
ABSTRACT

Response of Passive Surface Hairs
in Steady and Unsteady Falkner-Skan Boundary Layers

Lance C. Case, M.S.

Committee Chairperson: Stephen T. McClain, Ph.D.

Arrays of biologically inspired artificial hair sensors for flow detection are be-

ing considered to provide small unmanned aerial vehicles greater platform stability

through gust mitigation. Analytical models of hair sensor response to flow conditions

have been previously developed, but fundamental assumptions of those models have

remained essentially unvalidated. A model adaptation for non-wall-orthogonal fiber

deflection was developed due to the geometric nature of the attached fibers. The

current work seeks to validate this hair sensor model with wind tunnel testing results

of hair sensor response to flows. Because the hair sensor arrays are not yet active,

an optical fiber displacement measurement scheme and image analysis algorithms

were developed to compute fiber deflection response to steady and unsteady flow

conditions. Results indicate agreement between model predictions and experimental

results sufficient for future sensor design employing the adapted model.

Response of Passive Surface Hairs
in Steady and Unsteady Falkner-Skan Boundary Layers

by

Lance C. Case, B.S.

A Thesis

Approved by the Department of Mechanical Engineering

William Jordan, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science in Mechanical Engineering

Approved by the Thesis Committee

Stephen T. McClain, Ph.D., Chairperson

Lesley M. Wright, Ph.D.

Lance Littlejohn, Ph.D.

Accepted by the Graduate School
August 2012

J. Larry Lyon,Ph.D, Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c⃝ 2012 Lance C. Case

All rights reserved

TABLE OF CONTENTS

List of Figures . v

List of Tables . viii

Nomenclature . ix

Acknowledgments . xv

Dedication . xvii

Chapter 1 Introduction . 1

1.1 The Basis of Interest in the SAV . 1

1.2 Limitations of the SAV . 2

1.3 Bio-inspired Hair Sensor Arrays . 4

1.4 Objectives and Significance of this Work 5

1.5 Presentation Outline . 5

Chapter 2 Technical Background . 7

2.1 Bio-Inspired Hair Sensors . 7

2.1.1 Biological Hair Sensors . 7

2.1.2 Artificial Hair Sensors . 13

2.2 Boundary Layers . 18

2.3 Falkner-Skan Flows . 20

2.4 Non-Orthogonal Fiber Deflection Model 22

Chapter 3 Methodology . 26

3.1 Plate and Carbon Fiber Array Construction 26

3.1.1 Plate Construction . 26

3.1.2 Plate Surface Preparation . 27

3.1.3 Carbon Fiber Array Construction 28

3.1.4 Carbon Fiber Geometry Determination 29

3.2 Wind Tunnel Fiber Motion Measurement 32

iii

3.3 Test Matrix . 35

3.4 Image Analysis . 35

3.4.1 Steady Flow Image Analysis 36

3.4.1.1 Initial Analysis Steps 36

3.4.1.2 Fiber Image Reduction 37

3.4.1.3 Image Data Reduction 43

3.4.2 Unsteady Image Analysis . 45

3.4.2.1 Initial Analysis Steps 45

3.4.2.2 Fiber Image Reduction 46

Chapter 4 Results and Discussion . 52

4.1 Steady Hair Sensor Deflection Results 52

4.2 Unsteady Hair Sensor Deflection Results 57

Chapter 5 Conclusions and Future Work . 65

5.1 Summary of Current Work . 65

5.2 Recommendations for Improvement of Current Methodology 66

5.3 Recommendations for Future Work 67

Appendix A Steady Fiber Analysis MATLABR⃝ Code 70

Appendix B Unsteady Fiber Analysis MATLAB R⃝ Code 100

Appendix C Create Fiber Motion Video MATLAB R⃝ Code 124

Appendix D Fiber Deflection Prediction MathCAD Code 131

Bibliography . 139

iv

LIST OF FIGURES

1.1 Comparison of the SAV flight regime with other flying objects 4

2.1 Hair-dome complexes on bat wing surface 8

2.2 Scanning electron microscopy image of adult cricket cercus 10

2.3 (a) Schematic drawing of hair shape, and (b) Relationship between
diameter of hair sensor shaft and distance from hair tip 11

2.4 (a) SEM view of spider trichobothria cup structure, and (b) Mechanical
trichobothrium and cup structure abstraction 12

2.5 Micrograph showing the differential response of trichobothria of differ-
ent length to an airflow oscillating at 50 Hz 13

2.6 Raster Electron Microscopy (REM) image of the sensor film with mi-
crofabricated “type B” micropillars for wall shear stress imaging . . . 14

2.7 SEM sizing of “type B” micropost geometry 15

2.8 Array of spiral-suspended sensory hairs with SU-8 hairs of 470µm . . 16

2.9 SEM micrograph of patterned FSRs c⃝2006 IEEE. 17

2.10 (a) An AHC tactile sensor array and associated wiring on glass sub-
strate.(b) AHC array on flexible polyimide substrate c⃝2006 IEEE. . 18

2.11 Boundary layer on a flat plate at 0◦ plate angle of attack 19

2.12 (a) Nonuniform flow velocity profile incident on hair receptor, and (b)
corresponding free body diagram of hair 20

2.13 Falkner-Skan flow over a wedge with half-angle γ 21

2.14 Fiber representation and relative local velocity 24

2.15 Angles and dimensions used to describe fiber geometry 24

3.1 Test plate (dimensions in mm) . 27

3.2 Microscope and micromanipulator system for fiber attachment 30

3.3 Camera inspection system constructed for fiber measurement 30

v

3.4 Example images used for fiber geometry determination (E3 is shown) 31

3.5 Steady flow calibration images . 31

3.6 Unsteady flow calibration images . 31

3.7 The ACF at the University of Florida REEF 32

3.8 Wind tunnel experimental apparatus (dimensions in m) 33

3.9 Wind tunnel apparatus for fiber motion detection under steady flow . 34

3.10 Steady flow raw image . 37

3.11 Steady flow cropped image . 37

3.12 Steady flow CLAHE image . 38

3.13 Steady flow binarization image . 38

3.14 Steady flow filtered image . 39

3.15 Steady flow inverted image . 39

3.16 Steady flow output image . 40

3.17 Steady flow bright spot image . 41

3.18 Steady flow cross-correlation image 42

3.19 Unsteady raw image . 47

3.20 Unsteady CLAHE image . 48

3.21 Unsteady binarized image . 48

3.22 Unsteady filtered image . 49

3.23 Unsteady inverted image . 49

3.24 Unsteady region properties image . 50

3.25 Unsteady overlay image . 50

3.26 Unsteady cross-correlation image . 51

4.1 Steady deflection of every fiber . 53

vi

4.2 Comparison of model prediction to experimental results of steady nor-
malized deflection of every fiber . 56

4.3 Fiber height relative to boundary layer thickness 57

4.4 Comparison of model prediction to experimental results of fiber deflec-
tion versus fiber height relative to boundary layer thickness 58

4.5 Screenshot of unsteady fiber motion analysis video 59

4.6 Total deflection response of fiber E6 to unsteady flows (−2.5◦ plate
angle of attack) . 61

4.7 Total deflection response of fiber E6 to unsteady flows (+2.5◦ plate
angle of attack) . 62

4.8 Comparison of fiber deflection response to 9 m/s unsteady flow with
±2.5◦ plate angle of attack . 63

4.9 Comparison of fiber deflection response with±2.5◦ plate angle of attack
to (a) a series of 3 lateral gusts, and (b) an oscillating gust 64

5.1 Test plate containing a distribution of obliquely-aligned elements (di-
mensions in inches) . 68

vii

LIST OF TABLES

1.1 UAV Classifications, Characteristics, and Examples, as adapted from
Van Blyenburgh . 3

1.2 Baseline SAV weight distribution . 3

3.1 Fiber dimensions and geometry relative to plate 32

3.2 Test matrix . 35

4.1 Steady Fiber Deflection Percent Error 55

viii

NOMENCLATURE

A Cross-sectional area, Equation 2.11

A Image area (pixels), Equation 3.4

AR Aspect ratio

C Power-law constant of proportionality

CCR Cross-correlation array

CD Drag coefficient

E Young’s Modulus

I Moment of inertia

L Length

N Number of samples

PV Pixel value (in image)

PW Pixel width (calibration coefficient)

R Damping constant

Re Reynolds number

Red Reynolds number based on diameter

S Sample standard deviation, Equation 3.7

S Spring constant, Figure 2.4

T Threshold value

U Mainstream flow velocity in the x-direction, Equations 2.2, 2.4, 2.5, 2.10

U Uncertainty, Equations 3.7 and 3.8

V Mainstream flow velocity in the y-direction

L Fiber axial vector

ix

U Flow velocity vector at boundary layer edge

V Flow velocity vector inside boundary layer

r Fiber deflection projected on x-z plane

d Diameter

f Falkner-Skan flow parameter

fD Drag force

g Non-uniform load

h Height

m Falkner-Skan power-law parameter, Equation 2.2

m Shape index, Equation 2.1

r Deflection of fiber, Equations 2.11, 2.12, 2.13, 2.18, 2.19, 2.21

r Fiber radial direction, Figure 2.14

t Student’s t, Equation 3.7

t Time, Equations 2.11, 2.12, 2.13

u Flow velocity in the x direction

v Flow velocity in the y direction

x Streamwise direction

xmax x-location of max value (pixels)

y Plate-normal direction

z Spanwise direction

zmax z-location of max value (pixels)

∆ Fiber deflection measured experimentally

α Fiber attachment angle in the y-z plane

β Fiber attachment angle in the x-y plane

x

δ Boundary layer thickness

ℓ Fiber axial direction

η Falkner-Skan similarity variable

γ Kelvin-Voigt coefficient of material damping, Equation 2.11

γ Wedge half-angle, Equation 2.2

µ Dynamic viscosity of the fluid

ν Kinematic viscosity of the fluid

ϕ Fiber attachment angle in the x-z plane

ρ Density

θ Angular position

Acronyms

ACF Aerodynamic Characterization Facility

AHC Artificial Hair Cell

AR Aspect Ratio

AoA Angle of Attack

C2 Command and Control

CAS Close Air Support

CLAHE Contrast-Limited Adaptive Histogram Equalization

CR Close Range

EN Endurance

FSR Force Sensitive Resistor

HALE High Altitude Long Endurance

HARM High Aspect Ratio Microstructure

HL Hand-Launched

xi

IFF Identify Friend or Foe

ISR Intelligence, Surveillance and Reconnaissance

L Launcher

LADP Low Altitude, Deep Penetration

LPCV D Low-Pressure Chemical Vapor Deposition

LR Long Range

MALE Medium Altitude Long Endurance

MAV Micro Air Vehicle

MOOTW Military Operations Other Than Warfare

MR Medium Range

NBC Nuclear, Biological and Chemical (weapons)

OCA Offensive Counter-Air

OCI Offensive Counter-Information

PDMS Polydimethylsiloxane

RATO Rocket Assisted Take-Off

REEF Research and Engineering Education Facility

REM Raster Electron Microscope

RLG Retractable Landing Gear

RSTA Reconnaissance, Surveillance, and Target Acquisition

SAR Search And Rescue

SAV Small Air Vehicle

SEM Scanning Electron Microscope

SR Short Range

UAS Unmanned Air System

xii

UAV Unmanned Air Vehicle

V TOL Vertical Take-Off and Landing

Subscripts

A Area-based

AR Aspect ratio-based

a Air

binarized Binarized image

brightspot Location of bright spot (pixels)

e Edge (of the boundary layer)

f Fiber

i Image pixel counter (column)

initial Initial

j Image pixel counter (row)

m Mound (fiber base)

major Major axis

minor Minor axis

n Normal

rej Rejection

s Solid (fiber or hair)

shift Image shift length (pixels)

tip Tip

total Total

x In the x-direction

y In the y-direction

xiii

z In the z-direction

∆x x-deflection measurements

∆z z-deflection measurements

0 Base

Superscripts

(̂·) Unit vector

(·) Average

xiv

ACKNOWLEDGMENTS

My greatest gratitude goes first to my Lord and Savior Jesus Christ. Thank

you, Lord, for your amazing gifts of life, grace, and purpose. Everything that I am,

and all I have done or have yet to do - my God, it is all because of you!

I next want to express my appreciation to my advisor, Dr. Stephen McClain.

This work would not have been possible without his wise direction, abounding pa-

tience, and timely encouragement. Dr. McClain, you are a great mentor and friend.

I would also like to thank Dr. Lesley Wright and Dr. Lance Littlejohn for setting

aside their time. I immensely enjoyed each of the classes taught by you all - now, I

am honored by the presence of each of you on my committee.

My gratitude must also be extended to Dr. Benjamin Dickinson for his sup-

port. His vision, resources, and advice were an indispensable contribution to this

thesis. I also want to thank Dr. Jennifer Talley for her advice on hair sensor con-

struction, Dr. David Jack for his generously shared knowledge of class and style, Mr.

Ashley Orr for his expertise in machining, and Haden Duke for his help with image

analysis. Also, I thank Evan Martin, Steven Mart, Jason Gregg, Neil Jordan, Tim

Burdett, Jimmy Becker, Theresa Vo, Logan Tecson, Cash Elston, Russell Mailen, and

Charlie Brown for their help and general graduate student camaraderie.

I deeply appreciate Diana Milam, Courtney Burge, Joey Rodriguez, Zak

Paroff, and my dear Aimie Cox for their support and encouragement during my

studies. Finally, I want to thank my parents for their ceaseless love and support.

Ink and paper alone will never tell of the gratitude and love I have for each of them.

xv

Special thanks also goes again to Dr. Benjamin Dickinson, as well as Dr.

Friedrich Barth, Dr. George Schmitz, Professor Jérôme Casas, as well as many other

authors and contributors for their inspiring work. Additional thanks to IOP Pub-

lishing Ltd., The Royal Society, Springer and Springer-Verlag, CSIRO Publishing,

The Company of Biologists, The Institute of Electrical and Electronics Engineers,

The American Society of Mechanical Engineers, The Air Force Research Lab Muni-

tions Directorate, The American Society for Engineering Education, The University

of Florida, and The School of Engineering and Computer Science at Baylor University

for the contributions that made this document possible.

xvi

To my family,

and to my Vine

“...to the only God our Savior be glory, majesty, power and authority,

through Jesus Christ our Lord, before all ages, now and forevermore! Amen.”

Jude 1:25

CHAPTER ONE

Introduction

Over the past decade, the Small Air Vehicle (SAV), also referred to as the

Micro Air Vehicle (MAV), has gained recognition as a potential platform from which

tasks such as reconnaissance, surveillance, and target acquisition (RSTA) may be

performed. The nominal 6-inch dimension of the SAV makes it a highly portable

tool with the potential for a small logistics footprint. However, its light weight and

characteristically small Reynolds number flight envelope makes the SAV particularly

susceptible to wind gusts. The detection and mitigation of the adverse effects of these

gusts is therefore important to the stability of the SAV platform.

1.1 The Basis of Interest in the SAV

The growing demand for SAV technology development is due to the grow-

ing necessity of on-the-spot military aerial capabilities. These capabilities may be

divided into two categories - those directly enabling or supporting warfare opera-

tions, and civilian and military operations other than warfare (MOOTW). According

to Huber [1], the SAV has been viewed as a potential tool for the fulfillment of

several capabilities directly supporting warfare. In Huber’s text the author lists po-

tential capabilities of the SAV to include offensive counter-air (OCA), interdiction,

close air support (CAS), strategic attack, offensive counter-information (OCI), and

command and control (C2). Other capabilities that Huber suggests include special

operations employment, and intelligence, surveillance and reconnaissance (ISR) op-

erations including targeting, tagging, identification of friend or foe (IFF) and sensing

nuclear, biological and chemical (NBC) agents. Potential non-warfare capabilities of

1

the SAV include: search and rescue (SAR) operations, border patrol, and humani-

tarian, peace, and anti-terrorism operations.

1.2 Limitations of the SAV

This on-the-spot nature of the SAV - referred to sometimes as “over-the-next-

hill” or “around-the-corner” - drives the vehicles’ design requirements towards porta-

bility and ease-of-use. These requirements define the SAV in terms of mass, per-

formance characteristics, size, and expected flight envelope. Table 1.1 presents the

SAV sub-group requirements overview within the broader class of Unmanned Aerial

Vehicles (UAVs), adapted from Van Blyenburgh [2]. The SAV lies at the bottom of

the currently-realizable spectrum of UAVs with respect to range, endurance, altitude,

and other characteristics that increase the overall weight of the vechile.

Further, Table 1.2 presents an adapted estimate from the Lincoln Laboratory

by Davis et al. [3] of the baseline mass distribution of a SAV with respect to the

component level. As with most other aircraft, mass-efficiency of component systems

is of great importance in the SAV. This is especially true in the flight control system

with approximately four percent of the total mass allocation, a necessary system due

to the reasons described below.

Figure 1.1 provides a basic visual order-of-magnitude comparison by

McMichael and Francis [4] of the flight regime of the SAV to several other flying

objects. The small Reynolds number flight regimes (Re ∼ 105) under which SAVs

operate, present the SAV platform with stability problems due to inherent flow un-

steadiness and the larger propensity for flow separation over the aerodynamic surfaces

of the SAV. Due to the small size, mass, and Reynolds number characteristic of the

SAV, atmospheric flow phenomena such as wind gusts can have a considerable detri-

mental effect on the stability of the SAV platform as well, as mentioned by Shyy et

2

Table 1.1: UAV Classifications, Characteristics, and Examples, as adapted from Van
Blyenburgh [2]

Categories
(Abbrv.)

Data
link
Range
(km)

Endurance
(hours)

Maximum
Flight
Altitude
(m)

Launch
Method

Recovery Method

Nano Unknown Unknown Unknown Unknown Unknown
Meso Unknown Unknown Unknown VTOL, belly, expendable
Micro
(µ)

<10 1 250 HL,
VTOL

belly, skids, expendable

Mini <10 <2 250 HL, belly, skids, wheels,
VTOL,
wheels

parachute

Close 10 - 30 2 - 4 3,000 HL, belly, skids, wheels,
Range
(CR)

VTOL,
wheels

parachute

Short 30 - 70 3 - 6 3,000 VTOL, belly, skids,
Range
(SR)

RATO parachute / airbag

Med. 70 - 200 1 3,000 - VTOL, skids, wheels,
Range
(MR)

5,000 wheels,
RATO

parachute/airbag

LADP >250 1 0.12 -
9,000

RATO parachute/airbag

Long
Range
(LR)

>500 6 - 13 5,000 wheels,
RATO

wheels

Endurance
(EN)

>500 12 - 24 5,000 -
8,000

wheels, L wheels, parachute/airbag

MALE >500 24 - 48 5,000 -
8,000

RLG RLG

HALE >1,000 12 - 40 15,000 -
20,000

RLG RLG

Table 1.2: Baseline SAV weight distribution [3]

Component Mass (g)
Airframe 6
Propulsion 36
Flight Control 2
Communications 3
Payload 2
Total Mass 49

3

al. [5]. Because of limitations on the SAV in terms of both payload and power, novel

flow sensors are sought for feedback into a platform stability control process to ensure

the safe and effective flight of the SAV.

Figure 1.1: Comparison of the SAV flight regime with other flying objects [4]

1.3 Bio-inspired Hair Sensor Arrays

The flight regimes experienced by SAVs are consistently encountered in nature

by many animals, including winged fliers such as bats, which possess distributed

hair receptor arrays on their wing surfaces. Crowley and Hall [6] postulate that the

purpose of these hair receptor arrays is to provide flow field feedback to the animal,

allowing it to adjust its path according to its intention and current flow environment.

Thus, the creation and use of artificial hair sensor arrays is a concept that draws

inspiration from the hair sensor arrays observed in nature. Flow field feedback to the

SAV controller may be provided by a suite of surface-mounted artificial hair sensor

4

arrays. However, an understanding of the relationship between flow field and hair

sensor response is required.

1.4 Objectives and Significance of this Work

Because bio-inspired hair sensor arrays are being considered for flow sensing

on SAV and other unmanned aerial system (UAS) platforms, predictive hair sensor

deflection models will be consulted during the sensor design process. Currently, these

models are based on large-scale fluid-structural interactions that are expected to

scale to the boundary-layer and fiber scales for SAVs and other UAVs. While the

models are employed for fluid/hair element interaction predictions, the underlying

assumptions of the models are essentially unvalidated. The aim of this study is to

measure fiber deflection on the boundary-layer and fiber scales to be used in the

validation of these models. The validated models will be useful to UAS and SAV

designers because more accuracy or confidence can be placed in the flow information

obtained by these sensors, allowing for better control and platform stability.

1.5 Presentation Outline

This thesis presents the results of carbon fiber hair sensor deflection in re-

sponse to Falkner-Skan boundary layers, discussed in detail later, for application in

SAV platform stability sensors. Chapter Two discusses relevant information about

biological and artificial hair sensor arrays and their use in boundary layer sensing,

Falkner-Skan flows, and a model of non-orthogonal fiber deflection. Chapter Three

details both the methodology used during the testing performed for this study, as well

as the image analysis algorithms developed to distill pertinent information from the

raw image data collected during experimentation, and the calculation of uncertainty.

Chapter Four presents an analysis of data collected and reduced using methods from

5

the previous chapter. Chapter Five concludes the thesis with closing remarks and

recommendations for future work. The appendices include the MATLABR⃝ codes de-

veloped to analyze the image sets for both steady and unsteady flow conditions, and

the non-orthogonal fiber deflection model as developed in MathCAD.

6

CHAPTER TWO

Technical Background

Before an explanation of the methods used in this study is given, several relevant

topics must first be discussed. A review of hair sensor research is provided, regarding

both biological and artificial hair sensors. A brief overview of boundary layers and

Falkner-Skan flows is also provided. The development of the fiber deflection model

under validation is then presented. Additional model considerations for fiber non-

wall-orthogonality are also presented.

2.1 Bio-Inspired Hair Sensors

Bio-inspired hair sensors are being considered as a novel type of flow sensor for

SAV applications. A review of both biological and artificial hair sensor research is

given, with an emphasis on physical hair sensor properties and sensitivity. As shown

by Brücker et al. [7,8], the sensitivity, response, and corresponding resolution of hair

sensors depend on the Young’s modulus, E, of the hair sensor material, and also on

the length-to-diameter aspect ratio, AR, of the hairs themselves. A comparison of

biological and artificial hair sensor aspect ratios is provided at the end of the section.

2.1.1 Biological Hair Sensors

There are a multitude of examples in nature that demonstrate the use of

distributed arrays of hair sensors to detect fluid flow. Among these examples are bats,

which have distributed networks of hair sensors over their winged surfaces, crickets,

whose cerci each contain hundreds of individual fluid perturbation-sensing filiform

hairs, and spiders, whose many appendages each contain several hair structures of

7

different types. Research pertaining to the hair sensors found on these animals, as

well as other arthropods and mammals, is ongoing.

Bats possess several arrays of hair sensors throughout their wing surfaces, and

it is thought that the extreme maneuverability of these creatures in low Reynolds

number flight is due in part to flow information gathered from these hair sensors.

Histological studies of the grey-headed flying fox, a type of bat, performed by Crowley

and Hall [6] have observed hairs up to 4mm long and 25µm in diameter on the wing

surface, shown in Figure 2.1.

Figure 2.1: Hair-dome complexes on bat wing surface [6]. With permission from
CSIRO PUBLISHING.

These hairs were found to grow from an array of domed structures up to 1 mm

in diameter, later determined by Zook [9] to contain Merkel cell-neurite complexes

(touch-sensing mechanoreceptors). While the hair-dome complexes were observed to

grow at a multitude of angles from the surface, a trend relating surface hair loca-

tion and incident angle was noted (but not defined). An additional trend between

hair structure population density and location on the wing was observed, and it is

8

thought that the areas of higher hair population density coincide with areas along the

wing surface where more turbulence is expected. Later electrophysiological studies

performed by Sterbing-D‘Angelo et al. [10] and Chadha et al. [11] using big brown

bats confirmed the hypothesized purpose of hair-dome complexes in providing flow

feedback information to the animal, noting the degree of over-representation of the

winged surfaces in the primary somatosensory cortex. It was observed that the hair

sensors exhibited highly preferential neural response based on flow direction and wing

location. This was most notably observed along the trailing edge of the wing, where

the sensors proved more sensitive to flow from the rear, typical of wake vortices. It

is therefore thought that these hair sensors detect reverse, turbulent flow, and may

have purpose in providing flight stability.

Cartilaginous and bony fishes, and other aquatic amphibians, possess similar

arrays of hair sensors in structures called lateral lines as noted by Montgomery et

al. [12]. The lateral line provides pertinent information such as location (azimuthal

and polar) and distance of moving objects and other stimuli to the fish, as evidenced

in behavioral studies by Coombs et al. [13, 14].

The cerci of cockroaches and crickets have also been thought instrumental in

flow detection used in predator avoidance. Behavioral studies performed by Camhi

et al. [15] support the idea that the flow-sensitive cerci of cockroaches aid in predator

stimulus detection. Crickets have been observed to have arrays of small hair sensors

distributed over their cerci, as shown by Dangles et al. [16] in Figure 2.2.

