |            |
| N(1)-Ag(1)-P(1)     | 132.42(16) | N(2)-Ag(1)-P(1)      | 133.09(17) |
| N(3)-Ag(2)-N(4)     | 99.4(2)    | N(3)-Ag(2)-P(2)      | 134.39(16) |
| N(4)-Ag(2)-P(2)     | 125.61(16) | N(5)-Ag(3)-N(6)      | 107.3(2)   |
| N(5)-Ag(3)-P(3)     | 127.88(16) | N(6)-Ag(3)-P(3)      | 124.12(17) |
| N(7)-Ag(4)-N(8)     | 98.3(2)    | N(7)-Ag(4)-P(4)      | 136.43(16) |
| N(8)-Ag(4)-P(4)     | 124.43(15) | N(1)-Ag(1)-N(2)      | 93.1(2)    |
| F(2)-B(1)-F(1)      | 110.3(8)   | F(4)-B(1)-F(1)       | 108.9(7)   |
| F(2)-B(1)-F(3)      | 109.6(8)   | F(4)-B(1)-F(3)       | 110.6(8)   |
| F(1)-B(1)-F(3)      | 108.5(7)   | F(8)-B(2)-F(6)       | 115.4(12)  |
| F(8)-B(2)-F(5)      | 110.9(11)  | F(6)-B(2)-F(5)       | 118.1(10)  |
| F(8)-B(2)-F(7)      | 106.7(11)  | F(6)-B(2)-F(7)       | 102.8(9)   |
| F(5)-B(2)-F(7)      | 100.7(9)   | F(9)-B(3)-F(12)      | 110.3(8)   |
| F(9)-B(3)-F(10)     | 109.4(7)   | F(12)-B(3)-F(10)     | 109.7(7)   |
| F(9)-B(3)-F(11)     | 110.2(7)   | F(12)-B(3)-F(11)     | 108.0(7)   |
| F(10)-B(3)-F(11)    | 109.2(8)   | F(15)-B(4)-F(14)     | 108.2(9)   |
| F(15)-B(4)-F(16)    | 102.9(10)  | F(14)-B(4)-F(16)     | 120.8(11)  |
| F(15)-B(4)-F(13)    | 105.4(10)  | F(14)-B(4)-F(13)     | 105.5(10)  |
| F(16)-B(4)-F(13)    | 113.0(10)  | O(1)-C(1)-C(2)       | 106.6(6)   |
| O(1)-C(1)-H(1A)     | 110.4      | C(2)-C(1)-H(1A)      | 110.4      |
| O(1)-C(1)-H(1B)     | 110.4      | C(2)-C(1)-H(1B)      | 110.4      |
| H(1A)-C(1)-H(1B)    | 108.6      | C(6)-C(2)-C(3)       | 117.9(8)   |
| C(6)-C(2)-C(1)      | 122.7(7)   | C(3)-C(2)-C(1)       | 119.4(8)   |
| N(1)-C(3)-C(2)      | 122.2(8)   | N(1)-C(3)-H(3)       | 118.9      |
| C(2)-C(3)-H(3)      | 118.9      | N(1)-C(4)-C(5)       | 121.9(8)   |
| N(1)-C(4)-H(4)      | 119.0      | C(5)-C(4)-H(4)       | 119.0      |
| C(6)-C(5)-C(4)      | 119.1(8)   | C(6)-C(5)-H(5)       | 120.4      |
| C(4)-C(5)-H(5)      | 120.4      | C(5)-C(6)-C(2)       | 120.5(8)   |
| C(5)-C(6)-H(6)      | 119.8      | C(2)-C(6)-H(6)       | 119.8      |
| N(2)-C(7)-C(8)      | 123.3(9)   | N(2)-C(7)-H(7)       | 118.4      |
| C(8)-C(7)-H(7)      | 118.4      | C(9)-C(8)-C(7)       | 118.2(9)   |
| C(9)-C(8)-H(8)      | 120.9      | C(7)-C(8)-H(8)       | 120.9      |
| C(8)-C(9)-C(10)     | 120.0(8)   | C(8)-C(9)-H(9)       | 120.0      |
| C(10)-C(9)-H(9)     | 120.0      | C(11)-C(10)-C(9)     | 116.1(7)   |
| C(11)-C(10)-C(36)#1 | 120.9(8)   | C(9)-C(10)-C(36)#1   | 122.4(7)   |
| N(2)-C(11)-C(10)    | 124.6(8)   | N(2)-C(11)-H(11)     | 117.7      |
| C(10)-C(11)-H(11)   | 117.7      | C(13)-C(12)-C(17)    | 119.0(7)   |
| C(13)-C(12)-P(1)    | 122.8(6)   | C(17)-C(12)-P(1)     | 118.2(6)   |
| C(14)-C(13)-C(12)   | 122.2(8)   | C(14)-C(13)-H(13)    | 118.9      |
| C(12)-C(13)-H(13)   | 118.9      | C(13)-C(14)-C(15)    | 118.2(8)   |
| C(13)-C(14)-H(14)   | 120.9      | C(15)-C(14)-H(14)    | 120.9      |
| C(16)-C(15)-C(14)   | 118.9(8)   | C(16)-C(15)-H(15)    | 120.6      |
| C(14)-C(15)-H(15)   | 120.6      | C(15)-C(16)-C(17)    | 122.9(9)   |
| C(15)-C(16)-H(16)   | 118.5      | C(17)-C(16)-H(16)    | 118.5      |
| C(16)-C(17)-C(12)   | 118.5(8)   | C(16)-C(17)-H(17)    | 120.8      |
| C(12)-C(17)-H(17)   | 120.8      | O(3)-C(18)-C(64)#2   | 106.9(6)   |
| O(3)-C(18)-H(18A)   | 110.3      | C(64)#2-C(18)-H(18A) | 110.3      |
| O(3)-C(18)-H(18B)   | 110.3      | C(64)#2-C(18)-H(18B) | 110.3      |
| H(18A)-C(18)-H(18B) | 108.6      | O(2)-C(19)-C(20)     | 107.5(6)   |

Table B.5. Continued

| O(2)-C(19)-H(19A)                              | 110.2                | C(20)-C(19)-H(19A)               | 110.2             |
|------------------------------------------------|----------------------|----------------------------------|-------------------|
| O(2)-C(19)-H(19B)                              | 110.2                | C(20)-C(19)-H(19B)               | 110.2             |
| H(19A)-C(19)-H(19B)                            | 108.5                | C(24)-C(20)-C(21)                | 118.4(7)          |
| C(24)-C(20)-C(19)                              | 122.1(7)             | C(21)-C(20)-C(19)                | 119.5(8)          |
| N(3)-C(21)-C(20)                               | 123.5(7)             | N(3)-C(21)-H(21)                 | 118.3             |
| C(20)-C(21)-H(21)                              | 118.3                | N(3)-C(22)-C(23)                 | 122.2(7)          |
| N(3)-C(22)-H(22)                               | 118.9                | C(23)-C(22)-H(22)                | 118.9             |
| C(22)-C(23)-C(24)                              | 119.1(7)             | C(22)-C(23)-H(23)                | 120.4             |
| C(24)-C(23)-H(23)                              | 120.4                | C(20)-C(24)-C(23)                | 119.3(7)          |
| C(20)-C(24)-H(24)                              | 120.4                | C(23)-C(24)-H(24)                | 120.4             |
| N(4)-C(25)-C(26)                               | 124.6(8)             | N(4)-C(25)-H(25)                 | 117.7             |
| C(26)-C(25)-H(25)                              | 1177                 | C(25)-C(26)-C(27)                | 118 5(8)          |
| C(25)-C(26)-H(26)                              | 120.7                | C(27)-C(26)-H(26)                | 120.7             |
| C(26)-C(27)-C(28)                              | 118 6(8)             | C(26)-C(27)-H(27)                | 120.7             |
| C(28)-C(27)-H(27)                              | 120.7                | C(29)-C(28)-C(27)                | 117 9(8)          |
| C(29)-C(28)-C(54)#2                            | 120 3(7)             | C(27)-C(28)-C(54)#2              | 121.8(7)          |
| N(4)-C(29)-C(28)                               | 122.5(7)             | N(4)-C(29)-H(29)                 | 118 7             |
| C(28)-C(29)-H(29)                              | 118 7                | C(35)-C(30)-C(31)                | 110.7<br>119.6(7) |
| C(25) - C(20) - P(2)                           | 118.7<br>118.2(7)    | C(31)-C(30)-P(2)                 | 122.1(6)          |
| C(32)-C(31)-C(30)                              | 110.2(7)             | C(32)-C(31)-H(31)                | 120.1             |
| C(32)-C(31)-C(30)                              | 120.1                | C(33)-C(32)-C(31)                | 120.1             |
| C(33)-C(32)-H(32)                              | 110 7                | C(31)-C(32)-H(32)                | 110 7             |
| C(32)-C(32)-T(32)                              | 120 1(0)             | C(32)-C(32)-H(32)                | 110.8             |
| C(32) - C(33) - C(34)<br>C(34) - C(33) - H(33) | 110.4(9)             | C(32)-C(33)-C(35)                | 119.8             |
| C(33) - C(34) - H(34)                          | 120.3                | C(35)-C(34)-H(34)                | 120.3             |
| C(30) C(35) C(34)                              | 110 0(0)             | C(30) C(35) H(35)                | 120.5             |
| C(30)-C(35)-C(34)<br>C(24) C(25) H(25)         | 119.9(9)             | O(5) C(35) - II(55)              | 120.0             |
| O(5) C(26) H(26A)                              | 120.0                | C(10)#2 $C(26)$ $H(26A)$         | 110.1             |
| O(5) - C(30) - H(30A)                          | 110.1                | $C(10)#3 - C(30) - \Pi(30A)$     | 110.1             |
| $U(3)-U(30)-\Pi(30D)$<br>U(26A) C(26) U(26D)   | 110.1                | $C(10)$ #3- $C(30)$ - $\Pi(30B)$ | 110.1             |
| D(4) C(27) H(27A)                              | 106.4                | C(29) C(27) H(27A)               | 100.1(0)          |
| O(4) - C(37) - H(37A)                          | 110.5                | C(38)-C(37)-H(37A)               | 110.5             |
| $U(4)-U(57)-\Pi(57D)$<br>U(27A)-U(27D)         | 110.5                | $C(38)-C(37)-\Pi(37B)$           | 110.3             |
| H(3/A)-C(3/)-H(3/B)                            | 108.7                | C(39)-C(38)-C(42)                | 118.4(7)          |
| V(59)-V(58)-V(57)                              | 120.7(7)<br>125.0(7) | V(42)-V(38)-V(37)                | 120.8(7)          |
| N(5)-C(59)-C(58)                               | 125.0(7)             | N(5) - C(39) - H(39)             | 11/.5             |
| V(38)-V(39)-H(39)                              | 117.0                | N(5)-C(40)-C(41)                 | 124.3(8)          |
| N(5)-C(40)-H(40)                               | 11/.9                | C(41)-C(40)-H(40)                | 11/.9             |
| C(42)- $C(41)$ - $C(40)$                       | 118.4(8)             | C(42)- $C(41)$ - $H(41)$         | 120.8             |
| C(40)-C(41)-H(41)                              | 120.8                | C(41)-C(42)-C(38)                | 118.5(8)          |
| C(41)-C(42)-H(42)                              | 120.7                | C(38)-C(42)-H(42)                | 120.7             |
| N(6)-C(43)-C(44)                               | 122.8(9)             | N(6)-C(43)-H(43)                 | 118.0             |
| C(44)-C(43)-H(43)                              | 118.6                | C(43)-C(44)-C(45)                | 120.1(9)          |
| C(43)-C(44)-H(44)                              | 119.9                | C(43)- $C(44)$ - $H(44)$         | 119.9             |
| C(44)-C(45)-C(46)                              | 118.8(8)             | C(44)- $C(45)$ - $H(45)$         | 120.6             |
| C(46)-C(45)-H(45)                              | 120.6                | C(47)-C(46)-C(45)                | 117.4(8)          |
| C(47)-C(46)-C(72)#4                            | 120.9(8)             | C(45)-C(46)-C(72)#4              | 121.5(8)          |
| N(6)-C(47)-C(46)                               | 124.3(8)             | N(6)-C(4/)-H(4/)                 | 117.8             |
| C(46)-C(47)-H(47)                              | 117.8                | C(49)-C(48)-C(53)                | 118.4(7)          |
| C(49)-C(48)-P(3)                               | 125.0(6)             | C(53)-C(48)-P(3)                 | 110.6(6)          |
| C(50)-C(49)-C(48)                              | 121.0(8)             | C(50)-C(49)-H(49)                | 119.5             |
| C(48)-C(49)-H(49)                              | 119.5                | C(49)-C(50)-C(51)                | 120.5(8)          |
| C(49)-C(50)-H(50)                              | 119.7                | C(51)-C(50)-H(50)                | 119.7             |
| C(52)-C(51)-C(50)                              | 118.7(8)             | C(52)-C(51)-H(51)                | 120.7             |
| C(50)-C(51)-H(51)                              | 120.7                | C(53)-C(52)-C(51)                | 121.4(8)          |

Table B.5. Continued

| C(53)-C(52)-H(52)                      | 119.3                | C(51)-C(52)-H(52)                      | 119.3                |
|----------------------------------------|----------------------|----------------------------------------|----------------------|
| C(52)-C(53)-C(48)                      | 119.9(8)             | С(52)-С(53)-Н(53)                      | 120.1                |
| C(48)-C(53)-H(53)                      | 120.1                | O(7)-C(54)-C(28)#5                     | 109.6(6)             |
| O(7)-C(54)-H(54A)                      | 109.8                | C(28)#5-C(54)-H(54A)                   | 109.8                |
| O(7)-C(54)-H(54B)                      | 109.8                | C(28)#5-C(54)-H(54B)                   | 109.8                |
| H(54A)-C(54)-H(54B)                    | 108.2                | O(6)-C(55)-C(56)                       | 106.6(6)             |
| O(6)-C(55)-H(55A)                      | 110.4                | C(56)-C(55)-H(55A)                     | 110.4                |
| O(6)-C(55)-H(55B)                      | 110.4                | C(56)-C(55)-H(55B)                     | 110.4                |
| H(55A)-C(55)-H(55B)                    | 108.6                | C(60)- $C(56)$ - $C(57)$               | 119.1(7)             |
| C(60)-C(56)-C(55)                      | 121.9(7)             | C(57)-C(56)-C(55)                      | 118.9(7)             |
| N(7)-C(57)-C(56)                       | 1230(7)              | N(7)-C(57)-H(57)                       | 118.5                |
| C(56)-C(57)-H(57)                      | 118.5                | N(7)-C(58)-C(59)                       | 121 9(8)             |
| N(7)-C(58)-H(58)                       | 1191                 | C(59)-C(58)-H(58)                      | 1191                 |
| C(60)-C(59)-C(58)                      | 119.0(8)             | C(60)-C(59)-H(59)                      | 120.5                |
| C(58)-C(59)-H(59)                      | 120.5                | C(56)- $C(60)$ - $C(59)$               | 118 7(8)             |
| C(56)-C(60)-H(60)                      | 120.5                | C(59)- $C(60)$ - $H(60)$               | 120.7                |
| N(8)-C(61)-C(62)                       | 122.1(8)             | N(8)-C(61)-H(61)                       | 118.9                |
| C(62)-C(61)-H(61)                      | 118.9                | C(61)-C(62)-C(63)                      | 119 7(8)             |
| C(61)-C(62)-H(62)                      | 120.2                | C(63)-C(62)-E(03)                      | 120.2                |
| C(61) = C(62) = T(62)                  | 120.2<br>120.0(7)    | C(62) - C(62) - H(62)                  | 120.2                |
| C(62) - C(63) - C(64)                  | 120.0(7)             | C(63) - C(64) - C(65)                  | 120.0<br>116 $0(7)$  |
| C(63) - C(64) - C(18) + 5              | 120.0<br>124.0(7)    | C(65)-C(64)-C(18)#5                    | 110.9(7)<br>110.0(7) |
| N(8) - C(65) - C(64)                   | 124.0(7)<br>123.0(7) | N(8) - C(65) - H(65)                   | 119.0(7)             |
| C(64) C(65) H(65)                      | 123.9(7)             | C(71) C(66) C(67)                      | 117.4(7)             |
| C(04)-C(05)-H(05)<br>C(71)-C(66)-P(4)  | 120.6(6)             | C(71)-C(60)-C(67)                      | 117.4(7)<br>121.8(6) |
| C(66) C(67) C(68)                      | 120.0(0)<br>120.0(0) | C(66) C(67) H(67)                      | 121.8(0)             |
| C(60)-C(67)-C(08)                      | 120.9(9)             | C(60) - C(67) - H(67)                  | 117.3<br>117.0(0)    |
| C(08)-C(07)-H(07)<br>C(60)-C(68)-H(68) | 119.5                | C(09)-C(08)-C(07)<br>C(67) C(68) H(68) | 117.9(9)             |
| C(09)-C(08)-H(08)                      | 121.0                | C(07) - C(08) - H(08)                  | 121.0                |
| C(70)- $C(09)$ - $C(08)$               | 122.0(9)             | C(70)- $C(09)$ - $H(09)$               | 110.7                |
| $C(68)-C(69)-\Pi(69)$                  | 110.7                | C(09)-C(70)-C(71)                      | 119.1(9)             |
| $C(09)-C(70)-\Pi(70)$                  | 120.4                | C(71)- $C(70)$ - $H(70)$               | 120.4                |
| C(70)-C(71)-C(00)                      | 121.8(8)             | C(70)-C(71)-H(71)                      | 119.1                |
| C(00)-C(71)-H(71)                      | 119.1                | O(8)-C(72)-C(40)#0                     | 108.0(0)             |
| O(8) - C(72) - H(72R)                  | 110.0                | $C(40)#6-C(72)-\Pi(72A)$               | 110.0                |
| U(8)-U(72)-H(72B)                      | 110.0                | C(46)#6-C(72)-H(72B)                   | 110.0                |
| H(/2A)-C(/2)-H(/2B)                    | 108.4                | U(72A) = U(72) = U(72A)                | 109.5                |
| C(74)-C(73)-H(73B)                     | 109.5                | H(73A)-C(73)-H(73B)                    | 109.5                |
| U(74)-U(73)-H(73U)                     | 109.5                | H(/3A)-C(/3)-H(/3C)                    | 109.5                |
| H(73B)-C(75)-H(73C)                    | 109.5                | C(73)-C(74)-N(9)                       | 1//.5(18)            |
| U(76)-U(75)-H(75A)                     | 109.5                | C(76)-C(75)-H(75B)                     | 109.5                |
| H(/5A)-C(/5)-H(/5B)                    | 109.5                | C(76)-C(75)-H(75C)                     | 109.5                |
| H(75A)-C(75)-H(75C)                    | 109.5                | H(75B)-C(75)-H(75C)                    | 109.5                |
| N(10)-C(76)-C(75)                      | 1/4.3(13)            | C(/8)-C(//)-H(//A)                     | 109.5                |
| C(78)-C(77)-H(77B)                     | 109.5                | H(//A)-C(//)-H(//B)                    | 109.5                |
| C(78)-C(77)-H(77C)                     | 109.5                | H(7/A)-C(7/)-H(7/C)                    | 109.5                |
| H(7/B)-C(7/)-H(7/C)                    | 109.5                | N(11)-C(78)-C(77)                      | 176.9(11)            |
| С(80)-С(79)-Н(79А)                     | 109.5                | C(80)-C(79)-H(79B)                     | 109.5                |
| H(79A)-C(79)-H(79B)                    | 109.5                | С(80)-С(79)-Н(79С)                     | 109.5                |
| H(79A)-C(79)-H(79C)                    | 109.5                | H(79B)-C(79)-H(79C)                    | 109.5                |
| N(12)-C(80)-C(79)                      | 1/6.3(12)            | C(3)-N(1)-C(4)                         | 118.3(7)             |
| C(3)-N(1)-Ag(1)                        | 118.2(5)             | C(4)-N(1)-Ag(1)                        | 123.4(5)             |
| C(7)-N(2)-C(11)                        | 117.7(7)             | C(7)-N(2)-Ag(1)                        | 122.6(6)             |
| C(11)-N(2)-Ag(1)                       | 119.0(5)             | C(21)-N(3)-C(22)                       | 117.5(7)             |
| C(21)-N(3)-Ag(2)                       | 119.7(5)             | C(22)-N(3)-Ag(2)                       | 122.4(5)             |

Table B.5. Continued

| C(25)-N(4)-C(29) | 117.8(7)   | C(25)-N(4)-Ag(2)  | 121.6(6) |
|------------------|------------|-------------------|----------|
| C(29)-N(4)-Ag(2) | 120.4(5)   | C(40)-N(5)-C(39)  | 115.4(7) |
| C(40)-N(5)-Ag(3) | 126.3(5)   | C(39)-N(5)-Ag(3)  | 118.2(5) |
| C(43)-N(6)-C(47) | 116.5(7)   | C(43)-N(6)-Ag(3)  | 122.2(6) |
| C(47)-N(6)-Ag(3) | 120.9(5)   | C(57)-N(7)-C(58)  | 118.2(7) |
| C(57)-N(7)-Ag(4) | 120.6(5)   | C(58)-N(7)-Ag(4)  | 121.1(5) |
| C(65)-N(8)-C(61) | 117.1(7)   | C(65)-N(8)-Ag(4)  | 117.5(5) |
| C(61)-N(8)-Ag(4) | 123.6(5)   | C(1)-O(1)-P(4)#7  | 119.2(4) |
| C(19)-O(2)-P(1)  | 116.9(4)   | C(18)-O(3)-P(1)   | 121.2(4) |
| C(37)-O(4)-P(2)  | 122.1(4)   | C(36)-O(5)-P(2)   | 120.9(5) |
| C(55)-O(6)-P(3)  | 121.4(5)   | C(54)-O(7)-P(3)   | 116.6(4) |
| C(72)-O(8)-P(4)  | 118.4(5)   | O(3)-P(1)-O(2)    | 105.1(3) |
| O(3)-P(1)-C(12)  | 99.8(3)    | O(2)-P(1)-C(12)   | 98.8(3)  |
| O(3)-P(1)-Ag(1)  | 115.13(19) | O(2)-P(1)-Ag(1)   | 117.0(2) |
| C(12)-P(1)-Ag(1) | 118.3(3)   | O(4)-P(2)-O(5)    | 106.0(3) |
| O(4)-P(2)-C(30)  | 107.2(3)   | O(5)-P(2)-C(30)   | 98.0(3)  |
| O(4)-P(2)-Ag(2)  | 108.6(2)   | O(5)-P(2)-Ag(2)   | 115.1(2) |
| C(30)-P(2)-Ag(2) | 120.6(3)   | O(6)-P(3)-O(7)    | 106.4(3) |
| O(6)-P(3)-C(48)  | 105.5(3)   | O(7)-P(3)-C(48)   | 98.9(3)  |
| O(6)-P(3)-Ag(3)  | 107.91(19) | O(7)-P(3)-Ag(3)   | 118.2(2) |
| C(48)-P(3)-Ag(3) | 118.7(2)   | O(8)-P(4)-O(1)#8  | 106.1(3) |
| O(8)-P(4)-C(66)  | 100.3(3)   | O(1)#8-P(4)-C(66) | 97.2(3)  |
| O(8)-P(4)-Ag(4)  | 116.5(2)   | O(1)#8-P(4)-Ag(4) | 116.2(2) |
| C(66)-P(4)-Ag(4) | 117.6(3)   | F(2)-B(1)-F(4)    | 109.0(8) |
|                  |            |                   |          |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+1/2 #2 -x,y+1/2,-z+1/2 #3 -x+1,y-1/2,-z+1/2 #4 -x-1,y+1/2,-z+1/2 #5 -x,y-1/2,-z+1/2 #6 -x-1,y-1/2,-z+1/2 #7 x+2,y+1,z #8 x-2,y-1,z

| Table B.6. Experimental and statistical crystal d | data for 3.4 |  |
|---------------------------------------------------|--------------|--|
|---------------------------------------------------|--------------|--|

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions | C84 H78 Ag4 F12 N8 O17 P4<br>2254.93<br>100(2) K<br>0.71073 A<br>Monoclinic, P2(1)/n<br>$a = 9.3430(13)$ A $\alpha = 90$ deg.<br>$b = 31.912(5)$ A $\beta = 95.636(10)$ deg.<br>$c = 15.157(3)$ A $\gamma = 90$ deg |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume                                                                                                                  | 4497.2(12) A^3                                                                                                                                                                                                      |
| Z, Calculated density                                                                                                   | 2, 1.665 Mg/m^3                                                                                                                                                                                                     |
| Absorption coefficient                                                                                                  | 1.024 mm^-1                                                                                                                                                                                                         |
| F(000)                                                                                                                  | 2260                                                                                                                                                                                                                |
| Crystal size                                                                                                            | 0.10 x 0.09 x 0.07 mm                                                                                                                                                                                               |
| $\theta$ range for data collection                                                                                      | 2.28 to 26.00 deg.                                                                                                                                                                                                  |
| Limiting indices                                                                                                        | -10<=h<=11, -39<=k<=39, -18<=l<=18                                                                                                                                                                                  |
| Reflections collected / unique                                                                                          | 38630 / 8838 [R(int) = 0.0809]                                                                                                                                                                                      |
| Completeness to $\theta = 26.00$                                                                                        | 99.8 %                                                                                                                                                                                                              |
| Absorption correction                                                                                                   | Semi-empirical from equivalents                                                                                                                                                                                     |
| Max. and min. transmission                                                                                              | 0.9346 and 0.9037                                                                                                                                                                                                   |
| Refinement method                                                                                                       | Full-matrix least-squares on F <sup>2</sup>                                                                                                                                                                         |
| Data / restraints / parameters                                                                                          | 8838 / 6 / 601                                                                                                                                                                                                      |

| Goodness-of-fit on F^2                  |                             | 1.027                                    |                        |
|-----------------------------------------|-----------------------------|------------------------------------------|------------------------|
| Final R indices $[I > 2\sigma(I)]$      | R1 = 0.0497, $wR2 = 0.1073$ |                                          |                        |
| R indices (all data)                    |                             | R1 = 0.0797, wR2 = 0.1204                |                        |
| Largest diff. peak and hole             |                             | 1.060 and -0.939 e.A^-3                  |                        |
| Bond Lengths (Å)                        |                             |                                          |                        |
| C(21)-O(5)                              | 1 465(6)                    | C(21)-C(22)                              | 1 496(7)               |
| C(21)-H(21A)                            | 0.9900                      | C(21)-H(21B)                             | 0.9900                 |
| Ag(1)-N(2)#1                            | 2 297(4)                    | Ag(1)-P(1)                               | 2 3576(15)             |
| Ag(1)-O(3)                              | 2.386(4)                    | Ag(1) - O(3) # 2                         | 2 509(4)               |
| $A_{\sigma}(2) - N(3) \# 3$             | 2.300(1)<br>2.322(4)        | Ag(2)-P(2)                               | 2.309(1)<br>2.3295(13) |
| Ag(2) - O(7)                            | 2.322(1)<br>2.344(4)        | Ag(2) - N(1)                             | 2.3299(13)<br>2.355(4) |
| N(1)-C(4)                               | 1.329(7)                    | N(1)-C(3)                                | 1335(7)                |
| N(2) - C(9)                             | 1.323(7)                    | N(2) - C(10)                             | 1.355(6)               |
| $N(2) - A\sigma(1) \# 1$                | 2.297(4)                    | N(2) C(10)<br>N(3)-C(24)                 | 1.335(0)<br>1.335(7)   |
| N(3)-C(23)                              | 1 339(6)                    | N(3) - A g(2) # 4                        | 2322(4)                |
| N(4) - C(29)                            | 1.337(0)<br>1.337(7)        | N(4) - C(30)                             | 1.345(8)               |
| O(1)-C(1)                               | 1.337(7)<br>1.443(6)        | O(1)-P(1)                                | 1.5+5(0)<br>1.613(4)   |
| O(1) - C(1)                             | 1.443(0)<br>1.449(6)        | O(1) - I(1)<br>O(2) - P(1)               | 1.013(4)<br>1.604(4)   |
| O(2) - O(1)                             | 1.449(0)<br>1.254(7)        | $O(2)^{-1}(1)$<br>$O(3) \land g(1) \# 2$ | 2.509(4)               |
| O(4) - C(19)                            | 1.234(7)<br>1.229(7)        | $O(5) - Rg(1)\pi 2$<br>O(5) - P(2)       | 2.509(4)<br>1.612(4)   |
| O(4) - O(17)                            | 1.229(7)<br>1.455(6)        | O(5) - I(2)<br>O(6) P(2)                 | 1.012(4)<br>1.610(4)   |
| O(0) - C(27)                            | 1.433(0)<br>1.240(6)        | O(0) - I(2)<br>O(2) - I(2)               | 1.010(4)<br>1.225(6)   |
| P(1) C(12)                              | 1.240(0)                    | P(1) C(13A)                              | 1.233(0)<br>1.835(7)   |
| P(2) C(22)                              | 1.797(0)                    | C(1) C(1) C(2)                           | 1.033(7)<br>1.502(8)   |
| $\Gamma(2) - C(33)$                     | 1.010(3)                    | C(1) - C(2)                              | 1.303(8)               |
| $C(1)$ - $\Pi(1A)$<br>C(2) $C(2)$       | 0.9900                      | $C(1) - \Pi(1B)$<br>C(2) C(6)            | 0.9900<br>1 286(8)     |
| C(2) - C(3)<br>C(3) + U(2)              | 1.560(7)                    | C(2)-C(0)                                | 1.360(6)<br>1.202(7)   |
| $C(3)$ - $\Pi(3)$                       | 0.9300                      | C(4)-C(5)                                | 1.393(7)<br>1.276(0)   |
| $C(4) - \Pi(4)$<br>$C(5) = \Pi(5)$      | 0.9300                      | C(5)-C(0)                                | 1.570(9)               |
| $C(3)$ - $\Pi(3)$                       | 0.9300                      | $C(0) - \Pi(0)$                          | 0.9300                 |
| C(7) - C(8)                             | 1.320(8)                    | $C(7) - \Pi(7A)$                         | 0.9900                 |
| $C(7) - \Pi(7B)$                        | 0.9900                      | C(0) - C(12)                             | 1.380(7)               |
| C(0) - C(9)                             | 1.390(7)<br>1.280(8)        | $C(9)-\Pi(9A)$                           | 0.9300                 |
| C(10)- $C(11)$                          | 1.300(0)<br>1.292(0)        | C(10)-H(10)                              | 0.9300                 |
| C(11)-C(12)<br>C(12) $U(12)$            | 1.382(8)                    | $C(11)-\Pi(11)$<br>C(27) C(28)           | 0.9300<br>1 402(7)     |
| $C(12) - \Pi(12)$<br>$C(27) = \Pi(27A)$ | 0.9300                      | C(27) - C(28)                            | 1.493(7)               |
| $C(27) - \Pi(27A)$                      | 0.9900                      | $C(27) - \Pi(27B)$                       | 0.9900                 |
| C(28) - C(29)                           | 1.370(8)                    | C(28)-C(32)                              | 1.380(7)<br>1.275(8)   |
| $C(29) - \Pi(29)$                       | 0.9300                      | C(30)-C(31)                              | 1.3/3(8)<br>1.292(8)   |
| $C(30)$ - $\Pi(30)$                     | 0.9300                      | C(31)-C(32)                              | 1.363(6)               |
| C(31)- $H(31)$                          | 0.9500                      | C(32)-H(32)                              | 0.9500                 |
| C(33)-C(38)                             | 1.393(7)                    | C(33)-C(34)                              | 1.400(7)               |
| C(34)-C(35)                             | 1.3/8(7)<br>1.277(9)        | C(34)-H(34)                              | 0.9500                 |
| C(35)-C(36)                             | 1.3/(8)<br>1.295(8)         | С(35)-Н(35)                              | 0.9500                 |
| C(36)-C(37)                             | 1.385(8)                    | C(36)-H(36)                              | 0.9500                 |
| C(37)-C(38)                             | 1.3/3(7)                    | C(3/)-H(3/)                              | 0.9500                 |
| C(38)-H(38)                             | 0.9500                      | C(19)-C(20)                              | 1.529(8)               |
| C(40)-F(6)                              | 1.324(7)                    | C(40)-F(4)                               | 1.335(7)               |
| C(40)-F(5)                              | 1.55/(7)                    | C(40)-C(39)                              | 1.546(8)               |
| C(20)-F(2)                              | 1.268(9)                    | C(20)-F(1)                               | 1.55/(14)              |
| C(20)-F(3)<br>C(12)-C(14)               | 1.419(11)                   | C(13)-C(18)                              | 1.3900                 |
| C(13)-C(14)                             | 1.3900                      | C(18)-C(17)                              | 1.3900                 |
| C(18)-H(18)                             | 0.9500                      | C(17)-C(16)                              | 1.3900                 |

Table B.6. Continued

| C(17)-H(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                   | C(16)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(16)-H(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                   | C(15)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(15)-H(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                   | C(14)-H(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| O(9)- $C(41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 3271                                                                                                                                                                                                                                                   | O(9)-C(43)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 4523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(41)- $C(42)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 4523                                                                                                                                                                                                                                                   | C(41)-H(41A)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(41) = C(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000                                                                                                                                                                                                                                                   | C(42) H(42A)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C(41)-II(41D)<br>C(42) II(42D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9900                                                                                                                                                                                                                                                   | C(42) - H(42R)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C(42) - \Pi(42B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                                                                   | $C(42) - \Pi(42C)$                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(43)-C(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6254                                                                                                                                                                                                                                                   | C(43)-H(43A)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(43)-H(43B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9900                                                                                                                                                                                                                                                   | C(44)-H(44A)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(44)-H(44B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                   | C(44)-H(44C)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(13A)-C(18A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3900                                                                                                                                                                                                                                                   | C(13A)-C(14A)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(18A)-C(17A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3900                                                                                                                                                                                                                                                   | C(18A)-H(18A)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(17A)-C(16A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3900                                                                                                                                                                                                                                                   | C(17A)-H(17A)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(16A)-C(15A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3900                                                                                                                                                                                                                                                   | C(16A)-H(16A)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(15A)-C(14A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3900                                                                                                                                                                                                                                                   | C(15A)-H(15A)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\dot{C(14A)}$ -H(14A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9500                                                                                                                                                                                                                                                   | O(9A)-C(43A)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.19(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| O(9A)-C(41A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 39(5)                                                                                                                                                                                                                                                  | O(9A) - O(9A) # 5                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 78(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(41A)-C(42A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.09(4)                                                                                                                                                                                                                                                  | C(41A)-H(41C)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(41A) - H(41D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9900                                                                                                                                                                                                                                                   | C(42A) - H(42D)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(41A) - H(41D)<br>C(42A) H(42E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900                                                                                                                                                                                                                                                   | C(42A) - H(42D)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(42A) - R(42E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800                                                                                                                                                                                                                                                   | $C(42A) - \Pi(42F)$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(43A) - C(44A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.54(5)                                                                                                                                                                                                                                                  | C(43A) - H(43C)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(43A)-H(43D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9900                                                                                                                                                                                                                                                   | C(44A)-H(44D)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(44A)-H(44E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9800                                                                                                                                                                                                                                                   | C(44A)-H(44F)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(23)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.389(7)                                                                                                                                                                                                                                                 | C(23)-H(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(22)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.389(8)                                                                                                                                                                                                                                                 | C(26)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.372(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C(26)-H(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                   | C(25)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.373(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C(25)-H(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                   | C(24)-H(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - ( - ) ( - )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                          | - ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bond Angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bond Angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bond Angles (°)<br>O(5)-C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.0(4)                                                                                                                                                                                                                                                 | O(5)-C(21)-H(21A)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.0(4)<br>110.1                                                                                                                                                                                                                                        | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1<br>110.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.0(4)<br>110.1<br>110 1                                                                                                                                                                                                                               | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)                                                                                                                                                                                                                                                                                                                                                                                                   | 110.1<br>110.1<br>108 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(4)<br>110.1<br>110.1<br>132 48(11)                                                                                                                                                                                                                 | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)                                                                                                                                                                                                                                                                                                                                                                              | 110.1<br>110.1<br>108.4<br>94 10(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(4)<br>110.1<br>110.1<br>132.48(11)<br>126.83(10)                                                                                                                                                                                                   | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2                                                                                                                                                                                                                                                                                                                                                       | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1) Ag(1) O(3)#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $108.0(4) \\110.1 \\110.1 \\132.48(11) \\126.83(10) \\122.49(10)$                                                                                                                                                                                        | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2                                                                                                                                                                                                                                                                                                                                  | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(2)#3 A g(2) P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.0(4)<br>110.1<br>110.1<br>132.48(11)<br>126.83(10)<br>122.49(10)<br>125.37(11)                                                                                                                                                                       | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(2)#2 Ag(2) O(7)                                                                                                                                                                                                                                                                                                             | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86 81(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>$P(2) A_{2}(2) O(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.0(4)<br>110.1<br>110.1<br>132.48(11)<br>126.83(10)<br>122.49(10)<br>125.37(11)                                                                                                                                                                       | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(2)#2-Ag(2) N(1)                                                                                                                                                                                                                                                                                        | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>08.22(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(4)<br>110.1<br>110.1<br>132.48(11)<br>126.83(10)<br>122.49(10)<br>125.37(11)<br>133.28(10)                                                                                                                                                         | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)                                                                                                                                                                                                                                                                                        | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$                                                                                                                                                   | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)                                                                                                                                                                                                                                                                     | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $108.0(4) \\110.1 \\110.1 \\132.48(11) \\126.83(10) \\122.49(10) \\125.37(11) \\133.28(10) \\116.35(11) \\118.0(4)$                                                                                                                                      | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)                                                                                                                                                                                                                                                  | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)<br>123.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$                                                                                                                             | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)                                                                                                                                                                                                          | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)<br>123.0(4)<br>117.6(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $118.7(3)$                                                                                                                  | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1                                                                                                                                                                                    | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)<br>123.0(4)<br>117.6(4)<br>123.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $118.7(3)$ $117.1(5)$                                                                                                       | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4                                                                                                                                                                                   | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)<br>123.0(4)<br>117.6(4)<br>123.4(4)<br>122.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)<br>C(23)-N(3)-Ag(2)#4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $118.7(3)$ $117.1(5)$ $120.3(3)$                                                                                            | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)                                                                                                                                                               | 110.1<br>110.1<br>108.4<br>94.10(14)<br>87.96(14)<br>74.39(13)<br>86.81(15)<br>98.22(14)<br>86.40(14)<br>123.0(4)<br>117.6(4)<br>123.4(4)<br>122.6(3)<br>115.2(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)<br>C(23)-N(3)-Ag(2)#4<br>C(1)-O(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.0(4)<br>110.1<br>110.1<br>132.48(11)<br>126.83(10)<br>122.49(10)<br>125.37(11)<br>133.28(10)<br>116.35(11)<br>118.0(4)<br>118.7(3)<br>118.7(3)<br>117.1(5)<br>120.3(3)<br>118.3(3)                                                                   | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)                                                                                                                                             | $110.1 \\ 110.1 \\ 108.4 \\ 94.10(14) \\ 87.96(14) \\ 74.39(13) \\ 86.81(15) \\ 98.22(14) \\ 86.40(14) \\ 123.0(4) \\ 117.6(4) \\ 123.4(4) \\ 122.6(3) \\ 115.2(5) \\ 118.4(3) \\ 118.4(3) \\ 110.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\$ |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)<br>C(23)-N(3)-Ag(2)#4<br>C(1)-O(1)-P(1)<br>C(19)-O(3)-Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$                                                                      | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2                                                                                                                       | $110.1 \\110.1 \\108.4 \\94.10(14) \\87.96(14) \\74.39(13) \\86.81(15) \\98.22(14) \\86.40(14) \\123.0(4) \\117.6(4) \\123.4(4) \\122.6(3) \\115.2(5) \\118.4(3) \\135.1(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)<br>C(23)-N(3)-Ag(2)#4<br>C(1)-O(1)-P(1)<br>C(19)-O(3)-Ag(1)<br>Ag(1)-O(3)-Ag(1)#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$                                                         | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)                                                                                 | $110.1 \\ 110.1 \\ 108.4 \\ 94.10(14) \\ 87.96(14) \\ 74.39(13) \\ 86.81(15) \\ 98.22(14) \\ 86.40(14) \\ 123.0(4) \\ 117.6(4) \\ 123.4(4) \\ 122.6(3) \\ 115.2(5) \\ 118.4(3) \\ 135.1(4) \\ 117.1(3) \\ 117.1(3) \\ 110.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\ 100.100 \\$                                                |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)     | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$                                                         | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)                                                             | $110.1 \\110.1 \\108.4 \\94.10(14) \\87.96(14) \\74.39(13) \\86.81(15) \\98.22(14) \\86.40(14) \\123.0(4) \\117.6(4) \\123.4(4) \\122.6(3) \\115.2(5) \\118.4(3) \\135.1(4) \\117.1(3) \\126.9(3) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(1)<br>P(1)-O(1)-P(1)<br>P(1)-O(1)-P(1)<br>P(1)-O(1)-P(1)<br>P(2)-O(2)-P(1)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$                                              | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)                                          | $110.1 \\110.1 \\108.4 \\94.10(14) \\87.96(14) \\74.39(13) \\86.81(15) \\98.22(14) \\86.40(14) \\123.0(4) \\117.6(4) \\123.4(4) \\122.6(3) \\115.2(5) \\118.4(3) \\135.1(4) \\117.1(3) \\126.9(3) \\100.0(3) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)     | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$ $101.4(3)$                                   | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)<br>O(2)-P(1)-C(13A)                                         | $110.1 \\ 110.1 \\ 108.4 \\ 94.10(14) \\ 87.96(14) \\ 74.39(13) \\ 86.81(15) \\ 98.22(14) \\ 86.40(14) \\ 123.0(4) \\ 117.6(4) \\ 123.4(4) \\ 122.6(3) \\ 115.2(5) \\ 118.4(3) \\ 135.1(4) \\ 117.1(3) \\ 126.9(3) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 95.6(4) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 10$                                                                |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)     | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$ $101.4(3)$ $95.1(2)$                         | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)<br>O(2)-P(1)-C(13A)<br>C(12)-P(1)-C(12A)                    | $110.1 \\ 110.1 \\ 108.4 \\ 94.10(14) \\ 87.96(14) \\ 74.39(13) \\ 86.81(15) \\ 98.22(14) \\ 86.40(14) \\ 123.0(4) \\ 117.6(4) \\ 123.4(4) \\ 122.6(3) \\ 115.2(5) \\ 118.4(3) \\ 135.1(4) \\ 117.1(3) \\ 126.9(3) \\ 100.0(3) \\ 95.6(4) \\ 9.1(4) \\ 100.0(3) \\ 95.6(4) \\ 9.1(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 91.0(4) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\ 100.0(3) \\$                                                               |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-P(1)<br>C(3)- $N(3)-Ag(2)P(2)-N(3)-Ag(2)P(2)-N(3)-Ag(1)Ag(1)-O(3)-Ag(1)Ag(1)-O(3)-Ag(1)Ag(1)-O(3)-Ag(1)Ag(1)-O(3)-Ag(1)Ag(1)-O(1)-P(1)-C(13)O(1)-P(1)-C(13A)O(2)-P(1)-O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$ $101.4(3)$ $95.1(3)$                         | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)<br>O(2)-P(1)-C(13A)<br>C(13)-P(1)-C(13A)                    | $110.1 \\ 110.1 \\ 108.4 \\ 94.10(14) \\ 87.96(14) \\ 74.39(13) \\ 86.81(15) \\ 98.22(14) \\ 86.40(14) \\ 123.0(4) \\ 117.6(4) \\ 123.4(4) \\ 122.6(3) \\ 115.2(5) \\ 118.4(3) \\ 135.1(4) \\ 117.1(3) \\ 126.9(3) \\ 100.0(3) \\ 95.6(4) \\ 9.1(4) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\ 114.97(15) \\$                                                                                          |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-N(1)<br>C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(2)<br>C(9)-N(2)-Ag(1)#1<br>C(24)-N(3)-C(23)<br>C(23)-N(3)-Ag(2)#4<br>C(1)-O(1)-P(1)<br>C(19)-O(3)-Ag(1)<br>Ag(1)-O(3)-Ag(1)#2<br>C(27)-O(6)-P(2)<br>O(2)-P(1)-O(1)<br>O(1)-P(1)-C(13A)<br>O(2)-P(1)-Ag(1)<br>C(12)-D(1)-P(1)<br>C(12)-D(1)<br>D(1)-P(1)-C(13A)<br>O(2)-P(1)-Ag(1)<br>C(12)-D(1)<br>D(1)-P(1)-C(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-P(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1)-D(1)<br>D(1)-D(1 | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$ $101.4(3)$ $95.1(3)$ $114.10(15)$ $118.7(3)$ | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)<br>O(2)-P(1)-C(13A)<br>O(1)-P(1)-Ag(1)                      | $\begin{array}{c} 110.1\\ 110.1\\ 108.4\\ 94.10(14)\\ 87.96(14)\\ 74.39(13)\\ 86.81(15)\\ 98.22(14)\\ 86.40(14)\\ 123.0(4)\\ 117.6(4)\\ 123.4(4)\\ 122.6(3)\\ 115.2(5)\\ 118.4(3)\\ 135.1(4)\\ 117.1(3)\\ 126.9(3)\\ 100.0(3)\\ 95.6(4)\\ 9.1(4)\\ 114.87(15)\\ 127.6(2)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bond Angles (°)<br>O(5)-C(21)-C(22)<br>C(22)-C(21)-H(21A)<br>C(22)-C(21)-H(21B)<br>N(2)#1-Ag(1)-P(1)<br>P(1)-Ag(1)-O(3)<br>P(1)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-P(2)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-O(7)<br>P(2)-Ag(2)-P(1)<br>C(3)-N(1)-O(3)<br>C(3)-N(1)-Ag(1)<br>C(27)-O(6)-P(2)<br>O(2)-P(1)-O(1)<br>O(1)-P(1)-C(13A)<br>O(2)-P(1)-Ag(1)<br>C(13)-P(1)-Ag(1)<br>O(1)-P(1)-C(13)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)<br>O(1)-P(1)-Ag(1)     | 108.0(4) $110.1$ $110.1$ $132.48(11)$ $126.83(10)$ $122.49(10)$ $125.37(11)$ $133.28(10)$ $116.35(11)$ $118.0(4)$ $118.7(3)$ $117.1(5)$ $120.3(3)$ $118.3(3)$ $112.3(4)$ $105.61(13)$ $121.6(3)$ $105.9(2)$ $101.4(3)$ $95.1(3)$ $114.10(15)$ $118.6(3)$ | O(5)-C(21)-H(21A)<br>O(5)-C(21)-H(21B)<br>H(21A)-C(21)-H(21B)<br>N(2)#1-Ag(1)-O(3)<br>N(2)#1-Ag(1)-O(3)#2<br>O(3)-Ag(1)-O(3)#2<br>N(3)#3-Ag(2)-O(7)<br>N(3)#3-Ag(2)-N(1)<br>O(7)-Ag(2)-N(1)<br>C(4)-N(1)-Ag(2)<br>C(9)-N(2)-C(10)<br>C(10)-N(2)-Ag(1)#1<br>C(24)-N(3)-Ag(2)#4<br>C(29)-N(4)-C(30)<br>C(7)-O(2)-P(1)<br>C(19)-O(3)-Ag(1)#2<br>C(21)-O(5)-P(2)<br>C(39)-O(7)-Ag(2)<br>O(2)-P(1)-C(13)<br>O(2)-P(1)-C(13A)<br>C(13)-P(1)-Ag(1)<br>C(13)-P(1)-Ag(1) | $\begin{array}{c} 110.1\\ 110.1\\ 108.4\\ 94.10(14)\\ 87.96(14)\\ 74.39(13)\\ 86.81(15)\\ 98.22(14)\\ 86.40(14)\\ 123.0(4)\\ 117.6(4)\\ 123.4(4)\\ 122.6(3)\\ 115.2(5)\\ 118.4(3)\\ 135.1(4)\\ 117.1(3)\\ 126.9(3)\\ 100.0(3)\\ 95.6(4)\\ 9.1(4)\\ 114.87(15)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127.6(3)\\ 127$                                   |

Table B.6. Continued

| O(5)-P(2)-C(33)                                            | 99.1(2)               | O(6)-P(2)-Ag(2)                                            | 109.30(13)             |
|------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------|
| O(5)-P(2)-Ag(2)                                            | 116.58(14)            | C(33)-P(2)-Ag(2)                                           | 120.94(17)             |
| O(1)-C(1)-C(2)                                             | 109.6(5)              | O(1) - C(1) - H(1A)                                        | 109.7                  |
| C(2)-C(1)-H(1A)                                            | 109.7                 | O(1)-C(1)-H(1B)                                            | 109.7                  |
| C(2)-C(1)-H(1B)                                            | 109.7                 | H(1A)-C(1)-H(1B)                                           | 108.2                  |
| C(3)-C(2)-C(6)                                             | 117 5(5)              | C(3)-C(2)-C(1)                                             | 120.4(5)               |
| C(5)-C(2)-C(1)                                             | 1222(5)               | N(1) - C(3) - C(2)                                         | 120.4(5)<br>124.1(5)   |
| N(1) C(2) H(2)                                             | 117.0                 | $\Gamma(1) - C(3) - C(2)$<br>$\Gamma(2) - C(2) - U(2)$     | 124.1(3)               |
| $N(1) - C(3) - \Pi(3)$                                     | 117.9                 | N(1) C(4) H(4)                                             | 117.9                  |
| N(1)-C(4)-C(5)                                             | 122.0(3)              | $N(1)-C(4)-\Pi(4)$                                         | 119.0                  |
| C(5)-C(4)-H(4)                                             | 119.0                 | C(6)-C(5)-C(4)                                             | 119.3(5)               |
| C(6)-C(5)-H(5)                                             | 120.4                 | C(4)-C(5)-H(5)                                             | 120.4                  |
| C(5)-C(6)-C(2)                                             | 119.2(5)              | C(5)-C(6)-H(6)                                             | 120.4                  |
| C(2)-C(6)-H(6)                                             | 120.4                 | O(2)-C(7)-C(8)                                             | 108.2(4)               |
| O(2)-C(7)-H(7A)                                            | 110.1                 | C(8)-C(7)-H(7A)                                            | 110.1                  |
| O(2)-C(7)-H(7B)                                            | 110.1                 | C(8)-C(7)-H(7B)                                            | 110.1                  |
| H(7A)-C(7)-H(7B)                                           | 108.4                 | C(12)-C(8)-C(9)                                            | 116.6(5)               |
| C(12)-C(8)-C(7)                                            | 122.6(5)              | C(9)-C(8)-C(7)                                             | 120.7(5)               |
| N(2)-C(9)-C(8)                                             | 124.9(5)              | N(2)-C(9)-H(9A)                                            | 117.6                  |
| C(8)-C(9)-H(9A)                                            | 117.6                 | N(2)-C(10)-C(11)                                           | 121.7(5)               |
| N(2)-C(10)-H(10)                                           | 119.2                 | C(11)-C(10)-H(10)                                          | 119.2                  |
| C(10)-C(11)-C(12)                                          | 119.4(5)              | C(10)-C(11)-H(11)                                          | 120.3                  |
| C(12)-C(11)-H(11)                                          | 120.3                 | C(8)-C(12)-C(11)                                           | 119.9(5)               |
| C(8)-C(12)-H(12)                                           | 120.1                 | C(11)-C(12)-H(12)                                          | 120.1                  |
| O(6)-C(27)-C(28)                                           | 108.4(4)              | O(6)-C(27)-H(27A)                                          | 110.0                  |
| C(28)-C(27)-H(27A)                                         | 110.0                 | O(6)-C(27)-H(27B)                                          | 110.0                  |
| C(28)-C(27)-H(27B)                                         | 110.0                 | H(27A)-C(27)-H(27B)                                        | 108.4                  |
| C(29)-C(28)-C(32)                                          | 118.0(5)              | C(29)-C(28)-C(27)                                          | 121.3(5)               |
| C(32)-C(28)-C(27)                                          | 120.7(5)              | N(4)-C(29)-C(28)                                           | 125.0(5)               |
| N(4)-C(29)-H(29)                                           | 117.5                 | C(28)-C(29)-H(29)                                          | 117.5                  |
| N(4)-C(30)-C(31)                                           | 124.8(6)              | N(4)-C(30)-H(30)                                           | 117.6                  |
| C(31)-C(30)-H(30)                                          | 117.6                 | C(30)-C(31)-C(32)                                          | 118.1(6)               |
| C(30)-C(31)-H(31)                                          | 121.0                 | C(32)-C(31)-H(31)                                          | 121.0                  |
| C(31)-C(32)-C(28)                                          | 118 9(5)              | C(31)-C(32)-H(32)                                          | 120.5                  |
| C(28)-C(32)-H(32)                                          | 120.5                 | C(38)-C(33)-C(34)                                          | 119 5(5)               |
| C(38)-C(33)-P(2)                                           | 118 0(4)              | C(34)-C(33)-P(2)                                           | 122 5(4)               |
| C(35)-C(34)-C(33)                                          | 119 2(5)              | C(35)-C(34)-H(34)                                          | 120.4                  |
| C(33)-C(34)-H(34)                                          | 120.4                 | C(36)-C(35)-C(34)                                          | 120.7(5)               |
| C(36)-C(35)-H(35)                                          | 1197                  | C(34)-C(35)-H(35)                                          | 1197                   |
| C(35)- $C(36)$ - $C(37)$                                   | 120 3(5)              | C(35)-C(36)-H(36)                                          | 119.8                  |
| C(37)- $C(36)$ - $H(36)$                                   | 119.8                 | C(38)- $C(37)$ - $C(36)$                                   | 119.0                  |
| C(38)-C(37)-H(37)                                          | 120.2                 | C(36)-C(37)-H(37)                                          | 120.2                  |
| C(37)-C(38)-C(33)                                          | 120.2                 | C(37)- $C(38)$ - $H(38)$                                   | 110.8                  |
| C(33)-C(38)-H(38)                                          | 110.8                 | O(4) - C(19) - O(3)                                        | 129 3(6)               |
| O(4) - C(19) - C(20)                                       | 117.0(5)              | O(3) - C(19) - C(20)                                       | 113 6(5)               |
| E(6) C(40) E(4)                                            | 105 1(5)              | E(6) C(40) E(5)                                            | 108.4(6)               |
| F(0)-C(40)-F(4)<br>F(4) - C(40) - F(5)                     | 105.1(5)<br>105.5(5)  | F(0)-C(40)-F(3)<br>F(6)-C(40)-C(30)                        | 108.4(0)<br>114.7(5)   |
| F(4) - C(40) - F(3)<br>F(4) - C(40) - C(30)                | 105.5(5)<br>111.0(5)  | F(0)-C(40)-C(39)<br>F(5)-C(40)-C(39)                       | 114.7(5)<br>110.6(5)   |
| F(4)-C(40)-C(39)<br>F(2), C(20), E(1)                      | 111.9(3)<br>118.5(12) | F(3)-C(40)-C(39)<br>F(2)-C(20)-E(3)                        | 10.0(3)<br>107 4(6)    |
| F(2) = C(20) = F(1)<br>F(1) = C(20) = F(2)                 | 950(12)               | F(2)-C(20)-F(3)<br>F(2)-C(20)-C(10)                        | 112 9(6)               |
| F(1) - C(20) - F(3)<br>F(1) - C(20) - C(10)                | 95.0(10)<br>112 0(11) | F(2) - C(20) - C(19)<br>F(2) - C(20) - C(10)               | 107.9(0)               |
| $\Gamma(1) - C(20) - C(19)$<br>$\Gamma(20) - C(20) - C(7)$ | 113.0(11)<br>121.0(5) | $\Gamma(3) - C(20) - C(19)$<br>$\Gamma(3) - C(20) - C(40)$ | 107.7(3)<br>116 $A(5)$ |
| O(0) - O(39) - O(7)<br>O(7) O(30) O(40)                    | 131.0(3)<br>112.6(5)  | C(18) C(13) C(140)                                         | 120.0                  |
| C(19) C(12) D(1)                                           | 112.0(3)<br>121.1(4)  | C(10) - C(13) - C(14)<br>C(14) - C(12) - D(1)              | 120.0<br>118.0(4)      |
| C(10)-C(13)-P(1)                                           | 121.1(4)              | C(14)-C(13)-P(1)                                           | 110.9(4)               |
| U(13) - U(10) - U(1/)                                      | 120.0                 | U(13)-U(10)-H(10)                                          | 120.0                  |

Table B.6. Continued

| O(17) $O(10)$ $H(10)$                            | 120.0    | Q(10) Q(17) Q(10)         | 100.0        |
|--------------------------------------------------|----------|---------------------------|--------------|
| C(17)-C(18)-H(18)                                | 120.0    | C(16)-C(17)-C(18)         | 120.0        |
| C(16)-C(17)-H(17)                                | 120.0    | C(18)-C(17)-H(17)         | 120.0        |
| C(17)-C(16)-C(15)                                | 120.0    | C(17)-C(16)-H(16)         | 120.0        |
| C(15)-C(16)-H(16)                                | 120.0    | C(14)-C(15)-C(16)         | 120.0        |
| C(14)-C(15)-H(15)                                | 120.0    | C(16)-C(15)-H(15)         | 120.0        |
| C(15)-C(14)-C(13)                                | 120.0    | C(15)-C(14)-H(14)         | 120.0        |
| C(13)-C(14)-H(14)                                | 120.0    | C(41)-O(9)-C(43)          | 111.5        |
| O(9) - C(41) - C(42)                             | 111.5    | O(9) - C(41) - H(41A)     | 100.3        |
| C(42) C(41) H(41A)                               | 100.2    | O(9) - C(41) - H(41R)     | 109.5        |
| C(42) - C(41) - H(41A)<br>C(42) - C(41) - H(41A) | 109.3    | U(41A) C(41) U(41D)       | 109.5        |
| $C(42)$ - $C(41)$ - $\Pi(41D)$                   | 109.3    | $\Pi(41A)-C(41)-\Pi(41D)$ | 100.0        |
| C(41)-C(42)-H(42A)                               | 109.5    | C(41)- $C(42)$ - $H(42B)$ | 109.5        |
| H(42A)-C(42)-H(42B)                              | 109.5    | C(41)-C(42)-H(42C)        | 109.5        |
| H(42A)-C(42)-H(42C)                              | 109.5    | H(42B)-C(42)-H(42C)       | 109.5        |
| O(9)-C(43)-C(44)                                 | 106.2    | O(9)-C(43)-H(43A)         | 110.5        |
| C(44)-C(43)-H(43A)                               | 110.5    | O(9)-C(43)-H(43B)         | 110.5        |
| C(44)-C(43)-H(43B)                               | 110.5    | H(43A)-C(43)-H(43B)       | 108.7        |
| C(43)-C(44)-H(44A)                               | 109.5    | C(43)-C(44)-H(44B)        | 109.5        |
| H(44A)-C(44)-H(44B)                              | 109.5    | C(43)-C(44)-H(44C)        | 109.5        |
| H(44A)-C(44)-H(44C)                              | 109.5    | H(44B)-C(44)-H(44C)       | 109.5        |
| C(18A)-C(13A)-C(14A)                             | 120.0    | C(18A)-C(13A)-P(1)        | 116.2(5)     |
| C(14A)-C(13A)-P(1)                               | 123.8(5) | C(17A)-C(18A)-            | 120.0        |
|                                                  | 125.0(5) | C(13A)                    | 120.0        |
| C(17A) - C(18A) - H(18A)                         | 120.0    | C(13A) - C(18A) -         | 120.0        |
| C(17A)-C(18A)-II(18A)                            | 120:0    | U(19A)                    | 120.0        |
| C(18A) C(17A) C(16A)                             | 120.0    | C(18A) C(17A)             | 120.0        |
| C(10A) - C(17A) - C(10A)                         | 120.0    | C(10A)-C(1/A)-            | 120.0        |
|                                                  | 100.0    | H(1/A)                    | 100.0        |
| C(16A)-C(17A)-H(17A)                             | 120.0    | C(17A)-C(16A)-            | 120.0        |
|                                                  |          | C(15A)                    |              |
| C(17A)-C(16A)-H(16A)                             | 120.0    | C(15A)-C(16A)-            | 120.0        |
|                                                  |          | H(16A)                    |              |
| C(14A)-C(15A)-C(16A)                             | 120.0    | C(14A)-C(15A)-            | 120.0        |
|                                                  |          | H(15A)                    |              |
| C(16A)-C(15A)-H(15A)                             | 120.0    | C(15A)-C(14A)-            | 120.0        |
|                                                  |          | C(13A)                    |              |
| C(15A)-C(14A)-H(14A)                             | 120.0    | C(13A)-C(14A)-            | 120.0        |
|                                                  |          | H(14A)                    |              |
| C(43A)-O(9A)-C(41A)                              | 134(3)   | C(43A)-O(9A)-             | 8(3)         |
|                                                  |          | O(9A)#5                   |              |
| C(41A) - O(9A) - O(9A) = 0                       | 138(5)   | C(42A)-C(41A)-O(9A)       | 131(4)       |
| C(42A)-C(41A)-H(41C)                             | 104 5    | O(9A) - C(41A) - H(41C)   | 1045         |
| C(42A) - C(41A) - H(41C)                         | 104.5    | O(9A) - C(41A) - H(41C)   | 104.5        |
| U(41C) C(41A) H(41D)                             | 104.3    | C(41A) C(42A)             | 104.5        |
| $\Pi(41C)$ - $C(41A)$ - $\Pi(41D)$               | 103.7    | U(41A)-U(42A)-U(42A)      | 109.3        |
| C(A1A) C(A2A) H(A2E)                             | 100.5    | H(42D)                    | 100 5        |
| C(41A)-C(42A)-H(42E)                             | 109.5    | H(42D)-C(42A)-            | 109.5        |
|                                                  | 100 -    | H(42E)                    | 100 <b>-</b> |
| C(41A)-C(42A)-H(42F)                             | 109.5    | H(42D)-C(42A)-            | 109.5        |
|                                                  |          | H(42F)                    |              |
| H(42E)-C(42A)-H(42F)                             | 109.5    | O(9A)-C(43A)-C(44A)       | 117(2)       |
| O(9A)-C(43A)-H(43C)                              | 108.1    | C(44A)-C(43A)-            | 108.1        |
|                                                  |          | H(43C)                    |              |
| O(9A)-C(43A)-H(43D)                              | 108.1    | C(44A)-C(43A)-            | 108.1        |
|                                                  |          | H(43D)                    |              |
| H(43C)-C(43A)-H(43D)                             | 107.3    | C(43A)-C(44A)-            | 109.5        |
|                                                  |          | H(44D)                    |              |
|                                                  |          | \[                        |              |

| Table B.6. Continued |          |                          |          |
|----------------------|----------|--------------------------|----------|
| C(43A)-C(44A)-H(44E) | 109.5    | H(44D)-C(44A)-<br>H(44E) | 109.5    |
| C(43A)-C(44A)-H(44F) | 109.5    | H(44D)-C(44A)-<br>H(44F) | 109.5    |
| H(44E)-C(44A)-H(44F) | 109.5    | N(3)-C(23)-C(22)         | 123.9(5) |
| N(3)-C(23)-H(23)     | 118.1    | C(22)-C(23)-H(23)        | 118.1    |
| C(26)-C(22)-C(23)    | 117.4(5) | C(26)-C(22)-C(21)        | 122.5(5) |
| C(23)-C(22)-C(21)    | 120.1(5) | C(25)-C(26)-C(22)        | 119.1(5) |
| C(25)-C(26)-H(26)    | 120.4    | C(22)-C(26)-H(26)        | 120.4    |
| C(26)-C(25)-C(24)    | 119.4(5) | C(26)-C(25)-H(25)        | 120.3    |
| C(24)-C(25)-H(25)    | 120.3    | N(3)-C(24)-C(25)         | 123.2(5) |
| N(3)-C(24)-H(24)     | 118.4    | C(25)-C(24)-H(24)        | 118.4    |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z + 1 #2 - x + 2, -y + 1, -z + 1 #3 - x + 1/2, -y + 3/2, z - 1/2 #4 - x + 1/2, -y + 3/2, z + 1/2 #5 - x + 2, -y + 1, -z

| Empirical formula                    |          | C24 H32 Ag2 B2 F8 N8                        |                                  |  |
|--------------------------------------|----------|---------------------------------------------|----------------------------------|--|
| Formula weight                       |          | 821.94                                      |                                  |  |
| Temperature                          |          | 110(2) K                                    |                                  |  |
| Wavelength                           |          | 0.71073 A                                   |                                  |  |
| Crystal system, space group          |          | Triclinic, P1                               |                                  |  |
| Unit cell dimensions                 |          | $a = 7.8817(5) A \alpha = 106.2$            | 08(2) deg.                       |  |
|                                      |          | $b = 14.0058(8) A \beta = 93.2$             | 11(2) deg.                       |  |
|                                      |          | $c = 7.2894(4) A \gamma = 100.7$            | 10(3) deg.                       |  |
| Volume                               |          | 754.25(8) A^3                               |                                  |  |
| Z, Calculated density                |          | 1, 1.810 Mg/m^3                             |                                  |  |
| Absorption coefficient               |          | 1.379 mm^-1                                 |                                  |  |
| F(000)                               |          | 408                                         |                                  |  |
| Crystal size                         |          | 0.18 x 0.15 x 0.10 mm                       |                                  |  |
| $\theta$ range for data collection   |          | 1.55 to 28.34 deg.                          |                                  |  |
| Limiting indices                     |          | -10<=h<=10, -18<=k<=17,                     | -10<=h<=10, -18<=k<=17, -9<=l<=9 |  |
| Reflections collected / unique       |          | 15414 / 6263 [R(int) = 0.0267]              |                                  |  |
| Completeness to $\theta = 28.34$     |          | 98.9 %                                      |                                  |  |
| Absorption correction                |          | Semi-empirical from equivalents             |                                  |  |
| Max. and min. transmission           |          | 0.867 and 0.765                             |                                  |  |
| Refinement method                    |          | Full-matrix least-squares on F <sup>2</sup> |                                  |  |
| Data / restraints / parameters       |          | 6263 / 7 / 391                              |                                  |  |
| Goodness-of-fit on F^2               |          | 1.028                                       |                                  |  |
| Final R indices $[I \ge 2\sigma(I)]$ |          | R1 = 0.0174, $wR2 = 0.0465$                 |                                  |  |
| R indices (all data)                 |          | R1 = 0.0184, $wR2 = 0.0472$                 |                                  |  |
| Absolute structure parameter         |          | 0.00                                        |                                  |  |
| Largest diff. peak and hole          |          | 0.323 and -0.416 e.A^-3                     |                                  |  |
| Bond Lengths (Å)                     |          |                                             |                                  |  |
| Ag(1)-N(1)                           | 2.262(6) | Ag(1)-N(3)                                  | 2.319(5)                         |  |
| Ag(1)-N(4)                           | 2.336(6) | Ag(1)-N(2)                                  | 2.371(5)                         |  |
| Ag(2)-N(6)                           | 2.293(6) | Ag(2)-N(7)                                  | 2.310(5)                         |  |
| Ag(2)-N(8)                           | 2.322(5) | Ag(2)-N(5)                                  | 2.368(4)                         |  |

