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via Auto-Routing Algorithms 
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Mentor: Michael W. Thompson, Ph.D. 

 
 
 Mission planning for radar jamming escort missions is a tedious and complex 

problem to solve.  For years this type of mission planning has taken many hours to solve 

and used multiple pilots to develop a solution. This thesis discusses the development of a 

MATLAB solution for auto-routing aircraft for a mission planning scenario. The unique 

contribution of this work involves the development and implementation of an auto-router 

algorithm called the Augmented Mission Planning (or AMP) algorithm. The AMP 

algorithm is developed by combining techniques for Jamming Acceptability Region 

(JAR) construction, weighted map creation from DTED data, and an augmented version 

of the A* path finding algorithm. This auto-router preforms within a typical mission 

planning system framework and we demonstrate the effectiveness of this approach for 

determining mission planning in a timely manner.  
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CHAPTER ONE 
 

Introduction 
 
 
 Mission planning is applied in a wide variety of applications and has been the 

subject of considerable research [see, for example [5]-[9]]. Auto-routing is an important 

tool for accomplishing mission planning goals. For example, in a paper by Vasudevan 

[9], auto-routing is used to plan navigation schemes for autonomous underwater vehicles, 

where obstacle avoidance is vital to a successful mission. Vasudevan uses case-based 

reasoning in order to develop new paths from old paths upon discovery of an obstacle. 

Auto-routing is also quintessential to missions requiring unmanned aerial vehicles, where 

fuel and airspace are of primary concern. A paper [7] on UAV mission route planning 

uses common pathfinding algorithms to develop paths for point to point navigation. 

Most auto-routing problems involve path planning between a specified starting 

location and a final destination. The objective of the process is to find an “optimal” path 

between the starting point and the final destination taking into account possible obstacles 

and variation in the cost associated with possible routes.   

This thesis considers a unique variation from the typical framework of most auto-

routing problems. To understand the unique aspects of this problem we first begin by 

defining important terms. The term “protected entity” (PE) refers to an aircraft that will 

receive electronic jamming support from the “electronic attack” aircraft. The “electronic 

attack” (EA) aircraft has radar jamming capability that prevents detection for both the 

protected entity and itself from threat radars. The goal of an auto-router is to assist 
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mission planners in finding flight paths for both the PE and the EA that will produce a 

mission solution. This problem is unique because of the interdependency between the PE 

and EA paths. Without proper consideration of the PE path by the auto-router it will 

become problematic to find realistic EA paths. The novelty of the approach used in this 

thesis is that we incorporate knowledge of EA path constraints into our PE path planning 

algorithms.    

The relationship between the PE and the EA for the problem under consideration 

is illustrated in the figure below. In this figure the EA is shown as transmitting 

electromagnetic energy from a strategic location in order prevent the threat radar from 

accurately determining the location of either aircraft. In this manner, the PE is able to fly 

paths that would otherwise result in detection. This situation is further complicated by the 

various jamming techniques available for the EA. The EA can typically provide 

preemptive or reactive methods for main-lobe, side-lobe and out-of-alignment jamming 

(6 different modes). A key element in auto-routing is to determine the possible locations 

of the EA that will facilitate effective jamming. The collection of coordinates that allow 

the EA to provide effective jamming for a give PE location is known as the Jamming 

Acceptability Region (JAR).   

 Auto-routing is an important element of Mission planning. An effective auto-

routing tool allows mission planners to quickly investigate scenarios for individual flight 

paths that possibly comprise a larger mission. The time involved for mission planning is 

an important consideration. An auto-router tool that generates valid PE and EA paths is 

important for rapid mission planning.  
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Figure 1: Mission Planning Example 
 
 
 In order to tackle this problem, the research team focused on developing a 

system in MATLAB to solve the four pillars of this mission planning problem, which are 

jamming, auto-routing, scenario modeling, and runtime.  

 Understanding how jamming is achieved was the first primary area of research.  

A foundation for modeling jamming techniques was developed from a 2008 Navy patent 

[1] for a system to assess jamming effectiveness. This patent introduced the idea of a 

Jamming Acceptability Region (JAR) which is an area calculated from the PE position 

relative to the threat radar. These JARs are used to develop EA paths that will jam the 

enemy radar for a given PE flight path. Development of JARs can become very complex 

especially as additional radar threats are introduced. In addition, the complexity of the 

problem increases to account for the six different types of jamming techniques to apply to 

any given threat. The active form of these jamming techniques are seen in Figure 2, 

which shows main-lobe (In), side-lobe (Side) and out-of-alignment (Out) jamming areas. 
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Chapters Two and Three of the thesis discusses the methods we employ for JAR 

construction along with strategies for generating PE paths that avoid JAR complications.   

 

 

Figure 2: JAR Example [1] 
 
 
 The next pillar of this problem is path generation, or auto-routing, of the PE and 

EA. The EA path is dependent upon the JARs which are developed from the PE path, 

thus, the PE path must be generated first. The difficulty lies in creating favorable PE 

paths that lead to realistic JARs that lead to practical EA paths. This is accomplished in 

Chapter Three through the use of an algorithm we developed called the Augmented 

Mission Planning (AMP) algorithm, which is an augmented form of the A* (A Star) 

pathfinding algorithm..  
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 The next issue in mission planning is accurate scenario modeling. Scenario 

modeling involves the accurate modeling of a mission in terms of geographic data, radar 

positions, realistic radar parameters and configurations, and tactical flight information. 

This area of the problem is difficult to accurately model because the data needed to 

produce accurate models is classified. However, we take the approach of simulating 

mission scenarios that reflect many of the challenges that mission planner will face using 

accurate models. Our approach is illustrated with simulated scenarios which can later be 

verified using realistic parameters. Scenario modeling is further described in the scenario 

modeling component section of Chapter Three and is implemented using Digital Terrain 

Elevation Data (DTED) rendering in a three dimensional MATLAB model.   

Finally, runtime is an inherent problem to mission planning. Runtime is a 

computer science term that refers to the computational intensity of a program or 

algorithm, which is often measured by the time it takes to execute. Since mission 

planning is typically a very computationally intensive, auto-routing runtime can be so 

long that the system is rendered ineffective. Thus, when developing a mission solution 

algorithmically, a practical runtime is required. This means that all other aspects of 

mission planning must not only meet the constraints for proper solution generation but 

also meet runtime specifications in order to deliver practical mission solution. This will 

be addressed both throughout Chapters Three and Four.  