Various lengths of cricket cerci filiform hairs, from 30 to 1, 500µm, have been

observed, and the function of these hairs in sensing fluid flow has been established

through observation by Shimozawa and Kanou [17] of afferent response to oscillating

flows of various frequencies. Scanning electron microscope (SEM) analysis of cricket

9

Figure 2.2: Scanning electron microscopy image of adult cricket cercus [16]. Repro-
duced/adapted with permission.

cerci hair receptors by Kumagai et al. [18] and Shimozawa et al. [19] have revealed a

non-uniform hair profile. The hair profile was neither cylindrical, nor linearly tapered;

instead, the hair was shown to follow a profile closer to a power function, shown in

Equation 2.1, in which the variable m is referred to as the shape index. A schematic

of the effect of the shape index m is shown in Figure 2.3.

d = d0 ·
(
1− L

L0

) 1
m

(2.1)

This profile was found to occur independent of observed hair length, which

varied from 280µm to 1200µm. A regression plot of the observed data is also pre-

sented in Figure 2.3, which was used in determining a shape index of m = 1.91 for

the observed cricket cerci hair sensors, and m = 2.22 for cockroach cerci. It has been

postulated (and proven) by Dickinson [20] that non-uniform fiber cross-section pro-

files, such as those observed in crickets and cockroaches, have favorable effects on hair

sensitivity. Additional research by Steinman et al. [21] suggests that the shape of the

10

cricket cercus itself provides a sensitivity advantage to the cricket by introducing an

element of spatial heterogeneity into the response of the flow-sensitive hairs attached

to the round cercus.

(a) (b)

Figure 2.3: (a) Schematic drawing of hair shape, and (b) Relationship between di-
ameter of hair sensor shaft and distance from hair tip [18]

The dynamics of spider trichobothria have been studied at length [22–28].

Figure 2.4(a) shows a scanning electron microscopy image of the base of one of the

larger types of spider trichobothria, where a “cup” structure may be observed. A

mechanical abstraction of this hair-and-cup structure is presented in Figure 2.4(b),

where L and d are the length and diameter of the hair, respectively, I is the moment

of inertia of the hair, θ is the angular position of the hair, and R and S are the

damping and spring constants of the cup material, respectively. Information about

the flow from the dynamics of the hair is passed via the deflection of the hair itself

and into neuronal receptors in the cup structure. Despite observations of consistent

11

trichobothria length and other hair structure parameters between several samples,

differences in trichobothria response to various oscillating flows were observed. It

has been postulated that variances in the material composition of the cup structure

alter the values of R and S, allowing for the tuning of individual hairs to be more

sensitive to various airflow oscillation frequencies.

(a) (b)

Figure 2.4: (a) SEM view of spider trichobothria cup structure [23] Barth et al., Dy-
namics of Arthropod Filiform Hairs. II. Mechanical Properties of Spider Trichoboth-
ria (Cupiennius salei Keys.), Philosophical Transactions of the Royal Society B: Bio-
logical Sciences, 1993, 340, 1294, 445-461, by permission of the Royal Society., and (b)
Mechanical trichobothrium and cup structure abstraction [27], with kind permission
from Springer Science and Business Media

This frequency sensitivity is also observed in a different manner for trichoboth-

ria of a smaller type. Figure 2.5 presents a micrograph depicting the responses of

smaller spider trichobothria of many lengths to an oscillating airflow. Instead of the

variations in “cup” base material composition theorized above, obvious variations in

trichobothrium length control the hair sensor sensitivity to various airflow oscillation

frequencies.

Several other studies on biological and artificial hair sensors have also been

presented. Fletcher [29] provides a first-order linear model of the acoustical response

12

Figure 2.5: Micrograph showing the differential response of trichobothria of different
length to an airflow oscillating at 50 Hz [27], with kind permission from Springer
Science and Business Media

of an artificial hair receptor. Taylor and Krapp [30] offer a summary of recent studies

on the wind-sensitive hairs of locusts and other animals.

2.1.2 Artificial Hair Sensors

A process of manufacturing microstructured surfaces with “flexible micropil-

lars” or “microposts” was presented by Brücker et al. [7] and Schmitz et al. [31] to

develop a spatially detailed, temporally resolved wall shear stress field measurement

technique. The technique involved the creation of micropillar arrays using an ex-

cimer laser to drill small bores into a thin planar wax film, into which the transparent

elastomer PDMS (the micropillar material) is cast before being melted away with

hot de-ionized water. Then an imaging technique developed earlier by Brücker et

al. [32] is used to measure the deflection response of these micropillar arrays. This

imaging technique took advantage of the wall-orthogonality, low aspect ratio, and

transparency of the manufactured micropillars (which allowed them to act as “opti-

cal microfibres”) to measure micropillar tip deflection through the use of median and

canny filters, followed by a circular Hough transform. While excellent at tracking tip

13

deflections of low aspect ratio micropillars, this imaging technique would not function

when presented with non-wall-orthogonal fibers, or fibers of a different material.

Figure 2.6 shows a raster electron microscopy (REM) image of the first pro-

totype of this so-called “lost mould” manufacturing technique. This manufactur-

ing process produced surfaces with semi-hyperboloid-shaped fibers with a maximum

length-to-diameter AR, of approximately 25.

Figure 2.6: Raster Electron Microscopy (REM) image of the sensor film with micro-
fabricated “type B” micropillars for wall shear stress imaging [7] with kind permission
from Springer Science and Business Media

Figure 2.7 shows a scanning electron microscope image of an array of “high

aspect ratio microstructures” (HARMs) created using the “lost mould” manufactur-

ing process described previously. A 75% success rate of well-aligned microposts was

observed for the “type B” micropost geometry, which presents structures with an av-

erage diameter of approximately 30 µm and an average aspect ratio of approximately

19. The remaining 25% of microposts in the array exhibited a deformed, curved spi-

ral geometry which the authors will investigate further. Further investigations by

Schaefer et al. [33] using this manufacturing process only observed straight microp-

osts with diameters between 100 µm and 120 µm and lengths of approximately 1500

µm, yielding aspect ratios of approximately 15.

14

Figure 2.7: SEM sizing of “type B” micropost geometry [31] c⃝IOP Publishing Ltd.

Figure 2.8 shows an array of SU-8 photoresist hairs mounted normal to an

array of capacitive read-out structures, manufactured by Dijkstra et al. [34] in an

effort to transform artificial hair sensor arrays from simple passive deflection respon-

ders to active arrays of hair sensors that supply electrical information based on fiber

deflection. The arrays were created through a combination of spin-coating and low-

pressure chemical vapor deposition (LPCVD), by applying various materials to a

highly conductive silicon wafer. These materials act as either sacrificial construction

material, base spring or membrane material, or the hair material itself. Electrodes

attached to the spring-membrane structure at the base of the hair aid in transmitting

capacitive information related to the deflection of the hair caused by drag forces on

the hair shaft. The creation of hairs up to 470 µm in length with an aspect ratio of

approximately 8 was achieved using this technique.

The authors noted both that the aspect ratio of the hairs was variable by

varying the diameter of the hairs, and that future work would involve doubling the

spin-coating process to produce fibers twice as long. Additional research by this group

aimed at transforming these sensor arrays into active arrays may be found in [35–38].

15

Figure 2.8: Array of spiral-suspended sensory hairs with SU-8 hairs of 470µm [34]

Another construction method concerned with the generation of active artifi-

cial hair cell (AHC) sensor arrays was developed by Engel et al. [39]. The method

involves the use of carbon-impregnated polyurethane force-sensitive resistors (FSRs)

on which the hair sensor is mounted. A micrograph of a single FSR is shown in

Figure 2.9. In the figure, the FSR is shown without an attached hair sensor, which

mounts directly over the exposed FSR surface shown. The FSRs were manufactured

at the micro scale by combining a commercial polyurethane rubber, PMC121/30,

with conductive carbon black material in various mixing ratios and using elastomer

patterning techniques. At low mixing ratios of approximately 15 wt% carbon black,

the FSRs exhibited poor conductivity, while at high mixing ratios of approximately

40 wt% carbon black, conductivity is enhanced at the expense of FSR sensitivity.

While recommending that an appropriate mixing ratio balance was between 25− 30

wt%, the authors also noted that there was still a large variance in initial FSR resis-

tances due to imperfections in the manufacturing process; more research is required

to suppress the adverse effects of the current manufacturing process before consistent

FSR sensitivity is achieved.

16

Figure 2.9: SEM micrograph of patterned FSRs [39] c⃝2006 IEEE.

Additional efforts by the authors were undertaken to create artificial hairs

mounted to the FSRs described above in order to create a complete artificial hair cell

sensor array, as shown in Figure 2.10 [39]. Due to cost limitations of manufacturing

smaller FSRs, the authors created polyurethane AHC hairs using a lost mold process

similar to those already described that were 500 µm in diameter and 3000 µm in

height, yielding an AR of 6. The authors noted that the AHC sensors produced did

not provide a sufficient “off-axis insensitivity” - that is, the sensors produced false

information indicating some component of the true load was acting in an orthogonal

direction. This type of off-axis insensitivity is necessary for accurate directional load

sensing; more research would be required to correct this issue before use of this type

of sensor is feasible.

A revised approach to the creation of AHC sensor arrays as presented above by

Engel et al. [39] is given by Liu [40]. The revised approach, which is capable of pro-

ducing single-sensor directional sensing, uses the same lost-mold fabrication technique

for AHC creation as described above. While dimensions and material composition

of both the FSRs and hair sensor material were not disclosed by the author, Liu

17

(a) (b)

Figure 2.10: (a) An AHC tactile sensor array and associated wiring on glass sub-
strate.(b) AHC array on flexible polyimide substrate [39] c⃝2006 IEEE.

demonstrated the ability of these AHC sensor arrays to be integrated with hot-wire

anemometry instrumentation on the same silicon wafer.

As previously mentioned, Brücker et al. [7, 8] has shown that the sensitivity,

response, and corresponding resolution of AHC sensors depend on the Young’s mod-

ulus, E, of the material, and also on the aspect ratio of the hairs themselves. When

a comparison is made between the best aspect ratio exhibited by these artificially

manufactured hair sensors, approximately 25, to aspect ratios observed on bat wing

surfaces of approximately 160, it is apparent that these manufactured hair sensor

arrays have yet to achieve the same level of sensitivity as those found in nature.

Research in this area is ongoing however, and an understanding of the relationship

between fluid flow and hair sensor response is still necessary even prior to the ability

to manufacture surfaces with active hair sensors of sufficient sensitivity.

2.2 Boundary Layers

First systematically described by Ludwig Prandtl in 1904 [41], boundary layers

are regions of a fluid flow near an immersed body where viscous effects dominate

18

the behavior of the flow. Figure 2.11 describes a boundary layer profile in terms of

its distance from the leading edge of a flat plate [42], where u(x, y) describes the

velocity of the flow at a point (x, y) from the origin, U∞ (referred to in this thesis

as Ue) is the mainstream flow velocity, and δ(x) is the boundary layer thickness as

a function of x. As can be seen in the figure, the magnitude of the velocity inside

the boundary layer degrades rapidly when approaching the plate surface. While the

velocity profile is dependant on the geometric characteristics of the surface in contact

with the flow such as on a wedge or over an airfoil, the basic concept remains the

same - fluid viscosity dominates the flow behavior close to a surface, where the hair

sensors described previously are located.

Figure 2.11: Boundary layer on a flat plate at 0◦ plate angle of attack [42]

Changes in the boundary layer are observable by these hair sensors. Fig-

ure 2.12(a) [43] describes a boundary layer experienced by a hair sensor element,

and Figure 2.12(b) [43] shows the corresponding free-body diagram of the hair sen-

sor under the nonuniform, distributed load g(t, ζ) applied to the hair from the fluid

flow of velocity u(t, ζ). Deflection of the hair sensor, r(t, ζ) caused by this load is

also shown in Figure 2.12(b). If an accurate understanding of hair sensor deflection

response to fluid flow is to be obtained, proper characterization of the boundary layer

is essential.

19

(a) (b)

Figure 2.12: (a) Nonuniform flow velocity profile incident on hair receptor, and (b)
corresponding free body diagram of hair [43]

While under steady flow conditions, the load on the hair sensor, and its cor-

responding deflection, remains reasonably constant; however, the additional velocity

component due to lateral gusting conditions serves to modify not only the size of

the boundary layer and corresponding load applied to the hair sensor, but also the

direction relative to the hair sensor along which the load is applied. This in turn

modifies the magnitude and direction of the hair sensor deflection response, and the

resultant moment and shear force at the sensor base. Previous studies by Aranyosi

and Freeman [44] and Nam et al. [45] also note the relationship between hair motion

and surface forces.

2.3 Falkner-Skan Flows

Falkner-Skan flows are canonical boundary-layer flow situations where the ve-

locity at the edge of the boundary layer is described by:

Ue(x) = Cxm (2.2a)

m =
γ

2− γ
(2.2b)

20

This edge velocity profile describes the flow over a wedge where γ is the half-angle

of the wedge, as shown in Figure 2.13, and m is called the power-law parameter [46].

Similarity solutions to the two-dimensional, incompressible boundary layer equations

∂u

∂x
+

∂v

∂y
= 0 (2.3)

u
∂u

∂x
+ v

∂u

∂y
= Ue

dUe

dx
+ v

∂2u

∂y2
(2.4)

may be found for Falkner-Skan flows using the similarity variable η, defined in Equa-

tion 2.5.

Figure 2.13: Falkner-Skan flow over a wedge with half-angle γ

η = y

(
m+ 1

2

Ue

vx

) 1
2

(2.5)

With this similarity variable, the boundary-layer equations may be trans-

formed to the ODE of Equation 2.6.

f ′′′ +
m+ 1

2
ff ′′ +m

[
1− (f ′)

2
]
= 0 (2.6)

21

With the boundary conditions:

η = 0 : f ′ = 0 (2.7a)

η = 0 : f = 0 (2.7b)

η → ∞ : f ′ → 1 (2.7c)

The solution of Equation 2.6 involves a numerical “shooting” method to deter-

mine the initial condition of f ′′ at the wall. Once the solution is found that matches

the boundary values, the velocity components as noted in [42] at each elevation are:

u = Uef
′ (2.8a)

v = −
(
m+ 1

2

νUe

x

)1/2 [
m− 1

m+ 1
ηf ′ + f

]
(2.8b)

Thus, the velocity vector at each height along the length of the fiber is

V =

 u
v
0

 (2.9)

With the velocity vector at the edge of the boundary layer represented as

U =

 Ue

Ve

0

 (2.10)

2.4 Non-Orthogonal Fiber Deflection Model

Dickinson [43] developed a laminar, unsteady hair sensor deflection model

as presented in Equation 2.11. An Euler-Bernoulli beam deflection model, coupled

with considerations for flow and material damping, is outlined. Drag equations for

a circular cylinder in crossflow and the Kelvin-Voigt model comprise the hair sensor

deflection model in Equation 2.11:

22

ρsArtt(t, ℓ) + γIrtℓℓℓℓ(t, ℓ) + EIrℓℓℓℓ(t, ℓ) = fD(t, ℓ) (2.11)

0 < ℓ < Lf , t > 0

with the boundary conditions listed in Equation 2.12:

r(t, 0) = 0 (2.12a)

rℓ(t, 0) = 0 (2.12b)

EIrℓℓ(t, Lf) + γIrtℓℓ(t, Lf) = 0 (2.12c)

EIrℓℓℓ(t, Lf) + γIrtℓℓℓ(t, Lf) = 0 (2.12d)

and the initial condition listed in Equation 2.13:

r(0, ℓ) = r0(ℓ) (2.13)

where ρs, r, Lf , describe hair density, deflection, and length, respectively; E, I, and

A describe the hair Young’s Modulus, moment of inertia, and cross-sectional area,

respectively; γ is the Kelvin-Voigt coefficient of material damping; and fD is the

distributed load due to the drag forces acting along the length of the fiber. The

subscripts ℓ and t denote partial derivatives.

Because of imperfections in the construction process outlined in the next chap-

ter, it was impossible to ensure wall-orthogonality of every fiber constructed or stud-

ied. Instead, according to the coordinate system presented in Figures 2.14 and 2.15,

the fiber deflection model described above must be expanded to allow for a non-

orthogonal axial fiber vector. The fiber vector is described in Equation 2.14:

L = Lf L̂ (2.14a)

L̂ =

 sin(α)cos(β)
sin(α)sin(β)
cos(α)sin(β)

 (2.14b)

where the fiber angles relative to the wall and flow are presented in Figure 2.15, and

hf and hm denote heights of the fiber and the mound on which the fiber is mounted.

23

Figure 2.14: Fiber representation and relative local velocity

Figure 2.15: Angles and dimensions used to describe fiber geometry

Then for an incremental section of fiber, dℓ, the normal force on the section

is:

fD =
1

2
ρaCD (Vn ·Vn) d (2.15)

where:

Vn = V− (V · L) L̂ (2.16)

and:

CD = exp [−0.67ln (Red) + 2.51] (2.17a)

24

Red =
ρd|Vn|

µ
(2.17b)

For the steady flows studied in this work, Equation 2.11 reduces to Equa-

tion 2.18:

d4r

dℓ4
=

fD
EI

(2.18)

With boundary conditions of zero deflection at the rigid fiber base, and zero shear

and moment at the fiber tip. These boundary conditions are listed in Equation 2.19:

ℓ = 0 : r = 0 (2.19a)

ℓ = 0 :
dr

dℓ
= 0 (2.19b)

ℓ = Lf :
d2r

dℓ2
= 0 (2.19c)

ℓ = Lf :
d3r

dℓ3
= 0 (2.19d)

The fourth-order ODE in Equation 2.18 may be integrated to determine the

deflection at the tip. One major assumption is that while the direction of the flow

component normal to the fiber axis changes slightly along the length of the fiber,

the deflection found by integrating Equation 2.18 occurs in the direction of Un where

Un = U−(U · L) L̂. Thus, once the deflection is determined, the deflection projected

on the flow and optical coordinate system is found using

r = rÛn (2.20)

The imaging system described in the subsequent chapter only measured the

fiber deflection in the x-z plane. Thus, to compare the analytical fiber deflection to

the experimental measurements, Equation 2.21 is used.

rtotal =
(
r2x + r2y

) 1
2 (2.21)

25

CHAPTER THREE

Methodology

For this study, an array of nine carbon fiber hairs was mounted to a flat plate

constructed in a thermal printer. The flat plate studied was constructed to have

boundary layer characteristics similar to those of flow over the wing of a medium-

sized bat [10]. To measure the passive mechanical response of these carbon fibers,

an optical imaging technique was used whereby a camera of known spatial resolution

recorded images of a given carbon fiber while exposed to several mainstream flow ve-

locities. Data reduction was then performed using several image processing functions

in MATLAB R⃝.

3.1 Plate and Carbon Fiber Array Construction

3.1.1 Plate Construction

The flat plate had a finite length of 121.16 mm (4.77 in.), a span of 177.80 mm

(7.00 in.), a thickness of 4.76 mm (3/16 in.), and a 10 degree leading edge angle. This

plate length was chosen to provide a nominal plate Reynolds number of 25,000 at 3

m/s. The flat plates were made of ABS plastic, created using a Dimension 3D thermal

printer housed at Baylor University. Because of the finite printer height resolution,

a 0.51 mm (0.02 in.) radius of curvature was employed for the leading edge. This

radius of curvature ensured that a minimum of two layers of plastic were used along

the span of the leading edge. Figure 3.1 shows the isometric and plan-form views of

the test plate.

26

Figure 3.1: Test plate (dimensions in mm)

3.1.2 Plate Surface Preparation

Several methods were examined to determine the most feasible surface upon

which a bead of gel cyanoacrylate and a carbon fiber could be attached. Different

surface textures were explored to improve glue adhesion. Additionally, the visibility

of the carbon fiber against a contrasting surface background was also an important

factor. Several 50.8 mm x 50.8 mm (2 inch x 2 inch) ABS plastic test coupons

were made in a Dimension SST extrusion-deposition 3D printer to study different

preparation methods with these parameters in mind. Application of wood putty was

attempted on one of the test coupons, but ruled out due to poor glue adhesion.

Sanding the surface with a 180-grit sanding block proved to be the most beneficial

preparation method, providing a smoother surface than the raw thermal-print model

structure while retaining enough roughness for effective application of the glue. To

create enough contrast between the surface and the carbon fiber, use of a flat black

spray paint on a test coupon was initially attempted in conjunction with the appli-

cation of a small amount of white paint to the tip of a carbon fiber. However, the

added mass of the paint at the tip of the carbon fiber significantly altered its behavior.

27

Instead, a coat of flat white spray paint was applied to the carbon fiber array surfaces

(first to the test coupons, then to the flat plate) to contrast the naturally-dark carbon

fiber enough for feasible motion capture of the carbon fibers.

3.1.3 Carbon Fiber Array Construction

Figure 3.2 shows the carbon fiber array construction facility used in the in-

vestigation. A stand supporting the carbon fiber array surface was placed under

a Zeiss OPMI-1 microscope with an attached LFS 200 Fiberoptic Light Source. A

second stand, supporting a Narishiye Micromanipulator, was also placed under the

microscope. The fibers used in this study were cut from a tow of Thornel T-650

PAN-based fibers. The nominal tensile modulus of the fibers is 255 GPa, and the

nominal filament diameter is 6.8 µm.

Using a pair of Jewlers #5 Forceps from World Precision Instruments (WPI)

and a soldering iron, a strand of carbon fiber was embedded into a piece of paraf-

fin wax material located on the arm of the micromanipulator. This step, more than

any other, introduced a large variance in fiber attachment angle because of the dif-

ficulty associated with embedding the carbon fiber in the wax. A small amount of

gel cyanoacrylate was then applied to the array surface in a predetermined location

using a toothpick. The free end of the carbon fiber was positioned into the bead of

gel cyanoacrylate to form a butt joint. Then, the bead was allowed to harden while

the carbon fiber and micromanipulator remained in place. The end of the carbon

fiber attached to the bead of gel cyanoacrylate was cut to the desired length from the

end embedded in the paraffin wax using a pair of WPI titanium micro-scissors. This

process was repeated for each location, to create a three by three array of carbon

fiber hair sensors. The carbon fibers were named according to their location on the

plate, from fiber E1 to fiber E9 as depicted in Figure 3.1.

28

3.1.4 Carbon Fiber Geometry Determination

After the fibers were clipped, the video inspection system shown in Figure 3.3

was used to measure each fiber’s dimensions and orientation. The video inspection

system consisted of Scienscope WSXGA VGA CMOS camera, a Scienscope micro

zoom lens, and an annular ring light mounted on a single-arm boom stand via a

standard Scienscope focus mount. The imaging system was output to a standard

LCD monitor via VGA, and the system is illuminated with a 24W Scienscope LED

fiber optic illumination unit. Bitmap-format images are saved via a removable SD

card using the Scienscope CMOS camera.

The motion of four of the fibers, (E3, E3c, E6, and E9, as shown in Fig-

ure 3.1) was characterized in the study. For each fiber, top, side and frontal images

were acquired and used to determine the fiber dimensions and orientation. Figure 3.4

presents example images from the ScienScope video inspection system used to deter-

mine the geometry of fiber E3.

Calibration images of a machinists rule with 1/32-inch increments, shown in

Figures 3.5 and 3.6, were taken to determine the correlation between physical length

and image pixel width and height from the cameras for the imaging systems used

in both the steady and unsteady flow cases, respectively. This was accomplished by

counting the number of pixels between one edge of a hash mark on the machinists

rule and the corresponding edge on the adjacent hash mark. Due to the small depth

of focus of the camera, variations in this correlation are considered negligible.

Table 3.1 presents the geometry of each of the fibers studied. Note that E3c is

a clipped version of E3. After all of the motion of E3 was characterized, the fiber was

clipped to approximately 50% of its original length and the motion characterization

was performed again.

29

Figure 3.2: Microscope and micromanipulator system for fiber attachment

Figure 3.3: Camera inspection system constructed for fiber measurement

30

Figure 3.4: Example images used for fiber geometry determination (E3 is shown)

Figure 3.5: Steady flow calibration images

Figure 3.6: Unsteady flow calibration images

31

Table 3.1: Fiber dimensions and geometry relative to plate

Fiber Lf (mm) α β ϕ hm(mm) hf (mm) xf (mm)
E3 3.10 101.0◦ 83.1◦ 52.7◦ 0.18 3.01 88.9
E3c 1.63 101.0◦ 83.1◦ 52.7◦ 0.18 1.58 88.9
E6 3.25 97.7◦ 86.8◦ 56.8◦ 0.12 3.22 95.3
E9 2.80 95.4◦ 108.6◦ 115.9◦ 0.22 2.64 101.6

3.2 Wind Tunnel Fiber Motion Measurement

The fiber response measurements were performed in the Aerodynamic Char-

acterization Facility (ACF) at the University of Florida‘s Research and Engineering

Education Facility (REEF). The ACF, shown in Figure 3.7, is an open-loop, open jet

wind tunnel with a 1.07-m by 1.07-m (42-in. by 42-in.) cross-section. The ACF is

an open jet wind tunnel in that sidewalls do not bound the flow as it passes through

the test section. A 40-hp motor and axial fan enable freestream velocities of 0.25 m/s

to 22 m/s [47].