1.363(6)

F(1)-B(1)

F(2)-B(1)

1.404(7)

| Table B.7. | Experimental an | d statistical | crystal | data for 4.1 |
|------------|-----------------|---------------|---------|--------------|
|------------|-----------------|---------------|---------|--------------|

Table B.7. Continued

| F(3)-B(1)                            | 1.367(6)              | F(4)-B(1)                               | 1.411(6)              |
|--------------------------------------|-----------------------|-----------------------------------------|-----------------------|
| F(5)-B(2)                            | 1.383(8)              | F(6)-B(2)                               | 1.436(6)              |
| F(7)-B(2)                            | 1.361(7)              | F(8)-B(2)                               | 1.423(6)              |
| N(1)-C(2)                            | 1.394(7)              | N(1)-C(6)                               | 1.382(8)              |
| N(2)-C(1)                            | 1.406(8)              | N(2)-H(2A)                              | 0.9200                |
| N(2)-H(2B)                           | 0.9200                | N(3)-C(8)                               | 1 314(8)              |
| N(3)-C(12)                           | 1 395(7)              | N(4)-C(7)                               | 1.571(0)<br>1.478(7)  |
| N(4)-H(4A)                           | 0.9200                | N(4)-H(4B)                              | 0.9200                |
| N(5)-C(18)                           | 1.302(7)              | N(5)-C(14)                              | 1 356(7)              |
| N(6)-C(13)                           | 1.502(7)<br>1.463(8)  | N(6)-H(6A)                              | 0.9200                |
| N(6)-H(6B)                           | 0.9200                | N(7)-C(20)                              | 1.280(8)              |
| N(7)-C(24)                           | 1 327(8)              | N(8)-C(19)                              | 1.512(8)              |
| N(8)-H(8A)                           | 0.9200                | N(8)-H(8B)                              | 0.9200                |
| C(1)-C(2)                            | 1.570(8)              | C(1)-H(1A)                              | 0.9200                |
| C(1)-C(2)                            | 0.9900                | C(1)-H(1X)<br>C(2)-C(3)                 | 1 311(9)              |
| C(3)-C(4)                            | 1.445(8)              | C(2)-C(3)                               | 0.9500                |
| C(4)-C(5)                            | 1 337(0)              | C(4)-H(4)                               | 0.9500                |
| C(5) - C(6)                          | 1.357(9)<br>1.358(10) | C(5) - H(5)                             | 0.9500                |
| C(6)-H(6)                            | 0.9500                | $C(3) - \Gamma(3)$                      | 1 /00(8)              |
| C(7) - H(7A)                         | 0.9500                | C(7)-C(8)                               | 0.0000                |
| C(8) C(0)                            | 1.367(8)              | C(0) C(10)                              | 1 367(8)              |
| C(0) - U(0)                          | 0.9500                | C(10)-C(11)                             | 1.307(8)<br>1.417(9)  |
| $C(9)$ - $\Pi(9)$<br>$C(10) \Pi(10)$ | 0.9500                | C(10)-C(11)<br>C(11) $C(12)$            | 1.417(9)<br>1.257(8)  |
| C(10)- $H(10)C(11)$ $H(11)$          | 0.9300                | C(11)-C(12)<br>C(12) H(12)              | 1.557(6)              |
| $C(11)-\Pi(11)$<br>C(12) C(14)       | 0.9300<br>1 542(7)    | $C(12) - \Pi(12)$<br>$C(12) + \Pi(12A)$ | 0.9300                |
| C(13)-C(14)<br>$C(12) \cup U(12D)$   | 1.342(7)              | $C(13)-\Pi(15A)$<br>C(14) C(15)         | 0.9900                |
| $C(15) - \Pi(15B)$                   | 0.9900                | C(14)-C(15)                             | 1.410(7)              |
| C(15)-C(16)                          | 1.410(8)<br>1.225(10) | C(15)-H(15)                             | 0.9500                |
| C(10)-C(17)                          | 1.333(10)             | C(10)-H(10)                             | 0.9500                |
| C(17)-C(18)                          | 1.409(6)              | C(1/)-H(1/)                             | 0.9500                |
| C(18)-H(18)<br>C(10) H(10A)          | 0.9500                | C(19)-C(20)                             | 1.4/8(8)              |
| C(19)- $H(19A)$                      | 0.9900                | C(19)-H(19B)                            | 0.9900                |
| C(20)- $C(21)$                       | 1.458(8)              | C(21)-C(22)                             | 1.318(8)              |
| C(21)-H(21)<br>C(22)-H(22)           | 0.9500                | C(22)-C(23)                             | 1.441(8)<br>1.282(10) |
| C(22)-H(22)                          | 0.9500                | C(23)-C(24)                             | 1.383(10)             |
| C(23)-H(23)                          | 0.9500                | C(24)-H(24)                             | 0.9500                |
| Bond Lengths (Å)                     |                       |                                         |                       |
| N(1)-Ag(1)-N(3)                      | 125 65(18)            | N(1)-Ag(1)-N(4)                         | 131 90(18)            |
| N(3)-Ag(1)-N(4)                      | 72.52(18)             | N(1)-Ag(1)-N(2)                         | 74.61(18)             |
| N(3)-Ag(1)-N(2)                      | 133.94(17)            | N(4)-Ag(1)-N(2)                         | 128.29(17)            |
| N(6)-Ag(2)-N(7)                      | 133.41(17)            | N(6)-Ag(2)-N(8)                         | 126.48(18)            |
| N(7)-Ag(2)-N(8)                      | 74.44(18)             | N(6)-Ag(2)-N(5)                         | 73.32(17)             |
| N(7)-Ag(2)-N(5)                      | 125.96(18)            | N(8)-Ag(2)-N(5)                         | 133.34(17)            |
| C(2)-N(1)-C(6)                       | 113 7(6)              | C(2)-N(1)-Ag(1)                         | 118 5(4)              |
| C(6)-N(1)-Ag(1)                      | 1273(4)               | C(1)-N(2)-Ag(1)                         | 113 6(3)              |
| C(1)-N(2)-H(2A)                      | 108.8                 | Ag(1)-N(2)-H(2A)                        | 108.8                 |
| C(1)-N(2)-H(2B)                      | 108.8                 | Ag(1)-N(2)-H(2B)                        | 108.8                 |
| H(2A)-N(2)-H(2B)                     | 107.7                 | C(8)-N(3)-C(12)                         | 115.3(5)              |
| C(8)-N(3)-Ag(1)                      | 116.3(4)              | C(12)-N(3)-Ag(1)                        | 128.4(4)              |
| C(7)-N(4)-Ag(1)                      | 106 6(3)              | C(7)-N(4)-H(4A)                         | 110.4                 |
| Ag(1)-N(4)-H(4A)                     | 110.4                 | C(7)-N(4)-H(4B)                         | 110.4                 |
| Ag(1)-N(4)-H(4B)                     | 110.4                 | H(4A)-N(4)-H(4B)                        | 108.6                 |
| C(18)-N(5)-C(14)                     | 121.0(5)              | C(18)-N(5)-Ag(2)                        | 126.3(4)              |

Table B.7. Continued

| C(14)-N(5)-Ag(2)                                 | 112.7(4)               | C(13)-N(6)-Ag(2)                                      | 112.5(3)             |
|--------------------------------------------------|------------------------|-------------------------------------------------------|----------------------|
| C(13)-N(6)-H(6A)                                 | 109.1                  | Ag(2)-N(6)-H(6A)                                      | 109.1                |
| C(13)-N(6)-H(6B)                                 | 109.1                  | Ag(2)-N(6)-H(6B)                                      | 109.1                |
| H(6A)-N(6)-H(6B)                                 | 107.8                  | C(20)-N(7)-C(24)                                      | 121.9(5)             |
| C(20)-N(7)-Ag(2)                                 | 116.5(4)               | C(24)-N(7)-Ag(2)                                      | 121.2(4)             |
| C(19)-N(8)-Ag(2)                                 | 111.3(4)               | C(19)-N(8)-H(8A)                                      | 109.4                |
| Ag(2)-N(8)-H(8A)                                 | 109.4                  | C(19)-N(8)-H(8B)                                      | 109.4                |
| Ag(2)-N(8)-H(8B)                                 | 109.4                  | H(8A)-N(8)-H(8B)                                      | 108.0                |
| N(2)-C(1)-C(2)                                   | 116 5(5)               | N(2)-C(1)-H(1A)                                       | 108.2                |
| C(2)-C(1)-H(1A)                                  | 108.2                  | N(2)-C(1)-H(1B)                                       | 108.2                |
| C(2)- $C(1)$ -H(1B)                              | 108.2                  | H(1A)-C(1)-H(1B)                                      | 107.3                |
| C(3)-C(2)-N(1)                                   | 124 3(5)               | C(3)-C(2)-C(1)                                        | 120 4(5)             |
| N(1)-C(2)-C(1)                                   | 115 3(6)               | C(2)-C(3)-C(4)                                        | 119 1(6)             |
| C(2)-C(3)-H(3)                                   | 120.4                  | C(4)-C(3)-H(3)                                        | 120.4                |
| C(5)-C(4)-C(3)                                   | 118 7(6)               | C(5)-C(4)-H(4)                                        | 120.7                |
| C(3)-C(4)-H(4)                                   | 120.7                  | C(4)-C(5)-C(6)                                        | 119 3(6)             |
| C(4)-C(5)-H(5)                                   | 120.4                  | C(6)-C(5)-H(5)                                        | 120.4                |
| C(5)-C(6)-N(1)                                   | 124 9(6)               | C(5)- $C(6)$ - $H(6)$                                 | 117.6                |
| N(1)-C(6)-H(6)                                   | 117.6                  | N(4)-C(7)-C(8)                                        | 117.0<br>114 1(5)    |
| N(4)-C(7)-H(7A)                                  | 108 7                  | C(8)-C(7)-H(7A)                                       | 108 7                |
| N(4)-C(7)-H(7B)                                  | 108.7                  | C(8)-C(7)-H(7B)                                       | 108.7                |
| H(7A)-C(7)-H(7B)                                 | 107.6                  | N(3)-C(8)-C(9)                                        | 124 9(5)             |
| N(3)-C(8)-C(7)                                   | 116 7(5)               | C(9)-C(8)-C(7)                                        | 124.9(5)<br>118 4(5) |
| C(8)-C(9)-C(10)                                  | 110.7(5)               | C(9)-C(0)-C(7)                                        | 120.1                |
| C(10) - C(0) - H(0)                              | 120.1                  | C(9) - C(10) - C(11)                                  | 120.1<br>118 0(5)    |
| C(0) C(10) H(10)                                 | 121.0                  | C(11) C(10) H(10)                                     | 110.0(3)             |
| C(12) C(11) C(10)                                | 121.0<br>118.0(5)      | C(12) C(11) H(11)                                     | 121.0                |
| C(12)- $C(11)$ - $C(10)$                         | 121.0                  | $C(12)$ - $C(11)$ - $\Pi(11)$<br>C(11) $C(12)$ $N(2)$ | 121.0<br>123.8(6)    |
| $C(10)-C(11)-\Pi(11)$<br>$C(11)-C(12)-\Pi(12)$   | 1121.0                 | N(3) C(12) H(12)                                      | 125.8(0)             |
| N(6) C(12) - C(14)                               | 110.1                  | N(5) - C(12) - H(12)<br>N(6) C(12) + H(12A)           | 100.5                |
| N(0)-C(13)-C(14)<br>C(14) C(13) H(13A)           | 100.5                  | N(6) C(13) H(13R)                                     | 109.5                |
| C(14) - C(13) - H(13A)<br>C(14) - C(12) - H(12B) | 109.5                  | H(12A) C(12) H(12D)                                   | 109.3                |
| N(5) C(14) C(15)                                 | 109.5                  | N(5) C(14) C(12)                                      | 100.0                |
| $\Gamma(3)-C(14)-C(13)$                          | 119.0(3)<br>120 $4(5)$ | N(3)-C(14)-C(13)                                      | 120.0(3)<br>117.8(6) |
| C(15) - C(14) - C(15)<br>C(16) - C(15) + U(15)   | 120.4( <i>3</i> )      | C(10)- $C(15)$ - $C(14)$                              | 117.0(0)             |
| $C(10)-C(15)-\Pi(15)$                            | 121.1<br>120.2(5)      | $C(14)$ - $C(15)$ - $\Pi(15)$                         | 121.1                |
| C(17)- $C(16)$ - $C(15)$                         | 120.5(5)               | $C(17)$ - $C(10)$ - $\Pi(10)$                         | 119.0                |
| C(15)-C(10)-H(10)<br>C(16)-C(17)-H(17)           | 119.6                  | C(10)-C(17)-C(18)                                     | 110.9(3)             |
| $V(10)-V(17)-\Pi(17)$                            | 120.0<br>122.2(5)      | $V(18) - C(17) - \Pi(17)$<br>$V(5) - C(18) - \Pi(18)$ | 120.0                |
| N(5)-C(18)-C(17)                                 | 122.3(5)               | N(3)-C(18)-H(18)<br>C(20) C(10) N(8)                  | 118.9                |
| $C(17)-C(18)-\Pi(18)$                            | 110.9                  | V(20) - C(19) - IV(8)                                 | 114.0(3)             |
| $C(20) - C(19) - \Pi(19A)$                       | 108.8                  | $N(8) - C(19) - \Pi(19A)$                             | 108.8                |
| U(10A) C(19) - H(19B)                            | 108.8                  | N(8)-C(19)-H(19B)<br>N(7)-C(20)-C(21)                 | 108.8                |
| H(19A)-C(19)-H(19B)                              | 10/./                  | N(7)-C(20)-C(21)                                      | 120.1(5)             |
| N(7)-C(20)-C(19)                                 | 121.3(5)               | C(21)- $C(20)$ - $C(19)$                              | 118.5(5)             |
| C(22)- $C(21)$ - $C(20)$                         | 119.7(5)               | C(22)- $C(21)$ - $H(21)$                              | 120.2                |
| C(20)-C(21)-H(21)                                | 120.2                  | C(21)- $C(22)$ - $C(23)$                              | 118.9(6)             |
| C(21)-C(22)-H(22)                                | 120.5                  | C(23)-C(22)-H(22)                                     | 120.5                |
| C(24)-C(23)-C(22)                                | 11/.4(5)               | C(24)-C(23)-H(23)                                     | 121.3                |
| C(22)-C(23)-H(23)                                | 121.3                  | N(7)-C(24)-C(23)                                      | 122.0(6)             |
| N(7)-U(24)-H(24)<br>E(2) D(1) E(1)               | 119.0                  | U(23)-U(24)-H(24)                                     | 119.0                |
| F(3)-B(1)-F(1)<br>F(1) P(1) F(2)                 | 112./(5)<br>100.4(4)   | F(3)-B(1)-F(2)<br>F(2) D(1) F(4)                      | 109.5(4)             |
| F(1)-B(1)-F(2)                                   | 109.4(4)               | F(3)-B(1)-F(4)                                        | 108.7(5)             |
| F(1)-B(1)-F(4)                                   | 110.0(5)               | F(2)-B(1)-F(4)                                        | 106.3(5)             |
| F(7)-B(2)-F(5)                                   | 113.3(5)               | F(7)-B(2)-F(8)                                        | 109.3(5)             |

| Table B.7. Continued |          |                  |          |  |
|----------------------|----------|------------------|----------|--|
| F(5)-B(2)-F(8)       | 109.9(5) | F(7)-B(2)-F(6)   | 110.4(5) |  |
| F(5)-B(2)-F(6)       | 108.8(5) | F(8)-B(2)-F(6)   | 104.7(5) |  |
| Hydrogen bonds (Å)   |          |                  |          |  |
| N(2)-H(2A)F(2)#1     | 3.123(7) | N(2)-H(2B)F(3)#2 | 3.068(6) |  |
| N(4)-H(4A)F(1)#1     | 3.049(6) | N(4)-H(4B)F(4)#3 | 3.101(6) |  |
| N(6)-H(6A)F(7)#4     | 3.146(6) | N(6)-H(6B)F(8)#5 | 3.031(6) |  |
| N(8)-H(8A)F(6)#6     | 3.070(7) | N(8)-H(8B)F(5)#5 | 3.090(7) |  |

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z+1 #2 x-1,y,z #3 x,y,z+1 #4 x,y,z-1 #5 x+1,y,z-1 #6 x+1,y,z

Table B.8. Experimental and statistical crystal data for 4.2

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength                                                                                                                                                                                                                                                                                                                                                                                 |                                                           | C56 H64 Ag4 F12 N16 O8<br>1748.71<br>110(2) K<br>0.71073 A                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Unit cell dimensions                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           | a = 7.4205(6) A α = 69.342(<br>b = 13.2849(12) A β = 89.25<br>c = 18.0494(16) A α = 80.62                                                                                                                                                                                                                                                                                                                                                                                                                   | 4) deg.<br>55(4) deg.<br>1(4) deg.                       |  |
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>2(000)<br>Crystal size<br>range for data collection<br>Limiting indices<br>Reflections collected / unique<br>Completeness to $\theta = 26.43$<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2<br>Final R indices [I>2 $\sigma$ (I)]<br>R indices (all data)<br>Absolute structure parameter |                                                           | c = 18.0494(16) A $\gamma$ = 80.621(4) deg.<br>1640.8(2) A <sup>3</sup><br>1, 1.770 Mg/m <sup>3</sup><br>1.275 mm <sup>-1</sup><br>872<br>0.21 x 0.15 x 0.09 mm<br>2.40 to 26.43 deg.<br>-8<=h<=9, -16<=k<=16, -22<=1<=22<br>54807 / 12763 [R(int) = 0.0401]<br>99.4 %<br>multi-scan (SADABS)<br>0.8972 and 0.7792<br>Full-matrix least-squares on F <sup>2</sup><br>12763 / 3 / 865<br>1.016<br>R1 = 0.0274, wR2 = 0.0635<br>R1 = 0.0364, wR2 = 0.0675<br>-0.035(14)<br>1.225 and -0.560 e.A <sup>-3</sup> |                                                          |  |
| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |  |
| Ag(1)-N(2)<br>Ag(1)-N(3)<br>Ag(1)-Ag(2)<br>Ag(2)-N(6)<br>Ag(2)-N(7)                                                                                                                                                                                                                                                                                                                                                                              | 2.309(3)<br>2.402(3)<br>3.0077(4)<br>2.273(3)<br>2.558(3) | Ag(1)-N(4)<br>Ag(1)-N(1)<br>Ag(2)-N(8)<br>Ag(2)-N(5)<br>Ag(3)-N(10)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.326(3)<br>2.418(3)<br>2.265(3)<br>2.499(3)<br>2.298(3) |  |
| Ag(3)-N(12)<br>Ag(3)-N(9)<br>Ag(4)-N(16)                                                                                                                                                                                                                                                                                                                                                                                                         | 2.339(3)<br>2.425(3)<br>2.277(3)                          | Ag(3)-N(11)<br>Ag(3)-Ag(4)<br>Ag(4)-N(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.390(3)<br>3.0305(4)<br>2.292(3)                        |  |

Table B.8. Continued

| Ag(4)-N(13)                               | 2.459(3)             | Ag(4)-N(15)                                 | 2.516(3)             |
|-------------------------------------------|----------------------|---------------------------------------------|----------------------|
| F(1)-C(50)                                | 1.327(5)             | F(2)-C(50)                                  | 1.339(5)             |
| F(3)-C(50)                                | 1.330(4)             | F(4)-C(52)                                  | 1.332(4)             |
| F(5)-C(52)                                | 1.337(4)             | F(6)-C(52)                                  | 1.351(5)             |
| F(7)-C(54)                                | 1.332(5)             | F(8)-C(54)                                  | 1.338(4)             |
| F(9)-C(54)                                | 1 337(5)             | F(10)-C(55)                                 | 1.324(5)             |
| F(11)-C(55)                               | 1 328(4)             | F(12)-C(55)                                 | 1.324(5)<br>1.344(5) |
| O(1)- $C(49)$                             | 1.236(4)             | O(2)-C(49)                                  | 1.344(4)             |
| O(3)- $C(51)$                             | 1.238(4)             | O(4)- $C(51)$                               | 1.211(1)<br>1.233(4) |
| O(5) - C(53)                              | 1.210(1)             | O(6)-C(53)                                  | 1.233(1)<br>1 242(4) |
| O(7)- $C(56)$                             | 1.229(4)<br>1 242(4) | O(8)- $C(56)$                               | 1.242(4)<br>1 232(4) |
| N(1)-C(2)                                 | 1.242(4)<br>1 329(4) | N(1)-C(6)                                   | 1.252(4)<br>1.360(4) |
| N(2)-C(1)                                 | 1.329(4)<br>1 477(4) | N(2) - H(2A)                                | 0.9200               |
| N(2) - H(2B)                              | 0.9200               | $N(2) - \Gamma(2R)$                         | 1.338(4)             |
| $N(2)-\Pi(2D)$<br>N(3)-C(12)              | 1.352(4)             | N(4) - C(7)                                 | 1.558(4)             |
| N(3)-C(12)<br>N(4)-H(4A)                  | 1.332(4)             | N(4)-C(7)<br>N(4)-H(4B)                     | 1.430(4)             |
| $N(4) - \Pi(4A)$<br>N(5) C(1A)            | 1.326(A)             | N(5) C(18)                                  | 1.353(5)             |
| N(5)-C(14)<br>N(6)-C(12)                  | 1.330(4)<br>1.472(4) | N(5) - C(18)<br>N(6) - U(6A)                | 1.333(3)             |
| N(0)-C(13)<br>N(6) H(6P)                  | 1.4/2(4)             | N(0) - H(0A)<br>N(7) - C(20)                | 0.9200<br>1 245(4)   |
| N(0) - H(0B)<br>N(7) - C(24)              | 0.9200<br>1.247(4)   | N(7)-C(20)<br>N(8) C(10)                    | 1.343(4)<br>1.469(5) |
| N(7) - C(24)<br>N(9) + U(9A)              | 1.347(4)             | N(0) - C(19)<br>N(0) - U(0D)                | 1.400(3)             |
| $N(\delta) - H(\delta A)$<br>N(0) - C(26) | 0.9200<br>1.240(4)   | $N(\delta) - \Pi(\delta B)$<br>N(0) - C(20) | 0.9200<br>1.245(5)   |
| N(9)-C(20)<br>N(10)-C(25)                 | 1.340(4)<br>1.474(5) | N(9)-C(50)                                  | 1.343(3)             |
| N(10)-C(25)                               | 1.4/4(5)             | N(10)-H(10A)                                | 0.9200               |
| N(10)-H(10B)                              | 0.9200               | N(11)-C(32)                                 | 1.330(4)             |
| N(11)-C(36)                               | 1.360(4)             | N(12)-C(31)                                 | 1.453(4)             |
| N(12)-H(12A)                              | 0.9200               | N(12)-H(12B)                                | 0.9200               |
| N(13)-C(42)                               | 1.337(5)             | N(13)-C(38)                                 | 1.342(5)             |
| N(14)-C(37)                               | 1.466(5)             | N(14)-H(14A)                                | 0.9200               |
| N(14)-H(14B)                              | 0.9200               | N(15)-C(44)                                 | 1.351(4)             |
| N(15)-C(48)                               | 1.352(4)             | N(16)-C(43)                                 | 1.480(5)             |
| N(16)-H(16A)                              | 0.9200               | N(16)-H(16B)                                | 0.9200               |
| C(1)-C(2)                                 | 1.512(5)             | C(1)-H(1A)                                  | 0.9900               |
| C(1)-H(1B)                                | 0.9900               | C(2)-C(3)                                   | 1.387(5)             |
| C(3)-C(4)                                 | 1.389(5)             | C(3)-H(3)                                   | 0.9500               |
| C(4)-C(5)                                 | 1.380(5)             | C(4)-H(4)                                   | 0.9500               |
| C(5)-C(6)                                 | 1.381(5)             | C(5)-H(5)                                   | 0.9500               |
| C(6)-H(6)                                 | 0.9500               | C(7)-C(8)                                   | 1.513(5)             |
| C(7)-H(7A)                                | 0.9900               | C(7)-H(7B)                                  | 0.9900               |
| C(8)-C(9)                                 | 1.378(5)             | C(9)-C(10)                                  | 1.378(5)             |
| C(9)-H(9)                                 | 0.9500               | C(10)-C(11)                                 | 1.385(5)             |
| C(10)-H(10)                               | 0.9500               | C(11)-C(12)                                 | 1.379(5)             |
| C(11)-H(11)                               | 0.9500               | C(12)-H(12)                                 | 0.9500               |
| C(13)-C(14)                               | 1.520(5)             | C(13)-H(13A)                                | 0.9900               |
| C(13)-H(13B)                              | 0.9900               | C(14)-C(15)                                 | 1.399(5)             |
| C(15)-C(16)                               | 1.374(5)             | C(15)-H(15)                                 | 0.9500               |
| C(16)-C(17)                               | 1.395(6)             | C(16)-H(16)                                 | 0.9500               |
| C(17)-C(18)                               | 1.381(5)             | C(17)-H(17)                                 | 0.9500               |
| C(18)-H(18)                               | 0.9500               | C(19)-C(20)                                 | 1.506(5)             |
| C(19)-H(19A)                              | 0.9900               | C(19)-H(19B)                                | 0.9900               |
| C(20)-C(21)                               | 1.397(5)             | C(21)-C(22)                                 | 1.362(5)             |
| C(21)-H(21)                               | 0.9500               | C(22)-C(23)                                 | 1.385(5)             |
| C(22)-H(22)                               | 0.9500               | C(23)-C(24)                                 | 1.398(5)             |
| C(23)-H(23)                               | 0.9500               | C(24)-H(24)                                 | 0.9500               |
| C(25)-C(26)                               | 1.517(5)             | C(25)-H(25A)                                | 0.9900               |

Table B.8. Continued

| C(25)-H(25B)      | 0.9900     | C(26)-C(27)              | 1.393(5)   |
|-------------------|------------|--------------------------|------------|
| C(27)-C(28)       | 1.374(5)   | C(27)-H(27)              | 0.9500     |
| C(28) - C(29)     | 1.398(5)   | C(28)-H(28)              | 0.9500     |
| C(29)-C(30)       | 1.386(5)   | C(29)-H(29)              | 0.9500     |
| C(30)-H(30)       | 0.9500     | C(31)-C(32)              | 1.505(5)   |
| C(31)-H(31A)      | 0.9900     | C(31)-H(31B)             | 0.9900     |
| C(32)-C(33)       | 1.405(5)   | C(33)-C(34)              | 1.365(5)   |
| C(33)-H(33)       | 0.9500     | C(34)-C(35)              | 1.396(5)   |
| C(34)-H(34)       | 0.9500     | C(35)-C(36)              | 1.367(5)   |
| C(35)-H(35)       | 0.9500     | C(36)-H(36)              | 0.9500     |
| C(37)-C(38)       | 1.525(5)   | C(37)-H(37A)             | 0.9900     |
| C(37)-H(37B)      | 0.9900     | C(38)-C(39)              | 1.390(5)   |
| C(39)-C(40)       | 1.373(6)   | C(39)-H(39)              | 0.9500     |
| C(40)-C(41)       | 1.391(6)   | C(40)-H(40)              | 0.9500     |
| C(41)- $C(42)$    | 1 375(5)   | C(41)-H(41)              | 0.9500     |
| C(42)-H(42)       | 0.9500     | C(43)-C(44)              | 1.512(5)   |
| C(43)-H(43A)      | 0.9900     | C(43)-H(43B)             | 0.9900     |
| C(44)-C(45)       | 1 389(5)   | C(45)-C(46)              | 1 375(5)   |
| C(45)-H(45)       | 0.9500     | C(46)-C(47)              | 1.391(5)   |
| C(46)-H(46)       | 0.9500     | C(47)-C(48)              | 1 380(5)   |
| C(47)-H(47)       | 0.9500     | C(48)-H(48)              | 0.9500     |
| C(49)-C(50)       | 1 551(5)   | C(51)-C(52)              | 1.551(5)   |
| C(53)-C(54)       | 1 534(5)   | C(55)-C(56)              | 1.561(5)   |
|                   | 1.00 (0)   |                          | 1.001(0)   |
| Bond Angles (°)   |            |                          |            |
| N(2)-Ag(1)-N(4)   | 146.29(11) | N(2)-Ag(1)-N(3)          | 119.44(10) |
| N(4)-Ag(1)-N(3)   | 71.46(10)  | N(2)-Ag(1)-N(1)          | 72.65(10)  |
| N(4)-Ag(1)-N(1)   | 113.87(10) | N(3)-Ag(1)-N(1)          | 151.68(10) |
| N(2)-Ag(1)-Ag(2)  | 105.64(8)  | N(4)-Ag(1)-Ag(2)         | 107.98(7)  |
| N(3)-Ag(1)-Ag(2)  | 76.79(7)   | N(1)-Ag(1)-Ag(2)         | 75.17(7)   |
| N(8)-Ag(2)-N(6)   | 174.59(10) | N(8)-Ag(2)-N(5)          | 112.83(10) |
| N(6)-Ag(2)-N(5)   | 72.53(10)  | N(8)-Ag(2)-N(7)          | 71.73(10)  |
| N(6)-Ag(2)-N(7)   | 106.08(10) | N(5)-Ag(2)-N(7)          | 124.95(10) |
| N(8)-Ag(2)-Ag(1)  | 91.69(8)   | N(6)-Ag(2)-Ag(1)         | 84.96(8)   |
| N(5)-Ag(2)-Ag(1)  | 116.92(7)  | N(7)-Ag(2)-Ag(1)         | 117.73(7)  |
| N(10)-Ag(3)-N(12) | 147.33(11) | N(10)- $Ag(3)$ - $N(11)$ | 118.94(10) |
| N(12)-Ag(3)-N(11) | 71.16(10)  | N(10)-Ag(3)-N(9)         | 73.45(10)  |
| N(12)-Ag(3)-N(9)  | 113.49(10) | N(11)-Ag(3)-N(9)         | 151.32(10) |
| N(10)-Ag(3)-Ag(4) | 108.08(8)  | N(12)-Ag(3)-Ag(4)        | 104.59(7)  |
| N(11)-Ag(3)-Ag(4) | 73.78(7)   | N(9)-Ag(3)-Ag(4)         | 77.76(7)   |
| N(16)-Ag(4)-N(14) | 176.10(11) | N(16)-Ag(4)-N(13)        | 110.77(10) |
| N(14)-Ag(4)-N(13) | 72.68(10)  | N(16)-Ag(4)-N(15)        | 72.74(10)  |
| N(14)-Ag(4)-N(15) | 107.02(10) | N(13)-Ag(4)-N(15)        | 124.29(10) |
| N(16)-Ag(4)-Ag(3) | 90.13(8)   | N(14)-Ag(4)-Ag(3)        | 86.76(8)   |
| N(13)-Ag(4)-Ag(3) | 113.12(7)  | N(15)-Ag(4)-Ag(3)        | 122.55(7)  |
| C(2)-N(1)-C(6)    | 118.2(3)   | C(2)-N(1)-Ag(1)          | 114.0(2)   |
| C(6)-N(1)-Ag(1)   | 126.6(2)   | C(1)-N(2)-Ag(1)          | 110.8(2)   |
| C(1)-N(2)-H(2A)   | 109.5      | Ag(1)-N(2)-H(2A)         | 109.5      |
| C(1)-N(2)-H(2B)   | 109.5      | Ag(1)-N(2)-H(2B)         | 109.5      |
| H(2A)-N(2)-H(2B)  | 108.1      | C(8)-N(3)-C(12)          | 118.3(3)   |
| C(8)-N(3)-Ag(1)   | 115.7(2)   | C(12)-N(3)-Ag(1)         | 126.0(2)   |
| C(7)-N(4)-Ag(1)   | 113.8(2)   | C(7)-N(4)-H(4A)          | 108.8      |
| Ag(1)-N(4)-H(4A)  | 108.8      | C(7)-N(4)-H(4B)          | 108.8      |
|                   |            |                          |            |

Table B.8. Continued

| Ag(1)-N(4)-H(4B)                                                                     | 108.8                | H(4A)-N(4)-H(4B)                                   | 107.7                  |
|--------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|------------------------|
| C(14)-N(5)-C(18)                                                                     | 118.4(3)             | C(14)-N(5)-Ag(2)                                   | 111.8(2)               |
| C(18)-N(5)-Ag(2)                                                                     | 127.3(2)             | C(13)-N(6)-Ag(2)                                   | 113.0(2)               |
| C(13)-N(6)-H(6A)                                                                     | 109.0                | Ag(2)-N(6)-H(6A)                                   | 109.0                  |
| C(13)-N(6)-H(6B)                                                                     | 109.0                | Ag(2)-N(6)-H(6B)                                   | 109.0                  |
| H(6A)-N(6)-H(6B)                                                                     | 107.8                | C(20)-N(7)-C(24)                                   | 118.6(3)               |
| C(20)-N(7)-Ag(2)                                                                     | 109.8(2)             | C(24)-N(7)-Ag(2)                                   | 129.2(2)               |
| C(19)-N(8)-Ag(2)                                                                     | 111.6(2)             | C(19)-N(8)-H(8A)                                   | 109.3                  |
| Ag(2)-N(8)-H(8A)                                                                     | 109.3                | C(19)-N(8)-H(8B)                                   | 109.3                  |
| Ag(2)-N(8)-H(8B)                                                                     | 109.3                | H(8A)-N(8)-H(8B)                                   | 108.0                  |
| C(26)-N(9)-C(30)                                                                     | 118 7(3)             | C(26)-N(9)-Ag(3)                                   | 112 3(2)               |
| C(30)-N(9)-Ag(3)                                                                     | 126 7(2)             | C(25)-N(10)-Ag(3)                                  | 110.0(2)               |
| C(25)-N(10)-H(10A)                                                                   | 109.7                | Ag(3)-N(10)-H(10A)                                 | 109.7                  |
| C(25)-N(10)-H(10B)                                                                   | 109.7                | Ag(3)-N(10)-H(10B)                                 | 109.7                  |
| H(10A)-N(10)-H(10B)                                                                  | 108.2                | C(32)-N(11)-C(36)                                  | 118 5(3)               |
| C(32)-N(11)-Ag(3)                                                                    | 115 7(2)             | C(36)-N(11)-Ag(3)                                  | 1255(2)                |
| C(31)-N(12)-Ag(3)                                                                    | 113.7(2)<br>114 3(2) | C(31)-N(12)-H(12A)                                 | 108 7                  |
| $A_{\sigma}(3) - N(12) - H(12A)$                                                     | 108.7                | C(31)-N(12)-H(12R)                                 | 108.7                  |
| Ag(3)-N(12)-H(12R)                                                                   | 108.7                | H(12A)-N(12)-H(12B)                                | 107.6                  |
| C(42)-N(13)-C(38)                                                                    | 117 8(3)             | $C(42)-N(12)-\Delta \sigma(4)$                     | 107.0<br>127.0(3)      |
| $C(38)-N(13)-\Delta g(4)$                                                            | 117.0(3)<br>113 7(2) | C(42) - N(13) - Ag(4)<br>C(37) - N(14) - Ag(4)     | 127.0(3)<br>112 $4(2)$ |
| C(37) - N(14) - H(14A)                                                               | 100 1                | $\Delta_{\sigma}(A) - N(1A) - H(1AA)$              | 112.4(2)               |
| C(37)-N(14)-H(14R)                                                                   | 109.1                | $A_{\sigma}(A) - N(1A) - H(1AB)$                   | 109.1                  |
| U(14A) N(14) H(14D)                                                                  | 107.0                | C(44) N(15) C(48)                                  | 107.1<br>117.5(2)      |
| $\Gamma(14A) - \Gamma(14) - \Gamma(14D)$<br>$\Gamma(14A) - \Gamma(14) - \Gamma(14D)$ | 107.9<br>110.6(2)    | C(44) - N(15) - C(48)<br>C(48) N(15) - Ag(4)       | 117.3(3)<br>120.2(2)   |
| C(44) - N(15) - Ag(4)<br>C(42) N(16) Ag(4)                                           | 110.0(2)<br>110.2(2) | C(43) - N(15) - Ag(4)<br>C(43) - N(16) - H(16A)    | 129.2(2)               |
| C(43)-N(10)-Ag(4)<br>A $g(4)$ N(16) H(16A)                                           | 110.2(2)             | C(43)-N(10)-H(10A)<br>C(42) N(16) H(16B)           | 109.0                  |
| Ag(4) - N(10) - H(10A)<br>Ag(4) N(16) H(16B)                                         | 109.0                | U(16A) N(16) H(16D)                                | 109.0                  |
| Ag(4) - N(10) - H(10D)<br>N(2) - C(1) - C(2)                                         | 109.0<br>112.5(2)    | N(2) C(1) U(1A)                                    | 100.1                  |
| N(2) - C(1) - C(2)                                                                   | 112.3(5)             | $N(2) - C(1) - \Pi(1A)$<br>$N(2) - C(1) - \Pi(1B)$ | 109.1                  |
| C(2) - C(1) - H(1A)                                                                  | 109.1                | N(2)-C(1)-H(1B)<br>H(1A)-C(1)-H(1D)                | 109.1                  |
| N(1) C(2) C(2)                                                                       | 109.1<br>101.9(2)    | N(1) C(2) C(1)                                     | 107.0<br>117.5(2)      |
| N(1)-C(2)-C(3)                                                                       | 121.0(3)<br>120.7(2) | N(1)-C(2)-C(1)                                     | 117.3(3)<br>120.0(2)   |
| C(3)-C(2)-C(1)                                                                       | 120.7(3)             | C(2)-C(3)-C(4)                                     | 120.0(3)               |
| $C(2)-C(3)-\Pi(3)$                                                                   | 120.0                | $C(4)-C(5)-\Pi(5)$                                 | 120.0                  |
| C(3) - C(4) - C(3)                                                                   | 118.0(3)             | C(3)-C(4)-H(4)                                     | 120.7                  |
| C(3)-C(4)-H(4)                                                                       | 120.7                | C(4) - C(5) - C(6)                                 | 118.4(3)               |
| V(4) - C(5) - H(5)                                                                   | 120.8                | V(0)-V(3)-H(3)                                     | 120.8                  |
| N(1)-C(0)-C(3)                                                                       | 123.1(3)             | N(1)-C(0)-H(0)                                     | 118.4                  |
| C(5)-C(6)-H(6)                                                                       | 118.4                | N(4)-C(7)-C(8)                                     | 113.8(3)               |
| N(4)-C(7)-H(7A)                                                                      | 108.8                | C(8) - C(7) - H(7A)                                | 108.8                  |
| N(4)-C(7)-H(7B)                                                                      | 108.8                | C(8)-C(7)-H(7B)                                    | 108.8                  |
| H(/A)-C(/)-H(/B)                                                                     | 10/./                | N(3)-C(8)-C(9)                                     | 121.4(3)               |
| N(3)-C(8)-C(7)                                                                       | 118.2(3)             | C(9)-C(8)-C(7)                                     | 120.4(3)               |
| C(10)-C(9)-C(8)                                                                      | 120.6(3)             | C(10)-C(9)-H(9)                                    | 119.7                  |
| C(8)-C(9)-H(9)                                                                       | 119.7                | C(9)-C(10)-C(11)                                   | 118.1(3)               |
| C(9)- $C(10)$ - $H(10)$                                                              | 121.0                | C(11)-C(10)-H(10)                                  | 121.0                  |
| C(12)-C(11)-C(10)                                                                    | 118.7(3)             | C(12)-C(11)-H(11)                                  | 120.6                  |
| C(10)-C(11)-H(11)                                                                    | 120.6                | N(3)-C(12)-C(11)                                   | 122.8(3)               |
| N(3)-C(12)-H(12)                                                                     | 118.6                | C(11)-C(12)-H(12)                                  | 118.6                  |
| N(6)-C(13)-C(14)                                                                     | 112.9(3)             | N(6)-C(13)-H(13A)                                  | 109.0                  |
| C(14)-C(13)-H(13A)                                                                   | 109.0                | N(6)-C(13)-H(13B)                                  | 109.0                  |
| C(14)-C(13)-H(13B)                                                                   | 109.0                | H(13A)-C(13)-H(13B)                                | 107.8                  |
| N(5)-C(14)-C(15)                                                                     | 122.1(3)             | N(5)-C(14)-C(13)                                   | 116.8(3)               |
| C(15)-C(14)-C(13)                                                                    | 121.1(3)             | C(16)-C(15)-C(14)                                  | 119.2(4)               |

Table B.8. Continued

| C(16)-C(15)-H(15)                                               | 120.4                  | C(14)-C(15)-H(15)                                      | 120.4                |
|-----------------------------------------------------------------|------------------------|--------------------------------------------------------|----------------------|
| C(15)-C(16)-C(17)                                               | 119.0(4)               | C(15)-C(16)-H(16)                                      | 120.5                |
| C(17)-C(16)-H(16)                                               | 120.5                  | C(18)-C(17)-C(16)                                      | 118.6(4)             |
| C(18)-C(17)-H(17)                                               | 120.7                  | C(16)-C(17)-H(17)                                      | 120.7                |
| N(5)-C(18)-C(17)                                                | 122.6(4)               | N(5)-C(18)-H(18)                                       | 118.7                |
| C(17)-C(18)-H(18)                                               | 118.7                  | N(8) - C(19) - C(20)                                   | 112.6(3)             |
| N(8)-C(19)-H(19A)                                               | 109.1                  | C(20)-C(19)-H(19A)                                     | 109.1                |
| N(8)-C(19)-H(19B)                                               | 109.1                  | C(20)-C(19)-H(19B)                                     | 109.1                |
| H(19A)-C(19)-H(19B)                                             | 107.8                  | N(7)-C(20)-C(21)                                       | 121 4(3)             |
| N(7)-C(20)-C(19)                                                | 116.6(3)               | C(21)-C(20)-C(19)                                      | 122.0(3)             |
| C(22)-C(21)-C(20)                                               | 119 4(4)               | C(22)-C(21)-H(21)                                      | 120.3                |
| C(20)-C(21)-H(21)                                               | 120.3                  | C(21)-C(22)-C(23)                                      | 120.2(4)             |
| C(21)-C(22)-H(22)                                               | 119.9                  | C(23)-C(22)-H(22)                                      | 119.9                |
| C(22)-C(23)-C(24)                                               | 117 6(4)               | C(22)-C(23)-H(23)                                      | 121.2                |
| C(24)-C(23)-H(23)                                               | 121.2                  | N(7)-C(24)-C(23)                                       | 122.7(3)             |
| N(7)-C(24)-H(24)                                                | 118.7                  | C(23)-C(24)-H(24)                                      | 118 7                |
| N(10)-C(25)-C(26)                                               | 112.0(3)               | N(10)-C(25)-H(25A)                                     | 109.2                |
| C(26)-C(25)-H(25A)                                              | 109.2                  | N(10)-C(25)-H(25B)                                     | 109.2                |
| C(26)-C(25)-H(25B)                                              | 109.2                  | H(25A)-C(25)-H(25B)                                    | 107.9                |
| N(9)-C(26)-C(27)                                                | 121 3(3)               | N(9)-C(26)-C(25)                                       | 117 3(3)             |
| C(27)-C(26)-C(25)                                               | 121.5(3)<br>121 4(3)   | C(28)-C(27)-C(26)                                      | 120.0(3)             |
| C(28)-C(27)-H(27)                                               | 120.0                  | C(26) - C(27) - H(27)                                  | 120.0(5)             |
| C(27)- $C(28)$ - $C(29)$                                        | 119 1(4)               | C(27)- $C(28)$ - $H(28)$                               | 120.0                |
| C(29)-C(28)-H(28)                                               | 120.4                  | C(20) - C(20) - C(28)                                  | 120.4<br>117.6(4)    |
| C(20)-C(20)-H(20)                                               | 120.4                  | C(28)-C(29)-H(29)                                      | 121.2                |
| N(9)-C(30)-C(29)                                                | 121.2<br>123.4(3)      | N(9)-C(30)-H(30)                                       | 118.3                |
| C(29)-C(30)-H(30)                                               | 118 3                  | N(12)-C(31)-C(32)                                      | 113.7(3)             |
| N(12)-C(31)-H(31A)                                              | 108.8                  | C(32)-C(31)-H(31A)                                     | 108.8                |
| N(12) - C(31) - H(31R)                                          | 108.8                  | C(32)-C(31)-H(31R)                                     | 108.8                |
| H(31A)-C(31)-H(31B)                                             | 107.7                  | N(11)-C(32)-C(33)                                      | 121.0(3)             |
| N(11)-C(32)-C(31)                                               | 119 0(3)               | C(33)-C(32)-C(31)                                      | 121.0(3)<br>120.0(3) |
| C(34)-C(33)-C(32)                                               | 120 2(3)               | C(34)- $C(33)$ - $H(33)$                               | 119.9                |
| C(32)-C(33)-H(33)                                               | 110.0                  | C(33)-C(34)-C(35)                                      | 119.9<br>118.4(3)    |
| C(32)-C(33)-H(34)                                               | 120.8                  | C(35)-C(34)-H(34)                                      | 120.8                |
| C(36)-C(35)-C(34)                                               | 120.0<br>119.0(4)      | C(36)-C(35)-H(35)                                      | 120.5                |
| C(34)-C(35)-H(35)                                               | 120.5                  | N(11) - C(36) - C(35)                                  | 120.3<br>122.7(3)    |
| N(11)-C(36)-H(36)                                               | 118.6                  | C(35)-C(36)-H(36)                                      | 118.6                |
| N(14)-C(37)-C(38)                                               | 113 9(3)               | N(14)-C(37)-H(374)                                     | 108.8                |
| C(38)-C(37)-H(37A)                                              | 108.8                  | N(14)-C(37)-H(37R)                                     | 108.8                |
| C(38)-C(37)-H(37R)                                              | 108.8                  | H(37A)-C(37)-H(37B)                                    | 107.7                |
| N(13) - C(38) - C(39)                                           | 100.0<br>122 6(4)      | N(13) - C(38) - C(37)                                  | 107.7<br>116.0(3)    |
| C(39)-C(38)-C(37)                                               | 122.0(4)<br>121 $A(3)$ | C(40) - C(30) - C(38)                                  | 110.0(3)<br>118.6(4) |
| C(39)-C(38)-C(37)<br>C(40)-C(39)-H(39)                          | 121.4(3)               | C(40)-C(39)-C(38)<br>C(38)-C(30)-H(39)                 | 120.7                |
| C(30) C(40) C(41)                                               | 120.7<br>110 5(A)      | C(30) - C(30) - H(30)                                  | 120.7                |
| C(41) C(40) H(40)                                               | 119.3(4)               | $C(39)$ - $C(40)$ - $\Pi(40)$                          | 120.3<br>118 1(4)    |
| C(41)-C(40)-H(40)<br>C(42) C(41) H(41)                          | 120.5                  | C(42)- $C(41)$ - $C(40)C(40)$ $C(41)$ $H(41)$          | 121.0                |
| N(12) C(42) - C(41)                                             | 121.0<br>123 5(4)      | N(13) C(42) H(42)                                      | 121.0                |
| $\Gamma(13)-C(42)-C(41)$<br>$\Gamma(41)$ $\Gamma(42)$ $\Pi(42)$ | 123.3(4)               | $N(15)-C(42)-\Pi(42)$<br>N(16) C(42) C(44)             | 110.3<br>112.9(2)    |
| $V(+1) - V(+2) - \Pi(+2)$<br>$V(16) C(43) - \Pi(42A)$           | 10.5                   | $\Gamma(10) - C(43) - C(44)$<br>C(AA) - C(A3) - U(A3A) | 112.0(3)             |
| N(16) - C(A3) - H(A3P)                                          | 109.0                  | C(AA) - C(A3) - U(A3R)                                 | 109.0                |
| H(12) - C(43) - H(43D)<br>H(12A) - C(12) - H(12D)               | 107.0                  | $V(44) - V(43) - \Pi(43D)$<br>N(15) - C(44) - C(45)    | 107.0                |
| $M(45A) - C(45) - \Pi(45D)$<br>M(15) - C(AA) - C(A2)            | 107.0                  | $\Gamma(15) - C(44) - C(45)$<br>C(45) - C(44) - C(43)  | 122.2(3)<br>121.0(3) |
| C(46) = C(45) = C(43)                                           | 110.7(3)               | C(43) = C(44) = C(43)<br>C(46) = C(45) = U(45)         | 121.9(3)<br>120.2    |
| C(44) = C(45) = C(44)                                           | 119.7(3)               | $C(40) - C(43) - \Pi(43)$<br>C(45) - C(46) - C(47)     | 120.2<br>118 7(2)    |
| ~(++)-~(+))-П(+))                                               | 120.2                  | ~(4),-~(40)-~(4/)                                      | 110.7(3)             |

Table B.8. Continued

| C(45)-C(46)-H(46)  | 120.6    | C(47)-C(46)-H(46)  | 120.6    |
|--------------------|----------|--------------------|----------|
| C(48)-C(47)-C(46)  | 118.7(3) | C(48)-C(47)-H(47)  | 120.6    |
| C(46)-C(47)-H(47)  | 120.6    | N(15)-C(48)-C(47)  | 123.2(3) |
| N(15)-C(48)-H(48)  | 118.4    | C(47)-C(48)-H(48)  | 118.4    |
| O(1)-C(49)-O(2)    | 130.8(3) | O(1)-C(49)-C(50)   | 114.0(3) |
| O(2)-C(49)-C(50)   | 115.2(3) | F(1)-C(50)-F(3)    | 106.3(3) |
| F(1)-C(50)-F(2)    | 106.4(3) | F(3)-C(50)-F(2)    | 107.0(3) |
| F(1)-C(50)-C(49)   | 110.5(3) | F(3)-C(50)-C(49)   | 114.7(3) |
| F(2)-C(50)-C(49)   | 111.4(3) | O(4)-C(51)-O(3)    | 131.6(4) |
| O(4)-C(51)-C(52)   | 115.1(3) | O(3)-C(51)-C(52)   | 113.2(3) |
| F(4)-C(52)-F(5)    | 106.4(3) | F(4)-C(52)-F(6)    | 106.1(3) |
| F(5)-C(52)-F(6)    | 105.4(3) | F(4)-C(52)-C(51)   | 114.6(3) |
| F(5)-C(52)-C(51)   | 113.4(3) | F(6)-C(52)-C(51)   | 110.2(3) |
| O(5)-C(53)-O(6)    | 130.8(3) | O(5)-C(53)-C(54)   | 113.6(3) |
| O(6)-C(53)-C(54)   | 115.6(3) | F(7)-C(54)-F(9)    | 105.1(4) |
| F(7)-C(54)-F(8)    | 105.5(3) | F(9)-C(54)-F(8)    | 106.4(4) |
| F(7)-C(54)-C(53)   | 111.5(3) | F(9)-C(54)-C(53)   | 112.4(3) |
| F(8)-C(54)-C(53)   | 115.1(3) | F(10)-C(55)-F(11)  | 107.2(3) |
| F(10)-C(55)-F(12)  | 105.7(3) | F(11)-C(55)-F(12)  | 105.9(3) |
| F(10)-C(55)-C(56)  | 113.6(3) | F(11)-C(55)-C(56)  | 113.8(3) |
| F(12)-C(55)-C(56)  | 110.0(3) | O(8)-C(56)-O(7)    | 131.4(3) |
| O(8)-C(56)-C(55)   | 114.4(3) | O(7)-C(56)-C(55)   | 114.1(3) |
| Hydrogen Bonds (Å) |          |                    |          |
| N(2)-H(2A)O(8)#1   | 2.993(4) | N(2)-H(2B)O(5)#2   | 2.945(4) |
| N(4)-H(4A)N(7)#3   | 3.380(4) | N(4)-H(4B)O(2)     | 2.925(4) |
| N(6)-H(6A)O(4)#4   | 2.948(4) | N(6)-H(6B)O(2)     | 3.087(4) |
| N(8)-H(8A)O(8)#5   | 2.965(4) | N(8)-H(8B)O(5)#2   | 3.060(4) |
| N(10)-H(10A)O(1)   | 2.905(4) | N(10)-H(10B)O(3)   | 2.988(4) |
| N(12)-H(12A)O(6)   | 2.949(4) | N(12)-             | 3.144(4) |
|                    |          | H(12B)N(13)#3      |          |
| N(14)-H(14A)O(6)   | 3.076(4) | N(14)-H(14B)O(7)#6 | 2.974(4) |
| N(16)-H(16A)O(1)   | 3.049(4) | N(16)-H(16B)O(3)#4 | 2.960(4) |
|                    |          |                    |          |

Symmetry transformations used to generate equivalent atoms: #1 x,y,z-1 #2 x,y+1,z-1 #3 x-1,y,z #4 x+1,y,z #5 x+1,y,z-1 #6 x+1,y-1,z

## Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient F(000)

 $\begin{array}{l} F(000) \\ Crystal size \\ \theta \ range \ for \ data \ collection \\ Limiting \ indices \\ Reflections \ collected \ / \ unique \\ Completeness \ to \ \theta = 28.30 \\ Absorption \ correction \\ Refinement \ method \\ Data \ / \ restraints \ / \ parameters \\ Goodness-of-fit \ on \ F^2 \\ Final \ R \ indices \ [I>2\sigma(I)] \\ R \ indices \ (all \ data) \\ Largest \ diff. \ peak \ and \ hole \end{array}$ 

Bond Lengths (Å)

| Ag(1)-N(3)  | 2.2114(12) | Ag(1)-N(2) | 2.2769(13) |
|-------------|------------|------------|------------|
| Ag(1)-N(1)  | 2.3959(11) | Ag(1)-O(1) | 2.5907(10) |
| Ag(1)-Ag(2) | 2.9137(3)  | Ag(2)-N(4) | 2.1992(13) |
| Ag(2)-N(6)  | 2.2364(13) | Ag(2)-N(5) | 2.4032(12) |
| S(1)-O(3)   | 1.4364(12) | S(1)-O(1)  | 1.4376(10) |
| S(1)-O(2)   | 1.4451(11) | S(1)-C(19) | 1.8188(16) |
| S(2)-O(6)   | 1.4350(11) | S(2)-O(4)  | 1.4424(11) |
| S(2)-O(5)   | 1.4434(12) | S(2)-C(20) | 1.8221(15) |
| F(1)-C(19)  | 1.3330(18) | F(2)-C(19) | 1.3326(19) |
| F(3)-C(19)  | 1.325(2)   | F(4)-C(20) | 1.3278(17) |
| F(5)-C(20)  | 1.3283(17) | F(6)-C(20) | 1.3252(18) |
| N(1)-C(2)   | 1.3342(18) | N(1)-C(6)  | 1.3429(18) |
| N(2)-C(1)   | 1.4717(18) | N(2)-H(2A) | 0.931(15)  |
| N(2)-H(2B)  | 0.846(17)  | N(3)-C(12) | 1.3422(18) |
| N(3)-C(8)   | 1.3481(18) | N(4)-C(7)  | 1.4905(18) |
| N(4)-H(4A)  | 0.844(16)  | N(4)-H(4B) | 0.889(16)  |
| N(5)-C(14)  | 1.3358(18) | N(5)-C(18) | 1.3409(19) |
| N(6)-C(13)  | 1.4729(19) | N(6)-H(6A) | 0.826(17)  |
| N(6)-H(6B)  | 0.920(16)  | C(1)-C(2)  | 1.5112(19) |
| C(1)-H(1A)  | 0.9900     | C(1)-H(1B) | 0.9900     |
| C(2)-C(3)   | 1.390(2)   | C(3)-C(4)  | 1.377(2)   |
| C(3)-H(3)   | 0.9500     | C(4)-C(5)  | 1.382(2)   |
| C(4)-H(4)   | 0.9500     | C(5)-C(6)  | 1.375(2)   |
| C(5)-H(5)   | 0.9500     | C(6)-H(6)  | 0.9500     |
| C(7)-C(8)   | 1.496(2)   | C(7)-H(7A) | 0.9900     |
| C(7)-H(7B)  | 0.9900     | C(8)-C(9)  | 1.384(2)   |
| C(9)-C(10)  | 1.378(2)   | C(9)-H(10) | 0.9500     |