 
Thesis Outline 

 
 Chapter One has laid out the pillars of the mission planning problem which this 

thesis aims to address. Chapter Two will provide background research related to mission 

planning. Furthermore, Chapter Two will address the topic of JAR generation and the 
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resulting necessary modifications required to implement auto-router algorithms. Chapter 

Three will cover the development of the mission planning system from the ground up, 

and detail all of its algorithmic components including map weighting, augmentation of 

the A* algorithm, parallelization, and multi-path generation. Chapter Four will contain 

the results of the system performance in terms of runtime and the qualitative assessment 

of the overall viability of the auto-router. Finally, Chapter Five will provide an overview 

of the work accomplished by this thesis and offer suggestions for future work.   
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CHAPTER TWO 
 

Related Work 
 
 

 Mission planning for radar jamming escort missions is a rather difficult topic to 

research. While there are many resources that contribute indirectly to mission planning, 

(such as pathfinding, parallelization, scenario modeling, and even jamming) there are 

very few resources within “mission planning” literature that are directly applicable to this 

particular mission type. The lack of related work in this field is primarily due to the 

classified nature of this research area. The goal of this Chapter is to summarize existing 

research in the areas JAR generation and auto-routing. This important to our work since 

the mission planning software that we have developed incorporates these two 

components.    

The fundamental resource that contributed most to this research was the US Navy 

patent mentioned in the introduction. This patent defines and describes the creation of a 

Jamming Acceptability Region (JAR) which, according to the patent is a ''family of 

positions an EA may occupy and still provide effective jamming to protect the PE.'' [1] 

Figure 1 shows a general concept JAR taken from the patent, where the arrow is the PE 

path, the circle is the enemy radar detection range, and the collection of triangular shapes 

is the JAR. 
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Figure 3: General Concept JAR with PE path [1] 

 

This patent also detailed other scenarios that result in significantly more complex 

JARs, one of which is a very common circumstance. This scenario is the case of multiple 

enemy radar (see figure 4). When multiple enemy radar are introduced, JAR creation 

becomes far more complex and will change depending upon the jamming capabilities of 

the EA. Figure 4 shows the resulting JARs generated from the PE path, represented as the 

arrow. The shaded part of the figure is where the two JARs overlap, which can make or 

break whether a mission is possible or not. This overlap can result in impossible flight 

paths for a single EA and will require multiple EAs to provide effective jamming. This 

type of case should be avoided at all costs by the PE due to the new level of complexity 

for the constrains associated with the EA path. These types of scenarios presented by this 

patent aided greatly in understanding and developing JARs for our jamming model. 
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Figure 4: Complex JAR Example 
 

It is also to note that this project’s jamming model originated from a paper written 

by the mission planning team at Baylor [2]. This paper lays out, in great mathematical 

detail, how to derive a JAR based on radar parameters and the six different types of 

jamming techniques. These calculations were formed in much greater depth than the 

original patent, and provide far more accurate JAR generation methods. Figure 5 shows a 

JAR calculated in three-dimensional space using these methods. The Navy patent and the 

research by the mission planning team comprise the background to the JAR generation 

component (Chapter Three) and serve as key resources for this project. 
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Figure 5: 3D JAR (Ellipsoid Model) [2] 
 

Auto-routing (or path finding) is the process of algorithmically developing a path 

from a starting point to a desired destination, which is depicted in Figure 6. There are 

many different algorithms that accomplish this, therefore finding the most suitable one 

can be a challenging task. 

 

 

Figure 6: Auto-Routing Example 
 



11 
 

However, a dissertation on dynamic path planning, written by JP van den Berg 

[5], explores the use of the A* algorithm [3], as well as Dijkstra’s Algorithm [4]. 

Dijkstra’s Algorithm and the A* algorithm are node-based pathfinding algorithms that 

develop the shortest path from a start point to a target location. The difference between 

these two algorithms is that the A* algorithm uses a heuristic to guide its search based on 

Dijkstra’s Algorithm [2]. Depending on the problem at hand, one of these algorithms is 

likely to outperform the other. Van den Berg addresses this and states that ''Dijkstra’s 

Algorithm finds shortest paths to all vertices in the graph, but often one is only interested 

in a shortest path to a specific goal vertex. In this case the A* method, which is based on 

Dijkstra’s Algorithm, is favorable.'' Therefore, from van den Berg’s work and other 

proponents of these algorithms [7,8], the A* Algorithm was selected to form the basis for 

this project’s auto-routing solution, which is derived in the Algorithmic Foundation 

section of Chapter Three.  

Thus, with the combination of sophisticated JAR creation and the utility of A* 

and Dijkstra's Algorithm, the foundation of this thesis has been laid. The next chapter 

uses the basic concepts of JAR generation and the A* algorithm to develop an auto-

routing solution.     
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CHAPTER THREE 
 

System Development 
 
 
 Due to the complexity of a radar jamming escort mission, many algorithmic 

components are needed in order to generate a mission solution. These components, which 

are laid out in Figure 7, are structured in order to provide a solution to each pillar of the 

mission planning problem (jamming, auto-routing, scenario modeling, and runtime). 

However, a fundamental algorithmic understanding is needed in order to fully explore 

each component of this system. Thus, in the following sections, the motivation for 

developing this system, the algorithmic foundation, and each component of the mission 

planning system will be discussed in detail, where the algorithmic foundation section will 

explain key building blocks to the auto-router system. 

 

 

Figure 7: System Overview 
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Motivation 
 

There are two primary motivations for an algorithmic solution to mission 

planning. The first is to be able to develop optimal mission solutions, and the results this 

could have on the field are substantial. For instance, creating optimal mission solutions 

will save resources due to shorter flight paths and relaxed jamming requirements. In 

addition, the primary benefit of optimal mission solutions is, of course, to help save lives. 

By developing better solutions pilots will be exposed to fewer risk factors. The second 

primary motivation is to develop methods in order to increase runtime of the mission 

planning process. By improving the auto-routing runtime, faster responses to enemy 

threats can be made. 

