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In education and social science, data often arise from nested data structures,

meaning that students are nested within teachers or schools. Traditional factor an-

alytic approaches to measuring latent traits do not account for the nested structure

of these data. The logic and potential issues of using multilevel confirmatory factor

analysis were discussed. The ability of commonly used fit statistics to discriminate

between a correctly specified model and models with omitted factor loading(s) were

investigated with receiver-operating-characteristics (ROC) analyses. Combining ROC

analyses with traditional methods of investigating fit statistic performance resulted

in converging evidence for the utility of these common fit statistics. In general, these

fit statistics performed poorly and should not be heavily relied upon for evidence

of the factor structures specified. Recommendations were given for which commonly

reported fit statistics to use, cut-off criteria to use for which estimators, and cautions

about the use of the suggested cut-off criteria.
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CHAPTER ONE

Introduction

Factor analysis models have been utilized in educational and psychological in-

vestigations for over a 100 years to help measure constructs that we cannot directly

or easily measure. Factor analysis provides a flexible framework for measuring traits

and constructs. However, in educational settings some constructs cannot be studied

fully within the traditional factor analytic framework because students may be influ-

enced by factors that are contextual or beyond the students’ control. For example,

studying how students perceive the climate at their school is necessarily influenced

by factors that directly affect students and factors that influence the environment

in which students exist (e.g., school). When measuring outcomes from students both

levels of influence need to be accounted for in order to gain a full understanding

for how students respond on, say, psychological assessments. In this context, one of

the most commonly employed data collection methods is a self-report measure where

students indicate the degree to which they agree or disagree to a set of statements.

However, the data that arise from this form of assessment in an educational setting

have multiple layers of complexity that need to be accounted for in order to more

accurately reflect the processes that influence responses.

Purpose of Study

In this study, the effects of ordered categorical data on the ability of commonly

used fit statistics to detect incorrectly specified measurement models was examined.

Given that data from educational settings typically arise from hierarchically struc-

tured data and commonly use ordered categorical response formats, there is a need

to understand how these models can be examined. Establishing the adequacy with
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which a model explains the interrelationships among items (i.e., measurement model)

is therefore a central issue that needs to be considered in these complex yet com-

mon scenarios. Due to the limitations of prior studies of the available fit statistics for

multilevel measurement models, the outcome of this study is to determine whether

specific cut-off values are indicative of global misfit of the level-1 and/or level-2 model.

Therefore, the overall purpose is to provide practitioners with the knowledge of how

fit statistics work in helping identify model fit and what values they need to consider

for these determinations.

Overview of Procedures

In this Monte Carlo simulation study, a fully crossed design among factors with

500 replications per cell of the design was used. The factors varied across conditions

were: three levels of observed variable intra-class correlation coefficient, two levels

of latent variable ICC, three different sample sizes within group, and four different

number of groups sampled. This design yielded a total of 72 (3 × 2 × 3 × 4) unique

data conditions. For each of the datasets generated, two factors were crossed for

examination estimation: three estimators and fours type of model specification. In

multilevel confirmatory factor analysis, the measurement model can be misspecified

at level-1 and/or level-2. Because of the complexity of specifying these models, the

four specifications align with four different ways of correctly or incorrectly specifying

the entire model. This yielded 12 (3×4) models estimated for each generated dataset.

Convergence rates of models across conditions and estimators were also examined.

For each replication across conditions and across estimators, the ability of com-

monly used fit statistics to identify misfit was examined. Using receiver-operating-

curve (ROC) analyses, the performance of common fit statistics was assessed by

systematically varying the cut-off criteria for determining how a model fits. The

ROC analyses estimated area under the curve (AUC), and the hit rates were used
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to determine what values of each fit statistic help differentiate between a fitting and

non-fitting model. For these analyses, the aim was to help determine if these fit statis-

tics could identify the correctly specified model versus models that have incorrectly

specified measurement models at either level and whether certain fit statistics were

sensitive to only certain type of misfit.

Delimitations

In this study, the small foundation is extended for examining multilevel mea-

surement models with categorical data, specifically with regard to how common fit

statistic performance across different estimators for categorical data. As with any

simulation study, the results of only generalize to the limited conditions examined.

The conditions chosen were selected to mirror conditions of applied researchers as

close as possible while still being as parsimonious as possible. The restriction of con-

ditions was due partially to how long data generation took and model estimation

took. Estimation with MLR was observed to result in most usable cases per cell on

average, but this may have occurred because data were treated as continuous. Using

MLR in Mplus with categorical data requires numerical integration across four dimen-

sions (one dimension per latent variable) that is computationally burdensome, so I

assumed these data were continuous in order to estimate these models in a reasonable

amount of time. Additionally, the cells of this design ended up with unequal sample

sizes due to convergence issues and the number usable replications. Even in some

cells, the number of usable cases was zero. These factors that limit the sample size in

some cells could have influenced these results in unaccounted for ways and caused the

impact of some design factors to be underestimated. Future work could address how

to estimate these types of models under conditions that failed to converge or provide

useful information.
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The use of only one type of model misspecification (i.e., an omitted crossloading)

limits the generalizability of these finding. Other potential sources of misspecification

(i.e., residual correlations among items, omitted factor correlation(s), wrong number

of factor(s) specified, etc.) may result in different conclusions about distributions of

these fit statistics. Other types of misspecification can be investigated with these data,

and the generated data are available online (Padgett, 2019).
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CHAPTER TWO

Literature Review

In this chapter, I review the pertinent parts of the literature on multilevel model-

ing, confirmatory factor analysis (CFA), categorical CFA, multilevel CFA, estimation

methods, and fit statistics.

Multilevel Modeling

Data often arise from hierarchical and organizational settings. For example, a

school is organized hierarchically such that children are grouped into classrooms, and

a school itself is organized hierarchically within a district, and so on. When data

on students are obtained across classrooms, schools, and/or districts, these data are

called hierarchically structured or have a nested structure. When data arise from

multiple levels of sampling, variables are therefore measured at different levels. In

education, student characteristics are typically the lowest level of analysis, called

level-1. Characteristics that reflect the classroom are the next level of analysis, level-

2. As the lowest level of dat collection, the characteristics may refer to the micro level,

whereas data from higher levels are macro level (Heck & Thomas, 2015). Macro level

variables refer to contexts or groups because each level of a macro level variable will

subsume multiple cases from a lower-level.

As an example, the nested data structure of educational data across schools cre-

ates difficulties in investigating student dropout factors. Many factors can be observed

that as associated with dropout such race, SES, family, etc. However, other factors

may also influence why dropout rates vary among schools. Rumberger (1995) dis-

cussed the difficulties is identifying the influencers of student dropout because groups

of students will have the same school factors acting on the potential for dropout.
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He noted how existing literature on investigating dropout has focused on individual

factors, such as family background, early school experiences, school attendance, be-

havior, and other demographic factors. However, Rumberger used this research to

investigate school and community factors that influence dropout rates. Student com-

position is an example of a broad range of factors that influence the effectiveness of

schools. Furthermore, school climate characteristics are measured by school-level vari-

ables that potentially influence the institutional dropout rate. The fact that students

were sampled within the same school means that the same factors influence each case,

creating dependence among the cases.

When students are assessed over time, observations are potentially doubly

nested. In this example, each student has multiple measurement occasions, and stu-

dents may be nested within classrooms. The measurements are nested with the stu-

dent, and the students are nested within classrooms (Aitkin & Longford, 1986). This

scenario would be an example of a three-level data structure. Other examples of data

with a hierarchical structure are

(1) longitudinal data, in which individuals have repeated measurements of the

same outcome, and

(2) Meta-analysis, in which effect sizes are drawn from a sample of studies.

Interested readers are referred to Raudenbush and Bryk (2002), Heck and Thomas

(2015), and Hox, Moerbeek, and Van de Schoot (2017) for more examples.

The analysis of data arising from such scenarios must account for the hierar-

chical structure in order to gain insight into student growth or organizational effects.

Traditional methods of analysis such as ordinary least squares regression, fail to ac-

count for the nested structure (Raudenbush & Bryk, 2002). In educational settings,

hierarchical linear models have been used to account for the nested structure. For ex-

ample, Bryk and Driscoll (1988) investigated teachers’ self-efficacy across schools. An

average of 22 teachers were measured across 375 schools, and one of the main goals
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of the analysis was to investigate the effects of school characteristics on teacher’s

self-efficacy. Ignoring the multilevel structure of these data typically leads to underes-

timated fixed-effect parameters and standard errors, which can lead to inflated Type-I

error rates(Raudenbush & Bryk, 2002; Snijders & Bosker, 1999). These effects are due

to a violation of independence in the distribution of error. In simple linear regression,

the assumption is that cases are independent, and multilevel modeling aims to ac-

count for the dependence between errors associated with violating this independence.

Note that much of this literature is related to multilevel linear models, which is the

extension of linear regression to multilevel settings.

The effect of ignoring the multilevel structure generally depends on the partic-

ular scenario; however, a general issue that occurs is that standard errors are under-

estimated (Raudenbush & Bryk, 2002; Snijders & Bosker, 1993; Van der Leeden &

Busing, 1994). For example, assigning everyone in a particular group the same value

of a higher level (e.g, assign all teachers to the same school the value of school size)

reduces the variability in the predictor, which causes the estimation of the standard

error to be downwardly biased. The amount of bias depends, in part, on the effect of

group membership. The effect of group membership can be estimated by the intra-

class correlation coefficient (ICC), which is also called the cluster effect (Raudenbush

& Bryk, 2002). The ICC is the proportion of variance in an outcome attributed to

group membership relative to the total variation in the outcome.

Investigations of the effect of varying levels of ICC on parameter estimation has

often been paired with sample size evaluations. For example, sample size requirements

for sufficient parameter estimation depends in part on the size of the ICC (Maas

& Hox, 2005; Scherbaum & Ferreter, 2009). The necessary sample also depends on

the parameter(s) of interest in the research. For example, if one is interested in the

variance of level-2 parameters, especially slopes, 100 groups may not even be sufficient

for adequate precision (Maas & Hox, 2005). This is in contrast to interest in the
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intercepts, where precision tends to be greater and sample size requirements tend

to lower (Hofmann, 1997). Sample size has been studied extensively for multilevel

linear models, and interested readers are referred to Bell, Morgan, Schoeneberger,

Kromrey, and Ferron (2014) for a more recent examination and overview of sample

size requirements in multilevel linear models.

In education, outcomes of interest are often latent, meaning that the construct

is not directly observed, but rather is inferred from a set of indicators. Next, I will

introduce the methods used for measuring indirectly observed constructs and will

incorporate multilevel modeling of these outcomes.

Confirmatory Factor Analysis

Education and social scientists have studied constructs that are not directly

measurable for over a century. For example, Spearman (1904) worked on the mea-

surement of general intelligence, a construct that is theorized to exist but cannot be

directly measured. The method for relating observed indicators to continuous latent

variables, such as intelligence, is known as factor analysis. Factor analysis is based

on the common factor model, and the common factor model is a general model for

how the relationships among observed variables are explained by unobserved, latent

variables (i.e., factors).

If one were interested in measuring the length of an object she may use a

ruler as an instrument to determine how many centimeters long the object is. In

education, researchers are frequently interesting in measuring properties that cannot

be directly measured, as was the case with the ruler. Instead, one uses tests or surveys

as instruments to gain insight into the variable on interest by examining the responses

to items on the instrument. The measurement process is akin to trying to identify

where someone is on a ruler when the ruler is inside a box covered in cloth. If one

shines a flashlight on one of the sides of the box, she can see the reflection of the ruler
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and where the person is on the ruler, but, because of the covering on the box, she

doesn’t have a perfect reflection. This is similar to asking a single item on a survey;

that is, responses are related to the construct but not perfectly. Therefore, multiple

items are include (i.e. shine multiple lights on the box from multiple angles) in order

to triangulate the position the person is on the construct of interest. The general idea

behind factor analysis is to use multiple items to triangulate the measurement of the

construct.

Factors are triangulated investigating how responses to items covary. When item

covary, we aim to explain why they covary by their relationship with the underlying

construct (i.e., factor of interest). When responses covary, the responses to one item

are related to responses to another item. Based on how the items are theorized to

group together, we then can form an expectation of the level of covariance among the

items. The factor model we hypothesize is then tested to see if we can explain the

covariance among the set of items measured. This is why factor analysis, specifically

confirmatory factor analysis (CFA), is also sometimes called covariance structure

analysis (Bollen, 1989; Brown, 2015; Kline, 2016).

Over the years, a vast methodological literature has amassed on CFA. Much of

this literature is out of scope for this review. However, some seminal pieces are high-

lighted. In the development of CFA, Jöreskog (1967) helped progress the estimation of

CFA under maximum likelihood. Later, Jöreskog (1969) helped build the groundwork

for hypothesis testing in CFA and SEM more generally. Possibly the greatest contri-

bution to the CFA literature was the development of the software program LISREL

by Jöreskog and Sörbom, where they provided the technical capabilities to estimate

a wide range of latent variable models (Jöreskog & Sörbom, 2015). The entirety of

the work of Jöreskog and colleagues is out of scope for this review, but much of the

future work on CFA rests of shoulders of these giants.
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Much of the work on CFA and SEM was brought together by Bollen (1989),

whose text contains the synopsis of much of this early work on latent variable model-

ing. The general modeling framework of CFA is encapsulated in the following concise

model, known as the common factor model:

Yi = τ + Ληi + εi (2.1)

where Yi is the vector of observed item responses of individual i, τ is the vector of

intercepts that is typically fixed to a zero vector because of the use of standardized

scores in the estimation, Λ is the factor loading matrix, ηi is the vector of factor

scores for individual i, and εi is the residual error. Equation 2.1 relates the model

parameters to the observed responses. However, CFA is a method for modeling how

patterns of responses can be explained based on the theorized variables. The theorized

relationship among variables is often expressed through a path model. An example

of a single one factor CFA path model is shown in Figure 2.1.

Y1 Y2 Y3 Y4 Y5

ε1 ε2 ε3 ε4 ε5

ηφ

λ1 λ2 λ3 λ4 λ5

ψ1 ψ2 ψ3 ψ4 ψ5

Figure 2.1. Example path diagram of a confirmatory factor analysis model.
Note. The error terms (εi) and corresponding residual variances (ψi) are typically
excluded for simplicity.
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Along with relating the observed responses to the latent variables, we need to

specify how the variables relate to each other. Our expectation for the relationships

among item is formulated as

V ar(Y) = Σ = ΛΨΛT + Θ (2.2)

where V ar(Y) is the model implied covariance matrix which is often shortened to Σ.

And, where Λ is the estimated factor loading matrix which is sometimes called the

pattern matrix, Ψ is the estimated covariance/correlation matrix among the latent

variables, ΛT is the transpose of the factor loading matrix, and Θ is the residual

covariance matrix among the observed variables. The residual covariance matrix is

typically assumed to be a diagonal matrix, which means that once the factor structure

imposed on these data is accounted for no other relationship among items exists

(Brown, 2015). The interested reader is referred to Bollen (1989); Brown (2015);

Kline (2016) for more information on CFA.

Categorical CFA

Traditional confirmatory factory analysis assumes that factor indicators are

continuous measures and that these indicators are linearly related to the underlying

factors. A continuous measure can (usually) be sufficiently described by its mean

and variance, whereas data with discrete categories typically are not appropriately

described by its mean and variance. Furthermore, categorical data are unlikely to

have a linear relationship with the underlying factor(s). Social scientists rarely obtain

data that are continuous in nature as surveys often use ordered response scales (e.g.,

Likert-type responses). CFA models fit with these types of data are sometimes called

item factor analysis and are closely related to some item response theory models

(Bollen, Bauer, Christ, & Edwards, 2010). The use of traditional CFA, particularly

in conjunction with maximum likelihood methods, may not be valid given the restric-
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tions of categorical data. Methods for circumventing the limitations of categorical

data are continually being developed and investigated.

Categorical data have long been used to approximate some underlying di-

mension. For example, Likert-type responses of Strongly Disagree, Disagree, Neutral,

Agree, and Strongly Agree can be seen as attempting to measure a continuous attitude

of agreement towards a topic. Using discrete categories is a simple and straightforward

method for measuring attitudes, and the use of this technique is likely to continue

in the future. Given the prevalence and nearly certain continual use of such response

formats, having methods that account for the limited range of response in the analysis

is important for gaining useful information from these data.

The traditional CFA model only reflects a linear relationship between the ob-

served scores and the factors. This implies that the observed score on an item is a

linear function of the factor loading, factor score, intercept, and error. Breaking this

relationship down to the item level helps with the discussion of the theory for cate-

gorical CFA. The item level relationships can be represented as follows for an item in

a one factor model

yij = τj + λjηi + εij (2.3)

where yij is the observed score of the ith individual on the jth item, τj is the intercept

of the jth item, λj is the factor loading for the jth item, ηi is the amount that individual

i has on the factor, and εij is the error in measurement for the ith individual on the jth

item; see Benson and Nasser (1998) for a discussion on the linear combination of these

components. This linear combination is analogous to how simple linear regression

relates a predictor (x or ηi) to an outcome (y). Just as ordinary least squares regression

is inappropriate for categorical outcomes, such as binary outcomes, traditional CFA is

also inappropriate for categorical outcomes. In place of OLS for binary or categorical

outcomes, logistic regression is appropriate as the model is transformed to account
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for the discrete nature of the outcome. A similar idea is carried over to factor analysis

where the observed scores are nonlinearly related to the factors.

The nonlinear relation is only defined for the observed categorical response. As

noted earlier, the categorical responses are a coarse measurement of a continuous un-

derlying response. The underlying continuous response is known as the latent response

distribution (Muthén, 1984). By formulating the observed scores to be a discretized

approximation to the latent response distribution, we are able to capture a linear

relationship between the latent response and the factors.

y∗ij = τj + λjηi + εij (2.4)

where y∗ij is the latent response score of the ith individual on the jth item, τj is the

intercept of the jth item which is usually equal to zero, and the other remaining

parameter are the same as before. The latent response distribution is typically a

standard normal variable with a mean of zero and standard deviation of one, and

the intercept is therefore zero. The burden then falls on defining and estimating the

mechanism for how the observed score (y) relates to the latent response score (y∗).

The latent response score is typically defined to relate to the observed score

through a simple categorization scheme. Suppose an item had three response cate-

gories coded Disagree, Neutral, Agree. Creating three categories from a continuous

latent response requires two thresholds for categorizing. The first threshold defines

whether the observed response is Disagree versus Neutral. This means that if the

latent response score is lower than the value of threshold one then the observed score

is Disagree. The second threshold defines the level of the latent response necessary to

response Neutral versus Agree. If the latent response is greater than the first thresh-

old but lower than second then the observed response is Neutral. A response of Agree

occurs when the latent response score is greater than the second threshold. There-

fore, for C categories, C−1 thresholds are needed to relate the latent response to the

observed score. Muthén (1984) expressed this relationship mathematically as system
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of equations

yij =



Cj − 1, if τj,Cj−1 < y∗ij

Cj − 2, if τj,Cj−2 < y∗ij ≤ τj,Cj−1

...

1, if τj,C1 < y∗ij ≤ τj,C2

0, if y∗ij ≤ τj,C1

(2.5)

where yij is the observed score of the ith individual to the jth item which contains Cj

response categories, and Cj−1 category thresholds. Other authors, e.g. Dolan (1994),

have expressed this system similarly as yj = k if τj,k−1 < y∗j ≤ τj,k, where the thresh-

olds values for the jth item are: −∞ = τ0 < τ1 < τ2 < · · · < τk−1 < τk =∞. The lower

(τ0) and upper (τk) are bounds and not needed practically. Both manners of express-

ing the categorization of the latent response continuum are equivalent. Each item can

have possibly unique threshold(s) that are estimated. However, as the number of cat-

egories increases so does the computational burden of estimating thresholds, meaning

that the number of parameters estimated increases systematically as the number of

items and number of categories increases. Note that for continuous indicators, the

above system is unnecessary as the observed score is equal to the underlying latent

response score, i.e. yij = y∗ij. This formulation of categorical data is sometimes called

the latent variable formulation (L. Muthén & Muthén, 2017). Ordered categorical

data are known to causes issues in the estimation of factor models. Below is a brief

review of the literature on the effect of categorical data on CFA estimation.

Parameter Estimates

In the estimation of model parameter, the covariances among items must be es-

timated, and when coarsely defined variables are used, the covariance is attentuated

(Bollen & Barb, 1981; Johnson & Creech, 1983). These finding have been consis-

tently replicated across many scenarios through simulations studies when the known
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correlation among items and the effect of categorization can be explicitly examined.

Overall, when the Pearson Product-Moment correlation coefficient is used to approx-

imate the relationships among items the parameter estimates tend to be negatively

biased (Babakus, Ferguson, & Joreskog, 1987; Muthén & Kaplan, 1985). However,

the impact on the effect depends on the choice of estimator, e.g. maximum likelihood,

weighted least squares or diagonally weighted least squares (Bandalos, 2014; Muthén

& Kaplan, 1985; Muthen & Kaplan, 1992). The amount of bias is also relatively

small under most conditions, but the bias increases in magnitude as the severity of

nonnormality increases (Bandalos, 2014; DiStefano & Morgan, 2014; Forero, Maydeu-

Olivares, & Gallardo-Pujol, 2009; Li, 2016).

Standard Errors

The literature is not consistent about the effect of categorical data on standard

errors (SE). Through simulation studies, some authors have found a consistent overall

negative bias (Bandalos, 2014; DiStefano & Morgan, 2014; Dolan, 1994; Muthén &

Kaplan, 1985). Others have identified a positive bias (Babakus et al., 1987), and

others still have identified a mix of bias that depends on the severity of nonnormality

(Forero et al., 2009; Li, 2016; Nestler, 2013).

Model Fit

One of the major issues that arise when using CFA is establishing whether the

measurement model sufficiently explains the relationship among observed variables.

That is the hypothesized model is expected to completely explain the intercorrela-

tions among items. However, the measurement model aims to be as parsimonious as

possible. In educational setting, the aim is often to measure a single construct with

a set of items (e.g., math ability). The generally accepted guidelines for establishing

model fit for CFA models is based on fit statistics such as the χ2 test of model fit,

confirmatory fit index (CFI), Tucker-Lewis Index (TLI), root mean square error of
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approximation (RMSEA), and standardized root mean square residual (SRMR). The

model χ2 is known to be sensitive to sample size (Bollen, 1989). However, some au-

thors have found with robust estimators that the model χ2 to be close to expected

values (Bandalos, 2014; Flora & Curran, 2004). The other fit statistics have the rec-

ommended cut-off values of CFI > .95, TLI > .95, RMSEA < .06, and SRMR <

.06 (Hu & Bentler, 1999). The Hu and Bentler (1999) cut-off values have been called

into question over the past two decades as being established under too limited of

conditions and not with categorical data (Finney & DiStefano, 2013). Some authors

have even recommended that rules of thumb for robust estimators for categorical data

cannot be established (Nye & Drasgow, 2011, as cited in Finney, 2013). In general

though, the interpretation of common fit statistics from robust estimators has not

been well established.

Recommended Estimators

For ordered polytomous response data, the following estimators are suggested

for different scenarios. The general recommendation is to treat the observed data as

categorical and use a robust DWLS estimator (DiStefano & Morgan, 2014; Finney &

DiStefano, 2013). When the number of categories is five or more, there is evidence that

treating the data as continuous and using a robust estimator is sufficient for obtaining

unbiased estimates of parameters in some circumstances (Finney & DiStefano, 2013;

Rhemtulla, Brosseau-Liard, & Savalei, 2012). Other authors also found evidence that

using ULS can provide more accurate parameter and SE estimates when the estima-

tion converges (Forero et al., 2009). Due to the large number of available estimators

for authors to choose from, Finney and DiStefano (2013, pg. 476) also recommended

fitting the model with more than one estimator to check for converging evidence of

one’s solution.
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Multilevel Confirmatory Factor Analysis

Similar to how methodological work has expanded to address the categorical

nature of item responses in CFA, multilevel modeling has also been incorporated into

CFA. One of the assumptions underlying traditional single level CFA is that the in-

dividuals being sampled are independent of one another. However, as explored earlier

in this chapter, educational data rarely meet this assumption given that data often

arise from nested structures. Two general approaches can be taken to account for the

dependence among cases. The first is based on a sampling theory perspective. The

second is a varying parameter modeling perspective. In the first framework, tradi-

tional single level analysis are conducted, but the standard errors are corrected for

the sampling design. For example, one could take a random sample of schools and

then within each school take a random sample. Because we know we are taking ran-

dom sample within sampling units, we can account for the sampling design based on

adequately developing sample weights; this is why this approach is sometimes referred

to as a “design based” approach (Kaplan, 2009; Stapleton, 2013; Stapleton, Yang, &

Hancock, 2016). In the second approach, parameters are treated as random compo-

nents that vary across higher level units. When using this approach, the researcher

explicitly models the mechanism by which parameters vary across schools. Utilizing

this approach accounts for the dependence among cases within unit by modeling and

estimating the differences among schools. This latter approach is known as multilevel

confirmatory factor analysis (MCFA) and is the focus of this work.

In his seminal work on extending the conventional CFA model for multilevel

settings, Muthén (1994) showed how the observed covariance matrix can be parceled

into a pooled-within cluster covariance matrix (i.e. level-1 covariances) and a between

cluster (i.e. level-2 covariances) covariance matrix to model the nested structure of

data. The pooled-within cluster covariance matrix defines how the item responses

covary because of the individual contributions of each respondent. For the remainder
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of this paper, the pooled-within cluster covariance matrix are referred to as within

covariances or level-1 covariances. In contrast, the between cluster covariance matrix

defines how the average response to each item covaries across groups. For the re-

mainder of this paper, between cluster covariance matrix are referred to as between

covariances or level-2 covariances. During the early applications of these models, re-

searchers computed the level specific covariance matrices and estimated the model in

a multiple framework. B. Muthén expanded upon the work of Goldstein and McDon-

ald (1988), McDonald and Goldstein (1989), and B. Muthén and Satorra (1989) by

showing how to efficiently estimate these complex models in one framework.

In MCFA, the covariance structure is decomposed into the level-1 (within) and

level-2 (between) covariance matrices with corresponding factor structure specifica-

tion. The level-1 model represents the individual/student level processes that influence

the observed responses. The level-2 model represents the factors influencing variations

in responses across groups or schools. One of the difficulties in utilizing MCFAs is

establishing the meaning of the level-2 constructs because the meaning depends on

how the factors relate to the level-1 factors. A full description of the technical issues

surrounding construct meaning for level-2 factors is out of scope for the paper, and

the interested reader is referred to the excellent article by Stapleton et al. (2016).