Figure 3.7: The ACF at the University of Florida REEF [47]

A wind tunnel test stand was constructed so that the test plate was placed

within the wind-tunnel jet. Since the fibers were not active sensors, components from

the ScienScope video inspection system were used to determine the fiber deflection

when exposed to various flows. The test stand was constructed so that the plate

surface with the carbon fiber array pointed towards the floor while the optics and

32

Figure 3.8: Wind tunnel experimental apparatus (dimensions in m)

the camera were placed below and outside the jet to reduce aerodynamic loading and

vibration during flow measurements. A two-dimensional traversing system was used

to position the camera and optics on each individual fiber of the array. A focusing

mount enabled motion of the camera and optics in the direction normal to the test

plate surface. Diametric and rear-view drawings of the apparatus and its position

relative to the wind-tunnel contraction exit are presented in Figure 3.8. Figure 3.9

presents two images of the constructed apparatus.

A Pitot-static probe was used to measure the speed of the air flowing through

the test section during each of the steady-flow and unsteady-flow tests. As can be

noted in Figure 3.9, the Pitot-Static probe was placed such that the stagnation port of

the probe was just behind the trailing edge of the test plate. A Heise ST-2H pressure

transducer with a range of 0-2 inH2O was used to measure the Pitotstatic pressure

differential, a Druck DPI 142 barometer was used to measure the absolute pressure in

33

the wind tunnel test section, and a thermistor was used to measure the temperature

of the air in the test section. No time-resolved flow measurements were taken during

the unsteady-flow tests.

Figure 3.9: Wind tunnel apparatus for fiber motion detection under steady flow

The imaging system used to capture steady fiber motion consisted of 2-

Megapixel ScienScope CMOS camera, a ScienScope micro zoom lens, an annular

ring light mounted on the micro zoom lens, and a standard ScienScope focus mount.

The imaging system was output to a standard LCD monitor via VGA, and the system

was illuminated with a 24W ScienScope LED fiber optic illumination unit. Bitmap-

format images were saved via a removable SD card using the ScienScope CMOS cam-

era. For each steady-flow condition, ten images of the fiber position were acquired.

The imaging system used to capture unsteady fiber motion consisted of a Phantom

v7.1 camera recording 256x256-pixel images at 250 fps, the ScienScope micro zoom

lens, annular ring light, and 24W ScienScope LED fiber optic illumination unit used

in the steady flow imaging system. An extra 250W flood light focused on the region

34

of interest was necessary for recording images at 250 fps. A flap was added to the

upstream side of the open-jet test section in order to introduce manually-controlled

perturbations (gusts) into the flow during the unsteady tests.

3.3 Test Matrix

The effects of several parameters on hair sensor response to Falkner-Skan flows

were observed. The angle of attack (AoA) of the test plate was set at −2.5◦ and

+2.5◦ in order to observe the effects of favorable and adverse pressure gradients

on the hair sensors. The effect of hair sensor penetration into the boundary layer

was also observed by varying the mainstream flow velocity inside the wind tunnel

test section from 1-10 m/s. This let to a fiber tip Reynolds number based on their

nominal diameters ranging from 0.2 to 4.3. Possible changes in hair response due to

both hair sensor attachment angle and the presence of an upstream fiber were also

considered (note the xf , α, β, and ϕ properties listed in Table 3.1). The effects on

fiber deflection response due to both steady and unsteady flows were measured in this

study. Table 3.2 outlines the test matrix considered in this study.

Table 3.2: Test matrix

Flow Plate Mainstream Fibers
Regime Angle of Attack Velocity (m/s) Characterized
Steady +2.5◦, −2.5◦ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 E3, E3c, E6, E9

Unsteady +2.5◦, −2.5◦ 3, 6, 9 E6

3.4 Image Analysis

Two separate MATLAB R⃝ image analysis scripts were developed to analyze

the experimental images obtained during both the steady and unsteady flow cases.

While the same basic MATLAB R⃝ image analysis functions are used for both the

steady and unsteady experiments, differences in the experimental implementation

and data collection require separate scripts to effectively process the images.

35

3.4.1 Steady Flow Image Analysis

Each steady carbon fiber image set is processed in the following manner. A

boundary box in the image set is first determined around a specific interrogation

region. An average reference image is then constructed by combining every image

in the “zero-flow” image set. Then, every image in an image set corresponding to

a different mainstream velocity is analyzed using several MATLABR⃝ functions to

distinguish the carbon fiber from its background, determine the pixel location of

the carbon fiber tip, and correct for any shift in the images relative to the average

reference image. Criterion for data rejection is then used to reject individual spurious

data points. Finally, fiber deflection in both the lateral and longitudinal directions,

as well as the corresponding uncertainties, for each flow case image set are computed

from the remaining data points.

3.4.1.1 Initial Analysis Steps. To minimize computation time, a box bounding

a specific image interrogation region is first determined, as shown by the green “+”

markers in Figure 3.10. This box is defined so that the tip of the carbon fiber always

remains inside the interrogation region for every flow velocity studied. However, care

is also taken as much as possible to exclude any anomalies present in the background

of the image that may interfere with the proper determination of the carbon fiber tip

location, such as the diagonal thermal printer striations found in the background of

Figure 3.10.

A reference image (not shown) is then computed from the 8-bit grayscale

average of every image present in the zero-flow image set. This average reference

image is used later in a cross correlation to determine and correct for the magnitude

of the image shift present in each image analyzed.

36

Figure 3.10: Steady flow raw image

3.4.1.2 Fiber Image Reduction. Each image in the data set is then sequentially

read using the imread() function in MATLAB R⃝. This image is cropped down to

the interrogation region, and converted to grayscale using rgb2gray(), as shown in

Figure 3.11.

Figure 3.11: Steady flow cropped image

After the image is cropped down, and converted to grayscale using

rgb2gray(), the adapthisteq() function is used to perform a Contrast-Limited

Adaptive Histogram Equalization (CLAHE), shown in Figure 3.12. CLAHE enhances

the contrast of small interest regions, called tiles, such that the histogram of each tile

37

approximates a specified distribution. After this histogram equalization is completed

for each tile, bilinear interpolation is used to combine neighboring tiles while elim-

inating artificial tile boundaries. For this static image analysis, each image is split

into a 3x3 array of tiles, and a uniform distribution is approximated.

Figure 3.12: Steady flow CLAHE image

To isolate the carbon fiber from the background in the subsequent steps of this

image analysis using MATLABR⃝, the image must be converted from a grayscale image

to binary, as shown in Figure 3.13. This binarization process is completed using the

im2bw() function in MATLAB R⃝, specifying an 8-bit binarization threshhold integer

for each image set corresponding to a different mainstream velocity.

Figure 3.13: Steady flow binarization image

To remove much of the inherent noise present in the binarized image repre-

sented by Figure 3.13, the image is then filtered using the bwmorph() function in

38

MATLAB R⃝, shown in Figure 3.14. For this static image analysis, a majority filter-

ing operation, whereby a pixel value is set to 0 unless at least 5 of its connecting

neighbors have a value of 1, is used to remove the salt-and-pepper-style noise present

in the image. Then, a fill operation is used to prevent hollow regions and a thin

operation is used to prevent unwanted breaks in the carbon fiber due to bright spots

present in the image background that ‘bleed’ into the foreground, as can be seen near

the bottom of the image in the image progression between Figures 3.12 and 3.13.

Figure 3.14: Steady flow filtered image

The image must then be inverted before the MATLAB R⃝ fiber detection func-

tion discussed below can be used. Since the image is already in binary format, this

inversion process is accomplished with the simple equation: image = 1 - image.

This inversion is shown in Figure 3.15.

Figure 3.15: Steady flow inverted image

39

Properties of the binary image are then measured using the bwconncomp()

and regionprops() functions in MATLAB R⃝. The bwconncomp() function finds ev-

ery connected component, or region defined by any number of neighboring pixels of

value 1, in the image. In this study, an 8-connected neighborhood is used instead

of a 4-connected neighborhood. The data structure array, containing information

about each connected component, returned by bwconncomp() is input directly into

the regionprops() function. The regionprops() function then analyzes each struc-

ture in this array to determine a number of properties of each connected component

region. In this study, Area (pixels), BoundingBox, Image, Orientation (degrees),

MajorAxisLength (lmajor, pixels), and MinorAxisLength (lminor, pixels) information

about each connected component is determined. Then, only the information about

the connected component with the largest Area is retained, as it is assumed to be

the connected component associated with the carbon fiber under observation. The

result of the connected component analysis is shown in Figure 3.16.

Figure 3.16: Steady flow output image

To correctly calculate fiber deflection information, a correction must be made

for any shift in the current image relative to the reference image created at the

beginning of the analysis. This is done by capturing the motion of a pre-determined

bright spot present in the image. An interrogation region bounding the full locus of

40

possible travel of this bright spot for every flow case in the image set is determined,

as shown by the blue “+” markers in Figure 3.10. This interrogation region is then

binarized for both the reference image created at the beginning of the analysis, and

for the current image, according to Equation 3.1. This bright spot image binarization

is shown in Figure 3.17.

PVbinarized,i,j =
PVi,j − PV

PVmax − PV
(3.1)

Reference Image Reference Spot

Current Image Current Spot

Figure 3.17: Steady flow bright spot image

These binarized images are then processed with the xcorr2() function

in MATLAB R⃝, which performs a cross-correlation on the image pair. A two-

dimensional contour plot of this cross-correlation is shown in Figure 3.18. A sub-

pixel resolution location of the maximum of this cross-correlation is determined using

a parabolic sub-pixel estimator, described in Equations 3.2 and 3.3, and the difference

41

between the pixel location of the center of the cross-correlation (corresponding to zero

image shift) and the pixel location of the maximum is computed for both the horizon-

tal and vertical dimensions of each image. By knowing the correlation between pixel

count and physical length from the calibration process explained earlier on page 29,

the physical shift in the current image relative to the reference image is calculated

and corrected for in the data reduction.

xshift = −xbrightspot+xmax+
CCRxmax−1,zmax − CCRxmax+1,zmax

2 · CCRxmax−1,zmax + CCRxmax+1,zmax − 2 · CCRxmax,zmax

(3.2)

zshift = zbrightspot − zmax −
CCRxmax,zmax−1 − CCRxmax,zmax+1

2 · CCRxmax,zmax−1 + CCRxmax,zmax+1 − 2 · CCRxmax,zmax

(3.3)

20 40 60 80 100 120

20

40

60

80

100

120

0

20

40

60

80

100

120

Figure 3.18: Steady flow cross-correlation image

42

3.4.1.3 Image Data Reduction. Once the raw experimental images are reduced

to binary images of the carbon fiber object itself, and an image shift correction is

calculated, the total deflection of the tip of the carbon fiber may be computed.

The first item that must be accomplished in the data reduction is the validation

of the reduced carbon fiber image set through the rejection of any individual outlier

images in the set. During the image analysis process, occasionally the fiber will be

split into two separate connected component regions during binarization, which no

longer accurately represents the carbon fiber. In this study, this image set validation

is accomplished through the comparison of the Area of each carbon fiber in the

reduced image set that was calculated by the regionprops() function in MATLAB R⃝.

The algorithm for fiber rejection is composed of two simple comparison operations -

unless both conditions in Equation 3.4 are true, the fiber is rejected:

∣∣∣∣Af

Af

− 1

∣∣∣∣ ≤ Trej,A (3.4a)

lmajor

lminor

= ARf ≥ ARf · Trej,AR (3.4b)

where Af and ARf denote the area and aspect ratio of the analyzed fiber, in pixels;

Trej,A and Trej,AR are predetermined rejection threshold values. The values of Trej,A

and Trej,AR used in this analysis were 0.25 and 0.85, respectively.

The remaining fiber images are then analyzed to determine the fiber tip loca-

tion in each image. This is accomplished by recalling the BoundingBox information

computed by the regionprops() function in MATLAB R⃝. The the pixel location

from BoundingBox that most closely approximates the carbon fiber tip location is

recorded for each image. Then for each flow case, an average of the fiber tip pixel

43

locations is computed. The difference between the average fiber tip pixel location for

each flow case and the average fiber tip pixel location for the corresponding zero-flow

case is then computed to determine the deflection response (in pixels) of the carbon

fiber to each Falkner-Skan boundary layer characterized by each flow case. The lateral

and transverse deflection response is then calculated in Equation 3.5, and the total

deflection is calculated in Equation 3.6. These deflections are converted to units of

length by multiplying by the Pixel Width (PW) conversion coefficient resulting from

the calibration process discussed on page 29.

∆x = ((xtip − xshift)− xtip,initial) · PW (3.5a)

∆z = ((ztip − zshift)− ztip,initial) · PW (3.5b)

∆total =
√

∆2
x +∆2

z (3.6)

Only random uncertainty analysis was performed on the reduced data accord-

ing to Equation 3.7:

U∆x =
S∆x · t95,N−1√

N
(3.7)

where N is the number of valid tip deflection measurements, S∆x is the standard

deviation of the tip deflection measurements, and t95,N−1 is the Student’s-t value

based on the degrees of freedom, (N-1), and a level of confidence of 95%. The U∆z

was evaluated similarly. Then the total uncertainty was evaluated using Equation 3.8:

Utotal =
√
U2
∆x + U2

∆z (3.8)

Systematic uncertainty, due to the calibration process, focus of the camera, or variance

44

of fiber location within the depth-of-focus of the optics, are considered negligible with

respect to the random uncertainty in this analysis.

3.4.2 Unsteady Image Analysis

Each unsteady carbon fiber image set is processed in a manner similar to

the steady image analysis process. A boundary box in the image set is first deter-

mined around a specific interrogation region. An average reference image is then

constructed from every image during the period of time in the test in which there was

a zero mainstream velocity in the wind tunnel. Then, every image in the image set is

analyzed using several MATLABR⃝ functions to distinguish the carbon fiber from its

background, determine the pixel location of the carbon fiber tip, and correct for any

shift in the images relative to the average reference image. Finally, fiber deflection

in both the lateral and longitudinal directions for each image are computed from the

reduced image data.

3.4.2.1 Initial Analysis Steps. To minimize computation time, a box bounding

a specific image interrogation region is first determined, as shown by the blue “+”

markers in Figure 3.19. This box is chosen to include the full locus of carbon fiber

tip locations over the entire span of mainstream flow velocity images studied for a

given carbon fiber. However, care is also taken as much as possible to exclude any

anomalies present in the background of the image that may interfere with the proper

determination of the carbon fiber tip location, such as the diagonal thermal printer

striations found in the background of Figure 3.19.

A reference image is then computed from the average of every image during the

period of time in the test in which there was a zero mainstream velocity in the wind

45

tunnel. This average reference image is used later in a cross correlation to determine

and correct for the magnitude of the image shift present in each image analyzed.

To provide a baseline “zero-flow” case similar to the “zero-flow” case from the

steady image analysis section, the entire unsteady image reduction discussed below

is performed on the average reference image computed in the previous step. This

provides the basis image from which fiber tip deflection information is calculated.

Due to large variances in the image brightness of each image set, it became

necessary to equalize the image brightness for every image in a given image set.

This minimizes the brightness-induced variations introduced during the binarization

process. Before the image analysis is performed on any image, the mean intensity of

each image in the image set is computed using the rgb2hsv() function in MATLAB R⃝.

3.4.2.2 Fiber Image Reduction. The first process performed for each image

in the reduction process is the equalization of the image brightness in each image.

Using a pair of while loops in MATLAB R⃝, image intensity values are incremented

or decremented until the average image brightness level computed above is reached.

After this equalization is complete, a raw grayscale image, as shown in Figure 3.19, is

obtained through the use of the hsv2rgb() and rgb2gray() functions in MATLAB R⃝.

The remainder of the unsteady image analysis is very similar to that of the

steady image analysis presented earlier. Notable differences in the image analysis pro-

cedure include changes in the executions of the contrast-limited adaptive histogram

equalization and filtering steps, and the overlay of the regionprops() output onto the

brightness-equalized raw images. An 8x8 array of tiles was used during CLAHE, and

a Rayleigh distribution was approximated instead of a uniform distribution. The thin

filter present in the steady image analysis was omitted in the unsteady image analysis.

No rejection criteria was used in the unsteady image analysis.

46

Figures 3.19 - 3.26 show the entire unsteady image analysis progression. Fig-

ure 3.20 presents the result of the CLAHE performed on the unsteady image set. Fig-

ures 3.21, 3.22, and 3.23 show the binarized, filtered, and inverted unsteady images,

respectively. Figure 3.24 shows the largest connected component in the interrogation

region described earlier, as shown in Figure 3.19. Figure 3.25 presents an overlay of

this connected component on the raw image from Figure 3.19. Figure 3.26 shows the

result of the cross-correlation step performed in this unsteady image analysis.

Figure 3.19: Unsteady raw image

47

Figure 3.20: Unsteady CLAHE image

Figure 3.21: Unsteady binarized image

48

Figure 3.22: Unsteady filtered image

Figure 3.23: Unsteady inverted image

49

Figure 3.24: Unsteady region properties image

NoE E6 +2
°
 9mps 7001/7787 250fps 00.00s .

dx: −08.98 µm .dy: +04.37 µm .

Figure 3.25: Unsteady overlay image

50

10 20 30 40 50 60

10

20

30

40

50

60 0

5

10

15

Figure 3.26: Unsteady cross-correlation image

51

CHAPTER FOUR

Results and Discussion

Using the MATLAB R⃝ functions developed earlier, the fiber behavior was inves-

tigated. Steady carbon fiber tip deflection response to wind tunnel velocities ranging

from 1-10 m/s was calculated and graphed for several carbon fiber hair sensors at

both positive and negative angles of attack. Unsteady carbon fiber tip deflection re-

sponse was also measured at positive and negative plate angles of attack for wind

tunnel velocities of 3, 6, and 9 m/s. The nominal values of the angle of attack for

both steady and unsteady measurements were +2.5 and -2.5-degrees.

4.1 Steady Hair Sensor Deflection Results

Figure 4.1 presents the total fiber tip deflection in standard length dimensions

verses the nominal freestream velocity. The results shown in Figure 4.1 are important

for two reasons 1) they demonstrate the low random uncertainties of the measure-

ments, which are on the order of ±10µm for all of the measurements and (2) the

measurements of E6 (the longest fiber) and E3c (the shortest fiber) exhibit minimal

differences relative to the two angles of attack studied. The angle of attack inves-

tigation was performed to investigate whether wing-mounted hair sensors could be

used to determine aircraft attitude. The measurements presented here indicate that

hairs attached aft of the maximum chord on the wing of a small air vehicle will have

limited abilities to sense aircraft attitude.

For these hairs, the primary sensing of aircraft attitude is exhibited through

unsteady fiber motion. Figure 4.1 shows that measurements of E6 were made for all

speeds for negative plate angle of attack; however, measurements of fiber deflection

52

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Flow Velocity, m/s

F
ib

e
r

D
e

fl
e

c
ti
o

n
,

µ
m

E3, −AoA

E3c, −AoA

E3c, +AoA

E6, −AoA

E6, +AoA

E9, −AoA

Figure 4.1: Steady deflection of every fiber

are presented only up to 5 m/s for the positive angle of attack. Above 5 m/s, the

fiber motion was resonant and unmeasurable with the present optical systems for

positive plate angle of attack. While laminar flows should be able to sustain a 2.5◦

wedge expansion, flow separation caused by the leading edge geometry of the plate

is suspected of causing the resonant fiber motion of fiber E6. However, this suspi-

cion cannot be verified without further flow visualization. The fact that the shorter

fiber E3c exhibits non-resonant motion for all velocities studied casts doubt on that

suspicion.

Table 4.1 presents steady total fiber deflection results for both experimental

and model-predicted values. The ∆total columns present the experimental total fiber

deflection measurements, U∆total
columns present the experimental uncertainty of the

total fiber deflection values, rtotal columns present the predictions from the Euler-

Bernoulli model of the total fiber deflection discussed earlier on page 25, and % Error

53

columns present the percent error between the experimental total deflection results

and the model predictions, as described by Equation 4.1.

%Error =
(∆total − rtotal)

∆total

· 100 (4.1)

For the longest fiber, E6, and the shortest fiber, E3c, the model predictions

fall within the experimental uncertainty bands up to relative deflections of 10%. This

limit on the agreement would be expected for an Euler-Bernoulli beam approach which

considers forces to be applied to the “non-deflected” shape of the fiber. The model

overpredicts the deflection for fibers E3 and E9, but the trends are captured. For

fiber E3, an almost constant offset of 20% in the model predictions is observed. For

fiber E9, the average percent error is 32%.

Figure 4.2 is a graphical representation of the experimental measurements and

model predictions as presented in Table 4.1, normalized by the lengths of each carbon

fiber. As stated above, the maximum percent difference between the model predic-

tion and the measurements is 32% for fiber E9, which is the only fiber that points

“upstream” in its unloaded condition. While the beam approach used should be able

to handle the configuration of E9, this fiber has the largest out of focal-plane fiber

movement over the range when the prediction difference is greatest for relative fiber

deflections less than 10% at the 4 m/s case. The agreement of the model predic-

tions with experimental measurements demonstrated in Figure 4.2 demonstrates that

the Euler-Bernoulli beam approach, while simplistic, is sufficient for preliminary sen-

sor design calculations predicting either fiber tip deflections or fiber base forces and

moments. Because the trends are captured and because the focus of this study is

capturing relative deflections and relative force changes related to unsteady events,

the agreement is considered very good.

54

Table 4.1: Steady Fiber Deflection Percent Error
Flow

Velocity ∆total U∆total
rtotal % ∆total U∆total

rtotal %
(m/s) (µm) (µm) (µm) Error (µm) (µm) (µm) Error

Fiber E3, −2.5◦ AoA Fiber E9, −2.5◦ AoA
1 16 10.1 21 28.5 9 3.3 11 22.0
2 63 3.1 72 15.0 27 5.1 39 43.1
3 119 1.7 139 17.2 54 6.1 78 46.4
4 186 3.9 217 16.4 83 4.1 125 51.3
5 255 4.2 301 18.0 151 7.4 177 17.2
6 333 5.7 391 17.6 191 7.2 233 22.1
7 408 6.0 486 19.3 251 12.6 292 16.1
8 481 10.5 586 21.7 282 15.0 353 25.2
9 573 12.9 689 20.2 320 12.2 418 30.6
10 648 17.6 797 22.9 357 13.7 484 35.5

Fiber E3c, −2.5◦ AoA Fiber E3c, +2.5◦ AoA
1 3 3.5 1 69.7 1 4.7 1 36.6
2 4 2.4 3 27.5 4 4.6 3 22.8
3 8 2.6 7 11.9 8 3.3 6 19.0
4 13 3.4 11 12.8 13 6.7 11 12.6
5 19 5.2 17 12.9 16 5.5 16 3.1
6 28 5.5 23 15.9 20 6.8 23 14.8
7 38 11.0 30 21.1 36 6.2 29 17.6
8 44 8.7 37 14.7 38 16.1 37 2.0
9 49 11.5 45 8.1 44 11.8 45 1.4
10 58 14.2 53 8.4 54 19.3 53 1.5

Fiber E6, −2.5◦ AoA Fiber E6, +2.5◦ AoA
1 25 4.4 26 2.8 26 2.8 25 6.7
2 82 3.2 87 6.5 85 1.9 85 0.3
3 161 6.1 169 4.7 164 2.0 166 1.7
4 251 3.7 262 4.2 255 3.0 260 2.1
5 350 5.0 363 3.7 350 3.6 362 3.5
6 452 8.2 472 4.3 — — — —
7 563 8.9 587 4.2 — — — —
8 666 10.2 707 6.2 — — — —
9 774 9.8 832 7.5 — — — —
10 872 30.2 962 10.2 — — — —

* Deflection measurements are rounded to the nearest whole number.

55

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Flow Velocity, m/s

N
o

rm
a

liz
e

d
 F

ib
e

r
D

e
fl
e

c
ti
o

n
,

∆
 /

 l
f

E3, −AoA

E3c, −AoA

E3c, +AoA

E6, −AoA

E6, +AoA

E9, −AoA

E3, −AoA, Model

E3c, −AoA, Model

E3c, +AoA, Model

E6, −AoA, Model

E6, +AoA, Model

E9, −AoA, Model

Figure 4.2: Comparison of model prediction to experimental results of steady nor-
malized deflection of every fiber

Additionally, Figure 4.2 demonstrates that the model predictions indicate very

little difference between the predictions of fiber deflection between the positive and

negative plate-angle-of-attack cases for the E3c and E6 fibers. Thus, just as the

experimental measurements indicated, the Euler-Bernoulli model indicates that the

fiber and plate geometries studied here are not sensitive to the changes in plate angle

of attack.