 
Algorithmic Foundation 

 
 This section will explain the theoretical understanding and development of the 

foundation to the mission planning system. This foundation of pathfinding algorithms 

lead to development of the AMP (Augmented Mission Planning) algorithm, which is key 

to all the components of the system. The AMP algorithm is the base to the auto-router 

which drives three of the system components, (Preliminary Mission Check, PE Path 

Generation, and EA Path Generation) where the other three systems (Scenario Modeling, 

Map Development, and JAR Construction) set up the environment for the algorithm to 

run. This algorithm is truly the cornerstone of the mission planning system and will be 

derived in the following subsections. 
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Dijkstra’s Algorithm 
 

Dijkstra's Algorithm was one of the first pathfinding algorithms, which emerged 

in 1956. [4] It is a node-based search algorithm, where all nodal weights are calculated 

adjacently from a source node, in order to develop a weighted tree of costs and determine 

the least cost path. Dijkstra's will always find the best solution (shortest path), and with 

some improvements to calculation methods, has runtime complexity of: 

ܱሺ|ܧ| ൅ |ܸ|log	|ܸ|ሻ 

where V is number of nodes and E is the number of edges [4].  

While Dijkstra's Algorithm has been a great way to solve path finding problems in 

the past, it’s use is limited because of the long runtime required for larger maps. Many 

new pathfinding algorithms have emerged with improved runtimes due to node selection 

heuristics. However, in worst case scenarios, these new pathfinding algorithms perform 

the same as Dijkstra's. This is due to the fact that most of the newer algorithms are based 

off Dijkstra's solution and end up having a runtime upper bound near Dijkstra's 

Algorithm's runtime. 

Even with its limited use today, Dijkstra's Algorithm is fundamental to 

understanding pathfinding at its core. The concept of a node-based search is the basis for 

pathfinding and is led to its significant speed up. Also, Dijkstra's algorithm has laid a 

foundation for development of new pathfinding algorithms. For instance: A*, D*, and 

theta*, all have roots in Dijkstra's and came to fruition based on Dijkstra's principles. [5] 

Thus, for these reasons Dijkstra's algorithm was not selected for the basis of the mission 

planning solution. However, it is through the lens of Dijkstra's algorithm that the area 

explored for this project, the A* algorithm, was founded. 
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The A* (A Star) Algorithm 
 

The A* algorithm is a traversing algorithm that determines a least-cost path for a 

given graph containing obstacles and cost criteria. A* is a derivative of Dijkstra's 

algorithm where both algorithms use node-based traversing techniques to develop a path 

from a start location to an end target. The primary difference is that A* uses heuristics in 

its path development to achieve a significantly faster runtime than Dijkstra's. These 

heuristics and even the search routine of the A* algorithm can be augmented to create 

entirely different path planning algorithms to solve more complex problems. Algorithms 

such as D*, IDA*, and Theta* are a few examples of A* augmentations. [9] [10] In this 

manner we developed our own A* augmentation to serve a Mission Planning purpose, 

which will be discussed in a later section. 

 
A* pathfinding routine. As previously stated, the A* algorithm is a derivative of 

Dijkstra's algorithm in that it is a node-based search routine. However, the point of 

divergences between the A* Algorithm and Dijkstra's algorithm is in the way A* 

searches through nodes or points of a graph.  

A* begins at the start location. The start location becomes the current node and 

the distance to all the neighboring nodes are then calculated (ܦ௖). Next, the distance 

between each neighboring node and the end target location is calculated (ܦ௧). The two 

distance calculations are summed for each node to achieve the cost ( ௖ܰ௢௦௧) of any given 

neighboring node. 

௖ܰ௢௦௧ ൌ ௖ܦ	 ൅	ܦ௧ 
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The neighboring nodes and their costs are then placed on an open list. This list 

acts as the branches the algorithm may pursue. The node with the least cost ( ௖ܰ௢௦௧) is 

then selected as the current node and removed from the open list. If the newly selected 

node is the end target, then the algorithm is completed, otherwise the previous current 

node is placed on a closed list. The closed list contains all the nodes that have been 

explored, which is what is used to develop the path. 

 
݁݀݋ܰ	ݐ݊݁ݎݎݑܥ ൌ ሺ	min	݄ݐ݅ݓ	݁݀݋ܰ	ݐݏ݅ܮ	݊݁݌ܱ ௖ܰ௢௦௧ሻ 

 
 

This cycle of calculating neighboring node costs (expanding the open list) and 

selecting the node with the least cost (expanding the closed list) will continue until the 

target node is reached. From that point the nodes on the closed list are parsed by cost and 

ordered to develop the path. However, in the case of an unsolvable graph or where no 

path exists between the start location and the target, the search will terminate when all 

searchable points are on the closed list. The entirety of the routine can be observed in the 

figure below, where the red dots represent the closed list, blue dots represent the open 

list, dark blue dots represent determined obstacles, and the green line is the generated 

path. 

 

 

Figure 8: A* Pathfinding Process [13] 
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A*algorithm properties. In order to fully utilize and augment the A* algorithm 

some fundamentals of the algorithm must first be established. First and foremost, the A* 

algorithm (if implemented properly) will always find an optimal solution if one exists. 

Regardless of the graph input into the algorithm, the A* algorithm will find the best 

(shortest) path to the target. However, as the graph grows in size the run time of A* 

grows incredibly where, its worst case performance is denoted by the following 

expression. 

ܱሺ|ܧ|ሻ ൌ ܱሺܾௗሻ 
 
ܱሺ|ܧ|ሻ is the worst case runtime of the algorithm, ݀ is the length of the shortest path, and 

ܾ is the branching factor, or the average number of successors per state. Therefore, as the 

map grows in size and the length of the optimal path grows, the run time grows to the 

power of ݀. 

Knowing this, how can a graph of an enormous size and complexity, the type that 

is seen in mission planning, be navigated without an excessive runtime?  

The brute force way to solve this problem is to simply increase the processing 

power of the machine running the algorithm. However, if a super computer is not at your 

disposal, a better solution may be to augment the algorithm in order to solve a map "well 

enough". In many problems there is little difference between an optimized solution and a 

solution that is "good enough". Additionally, if an optimized solution takes three days to 

calculate and a "good enough" solution takes minutes to calculate, then the "optimized" 

solution may not be an optimal choice. The next section will cover how our augmented 

version of A* can be implemented in order to provide a satisficed solution to mission 

planning. [11] 
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The AMP Algorithm (Augmented Mission Planning) 
 
 The AMP algorithm is an augmentation of the A* algorithm. The AMP algorithm 

is designed to run on large weighted maps to develop a path that meets many criteria as 

quickly as possible. Therefore, the algorithm's augmentations from A* focus on speed up, 

weighted path planning, parallelism, multiple unique paths, path distance, and path 

smoothing. The following section will break down how the AMP algorithm focuses on 

these key topics and its performance versus A*. 