C40 H48 Ag4 F12 N12 O12 S4 1676.62 110(2) K 0.71073 A Monoclinic, P2(1)/na = 8.1167(9) A  $\alpha = 90 deg.$ b = 22.930(4) A  $\beta = 97.430(5) deg.$  $c = 15.625(2) A \gamma = 90 deg.$ 2883.7(7) A^3 2, 1.931 Mg/m^3 1.588 mm^-1 1656 0.279 x 0.216 x 0.202 mm 2.63 to 28.30 deg. -10<=h<=10, -30<=k<=30, -20<=l<=19 66994 / 7095 [R(int) = 0.0308] 99.0 % multi-scan (SADABS) Full-matrix least-squares on F^2 7095 / 0 / 397 1.416 R1 = 0.0184, wR2 = 0.0487R1 = 0.0233, wR2 = 0.0495 0.414 and -0.391 e.A^-3

| C(10) C(11)                                 | 1 385(2)               | C(10) H(11)                                 | 0.0500                  |
|---------------------------------------------|------------------------|---------------------------------------------|-------------------------|
| C(10)-C(11)<br>C(11)-C(12)                  | 1.303(2)<br>1.291(2)   | $C(10) - \Pi(11)$<br>$C(11) \Pi(12)$        | 0.9500                  |
| C(11)-C(12)                                 | 1.381(2)               | $C(11)-\Pi(12)$                             | 0.9300                  |
| C(12)-H(13)                                 | 0.9500                 | C(13)-C(14)                                 | 1.507(2)                |
| C(13)-H(13A)                                | 0.9900                 | C(15) - H(15B)                              | 0.9900                  |
| C(14)-C(15)                                 | 1.388(2)               | C(15)-C(16)                                 | 1.3/7(2)                |
| C(15)-H(15)                                 | 0.9500                 | C(16)-C(17)                                 | 1.384(2)                |
| C(16)-H(16)                                 | 0.9500                 | C(17)-C(18)                                 | 1.373(2)                |
| C(17)-H(17)                                 | 0.9500                 | C(18)-H(18)                                 | 0.9500                  |
| Bond Angles (°)                             |                        |                                             |                         |
| $N(3) \land \alpha(1) N(2)$                 | 159 77(4)              | $N(3) - \Lambda \alpha(1) - N(1)$           | 122 35(4)               |
| $N(2) - A_{\alpha}(1) - N(1)$               | 139.77(4)<br>73.00(1)  | N(3) - Ag(1) - N(1)<br>N(3) - Ag(1) - O(1)  | 122.33(4)<br>88 $42(4)$ |
| N(2) - Ag(1) - N(1)<br>N(2) - Ag(1) - O(1)  | 75.09(4)<br>96.65(4)   | N(3) - Ag(1) - O(1)<br>N(1) Ag(1) O(1)      | 114.76(4)               |
| N(2) - Ag(1) - O(1)<br>N(3) - Ag(1) - Ag(2) | 90.03(4)               | N(1) - Ag(1) - O(1)<br>N(2) - Ag(1) - Ag(2) | 114.70(4)<br>85.60(2)   |
| N(3)-Ag(1)-Ag(2)<br>N(1) Ag(1) Ag(2)        | 120 76(2)              | N(2)-Ag(1)-Ag(2)<br>O(1) Ag(1) Ag(2)        | 33.09(3)                |
| N(1)-Ag(1)-Ag(2)<br>N(4) Ag(2) $N(6)$       | 150.70(5)<br>165.22(5) | N(4) A g(2) N(5)                            | 111.41(2)<br>110.62(4)  |
| N(4) - Ag(2) - N(0)<br>N(6) - Ag(2) - N(5)  | 103.33(3)              | N(4) - Ag(2) - N(3)<br>N(4) - Ag(2) - Ag(1) | 119.03(4)               |
| N(6) - Ag(2) - N(3)<br>N(6) - Ag(2) - Ag(1) | 74.73(4)<br>01.02(2)   | N(4)-Ag(2)-Ag(1)<br>N(5) Ag(2) Ag(1)        | 50.03(4)                |
| N(0)-Ag(2)-Ag(1)                            | 91.03(3)<br>114.72(7)  | N(3)-Ag(2)-Ag(1)                            | 113.96(3)<br>114.96(7)  |
| O(3)-S(1)-O(1)                              | 114.73(7)<br>115.10(6) | O(3)-S(1)-O(2)                              | 114.00(7)<br>102.74(9)  |
| O(1) - S(1) - O(2)<br>O(1) - S(1) - O(2)    | 115.10(0)<br>102.26(7) | O(3)-S(1)-C(19)                             | 103.74(8)<br>102.70(7)  |
| O(1)-S(1)-C(19)                             | 103.30(7)              | O(2)-S(1)-C(19)                             | 102.70(7)               |
| O(6)-S(2)-O(4)                              | 114.90(6)              | O(6)-S(2)-O(5)                              | 115.70(7)               |
| O(4) - S(2) - O(5)<br>O(4) - S(2) - O(5)    | 113.0/(7)              | O(6)-S(2)-C(20)                             | 104.06(7)<br>102.80(7)  |
| O(4)-S(2)-C(20)                             | 102.39(7)              | O(3)-S(2)-C(20)                             | 103.89(7)               |
| S(1)-O(1)-Ag(1)                             | 124.03(6)              | C(2)-N(1)-C(6)                              | 118.26(12)              |
| C(2)-N(1)-Ag(1)                             | 112.25(9)              | C(6)-N(1)-Ag(1)                             | 129.17(10)              |
| C(1)-N(2)-Ag(1)                             | 107.81(8)              | C(1)-N(2)-H(2A)                             | 107.7(9)                |
| Ag(1)-N(2)-H(2A)                            | 11/./(10)              | C(1)- $N(2)$ - $H(2B)$                      | 105.6(11)               |
| Ag(1)-N(2)-H(2B)                            | 109.4(11)              | H(2A)-N(2)-H(2B)                            | 107.9(14)               |
| C(12)-N(3)-C(8)                             | 118.39(12)             | C(12)-N(3)-Ag(1)                            | 122.19(10)              |
| C(8)-N(3)-Ag(1)                             | 119.21(9)              | C(7)-N(4)-Ag(2)                             | 119.81(9)               |
| C(7) - N(4) - H(4A)                         | 107.9(10)              | Ag(2)-N(4)-H(4A)                            | 104.9(10)               |
| U(7)-N(4)-H(4B)                             | 108.1(10)              | Ag(2)-N(4)-H(4B)                            | 104.5(10)               |
| H(4A)-N(4)-H(4B)                            | 111.6(14)              | C(14)-N(5)-C(18)                            | 118.31(13)              |
| C(14)-N(5)-Ag(2)                            | 112.01(9)              | C(18)-N(5)-Ag(2)                            | 127.92(10)              |
| C(13)-N(6)-Ag(2)                            | 111./6(9)              | C(13)-N(6)-H(6A)                            | 108.2(11)               |
| Ag(2)-N(6)-H(6A)                            | 109.2(11)              | C(13)-N(6)-H(6B)                            | 107.8(9)                |
| Ag(2)-N(6)-H(6B)                            | 112.9(10)              | H(6A)-N(6)-H(6B)                            | 106.8(14)               |
| N(2)-C(1)-C(2)                              | 111.64(12)             | N(2)-C(1)-H(1A)                             | 109.3                   |
| C(2)-C(1)-H(1A)                             | 109.3                  | N(2)-C(1)-H(1B)                             | 109.3                   |
| C(2)-C(1)-H(1B)                             | 109.3                  | H(1A)-C(1)-H(1B)                            | 108.0                   |
| N(1)-C(2)-C(3)                              | 121.95(13)             | N(1)-C(2)-C(1)                              | 11/.2/(12)              |
| C(3)-C(2)-C(1)                              | 120.77(13)             | C(4)-C(3)-C(2)                              | 119.12(14)              |
| C(4)-C(3)-H(3)                              | 120.4                  | C(2)-C(3)-H(3)                              | 120.4                   |
| C(3)-C(4)-C(5)                              | 119.16(14)             | C(3)-C(4)-H(4)                              | 120.4                   |
| C(5)-C(4)-H(4)                              | 120.4                  | C(6)-C(5)-C(4)                              | 118.34(13)              |
| C(6)-C(5)-H(5)                              | 120.8                  | C(4)-C(5)-H(5)                              | 120.8                   |
| N(1)-C(6)-C(5)                              | 125.15(14)             | N(1)-C(0)-H(0)                              | 118.4                   |
| C(5)-C(6)-H(6)                              | 118.4                  | N(4)-C(7)-C(8)                              | 112.15(11)              |
| N(4)-C(7)-H(7A)                             | 109.2                  | C(8)-C(7)-H(7A)                             | 109.2                   |
| N(4)-C(7)-H(7B)                             | 109.2                  | C(8)-C(7)-H(7B)                             | 109.2                   |
| H(A)-C(A)-H(B)                              | 107.9                  | N(3)-C(8)-C(9)                              | 121.39(13)              |
| N(3)-C(8)-C(7)                              | 116.76(12)             | C(9)-C(8)-C(7)                              | 121.85(13)              |

Table B.9. Continued

| C(10)-C(9)-C(8)                                          | 119.81(14)                | C(10)-C(9)-H(10)              | 120.1                    |
|----------------------------------------------------------|---------------------------|-------------------------------|--------------------------|
| C(8)-C(9)-H(10)                                          | 120.1                     | C(9)-C(10)-C(11)              | 118.83(14)               |
| C(9)-C(10)-H(11)                                         | 120.6                     | C(11)-C(10)-H(11)             | 120.6                    |
| C(12)-C(11)-C(10)                                        | 118.62(14)                | C(12)-C(11)-H(12)             | 120.7                    |
| C(10)-C(11)-H(12)                                        | 120.7                     | N(3)-C(12)-C(11)              | 122.75(14)               |
| N(3)-C(12)-H(13)                                         | 118.6                     | C(11)-C(12)-H(13)             | 118.6                    |
| N(6)-C(13)-C(14)                                         | 113.41(12)                | N(6)-C(13)-H(13A)             | 108.9                    |
| C(14)-C(13)-H(13A)                                       | 108.9                     | N(6)-C(13)-H(13B)             | 108.9                    |
| C(14)-C(13)-H(13B)                                       | 108.9                     | H(13A)-C(13)-H(13B)           | 107.7                    |
| N(5)-C(14)-C(15)                                         | 121.83(14)                | N(5)-C(14)-C(13)              | 117.16(13)               |
| C(15)-C(14)-C(13)                                        | 120.92(13)                | C(16)-C(15)-C(14)             | 119.33(14)               |
| C(16)-C(15)-H(15)                                        | 120.3                     | C(14)-C(15)-H(15)             | 120.3                    |
| C(15)-C(16)-C(17)                                        | 118.91(14)                | C(15)-C(16)-H(16)             | 120.5                    |
| C(17)-C(16)-H(16)                                        | 120.5                     | C(18)-C(17)-C(16)             | 118.43(15)               |
| C(18)-C(17)-H(17)                                        | 120.8                     | C(16)-C(17)-H(17)             | 120.8                    |
| N(5)-C(18)-C(17)                                         | 123.18(15)                | N(5)-C(18)-H(18)              | 118.4                    |
| C(17)-C(18)-H(18)                                        | 118.4                     | F(3)-C(19)-F(2)               | 108.13(14)               |
| F(3)-C(19)-F(1)                                          | 108.10(13)                | F(2)-C(19)-F(1)               | 107.82(13)               |
| F(3)-C(19)-S(1)                                          | 110.84(12)                | F(2)-C(19)-S(1)               | 111.16(11)               |
| F(1)-C(19)-S(1)                                          | 110.67(11)                | F(6)-C(20)-F(4)               | 108.15(12)               |
| F(6)-C(20)-F(5)                                          | 107.23(13)                | F(4)-C(20)-F(5)               | 107.73(12)               |
| F(6)-C(20)-S(2)                                          | 110.36(10)                | F(4)-C(20)-S(2)               | 111.33(10)               |
| F(5)-C(20)-S(2)                                          | 111.86(11)                |                               |                          |
|                                                          |                           |                               |                          |
| Hydrogen Bonds (Å)                                       |                           |                               |                          |
| N(2) - H(2A) = O(2) + 1                                  | 3 1/38(17)                | $N(2)_{H(2B)} \cap (6)^{\#2}$ | 3 1422(17)               |
| N(2)-H(2A) = O(2)+1<br>N(4)-H(4A) = O(5)+2               | 2.1430(17)                | N(A) - H(AB) - O(A)           | 3.1422(17)<br>2 0011(17) |
| $N(4) = H(4A) \dots O(3) + 2$<br>N(6) $H(6A) \dots O(2)$ | 2.9799(17)<br>3.0426(18)) | $N(6) H(6P) = O(2)^{\#1}$     | 2.9911(17)<br>2.0810(18) |
| 11(0)-11(0A)0(2)                                         | 5.0420(10))               | $11(0) - \Pi(0D) O(3) + 1$    | 5.0010(10)               |
|                                                          |                           |                               |                          |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z #2 -x+1,-y,-z+1

|--|

| Empirical formula                  | C18 H24 Ag2 B2 F8 N6                                       |
|------------------------------------|------------------------------------------------------------|
| Formula weight                     | 713.79                                                     |
| Temperature                        | 110(2) K                                                   |
| Wavelength                         | 0.71073 A                                                  |
| Crystal system, space group        | Triclinic, P-1                                             |
| Unit cell dimensions               | $a = 7.1125(14) A \alpha = 97.23(3) deg.$                  |
|                                    | $b = 8.3350(17) \text{ A}$ $\beta = 98.51(3) \text{ deg.}$ |
|                                    | $c = 21.471(4) A \gamma = 99.10(3) deg.$                   |
| Volume                             | 1228.4(4) A^3                                              |
| Z, Calculated density              | 2, 1.930 Mg/m^3                                            |
| Absorption coefficient             | 1.675 mm^-1                                                |
| F(000)                             | 700                                                        |
| Crystal size                       | 0.31 x 0.27 x 0.25 mm                                      |
| $\Theta$ range for data collection | 1.94 to 28.39 deg.                                         |
| Limiting indices                   | -9<=h<=9, -11<=k<=11, -28<=l<=28                           |
| Reflections collected / unique     | 14615 / 5935 [R(int) = 0.0226]                             |
| Completeness to $\theta = 25.00$   | 97.7 %                                                     |
| Absorption correction              | multi-scan (SADABS)                                        |

| Max. and min. transmission<br>Refinement method |           | 0.6776 and 0.6223<br>Full-matrix least-squares on F^2 |           |
|-------------------------------------------------|-----------|-------------------------------------------------------|-----------|
| Data / restraints / parameters                  |           | 5935 / 10 / 341                                       | 1 2       |
| Goodness-of-fit on $F^2$                        |           | 1 034                                                 |           |
| Final R indices $[I > 2\sigma(I)]$              |           | $R_1 = 0.0274 \text{ wR}_2 = 0.0678$                  |           |
| R indices (all data)                            |           | R1 = 0.0317  wR2 = 0.0705                             |           |
| Largest diff neak and hole                      |           | $1.216 \text{ and } -0.567 \text{ e } \text{A}^{-3}$  |           |
| Largest unit, peak and note                     |           | 1.210 and -0.307 C.A -3                               |           |
| Bond Lengths (Å)                                |           |                                                       |           |
| Ag(1)-N(3)                                      | 2.185(2)  | Ag(1)-N(2)                                            | 2.267(2)  |
| Ag(1)-N(1)                                      | 2.355(2)  | Ag(2)-N(4)                                            | 2.186(2)  |
| Ag(2)-N(6)                                      | 2.287(2)  | Ag(2)-N(5)                                            | 2.313(2)  |
| B(1)-F(2)                                       | 1.388(3)  | $\mathbf{B}(1) \cdot \mathbf{F}(1)$                   | 1.398(3)  |
| B(1)-F(3)                                       | 1.400(3)  | B(1)-F(4)                                             | 1.403(3)  |
| B(2)-F(6)                                       | 1.368(4)  | B(2)-F(5)                                             | 1.387(5)  |
| B(2)-F(8)                                       | 1.403(5)  | B(2)-F(7)                                             | 1.408(5)  |
| B(2A)-F(5A)                                     | 1.352(16) | B(2A)- $F(6A)$                                        | 1.354(16) |
| B(2A)-F(7A)                                     | 1.393(16) | B(2A)- $F(8A)$                                        | 1.397(17) |
| N(1)-C(2)                                       | 1.343(3)  | N(1)-C(6)                                             | 1.350(3)  |
| N(2)-C(1)                                       | 1.466(4)  | N(2)-H(2A)                                            | 0.9000    |
| N(2)-H(2B)                                      | 0.9000    | N(3)-C(12)                                            | 1.349(3)  |
| N(3)-C(8)                                       | 1.362(3)  | N(4)-C(7)                                             | 1.473(3)  |
| N(4)-H(4A)                                      | 0.9000    | N(4)-H(4B)                                            | 0.9000    |
| N(5)-C(14)                                      | 1.339(3)  | N(5)-C(18)                                            | 1.359(3)  |
| N(6)-C(13)                                      | 1.472(3)  | N(6)-H(6A)                                            | 0.9000    |
| N(6)-H(6B)                                      | 0.9000    | C(1)-C(2)                                             | 1.508(4)  |
| C(1)-H(1A)                                      | 0.9700    | C(1)-H(1B)                                            | 0.9700    |
| C(2)-C(3)                                       | 1.411(3)  | C(3)-C(4)                                             | 1.371(4)  |
| C(3)-H(3)                                       | 0.9300    | C(4)-C(5)                                             | 1.395(4)  |
| C(4)-H(4)                                       | 0.9300    | C(5)-C(6)                                             | 1.388(4)  |
| C(5)-H(5)                                       | 0.9300    | C(6)-H(6)                                             | 0.9300    |
| C(7)-C(8)                                       | 1.517(3)  | C(7)-H(7A)                                            | 0.9700    |
| C(7)-H(7B)                                      | 0.9700    | C(8)-C(9)                                             | 1.388(3)  |
| C(9)-C(10)                                      | 1.396(3)  | C(9)-H(9)                                             | 0.9300    |
| C(10)-C(11)                                     | 1.390(4)  | C(10)-H(10)                                           | 0.9300    |
| C(11)-C(12)                                     | 1.396(4)  | C(11)-H(11)                                           | 0.9300    |
| C(12)-H(12)                                     | 0.9300    | C(13)-C(14)                                           | 1.526(3)  |
| C(13)-H(13A)                                    | 0.9700    | C(13)-H(13B)                                          | 0.9700    |
| C(14)-C(15)                                     | 1.405(3)  | C(15)-C(16)                                           | 1.390(4)  |
| C(15)-H(15)                                     | 0.9300    | C(16)-C(17)                                           | 1.389(4)  |
| C(16)-H(16)                                     | 0.9300    | C(17)-C(18)                                           | 1.377(4)  |
| С(17)-Н(17)                                     | 0.9300    | C(18)-H(18)                                           | 0.9300    |
| Bond Angles (°)                                 |           |                                                       |           |
| N(3)-Ag(1)-N(2)                                 | 154.73(8) | N(3)-Ag(1)-N(1)                                       | 130.16(7) |
| N(2)-Ag(1)-N(1)                                 | 74.86(8)  | N(4)-Ag(2)-N(6)                                       | 147.26(8) |
| N(4)-Ag(2)-N(5)                                 | 135.55(7) | N(6)-Ag(2)-N(5)                                       | 74.97(7)  |
| F(2)-B(1)-F(1)                                  | 109.8(2)  | F(2)-B(1)-F(3)                                        | 110.0(2)  |
| F(1)-B(1)-F(3)                                  | 109.8(2)  | F(2)-B(1)-F(4)                                        | 108.0(2)  |
| F(1)-B(1)-F(4)                                  | 109.2(2)  | F(3)-B(1)-F(4)                                        | 110.1(2)  |
| F(6)-B(2)-F(5)                                  | 112.6(4)  | F(6)-B(2)-F(8)                                        | 106.3(3)  |
| F(5)-B(2)-F(8)                                  | 107.1(3)  | F(6)-B(2)-F(7)                                        | 112.4(4)  |
|                                                 |           |                                                       |           |

Table B.10. Continued

| F(5)-B(2)-F(7)                                                                          | 108.7(3)                  | F(8)-B(2)-F(7)                               | 109.6(4)                 |
|-----------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|--------------------------|
| F(5A)-B(2A)-F(6A)                                                                       | 109 3(15)                 | F(5A)-B(2A)-F(7A)                            | 114 9(17)                |
| F(6A)-B(2A)-F(7A)                                                                       | 108.4(17)                 | F(5A)-B(2A)-F(8A)                            | 111.2(14)                |
| F(6A)-B(2A)-F(8A)                                                                       | 104 6(15)                 | F(7A)-B(2A)-F(8A)                            | 108.0(18)                |
| C(2)-N(1)-C(6)                                                                          | 118 6(2)                  | $C(2)-N(1)-A\sigma(1)$                       | 114 25(17)               |
| $C(2) - N(1) - \Delta g(1)$                                                             | 126.5(17)                 | C(2) - N(1) - Ag(1)<br>C(1) - N(2) - Ag(1)   | 114.23(17)<br>114.57(17) |
| C(0)-N(1)-Ag(1)<br>C(1)-N(2)-H(2A)                                                      | 108.6                     | $\Delta_{\alpha}(1) - N(2) - H(2A)$          | 108.6                    |
| C(1) - N(2) - H(2R)<br>C(1) - N(2) - H(2R)                                              | 108.0                     | Ag(1) - N(2) - H(2A)<br>Ag(1) - N(2) - H(2B) | 108.0                    |
| U(1) - N(2) - N(2D)                                                                     | 108.0                     | $Ag(1) - N(2) - \Pi(2D)$                     | 100.0<br>119.6(2)        |
| $\Gamma(2A) - \Gamma(2) - \Gamma(2B)$<br>$\Gamma(12) - \Gamma(2) - \Lambda_{\infty}(1)$ | 107.0                     | C(12) - N(3) - C(6)<br>C(8) N(2) A = (1)     | 110.0(2)<br>122.50(16)   |
| C(12)-N(3)-Ag(1)<br>C(7) N(4) A $c(2)$                                                  | 11/.0/(10)<br>114.(0(15)) | C(8)-N(3)-Ag(1)                              | 123.39(10)               |
| C(7)-IN(4)-Ag(2)                                                                        | 114.09(15)                | C(7) - N(4) - H(4A)                          | 108.0                    |
| Ag(2) - N(4) - H(4A)                                                                    | 108.0                     | U(4) - N(4) - H(4B)                          | 108.0                    |
| Ag(2)-N(4)-H(4B)                                                                        | 108.0                     | H(4A)-N(4)-H(4B)                             | 107.0                    |
| C(14) - N(5) - C(18)                                                                    | 118.4(2)                  | C(14)-N(5)-Ag(2)                             | 115.54(15)               |
| C(18)-N(5)-Ag(2)                                                                        | 125.88(17)                | C(13)-IN(6)-Ag(2)                            | 113.57(14)               |
| C(13)-N(6)-H(6A)                                                                        | 108.9                     | Ag(2)-N(6)-H(6A)                             | 108.9                    |
| C(13)-N(6)-H(6B)                                                                        | 108.9                     | Ag(2)-N(6)-H(6B)                             | 108.9                    |
| H(6A)-N(6)-H(6B)                                                                        | 107.7                     | N(2)-C(1)-C(2)                               | 115.8(2)                 |
| N(2)-C(1)-H(1A)                                                                         | 108.3                     | C(2)-C(1)-H(1A)                              | 108.3                    |
| N(2)-C(1)-H(1B)                                                                         | 108.3                     | C(2)-C(1)-H(1B)                              | 108.3                    |
| H(1A)-C(1)-H(1B)                                                                        | 107.4                     | N(1)-C(2)-C(3)                               | 121.8(3)                 |
| N(1)-C(2)-C(1)                                                                          | 119.4(2)                  | C(3)-C(2)-C(1)                               | 118.8(2)                 |
| C(4)-C(3)-C(2)                                                                          | 118.8(3)                  | C(4)-C(3)-H(3)                               | 120.6                    |
| C(2)-C(3)-H(3)                                                                          | 120.6                     | C(3)-C(4)-C(5)                               | 119.7(2)                 |
| C(3)-C(4)-H(4)                                                                          | 120.1                     | C(5)-C(4)-H(4)                               | 120.1                    |
| C(6)-C(5)-C(4)                                                                          | 118.3(3)                  | C(6)-C(5)-H(5)                               | 120.8                    |
| C(4)-C(5)-H(5)                                                                          | 120.8                     | N(1)-C(6)-C(5)                               | 122.7(3)                 |
| N(1)-C(6)-H(6)                                                                          | 118.6                     | C(5)-C(6)-H(6)                               | 118.6                    |
| N(4)-C(7)-C(8)                                                                          | 116.36(19)                | N(4)-C(7)-H(7A)                              | 108.2                    |
| C(8)-C(7)-H(7A)                                                                         | 108.2                     | N(4)-C(7)-H(7B)                              | 108.2                    |
| C(8)-C(7)-H(7B)                                                                         | 108.2                     | H(7A)-C(7)-H(7B)                             | 107.4                    |
| N(3)-C(8)-C(9)                                                                          | 121.7(2)                  | N(3)-C(8)-C(7)                               | 115.26(19)               |
| C(9)-C(8)-C(7)                                                                          | 123.0(2)                  | C(8)-C(9)-C(10)                              | 119.5(2)                 |
| C(8)-C(9)-H(9)                                                                          | 120.2                     | C(10)-C(9)-H(9)                              | 120.2                    |
| C(11)-C(10)-C(9)                                                                        | 118.8(2)                  | C(11)-C(10)-H(10)                            | 120.6                    |
| C(9)-C(10)-H(10)                                                                        | 120.6                     | C(10)-C(11)-C(12)                            | 118.8(2)                 |
| C(10)-C(11)-H(11)                                                                       | 120.6                     | C(12)-C(11)-H(11)                            | 120.6                    |
| N(3)-C(12)-C(11)                                                                        | 122.5(2)                  | N(3)-C(12)-H(12)                             | 118.7                    |
| C(11)-C(12)-H(12)                                                                       | 118.7                     | N(6)-C(13)-C(14)                             | 114.54(19)               |
| N(6)-C(13)-H(13A)                                                                       | 108.6                     | C(14)-C(13)-H(13A)                           | 108.6                    |
| N(6)-C(13)-H(13B)                                                                       | 108.6                     | C(14)-C(13)-H(13B)                           | 108.6                    |
| H(13A)-C(13)-H(13B)                                                                     | 107.6                     | N(5)-C(14)-C(15)                             | 121.4(2)                 |
| N(5)-C(14)-C(13)                                                                        | 119.2(2)                  | C(15)-C(14)-C(13)                            | 119.4(2)                 |
| C(16)-C(15)-C(14)                                                                       | 119.5(2)                  | C(16)-C(15)-H(15)                            | 120.3                    |
| C(14)-C(15)-H(15)                                                                       | 120.3                     | C(17)-C(16)-C(15)                            | 118.9(2)                 |
| C(17)-C(16)-H(16)                                                                       | 120.5                     | C(15)-C(16)-H(16)                            | 120.5                    |
| C(18)-C(17)-C(16)                                                                       | 1184(2)                   | C(18)-C(17)-H(17)                            | 120.8                    |
| C(16)-C(17)-H(17)                                                                       | 120.8                     | N(5)-C(18)-C(17)                             | 1234(2)                  |
| N(5)-C(18)-H(18)                                                                        | 118.3                     | C(17)-C(18)-H(18)                            | 118 3                    |
|                                                                                         |                           |                                              |                          |
| Hydrogen Bonds                                                                          |                           |                                              |                          |
| N(2)-H(2A)F(8A)#1                                                                       | 3.055(16)                 | N(2)-H(2A)F(5)#1                             | 3.094(3)                 |
| N(2)-H(2A)F(8)#1                                                                        | 3.330(4)                  | N(2)-H(2B)F(7A)                              | 2.97(3)                  |
|                                                                                         |                           |                                              |                          |

Table B.10. Continued

| N(2)-H(2B)F(7)   | 3.211(5) | N(4)-H(4A)F(4)   | 3.112(3) |
|------------------|----------|------------------|----------|
| N(4)-H(4B)F(1)#1 | 2.982(3) | N(6)-H(6A)F(4)#2 | 3.133(3) |
| N(6)-H(6A)F(2)#2 | 3.384(3) | N(6)-H(6B)F(2)   | 3.000(3) |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 -x+2,-y,-z+1

Table B.11. Experimental and statistical crystal data for **4.5** 

| Empirical formula                  |            | C26 H24 Ag2 B2 F8 N                    | 5               |  |
|------------------------------------|------------|----------------------------------------|-----------------|--|
| Formula weight                     |            | 809 87                                 |                 |  |
| Temperature                        |            | 110(2) K                               |                 |  |
| Wavelength                         |            | 0 71073 A                              |                 |  |
| Crystal system space group         |            | Orthorhombic $P2(1)2($                 | 1)2(1)          |  |
| Unit cell dimensions               |            | $a = 10.5634(6) A \alpha =$            | 90 deg          |  |
|                                    |            | $h = 13.6804(9) A$ $\beta =$           | 90 deg.         |  |
|                                    |            | c = 197099(11) A v =                   | 90 deg          |  |
| Volume                             |            | 2848 3(3) A^3                          | 90 <b>uo</b> g. |  |
| Z Calculated density               |            | $4 1 889 \text{ Mg/m}^3$               |                 |  |
| Absorption coefficient             |            | 1 457 mm^-1                            |                 |  |
| F(000)                             |            | 1592                                   |                 |  |
| Crystal size                       |            | $0.245 \ge 0.231 \ge 0.199 \text{ mm}$ |                 |  |
| $\theta$ range for data collection |            | 3 15 to 28 29 deg                      |                 |  |
| Limiting indices                   |            | -14<=h<=14, -17<=k<=18, -25<=l<=25     |                 |  |
| Reflections collected / unique     |            | 33450 / 7004 [R(int) = 0.0291]         |                 |  |
| Completeness to $\theta = 28.29$   |            | 99.3 %                                 |                 |  |
| Absorption correction              |            | multi-scan (SADABS)                    |                 |  |
| Refinement method                  |            | Full-matrix least-square               | es on F^2       |  |
| Data / restraints / parameters     |            | 7004 / 0 / 397                         |                 |  |
| Goodness-of-fit on F^2             |            | 1.067                                  |                 |  |
| Final R indices $[I > 2\sigma(I)]$ |            | R1 = 0.0174, $wR2 = 0.0000$            | 0408            |  |
| R indices (all data)               |            | R1 = 0.0194, $wR2 = 0.0412$            |                 |  |
| Absolute structure parameter       |            | -0.016(11)                             |                 |  |
| Largest diff. peak and hole        |            | 0.398 and -0.255 e.A^-3                | 3               |  |
| Bond Lengths (Å)                   |            |                                        |                 |  |
| Ag(1)-N(1)                         | 2.1502(15) | Ag(1)-N(3)                             | 2.2706(14)      |  |

| 2.1302(13) | Ag(1)-IN(3)                                                                                                                                                                         | 2.2700(14)                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2839(16) | Ag(1)-Ag(2)                                                                                                                                                                         | 2.8958(3)                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.1788(15) | Ag(2)-N(6)                                                                                                                                                                          | 2.2870(15)                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.3299(15) | F(1)-B(1)                                                                                                                                                                           | 1.393(3)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.389(3)   | F(3)-B(1)                                                                                                                                                                           | 1.397(3)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.386(2)   | F(5)-B(2)                                                                                                                                                                           | 1.413(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.381(2)   | F(7)-B(2)                                                                                                                                                                           | 1.389(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.377(3)   | N(1)-C(6)                                                                                                                                                                           | 1.337(3)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.348(2)   | N(2)-C(1)                                                                                                                                                                           | 1.487(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.9000     | N(2)-H(2B)                                                                                                                                                                          | 0.9000                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.337(2)   | N(3)-C(11)                                                                                                                                                                          | 1.344(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.344(2)   | N(4)-C(12)                                                                                                                                                                          | 1.351(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.337(3)   | N(5)-C(21)                                                                                                                                                                          | 1.341(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.344(2)   | N(6)-C(22)                                                                                                                                                                          | 1.345(2)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.498(3)   | C(1)-H(1A)                                                                                                                                                                          | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 2.1302(13) $2.2839(16)$ $2.1788(15)$ $2.3299(15)$ $1.389(3)$ $1.386(2)$ $1.381(2)$ $1.377(3)$ $1.348(2)$ $0.9000$ $1.337(2)$ $1.344(2)$ $1.337(3)$ $1.344(2)$ $1.344(2)$ $1.498(3)$ | $\begin{array}{cccc} 2.1302(13) & Ag(1)-N(3) \\ 2.2839(16) & Ag(1)-Ag(2) \\ 2.1788(15) & Ag(2)-N(6) \\ 2.3299(15) & F(1)-B(1) \\ 1.389(3) & F(3)-B(1) \\ 1.386(2) & F(5)-B(2) \\ 1.381(2) & F(7)-B(2) \\ 1.377(3) & N(1)-C(6) \\ 1.348(2) & N(2)-C(1) \\ 0.9000 & N(2)-H(2B) \\ 1.337(2) & N(3)-C(11) \\ 1.344(2) & N(4)-C(12) \\ 1.337(3) & N(5)-C(21) \\ 1.344(2) & N(6)-C(22) \\ 1.498(3) & C(1)-H(1A) \end{array}$ |

Table B.11. Continued

| C(1)-H(1B)                                     | 0.9700                   | C(2)-C(3)                                               | 1.386(3)                 |
|------------------------------------------------|--------------------------|---------------------------------------------------------|--------------------------|
| C(3)-C(4)                                      | 1 372(3)                 | C(3)-H(3)                                               | 0.9300                   |
| C(4)-C(5)                                      | 1.3(2(4))                | C(4) - H(4)                                             | 0.9300                   |
| C(5) C(6)                                      | 1.302(7)<br>1 380(3)     | C(5) H(5)                                               | 0.0300                   |
| C(3)- $C(0)$                                   | 0.0200                   | $C(3) - \Pi(3)$                                         | 0.9300<br>1 292(2)       |
| C(0)-H(0)                                      | 0.9300                   | C(7)- $C(8)$                                            | 1.383(3)                 |
| С(/)-Н(/)                                      | 0.9300                   | C(8)-C(9)                                               | 1.3/2(3)                 |
| C(8)-H(8)                                      | 0.9300                   | C(9)-C(10)                                              | 1.393(3)                 |
| C(9)-H(9)                                      | 0.9300                   | C(10)-C(11)                                             | 1.396(2)                 |
| C(10)-H(10)                                    | 0.9300                   | C(11)-C(12)                                             | 1.491(3)                 |
| C(12)-C(13)                                    | 1.392(3)                 | C(13)-C(14)                                             | 1.388(3)                 |
| C(13)-H(13)                                    | 0.9300                   | C(14)-C(15)                                             | 1.383(3)                 |
| C(14)-H(14)                                    | 0.9300                   | C(15)-C(16)                                             | 1 376(3)                 |
| C(15)-H(15)                                    | 0.9300                   | C(16)-H(16)                                             | 0.9300                   |
| C(17) C(19)                                    | 1.292(2)                 | C(17) II(17)                                            | 0.0200                   |
| C(17) - C(18)                                  | 1.363(3)                 | $C(17) - \Pi(17)$                                       | 0.9300                   |
| C(18) - C(19)                                  | 1.3/1(3)                 | C(18)-H(18)                                             | 0.9300                   |
| C(19)-C(20)                                    | 1.386(3)                 | С(19)-Н(19)                                             | 0.9300                   |
| C(20)-C(21)                                    | 1.395(2)                 | C(20)-H(20)                                             | 0.9300                   |
| C(21)-C(22)                                    | 1.495(3)                 | C(22)-C(23)                                             | 1.388(3)                 |
| C(23)-C(24)                                    | 1.384(3)                 | C(23)-H(23)                                             | 0.9300                   |
| C(24)-C(25)                                    | 1.381(3)                 | C(24)-H(24)                                             | 0.9300                   |
| C(25) - C(26)                                  | 1 374(3)                 | C(25)-H(25)                                             | 0 9300                   |
| C(26)-H(26)                                    | 0.9300                   |                                                         | 0.9200                   |
| 0(20) 11(20)                                   | 0.9500                   |                                                         |                          |
| Bond Angles (°)                                |                          |                                                         |                          |
| $N(1) A \alpha(1) N(2)$                        | 126 01(6)                | E(7) D(2) E(5)                                          | 108 22(15)               |
| N(1) - Ag(1) - N(3)<br>N(1) - Ag(1) - N(4)     | 130.91(0)                | $\Gamma(7) - D(2) - \Gamma(3)$<br>N(2) - A - (1) - N(4) | 100.22(13)               |
| N(1) - Ag(1) - N(4)                            | 148.32(0)                | N(3) - Ag(1) - N(4)                                     | 75.54(5)                 |
| N(1)-Ag(1)-Ag(2)                               | 82.92(4)                 | N(3)-Ag(1)-Ag(2)                                        | 100.56(4)                |
| N(4)-Ag(1)-Ag(2)                               | 81.52(4)                 | N(2)-Ag(2)-N(6)                                         | 142.97(6)                |
| N(2)-Ag(2)-N(5)                                | 145.38(6)                | N(6)-Ag(2)-N(5)                                         | 71.65(5)                 |
| N(2)-Ag(2)-Ag(1)                               | 86.46(4)                 | N(6)-Ag(2)-Ag(1)                                        | 85.99(4)                 |
| N(5)-Ag(2)-Ag(1)                               | 99.82(4)                 | C(6)-N(1)-C(2)                                          | 118.67(17)               |
| C(6)-N(1)-Ag(1)                                | 119.37(13)               | C(2)-N(1)-Ag(1)                                         | 121.93(13)               |
| C(1)-N(2)-Ag(2)                                | 120.39(12)               | C(1)-N(2)-H(2A)                                         | 107.2                    |
| Ag(2)-N(2)-H(2A)                               | 107.2                    | C(1)-N(2)-H(2B)                                         | 107.2                    |
| Ag(2)-N(2)-H(2B)                               | 107.2                    | H(2A)-N(2)-H(2B)                                        | 106.9                    |
| C(7)-N(3)-C(11)                                | 119 52(15)               | C(7)-N(3)-Ag(1)                                         | 123 98(12)               |
| $C(11)-N(3)-A\sigma(1)$                        | 116.25(11)               | C(16)-N(4)-C(12)                                        | 118 58(16)               |
| C(16)-N(4)-Ag(1)                               | 12540(12)                | C(12)-N(4)-Ag(1)                                        | 115.00(10)<br>115.99(12) |
| C(17)-N(5)-C(21)                               | 118 82(16)               | C(12) N(1) Ng(1)<br>$C(17) N(5) \Delta g(2)$            | 124.45(13)               |
| C(21) N(5) Ag(2)                               | 116.02(10)               | C(26) N(6) C(22)                                        | 118 55(16)               |
| C(21)-N(5)-Ag(2)<br>$C(26)$ N(6) A $\alpha(2)$ | 110.12(11)<br>122.41(12) | C(20)-N(0)-C(22)                                        | 110.33(10)<br>117.07(12) |
| C(20)-N(0)-Ag(2)                               | 125.41(12)               | C(22)-N(0)-Ag(2)                                        | 117.97(12)               |
| N(2) - C(1) - C(2)                             | 111.88(10)               | N(2) - C(1) - H(1A)                                     | 109.2                    |
| C(2)-C(1)-H(1A)                                | 109.2                    | N(2)-C(1)-H(1B)                                         | 109.2                    |
| C(2)-C(1)-H(1B)                                | 109.2                    | H(1A)-C(1)-H(1B)                                        | 107.9                    |
| N(1)-C(2)-C(3)                                 | 120.93(19)               | N(1)-C(2)-C(1)                                          | 117.82(16)               |
| C(3)-C(2)-C(1)                                 | 121.25(18)               | C(4)-C(3)-C(2)                                          | 119.6(2)                 |
| C(4)-C(3)-H(3)                                 | 120.2                    | C(2)-C(3)-H(3)                                          | 120.2                    |
| C(5)-C(4)-C(3)                                 | 119.4(2)                 | C(5)-C(4)-H(4)                                          | 120.3                    |
| C(3)-C(4)-H(4)                                 | 120.3                    | C(4)-C(5)-C(6)                                          | 118.8(2)                 |
| C(4)-C(5)-H(5)                                 | 120.6                    | C(6)-C(5)-H(5)                                          | 120.6                    |
| N(1)-C(6)-C(5)                                 | 122.6(2)                 | N(1)-C(6)-H(6)                                          | 118.7                    |
| C(5)-C(6)-H(6)                                 | 118 7                    | N(3)-C(7)-C(8)                                          | 122 48(17)               |
| N(3)-C(7)-H(7)                                 | 118.8                    | C(8)-C(7)-H(7)                                          | 118.8                    |
| $(3) \sim (7)^{-11}(7)$                        | 110.0                    |                                                         | 110.0                    |

Table B.11. Continued

| C(9)-C(8)-C(7)     | 118.75(18) | C(9)-C(8)-H(8)    | 120.6      |
|--------------------|------------|-------------------|------------|
| C(7)-C(8)-H(8)     | 120.6      | C(8)-C(9)-C(10)   | 119.36(16) |
| C(8)-C(9)-H(9)     | 120.3      | C(10)-C(9)-H(9)   | 120.3      |
| C(9)-C(10)-C(11)   | 118.94(17) | C(9)-C(10)-H(10)  | 120.5      |
| C(11)-C(10)-H(10)  | 120.5      | N(3)-C(11)-C(10)  | 120.95(16) |
| N(3)-C(11)-C(12)   | 117.50(14) | C(10)-C(11)-C(12) | 121.54(16) |
| N(4)-C(12)-C(13)   | 121.31(17) | N(4)-C(12)-C(11)  | 116.74(16) |
| C(13)-C(12)-C(11)  | 121.94(15) | C(14)-C(13)-C(12) | 119.33(18) |
| C(14)-C(13)-H(13)  | 120.3      | C(12)-C(13)-H(13) | 120.3      |
| C(15)-C(14)-C(13)  | 119.00(19) | C(15)-C(14)-H(14) | 120.5      |
| C(13)-C(14)-H(14)  | 120.5      | C(16)-C(15)-C(14) | 118.75(19) |
| C(16)-C(15)-H(15)  | 120.6      | C(14)-C(15)-H(15) | 120.6      |
| N(4)-C(16)-C(15)   | 123.02(18) | N(4)-C(16)-H(16)  | 118.5      |
| C(15)-C(16)-H(16)  | 118.5      | N(5)-C(17)-C(18)  | 123.1(2)   |
| N(5)-C(17)-H(17)   | 118.5      | C(18)-C(17)-H(17) | 118.5      |
| C(19)-C(18)-C(17)  | 118.5(2)   | C(19)-C(18)-H(18) | 120.8      |
| C(17)-C(18)-H(18)  | 120.8      | C(18)-C(19)-C(20) | 119.16(18) |
| C(18)-C(19)-H(19)  | 120.4      | С(20)-С(19)-Н(19) | 120.4      |
| C(19)-C(20)-C(21)  | 119.33(19) | С(19)-С(20)-Н(20) | 120.3      |
| C(21)-C(20)-H(20)  | 120.3      | N(5)-C(21)-C(20)  | 121.13(17) |
| N(5)-C(21)-C(22)   | 116.93(15) | C(20)-C(21)-C(22) | 121.95(17) |
| N(6)-C(22)-C(23)   | 121.10(17) | N(6)-C(22)-C(21)  | 116.40(16) |
| C(23)-C(22)-C(21)  | 122.50(16) | C(24)-C(23)-C(22) | 119.67(17) |
| C(24)-C(23)-H(23)  | 120.2      | C(22)-C(23)-H(23) | 120.2      |
| C(25)-C(24)-C(23)  | 119.10(18) | C(25)-C(24)-H(24) | 120.5      |
| C(23)-C(24)-H(24)  | 120.5      | C(26)-C(25)-C(24) | 118.27(18) |
| C(26)-C(25)-H(25)  | 120.9      | C(24)-C(25)-H(25) | 120.9      |
| N(6)-C(26)-C(25)   | 123.30(17) | N(6)-C(26)-H(26)  | 118.3      |
| C(25)-C(26)-H(26)  | 118.3      | F(4)-B(1)-F(2)    | 109.60(17) |
| F(4)-B(1)-F(1)     | 109.39(17) | F(2)-B(1)-F(1)    | 109.92(18) |
| F(4)-B(1)-F(3)     | 110.69(18) | F(2)-B(1)-F(3)    | 108.11(16) |
| F(1)-B(1)-F(3)     | 109.11(17) | F(8)-B(2)-F(6)    | 109.87(16) |
| F(8)-B(2)-F(7)     | 110.66(18) | F(6)-B(2)-F(7)    | 110.30(17) |
| F(8)-B(2)-F(5)     | 108.95(16) | F(6)-B(2)-F(5)    | 108.80(17) |
| Hydrogen Bonds (Å) |            |                   |            |
| N(2)-H(2A)F(5)#1   | 2.977(2)   | N(2)-H(2B)F(3)#1  | 3.099(2)   |
| N(2)-H(2B)F(2)#1   | 3.1257(19) |                   |            |
|                    |            |                   |            |

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z

| Empirical formula                  |                            | C7 H8 Ag F3 N2 O3 S                |                        |  |
|------------------------------------|----------------------------|------------------------------------|------------------------|--|
| Formula weight                     |                            | 365.08                             |                        |  |
| Temperature                        |                            | 110(2) K                           |                        |  |
| Wavelength                         |                            | 0.71073 A                          | 0.71073 A              |  |
| Crystal system, space group        |                            | Monoclinic, P2(1)/c                |                        |  |
| Unit cell dimensions               |                            | $a = 12.982(6) A \alpha = 90 de$   | eg.                    |  |
|                                    |                            | $b = 11.458(4) A \beta = 101.$     | 40(3) deg.             |  |
|                                    |                            | $c = 7.709(5) A$ $\gamma = 90 deg$ |                        |  |
| Volume                             |                            | 1124.2(10) A^3                     | -                      |  |
| Z. Calculated density              |                            | 4. 2.157 Mg/m^3                    |                        |  |
| Absorption coefficient             |                            | 2.017 mm^-1                        |                        |  |
| F(000)                             |                            | 712                                |                        |  |
| Crystal size                       |                            | 0.167 x 0.143 x 0.094 mm           |                        |  |
| $\Theta$ range for data collection |                            | 1.60 to 28.37 deg.                 |                        |  |
| Limiting indices                   |                            | -17<=h<=17, -13<=k<=15             | -10<=1<=10             |  |
| Reflections collected / unique     |                            | 39350 / 2751 [R(int) = 0.03        | 3101                   |  |
| Completeness to $\theta = 28.37$   |                            | 97.5 %                             | 1                      |  |
| Absorption correction              |                            | multi-scan (SADABS)                |                        |  |
| Refinement method                  |                            | Full-matrix least-squares o        | n F^2                  |  |
| Data / restraints / parameters     |                            | 2751/0/154                         |                        |  |
| Goodness-of-fit on F^2             |                            | 1.067                              |                        |  |
| Final R indices $[I > 2\sigma(I)]$ |                            | R1 = 0.0194, $wR2 = 0.049$         | 1                      |  |
| R indices (all data)               |                            | R1 = 0.0232, $wR2 = 0.050$         | 2                      |  |
| Largest diff. peak and hole        |                            | 0.562 and -0.376 e.A^-3            |                        |  |
| Bond Lengths (Å)                   |                            |                                    |                        |  |
| $\Lambda_{\alpha}(1) N(2) \# 1$    | 21445(17)                  | $\Lambda_{\alpha}(1)$ N(1)         | 21/52(18)              |  |
| S(2) - O(3)                        | 2.1445(17)<br>1 $1360(17)$ | S(2) - O(2)                        | 1.1435(10)             |  |
| S(2) - O(1)                        | 1.4300(17)<br>1.4445(16)   | S(2) - O(2)<br>S(2) - O(7)         | 1.4430(13)<br>1.833(2) |  |
| F(1)-C(7)                          | 1.328(2)                   | F(2)-C(7)                          | 1.035(2)<br>1.335(2)   |  |
| F(3)-C(7)                          | 1.326(2)<br>1.326(2)       | N(1)-C(2)                          | 1.333(2)<br>1.343(3)   |  |
| N(1)-C(6)                          | 1.320(2)<br>1.354(3)       | N(2)-C(1)                          | 1.5(5)<br>1.468(3)     |  |
| N(2) - Ag(1) # 2                   | 2.1445(17)                 | N(2) - H(2A)                       | 0.9200                 |  |
| N(2)-H(2B)                         | 0.9200                     | C(1)-C(2)                          | 1.514(2)               |  |
| C(1)-H(1C)                         | 0.9900                     | C(1) - H(1D)                       | 0 9900                 |  |
| C(2)-C(3)                          | 1.388(3)                   | C(6)-C(5)                          | 1.377(3)               |  |
| C(6)-H(6)                          | 0.9500                     | C(5)-C(4)                          | 1.372(3)               |  |
| C(5)-H(5)                          | 0.9500                     | C(4)-C(3)                          | 1.380(3)               |  |
| C(4)-H(4)                          | 0.9500                     | C(3)-H(3)                          | 0.9500                 |  |
| Bond Angles (°)                    |                            |                                    |                        |  |
| $N(2)$ #1-A $\sigma(1)$ -N(1)      | 171 93(6)                  | O(3)-S(2)-O(2)                     | 115 81(9)              |  |
| O(3)-S(2)-O(1)                     | 11490(10)                  | O(2)-S(2)-O(1)                     | 113.01(9)<br>113.53(9) |  |
| O(3)-S(2)-C(7)                     | 104 27(9)                  | O(2) - S(2) - O(1)                 | 103.54(9)              |  |
| O(1)-S(2)-C(7)                     | 107.27(9)<br>102.56(9)     | C(2) - N(1) - C(6)                 | 11879(17)              |  |
| $C(2)-N(1)-A\sigma(1)$             | 102.88(12)                 | C(6)-N(1)-Ag(1)                    | 117 29(15)             |  |
| C(1)-N(2)-Ag(1)#2                  | 123.00(12)<br>121.13(11)   | C(1)-N(2)-H(2A)                    | 107.0                  |  |
| Ag(1)#2-N(2)-H(2A)                 | 107.0                      | C(1)-N(2)-H(2B)                    | 107.0                  |  |
| Ag(1)#2-N(2)-H(2R)                 | 107.0                      | H(2A)-N(2)-H(2B)                   | 106.8                  |  |
| N(2)-C(1)-C(2)                     | 114.58(15)                 | N(2)-C(1)-H(1C)                    | 108.6                  |  |
| C(2)-C(1)-H(1C)                    | 108.6                      | N(2)-C(1)-H(1D)                    | 108.6                  |  |
| C(2)-C(1)-H(1D)                    | 108.6                      | H(1C)-C(1)-H(1D)                   | 107.6                  |  |
| <pre>、 / - &lt; /</pre> /          |                            | (, -(-)()                          |                        |  |

| Table B.12. Continued                |                      |                  |            |  |
|--------------------------------------|----------------------|------------------|------------|--|
| N(1)-C(2)-C(3)                       | 120.89(17)           | N(1)-C(2)-C(1)   | 116.00(16) |  |
| C(3)-C(2)-C(1)                       | 123.09(18)           | N(1)-C(6)-C(5)   | 122.5(2)   |  |
| N(1)-C(6)-H(6)                       | 118.7                | C(5)-C(6)-H(6)   | 118.7      |  |
| C(4)-C(5)-C(6)                       | 118.68(19)           | C(4)-C(5)-H(5)   | 120.7      |  |
| C(6)-C(5)-H(5)                       | 120.7                | C(5)-C(4)-C(3)   | 119.28(18) |  |
| C(5)-C(4)-H(4)                       | 120.4                | C(3)-C(4)-H(4)   | 120.4      |  |
| C(4)-C(3)-C(2)                       | 119.79(19)           | C(4)-C(3)-H(3)   | 120.1      |  |
| C(2)-C(3)-H(3)                       | 120.1                | F(3)-C(7)-F(1)   | 108.17(18) |  |
| F(3)-C(7)-F(2)                       | 107.32(17)           | F(1)-C(7)-F(2)   | 107.20(17) |  |
| F(3)-C(7)-S(2)                       | 111.95(14)           | F(1)-C(7)-S(2)   | 111.24(14) |  |
| F(2)-C(7)-S(2)                       | 110.74(14)           |                  |            |  |
| Hydrogen Bonds (Å)                   |                      |                  |            |  |
| N(2)-H(2A)O(1)#3<br>N(2)-H(2B)O(1)#5 | 2.913(2)<br>2.993(3) | N(2)-H(2A)O(3)#4 | 2.967(3)   |  |

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y+1/2,-z+1/2 #2 -x+2,y-1/2,-z+1/2 #3 -x+1,y-1/2,-z+1/2 #4 -x+1,-y+1,-z #5 -x+1,-y+1,-z+1

| Empirical formula                    | C8 H8 Ag F3 N2 O2                           |
|--------------------------------------|---------------------------------------------|
| Formula weight                       | 329.03                                      |
| Temperature                          | 110(2) K                                    |
| Wavelength                           | 0.71073 A                                   |
| Crystal system, space group          | Orthorhombic, $P2(1)2(1)2(1)$               |
| Unit cell dimensions                 | $a = 4.7270(8) A$ $\alpha = 90 deg.$        |
|                                      | $b = 9.8985(19) A$ $\beta = 90 deg.$        |
|                                      | $c = 22.111(4) A \gamma = 90 deg.$          |
| Volume                               | 1034.6(3) A^3                               |
| Z, Calculated density                | 4, 2.112 Mg/m^3                             |
| Absorption coefficient               | 1.978 mm^-1                                 |
| F(000)                               | 640                                         |
| Crystal size                         | 0.24 x 0.15 x 0.08 mm                       |
| $\Theta$ range for data collection   | 1.84 to 26.45 deg.                          |
| Limiting indices                     | -5<=h<=5, -12<=k<=12, -27<=l<=27            |
| Reflections collected / unique       | 13577 / 2121 [R(int) = 0.0626]              |
| Completeness to $\theta = 26.45$     | 100.0 %                                     |
| Absorption correction                | multi-scan (SADABS)                         |
| Max. and min. transmission           | 0.8594 and 0.6461                           |
| Refinement method                    | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters       | 2121 / 0 / 145                              |
| Goodness-of-fit on F^2               | 1.067                                       |
| Final R indices $[I \ge 2\sigma(I)]$ | R1 = 0.0200, wR2 = 0.0443                   |
| R indices (all data)                 | R1 = 0.0229, wR2 = 0.0450                   |
| Absolute structure parameter         | 0.05(3)                                     |
| Largest diff. peak and hole          | 0.621 and -0.413 e.A^-3                     |

Table B.13. Experimental and statistical crystal data for 4.7

Table B.13. Continued

| Bond Lengths (Å)   |            |                    |            |
|--------------------|------------|--------------------|------------|
| Ag(1)-N(2)#1       | 2.186(2)   | Ag(1)-N(1)         | 2.188(2)   |
| Ag(1)-O(1)         | 2.498(2)   | F(1)-C(8)          | 1.320(4)   |
| F(2)-C(8)          | 1.322(4)   | F(3)-C(8)          | 1.344(4)   |
| O(1)-C(7)          | 1.228(3)   | O(2)-C(7)          | 1.237(3)   |
| N(1)-C(2)          | 1.343(4)   | N(1)-C(6)          | 1.348(4)   |
| N(2)-C(1)          | 1.476(3)   | N(2)-Ag(1)#2       | 2.186(2)   |
| N(2)-H(2A)         | 0.9200     | N(2)-H(2B)         | 0.9200     |
| C(1)-C(2)          | 1.508(4)   | C(1)-H(1A)         | 0.9900     |
| C(1)-H(1B)         | 0.9900     | C(2)-C(3)          | 1.393(4)   |
| C(3)-C(4)          | 1.379(4)   | C(3)-H(3)          | 0.9500     |
| C(4)-C(5)          | 1.385(4)   | C(4)-H(4)          | 0.9500     |
| C(5)- $C(6)$       | 1.382(4)   | C(5)-H(5)          | 0.9500     |
| C(6)-H(6)          | 0.9500     | C(7)-C(8)          | 1.549(4)   |
| Bond Angles (°)    |            |                    |            |
| N(2)#1-Ag(1)-N(1)  | 152.96(9)  | N(2)#1-Ag(1)-O(1)  | 94.27(8)   |
| N(1)-Ag(1)-O(1)    | 110.63(8)  | C(7)-O(1)-Ag(1)    | 130.17(19) |
| C(2)-N(1)-C(6)     | 119.0(2)   | C(2)-N(1)-Ag(1)    | 123.70(18) |
| C(6)-N(1)-Ag(1)    | 117.09(17) | C(1)-N(2)-Ag(1)#2  | 118.43(17) |
| C(1)-N(2)-H(2A)    | 107.7      | Ag(1)#2-N(2)-H(2A) | 107.7      |
| C(1)-N(2)-H(2B)    | 107.7      | Ag(1)#2-N(2)-H(2B) | 107.7      |
| H(2A)-N(2)-H(2B)   | 107.1      | N(2)-C(1)-C(2)     | 112.1(2)   |
| N(2)-C(1)-H(1A)    | 109.2      | C(2)-C(1)-H(1A)    | 109.2      |
| N(2)-C(1)-H(1B)    | 109.2      | C(2)-C(1)-H(1B)    | 109.2      |
| H(1A)-C(1)-H(1B)   | 107.9      | N(1)-C(2)-C(3)     | 121.3(2)   |
| N(1)-C(2)-C(1)     | 118.0(2)   | C(3)-C(2)-C(1)     | 120.7(3)   |
| C(4)-C(3)-C(2)     | 119.6(3)   | C(4)-C(3)-H(3)     | 120.2      |
| C(2)-C(3)-H(3)     | 120.2      | C(3)-C(4)-C(5)     | 118.9(3)   |
| C(3)-C(4)-H(4)     | 120.5      | C(5)-C(4)-H(4)     | 120.5      |
| C(6)-C(5)-C(4)     | 118.8(3)   | C(6)-C(5)-H(5)     | 120.6      |
| C(4)-C(5)-H(5)     | 120.6      | N(1)-C(6)-C(5)     | 122.3(3)   |
| N(1)-C(6)-H(6)     | 118.8      | C(5)-C(6)-H(6)     | 118.8      |
| O(1)-C(7)-O(2)     | 131.4(3)   | O(1)-C(7)-C(8)     | 112.6(3)   |
| O(2)-C(7)-C(8)     | 115.9(2)   | F(1)-C(8)-F(2)     | 107.4(3)   |
| F(1)-C(8)-F(3)     | 106.6(3)   | F(2)-C(8)-F(3)     | 105.4(2)   |
| F(1)-C(8)-C(7)     | 113.4(2)   | F(2)-C(8)-C(7)     | 112.9(2)   |
| F(3)-C(8)-C(7)     | 110.7(3)   |                    |            |
| Hydrogen Bonds (Å) |            |                    |            |
| N(2)-H(2A)O(2)     | 2.922(3)   | N(2)-H(2B)O(1)#3   | 2.904(3)   |
|                    |            |                    |            |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y + 1/2, -z + 1/2 #2 - x + 1, y - 1/2, -z + 1/2 #3 - x + 2, y - 1/2, -z + 1/2

0.9300

| Table B 14 | Experimental | and statistical | crystal | data for | 5.1.1 |
|------------|--------------|-----------------|---------|----------|-------|
| 14010 2.1  |              |                 |         |          |       |

| Empirical formula                               |                    | C14.38 H19.50 Ag2 B2.50 F8.63 N5.13 O    |                       |
|-------------------------------------------------|--------------------|------------------------------------------|-----------------------|
| Formula weight                                  |                    | 686.74                                   |                       |
| Temperature                                     |                    | 110(2) K                                 |                       |
| Wavelength                                      |                    | 0.71073 A                                |                       |
| Crystal system, space group                     |                    | Monoclinic, C2/m                         |                       |
| Unit cell dimensions                            |                    | $a = 135924(15) A \alpha = 90$           | ) deg                 |
|                                                 |                    | $h = 27.841(3) A$ $\beta = 113$          | 100(2) deg            |
|                                                 |                    | c = 132811(15)  A = 90                   | $\frac{100(2)}{400}$  |
| Volumo                                          |                    | $C = 15.2011(15) \text{ A } \gamma = 90$ | / ucg.                |
| 7 Coloulated density                            |                    | $4025.0(9) \text{ A} \ 5$                |                       |
| Z, Calculated defisity                          |                    | 8, 1.9/3 Mg/IIF 3                        |                       |
| Absorption coefficient                          |                    | 1./81 mm <sup>1</sup>                    |                       |
| F(000)                                          |                    | 2670                                     |                       |
| Crystal size                                    |                    | .128 x .091 x .062 mm                    |                       |
| $\Theta$ range for data collection              |                    | 2.85 to 25.68 deg.                       |                       |
| Limiting indices                                |                    | -16<=h<=16, -26<=k<=33                   | 3, <b>-</b> 16<=l<=16 |
| Reflections collected / unique                  |                    | 12024 / 4433 [R(int) = 0.0]              | 463]                  |
| Completeness to $\theta = 25.00$                |                    | 98.8 %                                   |                       |
| Absorption correction                           |                    | multi-scan (SADABS)                      |                       |
| Refinement method                               |                    | Full-matrix least-squares                | on F^2                |
| Data / restraints / parameters                  |                    | 4433 / 10 / 378                          |                       |
| Goodness-of-fit on F^2                          |                    | 1.037                                    |                       |
| Final R indices $[I > 2\sigma(I)]$              |                    | R1 = 0.0679, $wR2 = 0.173$               | 30                    |
| R indices (all data)                            |                    | R1 = 0.0980, wR2 = 0.195                 | 59                    |
| Largest diff. peak and hole                     |                    | 2.259 and -1.738 e.A^-3                  |                       |
| Pond Longths $(Å)$                              |                    |                                          |                       |
| Bolid Lenguis (A)                               |                    |                                          |                       |
| Ag(1)-N(1)                                      | 2.181(7)           | Ag(1)-N(3)                               | 2.183(7)              |
| Ag(1)-N(5)                                      | 2.515(9)           | Ag(1)-Ag(1)#1                            | 3.2896(14)            |
| Ag(2)-N(2)                                      | 2.146(7)           | Ag(2)-N(2)#2                             | 2.146(7)              |
| Ag(3)-N(4)                                      | 2.154(15)          | Ag(3)-N(4)#3                             | 2.154(15)             |
| N(4)-C(7)                                       | 1 365(19)          | N(4)-H(4A)                               | 0.9000                |
| N(4)-H(4B)                                      | 0.9000             | C(7)-C(8)                                | 1.480(18)             |
| C(7)-H(7A)                                      | 0.9700             | C(7)-H(7B)                               | 0.9700                |
| $A_{\sigma}(3A) - N(6A)$                        | 1.83(4)            | $A_{\sigma}(3A) - N(4A)$                 | 233(3)                |
| $\Delta \sigma(3\Delta) - N(\Delta \Delta) = 3$ | 233(3)             | $N(4\Delta) - H(4\Delta 1)$              | 0.9000                |
| N(AA) - H(AA2)                                  | 2.33(3)            | $N(4A)-\Pi(4A1)$<br>N(6A)-C(15A)         | 1.12(5)               |
| C(15A) C(16A)                                   | 1.43(5)            | C(16A) H(16A)                            | 0.0600                |
| C(15A) - C(10A)                                 | 1.43(3)            | C(16A) II(16A)                           | 0.9000                |
| O(2A) O(2A) #4                                  | 0.9000             | $C(10A) - \Pi(10C)$<br>D(1) E(1)         | 0.9000                |
| O(3A)-O(3A)#4                                   | 0.89(4)<br>1.25(2) | D(1) - F(1)<br>D(1) - F(2)               | 1.55(2)<br>1.20(2)    |
| B(1)-F(4)                                       | 1.55(2)            | B(1)-F(3)                                | 1.39(3)               |
| B(1)-F(2)                                       | 1.43(3)            | B(1A)-F(1A)                              | 1.32(2)               |
| B(1A)-F(4A)                                     | 1.34(2)            | B(1A)-F(3A)                              | 1.39(3)               |
| B(1A)-F(2A)                                     | 1.42(3)            | B(3)-F(9)#3                              | 1.297(16)             |
| B(3)-F(9)                                       | 1.297(16)          | B(3)-F(10)                               | 1.32(3)               |
| B(3)-F(8)                                       | 1.47(2)            | F(8A)-F(8A)#3                            | 1.01(6)               |
| F(8A)-F(9A)#3                                   | 1.27(5)            | F(9A)-F(8A)#3                            | 1.27(5)               |
| N(1)-C(4)                                       | 1.340(11)          | N(1)-C(3)                                | 1.361(11)             |
| N(2)-C(1)                                       | 1.463(12)          | N(2)-H(2A)                               | 0.9000                |
| N(2)-H(2B)                                      | 0.9000             | N(3)-C(9)                                | 1.317(12)             |
| N(3)-C(10)                                      | 1.331(12)          | N(5)-C(13)                               | 1.124(13)             |
| C(1)-C(2)                                       | 1.516(12)          | C(1)-H(1A)                               | 0.9700                |
| C(1)-H(1B)                                      | 0.9700             | C(2)-C(3)                                | 1.383(12)             |