To further explore the fiber behavior, the relative fiber deflections were com-

pared to the changes in the fiber height relative to the local boundary layer thick-

ness, δ, where δ is the value of y as calculated from the Falkner-Skan profile from

Equations 2.5 and 2.6 when f ′ equals 0.99. Figure 4.3 presents the fiber-height to

boundary-layer thickness ratios (hf/δ) for each case presented.

Figure 4.4 presents the relative fiber deflections versus the hf/δ. Figure 4.4

demonstrates that the data and the model predictions essentially collapse. For a

56

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Flow Velocity, m/s

h
f /

 δ

E3, −AoA

E3c, −AoA

E3c, +AoA

E6, −AoA

E6, +AoA

E9, −AoA

Figure 4.3: Fiber height relative to boundary layer thickness

given (hf/δ), differences exist between the different fibers accounting for changes

in fiber length, fiber orientation, distance downstream of the plate leading edge,

and placement behind other fibers. However, these differences are subtle, and the

dominant factor affecting the relative tip deflection is the relative penetration depth

of the fiber into the boundary layer.

Finally, Fibers E6 and E9 were placed directly downstream of E3. Figure 4.1

demonstrates similar levels of agreement with the beam model, if not better, for E6

and E9 than for E3 and E3c, and as noted previously, Figure 4.4 shows that all of the

relative fiber deflection measurements essentially collapse. Thus, for the given fiber

array and given the present optical measurement system, fiber placement downstream

of other fiber elements did not significantly affect the fiber response to steady flows.

4.2 Unsteady Hair Sensor Deflection Results

Because no simultaneous, time-resolved flow measurements were taken during

the unsteady-flow tests, no quantitative correlation between unsteady flow and un-

steady fiber response was developed. A qualitative assessment of fiber response to

57

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h
f
 / δ

N
o
rm

a
liz

e
d
 F

ib
e
r

D
e
fl
e
c
ti
o
n
,

∆
 /
 l

f

E3, −AoA

E3c, −AoA

E3c, +AoA

E6, −AoA

E6, +AoA

E9, −AoA

E3, −AoA, Model

E3c, −AoA, Model

E3c, +AoA, Model

E6, −AoA, Model

E6, +AoA, Model

E9, −AoA, Model

Figure 4.4: Comparison of model prediction to experimental results of fiber deflection
versus fiber height relative to boundary layer thickness

unsteady flow is presented instead. Figure 4.5 shows a screenshot view of the un-

steady fiber motion analysis video generated using the analysis presented in Chapter

Three and the code found in Appendices B and C. Unsteady carbon fiber tip deflection

response to lateral gusting perturbations in the fluid flow is apparent in Figure 4.5.

The time tracking chart of tip displacement (in µm) versus time at the top of Fig-

ure 4.5 shows fiber tip deflection as measured in both dimensions of the image. This

chart clearly demonstrates four significant events during the unsteady flow tests:

1. The wind-tunnel flow speed ramp-up to 9 m/s (which occurs essentially lin-

early at 1 m/s per second), starting approximately at time = 4s and ending

approximately at time = 13s,

2. A series of three discrete lateral gusts at approximately 17s ≤ time ≤ 21s,

58

3. Two sinusoidal gusting conditions with the amplitude of the second set being

larger than the first at approximately 21s ≤ time ≤ 27s, and

4. A second series of three discrete gusts where the first gust was very large,

beginning approximately at time = 27s.

Figure 4.5: Screenshot of unsteady fiber motion analysis video

Several of the events listed above were repeated for each test performed on fiber

E6. Each test consisted of a flow speed ramp-up, at least one series of discrete lateral

gusts, and at least one sinusoidal gusting condition. The manual control of the flap-

induced flow perturbations did not allow for consistent, repeatable gusting conditions

during the unsteady tests. [Note: data sets from each test in Figures 4.6 - 4.9 are

shifted in time to provide a collapsed set of data referenced to a single important

event in the figure]. Figure 4.6 shows a time chart of total carbon fiber deflection

response, in µm, to unsteady lateral gusting perturbations introduced to flows at 3,

59

6, and 9 m/s at a plate angle of attack of −2.5◦. Figure 4.7 shows the same set of

carbon fiber deflection responses for a plate angle of attack of +2.5◦. Immediately

apparent in Figure 4.7 is the resonant nature of the fiber during the 9 m/s test case.

During the steady part of the tests, the fiber is resonant; however, the fiber ceases to

be resonant during lateral gusting conditions. Figure 4.8 shows a comparison of the

E6 fiber response to these gusting perturbations for both +2.5◦ and −2.5◦ plate angles

of attack. It is clear from the figure that the fiber resonance ceases during times of

fiber response to lateral gusts. Figure 4.9(a) and Figure 4.9(b) show more detailed

graphs of this behavior during multiple discrete gusts and the sinusoidal gust. While

the “mean deflection” values shown in the graphs of Figure 4.9 are slightly different

for the two test cases shown, similar unsteady fiber deflection response amplitudes is

observed.

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

800

900

F
ib

er
 D

ef
le

ct
io

n
[µ

m
]

Time [s]

3 m/s

6 m/s

9 m/s

Figure 4.6: Total deflection response of fiber E6 to unsteady flows (-2.5 degree plate angle of attack)

61

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

800

900

F
ib

er
 D

ef
le

ct
io

n
[µ

m
]

Time [s]

3 m/s

6 m/s

9 m/s

Figure 4.7: Total deflection response of fiber E6 to unsteady flows (+2.5 degree plate angle of attack)

62

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

800

900

F
ib

er
 D

ef
le

ct
io

n
[µ

m
]

Time [s]

+2.5
°

−2.5
°

Figure 4.8: Comparison of fiber deflection response to 9 m/s unsteady flow with ±2.5◦ plate angle of attack

63

16 18 20
0

100

200

300

400

500

600

700

800

900

F
ib

e
r

D
e
fl
e
c
ti
o
n
 [
 µ

m
]

Time [s]

+2.5
°

−2.5
°

(a)

20 22 24
0

100

200

300

400

500

600

700

800

900

F
ib

e
r

D
e
fl
e
c
ti
o
n
 [
 µ

m
]

Time [s]

+2.5
°

−2.5
°

(b)

Figure 4.9: Comparison of fiber deflection response with ±2.5◦ plate angle of attack
to (a) a series of 3 lateral gusts, and (b) an oscillating gust

64

CHAPTER FIVE

Conclusions and Future Work

In this chapter, the most pertinent results regarding artificial hair sensor re-

sponse in Falkner-Skan boundary layers are summarized. Suggestions for the im-

provement of the current experimental procedure and data reduction are provided.

Finally, recommendations for future work are also presented.

5.1 Summary of Current Work

Passive, long-aspect-ratio carbon fiber hairs were glued to a small flat plate and

exposed to steady flows ranging from 1-10 m/s. The plates were oriented to produce

Falkner-Skan boundary layers, or wedge flows, for two plate angles of attack. The

deflection of the carbon-fiber hairs was measured using inspection microscope optics

and a digital camera. An Euler-Bernoulli beam model was also developed to predict

the deflection of non-wall orthogonal hairs or micro-pillars. The primary observations

of the study were:

1. The experimental measurements of the relative fiber deflection agreed well with

the Euler-Bernoulli model presented for relative deflections less than 10%, and

agreement was still reasonable for relative deflections up to 25%.

2. Relative fiber displacement was shown to be sensitive to the local velocity and

consequently to the height of the fiber relative to the local boundary-layer

height.

3. The experimental measurements and the model predictions show insensitivity

to the change in the plate angle of attack except when the increased angle of

attack produces resonant fiber motion.

65

4. Fiber displacement response to unsteady gusts was measured, but because no

simultaneous time-resolved flow measurements were taken, no correlation be-

tween unsteady flow condition and fiber behavior was developed.

5. Resonant behavior was observed in fiber E6 during the 9 m/s, +2.5◦ plate an-

gle of attack unsteady flow case. When compared to the deflection response

of the corresponding −2.5◦ plate angle of attack flow case, it is clear that the

resonant behavior ceases only in response to a gusting condition. Fiber deflec-

tion response amplitudes of similar magnitude between these two cases were

measured.

5.2 Recommendations for Improvement of Current Methodology

While useful information was gathered using the procedure outlined in this

thesis, there are several areas in which improvements may be made. If hair geome-

tries closer to wall-orthogonality are desired, a two-step carbon fiber wax embedding

process may be developed to reduce the variance in fiber geometry and attachment

angle. A carbon fiber may first be embedded in a secondary piece of paraffin wax

to remove the difficulty of positioning the fiber using forceps, and then positioned

into the primary piece of paraffin wax on the tip of the micromanipulator positioning

system at an angle more conducive to wall-orthogonality once glued to the testing

surface. Investigations into improving the gluing process itself may also be warranted

to reduce image background interference and allow for more distinguishable fibers.

Additionally, time-resolved local fluid velocity measurements using hot-wire

anemometry or a similar measurement technique, synchronous with imaging of fiber

response to unsteady boundary-layer perturbations, will be needed to fully charac-

terize the perturbations and corresponding hair sensor response to unsteady flows.

66

Automated introduction of flow perturbations will also be required to create repeat-

able gusting conditions in the wind tunnel. With this automation, fiber sensitivity

to unsteady gusts can be properly quantified through the perturbation of a single

variable at a time, without the inadvertent variations in other variables that come

with manual control of the gusting conditions.

5.3 Recommendations for Future Work

A recent study by Narvaez and McClain [48] has examined the downstream ef-

fects of arrays of obliquely aligned surface elements and their usefulness for flow tailor-

ing. Flow at the trailing edge of these obliquely aligned elements is essentially forced

into a local Kutta condition, imparting some lateral momentum on the flow based

on the angle of alignment of the elements. In this way, flow over an aerodynamic

surface may be “tailored” by arrays of elements with a known angle of alignment to

provide some downstream benefit. Relevant to the continuation of the current effort,

additional studies could examine combinations of these obliquely aligned elements

and hair sensor arrays. An example test plate with these oblique elements is shown

in Figure 5.1. As flow velocities increase, the longitudinal forces acting on the hair

sensors increase. This increased longitudinal force implies that the hair sensors will

become less sensitive to lateral gusts. Through the addition of upstream oblique ele-

ments, the longitudinal flow experienced by the hair sensors will be impeded, allowing

for greater sensitivity to lateral gusting conditions.

The experimental methodology presented in Chapter 3 has already been used

to create steady-flow image sets of fiber deflection for two plates with combinations of

oblique element arrays and hair sensors. Each plate contained elements with either

0◦ or 10◦ alignment angles, and each plate was exposed to steady flows ranging from

1-10 m/s at plate angles of attack of +2.5◦ or −2.5◦. The image analysis presented

67

Figure 5.1: Test plate containing a distribution of obliquely-aligned elements (dimen-
sions in inches)

in this thesis to reduce fiber deflection information from the steady flow image sets

for these plates is ongoing. The results will be useful in determining the effectiveness

of oblique elements at increasing hair sensor sensitivity to lateral gusts.

68

APPENDICES

69

APPENDIX A

Steady Fiber Analysis MATLAB® Code

70

%% Function Name: steadyAnalysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Author: Lance Case

% Date Created: 02.06.2012

% Last Modified: 03.14.2012

%

% Purpose: This file serves as the main executable for the

% MATLAB steady fiber image analysis program.

%

% Inputs: varargin − Traditionally−optional MATLAB function

% arguments

%

% varargin{1} − The text file containing all of the

% function variables to be used

% during analysis. If not included,

% the function will instruct the UI

% to prompt the user for the variable

% file.

%

% Variables included in this text file:

% ImgBaseDir − The base directory containing

% the image set

% ImgInBase − Base string of input image

% filename

% ImgInType − Input image file type

% AnlysImgOut − Analyzed, output image file

% type

% ImgOutBase − Base string of output image

% filename

% ImgOutType − Filetype of output image

% FlowPlate − Name of the test plate used

% FlowAtkAng − Angle of Attack of test plate

% DynViscPas − Dynamic viscosity of the

% fluid in the test section

% DensKgpms − Density of the fluid in the

% test section

% BLayerHgt − Boundary layer height

% metric convention (0.99)

% FlowFiber − Name of the test element

% under observation

% FiberXposmm − Streamwise location of test

% element under observation(mm)

% FiberYposmm − Deprecated.

% FiberHgtmm − Height of the test fiber (mm)

% BoundBoxXS − X−coordinate for left side

% of fiber tip interrogation

% region boundary box

% BoundBoxXF − X−coordinate for right side

% of fiber tip interrogation

% region boundary box

% BoundBoxYS − Y−coordinate for top side

% of fiber tip interrogation

% region boundary box

% BoundBoxYF − Y−coordinate for bottom side

% of fiber tip interrogation

71

% region boundary box

% BSpotPosX − X−coordinate for bright spot

% interrogation region boundary

% box

% BSpotPosY − Y−coordinate for bright spot

% interrogation region boundary

% box

% BSpotPosSz − Pixel size of bright spot

% interrogation region boundary

% box

% CCRclipMax − Bright spot maximum value for

% use during Cross−Correlation
% CCRclipMin − Bright spot minimum value for

% use during Cross−Correlation
% CCRGreyFig − Boolean dictating whether the

% cross−correlation figure

% should be grayscale

% CLAHEtiles − Number of tiles to use during

% CLAHE

% RunCLAHE − Boolean controlling the CLAHE

% CLAHEdistr − Type of image histogram

% distribution to approximate

% during CLAHE

% Filtering − String determining type of

% image filtering used during

% filtering step.

% (OPTIONAL, MULTIPLE ALLOWED)

% BinThresh − Threshhold integer used

% during image binarization

% (MULTIPLE ALLOWED, SEPARATE

% VALUES FOR EACH MAINSTREAM

% VELOCITY IMAGE SET)

% SkiptoVeloc − Optional variable used during

% analysis setup or

% troubleshooting. Allows the

% analysis algorithm to skip to

% the necessary velocity image

% set

% BSpotFilter − Allows the cross−correlation
% to discard incorrect/invalid

% areas in the bright spot

% image

%

% EXAMPLE 1:

% BSpotFilter<tab>06,X>110

% −discards any image

% information for the

% 6mps test case where

% the X position in

% the image is greater

% than 110px

% EXAMPLE 2:

% BSpotFilter<tab>01,Y<30

% −discards any image

72

% information for the

% 1mps test case where

% the Y position in

% the image is less

% than 30px

%

% ShowBounds − Boolean used during setup or

% troubleshooting. Creates a

% figure showing the location

% of the image bounding boxes

% specified in the variables

% file.

% ShowEachBnd − Boolean used during setup or

% troubleshooting. Performs the

% same function as 'ShowBounds'

% for each velocity present

% SaveEachBnd − Boolean controlling the save

% of the figure created if

% the 'ShowEachBnd' variable is

% set to '1'

% OnlyBounds − Boolean used to determine

% whether the image analysis

% program should stop execution

% after displaying a figure

% showing the boundary box

% location

% ShowFigRaw − Boolean controlling display

% of raw image figure

% ShowFigAHE − Boolean controlling display

% of CLAHE figure

% ShowFigBin − Boolean controlling display

% of binarization figure

% ShowFigFil − Boolean controlling display

% of filtered image figure

% ShowFigInv − Boolean controlling display

% of inverted image figure

% ShowFigRP − Boolean controlling display

% of region props figure

% ShowFigRej − Boolean controlling display

% of rejected/passed fiber

% image figure

% ShowFigOvr − Boolean controlling display

% of overlay figure

% ShowFigCCR − Boolean controlling display

% of cross−correlation figure

% SaveFigRaw − Boolean controlling saving

% of raw image figure

% SaveFigAHE − Boolean controlling saving

% of CLAHE figure

% SaveFigBin − Boolean controlling saving

% of binarization figure

% SaveFigFil − Boolean controlling saving

% of filtered image figure

% SaveFigInv − Boolean controlling saving

73

% of inverted image figure

% SaveFigRP − Boolean controlling saving

% of region props figure

% SaveFigRej − Boolean controlling saving

% of rejected/passed fiber

% image figure

% SaveFigOvr − Boolean controlling saving

% of overlay figure

% SaveFigCCR − Boolean controlling saving

% of cross−correlation figure

% ShowGphFSBL − Boolean controlling display

% of the Falkner−Skan boundary

% layer profile based on the

% plate angle of attack

% ShowGphDefl − Boolean controlling display

% of the fiber deflection graph

% ShowGphTDEr − Boolean controlling display

% of the total fiber deflection

% graph (with errorbars)

% ShowGphNDef − Boolean controlling display

% of the normalized fiber

% deflection graph

% ShowGphRAng − Boolean controlling display

% of the fiber relative

% deflection angle graph

% RejThresh − Rejection threshold value

% used to reject fibers based

% on their deviation from the

% mean fiber area (in image

% pixel count)

% (This is T.rej,A in the

% thesis)

% ARrejThresh − Rejection threshold value

% used to reject fibers based

% on their deviation from the

% mean fiber aspect ratio

% (This is T.rej,AR in the

% thesis)

%

% Variables in this text file should be formatted

% as follows ('<tab>' denotes tab character):

%

% #BOF

% VariableNameOne<tab>VariableValueOne

% VariableNameTwo<tab>VariableValueTwo

% ==

% Comments can be included on separate lines

% ==

% VariableNameThree<tab>VariableValueThree

% ...

% #EOF

%

% Outputs: The variable A, a structure containing all of

% the pertinent information about the current

74

% image analysis

%

% Ignore MATLAB Errors:

%#ok<*ST2NM,*ASGLU,*AGROW,*ISMT>

%#ok<*NOPRT>

%

%%%

function A = steadyAnalysis(varargin)

%% %%

% MATLAB Program Inititalization

%%%

% Accept variables file as an optional input

if length(varargin)>0

varFile = varargin{1};
else

varFile = '';

end

% Clear and format the screen

% clearvars −except imageParentDirectory;

% clc;

format compact;

% Remove excess grey borders from MATLAB figures

iptsetpref('ImshowBorder','tight');

% Supress MATLAB Warnings:

warning off all;

%% %%

% Constant Initialization

%%%

fprintf('Constant Initialization\n');
%%%

% Track the current directory

A.CurrentDirectory = pwd;

% Pixel Width

PW = (2/32)/(973−256)*25400; % um per pixel (Scienscope)

% Falkner−Skan Variables

etamax = 6.5;

etasteps = 1000;

%% %%

% Variable Initialization

%%%

fprintf('Variable Initialization\n');
%%%

% Initialize variable−value arrays before reading input file

75

A.ImageDirectory = A.CurrentDirectory;

A.BinThresh = [];

A.Filtering = {};
A.IAfType = {};
A.Output = {};
A.CCR.grey = 0;

A.CCR.BSFilter = [];

zipFileList = {};

% Initialize other variables

A.Display.Fig.OnlyBnd = 0;

A.Display.Fig.Ebd = 0;

A.Display.Fig.Save.Ebd = 0;

A.Display.Gph.TDEr = 0;

aRejectionThreshhold = [];

ARrejectionThreshhold = 0.85;

A.CLAHE.Distr = 'uniform';

skipToVelocity = 0;

areaRejectMin = 0.900; % Default Fiber Rejection Criteria

areaRejectMax = 1.125; % Default Fiber Rejection Criteria

% Variables file containing image reduction information

if isempty(varFile)

[A.varFile,dummy,nextdummy] = uigetfile({'*.txt','*.dat'});
A.varFile = sprintf('%s\\%s',dummy,A.varFile);

else

A.varFile = varFile;

end

% Start the timer

start = clock;

% Open the variables input file

variablesFile = fopen(A.varFile,'r');

% Read the variables from the input file

while ˜feof(variablesFile)

newVar = fgets(variablesFile);

a = textscan(newVar,'%s%s','delimiter','\t'); b=a{1}; c=a{2}; d ...

= c{1};

% Set Variables Related to Image File Input and Output

if strcmp(b,'ImgBaseDir'), A.ImageDirectory = d; end;

if strcmp(b,'ImgInBase'), A.Input{1} = d; end;

if strcmp(b,'ImgInType'), A.Input{2} = d; end;

if strcmp(b,'AnlysImgOut'), A.IAfType{length(A.IAfType)+1}= d; end;

if strcmp(b,'ImgOutBase'), A.Output{1} = d; end;

if strcmp(b,'ImgOutType'), A.Output{length(A.Output)+1} = d; end;

% Set Variables Related to the Current Flow Case

if strcmp(b,'FlowPlate'), A.FlowCase{1} = d; end;

if strcmp(b,'FlowAtkAng'), A.FlowCase{3} = d; end;

if strcmp(b,'DynViscPas'), A.Air.DynVisc = str2double(d); end;

76

if strcmp(b,'DensKgpms'); A.Air.Density = str2double(d); end;

if strcmp(b,'BLayerHgt'), u delta = str2double(d); end;

% Set Variables Related to the Current Fiber

if strcmp(b,'FlowFiber'), A.FlowCase{2} = d; end;

if strcmp(b,'FiberXposmm'), A.Fiber.Pos(1) = str2double(d); end;

if strcmp(b,'FiberYposmm'), A.Fiber.Pos(2) = str2double(d); end;

if strcmp(b,'FiberHgtmm'), A.Fiber.Height = str2double(d); end;

% Set Variables Related to Image Analysis

if strcmp(b,'BoundBoxXS'), A.BoundBox(1) = str2num(d); end;

if strcmp(b,'BoundBoxXF'), A.BoundBox(2) = str2num(d); end;

if strcmp(b,'BoundBoxYS'), A.BoundBox(3) = str2num(d); end;

if strcmp(b,'BoundBoxYF'), A.BoundBox(4) = str2num(d); end;

if strcmp(b,'BSpotPosX'), A.CCR.BSLoc(1) = str2num(d); end;

if strcmp(b,'BSpotPosY'), A.CCR.BSLoc(2) = str2num(d); end;

if strcmp(b,'BSpotPosSz'), A.CCR.BSLoc(3) = str2num(d); end;

if strcmp(b,'CCRclipMax'), A.CCR.clip(1) = str2num(d); end;

if strcmp(b,'CCRclipMin'), A.CCR.clip(2) = str2num(d); end;

if strcmp(b,'CCRGreyFig'), A.CCR.grey = str2num(d); end;

if strcmp(b,'CLAHEtiles'), A.CLAHE.NTiles = str2num(d); end;

if strcmp(b,'RunCLAHE'), A.CLAHE.Run = str2num(d); end;

if strcmp(b,'CLAHEdistr'), A.CLAHE.Distr = d; end;

if strcmp(b,'Filtering'), A.Filtering{length(A.Filtering)+1} ...

= d; end;

if strcmp(b,'BinThresh'), A.BinThresh(length(A.BinThresh)+1) ...