The MCFA model is expressed as in a path model at each level of analysis,

namely level-1 and level-2. An example of a simple two level MCFA with five indicators

is shown in Figure 2.2. The reader will notice that the model structure is equivalent

across both levels. For example, Muthén (1994) representation explicitly shows the

effect of the level-2 model on the observed indicators (see Figure 2.2). When the

MCFA is specified with equal structure and factor loadings are constrained equal

across levels, the researcher can appropriately calculate the proportion of variation

explained in the latent variable (η) by group membership can be estimated (i.e.,

the intraclass correlation). However, a precursor to estimating the ICC in the latent
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variables is establishing fit of the measurement model across both levels (Heck &

Thomas, 2015; Stapleton, 2013). Due to the complexity of MCFA models, researchers

have suggested a four-step1 approach to evaluating one’s model (Dyer, Hanges, &

Hall, 2005; Muthén, 1994; Stapleton, 2013).

(1) Fit a single level CFA based on a priori expectations of model structure

(2) Estimate the corrected level-1 covariance matrix and estimate the level-1

model

(3) Estimate the corrected level-2 covariance matrix and estimated the level-2

model

(4) Estimate the full model with level-1 and level-2 specified based on theoretical

expectations

These general four steps are designed to help the researcher identify potential model

specification issues at each level. The technical details on the estimation of the level

specific covariance matrices can be found in Kaplan (2009); Muthén (1994). A rela-

tively simple introduction to these models can be found in Dyer et al. (2005); Kaplan

(2000); Kline (2016), where each author gives an example application. In what follows,

I describe the limited methodological literature that tests the limits of the MCFA.

Paramater Estimation

The majority of the methodological work on MCFA investigated conditions in

which the factor indicators are normally distributed (Hox & Maas, 2001; Wu & Kwok,

2012). Precision of estimation of model parameters in MCFA depends on number of

level-2 units (e.g. number of schools), average number of observations within each

level-2 unit, distribution of indicators, and estimator (Hox & Maas, 2001). The level-

1 parameters have been found to be relatively unbiased under most conditions when
1 Sometimes referred to as a five step approach where the estimation of the two covariances

matrices are step 2. Steps 3 and 4 are estimating the level-1 and level-2 models, and step 5 is
estimating the full model.
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data are multivariate normally distributed regardless of sample size (Asparouhov &

Muthén, 2007; Hox & Maas, 2001). However, parameter bias increased rapidly for

level-2 specific parameters, where all parameters, especially factor loadings, showed

stronger downward bias (Asparouhov & Muthén, 2007; Hox & Maas, 2001; Wu &

Kwok, 2012). To overcome the bias, authors have suggested at least 100 level-2 units

(Hox & Maas, 2001).

Standard Errors

At the within part of the model, SE did not have a reported relative bias that is

concerning across any conditions, only 0.6% as most (Hox & Maas, 2001). However,

at level-2, SE showed a clear downward bias for factor loadings across all conditions

(-9.0% on average for even the largest Ng condition of 200). The downward bias effect

was reduced for lower levels of ICCs. Hox & Maas do did not find the level-2 variances

to be significantly biased in either direction.

Note that parameter coverage rates were below the nominal level for factor

loadings and variances and the coverage was worse for unbalanced group sizes.

Model Fit

A very limited literature exists on the performance of fit indices in MCFA

with categorical data (Hsu, 2009; Navruz, 2016). However, a few additional studies

have investigated fit indices in MCFA when indicators are multivariate normally dis-

tributed (Asparouhov & Muthén, 2007; Hox & Maas, 2001; Hsu, 2009; Hsu, Kwok,

Lin, & Acosta, 2015; Ryu & West, 2009; Wu & Kwok, 2012). Under data simulated

as multivariate normally distributed, the consensus so far is that CFI, TLI, RSMEA,

SRMRW are only sensitive to misspeficiation of the level-1 model, while the SRMRB

is able to detect misspecification of the level-2 model. However, the study that has

most thoroughly investigated fit in MCFA is limited in generality due to the methods

employed (Hsu et al., 2015). Hsu et al. (2015) found that the Hu and Bentler (1999)
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cut-off criteria for CFI, TLI, and RSMEA performed well for detecting misspecifica-

tion at level-1 but not when only level-2 is specified. However, when using categorical

data with the WLSMV or WLSM estimator, Navruz (2016) found that none of the

fit statistics were able to consistently identify the correct model with the traditional

cut-offs.

Model Estimation

Of the four studies that have investigated multilevel CFA with categorical indi-

cators, authors have invested three estimators: MLR, WLSM, WLSMV. Asparouhov

and Muthén (2007) recommended using WLSM over MLR for estimation due to

WLSM resulting in less biased estimates across conditions studied. However, only

one condition was investigated. While in Study 2 of Hsu (2009), only WLSMV was

used to investigate the effects of dichotomous indicators on MCFA. In a small sim-

ulation study comparing cluster-effects on parameter recovery, Stochl et al. (2016)

used the WLSMV estimator in a condition where a MCFA model was estimated with

WLSMV to compare results of level-1 parameters to design-based approaches. In

Navruz (2016), the author compared WLSM with WLSMV and concluded that, un-

der the conditions included, neither estimator should be used for ordered categorical

data in multilevel settings.

Purpose and Research Questions

Limited research exists that examine multilevel structural equation models, and

especially under conditions when data are ordered categorical. Given that data from

educational settings typically arise from hierarchically structured contexts and used

ordered categorical response formats, there is a need to understand how these models

can be examined. Establishing that one’s measurement model adequately fits the

observed data is therefore a central issue that needs to be considered in these complex

scenarios. Due to the limitations of prior studies of the available fit indices for MCFA
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models, one of the aims of this paper is to investigate whether a different cut-off value

would be able to detect a global misfit of the level-1 or level-2 model. The purpose of

this thesis is therefore to examine how fit statistics perform in detecting misspecified

measurement models in multilevel CFAs. Specifically, my research questions are

(1) Is there a cut-off for CFI, TLI, RSMEA, SRMRW, and SRMRB that can be

used to differentiate a properly specified model from an misspecified model?

(2) If there is a cut-off, what is the values of each of these fit indices?

(3) Finally, how does identification of fit vary across potential estimators for

MCFA models?
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CHAPTER THREE

Methods

In this chapter, the Monte Carlo simulation methods employed in this study are

described. A cursory introduction to the technical details of MCFA models and the

estimation of these models are given. Additionally, the final simulation study outcomes

being analyzed are explained in detail along with the final statistical analyses that

are reported.

MCFA Model

As briefly described earlier, the multilevel confirmatory factor analysis (MCFA)

model is a decomposition of the observed covariance matrix into a level-1 (pooled

within group) and level-2 (between group) specific covariance matrix. Because two

covariance matrices are essentially being analyzed, two possibly unique models can be

specified for each model. These two models can be broken down to be two components

that influence the each individual response. First, the individual effect and a second

group effect. With categorical observed data, these two effects directly influence the

underlying response value for each item, as shown in Equation 3.1. In this equation the

underlying response value for an individual (y∗pig) is the composition of the individual

component (ywpij) and a random effect of group (ybpj). As with Muthén (1984) and

Asparouhov and Muthén (2007), the latent response is assumed normally distributed.

y∗pig = ybpj + ywpij (3.1)

where y∗pig is the latent response underlying the observed categorical value yp for the

pth item, i indexes across individuals within group g. Across p items, this general

framework is easily incorporated into the previous notation for factor analysis by

replacing the latent components ywpij and ybpj by the level specific factor loading
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matrices and latent variable vectors. This can be seen more explicitly by looking at

the factor analytic function being estimated in Equation 3.2.

y∗ig = νg + ΛBηBg + εBg + ΛWηWig + εWig (3.2)

where y∗ig is the latent response vector for the ith individual in the gth group, νg are the

group latent intercepts (which are not directly estimated), ΛB is the matrix of factor

loadings for the level-2 (between) model, ηBg is the vector of group latent variable

scores, εBg is the vector of group level residuals, ΛW is the matrix of factor loadings for

the level-1 (within) model, ηWig is the vector of individual latent variable scores, and

εWig is the vector of individual level residuals for individual i in group g. Note that

the observed scores are categorical in this case, so item threshold are used to relate

the underlying response values (y∗ig) to the observed vector of categorical responses

(yig). These thresholds (τpk) are specific to each item (p) and constant across groups.

Meaning the the relationship described in Equation 2.5 is simply expanded to include

the categorization across groups (see Equation 3.3). The total number of categories

in the observed variable is defined as k.

ypig = k ⇔ τpk < y∗pig < τp(k+1) (3.3)

where τp0 = −∞ and τpk+1 = ∞. The relationship between the observed categories

and underlying response vector allows for the categorical nature of the observed data

to be controlled for when estimating the between group variability.

The total variation (ΣT ) is then expressed as a summation of the within and

between group variability.

ΣT = ΣB + ΣW

= ΛBΨBΛT
B + ΘB + ΛWΨWΛT

W + ΘW (3.4)

where ΣW is the within group covariance matrix, ΣB is the covariance among group

means, ΨW is the covariance matrix among level-1 latent variables, ΨB is the co-

variance among level-2 latent variables, ΘW is the level-1 residual covariance matrix,
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and ΘB is the level-2 residual covariance matrix among group means. The level-1

and level-2 covariance matrices are assumed to be independent, meaning that how

much error is associated with measurement of group means is not related to the

amount of error in measuring item responses. In other words, the sampling process

does not induce a dependence among school means and responses by students. In

general, Equation 3.4 implies that the covariance among the observed indicators is

decomposed between the within measurement model and the between groups mea-

surement model. By specifying the covariation at both levels of sampling, we gain

the flexibility to describe relationships at the individual level and the group level.

The measurement of traits across levels of analysis allows researchers to test detailed

theories of organizational effects and measurement concerns at each level of sampling.

Estimation

The estimation MCFA models is determined in part of the estimation of two

covariance matrices simultaneously for the corrected level-1 (within, ΣW ) and the

corrected level-2 (between, ΣB) covariances. The population covariance matrices can-

not be directly estimated. Muthén (1989, 1990) showed how the following sample

covariance matrices can be used together to estimated the population covariances.

SW = (N −G)−1
G∑
g=1

Ng∑
i=1

(yig − ȳg) (yig − ȳg)′ (3.5)

SB = (G− 1)−1
G∑
g=1

Ng (ȳg − ȳ) (ȳg − ȳ)′ (3.6)

where N is the total number of observations, G is the total number of groups or

level-2 units, Ng is number of individuals in group G, yig is the observed vector of

response of individual i in group g, ȳg is the vector of average responses for group g,

and ȳ is the vector of average responses for the whole sample. The between (level-2)

covariance matrix is described as the sample-size weighted covariance among group

means (Muthén, 1994). For more nuanced technical details on the estimation of each

of these matrices and the fit function being optimized, the reader is referred to the
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Mplus technical web note (B. Muthén, du Toit, & Spisic, 1997) and the LISREL

technical appendix (Jöreskog, 2005).

Model Estimators

All models were estimated using Mplus (L. Muthén & Muthén, 2017, version

8.2). Researchers have the choice of a many potential estimators in Mplus, and each

was initially developed to solve a particular estimation limitation of another estimator.

A full list of the available estimators for models in Mplus can be found in the User’s

Guide (L. Muthén & Muthén, 2017). In this project, I focus on ordered categorical

responses, for which the maximum likelihood with robust standard errors (MLR) and

weight least squares mean and variance adjusted (WLSMV) estimators have been

tested for MCFA models. However, for single level CFAs with categorical data, there

is evidence that unweighted least squares (ULS) performs well (Forero et al., 2009).

But, the ULS estimator is not available for multilevel models in Mplus, so instead, the

unweighted least squares mean and variance adjusted (ULSMV) was used. Therefore,

I focus on three estimators: MLR, WLSMV, and ULSMV. Each of these estimators

aims to optimize a fit function that describes the discrepancy between the observed

sample (co)variances and the model implied (co)variances.

MLR. The maximum likelihood with robust standard error (MLR) estimator

is a two part estimation process. In the first part, traditional maximum likelihood is

performed to obtain parameter estimates. The second part uses a sandwich estimator

to estimator standard errors. The interested reader is referred to Bandalos (2014)

for a more in-depth discussion of MLR with categorical indicators. With categorical

data, MLR requires the use of numerical integration for each latent variable in the

model. This feature makes MLR computational intensive for more than four latent

factors. In MCFA, most models of interest in practice would require at more than

four latent variables. Therefore, when using the MLR estimator, I am setting the
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observed indicators to be read as continuous measures. Ordered response formats

with at least five categories does have evidence for being treated as continuous in

single level analyses (Rhemtulla et al., 2012).

ULSMV. Unweighted least squares (ULS) estimator uses the identity matrix

to weight the least-squares portion of the optimization function. This means that

each (co)variance component in the model contributes equally base on magnitude of

discrepancy to the fit of the solution In Mplus, the ULS estimator is only available for

the single-level analyses. However, for two-level analysis this estimator is not available,

but an alternate form of ULS is available: unweighted least-squares parameter and

standard error estimates with mean and variance adjusted χ2 statistic (ULSMV).

WLSMV. The weight least squares mean and variance adjusted (WLSMV)

estimator is a form of diagonally weighted least-squares (DWLS). DWLS estimators

optimize the discrepancy function while weighting each (co)variance component dis-

crepancy based on the covariance among the (co)variance components. The DWLS

estimator was designed to account for the categorical nature of ordinal responses in

order to more precisely estimate the (co)variance components among ordered cate-

gorical responses.

Model Fit Indices

For factor analysis models, researchers find evidence for whether the hypothe-

sized relationships among items are representative of the observed data through fit

indices. Fit indices are broadly measuring how well a model reproduces the observed

relationships or how poorly the relationships are capture by the model, i.e. a measure

of goodness of fit versus a measure of badness of fit. If a researcher’s hypothesized

measurement model is able to represent and recapture the inter-correlations among

item, then the researcher has evidence that the hypothesized measurement model is
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appropriately specified. Below each of the measures of fit of interest in my project

that are innately reported by Mplus v8.2 when estimating MCFA models.

Measures of Goodness of Fit

The measures of goodness of fit are indicative of how much better of fit the

hypothesized model provides over a null model. A null model refers to a measurement

model where all items are assumed independent, which is the worst-case scenario and

generally is the worst fitting model. The first measure of goodness of fit is the χ2

statistic and the associated χ2 test. Each model estimated has an associated model

χ2, which is a statistical distribution that has an expected value equal to model

degrees of freedom. The χ2 test is known to be sensitive to sample size, meaning that

as sample size increases the test is likely to reject the null hypothesis that these data

fit the hypothesized model even when the model is correctly specified (Bollen, 1989).

Because the χ2 statistic has limited applicability, numerous other statistics based on

the χ2 are frequently used. These statistics are transformations of the χ2 statistic

that have seen broad applicability.

CFI. The comparative fit index (CFI) is a commonly used fit statistic that

is based on the model χ2 (Bentler, 1990). The CFI is a measure of improvement in

fit over the null model with a fixed range of zero to one, where higher scores mean

better fit.

CFI = 1− max (χ2
H − dfH , 0)

max (χ2
H − dfH , χ2

N − dfN , 0) (3.7)

The recommended minimum value for CFI is .95 (Hu & Bentler, 1999).

TLI. The Tucker-Lewis index (TLI) is another measure of fit over the null

model that is non-normed (Bentler & Bonnett, 1980; Tucker & Lewis, 1973). The TLI

is non-normed because the range of possible values is not restricted, where values

greater than (or less than) one are possible. Although, TLI values above one are

29



typically rescaled to one in practice. But, just like CFI, higher values of TLI are

indicative of better fit.

TLI =
χ2

N

dfN
− χ2

H

dfH

χ2
N

dfN
− 1

(3.8)

The recommended minimum value for TLI is .95 (Hu & Bentler, 1999).

Measures of Badness of Fit

Of interest in this project, are a few measures of lack of fit or how badly the

hypothesized model fits the observed data. Three measures are of interest: the RM-

SEA, SRMRW, and SRMRB. Smaller values on these fit statistics are indicative of

better fit.

RMSEA. The root mean square error of approximation (RMSEA) is a measure

of lack of fit (Steiger & Lind, 1980). The RMSEA describes how well the hypothesized

model is represented in the observed data. The comparison is accomplished by a

measure of the deviation of what is observed

RMSEA =

√√√√max (χ2 − df, 0)
df(N − 1) (3.9)

The RMSEA has a known population distribution. Because the distribution is

known based on a noncentral F-distribution, a confidence interval can be constructed.

Usually, a 90% confidence is reported for the RMSEA. The recommended minimum

value for RMSEA is .06 (Hu & Bentler, 1999).

SRMR. The standardized root mean square residual (SRMR) is an aggregate

measure of the deviation of the observed correlation matrix to the model implied

correlation matrix (Jöreskog & Sörbom, 1981). Ideally, the average difference between

the observed and expected correlations is minimal, and smaller values represent better

fitting models. In MCFA, two difference SRMR are reported based on each level’s

covariance matrix. The level-1 SRMR is known as SRMR-Within (SRMRW). The
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level-2 SRMR is known as SRMR-Between (SRMRB). The computation of each of

these measures is roughly equivalent conditional on which covariance matrix is under

consideration. Generally, SRMR is computed as the standardized difference between

the observed correlations and the model implied correlations about variables as shown

below.

SRMR =

√√√√√√2∑p
j=1

∑i
k=j

(
sjk−σ̂jk√
sjjskk

)2

p(p+ 1) (3.10)

where p is the total number of variables in the model, sjk and σjk are the sample

and model implied, respectively, covariance between the jth and kth variables. For

the SRMR, generally acceptable values less than .08 are used. However, Hu and

Bentler (1999) suggested values less .06 alone or .08 in combination of other within

recommended ranges are indicative of good fit.

In Mplus, SRMR is estimated slightly differently than shown in Equation 3.10.

The computation extends the definition above by accounting for the meanstructure,

multilevel structure, and categorical nature if applicable. The technical details of the

computation of SRMRW and SRMRB in Mplus v8.2 is out of scope for this article,

and the interested reader is referred to B. O. Muthén and Asparouhov (n.d.) for more

details.

Data Generating Process

Data for this project were generated using Mplus v.8.2 (L. Muthén & Muthén,

2017) utilizing the MONTECARLO command along with MplusAutomation (Hal-

lquist & Wiley, 2018) package in R (R Core Team, 2018).

Fixed Design Factors

Data were generated from a factor model with 10 items and two correlated

factors at both levels. Across levels, the structure and factor loadings were specified to

be invariant. The factor loadings were set to 0.60, which corresponds to the lower end
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of strong factor loadings (DiStefano & Hess, 2005). At level-1, factors were generated

with a fixed unit variance. Fixing the factor variance to one made specifying the level-

1 correlation simple, meaning all that is needed is specifying the covariance to the

correlation. The factors at each level were specified to have a correlation of .3, similar

to Hsu et al. (2015). The level-2 factor (co)variances depended on the ICC condition,

and more detail is given in the ICC section of manipulated factors. The correlation is

constant, but the specific value of (co)variance at level-2 changed across conditions.

Figure 3.1 shows the population structure of the MCFA simulated for one of

the ICC conditions. The two factors were measured with 6 items and 5 items re-

spectively. Notice that one indicator is cross-loaded on both factors at both levels

in the population. Previous studies of model fit measures have typically generated

data from a population structure with at least one cross-loading so that the effects

of misspecification can be examined, for examples see Hsu (2009); Hsu et al. (2015);

Hu and Bentler (1998, 1999); Navruz (2016); Wu and Kwok (2012).

Indicator Distribution

The observed indicators were generated to be ordered categorical, e.g. Likert-

type responses. One of the difficulties in working with categorical indicators in MCFA

is correctly specifying the variance of the observed indicators. For factor models, there

is an interdependence between the factor variance, factor loading(s), indicator residual

variance, and total variance of of the latent response continuum. The relationship

between a single factor and a single underlying continuum in a single level factor

analysis is expressed in Equation 3.11

V ar(y∗i ) = λ2
iφ+ ψii (3.11)

where V ar(yi) is the total variance of item i, λ2
i is the factor loading of item i with

factor φ, and ψii is the residual variance of item i. The scale of latent response
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Figure 3.1. Simulation data generating model specification.
Note. The observed variance of each indicator is fixed to one across all items with an
observed and latent ICC of .1.
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continuum can be set by either fixing the total variance of the fixing the residual

variance.

This relationship extends to MCFA, and is used to set the observed variance

based on factor loadings and residual variances. The total variance of y∗ for a single

item with no cross-loadings in MCFA was found with

V ar(y∗) = λ2
wφw + ψw + λ2

bφb + ψb (3.12)

where each of the components above are analogous to the single level pieces but for

the level-1 and level-2 models. This information was used to establish the observed

variance of each item.

The observed variance was controlled by adjusting the thresholds for the cat-

egories. The items were generated with approximately unit variance and bell-shape

distribution based on the thresholds for latent response variables. I chose this distri-

bution to represent ideal conditions of polytomous response data given the limited

research in this area. Variances for discrete response sets can be found in the popu-

lation using the following method.

(1) Calculate the proportion of responses, i.e. response probability, for each or-

dered category

(2) Estimate the squared expected value (squared average, [E(X)]2 ) by multi-

plying the probability of each category by the coded value for that category,

i.e. 0, 1, 2, etc., and then sum across categories. Then square this sum.

(3) Estimate the expected value of the squared scores (E(X2)) by multiplying the

probability of each category by the coded value for that category squared, i.e.

02, 12, 22, etc., and then sum across categories.

(4) The difference between the expected value of the squared scores and the

squared expected value is the variance (V ar(X) = E(X2)− [E(X)]2).
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The above steps allowed the variance to be estimated based on the probability of re-

sponding to each category. The response probabilities are shown in Table 3.1. Based

Table 3.1

Response probabilities for simulating unit variance
Response Category Value Probability Threshold1

Strongly Disagree 1 0.0675
Disagree 2 0.2325 -1.95
Neutral 3 0.4000 -0.68
Agree 4 0.2325 0.68
Strongly Agree 5 0.0675 1.95

Note. 1 Thresholds for item 1 with ICC of .2, and variance
of y∗ is 1.7.

on the response probabilities, the threshold values necessary for categorizing the la-

tent response continuum were computed. The latent response continuum is assumed

normally distributed with a mean of zero and standard deviation (N(0,
√
V ar(y∗))

prior to being categorized. The V ar(y∗) is found based on the simulation condition of

level-2 variances. An R script was written to compute the thresholds based on the de-

sign factors and is given in Appendix A. Because five categories were simulated, four

thresholds are needed to categorize the latent response continuum. The four threshold

categorize the continuum based on the scheme given in Equation 2.5. Unique thresh-

olds were needed for item 6 because of the cross-loading and for different conditions

because of varying levels of residual variance at level-2. The thresholds for each ICC

condition are reported in Table 3.2.

Manipulated Design Factors

Factors that varied across simulation conditions are indicator ICC, latent vari-

able ICC, number of groups, and number of level-1 units.
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Table 3.2

Model generating thresholds across all conditions
Condition Thresholds

ICCL ICCO Item Variance1 τ1 τ2 τ3 τ4

.1 .1 1 1.509 -1.83644 -0.64431 0.64431 1.83644

.1 .1 6 2.148 -2.19109 -0.76874 0.76874 2.19109

.1 .3 1 1.829 -2.02173 -0.70932 0.70932 2.02173

.1 .3 6 2.468 -2.34857 -0.82399 0.82399 2.34857

.1 .5 1 2.399 -2.31534 -0.81233 0.81233 2.31534

.1 .5 6 3.038 -2.60560 -0.91417 0.91417 2.60560

.5 .1 1 1.830 -2.02196 -0.70940 0.70940 2.02196

.5 .1 6 2.982 -2.58107 -0.90556 0.90556 2.58107

.5 .3 1 2.150 -2.19162 -0.76892 0.76892 2.19162

.5 .3 6 3.302 -2.71603 -0.95291 0.95291 2.71603

.5 .5 1 2.720 -2.46508 -0.86486 0.86486 2.46508

.5 .5 6 3.872 -2.94113 -1.03188 1.03188 2.94113

Note. 1 Variance of latent response variable prior to categorization. ICCL is the
ICC for the latent variables, ICCO is the ICC for the observed variables.

Intraclass-Correlation

The intraclass-correlation (ICC) is the proportion of variance accounted for

by group membership; in other words, how much variability in the observed scores

is due differences in how groups response to the questions on average. The ICCs

were manipulated by fixing the residual variance at level-1 to one and changing the

level-2 variance, which is a similar approach to Navruz (2016). In Mplus this was

accomplished by using the command: PARAMETIZATION = THETA. The default

parameterization for ordered categorical data is DELTA, which fixes the latent re-

sponse distribution to have unit variance instead of the residual variance. Hsu (2009)

established the ICCs using the DELTA parameterization when simulating dichoto-

mous indicators, and manipulated the values of the ICCs using the factor loadings.

The ICC for the is calculated as proportion of level-2 variance to level-1 variance
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(Heck & Thomas, 2015, pg. 159).

ICC = ψb
ψb + ψw

(3.13)

where ψb is the variance for level-2 and ψw is the variance for level-1.

Observed Variable ICC. In this study, three different ICC values .1, .3, and

.5 were investigated for each indicator (ICCO). Each of the indicator ICCs were ma-

nipulated by changing the residual variance at level-2 of each item. The level-2 item

variances were .11, .43, and 1 for each of the ICC conditions, respectively.

Latent Variable ICC. Furthermore, the latent variable ICCs (ICCL) were

manipulated. Values of .1 and .5 were investigated corresponding to a low and high

level.

Number of Groups

The number of groups (N2) is known to be one of the most influential com-

ponents to estimation of MCFA. For this investigation, four different group sizes is

under investigation, namely 30, 50, 100, and 200.

Number of Level-1 Units

The number of units sampled within each group (N1) was held constant for

simplicity with three different levels. The number of units varied among 5, 10, and

30.

Summary of Model Fitted

The major design aspect of this study is the identification of the correctly spec-

ified model amongst misspecified models. For each generated dataset, four different

model specifications were fit, namely

(1) Level-1 and level-2 measurement model are correctly specified (C)
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(2) Level-1 measurement model is misspecified (M1)

(3) Level-2 measurement model is misspecified (M2)

(4) Level-1 and level-2 measurement models are misspecified (M12)

The misspecification in each of these levels omits the cross-loadings at the desired

level(s).

In additional to model specification, three different estimators were tested. This

creates an additional layer of models that were estimated within each condition. The

MLR, ULSMV, and WLSMV estimators were each used on the datasets generated in

each condition.