 
AMP algorithm: speed up. A fundamental necessity of the AMP algorithm is 

speed. A* works well for reasonably sized maps and produces an optimal path. However, 

a map of a larger size causes the run time to dramatically increase. Since mission 

planning requires navigation of a map with a high resolution and substantial size, changes 

to the fundamentals of A* had to be made in order to meet run time requirements. This 

will be accomplished through a tradeoff between an optimized path and runtime. In order 

to accomplish this trade off, we must recall the node calculations of the A* algorithm. 

௖ܰ௢௦௧ ൌ ௖ܦ	 ൅	ܦ௧ 
 

The path generated by A* is dictated by two main costs;	ܦ௖, distance to current 

node, and ܦ௧ distance to target. The synergy between these two weights is what helps 

build an optimal path rather quickly in comparison to Dijkstra's algorithm. However, in 

the case of A*, the ܦ௖ component is what keeps the algorithm in check by avoiding 

diagonal moves and weighing those against the ܦ௧. However, in the case of a large map, 

the ܦ௧ value is essentially equal for all the nodes that are being evaluated. Thus, on large 

maps ܦ௧ appears to drop out entirely, leaving only a slight pull on where the algorithm’s 

exploration direction, which is now almost entirely governed by the distance to the 
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surrounding node. This reduces the algorithm to a point near Dijkstra's algorithm, where 

the algorithm grows around its surrounding area until it happens upon the target. On a 

gigantic map this type of search can take hours to days depending on processor speeds. 

The solution is to reduce	ܦ௖ 's impact on nodal selection significantly by dividing it by a 

large constant C. Then we are left with an algorithm that will always work towards the 

target with minute difference in ܦ௧s at each node, which gives the following equation. 

Note, MAP costs will be discussed in sections to follow.  

௖ܰ௢௦௧ ൌ ௧ܦ	 ൅ ሺܯ௖௢௦௧ሻ ൅	
௖ܦ
ܥ

 

 
This method produces a much faster way to generate a path, however, reducing 

the ܦ௖ component to such a degree does make a significant trade. A path will be 

generated much faster but, it is in no way guaranteed that this path will be an optimal 

path. In fact, a path generated using this method will most likely will not be an optimal 

path. However, in the field of mission planning, the maps to be traversed fit certain 

criteria that the optimal path tradeoff is insignificant. This is due to the lack of concave 

structures and obstacles being primarily elliptical. 

 The results of this new cost function that guides the AMP algorithm's heuristic 

can be seen in its nodal search cloud vs A*'s (Figure 9), where a nodal search cloud is the 

area of the graph the algorithm has explored in order to generate a solution. The more 

nodes explored results in longer runtime by the algorithm. It is clear that the 

augmentation explores fewer nodes and thus will require far less time to calculate. 
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Figure 9: A* vs AMP Algorithm 
 
 

Thus, the AMP algorithm runs significantly faster than it A* counterpart and 

reduces path generation time of Mission Planning problems significantly. 

 
AMP algorithm: weighed path planning. Weighted path planning refers to 

planning a path around a graph, where areas of the graph are weighted with a heavier 

cost. For instance, if area 1 of a graph has a certain cost associated with it, while area 2 

has twice the cost of area 1, then directing a path through area 1 would be much more 

desirable due to its lower cost. However, depending on the complexity of the map 

weights, the path shaping must be done correctly to generate a path that is desirable from 

a mission planning perspective. Thus, the second part of the AMP algorithm's cost 

function, map cost (ܯ஼௢௦௧), is instantiated. The map cost is simple to understand but 

difficult to implement. The map cost is simply the cost of choosing a particular location 

within the map, which is given at the start of the path planning routine, i.e. the cost is 

built into the map not generated by the AMP algorithm. The map cost is added to the 

distance to target cost in order to create the total cost of the node. Deciding what values 
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to place on the map in order to generate a desired path is where the complexity of weights 

is introduced. This will be further explained in the MAP generation section. 

 
AMP algorithm: parallelism. A significant constraint of the A* algorithm is its 

sequential form of path planning execution. Each nodal branch is determined by the 

previous node and so on, where it is impossible to fully parallelize the algorithm. The 

AMP algorithm is built on the same foundation of sequential execution, however due to 

specifics of the Mission Planning problem, parallelism can be achieved within solution 

generation. This is due to the use of waypoints throughout mission planning. Waypoints 

set certain locations that the path must go through, consisting of targets, start points, and 

endpoints. By breaking up the path generation into each "leg" (or path between 

waypoints), multiple instances of path finding can be run in parallel. Each leg is then 

conjoined to create the final path. 

Figure 10 demonstrates this idea. Every "leg" is numbered and can be calculated 

simultaneously. If no parallelism was introduced, as the way points increase from path 1 

to path 3 the run times would increase dramatically. However, calculating these paths in 

parallel would have a negligible difference in runtimes. Therefore, with the introduction 

of parallelism into the AMP algorithm, the runtime of path generation sees substantial 

decrease, even from hours to minutes in some complex cases. 
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Figure 10: Parallel Example 
 
 
  Thus, for each ܰௐ way points there are ܰௐ െ 1- instances of the algorithm 

created, which greatly reduces the AMP algorithm's runtime. 

௉ܰூ ൌ 	ܰௐ െ 1 

  It should be noted that in the cases of very limited solutions or 1 unique solution 

to a given map, parallelism can cut run time down even more. If an instance of path 

finding is started at ଵܹ with and end goal of ଶܹ and another instance of path finding is 

started at ଶܹwith an end goal of ଵܹ, then the algorithm can connect in the middle to 

substantially reduce runtime. However, this is not commonly implemented because the 

cases that will receive a speed up from running the algorithm from both ends is rather 

specific and unlikely to occur, which is why this method is not incorporated within the 

AMP algorithm. 

  Therefore, through the use of waypoints, parallelism allows for a dramatic 

decrease in runtime for path generation. This specific quality of the AMP algorithm will 

be very useful in creation of both the PE and EA path. However, the EA path would be 
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almost non-calculable without this parallelism. These properties will be further explained 

within the PE and EA path generation sections. 