= str2num(d); end;

if strcmp(b,'SkiptoVeloc'), skipToVelocity = str2num(d); end;

if strcmp(b,'BSpotFilter'), A.CCR.BSFilter{...
length(A.CCR.BSFilter)+1} = ...

d; end;

% Set Variables Related to Displaying Figures

if strcmp(b,'ShowBounds'), A.Display.Fig.Bnd = str2num(d); end;

if strcmp(b,'ShowEachBnd'), A.Display.Fig.Ebd = str2num(d); end;

if strcmp(b,'ShowFigRaw'), A.Display.Fig.Raw = str2num(d); end;

if strcmp(b,'ShowFigAHE'), A.Display.Fig.AHE = str2num(d); end;

if strcmp(b,'ShowFigBin'), A.Display.Fig.Bin = str2num(d); end;

if strcmp(b,'ShowFigFil'), A.Display.Fig.Fil = str2num(d); end;

if strcmp(b,'ShowFigInv'), A.Display.Fig.Inv = str2num(d); end;

if strcmp(b,'ShowFigRP'), A.Display.Fig.RP = str2num(d); end;

if strcmp(b,'ShowFigRej'), A.Display.Fig.Rej = str2num(d); end;

if strcmp(b,'ShowFigOvr'), A.Display.Fig.Ovr = str2num(d); end;

if strcmp(b,'ShowFigCCR'), A.Display.Fig.CCR = str2num(d); end;

if strcmp(b,'OnlyBounds'), A.Display.Fig.OnlyBnd = str2num(d); ...

end;

if strcmp(b,'SaveFigRaw'), A.Display.Fig.Save.Raw = str2num(d); ...

end;

if strcmp(b,'SaveFigAHE'), A.Display.Fig.Save.AHE = str2num(d); ...

end;

if strcmp(b,'SaveFigBin'), A.Display.Fig.Save.Bin = str2num(d); ...

end;

if strcmp(b,'SaveFigFil'), A.Display.Fig.Save.Fil = str2num(d); ...

end;

77

if strcmp(b,'SaveFigInv'), A.Display.Fig.Save.Inv = str2num(d); ...

end;

if strcmp(b,'SaveFigRP'), A.Display.Fig.Save.RP = str2num(d); ...

end;

if strcmp(b,'SaveFigRej'), A.Display.Fig.Save.Rej = str2num(d); ...

end;

if strcmp(b,'SaveFigOvr'), A.Display.Fig.Save.Ovr = str2num(d); ...

end;

if strcmp(b,'SaveFigCCR'), A.Display.Fig.Save.CCR = str2num(d); ...

end;

if strcmp(b,'SaveEachBnd'), A.Display.Fig.Save.Ebd = str2num(d); ...

end;

% Set Variables Related to Displaying Graphs / Plots

if strcmp(b,'ShowGphFSBL'), A.Display.Gph.FSBL = str2num(d); end;

if strcmp(b,'ShowGphDefl'), A.Display.Gph.Defl = str2num(d); end;

if strcmp(b,'ShowGphTDEr'), A.Display.Gph.TDEr = str2num(d); end;

if strcmp(b,'ShowGphNDef'), A.Display.Gph.NDef = str2num(d); end;

if strcmp(b,'ShowGphRAng'), A.Display.Gph.RAng = str2num(d); end;

% Set Fiber Rejection Variables

if strcmp(b,'RejThresh'), aRejectionThreshhold = str2double(d); ...

end;

if strcmp(b,'ARrejThresh'), ARrejectionThreshhold = ...

str2double(d); end;

end

% Create Analysis Results subdirectory

if ˜exist(sprintf('%s\\Analysis Results',A.ImageDirectory),'dir');

mkdir(sprintf('%s\\Analysis Results',A.ImageDirectory));

end

AnalysisResultDirectory = ...

sprintf('%s\\Analysis Results',A.ImageDirectory);

% Reset Fiber Rejection Criteria if in variables file

if ˜isempty(aRejectionThreshhold)

areaRejectMin = 1 − aRejectionThreshhold;

areaRejectMax = 1 + aRejectionThreshhold;

end

% if isempty(ARrejectionThreshhold)

% ARrejectionThreshhold = aRejectionThreshhold;

% end

% Close the input file

fclose(variablesFile);

disp(A);

%% %%

% Generate Boundary Box Location Image

%%%

if A.Display.Fig.Bnd

fprintf('Boundary Box Location Image Generation\n');
%%%

78

n = 1;

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Name','Boundary Box Location');

set(gcf,'Color',[1 1 1]);

leftSubplot = subplot(1,2,1);

set(leftSubplot,'Position',[0 0 .5 1]);

imshow(imread(sprintf('%s\\%s %s Static NoFlow\\%s%05.0f.%s',...
A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
A.Input{1},1,A.Input{2})));

xlabel('NoFlow');

hold on;

% Plot the fiber tip bounding box with green '+' markers

plot([A.BoundBox(1),A.BoundBox(2),A.BoundBox(1),A.BoundBox(2)],...

[A.BoundBox(3),A.BoundBox(3),A.BoundBox(4),A.BoundBox(4)],...

'g+','MarkerSize',8);

% Plot the bright spot location with a red 'o' marker

plot(A.CCR.BSLoc(1),A.CCR.BSLoc(2),...

'ro','MarkerSize',5);

% Plot the bright spot search region bounding box with blue '+' ...

markers

plot([A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2)],...

[A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2)],...

'b+','MarkerSize',10);

hold off;

rightSubplot = subplot(1,2,2);

set(rightSubplot,'Position',[.5 0 .5 1]);

imshow(imread(sprintf('%s\\%s %s Static %imps\\%s%05.0f.%s',...
A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
length(A.BinThresh)−1,A.Input{1},1,A.Input{2})));

xlabel('Largest Velocity Magnitude');

hold on;

% Plot the fiber tip bounding box with green '+' markers

plot([A.BoundBox(1),A.BoundBox(2),A.BoundBox(1),A.BoundBox(2)],...

[A.BoundBox(3),A.BoundBox(3),A.BoundBox(4),A.BoundBox(4)],...

'g+','MarkerSize',8);

% Plot the bright spot location with a red 'o' marker

plot(A.CCR.BSLoc(1),A.CCR.BSLoc(2),...

'ro','MarkerSize',5);

79

% Plot the bright spot search region bounding box with blue '+' ...

markers

plot([A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2)],...

[A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2)],...

'b+','MarkerSize',10);

hold off;

end

if ˜A.Display.Fig.OnlyBnd

%% %%

% Build Cross−Correlation Reference Image

%%%

fprintf('Cross−Correlation Reference Image Construction\n');
%%%

% Create the NoFlow Directory string

NoFlowDir = sprintf('%s\\%s %s Static NoFlow',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2});

% Count how many NoFlow images are present in the folder

NumNoFlowImgs = length(dir(sprintf('%s\\%s*.%s',...
NoFlowDir,A.Input{1},A.Input{2})));

% Initialize the refImg matrix

refImg = ...

zeros(ceil((2*A.CCR.BSLoc(3)+1)/2),ceil((2*A.CCR.BSLoc(3)+1)/2));

for i=1:NumNoFlowImgs

filename = sprintf('%s\\%s%05.0f.%s',...
NoFlowDir,A.Input{1},i,A.Input{2});

refImgRaw = imread(filename);

% Sum the images together

refImg = refImg + double(rgb2gray(refImgRaw(...

A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2):...
A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2):...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2),...

:)));

end

% Divide by the number of image in the set to obtain the average image

A.CCR.refImg = uint8(floor(refImg/NumNoFlowImgs));

clipMax = A.CCR.clip(1);

clipMin = A.CCR.clip(2);

meanRefImg = mean(mean(A.CCR.refImg));

80

maxRefImg = max(max(A.CCR.refImg));

imageSize = size(refImg);

A.CCR.refImgSBC = double(zeros(imageSize));

A.CCR.refImgSBC = (A.CCR.refImg−meanRefImg)/(maxRefImg−meanRefImg);

for k=1:imageSize(1)

for L=1:imageSize(2)

if A.CCR.refImgSBC(k,L) > clipMax, A.CCR.refImgSBC(k,L) = clipMax; end;

if A.CCR.refImgSBC(k,L) < clipMin, A.CCR.refImgSBC(k,L) = clipMin; end;

end

end

% A.CCR.refImgSBC = A.CCR.refImgSBC*255;

%% %%

% Generate Falkner−Skan Boundary Layer Profile

%%%

fprintf('Falkner−Skan Boundary Layer Profile Generation\n');
%%%

n=2;

u = 0:0.01:1;

Beta = 2*str2num(regexprep(regexprep(A.FlowCase{3},'+',''),'−',''));
Beta = str2double(A.FlowCase{3});

z = calc FS Profile(Beta,etamax,etasteps,u);

eta = z(:,3);

eta delta = interp1(eta,u,u delta,'spline');

% Display the figure, if user prefers

if A.Display.Gph.FSBL

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Falkner−Skan Boundary Layer Profile');

plot(u,eta,'b−','LineWidth',2);
grid on;

titlename = ['\bf Falkner−Skan Boundary Layer Profile (\beta = ...

',...

sprintf('%2.1f',Beta),'ˆ\circ)'];

title(titlename,'FontSize',14);

xlabel('Dimensionless Velocity');

ylabel('Scaled Height');

end

%% %%

% Loop Over Every Flow Case Present

%%%

fprintf('=============== Main Program Loop ================\n');
fprintf('================= %s %s %sAOA =================\n',...

81

A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(A.FlowCase{3},...

'−', 'n'),'+', 'p'));

%%%

for i=1:length(A.BinThresh)

if i < skipToVelocity+1 && i˜= 1, continue; end;

FlowCaseImageDirectory = sprintf('%s\\%s %s Static %1.0imps',...

A.ImageDirectory,...

A.FlowCase{1},A.FlowCase{2},i−1);

if i==1 %#ok<*ALIGN>

FlowCaseImageDirectory = ...

sprintf('%s\\%s %s Static NoFlow',A.ImageDirectory,...

A.FlowCase{1},...
A.FlowCase{2});

end

% Find the number of images in current flow case

NumFlowCaseImages = length(dir(sprintf('%s\\%s*.%s',...
FlowCaseImageDirectory,...

A.Input{1},A.Input{2})));

fprintf('−−\n');
if i==1, fprintf(' %s: NoFlow\n',...

'Calculating Data for Flow case');

else fprintf(' %s: %2.0i m/s\n',...
'Calculating Data for Flow case',i−1);

end

fprintf('−−\n');
%%%

% Loop over every image in the current flow case

%%%

for j=1:NumFlowCaseImages

%%%

% Read in the raw image

%%%

n = 3; % Set Image Number

% Create

ImageFilename = sprintf('%s\\%s%05.0f.%s',...
FlowCaseImageDirectory,...

A.Input{1},j,A.Input{2});
refImgRaw = imread(ImageFilename);

refImg = rgb2gray(refImgRaw(...

A.BoundBox(3):A.BoundBox(4),...

A.BoundBox(1):A.BoundBox(2),:));

% Display the figure, if user prefers

if A.Display.Fig.Raw

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Raw'); imshow(refImg);

end

82

image = refImg;

n = n + 1;

if A.Display.Fig.Ebd

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Raw Bounds'); imshow(refImgRaw);

hold on;

% Plot the fiber tip bounding box with green '+' markers

plot([A.BoundBox(1),A.BoundBox(2),A.BoundBox(1),A.BoundBox(2)],...

[A.BoundBox(3),A.BoundBox(3),A.BoundBox(4),A.BoundBox(4)],...

'g+','MarkerSize',8);

% Plot the bright spot location with a red 'o' marker

plot(A.CCR.BSLoc(1),A.CCR.BSLoc(2),...

'ro','MarkerSize',5);

% Plot the bright spot search region bounding box with blue ...

'+' markers

plot([A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2)],...

[A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2),...
A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2)],...

'b+','MarkerSize',10);

hold off;

if A.Display.Fig.Save.Ebd

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,...

A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

%%%

% Contrast−Limited Adaptive Histogram Equalization (CLAHE)

%%%

n = n + 1; % Set Image Number

if A.CLAHE.Run

image = adapthisteq(refImg,...

'NumTiles',[A.CLAHE.NTiles,A.CLAHE.NTiles],...

'Distribution',A.CLAHE.Distr);

% Display / Save the figure, if user prefers

if A.Display.Fig.AHE

83

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','CLAHE'); imshow(image);

if A.Display.Fig.Save.AHE

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,...

A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

end

%%%

% Image Binarization

%%%

n = n + 1; % Set Image Number

image = im2bw(image,A.BinThresh(i)/255);

% Display / Save the figure, if user prefers

if A.Display.Fig.Bin

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Binarized'); imshow(image);

if A.Display.Fig.Save.Bin

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

%%%

% Image Filtering

%%%

n = n + 1; % Set Image Number

for k=1:length(A.Filtering), image = ...

bwmorph(image,A.Filtering{k}); end

% Display the figure, if user prefers

if A.Display.Fig.Fil

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Filtered'); imshow(image);

if A.Display.Fig.Save.Fil

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

84

%%%

% Image Inversion

%%%

n = n + 1; % Set Image Number

image = 1 − image;

% Display the figure, if user prefers

if A.Display.Fig.Inv

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Inverted'); imshow(image);

if A.Display.Fig.Save.Inv

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

%%%

% Get Regionprops Information

%%%

n = n + 1; % Set Image Number

CC = bwconncomp(image,8);

RP = regionprops(CC,'Area','BoundingBox','Image',...

'Orientation','MajorAxisLength',...

'MinorAxisLength');

% Index fiber area information to search for max

fiber area = zeros(length(RP),1); % Initialization

for k=1:length(RP), fiber area(k) = RP(k).Area; end % Indexing

[fiber maxarea,fiber index] = max(fiber area);

A.Fiber.Area(i,j) = RP(fiber index).Area;

A.Fiber.BoundingBox(i,j,:) = RP(fiber index).BoundingBox;

A.Fiber.Orientation(i,j) = RP(fiber index).Orientation;

A.Fiber.MajAxLen(i,j) = RP(fiber index).MajorAxisLength;

A.Fiber.MinAxLen(i,j) = RP(fiber index).MinorAxisLength;

A.Fiber.AR(i,j) = A.Fiber.MajAxLen(i,j) / ...

A.Fiber.MinAxLen(i,j);

% Save fiber image

base image = zeros(size(refImg));

fiber image = RP(fiber index).Image;

% Place the fiber image inside of the base image

% in order to conserve original image size

for k=1:size(fiber image,1)

for L=1:size(fiber image,2)

base image(...

k+floor(RP(fiber index).BoundingBox(1,2)),...

L+floor(RP(fiber index).BoundingBox(1,1))) ...

= fiber image(k,L);

85

end

end

fiber image = base image; clear base image;

A.Fiber.Images(i,j).RP = repmat(uint8(255*fiber image),[1 1 3]);

% Display the figure, if user prefers

if A.Display.Fig.RP

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Regionprops'); imshow(fiber image);

if A.Display.Fig.Save.RP

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

%%%

% Perform a cross−correlation using the current and reference ...

images

%%%

n = n + 1; % Set Image Number

curImg = double(rgb2gray(refImgRaw(...

A.CCR.BSLoc(2)−floor(A.CCR.BSLoc(3)/2):...
A.CCR.BSLoc(2)+floor(A.CCR.BSLoc(3)/2),...

A.CCR.BSLoc(1)−floor(A.CCR.BSLoc(3)/2):...
A.CCR.BSLoc(1)+floor(A.CCR.BSLoc(3)/2),...

:)));

% Current image statistics

meanCurImg = mean(mean(curImg));

maxCurImg = max(max(curImg));

imageSize = size(curImg);

A.CCR.curImgSBC = double(zeros(imageSize));

% Create the current clipped image

for k=1:imageSize(1)

for L=1:imageSize(2)

A.CCR.curImgSBC(k,L) = ...

(curImg(k,L)−meanCurImg)/(maxCurImg−meanCurImg);
if A.CCR.curImgSBC(k,L) > clipMax, A.CCR.curImgSBC(k,L) = ...

clipMax; end;

if A.CCR.curImgSBC(k,L) < clipMin, A.CCR.curImgSBC(k,L) = ...

clipMin; end;

end

end

% Apply any filtering to curImgSBC, defined in the input file

86

for k=1:length(A.CCR.BSFilter)

dummy = A.CCR.BSFilter{k};
if str2num(dummy(1:2)) ˜= i−1, continue; end;

usingX = strcmpi(dummy(4),'X');

usingY = strcmpi(dummy(4),'Y');

gt = strcmp(dummy(5),'>');

lt = strcmp(dummy(5),'<');

parameter = str2num(dummy(6:length(dummy)));

if usingX

if gt

A.CCR.curImgSBC(:,...

parameter:size(A.CCR.curImgSBC,2)) = 0;

end

if lt

A.CCR.curImgSBC(:,1:parameter) = 0;

end

end

if usingY

if gt

A.CCR.curImgSBC(...

parameter:size(A.CCR.curImgSBC,1),:) = 0;

end

if lt

A.CCR.curImgSBC(1:parameter,:) = 0;

end

end

end

% A.CCR.curImgSBC = A.CCR.curImgSBC*255; % (unnecessary)

% Perform the cross−correlation
CCR = xcorr2(A.CCR.curImgSBC,A.CCR.refImgSBC);

% Pick off the maximum spot

[yMax,xMax] = find(CCR==max(CCR(:)),1);

% X−shift for the current image

A.CCR.Shift(i,j,1) = −A.CCR.BSLoc(3) + ...

(xMax + (CCR(yMax,xMax−1) − CCR(yMax,xMax+1)) / ...

(2*(CCR(yMax,xMax−1) + CCR(yMax,xMax+1) − ...

2*CCR(yMax,xMax))));

% Y−shift for the current image

A.CCR.Shift(i,j,2) = A.CCR.BSLoc(3) − ...

(yMax + (CCR(yMax−1,xMax) − CCR(yMax+1,xMax)) / ...

87

(2*(CCR(yMax−1,xMax) + CCR(yMax+1,xMax) − ...

2*CCR(yMax,xMax))));

% Display the figure, if user prefers

if A.Display.Fig.CCR

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Cross−Correlation');
imagesc(CCR,... % Graph ...

cross−correlation
[0,max(max(CCR(:)),160)]); % Include a color ...

range

hold on;

plot(A.CCR.BSLoc(3),A.CCR.BSLoc(3),'r+'); % Red '+' in the ...

center

hold off;

if A.CCR.grey, colormap('gray'); % Set colormap color

else colormap('jet'); end

colorbar; % Add a colorbar

grid on;

if A.Display.Fig.Save.CCR

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

end

%%%

% Fiber Rejection

%%%

% Once the entire set of image data has been populated for the ...

current flow

% case, examine the fiber area from Regionprops to determine if ...

there are

% any outliers. Discard these outliers if they exist. Otherwise, ...

conserve

% the analysis data for the current fiber image. Count the number of

% outliers discarded.

%%%

n = n + 1;

mean area = mean(A.Fiber.Area(i,:));

mean AR = mean(A.Fiber.AR(i,:));

% Reset loop variables

x tipLocation = [];

y tipLocation = [];

x shift = [];

y shift = [];

angle = [];

rejConsOut = '';

88

for j=1:NumFlowCaseImages

A.Fiber.Rejection(i,j) = 0;

% fprintf('A.Fiber.AR(i,j): %5.4f\n',A.Fiber.AR(i,j));
% fprintf('mean AR: %5.4f\n',mean AR);

% fprintf('ARRejectionThreshhold: %5.4f\n',ARrejectionThreshhold);

if A.Fiber.Area(i,j) < mean area*areaRejectMin | | ...

A.Fiber.Area(i,j) > mean area*areaRejectMax | | ...

A.Fiber.AR(i,j) < mean AR*ARrejectionThreshhold

A.Fiber.Rejection(i,j) = 1;

rejConsOut = sprintf('%sFiber rejected: %imps %i ',...

rejConsOut,i−1,j);

if A.Fiber.AR(i,j) < mean AR*ARrejectionThreshhold

rejConsOut = sprintf('%s(AR)',rejConsOut);

end

if A.Fiber.Area(i,j) < mean area*areaRejectMin

rejConsOut =sprintf('%s(Area − Too small)',rejConsOut);

end

if A.Fiber.Area(i,j) > mean area*areaRejectMax

rejConsOut = sprintf('%s(Area − Too big)',rejConsOut);

end

rejConsOut = sprintf('%s\n',rejConsOut);

A.Fiber.Images(i,j).RP(:,:,2) = 0;

A.Fiber.Images(i,j).RP(:,:,3) = 0;

else

x tipLocation(length(x tipLocation)+1) ...

=A.Fiber.BoundingBox(i,j,1);

y tipLocation(length(y tipLocation)+1) ...

=A.Fiber.BoundingBox(i,j,2);

x shift(length(x shift)+1) = A.CCR.Shift(i,j,1);

y shift(length(y shift)+1) = A.CCR.Shift(i,j,2);

angle(length(angle)+1) = A.Fiber.Orientation(i,j);

if angle(length(angle)) > 0

x tipLocation(length(x tipLocation)) = ...

x tipLocation(length(x tipLocation)) + ...

A.Fiber.BoundingBox(i,j,3);

end

% disp([x tipLocation(length(x tipLocation)),...

% y tipLocation(length(y tipLocation))]);

A.Fiber.Images(i,j).RP(:,:,1) = 0;

A.Fiber.Images(i,j).RP(:,:,3) = 0;

end

89

% Display the figure, if user prefers

if A.Display.Fig.Rej

figure(n); set(gcf,'NumberTitle','off');

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','RP−Rejection');
imshow(A.Fiber.Images(i,j).RP);

if length(x tipLocation) && length(y tipLocation)

hold on;

plot(x tipLocation(length(x tipLocation)),...

y tipLocation(length(y tipLocation)),'rx');

hold off;

end

pause(0.1);

if A.Display.Fig.Save.Rej

for k=1:length(A.IAfType)

saveas(gcf,sprintf('%s\\%s %s %imps %05i',...

AnalysisResultDirectory,A.Output{1},get(gcf,'Name'),...
i−1,j),A.IAfType{k});

end

end

end

end

n = length(angle);

disp(['X Tip Loc ','Y Tip Loc ',' X Shift ',' Y Shift ',' Angle']);

disp([x tipLocation',y tipLocation',x shift',y shift',angle']);

fprintf('%s',rejConsOut);

if i==1

initial x tipLocation = mean(x tipLocation);

initial y tipLocation = mean(y tipLocation);

initial angle = mean(angle);

end

%%%

% Fiber Deflection Calculations

%%%

% Fiber X Deflection

A.Fiber.Deflection(i,1) = ...

(mean(x tipLocation − x shift) − initial x tipLocation)*PW;

% Fiber Y Deflection

A.Fiber.Deflection(i,2) = ...

(mean(y tipLocation + y shift) − initial y tipLocation)*PW;

% Fiber Total Deflection

% A.Fiber.Deflection(i,3) = ...

% sqrt((A.Fiber.Deflection(i,1))ˆ2 + (A.Fiber.Deflection(i,2))ˆ2);

% Fiber Absolute Relative Angle

A.Fiber.RelativeAngle(i) = abs(mean(angle) − initial angle);

90

%%%

% Deflection Uncertainty Calculations

%%%

% Find the Student's t value for two−sided 95% confidence using new ...

DoF

student t = tinv(0.975,n−1);

% X−Deflection Uncertainty

A.Fiber.Udeflection(i,1) = ...

(std(((x tipLocation(:) − x shift(:)) − ...

initial x tipLocation)*PW)/...

sqrt(n))*student t;

% Y−Deflection Uncertainty

A.Fiber.Udeflection(i,2) = ...

(std(((y tipLocation(:) − y shift(:)) − ...

initial y tipLocation)*PW)/...

sqrt(n))*student t;

% Total Deflection Uncertainty

A.Fiber.Udeflection(i,3) = ...

sqrt((A.Fiber.Udeflection(i,1))ˆ2 + (A.Fiber.Udeflection(i,2))ˆ2);

% Relative Angle Uncertainty

A.Fiber.Urelativeangle(i) = ...

(std(angle−initial angle)/sqrt(n))*student t;

%%%

% Boundary Layer Penetration Calculation

%%%

A.Fiber.HOverDelta(i) = 0;

m = abs(Beta/(2−Beta));

if i > 1

A.Fiber.HOverDelta(i) = (A.Fiber.Height/(1000*eta delta))*...

(((m+1)/2)*(i−1)*A.Air.Density/...
(A.Air.DynVisc*(A.Fiber.Pos(1)/1000)))ˆ(1/2); % Dim'n−less

end

%%%

end % of main program loop

% Remove any bias in the data

A.Fiber.Deflection(:,1) = A.Fiber.Deflection(:,1) ...

−A.Fiber.Deflection(1,1);
A.Fiber.Deflection(:,2) = A.Fiber.Deflection(:,2) ...

−A.Fiber.Deflection(1,2);

for i=1:length(A.BinThresh)

91

% A.Fiber.Deflection(:,3) = A.Fiber.Deflection(:,3) ...

−A.Fiber.Deflection(1,3);
A.Fiber.Deflection(i,3) = ...

sqrt((A.Fiber.Deflection(i,1))ˆ2 + (A.Fiber.Deflection(i,2))ˆ2);

end

%% %%

% Figure Plotting

%%%

%%%

% Generate the Fiber Deflections Figure

%%%

if A.Display.Gph.Defl

figure;

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Fiber Deflections','NumberTitle','off');

plot(0:length(A.BinThresh)−1,...
abs(A.Fiber.Deflection(:,1)),'ko−'); % Longitudinal

hold on;

plot(0:length(A.BinThresh)−1,...
abs(A.Fiber.Deflection(:,2)),'ko:'); % Transverse

plot(0:length(A.BinThresh)−1,...
abs(A.Fiber.Deflection(:,3)),'ks−',...
'MarkerFaceColor',[0 0 0]); % Total ([xˆ2+yˆ2]ˆ.5)

hold off;

legend('Longitudinal','Transverse','Total','Location','NorthWest');

Yaxismaxnumber = ceil(max(abs(A.Fiber.Deflection(:,3)))/50)*50;

axis([0 10 0 Yaxismaxnumber]);

set(gca,'XTick',[0 2 4 6 8 10]);

set(gca,'YTick',0:Yaxismaxnumber/5:Yaxismaxnumber);

grid on;

xlabel('Flow Velocity (m/s)');

ylabel('Fiber Displacement (\mum)');
for i=2:length(A.Output)

saveAsFileName = ...

sprintf(...

'%s\\Analysis Results\\%s %s Static Fiber Deflections',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2});
saveas(gcf,saveAsFileName,A.Output{i});

if strcmp(A.Output{i},'jpg') | | strcmp(A.Output{i},'fig')
saveAsFileName = sprintf('%s.%s',saveAsFileName,A.Output{i});
zipFileList{length(zipFileList)+1} = saveAsFileName;

end

end

end

%%%

% Generate the Total Fiber Deflection + Errorbar Figure

%%%

if A.Display.Gph.TDEr

figure;

92

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Total Fiber Deflection (Errorbar)',...