Influence of Design Factors

The influence of manipulated design factors on the distributions of each fit

statistic (i.e. CFI, TLI, RMSEA, SRMRW, and SRMRB) was assessed with two-way

factorial ANOVAs. Using an experimental design framework to summarize the results

of Monte Carlo simulation studies provides a rigorous framework for describing the

large quantities of data (Harwell, 1992). For each fit statistic, the overall influence

of all interactions and main effects were assessed with ω2 and partial-ω2 (Maxwell &

Delaney, 2004). This analysis design is extended for each estimator.

ROC Analysis for Fit Index Cut-Off

The cut-off values established by Hu and Bentler (1999) were determined, in

part, by an inspection of the rejection rates of various cut-off criteria. In some con-

ditions, the rejection rates were based on a rule with two different fit statistics. A

rejection rate is the proportion of observed fit statistic value was outside of the cut-

off criteria range. This value is also sometimes called a hit-rate, and the inverse is

called the acceptance rate. In this study, I investigated acceptance rates for correctly

specified models across a range of cut-off criteria. This is extremely valuable infor-
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mation, because knowing the lower bound for plausible values of fit indices just due

to random variation allows the creation of guidelines for use of fit statistics. This is

essential because many fit indices do not have an easily derivable analytic distribution.

The use of acceptance rates alone does not tell the whole picture of the ability of

fit indices to identify the correctly specified model. Furthermore, misspecified models

may also have values common fit statistics that satisfy the cut-off criteria (e.g., the

CFI > .95). Thus, I conducted receiver-operating-characteristic (ROC) analysis to

study the relationship between the sensitivity and specificity of cut-off criteria of

each fit statistic. Sensitivity refers to how often the cut-off criteria correctly identifies

the correct model, which can be optimized by making the criteria liberal and easy to

meet. Specificity refers to how often only the correct model is identified, which can be

optimized by making the criteria as conservative as possible and difficult to meet. A

trade-off between these two criteria is therefore necessary as both are aimed at being

optimized. The trade-off can be quantified by calculating the area under the curve

(AUC) across a range of cut-off criteria.

In addition to the calculation of AUC, the partial-AUC (pAUC) was calculated.

The pAUC represented the area under the curve for a range of the curve. That is, the

classification quality is not only interest across all possible combinations of specificity

and sensitivity, but on how sensitive an identifier is that is highly specific. This means

that we restrict the range of our ROC curve to only the most specific (i.e., specificity

of .9-1 or some other range of interest) to see how much area under this region is

capture by our classifier. In this paper, I only reported standardized pAUCs so that

the scale would be the same as tradition AUCs where 1 is perfect discrimination and

.5 is no discrimination.
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Simulation Summary

For each condition, 500 replications were used leading to 36,000 datasets being

generated. Additionally, for each dataset simulated, four model specifications by three

estimators were tested. Therefore, 12 models were estimated for dataset with a total

of 432,000 models estimated.

The specific outcomes for this study are

(1) the distribution of fit statistics (CFI, TLI, RMSEA, SRMRW, and SRMRB)

across design factors,

(2) influence of manipulated design factors (ω2 and partial-ω2),

(3) performance of fit statistic cut-off criteria. Tested with ROC analysis and

acceptance rates across conditions and estimators.

In addition to the above outcomes, convergence rates of fitted models across conditions

were reported along with any other estimation issues.
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CHAPTER FOUR

Simulation Results

Convergence and Admissibility

The entirety of the results of this simulation study are available online (Padgett,

2019). For each of the 72 conditions, 500 replications per cell were estimated. However,

in Monte Carlo simulation studies the rates of convergence and the proportion of

admissible solutions must be checked prior to examination of results. Convergence is

the number of times Mplus returned a result whereas the admissibility is the number

of properly estimated solutions (i.e., no negative variances or impossible values). In

keeping with previous simulation studies (DiStefano & Morgan, 2014; Flora & Curran,

2004; Yang-Wallentin, Jöreskog, & Luo, 2010) these improper solutions were removed

from downstream analyses because they do not provide useful information (Forero et

al., 2009). The remaining models were used in all subsequent analyses for summarizing

model fit statistics and for graphic displays.

All three estimators converged at high rates across conditions. The ULSMV

estimator exhibited the lowest convergence rates, but these rates were still about

97% of all models, see Table 4.1 for more details. A more fine grained breakdown

of convergence rates across all 72 conditions, models and estimators was provided in

Appendix C Table C.1. The lowest rates of convergence (.842-.866) were found when

the level-1 model was misspecified (M1), sample sizes were low (N1 = 5, N2 = 30),

and the estimator was WLSMV. The ULSMV and WLSMV estimators had similar

rates of convergence across most conditions, though. Lower rates of convergence also

tended to occur when the latent variable ICC (ICCL) was low. However, convergence

was less of an issue than properly estimated solutions (i.e., admissibility).
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Table 4.1

Proportion of converged and admissible solutions
Convergence Admissibility

Model MLR ULSMV WLSMV MLR ULSMV WLSMV
C 1.000 0.999 1.000 0.834 0.765 0.722
M1 0.982 0.974 0.965 0.731 0.610 0.524
M2 1.000 0.988 1.000 0.832 0.772 0.733
M12 1.000 0.985 0.992 0.830 0.641 0.617

Note. Each cell in the Convergence side of the table is out of 36,000 pos-
sible fitted models (500 rep. × 72 conditions). Each cell size in the Ad-
missibility side of the table is conditional on the convergence rate for the
corresponding cell. For example, for correctly specified models (C) under
MLR estimator had a total of 30,024 (32, 000 × 1 × 0.834) models with
usable information. MLR = maximum likelihood with robust standard
errors; ULSMV = unweighted least squares mean and variance adjusted;
WLSMV = weighted least squares mean and variance adjusted; C = cor-
rectly specified models; M1 = model misspecified at level-1; M2 = model
misspecified at level-2; and M12 = model misspecifed at both levels.

Across the model specifications and estimators, the highest rates of admissibility

solutions were below 85%. The WLSMV estimator had the lowest rates of admissible

solutions across model specifications (see Table 4.1). This is in line with previous

simulations studies of WLSMV (DiStefano & Morgan, 2014; Forero et al., 2009).

Models that were only misspecified at level-1 had the lowest rates of proper solutions.

The rates of proper solutions for each cell of this design is broken down in Table

C.2. When the level-1 model was misspecified numerous conditions resulted in zero

usable cases. For example, using ULSMV or WLSMV resulted in zero usable cases

with then ICCL = .5 and ICCO = .1 for most sample sizes. Interestingly, the rates of

admissible solutions increased for correctly specified models as sample size (N1 and

N2) increased, but decreased as sample size increased for incorrectly specified models

at level-1. This trend was not observed for incorrectly specified models at level-2 or

misspecified models at both levels.
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The high rates of inadmissible solutions across some study conditions is concern-

ing, but these rate are not unusual in Monte Carlo simulation studies with categorical

CFA (DiStefano & Morgan, 2014; Forero et al., 2009; Yang-Wallentin et al., 2010).

For example, DiStefano and Morgan (2014) reported zero usable replications under

one condition of low sample size with skewed indicator distribution. In this study, the

number of usable replications varied across conditions and model specification, and

the remaining analyses may be limited by this reduction in sample size. For example,

ROC analyses may not have sufficient number of cases in the misspecified models to

be able to adequately differentiate between correct and incorrect specification.

Effect of Study Design Factors

The effects of the study design on the distribution of fit statistics was investi-

gated using an experimental design framework (i.e., ANOVA). Analyzing Monte Carlo

simulation experiments using an ANOVA approached is recommended for distilling

the important contributions of each chosen design factor on the outcomes of inter-

est. In this study, six design factors were of interest; namely, the number of level-1

sampling units (N1), the number of groups sampled (N2), the ICC for observed vari-

ables (ICCO), the ICC for latent variables (ICCL), the model specification, and the

model estimator. A full factorial ANOVA was not investigated for each fit statistic

for two major reasons. First, the cells of the full factorial would be sparse under many

conditions. The number of usable cases in multiple cells of the design were zero or

less than 5% of the intended sample size of 500 per cell (see Table C.2). Therefore,

the full factorial would not be able to properly estimate the effect of some higher

order interactions. Secondly, higher order interactions do not provide a practically

useful interpretation that would help guide researchers on the use of the chosen fit

statistics. The bivariate interactions of all design factors provides a straightforward

investigation of the impact of these factors on the distribution of each fit statistic.
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The results of the ANOVA for each fit statistic are reported in Table 4.2. The

results are reported as the partial-ω2 effect size estimates. The meaning of each value

can be interpreted as follows for the N1 (number of level-1 units) effect. For CFI, 8.4%

of the variability in observed scores can be attributed to the number of level-1 units

(N1) that were sampled per group after controlling for all other design factors (i.e.,

level-2 sample size, observed and latent ICCs, model specification, and estimator).

Table 4.2

Summary of ANOVA by effect size estimates with partial-ω2

Effect CFI TLI RMSEA SRMRW SRMRB
N1 0.084 0.084 0.163 0.658 0.179
N2 0.028 0.029 0.023 0.666 0.581
ICCO 0.011 0.011 0.140 0.159 0.364
ICCL 0.010 0.010 0.008 0.042 0.138
Model 0.418 0.417 0.600 0.770 0.078
Estimator 0.051 0.051 0.261 0.449 0.191
N1:N2 0.076 0.076 0.060 0.281 0.023
N1:ICCO 0.010 0.011 0.005 0.000 0.140
N1:ICCL 0.001 0.001 0.009 0.005 0.043
N1:Model 0.002 0.002 0.010 0.113 0.002
N1:Estimator 0.004 0.004 0.004 0.015 0.000
N2:ICCO 0.003 0.003 0.020 0.010 0.018
N2:ICCL 0.012 0.012 0.005 0.007 0.058
N2:Model 0.007 0.007 0.043 0.097 0.005
N2:Estimator 0.072 0.072 0.149 0.074 0.010
ICCO:ICCL 0.007 0.007 0.008 0.001 0.117
ICCO:Model 0.016 0.016 0.062 0.006 0.023
ICCO:Estimator 0.014 0.014 0.042 0.085 0.001
ICCL:Model 0.040 0.040 0.068 0.017 0.050
ICCL:Estimator 0.029 0.029 0.002 0.108 0.008
Model:Estimator 0.043 0.043 0.065 0.026 0.004

Note. The meaning of each value can be interpreted as follows. For example, for the effect
of level-1 sample size (N1), 8.4% of the variability in observed CFI scores can be attributed
to the number of level-1 units were sampled per group after controlling for all other design
factors (i.e., N2, ICCO, ICCL, and bivariate interactions).

44



The results for CFI and TLI were nearly identical. The most influential factors

on observed distribution of CFI and TLI is the model specification (41.7 and 41.8%

for CFI and TLI, respectively), and the next highest estimated effects were level-1

sample size (N1) that came out to be approximately equal at 8.4%.

In this simulation experiment, five of the design factors accounted for at least

10% of the variability in RMSEA scores after controlling for all other effects. The five

factors are level-1 sample size (N1), observed variable ICC (ICCO), latent variable ICC

(ICCL), model specification, model estimator, and the interaction between number

of groups (N2) and estimator. These effects accounted for between 14% to 60% of

variability in RMSEA after controlling for all other effects. The interaction effect of

N2 and estimator is especially interesting given that N2 itself did not account for

much variation in RMSEA scores (i.e., approximately 2.3%). This interaction effect

would mean that the influence of the number of groups on the distribution of RMSEA

depends on which estimator used. The dependent effect of number of groups is that

for MLR, as the number of groups increases the distribution of RMSEA becomes less

variable with lower values on average. For ULSMV and WLSMV, as the number of

groups increases the distribution also becomes less variable. However, for these least-

squares estimators, the values of RMSEA either do not change on average or slightly

increase on average as level-2 sample size increases.

Five other interaction effects accounting for more than 10% of variability were

also found across the SRMRW and SRMRB statistics. The model specification ac-

counted for a large portion of variability (77%) for SRMRW but only a small portion

(7.8%) for SRMRB. This differential effect is consistent with Figure 4.4 and Figure

4.5. Because SRMRB was not heavily influenced by model specification, which was

the point of investigating SRMRB for model diagnostic utility, I focused the remain-

der this discussion on SRMRW. Within this study, three interaction effects account

for greater than 10% of variability in SRMRW values after controlling for all other
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factors. The interactions were 1) effect of number of level-2 units is depends on the

number of level-1 units sampled (partial-ω2 = .281), 2) the effect of number of level-1

unit depends on model specification (partial-ω2 = .113), and 3) the effect of ICCL

depends on the model estimator (partial-ω2 = .108). Additional information on the

effects of these design factor are given in Table B.1, similar trends are present. But

this table reports ω2, which does not control for “off” effects.

Distribution of Fit Statistics

The distributions of fit statistics across model specification and estimators are

shown in Figures 4.1, 4.2, 4.3, 4.4, and 4.5. These figures demonstrate the variability

in the distribution of each commonly used fit statistic varies across model specification

and estimator. The marginal distributions of all fit statistics across all 72 conditions

are reported in Appendix E. In the results that follow, I mainly focused on the how

the distribution of fit statistics varied (or lack of variation) across estimators and

model specification. The estimator and model effect were the focus because these two

effects accounted for the most variability in all fit statistics.

The distribution of CFI seems to have two major features that vary across model

specifications and model estimators (see Figure 4.1). The means of CFI values dif-

fered across model specification. The most obvious differences in means of CFI scores

occurs when the level-1 model is misspecified. This trend is seen across all estimators.

Secondly, the distribution of CFI changes in variability mostly due to which estimator

was used. For example, the range of all CFI scores under WLSMV is only about .6

to 1 while for MLR the range spans from 0 to 1 (i.e., the full range of potential CFI

scores). These results were also found only using one type of misspecification (i.e.,

the omission of one cross loading). MLR also yielded the lowest value for a correctly

specified model (CFI=.214) and this occured in condition 1 where sample sizes were
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Figure 4.1. Distribution of CFI across estimated models and estimators.
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported cut-off
for CFI at .95.

smallest (N1 = 5, N2 = 30) and ICCs were low (ICCL = .1, ICCO = .1). This trend

of unequal variability is found primarily between estimators and not models.

For the TLI statistic, a some similar trends compared to CFI can be seem when

looking at the distribution across model specification and estimators (see Figure 4.2).

The trend similar between CFI and TLI is especially similar in terms of how variability

in TLI values changes across estimators. The WLSMV had the least variability in TLI

estimates. Another similarity between CFI and TLI is the potential for extremely low

estimates of TLI even for correctly specified models (e.g., see Figure 4.2 where many

values resulted in values less than .75 across estimators). In contrast to CFI, the TLI

scores under MLR estimation yielded greater separation in means between model

specification. The observed difference between the Q3 for model C and Q1 for model

M1 are greater for TLI and CFI. Lastly for TLI, the IQR for models M1, M2, and
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Figure 4.2. Distribution of TLI across estimated models and estimators.
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported cut-off
for TLI at .95.

M12 is greatest under the ULSMV estimator, meaning that the potential range for

likely values is greatest with the ULSMV despite MLR returning more extreme cases.

The reader is cautioned on the interpretation of the TLI scores because TLI is

non-normed, meaning the potential range of scores is between positive and negative

infinity. TLI doesn’t have the range specification that CFI does. In this project, all

TLI scores greater than one were rescaled to 1, as is commonly done in practice. Also,

all values less than zero were scaled to zero.

The distribution for RMSEA is shown across models and estimators in Figure

4.3. One aspect of the distribution of RMSEA that immediately stands out is that

for ULSMV and WLSMV nearly all estimates fall below the commonly used cut-

off of .06. This trend is even more apparent when one looks at the distribution of

RMSEA across all conditions irrespective model and estimator (see Figure E.3 in

the Appendices). Additionally, across all models and estimators, the IQRs for the
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Figure 4.3. Distribution of RMSEA across estimated models and estimators.
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported cut-off
for RMSEA at .06.

distribution of RMSEA were below the commonly used cut-off. However, despite the

astoundingly low estimates across all conditions and estimators, the estimates for

model C were lower on average. The largest changes in RMSEA appear to due to

misspecification of the level-1 factor structure.

The distribution for SRMRW is shown across models and estimators in Figure

4.4. SRMRW is designed to help detect when the level-1 (Within) covariance struc-

ture is misspecified (Hsu et al., 2015). Two major features stand out for SRMRW.

First, there appears to be a clear discrimination between models that have a correctly

specified level-1 model and those models that do not (similar to CFI, TLI, and RM-

SEA). This can be seem by apparent differences between the IQRs across models, and

this pattern holds across estimators. Despite similar patterns across estimators the

ULSMV yielded the most variable estimates on average across model specification,

but MLR resulted in the highest values for incorrect model specification. Secondly, no
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Figure 4.4. Distribution of SRMRW across estimated models and estimators.
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported cut-off
for SRMR at .08.

obvious difference between model C and model M2 can be discerned at first glance.

This lack if discrimination between model C and moel M2 is expected given that

SRMRW approximately estimates the standardized average distance between the ob-

served within covariance matrix and the model implied covariance matrix (see the

Methods section on SRMRW for more information on the computation).

The distribution for SRMRB is shown across models and estimators in Fig-

ure 4.5. SRMRB is designed to help detect when the level-2 (Between) covariance

structure is misspecified (Hsu et al., 2015). One major feature of the distributions of

SRMRB stands out. That one feature is little variation we observed between models

and estimators. Prior literature suggested that SRMRB would perform best at dis-

criminating between a correct and incorrect level-2 covariance structure specification.

However, based on Figure 4.5 we could not identify a clear pattern to SRMRB across

50
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Figure 4.5. Distribution of SRMRB across estimated models and estimators.
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported cut-off
for SRMR at .08. We fixed the range to be 0,1 for viewing purposes; however, the
max value we observed was 8.49.

models and estimators. There is a slight visible increase in thevalues of SRMRB under

estimation with MLR, but this increase is so small that there practically no difference.

Aside from the small amounts of variability observed among model specifica-

tions, we noticed one peculiar attribute of the distribution of SRMRB in our study.

Some excessively large values were observed in Conditions 1 and 7. In condition 7,

where the number of groups (N2 = 30) with units per group (N1 = 10) with low ICCs

(ICCL = .1, ICCO = .1), the max value observed was 8.49 for an apparently admis-

sible solution occurred under WLSMV, Model M1, and according to CFI, TLI, and

RMSEA, this model fits perfectly, and the χ2 test of goodness of fit was not rejected.

The highest value observed for Model C was 2.54, in the same condition 7. Both of

these large estimates were based on the same data (Rep. 489) in condition 7, so it

possible that these data simply did not provide enough variability in observed scores
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Table 4.3

Summary of fit statistics across model specification and estimators
Estimator χ2 CFI TLI RMSEA SRMRW SRMRB

Model C
MLR .820 .981 (0.04) .977 (0.05) 0.012 (0.01) 0.027 (0.02) 0.113 (0.06)
ULSMV .977 .989 (0.03) .987 (0.04) 0.004 (0.01) 0.037 (0.02) 0.082 (0.05)
WLSMV .975 .994 (0.02) .993 (0.02) 0.005 (0.01) 0.031 (0.02) 0.088 (0.05)

Model M1
MLR .060 .910 (0.05) .892 (0.05) 0.036 (0.01) 0.049 (0.01) 0.112 (0.05)
ULSMV .478 .940 (0.05) .928 (0.06) 0.018 (0.01) 0.064 (0.02) 0.087 (0.05)
WLSMV .227 .937 (0.03) .924 (0.04) 0.028 (0.01) 0.059 (0.01) 0.094 (0.08)

Model M2
MLR .523 .970 (0.04) .963 (0.05) 0.018 (0.02) 0.027 (0.02) 0.137 (0.05)
ULSMV .716 .954 (0.07) .945 (0.08) 0.011 (0.01) 0.041 (0.02) 0.097 (0.04)
WLSMV .751 .985 (0.02) .982 (0.03) 0.010 (0.01) 0.032 (0.02) 0.104 (0.04)

Model M12
MLR .044 .899 (0.05) .880 (0.05) 0.039 (0.01) 0.049 (0.01) 0.131 (0.05)
ULSMV .424 .929 (0.06) .916 (0.07) 0.020 (0.01) 0.063 (0.02) 0.095 (0.05)
WLSMV .211 .933 (0.03) .921 (0.04) 0.028 (0.01) 0.059 (0.01) 0.099 (0.04)

Note. The reported values under χ2 are the proportion of times the χ2 test of goodness of
fit reported a p-value greater than α = .05. For remaining fit statistics (CFI, TLI, etc.) the
reported values are the average value for that fit statistic where values in parentheses are
the standard deviations.

for all the variances to be precisely estimated even though estimation terminated

normally.

The empirical distribution of each fit statistics were shown in Figures 4.1-4.5.

Next, the summary statistics of each fit index across model specification and estima-

tors are reported in Table 4.3. Additional tables for the summary of the fit statistics

across all conditions, models, and estimators are reported in Appendix D.

The summary of the χ2 test of goodness of fit is included in Table 4.3. For

correctly specified models, the reported value should be approximately .95. The value

should be .95 because this is the proportion of times the χ2 test resulted in a non-

significant p-value, meaning that p > α = .05. For all incorrectly specified models, this
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value should be close to .05, the Type I error rate. Under correctly specified models

estimated by ULSMV and WLSMV, the χ2 test resulted in a higher proportion of

non-significant hypothesis tests. However, the χ2 test also did return significant results

when there should have been (i.e., models M1, M2, and M12). The χ2 test performed

better when estimated under MLR at least in terms of error rates for incorrectly

specified models.

ROC Analyses Results

One of the defining features of using ROC analysis is the creation of ROC curves.

A ROC curve helps create a visual representation for the quality of classification

based on a systematically varying cutoff criteria. In this case, the cutoff criteria is

the value of the fit statistic that differentiate between a correctly specified model

and an incorrectly specified model. In MCFA models, there are three ways a model

can be misspecified (see Methods Summary of Models Fitted). Three ROC analyses

were initially performed for detecting 1) any misspecification (Model C versus Model

M1-M2-M12); 2) mispecification at level-1 (Model C-M2 versus Model M1-M12); and

3) mispecification at level-2 (Model C-M1 versus Model M2-M12).

The results for ROC analyses across conditions irrespective of estimator are

shown in Figure 4.6 and Table 4.4. The curves in Figure 4.6 help describe how strongly

each fit index discriminates between the correctly specified model and the misspecified

models. Irrespective of conditions and estimators, CFI, TLI, and RMSEA appear to

perform approximately equally. The first (left) panel of Figure 4.6 shows how the

predictive value for detecting the correct model out three specifications varies across

fit indices. SRMRW and SRMRB have a poor discriminate curve. The discrimination

of SRMRW and SRMRB can also be seen as inadequate or at least under performing

compared to CFI, TLI, and RMSEA based on the AUC value for each index reported
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Figure 4.6. ROC analysis curves for identifying correctly specified models.
Note. The Correct panel reflects the ROC analyses for identifying the data generating
model (i.e., the completely correct specification) over the three types of misspecifica-
tion. The Correct Level-1 ROC analyses reflect the comparison between models with
a correctly specified level-1 model versus models that have any misspefication of the
level-2 model (i.e., Models C and M2 vs. Models M1 and M12). The last comparison
of Correct Level-2 was among models with a correctly specified level-2 model versus
models with any level-1 misspecification (i.e., Models C and M1 versus Models M2
and M12).

in Table 4.4. SRMRB has a poor AUC of .598, though the performance of SRMRW

appears only slightly behind that of CFI, TLI, and RMSEA at.742.

SRMRW had a lower AUC than CFI, TLI, and RMSEA for detecting any

model misspecification detection. However, SRMRW provided the sharpest transition

for detecting a level-1 model misspecification (see middle panel of Figure 4.6). For

this middle panel, SRMRB has essentially zero predictive power of level-1 misspeci-

fication, because the curve is a a straight line along the diagonal. In the right most

panel, SRMRB performs as well as CFI, TLI, and RMSEA at predicting level-2 mis-

specification. Although this predictive performance is barely greater than chance for

all indices.

Despite the apparent poor performance of these fit statistics at detecting level-2

misspecification, there is at least potential for identifying whether there is any mis-

specification in a model. The results presented in Table 4.4 also provide the summary
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Table 4.4

Overall ROC analysis AUCs and optimized threshold
Index AUC1 pAUC2 Threshold3 Specificity Sensitivity
CFI 0.816 0.565 0.977 0.702 0.855
TLI 0.815 0.565 0.972 0.702 0.855
RMSEA 0.803 0.565 0.015 0.685 0.829
SRMRW 0.742 0.551 0.038 0.728 0.723
SRMRB 0.598 0.557 0.067 0.804 0.352

Note. 1 AUC = Area Under the Curve;
2 pAUC = partial-AUC (specificity of .9-1); and
3 Optimal-Threshold determined by best Specificity and Sensitivity.

information of the ROC curves given the left panel of Figure 4.6. The Overall optimal

threshold for CFI irrespective of estimator is .977, with an AUC of .816 and pAUC of

.565. These results break down to mean that, first, a cutoff value of .977 optimizes the

specificity and sensitivity of classification a model as correctly specified over any type

of misspecification. Secondly, an AUC of .816 means that there is approximately a

.816 probability that a model with a CFI value above .977 is correctly specified. And

lastly, that a pAUC of .565 represents the average sensitivity of correctly identify-

ing the estimating model conditional on being highly specific (i.e., specificity greater

than .9). That is, for CFI cut-offs that are highly discriminatory between correct and

incorrect model, these cut-off criteria are not sensitive enough to identify the correct

models.

The results for ROC analyses across conditions for each estimator are shown

in Figure 4.7. The overall trend across estimators was that a similar shape occurred

between the three types of ROC analyses performed (Correct,Correct Level-1 vs.

Correct Level-2), these three plots have a similar trend across estimators with only

minor differences. That is, the estimator effect is difficult to detect from a coarse view

of the ROC analyses. However, in Tables 4.5-4.7 subtle differences can be parsed a out

across estimators. One of these estimators differences was found in the identification
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(a) MLR Estimator
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(b) ULSMV Estimator
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(c) WLSMV Estimator

Figure 4.7. ROC analysis curves across estimators
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of correctly specified models (left most panels of Figure 4.7). The WLSMV estimator

yielded the sharpest curve for CFI, TLI, and RMSEA compared to MLR and ULSMV

(Figures 4.7a-4.7b). Under model estimation with WLSMV, these statistics appear

to performed best at identifying the completely correct model specification compared

to any form of misspecification. For more information see Table 4.5, where the AUCs

under MLR and WLSMV are almost identical.1 Another subtle difference among

these three estimators is the shape of the ROC curves under correctly specified level-

1 models. There is evidence of some differences among the signal to noise ratios being

examined, although the exact differences are difficult to interpret for Figure 4.7.