 
Multiple unique paths. Another focus of the AMP algorithm is developing 

multiple unique paths. The reason for this is to avoid predictable paths in cases of the 

same mission being run multiple times. To accomplish multi-path generation, both map 

augmentation and path generation are required. Once a successful path is created, that 

path is then weighted and another iteration of the AMP algorithm is run. Therefore, the 

new weights change how the AMP algorithm navigates through the map and creates a 

new path. This process can continue for as long as desired. For each way point another 

iteration of path finding is instantiated and another branch is created, which has a serious 

effect on the number of unique paths that are generated. This effect is represented in the 

equation below where, ௡ܲ௨௠ is the number of unique paths, I is the number of iterations 

run, and W is the number of way points. 

௡ܲ௨௠ ൌ 	  ௐିଵܫ

For example, if there is a map with 4 way points that is run with 10 iterations of 

multi-path development, the output is one thousand unique paths. This is illustrated by 

figure 11. This process will be further expounded upon in the PE path generation section 

to discuss specifics of map augmentation and runtime. 
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Figure 11: Multi-path AMP Output (1000 Unique Paths) 
 
 

The Mission Planning System 
 
The following sections will detail the focus of this thesis; the mission planning system. 

Each section will describe the algorithmic components that make up the system and how 

they function together to form a mission solution. 

 
Scenario Modeling 
 

As stated in the introduction, scenario modeling is a rather difficult area to 

research. Battle scenarios are a highly classified area and little information is available to 

the public. However, through the use of DTED (Digital Terrain Elevation Data), 

geolocation coordinates, and enemy radar range construction, successful scenario 

modeling can take place with the future intent of improvement. 
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DTED is a great solution to landscaping in scenario modeling. DTED is 

essentially a data base that consists of elevation values over the entire surface of the 

earth. Thus, any area of the earth's surface can be loaded and used to generate a 

landscape. The accuracy of these values changes with the different levels of DTED (see 

Table 1). 

 
Table 1: DTED Level Resolution 

DTED Level Resolution (m) 
0 ~ 900 
1 ~ 90 
2 ~ 30 

 
 

Only certain levels of DTED are available to the public, however the government 

has higher levels of DTED which they use internally. Therefore, by building the scenario 

modeling component upon a standard that can be easily modified for resolution 

improvement, the system can be easily implemented by the Navy.  

Fortunately, DTED can be easily imported by MATLAB through its' own 

importer. With this tool in hand the landscape can begin to take form in order to provide 

robust scenario modeling of the mission environment. Gathering the data for a given 

mission is accomplished through geolocation coordinates. By traversing the DTED data 

base via latitude and longitude, the desired surface of the earth can be loaded and 

modeled. Figure 12 shows DTED of a section of the California coastline using 

MATLAB's functionality. 
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Figure 12: DTED Levels 
 
 

Enemy radar construction is yet another area where one is hard pressed to find 

information. While it is difficult for the academic world to generate enemy radar ranges 

and radiation patterns, the Navy has the tools to do so. Hence, generation of range and 

radiation patterns are not a goal of this thesis. However, one characteristic of enemy radar 

range that is able to be modeled is the "lethal zone" [2]. This zone is an area around the 

radar where the EA's jamming for the PE is no longer effective. This produces concentric 

circle ranges, where one is the enemy radar range and the other is the lethal zone (see 

Figure 13). Incorporating the lethal zone into the scenario modeling process is absolutely 

key. Since these cannot be derived, (due to lack of public information) an estimate will 

serve as a good placeholder until more accurate information can be input. 
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Figure 13: Radar Range and Lethal Zone 

 
 

Nevertheless, enemy radar placement within a mission is an aspect of scenario 

modeling that can be explored. Typically, radar jammer escort missions are performed in 

an area of high detectability. This means that multiple enemy radar are on-site and their 

ranges overlap. Also, placement of enemy radar tend to be either clumped together in 

order to protect a particular location, or spread along a line in order to protect a border or 

coastline. With these characteristics in mind, better scenario modeling can be 

accomplished by simply placing enemy radar locations in the same type of patterns and 

allowing radar ranges to overlap. 

 The final aspect of scenario modeling concerning this system is waypoint 

positioning. A waypoint is a location that must be reached throughout the course of a 

mission. Typically a flight path for a mission is divided up into sequential waypoints that 

are used as references to orchestrate a mission, where each waypoint dictates where the 

EA/PE should be at a given time. Since waypoint selection is obviously classified 

information, development was focused on evaluating waypoints at varying levels within 
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enemy radar range. This was done in order to assure that the system performed properly 

with any mission, regardless of waypoint placement. 

 
Map Generation 
 

Map generation is the process of using all the scenario modeling aspects and 

incorporating them into a single environment that is primed for the AMP algorithm: the 

map. The scenario modeling component's output, landscape, enemy radar range and 

location, and waypoint positioning, are used to develop a matrix of weighted values that 

the AMP algorithm must navigate. These weights are crucial to the solution of the 

mission. This is because the map weights will shape how the AMP algorithm solves the 

mission and, in turn, affects the optimization of the end result. The following sections 

will examine how the map is created from the scenario modeling output and how the map 

is weighted to facilitate a desirable result. 

The scenario modeling component's output is used to set the foundation of the 

map. Firstly, the latitude and longitude, as well as the landscape, generated by the DTED, 

is used to set the bounds of the map. These bounds are the map size, or the area in which 

a mission will take place. They are used to create a matrix of the same size as the points 

contained within the DTED over the desired longitude/ latitude area. It should be noted 

that the resolution of the map matches the resolution of the DTED, meaning that the level 

of DTED sets the resolution of the MAP. From there, the radar locations and waypoints 

are placed on the map by the longitude, latitude, and altitude desired. The ranges of the 

radar are then added to the map by calculating them in three-dimensional space. Again, 

enemy radar range calculation is not an area for public research and thus not an area of 

research for this thesis. However, a shell model (seen in Figure 14) can adequately 



29 
 

represent a radar range and be substituted with proper values in classified environments 

at a later date. 

 

 
Figure 14: Enemy Radar Range 

 
 
 The cross-section of the landscape data and three dimensional radar range are then 

taken at the desired altitude of the mission, which is the same altitude as the waypoints. 