'NumberTitle','off');

errorbar(0:length(A.BinThresh)−1,A.Fiber.Deflection(:,3),...
A.Fiber.Udeflection(:,3),'ko−');

current Ylim = get(gca,'YLim');

Yaxismaxnumber = ceil(max(abs(A.Fiber.Deflection(:,3)))/50)*50;

axis([0 10 0 current Ylim(2)]);

set(gca,'XTick',[0 2 4 6 8 10]);

% set(gca,'YTick',0:Yaxismaxnumber/5:Yaxismaxnumber);

grid on;

xlabel('Flow Velocity (m/s)');

ylabel('Fiber Displacement (\mum)');
for i=2:length(A.Output)

saveAsFileName = ...

sprintf('%s\\Analysis Results\\%s %s %s',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
'Static Total Fiber Deflections Errorbar');

saveas(gcf,saveAsFileName,A.Output{i});

if strcmp(A.Output{i},'jpg') | | strcmp(A.Output{i},'fig')
saveAsFileName = sprintf('%s.%s',saveAsFileName,A.Output{i});
zipFileList{length(zipFileList)+1} = saveAsFileName;

end

end

end

%%%

% Generate the Normalized Fiber Deflections Figure

%%%

if A.Display.Gph.NDef

figure;

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Normalized Fiber Deflections','NumberTitle','off');

plot(0:length(A.BinThresh)−1,... % Longitudinal

abs(A.Fiber.Deflection(:,1)/(1000*A.Fiber.Height)),'ko−');
hold on;

plot(0:length(A.BinThresh)−1,... % Transverse

abs(A.Fiber.Deflection(:,2)/(1000*A.Fiber.Height)),'ko:');

plot(0:length(A.BinThresh)−1,... % Total ([xˆ2+yˆ2]ˆ.5)

abs(A.Fiber.Deflection(:,3)/(1000*A.Fiber.Height)),'ks−',...
'MarkerFaceColor',[0 0 0]);

hold off;

legend('Longitudinal','Transverse','Total','Location','NorthWest');

% axis([0 10 0 1]);

set(gca,'XTick',[0 2 4 6 8 10]);

grid on;

xlabel('Flow Velocity (m/s)');

ylabel('Normalized Fiber Displacement');

for i=2:length(A.Output)

saveAsFileName = sprintf(...

'%s\\Analysis Results\\%s %s Normalized Static Fiber Deflections',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2});

93

saveas(gcf,saveAsFileName,A.Output{i});

if strcmp(A.Output{i},'jpg') | | strcmp(A.Output{i},'fig')
saveAsFileName = sprintf('%s.%s',saveAsFileName,A.Output{i});
zipFileList{length(zipFileList)+1} = saveAsFileName;

end

end

end

%%%

% Generate the Relative Fiber Angle Figure

%%%

if A.Display.Gph.RAng

figure;

set(gcf,'Color',[1 1 1]);

set(gcf,'Name','Relative Fiber Angle (deg)','NumberTitle','off');

hold off;

plot(0:length(A.BinThresh)−1,abs(A.Fiber.RelativeAngle),'ro');
set(gca,'XTick',[0 2 4 6 8 10]);

ytick array = get(gca,'YTick');

% set(gca,'YTick',0:5:ceil(ytick array(length(ytick array))/5)*5);

axis 'auto y';

grid on;

xlabel('Flow Velocity (m/s)');

ylabel('Relative Fiber Angle (deg)');

for i=2:length(A.Output)

saveAsFileName = ...

sprintf('%s\\Analysis Results\\%s %s Rel Fiber Angles',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2});
saveas(gcf,saveAsFileName,A.Output{i});

if strcmp(A.Output{i},'jpg') | | strcmp(A.Output{i},'fig')
saveAsFileName = sprintf('%s.%s',saveAsFileName,A.Output{i});
zipFileList{length(zipFileList)+1} = saveAsFileName;

end

end

end

%% %%

% Output Information to a File

%%%

% Create Output Filenames

outFilename Fiber = sprintf('%s\\Analysis Results\\%s %s %sAOA %s',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(...

A.FlowCase{3},'−','n'),'+','p'),...
'Static Fiber Image Properties.txt');

outFilename FiberHdr = ...

sprintf('%s\\Analysis Results\\%s %s %sAOA %s',...

94

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(...

A.FlowCase{3},'−','n'),'+','p'),...
'Static Fiber Image Properties Header.txt');

outFilename Defl = sprintf('%s\\Analysis Results\\%s %s %sAOA %s',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(...

A.FlowCase{3},'−','n'),'+','p'),...
'Static Fiber Deflections.txt');

outFilename DeflHdr = ...

sprintf('%s\\Analysis Results\\%s %s %sAOA %s',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(...

A.FlowCase{3},'−','n'),'+','p'),...
'Static Fiber Deflections Header.txt');

% Add output files to zip file list

zipFileList{length(zipFileList)+1} = outFilename Fiber;

zipFileList{length(zipFileList)+1} = outFilename FiberHdr;

zipFileList{length(zipFileList)+1} = outFilename Defl;

zipFileList{length(zipFileList)+1} = outFilename DeflHdr;

out Fiber = fopen(outFilename Fiber,'w');

out FiberHdr = fopen(outFilename FiberHdr,'w');

out Defl = fopen(outFilename Defl,'w');

out DeflHdr = fopen(outFilename DeflHdr,'w');

for i=1:length(A.BinThresh)

FlowCaseImageDirectory = sprintf('%s\\%s %s Static %1.0imps',...

A.ImageDirectory,...

A.FlowCase{1},A.FlowCase{2},i−1);

if i==1 %#ok<*ALIGN>

FlowCaseImageDirectory = ...

sprintf('%s\\%s %s Static NoFlow',A.ImageDirectory,...

A.FlowCase{1},...
A.FlowCase{2});

end

% Find the number of images in current flow case

NumFlowCaseImages = length(dir(sprintf('%s\\%s*.%s',...
FlowCaseImageDirectory,...

A.Input{1},A.Input{2})));

for j=1:NumFlowCaseImages

% Output the fiber information to out Fiber

if (i−1) == 0, fprintf(out Fiber,'0\t');
else fprintf(out Fiber,'%i\t',i−1);
end

fprintf(out Fiber,'%i\t',j);
fprintf(out Fiber,'%i\t',A.Fiber.Rejection(i,j));
if A.Fiber.Rejection(i,j)

95

fprintf('\t\t\t\t\t\t\t\t\t');
else

fprintf(out Fiber,'%i\t',A.Fiber.Area(i,j));
fprintf(out Fiber,'%f\t',A.Fiber.BoundingBox(i,j,1));
fprintf(out Fiber,'%f\t',A.Fiber.BoundingBox(i,j,2));
fprintf(out Fiber,'%f\t',A.Fiber.BoundingBox(i,j,3));
fprintf(out Fiber,'%f\t',A.Fiber.BoundingBox(i,j,4));
fprintf(out Fiber,'%f\t',A.Fiber.Orientation(i,j));
fprintf(out Fiber,'%f\t',A.CCR.Shift(i,j,1));
fprintf(out Fiber,'%f\t',A.CCR.Shift(i,j,2));

end

fprintf(out Fiber,'\n');
end

% Output the deflection information to out Defl

fprintf(out Defl,'%2.0i\t',i−1);
fprintf(out Defl,'%8.4f\t',A.Fiber.Deflection(i,1));
fprintf(out Defl,'%8.4f\t',A.Fiber.Deflection(i,2));
fprintf(out Defl,'%8.4f\t',A.Fiber.Deflection(i,3));
fprintf(out Defl,'%6.3f\t',A.Fiber.RelativeAngle(i));
fprintf(out Defl,'%8.4f\t',A.Fiber.Udeflection(i,1));
fprintf(out Defl,'%8.4f\t',A.Fiber.Udeflection(i,2));
fprintf(out Defl,'%8.4f\t',A.Fiber.Udeflection(i,3));
fprintf(out Defl,'%8.4f\t',A.Fiber.Urelativeangle(i));
fprintf(out Defl,'%8.4f\t',A.Fiber.HOverDelta(i));
fprintf(out Defl,'\n');

end

% Output the header information to out FiberHdr

fprintf(out FiberHdr,'Flow Velocity (m/s)\n');
fprintf(out FiberHdr,'Fiber Image\n');
fprintf(out FiberHdr,'Rejection Bool\n');
fprintf(out FiberHdr,'Fiber Area (pixels)\n');
fprintf(out FiberHdr,'Fiber Bounding Box − XS (pixel location)');

fprintf(out FiberHdr,'Fiber Bounding Box − XF (pixel location)');

fprintf(out FiberHdr,'Fiber Bounding Box − YS (pixel location)');

fprintf(out FiberHdr,'Fiber Bounding Box − YF (pixel location)');

fprintf(out FiberHdr,'Fiber Orientation (deg)\n');
fprintf(out FiberHdr,'Cross−Correlation X−Shift (pixels)\n');
fprintf(out FiberHdr,'Cross−Correlation Y−Shift (pixels)\n');

% Output the header information to out DeflHdr

fprintf(out DeflHdr,'Flow Velocity (m/s)');

fprintf(out DeflHdr,'Longitudinal Fiber Deflection (micrometers)\n');
fprintf(out DeflHdr,'Transverse Fiber Deflection (micrometers)\n');
fprintf(out DeflHdr,'Total Fiber Deflection (micrometers)\n');
fprintf(out DeflHdr,'Relative Fiber Angle (degrees)\n');
fprintf(out DeflHdr,'Lontitudinal Fiber Deflection Uncertainty %s\n',...

'(micrometers)');

fprintf(out DeflHdr,'Transverse Fiber Deflection Uncertainty %s\n',...
'(micrometers)');

fprintf(out DeflHdr,'Total Fiber Deflection Uncertainty ...

(micrometers)\n');
fprintf(out DeflHdr,'Relative Fiber Angle Uncertainty (degrees)\n');

96

fprintf(out DeflHdr,'H/delta\n');

% Close the output files

fclose(out Fiber);

fclose(out FiberHdr);

fclose(out Defl);

fclose(out DeflHdr);

% Create Zip file with required information in the base image directory

zipFileName = sprintf('%s\\%s %s %sAOA Analysis Results.zip',...

A.ImageDirectory,A.FlowCase{1},A.FlowCase{2},...
regexprep(regexprep(regexprep(...

A.FlowCase{3},'.',' '),'−','n'),'+','p'));
zip(zipFileName,zipFileList);

fprintf('\nProgram Complete.\nTotal Runtime: %6.4f seconds\n\n',...
etime(clock,start));

end

%%%

end % of function: steadyAnalysis

%% Function Name: calc FS Profile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Author: Lance Case

% Date Created: 02.06.2012

% Last Modified: 02.07.2012

%

% Purpose: This function obtains the similarity solution ...

for flow

% over a flat plate, or the "Blassius" solution, by

% solving the Falkner−Skan ODE using order−reduction
% techniques to obtain a vector of first−order ODEs,

% which are then input together into MATLABs ode45()

% function. Cubic spline interpolation is then ...

performed

% on the output from ode45() to obtain results ...

conforming

% to the required solution vector length specified ...

by the

% user in the input variable 'usteps'.

%

% The Falkner−Skan ODE:

% f''' + f f''((M+1)/2) − M(1−[f']ˆ2) = 0

%

% Inputs: Beta − The full wedge angle, in degrees.

% etamax − The maximum size for the similarity

% variable, eta.

% etasteps − The number of steps in eta to use in ...

ode45()

% uspan − The vector of dimensionless velocity ...

values,

% u, at which the user desires to calculate

% the corresponding eta

%

% Outputs: z − A matrix of four columns:

97

% z(:,1) − The dimensionless velocity, u.

% z(:,2) − The first derivative of f, w.r.t. eta.

% z(:,3) − The similaritiy variable, eta.

% z(:,4) − The third derivative of f, w.r.t. eta.

%

% Ignore MATLAB Errors:

%#ok<*INUSD,*STOUT,*INUSL>

%

%%%

%%

function z = calc FS Profile(Beta,etamax,etasteps,uspan)

% Variable Initialization

global M;

Beta = Beta*pi/180; % Convert Full Wedge Angle to ...

Radians

M = Beta/(2*pi−Beta); % Compute the value M

f initial = [0;0;0.3595]; % Initialize the vector f

etaspan = linspace(0,etamax,etasteps); % Create the eta vector

% uspan = linspace(0,1,usteps); % Create the u vector

FS Profile = ode45(@calc fprime,etaspan,f initial);

z(:,1) = uspan; % Dimensionless velocity vector

z(:,2) = interp1(FS Profile.y(1,:),FS Profile.x,uspan','spline');

z(:,3) = interp1(FS Profile.y(2,:),FS Profile.x,uspan','spline');

z(:,4) = interp1(FS Profile.y(3,:),FS Profile.x,uspan','spline');

end % of function: calc FS Profile

%% Function Name: calc fprime %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Author: Lance Case

% Date Created: 02.06.2012

% Last Modified: 02.06.2012

%

% Purpose: This function computes a vector of increasingly

% higher−order derivatives of the vector, f, ...

described in

% the Falkner−Skan ODE.

%

% Inputs: n − The similarity variable, eta.

% f − The similarity vector, f, described in

% the Falkner−Skan ODE.

%

% The Falkner−Skan ODE:

% f''' + f f''((M+1)/2) − M(1−[f']ˆ2) = 0

%

% Outputs: fprime − A vector of three rows:

% fprime(1) − The first derivative of f, w.r.t. eta.

% fprime(2) − The second derivative of f, w.r.t. eta.

% fprime(3) − The third derivative of f, w.r.t. eta.

%

%%%

%%

98

function fprime = calc fprime(n,f)

% Variable Initialization

global M;

fprime = zeros(3,1);

fprime(1) = f(2);

fprime(2) = f(3);

fprime(3) = −f(3)*f(1)*((M+1)/2)−M*(1−f(2)ˆ2);
end % of function: calc fprime

99

APPENDIX B

Unsteady Fiber Analysis MATLAB® Code

100

%% Filename: transientAnalysis.m

% Author: Lance Case

% Date Last Modified: 03.14.2012

%

% Purpose: This file serves as the main executable for the MATLAB

% transient fiber image analysis program.

%

% Inputs: varargin − Traditionally−optional MATLAB function

% arguments

%

% varargin{1} − The text file containing all of the

% function variables to be used

% during analysis. If not included,

% the function will instruct the UI

% to prompt the user for the variable

% file.

%

% Variables included in this text file:

% PlateName − Name of the test plate used

% ElementName − Name of the test element

% under observation

% FlowAtkAng − Angle of Attack of test plate

% BaseFileName − Base image file name

% CameraFPS − Camera recording framerate

% for image set

% PlaybackFPS − Created movie playback

% framerate

% CamBitDepth − Camera bit resolution used

% NumNoFlowImgs − Number of 'NoFlow' control

% images in the image set

% NumCLAHExTiles − Number of tiles to use in the

% x−dimension during CLAHE

% NumCLAHEyTiles − Number of tiles to use in the

% y−dimension during CLAHE

% NumFirstGoodImg − Number of the first valid

% image in the image set

% NumLastGoodImg − Number of the last valid

% image in the image set

% BinarizeThresh − Threshhold integer used

% during image binarization

% BoundBoxXS − X−coordinate for left side

% of fiber tip interrogation

% region boundary box

% BoundBoxXF − X−coordinate for right side

% of fiber tip interrogation

% region boundary box

% BoundBoxYS − Y−coordinate for top side

% of fiber tip interrogation

% region boundary box

% BoundBoxYF − Y−coordinate for bottom side

% of fiber tip interrogation

% region boundary box

% changeBoundsXS − Boundary Box changer−integer.
% changeBoundsXF − Specify both frame number and

101

% changeBoundsYS − pixel number, tab delimited.

% changeBoundsYF − Same XS−YF format as above.

% BSLocX − X−coordinate for bright spot

% interrogation region boundary

% box

% BSLocY − Y−coordinate for bright spot

% interrogation region boundary

% box

% BSLocSz − Pixel size of bright spot

% interrogation region boundary

% box

% OvrDispBBoxLoc − Boolean in Overlay figure

% controlling display of

% fiber tip boundary box

% OvrDispBSLoc − Boolean in Overlay figure

% controlling display of

% bright spot boundary box

% OvrDispFooter − Boolean in Overlay figure

% controlling display of

% footer info

% OvrDispDeflInfo − Boolean in Overlay figure

% controlling display of

% fiber tip deflection info

% OvrDispFiberTip − Boolean in Overlay figure

% controlling display of

% fiber tip location marker

% RunCLAHE − Boolean controlling the CLAHE

% meanIntens − Mean intensity value in image

% set, determined from previous

% function run on same image

% set

% (OPTIONAL)

% CCRClipMax − Bright spot maximum value for

% use during Cross−Correlation
% CCRClipMin − Bright spot minimum value for

% use during Cross−Correlation
% Filtering − String determining type of

% image filtering used during

% filtering step.

% (OPTIONAL, MULTIPLE ALLOWED)

% DispImgRaw − Boolean controlling display

% of raw image figure

% DispImgAHE − Boolean controlling display

% of CLAHE figure

% DispImgBin − Boolean controlling display

% of binarization figure

% DispImgFil − Boolean controlling display

% of filtered image figure

% DispImgInv − Boolean controlling display

% of inverted image figure

% DispImgRP − Boolean controlling display

% of region props figure

% DispImgOvr − Boolean controlling display

% of overlay figure

102

% DispImgCCR − Boolean controlling display

% of cross−correlation figure

% DispImgDef − Boolean controlling display

% of fiber tip deflection graph

% DispImgAng − Boolean controlling display

% of fiber relative angle graph

% DispImgLac − Boolean controlling display

% of 'fiber video / deflection

% graph / cross−correlation'
% interlaced figure

% CreatMovRaw − Boolean controlling creation

% of raw movie file

% CreatMovAHE − Boolean controlling creation

% of CLAHE movie file

% CreatMovBin − Boolean controlling creation

% of binarization movie file

% CreatMovFil − Boolean controlling creation

% of filtering movie file

% CreatMovInv − Boolean controlling creation

% of inverted image movie file

% CreatMovRP − Boolean controlling creation

% of region props movie file

% CreatMovOvr − Boolean controlling creation

% of Overlay movie file

% CreatMovCCR − Boolean controlling creation

% of cross−correlation movie

% CreatMovDef − Boolean controlling creation

% of fiber tip deflection graph

% movie file

% CreatMovAng − Boolean controlling creation

% of relative fiber angle graph

% movie file

% CreatMovLac − Boolean controlling creation

% of raw movie file

% MovSkipFrm − Frame count to skip during

% playback, to reduce file size

%

% Variables in this text file should be formatted

% as follows ('<tab>' denotes tab character):

%

% #BOF

% VariableNameOne<tab>VariableValueOne

% VariableNameTwo<tab>VariableValueTwo

% ==

% Comments can be included on separate lines

% ==

% VariableNameThree<tab>VariableValueThree

% ...

% #EOF

%

% Outputs: The variable B, a structure containing all of

% the pertinent information about the current

% image analysis

%

103

% Ignore MATLAB Errors:

%#ok<*SAGROW,*NASGU,*TNMLP,*FNDSB,*ISMT,*ST2NM,*ASGLU>

%

%%%

%% %%

function B = transientAnalysis(varargin)

%% %%

% MATLAB Program Initialization

%%%

% Clear everything from memory

format compact;

% clear all; clc;

% Remove excess grey borders from MATLAB figures

iptsetpref('ImshowBorder','tight');

% Supress MATLAB Warnings:

% warning off Images:imshow:magnificationMustBeFitForDockedFigure;

warning off all;

% Open up a pool of parallel labs for efficiency

% if ˜matlabpool('size'), matlabpool(3); end

%% %%

% Initialize variables

%%%

% Display variable initialization to command window

clc; fprintf('Initializing variables...\n');

% Directory Information

% (Where the matlab image analysis m−file is stored)

B.MATLABdir = pwd;

% Pixel Width

% PW = (2/32)/(973−256)*25400; % um per pixel (Scienscope)

PW = 13.344; % um per pixel (Phantom)

% Initialize Variables

B.Filtering = {};

% Accept variables file as an optional input

if length(varargin)>0

varFile = varargin{1};
else

varFile = '';

end

% Variables file containing image reduction information

if isempty(varFile)

[A.varFile,dummy,nextdummy] = uigetfile({'*.txt','*.dat'});
B.varFile = sprintf('%s\\%s',dummy,A.varFile);

104

clear dummy; clear nexdummy;

else

B.varFile = varFile;

end

% Handle 'Variable File Does Not Exist' Exception

if ˜exist(B.varFile,'file'), error('No such file exists.'); end;

% Start the timer

start = clock;

% Open the variables input file to get directory information

variablesFile = fopen(B.varFile,'r');

while ˜feof(variablesFile)

newVar = fgets(variablesFile);

a = textscan(newVar,'%s%s','delimiter','\t');
b=a{1}; c=a{2}; d = c{1};

% Set Variables Related to Image File Input

if strcmp(b,'BaseImgDir')

B.ImageDirectory = d;

e = textscan(B.ImageDirectory,'%s','Delimiter','\\');
f = e{length(e)}; B.InputFilename{1} = f{length(f)};
clear e; clear f;

end

if strcmp(b,'BaseFileType'), B.InputFilename{2} = d; end;

end; fclose(variablesFile);

% Get total number of images in the set

B.NumCurImg = 0;

B.N = length(dir(sprintf('%s*.%s',...
B.ImageDirectory,B.InputFilename{2})));

% Initialize boundary box change matrix

B.changeBounds = zeros(4,B.N);

% Initialize Mean Intensity for current flow case

B.meanIntens = [];

% Open the variables input file to get most of the other variables

variablesFile = fopen(B.varFile,'r');

while ˜feof(variablesFile)

newVar = fgets(variablesFile);

a = textscan(newVar,'%s%s','delimiter','\t');
b=a{1}; c=a{2}; d = c{1};

% Set Variables Related to Flow Case

if strcmp(b,'PlateName'), B.FlowCase{1} = d; end;

if strcmp(b,'ElementName'), B.FlowCase{2} = d; end;

if strcmp(b,'FlowAtkAng'), B.FlowCase{3} = d; end; % AoA

if strcmp(b,'BaseFileName'), B.FlowCase{4} = d; end; % Veloc

% Set Variables Related to Video Capture Information

if strcmp(b,'CameraFPS'), B.Video(1) = str2num(d); end;

105

if strcmp(b,'PlaybackFPS'), B.Video(2) = str2num(d); end;

if strcmp(b,'CamBitDepth'), B.Video(3) = str2num(d); end;

% Set Important Integer Variables

if strcmp(b,'NumNoFlowImgs'), B.NumNoFlowImgs = ...

str2num(d); end;

if strcmp(b,'NumCLAHExTiles'), B.NumCLAHETiles(1) = ...

str2num(d); end;

if strcmp(b,'NumCLAHEyTiles'), B.NumCLAHETiles(2) = ...

str2num(d); end;

if strcmp(b,'NumFirstGoodImg'), B.NumFirstGoodImg = ...

str2num(d); end;

if strcmp(b,'NumLastGoodImg'), B.NumLastGoodImg = ...

str2num(d); end;

if strcmp(b,'BinarizeThresh'), B.BinarizeThresh = ...

str2num(d); end;

% Set Variables Related to Interrogation Region Locations

if strcmp(b,'BoundBoxXS'), B.BoundBox(1) = str2num(d); end;

if strcmp(b,'BoundBoxXF'), B.BoundBox(2) = str2num(d); end;

if strcmp(b,'BoundBoxYS'), B.BoundBox(3) = str2num(d); end;

if strcmp(b,'BoundBoxYF'), B.BoundBox(4) = str2num(d); end;

if strcmp(b,'BSLocX'), B.BSLoc(1) = str2num(d); end;

if strcmp(b,'BSLocY'), B.BSLoc(2) = str2num(d); end;

if strcmp(b,'BSLocSz'), B.BSLoc(3) = str2num(d); end;

% Set Overlay Display Options

if strcmp(b,'OvrDispBBoxLoc'), B.Overlay(1) = str2num(d); end;

if strcmp(b,'OvrDispBSLoc'), B.Overlay(2) = str2num(d); end;

if strcmp(b,'OvrDispFooter'), B.Overlay(3) = str2num(d); end;

if strcmp(b,'OvrDispDeflInfo'), B.Overlay(4) = str2num(d); end;

if strcmp(b,'OvrDispFiberTip'), B.Overlay(5) = str2num(d); end;

% Set Miscellaneous Variables

if strcmp(b,'RunCLAHE'), B.RunCLAHE = str2num(d); end;

if strcmp(b,'meanIntens'), B.meanIntens = ...

double(str2num(d)); end;

% Set Cross−Correlation Clipping Values

if strcmp(b,'CCRClipMax'), B.CCRclip(1) = str2num(d); end;

if strcmp(b,'CCRClipMin'), B.CCRclip(2) = str2num(d); end;

% Set Filtering Variables

if strcmp(b,'Filtering'), B.Filtering{length(B.Filtering)+1} = ...

d; end;