1.392(12)

C(3)-H(3)

C(2)-C(6)

Table B.14. Continued

| C(4)-C(5)<br>C(5)-C(6)<br>C(6)-H(6)<br>C(8)-C(9)<br>C(10)-C(11)<br>C(11)-C(12)<br>C(12)-H(12)<br>C(14)-H(14C)<br>C(14)-H(14A)<br>F(7)-B(2)<br>F(6)-B(2)<br>B(2)-B(2)#5 | $\begin{array}{c} 1.388(13)\\ 1.377(12)\\ 0.9300\\ 1.385(13)\\ 1.400(14)\\ 1.367(16)\\ 0.9300\\ 0.9600\\ 0.9600\\ 1.51(3)\\ 1.28(3)\\ 0.87(4) \end{array}$ | C(4)-H(4)<br>C(5)-H(5)<br>C(8)-C(12)<br>C(9)-H(9)<br>C(10)-H(10)<br>C(11)-H(11)<br>C(13)-C(14)<br>C(14)-H(14B)<br>F(7)-B(2)#5<br>F(6)-B(2)#5<br>F(5)-B(2)<br>B(2)-F(7)#5 | $\begin{array}{c} 0.9300\\ 0.9300\\ 1.377(16)\\ 0.9300\\ 0.9300\\ 0.9300\\ 1.428(16)\\ 0.9600\\ 1.38(2)\\ 1.28(3)\\ 1.36(2)\\ 1.38(2)\\ \end{array}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bond Angles (°)                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                      |
| N(1)-Ag(1)-N(3)<br>N(3)-Ag(1)-N(5)<br>N(3)-Ag(1)-Ag(1)#1                                                                                                               | 164.3(3)<br>95.8(3)<br>68.27(18)                                                                                                                           | N(1)-Ag(1)-N(5)<br>N(1)-Ag(1)-Ag(1)#1<br>N(5)-Ag(1)-Ag(1)#1                                                                                                              | 99.9(3)<br>113.25(18)<br>82.5(2)                                                                                                                     |
| N(2)-Ag(2)-N(2)#2<br>C(7)-N(4)-Ag(3)<br>Ag(3)-N(4)-H(4A)<br>Ag(3)-N(4)-H(4B)<br>N(4)-C(7)-C(8)<br>C(8)-C(7)-H(7A)<br>C(8)-C(7)-H(7B)<br>N(6A)-Ag(3A)-N(4A)             | 172.7(4)<br>119.9(11)<br>107.4<br>107.4<br>122.2(13)<br>106.8<br>106.8<br>86.0(9)                                                                          | N(4)-Ag(3)-N(4)#3<br>C(7)-N(4)-H(4A)<br>C(7)-N(4)-H(4B)<br>H(4A)-N(4)-H(4B)<br>N(4)-C(7)-H(7A)<br>N(4)-C(7)-H(7B)<br>H(7A)-C(7)-H(7B)<br>N(6A)-Ag(3A)-<br>N(4A)#3        | 174.9(9)<br>107.4<br>107.4<br>106.9<br>106.8<br>106.8<br>106.6<br>86.0(8)                                                                            |
| N(4A)-Ag(3A)-N(4A)#3<br>Ag(3A)-N(4A)-H(4A2)<br>C(15A)-N(6A)-Ag(3A)<br>C(15A)-C(16A)-H(16A)                                                                             | 168.0(16)<br>108.9<br>172(3)<br>109.5                                                                                                                      | Ag(3A)-N(4A)-H(4A1)<br>H(4A1)-N(4A)-H(4A2)<br>N(6A)-C(15A)-C(16A)<br>C(15A)-C(16A)-<br>H(16B)                                                                            | 108.9<br>107.7<br>180(4)<br>109.5                                                                                                                    |
| H(16A)-C(16A)-H(16B)                                                                                                                                                   | 109.5                                                                                                                                                      | C(15A)-C(16A)-<br>H(16C)                                                                                                                                                 | 109.5                                                                                                                                                |
| H(16A)-C(16A)-H(16C)                                                                                                                                                   | 109.5                                                                                                                                                      | H(16C)<br>H(16B)-C(16A)-<br>H(16C)                                                                                                                                       | 109.5                                                                                                                                                |
| F(1)-B(1)-F(4)<br>F(4)-B(1)-F(3)<br>F(4)-B(1)-F(2)<br>F(1A)-B(1A)-F(4A)<br>F(4A)-B(1A)-F(3A)                                                                           | 112.9(18)<br>109.5(17)<br>107(2)<br>113(2)<br>113(2)                                                                                                       | F(1)-B(1)-F(3)F(1)-B(1)-F(2)F(3)-B(1)-F(2)F(1A)-B(1A)-F(3A)F(1A)-B(1A)-F(2A)                                                                                             | 111(2)<br>108.9(17)<br>106.3(15)<br>108(3)<br>109(2)                                                                                                 |
| F(4A)-B(1A)-F(2A)<br>F(9)#3-B(3)-F(9)<br>F(9)-B(3)-F(10)<br>F(9)-B(3)-F(8)                                                                                             | 108(3)<br>101(3)<br>112(2)<br>100.3(12)                                                                                                                    | F(3A)-B(1A)-F(2A)<br>F(9)#3-B(3)-F(10)<br>F(9)#3-B(3)-F(8)<br>F(10)-B(3)-F(8)                                                                                            | 104.7(19)<br>112(2)<br>100.3(13)<br>127(3)                                                                                                           |
| F(8A)#3-F(8A)-F(9A)#3<br>C(4)-N(1)-Ag(1)<br>C(1)-N(2)-Ag(2)<br>Ag(2)-N(2)-H(2A)<br>Ag(2)-N(2)-H(2B)<br>C(9)-N(3)-C(10)                                                 | 129(6)<br>122.5(6)<br>113.8(6)<br>108.8<br>108.8<br>117.2(8)                                                                                               | C(4)-N(1)-C(3)<br>C(3)-N(1)-Ag(1)<br>C(1)-N(2)-H(2A)<br>C(1)-N(2)-H(2B)<br>H(2A)-N(2)-H(2B)<br>C(9)-N(3)-Ag(1)                                                           | 117.3(7)<br>120.1(6)<br>108.8<br>108.8<br>107.7<br>121.8(6)                                                                                          |
| C(10)-N(3)-Ag(1)<br>N(2)-C(1)-C(2)                                                                                                                                     | 120.7(6)<br>113.7(8)                                                                                                                                       | C(13)-N(5)-Ag(1)<br>N(2)-C(1)-H(1A)                                                                                                                                      | 165.5(9)<br>108.8                                                                                                                                    |

Table B.14. Continued

| C(2)-C(1)-H(1A)     | 108.8     | N(2)-C(1)-H(1B)     | 108.8     |
|---------------------|-----------|---------------------|-----------|
| C(2)-C(1)-H(1B)     | 108.8     | H(1A)-C(1)-H(1B)    | 107.7     |
| C(3)-C(2)-C(6)      | 117.4(8)  | C(3)-C(2)-C(1)      | 120.0(8)  |
| C(6)-C(2)-C(1)      | 122.6(8)  | N(1)-C(3)-C(2)      | 123.5(8)  |
| N(1)-C(3)-H(3)      | 118.3     | C(2)-C(3)-H(3)      | 118.3     |
| N(1)-C(4)-C(5)      | 123.1(8)  | N(1)-C(4)-H(4)      | 118.5     |
| C(5)-C(4)-H(4)      | 118.5     | C(6)-C(5)-C(4)      | 118.5(8)  |
| C(6)-C(5)-H(5)      | 120.8     | C(4)-C(5)-H(5)      | 120.8     |
| C(5)-C(6)-C(2)      | 120.2(8)  | C(5)-C(6)-H(6)      | 119.9     |
| C(2)-C(6)-H(6)      | 119.9     | C(12)-C(8)-C(9)     | 117.0(10) |
| C(12)-C(8)-C(7)     | 120.6(11) | C(9)-C(8)-C(7)      | 122.4(12) |
| N(3)-C(9)-C(8)      | 125.4(9)  | N(3)-C(9)-H(9)      | 117.3     |
| C(8)-C(9)-H(9)      | 117.3     | N(3)-C(10)-C(11)    | 121.7(10) |
| N(3)-C(10)-H(10)    | 119.2     | C(11)-C(10)-H(10)   | 119.2     |
| C(12)-C(11)-C(10)   | 119.7(10) | C(12)-C(11)-H(11)   | 120.1     |
| C(10)-C(11)-H(11)   | 120.1     | C(11)-C(12)-C(8)    | 119.0(9)  |
| C(11)-C(12)-H(12)   | 120.5     | C(8)-C(12)-H(12)    | 120.5     |
| N(5)-C(13)-C(14)    | 177.9(14) | C(13)-C(14)-H(14C)  | 109.5     |
| C(13)-C(14)-H(14B)  | 109.5     | H(14C)-C(14)-H(14B) | 109.5     |
| C(13)-C(14)-H(14A)  | 109.5     | H(14C)-C(14)-H(14A) | 109.5     |
| H(14B)-C(14)-H(14A) | 109.5     | B(2)#5-F(7)-B(2)    | 34.5(14)  |
| B(2)#5-F(6)-B(2)    | 40(2)     | B(2)#5-B(2)-F(6)    | 70.2(11)  |
| B(2)#5-B(2)-F(5)    | 165(5)    | F(6)-B(2)-F(5)      | 105(2)    |
| B(2)#5-B(2)-F(7)#5  | 81(3)     | F(6)-B(2)-F(7)#5    | 118.4(19) |
| F(5)-B(2)-F(7)#5    | 113.2(17) | B(2)#5-B(2)-F(7)    | 64(3)     |
| F(6)-B(2)-F(7)      | 109.7(17) | F(5)-B(2)-F(7)      | 105.8(19) |
| F(7)#5-B(2)-F(7)    | 104(2)    |                     |           |
| Under an Danda (Å)  |           |                     |           |
| Hydrogen Bonds (A)  |           |                     |           |
| N(4)-H(4A)F(5)#3    | 3.00(2)   | N(4)-H(4A)F(7)#3    | 3.258(18) |
| N(4)-H(4B)F(2)#6    | 2.94(2)   | N(4)-H(4B)F(3)#6    | 3.27(3)   |
| N(4A)-H(4A2)F(3A)#7 | 3.06(4)   | N(2)-H(2A)F(7)#8    | 3.054(10) |
| N(2)-H(2A)F(9)#8    | 3.129(15) | N(2)-H(2B)F(2A)#9   | 2.914(17) |
| N(2)-H(2B)F(2)#9    | 3.063(13) | N(2)-H(2B)F(5)#7    | 3.048(16) |
|                     |           |                     |           |

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y,-z+3 #2 x,-y+3,z #3 x,-y+2,z #4 -x+3,-y+2,-z+4 #5 -x+2,y,-z+2 #6 -x+3/2,y+1/2,-z+2 #7 x+1/2,y+1/2,z+1 #8 -x+5/2,y+1/2,z+3 #9 -x+2,-y+2,-z+3

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions |                      | C56 H76 Ag8 B8 F32 N20<br>2586.81<br>110(2) K<br>0.71073 A<br>Monoclinic, P2(1)/c<br>$a = 7.8143(7) A  \alpha = 90 \text{ deg}$<br>$b = 25.736(2) A  \beta = 96.38$ | g.<br>31(2) deg.     |
|-------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>T</b> T 1                                                                                                            |                      | $c = 21.1937(18) \text{ A} \gamma = 90 c$                                                                                                                           | leg.                 |
| Volume<br>Z. Calaulatad danaity                                                                                         |                      | $4235.9(6) A^{3}$                                                                                                                                                   |                      |
| Absorption coefficient                                                                                                  |                      | 2, 2.028  Wg/III 3<br>1 929 mm^1                                                                                                                                    |                      |
| F(000)                                                                                                                  |                      | 2512                                                                                                                                                                |                      |
| Crystal size                                                                                                            |                      | $0.200 \times 0.210 \times 0.350$ mm                                                                                                                                |                      |
| $\Theta$ range for data collection                                                                                      |                      | 1.58 to 26.35 deg.                                                                                                                                                  |                      |
| Limiting indices                                                                                                        |                      | -9<=h<=8, -28<=k<=32, -20                                                                                                                                           | 6<=1<=26             |
| Reflections collected / unique                                                                                          |                      | 36620 / 8655 [R(int) = 0.04                                                                                                                                         | 36]                  |
| Completeness to $\theta = 26.35$                                                                                        |                      | 100.0 %                                                                                                                                                             | -                    |
| Absorption correction                                                                                                   |                      | multi-scan (SADABS)                                                                                                                                                 |                      |
| Refinement method                                                                                                       |                      | Full-matrix least-squares on                                                                                                                                        | n F^2                |
| Data / restraints / parameters                                                                                          |                      | 8655 / 6 / 574                                                                                                                                                      |                      |
| Goodness-ot-tit on $F^{2}$                                                                                              |                      | 1.128<br>1.120 = 0.0520 = 0.1150                                                                                                                                    |                      |
| Final R indices $[1>2\sigma(1)]$                                                                                        |                      | RI = 0.0530, WR2 = 0.1156<br>R1 = 0.0655, WR2 = 0.1215                                                                                                              |                      |
| Largest diff neak and hole                                                                                              |                      | $R_1 = 0.0055$ , $WR_2 = 0.1215$<br>2 877 and -2 169 e $\Delta^{-3}$                                                                                                |                      |
| Bond Lengths (Å)                                                                                                        |                      |                                                                                                                                                                     |                      |
| Ag(1)-N(1)                                                                                                              | 2.130(5)             | Ag(1)-N(3)                                                                                                                                                          | 2.132(5)             |
| Ag(2)-N(5)                                                                                                              | 2.111(6)             | Ag(2)-N(7)                                                                                                                                                          | 2.130(6)             |
| Ag(3)-N(8)                                                                                                              | 2.142(5)             | Ag(3)-N(4)                                                                                                                                                          | 2.145(5)             |
| Ag(3)-N(10)                                                                                                             | 2.609(7)             | Ag(3)-Ag(4)                                                                                                                                                         | 3.2543(8)            |
| Ag(4)-N(2)                                                                                                              | 2.189(5)             | Ag(4)-N(6)                                                                                                                                                          | 2.195(5)             |
| Ag(4)-N(9)                                                                                                              | 2.374(7)             | F(1)-B(1)<br>F(2) P(1)                                                                                                                                              | 1.398(8)             |
| F(2)-B(1)<br>F(4) P(1)                                                                                                  | 1.391(9)             | F(3)-B(1)<br>F(5) P(2)                                                                                                                                              | 1.38/(8)<br>1.405(8) |
| F(4)-B(1)<br>F(6)-B(2)                                                                                                  | 1.402(8)<br>1 402(8) | F(3)-B(2)<br>F(7)-B(2)                                                                                                                                              | 1.403(8)<br>1.401(8) |
| F(8)-B(2)                                                                                                               | 1.402(8)<br>1.374(8) | F(9)-B(3)                                                                                                                                                           | 1 378(8)             |
| F(10)-B(3)                                                                                                              | 1.396(9)             | F(11)-B(3)                                                                                                                                                          | 1.394(8)             |
| F(12)-B(3)                                                                                                              | 1.372(9)             | F(15)-B(4)                                                                                                                                                          | 1.370(9)             |
| B(4)-F(14)                                                                                                              | 1.362(10)            | B(4)-F(13)                                                                                                                                                          | 1.364(9)             |
| B(4)-F(16)                                                                                                              | 1.370(9)             | N(1)-C(1)                                                                                                                                                           | 1.479(8)             |
| N(1)-H(1A)                                                                                                              | 0.9000               | N(1)-H(1B)                                                                                                                                                          | 0.9000               |
| N(2)-C(4)                                                                                                               | 1.349(8)             | N(2)-C(3)                                                                                                                                                           | 1.351(8)             |
| N(3)-C(7)                                                                                                               | 1.480(7)             | N(3)-H(3A)                                                                                                                                                          | 0.9000               |
| N(3)-H(3B)                                                                                                              | 0.9000               | N(4)-C(9)                                                                                                                                                           | 1.348(7)             |
| N(4)-C(10)                                                                                                              | 1.356(8)             | N(5)-C(13)                                                                                                                                                          | 1.464(9)             |
| N(5)-H(5A)                                                                                                              | 0.9000               | N(5)-H(5B)                                                                                                                                                          | 0.9000               |
| N(0)-C(15)<br>N(7)-C(10)                                                                                                | 1.342(8)<br>1.477(8) | N(6)-C(16)<br>N(7) H(7A)                                                                                                                                            | 1.349(8)             |
| N(7)-V(17)<br>N(7)-H(7R)                                                                                                | 1.477(8)             | N(7) - H(7A)<br>N(8) - C(22)                                                                                                                                        | 1 3/2(8)             |
| N(8)-C(21)                                                                                                              | 1 355(8)             | N(9)-C(25)                                                                                                                                                          | 1 137(10)            |
| N(10) - C(27)                                                                                                           | 1.121(10)            | C(1)-C(2)                                                                                                                                                           | 1.500(8)             |
| C(1)-H(1C)                                                                                                              | 0.9700               | C(1) - H(1D)                                                                                                                                                        | 0.9700               |
| C(2)-C(3)                                                                                                               | 1.388(8)             | C(2)-C(6)                                                                                                                                                           | 1.398(8)             |
|                                                                                                                         | · /                  |                                                                                                                                                                     | · · ·                |
Table B.15. Continued

| C(3)-H(3)                                              | 0.9300                 | C(4)-C(5)                                    | 1.370(9)                 |
|--------------------------------------------------------|------------------------|----------------------------------------------|--------------------------|
| C(4)-H(4)                                              | 0.9300                 | C(5)-C(6)                                    | 1 384(9)                 |
| C(5)-H(5)                                              | 0.9300                 | C(6)-H(6)                                    | 0.9300                   |
| C(7)- $C(8)$                                           | 1 509(8)               | C(7)-H(7C)                                   | 0 9700                   |
| C(7)-H(7D)                                             | 0.9700                 | C(8)-C(12)                                   | 1 390(8)                 |
| C(8)-C(9)                                              | 1 390(8)               | C(9) - H(9)                                  | 0.9300                   |
| C(10)-C(11)                                            | 1.373(0)               | C(10)-H(10)                                  | 0.9300                   |
| C(11)-C(12)                                            | 1.373(9)<br>1 388(0)   | C(11)-H(11)                                  | 0.9300                   |
| C(12) H(12)                                            | 0.0300                 | C(12) C(14)                                  | 1 511(0)                 |
| $C(12)$ - $\Pi(12)$<br>$C(13) \Pi(13A)$                | 0.9300                 | C(13) - C(14)<br>C(12) + U(13P)              | 1.311(9)<br>0.0700       |
| $C(13)-\Pi(13A)$<br>C(14) C(15)                        | 1.270(0)               | $C(13) - \Pi(13B)$<br>C(14) C(18)            | 1.205(10)                |
| C(14)-C(15)                                            | 1.579(9)               | C(14) - C(18)                                | 1.393(10)<br>1.270(0)    |
| $C(15) - \Pi(15)$                                      | 0.9300                 | C(10)-C(17)<br>C(17) $C(18)$                 | 1.370(9)<br>1.282(0)     |
| $C(10)$ - $\Pi(10)$                                    | 0.9300                 | C(17) - C(18)                                | 1.383(9)                 |
| C(17)-H(17)                                            | 0.9300                 | C(18) - H(18)                                | 0.9300                   |
| C(19)-C(20)                                            | 1.512(9)               | C(19)-H(19A)                                 | 0.9700                   |
| C(19)-H(19B)                                           | 0.9700                 | C(20)-C(24)                                  | 1.380(9)                 |
| C(20)- $C(21)$                                         | 1.388(9)               | C(21)-H(21)                                  | 0.9300                   |
| C(22)-C(23)                                            | 1.3/9(9)               | C(22)-H(22)                                  | 0.9300                   |
| C(23)-C(24)                                            | 1.395(9)               | C(23)-H(23)                                  | 0.9300                   |
| C(24)-H(24)                                            | 0.9300                 | C(25)-C(26)                                  | 1.468(11)                |
| C(26)-H(26A)                                           | 0.9600                 | C(26)-H(26B)                                 | 0.9600                   |
| C(26)-H(26C)                                           | 0.9600                 | C(27)-C(28)                                  | 1.469(11)                |
| C(28)-H(28A)                                           | 0.9600                 | C(28)-H(28B)                                 | 0.9600                   |
| C(28)-H(28C)                                           | 0.9600                 |                                              |                          |
| Rond Angles (°)                                        |                        |                                              |                          |
| Bolid Aligies ()                                       |                        |                                              |                          |
| $N(1) - \Lambda \alpha(1) - N(3)$                      | 174.4(2)               | F(11) - B(3) - F(10)                         | 108 8(6)                 |
| $N(5) A \alpha(2) N(7)$                                | 174.4(2)<br>174.4(2)   | $N(8) A \alpha(2) N(4)$                      | 163.6(0)                 |
| N(8) A g(2) N(10)                                      | 1/4.4(2)<br>04.8(2)    | $N(4) \land g(3) - N(4)$                     | 103.0(2)<br>101.5(2)     |
| N(8) A g(3) A g(4)                                     | 94.0(2)<br>84.16(14)   | N(4) - Ag(3) - N(10)<br>N(4) - Ag(3) - Ag(4) | 101.3(2)<br>104.07(14)   |
| N(0) - Ag(3) - Ag(4)<br>N(10) Ag(3) Ag(4)              | 67.10(14)              | N(4) - Ag(3) - Ag(4)<br>N(2) - Ag(4) - N(6)  | 104.97(14)<br>142.52(10) |
| N(10) - Ag(3) - Ag(4)<br>N(2) - Ag(4) - N(0)           | 102.0(2)               | N(2) - Ag(4) - N(0)                          | 145.55(19)<br>100.5(2)   |
| $N(2) \land \alpha(4) \land \alpha(2)$                 | 102.7(2)<br>74.21(12)  | N(6) - Ag(4) - N(9)<br>N(6) - Ag(4) - Ag(2)  | 109.3(2)<br>102.80(14)   |
| N(2)-Ag(4)-Ag(5)<br>$N(0)$ A $\sigma(4)$ A $\sigma(2)$ | (4.31(13))             | N(0)-Ag(4)-Ag(5)<br>E(14) D(4) E(12)         | 105.89(14)               |
| N(9)-Ag(4)-Ag(3)                                       | 118.10(18)<br>100.5(9) | F(14)-B(4)-F(15)<br>F(12) P(4) F(16)         | 100.8(7)                 |
| F(14)-B(4)-F(16)                                       | 109.5(8)               | F(13)-B(4)-F(16)                             | 111.3(7)                 |
| F(14)-B(4)-F(15)                                       | 107.3(7)               | F(13)-B(4)-F(15)                             | 112.5(7)                 |
| F(16)-B(4)-F(15)                                       | 109.3(6)               | C(1)-N(1)-Ag(1)                              | 112.9(4)                 |
| C(1)-N(1)-H(1A)                                        | 109.0                  | Ag(1)-N(1)-H(1A)                             | 109.0                    |
| C(1)-N(1)-H(1B)                                        | 109.0                  | Ag(1)-N(1)-H(1B)                             | 109.0                    |
| H(1A)-N(1)-H(1B)                                       | 107.8                  | C(4)-N(2)-C(3)                               | 117.6(5)                 |
| C(4)-N(2)-Ag(4)                                        | 122.4(4)               | C(3)-N(2)-Ag(4)                              | 119.9(4)                 |
| C(7)-N(3)-Ag(1)                                        | 114.8(4)               | C(7)-N(3)-H(3A)                              | 108.6                    |
| Ag(1)-N(3)-H(3A)                                       | 108.6                  | C(7)-N(3)-H(3B)                              | 108.6                    |
| Ag(1)-N(3)-H(3B)                                       | 108.6                  | H(3A)-N(3)-H(3B)                             | 107.6                    |
| C(9)-N(4)-C(10)                                        | 118.3(5)               | C(9)-N(4)-Ag(3)                              | 120.3(4)                 |
| C(10)-N(4)-Ag(3)                                       | 121.3(4)               | C(13)-N(5)-Ag(2)                             | 119.3(5)                 |
| C(13)-N(5)-H(5A)                                       | 107.5                  | Ag(2)-N(5)-H(5A)                             | 107.5                    |
| C(13)-N(5)-H(5B)                                       | 107.5                  | Ag(2)-N(5)-H(5B)                             | 107.5                    |
| H(5A)-N(5)-H(5B)                                       | 107.0                  | C(15)-N(6)-C(16)                             | 118.0(5)                 |
| C(15)-N(6)-Ag(4)                                       | 119.4(4)               | C(16)-N(6)-Ag(4)                             | 122.4(4)                 |
| C(19)-N(7)-Ag(2)                                       | 114.7(4)               | C(19)-N(7)-H(7A)                             | 108.6                    |
| Ag(2)-N(7)-H(7A)                                       | 108.6                  | C(19)-N(7)-H(7B)                             | 108.6                    |
| Ag(2)-N(7)-H(7B)                                       | 108.6                  | H(7A)-N(7)-H(7B)                             | 107.6                    |
|                                                        |                        |                                              |                          |

Table B.15. Continued

| C(22)-N(8)-C(21)                                        | 117.8(6)               | C(22)-N(8)-Ag(3)                              | 124.2(5)             |
|---------------------------------------------------------|------------------------|-----------------------------------------------|----------------------|
| C(21)-N(8)-Ag(3)                                        | 118.0(4)               | C(25)-N(9)-Ag(4)                              | 173.3(7)             |
| C(27)-N(10)-Ag(3)                                       | 157 5(8)               | N(1)-C(1)-C(2)                                | 112 9(5)             |
| N(1)-C(1)-H(1C)                                         | 109.0                  | C(2)-C(1)-H(1C)                               | 109.0                |
| N(1)-C(1)-H(1D)                                         | 109.0                  | C(2)- $C(1)$ - $H(1D)$                        | 109.0                |
| H(1C)-C(1)-H(1D)                                        | 107.8                  | C(3)-C(2)-C(6)                                | 116 5(6)             |
| C(3)-C(2)-C(1)                                          | 119 3(5)               | C(6)-C(2)-C(1)                                | 124 2(6)             |
| N(2)-C(3)-C(2)                                          | 124 2(6)               | N(2)-C(3)-H(3)                                | 117.9                |
| C(2)-C(3)-H(3)                                          | 117.9                  | N(2) - C(4) - C(5)                            | 122 3(6)             |
| N(2)-C(4)-H(4)                                          | 117.5                  | C(5)-C(4)-H(4)                                | 118.8                |
| C(4)-C(5)-C(6)                                          | 119.5(6)               | C(4)-C(5)-H(5)                                | 120.2                |
| C(4) - C(5) - H(5)                                      | 120.2                  | C(5)-C(6)-C(2)                                | 110 0(6)             |
| C(5)-C(6)-H(6)                                          | 120.2                  | C(2)-C(6)-H(6)                                | 120.1                |
| N(3) - C(7) - C(8)                                      | 120.1<br>113 $A(5)$    | N(3) - C(7) - H(7C)                           | 108.0                |
| $\Gamma(3) - C(7) - C(8)$<br>$\Gamma(8) - C(7) - H(7C)$ | 108.0                  | N(3)-C(7)-H(7D)                               | 108.9                |
| C(8)-C(7)-H(7D)                                         | 108.9                  | H(7C)-C(7)-H(7D)                              | 107.7                |
| C(12) C(8) C(9)                                         | 100.9<br>117.7(5)      | C(12) C(8) C(7)                               | 107.7                |
| C(12) - C(8) - C(3)                                     | 117.7(5)<br>122 $A(5)$ | N(4) C(9) C(8)                                | 119.9(3)<br>123.0(5) |
| N(4) C(0) H(0)                                          | 122.4(3)               | $\Gamma(4) - C(3) - C(8)$                     | 123.0(3)             |
| N(4) - C(10) - C(11)                                    | 110.5                  | N(4) C(10) H(10)                              | 110.5                |
| N(4)-C(10)-C(11)                                        | 122.0(0)               | $\Gamma(4)$ - $C(10)$ - $\Pi(10)$             | 119.0<br>110.2(6)    |
| C(10) - C(10) - H(10)                                   | 119.0                  | C(10)- $C(11)$ - $C(12)C(12)$ $C(11)$ $H(11)$ | 119.5(0)             |
| $C(10)-C(11)-\Pi(11)$<br>C(11)-C(12)-C(8)               | 120.4                  | $C(12)$ - $C(11)$ - $\Pi(11)$                 | 120.4                |
| C(11)-C(12)-C(8)                                        | 119.7(0)               | $V(11)-C(12)-\Pi(12)$                         | 120.1                |
| $V(6)-V(12)-\Pi(12)$<br>$V(5)-V(12)-\Pi(12A)$           | 120.1                  | N(3)-C(13)-C(14)<br>C(14)-C(12)-U(12A)        | 111.9(0)             |
| $N(5) - C(12) - \Pi(12A)$                               | 109.2                  | $C(14) - C(13) - \Pi(13A)$                    | 109.2                |
| N(5)-C(13)-H(13B)                                       | 109.2                  | C(14)-C(13)-H(13B)                            | 109.2                |
| H(13A)-C(13)-H(13B)                                     | 107.9                  | C(13)-C(14)-C(18)                             | 11/.4(6)<br>122.2(6) |
| V(15)-V(14)-V(15)                                       | 119.5(0)               | V(18)-V(14)-V(15)                             | 123.3(0)             |
| N(6)-C(15)-C(14)                                        | 123.6(6)               | N(6)-C(15)-H(15)                              | 118.2                |
| C(14)-C(15)-H(15)                                       | 118.2                  | N(6)-C(16)-C(17)                              | 122.3(6)             |
| N(6)-C(16)-H(16)                                        | 118.9                  | C(1/)-C(16)-H(16)                             | 118.9                |
| C(16)-C(17)-C(18)                                       | 119.2(6)               | C(16)-C(17)-H(17)                             | 120.4                |
| C(18)-C(17)-H(17)                                       | 120.4                  | C(17)-C(18)-C(14)                             | 119.5(6)             |
| C(1/)-C(18)-H(18)                                       | 120.3                  | C(14)-C(18)-H(18)                             | 120.3                |
| N(7)-C(19)-C(20)                                        | 111.9(5)               | N(7)-C(19)-H(19A)                             | 109.2                |
| C(20)-C(19)-H(19A)                                      | 109.2                  | N(7)-C(19)-H(19B)                             | 109.2                |
| C(20)-C(19)-H(19B)                                      | 109.2                  | H(19A)-C(19)-H(19B)                           | 107.9                |
| C(24)-C(20)-C(21)                                       | 117.6(6)               | C(24)-C(20)-C(19)                             | 125.0(6)             |
| C(21)-C(20)-C(19)                                       | 117.4(5)               | N(8)-C(21)-C(20)                              | 123.3(6)             |
| N(8)-C(21)-H(21)                                        | 118.3                  | C(20)-C(21)-H(21)                             | 118.3                |
| N(8)-C(22)-C(23)                                        | 122.7(6)               | N(8)-C(22)-H(22)                              | 118.6                |
| C(23)-C(22)-H(22)                                       | 118.6                  | C(22)-C(23)-C(24)                             | 118.5(6)             |
| C(22)-C(23)-H(23)                                       | 120.7                  | C(24)-C(23)-H(23)                             | 120.7                |
| C(20)-C(24)-C(23)                                       | 120.0(6)               | C(20)-C(24)-H(24)                             | 120.0                |
| C(23)-C(24)-H(24)                                       | 120.0                  | N(9)-C(25)-C(26)                              | 179.0(8)             |
| C(25)-C(26)-H(26A)                                      | 109.5                  | C(25)-C(26)-H(26B)                            | 109.5                |
| H(26A)-C(26)-H(26B)                                     | 109.5                  | C(25)-C(26)-H(26C)                            | 109.5                |
| H(26A)-C(26)-H(26C)                                     | 109.5                  | H(26B)-C(26)-H(26C)                           | 109.5                |
| N(10)-C(27)-C(28)                                       | 179.8(12)              | C(27)-C(28)-H(28A)                            | 109.5                |
| C(27)-C(28)-H(28B)                                      | 109.5                  | H(28A)-C(28)-H(28B)                           | 109.5                |
| C(27)-C(28)-H(28C)                                      | 109.5                  | H(28A)-C(28)-H(28C)                           | 109.5                |
| H(28B)-C(28)-H(28C)                                     | 109.5                  | F(3)-B(1)-F(2)                                | 110.2(6)             |
| F(3)-B(1)-F(1)                                          | 109.9(5)               | F(2)-B(1)-F(1)                                | 110.4(5)             |
| F(3)-B(1)-F(4)                                          | 108.5(5)               | F(2)-B(1)-F(4)                                | 109.1(5)             |

Table B.15. Continued

| F(1)-B(1)-F(4)     | 108.7(5)  | F(8)-B(2)-F(7)    | 109.9(5) |
|--------------------|-----------|-------------------|----------|
| F(8)-B(2)-F(6)     | 110.5(5)  | F(7)-B(2)-F(6)    | 109.1(5) |
| F(8)-B(2)-F(5)     | 110.0(5)  | F(7)-B(2)-F(5)    | 108.7(5) |
| F(6)-B(2)-F(5)     | 108.6(5)  | F(12)-B(3)-F(9)   | 111.2(6) |
| F(12)-B(3)-F(11)   | 109.3(6)  | F(9)-B(3)-F(11)   | 108.9(6) |
| F(12)-B(3)-F(10)   | 108.6(6)  | F(9)-B(3)-F(10)   | 110.0(6) |
| Hydrogen Bonds (Å) |           |                   |          |
| N(1)-H(1A)F(3)#1   | 3.051(6)  | N(1)-H(1A)F(4)#1  | 3.038(6) |
| N(1)-H(1B)F(6)#2   | 3.175(6)  | N(3)-H(3B)F(2)#3  | 3.080(6) |
| N(3)-H(3A)F(5)#3   | 2.961(6)  | N(3)-H(3B)F(6)#1  | 3.205(6) |
| N(5)-H(5B)F(10)#1  | 3.360(7)  | N(5)-H(5B)F(11)#1 | 2.981(7) |
| N(5)-H(5A)F(16)#4  | 3.060(10) | N(7)-H(7B)F(10)#4 | 2.988(7) |
| N(7)-H(7A)F(16)#1  | 2.994(9)  |                   |          |
|                    |           |                   |          |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+3/2 #2 -x,y+1/2,-z+3/2 #3 x,-y+3/2,z-1/2 #4 x+1,-y+3/2,z+1/2

| Empirical formula                    | C18 H24 Ag2 B2 F8 N6                          |
|--------------------------------------|-----------------------------------------------|
| Formula weight                       | 713.79                                        |
| Temperature                          | 110(2) K                                      |
| Wavelength                           | 0.71073 A                                     |
| Crystal system, space group          | Triclinic, P1                                 |
| Unit cell dimensions                 | $a = 6.8504(10) A$ $\alpha = 110.934(6) deg.$ |
|                                      | $b = 8.4092(12) A$ $\beta = 97.226(6) deg.$   |
|                                      | $c = 11.5982(17) A \gamma = 96.238(6) deg.$   |
| Volume                               | 610.51(15) A^3                                |
| Z, Calculated density                | 1, 1.941 Mg/m^3                               |
| Absorption coefficient               | 1.685 mm^-1                                   |
| F(000)                               | 350                                           |
| Crystal size                         | 0.35 x 0.21 x 0.20 mm                         |
| $\theta$ range for data collection   | 1.91 to 26.53 deg.                            |
| Limiting indices                     | -6<=h<=8, -10<=k<=10, -14<=l<=14              |
| Reflections collected / unique       | 15095 / 4220 [R(int) = 0.0259]                |
| Completeness to $\theta = 26.53$     | 97.5 %                                        |
| Absorption correction                | multi-scan (SADABS)                           |
| Max. and min. transmission           | 0.7261 and 0.5901                             |
| Refinement method                    | Full-matrix least-squares on F <sup>2</sup>   |
| Data / restraints / parameters       | 4220 / 3 / 325                                |
| Goodness-of-fit on F^2               | 1.050                                         |
| Final R indices $[I \ge 2\sigma(I)]$ | R1 = 0.0199, $wR2 = 0.0498$                   |
| R indices (all data)                 | R1 = 0.0201, $wR2 = 0.0500$                   |
| Absolute structure parameter         | 0.03(2)                                       |
| Largest diff. peak and hole          | 0.610 and -0.574 e.A^-3                       |

| Table B.16.  | Experimental | and sta | atistical | crystal   | data fo | or 5.2 |
|--------------|--------------|---------|-----------|-----------|---------|--------|
| 1 aoie D.10. | Emperimental | and bu  | austical  | or y brur | aana 10 |        |

233

| Bond Lengths (Å)                     |                      |                             |                      |
|--------------------------------------|----------------------|-----------------------------|----------------------|
| Ag(1)-N(5)                           | 2.235(3)             | Ag(1)-N(4)                  | 2.246(3)             |
| Ag(1)-N(6)#1                         | 2.265(3)             | Ag(2)-N(3)                  | 2.222(4)             |
| Ag(2)-N(1)#2                         | 2.246(2)             | Ag(2)-N(2)                  | 2.262(3)             |
| F(1)-B(1)                            | 1.376(5)             | F(2)-B(1)                   | 1.378(6)             |
| F(3)-B(1)                            | 1.373(5)             | F(4)-B(1)                   | 1.355(7)             |
| F(5)-B(2)                            | 1.394(5)             | F(6)-B(2)                   | 1.387(4)             |
| F(7)-B(2)                            | 1.385(5)             | F(8)-B(2)                   | 1.375(5)             |
| N(1)-C(1)                            | 1.473(4)             | N(1)-Ag(2)#3                | 2.246(2)             |
| N(1)-H(1C)                           | 0.9000               | N(1)-H(1D)                  | 0.9001               |
| N(2)-C(4)                            | 1.332(5)             | N(2)-C(3)                   | 1.345(4)             |
| N(3)-C(7)                            | 1 325(8)             | N(3)-H(3A)                  | 0 9000               |
| N(3)-H(3B)                           | 0 9000               | N(4)-C(9)                   | 1 328(4)             |
| N(4)-C(10)                           | 1 346(4)             | N(5)-C(17)                  | 1.328(5)             |
| N(5)-C(13)                           | 1.347(4)             | N(6) - C(18)                | 1.528(5)<br>1.468(5) |
| N(6) - Ag(1) # 4                     | 2 265(3)             | N(6) - H(6A)                | 0,9000               |
| N(6)-H(6B)                           | 0.9000               | C(1)-C(2)                   | 1.512(4)             |
| C(1)-H(1A)                           | 0.9000               | C(1)-E(2)                   | 0.9900               |
| $C(1) - \Pi(1X)$<br>C(2) - C(3)      | 1 380(5)             | C(2)-C(6)                   | 1.384(5)             |
| C(2) - C(3)<br>C(3) + C(3)           | 0.0500               | C(2) - C(0)<br>C(4) - C(5)  | 1.30+(3)<br>1.378(5) |
| $C(3)$ - $\Pi(3)$<br>$C(4)$ $\Pi(4)$ | 0.9500               | C(4) - C(5)                 | 1.378(3)<br>1.380(4) |
| $C(4) - \Pi(4)$<br>$C(5) \Pi(5)$     | 0.9500               | C(5)-C(0)                   | 1.380(4)             |
| $C(3)$ - $\Pi(3)$                    | 0.9300               | C(0) - H(0)<br>C(7) - H(7A) | 0.9300               |
| C(7) - C(8)                          | 1.317(3)             | $C(7) - \Pi(7A)$            | 0.9900<br>1 282(5)   |
| $C(7) - \Pi(7B)$                     | 0.9900               | C(8)-C(9)                   | 1.382(3)             |
| C(8)-C(12)                           | 1.398(3)             | C(9)-H(9)                   | 0.9500               |
| C(10)- $C(11)$                       | 1.30/(5)<br>1.270(5) | C(10)-H(10)                 | 0.9500               |
| C(11)-C(12)                          | 1.370(5)             | C(11)-H(11)                 | 0.9500               |
| C(12)-H(12)                          | 0.9500               | C(13)-C(14)                 | 1.378(5)             |
| C(13)-H(13)                          | 0.9500               | C(14)-C(15)                 | 1.3/1(6)             |
| C(14)-H(14)                          | 0.9500               | C(15)-C(16)                 | 1.394(5)             |
| C(15)-H(15)                          | 0.9500               | C(16)-C(17)                 | 1.391(5)             |
| C(16)-C(18)                          | 1.503(5)             | C(17)-H(17)                 | 0.9500               |
| C(18)-H(18A)                         | 0.9900               | C(18)-H(18B)                | 0.9900               |
| Bond Angles (°)                      |                      |                             |                      |
| N(5)-Ag(1)-N(4)                      | 121.84(10)           | N(5)-Ag(1)-N(6)#1           | 119.78(10)           |
| N(4)-Ag(1)-N(6)#1                    | 117.26(10)           | N(3)-Ag(2)-N(1)#2           | 124.0(2)             |
| N(3)-Ag(2)-N(2)                      | 119.5(2)             | N(1)#2-Ag(2)-N(2)           | 116.37(10)           |
| C(1)-N(1)-Ag(2)#3                    | 114.85(19)           | C(1)-N(1)-H(1C)             | 108.5                |
| Ag(2)#3-N(1)-H(1C)                   | 108.5                | C(1)-N(1)-H(1D)             | 108.7                |
| Ag(2)#3-N(1)-H(1D)                   | 108.6                | H(1C)-N(1)-H(1D)            | 107.6                |
| C(4)-N(2)-C(3)                       | 117.2(3)             | C(4)-N(2)-Ag(2)             | 118.7(2)             |
| C(3)-N(2)-Ag(2)                      | 121.6(2)             | C(7)-N(3)-Ag(2)             | 122.0(3)             |
| C(7)-N(3)-H(3A)                      | 106.3                | Ag(2)-N(3)-H(3A)            | 106.4                |
| C(7)-N(3)-H(3B)                      | 107.4                | Ag(2)-N(3)-H(3B)            | 107.0                |
| H(3A)-N(3)-H(3B)                     | 106.8                | C(9)-N(4)-C(10)             | 118.2(3)             |
| C(9)-N(4)-Ag(1)                      | 119.9(2)             | C(10)-N(4)-Ag(1)            | 121.6(2)             |
| C(17)-N(5)-C(13)                     | 118.0(3)             | C(17)-N(5)-Ag(1)            | 116.5(2)             |
| C(13)-N(5)-Ag(1)                     | 125.5(2)             | C(18)-N(6)-Ag(1)#4          | 112.4(2)             |
| C(18)-N(6)-H(6A)                     | 109.1                | Ag(1)#4-N(6)-H(6A)          | 109.1                |
| C(18)-N(6)-H(6B)                     | 109.1                | Ag(1)#4-N(6)-H(6B)          | 109.1                |
| H(6A)-N(6)-H(6B)                     | 107.9                | N(1)-C(1)-C(2)              | 112.9(3)             |
|                                      |                      | × / × / × /                 |                      |

Table B.16. Continued

| N(1)-C(1)-H(1A)    | 109.0    | C(2)-C(1)-H(1A)     | 109.0    |
|--------------------|----------|---------------------|----------|
| N(1)-C(1)-H(1B)    | 109.0    | C(2)-C(1)-H(1B)     | 109.0    |
| H(1A)-C(1)-H(1B)   | 107.8    | C(3)-C(2)-C(6)      | 118.3(3) |
| C(3)-C(2)-C(1)     | 119.9(3) | C(6)-C(2)-C(1)      | 121.7(3) |
| N(2)-C(3)-C(2)     | 123.5(3) | N(2)-C(3)-H(3)      | 118.2    |
| C(2)-C(3)-H(3)     | 118.2    | N(2)-C(4)-C(5)      | 123.1(3) |
| N(2)-C(4)-H(4)     | 118.4    | C(5)-C(4)-H(4)      | 118.4    |
| C(4)-C(5)-C(6)     | 119.2(3) | C(4)-C(5)-H(5)      | 120.4    |
| C(6)-C(5)-H(5)     | 120.4    | C(5)-C(6)-C(2)      | 118.7(3) |
| C(5)-C(6)-H(6)     | 120.7    | C(2)-C(6)-H(6)      | 120.7    |
| N(3)-C(7)-C(8)     | 118.7(5) | N(3)-C(7)-H(7A)     | 107.6    |
| C(8)-C(7)-H(7A)    | 107.6    | N(3)-C(7)-H(7B)     | 107.6    |
| C(8)-C(7)-H(7B)    | 107.6    | H(7A)-C(7)-H(7B)    | 107.1    |
| C(9)-C(8)-C(12)    | 117.6(3) | C(9)-C(8)-C(7)      | 120.4(3) |
| C(12)-C(8)-C(7)    | 122.0(3) | N(4)-C(9)-C(8)      | 123.2(3) |
| N(4)-C(9)-H(9)     | 118.4    | C(8)-C(9)-H(9)      | 118.4    |
| N(4)-C(10)-C(11)   | 122.4(3) | N(4)-C(10)-H(10)    | 118.8    |
| C(11)-C(10)-H(10)  | 118.8    | C(10)-C(11)-C(12)   | 119.3(3) |
| C(10)-C(11)-H(11)  | 120.3    | C(12)-C(11)-H(11)   | 120.3    |
| C(11)-C(12)-C(8)   | 119.2(3) | C(11)-C(12)-H(12)   | 120.4    |
| C(8)-C(12)-H(12)   | 120.4    | N(5)-C(13)-C(14)    | 122.1(3) |
| N(5)-C(13)-H(13)   | 119.0    | C(14)-C(13)-H(13)   | 119.0    |
| C(15)-C(14)-C(13)  | 119.9(3) | C(15)-C(14)-H(14)   | 120.0    |
| C(13)-C(14)-H(14)  | 120.0    | C(14)-C(15)-C(16)   | 118.6(4) |
| C(14)-C(15)-H(15)  | 120.7    | C(16)-C(15)-H(15)   | 120.7    |
| C(17)-C(16)-C(15)  | 117.9(3) | C(17)-C(16)-C(18)   | 119.6(3) |
| C(15)-C(16)-C(18)  | 122.4(3) | N(5)-C(17)-C(16)    | 123.4(3) |
| N(5)-C(17)-H(17)   | 118.3    | C(16)-C(17)-H(17)   | 118.3    |
| N(6)-C(18)-C(16)   | 110.0(3) | N(6)-C(18)-H(18A)   | 109.7    |
| C(16)-C(18)-H(18A) | 109.7    | N(6)-C(18)-H(18B)   | 109.7    |
| C(16)-C(18)-H(18B) | 109.7    | H(18A)-C(18)-H(18B) | 108.2    |
| F(4)-B(1)-F(3)     | 112.2(4) | F(4)-B(1)-F(1)      | 113.0(4) |
| F(3)-B(1)-F(1)     | 110.6(4) | F(4)-B(1)-F(2)      | 108.1(5) |
| F(3)-B(1)-F(2)     | 106.6(4) | F(1)-B(1)-F(2)      | 105.9(5) |
| F(8)-B(2)-F(7)     | 111.4(3) | F(8)-B(2)-F(6)      | 110.1(3) |
| F(7)-B(2)-F(6)     | 111.1(3) | F(8)-B(2)-F(5)      | 108.0(3) |
| F(7)-B(2)-F(5)     | 108.7(3) | F(6)-B(2)-F(5)      | 107.4(3) |
|                    |          |                     |          |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x,y+1,z #3 x,y-1,z #4 x-1,y,z

| Empirical formula                  |            | C12 H16 Ag B F4 N4                                 |                       |
|------------------------------------|------------|----------------------------------------------------|-----------------------|
| Formula weight                     |            | 410.97                                             |                       |
| Temperature                        |            | 110(2) K                                           |                       |
| Wavelength                         |            | 0.71073 A                                          |                       |
| Crystal system, space group        |            | Orthorhombic, Pbca                                 |                       |
| Unit cell dimensions               |            | $a = 15.3184(13) A \alpha = 90$                    | deg.                  |
|                                    |            | $b = 10.4897(15) A \beta = 90$                     | ) deg.                |
|                                    |            | $c = 18.8193(17) A \gamma = 90$                    | deg.                  |
| Volume                             |            | 3024.0(6) A^3                                      |                       |
| Z. Calculated density              |            | 8. 1.805 Mg/m^3                                    |                       |
| Absorption coefficient             |            | 1 375 mm^-1                                        |                       |
| F(000)                             |            | 1632                                               |                       |
| Crystal size                       |            | 0 232 x 0 112 x 0 046 mm                           |                       |
| A range for data collection        |            | 3 20 to 26 45 deg                                  |                       |
| Limiting indices                   |            | $-18 \le h \le 18$ $-13 \le k \le 13$              | -23<=1<=23            |
| Reflections collected / unique     |            | 40167 / 3087 [R(int) = 0.0]                        | , 25 · 1 · 25<br>3911 |
| Completeness to $\theta = 26.45$   |            | 99.1 %                                             | <u>[]</u>             |
| Absorption correction              |            | Semi-empirical from equiv                          | alents                |
| Refinement method                  |            | Full-matrix least-squares o                        | n $F^{2}$             |
| Data / restraints / parameters     |            | 3087 / 0 / 211                                     |                       |
| Goodness-of-fit on E^2             |            | 1 069                                              |                       |
| Final R indices $[I > 2\sigma(I)]$ |            | $R_1 = 0.0187 \text{ w}R_2 = 0.045$                | 2                     |
| R indices (all data)               |            | R1 = 0.0274  wR2 = 0.047                           | 1                     |
| I argest diff neak and hole        |            | $0.331 \text{ and } -0.272 \text{ e } \Delta^{-3}$ | 1                     |
| Bond Lengths (Å)                   |            |                                                    |                       |
| 5 ( )                              |            |                                                    |                       |
| Ag(1)-N(1)                         | 2.3057(15) | Ag(1)-N(2)#1                                       | 2.3341(16)            |
| Ag(1)-N(4)#2                       | 2.3572(15) | Ag(1)-N(3)                                         | 2.3776(14)            |
| F(1)-B(1)                          | 1.393(2)   | F(2)-B(1)                                          | 1.395(2)              |
| F(3)-B(1)                          | 1.388(2)   | F(4)-B(1)                                          | 1.398(2)              |
| N(1)-C(1)                          | 1.342(2)   | N(1)-C(5)                                          | 1.344(2)              |
| N(2)-C(6)                          | 1.470(2)   | N(2)-Ag(1)#1                                       | 2.3341(16)            |
| N(2)-H(1)                          | 0.88(2)    | N(2)-H(2)                                          | 0.87(2)               |
| N(3)-C(7)                          | 1.332(2)   | N(3)-C(11)                                         | 1.345(2)              |
| N(4)-C(12)                         | 1.466(2)   | N(4)-Ag(1)#3                                       | 2.3572(15)            |
| N(4)-H(3)                          | 0.82(2)    | N(4)-H(4)                                          | 0.90(2)               |
| C(1)-C(2)                          | 1.377(3)   | C(1)-H(1A)                                         | 0.9500                |
| C(2)-C(3)                          | 1.378(3)   | C(2)-H(2A)                                         | 0.9500                |
| C(3)-C(4)                          | 1.392(2)   | C(3)-H(3A)                                         | 0.9500                |
| C(4)-C(5)                          | 1.385(2)   | C(4)-C(6)                                          | 1.506(2)              |
| C(5)-H(5A)                         | 0.9500     | C(6)-H(6A)                                         | 0.9900                |
| C(6)-H(6B)                         | 0.9900     | C(7)-C(8)                                          | 1.381(3)              |
| C(7)-H(7A)                         | 0.9500     | C(8)-C(9)                                          | 1.380(3)              |
| C(8)-H(8A)                         | 0.9500     | C(9)-C(10)                                         | 1.391(2)              |
| C(9)-H(9A)                         | 0.9500     | C(10)-C(11)                                        | 1.377(2)              |
| C(10)-C(12)                        | 1.510(2)   | C(11)-H(11A)                                       | 0.9500                |
| C(12)-H(12A)                       | 0.9900     | С(12)-Н(12В)                                       | 0.9900                |
| Bond Angles (°)                    |            |                                                    |                       |
| N(1)-Ag(1)-N(2)#1                  | 123.50(6)  | N(1)-Ag(1)-N(4)#2                                  | 100.71(6)             |
| N(2)#1-Ag(1)-N(4)#2                | 112.60(6)  | N(1)-Ag(1)-N(3)                                    | 115.12(5)             |
|                                    |            |                                                    |                       |

Table B.17. Continued

| N(2)#1-Ag(1)-N(3)  | 95.97(5)   | N(4)#2-Ag(1)-N(3)   | 108.90(6)  |
|--------------------|------------|---------------------|------------|
| C(1)-N(1)-C(5)     | 117.28(16) | C(1)-N(1)-Ag(1)     | 123.14(12) |
| C(5)-N(1)-Ag(1)    | 119.58(11) | C(6)-N(2)-Ag(1)#1   | 120.86(11) |
| C(6)-N(2)-H(1)     | 109.3(13)  | Ag(1)#1-N(2)-H(1)   | 108.1(13)  |
| C(6)-N(2)-H(2)     | 105.5(13)  | Ag(1)#1-N(2)-H(2)   | 106.7(13)  |
| H(1)-N(2)-H(2)     | 105.3(18)  | C(7)-N(3)-C(11)     | 116.95(15) |
| C(7)-N(3)-Ag(1)    | 129.02(12) | C(11)-N(3)-Ag(1)    | 113.98(11) |
| C(12)-N(4)-Ag(1)#3 | 118.66(11) | C(12)-N(4)-H(3)     | 109.1(15)  |
| Ag(1)#3-N(4)-H(3)  | 101.8(14)  | C(12)-N(4)-H(4)     | 108.4(13)  |
| Ag(1)#3-N(4)-H(4)  | 107.2(12)  | H(3)-N(4)-H(4)      | 111.5(18)  |
| N(1)-C(1)-C(2)     | 122.71(17) | N(1)-C(1)-H(1A)     | 118.6      |
| C(2)-C(1)-H(1A)    | 118.6      | C(1)-C(2)-C(3)      | 119.24(18) |
| C(1)-C(2)-H(2A)    | 120.4      | C(3)-C(2)-H(2A)     | 120.4      |
| C(2)-C(3)-C(4)     | 119.52(17) | C(2)-C(3)-H(3A)     | 120.2      |
| C(4)-C(3)-H(3A)    | 120.2      | C(5)-C(4)-C(3)      | 117.15(17) |
| C(5)-C(4)-C(6)     | 123.51(16) | C(3)-C(4)-C(6)      | 119.35(16) |
| N(1)-C(5)-C(4)     | 124.08(17) | N(1)-C(5)-H(5A)     | 118.0      |
| C(4)-C(5)-H(5A)    | 118.0      | N(2)-C(6)-C(4)      | 113.86(15) |
| N(2)-C(6)-H(6A)    | 108.8      | C(4)-C(6)-H(6A)     | 108.8      |
| N(2)-C(6)-H(6B)    | 108.8      | C(4)-C(6)-H(6B)     | 108.8      |
| H(6A)-C(6)-H(6B)   | 107.7      | N(3)-C(7)-C(8)      | 122.96(17) |
| N(3)-C(7)-H(7A)    | 118.5      | C(8)-C(7)-H(7A)     | 118.5      |
| C(9)-C(8)-C(7)     | 119.12(17) | C(9)-C(8)-H(8A)     | 120.4      |
| C(7)-C(8)-H(8A)    | 120.4      | C(8)-C(9)-C(10)     | 119.22(17) |
| C(8)-C(9)-H(9A)    | 120.4      | C(10)-C(9)-H(9A)    | 120.4      |
| C(11)-C(10)-C(9)   | 117.15(16) | C(11)-C(10)-C(12)   | 123.46(16) |
| C(9)-C(10)-C(12)   | 119.39(16) | N(3)-C(11)-C(10)    | 124.58(16) |
| N(3)-C(11)-H(11A)  | 117.7      | C(10)-C(11)-H(11A)  | 117.7      |
| N(4)-C(12)-C(10)   | 116.83(15) | N(4)-C(12)-H(12A)   | 108.1      |
| C(10)-C(12)-H(12A) | 108.1      | N(4)-C(12)-H(12B)   | 108.1      |
| C(10)-C(12)-H(12B) | 108.1      | H(12A)-C(12)-H(12B) | 107.3      |
| F(3)-B(1)-F(1)     | 109.62(17) | F(3)-B(1)-F(2)      | 109.76(16) |
| F(1)-B(1)-F(2)     | 109.35(16) | F(3)-B(1)-F(4)      | 109.22(16) |
| F(1)-B(1)-F(4)     | 109.80(16) | F(2)-B(1)-F(4)      | 109.07(16) |
|                    |            |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1 #2 -x,y+1/2,-z+1/2 #3 -x,y-1/2,-z+1/2

| Empirical formula                       |            | C12 H16 Ag B F4 N4                           |                |
|-----------------------------------------|------------|----------------------------------------------|----------------|
| Formula weight                          |            | 410.97                                       |                |
| Temperature                             |            | 110(2) K                                     |                |
| Wavelength                              |            | 0.71073 A                                    |                |
| Crystal system, space group             |            | Monoclinic, $P2(1)/c$                        |                |
| Unit cell dimensions                    |            | $a = 8.6991(4) A \alpha = 90 deg.$           |                |
|                                         |            | $b = 14\ 1060(7)\ A$ $\beta = 109\ 6$        | 07(2) deg      |
|                                         |            | c = 12.9311(7)  A  v = 90  deg               | · · (_) ····B· |
| Volume                                  |            | 1494 76(13) A^3                              | .•             |
| 7 Calculated density                    |            | $4 + 1.826 \text{ Mg/m}^3$                   |                |
| Absorption coefficient                  |            | 1, 1.020  wg/m 5                             |                |
| E(000)                                  |            | 916                                          |                |
| (000)<br>Crystal size                   |            | $0.151 \times 0.222 \times 0.222 \text{ mm}$ |                |
| O range for data collection             |            | $0.151 \times 0.222 \times 0.252$ IIIII      |                |
|                                         |            | 2.21  to  20.57  deg.                        | (-1) = 1       |
| Dimiting indices                        |            | -10 < -10 < -10, -1/ < -K < -1/, -1          | 0<-1<-10       |
| Reflections collected / unique          |            | 29846 / 3040 [R(Int) = 0.0310                | 2]             |
| Completeness to $\theta = 26.37$        |            | 99.8%                                        |                |
| Absorption correction                   |            | Semi-empirical from equivale                 | ents           |
| Refinement method                       |            | Full-matrix least-squares on I               | 11/2           |
| Data / restraints / parameters          |            | 3040 / 0 / 199                               |                |
| Goodness-of-fit on F^2                  |            | 1.080                                        |                |
| Final R indices $[1>2\sigma(1)]$        |            | R1 = 0.0155, WR2 = 0.0413                    |                |
| R indices (all data)                    |            | R1 = 0.0171, $wR2 = 0.0420$                  |                |
| Largest diff. peak and hole             |            | 0.394 and -0.313 e.A^-3                      |                |
| Bond Lengths (Å)                        |            |                                              |                |
| Ag(1)-N(4)#1                            | 2.3071(13) | Ag(1)-N(2)#2                                 | 2.3482(14)     |
| Ag(1)-N(1)                              | 2.3537(14) | Ag(1)-N(3)                                   | 2.3807(13)     |
| F(1)-B(1)                               | 1.382(2)   | F(2)-B(1)                                    | 1.397(2)       |
| F(3)-B(1)                               | 1.388(2)   | F(4)-B(1)                                    | 1.392(2)       |
| N(1)-C(1)                               | 1.475(2)   | N(1)-H(1A)                                   | 0.9200         |
| N(1)-H(1B)                              | 0.9200     | N(2)-C(4)                                    | 1.341(2)       |
| N(2)-C(3)                               | 1.346(2)   | N(2)-Ag(1)#2                                 | 2.3482(14)     |
| N(3)-C(11)                              | 1.337(2)   | N(3)-C(7)                                    | 1.342(2)       |
| N(4)-C(12)                              | 1.474(2)   | N(4)-Ag(1)#3                                 | 2.3071(13)     |
| N(4)-H(4A)                              | 0.9200     | N(4)-H(4B)                                   | 0.9200         |
| C(1)-C(2)                               | 1.508(2)   | C(1)-H(1C)                                   | 0.9900         |
| C(1)-H(1D)                              | 0.9900     | C(2)-C(3)                                    | 1.385(2)       |
| C(2)-C(6)                               | 1.391(2)   | C(3)-H(3)                                    | 0.9500         |
| C(4)-C(5)                               | 1 379(2)   | C(4)-H(4)                                    | 0 9500         |
| C(5)-C(6)                               | 1.382(2)   | C(5)-H(5)                                    | 0.9500         |
| C(6)-H(6)                               | 0.9500     | C(7)-C(8)                                    | 1.388(2)       |
| C(7)-H(7)                               | 0.9500     | C(8)-C(9)                                    | 1.387(2)       |
| C(8)- $C(12)$                           | 1.510(2)   | C(9) - C(10)                                 | 1.384(2)       |
| C(0) = C(12)<br>C(0) = H(0)             | 0.9500     | C(10)-C(11)                                  | 1.384(2)       |
| C(10) - H(10)                           | 0.9500     | C(11)-H(11)                                  | 1.564(2)       |
| $C(10) - \Pi(10)$<br>$C(12) - \Pi(12A)$ | 0.9300     | $C(11) - \Pi(11)$<br>$C(12) - \Pi(12P)$      | 0.9300         |
| $C(12)$ - $\Pi(12A)$                    | 0.9900     | C(12)-n(12B)                                 | 0.9900         |
| Bond Angles (°)                         |            |                                              |                |
| N(4)#1-Ag(1)-N(2)#2                     | 109.26(5)  | N(4)#1-Ag(1)-N(1)                            | 123.01(5)      |
| N(2)#2-Ag(1)-N(1)                       | 108.75(5)  | N(4)#1-Ag(1)-N(3)                            | 114.96(5)      |
| N(2)#2-Ag(1)-N(3)                       | 105.53(5)  | N(1)-Ag(1)-N(3)                              | 93.38(5)       |