This cross-section, composed of all the scenario modeling aspects, is what makes up the 

weighted map, where the only areas that have values at this point are the lethal zones 

associated with the enemy radar, and any landscaping obstacles, such as mountains. 

These are given negative values on the map and are considered as obstacles to the AMP 

algorithm. This rather barren map is the weightless map that is used by the mission check 

system component, which will be explained in the next section. The final step in map 

creation is to weight the enemy radar range and free space in order to facilitate the AMP 

algorithm. Free space receives a base value of 1 and the enemy radar range is a multiple 

of the free space weight. In order to facilitate speed and paths that do not fly into enemy 
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radar range to save distance, a high value was assigned to the enemy radar range weight 

of 10 times that of free space. This value makes penetrating into enemy radar range a 

very high cost and forces the AMP algorithm to only enter enemy radar range when a 

waypoint is contained within the enemy radar range. A fully realized map is show in 

Figure 15 in graphical form 

 

 

Figure 15: Map Example 
 
 
Preliminary Mission Check 
 
 The preliminary mission check component of the mission planning system is very 

simple. The preliminary mission check's job is to determine whether or not the mission 

can be solved. This provides a great service to the system because this process is fast, and 

in the case of an unsolvable mission, provides a massive runtime reduction. By 



31 
 

predetermining mission possibility, the algorithm can move into the next phase of 

mission planning, confident that a solution exists and no time will be wasted. 

 The mission check is performed by running the AMP algorithm on a weightless 

map, where only the waypoints and obstacles, or lethal zones, are kept. Because these 

obstacles are the only absolute limitation of the flight path, the obstacles and waypoints 

are the sole aspects of the map that must be incorporated to check mission possibility. 

Figure 16 show a mission check in action and the weightless map that it performs on. 

 

 

Figure 16: Mission Check on Weightless Map 
 
 
 As one would expect, with the removal of the weights, a solution can be generated 

in a fraction of the time it would take on a weighted map. A quick binary digit will 

represent whether the mission is solvable or not. If the mission check is successful the 

algorithm will move on to create the PE path, but if the mission check fails the mission 

planning system will terminate. 
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PE path Generation 

Thus, with the weighted map (incorporating the scenario modeling data) in place, 

and an affirmative mission check, the mission planning system will now begin to 

calculate the PE path. This will be accomplished with the AMP algorithm that will, in 

parallel, calculate each leg between all waypoints. Algorithmic details of this process can 

be found in the Algorithmic Foundation section in Chapter 3. The results of this process 

can be seen in the PE path generated for four waypoints in Figure 17.  

 

 

Figure 17: PE Path w/ No Post-Processing 
 
 
 While the PE path generated is an adequate solution and meets runtime 

requirements, there is a slight problem that requires some attention. The PE path that is 

generated is rather jagged. This is due to the type of search that the AMP algorithm uses. 

Because the algorithm is a node-based search, the path between each point on the map is 

a straight line, which makes curves appear as stair steps. This is a problem for two 

reasons. The first is that this jagged path does not accurately model a plane's flight path in 

the slightest. If this path is to be designed as a solution and not an approximation, it must 

accurately depict a real flight path. The second problem stems from JAR creation. If the 
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JARs for the EA flight path were created from this jagged stair step path, the result would 

be an incredibly inaccurate mess that would totally break the system. JAR creation will 

be further discussed in a later section, but it is important to note the effect the PE path has 

on the resulting JARs. 

 The solution to this jagged stair stepped path is the simple post processing 

technique of low-pass filtering. In this case low-pass filtering is implemented though a 

weighted averaging (ߙ) of the current coordinate (ݔ௜) with the previous (ݔ௜ିଵ), which is 

seen in the equation below. 

 
௜ሻݔሺܨܲܮ ൌ ௜ିଵݔߙ	 ൅ ሺ1 െ  ௜ݔሻߙ

 
The weight (ߙ) determines the operation of the filter. In the case of the stair step 

curves seen in this mission system setting ߙ relatively high (around 0.9) aided in 

correcting the path greatly. Figure 18, shows the filter operating on a stair stepped 

sinusoid. The result is a smooth sinusoid with a small amount of loss. 

 

 

Figure 18: LPF Applied to Stairstep Function 
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Applying this same low-pass filtering technique to the PE path achieves far more 

desirable results (See Figure 19). With these changes, the end result for the PE path meets 

both requirements of accurate simulation of a flight path and the necessary consistency 

for JAR creation. 

 

 

Figure 19: PE Path with LPF 
 
 
 The final aspect of PE path generation is generation of multiple unique paths. As 

previously stated, this process is achieved through augmenting map weights after 

multiple iteration of the AMP algorithm. The weights are distributed along the path in 

large circles that condense to a fixed smaller size as the path continues (Figure 20) 
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Figure 20: Condensing Circles for Multi-path 
 
 
 There are three reasons as to why condensing circles were chosen to weight a 

given path. The first is to influence the path to deviate at the start, which is achieved by 

the large circles at the beginning of a path. By applying a weight over a larger area at the 

first part of the path, the AMP algorithm will be forced to maneuver around or through 

the weighted zone, which will cause a new path to be created. The second reason 

condensing circles were chosen was to allow a new path to cross the old path if 

necessary, without the potential of the new path converging to the old path. The small 

gaps between the weighted circles allow this to take place. Because that area has no 

additional weight from the previous path, the new path is not discouraged to cross in that 

gap area. The final reason condensing circles were chosen is due to the fact that they 

provide nice curvature and overlap. The curvature of the circles provide smooth 

transitions for the path to take, while polygonal shapes would have sharp edges to 

traverse. Additionally, the overlap between circular map weights apply well. When the 
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weights begin to overlap from multiple runs of multi-pathing, the combined weights form 

fairly smooth overlapping areas that will keep the generated path from making abrupt 

changes in direction. All three of the reason for using condensing circles can be seen in 

Figure 21, which shows both the paths generated and the weights applied by condensing 

circles. In this figure the dark blue areas are lethal zones and weighted areas' magnitudes 

are equivalent to the brightness of color. 

 
 

 

Figure 21: Multi-Path Development (1000 Unique Paths) 
 
 
 The PE path can be generated via the AMP algorithm and post processed with a 

low-pass filter. The system’s next priority is to calculate JARs for EA path development. 