To parse out these subtle differences in estimator effects on model selection are

the results reported in Tables 4.5-4.7. Because we used smoothing for plotting the

ROC curves, the AUCs for WLSMV were slightly inflated.

The inflated AUCs of the smoothed ROC curves resulted in the apparent in-

crease in classification quality of WLSMV found in Figure 4.7c. However, the AUCs

for MLR and WLSMV were similar enough to potentially make the differences negli-

gible. Note, we did not conduct any formal statistical tests to compare these AUCs,

though these comparisons are possible for future investigations.

Similar to the overall ROC analyses, the SRMRB performed poorly at identify-

ing the correctly specified models across estimators (AUCs = .595-.601, see Table 4.5).

However, interestingly the resulting “best” threshold for SRMRB under estimation

with MLR was 0.08, which is the Hu and Bentler (1999) commonly reported cutoff

criteria. For SRMRB (and all other fit statistics), the pAUCs (i.e., AUC conditional

on a specificity range of specificity .9-1) across estimators ranged from .541-.627. This

poor range of pAUCs gives evidence that these fit statistics are inadequately sensi-
1 The differences be figures and reported AUCs are due to plotting with the smoothed curves

instead of the empirical distribution. This was accomplished with the “smooth()” function in pROC
with default settings in order to make graphing the final figures easier. The “smoothed” AUCs are
reported in the online supplement material with the code.
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Table 4.5

Completely correct specification ROC analysis AUCs and optimized threshold
by estimator

Index Estimator AUC1 pAUC2 Threshold3 Specificity Sensitivity
CFI MLR 0.841 0.627 0.967 0.746 0.834

ULSMV 0.780 0.541 0.973 0.628 0.888
WLSMV 0.836 0.571 0.982 0.682 0.896

TLI MLR 0.840 0.627 0.961 0.750 0.830
ULSMV 0.780 0.541 0.968 0.627 0.888
WLSMV 0.836 0.571 0.979 0.682 0.896

RMSEA MLR 0.830 0.625 0.024 0.735 0.843
ULSMV 0.770 0.541 0.012 0.596 0.855
WLSMV 0.832 0.571 0.014 0.689 0.872

SRMRW MLR 0.754 0.551 0.036 0.720 0.773
ULSMV 0.740 0.569 0.045 0.741 0.715
WLSMV 0.750 0.547 0.044 0.671 0.813

SRMRB MLR 0.600 0.563 0.083 0.800 0.366
ULSMV 0.595 0.568 0.056 0.838 0.324
WLSMV 0.601 0.563 0.062 0.822 0.345

Note. 1 AUC = Area Under the Curve; 2 pAUC = partial-AUC (specificity of
.9-1); and 3 Optimal-Threshold determined by best Specificity and Sensitivity.

tive to differences in model specification when being highly discriminant in model

selection is warranted.

In general, the discrimination of these common statistics appears low, but we

still need to make a decision as to the adequacy of model fit. To help with this

judgement, many researchers use Hu and Bentler (1999) cut-off criteria for CFI, TLI,

RMSEA, and SRMRW. However, these values were not recovered in our scenario

based on these ROC analyses for completely correct model selection. For CFI, the

lowest cutoff across the three estimators was .967 (so essentially .97) where WLSMV

returned the highest optimal threshold of .98. For TLI, a similar trend was found

as for CFI, except that optimal thresholds were .961-.979. RMSEA thresholds were

found to be much lower, which was likely due to sample size required for these data,

especially given that we already found RMSEA to be sensitive to level-1 sample size
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(see Table 4.2). SRMRW was yielded lower overall classification quality (AUC .74-

75). The thresholds were also lower, but the sensitivity at this threshold was also a

little lower than for CFI, TLI, and RMSEA. The SRMRB performed poorly enough

to where any threshold is essentially useless in this case.

Beyond complete model selection with these fit indices, there is potential that

these statistics can help identify where part of a model is correctly specified. The

ROC analyses for classifying models as having a correct level-1 model specification

are reported in Table 4.6.

Table 4.6

Correct level-1 specification ROC analysis AUCs and optimized threshold by
estimator

Index Estimator AUC1 pAUC2 Threshold3 Specificity Sensitivity
CFI MLR 0.925 0.888 0.950 0.944 0.854

ULSMV 0.737 0.543 0.974 0.760 0.735
WLSMV 0.924 0.756 0.968 0.875 0.886

TLI MLR 0.924 0.887 0.940 0.944 0.854
ULSMV 0.736 0.543 0.968 0.759 0.736
WLSMV 0.923 0.756 0.962 0.874 0.886

RMSEA MLR 0.899 0.868 0.027 0.939 0.817
ULSMV 0.745 0.543 0.014 0.670 0.748
WLSMV 0.916 0.731 0.020 0.840 0.880

SRMRW MLR 0.884 0.885 0.037 0.971 0.776
ULSMV 0.838 0.844 0.046 0.971 0.695
WLSMV 0.902 0.905 0.044 0.978 0.809

SRMRB MLR 0.513 0.504 0.134 0.651 0.388
ULSMV 0.494 NA4 0.081 0.516 0.497
WLSMV 0.500 NA4 0.084 0.473 0.550

Note. The CFI optimal threshold is bolded because the value is the exact same as
the Hu & Bentler (1999) recommended criteria. 1 AUC = Area Under the Curve;
2 pAUC = partial-AUC (specificity of .9-1);
3 Optimal-Threshold determined by best Specificity and Sensitivity; and
4 pAUC not computed due to error in the estimation.

The AUCs tended to be higher than from the previous ROC analyses across all

fit statistics except SRMRB. The pAUCs were also much better across fit statistics.
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This lends evidence that these fit statistics are not only sensitive across a wide range

of specificities (AUCs), but also provide discrimination and identification of correctly

specified level-1 models. However, when models were estimated with ULSMV, this

trend was only observed for SRMRW. The index with the highest AUC (.925) was

CFI, particularly when models were estimated with MLR. Interestingly, the optimal

threshold found for CFI under MLR was the commonly used cutoff of .95 (see Ta-

ble 4.6). Other commonly used thresholds were not found for any other statistic or

estimator.

The ROC analyses for classifying models as having a correct level-2 model

specification are reported in Table 4.7. The statistic that performed “best” was SRMR,

but, the AUCs only range from .602-.640. These statistics do not appear to help

discriminate among incorrect and correct level-2 models. This is contrary to some

previous simulation studies that found SRMRB to be useful in identifying level-2

misfit (Hsu et al., 2015).

Acceptance Rates for Correctly Specified Models

Acceptance rates are the proportion of times the correctly specified model has a

value on the fit index at or above (or below depending on the statistic) a given value.

A feature of an “optimal” threshold/cut-off value would be if the acceptance rate was

at least 95% of all observed values for correctly specified models. For each of the five

commonly used fit statistics investigated, the acceptance rate based on varying cut-off

criteria are reported in Table 4.8. The acceptance rates are separated into two chunks,

in the first lays CFI and TLI because they are scaled 0-1 with 1 being optimal. In

the second lays RMSEA, SRMRW, and SRMRB because they are scales such that

lower values are optimal. The reported hit rates in Table 4.8 are interpreted as the

proportion of admissible solutions that have a fit value within the range of the cut-off

criteria. For example, in the row for CFI, the value reported under the cutoff .91 is
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Table 4.7

Correct level-2 specification ROC analysis AUCs and optimized threshold by
estimator

Index Estimator AUC1 pAUC2 Threshold3 Specificity Sensitivity
CFI MLR 0.595 0.536 0.989 0.803 0.353

ULSMV 0.630 0.518 0.971 0.574 0.624
WLSMV 0.591 0.521 0.995 0.718 0.460

TLI MLR 0.592 0.536 0.987 0.803 0.353
ULSMV 0.629 0.518 0.966 0.573 0.624
WLSMV 0.589 0.521 0.994 0.718 0.460

RMSEA MLR 0.593 0.535 0.012 0.808 0.340
ULSMV 0.615 0.518 0.007 0.673 0.515
WLSMV 0.589 0.521 0.008 0.728 0.450

SRMRW MLR 0.514 0.503 0.031 0.660 0.373
ULSMV 0.525 0.511 0.032 0.786 0.283
WLSMV 0.521 0.506 0.033 0.651 0.390

SRMRB MLR 0.640 0.573 0.098 0.737 0.487
ULSMV 0.603 0.571 0.058 0.845 0.329
WLSMV 0.602 0.559 0.067 0.799 0.371

Note. 1 AUC = Area Under the Curve; 2 pAUC = partial-AUC (specificity of
.9-1); and 3 Optimal-Threshold determined by best Specificity and Sensitivity.

interpreted as 97.1% of admissible solutions for correctly specified models haing CFI

values at or above .91. The remaining values are interpreted analogously.

To obtain an acceptance rate of approx .95, the threshold would as low as .93

for CFI and .92 for TLI. For the second chunk of criteria, the cut-off would be .03

for RMSEA, .07 for SRMRW, and some value greater than .09 for SRMRB. The

only statistic to have somewhat converging evidence between acceptance rates and

the ROC analyses for an “optimal” cuf-off criteria is RMSEA. From the acceptance

rates, an optimal threshold may be approximately .03 as the upper limit. Based on

the ROC analysis reported in Table 4.4, the cut-off would be approx half at .015.

The global cut-offs discussed above do not account for the estimator effects that

are present in these results. The acceptance rates by estimators are presented in Table

4.9. For CFI and TLI, a consistent trend emerged that for the same cut-off WLSMV
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yielded the highest acceptance rate, ULSMV had the middle value, and MLR had the

lowest acceptance rate. This lends more evidence that using the same cut-off criteria

across estimators may not be optimal given the differences in acceptance rates of each

fit index across estimators. The changing acceptance rates would also lead to different

rates of correctly identifying the correct model based on the same model conditional

the estimator used.

Table 4.8

Acceptance rates of fit statistics for select cut-off criteria
Cut-off Value

Index 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
CFI 0.971 0.965 0.957 0.947 0.933 0.914 0.886 0.838
TLI 0.961 0.954 0.945 0.933 0.918 0.896 0.865 0.814

Cut-off Value
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

RMSEA 0.895 0.958 0.981 0.991 0.997 0.999 1.000 1.000
SRMRW 0.306 0.577 0.747 0.851 0.913 0.952 0.975 0.987
SRMRB 0.001 0.017 0.069 0.165 0.278 0.383 0.477 0.557

Note. These data are subset to only the correctly specified model (Model C).
Acceptance rates are the proportion of times the observed fit statistic fell
within the range of the cutoff criteria. For CFI and TLI, the values represent
the proportion of times the statistic was at least the cutoff value. For RM-
SEA, SRMRW, and SRMRB, the values represent the proportion of times the
statistics was at most the cutoff value.

The differences that were observed between ULSMV and WLSMV for RMSEA

were negligible. Both of the least-squares estimators however had higher acceptance

rate than MLR across most cut-offs. The exception is the cut-offs of .08-.1, where the

rates were nearly all a value of 1. The optimal cut-off for trying to get the acceptance

rate approximately .95 would depend on the estimator used. For MLR, the cut-off

value would be .04 while for ULSMV and WLSMV the cut-off value would be .02.
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The cut-off for SRMRW based on the acceptance rate would also depend on

the estimator used. For MLR, the cut-off was .06, which is higher than found by the

ROC analysis (.036, see Table 4.5). Estimation with ULSMV would result in a cut-off

of .09, which is higher than found by the ROC analysis (.045, see Table 4.5). Models

estimated with WLSMV resulted in an optimal cut-off of .07, which is higher than

found by the ROC analysis (.044, see Table 4.5). The cut-off is not consistent between

methods for trying to triangulate an optimal threshold for SRMRW. For SRMRB,

none of the cut-offs tested provided high acceptance rates across any estimators. So,

a cut-off higher than .1 may potentially be useful for SRMRB.
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CHAPTER FIVE

Discussion

Multilevel measurement models allow researchers to test hypotheses of complex

phenomena using data from complex sampling methods. The complex organizational

structure of educational and psychological data are particularly well suited for these

types of multilevel measurement models; however, finding evidence for the validity of

these measurement model specific is not well established. The specified measurement

models, the use of common fit indices (e.g., CFI, TLI, RMSEA, SRMRW, SRMRB)

should be interpreted with caution because the sensitivity of commonly used fit statis-

tics to misspecification may depend on the estimator used. The influence of robust es-

timators on fit indices in complex settings is still considerably unknown (Asparouhov

& Muthén, 2007; DiStefano & Morgan, 2014; Hsu, 2009; Navruz, 2016; Nestler, 2013).

For example, DiStefano and Morgan (2014) found that the CFI and RMSEA were

generally not sensitive to variation in number of response categories, nonnormality,

and sample size, but slightly poorer estimates of fit were observed when number of

categories was only two and the response distribution was skewed. In their study, the

performance of CFI and RMSEA may be because models were specified correctly. The

major difference in the current study is that the categorical CFA model is extended

into the multilevel space.

In multilevel CFA with categorical data, CFI and TLI was generally only in-

fuenced by misspecification of the level-1 model while only some evidence was found

that CFA was sensitive to sample size and estimator used. The similarities in perfor-

mance of CFI and TLI found here were not observed in previous simulation studies

of MCFA (Navruz, 2016). The distribution of RMSEA was found to be sensitive to

sample size, observed variable ICC and estimator. In particular, when the level-1
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sample size increased, the values of RMSEA tended to be smaller. When models were

estimated with ULSMV or WLSMV, RMSEA values were less variable and lower

on average than models estimated with MLR. However, this finding may be due to

estimation with MLR assumed the indicators were continuous and not categorical.

The observed estimates of SRMRW and SRMRB were sensitivity to many of

the design factors included, such as number of groups, number of units with a group,

observed variable ICC, latent variable ICC, and estimator. The effect of each of these

design factors is somewhat oversimplified because of the presence of numerous inter-

actions (see Table 4.2). One interaction particular interesting for SRMRW was how

the effect of estimator depended on the latent variable ICC. When the latent vari-

able ICC was low, WLSMV and ULSMV resulted in nearly identical distributions of

SRMRW, but when the latent variable ICC was high, the SRMRW estimates were

higher on average when estimated with ULSMV versus WLSMV. Additionally, these

common fit indices are not equally sensitive to misspecification of the level-1 model

versus the level-2 model.

The differences in sensitivity to model misspecification at different levels leads to

varying degrees of utility of these fit statistics. The difficulty in using these fit statistics

for MCFA is that misspecification could be due to the within- or between-group

model. This consideration is one of the reason the SRMR statistics are so conceptually

useful; that is, they guide researchers on which part of the model may be misspecified.

However, I only found the pooled within group statistic (SRMRW) to give useful

guidance on potential misspecification of the level-1 model. SRMRB was found to

be too variable across conditions and/or models to consistently discriminate between

a correctly and incorrectly specified between groups model. The SRMRB statistic

also returned some very large values for smaller number of groups. For example, in a

condition with a very small number of groups (30) returned an estimated SRMRB for

a correctly specified model of 2.54. After examining the output for this model, the only
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indication that an estimation issue occurred was that several of the items had zero

variation across a few groups. This feature of zero variation within group is commonly

found in multilevel models especially for groups with few observations and the impact

of such circumstances on estimation is unclear (see Mplus FAQ). Researchers may be

able to get fine grained information of the fit of each level’s model by using the level

specific indices proposed by Ryu and West (2009). However, only one additional study

was found that described these level specific statistics (Ryu, 2014). These level-specific

indices should be evaluated in future studies for applicability to MCFA and multilevel

SEM more generally.

One of the major contributions of this thesis is the use of ROC analysis for

investigating the performance of fit statistics for identifying misspecification. ROC

analysis provides methodologists a more rigorous tool for examining the results of

Monte Carlo simulation studies of model fit statistics for identifying model mispseci-

fication. The ROC analysis methods used in this study were fairly basic and could be

expanded upon to account for issues such as cell size differences. Using the methods

provided will guide researchers into more rigorous examinations of model fit and how

fit statistics perform in complex multilevel settings.

Recommendations for MCFA Fit Statistics

The availability of fit indices is intended to aid researchers in diagnosing misfit

and ultimately select the correct model for interpretation. Based on the mixed find-

ings of the current study, the utility of available fit indices for interpreting MCFA

models is may be limited. Researchers are strongly encouraged to seek more ways

of evaluating model fit beyond the fit indices commonly reported by Mplus. The fit

statistics described in Ryu and West (2009) appear promising to this end. If one is

going to use the commonly reported indices, they should be interpreted with caution,

especially when a small number of groups is used. The commonly used cut-off criteria
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may also be inappropriate depending on the estimator used. The recommended cut-

off criteria for CFI and TLI match those of those commonly used when the MCFA

model treats the ordered categorical data as continuous and estimated with MLR.

When a robust estimator is used different criteria were found to be needed. Across all

estimators, I found that SRMRB performed best at detecting level-2 misfit but this

statistic still does not discriminate between correct and incorrect level-2 models well

(see ROC analyses in Chapter 4). A summary of the recommended criteria for the

commonly used fit statistics is outlined in Table 5.1.

Table 5.1

Recommended cut-off criteria for fit
indices for categorical data in MCFA
Index MLR ULSMV WLSMV
CFI .95 .97 .98
TLI .95 .97 .98
RMSEA .03 .02 .02
SRMRW1 .05 .05 .05
SRMRB2 - - -

Note. 1 SRMRW should only be used for
finding evidence for the level-1 model spec-
ification.
2 SRMRB is not recommended unless there
is strong theoretical justification..

Delimitations

As with any simulation study, the results of only generalize to the limited condi-

tions examined. That said, the conditions chosen were selected to mirror conditions of

applied researchers as close as possible while still maintaining parsimony. Estimation

with MLR resulted in the most usable cases per cell on average, but this may have oc-

curred because data were treated as continuous. Using MLR in Mplus with categorical

data requires numerical integration across four dimensions (one dimension per latent

variable) that is computationally burdensome, so I treated these data as continuous in
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order to estimate these models in a reasonable amount of time. Additionally, the cells

of this design ended up with unequal sample sizes due to convergence issues and the

number usable replications. In some cells, the number of usable cases was zero (see

Table C.2). Proper solutions were checked by looking for negative variances; however,

another type of improper solution is impossible estimates of factor loadings. By only

checking for negative variances we may be underestimating the rate of admissible

cases. These factors that limit the sample size in some cells could have influenced

these results in unexpected ways and caused the impact of some design factors to be

underestimated. Future work could address how to estimate these types of models

under conditions that failed to converge or provide useful information.

Future Directions

The use of only one type of model misspecification (i.e., an omitted crossloading)

limits the generalizability of these finding; although, this is a commonly observed type

of model misspecification. Other potential sources of misspecification (i.e., residual

correlations among items, omitted factor correlation(s), incorrect number of factor(s)

specified, etc.) may result in different conclusions about distributions of these fit

statistics. Other types of misspecification can be investigated with these data, and

the generated data are available online (Padgett, 2019).

In this study, scope was limited to fit the performance of common fit statistics

to detect misspecification. Although, as already mentioned, there is a growing interest

in level specific fit indices for identifying more nuanced information on misfit (Ryu

& West, 2009). Future investigations of fit statistics in MCFA and multilevel SEM

would benefit from a deeper investigation into the performance of these statistics.

The estimation of these statistics are not easily available for investigation so future

work to clearly outline the estimation (e.g., provide code) would likely be of interest

to a wide range of researchers.
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The use of level specific fit measures may help researchers find evidence for

their model when the measurement model is not invariant across levels. In this study,

only one type of multilevel measurement model was investigated where the level-2

model reflects an aggregate of the level-1 measurement model. However, this may not

always be the case and allowing for varying covariance structures across levels may

also influence the performance of fit statistics since the level-2 model isn’t constrained

to have the same loadings as the level-1 model. Modeling different structure across

levels is becoming more common in applied examples of MCFA/MSEM when the

research interest is in level-2 constructs (Kim, Dedrick, Cao, & Ferron, 2016). Future

research should investigate methods for identifying when a more general structure

is necessary across levels. This line of research would need to identify considerations

from testing measurement invariance across levels and how to identify when a different

structure at level-2 if necessary.
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APPENDIX A

R Code for Threshold Generation

The following was used to generate threshold values for generating an observed
variance of 1 based on categorical responses. The code is generalized such that the
total variance is calculated for any number of cross loadings. The user needs to make
sure to set up each piece correctly with the information corresponding to population
model.

## Set up of population model specification
lambda _w <- matrix (c(.6 ,.6) , ncol =2) # factor loading (s) of

level -1
phi_w <- matrix (c(1 ,.3 ,.3 ,1) ,ncol =2) # factor variances level

-1
psi_w <- matrix (c(1)) # residual variances level -1
lambda _b <- matrix (c(.6 ,.6) , ncol =2) # factor loading (s) of

level -2
phi_b <- matrix (c(.25 ,.075 ,.075 ,.25) ,ncol =2) # factor

variances level -2
psi_b <- matrix (c (.25)) # residual variances level -2
## Total variance of latent response for a cross loaded item
## Note: %*% is matrix multiplication
Vyi <- lambda _w%*%phi_w%*%t( lambda _w) + psi_w + lambda _b%*%phi

_b%*%t( lambda _b) + psi_b
## Vector of Coded values for each category
## Note: coded values are arbitrary as long as sequential
X <- 1:5
## Vector of Response Probabilities
P <- c(.0675 , .2325 , .4, .2325 , .0675)
## Mean
sum(P*X)
## Variance of Observed Categorical Items
sum(P*X**2) - (sum(P*X))**2
## Threshold Generation
t <-numeric (4)
i <- 1
while (i <= length (P) - 1){

t[i] <- qnorm(sum(P[1:i]), 0, sqrt(Vyi))
i <- i + 1

}
t
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APPENDIX B

Additional effect size estimates for ANOVAs

Table B.1

Summary of ANOVA by effect size estimates with ω2

Effect CFI TLI RMSEA SRMRW SRMRB
N1 0.040 0.040 0.051 0.187 0.052
N2 0.013 0.013 0.006 0.193 0.329
ICCO 0.005 0.005 0.042 0.018 0.136
ICCL 0.004 0.004 0.002 0.004 0.038
Model 0.317 0.315 0.390 0.324 0.020
Estimator 0.024 0.024 0.092 0.079 0.056
N1:N2 0.036 0.036 0.017 0.038 0.006
N1:ICCO 0.005 0.005 0.001 0.000 0.039
N1:ICCL 0.000 0.000 0.002 0.000 0.011
N1:Model 0.001 0.001 0.003 0.012 0.000
N1:Estimator 0.002 0.002 0.001 0.002 0.000
N2:ICCO 0.001 0.001 0.005 0.001 0.004
N2:ICCL 0.005 0.006 0.001 0.001 0.015
N2:Model 0.003 0.003 0.012 0.010 0.001
N2:Estimator 0.034 0.034 0.046 0.008 0.002
ICCO:ICCL 0.003 0.003 0.002 0.000 0.032
ICCO:Model 0.007 0.007 0.017 0.001 0.006
ICCO:Estimator 0.006 0.006 0.011 0.009 0.000
ICCL:Model 0.018 0.018 0.019 0.002 0.012
ICCL:Estimator 0.013 0.013 0.001 0.012 0.002
Model:Estimator 0.020 0.020 0.018 0.003 0.001

Note. All values greater than .05 (i.e., more than 5% of variability ex-
plained) were bolded. The meaning of each value can be interpreted as
follows for the N1 (number of level-1 units) effect. For CFI, 4% of the vari-
ability in observed scores can be attributed to the number of level-1 units
(N1) were sampled per group.
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APPENDIX C

Convergence and Admissibility Across Conditions

Convergence Breakdown
This sections contains the breakdown of convergence rates across all conditions,

models, and estimators.