Table B.18. Continued

| C(1)-N(1)-Ag(1)    | 117.36(10) | C(1)-N(1)-H(1A)     | 108.0      |
|--------------------|------------|---------------------|------------|
| Ag(1)-N(1)-H(1A)   | 108.0      | C(1)-N(1)-H(1B)     | 108.0      |
| Ag(1)-N(1)-H(1B)   | 108.0      | H(1A)-N(1)-H(1B)    | 107.2      |
| C(4)-N(2)-C(3)     | 117.63(14) | C(4)-N(2)-Ag(1)#2   | 121.52(11) |
| C(3)-N(2)-Ag(1)#2  | 120.82(10) | C(11)-N(3)-C(7)     | 117.38(14) |
| C(11)-N(3)-Ag(1)   | 123.23(10) | C(7)-N(3)-Ag(1)     | 119.32(10) |
| C(12)-N(4)-Ag(1)#3 | 111.24(9)  | C(12)-N(4)-H(4A)    | 109.4      |
| Ag(1)#3-N(4)-H(4A) | 109.4      | C(12)-N(4)-H(4B)    | 109.4      |
| Ag(1)#3-N(4)-H(4B) | 109.4      | H(4A)-N(4)-H(4B)    | 108.0      |
| N(1)-C(1)-C(2)     | 112.90(13) | N(1)-C(1)-H(1C)     | 109.0      |
| C(2)-C(1)-H(1C)    | 109.0      | N(1)-C(1)-H(1D)     | 109.0      |
| C(2)-C(1)-H(1D)    | 109.0      | H(1C)-C(1)-H(1D)    | 107.8      |
| C(3)-C(2)-C(6)     | 117.53(14) | C(3)-C(2)-C(1)      | 123.05(14) |
| C(6)-C(2)-C(1)     | 119.40(14) | N(2)-C(3)-C(2)      | 123.64(15) |
| N(2)-C(3)-H(3)     | 118.2      | C(2)-C(3)-H(3)      | 118.2      |
| N(2)-C(4)-C(5)     | 122.72(15) | N(2)-C(4)-H(4)      | 118.6      |
| C(5)-C(4)-H(4)     | 118.6      | C(4)-C(5)-C(6)      | 119.04(15) |
| C(4)-C(5)-H(5)     | 120.5      | C(6)-C(5)-H(5)      | 120.5      |
| C(5)-C(6)-C(2)     | 119.45(15) | C(5)-C(6)-H(6)      | 120.3      |
| C(2)-C(6)-H(6)     | 120.3      | N(3)-C(7)-C(8)      | 124.37(15) |
| N(3)-C(7)-H(7)     | 117.8      | C(8)-C(7)-H(7)      | 117.8      |
| C(9)-C(8)-C(7)     | 117.08(14) | C(9)-C(8)-C(12)     | 123.11(14) |
| C(7)-C(8)-C(12)    | 119.76(14) | C(10)-C(9)-C(8)     | 119.37(14) |
| C(10)-C(9)-H(9)    | 120.3      | C(8)-C(9)-H(9)      | 120.3      |
| C(11)-C(10)-C(9)   | 119.21(15) | C(11)-C(10)-H(10)   | 120.4      |
| C(9)-C(10)-H(10)   | 120.4      | N(3)-C(11)-C(10)    | 122.56(15) |
| N(3)-C(11)-H(11)   | 118.7      | C(10)-C(11)-H(11)   | 118.7      |
| N(4)-C(12)-C(8)    | 116.20(12) | N(4)-C(12)-H(12A)   | 108.2      |
| C(8)-C(12)-H(12A)  | 108.2      | N(4)-C(12)-H(12B)   | 108.2      |
| C(8)-C(12)-H(12B)  | 108.2      | H(12A)-C(12)-H(12B) | 107.4      |
| F(1)-B(1)-F(3)     | 109.19(14) | F(1)-B(1)-F(4)      | 110.17(14) |
| F(3)-B(1)-F(4)     | 110.56(15) | F(1)-B(1)-F(2)      | 109.52(14) |
| F(3)-B(1)-F(2)     | 109.02(14) | F(4)-B(1)-F(2)      | 108.34(14) |
|                    |            |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 -x+1,-y+2,-z+2 #3 x+1,y,z

Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient F(000) Crystal size  $\theta$  range for data collection Limiting indices Reflections collected / unique Completeness to  $\theta = 28.28$ Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> Final R indices  $[I \ge 2\sigma(I)]$ R indices (all data) Largest diff. peak and hole

## Bond Lengths (Å)

| Ag(1)-N(4)   | 2.1457(19) | Ag(1)-N(5)    | 2.286(2)  |
|--------------|------------|---------------|-----------|
| Ag(1)-N(6)   | 2.291(2)   | Ag(1)-Ag(1)#1 | 2.9875(4) |
| Ag(2)-N(3)   | 2.1610(19) | Ag(2)-N(2)    | 2.287(2)  |
| Ag(2)-N(1)   | 2.2908(19) | N(1)-C(1)     | 1.337(3)  |
| N(1)-C(5)    | 1.346(3)   | N(2)-C(10)    | 1.348(3)  |
| N(2)-C(6)    | 1.350(3)   | N(3)-C(11)    | 1.475(3)  |
| N(3)-H(3A)   | 0.9200     | N(3)-H(3B)    | 0.9200    |
| N(4)-C(13)   | 1.342(3)   | N(4)-C(14)    | 1.351(3)  |
| N(5)-C(21)   | 1.343(3)   | N(5)-C(17)    | 1.343(3)  |
| N(6)-C(26)   | 1.331(3)   | N(6)-C(22)    | 1.353(3)  |
| C(1)-C(2)    | 1.389(3)   | C(1)-H(1)     | 0.9500    |
| C(2)-C(3)    | 1.380(4)   | C(2)-H(2)     | 0.9500    |
| C(3)-C(4)    | 1.388(3)   | C(3)-H(3)     | 0.9500    |
| C(4)-C(5)    | 1.402(3)   | C(4)-H(4)     | 0.9500    |
| C(5)-C(6)    | 1.500(3)   | C(6)-C(7)     | 1.398(3)  |
| C(7)-C(8)    | 1.387(3)   | C(7)-H(7)     | 0.9500    |
| C(8)-C(9)    | 1.374(4)   | C(8)-H(8)     | 0.9500    |
| C(9)-C(10)   | 1.381(3)   | C(9)-H(9)     | 0.9500    |
| C(10)-H(10)  | 0.9500     | C(11)-C(12)   | 1.517(3)  |
| C(11)-H(11A) | 0.9900     | C(11)-H(11B)  | 0.9900    |
| C(12)-C(16)  | 1.390(3)   | C(12)-C(13)   | 1.390(3)  |
| C(13)-H(13)  | 0.9500     | C(14)-C(15)   | 1.387(3)  |
| C(14)-H(14)  | 0.9500     | C(15)-C(16)   | 1.378(3)  |
| C(15)-H(15)  | 0.9500     | C(16)-H(16)   | 0.9500    |
| C(17)-C(18)  | 1.389(4)   | С(17)-Н(17)   | 0.9500    |
| C(18)-C(19)  | 1.372(4)   | C(18)-H(18)   | 0.9500    |
| C(19)-C(20)  | 1.379(4)   | C(19)-H(19)   | 0.9500    |
|              |            |               |           |

C26 H24 Ag2 B2 F8 N6 809.87 110(2) K 0.71073 A Triclinic, P-1 a = 7.1224(7) A  $\alpha = 92.490(5) deg.$ b = 10.6180(10) A  $\beta = 96.249(5) deg.$  $c = 19.1669(18) A \gamma = 93.248(5) deg.$ 1436.8(2) A^3 2, 1.872 Mg/m^3 1.444 mm^-1 796 0.177 x 0.169 x 0.062 mm 3.19 to 28.28 deg. -9<=h<=9, -13<=k<=14, -25<=l<=25 21440 / 6988 [R(int) = 0.0370]97.8 % Semi-empirical from equivalents Full-matrix least-squares on F^2 6988 / 10 / 443 1.075 R1 = 0.0291, wR2 = 0.0638R1 = 0.0433, wR2 = 0.06630.716 and -0.794 e.A^-3

| C(20)-C(21)<br>C(21)-C(22)<br>C(23)-C(24)    | 1.396(3)<br>1.502(3)<br>1.390(3) | C(20)-H(20)<br>C(22)-C(23)<br>C(23)-H(23) | 0.9500<br>1.384(3)<br>0.9500 |
|----------------------------------------------|----------------------------------|-------------------------------------------|------------------------------|
| C(24)-C(25)                                  | 1.390(3)<br>1 387(4)             | C(23)-H(23)<br>C(24)-H(24)                | 0.9500                       |
| C(24) C(25)                                  | 1.389(4)                         | C(25)-H(25)                               | 0.9500                       |
| C(26)-E(26)                                  | 0.9500                           | B(1)-F(3)                                 | 1 376(3)                     |
| B(1)-F(1)                                    | 1 305(3)                         | B(1)-F(3)<br>B(1)-F(4)                    | 1.370(3)<br>1.308(3)         |
| B(1)-F(2)                                    | 1.575(5)<br>1.401(3)             | B(2)-F(5)                                 | 1.370(3)                     |
| B(1) - F(2)<br>B(2) - F(2)                   | 1.401(3)<br>1.272(10)            | B(2) = F(3)<br>B(2) = F(7)                | 1.370(10)<br>1.382(0)        |
| B(2) - F(6)                                  | 1.373(10)<br>1 384(11)           | B(2A) - F(7A)                             | 1.382(9)<br>1.370(14)        |
| B(2A) = F(0)<br>B(2A) = F(5A)                | 1.304(11)<br>1.371(12)           | B(2A) = F(3A)<br>B(2A) = F(7A)            | 1.370(14)<br>1.382(12)       |
| $D(2A) = \Gamma(3A)$<br>$D(2A) = \Gamma(6A)$ | 1.371(12)<br>1.380(14)           | $D(2A)$ - $\Gamma(7A)$                    | 1.362(12)                    |
| $B(2A)$ - $\Gamma(0A)$                       | 1.369(14)                        |                                           |                              |
| Bond Angles                                  |                                  |                                           |                              |
| N(4)-Ag(1)-N(5)                              | 145.36(8)                        | F(7A)-B(2A)-F(6A)                         | 107.4(15)                    |
| N(4)-Ag(1)-N(6)                              | 141.39(7)                        | N(5)-Ag(1)-N(6)                           | 72.81(7)                     |
| N(4)-Ag(1)-Ag(1)#1                           | 98.38(5)                         | N(5)-Ag(1)-Ag(1)#1                        | 89.30(5)                     |
| N(6)-Ag(1)-Ag(1)#1                           | 83.86(5)                         | N(3)-Ag(2)-N(2)                           | 145.57(7)                    |
| N(3)-Ag(2)-N(1)                              | 141.44(7)                        | N(2)-Ag(2)-N(1)                           | 72.90(7)                     |
| C(1)-N(1)-C(5)                               | 119.0(2)                         | C(1)-N(1)-Ag(2)                           | 124.14(16)                   |
| C(5)-N(1)-Ag(2)                              | 116.62(15)                       | C(10)-N(2)-C(6)                           | 118.3(2)                     |
| C(10)-N(2)-Ag(2)                             | 125.00(16)                       | C(6)-N(2)-Ag(2)                           | 116.63(15)                   |
| C(11)-N(3)-Ag(2)                             | 115.56(14)                       | C(11)-N(3)-H(3A)                          | 108.4                        |
| Ag(2)-N(3)-H(3A)                             | 108.4                            | C(11)-N(3)-H(3B)                          | 108.4                        |
| Ag(2)-N(3)-H(3B)                             | 108.4                            | H(3A)-N(3)-H(3B)                          | 107.5                        |
| C(13)-N(4)-C(14)                             | 118.29(19)                       | C(13)-N(4)-Ag(1)                          | 119.56(15)                   |
| C(14)-N(4)-Ag(1)                             | 122.10(16)                       | C(21)-N(5)-C(17)                          | 118.6(2)                     |
| C(21)-N(5)-Ag(1)                             | 116.74(16)                       | C(17)-N(5)-Ag(1)                          | 124.50(17)                   |
| C(26)-N(6)-C(22)                             | 118.7(2)                         | C(26)-N(6)-Ag(1)                          | 124.88(16)                   |
| C(22)-N(6)-Ag(1)                             | 116.09(15)                       | N(1)-C(1)-C(2)                            | 123.0(2)                     |
| N(1)-C(1)-H(1)                               | 118.5                            | C(2)-C(1)-H(1)                            | 118.5                        |
| C(3)-C(2)-C(1)                               | 118.0(2)                         | C(3)-C(2)-H(2)                            | 121.0                        |
| C(1)-C(2)-H(2)                               | 121.0                            | C(2)-C(3)-C(4)                            | 120.0(2)                     |
| C(2)-C(3)-H(3)                               | 120.0                            | C(4)-C(3)-H(3)                            | 120.0                        |
| C(3)-C(4)-C(5)                               | 118.5(2)                         | C(3)-C(4)-H(4)                            | 120.7                        |
| C(5)-C(4)-H(4)                               | 120.7                            | N(1)-C(5)-C(4)                            | 121.4(2)                     |
| N(1)-C(5)-C(6)                               | 116.9(2)                         | C(4)-C(5)-C(6)                            | 121.7(2)                     |
| N(2)-C(6)-C(7)                               | 121.3(2)                         | N(2)-C(6)-C(5)                            | 116.9(2)                     |
| C(7)-C(6)-C(5)                               | 121.9(2)                         | C(8)-C(7)-C(6)                            | 119.1(2)                     |
| C(8)-C(7)-H(7)                               | 120.4                            | C(6)-C(7)-H(7)                            | 120.4                        |
| C(9)-C(8)-C(7)                               | 119.6(2)                         | C(9)-C(8)-H(8)                            | 120.2                        |
| C(7)-C(8)-H(8)                               | 120.2                            | C(8)-C(9)-C(10)                           | 118.4(2)                     |
| С(8)-С(9)-Н(9)                               | 120.8                            | С(10)-С(9)-Н(9)                           | 120.8                        |
| N(2)-C(10)-C(9)                              | 123.3(2)                         | N(2)-C(10)-H(10)                          | 118.4                        |
| C(9)-C(10)-H(10)                             | 118.4                            | N(3)-C(11)-C(12)                          | 114.35(19)                   |
| N(3)-C(11)-H(11A)                            | 108.7                            | C(12)-C(11)-H(11A)                        | 108.7                        |
| N(3)-C(11)-H(11B)                            | 108.7                            | C(12)-C(11)-H(11B)                        | 108.7                        |
| H(11A)-C(11)-H(11B)                          | 107.6                            | C(16)-C(12)-C(13)                         | 117.7(2)                     |
| C(16)-C(12)-C(11)                            | 123.8(2)                         | C(13)-C(12)-C(11)                         | 118.5(2)                     |
| N(4)-C(13)-C(12)                             | 123.3(2)                         | N(4)-C(13)-H(13)                          | 118.3                        |
| C(12)-C(13)-H(13)                            | 118.3                            | N(4)-C(14)-C(15)                          | 121.7(2)                     |
| N(4)-C(14)-H(14)                             | 119.2                            | C(15)-C(14)-H(14)                         | 119.2                        |
| C(16)-C(15)-C(14)                            | 119.4(2)                         | C(16)-C(15)-H(15)                         | 120.3                        |

Table B.19. Continued

| C(14)-C(15)-H(15)        | 120.3     | C(15)-C(16)-C(12)        | 119.6(2)  |
|--------------------------|-----------|--------------------------|-----------|
| C(15)-C(16)-H(16)        | 120.2     | C(12)-C(16)-H(16)        | 120.2     |
| N(5)-C(17)-C(18)         | 122.8(2)  | N(5)-C(17)-H(17)         | 118.6     |
| C(18)-C(17)-H(17)        | 118.6     | C(19)-C(18)-C(17)        | 118.7(3)  |
| C(19)-C(18)-H(18)        | 120.7     | C(17)-C(18)-H(18)        | 120.7     |
| C(18)-C(19)-C(20)        | 119.0(3)  | C(18)-C(19)-H(19)        | 120.5     |
| C(20)-C(19)-H(19)        | 120.5     | C(19)-C(20)-C(21)        | 119.8(2)  |
| C(19)-C(20)-H(20)        | 120.1     | C(21)-C(20)-H(20)        | 120.1     |
| N(5)-C(21)-C(20)         | 121.2(2)  | N(5)-C(21)-C(22)         | 116.7(2)  |
| C(20)-C(21)-C(22)        | 122.1(2)  | N(6)-C(22)-C(23)         | 120.9(2)  |
| N(6)-C(22)-C(21)         | 116.8(2)  | C(23)-C(22)-C(21)        | 122.2(2)  |
| C(22)-C(23)-C(24)        | 120.1(2)  | C(22)-C(23)-H(23)        | 120.0     |
| C(24)-C(23)-H(23)        | 120.0     | C(25)-C(24)-C(23)        | 118.7(2)  |
| C(25)-C(24)-H(24)        | 120.7     | C(23)-C(24)-H(24)        | 120.7     |
| C(24)-C(25)-C(26)        | 117.9(2)  | C(24)-C(25)-H(25)        | 121.0     |
| C(26)-C(25)-H(25)        | 121.0     | N(6)-C(26)-C(25)         | 123.6(2)  |
| N(6)-C(26)-H(26)         | 118.2     | C(25)-C(26)-H(26)        | 118.2     |
| F(3)-B(1)-F(1)           | 110.7(2)  | F(3)-B(1)-F(4)           | 110.2(2)  |
| F(1)-B(1)-F(4)           | 108.7(2)  | F(3)-B(1)-F(2)           | 110.6(2)  |
| F(1)-B(1)-F(2)           | 107.5(2)  | F(4)-B(1)-F(2)           | 109.2(2)  |
| F(5)-B(2)-F(8)           | 107.5(8)  | F(5)-B(2)-F(7)           | 110.3(11) |
| F(8)-B(2)-F(7)           | 107.8(11) | F(5)-B(2)-F(6)           | 111.1(9)  |
| F(8)-B(2)-F(6)           | 109.6(7)  | F(7)-B(2)-F(6)           | 110.4(11) |
| F(8A)- $B(2A)$ - $F(5A)$ | 113.5(13) | F(8A)-B(2A)-F(7A)        | 111.9(15) |
| F(5A)- $B(2A)$ - $F(7A)$ | 110.6(15) | F(8A)- $B(2A)$ - $F(6A)$ | 106.9(10) |
| F(5A)-B(2A)-F(6A)        | 106.1(12) |                          |           |
|                          |           |                          |           |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+2

| Table B.20 Experimental and statistical crystal data for <b>6.1</b> |
|---------------------------------------------------------------------|
|                                                                     |

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions | C32 H32 Ag4 F12 N8 O8<br>1316.14<br>110(2) K<br>0.71073 A<br>Orthorhombic, P2(1)2(1)2(1)<br>$a = 10.3431(4) A \alpha = 90 deg.$<br>$b = 17.0246(5) A \beta = 90 deg.$<br>$c = 23.3149(8) A \gamma = 90 deg.$ |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume                                                                                                                  | 4105.5(2) A^3                                                                                                                                                                                                |
| Z, Calculated density                                                                                                   | 4, 2.129 Mg/m^3                                                                                                                                                                                              |
| Absorption coefficient                                                                                                  | 1.994 mm^-1                                                                                                                                                                                                  |
| F(000)                                                                                                                  | 2560                                                                                                                                                                                                         |
| Crystal size                                                                                                            | 0.289 x 0.189 x 0.165 mm                                                                                                                                                                                     |
| $\theta$ range for data collection                                                                                      | 1.48 to 26.37 deg.                                                                                                                                                                                           |
| Limiting indices                                                                                                        | -12<=h<=12, -16<=k<=21, -29<=l<=29                                                                                                                                                                           |
| Reflections collected / unique                                                                                          | 51253 / 8358 [R(int) = 0.0386]                                                                                                                                                                               |
| Completeness to $\theta = 26.37$                                                                                        | 99.8 %                                                                                                                                                                                                       |
| Absorption correction                                                                                                   | Semi-empirical from equivalents                                                                                                                                                                              |
| Refinement method                                                                                                       | Full-matrix least-squares on F^2                                                                                                                                                                             |
| Data / restraints / parameters                                                                                          | 8358 / 0 / 577                                                                                                                                                                                               |
| Goodness-of-fit on F^2                                                                                                  | 1.054                                                                                                                                                                                                        |

| Final R indices [I>2σ(I)]<br>R indices (all data)<br>Absolute structure parameter<br>Largest diff. peak and hole |                        | R1 = 0.0209, WR2 = 0.0490<br>R1 = 0.0233, WR2 = 0.0497<br>0.00<br>$0.672 \text{ and } -0.439 \text{ e.A}^{-3}$ |                       |
|------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| Bond Lengths (Å)                                                                                                 |                        |                                                                                                                |                       |
| Ag(1)-N(4)#1                                                                                                     | 2.147(2)               | Ag(1)-N(1)                                                                                                     | 2.157(2)              |
| Ag(1)-O(1)                                                                                                       | 2.542(2)               | Ag(2)-N(3)                                                                                                     | 2.165(2)              |
| Ag(2)-N(2)                                                                                                       | 2.177(2)               | Ag(2)-O(5)                                                                                                     | 2.585(2)              |
| Ag(2)-O(3)                                                                                                       | 2.595(2)               | Ag(3)-N(5)                                                                                                     | 2.158(2)              |
| Ag(3)-N(8)                                                                                                       | 2.161(2)               | Ag(3)-O(8)#2                                                                                                   | 2.549(2)              |
| Ag(4)-N(6)                                                                                                       | 2.153(2)               | Ag(4)-N(7)#1                                                                                                   | 2.164(2)              |
| Ag(4)-O(7)                                                                                                       | 2.567(2)               | F(1)-C(26)                                                                                                     | 1.332(4)              |
| F(2)-C(26)                                                                                                       | 1.343(4)               | F(3)-C(26)                                                                                                     | 1.340(4)              |
| F(4)-C(28)                                                                                                       | 1.338(4)               | F(5)-C(28)                                                                                                     | 1.325(5)              |
| F(6)-C(28)                                                                                                       | 1.325(4)               | F(7)-C(30)                                                                                                     | 1.266(4)              |
| F(8)-C(30)                                                                                                       | 1.335(4)               | F(9)-C(30)                                                                                                     | 1.315(4)              |
| F(10)-C(32)                                                                                                      | 1.325(4)               | F(11)-C(32)                                                                                                    | 1.329(4)              |
| F(12)-C(32)                                                                                                      | 1.339(4)               | O(1)-C(25)                                                                                                     | 1.234(3)              |
| O(2)-C(25)                                                                                                       | 1.237(3)               | O(3)-C(27)                                                                                                     | 1.235(4)              |
| O(4)-C(27)                                                                                                       | 1.237(4)               | O(5)-C(29)                                                                                                     | 1.230(4)              |
| O(6)-C(29)                                                                                                       | 1.246(4)               | O(7)-C(31)                                                                                                     | 1.237(4)              |
| O(8)-C(31)                                                                                                       | 1.215(4)               | O(8)-Ag(3)#3                                                                                                   | 2.549(2)              |
| N(1)-C(1)                                                                                                        | 1.336(4)               | N(1)-C(5)                                                                                                      | 1.348(4)              |
| N(2)-C(6)                                                                                                        | 1.46/(4)               | N(2)-H(2A)                                                                                                     | 0.9200                |
| N(2)-H(2B)                                                                                                       | 0.9200                 | N(3)-C(11)                                                                                                     | 1.344(4)              |
| N(3)-C(7)                                                                                                        | 1.350(4)               | N(4) - C(12)                                                                                                   | 1.46/(4)              |
| N(4) - Ag(1) # 4<br>N(4) - U(4D)                                                                                 | 2.14/(2)               | N(4)-H(4A)                                                                                                     | 0.9200                |
| N(4)-H(4B)<br>N(5) C(12)                                                                                         | 0.9200                 | N(5)-C(17)                                                                                                     | 1.340(4)              |
| N(3)-C(13)                                                                                                       | 1.348(4)               | N(0)-C(18)                                                                                                     | 1.4/4(4)              |
| N(0)-H(0A)                                                                                                       | 0.9200                 | N(0)-H(0B)<br>N(7) C(10)                                                                                       | 0.9200                |
| N(7) - C(23)                                                                                                     | 1.338(4)               | N(7)-C(19)                                                                                                     | 1.339(4)              |
| N(7)-Ag(4)#4<br>N(8) $H(8A)$                                                                                     | 2.104(2)               | N(0) - C(24)<br>N(0) - U(0D)                                                                                   | 1.4/8(4)              |
| $\Gamma(0)$ - $\Gamma(0A)$                                                                                       | 0.9200<br>1 287( $A$ ) | $\Gamma(0) - \Gamma(0B)$                                                                                       | 0.9200                |
| C(1)-C(2)<br>C(2)-C(3)                                                                                           | 1.367(4)<br>1.370(4)   | C(1) - H(1)<br>C(2) H(2)                                                                                       | 0.9300                |
| C(2) - C(3)                                                                                                      | 1.379(4)<br>1.384(4)   | C(2) - H(2)<br>C(2) - H(3)                                                                                     | 0.9500                |
| C(3)-C(4)                                                                                                        | 1.364(4)<br>1.303(4)   | $C(3)-\Pi(3)$<br>C(4) C(6)                                                                                     | 1.521(4)              |
| C(4)-C(5)                                                                                                        | 0.9500                 | C(4)-C(0)                                                                                                      | 0.0000                |
| C(6) - H(6D)                                                                                                     | 0.9500                 | C(7) - C(8)                                                                                                    | 1.393(4)              |
| C(7)-H(7)                                                                                                        | 0.9500                 | C(8) - C(9)                                                                                                    | 1.303(4)<br>1.300(4)  |
| C(7)-H(7)<br>C(8)-H(8)                                                                                           | 0.9500                 | C(9)-C(10)                                                                                                     | 1.390(4)<br>1.393(4)  |
| C(9)-H(9)                                                                                                        | 0.9500                 | C(10)- $C(11)$                                                                                                 | 1.393(4)<br>1.389(4)  |
| C(10)-C(12)                                                                                                      | 1.522(4)               | C(11)-H(11)                                                                                                    | 0.9500                |
| C(12)-H(12A)                                                                                                     | 0.9900                 | C(12)-H(12B)                                                                                                   | 0.9900                |
| $C(12) \Pi(1211)$<br>C(13)-C(14)                                                                                 | 1.372(4)               | C(12) H(12D)<br>C(13)-H(13)                                                                                    | 0.9500                |
| C(14)-C(15)                                                                                                      | 1.372(4)<br>1 389(4)   | C(14)-H(14)                                                                                                    | 0.9500                |
| C(15)- $C(16)$                                                                                                   | 1.384(4)               | C(14)-H(14)<br>C(15)-H(15)                                                                                     | 0.9500                |
| C(16) - C(17)                                                                                                    | 1 388(4)               | C(16) - C(18)                                                                                                  | 1 515(4)              |
| C(17)-H(17)                                                                                                      | 0.9500                 | C(18) - H(18A)                                                                                                 | 0.9900                |
| C(18)-H(18B)                                                                                                     | 0.9900                 | C(19) - C(20)                                                                                                  | 1 371(4)              |
| C(19)-H(19)                                                                                                      | 0.9500                 | C(20)-C(21)                                                                                                    | 1.371(-7)<br>1 385(4) |
| C(20)-H(20)                                                                                                      | 0.9500                 | C(21)-C(22)                                                                                                    | 1.387(4)              |
| - ( - ) ( )                                                                                                      |                        | -()                                                                                                            |                       |

| Bond Angles (°) |  |
|-----------------|--|
|-----------------|--|

| N(4)#1-Ag(1)-N(1)  | 165.07(9)  | N(4)#1-Ag(1)-O(1)     | 98.49(8)   |
|--------------------|------------|-----------------------|------------|
| N(1)-Ag(1)-O(1)    | 96.42(8)   | N(3)-Ag(2)-N(2)       | 159.12(9)  |
| N(3)-Ag(2)-O(5)    | 106.28(8)  | N(2)-Ag(2)-O(5)       | 89.35(8)   |
| N(3)-Ag(2)-O(3)    | 93.01(8)   | N(2)-Ag(2)-O(3)       | 101.03(8)  |
| O(5)-Ag(2)-O(3)    | 89.54(7)   | N(5)-Ag(3)-N(8)       | 164.27(9)  |
| N(5)-Ag(3)-O(8)#2  | 101.33(9)  | N(8)-Ag(3)-O(8)#2     | 92.93(9)   |
| N(6)-Ag(4)-N(7)#1  | 166.19(9)  | N(6)-Ag(4)-O(7)       | 104.56(8)  |
| N(7)#1-Ag(4)-O(7)  | 87.20(8)   | C(25)-O(1)-Ag(1)      | 116.72(18) |
| C(27)-O(3)-Ag(2)   | 126.21(19) | C(29)-O(5)-Ag(2)      | 135.4(2)   |
| C(31)-O(7)-Ag(4)   | 106.4(2)   | C(31)-O(8)-Ag(3)#3    | 137.2(2)   |
| C(1)-N(1)-C(5)     | 118.5(3)   | C(1)-N(1)-Ag(1)       | 119.1(2)   |
| C(5)-N(1)-Ag(1)    | 122.3(2)   | C(6)-N(2)-Ag(2)       | 114.63(18) |
| C(6)-N(2)-H(2A)    | 108.6      | Ag(2)-N(2)-H(2A)      | 108.6      |
| C(6)-N(2)-H(2B)    | 108.6      | Ag(2)-N(2)-H(2B)      | 108.6      |
| H(2A)-N(2)-H(2B)   | 107.6      | C(11)-N(3)-C(7)       | 117.3(3)   |
| C(11)-N(3)-Ag(2)   | 122.76(19) | C(7)-N(3)-Ag(2)       | 119.9(2)   |
| C(12)-N(4)-Ag(1)#4 | 116.60(18) | C(12)-N(4)-H(4A)      | 108.1      |
| Ag(1)#4-N(4)-H(4A) | 108.1      | C(12)-N(4)-H(4B)      | 108.1      |
| Ag(1)#4-N(4)-H(4B) | 108.1      | H(4A)-N(4)-H(4B)      | 107.3      |
| C(17)-N(5)-C(13)   | 117.6(3)   | C(17)-N(5)-Ag(3)      | 125.2(2)   |
| C(13)-N(5)-Ag(3)   | 117.3(2)   | C(18)-N(6)-Ag(4)      | 113.44(18) |
| C(18)-N(6)-H(6A)   | 108.9      | Ag(4)-N(6)-H(6A)      | 108.9      |
| C(18)-N(6)-H(6B)   | 108.9      | Ag(4)-N(6)-H(6B)      | 108.9      |
| H(6A)-N(6)-H(6B)   | 107.7      | C(23)-N(7)-C(19)      | 118.2(3)   |
| C(23)-N(7)-Ag(4)#4 | 124 5(2)   | C(19)-N(7)-Ag(4)#4    | 1172(2)    |
| C(24)-N(8)-Ag(3)   | 112.66(17) | C(24)-N(8)-H(8A)      | 109.1      |
| Ag(3)-N(8)-H(8A)   | 109.1      | C(24)-N(8)-H(8B)      | 109.1      |
| Ag(3)-N(8)-H(8B)   | 109.1      | H(8A)-N(8)-H(8B)      | 107.8      |
| N(1)-C(1)-C(2)     | 121.8(3)   | N(1)-C(1)-H(1)        | 119.1      |
| C(2)-C(1)-H(1)     | 119.1      | C(3)-C(2)-C(1)        | 119.4(3)   |
| C(3)-C(2)-H(2)     | 120.3      | C(1)-C(2)-H(2)        | 120.3      |
| C(2)-C(3)-C(4)     | 119.6(3)   | C(2)-C(3)-H(3)        | 120.2      |
| C(4)-C(3)-H(3)     | 120.2      | C(3)-C(4)-C(5)        | 117 6(3)   |
| C(3)-C(4)-C(6)     | 123 7(3)   | C(5)-C(4)-C(6)        | 1187(3)    |
| N(1)-C(5)-C(4)     | 123.0(3)   | N(1)-C(5)-H(5)        | 118.5      |
| C(4)-C(5)-H(5)     | 118.5      | N(2)-C(6)-C(4)        | 115.2(2)   |
| N(2)-C(6)-H(6C)    | 108.5      | C(4)-C(6)-H(6C)       | 108.5      |
| N(2)-C(6)-H(6D)    | 108.5      | C(4)-C(6)-H(6D)       | 108.5      |
| H(6C)-C(6)-H(6D)   | 107.5      | N(3)-C(7)-C(8)        | 122 3(3)   |
| N(3)-C(7)-H(7)     | 118.9      | C(8)-C(7)-H(7)        | 118.9      |
| C(7)-C(8)-C(9)     | 119.6(3)   | C(7)-C(8)-H(8)        | 120.2      |
| C(9)-C(8)-H(8)     | 120.2      | C(8)-C(9)-C(10)       | 119 2(3)   |
| C(8)-C(9)-H(9)     | 120.2      | C(10)-C(9)-H(9)       | 120.4      |
| C(11)-C(10)-C(9)   | 117 2(3)   | C(11)-C(10)-C(12)     | 119 2(3)   |
| C(9)-C(10)-C(12)   | 1237(3)    | N(3)-C(11)-C(10)      | 124.6(3)   |
| N(3)-C(11)-H(11)   | 1177       | C(10)-C(11)-H(11)     | 117 7      |
| N(4)-C(12)-C(10)   | 114.6(2)   | N(4)-C(12)-H(12A)     | 108.6      |
| C(10)-C(12)-H(12A) | 108.6      | N(4)-C(12)-H(12R)     | 108.6      |
| C(10)-C(12)-H(12R) | 108.6      | H(12A)-C(12)-H(12B)   | 107.6      |
| N(5)-C(13)-C(14)   | 122 4(3)   | N(5)-C(13)-H(13)      | 118.8      |
| C(14)-C(13)-H(13)  | 118.8      | C(13)-C(14)-C(15)     | 119 4(3)   |
| C(13)-C(14)-H(14)  | 120.3      | C(15) - C(14) - H(14) | 1203       |
|                    | 120.0      |                       | 120.0      |

Table B.20. Continued

| 119.4(3)             | C(16)-C(15)-H(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.3                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 120.3                | C(15)-C(16)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117.5(3)                                             |
| 122.9(3)             | C(17)-C(16)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.6(3)                                             |
| 123.8(3)             | N(5)-C(17)-H(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118.1                                                |
| 118.1                | N(6)-C(18)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.1(2)                                             |
| 108.7                | C(16)-C(18)-H(18A)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.7                                                |
| 108.7                | C(16)-C(18)-H(18B)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.7                                                |
| 107.6                | N(7)-C(19)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.3(3)                                             |
| 118.9                | C(20)-C(19)-H(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.9                                                |
| 119.6(3)             | C(19)-C(20)-H(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.2                                                |
| 120.2                | C(20)-C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.1(3)                                             |
| 120.5                | C(22)-C(21)-H(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.5                                                |
| 117.5(3)             | C(21)-C(22)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.9(3)                                             |
| 119.6(3)             | N(7)-C(23)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123.3(3)                                             |
| 118.4                | C(22)-C(23)-H(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.4                                                |
| 113.6(2)             | N(8)-C(24)-H(24A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.8                                                |
| 108.8                | N(8)-C(24)-H(24B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.8                                                |
| 108.8                | H(24A)-C(24)-H(24B)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.7                                                |
| 130.6(3)             | O(1)-C(25)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.3(3)                                             |
| 114.0(3)             | F(1)-C(26)-F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.2(3)                                             |
| 106.2(3)             | F(3)-C(26)-F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.4(3)                                             |
| 113.0(3)             | F(3)-C(26)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.4(2)                                             |
| 110.2(3)             | O(3)-C(27)-O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.2(3)                                             |
| 114.7(3)             | O(4)-C(27)-C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.1(3)                                             |
| 107.9(3)             | F(5)-C(28)-F(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105.0(3)                                             |
| 106.8(3)             | F(5)-C(28)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.7(3)                                             |
| 113.7(3)             | F(4)-C(28)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112.1(3)                                             |
| 129.4(3)             | O(5)-C(29)-C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.8(3)                                             |
| 114.7(3)             | F(7)-C(30)-F(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.7(3)                                             |
| 107.3(4)             | F(9)-C(30)-F(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102.4(3)                                             |
| 114.2(3)             | F(9)-C(30)-C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.3(3)                                             |
| 108.9(3)             | O(8)-C(31)-O(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127.8(3)                                             |
| 117.9(3)             | O(7)-C(31)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.2(3)                                             |
| 107.8(3)             | F(10)-C(32)-F(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.1(3)                                             |
| 105.6(3)             | F(10)-C(32)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.8(3)                                             |
| 113.2(3)             | F(12)-C(32)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.1(3)                                             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 2,024(2)             | $\mathbf{N}(\mathbf{A}) = \mathbf{U}(\mathbf{A}) = \mathbf{U}(\mathbf{A}) + \mathbf{U}(\mathbf{A})$                                                                                                                                                                                                                                                                                                                                                                         | 2 200(2)                                             |
| 5.024(5)<br>2.870(2) | $N(2) - \Pi(2A) \Gamma(3) = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.290(5)                                             |
| 2.8/0(3)             | N(4)-H(4A)U(6)#6                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.914(3)                                             |
| 5.559(4)<br>2.204(2) | N(4)-H(4B)U(5)#6                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.001(3)                                             |
| 5.294(5)<br>2.12((2) | N(0)-H(0A)U(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.880(3)                                             |
| 5.12b(5)<br>2.007(2) | $N(\delta)-H(\delta A)O(4)#3$                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.109(3)                                             |
| 2.907(3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
|                      | $\begin{array}{c} 119.4(3) \\ 120.3 \\ 122.9(3) \\ 123.8(3) \\ 118.1 \\ 108.7 \\ 108.7 \\ 107.6 \\ 118.9 \\ 119.6(3) \\ 120.2 \\ 120.2 \\ 120.5 \\ 117.5(3) \\ 119.6(3) \\ 118.4 \\ 113.6(2) \\ 108.8 \\ 108.8 \\ 130.6(3) \\ 114.0(3) \\ 106.2(3) \\ 113.0(3) \\ 110.2(3) \\ 114.7(3) \\ 107.9(3) \\ 106.8(3) \\ 113.7(3) \\ 129.4(3) \\ 114.7(3) \\ 107.9(3) \\ 106.8(3) \\ 113.7(3) \\ 129.4(3) \\ 114.7(3) \\ 107.8(3) \\ 107.8(3) \\ 105.6(3) \\ 113.2(3) \end{array}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z #2 x-1/2,-y+1/2,-z #3 x+1/2,-y+1/2,-z #4 x,y-1,z #5 -x+2,y-1/2,-z+1/2 #6 -x+1,y-1/2,-z+1/2 #7 x-1/2,-y+3/2,-z

Empirical formula C14 H16 Ag2 F6 N4 O6 S2 Formula weight 730.17 Temperature 110(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions  $a = 10.2555(10) A \alpha = 90 deg.$ b = 23.941(2) A  $\beta = 91.743(4) deg.$  $c = 9.1244(8) \text{ A} \gamma = 90 \text{ deg.}$ Volume 2239.3(4) A^3 Z, Calculated density 4, 2.166 Mg/m^3 Absorption coefficient 2.025 mm^-1 F(000) 1424 Crystal size 0.14 x 0.09 x 0.06 mm  $\theta$  range for data collection 1.70 to 26.37 deg. Limiting indices -12<=h<=12, -29<=k<=29, -11<=l<=7 Reflections collected / unique 58756 / 4576 [R(int) = 0.0404] Completeness to  $\theta = 26.37$ 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8881 and 0.7619 Refinement method Full-matrix least-squares on F<sup>2</sup> Data / restraints / parameters 4576 / 0 / 307 Goodness-of-fit on F^2 1.061 Final R indices  $[I > 2\sigma(I)]$ R1 = 0.0204, wR2 = 0.0510R indices (all data) R1 = 0.0258, wR2 = 0.0532Largest diff. peak and hole 0.880 and -0.583 e.A^-3 Bond Lengths (Å) 2.1235(19)Ag(1)-N(4)#1 Ag(1)-N(1)Ag(2)-N(3)2.1640(19)Ag(2)-N(2)Ag(2)-Ag(2)#23.1820(4) S(1)-O(1)S(1)-O(2)1.4391(18) S(1)-O(3)S(1)-C(13) 1.820(3) S(2)-O(5) S(2)-O(6)1.4369(19) S(2)-O(4)S(2)-C(14) 1.819(3) F(1)-C(13) F(2)-C(13) 1.318(3)F(3)-C(13) F(4)-C(14)1.317(3)F(5)-C(14) F(6)-C(14) 1.319(3) N(1)-C(1)0.9200 N(1)-H(1B) N(1)-H(1A)N(2)-C(3)1.340(3)N(2)-C(4)N(3)-C(11) N(3)-C(7)1.344(3)N(4)-Ag(1)#3N(4)-C(12)1.481(3) N(4)-H(4A)0.9200 N(4)-H(4B) C(1)-C(2)1.509(3) C(1)-H(1C)0.9900 C(1)-H(1D)C(2)-C(6)C(2)-C(3)1.391(3) C(3)-H(3) C(4)-C(5)1.363(4)C(4)-H(4)C(5)-C(6)1.382(4)C(5)-H(5) C(6)-H(6) 0.9500 C(7)-C(8)C(7)-H(7)0.9500 C(8)-C(9)C(8)-H(8) 0.9500 C(9)-C(10)C(9)-H(9) 0.9500 C(10)-C(11)C(10)-C(12)1.508(3) C(11)-H(11) C(12)-H(12A) 0.9900 C(12)-H(12B)

2.1283(19)

2.1675(19)

1.4343(18)

1.4393(18)

1.4350(19)

1.4393(18)

1.321(3)

1.330(3)

1.322(3)

1.482(3)

1.347(3)

1.345(3)

0.9200 0.9900

1.387(3)0.9500

0.9500

0.9500

1.368(3)

1.382(4)

1.385(3)

1.380(3)0.9500

0.9900

2.1235(19)

0.9200

Bond Angles (°)

| N(4)#1-Ag(1)-N(1)                                           | 177.85(8)  | N(2)-Ag(2)-N(3)                                       | 165.38(7)  |
|-------------------------------------------------------------|------------|-------------------------------------------------------|------------|
| N(2)-Ag(2)-Ag(2)#2                                          | 83.98(5)   | N(3)-Ag(2)-Ag(2)#2                                    | 101.56(5)  |
| O(1)-S(1)-O(2)                                              | 114.63(12) | O(1)-S(1)-O(3)                                        | 115.85(11) |
| O(2)-S(1)-O(3)                                              | 113.79(11) | O(1)-S(1)-C(13)                                       | 102.74(12) |
| O(2)-S(1)-C(13)                                             | 104.20(12) | O(3)-S(1)-C(13)                                       | 103.44(12) |
| O(5)-S(2)-O(6)                                              | 114.66(12) | O(5)-S(2)-O(4)                                        | 115.60(11) |
| O(6)-S(2)-O(4)                                              | 113.59(11) | O(5)-S(2)-C(14)                                       | 102.12(12) |
| O(6)-S(2)-C(14)                                             | 104.76(12) | O(4)-S(2)-C(14)                                       | 104.06(12) |
| C(1)-N(1)-Ag(1)                                             | 121.71(15) | C(1)-N(1)-H(1A)                                       | 106.9      |
| Ag(1)-N(1)-H(1A)                                            | 106.9      | C(1)-N(1)-H(1B)                                       | 106.9      |
| Ag(1)-N(1)-H(1B)                                            | 106.9      | H(1A)-N(1)-H(1B)                                      | 106.7      |
| C(3)-N(2)-C(4)                                              | 117.9(2)   | C(3)-N(2)-Ag(2)                                       | 117.21(15) |
| C(4)-N(2)-Ag(2)                                             | 124.84(16) | C(7)-N(3)-C(11)                                       | 117.8(2)   |
| C(7)-N(3)-Ag(2)                                             | 125.86(16) | C(11)-N(3)-Ag(2)                                      | 116.32(15) |
| C(12)-N(4)-Ag(1)#3                                          | 120.31(15) | C(12)-N(4)-H(4A)                                      | 107.2      |
| Ag(1)#3-N(4)-H(4A)                                          | 107.2      | C(12)-N(4)-H(4B)                                      | 107.2      |
| Ag(1)#3-N(4)-H(4B)                                          | 107.2      | H(4A)-N(4)-H(4B)                                      | 106.9      |
| N(1)-C(1)-C(2)                                              | 111.56(19) | N(1)-C(1)-H(1C)                                       | 109.3      |
| C(2)-C(1)-H(1C)                                             | 109.3      | N(1)-C(1)-H(1D)                                       | 109.3      |
| C(2)-C(1)-H(1D)                                             | 109.3      | H(1C)-C(1)-H(1D)                                      | 108.0      |
| C(6)-C(2)-C(3)                                              | 117.4(2)   | C(6)-C(2)-C(1)                                        | 122.3(2)   |
| C(3)-C(2)-C(1)                                              | 120.3(2)   | N(2)-C(3)-C(2)                                        | 123.2(2)   |
| N(2)-C(3)-H(3)                                              | 118.4      | C(2)-C(3)-H(3)                                        | 118.4      |
| N(2)-C(4)-C(5)                                              | 122.6(2)   | N(2)-C(4)-H(4)                                        | 118.7      |
| C(5)-C(4)-H(4)                                              | 118.7      | C(4)-C(5)-C(6)                                        | 119.3(2)   |
| C(4)-C(5)-H(5)                                              | 120.3      | C(6)-C(5)-H(5)                                        | 120.3      |
| C(5)-C(6)-C(2)                                              | 119.6(2)   | C(5)-C(6)-H(6)                                        | 120.2      |
| C(2)-C(6)-H(6)                                              | 120.2      | N(3)-C(7)-C(8)                                        | 122.5(2)   |
| N(3)-C(7)-H(7)                                              | 118.7      | C(8)-C(7)-H(7)                                        | 118.7      |
| C(7)-C(8)-C(9)                                              | 119.0(2)   | C(7)-C(8)-H(8)                                        | 120.5      |
| C(9)-C(8)-H(8)                                              | 120.5      | C(8)-C(9)-C(10)                                       | 119.7(2)   |
| C(8)-C(9)-H(9)                                              | 120.2      | C(10)-C(9)-H(9)                                       | 120.2      |
| C(11)-C(10)-C(9)                                            | 117.5(2)   | C(11)-C(10)-C(12)                                     | 120.7(2)   |
| C(9)-C(10)-C(12)                                            | 121.7(2)   | N(3)-C(11)-C(10)                                      | 123.4(2)   |
| N(3)-C(11)-H(11)                                            | 118.3      | C(10)-C(11)-H(11)                                     | 118.3      |
| N(4)-C(12)-C(10)                                            | 111.45(19) | N(4)-C(12)-H(12A)                                     | 109.3      |
| C(10)-C(12)-H(12A)                                          | 109.3      | N(4)-C(12)-H(12B)                                     | 109.3      |
| C(10)-C(12)-H(12B)                                          | 109.3      | H(12A)-C(12)-H(12B)                                   | 108.0      |
| F(2)-C(13)-F(1)                                             | 107.6(2)   | F(2)-C(13)-F(3)                                       | 109.1(2)   |
| F(1)-C(13)-F(3)                                             | 107.2(2)   | F(2)-C(13)-S(1)                                       | 110.48(19) |
| F(1)-C(13)-S(1)                                             | 110.86(19) | F(3)-C(13)-S(1)                                       | 111.46(18) |
| F(4)-C(14)-F(6)                                             | 108.0(2)   | F(4)-C(14)-F(5)                                       | 108.6(2)   |
| F(6)-C(14)-F(5)                                             | 107.2(2)   | F(4)-C(14)-S(2)                                       | 110.11(19) |
| F(6)-C(14)-S(2)                                             | 111.08(18) | F(5)-C(14)-S(2)                                       | 111.76(18) |
| $\langle \rangle \langle \rangle \rangle = \langle \rangle$ |            | $\langle \rangle = \langle \rangle = \langle \rangle$ |            |

Hydrogen Bonds (Å)

| N(4)-H(4A)O(6)   | 3.144(3) | N(4)-H(4A)O(4)   | 3.090(3) |
|------------------|----------|------------------|----------|
| N(4)-H(4A)S(2)   | 3.650(2) | N(4)-H(4B)O(3)   | 3.001(3) |
| N(1)-H(1A)O(2)#4 | 3.022(3) | N(1)-H(1A)S(1)#4 | 3.604(2) |
| N(1)-H(1B)O(4)#4 | 3.010(3) |                  |          |

Symmetry transformations used to generate equivalent atoms: #1 x-1,-y+3/2,z+1/2 #2 -x,-y+1,-z+1 #3 x+1,-y+3/2,z-1/2 #4 x-1,y,z

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions                                                                                                                                                                                                     |                                                                                                                                                | C14 H16 Ag F3 N4 O2<br>437.18<br>110(2) K<br>0.71073 A<br>Monoclinic, P2(1)/n<br>$a = 12.5447(9)$ A $\alpha = 90$ deg.<br>$b = 10.5573(7)$ A $\beta = 108.001(2)$ deg.<br>$c = 12.0004(2)$ A $\omega = 90$ deg.                                                                             |                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>F(000)<br>Crystal size<br>θ range for data collection                                                                                                                                                                                                          |                                                                                                                                                | 1637.3(2) A^3<br>4, 1.773 Mg/m^3<br>1.277 mm^-1<br>872<br>0.19 x 0.07 x 0.07 mm<br>1.97 to 28.37 deg.                                                                                                                                                                                       |                                                                                                                                                                 |
| Limiting indices<br>Reflections collected / unique<br>Completeness to $\theta = 28.37$<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2<br>Final R indices [I>2 $\sigma$ (I)]<br>R indices (all data)<br>Largest diff. peak and hole |                                                                                                                                                | -16<=h<=16, -12<=k<=14, -17<=l<=17<br>60463 / 4039 [R(int) = 0.0329]<br>98.5 %<br>Semi-empirical from equivalents<br>0.9159 and 0.7906<br>Full-matrix least-squares on F^2<br>4039 / 19 / 274<br>1.056<br>R1 = 0.0159, wR2 = 0.0427<br>R1 = 0.0185, wR2 = 0.0436<br>0.439 and -0.247 e.A^-3 |                                                                                                                                                                 |
| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                            |                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |
| Ag(1)-N(2)#1<br>Ag(1)-N(3)<br>O(1)-C(13)<br>N(1)-C(5)<br>N(2)-C(6)<br>N(2)-H(2A)<br>N(3)-C(7)<br>N(4)-C(12)<br>N(4)-H(4A)<br>C(1)-C(2)<br>C(2)-C(3)                                                                                                                                                                         | 2.2851(10)<br>2.3765(11)<br>1.2418(15)<br>1.3418(18)<br>1.4690(15)<br>0.9200<br>1.3406(17)<br>1.4758(16)<br>0.9200<br>1.3880(18)<br>1.3975(17) | Ag(1)-N(4)#2<br>Ag(1)-N(1)<br>O(2)-C(13)<br>N(1)-C(1)<br>N(2)-Ag(1)#3<br>N(2)-H(2B)<br>N(3)-C(11)<br>N(4)-Ag(1)#4<br>N(4)-H(4B)<br>C(1)-H(1)<br>C(2)-C(6)                                                                                                                                   | $\begin{array}{c} 2.3028(10)\\ 2.4460(11)\\ 1.2409(15)\\ 1.3422(17)\\ 2.2851(10)\\ 0.9200\\ 1.3415(16)\\ 2.3028(10)\\ 0.9200\\ 0.9500\\ 1.5123(17) \end{array}$ |

Table B.22 Experimental and statistical crystal data for 6.3

Table B.22. Continued

| C(3)-C(4)<br>C(4)-C(5)<br>C(5)-H(5)<br>C(6)-H(6B)<br>C(7)-H(7)<br>C(8)-C(12)<br>C(9)-H(9)<br>C(10)-H(10)<br>C(12)-H(12A)<br>C(12)-H(12A)<br>C(13)-C(14)<br>C(14)-F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.3828(18)\\ 1.385(2)\\ 0.9500\\ 0.9900\\ 0.9500\\ 1.5118(17)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9900\\ 1.5548(18)\\ 1.317(6)\end{array}$                                                                                                                                                                   | C(3)-H(3)<br>C(4)-H(4)<br>C(6)-H(6A)<br>C(7)-C(8)<br>C(8)-C(9)<br>C(9)-C(10)<br>C(10)-C(11)<br>C(11)-H(11)<br>C(11)-H(11)<br>C(12)-H(12B)<br>C(14)-F(1)<br>C(14)-F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500<br>0.9500<br>1.3906(18)<br>1.3849(18)<br>1.3875(19)<br>1.3821(18)<br>0.9500<br>0.9900<br>1.315(5)<br>1.359(7)                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bond Angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                    |
| N(2)#1-Ag(1)-N(4)#2<br>N(4)#2-Ag(1)-N(3)<br>N(4)#2-Ag(1)-N(1)<br>C(5)-N(1)-C(1)<br>C(1)-N(1)-Ag(1)<br>C(6)-N(2)-H(2A)<br>C(6)-N(2)-H(2B)<br>H(2A)-N(2)-H(2B)<br>C(7)-N(3)-Ag(1)<br>C(12)-N(4)-Ag(1)#4<br>Ag(1)#4-N(4)-H(4A)<br>Ag(1)#4-N(4)-H(4B)<br>N(1)-C(1)-C(2)<br>C(2)-C(1)-H(1)<br>C(1)-C(2)-C(6)<br>C(4)-C(3)-C(2)<br>C(2)-C(3)-H(3)<br>C(3)-C(4)-H(4)<br>N(1)-C(5)-C(4)<br>C(4)-C(5)-H(5)<br>N(2)-C(6)-H(6B)<br>H(6A)-C(6)-H(6B)<br>H(6A)-C(6)-H(6B)<br>N(3)-C(7)-H(7)<br>C(7)-C(8)-C(12)<br>C(8)-C(9)-H(9)<br>C(11)-C(10)-C(9)<br>C(9)-C(10)-H(10)<br>N(3)-C(11)-H(11)<br>N(4)-C(12)-C(8)<br>C(8)-C(12)-H(12A) | 130.93(4) $99.83(4)$ $108.81(4)$ $116.91(12)$ $115.92(9)$ $108.5$ $108.5$ $107.5$ $118.26(8)$ $116.60(8)$ $108.1$ $108.1$ $124.41(12)$ $117.8$ $120.04(11)$ $118.90(12)$ $120.5$ $120.4$ $123.09(12)$ $118.5$ $108.4$ $107.5$ $118.0$ $117.58(12)$ $119.54(12)$ $120.4$ $119.17(12)$ $120.4$ $118.7$ $113.66(10)$ $108.8$ | N(2)#1-Ag(1)-N(3)<br>N(2)#1-Ag(1)-N(1)<br>N(3)-Ag(1)-N(1)<br>C(5)-N(1)-Ag(1)<br>C(6)-N(2)-Ag(1)#3<br>Ag(1)#3-N(2)-H(2A)<br>Ag(1)#3-N(2)-H(2B)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(12)-N(4)-H(4B)<br>H(4A)-N(4)-H(4B)<br>N(1)-C(1)-H(1)<br>C(1)-C(2)-C(3)<br>C(3)-C(2)-C(6)<br>C(4)-C(3)-H(3)<br>C(3)-C(4)-C(5)<br>C(5)-C(4)-H(4)<br>N(1)-C(5)-H(5)<br>N(2)-C(6)-C(2)<br>C(2)-C(6)-H(6A)<br>C(2)-C(6)-H(6B)<br>N(3)-C(7)-C(8)<br>C(8)-C(7)-H(7)<br>C(9)-C(8)-C(12)<br>C(8)-C(7)-H(7)<br>C(9)-C(8)-C(12)<br>C(10)-C(9)-H(9)<br>C(11)-C(10)-H(10)<br>N(3)-C(11)-C(10)<br>C(10)-C(11)-H(11)<br>N(4)-C(12)-H(12A)<br>N(4)-C(12)-H(12B) | $\begin{array}{c} 113.77(4)\\ 103.69(4)\\ 93.80(4)\\ 125.92(9)\\ 115.02(7)\\ 108.5\\ 108.5\\ 108.5\\ 117.44(11)\\ 122.62(8)\\ 108.1\\ 107.3\\ 117.8\\ 117.44(11)\\ 122.45(11)\\ 120.5\\ 119.23(12)\\ 120.4\\ 118.5\\ 115.56(10)\\ 108.4\\ 108.4\\ 123.98(12)\\ 118.0\\ 122.85(12)\\ 119.17(12)\\ 120.4\\ 122.65(12)\\ 118.7\\ 108.8\\ 108.8\\ 108.8\\ \end{array}$ |
| C(8)-C(12)-H(12B) $O(2)-C(13)-O(1)$ $O(1)-C(13)-C(14)$ $F(1)-C(14)-F(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.8<br>130.72(12)<br>114.54(11)<br>105.0(4)                                                                                                                                                                                                                                                                             | $\begin{array}{l} H(12A)-C(12)-H(12B) \\ O(2)-C(13)-C(14) \\ F(1)-C(14)-F(3) \\ F(3)-C(14)-F(2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.7<br>114.73(11)<br>107.6(5)<br>104.0(5)                                                                                                                                                                                                                                                                                                                        |
| F(1)-C(14)-C(13)<br>F(2)-C(14)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114.0(2)<br>111.6(4)                                                                                                                                                                                                                                                                                                      | F(3)-C(14)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.8(4)                                                                                                                                                                                                                                                                                                                                                           |

Table B.22. Continued

Hydrogen Bonds (Å)

| N(2)-H(2A)O(2)#3 | 3.0692(14) | N(2)-H(2B)O(2)#5  | 3.0282(14) |
|------------------|------------|-------------------|------------|
| N(4)-H(4A)O(1)#6 | 3.1528(14) | N(4)-H(4A)F(1B)#6 | 3.36(2)    |
| N(4)-H(4B)O(1)#4 | 3.1525(14) |                   |            |

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y-1/2,-z+1/2#2 -x+1/2,y-1/2,-z+1/2z+1/2#3 -x+3/2,y+1/2,-z+1/2#4 -x+1/2,y+1/2,-z+1/2#5 x+1/2,-y+3/2,z+1/2#6 x,y+1,z

| Empirical formula                  |                      | C13 H16 Ag F3 N4 O3                 | S          |
|------------------------------------|----------------------|-------------------------------------|------------|
| Formula weight                     |                      | 473.23                              |            |
| Temperature                        |                      | 110(2) K                            |            |
| Wavelength                         |                      | 0.71073 A                           |            |
| Crystal system, space group        |                      | Orthorhombic, P2(1)2(               | 1)2(1)     |
| Unit cell dimensions               |                      | $a = 7.5817(8) A \alpha = 90$       | ) deg.     |
|                                    |                      | $b = 10.4787(13) A \beta =$         | = 90 deg.  |
|                                    |                      | $c = 21.663(2) A \gamma = 90$       | ) deg.     |
| Volume                             |                      | 1721.1(3) A^3                       |            |
| Z. Calculated density              |                      | 4. 1.826 Mg/m^3                     |            |
| Absorption coefficient             |                      | 1.344 mm^-1                         |            |
| F(000)                             |                      | 944                                 |            |
| Crystal size                       |                      | $0.293 \times 0.270 \times 0.119$ r | nm         |
| Frange for data collection         |                      | 3 28 to 25 75 deg                   |            |
| Limiting indices                   |                      | -9<=h<=8, -12<=k<=1                 | 226<=1<=25 |
| Reflections collected / unique     |                      | 13609 / 3284 [R(int) = 0]           | 02521      |
| Completeness to $\theta = 25.75$   |                      | 99.7 %                              | 1          |
| Absorption correction              |                      | multi-scan (SADABS)                 |            |
| Refinement method                  |                      | Full-matrix least-square            | es on F^2  |
| Data / restraints / parameters     |                      | 3284 / 0 / 226                      |            |
| Goodness-of-fit on F^2             |                      | 1.061                               |            |
| Final R indices $[I > 2\sigma(I)]$ |                      | $R_1 = 0.0178$ , $wR_2 = 0.0$       | )433       |
| R indices (all data)               |                      | R1 = 0.0191, $wR2 = 0.0$            | 0436       |
| Absolute structure parameter       | -0.032(17)           |                                     |            |
| Largest diff. peak and hole        | 0.681 and -0.210 e.A | A^-3                                |            |
|                                    |                      |                                     |            |
| Bond Lengths (Å)                   |                      |                                     |            |
| Ag(1)-N(2)                         | 2.3065(18)           | Ag(1)-N(3)#1                        | 2.3273(18) |
| Ag(1)-N(4)                         | 2.3352(19)           | Ag(1)-N(1)#2                        | 2.3483(18) |
| S(1)-O(1)                          | 1.439(2)             | S(1)-O(2)                           | 1.444(2)   |
| S(1)-O(3)                          | 1.445(2)             | S(1)-C(13)                          | 1.821(2)   |
| F(1)-C(13)                         | 1.329(3)             | F(2)-C(13)                          | 1.337(3)   |
| F(3)-C(13)                         | 1.344(3)             | N(2)-C(4)                           | 1.339(3)   |
| N(2)-C(3)                          | 1.353(3)             | N(1)-C(1)                           | 1.475(3)   |
| N(1)-Ag(1)#3                       | 2.3483(18)           | N(1)-H(1A)                          | 0.9200     |
| N(1)-H(1B)                         | 0.9200               | N(4)-C(10)                          | 1.330(3)   |
| N(4)-C(9)                          | 1.351(3)             | N(3)-C(7)                           | 1.481(3)   |
| N(3)-Ag(1)#4                       | 2.3273(18)           | N(3)-H(3A)                          | 0.9200     |
| N(3)-H(3B)                         | 0.9200               | C(4)-C(5)                           | 1.378(3)   |
| C(4)-H(4)                          | 0.9500               | C(5)-C(6)                           | 1.398(3)   |