 
 
 
 
 



37 
 

JAR Construction 
 
 JAR construction is a complex area of research. There are many parameters from 

both the enemy radar and EA that greatly affect the resulting JAR. However, the paper by 

the mission planning team at Baylor on JAR generation [2] derives how to fully develop 

JARs given the enemy radar and EA parameters. The area of this paper that is of 

particular interest is how JAR generation is accomplished at a particular altitude via 

intersection using three different jamming techniques: preemptive main lobe, side lobe, 

and out of alignment jamming. This is achieved by modeling the JARs as geometric 

intersections of the detection radar pattern with the altitude plane. This paper derives this 

process of JAR generation in great detail and is the same method used in this system. 

Figure 22 shows the JARs calculated for a given PE path using the above JAR generation 

method. 

 

 

Figure 22: JAR Generation from Geometric Intersection (Rectangular Model) 
 
 
EA Path Generation 
 
 Finally, with JAR construction completed EA path generation, the last phase of 

the mission planning system can take place. On the surface EA path generation is very 
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similar to PE path generation. They both use a parallelized instance of the AMP 

algorithm and both navigate waypoints across a map. In addition, they also require post 

processing via low-pass filtering. However, the difference is that EA path generation has 

hundreds, if not thousands, of waypoints, where these waypoints are selected from 

hundreds, if not thousands, of JARs. 

 As previously mentioned, each point on the selected PE path that is within the 

enemy radar range has its own JAR associated with it. With higher resolution paths and 

longer lengths of paths within enemy radar range, more JARs will be created. For each 

JAR created a waypoint must be selected within the JAR in order for the EA to 

adequately jam for the PE. Waypoint selection is done simply by finding the point within 

a JAR that is the closest to the current EA waypoint and the next PE path location. This is 

accomplished by calculating the sum of the distance between the current JAR location, 

the current EA waypoint, and the next PE path location. The EA waypoint selection 

equation below illustrates this relationship, where ௡ܹ is the waypoint to be selected, 

ௐ೙షభܬ
 is the vector of distances from the JAR to the previous waypoint, and ܬ௉ாାଵ is the 

vector of distances from the JAR to the next PE point 

 
௡ܹ ൌ min	ሺܬௐ೙షభ

൅	ܬ௉ாାଵሻ 
 
 The location with the minimum value will be the desired waypoint. This process 

is run on all JARs and creates a constellation of waypoints for the AMP algorithm to 

solve. Figure 23 shows the EA waypoint constellation on (left) and the EA path generated 

(right, black plot). Note that the shape of the constellation of waypoints resembles the EA 

flight path shown with the black plot. The figure on the left is enlarged so that waypoint 

JARs can be seen.   
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Figure 23: EA Waypoint Constellation and EA Path 
 
 

At this point, massive parallelization will take place, because there are hundreds 

to thousands of waypoints to navigate. While this may seem like a daunting task, it does 

not take substantial run time to execute using a standard computer system. This is due to 

the fact that many of the legs are only a small distance apart and require little-to-no 

pathfinding. However, the reason the AMP algorithm must be run for each leg of the 

constellation is because the distances of the waypoints are not guaranteed and require 

little-to-no-path finding. For instance, when a PE path passes in and out of multiple 

enemy radar ranges, the resulting JARs could be generated far apart. For this reason the 

AMP algorithm is still required for each leg because a lethal zone or another enemy radar 

may be between two EA waypoints.  

With the navigation of the EA waypoint constellation and low-pass filtering of the 

EA path, the solution to a given mission is completed. Both the PE path and EA path 

have been generated and meet all the waypoint and jamming requirements. The next 
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chapter will focus on the results of each component of the mission planning system and 

the overall results of the system as a whole. 
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CHAPTER FOUR 
 

Results 
 
 
 This chapter will discuss the results of each component of the mission planning 

system and the results of the mission planning system as a whole. The goals for the 

system are to provide a solution to the pillars of the mission planning problem, which are 

effective jamming, proper auto-routing, scenario modeling, and runtime. Each component 

will be measured by its effectiveness within these four pillars in order to determine the 

overall results of the system and individual components. An emphasis will be place on 

the runtime results of each component due to the importance of runtime within mission 

planning. Please note that all of the following results were taken from a 1000x1300nmi 

mission size. 

 
Scenario Modeling Results 

 
 The scenario modeling component of the system performed well in terms of both 

accuracy and runtime due to the nature of DTED. Because DTED is a commonly used 

standard with high levels of accuracy, the resulting terrain reflected is accurate. Also, 

since higher levels of DTED are used internally by the government, the system can easily 

facilitate higher resolution landscapes in their hands. Another property of DTED that lead 

to a successful system component is its size. DTED can be loaded quickly and does not 

require massive processing. The specifics of this system’s performance are seen in Figure 

24, which displays the DTED rendering of the mission as well as a runtime of 2.195s for 

the scenario modeling component. It is clear that the system executes quickly and the 
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terrain generated is accurate to the level of DTED. However, higher levels of DTED 

would allow for this system to achieve greater resolution and improve the system 

accuracy as a whole. Having access to these levels would further the goals of this work. 

However, because these levels are classified the current DTED available will suffice. 

 

 

Figure 24: Scenario Modeling Result, Runtime = 2.195s 
 
 

Map Generation Results 
 
 The primary purpose of map generation is to create an environment for the AMP 

algorithm that will facilitate a desirable path. This was accomplished through combining 

the scenario modeling component's output with the predefined threat radar longitude and 

latitude coordinates to form a matrix with properly weighted values. The map generation 

component is vital to auto-routing and the weights set by this process greatly affect the 

resulting path. This system component performed quite well as it generates the desired 

weights for the range of the map and has a short runtime even on large maps. The results 
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of the map generation component can be seen in figure 25, where this component had a 

runtime of 3.298s.  

 

 

Figure 25: Map Generation Result, Runtime = 3.298s 
 
 

Preliminary Mission Check Results 
 
 The preliminary mission check is a simple implementation of the AMP algorithm 

upon a weightless map. Because this process requires navigation of a large weightless 

map, runtime for the mission check is not negligible (in this case about 15.4832s). 