Table C.1

Convergence Across All Conditions, Models, and Estimators
ICCL = .1 ICCL = .5

Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
C MLR 5 30 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 5 50 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 5 100 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 5 200 1.000 1.000 1.000 1.000 1.000 0.998
C MLR 10 30 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 10 50 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 10 100 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 10 200 1.000 0.998 1.000 1.000 1.000 1.000
C MLR 30 30 1.000 1.000 1.000 1.000 1.000 1.000
C MLR 30 50 1.000 1.000 1.000 1.000 0.998 1.000
C MLR 30 100 1.000 1.000 1.000 1.000 0.996 1.000
C MLR 30 200 1.000 1.000 1.000 1.000 0.996 1.000
C ULSMV 5 30 0.998 0.998 0.966 1.000 1.000 0.976
C ULSMV 5 50 1.000 1.000 0.998 1.000 1.000 1.000
C ULSMV 5 100 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 5 200 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 10 30 1.000 1.000 0.998 1.000 1.000 0.996
C ULSMV 10 50 1.000 1.000 1.000 0.998 1.000 1.000
C ULSMV 10 100 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 10 200 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 30 30 1.000 1.000 1.000 1.000 1.000 0.998
C ULSMV 30 50 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 30 100 1.000 1.000 1.000 1.000 1.000 1.000
C ULSMV 30 200 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 5 30 0.992 1.000 0.998 1.000 1.000 0.996
C WLSMV 5 50 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 5 100 1.000 1.000 1.000 1.000 1.000 1.000

(continued)
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
C WLSMV 5 200 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 10 30 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 10 50 1.000 1.000 1.000 0.998 1.000 1.000
C WLSMV 10 100 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 10 200 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 30 30 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 30 50 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 30 100 1.000 1.000 1.000 1.000 1.000 1.000
C WLSMV 30 200 1.000 1.000 1.000 1.000 1.000 1.000
M1 MLR 5 30 0.980 0.972 0.956 1.000 0.996 0.988
M1 MLR 5 50 0.992 0.972 0.958 0.998 1.000 0.996
M1 MLR 5 100 0.982 0.972 0.942 1.000 1.000 0.996
M1 MLR 5 200 0.996 0.978 0.942 1.000 1.000 1.000
M1 MLR 10 30 0.992 0.974 0.932 1.000 1.000 0.992
M1 MLR 10 50 0.990 0.954 0.926 1.000 1.000 1.000
M1 MLR 10 100 0.992 0.964 0.924 1.000 1.000 1.000
M1 MLR 10 200 0.992 0.992 0.940 1.000 1.000 1.000
M1 MLR 30 30 0.984 0.956 0.894 1.000 1.000 0.994
M1 MLR 30 50 0.990 0.966 0.908 1.000 1.000 0.996
M1 MLR 30 100 0.994 0.986 0.928 1.000 1.000 1.000
M1 MLR 30 200 1.000 0.994 0.932 1.000 0.998 1.000
M1 ULSMV 5 30 0.924 0.892 0.866 0.980 0.970 0.938
M1 ULSMV 5 50 0.932 0.916 0.916 0.998 0.996 0.988
M1 ULSMV 5 100 0.966 0.942 0.938 1.000 1.000 1.000
M1 ULSMV 5 200 0.986 0.960 0.962 1.000 1.000 1.000
M1 ULSMV 10 30 0.948 0.898 0.938 0.998 0.996 0.984
M1 ULSMV 10 50 0.956 0.936 0.932 0.998 1.000 0.990
M1 ULSMV 10 100 0.980 0.958 0.958 1.000 1.000 1.000
M1 ULSMV 10 200 1.000 0.976 0.952 1.000 1.000 1.000
M1 ULSMV 30 30 0.982 0.940 0.932 1.000 1.000 0.990
M1 ULSMV 30 50 0.992 0.964 0.948 1.000 1.000 1.000
M1 ULSMV 30 100 1.000 0.984 0.954 1.000 1.000 1.000
M1 ULSMV 30 200 1.000 0.986 0.972 0.998 1.000 1.000
M1 WLSMV 5 30 0.866 0.842 0.866 0.968 0.960 0.920
M1 WLSMV 5 50 0.892 0.904 0.898 0.996 0.990 0.968
M1 WLSMV 5 100 0.954 0.946 0.932 1.000 1.000 0.992
M1 WLSMV 5 200 0.984 0.954 0.946 1.000 1.000 1.000
M1 WLSMV 10 30 0.920 0.900 0.880 0.994 0.996 0.978
M1 WLSMV 10 50 0.964 0.932 0.884 0.998 1.000 0.998
M1 WLSMV 10 100 0.984 0.946 0.918 1.000 1.000 1.000
M1 WLSMV 10 200 0.996 0.980 0.940 1.000 1.000 1.000
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
M1 WLSMV 30 30 0.982 0.934 0.902 1.000 0.994 0.980
M1 WLSMV 30 50 0.992 0.946 0.914 1.000 1.000 0.998
M1 WLSMV 30 100 0.998 0.974 0.936 1.000 1.000 1.000
M1 WLSMV 30 200 1.000 0.982 0.926 1.000 1.000 1.000
M2 MLR 5 30 1.000 1.000 1.000 1.000 1.000 0.998
M2 MLR 5 50 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 5 100 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 5 200 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 10 30 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 10 50 1.000 1.000 1.000 1.000 1.000 0.998
M2 MLR 10 100 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 10 200 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 30 30 1.000 1.000 1.000 1.000 1.000 1.000
M2 MLR 30 50 1.000 1.000 1.000 1.000 0.996 1.000
M2 MLR 30 100 1.000 1.000 1.000 1.000 0.998 1.000
M2 MLR 30 200 1.000 1.000 1.000 1.000 0.996 1.000
M2 ULSMV 5 30 0.998 0.994 0.968 0.938 0.934 0.914
M2 ULSMV 5 50 1.000 1.000 1.000 0.982 0.966 0.944
M2 ULSMV 5 100 1.000 1.000 1.000 0.998 0.988 0.970
M2 ULSMV 5 200 1.000 1.000 1.000 1.000 1.000 0.996
M2 ULSMV 10 30 1.000 1.000 0.990 0.980 0.940 0.944
M2 ULSMV 10 50 1.000 1.000 1.000 0.992 0.982 0.956
M2 ULSMV 10 100 1.000 1.000 1.000 0.998 0.998 0.978
M2 ULSMV 10 200 1.000 1.000 1.000 1.000 1.000 0.998
M2 ULSMV 30 30 1.000 1.000 1.000 0.988 0.962 0.934
M2 ULSMV 30 50 1.000 1.000 1.000 0.992 0.988 0.972
M2 ULSMV 30 100 1.000 1.000 1.000 0.998 0.992 0.982
M2 ULSMV 30 200 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 5 30 0.994 0.996 0.998 0.998 1.000 0.998
M2 WLSMV 5 50 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 5 100 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 5 200 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 10 30 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 10 50 1.000 1.000 1.000 0.998 1.000 1.000
M2 WLSMV 10 100 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 10 200 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 30 30 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 30 50 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 30 100 1.000 1.000 1.000 1.000 1.000 1.000
M2 WLSMV 30 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 5 30 1.000 1.000 0.998 1.000 1.000 1.000
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
M12 MLR 5 50 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 5 100 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 5 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 10 30 1.000 0.998 1.000 1.000 1.000 0.998
M12 MLR 10 50 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 10 100 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 10 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 30 30 1.000 1.000 1.000 1.000 0.994 1.000
M12 MLR 30 50 1.000 1.000 1.000 1.000 0.996 1.000
M12 MLR 30 100 1.000 1.000 1.000 1.000 1.000 1.000
M12 MLR 30 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 ULSMV 5 30 0.976 0.952 0.946 0.942 0.940 0.906
M12 ULSMV 5 50 0.988 0.988 0.978 0.974 0.964 0.942
M12 ULSMV 5 100 0.998 1.000 0.998 0.996 0.988 0.958
M12 ULSMV 5 200 1.000 1.000 1.000 1.000 1.000 0.996
M12 ULSMV 10 30 0.990 0.990 0.980 0.970 0.952 0.938
M12 ULSMV 10 50 0.998 1.000 1.000 0.994 0.986 0.952
M12 ULSMV 10 100 1.000 1.000 1.000 0.998 0.998 0.972
M12 ULSMV 10 200 1.000 1.000 1.000 1.000 1.000 0.998
M12 ULSMV 30 30 1.000 1.000 1.000 0.992 0.968 0.924
M12 ULSMV 30 50 1.000 1.000 1.000 0.992 0.982 0.962
M12 ULSMV 30 100 1.000 1.000 1.000 1.000 0.992 0.986
M12 ULSMV 30 200 1.000 1.000 1.000 1.000 1.000 0.998
M12 WLSMV 5 30 0.926 0.938 0.942 0.976 0.972 0.954
M12 WLSMV 5 50 0.964 0.974 0.976 0.994 0.980 0.984
M12 WLSMV 5 100 0.996 1.000 1.000 1.000 1.000 0.994
M12 WLSMV 5 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 WLSMV 10 30 0.982 0.986 0.964 0.994 0.992 0.980
M12 WLSMV 10 50 0.998 1.000 0.998 0.998 1.000 0.996
M12 WLSMV 10 100 1.000 1.000 1.000 1.000 1.000 1.000
M12 WLSMV 10 200 1.000 1.000 1.000 1.000 1.000 1.000
M12 WLSMV 30 30 1.000 0.998 0.982 1.000 0.994 0.988
M12 WLSMV 30 50 1.000 1.000 1.000 1.000 1.000 1.000
M12 WLSMV 30 100 1.000 1.000 1.000 1.000 1.000 1.000
M12 WLSMV 30 200 1.000 1.000 1.000 1.000 1.000 1.000

Admissible Solutions Breakdown

Similar to the previous section, this section contains the breakdown for admis-

sible solutions across all conditions, models, and estimators.
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Table C.2

Admissibility Across All Conditions, Models, and Estimators
ICCL = .1 ICCL = .5

Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
C MLR 5 30 0.522 0.468 0.360 0.372 0.792 0.938
C MLR 5 50 0.560 0.548 0.488 0.500 0.972 0.996
C MLR 5 100 0.752 0.760 0.600 0.726 0.996 1.000
C MLR 5 200 0.952 0.890 0.744 0.956 1.000 1.000
C MLR 10 30 0.608 0.584 0.446 0.494 0.988 0.988
C MLR 10 50 0.832 0.698 0.482 0.762 1.000 1.000
C MLR 10 100 0.970 0.890 0.672 0.988 1.000 1.000
C MLR 10 200 1.000 0.984 0.796 1.000 1.000 1.000
C MLR 30 30 0.950 0.688 0.460 0.938 1.000 0.994
C MLR 30 50 0.996 0.830 0.592 0.994 1.000 1.000
C MLR 30 100 1.000 0.962 0.716 1.000 1.000 1.000
C MLR 30 200 1.000 0.998 0.858 1.000 1.000 1.000
C ULSMV 5 30 .030 0.357 0.335 0.036 0.730 0.953
C ULSMV 5 50 0.138 0.542 0.483 0.092 0.938 0.998
C ULSMV 5 100 0.494 0.758 0.596 0.314 0.990 1.000
C ULSMV 5 200 0.890 0.880 0.754 0.728 1.000 1.000
C ULSMV 10 30 0.352 0.574 0.449 0.134 0.952 0.982
C ULSMV 10 50 0.668 0.698 0.498 0.387 0.994 1.000
C ULSMV 10 100 0.932 0.884 0.668 0.754 1.000 1.000
C ULSMV 10 200 0.998 0.980 0.790 0.978 1.000 1.000
C ULSMV 30 30 0.902 0.690 0.482 0.518 0.990 0.992
C ULSMV 30 50 0.988 0.848 0.598 0.844 1.000 1.000
C ULSMV 30 100 1.000 0.960 0.738 0.970 1.000 1.000
C ULSMV 30 200 1.000 1.000 0.846 1.000 1.000 1.000
C WLSMV 5 30 0.048 0.250 0.224 0.024 0.674 0.914
C WLSMV 5 50 0.146 0.404 0.358 0.052 0.868 0.992
C WLSMV 5 100 0.556 0.682 0.532 0.238 0.982 0.998
C WLSMV 5 200 0.900 0.862 0.716 0.614 1.000 1.000
C WLSMV 10 30 0.364 0.418 0.358 0.080 0.854 0.974
C WLSMV 10 50 0.726 0.618 0.424 0.218 0.976 1.000
C WLSMV 10 100 0.946 0.846 0.638 0.518 0.998 1.000
C WLSMV 10 200 1.000 0.980 0.778 0.856 1.000 1.000
C WLSMV 30 30 0.890 0.636 0.432 0.234 0.950 0.988
C WLSMV 30 50 0.990 0.816 0.560 0.552 1.000 1.000
C WLSMV 30 100 1.000 0.962 0.692 0.812 1.000 1.000
C WLSMV 30 200 1.000 0.998 0.860 0.982 1.000 1.000
M1 MLR 5 30 0.327 0.401 0.400 0.266 0.629 0.783

(continued)
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
M1 MLR 5 50 0.302 0.508 0.524 0.321 0.818 0.916
M1 MLR 5 100 0.271 0.611 0.599 0.274 0.906 0.992
M1 MLR 5 200 0.243 0.714 0.758 0.250 0.990 1.000
M1 MLR 10 30 0.385 0.556 0.474 0.364 0.878 0.895
M1 MLR 10 50 0.453 0.665 0.551 0.514 0.940 0.968
M1 MLR 10 100 0.556 0.790 0.680 0.762 0.990 0.998
M1 MLR 10 200 0.639 0.895 0.787 0.896 1.000 1.000
M1 MLR 30 30 0.764 0.646 0.483 0.852 0.934 0.905
M1 MLR 30 50 0.855 0.764 0.586 0.976 0.984 0.980
M1 MLR 30 100 0.958 0.903 0.733 0.998 1.000 1.000
M1 MLR 30 200 0.990 0.948 0.800 1.000 1.000 1.000
M1 ULSMV 5 30 0.041 0.377 0.374 0.012 0.542 0.823
M1 ULSMV 5 50 0.116 0.533 0.537 0.022 0.661 0.925
M1 ULSMV 5 100 0.393 0.709 0.623 0.026 0.708 0.988
M1 ULSMV 5 200 0.684 0.871 0.728 0.002 0.822 1.000
M1 ULSMV 10 30 0.325 0.570 0.507 0.018 0.649 0.904
M1 ULSMV 10 50 0.494 0.697 0.552 0.020 0.658 0.964
M1 ULSMV 10 100 0.737 0.837 0.678 0.002 0.770 0.994
M1 ULSMV 10 200 0.834 0.947 0.796 0.000 0.858 1.000
M1 ULSMV 30 30 0.697 0.672 0.513 0.008 0.666 0.915
M1 ULSMV 30 50 0.792 0.805 0.633 0.002 0.794 0.976
M1 ULSMV 30 100 0.878 0.933 0.757 0.000 0.834 1.000
M1 ULSMV 30 200 0.944 0.976 0.800 0.000 0.916 1.000
M1 WLSMV 5 30 0.046 0.271 0.293 0.008 0.471 0.785
M1 WLSMV 5 50 0.141 0.423 0.439 0.006 0.495 0.826
M1 WLSMV 5 100 0.421 0.658 0.575 0.010 0.462 0.933
M1 WLSMV 5 200 0.720 0.855 0.698 0.000 0.444 0.962
M1 WLSMV 10 30 0.313 0.436 0.405 0.010 0.494 0.816
M1 WLSMV 10 50 0.581 0.622 0.489 0.006 0.438 0.892
M1 WLSMV 10 100 0.752 0.801 0.627 0.000 0.348 0.914
M1 WLSMV 10 200 0.878 0.939 0.787 .000 0.280 0.992
M1 WLSMV 30 30 0.690 0.580 0.446 0.004 0.400 0.718
M1 WLSMV 30 50 0.835 0.784 0.593 0.000 0.370 0.842
M1 WLSMV 30 100 0.900 0.916 0.718 0.000 0.258 0.946
M1 WLSMV 30 200 0.962 0.984 0.801 0.000 0.166 0.992
M2 MLR 5 30 0.496 0.438 0.354 0.382 0.822 0.946
M2 MLR 5 50 0.562 0.538 0.476 0.550 0.978 0.996
M2 MLR 5 100 0.764 0.702 0.576 0.772 1.000 1.000
M2 MLR 5 200 0.926 0.860 0.732 0.974 1.000 1.000
M2 MLR 10 30 0.580 0.574 0.456 0.530 0.986 0.982
M2 MLR 10 50 0.802 0.694 0.480 0.806 1.000 1.000

(continued)
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
M2 MLR 10 100 0.966 0.858 0.642 0.990 1.000 1.000
M2 MLR 10 200 1.000 0.972 0.786 1.000 1.000 1.000
M2 MLR 30 30 0.936 0.674 0.484 0.952 1.000 0.998
M2 MLR 30 50 0.996 0.826 0.562 1.000 1.000 1.000
M2 MLR 30 100 1.000 0.962 0.718 1.000 1.000 1.000
M2 MLR 30 200 1.000 0.992 0.832 1.000 1.000 1.000
M2 ULSMV 5 30 0.046 0.368 0.341 0.051 0.709 0.921
M2 ULSMV 5 50 0.154 0.550 0.486 0.145 0.919 0.985
M2 ULSMV 5 100 0.514 0.736 0.582 0.427 0.988 0.996
M2 ULSMV 5 200 0.920 0.888 0.756 0.820 0.998 1.000
M2 ULSMV 10 30 0.372 0.584 0.475 0.206 0.953 0.968
M2 ULSMV 10 50 0.696 0.688 0.494 0.472 0.978 0.990
M2 ULSMV 10 100 0.954 0.886 0.654 0.834 0.996 0.998
M2 ULSMV 10 200 0.998 0.976 0.798 0.982 1.000 1.000
M2 ULSMV 30 30 0.922 0.676 0.484 0.605 0.967 0.989
M2 ULSMV 30 50 0.994 0.828 0.566 0.857 0.992 0.998
M2 ULSMV 30 100 1.000 0.966 0.718 0.966 1.000 1.000
M2 ULSMV 30 200 1.000 0.992 0.832 1.000 1.000 1.000
M2 WLSMV 5 30 0.058 0.237 0.210 0.044 0.694 0.918
M2 WLSMV 5 50 0.170 0.424 0.392 0.094 0.910 0.996
M2 WLSMV 5 100 0.550 0.682 0.532 0.328 0.996 1.000
M2 WLSMV 5 200 0.920 0.850 0.720 0.716 1.000 1.000
M2 WLSMV 10 30 0.378 0.410 0.390 0.118 0.908 0.974
M2 WLSMV 10 50 0.726 0.614 0.438 0.273 0.990 1.000
M2 WLSMV 10 100 0.966 0.846 0.614 0.614 1.000 1.000
M2 WLSMV 10 200 1.000 0.974 0.780 0.922 1.000 1.000
M2 WLSMV 30 30 0.914 0.638 0.434 0.262 0.970 0.990
M2 WLSMV 30 50 0.994 0.820 0.550 0.548 1.000 1.000
M2 WLSMV 30 100 1.000 0.956 0.692 0.838 1.000 1.000
M2 WLSMV 30 200 1.000 0.994 0.828 0.996 1.000 1.000
M12 MLR 5 30 0.510 0.410 0.345 0.338 0.764 0.918
M12 MLR 5 50 0.552 0.548 0.492 0.494 0.930 0.986
M12 MLR 5 100 0.752 0.746 0.608 0.776 0.988 0.998
M12 MLR 5 200 0.936 0.886 0.754 0.982 1.000 1.000
M12 MLR 10 30 0.602 0.591 0.432 0.528 0.946 0.964
M12 MLR 10 50 0.828 0.700 0.486 0.786 0.988 0.998
M12 MLR 10 100 0.972 0.880 0.654 0.992 1.000 1.000
M12 MLR 10 200 0.998 0.980 0.786 1.000 1.000 1.000
M12 MLR 30 30 0.944 0.694 0.498 0.938 0.984 0.982
M12 MLR 30 50 0.992 0.836 0.554 1.000 0.996 1.000
M12 MLR 30 100 1.000 0.970 0.714 1.000 1.000 1.000

(continued)
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ICCL = .1 ICCL = .5
Model Estimator N1 N2 .1 .3 .5 .1 .3 .5
M12 MLR 30 200 1.000 0.994 0.836 1.000 1.000 1.000
M12 ULSMV 5 30 0.041 0.363 0.323 0.023 0.621 0.883
M12 ULSMV 5 50 0.150 0.498 0.497 0.066 0.751 0.947
M12 ULSMV 5 100 0.453 0.730 0.599 0.066 0.796 0.996
M12 ULSMV 5 200 0.820 0.880 0.756 0.068 0.864 1.000
M12 ULSMV 10 30 0.352 0.560 0.435 0.062 0.742 0.940
M12 ULSMV 10 50 0.627 0.702 0.482 0.085 0.769 0.975
M12 ULSMV 10 100 0.844 0.888 0.658 0.052 0.840 0.994
M12 ULSMV 10 200 0.938 0.976 0.794 0.016 0.904 1.000
M12 ULSMV 30 30 0.780 0.686 0.498 0.085 0.787 0.961
M12 ULSMV 30 50 0.906 0.838 0.566 0.056 0.841 0.994
M12 ULSMV 30 100 0.970 0.970 0.716 0.010 0.901 1.000
M12 ULSMV 30 200 0.998 0.992 0.832 0.000 0.954 1.000
M12 WLSMV 5 30 0.067 0.249 0.202 0.039 0.588 0.853
M12 WLSMV 5 50 0.162 0.411 0.367 0.072 0.649 0.911
M12 WLSMV 5 100 0.462 0.666 0.532 0.108 0.708 0.968
M12 WLSMV 5 200 0.836 0.840 0.706 0.138 0.778 0.996
M12 WLSMV 10 30 0.371 0.391 0.384 0.064 0.690 0.898
M12 WLSMV 10 50 0.651 0.622 0.435 0.120 0.712 0.956
M12 WLSMV 10 100 0.888 0.836 0.610 0.134 0.742 0.972
M12 WLSMV 10 200 0.962 0.970 0.774 0.082 0.802 1.000
M12 WLSMV 30 30 0.842 0.639 0.430 0.138 0.686 0.874
M12 WLSMV 30 50 0.950 0.806 0.530 0.162 0.740 0.932
M12 WLSMV 30 100 0.990 0.964 0.686 0.110 0.812 0.990
M12 WLSMV 30 200 0.998 0.996 0.818 0.036 0.826 1.000
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APPENDIX D

Fit Statistic Summary Across Conditions

In this Appendix, the fit statistics are broken down to the lowest level units

(i.e., each individual condition, model, and estimator). This creates a large number

of values that needed to be summarized. In total, there are 72 conditions × 4 mod-

els × 3 estimators × 500 replications for a total of 432,000 potential values per fit

statistic. The actual number depends on convergence and admissibility. Below are the

breakdown where each table is parsed out by model, estimator, latent variable ICC

(ICCL), and observed variable ICC (ICCO).

Table D.1

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.35 0.88(0.09) 0.85(0.11) 0.05(0.02) 0.06(0.01) 0.32(0.05)
50 5 0.53 0.94(0.04) 0.93(0.05) 0.03(0.02) 0.05(0.01) 0.27(0.04)
100 5 0.7 0.98(0.02) 0.97(0.02) 0.02(0.01) 0.03(0) 0.22(0.03)
200 5 0.9 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.17(0.02)
30 10 0.44 0.94(0.04) 0.93(0.04) 0.03(0.01) 0.04(0.01) 0.25(0.04)
50 10 0.68 0.97(0.02) 0.97(0.03) 0.02(0.01) 0.03(0) 0.21(0.03)
100 10 0.88 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.15(0.02)
200 10 0.91 1(0) 1(0) 0(0) 0.02(0) 0.11(0.02)
30 30 0.61 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.19(0.03)
50 30 0.84 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.14(0.02)
100 30 0.91 1(0) 1(0) 0(0) 0.01(0) 0.1(0.01)
200 30 0.94 1(0) 1(0) 0(0) 0.01(0) 0.07(0.01)
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Table D.2

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.44 0.93(0.04) 0.92(0.05) 0.04(0.02) 0.07(0.01) 0.16(0.04)
50 5 0.69 0.97(0.03) 0.97(0.03) 0.03(0.02) 0.05(0.01) 0.12(0.02)
100 5 0.84 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.09(0.02)
200 5 0.9 1(0) 1(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 0.49 0.96(0.03) 0.95(0.03) 0.03(0.01) 0.04(0.01) 0.12(0.03)
50 10 0.71 0.98(0.02) 0.98(0.02) 0.02(0.01) 0.03(0) 0.1(0.02)
100 10 0.89 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.07(0.01)
200 10 0.92 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
30 30 0.62 0.99(0.01) 0.98(0.01) 0.01(0.01) 0.02(0) 0.1(0.02)
50 30 0.85 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.07(0.01)
100 30 0.9 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
200 30 0.93 1(0) 1(0) 0(0) 0.01(0) 0.04(0.01)

Table D.3

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.5 0.88(0.09) 0.85(0.11) 0.04(0.02) 0.06(0.01) 0.23(0.03)
50 5 0.75 0.95(0.05) 0.94(0.06) 0.02(0.02) 0.05(0.01) 0.19(0.02)
100 5 0.91 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.03(0) 0.14(0.02)
200 5 0.9 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.09(0.01)
30 10 0.63 0.95(0.04) 0.93(0.05) 0.02(0.01) 0.04(0.01) 0.2(0.02)
50 10 0.8 0.98(0.02) 0.97(0.03) 0.01(0.01) 0.03(0) 0.15(0.02)
100 10 0.88 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.11(0.01)
200 10 0.93 1(0) 1(0.01) 0(0) 0.02(0) 0.07(0.01)
30 30 0.7 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.16(0.02)
50 30 0.82 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.13(0.01)
100 30 0.92 1(0) 1(0) 0(0) 0.01(0) 0.09(0.01)
200 30 0.92 1(0) 1(0) 0(0) 0.01(0) 0.06(0.01)
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Table D.4

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.49 0.91(0.06) 0.89(0.08) 0.04(0.02) 0.07(0.01) 0.17(0.03)
50 5 0.73 0.96(0.04) 0.95(0.04) 0.02(0.02) 0.05(0.01) 0.13(0.02)
100 5 0.91 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0) 0.09(0.01)
200 5 0.93 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 0.65 0.96(0.04) 0.95(0.04) 0.02(0.01) 0.04(0.01) 0.15(0.02)
50 10 0.82 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.03(0) 0.11(0.02)
100 10 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.08(0.01)
200 10 0.93 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
30 30 0.71 0.99(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.13(0.02)
50 30 0.84 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.1(0.01)
100 30 0.92 1(0) 1(0) 0(0) 0.01(0) 0.07(0.01)
200 30 0.95 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)

Table D.5

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.59 0.87(0.1) 0.84(0.12) 0.04(0.02) 0.06(0.01) 0.19(0.02)
50 5 0.83 0.95(0.05) 0.94(0.05) 0.02(0.01) 0.05(0.01) 0.15(0.02)
100 5 0.92 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.1(0.01)
200 5 0.93 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.07(0.01)
30 10 0.71 0.95(0.05) 0.94(0.06) 0.02(0.01) 0.04(0.01) 0.17(0.02)
50 10 0.85 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.13(0.01)
100 10 0.93 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.09(0.01)
200 10 0.93 1(0) 1(0.01) 0(0) 0.02(0) 0.06(0.01)
30 30 0.7 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.16(0.02)
50 30 0.89 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.12(0.01)
100 30 0.93 1(0) 1(0) 0(0) 0.01(0) 0.08(0.01)
200 30 0.94 1(0) 1(0) 0(0) 0.01(0) 0.06(0.01)
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Table D.6

Summary of Fit Statistics Across Conditions: Model C, Estimator MLR,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.6 0.89(0.08) 0.87(0.1) 0.04(0.02) 0.06(0.01) 0.17(0.03)
50 5 0.82 0.96(0.04) 0.95(0.05) 0.02(0.02) 0.05(0.01) 0.13(0.02)
100 5 0.88 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.04(0) 0.09(0.01)
200 5 0.94 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.06(0.01)
30 10 0.71 0.95(0.04) 0.95(0.05) 0.02(0.01) 0.04(0.01) 0.15(0.02)
50 10 0.83 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.12(0.02)
100 10 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.08(0.01)
200 10 0.92 1(0) 1(0.01) 0(0) 0.02(0) 0.06(0.01)
30 30 0.73 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.14(0.02)
50 30 0.87 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.11(0.01)
100 30 0.91 1(0) 1(0) 0(0) 0.01(0) 0.08(0.01)
200 30 0.93 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)

Table D.7

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.99(0.02) 0.99(0.02) 0(0.01) 0.07(0.01) 0.35(0.06)
50 5 0.99 0.99(0.02) 0.99(0.03) 0.01(0.01) 0.06(0.01) 0.32(0.13)
100 5 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.22(0.05)
200 5 0.95 1(0.01) 1(0.01) 0(0.01) 0.03(0) 0.15(0.03)
30 10 0.99 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.25(0.06)
50 10 0.99 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.19(0.04)
100 10 0.97 1(0) 1(0.01) 0.01(0.01) 0.03(0) 0.13(0.02)
200 10 0.95 1(0) 1(0) 0(0) 0.02(0) 0.09(0.01)
30 30 1 1(0) 1(0.01) 0.01(0.01) 0.03(0) 0.15(0.02)
50 30 0.99 1(0) 1(0) 0(0) 0.02(0) 0.11(0.01)
100 30 0.97 1(0) 1(0) 0(0) 0.01(0) 0.08(0.01)
200 30 0.97 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.8