Table B.23 Experimental and statistical crystal data for 6.4

Table B.23. Continued

| C(5)-H(5)                            | 0 9500     | C(3)-C(2)             | 1 383(3)             |
|--------------------------------------|------------|-----------------------|----------------------|
| C(3)-H(3)                            | 0.9500     | C(6)-C(2)             | 1.303(3)<br>1.378(3) |
| C(6)-H(6)                            | 0.9500     | C(2)-C(1)             | 1.576(3)             |
| C(7)- $C(8)$                         | 1 515(3)   | C(7)-H(7A)            | 0.9900               |
| C(7) - H(7B)                         | 0.9900     | C(8)-C(9)             | 1.383(3)             |
| C(8)-C(12)                           | 1 385(3)   | C(12)-C(11)           | 1.305(3)<br>1.395(3) |
| C(12)-H(12)                          | 0.9500     | C(12)-C(11)           | 1.395(3)<br>1.386(3) |
| C(12) H(12)<br>C(11)-H(11)           | 0.9500     | C(1)-H(1C)            | 0.9900               |
| C(1)-H(1D)                           | 0.9900     | C(10)-H(10)           | 0.9500               |
| C(0)-H(0)                            | 0.9500     | C(10)-11(10)          | 0.7500               |
| C())-II())                           | 0.7500     |                       |                      |
| Bond Angles (°)                      |            |                       |                      |
| $N_{1}(2) = A_{-1}(1) N_{1}(2) // 1$ | 110.9((7)  | C(0) $C(0)$ $U(0)$    | 110 1                |
| N(2) - Ag(1) - N(3) # 1              | 119.86(7)  | C(8)-C(9)-H(9)        | 118.1                |
| N(2) - Ag(1) - N(4)                  | 105.34(6)  | N(3)#1-Ag(1)-N(4)     | 119.58(7)            |
| N(2)-Ag(1)-N(1)#2                    | 104./4(/)  | N(3)#1-Ag(1)-N(1)#2   | 96.63(7)             |
| N(4)-Ag(1)-N(1)#2                    | 108.92(7)  | O(1)- $S(1)$ - $O(2)$ | 114.55(13)           |
| O(1)-S(1)-O(3)                       | 116.32(12) | O(2)- $S(1)$ - $O(3)$ | 114.76(12)           |
| O(1)-S(1)-C(13)                      | 103.48(12) | O(2)-S(1)-C(13)       | 103.24(11)           |
| O(3)-S(1)-C(13)                      | 101.79(11) | C(4)-N(2)-C(3)        | 116.89(19)           |
| C(4)-N(2)-Ag(1)                      | 123.70(14) | C(3)-N(2)-Ag(1)       | 118.21(15)           |
| C(1)-N(1)-Ag(1)#3                    | 123.78(14) | C(1)-N(1)-H(1A)       | 106.4                |
| Ag(1)#3-N(1)-H(1A)                   | 106.4      | C(1)-N(1)-H(1B)       | 106.4                |
| Ag(1)#3-N(1)-H(1B)                   | 106.4      | H(1A)-N(1)-H(1B)      | 106.5                |
| C(10)-N(4)-C(9)                      | 117.4(2)   | C(10)-N(4)-Ag(1)      | 120.06(16)           |
| C(9)-N(4)-Ag(1)                      | 122.28(15) | C(7)-N(3)-Ag(1)#4     | 118.00(13)           |
| C(7)-N(3)-H(3A)                      | 107.8      | Ag(1)#4-N(3)-H(3A)    | 107.8                |
| C(7)-N(3)-H(3B)                      | 107.8      | Ag(1)#4-N(3)-H(3B)    | 107.8                |
| H(3A)-N(3)-H(3B)                     | 107.1      | F(1)-C(13)-F(2)       | 107.20(18)           |
| F(1)-C(13)-F(3)                      | 107.49(19) | F(2)-C(13)-F(3)       | 106.9(2)             |
| F(1)-C(13)-S(1)                      | 112.76(17) | F(2)-C(13)-S(1)       | 111.64(16)           |
| F(3)-C(13)-S(1)                      | 110.58(16) | N(2)-C(4)-C(5)        | 123.4(2)             |
| N(2)-C(4)-H(4)                       | 118.3      | C(5)-C(4)-H(4)        | 118.3                |
| C(4)-C(5)-C(6)                       | 118.7(2)   | C(4)-C(5)-H(5)        | 120.6                |
| C(6)-C(5)-H(5)                       | 120.6      | N(2)-C(3)-C(2)        | 123.7(2)             |
| N(2)-C(3)-H(3)                       | 118.1      | C(2)-C(3)-H(3)        | 118.1                |
| C(2)-C(6)-C(5)                       | 119.0(2)   | C(2)-C(6)-H(6)        | 120.5                |
| C(5)-C(6)-H(6)                       | 120.5      | C(6)-C(2)-C(3)        | 118.3(2)             |
| C(6)-C(2)-C(1)                       | 120.9(2)   | C(3)-C(2)-C(1)        | 120.6(2)             |
| N(3)-C(7)-C(8)                       | 110.94(18) | N(3)-C(7)-H(7A)       | 109.5                |
| C(8)-C(7)-H(7A)                      | 109.5      | N(3)-C(7)-H(7B)       | 109.5                |
| C(8)-C(7)-H(7B)                      | 109.5      | H(7A)-C(7)-H(7B)      | 108.0                |
| C(9)-C(8)-C(12)                      | 118.0(2)   | C(9)-C(8)-C(7)        | 120.9(2)             |
| C(12)-C(8)-C(7)                      | 121.1(2)   | C(8)-C(12)-C(11)      | 119.0(2)             |
| C(8)-C(12)-H(12)                     | 120.5      | C(11)-C(12)-H(12)     | 120.5                |
| C(10)-C(11)-C(12)                    | 118.7(2)   | C(10)-C(11)-H(11)     | 120.7                |
| C(12)-C(11)-H(11)                    | 120.7      | N(1)-C(1)-C(2)        | 111.91(19)           |
| N(1)-C(1)-H(1C)                      | 109.2      | C(2)-C(1)-H(1C)       | 109.2                |
| N(1)-C(1)-H(1D)                      | 109.2      | C(2)-C(1)-H(1D)       | 109.2                |
| H(1C)-C(1)-H(1D)                     | 107.9      | N(4)-C(10)-C(11)      | 123.2(2)             |
| N(4)-C(10)-H(10)                     | 118.4      | С(11)-С(10)-Н(10)     | 118.4                |
| N(4)-C(9)-C(8)                       | 123.8(2)   | N(4)-C(9)-H(9)        | 118.1                |

| Hydrogen Bonds (Å) |  |  |
|--------------------|--|--|
|                    |  |  |

N(6)-C(22)

| N(1)-H(1A)O(2)#5 | 3.076(3) | N(1)-H(1B)O(1)#3 | 2.980(3) |
|------------------|----------|------------------|----------|
| N(3)-H(3A)O(3)#4 | 3.225(3) | N(3)-H(3B)O(2)#6 | 3.318(3) |
|                  |          |                  |          |

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+3/2,-z #2 -x+2,y-1/2,-z+1/2 #3 -x+2,y+1/2,-z+1/2 #4 x+1/2,-y+3/2,-z #5 x+1,y+1,z #6 -x+3/2,-y+1,z-1/2

| Table B 24 I | Experimental | and | statistical | crystal   | data for 6.5 |
|--------------|--------------|-----|-------------|-----------|--------------|
| 1 auto D.27  | Lapermentar  | anu | statistical | UI y Stal | uata 101 0.5 |

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions |                       | C32 H27 Ag2 F6 N7 O4<br>903.35<br>110(2) K<br>0.71073 A<br>Triclinic, P-1<br>$a = 11.6824(11) A  \alpha = 78.$<br>$b = 12.2492(11) A  \beta = 64$<br>$a = 13.2075(12) A  \alpha = 75.$ | 317(2) deg.<br>.335(2) deg. |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Volume                                                                                                                  |                       | $1647.8(3) A^3$                                                                                                                                                                        | 003(2) deg.                 |
| Z, Calculated density                                                                                                   |                       | 2, 1.821 Mg/m^3                                                                                                                                                                        |                             |
| Absorption coefficient                                                                                                  |                       | 1.272 mm^-1                                                                                                                                                                            |                             |
| F(000)                                                                                                                  |                       | 896                                                                                                                                                                                    |                             |
| Crystal size                                                                                                            |                       | $0.195 \times 0.172 \times 0.140 \text{ mm}$                                                                                                                                           |                             |
| b range for data collection                                                                                             |                       | 1.9/ to 28.31 deg.<br>15 - b - 15 $15 - b - 16$                                                                                                                                        | 17~-1~-17                   |
| Reflections collected / unique                                                                                          |                       | -13 < -13 < -13 < -13 < -10,<br>22035 / 8117 [R(int) = 0.03                                                                                                                            | 18]                         |
| Completeness to $\theta = 25.00$                                                                                        |                       | 99.1 %                                                                                                                                                                                 | 10]                         |
| Absorption correction                                                                                                   |                       | multi-scan (SADABS)                                                                                                                                                                    |                             |
| Refinement method                                                                                                       |                       | Full-matrix least-squares or                                                                                                                                                           | n F^2                       |
| Data / restraints / parameters                                                                                          |                       | 8117 / 6 / 489                                                                                                                                                                         |                             |
| Goodness-of-fit on F^2                                                                                                  |                       | 1.020                                                                                                                                                                                  |                             |
| Final R indices $[1>2\sigma(1)]$                                                                                        |                       | RI = 0.0277, WR2 = 0.0608                                                                                                                                                              | Ś                           |
| K indices (all data)                                                                                                    |                       | $R_1 = 0.0399, WR_2 = 0.0663$                                                                                                                                                          | )                           |
| Largest unit. peak and note                                                                                             |                       | 0.020 and -0.077 C.A -5                                                                                                                                                                |                             |
| Bond Langths (Å)                                                                                                        |                       |                                                                                                                                                                                        |                             |
| Ag(1)-N(1)                                                                                                              | 2.1487(18)            | Ag(1)-N(4)                                                                                                                                                                             | 2.2552(19)                  |
| Ag(1)-N(3)                                                                                                              | 2.3313(19)            | Ag(1)-Ag(2)#1                                                                                                                                                                          | 3.0583(3)                   |
| Ag(2)-N(2)                                                                                                              | 2.1481(19)            | Ag(2)-N(6)                                                                                                                                                                             | 2.2143(19)                  |
| Ag(2)-N(5)                                                                                                              | 2.382(2)              | Ag(2)-Ag(1)#1                                                                                                                                                                          | 3.0583(3)                   |
| Ag(2)-Ag(2)#2                                                                                                           | 3.1615(4)<br>1.225(2) | F(4)-C(30)                                                                                                                                                                             | 1.326(3)                    |
| $\Gamma(3)$ - $C(30)$                                                                                                   | 1.323(3)<br>1.224(2)  | $\Gamma(0)$ - $C(30)$                                                                                                                                                                  | 1.332(3)<br>1.240(3)        |
| O(1)-C(27)<br>O(3)-C(29)                                                                                                | 1.234(3)<br>1.244(3)  | O(2)-C(27)                                                                                                                                                                             | 1.240(3)<br>1.234(3)        |
| N(1)-C(1)                                                                                                               | 1.244(3)<br>1 483(3)  | N(1)-H(1A)                                                                                                                                                                             | 1.234(3)                    |
| N(1) - H(1B)                                                                                                            | 0.9000                | N(2)-C(3)                                                                                                                                                                              | 1 346(3)                    |
| N(2)-C(4)                                                                                                               | 1.349(3)              | N(3)-C(7)                                                                                                                                                                              | 1.342(3)                    |
| N(3)-C(11)                                                                                                              | 1.345(3)              | N(4)-C(16)                                                                                                                                                                             | 1.344(3)                    |
| N(4)-C(12)                                                                                                              | 1.350(3)              | N(5)-C(17)                                                                                                                                                                             | 1.336(3)                    |
| N(5)-C(21)                                                                                                              | 1.349(3)              | N(6)-C(26)                                                                                                                                                                             | 1.346(3)                    |

1.352(3)

N(7)-C(31)

1.137(4)

Table B.24. Continued

| C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.504(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(1)-H(1C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(1)-H(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.385(3)                                                                                                                                                                                                                                     |
| C(2)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 394(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(3)-H(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 9300                                                                                                                                                                                                                                       |
| C(4)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 380(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4)-H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 9300                                                                                                                                                                                                                                       |
| C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 385(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(5)-H(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9300                                                                                                                                                                                                                                       |
| C(6)-H(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(7)- $C(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 386(3)                                                                                                                                                                                                                                     |
| C(7) H(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(8) C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.300(3)<br>1.377(4)                                                                                                                                                                                                                         |
| C(7) - H(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(0) - C(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.377(4)<br>1.299(4)                                                                                                                                                                                                                         |
| $C(\delta) - \Pi(\delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(9)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.388(4)                                                                                                                                                                                                                                     |
| C(9)-H(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(10)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.393(3)                                                                                                                                                                                                                                     |
| C(10)-H(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.496(3)                                                                                                                                                                                                                                     |
| C(12)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.401(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.390(3)                                                                                                                                                                                                                                     |
| C(13)-H(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(14)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.385(4)                                                                                                                                                                                                                                     |
| C(14)-H(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.379(3)                                                                                                                                                                                                                                     |
| C(15)-H(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(16)-H(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(17)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.378(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(17)-H(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(18)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.380(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(18)-H(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(19)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.385(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(19)-H(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(20)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.391(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(20)-H(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.493(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(22)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.391(3)                                                                                                                                                                                                                                     |
| C(23)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.381(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23)-H(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(24)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 385(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(24)-H(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 9300                                                                                                                                                                                                                                       |
| C(25)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 376(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(25)-H(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                                                                                                                                                                                                                                       |
| C(26)-H(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(27)- $C(28)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 550(3)                                                                                                                                                                                                                                     |
| C(28) - F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 318(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(28)-F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.330(5)                                                                                                                                                                                                                                     |
| C(28)-F(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.310(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C(20) - \Gamma(1)$<br>C(20) - C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.559(5)<br>1.544(3)                                                                                                                                                                                                                         |
| $C(20)$ - $\Gamma(2)$<br>C(21) $C(22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.551(0)<br>1.456(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(22) = C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0600                                                                                                                                                                                                                                       |
| C(31)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(32)- $H(32A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9000                                                                                                                                                                                                                                       |
| С(32)-П(32В)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(32)- $H(32C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9000                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |
| $\mathbf{D} = -1 \mathbf{A} + -1 \mathbf{a} \mathbf{a} \mathbf{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |
| Bond Angles (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              |
| Bond Angles (°) $N(1) = A c(1) N(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154 80(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N(1) \wedge \alpha(1) N(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121 65(7)                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154.80(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(1)-Ag(1)-N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131.65(7)                                                                                                                                                                                                                                    |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154.80(7)<br>72.58(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131.65(7)<br>95.43(5)                                                                                                                                                                                                                        |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 154.80(7)<br>72.58(7)<br>91.29(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131.65(7)<br>95.43(5)<br>89.05(4)                                                                                                                                                                                                            |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)                                                                                                                                                                                               |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1                                                                                                                                                                                                                                                                                                                                                                                                                    | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)                                                                                                                                                                                   |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1                                                                                                                                                                                                                                                                                                                                                                                              | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)                                                                                                                                                                       |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2                                                                                                                                                                                                                                                                                                                                                                        | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)                                                                                                                                                           |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-                                                                                                                                                                                                                                                                                                                                                      | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)                                                                                                                                            |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2                                                                                                                                                                                                                                                                                                                                           | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)                                                                                                                                            |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)<br>115.52(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)                                                                                                                                                                                                                                                                                                                        | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)<br>108.4                                                                                                                                   |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)<br>115.52(13)<br>108.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)                                                                                                                                                                                                                                                                                                     | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)<br>108.4<br>108.4                                                                                                                          |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)<br>115.52(13)<br>108.4<br>108.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)                                                                                                                                                                                                                                                                                 | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)<br>108.4<br>108.4<br>107.5                                                                                                                 |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 154.80(7)<br>72.58(7)<br>91.29(5)<br>161.15(7)<br>72.31(7)<br>89.56(5)<br>113.37(5)<br>70.00(5)<br>115.52(13)<br>108.4<br>108.4<br>108.4<br>118.07(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)                                                                                                                                                                                                                                                              | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $108.4$ $107.5$ $121.26(15)$                                                                                                              |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)                                                                                                                                                                                                                                           | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$                                                                                                   |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)                                                                                                                                                                                                   | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$                                                                                      |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)                                                                                                                                                                               | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$                                                                         |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\117.59(15) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)                                                                                                                                                           | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$                                                                      |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(12)-N(5)-Ag(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154.80(7) $72.58(7)$ $91.29(5)$ $161.15(7)$ $72.31(7)$ $89.56(5)$ $113.37(5)$ $70.00(5)$ $115.52(13)$ $108.4$ $108.4$ $118.07(19)$ $120.42(15)$ $125.02(16)$ $118.5(2)$ $117.59(15)$ $125.49(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)                                                                                                                                       | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$                                                         |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(26)-N(6)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154.80(7) $72.58(7)$ $91.29(5)$ $161.15(7)$ $72.31(7)$ $89.56(5)$ $113.37(5)$ $70.00(5)$ $115.52(13)$ $108.4$ $108.4$ $118.07(19)$ $120.42(15)$ $125.02(16)$ $118.5(2)$ $117.59(15)$ $125.49(16)$ $118.7(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)                                                                                                                   | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$ $122.06(16)$                                            |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(26)-N(6)-C(22)<br>C(22)<br>N(6)-Ag(2)<br>C(22)<br>N(6)-Ag(2)<br>C(22)<br>N(6)-Ag(2)<br>N(6)-C(22)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-C(22)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-C(22)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-C(22)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6)-Ag(2)<br>N(6 | 154.80(7) $72.58(7)$ $91.29(5)$ $161.15(7)$ $72.31(7)$ $89.56(5)$ $113.37(5)$ $70.00(5)$ $115.52(13)$ $108.4$ $108.4$ $118.07(19)$ $120.42(15)$ $125.02(16)$ $118.5(2)$ $117.59(15)$ $125.49(16)$ $118.7(2)$ $119.26(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)<br>N(1)-C(1)-C(2)                                                                             | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$ $122.06(16)$ $113.89(18)$                               |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(22)-N(6)-C(22)<br>C(22)-N(6)-Ag(2)<br>N(1)-C(12)<br>N(1)-C(12)<br>N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\117.59(15) \\125.49(16) \\118.7(2) \\119.26(15) \\108.8 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)<br>N(1)-C(1)-C(2)<br>C(21)-N(1)-C(1)                                                          | 131.65(7)<br>95.43(5)<br>89.05(4)<br>125.99(7)<br>83.18(5)<br>99.40(5)<br>75.15(5)<br>163.358(10)<br>108.4<br>107.5<br>121.26(15)<br>118.8(2)<br>115.83(14)<br>123.67(15)<br>118.8(2)<br>113.21(15)<br>122.06(16)<br>113.89(18)<br>109.8     |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(22)-N(6)-C(22)<br>C(22)-N(6)-Ag(2)<br>N(1)-C(1)-H(1C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\\\115.52(13) \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\117.59(15) \\125.49(16) \\118.7(2) \\119.26(15) \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\108.8 \\1$ | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)<br>N(1)-C(1)-C(2)<br>C(2)-C(1)-H(1C)                                      | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$ $122.06(16)$ $113.89(18)$ $108.8$ $108.8$               |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(26)-N(6)-C(22)<br>C(22)-N(6)-Ag(2)<br>N(1)-C(1)-H(1C)<br>N(1)-C(1)-H(1D)<br>N(1)-C(1)-H(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\115.52(13) \\108.4 \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\117.59(15) \\125.49(16) \\118.7(2) \\119.26(15) \\108.8 \\108.8 \\107.7 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)<br>N(1)-C(1)-C(2)<br>C(2)-C(1)-H(1C)<br>C(2)-C(1)-H(1D)                   | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$ $122.06(16)$ $113.89(18)$ $108.8$ $108.8$               |
| Bond Angles (°)<br>N(1)-Ag(1)-N(4)<br>N(4)-Ag(1)-N(3)<br>N(4)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(6)<br>N(6)-Ag(2)-N(5)<br>N(6)-Ag(2)-Ag(1)#1<br>N(2)-Ag(2)-Ag(2)#2<br>N(5)-Ag(2)-Ag(2)#2<br>C(1)-N(1)-Ag(1)<br>Ag(1)-N(1)-H(1A)<br>Ag(1)-N(1)-H(1B)<br>C(3)-N(2)-C(4)<br>C(4)-N(2)-Ag(2)<br>C(7)-N(3)-Ag(1)<br>C(16)-N(4)-C(12)<br>C(12)-N(4)-Ag(1)<br>C(17)-N(5)-Ag(2)<br>C(26)-N(6)-C(22)<br>C(22)-N(6)-Ag(2)<br>N(1)-C(1)-H(1D)<br>H(1C)-C(1)-H(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $154.80(7) \\72.58(7) \\91.29(5) \\161.15(7) \\72.31(7) \\89.56(5) \\113.37(5) \\70.00(5) \\\\115.52(13) \\108.4 \\108.4 \\108.4 \\108.4 \\118.07(19) \\120.42(15) \\125.02(16) \\118.5(2) \\117.59(15) \\125.49(16) \\118.7(2) \\119.26(15) \\108.8 \\108.8 \\107.7 \\120.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2) \\100.1(2$                                                                               | N(1)-Ag(1)-N(3)<br>N(1)-Ag(1)-Ag(2)#1<br>N(3)-Ag(1)-Ag(2)#1<br>N(2)-Ag(2)-N(5)<br>N(2)-Ag(2)-Ag(1)#1<br>N(5)-Ag(2)-Ag(1)#1<br>N(6)-Ag(2)-Ag(2)#2<br>Ag(1)#1-Ag(2)-<br>Ag(2)#2<br>C(1)-N(1)-H(1A)<br>C(1)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>H(1A)-N(1)-H(1B)<br>C(3)-N(2)-Ag(2)<br>C(7)-N(3)-C(11)<br>C(11)-N(3)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(16)-N(4)-Ag(1)<br>C(17)-N(5)-C(21)<br>C(21)-N(5)-Ag(2)<br>C(26)-N(6)-Ag(2)<br>N(1)-C(1)-C(2)<br>C(2)-C(1)-H(1C)<br>C(2)-C(1)-H(1D)<br>C(3)-C(2)-C(6) | 131.65(7) $95.43(5)$ $89.05(4)$ $125.99(7)$ $83.18(5)$ $99.40(5)$ $75.15(5)$ $163.358(10)$ $108.4$ $107.5$ $121.26(15)$ $118.8(2)$ $115.83(14)$ $123.67(15)$ $118.8(2)$ $113.21(15)$ $122.06(16)$ $113.89(18)$ $108.8$ $107.7(2)$ $122.1(2)$ |

Table B.24. Continued

| N(2)-C(3)-C(2)                         | 123.4(2)             | N(2)-C(3)-H(3)                         | 118.3                |
|----------------------------------------|----------------------|----------------------------------------|----------------------|
| C(2)-C(3)-H(3)                         | 118.3                | N(2)-C(4)-C(5)                         | 122.1(2)             |
| N(2)-C(4)-H(4)                         | 119.0                | C(5)-C(4)-H(4)                         | 119.0                |
| C(4)-C(5)-C(6)                         | 119.5(2)             | C(4)-C(5)-H(5)                         | 120.3                |
| C(6)-C(5)-H(5)                         | 120.3                | C(5)-C(6)-C(2)                         | 119 2(2)             |
| C(5)- $C(6)$ - $H(6)$                  | 120.4                | C(2)-C(6)-H(6)                         | 120.4                |
| N(3)-C(7)-C(8)                         | 122 9(2)             | N(3)-C(7)-H(7)                         | 118.6                |
| C(8)-C(7)-H(7)                         | 118.6                | C(9)-C(8)-C(7)                         | 118.2(2)             |
| C(9)-C(8)-H(8)                         | 120.9                | C(7)- $C(8)$ - $H(8)$                  | 120.9                |
| C(8)-C(9)-C(10)                        | 119.7(2)             | C(8)-C(9)-H(9)                         | 120.9                |
| C(10)-C(9)-H(9)                        | 120.1                | C(9) - C(10) - C(11)                   | 120.1<br>118 8(2)    |
| C(0)-C(10)-H(10)                       | 120.1                | C(11)-C(10)-H(10)                      | 120.6                |
| N(3)-C(11)-C(10)                       | 121.6(2)             | N(3)-C(11)-C(12)                       | 116 35(19)           |
| C(10) - C(11) - C(12)                  | 121.0(2)<br>122.0(2) | N(3)-C(12)-C(12)                       | 1210(2)              |
| N(4) C(12) C(11)                       | 122.0(2)<br>117 5(2) | C(12) C(12) C(11)                      | 121.0(2)<br>121.5(2) |
| $\Gamma(4)$ - $C(12)$ - $C(11)$        | 117.3(2)<br>110.2(2) | C(13)-C(12)-C(11)<br>C(14) C(12) H(12) | 121.3(2)<br>120.4    |
| C(14)-C(13)-C(12)<br>C(12)-C(12)-U(12) | 119.2(2)             | $C(14)$ - $C(15)$ - $\Pi(15)$          | 120.4<br>110 5(2)    |
| $C(12)-C(13)-\Pi(13)$                  | 120.4                | C(13)-C(14)-C(13)                      | 119.3(2)             |
| C(15)-C(14)-H(14)                      | 120.3                | C(13)-C(14)-H(14)                      | 120.5                |
| C(16)-C(15)-C(14)                      | 117.9(2)             | V(10)-V(15)-H(15)                      | 121.1                |
| C(14)-C(15)-H(15)                      | 121.1                | N(4)-C(16)-C(15)                       | 123.8(2)             |
| N(4)-C(16)-H(16)                       | 118.1                | C(15)-C(16)-H(16)                      | 118.1                |
| N(5)-C(17)-C(18)                       | 123.3(2)             | N(5)-C(1/)-H(1/)                       | 118.4                |
| C(18)-C(17)-H(17)                      | 118.4                | C(17)-C(18)-C(19)                      | 118.0(2)             |
| C(17)-C(18)-H(18)                      | 121.0                | C(19)-C(18)-H(18)                      | 121.0                |
| C(18)-C(19)-C(20)                      | 119.7(2)             | C(18)-C(19)-H(19)                      | 120.2                |
| C(20)-C(19)-H(19)                      | 120.2                | C(19)-C(20)-C(21)                      | 119.0(2)             |
| C(19)-C(20)-H(20)                      | 120.5                | C(21)-C(20)-H(20)                      | 120.5                |
| N(5)-C(21)-C(20)                       | 121.2(2)             | N(5)-C(21)-C(22)                       | 116.7(2)             |
| C(20)-C(21)-C(22)                      | 122.1(2)             | N(6)-C(22)-C(23)                       | 121.2(2)             |
| N(6)-C(22)-C(21)                       | 116.84(19)           | C(23)-C(22)-C(21)                      | 122.0(2)             |
| C(24)-C(23)-C(22)                      | 119.5(2)             | C(24)-C(23)-H(23)                      | 120.3                |
| C(22)-C(23)-H(23)                      | 120.3                | C(23)-C(24)-C(25)                      | 119.2(2)             |
| C(23)-C(24)-H(24)                      | 120.4                | C(25)-C(24)-H(24)                      | 120.4                |
| C(26)-C(25)-C(24)                      | 118.6(2)             | C(26)-C(25)-H(25)                      | 120.7                |
| C(24)-C(25)-H(25)                      | 120.7                | N(6)-C(26)-C(25)                       | 122.9(2)             |
| N(6)-C(26)-H(26)                       | 118.6                | C(25)-C(26)-H(26)                      | 118.6                |
| O(1)-C(27)-O(2)                        | 131.1(2)             | O(1)-C(27)-C(28)                       | 113.6(2)             |
| O(2)-C(27)-C(28)                       | 115.2(2)             | F(3)-C(28)-F(1)                        | 107.7(5)             |
| F(3)-C(28)-F(2)                        | 106.2(6)             | F(1)-C(28)-F(2)                        | 101.8(4)             |
| F(3)-C(28)-C(27)                       | 117.4(5)             | F(1)-C(28)-C(27)                       | 113.7(3)             |
| F(2)-C(28)-C(27)                       | 108.7(4)             | O(4)-C(29)-O(3)                        | 130.2(2)             |
| O(4)-C(29)-C(30)                       | 115.2(2)             | O(3)-C(29)-C(30)                       | 114.6(2)             |
| F(4)-C(30)-F(5)                        | 105.4(2)             | F(4)-C(30)-F(6)                        | 106.3(2)             |
| F(5)-C(30)-F(6)                        | 107.7(2)             | F(4)-C(30)-C(29)                       | 113.2(2)             |
| F(5)-C(30)-C(29)                       | 113.3(2)             | F(6)-C(30)-C(29)                       | 110.4(2)             |
| N(7)-C(31)-C(32)                       | 179.4(3)             | C(31)-C(32)-H(32A)                     | 109.5                |
| C(31)-C(32)-H(32B)                     | 109.5                | H(32A)-C(32)-H(32B)                    | 109.5                |
| C(31)-C(32)-H(32C)                     | 109.5                | H(32A)-C(32)-H(32C)                    | 109.5                |
| H(32B)-C(32)-H(32C)                    | 109.5                | ( ) - ( ) ( )                          |                      |

Hydrogen Bonds (Å)

| N(1)-H(1A)O(3)#3                                           | 2.893(3)                 | N(1)-H(1B)O(4)#4                   | 2.868(2)               |
|------------------------------------------------------------|--------------------------|------------------------------------|------------------------|
| Symmetry transformations used<br>1,y,z+1 #4 -x+1,-y+1,-z+1 | l to generate equivale   | nt atoms: #1 -x,-y+1,-z+2 #2       | 2 -x+1,-y+1,-z+2 #3 x- |
| Table                                                      | B.25 Experimental an     | d statistical crystal data for 6.6 | j                      |
| Empirical formula                                          |                          | C56 H48 Ag4 F12 N12 O12            | S4                     |
| Formula weight                                             |                          | 1868.78                            |                        |
| Temperature                                                |                          | 110(2) K                           |                        |
| Wavelength                                                 |                          | 0.71073 A                          |                        |
| Crystal system, space group                                |                          | Triclinic, P-1                     |                        |
| Unit cell dimensions                                       |                          | $a = 12.5520(10) A \alpha = 100.9$ | 968(2) deg.            |
|                                                            |                          | b = 14.0365(10) A $\beta$ = 97.5   | 572(2) deg.            |
|                                                            |                          | $c = 19.7135(16) A \gamma = 102.9$ | 963(2) deg.            |
| Volume                                                     |                          | 3267.2(4) A^3                      |                        |
| Z, Calculated density                                      |                          | 2, 1.900 Mg/m^3                    |                        |
| Absorption coefficient                                     |                          | 1.413 mm^-1                        |                        |
| F(000)                                                     |                          | 1848                               |                        |
| A range for data collection                                |                          | 2.06  to  26.51  deg               |                        |
| Limiting indices                                           |                          | 2.00  to  20.31  deg.              | 24<=1<=24              |
| Reflections collected / unique                             |                          | 49261 / 13372 [R(int) = 0.03       | 401                    |
| Completeness to $\theta = 25.00$                           |                          | 99.5 %                             | 10]                    |
| Absorption correction                                      |                          | multi-scan (SADABS)                |                        |
| Refinement method                                          |                          | Full-matrix least-squares on 1     | F^2                    |
| Data / restraints / parameters                             |                          | 13372 / 0 / 901                    |                        |
| Goodness-of-fit on F^2                                     |                          | 1.021                              |                        |
| Final R indices $[I>2\sigma(I)]$                           |                          | R1 = 0.0279, wR2 = 0.0679          |                        |
| R indices (all data)                                       |                          | R1 = 0.0357, wR2 = 0.0724          |                        |
| Largest diff. peak and hole                                |                          | 2.194 and -0.935 e.A^-3            |                        |
| Bond Lengths (Å)                                           |                          |                                    |                        |
| Ag(1)-N(1)                                                 | 2.166(2)                 | Ag(1)-N(3)                         | 2.260(2)               |
| Ag(1)-N(4)                                                 | 2.341(2)                 | Ag(1)-Ag(2)#1                      | 3.0846(3)              |
| Ag(2)-N(2)                                                 | 2.141(2)                 | Ag(2)-N(6)                         | 2.221(2)               |
| Ag(2)-N(5)                                                 | 2.357(2)                 | Ag(2)-Ag(1)#1                      | 3.0846(3)              |
| Ag(3)-N(7)                                                 | 2.150(2)                 | Ag(3)-N(9)                         | 2.233(2)               |
| Ag(3)-N(10)                                                | 2.350(3)                 | Ag(4)-N(8)                         | 2.139(2)               |
| Ag(4)-N(12)                                                | 2.275(2)                 | Ag(4)-N(11)                        | 2.277(2)               |
| Ag(4)-Ag(4)#2                                              | 3.0399(4)                | S(1)-O(2)                          | 1.431(2)               |
| S(1)-O(1)                                                  | 1.444(2)                 | S(1)-O(3)                          | 1.444(2)               |
| S(1)-U(53)                                                 | 1.822(3)<br>1.445(2)     | S(2)-O(4)<br>S(2)-O(5)             | 1.440(2)<br>1.447(2)   |
| S(2) - U(0)<br>S(2) - C(54)                                | 1.443(2)<br>1.924(2)     | S(2) - O(3)                        | 1.44/(2)<br>1.420(2)   |
| S(2)-C(34)<br>S(3) O(0)                                    | 1.824(3)<br>1.433(2)     | S(3) - O(8)<br>S(3) - O(7)         | 1.430(2)<br>1.444(2)   |
| S(3) - C(5)<br>S(3) - C(55)                                | 1.433(2)<br>1.822( $A$ ) | S(3) - O(7)<br>S(4) - O(12)        | 1.444(2)               |
| S(4)-O(11)                                                 | 1.022(7)<br>1 440(2)     | S(4)-O(12)<br>S(4)-O(10)           | 1.439(2)<br>1 444(2)   |
| S(4)-C(56)                                                 | 1 824(3)                 | F(1)-C(53)                         | 1 322(4)               |
|                                                            |                          | - (-) - ()                         |                        |

Table B.25. Continued

| F(2)-C(53)                   | 1.335(4)               | F(3)-C(53)                   | 1.326(4)             |
|------------------------------|------------------------|------------------------------|----------------------|
| F(4)-C(54)                   | 1 333(3)               | F(5)-C(54)                   | 1 336(3)             |
| F(6)-C(54)                   | 1 337(3)               | F(7)-C(55)                   | 1.328(4)             |
| F(8)-C(55)                   | 1 331(4)               | F(9)-C(55)                   | 1 335(4)             |
| F(10)-C(56)                  | 1 339(3)               | F(11)-C(56)                  | 1.337(3)             |
| F(12)-C(56)                  | 1.339(3)<br>1 340(3)   | N(1)-C(1)                    | 1.337(3)<br>1.485(3) |
| N(1)-H(1A)                   | 0.9000                 | N(1)-U(1)                    | 0.9000               |
| N(2) - C(3)                  | 1.344(3)               | N(2)-C(4)                    | 1.348(3)             |
| N(2) - C(3)<br>N(3) - C(7)   | 1.347(3)               | N(2)-C(1)                    | 1.340(3)<br>1.350(3) |
| N(3)-C(16)                   | 1.347(4)<br>1 333(4)   | N(4)-C(12)                   | 1.330(3)<br>1 344(3) |
| N(5) - C(17)                 | 1.335(4)<br>1.338(4)   | N(5) - C(21)                 | 1 353(3)             |
| N(5) - C(17)<br>N(6) - C(26) | 1.338(4)<br>1.343(4)   | N(6) C(21)                   | 1.333(3)<br>1.347(3) |
| N(0) - C(20)<br>N(7) - C(27) | 1.343(4)<br>1 $176(3)$ | N(0)-C(22)<br>N(7)-H(7A)     | 0.9000               |
| N(7) - C(27)<br>N(7) - H(7P) | 1.470(3)               | N(8) C(20)                   | 1.344(3)             |
| N(7) - H(7B)<br>N(8) - C(20) | 0.9000<br>1.240(2)     | N(0) - C(29)<br>N(0) - C(23) | 1.344(3)<br>1.247(4) |
| N(0) - C(30)                 | 1.349(3)<br>1.247(2)   | N(9)-C(55)<br>N(10) C(42)    | 1.34/(4)<br>1.226(4) |
| N(9)-C(37)<br>N(10) C(28)    | 1.347(3)<br>1.250(4)   | N(10)-C(42)<br>N(11) C(42)   | 1.330(4)<br>1.345(4) |
| N(10)-C(50)<br>N(11)-C(47)   | 1.330(4)<br>1.249(2)   | N(11)-C(43)<br>N(12)-C(52)   | 1.343(4)<br>1.240(4) |
| N(11)-C(47)<br>N(12)-C(48)   | 1.348(3)<br>1.252(2)   | N(12)-C(32)                  | 1.540(4)<br>1.511(4) |
| N(12)-C(48)                  | 1.333(3)               | C(1) - C(2)                  | 1.311(4)             |
| C(1)- $H(1C)$                | 0.9700                 | C(1)- $H(1D)$                | 0.9700               |
| C(2) - C(6)                  | 1.383(4)               | C(2)-C(3)                    | 1.38/(4)<br>1.270(4) |
| C(3)-H(3)                    | 0.9300                 | C(4)-C(5)                    | 1.370(4)             |
| C(4)-H(4)                    | 0.9300                 | C(5)- $C(6)$                 | 1.385(4)             |
| C(5)-H(5)                    | 0.9300                 | C(6)-H(6)                    | 0.9300               |
| C(7)- $C(8)$                 | 1.3/4(4)               | C(7)-H(7)                    | 0.9300               |
| C(8)- $C(9)$                 | 1.3/9(4)               | C(8)-H(8)                    | 0.9300               |
| C(9)-C(10)                   | 1.384(4)               | C(9)-H(9)                    | 0.9300               |
| C(10)-C(11)                  | 1.388(4)               | C(10)-H(10)                  | 0.9300               |
| C(11)-C(12)                  | 1.496(4)               | C(12)-C(13)                  | 1.392(4)             |
| C(13)-C(14)                  | 1.3/8(4)               | C(13)-H(13)                  | 0.9300               |
| C(14)-C(15)                  | 1.3//(4)               | C(14)-H(14)                  | 0.9300               |
| C(15)-C(16)                  | 1.384(4)               | C(15)-H(15)                  | 0.9300               |
| C(16)-H(16)                  | 0.9300                 | C(17)-C(18)                  | 1.384(4)             |
| C(17)-H(17)                  | 0.9300                 | C(18)-C(19)                  | 1.382(4)             |
| C(18)-H(18)                  | 0.9300                 | C(19)-C(20)                  | 1.378(4)             |
| C(19)-H(19)                  | 0.9300                 | C(20)-C(21)                  | 1.391(4)             |
| C(20)-H(20)                  | 0.9300                 | C(21)-C(22)                  | 1.490(4)             |
| C(22)-C(23)                  | 1.395(4)               | C(23)-C(24)                  | 1.381(4)             |
| C(23)-H(23)                  | 0.9300                 | C(24)-C(25)                  | 1.377(4)             |
| C(24)-H(24)                  | 0.9300                 | C(25)-C(26)                  | 1.378(4)             |
| C(25)-H(25)                  | 0.9300                 | C(26)-H(26)                  | 0.9300               |
| C(27)-C(28)                  | 1.510(4)               | C(27)-H(27A)                 | 0.9700               |
| C(27)-H(27B)                 | 0.9700                 | C(28)-C(32)                  | 1.385(4)             |
| C(28)-C(29)                  | 1.387(4)               | C(29)-H(29)                  | 0.9300               |
| C(30)-C(31)                  | 1.375(4)               | C(30)-H(30)                  | 0.9300               |
| C(31)-C(32)                  | 1.377(4)               | C(31)-H(31)                  | 0.9300               |
| C(32)-H(32)                  | 0.9300                 | C(33)-C(34)                  | 1.383(4)             |
| C(33)-H(33)                  | 0.9300                 | C(34)-C(35)                  | 1.378(4)             |
| C(34)-H(34)                  | 0.9300                 | C(35)-C(36)                  | 1.384(4)             |
| C(35)-H(35)                  | 0.9300                 | C(36)-C(37)                  | 1.395(4)             |
| C(36)-H(36)                  | 0.9300                 | C(37)-C(38)                  | 1.487(4)             |
| C(38)-C(39)                  | 1.379(4)               | C(39)-C(40)                  | 1.384(5)             |
| C(39)-H(39)                  | 0.9300                 | C(40)-C(41)                  | 1.368(5)             |
| C(40)-H(40)                  | 0.9300                 | C(41)-C(42)                  | 1.376(5)             |

| C(41)-H(41)                                      | 0.9300                 | C(42)-H(42)                                     | 0.9300         |
|--------------------------------------------------|------------------------|-------------------------------------------------|----------------|
| C(43)-C(44)                                      | 1.382(4)               | C(42) H(42)<br>C(43)-H(43)                      | 0.9300         |
| C(44) C(45)                                      | 1.302(4)<br>1.372(4)   | C(43) - H(43)                                   | 0.9300         |
| C(44) - C(45)                                    | 1.372(4)<br>1.284(4)   | C(44) - H(44)<br>C(45) H(45)                    | 0.9300         |
| C(45) - C(40)                                    | 1.304(4)<br>1.204(4)   | $C(45) - \Pi(45)$                               | 0.9300         |
| C(40)-C(47)                                      | 1.394(4)               | $C(40) - \Pi(40)$                               | 0.9300         |
| C(47)-C(48)                                      | 1.495(4)               | C(48) - C(49)                                   | 1.388(4)       |
| C(49)-C(50)                                      | 1.381(4)               | C(49)-H(49)                                     | 0.9300         |
| C(50)-C(51)                                      | 1.385(4)               | C(50)-H(50)                                     | 0.9300         |
| C(51)-C(52)                                      | 1.381(4)               | C(51)-H(51)                                     | 0.9300         |
| C(52)-H(52)                                      | 0.9300                 |                                                 |                |
| Bond Angles (°)                                  |                        |                                                 |                |
| $N(1) - A \sigma(1) - N(3)$                      | 155 02(8)              | F(12) = C(56) - S(4)                            | 112 24(10)     |
| N(1) - Ag(1) - N(3)<br>N(1) - Ag(1) - N(4)       | 131.85(8)              | N(3) - A g(1) - N(4)                            | 72 14(8)       |
| N(1) - Ag(1) - N(4)<br>N(1) - Ag(1) - Ag(2) + 1  | 00 06(6)               | N(3) - Ag(1) - Ag(2) # 1                        | 79.60(6)       |
| N(1) - Ag(1) - Ag(2) = 1<br>N(4) Ag(1) Ag(2) = 1 | 99.90(0)<br>81.63(6)   | $N(3) - Ag(1) - Ag(2)\pi 1$<br>N(2) Ag(2) N(6)  | 153.00(0)      |
| N(4) - Ag(1) - Ag(2) # 1<br>N(2) Ag(2) N(5)      | 122.91(9)              | N(2) - Ag(2) - N(0)<br>N(6) - Ag(2) - N(5)      | 133.20(8)      |
| N(2) - Ag(2) - N(3)<br>N(2) - Ag(2) - Ag(1) + 1  | 152.01(0)<br>85.77(6)  | N(0) - Ag(2) - N(3)<br>N(6) - Ag(2) - Ag(1) + 1 | 75.00(8)       |
| N(2)-Ag(2)-Ag(1)#1                               | 83.77(0)               | N(0)-Ag(2)-Ag(1)#1<br>N(7)-Ag(2)-N(0)           | 91.92(0)       |
| N(3)-Ag(2)-Ag(1)#1                               | 109.17(5)<br>124.85(0) | N(7)-Ag(3)-N(9)                                 | 152.96(9)      |
| N(7)-Ag(3)-N(10)<br>N(8) A $z(4)$ N(12)          | 134.85(9)              | N(9) - Ag(3) - N(10)<br>N(8) - Ag(4) - N(11)    | 1/2.15(8)      |
| N(8)-Ag(4)-N(12)                                 | 142.39(8)              | N(8) - Ag(4) - N(11)                            | 143.89(8)      |
| N(12)-Ag(4)-N(11)                                | /3.10(8)               | N(8)-Ag(4)-Ag(4)#2                              | 94.98(6)       |
| N(12)-Ag(4)-Ag(4)#2                              | 83.48(6)               | N(11)-Ag(4)-Ag(4)#2                             | 96.34(6)       |
| O(2)-S(1)-O(1)                                   | 115.40(14)             | O(2)-S(1)-O(3)                                  | 115.4/(13)     |
| O(1) - S(1) - O(3)                               | 113.51(12)             | O(2)-S(1)-C(53)                                 | 103.00(15)     |
| O(1)-S(1)-C(53)                                  | 104.25(14)             | O(3)-S(1)-C(53)                                 | 102.98(14)     |
| O(4)-S(2)-O(6)                                   | 115.65(12)             | O(4)-S(2)-O(5)                                  | 114.95(12)     |
| O(6)-S(2)-O(5)                                   | 114.23(12)             | O(4)-S(2)-C(54)                                 | 102.78(13)     |
| O(6)-S(2)-C(54)                                  | 102.99(13)             | O(5)-S(2)-C(54)                                 | 103.86(13)     |
| O(8)-S(3)-O(9)                                   | 115.37(15)             | O(8)-S(3)-O(7)                                  | 115.24(15)     |
| O(9)-S(3)-O(7)                                   | 114.56(13)             | O(8)-S(3)-C(55)                                 | 103.12(17)     |
| O(9)-S(3)-C(55)                                  | 103.53(16)             | O(7)-S(3)-C(55)                                 | 102.50(14)     |
| O(12)-S(4)-O(11)                                 | 115.10(13)             | O(12)-S(4)-O(10)                                | 115.24(13)     |
| O(11)-S(4)-O(10)                                 | 115.28(13)             | O(12)-S(4)-C(56)                                | 102.26(13)     |
| O(11)-S(4)-C(56)                                 | 102.80(13)             | O(10)-S(4)-C(56)                                | 103.47(13)     |
| C(1)-N(1)-Ag(1)                                  | 115.33(16)             | C(1)-N(1)-H(1A)                                 | 108.4          |
| Ag(1)-N(1)-H(1A)                                 | 108.4                  | C(1)-N(1)-H(1B)                                 | 108.4          |
| Ag(1)-N(1)-H(1B)                                 | 108.4                  | H(1A)-N(1)-H(1B)                                | 107.5          |
| C(3)-N(2)-C(4)                                   | 117.7(2)               | C(3)-N(2)-Ag(2)                                 | 121.62(17)     |
| C(4)-N(2)-Ag(2)                                  | 120.51(18)             | C(7)-N(3)-C(11)                                 | 118.4(2)       |
| C(7)-N(3)-Ag(1)                                  | 123.19(18)             | C(11)-N(3)-Ag(1)                                | 118.37(18)     |
| C(16)-N(4)-C(12)                                 | 118.9(2)               | C(16)-N(4)-Ag(1)                                | 125.28(18)     |
| C(12)-N(4)-Ag(1)                                 | 115.86(18)             | C(17)-N(5)-C(21)                                | 118.1(2)       |
| C(17)-N(5)-Ag(2)                                 | 127.78(19)             | C(21)-N(5)-Ag(2)                                | 114.05(17)     |
| C(26)-N(6)-C(22)                                 | 119.0(2)               | C(26)-N(6)-Ag(2)                                | 122.50(18)     |
| C(22)-N(6)-Ag(2)                                 | 118.47(18)             | C(27)-N(7)-Ag(3)                                | 113.75(16)     |
| C(27)-N(7)-H(7A)                                 | 108.8                  | Ag(3)-N(7)-H(7A)                                | 108.8          |
| C(27)-N(7)-H(7B)                                 | 108.8                  | Ag(3)-N(7)-H(7B)                                | 108.8          |
| H(7A)-N(7)-H(7B)                                 | 107.7                  | C(29)-N(8)-C(30)                                | 118.0(2)       |
| C(29)-N(8)-Ag(4)                                 | 120.10(18)             | C(30)-N(8)-Ag(4)                                | 121.95(18)     |
| C(33)-N(9)-C(37)                                 | 119.3(2)               | C(33)-N(9)-Ag(3)                                | 121.85(18)     |
| C(37)-N(9)-Ag(3)                                 | 118.75(18)             | C(42)-N(10)-C(38)                               | 118.4(3)       |
| C(42)-N(10)-Ag(3)                                | 126.2(2)               | C(38)-N(10)-Ag(3)                               | 115.22(19)     |
|                                                  | . /                    |                                                 | <pre>\ /</pre> |

Table B.25. Continued

| C(43)-N(11)-C(47)                                      | 118.6(2)             | C(43)-N(11)-Ag(4)                                    | 124.42(19)           |
|--------------------------------------------------------|----------------------|------------------------------------------------------|----------------------|
| C(47)-N(11)-Ag(4)                                      | 116.56(18)           | C(52)-N(12)-C(48)                                    | 118.4(2)             |
| C(52)-N(12)-Ag(4)                                      | 125.12(19)           | C(48)-N(12)-Ag(4)                                    | 116.46(17)           |
| N(1)-C(1)-C(2)                                         | 114.1(2)             | N(1)-C(1)-H(1C)                                      | 108.7                |
| C(2)-C(1)-H(1C)                                        | 108.7                | N(1)-C(1)-H(1D)                                      | 108 7                |
| C(2)- $C(1)$ -H(1D)                                    | 108.7                | H(1C)-C(1)-H(1D)                                     | 107.6                |
| C(6)-C(2)-C(3)                                         | 1174(2)              | C(6)-C(2)-C(1)                                       | 121 5(3)             |
| C(3)-C(2)-C(1)                                         | 1211(2)              | N(2)-C(3)-C(2)                                       | 121.5(3)<br>123 6(2) |
| N(2)-C(3)-H(3)                                         | 118.2                | C(2)-C(3)-H(3)                                       | 118.2                |
| N(2)-C(4)-C(5)                                         | 122 4(2)             | N(2)-C(4)-H(4)                                       | 118.8                |
| C(5)-C(4)-H(4)                                         | 118.8                | C(4)-C(5)-C(6)                                       | 119 2(3)             |
| C(4)- $C(5)$ - $H(5)$                                  | 120.4                | C(6)-C(5)-H(5)                                       | 120.4                |
| C(2)- $C(6)$ - $C(5)$                                  | 119 7(3)             | C(2)-C(6)-H(6)                                       | 120.4                |
| C(5)- $C(6)$ - $H(6)$                                  | 120.1                | N(3)-C(7)-C(8)                                       | 123.1(3)             |
| N(3)-C(7)-H(7)                                         | 118 4                | C(8)-C(7)-H(7)                                       | 118.4                |
| C(7)-C(8)-C(9)                                         | 118 5(3)             | C(7)-C(8)-H(8)                                       | 120.7                |
| C(9)-C(8)-H(8)                                         | 120.7                | C(8) - C(9) - C(10)                                  | 120.7<br>110 2(3)    |
| C(8) - C(0) - H(0)                                     | 120.7                | C(10) C(0) H(0)                                      | 120 4                |
| C(9)-C(10)-C(11)                                       | 110 5(3)             | C(9)-C(10)-H(10)                                     | 120.4                |
| C(11)-C(10)-H(10)                                      | 120.3                | N(3)-C(11)-C(10)                                     | 120.5                |
| N(3) - C(11) - C(12)                                   | 116.8(2)             | C(10)-C(11)-C(12)                                    | 121.2(3)<br>121.0(2) |
| N(3)-C(12)-C(12)                                       | 121.2(3)             | N(4) - C(12) - C(11)                                 | 121.9(2)<br>116.8(2) |
| C(12) C(12) C(11)                                      | 121.2(3)<br>122.0(2) | C(14) C(12) C(11)                                    | 110.0(2)<br>110.1(3) |
| C(13) - C(12) - C(11)<br>C(14) - C(12) - H(12)         | 122.0(2)             | C(14) - C(13) - C(12)<br>C(12) - C(13) - H(13)       | 120.4                |
| $C(14)-C(13)-\Pi(13)$<br>C(15)-C(14)-C(13)             | 120.4<br>110 7(3)    | C(12)-C(13)-H(13)<br>C(15)-C(14)-H(14)               | 120.4                |
| C(13) - C(14) - C(13)<br>C(13) - C(14) + U(14)         | 119.7(3)             | $C(13)-C(14)-\Pi(14)$<br>C(14)-C(15)-C(16)           | 120.2<br>118 0(3)    |
| C(14) - C(14) - H(14)<br>C(14) - C(15) - H(15)         | 120.2                | C(14) - C(15) - C(10)<br>C(16) - C(15) - H(15)       | 121.0                |
| N(4) - C(16) - C(15)                                   | 121.0<br>123 1(3)    | N(4) - C(16) - H(16)                                 | 121.0                |
| C(15)-C(16)-H(16)                                      | 118 5                | N(5)-C(17)-C(18)                                     | 123 3(3)             |
| N(5) - C(17) - H(17)                                   | 118.5                | C(18) - C(17) - H(17)                                | 118 /                |
| C(19)-C(18)-C(17)                                      | 118.6(3)             | C(18)-C(17)-H(17)<br>C(19)-C(18)-H(18)               | 120.7                |
| C(17)-C(18)-H(18)                                      | 120.7                | C(20) - C(10) - C(18)                                | 120.7<br>118 7(3)    |
| C(20) C(10) H(10)                                      | 120.7                | C(18) C(10) H(10)                                    | 120.7                |
| C(19)-C(20)-C(21)                                      | 110 0(3)             | C(10)-C(10)-H(10)                                    | 120.7                |
| C(21)-C(20)-H(20)                                      | 120.0                | N(5)-C(21)-C(20)                                     | 120.0<br>121.3(3)    |
| N(5) - C(21) - C(22)                                   | 120.0<br>116 9(2)    | C(20) - C(21) - C(20)                                | 121.3(3)<br>121.8(2) |
| N(5)-C(21)-C(22)<br>N(6)-C(22)-C(23)                   | 110.9(2)<br>120.8(2) | N(6)-C(22)-C(21)                                     | 121.0(2)<br>117.6(2) |
| C(23)-C(22)-C(21)                                      | 120.0(2)<br>121.6(2) | C(24) - C(23) - C(22)                                | 117.0(2)<br>110 5(2) |
| C(24)-C(23)-H(23)                                      | 121.0(2)             | C(24)-C(23)-C(22)                                    | 120.2                |
| C(24)-C(23)-H(23)                                      | 120.2<br>110 1(3)    | C(22)-C(23)-H(23)<br>C(25)-C(24)-H(24)               | 120.2                |
| C(23)-C(24)-C(25)                                      | 120 4                | C(24)-C(25)-C(26)                                    | 118 8(3)             |
| C(24) - C(24) - H(24)                                  | 120.4                | C(24) - C(25) - C(20)<br>C(26) - C(25) - H(25)       | 120.6                |
| N(6)-C(26)-C(25)                                       | 120.0                | N(6)-C(26)-H(26)                                     | 118.6                |
| C(25)-C(26)-H(26)                                      | 122.7(5)             | N(0)-C(20)-H(20)<br>N(7)-C(27)-C(28)                 | 115.0(2)             |
| N(7) C(27) H(27A)                                      | 108.5                | C(28) C(27) H(27A)                                   | 108.5                |
| N(7) - C(27) - H(27R)<br>N(7) - C(27) - H(27R)         | 108.5                | C(28) - C(27) - H(27R)                               | 108.5                |
| H(27A) C(27) H(27B)                                    | 103.5                | C(20)-C(27)-H(27B)<br>C(20)-C(28)-C(20)              | 100.5<br>117.6(2)    |
| $\Gamma(2/R) - C(2/) - \Gamma(2/D)$                    | 107.3<br>120.7(2)    | C(32)- $C(28)$ - $C(27)$                             | 117.0(2)<br>121.6(2) |
| N(8) C(20) C(28)                                       | 120.7(2)<br>123.1(2) | V(29)-V(20)-V(27)                                    | 121.0(2)             |
| $\Gamma(0) - C(27) - C(20)$<br>C(28) C(20) U(20)       | 123.1(2)             | $N(0) - C(29) - \Pi(29)$<br>N(0) - C(20) - C(21)     | 110.3<br>122 A(2)    |
| $V(20) - V(27) - \Pi(27)$<br>$V(2) C(20) - \Pi(20)$    | 110.5                | $\Gamma(0) = C(30) = C(31)$<br>C(21) = C(20) = U(20) | 122.4(2)             |
| C(30) - C(30) - II(30)                                 | 118 0(3)             | $C(31)-C(30)-\Pi(30)$<br>$C(30)-C(31)-\Pi(31)$       | 120.5                |
| C(30) - C(31) - C(32)<br>C(32) - C(21) - U(21)         | 110.9(3)             | C(31) C(22) C(29)                                    | 120.3<br>120.0(2)    |
| $C(32) - C(31) - \Pi(31)$<br>$C(21) - C(22) - \Pi(22)$ | 120.5                | C(28) C(22) U(22)                                    | 120.0(3)             |
| $(J_1) - (J_2) - \Pi(J_2)$                             | 120.0                | $U(20)-U(32)-\Pi(32)$                                | 120.0                |