However, the check does run expediently enough to still be beneficial to the system. By 

spending a small portion of time on the mission check, hours of calculation can be 

avoided by predetermining if a mission is not solvable. Figure 26 shows the results of the 

mission check and the runtime required.  
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Figure 26: Preliminary Mission Check Result, Runtime = 15.4832s 
 
 

PE Path Generation Results 
 
 PE path generation is one of the more computationally intensive components of 

this system. This is due to the complex nature of navigating a large weighted map 

between multiple waypoints. The longer runtime is partially mitigated by the parallelism 

of the AMP algorithm, however, runtime is still in the order of minutes for a single path. 

In the case of multi-path development, PE path generation can be cumbersome depending 

on timing requirements and the number of desired paths. Figures 27 and 28 shows the 

results for single and multi-path PE generation, where single-path generation had a 

runtime of 22.840s and multi-path had a runtime of about 4 hours. While these results 

clearly point to PE path generation as one of the longest run times in the system, the 

process is still more expedient in comparison to the current state of many other mission 

planning systems. 
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Figure 27: PE Path Generation Result, Runtime = 22.840s 
 

 

Figure 28: Multi-Path Result (1000 Unique Paths), Runtime = ~4hr 
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JAR Construction Results 
 
 The JAR construction component performed well in both runtime and accuracy. 

The JARs created by this system aligned properly with the given PE path and also 

executed quickly. Despite longer PE paths, JAR construction still performed quickly 

(13.987 s) and provides a fast accurate output to the final stage of mission planning. 

Figure 29 shows the resulting JARs using the rectangular intersection method. 

 

 

Figure 29: JAR Construction Result, Runtime = 13.987s 
 
 

EA Path Generation 
 
 EA path generation sits alongside PE path generation in terms of computational 

intensity due to the nature of EA path generation, which requires hundreds to thousands 

of paths to be generated. EA path generation does not experience gigantic run times due 

to calculating these paths in parallel. Additionally the majority of these paths are short 

and require little path planning. The results of this process can be seen in Figure 30 with a 

runtime of 278.934s. 
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Figure 30: EA Path Generation Result, Runtime = 278.934s 
 
 

Mission Planning System Results 
 
 The results of the mission planning system that have been discussed in this thesis 

are contained in the MATLAB output in figure 31. The overall system performance result 

is successful. The accuracy of the system is sound, due to its foundation on DTED, and 

the overall system runtime is satisfactory. The following is a benchmark of all the 

processes involved in the system and their performances. 
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Function Name Function Type Calls Total Time % Time Time Plot 

nav_ea_waypoints function 1 424.185 s 75.5%  

gen_ea_waypoints function 1 59.729 s 10.6%  

createEA_JAR function 1 17.389 s 3.1%  

nav_waypoints function 1 16.189 s 2.9%  

mission_check function 1 15.540 s 2.8%  

get_EA_Fields function 1 13.291 s 2.4%  

createEA_MAP function 1 6.500 s 1.2%  

displayjars_rsolov3 function 1 3.370 s 0.6%  

createmap function 1 2.220 s 0.4%  

plotpath3 function 1 1.840 s 0.3%  

plotpath2 function 1 0.340 s 0.1%  

plotpath function 1 0.340 s 0.1%  

smooth_paths function 3 0.120 s 0.0%  

buildthreatmodels function 1 0.060 s 0.0%  

Totals     561.823 s 100%   

 

Figure 31: Mission Planning System Benchmarks 
 
 

While this is only a foundation solution, the groundwork has been laid in order to 

create a more dynamic system to solve radar jamming escort missions. The next chapter 

will conclude this work and discuss possible enhancements to the current system, as well 

as future work in the field of mission planning for radar jamming escort missions. 
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CHAPTER FIVE 
 

Conclusion 
 
 
 This thesis has developed a MATLAB based tool to assist with mission planning 

for radar jammer escort missions. The approach we take in developing this tool integrates 

the use of DTED information, a novel approach for map creation and weighting, and 

features a modified A* path planning algorithm. The MATLAB framework was tailored 

for the AMP algorithm, an augmented version of the A* pathfinding algorithm, which 

was specifically tuned for generating mission solutions. The AMP algorithm generated 

satisfactory PE paths that are then used in JAR construction to allow for the final phase of 

the system. Next, the EA path was then derived from the JARs based on automated 

waypoint selection and a parallelized AMP algorithm. The end result is a demonstrated 

capability for generating successful PE and EA paths, where the EA is providing 

jamming for both aircraft properly in order to fulfill the desired mission. The following 

sections will discuss briefly possible enhancements to the mission planning system, as 

well as future work in the field. 

While this system does provide a satisfactory mission solution, there are areas of 

the system that can be enhanced to provide a more favorable output. The first 

enhancement that could be made is to use higher resolution DTED. This will produce a 

higher resolution map and, in turn, a higher resolution output. A higher resolution output 

will require a longer runtime, but because the system is built on algorithms favoring 

speed, the increased resolution should not cause the system to become ineffective. It 
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would also be desirable to more thoroughly evaluate the capabilities of our system using 

realistic EA and enemy radar parameters. While these values are classified, incorporating 

them into the system would allow for more accurate radar ranges and jamming models. 

Finally, implementation of more advanced JAR generation techniques would provide 

more accurate EA paths. Since this model uses the rectangular intersection method as 

opposed to the more accurate elliptical and ellipsoid intersection methods, improvement 

can be achieved by using one of the latter two methods. This would come at the expense 

of increased runtime.   

There is significant future work that could be done to improve this tool. In this 

particular case there are two key research areas that could potentially push this thesis' 

solution to the next level. The first is the adoption of a global and local planner model, 

which is seen in J.P. van den Berg's dissertation [5]. This path planning model works by 

having two planners generating solutions, where one operates on a large scale and guides 

the local planner that is calculating a path at a much higher resolution. The second idea is 

to incorporate the ability to run the system adaptively in real-time for the purpose of 

reacting to a changing mission environment and guide the EA and PE paths 

simultaneously. This will require a significant amount of research, and most likely, 

specific hardware to accommodate the computational complexity. The adaptability of this 

system could be derived from Berg's work [5] in conjunction with Trower's thesis [6] on 

porting high level path planning algorithms to FPGAs, which could be used to develop a 

hardware solution. 

In summation, with the system developed in this thesis and the future work in the 

field, solutions to the Navy's mission planning problems are within reach. This research 
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hopes to aid in the development of mission solutions in order to expedite the process of 

mission planning and to develop solutions that will help save lives. 
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