% Set Variables About Figure Display and Movie Creation

if strcmp(b,'DispImgRaw'), B.DisplayImage(1) = str2num(d); end;

if strcmp(b,'DispImgAHE'), B.DisplayImage(2) = str2num(d); end;

if strcmp(b,'DispImgBin'), B.DisplayImage(3) = str2num(d); end;

if strcmp(b,'DispImgFil'), B.DisplayImage(4) = str2num(d); end;

if strcmp(b,'DispImgInv'), B.DisplayImage(5) = str2num(d); end;

if strcmp(b,'DispImgRP'), B.DisplayImage(6) = str2num(d); end;

if strcmp(b,'DispImgOvr'), B.DisplayImage(7) = str2num(d); end;

106

if strcmp(b,'DispImgCCR'), B.DisplayImage(8) = str2num(d); end;

if strcmp(b,'DispImgDef'), B.DisplayImage(9) = str2num(d); end;

if strcmp(b,'DispImgAng'), B.DisplayImage(10) = str2num(d); end;

if strcmp(b,'DispImgLac'), B.DisplayImage(11) = str2num(d); end;

if strcmp(b,'CreatMovRaw'), B.CreateMovie(1) = str2num(d); end;

if strcmp(b,'CreatMovAHE'), B.CreateMovie(2) = str2num(d); end;

if strcmp(b,'CreatMovBin'), B.CreateMovie(3) = str2num(d); end;

if strcmp(b,'CreatMovFil'), B.CreateMovie(4) = str2num(d); end;

if strcmp(b,'CreatMovInv'), B.CreateMovie(5) = str2num(d); end;

if strcmp(b,'CreatMovRP'), B.CreateMovie(6) = str2num(d); end;

if strcmp(b,'CreatMovOvr'), B.CreateMovie(7) = str2num(d); end;

if strcmp(b,'CreatMovCCR'), B.CreateMovie(8) = str2num(d); end;

if strcmp(b,'CreatMovDef'), B.CreateMovie(9) = str2num(d); end;

if strcmp(b,'CreatMovAng'), B.CreateMovie(10) = str2num(d); end;

if strcmp(b,'CreatMovLac'), B.CreateMovie(11) = str2num(d); end;

if strcmp(b,'MovSkipFrm'), B.MovieFrameSkip = str2num(d); end;

% Set Variables Related to changing the boundary box during analysis

if length(c) > 1

e = b{2};
if strcmp(b{1},'changeBoundsXS')

B.changeBounds(1,str2num(d)) = str2num(e);

elseif strcmp(b{1},'changeBoundsXF')
B.changeBounds(2,str2num(d)) = str2num(e);

elseif strcmp(b{1},'changeBoundsYS')
B.changeBounds(3,str2num(d)) = str2num(e);

elseif strcmp(b{1},'changeBoundsYF')
B.changeBounds(4,str2num(d)) = str2num(e);

end

end

end; fclose(variablesFile);

% Preserve these original boundary values

B.origBounds = B.BoundBox;

% Initialize Figure and Movie Stuff

%%%

% Set the figure names

B.FigName{1} = 'Raw';

B.FigName{2} = 'CLAHE';

B.FigName{3} = 'Binarized';

B.FigName{4} = 'Filtered';

B.FigName{5} = 'Inverted';

B.FigName{6} = 'Region Props';

B.FigName{7} = 'Overlay';

B.FigName{8} = 'Cross−Correlation';
B.FigName{9} = 'Fiber Deflection';

B.FigName{10} = 'Fiber Orientation';

B.FigName{11} = 'Fiber−Graph−Interlaced';

fighandle = zeros(1,length(B.DisplayImage)); % Figure handle array

imgsz = zeros(length(B.DisplayImage),2); % Image size matrix

107

buf = [10 0]; % px ct of buffer between figures [horz vert]

bot = 70; % pixel location from bottom of screen

lft = 3; % pixel location from left of screen

if B.NumLastGoodImg, B.EndImg = B.NumLastGoodImg;

else B.EndImg = B.N;

end

% Initialize all necessary figures

for i=1:length(B.DisplayImage)

% Close each figure

close(figure(i));

if B.DisplayImage(i) | | B.CreateMovie(i)

% Create raw figure

fighandle(i) = figure(i);

set(gcf,'WindowStyle','Normal');

set(gcf,'Toolbar','None');

set(gcf,'DockControls','off');

set(gcf,'MenuBar','None');

set(gcf,'Resize','off');

set(gcf,'NumberTitle','off');

if i ˜= 11, set(gcf,'Color',[1 1 1]); end;

end

end

% Find an open figure

openFig = find(fighandle>0);

if ˜isempty(openFig), openFig = openFig(1); end;

% Initialize movie files

if B.CreateMovie(1)

mov raw = avifile(sprintf('%s\\%s %s.avi',...

B.ImageDirectory,B.InputFilename{1},...
B.FigName{1}),...
'fps',B.Video(2),'compression','None');

end

% Still haven't added all of the movie file initializations for

% less−common movie types (filtering, binarization, CLAHE, etc.)

% but they go here

if B.CreateMovie(7)

mov overlay = avifile(sprintf('%s\\%s %s.avi',...

B.ImageDirectory,B.InputFilename{1},B.FigName{7}),...
'fps',B.Video(2),'compression','None');

end

% Initialize the elapsed time

timeElapsed = −1/B.Video(1);

testCase = [B.FlowCase{1} ' ' B.FlowCase{2} ' ' B.FlowCase{3},...
'ˆ\circ ' B.InputFilename{1}];

108

%% %%

% Build the cross−correlation reference image

%%%

CCRrefImg = double(zeros(B.BSLoc(3)+1,B.BSLoc(3)+1));

TIPrefImg = double(zeros(length(B.BoundBox(3):B.BoundBox(4)),...

length(B.BoundBox(1):B.BoundBox(2))));

% Loop over all images to be used in creating the CCR average image

for i=B.NumFirstGoodImg:(B.NumFirstGoodImg + B.NumNoFlowImgs)

B.NumCurImg = i;

B.Filename = sprintf('%s\\%s %04i.%s',...

B.ImageDirectory, B.InputFilename{1},...
B.NumCurImg, B.InputFilename{2});

clc;

fprintf(...

'Reading cross−correlation image number: %04i/%04i\n',...
B.NumCurImg,B.NumNoFlowImgs+B.NumFirstGoodImg);

fprintf('Runtime: % 8.3f s\n',etime(clock,start));

% Read in the current image based on the current image filename

refImgRaw = imread(B.Filename);

% Sum the images together

if size(refImgRaw,3) > 1 % If theres a 3rd dim'n to the image

% matrix, it is RGB and not greyscale

CCRrefImg = CCRrefImg + double(rgb2gray(refImgRaw(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)−floor(B.BSLoc(3)/2):...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

:)));

TIPrefImg = TIPrefImg + double(rgb2gray(refImgRaw(...

B.BoundBox(3):B.BoundBox(4),...

B.BoundBox(1):B.BoundBox(2),:)));

else

CCRrefImg = CCRrefImg + double(refImgRaw(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)−floor(B.BSLoc(3)/2):...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

:));

TIPrefImg = TIPrefImg + double(refImgRaw(...

B.BoundBox(3):B.BoundBox(4),...

B.BoundBox(1):B.BoundBox(2),:));

end

end

% Create the cross−correlation reference image

109

B.CCRrefImg = uint8(floor(CCRrefImg/B.NumNoFlowImgs));

B.TIPrefImg = uint8(floor(TIPrefImg/B.NumNoFlowImgs));

clear refImgRaw CCRrefImg TIPrefImg;

% Get mean and max values of the cross−correlation reference image

meanRefImg = mean(mean(B.CCRrefImg));

maxRefImg = max(max(B.CCRrefImg));

% Initialize the matrix that will contain the clipped reference img

refImgSBC = double(zeros(size(B.CCRrefImg)));

% Loop over the image

for i=1:size(B.CCRrefImg,1)

for j=1:size(B.CCRrefImg,2)

% Create normalized image

refImgSBC(i,j) = (B.CCRrefImg(i,j)−meanRefImg)/...
(maxRefImg−meanRefImg);

% Clip normalized image

if refImgSBC(i,j) > B.CCRclip(1)

refImgSBC(i,j) = B.CCRclip(1);

end

if refImgSBC(i,j) < B.CCRclip(2)

refImgSBC(i,j) = B.CCRclip(2);

end

end

end

B.refImgSBC = refImgSBC;

%% %%

% Do entire fiber analysis outlined below for composite TIPrefImg

%%%

% Get the raw image

image = B.TIPrefImg;

% Perform a CLAHE on the image

if B.RunCLAHE

image = adapthisteq(image,'Distribution','rayleigh',...

'Range','full',...

'NBins',256,'NumTiles',B.NumCLAHETiles);

end

% Binarize the image using the threshhold specified

image = im2bw(image,B.BinarizeThresh/255);

% Use filters to remove random particles

for j=1:length(B.Filtering)

image = bwmorph(image,B.Filtering{j});
end

110

% Invert image to use with regionprops

image = 1 − image;

% Get connected component information

CC = bwconncomp(image,8);

% Use Regionprops on the connected component structure

RP = regionprops(CC,'Area','BoundingBox','Image','Orientation');

% Index fiber area information to search for max

fiber area = zeros(length(RP),1); % Initialization

for j=1:length(RP), fiber area(j) = RP(j).Area; end % Indexing

% Pull off largest fiber (the actual carbon fiber, using max area)

[fiber maxarea,fiber index] = max(fiber area);

fiber boundbox = floor(RP(fiber index).BoundingBox);

fiber orientation = RP(fiber index).Orientation;

%%%

% Here is the modification:

% The pixels lying along the BoundBox line (both dimensions) are

% counted twice − once in fiber boundbox and once in B.BoundBox −
% so subtracting 1 off of this sum should correct the bias.

% MOD: 09.52.01.20.2012

%%%

% Consider the tip as the *top*−left point from Regionprops

initial x tipLocation = fiber boundbox(1) + B.BoundBox(1) − 1;

initial y tipLocation = fiber boundbox(2) + B.BoundBox(3) − 1;

% If the fiber angle is >0 (bot−left to top−right orientation)

if fiber orientation > 0

% Consider the tip as the *bottom*−left point from Regionprops

% by adding on the Regionprops height of the fiber to

% y topLocation

initial y tipLocation = ...

initial y tipLocation + fiber boundbox(4);

end

clear fiber area fiber boundbox fiber orientation;

% Initialize fiber property vectors and matrices

% for the main program loop

fiber area = zeros(B.N,1);

fiber centroid = zeros(B.N,2);

fiber boundbox = zeros(B.N,4);

fiber majaxlen = zeros(B.N,1);

fiber minaxlen = zeros(B.N,1);

fiber orientation = zeros(B.N,1);

x tipLocation = zeros(B.N,1);

y tipLocation = zeros(B.N,1);

dx = zeros(B.N,1);

dy = zeros(B.N,1);

dtot = zeros(B.N,1);

111

%% %%

% Find the mean intensity over the entire image set

%%%

if isempty(B.meanIntens)

meanImgIntens = zeros(B.N,1);

for i=B.NumFirstGoodImg:B.EndImg

B.NumCurImg = i;

B.Filename = sprintf('%s\\%s %04i.%s',...

B.ImageDirectory, B.InputFilename{1},...
B.NumCurImg, B.InputFilename{2});

image = imread(B.Filename);

if size(image,3)>1, hsvImage = rgb2hsv(image);

else hsvImage = ...

rgb2hsv(repmat(image,[1 1 3]));

end

meanImgIntens(i) = mean(mean(hsvImage(:,:,3)));

clc;

fprintf(...

'Calculating mean intensity in image %04i/%04i\n',...
i,B.N);

fprintf('Runtime: % 8.3f s\n',etime(clock,start));

end

% Calculate the mean of the nonzero 'meanImgIntens' terms

B.meanIntens = mean(meanImgIntens(find(meanImgIntens)));

end

%% Set the proper boundary box

fprintf('\nNow setting the proper boundary box conditions...\n');

for i=1:B.NumFirstGoodImg

for j=1:4

if B.changeBounds(j,i),B.BoundBox(j)=B.changeBounds(j,i);end;

end

end

%% %%

% Loop over each image in the directory

%%%

for i=B.NumFirstGoodImg:B.EndImg

%% %%

% Update information for the current loop iteration

%%%

B.NumCurImg = i;

B.Filename = sprintf('%s\\%s %04i.%s',...

112

B.ImageDirectory, B.InputFilename{1},...
B.NumCurImg, B.InputFilename{2});

% Change boundary box

for j=1:4

if B.changeBounds(j,i)

B.BoundBox(j)=B.changeBounds(j,i);

end

end

%% %%

% Read in new iteration's image for analysis

%%%

% Read image

image = imread(B.Filename);

% Convert image to HSI

if size(image,3) > 1, hsvImage = rgb2hsv(image);

else hsvImage = rgb2hsv(repmat(image,[1 1 3]));

end

% Perform a brighness equalization (brighter)

while mean(mean(hsvImage(:,:,3))) < B.meanIntens

hsvImage(:,:,3) = hsvImage(:,:,3) + 1/255;

end

% Perform a brighness equalization (dimmer)

while mean(mean(hsvImage(:,:,3))) > B.meanIntens

hsvImage(:,:,3) = hsvImage(:,:,3) − 1/255;

end

% Convert image back to grayscale

image = rgb2gray(hsv2rgb(hsvImage));

rawimg = image;

%%%

% Output Image and/or Movie

n = 1; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft bot imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));

end

113

%% %%

% Contrast−Limited Adaptive Histogram Equalization (CLAHE)

%%%

% Perform a CLAHE

if B.RunCLAHE

image = adapthisteq(image,'Distribution','rayleigh',...

'Range','full',...

'NBins',256,'NumTiles',B.NumCLAHETiles);

end

%%%

% Output Image and/or Movie

n = 2; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Image Binarization

%%%

% Binarize the image using the binarization threshhold

image = im2bw(image,B.BinarizeThresh/255);

%%%

% Output Image and/or Movie

n = 3; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Image Filtering

114

%%%

% Use filters to remove random particles

for j=1:length(B.Filtering)

image = bwmorph(image,B.Filtering{j});
end

%%%

% Output Image and/or Movie

n = 4; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Image Inversion

%%%

% Invert image to use with regionprops

image = 1 − image;

%%%

% Output Image and/or Movie

n = 5; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Get Regionprops Information for Fiber Analysis

%%%

% Pull off the region of interest from the main image

refImg = image(B.BoundBox(3):B.BoundBox(4),B.BoundBox(1):B.BoundBox(2));

115

% figure(length(B.DisplayImage)+1); imshow(refImg);

% Get connected component information

CC = bwconncomp(refImg,8);

% Use Regionprops on the connected component structure

RP = regionprops(CC,'Area','Centroid','BoundingBox','Image',...

'MajorAxisLength','MinorAxisLength',...

'Orientation');

if isempty(RP), continue; end;

% Index fiber area information to search for max

fiber area = zeros(length(RP),1); % Initialization

for j=1:length(RP), fiber area(j) = RP(j).Area; end % Indexing

% Pull off largest fiber (the actual carbon fiber, using max area)

[fiber maxarea,fiber index] = max(fiber area);

fiber area = fiber area(fiber index);

fiber centroid(i,:) = RP(fiber index).Centroid;

fiber boundbox(i,:) = floor(RP(fiber index).BoundingBox);

fiber majaxlen(i) = RP(fiber index).MajorAxisLength;

fiber minaxlen(i) = RP(fiber index).MinorAxisLength;

fiber orientation(i) = RP(fiber index).Orientation;

%% %%

% Display Regionprops Image

%%%

% Save fiber image

base image = zeros(size(refImg));

fiber image = RP(fiber index).Image;

new image = zeros(size(image));

% Place the fiber image inside of the base image

% in order to conserve original image size

for k=1:size(fiber image,1)

for j=1:size(fiber image,2)

base image(k+floor(fiber boundbox(i,2)),...

j+floor(fiber boundbox(i,1)))...

= fiber image(k,j);

end

end

% Place the fiber image inside of 'new image'

% in order to conserve original image size

for k=2:size(base image,1)

for j=2:size(base image,2)

if base image(k,j)

new image(k+B.BoundBox(3)−1,j+B.BoundBox(1)−1) ...

= base image(k,j);

end

end

116

end

image = 1−new image;

%%%

% Output Image and/or Movie

n = 6; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Overlay Region Props on Raw Image

%%%

% Sum the raw image and fiber pixel values to create the overlay

image = (rawimg) + (new image);

%%%

% Output Image and/or Movie

n = 7; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

if B.Overlay(1) | | B.Overlay(2)

imgsz(n,:) = size(image) + buf;

figure(n); imshow(image);

% If displaying the bright spot location,

% place markers on the overlay image

if B.Overlay(2)

hold on;

plot([B.BSLoc(1)−floor(B.BSLoc(3)/2),...
B.BSLoc(1)−floor(B.BSLoc(3)/2),...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)+floor(B.BSLoc(3)/2)],...

[B.BSLoc(2)−floor(B.BSLoc(3)/2),...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(2)−floor(B.BSLoc(3)/2),...
B.BSLoc(2)+floor(B.BSLoc(3)/2)],'b+');

plot(B.BSLoc(1),B.BSLoc(2),'ro');

hold off;

117

end

% If displaying the bounding box,

% place markers on the overlay image

if B.Overlay(1)

hold on;

plot([B.BoundBox(1),B.BoundBox(1),...

B.BoundBox(2),B.BoundBox(2)],...

[B.BoundBox(3),B.BoundBox(4),...

B.BoundBox(3),B.BoundBox(4)],...

'g+');

hold off;

end

if B.Overlay(3)

% Update time elapsed

timeElapsed = timeElapsed + 1/B.Video(1);

% Create footer text

textLabel = sprintf(...

' %04.0i/%04.0i %05.2fs .',...

i,B.N,timeElapsed);

% Append footer text to current image

text(3,imgsz(n,2)−9,[testCase,textLabel],'Color','white',...
'FontName','FixedWidth','BackgroundColor','black');

end

set(fighandle(n),'Position',...

[lft+sum(imgsz(1:n−1,1)) bot,...

imgsz(n,1)−buf(1) imgsz(n,2)−buf(2)],...
'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

end

%% %%

% Perform a cross−correlation on the current image

%%%

% Read in the curImg, making sure it is in grayscale

if size(rawimg,3) > 1

curImg = rgb2gray(rawimg(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)−floor(B.BSLoc(3)/2):...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

:));

else

curImg = rawimg(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)−floor(B.BSLoc(3)/2):...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

118

:);

end

% Take the mean and max values of the current image

meanCurImg = mean(mean(curImg));

maxCurImg = max(max(curImg));

% Initialize the normalized curImg variable

curImgSBC = double(zeros(size(curImg)));

% Loop over the image

for k=1:size(curImg,1)

for j=1:size(curImg,2)

% Create normalized image

curImgSBC(k,j) = (curImg(k,j)−meanCurImg)/...
(maxCurImg−meanCurImg);

% Clip normalized image

if curImgSBC(k,j) > B.CCRclip(1)

curImgSBC(k,j) = B.CCRclip(1);

end

if curImgSBC(k,j) < B.CCRclip(2)

curImgSBC(k,j) = B.CCRclip(2);

end

end

end

% Cross correlation function

CCR = xcorr2(curImgSBC,refImgSBC);

% Match the location of the maximum using MATLABs find()

[yMax,xMax] = find(CCR==max(CCR(:)),1);

% Compute x shift and y shift

% Positive x is to the right, positive y is upward.

% This means that positive x is in the ascending col direction

% in the image and also that positive y is in the descending

% row direction in the image

x shift = −(B.BSLoc(3) + 1) + ...

(xMax + (CCR(yMax,xMax−1) − CCR(yMax,xMax+1)) / ...

(2*(CCR(yMax,xMax−1) + CCR(yMax,xMax+1) − 2*CCR(yMax,xMax))));

y shift = (B.BSLoc(3)) − ...

(yMax + (CCR(yMax−1,xMax) − CCR(yMax+1,xMax)) / ...

(2*(CCR(yMax−1,xMax) + CCR(yMax+1,xMax) − 2*CCR(yMax,xMax))));

%%%

% Output Image and/or Movie

n = 8; % Figure number

119

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(CCR) + buf;

figure(n); imagesc(CCR,[0,20]);%max(CCR(:))]);

hold on;

plot(B.BSLoc(3),B.BSLoc(3),'r+'); % Put a red '+' in the center

hold off;

colorbar; % Add a colorbar

grid on;

set(fighandle(n),'Position',...

[sum(imgsz(1:n−1,1)),bot,...
max(imgsz(n,1)−buf(1),imgsz(openFig,1)),...
max(imgsz(n,2)−buf(2),imgsz(openFig,2))],...

'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
% axis equal;

end

%% %%

% Use Regionprops and CCR Information for Fiber Analysis

%%%

% Consider the tip as the top−left point from Regionprops

x tipLocation(i) = fiber boundbox(i,1) + B.BoundBox(1);

y tipLocation(i) = fiber boundbox(i,2) + B.BoundBox(3);

% If the fiber angle is > 0 (bot−left to top−right orientation)

if fiber orientation(i) > 0

% Consider the tip as the bottom−left point from Regionprops

% by adding on the Regionprops height of the fiber to

% y tipLocation

y tipLocation(i) = y tipLocation(i) + fiber boundbox(i,4);

end

% Compute the deflections

dx(i) = ((x tipLocation(i)−x shift) − initial x tipLocation)...

* PW;

dy(i) = ((y tipLocation(i)+y shift) − initial y tipLocation)...

* PW;

dtot(i) = (dx(i)ˆ2 + dy(i)ˆ2)ˆ(1/2);

%%%

% Update Overlay Image with dx and dy information

n = 7;

if B.DisplayImage(n) | | B.CreateMovie(n)

if B.Overlay(4) | | B.Overlay(5)

figure(n);

if B.Overlay(5)

hold on; plot(x tipLocation(i),y tipLocation(i),'rx');

120

hold off;

end

if B.Overlay(4)

% Append footer text to current image

text(3,imgsz(n,2)−(9+14),...
['dx: ',sprintf('%+07.2f',dx(i)),...

' \mum .'],...

'Interpreter','tex','Color','White',...

'Background','Black',...

'FontName','FixedWidth');

text(floor(imgsz(n,1)/2),imgsz(n,2)−(9+14),...
['dy: ',sprintf('%+07.2f',dy(i)),' \mum ',...

' .'],...

'Interpreter','tex','Color','White',...

'Background','Black',...

'FontName','FixedWidth');

if B.CreateMovie(n)

figurepos = get(fighandle(n),'Position');

F = getframe(fighandle(n),...

[0,2,figurepos(3)−1,figurepos(4)−1]);
mov overlay = addframe(mov overlay,F);

end

end

end

end

%%%

% Output Image and/or Movie

n = 9; % Figure number

% Display new image

if B.DisplayImage(n) | | B.CreateMovie(n)

imgsz(n,:) = size(image) + buf;

figure(n);

xaxisvector = B.NumFirstGoodImg:i;

plot(xaxisvector,dx(xaxisvector),'−',...
xaxisvector,dy(xaxisvector),'−');

grid on;

xlabel('Frame');

ylabel('Deflection [\mum]');
title('\bf Fiber Deflection [\mum]','FontSize',14);
legend('dx [\mum]','dy [\mum]');

axis([B.NumFirstGoodImg,B.N,...

min(min(dx(xaxisvector)),...

min(min(dy(xaxisvector)),−100)),...

121

max(max(dx(xaxisvector)),...

max(max(dy(xaxisvector)), 100))]);

set(fighandle(n),'Position',...

[lft bot+max(imgsz(1:n−1,2))+30 500 500],...

'Name',sprintf('%s (%04i/%04i)',...

B.FigName{n},B.NumCurImg,B.N));
end

%% %%

% Output information about the current iteration to the screen

%%%

clc;

disp(B);

fprintf('\n%s\nRuntime: % 8.3f s\n',...
B.Filename,etime(clock,start));

fprintf('x shift: %05.3f\ny shift: %05.3f\n',x shift,y shift);

fprintf('dx: %05.3f\ndy: %05.3f\n',dx(i),dy(i));

end % of the main loop over the entire image set

%%

% Get rid of the bias

B.dx = dx − mean(dx(1:B.NumNoFlowImgs));

B.dy = dy − mean(dy(1:B.NumNoFlowImgs));

%% %%

% Create Fiber / Graph Interlaced movie during Post−processing

n = 11;

if B.CreateMovie(n)

B.BoundBox = B.origBounds;

mov interlace = avifile(sprintf('%s\\%s %s %sAOA %s.avi',...

B.ImageDirectory,B.FlowCase{1},...
B.FlowCase{2},...
strrep(strrep(B.FlowCase{3},'+','p'),...

'−','n'),...
B.FlowCase{4}),...
'fps',B.Video(2)/B.MovieFrameSkip,...