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.99(0.02) 0.98(0.03) 0.01(0.01) 0.09(0.01) 0.13(0.03)
50 5 1 0.99(0.02) 0.98(0.03) 0.01(0.01) 0.07(0.01) 0.1(0.02)
100 5 0.99 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.07(0.02)
200 5 0.96 0.99(0.01) 0.99(0.01) 0(0.01) 0.03(0) 0.05(0.01)
30 10 1 0.99(0.02) 0.99(0.02) 0(0.01) 0.06(0.01) 0.09(0.02)
50 10 1 0.99(0.02) 0.99(0.02) 0(0.01) 0.04(0.01) 0.07(0.02)
100 10 0.98 0.99(0.01) 0.99(0.01) 0(0.01) 0.03(0) 0.05(0.01)
200 10 0.96 1(0.01) 1(0.01) 0(0) 0.02(0) 0.03(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.07(0.02)
50 30 1 1(0) 1(0.01) 0(0) 0.03(0) 0.05(0.01)
100 30 1 1(0.01) 1(0.01) 0(0) 0.02(0) 0.04(0.01)
200 30 0.98 1(0) 1(0) 0(0) 0.01(0) 0.02(0)

Table D.9

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.96(0.05) 0.96(0.06) 0.01(0.01) 0.08(0.01) 0.21(0.04)
50 5 0.97 0.97(0.03) 0.97(0.04) 0.01(0.01) 0.06(0.01) 0.16(0.03)
100 5 0.98 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.11(0.01)
200 5 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.07(0.01)
30 10 0.99 0.98(0.03) 0.97(0.04) 0.01(0.01) 0.05(0.01) 0.16(0.02)
50 10 0.98 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.04(0) 0.12(0.01)
100 10 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
200 10 0.95 1(0) 1(0.01) 0(0) 0.02(0) 0.06(0.01)
30 30 1 1(0.01) 1(0.01) 0(0) 0.03(0) 0.13(0.01)
50 30 0.99 1(0.01) 1(0.01) 0(0) 0.02(0) 0.1(0.01)
100 30 0.97 1(0) 1(0.01) 0(0) 0.02(0) 0.07(0.01)
200 30 0.94 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.10

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.96(0.06) 0.95(0.07) 0.01(0.01) 0.09(0.01) 0.13(0.03)
50 5 0.97 0.97(0.04) 0.97(0.05) 0.01(0.01) 0.07(0.01) 0.1(0.02)
100 5 0.97 0.99(0.02) 0.98(0.02) 0.01(0.01) 0.05(0.01) 0.07(0.01)
200 5 0.94 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.05(0.01)
30 10 0.99 0.98(0.04) 0.98(0.05) 0(0.01) 0.06(0.01) 0.1(0.02)
50 10 0.97 0.98(0.03) 0.98(0.03) 0.01(0.01) 0.05(0.01) 0.08(0.01)
100 10 0.97 0.99(0.01) 0.99(0.02) 0(0.01) 0.04(0) 0.05(0.01)
200 10 0.95 1(0.01) 0.99(0.01) 0(0) 0.02(0) 0.04(0.01)
30 30 1 1(0) 1(0) 0(0) 0.04(0.01) 0.09(0.02)
50 30 1 1(0) 1(0) 0(0) 0.03(0.01) 0.07(0.01)
100 30 1 1(0.01) 1(0.01) 0(0) 0.02(0) 0.05(0.01)
200 30 0.99 1(0) 1(0.01) 0(0) 0.02(0) 0.03(0)

Table D.11

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.97 0.91(0.13) 0.89(0.15) 0.01(0.01) 0.09(0.02) 0.15(0.02)
50 5 0.96 0.95(0.07) 0.94(0.08) 0.01(0.01) 0.06(0.01) 0.12(0.01)
100 5 0.98 0.97(0.03) 0.97(0.04) 0.01(0.01) 0.04(0.01) 0.08(0.01)
200 5 0.95 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 1 0.97(0.06) 0.97(0.07) 0(0.01) 0.06(0.01) 0.13(0.02)
50 10 0.99 0.97(0.04) 0.96(0.05) 0.01(0.01) 0.04(0.01) 0.1(0.01)
100 10 0.95 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.07(0.01)
200 10 0.93 0.99(0.01) 0.99(0.01) 0(0) 0.02(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0.01) 0.12(0.01)
50 30 1 1(0) 1(0) 0(0) 0.03(0) 0.09(0.01)
100 30 1 1(0) 1(0.01) 0(0) 0.02(0) 0.07(0.01)
200 30 0.99 1(0.01) 1(0.01) 0(0) 0.01(0) 0.05(0.01)
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Table D.12

Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.94(0.1) 0.92(0.11) 0.01(0.01) 0.11(0.02) 0.12(0.02)
50 5 0.99 0.96(0.06) 0.95(0.07) 0.01(0.01) 0.08(0.01) 0.09(0.01)
100 5 0.97 0.98(0.03) 0.97(0.04) 0.01(0.01) 0.06(0.01) 0.06(0.01)
200 5 0.95 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.04(0.01)
30 10 1 0.99(0.04) 0.99(0.05) 0(0) 0.08(0.01) 0.1(0.02)
50 10 0.99 0.98(0.04) 0.98(0.05) 0(0.01) 0.06(0.01) 0.08(0.01)
100 10 0.97 0.98(0.03) 0.98(0.03) 0(0.01) 0.04(0.01) 0.06(0.01)
200 10 0.94 0.99(0.01) 0.99(0.02) 0(0) 0.03(0) 0.04(0)
30 30 1 1(0) 1(0) 0(0) 0.06(0.01) 0.09(0.01)
50 30 1 1(0) 1(0) 0(0) 0.05(0.01) 0.07(0.01)
100 30 1 1(0) 1(0) 0(0) 0.03(0.01) 0.05(0.01)
200 30 1 1(0) 1(0) 0(0) 0.02(0) 0.04(0)

Table D.13

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.99(0.02) 0.99(0.03) 0.01(0.01) 0.07(0.01) 0.34(0.05)
50 5 1 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.06(0.01) 0.29(0.05)
100 5 0.95 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.22(0.05)
200 5 0.95 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.14(0.03)
30 10 0.99 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.26(0.18)
50 10 0.96 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0) 0.19(0.04)
100 10 0.97 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.12(0.02)
200 10 0.95 1(0) 1(0) 0(0) 0.02(0) 0.08(0.01)
30 30 0.99 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.15(0.02)
50 30 0.99 1(0) 1(0) 0(0) 0.02(0) 0.11(0.01)
100 30 0.96 1(0) 1(0) 0(0) 0.01(0) 0.08(0.01)
200 30 0.97 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)

88



Table D.14

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.99(0.02) 0.98(0.03) 0.01(0.01) 0.07(0.01) 0.16(0.04)
50 5 1 0.99(0.02) 0.98(0.02) 0.01(0.01) 0.06(0.01) 0.12(0.02)
100 5 0.96 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.08(0.02)
200 5 0.96 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 1 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.12(0.03)
50 10 0.99 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.08(0.02)
100 10 0.97 1(0.01) 1(0.01) 0(0.01) 0.03(0) 0.06(0.01)
200 10 0.95 1(0) 1(0) 0(0) 0.02(0) 0.04(0.01)
30 30 1 1(0) 1(0.01) 0(0) 0.03(0) 0.08(0.01)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.06(0.01)
100 30 0.98 1(0) 1(0) 0(0) 0.02(0) 0.04(0.01)
200 30 0.97 1(0) 1(0) 0(0) 0.01(0) 0.03(0.01)

Table D.15

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.98 0.97(0.04) 0.96(0.05) 0.01(0.01) 0.07(0.01) 0.21(0.06)
50 5 0.96 0.98(0.03) 0.97(0.03) 0.01(0.01) 0.06(0.01) 0.15(0.02)
100 5 0.97 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.11(0.01)
200 5 0.94 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.07(0.01)
30 10 0.97 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.05(0.01) 0.15(0.02)
50 10 0.98 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.12(0.01)
100 10 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
200 10 0.95 1(0) 1(0) 0(0) 0.02(0) 0.06(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.13(0.01)
50 30 0.99 1(0) 1(0) 0(0) 0.02(0) 0.1(0.01)
100 30 0.98 1(0) 1(0) 0(0) 0.02(0) 0.07(0.01)
200 30 0.96 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.16

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.97 0.97(0.05) 0.96(0.05) 0.02(0.01) 0.08(0.01) 0.15(0.02)
50 5 0.96 0.98(0.03) 0.98(0.03) 0.01(0.01) 0.06(0.01) 0.11(0.02)
100 5 0.97 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.08(0.01)
200 5 0.95 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.05(0.01)
30 10 0.99 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.12(0.02)
50 10 0.97 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.09(0.01)
100 10 0.97 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
200 10 0.96 1(0) 1(0) 0(0) 0.02(0) 0.04(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.1(0.01)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.08(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
200 30 0.99 1(0) 1(0) 0(0) 0.01(0) 0.04(0.01)

Table D.17

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.96 0.95(0.05) 0.94(0.06) 0.02(0.01) 0.08(0.01) 0.16(0.02)
50 5 0.97 0.98(0.03) 0.97(0.03) 0.01(0.01) 0.06(0.01) 0.12(0.01)
100 5 0.99 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.08(0.01)
200 5 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 0.99 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.13(0.02)
50 10 0.99 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0.01) 0.1(0.01)
100 10 0.97 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.07(0.01)
200 10 0.96 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.12(0.01)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.09(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.07(0.01)
200 30 1 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.18

Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.97(0.04) 0.96(0.05) 0.01(0.01) 0.08(0.01) 0.14(0.02)
50 5 0.98 0.98(0.03) 0.97(0.03) 0.01(0.01) 0.06(0.01) 0.1(0.01)
100 5 0.95 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.07(0.01)
200 5 0.95 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.05(0.01)
30 10 1 0.99(0.01) 0.99(0.02) 0(0.01) 0.05(0.01) 0.12(0.02)
50 10 0.99 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0.01) 0.09(0.01)
100 10 0.96 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
200 10 0.95 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.11(0.01)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.08(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.06(0.01)
200 30 1 1(0) 1(0) 0(0) 0.01(0) 0.04(0.01)

Table D.19

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.11 0.78(0.14) 0.74(0.16) 0.07(0.02) 0.08(0.03) 0.32(0.06)
50 5 0.15 0.88(0.07) 0.85(0.08) 0.05(0.01) 0.06(0.01) 0.29(0.05)
100 5 0.05 0.91(0.03) 0.89(0.04) 0.04(0.01) 0.05(0.01) 0.24(0.04)
200 5 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0) 0.19(0.03)
30 10 0.04 0.86(0.08) 0.83(0.09) 0.05(0.02) 0.06(0.01) 0.25(0.04)
50 10 0.01 0.9(0.03) 0.88(0.04) 0.04(0.01) 0.05(0.01) 0.21(0.03)
100 10 0 0.92(0.02) 0.9(0.03) 0.03(0.01) 0.05(0) 0.16(0.02)
200 10 0 0.92(0.01) 0.91(0.02) 0.03(0) 0.04(0) 0.12(0.02)
30 30 0 0.9(0.03) 0.88(0.04) 0.04(0.01) 0.05(0.01) 0.18(0.03)
50 30 0 0.91(0.04) 0.89(0.05) 0.04(0.01) 0.04(0) 0.14(0.02)
100 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.1(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.08(0.01)
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Table D.20

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.12 0.88(0.06) 0.85(0.07) 0.06(0.02) 0.08(0.01) 0.16(0.03)
50 5 0.15 0.92(0.04) 0.91(0.04) 0.05(0.01) 0.07(0.01) 0.13(0.03)
100 5 0.02 0.95(0.02) 0.93(0.02) 0.04(0.01) 0.06(0.01) 0.1(0.02)
200 5 0 0.95(0.01) 0.94(0.02) 0.03(0.01) 0.05(0.01) 0.08(0.01)
30 10 0.05 0.9(0.04) 0.88(0.05) 0.05(0.01) 0.06(0.01) 0.13(0.03)
50 10 0.01 0.92(0.02) 0.91(0.03) 0.04(0.01) 0.06(0.01) 0.1(0.02)
100 10 0 0.94(0.01) 0.92(0.02) 0.04(0) 0.05(0) 0.08(0.01)
200 10 0 0.94(0.01) 0.93(0.01) 0.04(0) 0.05(0) 0.06(0.01)
30 30 0 0.91(0.02) 0.89(0.02) 0.04(0.01) 0.05(0.01) 0.11(0.02)
50 30 0 0.92(0.01) 0.91(0.02) 0.04(0) 0.05(0) 0.09(0.02)
100 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.07(0.01)
200 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.04(0) 0.06(0.01)

Table D.21

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.27 0.8(0.12) 0.76(0.14) 0.05(0.02) 0.07(0.02) 0.23(0.03)
50 5 0.36 0.89(0.06) 0.87(0.08) 0.04(0.01) 0.06(0.01) 0.19(0.02)
100 5 0.19 0.92(0.04) 0.9(0.05) 0.03(0.01) 0.05(0.01) 0.14(0.02)
200 5 0.01 0.92(0.02) 0.9(0.03) 0.03(0.01) 0.05(0.01) 0.1(0.01)
30 10 0.14 0.87(0.06) 0.84(0.08) 0.04(0.01) 0.06(0.01) 0.19(0.03)
50 10 0.07 0.9(0.04) 0.88(0.05) 0.04(0.01) 0.05(0.01) 0.15(0.02)
100 10 0.01 0.91(0.03) 0.89(0.03) 0.03(0.01) 0.05(0.01) 0.1(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.07(0.01)
30 30 0 0.9(0.03) 0.88(0.03) 0.04(0.01) 0.05(0.01) 0.16(0.02)
50 30 0 0.91(0.02) 0.89(0.02) 0.03(0) 0.04(0) 0.12(0.01)
100 30 0 0.91(0.01) 0.9(0.02) 0.03(0) 0.04(0) 0.09(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.06(0.01)
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Table D.22

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.26 0.85(0.08) 0.83(0.09) 0.05(0.02) 0.08(0.01) 0.17(0.03)
50 5 0.31 0.91(0.05) 0.89(0.06) 0.04(0.01) 0.07(0.01) 0.14(0.02)
100 5 0.1 0.93(0.03) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.1(0.01)
200 5 0.01 0.94(0.02) 0.93(0.02) 0.03(0) 0.05(0.01) 0.07(0.01)
30 10 0.12 0.89(0.04) 0.87(0.05) 0.04(0.01) 0.06(0.01) 0.15(0.02)
50 10 0.04 0.92(0.03) 0.9(0.04) 0.04(0.01) 0.05(0.01) 0.12(0.02)
100 10 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0.01) 0.09(0.01)
200 10 0 0.93(0.01) 0.91(0.01) 0.03(0) 0.04(0) 0.07(0.01)
30 30 0 0.91(0.02) 0.89(0.03) 0.04(0.01) 0.05(0) 0.13(0.02)
50 30 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.11(0.02)
100 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.08(0.01)
200 30 0 0.92(0.01) 0.91(0.01) 0.03(0) 0.04(0) 0.07(0.01)

Table D.23

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.34 0.8(0.1) 0.76(0.13) 0.05(0.02) 0.07(0.01) 0.19(0.02)
50 5 0.42 0.89(0.07) 0.87(0.08) 0.03(0.01) 0.06(0.01) 0.15(0.02)
100 5 0.23 0.91(0.04) 0.89(0.05) 0.03(0.01) 0.05(0.01) 0.1(0.01)
200 5 0.01 0.91(0.03) 0.9(0.03) 0.03(0.01) 0.05(0.01) 0.07(0.01)
30 10 0.22 0.88(0.06) 0.85(0.08) 0.04(0.01) 0.06(0.01) 0.17(0.02)
50 10 0.09 0.9(0.04) 0.88(0.05) 0.03(0.01) 0.05(0.01) 0.13(0.01)
100 10 0 0.91(0.03) 0.9(0.03) 0.03(0.01) 0.04(0) 0.09(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.06(0.01)
30 30 0 0.9(0.03) 0.88(0.03) 0.04(0) 0.05(0.01) 0.15(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.12(0.01)
100 30 0 0.91(0.03) 0.9(0.03) 0.03(0) 0.04(0) 0.08(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.06(0.01)

93



Table D.24

Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.37 0.84(0.09) 0.8(0.11) 0.05(0.02) 0.07(0.01) 0.17(0.02)
50 5 0.4 0.9(0.06) 0.88(0.07) 0.04(0.01) 0.06(0.01) 0.13(0.02)
100 5 0.15 0.92(0.03) 0.9(0.04) 0.03(0.01) 0.05(0.01) 0.09(0.01)
200 5 0 0.93(0.02) 0.91(0.03) 0.03(0) 0.05(0.01) 0.07(0.01)
30 10 0.2 0.88(0.07) 0.86(0.08) 0.04(0.01) 0.06(0.01) 0.15(0.02)
50 10 0.09 0.91(0.04) 0.89(0.05) 0.03(0.01) 0.05(0.01) 0.12(0.02)
100 10 0 0.92(0.02) 0.9(0.03) 0.03(0) 0.04(0) 0.08(0.01)
200 10 0 0.92(0.02) 0.91(0.02) 0.03(0) 0.04(0) 0.06(0.01)
30 30 0 0.91(0.03) 0.89(0.03) 0.03(0.01) 0.04(0) 0.14(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.11(0.01)
100 30 0 0.92(0.01) 0.9(0.02) 0.03(0) 0.04(0) 0.08(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.06(0.01)

Table D.25

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.96(0.05) 0.95(0.06) 0.02(0.02) 0.09(0.01) 0.52(0.68)
50 5 0.65 0.93(0.05) 0.91(0.06) 0.03(0.01) 0.07(0.01) 0.32(0.14)
100 5 0.09 0.92(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.22(0.05)
200 5 0 0.92(0.02) 0.91(0.03) 0.04(0.01) 0.05(0.01) 0.14(0.03)
30 10 0.44 0.93(0.04) 0.92(0.04) 0.03(0.01) 0.07(0.01) 0.26(0.12)
50 10 0.05 0.92(0.03) 0.91(0.04) 0.04(0.01) 0.06(0.01) 0.19(0.04)
100 10 0 0.92(0.02) 0.91(0.03) 0.04(0.01) 0.05(0.01) 0.13(0.02)
200 10 0 0.92(0.01) 0.91(0.02) 0.04(0) 0.05(0) 0.09(0.01)
30 30 0.01 0.93(0.02) 0.92(0.02) 0.03(0.01) 0.05(0.01) 0.15(0.02)
50 30 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0) 0.11(0.01)
100 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.08(0.01)
200 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.06(0.01)
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Table D.26

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.97(0.05) 0.96(0.06) 0.01(0.01) 0.09(0.02) 0.13(0.04)
50 5 0.55 0.91(0.06) 0.89(0.07) 0.03(0.01) 0.09(0.01) 0.1(0.03)
100 5 0.31 0.92(0.04) 0.9(0.05) 0.03(0.01) 0.07(0.01) 0.07(0.01)
200 5 0 0.95(NA) 0.94(NA) 0.02(NA) 0.06(NA) 0.04(NA)
30 10 0.78 0.91(0.08) 0.89(0.1) 0.02(0.01) 0.08(0.01) 0.09(0.02)
50 10 0.2 0.88(0.05) 0.85(0.06) 0.03(0.01) 0.07(0.01) 0.07(0.02)
100 10 0 0.9(NA) 0.88(NA) 0.03(NA) 0.05(NA) 0.06(NA)
30 30 0.5 0.92(0.05) 0.91(0.05) 0.02(0.01) 0.06(0) 0.08(0.03)
50 30 0 0.82(NA) 0.78(NA) 0.02(NA) 0.06(NA) 0.06(NA)

Table D.27

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.93 0.91(0.08) 0.9(0.09) 0.02(0.01) 0.09(0.01) 0.21(0.04)
50 5 0.76 0.93(0.05) 0.91(0.06) 0.02(0.01) 0.07(0.01) 0.15(0.03)
100 5 0.3 0.93(0.04) 0.92(0.04) 0.03(0.01) 0.06(0.01) 0.1(0.01)
200 5 0.02 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.07(0.01)
30 10 0.82 0.92(0.05) 0.91(0.06) 0.02(0.01) 0.07(0.01) 0.15(0.02)
50 10 0.38 0.93(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.12(0.01)
100 10 0.02 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.08(0.01)
200 10 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.05(0) 0.06(0.01)
30 30 0.93 0.97(0.03) 0.96(0.03) 0.01(0.01) 0.06(0.01) 0.13(0.01)
50 30 0.3 0.95(0.02) 0.94(0.02) 0.02(0) 0.05(0) 0.1(0.01)
100 30 0 0.94(0.01) 0.93(0.01) 0.02(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.02(0) 0.05(0) 0.05(0.01)
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Table D.28

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.97 0.91(0.09) 0.9(0.11) 0.02(0.01) 0.1(0.01) 0.13(0.03)
50 5 0.79 0.91(0.07) 0.89(0.08) 0.02(0.01) 0.09(0.01) 0.1(0.02)
100 5 0.4 0.92(0.04) 0.9(0.05) 0.03(0.01) 0.07(0.01) 0.07(0.01)
200 5 0.01 0.92(0.03) 0.9(0.03) 0.03(0) 0.06(0.01) 0.05(0.01)
30 10 0.95 0.93(0.07) 0.91(0.09) 0.02(0.01) 0.08(0.01) 0.11(0.02)
50 10 0.67 0.91(0.06) 0.89(0.07) 0.02(0.01) 0.07(0.01) 0.08(0.01)
100 10 0.08 0.91(0.04) 0.89(0.04) 0.02(0) 0.06(0.01) 0.06(0.01)
200 10 0 0.9(0.02) 0.88(0.03) 0.02(0) 0.06(0) 0.05(0.01)
30 30 1 1(0.01) 1(0.01) 0(0) 0.07(0.01) 0.09(0.01)
50 30 0.98 0.98(0.03) 0.98(0.03) 0(0) 0.06(0.01) 0.07(0.01)
100 30 0.11 0.93(0.03) 0.92(0.03) 0.01(0) 0.06(0) 0.05(0.01)
200 30 0 0.9(0.02) 0.88(0.02) 0.02(0) 0.05(0) 0.04(0)

Table D.29

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.97 0.88(0.13) 0.85(0.16) 0.02(0.01) 0.1(0.02) 0.15(0.02)
50 5 0.94 0.91(0.08) 0.89(0.1) 0.02(0.01) 0.08(0.01) 0.11(0.01)
100 5 0.77 0.93(0.05) 0.92(0.06) 0.02(0.01) 0.06(0.01) 0.08(0.01)
200 5 0.34 0.94(0.03) 0.93(0.03) 0.02(0) 0.06(0.01) 0.06(0.01)
30 10 0.99 0.95(0.07) 0.94(0.09) 0.01(0.01) 0.07(0.01) 0.13(0.01)
50 10 0.93 0.94(0.06) 0.92(0.07) 0.01(0.01) 0.06(0.01) 0.1(0.01)
100 10 0.66 0.94(0.04) 0.93(0.04) 0.01(0.01) 0.06(0.01) 0.07(0.01)
200 10 0.12 0.94(0.02) 0.93(0.02) 0.02(0) 0.05(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.06(0.01) 0.12(0.01)
50 30 1 1(0) 1(0.01) 0(0) 0.05(0) 0.09(0.01)
100 30 0.99 0.98(0.02) 0.98(0.02) 0(0) 0.05(0) 0.06(0.01)
200 30 0.23 0.96(0.01) 0.95(0.02) 0.01(0) 0.05(0) 0.05(0)
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Table D.30

Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.91(0.11) 0.89(0.13) 0.01(0.01) 0.12(0.02) 0.12(0.02)
50 5 0.95 0.92(0.08) 0.9(0.1) 0.02(0.01) 0.09(0.01) 0.09(0.01)
100 5 0.73 0.93(0.05) 0.91(0.06) 0.02(0.01) 0.08(0.01) 0.06(0.01)
200 5 0.27 0.93(0.03) 0.92(0.03) 0.02(0) 0.07(0.01) 0.05(0.01)
30 10 1 0.98(0.06) 0.97(0.07) 0(0.01) 0.09(0.01) 0.1(0.02)
50 10 0.97 0.95(0.06) 0.94(0.07) 0.01(0.01) 0.08(0.01) 0.08(0.01)
100 10 0.68 0.94(0.04) 0.92(0.05) 0.01(0.01) 0.07(0.01) 0.06(0.01)
200 10 0.12 0.93(0.03) 0.92(0.03) 0.02(0) 0.06(0.01) 0.04(0)
30 30 1 1(0) 1(0) 0(0) 0.08(0.01) 0.09(0.01)
50 30 1 1(0) 1(0) 0(0) 0.07(0.01) 0.07(0.01)
100 30 1 1(0.01) 1(0.01) 0(0) 0.06(0.01) 0.05(0.01)
200 30 0.68 0.97(0.02) 0.96(0.02) 0.01(0) 0.06(0) 0.04(0)

Table D.31

Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.9 0.94(0.06) 0.93(0.07) 0.02(0.02) 0.09(0.01) 0.33(0.04)
50 5 0.68 0.93(0.05) 0.91(0.06) 0.03(0.01) 0.07(0.01) 0.28(0.05)
100 5 0.2 0.93(0.04) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.21(0.04)
200 5 0 0.93(0.02) 0.91(0.03) 0.03(0.01) 0.05(0.01) 0.14(0.02)
30 10 0.51 0.93(0.04) 0.92(0.05) 0.03(0.01) 0.07(0.01) 0.3(0.69)
50 10 0.15 0.93(0.03) 0.91(0.03) 0.03(0.01) 0.06(0.01) 0.19(0.04)
100 10 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0.01) 0.12(0.02)
200 10 0 0.93(0.01) 0.91(0.02) 0.03(0) 0.05(0) 0.09(0.01)
30 30 0.01 0.93(0.02) 0.92(0.02) 0.03(0) 0.05(0.01) 0.15(0.02)
50 30 0 0.93(0.02) 0.92(0.02) 0.03(0) 0.05(0) 0.11(0.01)
100 30 0 0.93(0.01) 0.91(0.01) 0.03(0) 0.05(0) 0.08(0.01)
200 30 0 0.93(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.06(0.01)
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Table D.32

Summary of Fit Statistics Across Conditions: Model M1, Estimator
WLSMV, ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.95(0.05) 0.94(0.06) 0.02(0.02) 0.08(0.01) 0.14(0.05)
50 5 0 0.86(0.01) 0.83(0.01) 0.04(0) 0.09(0.01) 0.14(0.07)
100 5 0.4 0.93(0.04) 0.91(0.05) 0.03(0.01) 0.06(0.01) 0.08(0.02)
30 10 0.4 0.91(0.06) 0.9(0.07) 0.03(0.01) 0.07(0.01) 0.14(0.03)
50 10 0 0.91(0.04) 0.89(0.05) 0.03(0.01) 0.07(0.02) 0.1(0.03)
30 30 0.5 0.96(0.03) 0.95(0.04) 0.02(0.01) 0.05(0.01) 0.08(0.01)