Table B.25. Continued

|   | N(9)-C(33)-C(34)                           | 122.5(3)             | N(9)-C(33)-H(33)                              | 118.8                |
|---|--------------------------------------------|----------------------|-----------------------------------------------|----------------------|
|   | C(34)-C(33)-H(33)                          | 118.8                | C(35)-C(34)-C(33)                             | 118.5(3)             |
|   | C(35)-C(34)-H(34)                          | 120.7                | C(33)-C(34)-H(34)                             | 120.7                |
|   | C(34)-C(35)-C(36)                          | 119 4(3)             | C(34)-C(35)-H(35)                             | 120.3                |
|   | C(36)-C(35)-H(35)                          | 120.3                | C(35)-C(36)-C(37)                             | 119 5(3)             |
|   | C(35) - C(36) - H(36)                      | 120.3                | C(37) - C(36) - H(36)                         | 120.3                |
|   | N(0) C(37) C(36)                           | 120.3                | N(0) C(37) C(38)                              | 120.3<br>117.3(2)    |
|   | $\Gamma(3)$ - $C(37)$ - $C(30)$            | 120.7(3)<br>122.0(2) | N(3)-C(37)-C(38)<br>N(10)-C(28)-C(20)         | 117.3(2)<br>121.2(2) |
|   | N(10) C(28) C(27)                          | 122.0(3)             | $\Gamma(10)$ - $C(30)$ - $C(39)$              | 121.2(3)             |
|   | N(10)-C(38)-C(37)                          | 110.2(2)<br>110.7(2) | C(39)-C(38)-C(37)                             | 122.0(5)             |
|   | C(38)-C(39)-C(40)                          | 119.7(3)             | C(38)-C(39)-H(39)                             | 120.1                |
|   | C(40)-C(39)-H(39)                          | 120.1                | C(41)-C(40)-C(39)                             | 118.9(3)             |
|   | С(41)-С(40)-Н(40)                          | 120.6                | C(39)-C(40)-H(40)                             | 120.6                |
|   | C(40)-C(41)-C(42)                          | 118.8(3)             | C(40)-C(41)-H(41)                             | 120.6                |
|   | C(42)-C(41)-H(41)                          | 120.6                | N(10)-C(42)-C(41)                             | 123.0(3)             |
|   | N(10)-C(42)-H(42)                          | 118.5                | C(41)-C(42)-H(42)                             | 118.5                |
|   | N(11)-C(43)-C(44)                          | 123.0(3)             | N(11)-C(43)-H(43)                             | 118.5                |
|   | C(44)-C(43)-H(43)                          | 118.5                | C(45)-C(44)-C(43)                             | 118.3(3)             |
|   | C(45)-C(44)-H(44)                          | 120.9                | C(43)-C(44)-H(44)                             | 120.9                |
|   | C(44)-C(45)-C(46)                          | 119.7(3)             | C(44)-C(45)-H(45)                             | 120.1                |
|   | C(46)-C(45)-H(45)                          | 120.1                | C(45)-C(46)-C(47)                             | 119.2(3)             |
|   | C(45)-C(46)-H(46)                          | 120.4                | C(47)-C(46)-H(46)                             | 120.4                |
|   | N(11)-C(47)-C(46)                          | 121.2(3)             | N(11)-C(47)-C(48)                             | 116.6(2)             |
|   | C(46)-C(47)-C(48)                          | 122.2(2)             | N(12)-C(48)-C(49)                             | 121.3(3)             |
|   | N(12)-C(48)-C(47)                          | 116.8(2)             | C(49)-C(48)-C(47)                             | 121.8(2)             |
|   | C(50)-C(49)-C(48)                          | 119.5(3)             | C(50)-C(49)-H(49)                             | 120.2                |
|   | C(48)-C(49)-H(49)                          | 120 2                | C(49)- $C(50)$ - $C(51)$                      | 119 3(3)             |
|   | C(49)-C(50)-H(50)                          | 120.4                | C(51)-C(50)-H(50)                             | 120.4                |
|   | C(52)-C(51)-C(50)                          | 118 1(3)             | C(52)-C(51)-H(51)                             | 120.1                |
|   | C(50)- $C(51)$ - $H(51)$                   | 120.9                | N(12)-C(52)-C(51)                             | 123.3(3)             |
|   | N(12)-C(52)-H(52)                          | 118.3                | C(51)-C(52)-H(52)                             | 118.3                |
|   | F(1)-C(52)-F(3)                            | 107.7(3)             | E(31)-E(32)-H(32)<br>E(1)-C(53)-E(2)          | 107.3(3)             |
|   | F(1) - C(53) - F(3)<br>F(2) - C(53) - F(2) | 107.7(3)<br>107.6(3) | F(1) - C(53) - F(2)<br>F(1) - C(53) - F(2)    | 107.3(3)<br>111.8(2) |
|   | F(3) - C(53) - F(2)<br>F(2) - C(52) - F(1) | 107.0(3)             | F(1)- $C(53)$ - $S(1)F(2)$ - $C(52)$ - $S(1)$ | 111.0(2)<br>111.1(2) |
|   | F(3)-C(33)-S(1)<br>F(4)-C(54)-F(5)         | 111.1(2)<br>107.1(2) | F(2)-C(33)-S(1)<br>F(4)-C(54)-F(6)            | 111.1(2)<br>107.0(2) |
|   | $\Gamma(4) - C(34) - \Gamma(3)$            | 107.1(2)<br>109.1(2) | F(4) - C(54) - F(0)                           | 107.9(2)             |
|   | F(5)-C(54)-F(6)                            | 108.1(2)             | F(4)-C(54)-S(2)                               | 111.7(2)             |
|   | F(5)-C(54)-S(2)                            | 110.65(19)           | F(6)-C(54)-S(2)                               | 111.2(2)             |
|   | F(7)-C(55)-F(8)                            | 108.3(3)             | F(7)-C(55)-F(9)                               | 107.5(3)             |
|   | F(8)-C(55)-F(9)                            | 106.7(3)             | F(7)-C(55)-S(3)                               | 111.1(3)             |
|   | F(8)-C(55)-S(3)                            | 112.1(2)             | F(9)-C(55)-S(3)                               | 110.9(3)             |
|   | F(11)-C(56)-F(10)                          | 107.4(2)             | F(11)-C(56)-F(12)                             | 107.1(2)             |
|   | F(10)-C(56)-F(12)                          | 107.4(2)             | F(11)-C(56)-S(4)                              | 110.77(19)           |
|   | F(10)-C(56)-S(4)                           | 111.7(2)             |                                               |                      |
| ] | Hydrogen Bonds (Å)                         |                      |                                               |                      |
|   | N(1)-H(1A)O(3)#1                           | 3.073(3)             | N(1)-H(1B)O(1)                                | 3.061(3)             |
|   | N(7)-H(7A)O(5)#3                           | 3.208(3)             | N(7)-H(7B)O(7)                                | 3.034(3)             |
|   |                                            |                      |                                               |                      |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+2 #2 -x+1,-y+2,-z+1 #3 x-1,y,z

| Empirical formula                        |            | C11 H14 Ag F3 N4 O3 S         |                          |
|------------------------------------------|------------|-------------------------------|--------------------------|
| Formula weight                           |            | 447.19                        |                          |
| Temperature                              |            | 110(2) K                      |                          |
| Wavelength                               |            | 0.71073 A                     |                          |
| Crystal system, space group              |            | Monoclinic, P2(1)/c           |                          |
| Unit cell dimensions                     |            | $a = 6.6871(7) A \alpha = 90$ | deg.                     |
|                                          |            | $b = 25.806(2) A \beta = 92$  | .135(3) deg.             |
|                                          |            | $c = 9.3785(8) A \gamma = 90$ | deg.                     |
| Volume                                   |            | 1617.3(3) A^3                 | e                        |
| Z, Calculated density                    |            | 4, 1.837 Mg/m^3               |                          |
| Absorption coefficient                   |            | 1.424 mm^-1                   |                          |
| F(000)                                   |            | 888                           |                          |
| Crystal size                             |            | 0.171 x 0.109 x 0.047 mr      | n                        |
| $\theta$ range for data collection       |            | 2.69 to 32.15 deg.            |                          |
| Limiting indices                         |            | -7<=h<=9, -38<=k<=30          | -12<=1<=11               |
| Reflections collected / unique           |            | 26679 / 4711 [R(int) = 0.     | 0318]                    |
| Completeness to $\theta = 25.00^{\circ}$ |            | 99.9 %                        | ,                        |
| Absorption correction                    |            | Semi-empirical from equ       | ivalents                 |
| Refinement method                        |            | Full-matrix least-squares     | on F^2                   |
| Data / restraints / parameters           |            | 4711 / 0 / 216                |                          |
| Goodness-of-fit on F^2                   |            | 1.075                         |                          |
| Final R indices $[I > 2\sigma(I)]$       |            | R1 = 0.0344, WR2 = 0.05       | 38                       |
| R indices (all data)                     |            | R1 = 0.0493, $wR2 = 0.05$     | 78                       |
| Largest diff. peak and hole              |            | 0.552 and -0.568 e.A^-3       |                          |
| Bond Lengths (Å)                         |            |                               |                          |
| Ag(1)-N(1)                               | 2.1583(17) | Ag(1)-N(2)#1                  | 2.1642(18)               |
| S(1)-O(2)                                | 1.428(2)   | S(1)-O(3)                     | 1.4419(17)               |
| S(1)-O(1)                                | 1.4447(19) | S(1)-C(7)                     | 1.814(3)                 |
| N(1)-C(6)                                | 1.342(3)   | N(1)-C(4)                     | 1.343(3)                 |
| N(2)-C(1)                                | 1.466(3)   | N(2)-Ag(1)#2                  | 2.1642(18)               |
| N(2)-H(1)                                | 0.86(3)    | N(2)-H(2)                     | 0.85(3)                  |
| N(3)-C(8)                                | 1.139(3)   | N(4)-C(10)                    | 1.138(3)                 |
| C(1)-C(2)                                | 1.518(3)   | C(1)-H(1A)                    | 0.9900                   |
| C(1)-H(1B)                               | 0.9900     | C(2)-C(3)                     | 1.382(3)                 |
| C(2)-C(5)                                | 1.392(3)   | C(3)-C(4)                     | 1.388(3)                 |
| C(3)-H(3)                                | 0.9500     | C(4)-H(4)                     | 0.9500                   |
| C(5)-C(6)                                | 1.383(3)   | C(5)-H(5)                     | 0.9500                   |
| C(6)-H(6)                                | 0.9500     | C(7)-F(1)                     | 1.322(3)                 |
| C(7)-F(2)                                | 1.332(3)   | C(7)-F(3)                     | 1.339(3)                 |
| C(8)-C(9)                                | 1.458(4)   | C(9)-H(9A)                    | 0.9800                   |
| C(9)-H(9B)                               | 0.9800     | C(9)-H(9C)                    | 0.9800                   |
| C(10)-C(11)                              | 1.453(4)   | C(11)-H(11A)                  | 0.9800                   |
| C(11)-H(11B)                             | 0.9800     | C(11)-H(11C)                  | 0.9800                   |
| Bond Angles (°)                          |            |                               |                          |
| $N(1) - A_{\sigma}(1) - N(2) = 1$        | 172 73(7)  | O(2)-S(1)-O(3)                | 115 52(12)               |
| O(2)-S(1)-O(1)                           | 11459(14)  | O(3)- $S(1)$ - $O(3)$         | 113.32(12)<br>114.79(11) |
| O(2)-S(1)-C(7)                           | 10373(13)  | O(3)-S(1)-C(7)                | 103 01(11)               |
| O(1)-S(1)-C(7)                           | 102.77(12) | C(6)-N(1)-C(4)                | 117 42(18)               |
| C(6)-N(1)-Ag(1)                          | 121.62(14) | $C(4)-N(1)-A\sigma(1)$        | 120.68(14)               |
| C(1)-N(2)-Ag(1)#2                        | 112.42(13) | C(1)-N(2)-H(1)                | 111 6(17)                |
|                                          |            |                               | ••••(•)                  |

Table B.26. Continued

| Ag(1)#2-N(2)-H(1)   | 109.6(17)  | C(1)-N(2)-H(2)      | 109.6(17)  |
|---------------------|------------|---------------------|------------|
| Ag(1)#2-N(2)-H(2)   | 105.2(17)  | H(1)-N(2)-H(2)      | 108(2)     |
| N(2)-C(1)-C(2)      | 116.70(18) | N(2)-C(1)-H(1A)     | 108.1      |
| C(2)-C(1)-H(1A)     | 108.1      | N(2)-C(1)-H(1B)     | 108.1      |
| C(2)-C(1)-H(1B)     | 108.1      | H(1A)-C(1)-H(1B)    | 107.3      |
| C(3)-C(2)-C(5)      | 117.91(19) | C(3)-C(2)-C(1)      | 123.63(19) |
| C(5)-C(2)-C(1)      | 118.46(19) | C(2)-C(3)-C(4)      | 119.1(2)   |
| C(2)-C(3)-H(3)      | 120.5      | C(4)-C(3)-H(3)      | 120.5      |
| N(1)-C(4)-C(3)      | 123.2(2)   | N(1)-C(4)-H(4)      | 118.4      |
| C(3)-C(4)-H(4)      | 118.4      | C(6)-C(5)-C(2)      | 119.6(2)   |
| C(6)-C(5)-H(5)      | 120.2      | C(2)-C(5)-H(5)      | 120.2      |
| N(1)-C(6)-C(5)      | 122.8(2)   | N(1)-C(6)-H(6)      | 118.6      |
| C(5)-C(6)-H(6)      | 118.6      | F(1)-C(7)-F(2)      | 107.2(2)   |
| F(1)-C(7)-F(3)      | 107.3(2)   | F(2)-C(7)-F(3)      | 107.9(2)   |
| F(1)-C(7)-S(1)      | 112.01(18) | F(2)-C(7)-S(1)      | 110.86(18) |
| F(3)-C(7)-S(1)      | 111.35(17) | N(3)-C(8)-C(9)      | 179.6(3)   |
| C(8)-C(9)-H(9A)     | 109.5      | C(8)-C(9)-H(9B)     | 109.5      |
| H(9A)-C(9)-H(9B)    | 109.5      | C(8)-C(9)-H(9C)     | 109.5      |
| H(9A)-C(9)-H(9C)    | 109.5      | H(9B)-C(9)-H(9C)    | 109.5      |
| N(4)-C(10)-C(11)    | 179.0(3)   | C(10)-C(11)-H(11A)  | 109.5      |
| C(10)-C(11)-H(11B)  | 109.5      | H(11A)-C(11)-H(11B) | 109.5      |
| C(10)-C(11)-H(11C)  | 109.5      | H(11A)-C(11)-H(11C) | 109.5      |
| H(11B)-C(11)-H(11C) | 109.5      |                     |            |
| Hydrogen Bonds (Å)  |            |                     |            |
| N(2)-H(1)O(1)#3     | 3.134(3)   | N(2)-H(2)O(3)#4     | 2.986(3)   |
|                     |            |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 x,y,z-1 #2 x,y,z+1 #3 -x+1,-y+1,-z+2 #4 -x,-y+1,-z+2

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>F(000)<br>Crystal size<br>$\theta$ range for data collection<br>Limiting indices<br>Reflections collected / unique<br>Completeness to $\theta = 26.35$<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2<br>Final R indices [I>2 $\sigma$ (I)]<br>R indices (all data)<br>Largest diff. peak and hole |                                                                                                                                                                                                                                                                    |
| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                    |
| $\begin{array}{l} Ag(1)-N(2)\#1\\ Ag(2)-N(3)\\ Ag(2)-O(1)\\ F(2)-C(14)\\ F(4)-C(16)\\ F(6)-C(16)\\ O(2)-C(13)\\ O(4)-C(15)\\ N(1)-C(5)\\ N(1)-C(5)\\ N(2)-Ag(1)\#2\\ N(2)-H(2B)\\ N(3)-C(11)\\ N(4)-Ag(2)\#1\\ N(4)-H(2B)\\ C(1)-H(1)\\ C(2)-H(2)\\ C(3)-C(6)\\ C(4)-H(4)\\ C(6)-H(6A)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(10)-C(11)\\ C(11)-H(11)\\ \end{array}$                                                                                   | 2.143(2)<br>2.157(2)<br>2.565(2)<br>1.324(4)<br>1.339(4)<br>1.323(4)<br>1.246(4)<br>1.244(3)<br>1.346(4)<br>2.143(2)<br>0.9000<br>1.343(4)<br>2.173(2)<br>0.9000<br>0.9300<br>0.9300<br>1.505(4)<br>0.9300<br>0.9700<br>1.374(4)<br>1.383(4)<br>1.385(4)<br>0.9300 |

1.551(4)

C(15)-C(16)

C16 H16 Ag2 F6 N4 O4 658.07 110(2) K 0.71073 A Triclinic, P-1 a = 9.3793(7) A  $\alpha = 95.210(2) deg.$ b = 10.5770(7) A  $\beta = 91.393(2) deg.$  $c = 11.6814(8) A \gamma = 114.234(2) deg.$ 1049.94(13) A^3 2, 2.082 Mg/m^3 1.949 mm^-1 640 0.11 x 0.10 x 0.07 mm 2.39 to 26.35 deg. -11<=h<=11, -13<=k<=13, -14<=l<=14 15985 / 4258 [R(int) = 0.0325]99.5 % multi-scan (SADABS) 0.8724 and 0.8098 Full-matrix least-squares on F^2 4258 / 0 / 289 1.073 R1 = 0.0248, wR2 = 0.0585R1 = 0.0328, wR2 = 0.0609 1.478 and -0.536 e.A^-3

| Ag(1)-N(1)   | 2.146(2) |
|--------------|----------|
| Ag(2)-N(4)#2 | 2.173(2) |
| F(1)-C(14)   | 1.327(4) |
| F(3)-C(14)   | 1.322(4) |
| F(5)-C(16)   | 1.341(3) |
| O(1)-C(13)   | 1.232(4) |
| O(3)-C(15)   | 1.243(3) |
| N(1)-C(1)    | 1.332(4) |
| N(2)-C(6)    | 1.467(4) |
| N(2)-H(2A)   | 0.9000   |
| N(3)-C(7)    | 1.337(4) |
| N(4)-C(12)   | 1.479(4) |
| N(4)-H(4A)   | 0.9000   |
| C(1)-C(2)    | 1.382(4) |
| C(2)-C(3)    | 1.392(4) |
| C(3)-C(4)    | 1.384(4) |
| C(4)-C(5)    | 1.378(4) |
| C(5)-H(5)    | 0.9300   |
| C(6)-H(6B)   | 0.9700   |
| C(7)-H(7)    | 0.9300   |
| C(8)-H(8)    | 0.9300   |
| C(9)-C(12)   | 1.506(4) |
| C(10)-H(10)  | 0.9300   |
| C(12)-H(12A) | 0.9700   |
| C(13)-C(14)  | 1.538(5) |
|              |          |

Bond Angles (°)

| N(2)#1-Ag(1)-N(1)                              | 170 68(9)              | F(5)-C(16)-C(15)                                            | 109.2(2)                |
|------------------------------------------------|------------------------|-------------------------------------------------------------|-------------------------|
| N(3)-Ag(2)-N(4)#2                              | 169 99(9)              | N(3)-Ag(2)-O(1)                                             | 103.51(8)               |
| $N(4)\#_{2-\Delta \alpha}(2) - O(1)$           | 81 52(8)               | $C(13) - O(1) - \Delta g(2)$                                | 103.31(0)<br>127.82(19) |
| C(1) N(1) C(5)                                 | 117 4(2)               | $C(1) N(1) A_{\alpha}(1)$                                   | 127.02(17)<br>125.2(2)  |
| C(1) - N(1) - C(3)<br>$C(5) - N(1) - A_{2}(1)$ | 117.4(2)<br>117.20(10) | C(1)-N(1)-Ag(1)<br>$C(2)$ N(2) A $\sim$ (1) $\frac{142}{2}$ | 123.3(2)                |
| C(5)-N(1)-Ag(1)                                | 117.30(19)             | C(0) - IN(2) - Ag(1) + 2                                    | 114.40(17)              |
| C(6)-N(2)-H(2A)                                | 108.6                  | Ag(1)#2-N(2)-H(2A)                                          | 108.6                   |
| C(6)-N(2)-H(2B)                                | 108.6                  | Ag(1)#2-N(2)-H(2B)                                          | 108.6                   |
| H(2A)-N(2)-H(2B)                               | 107.6                  | C(7)-N(3)-C(11)                                             | 117.1(2)                |
| C(7)-N(3)-Ag(2)                                | 124.26(19)             | C(11)-N(3)-Ag(2)                                            | 118.6(2)                |
| C(12)-N(4)-Ag(2)#1                             | 110.83(16)             | C(12)-N(4)-H(4A)                                            | 109.5                   |
| Ag(2)#1-N(4)-H(4A)                             | 109.5                  | C(12)-N(4)-H(4B)                                            | 109.5                   |
| Ag(2)#1-N(4)-H(4B)                             | 109.5                  | H(4A)-N(4)-H(4B)                                            | 108.1                   |
| N(1)-C(1)-C(2)                                 | 123 5(3)               | N(1)-C(1)-H(1)                                              | 1183                    |
| C(2)-C(1)-H(1)                                 | 118.3                  | C(1)-C(2)-C(3)                                              | 1194(3)                 |
| C(1)-C(2)-H(2)                                 | 120.3                  | C(3)-C(2)-H(2)                                              | 120.3                   |
| C(4) C(2) T(2)                                 | 116 8(2)               | C(4) C(2) C(6)                                              | 120.3<br>118.8(3)       |
| C(4) - C(3) - C(2)<br>C(2) - C(3) - C(6)       | 124 4(2)               | C(4) - C(3) - C(0)                                          | 110.0(3)<br>120.7(3)    |
| C(2) - C(3) - C(0)                             | 124.4(3)               | C(3) - C(4) - C(3)                                          | 120.7(3)                |
| C(5)-C(4)-H(4)                                 | 119.7                  | C(3)-C(4)-H(4)                                              | 119.7                   |
| N(1)-C(5)-C(4)                                 | 122.2(3)               | N(1)-C(5)-H(5)                                              | 118.9                   |
| C(4)-C(5)-H(5)                                 | 118.9                  | N(2)-C(6)-C(3)                                              | 117.0(2)                |
| N(2)-C(6)-H(6A)                                | 108.0                  | C(3)-C(6)-H(6A)                                             | 108.0                   |
| N(2)-C(6)-H(6B)                                | 108.0                  | C(3)-C(6)-H(6B)                                             | 108.0                   |
| H(6A)-C(6)-H(6B)                               | 107.3                  | N(3)-C(7)-C(8)                                              | 123.8(3)                |
| N(3)-C(7)-H(7)                                 | 118.1                  | C(8)-C(7)-H(7)                                              | 118.1                   |
| C(7)-C(8)-C(9)                                 | 119.5(3)               | C(7)-C(8)-H(8)                                              | 120.3                   |
| C(9)-C(8)-H(8)                                 | 120.3                  | C(10)-C(9)-C(8)                                             | 116.7(3)                |
| C(10)-C(9)-C(12)                               | 119.8(3)               | C(8)-C(9)-C(12)                                             | 123.4(3)                |
| C(9)-C(10)-C(11)                               | 120 3(3)               | C(9)-C(10)-H(10)                                            | 119.8                   |
| C(11)-C(10)-H(10)                              | 119.8                  | N(3)-C(11)-C(10)                                            | 122 6(3)                |
| N(3)-C(11)-H(11)                               | 118 7                  | C(10)- $C(11)$ - $H(11)$                                    | 118 7                   |
| N(4) C(12) C(0)                                | 115.7<br>115.0(2)      | N(4) C(12) H(124)                                           | 108.2                   |
| N(4)-C(12)-C(9)                                | 113.9(2)               | N(4) - C(12) - H(12A)<br>N(4) - C(12) - H(12B)              | 108.5                   |
| C(9)- $C(12)$ - $H(12R)$                       | 100.3                  | $N(4)-C(12)-\Pi(12D)$                                       | 108.5                   |
| C(9)-C(12)-H(12B)                              | 108.3                  | H(12A)-C(12)-H(12B)                                         | 107.4                   |
| O(1)-C(13)-O(2)                                | 129.9(3)               | O(1)-C(13)-C(14)                                            | 116.9(3)                |
| O(2)-C(13)-C(14)                               | 113.2(3)               | F(3)-C(14)-F(2)                                             | 105.4(3)                |
| F(3)-C(14)-F(1)                                | 106.7(3)               | F(2)-C(14)-F(1)                                             | 107.4(3)                |
| F(3)-C(14)-C(13)                               | 111.6(3)               | F(2)-C(14)-C(13)                                            | 113.6(3)                |
| F(1)-C(14)-C(13)                               | 111.7(3)               | O(3)-C(15)-O(4)                                             | 129.8(3)                |
| O(3)-C(15)-C(16)                               | 114.4(2)               | O(4)-C(15)-C(16)                                            | 115.6(3)                |
| F(6)-C(16)-F(4)                                | 106.8(3)               | F(6)-C(16)-F(5)                                             | 107.2(3)                |
| F(4)-C(16)-F(5)                                | 106.5(3)               | F(6)-C(16)-C(15)                                            | 114.2(2)                |
| F(4)-C(16)-C(15)                               | 112.5(3)               |                                                             |                         |
|                                                | (-)                    |                                                             |                         |
| Hydrogen Bonds (Å)                             |                        |                                                             |                         |
| N(2)-H(2A)O(3)#3                               | 2.859(3)               | N(2)-H(2B)O(2)#4                                            | 2.837(3)                |
| N(4)-H(4A)O(4)#5                               | 2.973(3)               | N(4)-H(4B) O(4)#6                                           | 2.979(3)                |
|                                                |                        |                                                             | =(3)                    |

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x-1,y,z #3 -x,-y+1,-z+1 #4 -x,-y+2,-z+1 #5 x,y,z-1 #6 -x+1,-y+1,-z+1

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                              | C14 H16 Ag F3 N4 O2<br>437.18<br>110(2) K<br>0.71073 A<br>Monoclinic, C2/m<br>$a = 12.4623(14) A \alpha = 90 deb = 18.273(2) A \beta = 92.986c = 7.4106(8) A \alpha = 90 deg$                                                                                                                                                                                                                                  | eg.<br>5(4) deg.                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Z, Calculated density<br>Absorption coefficient<br>F(000)<br>Crystal size<br>$\theta$ range for data collection<br>Limiting indices<br>Reflections collected / unique<br>Completeness to $\theta = 25.30$<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data / restraints / parameters<br>Goodness-of-fit on F^2<br>Final R indices [I>2 $\sigma$ (I)]<br>R indices (all data)<br>Largest diff. peak and hole |                                                                                                                                                                              | $1685.2(3) A^{3}$ 4, 1.723 Mg/m <sup>3</sup><br>1.241 mm <sup>-1</sup><br>872<br>0.09 x 0.06 x 0.06 mm<br>1.98 to 25.30 deg.<br>-14<=h<=14, -21<=k<=21, -27<br>7120 / 1572 [R(int) = 0.0301<br>99.2 %<br>multi-scan (SADABS)<br>0.9349 and 0.8933<br>Full-matrix least-squares on 2<br>1572 / 0 / 133<br>1.012<br>R1 = 0.0288, wR2 = 0.0624<br>R1 = 0.0408, wR2 = 0.0674<br>0.501 and -0.853 e.A <sup>-3</sup> | 8<=1<=8<br>]<br>F^2                                                                                                                                                       |
| Bond Lengths (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| Ag(1)-N(2)#1<br>Ag(1)-N(1)#3<br>C(8)-F(1)<br>C(8)-F(2)<br>O(1)-C(7)<br>C(1)-N(1)<br>C(1)-H(1)<br>C(2)-H(2)<br>C(3)-C(6)<br>C(4)-H(4)<br>C(5)-H(5)<br>C(6)-H(6A)<br>N(2)-Ag(1)#1<br>N(2)-H(2B)<br>Bond Angles (°)                                                                                                                                                                                                                                         | $\begin{array}{c} 2.321(3)\\ 2.324(3)\\ 1.280(5)\\ 1.341(6)\\ 1.232(5)\\ 1.340(4)\\ 0.9300\\ 0.9300\\ 1.495(5)\\ 0.9300\\ 0.9300\\ 0.9700\\ 2.321(3)\\ 0.9000\\ \end{array}$ | Ag(1)-N(2)#2<br>Ag(1)-N(1)<br>C(8)-F(1)#4<br>C(8)-C(7)<br>O(2)-C(7)<br>C(1)-C(2)<br>C(2)-C(3)<br>C(3)-C(4)<br>C(4)-C(5)<br>C(5)-N(1)<br>C(6)-N(2)<br>C(6)-H(6B)<br>N(2)-H(2A)                                                                                                                                                                                                                                  | $\begin{array}{c} 2.321(3)\\ 2.324(3)\\ 1.280(5)\\ 1.547(5)\\ 1.230(5)\\ 1.370(5)\\ 1.385(5)\\ 1.385(4)\\ 1.373(4)\\ 1.377(4)\\ 1.476(6)\\ 0.9700\\ 0.9000\\ \end{array}$ |
| N(2)#1-Ag(1)-N(2)#2<br>N(2)#1-Ag(1)-N(1)#3<br>N(2)#1-Ag(1)-N(1)<br>N(1)#3-Ag(1)-N(1)<br>F(1)-C(8)-F(2)<br>F(1)-C(8)-C(7)<br>F(2)-C(8)-C(7)<br>N(1)-C(1)-H(1)<br>C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                           | 100.19(19)<br>101.38(10)<br>121.26(9)<br>112.13(13)<br>104.8(4)<br>112.5(3)<br>113.0(4)<br>118.2<br>119.7(3)                                                                 | H(2A)-N(2)-H(2B)<br>N(2)#2-Ag(1)-N(1)#3<br>N(2)#2-Ag(1)-N(1)<br>F(1)-C(8)-F(1)#4<br>F(1)#4-C(8)-F(2)<br>F(1)#4-C(8)-C(7)<br>N(1)-C(1)-C(2)<br>C(2)-C(1)-H(1)<br>C(1)-C(2)-H(2)                                                                                                                                                                                                                                 | 107.1<br>121.26(9)<br>101.38(10)<br>108.6(7)<br>104.8(4)<br>112.5(3)<br>123.6(3)<br>118.2<br>120.2                                                                        |

| Table B.28. Continued |          |                  |          |  |
|-----------------------|----------|------------------|----------|--|
|                       |          |                  |          |  |
| C(3)-C(2)-H(2)        | 120.2    | C(4)-C(3)-C(2)   | 117.0(3) |  |
| C(4)-C(3)-C(6)        | 121.7(3) | C(2)-C(3)-C(6)   | 121.2(3) |  |
| C(5)-C(4)-C(3)        | 119.7(3) | C(5)-C(4)-H(4)   | 120.1    |  |
| C(3)-C(4)-H(4)        | 120.1    | N(1)-C(5)-C(4)   | 123.5(3) |  |
| N(1)-C(5)-H(5)        | 118.2    | C(4)-C(5)-H(5)   | 118.2    |  |
| N(2)-C(6)-C(3)        | 109.1(3) | N(2)-C(6)-H(6A)  | 109.9    |  |
| C(3)-C(6)-H(6A)       | 109.9    | N(2)-C(6)-H(6B)  | 109.9    |  |
| C(3)-C(6)-H(6B)       | 109.9    | H(6A)-C(6)-H(6B) | 108.3    |  |
| O(1)-C(7)-O(2)        | 130.0(4) | O(1)-C(7)-C(8)   | 114.0(3) |  |
| O(2)-C(7)-C(8)        | 115.9(3) | C(5)-N(1)-C(1)   | 116.4(3) |  |
| C(5)-N(1)-Ag(1)       | 125.2(2) | C(1)-N(1)-Ag(1)  | 117.4(2) |  |
| C(6)-N(2)-Ag(1)#1     | 118.0(2) | C(6)-N(2)-H(2A)  | 107.8    |  |
| Ag(1)#1-N(2)-H(2A)    | 107.8    | C(6)-N(2)-H(2B)  | 107.8    |  |
| Ag(1)#1-N(2)-H(2B)    | 107.8    |                  |          |  |
| Hydrogen Bonds (Å)    |          |                  |          |  |
| N(2)-H(2B)O(1)#1      | 3.008(4) | N(2)-H(2A)O(2)#5 | 3.169(3) |  |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1/2, -y + 1/2, -z + 1 #2 - x - 1/2, -y + 1/

| Empirical formula                        | C13 H16 Ag F3 N4 O3 S                                        |
|------------------------------------------|--------------------------------------------------------------|
| Formula weight                           | 473.23                                                       |
| Temperature                              | 110(2) K                                                     |
| Wavelength                               | 0.71073 A                                                    |
| Crystal system, space group              | Triclinic, P-1                                               |
| Unit cell dimensions                     | $a = 7.9279(4) A  \alpha = 98.964(2) deg.$                   |
|                                          | $b = 10.0058(4) A$ $\beta = 108.141(2) deg.$                 |
|                                          | $c = 11.5642(5) \text{ A}$ $\gamma = 95.402(2) \text{ deg.}$ |
| Volume                                   | 851.08(7) A^3                                                |
| Z, Calculated density                    | 2, 1.847 Mg/m^3                                              |
| Absorption coefficient                   | 1.359 mm^-1                                                  |
| F(000)                                   | 472                                                          |
| Crystal size                             | 0.249 x 0.23 x 0.153 mm                                      |
| $\theta$ range for data collection       | 3.18 to 28.48 deg.                                           |
| Limiting indices                         | -10<=h<=10, -12<=k<=13, -15<=l<=15                           |
| Reflections collected / unique           | 29250 / 4113 [R(int) = 0.0344]                               |
| Completeness to $\theta = 25.00^{\circ}$ | 98.3 %                                                       |
| Absorption correction                    | multi-scan (SADABS)                                          |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>                  |
| Data / restraints / parameters           | 4113 / 0 / 226                                               |
| Goodness-of-fit on F <sup>2</sup>        | 1.052                                                        |
| Final R indices $[I \ge 2\sigma(I)]$     | R1 = 0.0187, $wR2 = 0.0473$                                  |
| R indices (all data)                     | R1 = 0.0199, $wR2 = 0.0477$                                  |
| Largest diff. peak and hole              | 0.847 and -0.530 e.A^-3                                      |

Table B.29 Experimental and statistical crystal data for 7.4

| Bond Lengths (Å)   |            |                     |            |
|--------------------|------------|---------------------|------------|
| Ag(1)-N(3)         | 2.2765(13) | Ag(1)-N(1)#1        | 2.3460(14) |
| Ag(1)-N(4)#2       | 2.3913(13) | Ag(1)-N(2)          | 2.4312(12) |
| S(1)-O(3)          | 1.4353(12) | S(1)-O(1)           | 1.4439(13) |
| S(1)-O(2)          | 1.4464(11) | S(1)-C(13)          | 1.8305(15) |
| F(1)-C(13)         | 1.3413(18) | F(2)-C(13)          | 1.3313(18) |
| F(3)-C(13)         | 1.3338(19) | N(1)-C(1)           | 1.474(2)   |
| N(1)-Ag(1)#3       | 2.3460(14) | N(1)-H(1C)          | 0.9000     |
| N(1)-H(1D)         | 0.9000     | N(2)-C(5)           | 1.339(2)   |
| N(2)-C(4)          | 1.343(2)   | N(3)-C(7)           | 1.4820(19) |
| N(3)-H(3A)         | 0.9000     | N(3)-H(3B)          | 0.9000     |
| N(4)-C(10)         | 1.339(2)   | N(4)-C(11)          | 1.340(2)   |
| N(4)-Ag(1)#2       | 2.3913(13) | C(1)-C(2)           | 1.5089(19) |
| C(1)-H(1A)         | 0.9700     | C(1)-H(1B)          | 0.9700     |
| C(2)-C(6)          | 1.389(2)   | C(2)-C(3)           | 1.395(2)   |
| C(3)-C(4)          | 1.392(2)   | C(3)-H(3)           | 0.9300     |
| C(4)-H(4)          | 0.9300     | C(5)-C(6)           | 1.387(2)   |
| C(5)-H(5)          | 0.9300     | C(6)-H(6)           | 0.9300     |
| C(7)-C(8)          | 1.511(2)   | C(7)-H(7A)          | 0.9700     |
| C(7)-H(7B)         | 0.9700     | C(8)-C(12)          | 1.382(2)   |
| C(8)-C(9)          | 1.391(2)   | C(9)-C(10)          | 1.386(2)   |
| C(9)-H(9)          | 0.9300     | C(10)-H(10)         | 0.9300     |
| C(11)-C(12)        | 1.388(2)   | C(11)-H(11)         | 0.9300     |
| C(12)-H(12)        | 0.9300     |                     |            |
| Bond Angles (°)    |            |                     |            |
| N(3)-Ag(1)-N(1)#1  | 119.90(5)  | F(1)-C(13)-S(1)     | 110.53(10) |
| N(3)-Ag(1)-N(4)#2  | 117.91(5)  | N(1)#1-Ag(1)-N(4)#2 | 109.55(5)  |
| N(3)-Ag(1)-N(2)    | 118.19(5)  | N(1)#1-Ag(1)-N(2)   | 93.50(4)   |
| N(4)#2-Ag(1)-N(2)  | 92.07(4)   | O(3)-S(1)-O(1)      | 116.00(9)  |
| O(3)-S(1)-O(2)     | 114.88(8)  | O(1)-S(1)-O(2)      | 113.97(7)  |
| O(3)-S(1)-C(13)    | 103.80(7)  | O(1)-S(1)-C(13)     | 102.72(7)  |
| O(2)-S(1)-C(13)    | 103.05(7)  | C(1)-N(1)-Ag(1)#3   | 119.88(9)  |
| C(1)-N(1)-H(1C)    | 107.4      | Ag(1)#3-N(1)-H(1C)  | 107.4      |
| C(1)-N(1)-H(1D)    | 107.4      | Ag(1)#3-N(1)-H(1D)  | 107.4      |
| H(1C)-N(1)-H(1D)   | 106.9      | C(5)-N(2)-C(4)      | 116.67(13) |
| C(5)-N(2)-Ag(1)    | 115.75(10) | C(4)-N(2)-Ag(1)     | 125.96(10) |
| C(7)-N(3)-Ag(1)    | 116.30(10) | C(7)-N(3)-H(3A)     | 108.2      |
| Ag(1)-N(3)-H(3A)   | 108.2      | C(7)-N(3)-H(3B)     | 108.2      |
| Ag(1)-N(3)-H(3B)   | 108.2      | H(3A)-N(3)-H(3B)    | 107.4      |
| C(10)-N(4)-C(11)   | 116.46(13) | C(10)-N(4)-Ag(1)#2  | 123.28(10) |
| C(11)-N(4)-Ag(1)#2 | 120.04(11) | N(1)-C(1)-C(2)      | 113.18(12) |
| N(1)-C(1)-H(1A)    | 108.9      | C(2)-C(1)-H(1A)     | 108.9      |
| N(1)-C(1)-H(1B)    | 108.9      | C(2)-C(1)-H(1B)     | 108.9      |
| H(1A)-C(1)-H(1B)   | 107.8      | C(6)-C(2)-C(3)      | 116.98(13) |
| C(6)-C(2)-C(1)     | 119.72(13) | C(3)-C(2)-C(1)      | 123.17(13) |
| C(4)-C(3)-C(2)     | 119.25(14) | C(4)-C(3)-H(3)      | 120.4      |
| C(2)-C(3)-H(3)     | 120.4      | N(2)-C(4)-C(3)      | 123.65(14) |
| N(2)-C(4)-H(4)     | 118.2      | C(3)-C(4)-H(4)      | 118.2      |
| N(2)-C(5)-C(6)     | 123.42(14) | N(2)-C(5)-H(5)      | 118.3      |
| C(6)-C(5)-H(5)     | 118.3      | C(5)-C(6)-C(2)      | 120.01(13) |
| C(5)-C(6)-H(6)     | 120.0      | C(2)-C(6)-H(6)      | 120.0      |
|                    | Tuelt B    | 29: Commuta       |            |  |
|--------------------|------------|-------------------|------------|--|
|                    |            |                   |            |  |
| N(3)-C(7)-C(8)     | 110.77(12) | N(3)-C(7)-H(7A)   | 109.5      |  |
| C(8)-C(7)-H(7A)    | 109.5      | N(3)-C(7)-H(7B)   | 109.5      |  |
| C(8)-C(7)-H(7B)    | 109.5      | H(7A)-C(7)-H(7B)  | 108.1      |  |
| C(12)-C(8)-C(9)    | 117.26(14) | C(12)-C(8)-C(7)   | 122.19(14) |  |
| C(9)-C(8)-C(7)     | 120.54(14) | C(10)-C(9)-C(8)   | 119.20(15) |  |
| C(10)-C(9)-H(9)    | 120.4      | C(8)-C(9)-H(9)    | 120.4      |  |
| N(4)-C(10)-C(9)    | 123.86(15) | N(4)-C(10)-H(10)  | 118.1      |  |
| C(9)-C(10)-H(10)   | 118.1      | N(4)-C(11)-C(12)  | 123.44(15) |  |
| N(4)-C(11)-H(11)   | 118.3      | C(12)-C(11)-H(11) | 118.3      |  |
| C(8)-C(12)-C(11)   | 119.76(15) | C(8)-C(12)-H(12)  | 120.1      |  |
| C(11)-C(12)-H(12)  | 120.1      | F(2)-C(13)-F(3)   | 107.75(12) |  |
| F(2)-C(13)-F(1)    | 107.57(13) | F(3)-C(13)-F(1)   | 107.19(13) |  |
| F(2)-C(13)-S(1)    | 112.33(10) | F(3)-C(13)-S(1)   | 111.26(10) |  |
| Hydrogen Bonds (Å) |            |                   |            |  |
| N(1)-H(1C)O(1)#4   | 3.0216(17) | N(1)-H(1D)O(1)#5  | 3.2590(19) |  |
| N(3)-H(3A)O(2)#6   | 3.0530(18) | N(3)-H(3B)O(3)#7  | 3.0374(17) |  |
|                    |            |                   |            |  |

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 -x,-y+1,-z+1 #3 x+1,y,z #4 x+1,y,z+1 #5 -x+2,-y+2,-z+1 #6 -x+1,-y+1,-z+1 #7 x,y,z+1

| Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system, space group<br>Unit cell dimensions | C12 H16 Ag B F4 N4<br>410.97<br>110(2) K<br>0.71073 A<br>Monoclinic, P2(1)/c<br>$a = 10.2034(3)$ A $\alpha = 90$ deg.<br>$b = 13.3334(4)$ A $\beta = 103.690(2)$ deg.<br>$c = 12.3596(4)$ A $\gamma = 90$ deg |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume                                                                                                                  | 1633.70(9) A^3                                                                                                                                                                                                |
| Z, Calculated density                                                                                                   | 4, 1.671 Mg/m^3                                                                                                                                                                                               |
| Absorption coefficient                                                                                                  | 1.273 mm^-1                                                                                                                                                                                                   |
| F(000)                                                                                                                  | 816                                                                                                                                                                                                           |
| Crystal size                                                                                                            | $0.152 \times 0.114 \times 0.112 \text{ mm}$                                                                                                                                                                  |
| $\theta$ range for data collection                                                                                      | 3.33 to 28.27 deg.                                                                                                                                                                                            |
| Limiting indices                                                                                                        | -13<=h<=13, -15<=k<=17, -16<=l<=16                                                                                                                                                                            |
| Reflections collected / unique                                                                                          | 21977 / 3961 [R(int) = 0.0299]                                                                                                                                                                                |
| Completeness to $\theta = 28.27$                                                                                        | 97.4 %                                                                                                                                                                                                        |
| Absorption correction                                                                                                   | multi-scan (SADABS)                                                                                                                                                                                           |
| Refinement method                                                                                                       | Full-matrix least-squares on F <sup>2</sup>                                                                                                                                                                   |
| Data / restraints / parameters                                                                                          | 3961 / 0 / 199                                                                                                                                                                                                |
| Goodness-of-fit on F <sup>2</sup>                                                                                       | 1.042                                                                                                                                                                                                         |
| Final R indices $[I \ge 2\sigma(I)]$                                                                                    | R1 = 0.0255, $wR2 = 0.0624$                                                                                                                                                                                   |
| R indices (all data)                                                                                                    | R1 = 0.0364, WR2 = 0.0698                                                                                                                                                                                     |
| Largest diff. peak and hole                                                                                             | 0.689 and -0.375 e.A^-3                                                                                                                                                                                       |

Table B.30 Experimental and statistical crystal data for 7.5

| Bond Lengths (Å)                                  |                          |                                                |                          |
|---------------------------------------------------|--------------------------|------------------------------------------------|--------------------------|
| Ag(1)-N(1)                                        | 2.2806(18)               | Ag(1)-N(2)#1                                   | 2.327(2)                 |
| Ag(1)-N(4)#2                                      | 2.3469(18)               | Ag(1)-N(3)                                     | 2.3808(18)               |
| B(1)-F(3)                                         | 1.370(3)                 | B(1)-F(2)                                      | 1.373(3)                 |
| B(1)-F(1)                                         | 1.375(3)                 | B(1)-F(4)                                      | 1.393(3)                 |
| N(1)-C(4)                                         | 1.341(3)                 | N(1)-C(5)                                      | 1.343(3)                 |
| N(2)-C(1)                                         | 1.478(3)                 | N(2)-Ag(1)#1                                   | 2.327(2)                 |
| N(2)-H(2A)                                        | 0.9000                   | N(2)-H(2B)                                     | 0.9000                   |
| N(3)-C(10)                                        | 1.331(3)                 | N(3)-C(11)                                     | 1.345(3)                 |
| N(4)-C(7)                                         | 1.464(3)                 | N(4)-Ag(1)#3                                   | 2.3469(18)               |
| N(4)-H(4A)                                        | 0.9000                   | N(4)-H(4B)                                     | 0.9000                   |
| C(1)-C(2)                                         | 1.507(3)                 | C(1)-H(1A)                                     | 0.9700                   |
| C(1)-H(1B)                                        | 0.9700                   | C(2)-C(3)                                      | 1.383(3)                 |
| C(2)-C(6)                                         | 1.387(3)                 | C(3)-C(4)                                      | 1.385(3)                 |
| C(3)-H(3)                                         | 0.9300                   | C(4)-H(4)                                      | 0.9300                   |
| C(5)-C(6)                                         | 1.385(3)                 | C(5)-H(5)                                      | 0.9300                   |
| C(6)-H(6)                                         | 0.9300                   | C(7)-C(8)                                      | 1.515(3)                 |
| C(7)-H(7A)                                        | 0.9700                   | C(7)-H(7B)                                     | 0.9700                   |
| C(8)-C(12)                                        | 1.379(3)                 | C(8)-C(9)                                      | 1.387(3)                 |
| C(9)-C(10)                                        | 1.386(3)                 | C(9)-H(9)                                      | 0.9300                   |
| C(10)-H(10)                                       | 0.9300                   | C(11)-C(12)                                    | 1.385(3)                 |
| C(11)-H(11)                                       | 0.9300                   | C(12)-H(12)                                    | 0.9300                   |
| Bond Angles (°)                                   |                          |                                                |                          |
| N(1)-Ag(1)-N(2)#1                                 | 126.60(7)                | N(1)-Ag(1)-N(4)#2                              | 116.96(7)                |
| N(2)#1-Ag(1)-N(4)#2                               | 99.86(7)                 | N(1)-Ag(1)-N(3)                                | 105.85(6)                |
| N(2)#1-Ag(1)-N(3)                                 | 102.97(7)                | N(4)#2-Ag(1)-N(3)                              | 101.23(7)                |
| F(3)-B(1)-F(2)                                    | 110.1(2)                 | F(3)-B(1)-F(1)                                 | 108.5(2)                 |
| F(2)-B(1)-F(1)                                    | 109.7(2)                 | F(3)-B(1)-F(4)                                 | 110.5(2)                 |
| F(2)-B(1)-F(4)                                    | 109.04(19)               | F(1)-B(1)-F(4)                                 | 109.0(2)                 |
| C(4)-N(1)-C(5)                                    | 116.9/(19)               | C(4)-N(1)-Ag(1)                                | 122.72(15)               |
| C(5)-N(1)-Ag(1)                                   | 119.78(15)               | C(1)-N(2)-Ag(1)#1                              | 114.58(14)               |
| C(1) - N(2) - H(2A)                               | 108.6                    | Ag(1)#1-N(2)-H(2A)                             | 108.6                    |
| U(1)-IN(2)-II(2B)                                 | 108.0                    | Ag(1)#1-N(2)-H(2B)<br>C(10) N(2) C(11)         | 108.0<br>117.22(10)      |
| $\Pi(2A) - \Pi(2) - \Pi(2D)$                      | 107.0<br>120.24(14)      | C(10)-N(3)-C(11)<br>$C(11) N(2) A_{\alpha}(1)$ | 117.22(19)<br>122.52(15) |
| C(10) - N(3) - Ag(1)                              | 120.24(14)<br>114.12(12) | C(11)- $N(3)$ - $Ag(1)C(7) N(4) H(4A)$         | 122.33(13)               |
| C(7)-N(4)-Ag(1)#5<br>A $\alpha(1)$ #2 N(4) H(4 A) | 114.13(13)<br>108 7      | C(7) - N(4) - H(4R)<br>C(7) - N(4) - H(4R)     | 108.7                    |
| Ag(1)#3-N(4)-H(4R)                                | 108.7                    | H(A) - N(A) - H(AB)                            | 103.7                    |
| N(2)-C(1)-C(2)                                    | 100.7                    | $N(2)-C(1)-H(1\Delta)$                         | 107.0                    |
| C(2)-C(1)-H(1A)                                   | 109.7                    | N(2)-C(1)-H(1R)                                | 109.7                    |
| C(2)- $C(1)$ -H(1B)                               | 109.7                    | H(1A)-C(1)-H(1B)                               | 108.2                    |
| C(3)-C(2)-C(6)                                    | 109.7<br>117 7(2)        | C(3)-C(2)-C(1)                                 | 1212(2)                  |
| C(6)-C(2)-C(1)                                    | 1211(2)                  | C(2)-C(3)-C(4)                                 | 1195(2)                  |
| C(2)-C(3)-H(3)                                    | 120.3                    | C(4)-C(3)-H(3)                                 | 120.3                    |
| N(1)-C(4)-C(3)                                    | 123.2(2)                 | N(1)-C(4)-H(4)                                 | 118.4                    |
| C(3)-C(4)-H(4)                                    | 118.4                    | N(1)-C(5)-C(6)                                 | 123.2(2)                 |
| N(1)-C(5)-H(5)                                    | 118.4                    | C(6)-C(5)-H(5)                                 | 118.4                    |
| C(5)-C(6)-C(2)                                    | 119.3(2)                 | C(5)-C(6)-H(6)                                 | 120.3                    |
| C(2)-C(6)-H(6)                                    | 120.3                    | N(4)-C(7)-C(8)                                 | 113.17(18)               |
| N(4)-C(7)-H(7A)                                   | 108.9                    | C(8)-C(7)-H(7A)                                | 108.9                    |
| N(4)-C(7)-H(7B)                                   | 108.9                    | C(8)-C(7)-H(7B)                                | 108.9                    |
|                                                   |                          |                                                |                          |

| Table B.30. Continued |          |                   |          |  |
|-----------------------|----------|-------------------|----------|--|
|                       |          |                   |          |  |
| H(7A)-C(7)-H(7B)      | 107.8    | C(12)-C(8)-C(9)   | 117.6(2) |  |
| C(12)-C(8)-C(7)       | 121.6(2) | C(9)-C(8)-C(7)    | 120.8(2) |  |
| C(10)-C(9)-C(8)       | 119.2(2) | C(10)-C(9)-H(9)   | 120.4    |  |
| C(8)-C(9)-H(9)        | 120.4    | N(3)-C(10)-C(9)   | 123.4(2) |  |
| N(3)-C(10)-H(10)      | 118.3    | C(9)-C(10)-H(10)  | 118.3    |  |
| N(3)-C(11)-C(12)      | 122.8(2) | N(3)-C(11)-H(11)  | 118.6    |  |
| C(12)-C(11)-H(11)     | 118.6    | C(8)-C(12)-C(11)  | 119.8(2) |  |
| C(8)-C(12)-H(12)      | 120.1    | C(11)-C(12)-H(12) | 120.1    |  |
| Hydrogen Bonds (Å)    |          |                   |          |  |
| N(2)-H(2A)F(1)#4      | 3.072(3) | N(2)-H(2B)F(4)    | 3.090(2) |  |
| N(4)-H(4A)F(4)#5      | 3.156(2) | N(4)-H(4A)F(2)#5  | 3.118(2) |  |
| N(4)-H(4B)F(1)#6      | 3.282(3) |                   |          |  |
|                       |          |                   |          |  |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 -x+2,y-1/2,-z+1/2 #3 -x+2,y+1/2,-z+1/2 #4 -x+1,-y+1,-z+2 #5 -x+2,-y+1,-z+1 #6 -x+2,y+1/2,-z+3/2

| Empirical formula                    |            | C34 H38 A92 B2 F8 N8                                 |                  |  |
|--------------------------------------|------------|------------------------------------------------------|------------------|--|
| Formula weight                       |            | 948 08                                               |                  |  |
| Temperature                          |            | 110(2) K                                             |                  |  |
| Wavelength                           |            | 0 71073 A                                            |                  |  |
| Crystal system space group           |            | Monoclinic $P^{2}(1)/c$                              |                  |  |
| Unit cell dimensions                 |            | $a = 18.763(11) \text{ A}$ $\alpha = 90 \text{ deg}$ | σ                |  |
| ent cen uniensions                   |            | $h = 30.127(12) A$ $\beta = 91.96$                   | 5.<br>58(17) deg |  |
|                                      |            | c = 6.690(3)  A = 90  deg                            | ,o(17) deg.      |  |
| Volume                               |            | 3779(3) A^3                                          |                  |  |
| Z Calculated density                 |            | 4 1 666 Mg/m^3                                       |                  |  |
| Absorption coefficient               |            | 1,113 mm^-1                                          |                  |  |
| F(000)                               |            | 1896                                                 |                  |  |
| Crystal size                         |            | $0.264 \times 0.220 \times 0.189 \text{ mm}$         |                  |  |
| $\theta$ range for data collection   |            | 1.35 to 26.61 deg.                                   |                  |  |
| Limiting indices                     |            | -23<=h<=23, -37<=k<=34, -8<=1<=8                     |                  |  |
| Reflections collected / unique       |            | 29173 / 7788 [R(int) = 0.0446]                       |                  |  |
| Completeness to $\theta = 25.00$     |            | 99.2 %                                               |                  |  |
| Absorption correction                |            | multi-scan (SADABS)                                  |                  |  |
| Refinement method                    |            | Full-matrix least-squares on F <sup>2</sup>          |                  |  |
| Data / restraints / parameters       |            | 7788 / 31 / 528                                      |                  |  |
| Goodness-of-fit on F <sup>2</sup>    |            | 1.078                                                |                  |  |
| Final R indices $[I \ge 2\sigma(I)]$ |            | R1 = 0.0394, $wR2 = 0.1039$                          |                  |  |
| R indices (all data)                 |            | R1 = 0.0448, WR2 = 0.1072                            |                  |  |
| Largest diff. peak and hole          |            | 1.242 and -0.788 e.A^-3                              |                  |  |
| Bond Lengths (Å)                     |            |                                                      |                  |  |
| Ag(1)-N(1)                           | 2.161(3)   | Ag(1)-N(3)                                           | 2.256(3)         |  |
| Ag(1)-N(4)                           | 2.335(3)   | Ag(2)-N(2)                                           | 2.138(3)         |  |
| Ag(2)-N(5)                           | 2.240(3)   | Ag(2)-N(6)                                           | 2.339(3)         |  |
| Ag(2)-Ag(2)#1                        | 3.3482(12) | Ag(2)-Ag(2)#2                                        | 3.3482(13)       |  |
| B(1)-F(2A)                           | 1.365(11)  | B(1)-F(3B)                                           | 1.374(7)         |  |

Table B.31 Experimental and statistical crystal data for 7.6.2

Table B.31. Continued

| B(1)-F(4A)                                     | 1.377(10)            | B(1)-F(3)                                | 1.378(11)              |
|------------------------------------------------|----------------------|------------------------------------------|------------------------|
| B(1)-F(2B)                                     | 1 379(9)             | B(1)-F(1A)                               | 1 382(10)              |
| B(1) - F(A)                                    | 1.375(5)             | B(1)-F(2)                                | 1.302(10)<br>1.302(10) |
| $D(1) - \Gamma(4)$<br>$D(1) - \Gamma(1)$       | 1.304(10)            | $D(1) - \Gamma(2)$<br>$D(1) - \Gamma(1)$ | 1.392(10)<br>1.400(11) |
| $\mathbf{D}(1) - \mathbf{\Gamma}(1\mathbf{D})$ | 1.393(8)             | B(1)-F(1)                                | 1.400(11)              |
| B(1)-F(3A)                                     | 1.401(9)             | B(1)-F(4B)                               | 1.408(7)               |
| F(3)- $F(3A)$                                  | 0.564(16)            | F(3)-F(3B)                               | 0.575(19)              |
| F(3)- $F(4A)$                                  | 1.763(17)            | F(4)- $F(4A)$                            | 0.58(2)                |
| F(4)-F(4B)                                     | 0.613(15)            | F(4)-F(3B)                               | 1.758(17)              |
| F(1A)-F(1B)                                    | 0.67(2)              | F(2A)-F(2B)                              | 0.56(4)                |
| F(3A)-F(3B)                                    | 1.12(2)              | F(4A)- $F(4B)$                           | 1.17(3)                |
| F(4A)-F(3B)                                    | 1 28(2)              | F(5)-B(2)                                | 1 390(5)               |
| F(6)-B(2)                                      | 1 360(5)             | F(7)-B(2)                                | 1 399(5)               |
| F(8)-B(2)                                      | 1 397(5)             | N(1)-C(1)                                | 1.399(5)<br>1.464(5)   |
| N(1) - H(1C)                                   | 0.9200               | N(1) - H(1D)                             | 0.9200                 |
| N(1) - H(1C)<br>N(2) C(4)                      | 1.241(5)             | N(2) C(5)                                | 1.250(4)               |
| N(2) - C(4)                                    | 1.341(3)<br>1.240(4) | N(2) - C(3)                              | 1.330(4)<br>1.240(4)   |
| N(3)-C(7)                                      | 1.349(4)             | N(3)-C(11)                               | 1.349(4)               |
| N(4)-C(17)                                     | 1.341(4)             | N(4)-C(13)                               | 1.34/(4)               |
| N(5)-C(23)                                     | 1.349(4)             | N(5)-C(19)                               | 1.351(5)               |
| N(6)-C(29)                                     | 1.342(5)             | N(6)-C(25)                               | 1.343(4)               |
| N(7)-C(31)                                     | 1.133(7)             | N(8)-C(33)                               | 1.141(5)               |
| C(1)-C(2)                                      | 1.515(5)             | C(1)-H(1A)                               | 0.9900                 |
| C(1)-H(1B)                                     | 0.9900               | C(2)-C(3)                                | 1.392(5)               |
| C(2)-C(6)                                      | 1.397(5)             | C(3)-C(4)                                | 1.389(5)               |
| C(3)-H(3)                                      | 0.9500               | C(4)-H(4)                                | 0.9500                 |
| C(5)-C(6)                                      | 1 381(5)             | C(5)-H(5)                                | 0 9500                 |
| C(6)-H(6)                                      | 0.9500               | C(7)- $C(8)$                             | 1 375(5)               |
| C(7)-H(7)                                      | 0.9500               | C(8)- $C(9)$                             | 1 395(5)               |
| C(8) C(12)                                     | 1 508(5)             | C(0) C(10)                               | 1.393(3)<br>1.302(5)   |
| C(0) U(0)                                      | 0.0500               | C(10) C(11)                              | 1.392(3)<br>1.400(5)   |
| C(9)-H(9)                                      | 0.9500               | C(10)-C(11)                              | 1.400(5)               |
| C(10)-H(10)                                    | 0.9500               | C(11)-C(13)                              | 1.49/(5)               |
| C(12)-H(12A)                                   | 0.9800               | С(12)-Н(12В)                             | 0.9800                 |
| C(12)-H(12C)                                   | 0.9800               | C(13)-C(14)                              | 1.400(5)               |
| C(14)-C(15)                                    | 1.385(5)             | C(14)-H(14)                              | 0.9500                 |
| C(15)-C(16)                                    | 1.389(5)             | C(15)-H(15)                              | 0.9500                 |
| C(16)-C(17)                                    | 1.394(5)             | C(16)-C(18)                              | 1.504(5)               |
| C(17)-H(17)                                    | 0.9500               | C(18)-H(18A)                             | 0.9800                 |
| C(18)-H(18B)                                   | 0.9800               | C(18)-H(18C)                             | 0.9800                 |
| C(19)-C(20)                                    | 1.385(5)             | C(19)-H(19)                              | 0.9500                 |
| C(20)-C(21)                                    | 1 406(5)             | C(20)-C(24)                              | 1 498(5)               |
| C(21)- $C(22)$                                 | 1 383(5)             | C(21)-H(21)                              | 0.9500                 |
| C(21) C(22)                                    | 1.303(5)             | C(22) - H(22)                            | 0.9500                 |
| C(22)- $C(23)$                                 | 1.394(3)<br>1 406(5) | C(24) H(24A)                             | 0.9500                 |
| C(23)-C(23)                                    | 0.0800               | $C(24) - \Pi(24R)$                       | 0.9800                 |
| $C(24) - \Pi(24B)$                             | 0.9800               | $C(24) - \Pi(24C)$                       | 0.9800                 |
| C(25)-C(26)                                    | 1.394(5)             | C(26)-C(27)                              | 1.385(5)               |
| C(26)-H(26)                                    | 0.9500               | C(27)-C(28)                              | 1.395(5)               |
| С(27)-Н(27)                                    | 0.9500               | C(28)-C(29)                              | 1.396(5)               |
| C(28)-C(30)                                    | 1.506(5)             | C(29)-H(29)                              | 0.9500                 |
| C(30)-H(30A)                                   | 0.9800               | C(30)-H(30B)                             | 0.9800                 |
| C(30)-H(30C)                                   | 0.9800               | C(31)-C(32)                              | 1.459(8)               |
| C(32)-H(32A)                                   | 0.9800               | C(32)-H(32B)                             | 0.9800                 |
| C(32)-H(32C)                                   | 0.9800               | C(33)-C(34)                              | 1.455(5)               |
| C(34)-H(34A)                                   | 0.9800               | C(34)-H(34B)                             | 0.9800                 |
| C(34)-H(34C)                                   | 0.9800               | . , . ,                                  |                        |
| × / × /                                        |                      |                                          |                        |