'compression','None');

create interlaced figure(B,mov interlace);

mov interlace = close(mov interlace);

end

%% %%

% Wrap up and close out movie files

% Close movie files

if B.CreateMovie(1), mov raw = close(mov raw); end;

if B.CreateMovie(7), mov overlay = close(mov overlay); end;

%% %%

122

% Save the workspace to the image directory

save(sprintf('%s\\MATLAB analysis workspace',B.ImageDirectory));

end

123

APPENDIX C

Create Fiber Motion Video MATLAB® Code

124

%% Filename: create interlaced figure.m

% Author: Lance Case

% Date Created: Unknown

% Date Last Modified: 03.20.2012

%

% Purpose: This file serves to create the interlaced fiber

% deflection video and graph movie in AVI format.

%

%%%

function create interlaced figure(B,mov interlace)

%#ok<*NASGU,*ASGLU>

frameSkip = B.MovieFrameSkip;

n = length(B.FigName);

interlacedFigure = figure(n);

set(gcf,'Name','Fiber Deflection Interlaced Video');

set(gcf,'Position',[308,190,560,500]);

set(gcf,'WindowStyle','Normal');

set(gcf,'Toolbar','None');

set(gcf,'DockControls','off');

set(gcf,'MenuBar','None');

set(gcf,'Resize','off');

set(gcf,'NumberTitle','off');

newstart = clock;

light blue = [0 .5 .7];

colormap(jet(128));

mov interlace.quality = 10;

%% Set the proper boundary box

fprintf('\nNow setting the proper boundary box conditions...\n');

for i=1:B.NumFirstGoodImg

for j=1:4

if B.changeBounds(j,i),B.BoundBox(j)=B.changeBounds(j,i);end;

end

end

%% %%

% Perform entire analysis for the image set again

%%%

for i=B.NumFirstGoodImg:B.EndImg

% Change boundary box

for j=1:4,if ...

B.changeBounds(j,i),B.BoundBox(j)=B.changeBounds(j,i);end;end

if ˜mod(i,frameSkip)

%%%

B.NumCurImg = i;

125

% Set properties for the top graph

%%%

bigfig = subplot(2,2,1);

set(bigfig,'Position',[.11,.5838,.86,.3412]);

y axis min = min(min(B.dx),min(min(B.dy),−100))−50;
y axis max = max(max(B.dx),max(max(B.dy),100))+50;

plot(1:B.N,B.dx,'−','Color',light blue); hold on;

plot(1:B.N,B.dy,'g−');
plot(B.NumCurImg,y axis min:y axis max,'r−'); hold off;

axis([1,B.N,y axis min,y axis max]);

axis on; grid on;

title('\bf Fiber Deflection [\mum]','FontSize',14);

ylabel('Fiber Deflection [\mum]');

xlabel('Time [s]');

set(gca,'XTick',1:2*B.Video(1):4*floor(B.N/B.Video(1))*B.Video(1));

set(gca,'XTickLabel',0:2:floor(B.N/(B.Video(1))));

% legend('dx [\mum]','dy [\mum]','Location','SouthWest');

% Raw Image Formation

%%%

B.Filename = sprintf('%s\\%s %04i.%s',...

B.ImageDirectory, B.InputFilename{1},...
B.NumCurImg, B.InputFilename{2});

image = imread(B.Filename);

% Brightness Equalization

%%%

if size(image,3) > 1, hsvImage = rgb2hsv(image);

else hsvImage = rgb2hsv(repmat(image,[1 1 3]));

end

while mean(mean(hsvImage(:,:,3))) < B.meanIntens

hsvImage(:,:,3) = hsvImage(:,:,3) + 1/255;

end

while mean(mean(hsvImage(:,:,3))) > B.meanIntens

hsvImage(:,:,3) = hsvImage(:,:,3) − 1/255;

end

image = rgb2gray(hsv2rgb(hsvImage));

rawimg = image; % Save Raw Image

% CLAHE Image Formation

%%%

if B.RunCLAHE

image = adapthisteq(image,'Distribution','rayleigh','Range','full',...

'NBins',256,'NumTiles',B.NumCLAHETiles);

end

% Image Binarization

%%%

image = im2bw(image,B.BinarizeThresh/255);

% Image Filtering

126

%%%

for j=1:length(B.Filtering), image = bwmorph(image,B.Filtering{j}); end;

% Image Inversion

%%%

image = 1 − image;

% Region Props Calculation

%%%

refImg = image(B.BoundBox(3):B.BoundBox(4),B.BoundBox(1):B.BoundBox(2));

CC = bwconncomp(refImg,8);

RP = regionprops(CC,'Area','BoundingBox','Image','Orientation');

if isempty(RP), continue; end;

% Largest Fiber in RP

fiber area = zeros(length(RP),1);

for j=1:length(RP), fiber area(j) = RP(j).Area; end

[fiber maxarea,fiber index] = max(fiber area);

fiber boundbox = floor(RP(fiber index).BoundingBox);

% Region Props Image Formation

%%%

base image = zeros(size(refImg));

fiber image = RP(fiber index).Image;

new image = zeros(size(image));

for k=1:size(fiber image,1)

for j=1:size(fiber image,2)

base image(k+floor(fiber boundbox(2)),...

j+floor(fiber boundbox(1)))...

= fiber image(k,j);

end

end

for k=2:size(base image,1)

for j=2:size(base image,2)

if base image(k,j)

new image(k+B.BoundBox(3)−1,j+B.BoundBox(1)−1)...
= base image(k,j);

end

end

end

% Overlay Image Formation

%%%

image = (rawimg) + (new image);

% Cross−Correlation Image Formation

%%%

if size(rawimg,3) > 1

curImg = rgb2gray(rawimg(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):B.BSLoc(2)+floor(B.BSLoc(3)/2),...
B.BSLoc(1)−floor(B.BSLoc(3)/2):B.BSLoc(1)+floor(B.BSLoc(3)/2),...

127

:));

else

curImg = rawimg(...

B.BSLoc(2)−floor(B.BSLoc(3)/2):B.BSLoc(2)+floor(B.BSLoc(3)/2),...
B.BSLoc(1)−floor(B.BSLoc(3)/2):B.BSLoc(1)+floor(B.BSLoc(3)/2),...
:);

end

meanCurImg = mean(mean(curImg));

maxCurImg = max(max(curImg));

curImgSBC = double(zeros(size(curImg)));

% Create and clip normalized image

for k=1:size(curImg,1)

for j=1:size(curImg,2)

curImgSBC(k,j) = (curImg(k,j)−meanCurImg)/(maxCurImg−meanCurImg);
if curImgSBC(k,j) > B.CCRclip(1), curImgSBC(k,j) = B.CCRclip(1); ...

end;

if curImgSBC(k,j) < B.CCRclip(2), curImgSBC(k,j) = B.CCRclip(2); ...

end;

end

end

% Cross−Correlation Computation

CCR = xcorr2(curImgSBC,B.refImgSBC);

% Calculate Time Elapsed

%%%

timeElapsed = (B.NumCurImg−B.NumFirstGoodImg)/B.Video(1);

% Set properties for the bottom left graph

%%%

ccrfig = subplot(2,2,3);

imagesc(CCR,[0,20]);

bl cb handle = colorbar;

title('Cross−Correlation');
% ('Location','NorthOutside');

grid on;

%axis equal;

colormap(jet(64));

% set(gca,'XColor','White','YColor','White');

set(ccrfig,'Position',[.06,.06,.238,.425]);

freezeColors;

cbfreeze(bl cb handle);

% Set properties for the bottom right graph

%%%

overlayfig = subplot(2,2,4);

% Image

imshow(image);

colormap(gray(128));

set(overlayfig,'Position',[.512,0,.539,.49])

128

% Bright Spot Markers

hold on;

plot([B.BSLoc(1)−floor(B.BSLoc(3)/2),...
B.BSLoc(1)−floor(B.BSLoc(3)/2),...
B.BSLoc(1)+floor(B.BSLoc(3)/2),...

B.BSLoc(1)+floor(B.BSLoc(3)/2)],...

[B.BSLoc(2)−floor(B.BSLoc(3)/2),...
B.BSLoc(2)+floor(B.BSLoc(3)/2),...

B.BSLoc(2)−floor(B.BSLoc(3)/2),...
B.BSLoc(2)+floor(B.BSLoc(3)/2)],'b+');

plot(B.BSLoc(1),B.BSLoc(2),'ro');

% Bounding Box Markers

plot([B.BoundBox(1),B.BoundBox(1),B.BoundBox(2),B.BoundBox(2)],...

[B.BoundBox(3),B.BoundBox(4),B.BoundBox(3),B.BoundBox(4)],...

'g+');

hold off;

% Set Text Information

%%%

left = −70;

% Blank

text(left,153,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,168,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,185,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,130,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,113,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,78,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,50,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,25,sprintf('%−14s',' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

% Fiber Deflection Information

text(left,247,['dy: ',sprintf('%+07.2f',B.dy(B.NumCurImg)),' \mum'],...
'Color','Green','BackgroundColor','Black','FontName','FixedWidth');

text(left,226,['dx: ',sprintf('%+07.2f',B.dx(B.NumCurImg)),' \mum'],...
'Color',light blue,'BackgroundColor','Black',...

'FontName','FixedWidth');

text(left,205,sprintf('%−14s','Deflection:'),...
'Color','White','BackgroundColor','Black','FontName','FixedWidth');

% Time Elapsed Information

text(left,170,sprintf('%05.2f s%−7s',timeElapsed,' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

129

text(left,148,sprintf('%−14s','Time Elapsed:'),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

% Frame Number Information

text(left,120,sprintf('%04.0i/%04.0i%−5s',B.NumCurImg,B.N,' '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,98,sprintf('%−14s','Frame Number:'),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

% Flow Case Information

text(left,11,sprintf('%−14s','Flow Case:'),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,38,sprintf('%−14s','. '),...

'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,34,[sprintf('%−5s %−3s %−2s',...
B.FlowCase{1},B.FlowCase{2},B.FlowCase{3}),...

'ˆ\circ'],...
'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(left,61,sprintf('%−14s',B.FlowCase{4}),...
'Color','White','BackgroundColor','Black','FontName','FixedWidth');

text(70,240,'\rightarrow','Color',light blue,'FontWeight','bold');

text(66,235,'\uparrow','Color','Green','FontWeight','bold');

figure(n);

if B.CreateMovie(n)

figurepos = get(gcf,'Position');

F = getframe(gcf,[0,2,figurepos(3)−1,figurepos(4)−1]);
mov interlace = addframe(mov interlace,F);

end

clc;

fprintf('Now performing Interlaced Image Movie Generation\n');
disp(B);

fprintf('Program Runtime: %06.2f s',etime(clock,newstart));

end

end

fprintf('\n\n');
end

130

APPENDIX D

Fiber Deflection Prediction MathCAD Code

131

132

133

134

135

136

137

138

BIBLIOGRAPHY

[1] A F Huber, Air University (U.S.). Center for Strategy, and Technology. Death
by a Thousand Cuts: Micro-air Vehicles in the Service of Air Force Missions.
Occasional paper. Center for Strategy and Technology, Air War College, 2002.

[2] Peter Van Blyenburgh. UAVs - Where Do We Stand? Military Technology,
pages 29–30, March 1999.

[3] W. R. Jr. Davis, B. B. Kosicki, D. M. Boroson, and D. F. Kostishack. Micro Air
Vehicles for Optical Surveillance. THE LINCOLN LABORATORY JOURNAL,
9:197–214, 1996.

[4] J.M. McMichael and M.S. Francis. Micro Air Vehicles - Toward a New Dimension
in Flight, 1997.

[5] Wei Shyy, Mats Berg, and Daniel Ljungqvist. Flapping and flexible wings for
biological and micro air vehicles. Progress in Aerospace Sciences, 35(5):455–505,
1999. DOI: 10.1016/S0376-0421(98)00016-5

[6] GV Crowley and LS Hall. Histological Observations on the Wing of the Grey-
Headed Flying-Fox (Pteropus-Poliocephalus) (Chiroptera, Pteropodidae). Aus-
tralian Journal of Zoology, 42(2):215, 1994. DOI: 10.1071/ZO9940215

[7] Ch. Brücker, J. Spatz, and W. Schröder. Feasability study of wall shear stress
imaging using microstructured surfaces with flexible micropillars. Experiments
in Fluids, 39(2):464–474, June 2005. DOI: 10.1007/s00348-005-1003-7

[8] Ch. Brücker. Time-resolved wall-shear stress imaging on surfaces coated with ar-
rays of flexible micro-pillars. In 48th AIAA Aerospace Sciences Meeting Including
the New Horizons Forum and Aerospace Exposition, Orlando, FL, 2010.

[9] J.M. Zook. The neuroethology of touch in bats: cutaneous receptors of the bat
wing, 2005.

[10] Susanne Sterbing-D’Angelo, Mohit Chadha, Chen Chiu, Ben Falk, Wei Xian,
Janna Barcelo, John M Zook, and Cynthia F Moss. Bat wing sensors support
flight control. Proceedings of the National Academy of Sciences of the United
States of America, 108(27):11291–6, July 2011. DOI: 10.1073/pnas.1018740108

[11] M Chadha, C F Moss, and S J Sterbing-D’Angelo. Organization of the
primary somatosensory cortex and wing representation in the Big Brown
Bat, Eptesicus fuscus. Journal of comparative physiology. A, Neuroethol-
ogy, sensory, neural, and behavioral physiology, 197(1):89–96, January 2011.
DOI: 10.1007/s00359-010-0590-9

139

http://dx.doi.org/10.1016/S0376-0421(98)00016-5
http://dx.doi.org/10.1071/ZO9940215
http://dx.doi.org/10.1007/s00348-005-1003-7
http://dx.doi.org/10.1073/pnas.1018740108
http://dx.doi.org/10.1007/s00359-010-0590-9

[12] John Montgomery, Sheryl Coombs, and Matthew Halstead. Biology of the
mechanosensory lateral line in fishes. Reviews in Fish Biology and Fisheries,
5(4):399–416, December 1995. DOI: 10.1007/BF01103813

[13] Sheryl Coombs and Paul Patton. Lateral line stimulation patterns and prey
orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). Jour-
nal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral
physiology, 195(3):279–97, March 2009. DOI: 10.1007/s00359-008-0405-4

[14] S Coombs. Smart skins: Information processing by lateral line flow sensors.
Autonomous Robots, 11(3):255–261, 2001.

[15] Jeffrey M. Camhi, Winston Tom, and Susan Volman. The escape behavior of
the cockroach Periplaneta americana. Journal of Comparative Physiology ? A,
128(3):203–212, 1978. DOI: 10.1007/BF00656853

[16] O Dangles, D Pierre, C Magal, F Vannier, and J Casas. Ontogeny of air-motion
sensing in cricket. The Journal of experimental biology, 209(Pt 21):4363–70,
November 2006. DOI: 10.1242/jeb.02485

[17] M.a b Shimozawa T.a b Kanou. Varieties of filiform hairs: range fractionation
by sensory afferents and cercal interneurons of a cricket. Journal of Comparative
Physiology A, 155(4):485–493, 1984. DOI: 10.1007/BF00611913

[18] T. Kumagai, T. Shimozawa, and Y. Baba. The shape of wind-receptor
hairs of cricket and cockroach. Journal of Comparative Physiology A:
Sensory, Neural, and Behavioral Physiology, 183(2):187–192, July 1998.
DOI: 10.1007/s003590050246

[19] T. Shimozawa, T. Kumagai, and Y. Baba. Structural scaling and functional
design of the cercal wind-receptor hairs of cricket. Journal of Comparative Phys-
iology A: Sensory, Neural, and Behavioral Physiology, 183(2):171–186, July 1998.
DOI: 10.1007/s003590050245

[20] B T Dickinson. Hair receptor sensitivity to changes in laminar
boundary layer shape. Bioinspiration biomimetics, 5(1):16002, 2010.
DOI: 10.1088/1748-3182/5/1/016002

[21] T Steinmann, J Casas, G Krijnen, and O Dangles. Air-flow sensitive
hairs: boundary layers in oscillatory flows around arthropod appendages.
The Journal of experimental biology, 209(Pt 21):4398–408, November 2006.
DOI: 10.1242/jeb.02506

[22] J. A. C. Humphrey, R. Devarakonda, I. Iglesias, and F. G. Barth. Dynamics
of Arthropod Filiform Hairs. I. Mathematical Modelling of the Hair and Air
Motions. Philosophical Transactions of the Royal Society B: Biological Sciences,
340(1294):423–444, June 1993. DOI: 10.1098/rstb.1993.0083

140

http://dx.doi.org/10.1007/BF01103813
http://dx.doi.org/10.1007/s00359-008-0405-4
http://dx.doi.org/10.1007/BF00656853
http://dx.doi.org/10.1242/jeb.02485
http://dx.doi.org/10.1007/BF00611913
http://dx.doi.org/10.1007/s003590050246
http://dx.doi.org/10.1007/s003590050245
http://dx.doi.org/10.1088/1748-3182/5/1/016002
http://dx.doi.org/10.1242/jeb.02506
http://dx.doi.org/10.1098/rstb.1993.0083

[23] F. G. Barth, U. Wastl, J. A. C. Humphrey, and R. Devarakonda. Dynamics
of Arthropod Filiform Hairs. II. Mechanical Properties of Spider Trichobothria
(Cupiennius salei Keys.). Philosophical Transactions of the Royal Society B:
Biological Sciences, 340(1294):445–461, June 1993. DOI: 10.1098/rstb.1993.0084

[24] F. G. Barth, J. A. C. Humphrey, U. Wastl, J. Halbritter, and W. Brittinger.
Dynamics of Arthropod Filiform Hairs. III. Flow Patterns Related to Air Move-
ment Detection in a Spider (Cupiennius salei KEYS.). Philosophical Transac-
tions of the Royal Society B: Biological Sciences, 347(1322):397–412, March 1995.
DOI: 10.1098/rstb.1995.0032

[25] R. Devarakonda, F. G. Barth, and J. A. C. Humphrey. Dynamics of Arthro-
pod Filiform Hairs. IV. Hair Motion in Air and Water. Philosophical Transac-
tions of the Royal Society B: Biological Sciences, 351(1342):933–946, July 1996.
DOI: 10.1098/rstb.1996.0086

[26] Höller A Barth F.G. Dynamics of arthropod filiform hairs. V. The response of
spider trichobothria to natural stimuli. Philosophical Transactions of the Royal
Society B: Biological Sciences, 354(1380):183–192, 1999.

[27] F G Barth. How to catch the wind: spider hairs specialized for sensing the
movement of air. Die Naturwissenschaften, 87(2):51–8, February 2000.

[28] R Kant and J a C Humphrey. Response of cricket and spider motion-sensing
hairs to airflow pulsations. Journal of the Royal Society, Interface / the Royal
Society, 6(40):1047–64, November 2009. DOI: 10.1098/rsif.2008.0523

[29] N. H. Fletcher. Acoustical response of hair receptors in insects. Journal of
Comparative Physiology, 127(2):185–189, June 1978. DOI: 10.1007/BF01352303

[30] G.K.a Taylor and H.G.b Krapp. Sensory Systems and Flight Stability: What
do Insects Measure and Why? Advances in Insect Physiology, 34:231–316, 2007.
DOI: 10.1016/S0065-2806(07)34005-8

[31] G J Schmitz, Ch Brücker, and P Jacobs. Manufacture of high-aspect-ratio
micro-hair sensor arrays. Journal of Micromechanics and Microengineering,
15(10):1904–1910, October 2005. DOI: 10.1088/0960-1317/15/10/016

[32] Spatz J Schröder W Brucker C. Wall shear stress imaging using micro-structured
surfaces with flexible micro-pillars. 12th International Symposium, 7(5), 2004.

[33] M.a Schaefer, P.a Jacobs, D.b Bauer, D.a Moll, and A.a Gillner. Investigation
and development of a molding process for the production of micro-hairs. Interna-
tional Journal of Advanced Manufacturing Technology, 51(9-12):935–944, 2010.
DOI: 10.1007/s00170-010-2670-y

141

http://dx.doi.org/10.1098/rstb.1993.0084
http://dx.doi.org/10.1098/rstb.1995.0032
http://dx.doi.org/10.1098/rstb.1996.0086
http://dx.doi.org/10.1098/rsif.2008.0523
http://dx.doi.org/10.1007/BF01352303
http://dx.doi.org/10.1016/S0065-2806(07)34005-8
http://dx.doi.org/10.1088/0960-1317/15/10/016
http://dx.doi.org/10.1007/s00170-010-2670-y

[34] M Dijkstra, J J van Baar, R J Wiegerink, T S J Lammerink, J H de Boer, and
G J M Krijnen. Artificial sensory hairs based on the flow sensitive receptor hairs
of crickets. Journal of Micromechanics and Microengineering, 15(7):S132–S138,
July 2005. DOI: 10.1088/0960-1317/15/7/019

[35] Bruinink C M Sanders R G P Krijnen G J M Droogendijk H. Non-
degenerate parametric amplification and filtering in biomimetic hair flow sen-
sors. In 2011 16th International Solid-State Sensors, Actuators and Mi-
crosystems Conference, TRANSDUCERS’11, pages 2038–2041, Beijing, 2011.
DOI: 10.1109/TRANSDUCERS.2011.5969213

[36] Bruinink C M Sanders R G P Siebelder O G Krijnen G J M Droogendijk H.
Lowering the sensory threshold and enhancing the responsivity of biomimetic hair
flow sensors by electrostatic spring softening. In Proceedings of IEEE Sensors,
pages 829–832, Limerick, 2011. DOI: 10.1109/ICSENS.2011.6127093

[37] Bruinink C M Sanders R G P Krijnen G J M Droogendijk H. Non-resonant para-
metric amplification in biomimetic hair flow sensors: Selective gain and tunable
filtering. Applied Physics Letters, 99(21), 2011. DOI: 10.1063/1.3663865

[38] Bruinink C M Sanders R G P Krijnen G J M Droogendijk H. Application of elec-
tro mechanical stiffness modulation in biomimetic hair flow sensors. In Proceed-
ings of the IEEE International Conference on Micro Electro Mechanical Systems
(MEMS), pages 531–534, Paris, 2012. DOI: 10.1109/MEMSYS.2012.6170232

[39] J M Engel, J Chen, C Liu, and D Bullen. Polyurethane Rubber All-Polymer Ar-
tificial Hair Cell Sensor. Journal Of Microelectromechanical Systems, 15(4):729–
736, 2006. DOI: 10.1109/JMEMS.2006.879373

[40] Chang Liu. Micromachined biomimetic artificial haircell sensors. Bioinspiration
& biomimetics, 2(4):S162–9, December 2007. DOI: 10.1088/1748-3182/2/4/S05

[41] L. Prandtl. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhand-
lungen des dritten internationalen Mathematischen Kongresses, pages 484–491,
Heidelberg, 1904.

[42] Hermann Schlichting. Boundary-layer theory. McGraw-Hill, New York, 7th
edition, 1979.

[43] B T Dickinson. Detecting Fluid Flows with Bioinspired Hair Sensors. PhD thesis,
Oregon State University, 2009.

[44] A J Aranyosi and Dennis M Freeman. Sound-induced motions of individ-
ual cochlear hair bundles. Biophysical journal, 87(5):3536–46, November 2004.
DOI: 10.1529/biophysj.104.044404

[45] J-H Nam, J R Cotton, and J W Grant. Effect of fluid forcing on vestibular hair
bundles. Journal of vestibular research : equilibrium & orientation, 15(5-6):263–
78, January 2005.

142

http://dx.doi.org/10.1088/0960-1317/15/7/019
http://dx.doi.org/10.1109/TRANSDUCERS.2011.5969213
http://dx.doi.org/10.1109/ICSENS.2011.6127093
http://dx.doi.org/10.1063/1.3663865
http://dx.doi.org/10.1109/MEMSYS.2012.6170232
http://dx.doi.org/10.1109/JMEMS.2006.879373
http://dx.doi.org/10.1088/1748-3182/2/4/S05
http://dx.doi.org/10.1529/biophysj.104.044404

[46] F M White. Viscous fluid flow. McGraw-Hill series in mechanical engineering.
McGraw-Hill Higher Education, 2006.

[47] M. J. Sytsma and L. Ukeiley. Wind Tunnel Generated Turbulence. In 49th AIAA
Aerospace Sciences Meeting, Orlando, FL, 2011.

[48] Gilberto Narvaez and Stephen T Mcclain. Flow over a Distribution of Obliquely
Aligned Elements : Part I Experimental Investigation. In 5th Flow Control
Conference, number July, pages 1–17, Chicago, Illinois, 2010. AIAA.

143

	main
	appendix
	Appendix A Steady Fiber Analysis MATLAB® Code12pt
	Appendix B Unsteady Fiber Analysis MATLAB® Code12pt
	Appendix C Create Fiber Motion Video MATLAB® Code12pt
	Appendix D Fiber Deflection Prediction MathCAD Code12pt
	Bibliography

	main
	appendix
	Appendix A Steady Fiber Analysis MATLAB® Code12pt
	Appendix B Unsteady Fiber Analysis MATLAB® Code12pt
	Appendix C Create Fiber Motion Video MATLAB® Code12pt
	Appendix D Fiber Deflection Prediction MathCAD Code12pt
	Bibliography