Table D.33

Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.87 0.92(0.07) 0.9(0.08) 0.03(0.02) 0.09(0.01) 0.2(0.03)
50 5 0.59 0.92(0.05) 0.91(0.06) 0.03(0.01) 0.07(0.01) 0.15(0.02)
100 5 0.21 0.93(0.03) 0.92(0.04) 0.03(0.01) 0.06(0.01) 0.1(0.01)
200 5 0 0.93(0.02) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.07(0.01)
30 10 0.51 0.92(0.05) 0.91(0.05) 0.03(0.01) 0.07(0.01) 0.15(0.02)
50 10 0.13 0.93(0.03) 0.91(0.03) 0.03(0.01) 0.06(0.01) 0.12(0.01)
100 10 0.01 0.93(0.02) 0.92(0.02) 0.03(0) 0.06(0.01) 0.08(0.01)
200 10 0 0.94(0.01) 0.92(0.02) 0.03(0) 0.05(0) 0.06(0.01)
30 30 0.12 0.95(0.02) 0.94(0.02) 0.02(0) 0.06(0.01) 0.13(0.01)
50 30 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.05(0) 0.1(0.01)
100 30 0 0.94(0.01) 0.92(0.01) 0.03(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.92(0.01) 0.03(0) 0.05(0) 0.05(0.01)
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Table D.34

Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.81 0.91(0.07) 0.9(0.08) 0.03(0.02) 0.09(0.01) 0.15(0.03)
50 5 0.56 0.92(0.06) 0.9(0.07) 0.03(0.01) 0.08(0.01) 0.11(0.02)
100 5 0.18 0.93(0.04) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.08(0.01)
200 5 0 0.93(0.02) 0.91(0.03) 0.03(0) 0.06(0.01) 0.06(0.01)
30 10 0.56 0.93(0.04) 0.91(0.05) 0.03(0.01) 0.07(0.01) 0.13(0.02)
50 10 0.15 0.92(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.09(0.01)
100 10 0 0.92(0.03) 0.9(0.03) 0.03(0.01) 0.06(0.01) 0.07(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.05(0) 0.05(0.01)
30 30 0.8 0.97(0.02) 0.97(0.02) 0.01(0.01) 0.06(0.01) 0.1(0.01)
50 30 0.04 0.95(0.02) 0.94(0.02) 0.02(0) 0.05(0.01) 0.08(0.01)
100 30 0 0.93(0.01) 0.91(0.02) 0.03(0) 0.05(0) 0.06(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.05(0) 0.05(0.01)

Table D.35

Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.82 0.91(0.07) 0.89(0.08) 0.03(0.02) 0.09(0.01) 0.15(0.02)
50 5 0.71 0.93(0.05) 0.91(0.06) 0.03(0.01) 0.08(0.01) 0.11(0.01)
100 5 0.28 0.94(0.03) 0.92(0.04) 0.03(0.01) 0.06(0.01) 0.08(0.01)
200 5 0.01 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.06(0.01)
30 10 0.8 0.95(0.04) 0.93(0.05) 0.02(0.01) 0.07(0.01) 0.13(0.02)
50 10 0.3 0.94(0.03) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.1(0.01)
100 10 0 0.94(0.02) 0.92(0.02) 0.03(0) 0.06(0.01) 0.07(0.01)
200 10 0 0.94(0.01) 0.92(0.02) 0.03(0) 0.05(0) 0.05(0.01)
30 30 0.99 0.99(0.01) 0.99(0.02) 0(0.01) 0.06(0.01) 0.12(0.01)
50 30 0.37 0.97(0.01) 0.96(0.02) 0.01(0) 0.05(0.01) 0.09(0.01)
100 30 0 0.95(0.01) 0.94(0.01) 0.02(0) 0.05(0) 0.06(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.03(0) 0.05(0) 0.05(0)
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Table D.36

Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.89 0.93(0.06) 0.91(0.07) 0.03(0.01) 0.09(0.01) 0.14(0.02)
50 5 0.66 0.93(0.05) 0.91(0.06) 0.03(0.01) 0.08(0.01) 0.1(0.01)
100 5 0.2 0.93(0.03) 0.91(0.04) 0.03(0.01) 0.07(0.01) 0.07(0.01)
200 5 0 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.05(0.01)
30 10 0.88 0.96(0.04) 0.95(0.05) 0.02(0.01) 0.07(0.01) 0.12(0.02)
50 10 0.4 0.94(0.03) 0.93(0.04) 0.03(0.01) 0.06(0.01) 0.09(0.01)
100 10 0.01 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.07(0.01)
200 10 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0) 0.05(0.01)
30 30 1 1(0) 1(0.01) 0(0) 0.06(0.01) 0.11(0.01)
50 30 0.86 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.06(0.01) 0.09(0.01)
100 30 0 0.95(0.01) 0.94(0.01) 0.02(0) 0.05(0) 0.06(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.03(0) 0.05(0) 0.05(0.01)

Table D.37

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.35 0.87(0.11) 0.84(0.12) 0.05(0.02) 0.06(0.03) 0.33(0.06)
50 5 0.52 0.94(0.04) 0.93(0.05) 0.03(0.02) 0.05(0.01) 0.28(0.04)
100 5 0.69 0.98(0.02) 0.97(0.03) 0.02(0.01) 0.03(0) 0.23(0.03)
200 5 0.84 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.18(0.03)
30 10 0.42 0.94(0.04) 0.92(0.05) 0.03(0.01) 0.04(0.01) 0.26(0.04)
50 10 0.6 0.97(0.02) 0.96(0.03) 0.02(0.01) 0.03(0) 0.22(0.03)
100 10 0.81 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.17(0.02)
200 10 0.79 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.12(0.02)
30 30 0.56 0.98(0.01) 0.98(0.02) 0.02(0.01) 0.02(0) 0.2(0.03)
50 30 0.72 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.15(0.02)
100 30 0.74 1(0) 0.99(0) 0.01(0) 0.01(0) 0.12(0.01)
200 30 0.59 1(0) 1(0) 0.01(0) 0.01(0) 0.09(0.01)

100



Table D.38

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.2 0.89(0.06) 0.87(0.07) 0.06(0.02) 0.07(0.01) 0.21(0.05)
50 5 0.2 0.93(0.03) 0.91(0.04) 0.04(0.01) 0.05(0.01) 0.18(0.03)
100 5 0.09 0.95(0.02) 0.94(0.03) 0.03(0.01) 0.04(0) 0.16(0.03)
200 5 0 0.96(0.01) 0.95(0.02) 0.03(0.01) 0.03(0) 0.14(0.02)
30 10 0.15 0.92(0.04) 0.91(0.04) 0.04(0.01) 0.04(0.01) 0.17(0.04)
50 10 0.09 0.94(0.02) 0.93(0.03) 0.03(0.01) 0.04(0) 0.16(0.03)
100 10 0 0.96(0.01) 0.95(0.01) 0.03(0) 0.03(0) 0.14(0.02)
200 10 0 0.96(0.01) 0.95(0.01) 0.03(0) 0.02(0) 0.13(0.01)
30 30 0.08 0.96(0.02) 0.95(0.02) 0.03(0.01) 0.02(0) 0.16(0.03)
50 30 0.03 0.97(0.01) 0.97(0.01) 0.02(0) 0.02(0) 0.15(0.02)
100 30 0 0.98(0.01) 0.97(0.01) 0.02(0) 0.01(0) 0.14(0.02)
200 30 0 0.98(0) 0.97(0) 0.02(0) 0.01(0) 0.13(0.01)

Table D.39

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.47 0.87(0.09) 0.85(0.11) 0.04(0.02) 0.06(0.01) 0.23(0.03)
50 5 0.78 0.95(0.05) 0.94(0.06) 0.02(0.02) 0.05(0.01) 0.19(0.02)
100 5 0.88 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.03(0) 0.14(0.02)
200 5 0.87 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.1(0.01)
30 10 0.63 0.94(0.04) 0.93(0.05) 0.02(0.01) 0.04(0.01) 0.2(0.02)
50 10 0.77 0.98(0.02) 0.97(0.03) 0.01(0.01) 0.03(0) 0.16(0.02)
100 10 0.87 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.11(0.01)
200 10 0.88 1(0) 1(0.01) 0.01(0) 0.02(0) 0.08(0.01)
30 30 0.71 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.16(0.02)
50 30 0.8 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.13(0.01)
100 30 0.88 1(0) 1(0) 0(0) 0.01(0) 0.09(0.01)
200 30 0.88 1(0) 1(0) 0(0) 0.01(0) 0.07(0.01)
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Table D.40

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.37 0.88(0.07) 0.86(0.08) 0.05(0.02) 0.07(0.01) 0.19(0.03)
50 5 0.52 0.94(0.04) 0.93(0.05) 0.03(0.02) 0.05(0.01) 0.16(0.02)
100 5 0.46 0.96(0.02) 0.96(0.03) 0.02(0.01) 0.04(0) 0.12(0.02)
200 5 0.14 0.97(0.01) 0.96(0.02) 0.02(0.01) 0.03(0) 0.11(0.01)
30 10 0.47 0.94(0.04) 0.92(0.05) 0.03(0.01) 0.04(0.01) 0.17(0.03)
50 10 0.5 0.96(0.02) 0.96(0.03) 0.02(0.01) 0.03(0) 0.14(0.02)
100 10 0.26 0.97(0.01) 0.97(0.02) 0.02(0.01) 0.02(0) 0.11(0.01)
200 10 0.02 0.98(0.01) 0.97(0.01) 0.02(0) 0.02(0) 0.1(0.01)
30 30 0.49 0.98(0.02) 0.97(0.02) 0.02(0.01) 0.02(0) 0.16(0.02)
50 30 0.43 0.98(0.01) 0.98(0.01) 0.01(0.01) 0.02(0) 0.13(0.02)
100 30 0.19 0.99(0.01) 0.99(0.01) 0.01(0) 0.01(0) 0.11(0.01)
200 30 0 0.99(0) 0.99(0) 0.01(0) 0.01(0) 0.1(0.01)

Table D.41

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.57 0.87(0.1) 0.84(0.12) 0.04(0.02) 0.06(0.01) 0.19(0.02)
50 5 0.83 0.95(0.05) 0.94(0.05) 0.02(0.01) 0.05(0.01) 0.15(0.02)
100 5 0.92 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.11(0.01)
200 5 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.07(0.01)
30 10 0.75 0.95(0.04) 0.94(0.05) 0.02(0.01) 0.04(0.01) 0.17(0.02)
50 10 0.85 0.98(0.02) 0.97(0.03) 0.01(0.01) 0.03(0) 0.13(0.01)
100 10 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.09(0.01)
200 10 0.92 1(0) 1(0.01) 0(0) 0.02(0) 0.07(0.01)
30 30 0.69 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.16(0.02)
50 30 0.87 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.12(0.01)
100 30 0.91 1(0) 1(0) 0(0) 0.01(0) 0.08(0.01)
200 30 0.94 1(0) 1(0) 0(0) 0.01(0) 0.06(0.01)
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Table D.42

Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.51 0.88(0.09) 0.85(0.1) 0.04(0.02) 0.06(0.01) 0.18(0.03)
50 5 0.73 0.95(0.05) 0.94(0.06) 0.02(0.02) 0.05(0.01) 0.14(0.02)
100 5 0.67 0.97(0.03) 0.96(0.03) 0.02(0.01) 0.04(0) 0.11(0.01)
200 5 0.48 0.98(0.01) 0.97(0.02) 0.02(0.01) 0.03(0) 0.08(0.01)
30 10 0.64 0.94(0.04) 0.93(0.05) 0.02(0.01) 0.04(0.01) 0.16(0.02)
50 10 0.71 0.97(0.03) 0.96(0.03) 0.02(0.01) 0.03(0) 0.13(0.02)
100 10 0.64 0.98(0.01) 0.98(0.02) 0.01(0.01) 0.02(0) 0.1(0.01)
200 10 0.39 0.99(0.01) 0.98(0.01) 0.01(0) 0.02(0) 0.08(0.01)
30 30 0.62 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.02(0) 0.15(0.02)
50 30 0.7 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.02(0) 0.12(0.02)
100 30 0.56 0.99(0) 0.99(0.01) 0.01(0) 0.01(0) 0.1(0.01)
200 30 0.32 0.99(0) 0.99(0) 0.01(0) 0.01(0) 0.08(0.01)

Table D.43

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.07(0.01) 0.36(0.06)
50 5 0.99 0.99(0.02) 0.98(0.03) 0.01(0.01) 0.06(0.01) 0.31(0.06)
100 5 0.94 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.22(0.05)
200 5 0.93 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.15(0.03)
30 10 1 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.26(0.04)
50 10 0.98 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0) 0.2(0.04)
100 10 0.94 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.14(0.02)
200 10 0.87 1(0) 1(0) 0.01(0) 0.02(0) 0.1(0.01)
30 30 0.99 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.16(0.02)
50 30 0.96 1(0) 1(0) 0.01(0) 0.02(0) 0.12(0.02)
100 30 0.84 1(0) 1(0) 0.01(0) 0.01(0) 0.09(0.01)
200 30 0.62 1(0) 1(0) 0.01(0) 0.01(0) 0.07(0.01)
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Table D.44

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.96(0.06) 0.95(0.07) 0.01(0.01) 0.08(0.01) 0.15(0.04)
50 5 0.79 0.93(0.06) 0.91(0.07) 0.02(0.01) 0.07(0.01) 0.13(0.03)
100 5 0.25 0.92(0.05) 0.9(0.06) 0.03(0.01) 0.05(0.01) 0.11(0.02)
200 5 0 0.9(0.04) 0.88(0.04) 0.03(0.01) 0.04(0.01) 0.1(0.01)
30 10 0.87 0.93(0.08) 0.91(0.1) 0.02(0.01) 0.06(0.01) 0.13(0.03)
50 10 0.34 0.89(0.06) 0.87(0.07) 0.03(0.01) 0.05(0.01) 0.11(0.02)
100 10 0 0.87(0.05) 0.84(0.06) 0.03(0.01) 0.04(0.01) 0.1(0.02)
200 10 0 0.85(0.04) 0.82(0.05) 0.03(0) 0.03(0) 0.09(0.01)
30 30 0.88 0.95(0.05) 0.94(0.06) 0.01(0.01) 0.04(0.01) 0.11(0.02)
50 30 0.12 0.87(0.06) 0.85(0.07) 0.02(0) 0.03(0.01) 0.1(0.02)
100 30 0 0.81(0.06) 0.77(0.07) 0.03(0) 0.03(0.01) 0.09(0.01)
200 30 0 0.77(0.05) 0.73(0.06) 0.03(0) 0.03(0) 0.09(0.01)

Table D.45

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.96(0.06) 0.95(0.07) 0.01(0.01) 0.08(0.01) 0.21(0.04)
50 5 0.97 0.97(0.04) 0.97(0.04) 0.01(0.01) 0.06(0.01) 0.16(0.02)
100 5 0.97 0.99(0.02) 0.98(0.02) 0.01(0.01) 0.04(0.01) 0.11(0.01)
200 5 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
30 10 0.99 0.98(0.03) 0.97(0.04) 0.01(0.01) 0.05(0.01) 0.16(0.02)
50 10 0.98 0.98(0.02) 0.98(0.02) 0.01(0.01) 0.04(0) 0.12(0.01)
100 10 0.95 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
200 10 0.92 1(0) 1(0.01) 0.01(0) 0.02(0) 0.06(0.01)
30 30 1 1(0.01) 1(0.01) 0(0) 0.03(0) 0.13(0.01)
50 30 0.99 1(0.01) 0.99(0.01) 0(0) 0.02(0) 0.1(0.01)
100 30 0.96 1(0.01) 1(0.01) 0(0) 0.02(0) 0.07(0.01)
200 30 0.87 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.46

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.98 0.93(0.08) 0.92(0.09) 0.02(0.01) 0.09(0.01) 0.14(0.03)
50 5 0.84 0.93(0.06) 0.92(0.08) 0.02(0.01) 0.07(0.01) 0.11(0.02)
100 5 0.46 0.93(0.05) 0.91(0.06) 0.02(0.01) 0.06(0.01) 0.09(0.01)
200 5 0.05 0.92(0.03) 0.9(0.04) 0.03(0.01) 0.04(0.01) 0.07(0.01)
30 10 0.96 0.95(0.07) 0.93(0.08) 0.01(0.01) 0.07(0.01) 0.12(0.02)
50 10 0.72 0.93(0.06) 0.91(0.07) 0.02(0.01) 0.05(0.01) 0.09(0.02)
100 10 0.17 0.91(0.05) 0.89(0.06) 0.02(0.01) 0.04(0.01) 0.08(0.01)
200 10 0 0.9(0.03) 0.89(0.04) 0.02(0) 0.04(0.01) 0.07(0.01)
30 30 1 1(0.01) 1(0.01) 0(0) 0.05(0.01) 0.1(0.02)
50 30 0.99 0.99(0.03) 0.98(0.03) 0(0) 0.04(0.01) 0.08(0.01)
100 30 0.26 0.93(0.04) 0.92(0.04) 0.01(0) 0.03(0.01) 0.07(0.01)
200 30 0 0.9(0.03) 0.88(0.03) 0.02(0) 0.03(0.01) 0.06(0.01)

Table D.47

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.96 0.9(0.13) 0.88(0.16) 0.01(0.01) 0.09(0.02) 0.15(0.02)
50 5 0.97 0.95(0.07) 0.94(0.08) 0.01(0.01) 0.06(0.01) 0.12(0.01)
100 5 0.97 0.97(0.03) 0.97(0.04) 0.01(0.01) 0.04(0.01) 0.08(0.01)
200 5 0.94 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 1 0.97(0.06) 0.97(0.07) 0(0.01) 0.06(0.01) 0.13(0.02)
50 10 0.99 0.97(0.04) 0.96(0.05) 0.01(0.01) 0.04(0.01) 0.1(0.01)
100 10 0.95 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.03(0) 0.07(0.01)
200 10 0.92 0.99(0.01) 0.99(0.01) 0(0) 0.02(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0.01) 0.12(0.01)
50 30 1 1(0) 1(0) 0(0) 0.03(0) 0.09(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.07(0.01)
200 30 0.99 1(0.01) 1(0.01) 0(0) 0.01(0) 0.05(0.01)
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Table D.48

Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.91(0.11) 0.89(0.13) 0.01(0.01) 0.11(0.02) 0.12(0.02)
50 5 0.95 0.93(0.08) 0.92(0.1) 0.01(0.01) 0.08(0.01) 0.09(0.01)
100 5 0.74 0.93(0.05) 0.92(0.06) 0.02(0.01) 0.06(0.01) 0.07(0.01)
200 5 0.33 0.93(0.04) 0.92(0.05) 0.02(0.01) 0.05(0.01) 0.06(0.01)
30 10 1 0.98(0.05) 0.98(0.06) 0(0.01) 0.08(0.02) 0.11(0.02)
50 10 0.96 0.96(0.06) 0.95(0.07) 0.01(0.01) 0.06(0.01) 0.09(0.01)
100 10 0.71 0.94(0.05) 0.93(0.06) 0.01(0.01) 0.05(0.01) 0.06(0.01)
200 10 0.19 0.93(0.03) 0.92(0.04) 0.02(0) 0.04(0.01) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.06(0.02) 0.1(0.01)
50 30 1 1(0) 1(0) 0(0) 0.05(0.01) 0.08(0.01)
100 30 1 1(0.01) 1(0.01) 0(0) 0.04(0.01) 0.06(0.01)
200 30 0.65 0.97(0.03) 0.96(0.03) 0.01(0) 0.03(0.01) 0.05(0.01)

Table D.49

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.98(0.03) 0.98(0.04) 0.01(0.01) 0.07(0.01) 0.35(0.06)
50 5 1 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.06(0.01) 0.3(0.06)
100 5 0.93 0.99(0.02) 0.98(0.02) 0.01(0.01) 0.04(0.01) 0.22(0.04)
200 5 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.15(0.03)
30 10 1 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.25(0.04)
50 10 0.96 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0) 0.19(0.03)
100 10 0.93 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.13(0.02)
200 10 0.83 1(0) 0.99(0.01) 0.01(0) 0.02(0) 0.1(0.01)
30 30 0.98 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.16(0.02)
50 30 0.95 1(0) 0.99(0.01) 0.01(0) 0.02(0) 0.12(0.02)
100 30 0.79 1(0) 1(0) 0.01(0) 0.01(0) 0.09(0.01)
200 30 0.49 1(0) 1(0) 0.01(0) 0.01(0) 0.07(0.01)
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Table D.50

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.97(0.03) 0.97(0.04) 0.01(0.01) 0.07(0.01) 0.19(0.05)
50 5 0.74 0.95(0.04) 0.94(0.05) 0.02(0.01) 0.06(0.01) 0.15(0.02)
100 5 0.43 0.95(0.03) 0.94(0.03) 0.02(0.01) 0.05(0.01) 0.12(0.02)
200 5 0.01 0.94(0.02) 0.93(0.02) 0.03(0.01) 0.03(0) 0.11(0.01)
30 10 0.97 0.97(0.02) 0.97(0.03) 0.02(0.01) 0.05(0.01) 0.15(0.03)
50 10 0.7 0.97(0.02) 0.96(0.03) 0.02(0.01) 0.04(0.01) 0.13(0.02)
100 10 0.05 0.95(0.02) 0.94(0.02) 0.02(0) 0.03(0) 0.11(0.01)
200 10 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.02(0) 0.1(0.01)
30 30 0.97 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.13(0.02)
50 30 0.6 0.98(0.01) 0.98(0.01) 0.01(0) 0.02(0) 0.12(0.01)
100 30 0 0.97(0.01) 0.97(0.01) 0.02(0) 0.02(0) 0.11(0.01)
200 30 0 0.97(0.01) 0.96(0.01) 0.02(0) 0.01(0) 0.11(0.01)

Table D.51

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.97 0.96(0.04) 0.96(0.05) 0.02(0.01) 0.08(0.01) 0.21(0.04)
50 5 0.95 0.98(0.03) 0.97(0.04) 0.01(0.01) 0.06(0.01) 0.15(0.02)
100 5 0.97 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.11(0.01)
200 5 0.92 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
30 10 0.97 0.98(0.02) 0.98(0.03) 0.01(0.01) 0.05(0.01) 0.16(0.02)
50 10 0.98 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0) 0.12(0.01)
100 10 0.94 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
200 10 0.92 1(0) 1(0) 0.01(0) 0.02(0) 0.06(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.13(0.01)
50 30 0.99 1(0) 1(0) 0(0) 0.02(0) 0.1(0.01)
100 30 0.96 1(0) 1(0) 0(0) 0.02(0) 0.07(0.01)
200 30 0.91 1(0) 1(0) 0(0) 0.01(0) 0.05(0.01)
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Table D.52

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.94 0.95(0.05) 0.94(0.06) 0.02(0.01) 0.08(0.01) 0.16(0.03)
50 5 0.89 0.96(0.03) 0.95(0.04) 0.02(0.01) 0.06(0.01) 0.13(0.02)
100 5 0.61 0.96(0.02) 0.96(0.03) 0.02(0.01) 0.04(0.01) 0.1(0.01)
200 5 0.14 0.96(0.02) 0.96(0.02) 0.02(0.01) 0.03(0) 0.08(0.01)
30 10 0.97 0.98(0.02) 0.97(0.03) 0.01(0.01) 0.05(0.01) 0.14(0.02)
50 10 0.85 0.98(0.02) 0.97(0.02) 0.02(0.01) 0.04(0.01) 0.11(0.02)
100 10 0.34 0.97(0.01) 0.97(0.02) 0.02(0.01) 0.03(0) 0.09(0.01)
200 10 0.01 0.97(0.01) 0.97(0.01) 0.02(0) 0.02(0) 0.08(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.12(0.02)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.1(0.01)
100 30 0.52 0.99(0) 0.99(0.01) 0.01(0) 0.02(0) 0.09(0.01)
200 30 0 0.99(0) 0.99(0) 0.01(0) 0.01(0) 0.08(0.01)

Table D.53

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.95 0.96(0.05) 0.95(0.06) 0.02(0.01) 0.08(0.01) 0.16(0.02)
50 5 0.97 0.98(0.03) 0.97(0.03) 0.01(0.01) 0.06(0.01) 0.12(0.01)
100 5 0.97 0.99(0.01) 0.99(0.02) 0.01(0.01) 0.04(0.01) 0.08(0.01)
200 5 0.96 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.06(0.01)
30 10 0.99 0.99(0.02) 0.99(0.02) 0.01(0.01) 0.05(0.01) 0.13(0.01)
50 10 0.99 0.99(0.01) 0.99(0.01) 0.01(0.01) 0.04(0.01) 0.1(0.01)
100 10 0.96 1(0.01) 0.99(0.01) 0.01(0.01) 0.03(0) 0.07(0.01)
200 10 0.94 1(0) 1(0) 0(0) 0.02(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.12(0.01)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.09(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.07(0.01)
200 30 1 1(0) 1(0) 0(0) 0.01(0) 0.05(0)
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Table D.54

Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.98 0.96(0.04) 0.95(0.05) 0.02(0.01) 0.08(0.01) 0.15(0.02)
50 5 0.95 0.97(0.03) 0.96(0.04) 0.02(0.01) 0.06(0.01) 0.11(0.01)
100 5 0.77 0.97(0.02) 0.97(0.03) 0.02(0.01) 0.05(0.01) 0.08(0.01)
200 5 0.42 0.98(0.01) 0.97(0.02) 0.02(0.01) 0.03(0) 0.06(0.01)
30 10 0.99 0.99(0.02) 0.99(0.02) 0(0.01) 0.05(0.01) 0.13(0.02)
50 10 0.97 0.99(0.01) 0.98(0.02) 0.01(0.01) 0.04(0.01) 0.1(0.01)
100 10 0.77 0.99(0.01) 0.98(0.01) 0.01(0.01) 0.03(0) 0.08(0.01)
200 10 0.27 0.99(0.01) 0.98(0.01) 0.01(0) 0.02(0) 0.06(0.01)
30 30 1 1(0) 1(0) 0(0) 0.03(0) 0.12(0.02)
50 30 1 1(0) 1(0) 0(0) 0.02(0) 0.1(0.01)
100 30 1 1(0) 1(0) 0(0) 0.02(0) 0.08(0.01)
200 30 0.73 1(0) 1(0) 0(0) 0.01(0) 0.06(0.01)