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bond Angles (°)    |            |                           |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|---------------------------|-------------|
| $\begin{split} & \text{N(1)-Ag(1)-N(4)} & 136.77(11) & \text{N(3)-Ag(1)-N(4)} & 72.88(10) \\ & \text{N(2)-Ag(2)-N(5)} & 153.94(11) & \text{N(2)-Ag(2)-Ag(2)\#1} & 83.21(8) \\ & \text{N(5)-Ag(2)-Ag(2)} & 100.32(8) & \text{N(5)-Ag(2)-Ag(2)} & 85.93(7) \\ & \text{N(2)-Ag(2)-Ag(2)} & 100.32(8) & \text{N(5)-Ag(2)-Ag(2)} & 74.00(7) \\ & \text{N(6)-Ag(2)-Ag(2)} & 28.93(7) & \text{Ag(2)} & 174.859(18) \\ & \text{Ag(2)} & \text{Ag(2)} & \text{H} & 111.1(9) \\ & \text{F(3A)-B(1)-F(3B)} & 128.3(9) & F(2A)-B(1)-F(4A) & 111.1(9) \\ & F(3B)-B(1)-F(3B) & 24.1(8) & F(4A)-B(1)-F(3) & 121.9(11) \\ & F(3B)-B(1)-F(2B) & 123.4(15) & F(3B)-B(1)-F(2B) & 100.4(11) \\ & F(2A)-B(1)-F(2B) & 119.5(10) & F(3B)-B(1)-F(2B) & 100.4(11) \\ & F(2A)-B(1)-F(2B) & 119.5(10) & F(3B)-B(1)-F(1A) & 119.5(9) \\ & F(2A)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4A) & 113.6(7) \\ & F(2A)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4A) & 119.5(9) \\ & F(2B)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4) & 101.6(10) \\ & F(1A)-B(1)-F(4) & 98.0(10) & F(2A)-B(1)-F(4) & 118.6(10) \\ & F(1A)-B(1)-F(4) & 98.0(10) & F(2A)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(4) & 108.7(11) & F(2B)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(2) & 14.1(8) \\ & F(3A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(2) & 9.4(15) \\ & F(1A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(4A)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(4A)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 115.2(10) & F(4A)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 113.0(11) & F(2)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 113.0(11) & F(2)-B(1)-F(1B) & 115.2(9) \\ & F(4A)-B(1)-F(1B) & 113.0(11) & F(2)-B(1)-$ | N(1)-Ag(1)-N(3)    | 150.25(11) | F(6)-B(2)-F(7)            | 110.6(4)    |
| $\begin{split} & N(2)-Ag(2)-N(6) & 133.94(11) & N(2)-Ag(2)-N(6) & 132.20(11) \\ & N(5)-Ag(2)-Ag(2)\#1 & 83.21(8) \\ & N(5)-Ag(2)-Ag(2)\#2 & 100.32(8) & N(5)-Ag(2)-Ag(2)\#1 & 83.93(7) \\ & N(6)-Ag(2)-Ag(2)\#2 & 100.32(8) & N(5)-Ag(2)-Ag(2)\#2 & 74.00(7) \\ & N(6)-Ag(2)-Ag(2)\#2 & 88.93(7) & Ag(2)\#1-Ag(2)- & 174.859(18) \\ & Ag(2)\#2 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N(1)-Ag(1)-N(4)    | 136.77(11) | N(3)-Ag(1)-N(4)           | 72.88(10)   |
| $\begin{split} & N(5)-Ag(2)-N(6) & 73.11(10) & N(2)-Ag(2)-Ag(2)\#1 & 83.51(8) \\ & N(5)-Ag(2)-Ag(2)\#1 & 104.44(7) & N(6)-Ag(2)-Ag(2)\#1 & 85.93(7) \\ & N(2)-Ag(2)-Ag(2)\#2 & 100.32(8) & N(5)-Ag(2)-Ag(2)\#2 & 74.00(7) \\ & Ag(2)\#2 & Ag(2)\#2 & Ag(2)\#2 & Ag(2)\#2 & Ag(2)\#2 & F(2A)-B(1)-F(3B) & 128.3(9) & F(2A)-B(1)-F(4A) & 111.1(9) \\ & F(3B)-B(1)-F(4A) & 55.6(12) & F(2A)-B(1)-F(3A) & 121.9(11) \\ & F(3B)-B(1)-F(4A) & 55.6(12) & F(2A)-B(1)-F(3B) & 112.7(9) \\ & F(2A)-B(1)-F(2B) & 23.4(15) & F(3B)-B(1)-F(2B) & 112.7(9) \\ & F(4A)-B(1)-F(2B) & 119.5(10) & F(3B)-B(1)-F(2B) & 110.27(9) \\ & F(2A)-B(1)-F(1A) & 117.6(9) & F(3B)-B(1)-F(1A) & 119.5(9) \\ & F(2A)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4A) & 119.5(9) \\ & F(2B)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4A) & 119.5(9) \\ & F(3B)-B(1)-F(4) & 103.3(9) & F(2B)-B(1)-F(4A) & 118.6(10) \\ & F(1A)-B(1)-F(4) & 103.3(9) & F(2B)-B(1)-F(4A) & 118.6(10) \\ & F(1A)-B(1)-F(4) & 103.3(9) & F(2B)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 14.1(8) \\ & F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 111.3(9) \\ & F(4A)-B(1)-F(1B) & 112.7(78) & F(3B)-B(1)-F(1B) & 107.7(7) \\ & F(4A)-B(1)-F(1B) & 112.7(78) & F(3)-B(1)-F(1B) & 107.7(7) \\ & F(4A)-B(1)-F(1B) & 112.7(78) & F(3)-B(1)-F(1B) & 105.2(9) \\ & F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 125.2(9) \\ & F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 125.2(9) \\ & F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 23.1(9) \\ & F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 23.1(9) \\ & F(4A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 125.2(9) \\ & F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 23.1(9) \\ & F(2A)-B(1)-F(1B) & 112.7(10) & F(1A)-B(1)-F(1B) & 125.2(9) \\ & F(2A)-B(1)-F(1B) & 113.0(11) & F(2B)-B(1)-F(1B) & 113.9(9) \\ & F(2A)-B(1)-F(1B) & 113.0(11) & F(2B)-B(1)-F(1B) & 113.9(9) \\ & F(2A)-B(1)-F(1B) & 113.0(11) & F(2B)-B(1)-F(1B) & 113.9(9) \\ & F(2A)-B(1)-F(1A) & 103.9(1) & F(2A)-B(1)-F(1B) & 103.9(9) \\ & F(2A)-B(1)-F(1B) & 103.0(11) & F(2A)-B(1)-F(1B) & 103.9(9$                                                 | N(2)-Ag(2)-N(5)    | 153.94(11) | N(2)-Ag(2)-N(6)           | 132.80(11)  |
| $\begin{split} & N(5)-Ag(2)-Ag(2)\#1 & 104.44(7) & N(6)-Ag(2)-Ag(2)\#1 & 85.93(7) \\ & N(5)-Ag(2)-Ag(2)\#2 & 100.32(8) & N(5)-Ag(2)-Ag(2)\#2 & 74.00(7) \\ & Ag(2)+2 & Ag(2)+$                                                                                    | N(5)-Ag(2)-N(6)    | 73.11(10)  | N(2)-Ag(2)-Ag(2)#1        | 83.21(8)    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N(5)-Ag(2)-Ag(2)#1 | 104.44(7)  | N(6)-Ag(2)-Ag(2)#1        | 85.93(7)    |
| $\begin{array}{ccccc} N(6)-Ag(2)-Ag(2)\#2 & 88.93(7) & Ag(2)\#1-Ag(2)- & 174.859(18) & Ag(2)\#2 & F(2A)-B(1)-F(3B) & 128.3(9) & F(2A)-B(1)-F(3) & 121.9(11) \\ F(3B)-B(1)-F(3B) & 24.1(8) & F(2A)-B(1)-F(3) & 121.9(11) \\ F(3B)-B(1)-F(2B) & 23.4(15) & F(3B)-B(1)-F(2B) & 112.7(9) \\ F(2A)-B(1)-F(2B) & 139.5(10) & F(3)-B(1)-F(2B) & 112.7(9) \\ F(2A)-B(1)-F(1A) & 107.6(9) & F(3)-B(1)-F(1A) & 123.6(7) \\ F(2A)-B(1)-F(1A) & 114.2(9) & F(3)-B(1)-F(1A) & 123.6(7) \\ F(2A)-B(1)-F(1A) & 114.2(9) & F(3)-B(1)-F(1A) & 119.5(9) \\ F(2B)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4) & 103.6(7) \\ F(3B)-B(1)-F(4) & 79.2(8) & F(4A)-B(1)-F(4) & 103.5(9) \\ F(3)-B(1)-F(4) & 103.3(9) & F(2B)-B(1)-F(4) & 118.6(10) \\ F(1A)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 115.7(9) \\ F(3)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 115.7(9) \\ F(3)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 115.7(9) \\ F(1A)-B(1)-F(2) & 114.7(9) & F(4)-B(1)-F(2) & 115.7(9) \\ F(2A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ F(4A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 112.7(9) & F(1A)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 120.1(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 120.1(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 120.1(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(4)-B(1)-F(1B) & 120.1(1) & F(3)-B(1)-F(3A) & 82.3(9) \\ F(4)-B(1)-F(1B) & 120.1(1) & F(3)-B(1)-F(3A) & 82.3(9) \\ F(4)-B(1)-F(1B) & 120.1(1) & F(3)-B(1)-F(3A) & 82.3(9) \\ F(4)-B(1)-F(3A) & 93.5(11) & F(2)-B(1)-F(4B) & 43.5(11) \\ F(1A)-B(1)-F(3A) & 93.5(11) & F(2)-B(1)-F(4B) & 43.5(11) \\ F(3B)-B(1)-F(4B) & 103.3(1) & F(3)-B(1)-F(4B) & 130.8(16) \\ F(4)-B(1)-F(4B) & 103.3($                                                      | N(2)-Ag(2)-Ag(2)#2 | 100.32(8)  | N(5)-Ag(2)-Ag(2)#2        | 74.00(7)    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N(6)-Ag(2)-Ag(2)#2 | 88.93(7)   | Ag(2)#1-Ag(2)-<br>Ag(2)#2 | 174.859(18) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2A)-B(1)-F(3B)   | 128.3(9)   | F(2A)-B(1)-F(4A)          | 111.1(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3B)-B(1)-F(4A)   | 55.6(12)   | F(2A)-B(1)-F(3)           | 121.9(11)   |
| $\begin{array}{ccccccc} F(2A)-B(1)-F(2B) & 23.4(15) & F(3B)-B(1)-F(2B) & 112.7(9) \\ F(4A)-B(1)-F(2B) & 119.5(10) & F(3B)-B(1)-F(2B) & 100.4(11) \\ F(2A)-B(1)-F(1A) & 107.6(9) & F(3B)-B(1)-F(1A) & 123.6(7) \\ F(4A)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(1A) & 119.5(9) \\ F(2B)-B(1)-F(1A) & 117.2(10) & F(2A)-B(1)-F(4) & 108.6(10) \\ F(3B)-B(1)-F(4) & 79.2(8) & F(4A)-B(1)-F(4) & 118.6(10) \\ F(1A)-B(1)-F(4) & 98.0(10) & F(2A)-B(1)-F(2) & 14.1(8) \\ F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 14.1(8) \\ F(3B)-B(1)-F(2) & 118.5(10) & F(4A)-B(1)-F(2) & 115.7(9) \\ F(3B)-B(1)-F(2) & 118.5(10) & F(4B)-B(1)-F(2) & 111.3(9) \\ F(2A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ F(4A)-B(1)-F(1B) & 115.2(10) & F(3B)-B(1)-F(1B) & 107.7(7) \\ F(2B)-B(1)-F(1B) & 112.7(8) & F(3)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 112.7(8) & F(3)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 112.7(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(2A)-B(1)-F(1B) & 112.7(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(4A)-B(1)-F(1B) & 120.1(9) & F(2)-B(1)-F(1B) & 115.2(9) \\ F(4B)-B(1)-F(1B) & 110.3(1) & F(2)-B(1)-F(1B) & 115.7(1) \\ F(3B)-B(1)-F(1A) & 103.3(1) & F(2A)-B(1)-F(3A) & 82.3(9) \\ F(1)-B(1)-F(1A) & 103.3(1) & F(2A)-B(1)-F(3A) & 82.3(9) \\ F(1)-B(1)-F(3A) & 95.5(11) & F(2A)-B(1)-F(3A) & 82.3(9) \\ F(1)-B(1)-F(4B) & 104.4(7) & F(4A)-B(1)-F(3A) & 82.3(9) \\ F(1)-B(1)-F(4B) & 104.4(7) & F(4A)-B(1)-F(4B) & 125.4(6) \\ F(2A)-B(1)-F(4B) & 10$                                                        | F(3B)-B(1)-F(3)    | 24.1(8)    | F(4A)-B(1)-F(3)           | 79.6(9)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2A)-B(1)-F(2B)   | 23.4(15)   | F(3B)-B(1)-F(2B)          | 112.7(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4A)-B(1)-F(2B)   | 119.5(10)  | F(3)-B(1)-F(2B)           | 100.4(11)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2A)-B(1)-F(1A)   | 107.6(9)   | F(3B)-B(1)-F(1A)          | 123.6(7)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4A)-B(1)-F(1A)   | 114.2(9)   | F(3)-B(1)-F(1A)           | 119.5(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2B)-B(1)-F(1A)   | 117.2(10)  | F(2A)-B(1)-F(4)           | 101.6(10)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3B)-B(1)-F(4)    | 79.2(8)    | F(4A)-B(1)-F(4)           | 24.2(8)     |
| $\begin{split} F(1A)=B(1)-F(4) & 98.0(10) & F(2A)=B(1)-F(2) & 14.1(8) \\ F(3B)=B(1)-F(2) & 118.5(10) & F(2A)=B(1)-F(2) & 14.1(8) \\ F(3B)=B(1)-F(2) & 108.7(11) & F(2B)=B(1)-F(2) & 94.(15) \\ F(1A)=B(1)-F(2) & 114.7(9) & F(4)=B(1)-F(2) & 94.(15) \\ F(2A)=B(1)-F(1B) & 115.2(10) & F(3B)=B(1)-F(1B) & 107.7(7) \\ F(4A)=B(1)-F(1B) & 127.7(8) & F(3)=B(1)-F(1B) & 15.2(9) \\ F(4)=B(1)-F(1B) & 120.1(9) & F(2)=B(1)-F(1B) & 115.2(9) \\ F(2A)=B(1)-F(1) & 108.3(11) & F(3B)=B(1)-F(1) & 118.9(10) \\ F(4A)=B(1)-F(1) & 126.1(11) & F(3B)=B(1)-F(1) & 118.9(10) \\ F(4A)=B(1)-F(1) & 126.1(11) & F(3)=B(1)-F(1) & 118.9(10) \\ F(4A)=B(1)-F(1) & 113.0(11) & F(2A)=B(1)-F(1) & 116.9(9) \\ F(4)=B(1)-F(1) & 113.0(11) & F(2A)=B(1)-F(3A) & 111.1(9) \\ F(3B)=B(1)-F(3A) & 47.5(10) & F(4A)=B(1)-F(3A) & 111.1(9) \\ F(3B)=B(1)-F(3A) & 23.4(6) & F(2B)-B(1)-F(3A) & 102.9(8) \\ F(3)=B(1)-F(3A) & 97.1(10) & F(1B)-B(1)-F(3A) & 82.3(9) \\ F(1)-B(1)-F(3A) & 97.5(11) & F(2A)-B(1)-F(4B) & 88.3(11) \\ F(3B)=B(1)-F(3A) & 95.5(11) & F(2A)-B(1)-F(4B) & 88.3(11) \\ F(3B)=B(1)-F(4B) & 104.4(7) & F(4A)-B(1)-F(4B) & 49.5(11) \\ F(3)=B(1)-F(4B) & 104.4(7) & F(4A)-B(1) & 40.5(1) \\ F(4)=F(4)=F(4)=F(4)=F(4)=F(4)=F(4)=F(4)=$                                                                                                                                                                                      | F(3)-B(1)-F(4)     | 103 3(9)   | F(2B)-B(1)-F(4)           | 118.6(10)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(1A)-B(1)-F(4)    | 98 0(10)   | F(2A)-B(1)-F(2)           | 14 1(8)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3B)-B(1)-F(2)    | 118 5(10)  | F(4A)-B(1)-F(2)           | 115 7(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3)-B(1)-F(2)     | 108 7(11)  | F(2B)-B(1)-F(2)           | 9 4(15)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(1A)-B(1)-F(2)    | 114 7(9)   | F(4)-B(1)-F(2)            | 111 3(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2A)-B(1)-F(1B)   | 1152(10)   | F(3B)-B(1)-F(1B)          | 107.7(7)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4A)-B(1)-F(1B)   | 127 7(8)   | F(3)-B(1)-F(1B)           | 95 5(9)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2B)-B(1)-F(1B)   | 112.7(9)   | F(1A)-B(1)-F(1B)          | 28 1(9)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4)-B(1)-F(1B)    | 120 1(9)   | F(2)-B(1)-F(1B)           | 1152(9)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2A)-B(1)-F(1)    | 108.3(11)  | F(3B)-B(1)-F(1)           | 118 9(10)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4A)-B(1)-F(1)    | 126 1(11)  | F(3)-B(1)-F(1)            | 108.6(11)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2B)-B(1)-F(1)    | 1113(12)   | F(1A)-B(1)-F(1)           | 16 0(9)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4)-B(1)-F(1)     | 113.0(12)  | F(2)-B(1)-F(1)            | 111.5(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(1B)-B(1)-F(1)    | 13 3(13)   | F(2A)-B(1)-F(3A)          | 111 1(9)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3B)-B(1)-F(3A)   | 47.5(10)   | F(4A)-B(1)-F(3A)          | 102.9(8)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(3)-B(1)-F(3A)    | 23.4(6)    | F(2B)-B(1)-F(3A)          | 87.8(11)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(1A)-B(1)-F(3A)   | 109.9(7)   | F(4)-B(1)-F(3A)           | 126.7(10)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2)-B(1)-F(3A)    | 97.1(10)   | F(1B)-B(1)-F(3A)          | 82.3(9)     |
| F(3B)-B(1)-F(4B) $104.4(7)$ $F(4A)-B(1)-F(4B)$ $49.5(11)$ $F(3)-B(1)-F(4B)$ $128.5(9)$ $F(2B)-B(1)-F(4B)$ $110.3(9)$ $F(1A)-B(1)-F(4B)$ $81.6(9)$ $F(4)-B(1)-F(4B)$ $25.4(6)$ $F(2)-B(1)-F(4B)$ $101.2(11)$ $F(1B)-B(1)-F(4B)$ $108.6(7)$ $F(1)-B(1)-F(4B)$ $97.6(11)$ $F(3A)-B(1)-F(4B)$ $151.7(11)$ $F(3A)-F(3)-F(3B)$ $158(3)$ $F(3A)-F(3)-B(1)$ $80.7(15)$ $F(3B)-F(3)-F(3)-B(1)$ $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(4)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-F(4B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F(1)-B(1)-F(3A)    | 95.5(11)   | F(2A)-B(1)-F(4B)          | 88.3(11)    |
| F(3)-B(1)-F(4B) $128.5(9)$ $F(2B)-B(1)-F(4B)$ $110.3(9)$ $F(1A)-B(1)-F(4B)$ $81.6(9)$ $F(4)-B(1)-F(4B)$ $25.4(6)$ $F(2)-B(1)-F(4B)$ $101.2(11)$ $F(1B)-B(1)-F(4B)$ $108.6(7)$ $F(1)-B(1)-F(4B)$ $97.6(11)$ $F(3A)-B(1)-F(4B)$ $151.7(11)$ $F(3A)-F(3)-F(3B)$ $158(3)$ $F(3A)-F(3)-B(1)$ $80.7(15)$ $F(3B)-F(3)-B(1)$ $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(4)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-F(4B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $110.0(13)$ $F(3)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F(3B)-B(1)-F(4B)   | 104.4(7)   | F(4A)-B(1)-F(4B)          | 49.5(11)    |
| F(1A)-B(1)-F(4B) $81.6(9)$ $F(4)-B(1)-F(4B)$ $25.4(6)$ $F(2)-B(1)-F(4B)$ $101.2(11)$ $F(1B)-B(1)-F(4B)$ $108.6(7)$ $F(1)-B(1)-F(4B)$ $97.6(11)$ $F(1B)-B(1)-F(4B)$ $108.6(7)$ $F(1)-B(1)-F(4B)$ $97.6(11)$ $F(3A)-B(1)-F(4B)$ $151.7(11)$ $F(3A)-F(3)-F(3B)$ $158(3)$ $F(3A)-F(3)-B(1)$ $80.7(15)$ $F(3B)-F(3)-F(1)$ $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(3)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4B)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F(3)-B(1)-F(4B)    | 128.5(9)   | F(2B)-B(1)-F(4B)          | 110.3(9)    |
| F(2)-B(1)-F(4B) $101.2(11)$ $F(1B)-B(1)-F(4B)$ $108.6(7)$ $F(1)-B(1)-F(4B)$ $97.6(11)$ $F(3A)-B(1)-F(4B)$ $151.7(11)$ $F(3A)-F(3)-F(3B)$ $158(3)$ $F(3A)-F(3)-B(1)$ $80.7(15)$ $F(3B)-F(3)-B(1)$ $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(3)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(2A)-B(1)$ $79.7(18)$ $F(3B)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4B)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F(1A)-B(1)-F(4B)   | 81.6(9)    | F(4)-B(1)-F(4B)           | 25.4(6)     |
| F(1)- $B(1)$ - $F(4B)$ $97.6(11)$ $F(3A)$ - $B(1)$ - $F(4B)$ $151.7(11)$ $F(3A)$ - $F(3)$ - $F(3B)$ $158(3)$ $F(3A)$ - $F(3)$ - $B(1)$ $80.7(15)$ $F(3B)$ - $F(3)$ - $B(1)$ $77.6(13)$ $F(3A)$ - $F(3)$ - $F(4A)$ $130.8(16)$ $F(3B)$ - $F(3)$ - $F(4A)$ $27.7(13)$ $B(1)$ - $F(3)$ - $F(4A)$ $50.2(6)$ $F(4A)$ - $F(4)$ - $F(4B)$ $156(2)$ $F(4A)$ - $F(4)$ - $B(1)$ $77.3(14)$ $F(4B)$ - $F(4)$ - $F(4)$ - $B(1)$ $79.5(11)$ $F(4A)$ - $F(4)$ - $F(3B)$ $28.9(13)$ $F(4B)$ - $F(4)$ - $F(3B)$ $129.2(13)$ $B(1)$ - $F(4)$ - $F(3B)$ $50.1(5)$ $F(1B)$ - $F(1A)$ - $B(1)$ $77.0(12)$ $F(2B)$ - $F(2A)$ - $B(1)$ $79.7(18)$ $F(3)$ - $F(3A)$ - $F(3B)$ $11.0(13)$ $F(3)$ - $F(3A)$ - $B(1)$ $76.0(14)$ $F(3B)$ - $F(3A)$ - $B(1)$ $65.0(7)$ $F(4B)$ - $F(4A)$ - $F(4B)$ $12.2(12)$ $F(4)$ - $F(4A)$ - $F(3B)$ $138.6(17)$ $F(4B)$ - $F(4A)$ - $F(3B)$ $127.6(9)$ $F(4)$ - $F(4A)$ - $B(1)$ $78.6(14)$ $F(4B)$ - $F(4A)$ - $B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(2)-B(1)-F(4B)    | 101.2(11)  | F(1B)-B(1)-F(4B)          | 108.6(7)    |
| F(3A)-F(3)-F(3B) $158(3)$ $F(3A)-F(3)-B(1)$ $80.7(15)$ $F(3B)-F(3)-B(1)$ $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(3)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-B(1)$ $79.5(11)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4B)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F(1)-B(1)-F(4B)    | 97.6(11)   | F(3A)-B(1)-F(4B)          | 151.7(11)   |
| F(3B)-F(3)-B(1) $77.6(13)$ $F(3A)-F(3)-F(4A)$ $130.8(16)$ $F(3B)-F(3)-F(4A)$ $27.7(13)$ $B(1)-F(3)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-B(1)$ $79.5(11)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4B)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F(3A)-F(3)-F(3B)   | 158(3)     | F(3A)-F(3)-B(1)           | 80.7(15)    |
| F(3B)-F(3)-F(4A) $27.7(13)$ $B(1)-F(3)-F(4A)$ $50.2(6)$ $F(4A)-F(4)-F(4B)$ $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-F(1)$ $79.5(11)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F(3B)-F(3)-B(1)    | 77.6(13)   | F(3A)-F(3)-F(4A)          | 130.8(16)   |
| F(4A)-F(4)-F(4B) $156(2)$ $F(4A)-F(4)-B(1)$ $77.3(14)$ $F(4B)-F(4)-B(1)$ $79.5(11)$ $F(4A)-F(4)-F(3B)$ $28.9(13)$ $F(4B)-F(4)-F(3B)$ $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F(3B)-F(3)-F(4A)   | 27.7(13)   | B(1)-F(3)-F(4A)           | 50.2(6)     |
| F(4B)-F(4)-B(1)79.5(11) $F(4A)-F(4)-F(3B)$ 28.9(13) $F(4B)-F(4)-F(3B)$ 129.2(13) $B(1)-F(4)-F(3B)$ 50.1(5) $F(1B)-F(1A)-B(1)$ 77.0(12) $F(2B)-F(2A)-B(1)$ 79.7(18) $F(3)-F(3A)-F(3B)$ 11.0(13) $F(3)-F(3A)-B(1)$ 76.0(14) $F(3B)-F(3A)-B(1)$ 65.0(7) $F(4)-F(4A)-F(4B)$ 12.2(12) $F(4)-F(4A)-F(3B)$ 138.6(17) $F(4B)-F(4A)-F(3B)$ 127.6(9) $F(4)-F(4A)-B(1)$ 78.6(14) $F(4B)-F(4A)-B(1)$ 66.6(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F(4A)-F(4)-F(4B)   | 156(2)     | F(4A) - F(4) - B(1)       | 77.3(14)    |
| F(4B)-F(4)-F(3B) $129.2(13)$ $B(1)-F(4)-F(3B)$ $50.1(5)$ $F(1B)-F(1A)-B(1)$ $77.0(12)$ $F(2B)-F(2A)-B(1)$ $79.7(18)$ $F(3)-F(3A)-F(3B)$ $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F(4B)-F(4)-B(1)    | 79.5(11)   | F(4A) - F(4) - F(3B)      | 28.9(13)    |
| F(1B)-F(1A)-B(1)77.0(12) $F(2B)-F(2A)-B(1)$ 79.7(18) $F(3)-F(3A)-F(3B)$ 11.0(13) $F(3)-F(3A)-B(1)$ 76.0(14) $F(3B)-F(3A)-B(1)$ 65.0(7) $F(4)-F(4A)-F(4B)$ 12.2(12) $F(4)-F(4A)-F(3B)$ 138.6(17) $F(4B)-F(4A)-F(3B)$ 127.6(9) $F(4)-F(4A)-B(1)$ 78.6(14) $F(4B)-F(4A)-B(1)$ 66.6(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F(4B)-F(4)-F(3B)   | 129.2(13)  | B(1)-F(4)-F(3B)           | 50.1(5)     |
| F(3)-F(3A)-F(3B) $11.0(13)$ $F(3)-F(3A)-B(1)$ $76.0(14)$ $F(3B)-F(3A)-B(1)$ $65.0(7)$ $F(4)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F(1B)-F(1A)-B(1)   | 77.0(12)   | F(2B)-F(2A)-B(1)          | 79.7(18)    |
| F(3B)-F(3A)-B(1) $65.0(7)$ $F(4)-F(4A)-F(4B)$ $12.2(12)$ $F(4)-F(4A)-F(3B)$ $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F(3)-F(3A)-F(3B)   | 11.0(13)   | F(3)-F(3A)-B(1)           | 76.0(14)    |
| F(4)-F(4A)-F(3B) $138.6(17)$ $F(4B)-F(4A)-F(3B)$ $127.6(9)$ $F(4)-F(4A)-B(1)$ $78.6(14)$ $F(4B)-F(4A)-B(1)$ $66.6(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F(3B)-F(3A)-B(1)   | 65.0(7)    | F(4)-F(4A)-F(4B)          | 12.2(12)    |
| F(4)-F(4A)-B(1) 78.6(14) $F(4B)-F(4A)-B(1)$ 66.6(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F(4)-F(4A)-F(3B)   | 138.6(17)  | F(4B)-F(4A)-F(3B)         | 127.6(9)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F(4)-F(4A)-B(1)    | 78.6(14)   | F(4B)-F(4A)-B(1)          | 66.6(8)     |

Table B.31. Continued

| F(3B)-F(4A)-B(1)                     | 62.1(8)              | F(4)-F(4A)-F(3)                          | 127.8(16)            |
|--------------------------------------|----------------------|------------------------------------------|----------------------|
| F(4B)-F(4A)-F(3)                     | 116.3(9)             | F(3B)-F(4A)-F(3)                         | 12.0(6)              |
| B(1)-F(4A)-F(3)                      | 50.2(6)              | F(1A)-F(1B)-B(1)                         | 75.0(10)             |
| F(2A)-F(2B)-B(1)                     | 76.9(16)             | F(3)-F(3B)-F(3A)                         | 10.8(13)             |
| F(3)-F(3B)-F(4A)                     | 140.3(17)            | F(3A)-F(3B)-F(4A)                        | 129.7(8)             |
| F(3)-F(3B)-B(1)                      | 78.3(14)             | F(3A)-F(3B)-B(1)                         | 67.6(7)              |
| F(4A)-F(3B)-B(1)                     | 62.3(8)              | F(3)-F(3B)-F(4)                          | 129.0(15)            |
| F(3A)-F(3B)-F(4)                     | 118.2(7)             | F(4A)-F(3B)-F(4)                         | 12.6(7)              |
| B(1)-F(3B)-F(4)                      | 50.6(5)              | F(4)-F(4B)-F(4A)                         | 11.5(12)             |
| F(4)-F(4B)-B(1)                      | 75.1(11)             | F(4A)-F(4B)-B(1)                         | 63.9(7)              |
| C(1)-N(1)-Ag(1)                      | 115.2(2)             | $\dot{C}(1)-N(1)-H(1\dot{C})$            | 108.5                |
| Ag(1)-N(1)-H(1C)                     | 108.5                | C(1)-N(1)-H(1D)                          | 108.5                |
| Ag(1)-N(1)-H(1D)                     | 108.5                | H(1C)-N(1)-H(1D)                         | 107.5                |
| C(4)-N(2)-C(5)                       | 117 2(3)             | C(4)-N(2)-Ag(2)                          | 121 2(2)             |
| C(5)-N(2)-Ag(2)                      | 121 6(2)             | C(7)-N(3)-C(11)                          | 118.6(3)             |
| C(7)-N(3)-Ag(1)                      | 121.0(2)<br>123 7(2) | $C(11)-N(3)-A\sigma(1)$                  | 117.6(2)             |
| C(17)-N(4)-C(13)                     | 129.7(2)<br>119.1(3) | C(17) - N(4) - Ag(1)                     | 125 8(2)             |
| C(13)-N(4)-Ag(1)                     | 115.1(3)<br>115.2(2) | C(23)-N(5)-C(19)                         | 123.0(2)<br>119.0(3) |
| C(13)-N(5)-Ag(1)                     | 117.2(2)<br>117.4(2) | C(19) - N(5) - Ag(2)                     | 119.0(3)<br>122.8(2) |
| C(29) N(6) C(25)                     | 117.4(2)<br>110.2(3) | C(19) - N(5) - Ag(2)<br>C(20) N(6) Ag(2) | 122.0(2)<br>125.6(2) |
| $C(25) N(6) A_{\alpha}(2)$           | 119.2(3)<br>114.6(2) | N(1) C(1) C(2)                           | 123.0(2)             |
| C(23)-IN(0)-Ag(2)<br>N(1) C(1) H(1A) | 114.0(2)<br>108.2    | N(1)-C(1)-C(2)<br>C(2) C(1) H(1A)        | 10.0(5)              |
| $N(1) - C(1) - \Pi(1A)$              | 108.5                | $C(2) - C(1) - \Pi(1A)$                  | 108.5                |
| N(1)-C(1)-H(1B)                      | 108.5                | C(2)-C(1)-H(1B)                          | 108.5                |
| H(1A)-C(1)-H(1B)                     | 107.4                | C(3)-C(2)-C(6)                           | 11/.5(3)             |
| C(3)-C(2)-C(1)                       | 123.7(3)             | C(6)-C(2)-C(1)                           | 118.8(3)             |
| C(4)-C(3)-C(2)                       | 119.3(3)             | C(4)-C(3)-H(3)                           | 120.3                |
| C(2)-C(3)-H(3)                       | 120.3                | N(2)-C(4)-C(3)                           | 123.3(3)             |
| N(2)-C(4)-H(4)                       | 118.3                | C(3)-C(4)-H(4)                           | 118.3                |
| N(2)-C(5)-C(6)                       | 123.1(3)             | N(2)-C(5)-H(5)                           | 118.4                |
| C(6)-C(5)-H(5)                       | 118.4                | C(5)-C(6)-C(2)                           | 119.5(3)             |
| C(5)-C(6)-H(6)                       | 120.2                | C(2)-C(6)-H(6)                           | 120.2                |
| N(3)-C(7)-C(8)                       | 124.5(3)             | N(3)-C(7)-H(7)                           | 117.7                |
| C(8)-C(7)-H(7)                       | 117.7                | C(7)-C(8)-C(9)                           | 116.7(3)             |
| C(7)-C(8)-C(12)                      | 122.3(3)             | C(9)-C(8)-C(12)                          | 120.9(3)             |
| C(10)-C(9)-C(8)                      | 120.2(3)             | C(10)-C(9)-H(9)                          | 119.9                |
| C(8)-C(9)-H(9)                       | 119.9                | C(9)-C(10)-C(11)                         | 119.1(3)             |
| C(9)-C(10)-H(10)                     | 120.5                | C(11)-C(10)-H(10)                        | 120.5                |
| N(3)-C(11)-C(10)                     | 120.9(3)             | N(3)-C(11)-C(13)                         | 117.3(3)             |
| C(10)-C(11)-C(13)                    | 121.8(3)             | C(8)-C(12)-H(12A)                        | 109.5                |
| C(8)-C(12)-H(12B)                    | 109.5                | H(12A)-C(12)-H(12B)                      | 109.5                |
| C(8)-C(12)-H(12C)                    | 109.5                | H(12A)-C(12)-H(12C)                      | 109.5                |
| H(12B)-C(12)-H(12C)                  | 109.5                | N(4)-C(13)-C(14)                         | 121.1(3)             |
| N(4)-C(13)-C(11)                     | 117.0(3)             | C(14)-C(13)-C(11)                        | 121.9(3)             |
| C(15)-C(14)-C(13)                    | 118.8(3)             | C(15)-C(14)-H(14)                        | 120.6                |
| C(13)-C(14)-H(14)                    | 120.6                | C(14)-C(15)-C(16)                        | 120.7(3)             |
| C(14)-C(15)-H(15)                    | 119.6                | C(16)-C(15)-H(15)                        | 119.6                |
| C(15)-C(16)-C(17)                    | 116.7(3)             | C(15)-C(16)-C(18)                        | 122.2(4)             |
| C(17)-C(16)-C(18)                    | 121 2(3)             | N(4)-C(17)-C(16)                         | 1237(3)              |
| N(4)-C(17)-H(17)                     | 118.2                | C(16)-C(17)-H(17)                        | 118.2                |
| C(16)-C(18)-H(18A)                   | 109.5                | C(16)- $C(18)$ -H(18B)                   | 109.5                |
| H(18A)-C(18)-H(18R)                  | 109.5                | C(16)- $C(18)$ - $H(18C)$                | 109.5                |
| H(18A)-C(18)-H(18C)                  | 109.5                | H(18B)-C(18)-H(18C)                      | 109.5                |
| N(5)-C(19)-C(20)                     | 123 9(3)             | N(5) - C(10) - H(10)                     | 118.0                |
| C(20) - C(10) - H(10)                | 129.7(3)             | C(10) - C(20) - C(21)                    | 116.5(3)             |
| $C(20)^{-}C(12)^{-}\Pi(12)$          | 110.0                | C(1) - C(20) - C(21)                     | 110.3(3)             |

Table B.31. Continued

| C(19)-C(20)-C(24)   | 121.1(3) | C(21)-C(20)-C(24)   | 122.3(3) |
|---------------------|----------|---------------------|----------|
| C(22)-C(21)-C(20)   | 120.1(3) | C(22)-C(21)-H(21)   | 119.9    |
| C(20)-C(21)-H(21)   | 119.9    | C(21)-C(22)-C(23)   | 119.6(3) |
| C(21)-C(22)-H(22)   | 120.2    | C(23)-C(22)-H(22)   | 120.2    |
| N(5)-C(23)-C(22)    | 120.9(3) | N(5)-C(23)-C(25)    | 117.3(3) |
| C(22)-C(23)-C(25)   | 121.8(3) | C(20)-C(24)-H(24A)  | 109.5    |
| C(20)-C(24)-H(24B)  | 109.5    | H(24A)-C(24)-H(24B) | 109.5    |
| C(20)-C(24)-H(24C)  | 109.5    | H(24A)-C(24)-H(24C) | 109.5    |
| H(24B)-C(24)-H(24C) | 109.5    | N(6)-C(25)-C(26)    | 121.1(3) |
| N(6)-C(25)-C(23)    | 116.7(3) | C(26)-C(25)-C(23)   | 122.2(3) |
| C(27)-C(26)-C(25)   | 119.2(3) | C(27)-C(26)-H(26)   | 120.4    |
| C(25)-C(26)-H(26)   | 120.4    | C(26)-C(27)-C(28)   | 120.4(3) |
| C(26)-C(27)-H(27)   | 119.8    | C(28)-C(27)-H(27)   | 119.8    |
| C(27)-C(28)-C(29)   | 116.5(3) | C(27)-C(28)-C(30)   | 122.3(3) |
| C(29)-C(28)-C(30)   | 121.2(3) | N(6)-C(29)-C(28)    | 123.6(3) |
| N(6)-C(29)-H(29)    | 118.2    | C(28)-C(29)-H(29)   | 118.2    |
| C(28)-C(30)-H(30A)  | 109.5    | C(28)-C(30)-H(30B)  | 109.5    |
| H(30A)-C(30)-H(30B) | 109.5    | C(28)-C(30)-H(30C)  | 109.5    |
| H(30A)-C(30)-H(30C) | 109.5    | H(30B)-C(30)-H(30C) | 109.5    |
| N(7)-C(31)-C(32)    | 178.9(6) | C(31)-C(32)-H(32A)  | 109.5    |
| C(31)-C(32)-H(32B)  | 109.5    | H(32A)-C(32)-H(32B) | 109.5    |
| C(31)-C(32)-H(32C)  | 109.5    | H(32A)-C(32)-H(32C) | 109.5    |
| H(32B)-C(32)-H(32C) | 109.5    | N(8)-C(33)-C(34)    | 178.3(4) |
| C(33)-C(34)-H(34A)  | 109.5    | C(33)-C(34)-H(34B)  | 109.5    |
| H(34A)-C(34)-H(34B) | 109.5    | C(33)-C(34)-H(34C)  | 109.5    |
| H(34A)-C(34)-H(34C) | 109.5    | H(34B)-C(34)-H(34C) | 109.5    |
| F(6)-B(2)-F(5)      | 111.2(4) | F(6)-B(2)-F(8)      | 110.7(4) |
| F(5)-B(2)-F(8)      | 108.4(3) |                     |          |
| Hydrogen Bonds (Å)  |          |                     |          |
| N(1)-H(1C)F(7)#3    | 2.960(4) | N(1)-H(1D)F(8)#4    | 2.978(4) |
|                     |          |                     |          |

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z+1/2 #2 x,-y+3/2,z-1/2 #3 - x+1,-y+1,-z #4 -x+1,-y+1,-z+1

## REFERENCES

- 1. Puddephatt, R. J. Coord. Chem. Rev. 2001, 216-217, 313-332.
- Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474 - 484.
- Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Withersby, M. A.; Schroder, M. Coord. Chem. Rev. 1999, 183, 117-138.
- Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V.; Schröder, M. *Coord. Chem. Rev.* 2001, 222, 155-192.
- Fung, E. Y.; Olmstead, M. M.; Vickery, J. C.; Balch, A. L. Coord. Chem. Rev. 1998, 171, 151-159.
- 6. Lees, A. J. Chem. Rev. 1987, 87, 711-743.
- 7. Lu, J. Y. Coord. Chem. Rev. 2003, 246, 327-347.
- 8. Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391 1397.
- Yam, V. W.-W.; Lo, W.-Y.; Lam, C.-H.; Fung, W. K.-M.; Wong, K. M.-C.; Lau, V. C.-Y.; Zhu, N. Coord. Chem. Rev. 2003, 245, 39-47.
- 10. Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem., Int. Ed. 2004, 43, 2334-2375.
- 11. Janiak, C. J. Chem. Soc. Dalton Trans. 2003, 2003, 2781-2804.
- 12. Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2638-2684.
- Park, K.-M.; Yoon, I.; Seo, J.; Lee, J.-E.; Kim, J.; Choi, K. S.; Jung, O.-S.; Lee, S. S. Cryst. Growth Des. 2005, 5, 1707 - 1709.
- Bacchi, A.; Bosetti, E.; Carcelli, M.; Pelagatti, P.; Rogolino, D. Eur. J. Inorg. Chem. 2004, 1985-1991.
- Abbas, H.; Pickering, A. L.; Long, D.-L.; Kögerler, P.; Cronin, L. Chem. Eur. J. 2005, 11, 1071-1078.
- 16. Pickering, A. L.; Cooper, G. J. T.; Long, D.-L.; Cronin, L. *Polyhedron* **2004**, *23*, 2075-2079.

- 17. Hannon, M. J.; Painting, C. L.; Plummer, E. A.; Childs, L. J.; Alcock, N. W. *Chem. Eur. J.* **2002**, *8*, 2225-2238.
- 18. Zhu, H.-F.; Kong, L.-Y.; Okamura, T.-a.; Fan, J.; Sun, W.-Y.; Ueyama, N. *Eur. J. Inorg. Chem.* **2004**, 1465-1473.
- 19. Yang, L.; Shan, X.; Chen, Q.; Wang, Z.; Ma, J. S. *Eur. J. Inorg. Chem.* **2004**, 1474-1477.
- 20. Lu, X. L.; Leong, W. K.; Hor, T. S. A.; Goh, L. Y. J. Organomet. Chem. 2004, 689, 1746-1756.
- Zaman, M. B.; Udachin, K.; Ripmeester, J. A.; Smith, M. D.; zur Loye, H.-C. *Inorg. Chem.* 2005, 44, 5047-5059.
- Caradoc-Davies, P. L.; Hanton, L. R.; Henderson, W. J. Chem. Soc. Dalton Trans. 2001, 2001, 2749-2755.
- 23. Sun, D.; Cao, R.; Bi, W.; Li, X.; Wang, Y.; Hong, M. Eur. J. Inorg. Chem. 2004, 2004, 2144-2150.
- 24. Wei, Y.; Hou, H.; Li, L.; Fan, Y.; Zhu, Y. Cryst. Growth. Des. 2005, 5, 1405-1413.
- 25. Zheng, S.-L.; Tong, M.-L.; Chen, X.-M. Coord. Chem. Rev. 2003, 246, 185-202.
- 26. Cui, Y.; Ngo, H. L.; White, P. S.; Lin, W. Inorg. Chem. 2003, 42, 652 654.
- 27. Blondeau, P.; Lee, A. v. d.; Barboiu, M. Inorg. Chem. 2005, 44, 5649 5653.
- Tabellion, F. M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. Angew. Chem. Int. Ed. 2001, 40, 1529-1532.
- Plater, M. J.; Foreman, M. R. S. J.; Gelbrich, T.; Coles, S. J.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 2000, 3065-3073.
- Konar, S.; Zangrando, E.; Drew, M. G. B.; Ribas, J.; Chaudhuri, N. R. J. Chem. Soc. Dalton Trans. 2004, 260-266.
- 31. Xie, Y.-B.; Li, J.-R.; Zhang, C.; Bu, X.-H. Cryst. Growth. Des. 2005, 5, 1743-1749.
- Liu, H.-M.; Zhang, W.; Zheng, Y.; Zhang, W.-Q. J. Mol. Structure 2004, 698, 37-40.
- 33. Aslanidis, P.; Cox, P. J.; Divanidis, S.; Karagiannidis, P. *Inorg. Chim. Acta.* **2004**, *357*, 2677-2686.

- 34. Kyono, A.; Kimata, M.; Hatta, T. Inorg. Chim. Acta. 2004, 357, 2519-2524.
- 35. Dong, Y.-B.; Wang, P.; Huang, R.-Q.; Smith, M. D. Inorg. Chem. 2004, 43, 4727-4739.
- 36. Chisholm, M. H.; Folting, K.; Kramer, K. S.; Streib, W. E. J. Am. Chem. Soc. 1997, 119, 5528-5539.
- 37. Chisholm, M. H.; Gallucci, J. C.; Hollandsworth, C. B. J. Organomet. Chem. 2003, 684, 269-276.
- 38. Clark, D. L.; Watkin, J. G. Inorg. Chem. 1993, 32, 1766-1772.
- 39. Crans, D. C.; Felty, R. A.; Anderson, O. P.; Miller, M. M. *Inorg. Chem.* **1993**, *32*, 247-248.
- 40. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629-1658.
- 41. Adachi, K.; Kaizaki, S.; Yamada, K.; Kitagawa, S.; Kawata, S. *Chem. Letters* **2004**, *33*, 648-649.
- 42. Zou, Y.; Liu, W.-L.; Lu, C.-S.; Wen, L.-L.; Meng, Q.-J. *Inorg. Chem. Commun.* **2004**, *7*, 985-987.
- 43. Westcott, A.; Whitford, N.; Hardie, M. J. Inorg. Chem. 2004, 43, 3663-3672.
- 44. Cheng, J.-K.; Zhang, J.; Kang, Y.; Qin, Y.-Y.; Li, Z.-J.; Yao, Y.-G. *Polyhedron* **2004**, *23*, 2209-2215.
- 45. Sun, D.; Cao, R.; Bi, W.; Weng, J.; Hong, M.; Liang, Y. *Inorg. Chim. Acta.* 2004, *357*, 991-1001.
- Dong, Y.-B.; Jin, G.-X.; Zhao, X.; Tang, B.; Huang, R.-Q.; Smith, M. D.; Stitzer, K. E.; Loye, Z.; Hans-Conrad *Organomet.* 2004, 23, 1604-1609.
- 47. Southward, R. E.; Thompson, D. W. Chem. Mater. 2004, 16, 1277-1284.
- 48. Richards, P. I.; Steiner, A. Inorg. Chem. 2004, 43, 2810-2817.
- 49. Eisler, D. J.; Puddephatt, R. J. Cryst. Growth Design 2005, 5, 57-59.
- 50. Mukherjee, P. S.; Konar, S.; Zangrando, E.; Mallah, T.; Ribas, J.; Chaudhuri, N. R. *Inorg. Chem.* **2003**, *42*, 2695 2703.
- 51. Wu, C.-D.; Lu, C.-Z.; Yang, W.-B.; Zhuang, H.-H.; Huang, J.-S. *Inorg. Chem.* **2002**, *41*, 3302 3307.

- 52. Kondo, M.; Shimamura, M.; Noro, S.-i.; Yoshitomi, T.; Minakoshi, S.; Kitagawa, S. *Chem. Letters* **1999**, *28*, 285-286.
- Fujita, M.; Sasaki, O.; Watanabe, K.-y.; Ogura, K.; Yamaguchi, K. New J. Chem. 1998, 22, 189 - 191.
- 54. Munno, G. D.; Armentano, D.; Poerio, T.; Julve, M.; José Antonio Real J. Chem. Soc. Dalton Trans. 1999, 1813 1818.
- 55. Maekawa, M.; Konaka, H.; Suenaga, Y.; Kuroda-Sowa, T.; Munakata, M. J. Chem. Soc. Dalton Trans. 2000, 4160 4166.
- 56. Seward, C.; Hu, N.-X.; Wang, S. J. Chem. Soc. Dalton Trans. 2001, 134 137.
- 57. Li, R.-Z.; Li, D.; Huang, X.-C.; Qi, Z.-Y.; Chen, X.-M. *Inorg. Chem. Commun.* **2003**, *6*, 1017-1019.
- 58. Tao, J.; Yin, X.; Wei, Z.-B.; Huang, R.-B.; Zheng, L.-S. *Eur. J. Inorg. Chem.* **2004**, 125-133.
- Wang, X.; Qin, C.; Wang, E.; Li, Y.; Hu, C.; Lin Xu Chem. Commun. 2004, 378-379.
- 60. Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-983.
- 61. Batten, S. R.; Robson, R. Angew. Chem. Int. Ed. 1998, 37, 1460-1494.
- 62. Zaworotko, M. J. Angew. Chem., Int. Ed. 2000, 39, 3052-3054.
- Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151-1152.
- Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. Chem. Commun. 1991, 1752-1753.
- Yang, J.-H.; Zheng, S.-L.; Yu, X.-L.; Chen, X.-M. Cryst Growth Des 2004, 4, 831-836.
- 66. Hou, L.; Li, D. Inorg. Chem. Commun. 2005, 8, 128-130.
- 67. Sun, D.; Cao, R.; Weng, J.; Hong, M.; Liang, Y. J. Chem. Soc. Dalton Trans. 2002, 3, 291-292.
- 68. Cotton, F. A.; Lin, C.; Murillo, C. A. J. Chem. Soc. Dalton Trans. 2001, 5, 499-501.

- 69. Lu, J. Y.; Cabrera, B. R.; Wang, R.-J.; Li, J. Inorg. Chem. 1999, 38, 4608-4611.
- 70. Oh, M.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2005, 44, 2647-2653.
- 71. Dong, Y.-B.; Wang, H.-Y.; Ma, J.-P.; Shen, D.-Z.; Huang, R.-Q. *Inorg. Chem.* **2005**, *44*, 4679-4692.
- 72. Heeger, A. J. Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
- 73. MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581-2590.
- 74. Shirakawa, H. Angew. Chem. Int. Ed. 2001, 40, 2574-2580.
- 75. Chen, C.-T.; Suslick, K. S. Coord. Chem. Rev. 1992, 128, 293-322.
- 76. Hanack, M.; Deger, S.; Lange, A. Coord. Chem. Rev. 1988, 83, 115-136.
- Collman, J. P.; McDevitt, J. T.; Leidner, C. R.; Yee, G. T.; Torrance, J. B.; Little, W. A. J. Am. Chem. Soc. 1987, 109, 4606 - 4614.
- Su, W.; Hong, M.; Weng, J.; Cao, R.; Lu, S. Angew. Chem. Int. Ed. 2000, 39, 2911-2914.
- Rao, C. N. R.; Ranganathan, A.; Pedireddi, V. R.; Raju, A. R. *Chem. Commun.* 2000, 39-40.
- Cernák, J.; Orendá, M.; Potoák, I.; Chomi, J.; Orendáová, A.; Skorepa, J.; Feher, A. Coord. Chem. Rev. 2002, 224, 51-66.
- 81. Kahn, O.; Larionova, J.; Ouahab, L. Chem. Commun. 1999, 945-952.
- 82. Lacroix, P. G. Eur. J. Inorg. Chem. 2001, 2001, 339-348.
- 83. Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511-522.
- 84. Horn, E.; Snow, M. R.; Tiekink, R. T. Aust. J. Chem. 1987, 40, 761-765.
- Bertelli, M.; Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. J. Mater. Chem. 1997, 7, 1271 - 1276.
- 86. Shin, D. M.; Lee, I. S.; Lee, Y.-A.; Chung, Y. K. Inorg. Chem. 2003, 42, 2977-2982.
- 87. Abrahams, B. F.; Batten, S. R.; Hoskins, B. F.; Robson, R. *Inorg. Chem.* **2003**, *42*, 2654-2664.
- 88. Sampanthar, J. T.; Vittal, J. J. Cryst. Eng. 2000, 3, 117-133.

- Blake, A. J.; Champness, N. R.; Cooke, P. A.; Nicolson, J. E. B.; Wilson, C. J. Chem. Soc., Dalton Trans. 2000, 3811-3819.
- 90. Brandys, M.-C.; Puddephatt, R. J. Chem. Commun. 2001, 1508 1509.
- 91. Sailaja, S.; Rajasekharan, M. V. Inorg. Chem. 2003, 42, 5675 5684.
- 92. Seward, C.; Chan, J.; Song, D.; Wang, S. Inorg. Chem. 2003, 42, 1112 1120.
- 93. Bachechi, F.; Burini, A.; Galassi, R.; Macchioni, A.; Pietroni, B. R.; Ziarelli, F.; Zuccaccia, C. J. Organomet. Chem. 2000, 593-594, 392-402.
- 94. Steel, P. J.; Sumby, C. J. Chem. Commun. 2002, 322-323.
- 95. Socol, S. M.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1984, 23, 88 94.
- 96. Affandi, D.; Berners-Price, S. J.; Effendy; Harvey, P. J.; Healy, P. C.; Ruch, B. E.; White, A. H. J. Chem. Soc., Dalton Trans. 1997, 1411-1420.
- 97. Bowmaker, G. A.; Hanna, J. V.; Rickard, C. E. F.; Lipton, A. S. J. Chem. Soc., Dalton Trans. 2001, 20-28.
- Che, C.-M.; Tse, M.-C.; Chan, M. C. W.; Cheung, K.-K.; Phillips, D. L.; Leung, K.-H. J. Am. Chem. Soc. 2000, 122, 2464-2468.
- 99. Deivaraj, T. C.; Vittal, J. J. J. Chem. Soc., Dalton Trans. 2001, 329-335.
- 100. Nomiya, K.; Noguchi, R.; Shigeta, T.; Kondoh, Y.; Tsuda, K.; Ohsawa, K.; Chikaraishi-Kasuga, N.; Oda, M. *Bull. Chem. Soc. Jpn.* **2000**, *73*, 1143-1152.
- 101. Xu, F.-B.; Weng, L.-H.; Sun, L.-J.; Zhang, Z.-Z.; Zhou, Z.-F. Organometallics 2000, 19, 2658 - 2660.
- 102. Kitagawa, S.; Kondo, M.; Kawata, S.; Wada, S.; Maekawa, M.; Munakata, M. *Inorg. Chem.* **1995**, *34*, 1455-1465.
- 103. Caruso, F.; Camalli, M.; Rimml, H.; Venanzi, L. M. *Inorg. Chem.* **1995**, *34*, 673-679.
- 104. Song, H.-B.; Zhang, Z.-Z.; Mak, T. C. W. J. Chem. Soc., Dalton Trans. 2002, 1336-1343.
- 105. Del Zotto, A.; Zangrando, E. Inorg. Chim. Acta. 1998, 277, 111-117.
- 106. Driess, M.; Franke, F.; Merz, K. Eur. J. Inorg. Chem. 2001, 10, 2661-2668.

- 107. Catalano, V. J.; Kar, H. M.; Bennett, B. L. Inorg. Chem. 2000, 121-127.
- 108. Kuang, S.-M.; Zhang, L.-M.; Zhang, Z.-Z.; Wu, B.-M.; Mak, T. C. W. *Inorg. Chim. Acta.* **1999**, 284, 278-283.
- 109. Del Zotto, A.; Rigo, P.; Nardin, G. Inorg. Chim. Acta. 1996, 247, 183-188.
- 110. Yam, V. W.-W.; Yu, K.-L.; Cheng, C.-C.; Yeung, P. K.-Y.; Cheung, K.-K.; Zhu, N. *Chem. Eur. J.* **2002**, *8*, 4121-4128.
- 111. Inoguchi, Y.; Milewski-Mahrla, B.; Neugeauer, D.; Jones, P. G.; Schmidbaur, H. *Chem. Ber.* **1983**, *116*, 1487-1493.
- 112. Yam, V. W.-W.; Yeung, P. K.-Y.; Cheung, K.-K. Angew. Chem. Int. Ed. 1996, 35, 739-740.
- 113. Berners-Price, S. J.; Bowen, R. J.; Harvey, P. J.; Healy, P. C.; Koutsantonis, G. A. J. *Chem. Soc., Dalton Trans.* **1998**, 1743.
- 114. Newkome, G. R. Chem. Rev. 1993, 93, 2067-2089.
- 115. Barloy, L.; Malaisé, G.; Ramdeehul, S.; Newton, C.; Osborn, J. A.; Kyritsakas, N. *Inorg. Chem.* **2003**, *42*, 2902 2907.
- 116. Yam, V. W.-W.; Chan, L.-P.; Lai, T.-F. J. Chem. Soc., Dalton Trans. 1993, 2075-2077.
- 117. Bowen, R. J.; Garner, A. C.; Berners-Price, S. J.; Jenkins, I. D.; Sue, R., E. J. Organomet. Chem. **1998**, 554, 181-184.
- 118. Aucott, S. M.; Slawin, A. M. Z.; Woollins, J. D. Dalton Trans. 2000, 2559-2575.
- 119. Boggess, R. K.; Zatko, D. A. J. Coord. Chem 1973, 4, 217-224.
- 120. Barder, T. J.; Cotton, F. A.; Powell, G. L.; Tetrick, S. M.; Walton, R. A. J. Am. Chem. Soc. 1984, 106, 1323-1332.
- 121. Keene, F. R.; Snow, M. R.; Stephenson, P. J.; Tiekink, E. R. T. *Inorg. Chem.* **1988**, 27, 2040 2045.
- 122. Constable, E. C.; Housecroft, C. E.; Neuberger, M.; Schneider, A. G.; Springler, B.; Zehnder, M. *Inorg. Chim. Acta.* **2000**, *300-302*, 49-55.
- 123. Astley, T.; Hitchman, M. A.; Keene, R.; Tiekink, E. R. T. J. Chem. Soc., Dalton Trans. 1996, 1845-1851.

- 124. Ke-Wu, Y.; Yuan-Qi, Y.; Zhong-Xian, H.; Yun-Hua, W. Polyhedron **1996**, *15*, 79-81.
- 125. Lastra, E.; Gamasa, M. P.; Gimeno, J.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1989, 1499-1506.
- 126. Kodera, M.; Kajita, Y.; Tachi, Y.; JKano, K. Inorg. Chem. 2003, 42, 1193 1203.
- 127. Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. *Chem. Int. Ed.* **2001**, *40*, 4271-4274.
- 128. Cheshire, P.; Slawin, A. M. Z.; Woollins, J. D. Inorg. Chem. Commun. 2002, 5, 803-804.
- 129. Kurtev, K.; Ribola, D.; Jones, R. A.; Cole-Hamilton, D. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1980, 55-58.
- 130. Gregorzik, R.; Wirbser, J.; Vahrenkamp, H. Chem. Ber. 1992, 125, 1575-1581.
- 131. Astley, T.; Headlam, H.; Hitchman, M. A.; Keene, F. R.; Pilbrow, J.; Stratemeier, H.; Tiekink, E. R. T.; Zhong, Y. C. J. Chem. Soc., Dalton Trans. 1995, 3809-3818.
- 132. Steiner, A.; Stalke, D. Organomet. 1995, 14, 2422-2429.
- 133. Shieh, S.-J.; Hong, X.; Peng, S.-M.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1994, 3067-3068.
- 134. Olmstead, M. M.; Maisonhat, A.; Farr, J. P.; Balch, A. L. Inorg. Chem. 1981, 20, 4060-4064.
- 135. Maisonnet, A.; Farr, J. P.; Olmstead, M. M.; Hunt, C. T.; Balch, A. L. *Inorg. Chem.* 1982, 21, 3961 - 3967.
- 136. Keene, F. R.; Stephenson, P. J.; Tiekink, E. R. T. *Inorg. Chim. Acta.* **1991**, *187*, 217-220.
- 137. Bedford, R. B.; Welch, S. L. Chem. Commun. 2001, 1, 129-130.
- 138. Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623 4626.
- 139. Sheldrick, G. M.; University of Gottingen: Gottingen, Germany, 1997.
- 140. Sheldrick, G. M.; 6.10 ed.; Bruker AXS, Inc.: Madison, WI, 2000.
- 141. Erxleben, A. Coord. Chem. Rev. 2003, 246, 203-228.

- 142. Vetrichelvan, M.; Lai, Y.-H.; Mok, K. F. Eur. J. Inorg. Chem. 2004, 2086-2095.
- 143. Fournier, E.; Lebrun, F.; Drouin, M.; Decken, A.; Harvey, P. D. *Inorg. Chem.* 2004, 43, 3127-3135.
- 144. Fan, J.; Sun, W.-Y.; Okamura, T.-A.; Tang, W.-X.; Ueyama, N. *Inorg. Chim. Acta.* **2004**, *357*, 2385-2389.
- 145. Lin, P.; Henderson, R. A.; Harrington, R. W.; Clegg, W.; Wu, C.-D.; Wu, X.-T. *Inorg. Chem.* **2004**, *43*, 181-188.
- 146. Dong, Y.-B.; Zhao, X.; Huang, R.-Q.; Smith, M. D.; Loye, H.-C. Z. L. *Inorg. Chem.* **2004**, *43*, 5603-5612.
- 147. Klausmeyer, K. K.; Feazell, R. P.; Reibenspies, J. H. Inorg. Chem. 2004, 43, 1130-1136.
- 148. Pickering, A. L.; Long, D.-L.; Cronin, L. Inorg. Chem. 2004, 43, 4953-4961.
- 149. Weisman, A.; Gozin, M.; Kraatz, H.-B.; Milstein, D. Inorg. Chem. 1996, 35, 1792-1797.
- 150. Bacher, A.; Erdelen, C. H.; Paulus, W.; Ringsdorf, H.; Schmidt, H.-W.; Schuhmacher, P. *Macromol.* **1999**, *32*, 4551-4557.
- 151. Xie, Y.-B.; Li, J.-R.; Bu, X.-H. Polyhedron 2005, 24, 413-418.
- 152. You, Z.-L.; Zhu, H.-L.; Liu, W.-S. Acta Cryst. Sect. C 2004, C60, m620-m622.
- 153. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Acta Cryst. Sect. C 2004, C60, m598-m600.
- 154. Goher, M. A. S.; Hafez, A. K.; Abu-Youssef, M. A. M.; Badr, A. M. A.; Gspan, C.; Mautner, F. A. Polyhedron 2004, 23, 2349-2356.
- 155. Sailaja, S.; Rajasekharan, M. V. Inorg. Chem. 2000, 39, 4586-4590.
- 156. Ok-Sang Jung, Y. J. K., Young-A Lee, Hee K. Chae, Ho G. Jang, and Jongki Hong *Inorg. Chem.* **2001**, *40*, 2105-2110.
- 157. Hong, M.; Su, W.; Cao, R.; Fujita, M.; Lu, J. Chem. Eur. J. 2000, 6, 427-431.
- 158. Zheng, S.-L.; Tong, M.-L.; Fu, R.-W.; Chen, X.-M.; Ng, S.-W. *Inorg. Chem.* **2001**, 40, 3562-3569.
- 159. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2005, 44, 996-1005.

- 160. Kang, Y.; Lee, S. S.; Park, K.-M.; Lee, S. H.; Kang, S. O.; Ko, J. Inorg. Chem. 2001, 40, 7027-7031.
- 161. Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Inorg. Chem. 2001, 40, 6545-6546.
- 162. Catalano, V. J.; Malwitz, M. A. Inorg. Chem. 2003, 42, 5483 5485.
- 163. Pyykko, P.; Runeberg, N.; Mendizabal, F. Chem. Eur. J. 1997, 3, 1451-1457.
- 164. Codina, A.; Fernández, E. J.; Jones, P. G.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Rodríguez, M. A. J. Am. Chem. Soc. 2002, 124, 6781 - 6786.
- 165. Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Laguna, A.; Mohamed, A. A.; John P. Fackler, J. J. Am. Chem. Soc. 2003, 25, 2022-2023.
- 166. Bachman, R. E.; Fioritto, M. S.; Fetics, S. K.; Cocker, T. M. J. Am. Chem. Soc. 2001, 123, 5376-5377.
- 167. Harwell, D. E.; Knobler, M. D. M. B.; Anet, F. A. L.; Hawthorne, M. F. J. Am. *Chem. Soc.* **1996**, *118*, 2679 - 2685.
- 168. Mohamed, A. A.; Pérez, L. M.; John P. Fackler, J. *Inorg. Chim. Acta* **2005**, *358*, 1657-1662.
- 169. Wang, Q.-M.; Mak, T. C. W. J. Am. Chem. Soc. 2001, 123, 7594 7600.
- 170. Omary, M. A.; Webb, T. R.; Assefa, Z.; Shankle, G. E.; Patterson, H. H. *Inorg. Chem.* **1998**, *37*, 1380-1386.
- 171. Pyykkö, P. Chem. Rev. 1997, 97, 597-636.
- 172. Hermann, H. L.; Boche, G.; Schwerdtfeger, P. Chem. Eur. J. 2001, 7, 5333-5342.
- 173. Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Rodríguez, M. A.; Olga Crespo, M.; Gimeno, C.; Laguna, A.; Jones, P. G. *Inorg. Chem.* 1998, 37, 6002-6006.
- 174. Jiménez, J. A.; Claramunt, R. M.; Mó, O.; Yáñez, M.; Wehrmann, F.; Buntkowsky, G.; Limbach, H.-H.; Goddard, R.; Elguero, J. Phys. Chem. Chem. Phys. 1999, 1, 5113-5120.
- 175. Ba, Y.; Chagolla, D. J. Phys. Chem. B 2002, 106, 5250-5257.
- 176. Kasai, K.; Aoyagi, M.; Fujita, M. J. Am. Chem. Soc. 2000, 122, 2140-2141.

- 177. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. *Eur. J. Inorg. Chem.* **2005**, *3287-3297*.
- 178. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2005, Submitted.
- 179. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2005, Submitted Article.
- 180. Mascal, M.; Kerdelhué, J.-L.; Blake, A. J.; Cooke, P. A. Angew. Chem., Int. Ed. 1999, 38, 1968-1971.
- 181. Xu, F.-B.; Li, Q.-S.; Wu, L.-Z.; Leng, X.-B.; Li, Z.-C.; Zeng, X.-S.; Chow, Y. L.; Zhang, Z.-Z. Organometallics **2003**, *22*, 633 640.
- 182. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Acta Cryst. Sect. E 2005, m1694m1696.
- 183. Constable, E. C.; Fenske, D.; Housecroft, C. E.; Kulke, T. *Chem. Commun.* **1998**, *1998*, 2659-2660.
- 184. Cui, G.-H.; Li, J.-R.; Tian, J.-L.; Bu, X.-H.; Batten, S. R. *Cryst. Growth. Des.* **2005**, *5*, 1775-1780.
- 185. Batten, S. R.; Hoskins, B. F.; Moubaraki, B.; Murray, K. S.; Robson, R. J. Chem. Soc., Dalton. Trans. 1999, 2977 - 2986.
- 186. Long, D.-L.; Blake, A. J.; Champness, N. R.; Wilson, C.; Schröder, M. J. Am. Chem. Soc. 2001, 123, 3401 - 3402.
- 187. Masaoka, S.; Furukawa, S.; Chang, H.-C.; Mizutani, T.; Kitagawa, S. Angew. *Chem., Int. Ed.* **2001**, *40*, 3817-3819.
- 188. Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
- 189. Manners, I. Angew. Chem., Int. Ed. Engl. 1996, 35, 1602-1621.