Table D.55

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.1 0.77(0.14) 0.73(0.16) 0.07(0.02) 0.08(0.04) 0.32(0.06)
50 5 0.1 0.86(0.06) 0.83(0.07) 0.05(0.01) 0.06(0.01) 0.28(0.04)
100 5 0.01 0.89(0.04) 0.87(0.04) 0.04(0.01) 0.05(0.01) 0.22(0.03)
200 5 0 0.91(0.02) 0.9(0.03) 0.04(0) 0.05(0.01) 0.17(0.02)
30 10 0.03 0.86(0.05) 0.83(0.06) 0.05(0.01) 0.06(0.01) 0.26(0.04)
50 10 0.01 0.89(0.04) 0.87(0.04) 0.04(0.01) 0.05(0.01) 0.22(0.03)
100 10 0 0.91(0.02) 0.9(0.03) 0.04(0) 0.05(0) 0.16(0.02)
200 10 0 0.92(0.01) 0.9(0.02) 0.03(0) 0.04(0) 0.12(0.02)
30 30 0 0.9(0.03) 0.88(0.03) 0.04(0.01) 0.05(0) 0.19(0.03)
50 30 0 0.91(0.02) 0.89(0.02) 0.04(0) 0.04(0) 0.15(0.02)
100 30 0 0.91(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.11(0.01)
200 30 0 0.91(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.08(0.01)
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Table D.56

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.03 0.83(0.06) 0.8(0.07) 0.07(0.02) 0.08(0.01) 0.2(0.04)
50 5 0.01 0.87(0.04) 0.85(0.05) 0.06(0.01) 0.07(0.01) 0.17(0.03)
100 5 0 0.89(0.03) 0.88(0.03) 0.05(0.01) 0.06(0.01) 0.14(0.02)
200 5 0 0.9(0.02) 0.88(0.02) 0.05(0) 0.05(0.01) 0.13(0.02)
30 10 0.02 0.86(0.05) 0.84(0.05) 0.06(0.01) 0.06(0.01) 0.17(0.04)
50 10 0 0.89(0.03) 0.87(0.03) 0.05(0.01) 0.05(0.01) 0.15(0.03)
100 10 0 0.9(0.02) 0.88(0.02) 0.05(0) 0.05(0.01) 0.13(0.02)
200 10 0 0.9(0.01) 0.89(0.01) 0.04(0) 0.05(0) 0.12(0.01)
30 30 0 0.9(0.02) 0.88(0.03) 0.04(0.01) 0.05(0) 0.16(0.04)
50 30 0 0.91(0.02) 0.89(0.02) 0.04(0) 0.04(0) 0.14(0.02)
100 30 0 0.91(0.01) 0.89(0.01) 0.04(0) 0.04(0) 0.13(0.02)
200 30 0 0.91(0.01) 0.89(0.01) 0.04(0) 0.04(0) 0.12(0.01)

Table D.57

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.28 0.8(0.13) 0.76(0.15) 0.05(0.02) 0.07(0.01) 0.23(0.03)
50 5 0.35 0.88(0.07) 0.86(0.08) 0.04(0.01) 0.06(0.01) 0.19(0.02)
100 5 0.14 0.91(0.05) 0.89(0.05) 0.03(0.01) 0.05(0.01) 0.14(0.02)
200 5 0 0.91(0.03) 0.9(0.03) 0.03(0.01) 0.05(0.01) 0.1(0.01)
30 10 0.13 0.87(0.06) 0.84(0.07) 0.04(0.01) 0.06(0.01) 0.2(0.02)
50 10 0.06 0.9(0.04) 0.88(0.05) 0.04(0.01) 0.05(0.01) 0.15(0.02)
100 10 0 0.91(0.02) 0.89(0.03) 0.03(0.01) 0.05(0.01) 0.11(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.08(0.01)
30 30 0 0.9(0.03) 0.88(0.03) 0.04(0.01) 0.05(0.01) 0.16(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.13(0.01)
100 30 0 0.91(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.09(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.06(0.01)
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Table D.58

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.17 0.83(0.09) 0.8(0.1) 0.06(0.02) 0.08(0.01) 0.18(0.03)
50 5 0.15 0.88(0.05) 0.86(0.06) 0.05(0.01) 0.07(0.01) 0.15(0.02)
100 5 0.01 0.9(0.03) 0.89(0.04) 0.04(0.01) 0.05(0.01) 0.12(0.02)
200 5 0 0.91(0.02) 0.89(0.02) 0.04(0) 0.05(0) 0.1(0.01)
30 10 0.06 0.87(0.05) 0.85(0.06) 0.05(0.01) 0.06(0.01) 0.17(0.03)
50 10 0.01 0.9(0.03) 0.88(0.04) 0.04(0.01) 0.05(0.01) 0.13(0.02)
100 10 0 0.91(0.02) 0.89(0.03) 0.04(0) 0.05(0) 0.1(0.01)
200 10 0 0.91(0.01) 0.9(0.02) 0.04(0) 0.04(0) 0.09(0.01)
30 30 0 0.9(0.02) 0.89(0.03) 0.04(0.01) 0.05(0) 0.15(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.04(0) 0.04(0) 0.12(0.02)
100 30 0 0.91(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.1(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.09(0.01)

Table D.59

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.38 0.81(0.1) 0.78(0.12) 0.05(0.02) 0.07(0.01) 0.19(0.02)
50 5 0.39 0.88(0.07) 0.86(0.08) 0.03(0.01) 0.06(0.01) 0.15(0.02)
100 5 0.21 0.91(0.04) 0.89(0.05) 0.03(0.01) 0.05(0.01) 0.11(0.01)
200 5 0.01 0.91(0.03) 0.9(0.03) 0.03(0) 0.05(0.01) 0.07(0.01)
30 10 0.26 0.88(0.06) 0.86(0.07) 0.04(0.01) 0.06(0.01) 0.17(0.02)
50 10 0.09 0.9(0.04) 0.88(0.04) 0.03(0.01) 0.05(0.01) 0.13(0.01)
100 10 0 0.91(0.03) 0.9(0.03) 0.03(0) 0.04(0) 0.09(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.06(0.01)
30 30 0 0.9(0.02) 0.88(0.03) 0.04(0) 0.05(0) 0.16(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.12(0.01)
100 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.08(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.06(0.01)
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Table D.60

Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.3 0.82(0.09) 0.79(0.11) 0.05(0.02) 0.07(0.01) 0.18(0.03)
50 5 0.36 0.89(0.07) 0.87(0.08) 0.04(0.01) 0.06(0.01) 0.13(0.02)
100 5 0.07 0.9(0.04) 0.89(0.04) 0.03(0.01) 0.05(0.01) 0.1(0.01)
200 5 0 0.91(0.02) 0.9(0.03) 0.03(0) 0.05(0.01) 0.08(0.01)
30 10 0.18 0.88(0.06) 0.85(0.07) 0.04(0.01) 0.06(0.01) 0.16(0.02)
50 10 0.07 0.9(0.04) 0.89(0.04) 0.03(0.01) 0.05(0.01) 0.12(0.02)
100 10 0 0.91(0.02) 0.9(0.03) 0.03(0) 0.04(0) 0.09(0.01)
200 10 0 0.92(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.07(0.01)
30 30 0 0.9(0.03) 0.89(0.03) 0.03(0.01) 0.04(0) 0.15(0.02)
50 30 0 0.91(0.02) 0.9(0.02) 0.03(0) 0.04(0) 0.12(0.02)
100 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.09(0.01)
200 30 0 0.92(0.01) 0.9(0.01) 0.03(0) 0.04(0) 0.07(0.01)

Table D.61

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 1 0.95(0.05) 0.94(0.05) 0.02(0.01) 0.09(0.01) 0.35(0.06)
50 5 0.61 0.93(0.05) 0.92(0.06) 0.03(0.01) 0.07(0.01) 0.32(0.06)
100 5 0.09 0.92(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.22(0.05)
200 5 0 0.93(0.02) 0.91(0.03) 0.04(0.01) 0.05(0.01) 0.15(0.03)
30 10 0.43 0.93(0.04) 0.91(0.04) 0.03(0.01) 0.07(0.01) 0.26(0.05)
50 10 0.05 0.93(0.03) 0.91(0.03) 0.03(0.01) 0.06(0.01) 0.2(0.04)
100 10 0 0.92(0.02) 0.91(0.02) 0.04(0.01) 0.05(0.01) 0.13(0.02)
200 10 0 0.92(0.01) 0.91(0.02) 0.04(0) 0.05(0) 0.09(0.01)
30 30 0.01 0.93(0.02) 0.92(0.02) 0.03(0.01) 0.05(0.01) 0.16(0.02)
50 30 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0) 0.12(0.02)
100 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.09(0.01)
200 30 0 0.92(0.01) 0.91(0.01) 0.04(0) 0.05(0) 0.06(0.01)
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Table D.62

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.82 0.9(0.12) 0.88(0.14) 0.02(0.02) 0.09(0.01) 0.16(0.04)
50 5 0.44 0.87(0.07) 0.85(0.08) 0.03(0.01) 0.08(0.01) 0.14(0.03)
100 5 0.06 0.87(0.04) 0.85(0.05) 0.04(0.01) 0.07(0.01) 0.12(0.02)
200 5 0 0.86(0.04) 0.83(0.05) 0.04(0.01) 0.06(0.01) 0.11(0.02)
30 10 0.47 0.86(0.08) 0.83(0.1) 0.03(0.01) 0.07(0.01) 0.15(0.04)
50 10 0.14 0.85(0.07) 0.82(0.08) 0.03(0.01) 0.06(0.01) 0.12(0.03)
100 10 0 0.82(0.05) 0.79(0.06) 0.04(0.01) 0.06(0.01) 0.1(0.02)
200 10 0 0.77(0.05) 0.73(0.05) 0.04(0) 0.05(0.01) 0.11(0.02)
30 30 0.36 0.88(0.05) 0.86(0.06) 0.02(0.01) 0.06(0.01) 0.12(0.03)
50 30 0 0.81(0.05) 0.78(0.06) 0.03(0) 0.06(0) 0.11(0.02)
100 30 0 0.75(0.03) 0.7(0.04) 0.03(0) 0.05(0) 0.09(0.02)

Table D.63

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.95 0.92(0.08) 0.9(0.09) 0.02(0.01) 0.09(0.01) 0.21(0.04)
50 5 0.76 0.92(0.06) 0.91(0.07) 0.02(0.01) 0.07(0.01) 0.16(0.02)
100 5 0.3 0.93(0.04) 0.92(0.04) 0.03(0.01) 0.06(0.01) 0.11(0.01)
200 5 0.02 0.93(0.02) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.08(0.01)
30 10 0.84 0.92(0.05) 0.91(0.06) 0.02(0.01) 0.07(0.01) 0.16(0.02)
50 10 0.38 0.93(0.03) 0.91(0.04) 0.02(0.01) 0.06(0.01) 0.12(0.01)
100 10 0.02 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.08(0.01)
200 10 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.05(0) 0.06(0.01)
30 30 0.93 0.97(0.03) 0.96(0.03) 0.01(0.01) 0.06(0.01) 0.13(0.01)
50 30 0.31 0.95(0.02) 0.94(0.02) 0.02(0) 0.05(0) 0.1(0.01)
100 30 0 0.94(0.01) 0.93(0.01) 0.02(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.02(0) 0.05(0) 0.05(0.01)
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Table D.64

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.93 0.9(0.1) 0.88(0.12) 0.02(0.01) 0.11(0.01) 0.14(0.03)
50 5 0.66 0.89(0.08) 0.87(0.09) 0.03(0.01) 0.09(0.01) 0.11(0.02)
100 5 0.17 0.89(0.05) 0.87(0.06) 0.03(0.01) 0.07(0.01) 0.09(0.01)
200 5 0 0.89(0.03) 0.87(0.04) 0.03(0) 0.06(0.01) 0.07(0.01)
30 10 0.89 0.91(0.08) 0.89(0.1) 0.02(0.01) 0.08(0.01) 0.12(0.02)
50 10 0.48 0.89(0.06) 0.87(0.07) 0.02(0.01) 0.07(0.01) 0.1(0.02)
100 10 0.02 0.88(0.04) 0.85(0.05) 0.03(0) 0.06(0.01) 0.07(0.01)
200 10 0 0.87(0.03) 0.84(0.04) 0.03(0) 0.05(0) 0.06(0.01)
30 30 1 1(0.02) 1(0.02) 0(0) 0.06(0.01) 0.1(0.02)
50 30 0.93 0.97(0.04) 0.96(0.04) 0.01(0) 0.06(0.01) 0.08(0.01)
100 30 0.01 0.9(0.03) 0.88(0.04) 0.02(0) 0.05(0) 0.07(0.01)
200 30 0 0.86(0.03) 0.84(0.03) 0.02(0) 0.05(0) 0.06(0.01)

Table D.65

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.95 0.87(0.14) 0.84(0.17) 0.02(0.01) 0.1(0.02) 0.15(0.02)
50 5 0.94 0.9(0.09) 0.89(0.1) 0.02(0.01) 0.08(0.01) 0.12(0.01)
100 5 0.77 0.93(0.05) 0.92(0.06) 0.02(0.01) 0.06(0.01) 0.08(0.01)
200 5 0.36 0.94(0.03) 0.93(0.03) 0.02(0) 0.06(0.01) 0.06(0.01)
30 10 0.99 0.95(0.07) 0.94(0.09) 0.01(0.01) 0.07(0.01) 0.13(0.01)
50 10 0.94 0.93(0.06) 0.92(0.07) 0.01(0.01) 0.06(0.01) 0.1(0.01)
100 10 0.66 0.94(0.04) 0.93(0.04) 0.01(0.01) 0.06(0.01) 0.07(0.01)
200 10 0.13 0.94(0.02) 0.93(0.02) 0.02(0) 0.05(0) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.06(0.01) 0.12(0.01)
50 30 1 1(0) 1(0) 0(0) 0.05(0) 0.09(0.01)
100 30 0.99 0.98(0.02) 0.98(0.02) 0(0) 0.05(0) 0.07(0.01)
200 30 0.22 0.96(0.01) 0.95(0.02) 0.01(0) 0.05(0) 0.05(0)
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Table D.66

Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV,
ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.99 0.89(0.12) 0.87(0.14) 0.02(0.01) 0.12(0.02) 0.12(0.02)
50 5 0.93 0.91(0.09) 0.89(0.1) 0.02(0.01) 0.09(0.01) 0.09(0.01)
100 5 0.57 0.9(0.06) 0.89(0.07) 0.02(0.01) 0.08(0.01) 0.07(0.01)
200 5 0.11 0.91(0.04) 0.89(0.04) 0.02(0) 0.06(0.01) 0.05(0.01)
30 10 0.99 0.97(0.07) 0.96(0.08) 0(0.01) 0.09(0.01) 0.11(0.02)
50 10 0.94 0.93(0.07) 0.92(0.08) 0.01(0.01) 0.08(0.01) 0.08(0.01)
100 10 0.48 0.91(0.05) 0.9(0.06) 0.02(0.01) 0.06(0.01) 0.06(0.01)
200 10 0.02 0.91(0.03) 0.89(0.04) 0.02(0) 0.06(0.01) 0.05(0.01)
30 30 1 1(0) 1(0) 0(0) 0.08(0.01) 0.1(0.01)
50 30 1 1(0) 1(0) 0(0) 0.07(0.01) 0.08(0.01)
100 30 1 0.99(0.02) 0.99(0.02) 0(0) 0.06(0.01) 0.06(0.01)
200 30 0.32 0.94(0.03) 0.93(0.03) 0.01(0) 0.05(0) 0.05(0.01)

Table D.67

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.1 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.94 0.94(0.05) 0.93(0.06) 0.02(0.01) 0.09(0.01) 0.35(0.06)
50 5 0.68 0.93(0.05) 0.92(0.06) 0.03(0.01) 0.07(0.01) 0.3(0.05)
100 5 0.2 0.93(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.22(0.04)
200 5 0 0.93(0.02) 0.92(0.03) 0.03(0) 0.05(0.01) 0.15(0.03)
30 10 0.62 0.93(0.04) 0.92(0.05) 0.03(0.01) 0.07(0.01) 0.25(0.05)
50 10 0.15 0.93(0.03) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.19(0.03)
100 10 0 0.93(0.02) 0.92(0.02) 0.03(0) 0.05(0.01) 0.13(0.02)
200 10 0 0.93(0.01) 0.92(0.02) 0.03(0) 0.05(0) 0.09(0.01)
30 30 0 0.93(0.02) 0.92(0.02) 0.03(0) 0.05(0.01) 0.16(0.02)
50 30 0 0.93(0.02) 0.92(0.02) 0.03(0) 0.05(0) 0.12(0.01)
100 30 0 0.93(0.01) 0.92(0.01) 0.03(0) 0.05(0) 0.09(0.01)
200 30 0 0.93(0.01) 0.91(0.01) 0.03(0) 0.05(0) 0.06(0.01)
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Table D.68

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.1 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.79 0.91(0.09) 0.89(0.1) 0.03(0.02) 0.09(0.01) 0.2(0.06)
50 5 0.22 0.89(0.04) 0.87(0.05) 0.04(0.01) 0.08(0.01) 0.16(0.03)
100 5 0.02 0.9(0.04) 0.88(0.04) 0.04(0.01) 0.06(0.01) 0.12(0.02)
200 5 0 0.88(0.03) 0.86(0.03) 0.04(0) 0.06(0.01) 0.11(0.02)
30 10 0.34 0.91(0.06) 0.89(0.07) 0.03(0.01) 0.07(0.01) 0.16(0.04)
50 10 0.03 0.89(0.04) 0.87(0.05) 0.04(0.01) 0.06(0.01) 0.12(0.02)
100 10 0 0.87(0.04) 0.85(0.04) 0.04(0.01) 0.06(0.01) 0.1(0.02)
200 10 0 0.87(0.02) 0.84(0.03) 0.04(0) 0.05(0) 0.1(0.02)
30 30 0.03 0.92(0.03) 0.91(0.03) 0.03(0.01) 0.06(0.01) 0.13(0.02)
50 30 0 0.9(0.02) 0.88(0.03) 0.03(0) 0.05(0) 0.11(0.02)
100 30 0 0.87(0.02) 0.84(0.03) 0.04(0) 0.05(0) 0.1(0.01)
200 30 0 0.86(0.02) 0.83(0.02) 0.04(0) 0.05(0) 0.09(0.01)

Table D.69

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.3 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.9 0.91(0.07) 0.9(0.08) 0.03(0.01) 0.09(0.01) 0.21(0.04)
50 5 0.63 0.93(0.05) 0.91(0.06) 0.03(0.01) 0.07(0.01) 0.16(0.02)
100 5 0.21 0.93(0.04) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.11(0.01)
200 5 0.01 0.93(0.02) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.08(0.01)
30 10 0.57 0.93(0.04) 0.91(0.05) 0.03(0.01) 0.07(0.01) 0.15(0.02)
50 10 0.16 0.93(0.03) 0.91(0.04) 0.03(0.01) 0.06(0.01) 0.12(0.01)
100 10 0.01 0.93(0.02) 0.92(0.02) 0.03(0) 0.06(0.01) 0.08(0.01)
200 10 0 0.94(0.01) 0.92(0.02) 0.03(0) 0.05(0) 0.06(0.01)
30 30 0.14 0.95(0.02) 0.94(0.02) 0.02(0) 0.06(0.01) 0.13(0.01)
50 30 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.05(0) 0.1(0.01)
100 30 0 0.94(0.01) 0.93(0.01) 0.03(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.92(0.01) 0.03(0) 0.05(0) 0.05(0.01)
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Table D.70

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.3 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.81 0.91(0.07) 0.89(0.08) 0.03(0.01) 0.09(0.01) 0.16(0.03)
50 5 0.51 0.91(0.05) 0.89(0.06) 0.03(0.01) 0.08(0.01) 0.13(0.02)
100 5 0.06 0.91(0.03) 0.9(0.04) 0.03(0.01) 0.06(0.01) 0.09(0.01)
200 5 0 0.91(0.02) 0.9(0.03) 0.03(0) 0.06(0.01) 0.07(0.01)
30 10 0.53 0.92(0.04) 0.91(0.05) 0.03(0.01) 0.07(0.01) 0.14(0.02)
50 10 0.11 0.92(0.03) 0.9(0.04) 0.03(0.01) 0.06(0.01) 0.11(0.02)
100 10 0 0.91(0.03) 0.9(0.03) 0.03(0) 0.06(0.01) 0.08(0.01)
200 10 0 0.91(0.02) 0.89(0.02) 0.04(0) 0.05(0) 0.07(0.01)
30 30 0.74 0.97(0.02) 0.96(0.02) 0.01(0.01) 0.06(0.01) 0.12(0.02)
50 30 0.04 0.95(0.02) 0.94(0.02) 0.02(0) 0.05(0.01) 0.09(0.01)
100 30 0 0.93(0.01) 0.91(0.02) 0.03(0) 0.05(0) 0.08(0.01)
200 30 0 0.91(0.01) 0.9(0.01) 0.03(0) 0.05(0) 0.06(0.01)

Table D.71

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.5 and ICCL 0.1

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.8 0.91(0.07) 0.89(0.08) 0.03(0.02) 0.09(0.01) 0.15(0.02)
50 5 0.7 0.92(0.05) 0.91(0.06) 0.03(0.01) 0.08(0.01) 0.12(0.01)
100 5 0.27 0.93(0.03) 0.92(0.04) 0.03(0.01) 0.06(0.01) 0.08(0.01)
200 5 0 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.06(0.01)
30 10 0.83 0.95(0.04) 0.94(0.04) 0.02(0.01) 0.07(0.01) 0.13(0.01)
50 10 0.29 0.94(0.03) 0.92(0.03) 0.03(0.01) 0.06(0.01) 0.1(0.01)
100 10 0 0.94(0.02) 0.93(0.02) 0.03(0) 0.06(0.01) 0.07(0.01)
200 10 0 0.94(0.01) 0.93(0.02) 0.03(0) 0.05(0) 0.05(0.01)
30 30 0.98 0.99(0.02) 0.99(0.02) 0(0.01) 0.06(0.01) 0.12(0.01)
50 30 0.41 0.97(0.01) 0.96(0.02) 0.01(0) 0.05(0.01) 0.09(0.01)
100 30 0 0.95(0.01) 0.94(0.01) 0.02(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.03(0) 0.05(0) 0.05(0)
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Table D.72

Summary of Fit Statistics Across Conditions: Model M12, Estimator
WLSMV, ICCO 0.5 and ICCL 0.5

N2 N1 χ2 CFI TLI RMSEA SRMRW SRMRB
30 5 0.87 0.92(0.06) 0.9(0.07) 0.03(0.01) 0.09(0.01) 0.14(0.02)
50 5 0.65 0.92(0.05) 0.91(0.06) 0.03(0.01) 0.08(0.01) 0.11(0.01)
100 5 0.15 0.92(0.03) 0.91(0.04) 0.03(0.01) 0.07(0.01) 0.08(0.01)
200 5 0 0.92(0.02) 0.91(0.03) 0.03(0) 0.06(0.01) 0.06(0.01)
30 10 0.87 0.95(0.04) 0.95(0.05) 0.02(0.01) 0.07(0.01) 0.13(0.02)
50 10 0.35 0.94(0.03) 0.93(0.04) 0.03(0.01) 0.06(0.01) 0.1(0.01)
100 10 0.01 0.93(0.02) 0.92(0.03) 0.03(0) 0.06(0.01) 0.07(0.01)
200 10 0 0.93(0.02) 0.91(0.02) 0.03(0) 0.05(0) 0.06(0.01)
30 30 1 1(0) 1(0.01) 0(0) 0.06(0.01) 0.12(0.01)
50 30 0.85 0.98(0.02) 0.98(0.02) 0.01(0) 0.06(0.01) 0.09(0.01)
100 30 0 0.95(0.01) 0.94(0.01) 0.02(0) 0.05(0) 0.07(0.01)
200 30 0 0.94(0.01) 0.93(0.01) 0.03(0) 0.05(0) 0.05(0.01)
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APPENDIX E

Additional Figures of the Distribution of Fit Indices
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Figure E.1. Distribution of CFI across all conditions
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Figure E.2. Distribution of TLI across all conditions
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Figure E.3. Distribution of RMSEA across all conditions

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●
●
●●●

●

●●

●●●●
●●
●

●

●

●●●●
●
●
●
●
●

●

●●
●●●

●

●
●●
●

●

●

●

●●

●

●●
●
●●

●

●

●●
●
●
● ●

●

●

●

●●
●

●

●
●●
●

●
●
●
●

●
●

●
●

●●

●

●

●●

●
●
●

●
●
●

●●

●
●●
●
●
● ●

●
●

●

●

●

●
●

●

●●●

●

●●
●

●

●

●
●
●

●

●●
●●

●

●

●

●

●
●
●●

●

●
●

●

●

●●●●●
●●●●●● ●●●

●
●●●
●

●

●

●
●
●●●●●
●
●●
●
●
●●●●●●
●●●

●

●
●
●●

●

●
●●●●●●
●
●
●
●
●●●

●

●●●
●
●

●●●●

●

●

●●●● ●●●

●

●●

●

●●

●

●●
●

●
●
●●

●
●

●
●

●

●●
●●
●●
●●
●
●

●

●

●●
●●
●

●
●

●
●●●

●

●●●

●●

●

●

●

●●
●
●●●●●
●
●

●

●●
●●
●

●

●
●●●
●●

●
●● ●●●●●●●●●●●●

●●●●
●●●
●
●

●●●●

●
●●●

●

●●

● ●●

●

●●
●●●●●●●●●●
●●●

●

●

●

●

●

●
●
●
●●●●●●●●●●●

●●●

●

●●●
●●

●

●
●●
●
●
●
●●

●
●
●

●●
●
●●●
●
●
●●

●●

●●●●●●
●●●

●●
●
●●

●● ●
●
●●
●
●●●

●●
●
●●●
●

●
●●●●●●

●●
●●
●
●

●

●●●● ●●●
●
●●●●●●

●
●●●●●

●●●●●●●●●●

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Condition

S
R

M
R

W

Figure E.4. Distribution of SRMRW across all conditions
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Figure E.5. Distribution of SRMRB across all conditions
Note. Dashed (red) line represents the Hu & Benter (1999) commonly reported
cutoff for SRMR at .08. The excessively large values observed in Conditions 1 and 7
occured when number of groups (Ng=30) with 5 and 10 units per group respectively
and low ICCs. The max value observed (8.49) for apparently admissible solution
occurred under WLSMV, Model M1, and according to CFI, TLI, and RMSEA, this
model fits perfectly, and the χ2 test of goodness of fit was not reject. Highest value
observed for Model C was 2.54, in the same condition 7.
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