
ABSTRACT

Neural Network Watchdog for Out-of-Distribution Input Mitigation
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Neural networks have often been described as black boxes. The prevalence of pub-

licly available neural networks and the application of transfer learning has allowed for the

development of systems with minimal understanding of the data distribution. For example,

a generic neural network trained to differentiate between kittens and puppies will classify

a picture of a kumquat as either a kitten or a puppy, despite the kumquat residing outside

the known data distribution. The neural network watchdog is a technique which screens

trained classifier and regression machine input candidates to determine the distribution va-

lidity, and allows for methods of out-of-distribution removal with minimal performance

impact.
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CHAPTER ONE

Introduction

One of the hottest areas of research and development in the disciplines of electri-

cal and computer engineering is artificial intelligence. John McCarthy defines artificial

intelligence as ”the science and engineering of making intelligent machines, especially in-

telligent computer programs.” [54]. One of the most popular sub-spaces within artificial

intelligence is machine learning. Mariam Webster defines machine learning as ”the pro-

cess by which a computer is able to improve its own performance (as in analyzing image

files) by continuously incorporating new data into an existing statistical model” [93]. With

the ever-increasing availability of cloud-based and distributed computing, coupled with the

proliferation of open-source tools and exciting news headlines, interest in machine learning

has grown tremendously.

Machine learning has applications in a variety of fields, from medical systems and

financial analysis to robotics and machine vision. The various applications often require

different system designs and implementations, however the challenges encountered are of-

ten similar. At it’s core, machine learning consists of three primary categories: unsuper-

vised learning, supervised learning, and reinforcement learning.

Unsupervised learning techniques allow for a system to recognize patterns within

data, without matching it to specific identifications. Unsupervised learning methods in-

clude clustering methods, principal and independent component analysis, autoencoders,

generative adversarial networks, and transformers. Applications of unsupervised learning

include computer vision systems, recommendation engines, and anomaly detection.

Supervised learning techniques use labeled data to train a system to match particular

patterns to a specific identification. Supervised learning methods include Naive Bayes
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models, support vector machines, regression models, and neural networks. Applications of

supervised learning include object recognition, sentiment analysis, and predictive analytic.

Reinforcement learning techniques differ from those of supervised and unsuper-

vised learning. Reinforcement learning is based on trial and error, where the system, or

agent, is rewarded or penalized for actions taken based on the outcome. The agents are

provided the capability to interact with their environment through actions and observations.

Applications of reinforcement learning include autonomous vehicle and robotics control,

game-play systems, and industrial automation.

One driving factor in the new machine learning boom is the development of various

open-source machine learning toolboxes, such as FastAI, PyTorch, and TensorFlow. The

prevalence of these toolboxes has allowed for the rapid design, development, and evaluation

of machine learning models. These models have been used in a variety of applications,

including various classification and regression tasks such as object identification, stock

price prediction, and component failure prediction.

Many of these models are available as open-source, and can be readily deployed us-

ing only a few lines of code. Listing 1.1 shows an example implementation of RESNET50

[29], an open source model which used for image recognition. At this point, the model is

ready to be trained, although it is common practice to implement preprocessing on the data

to help optimize performance.

inputs = tf.keras.Input(shape=(224, 224, 3))

RN50 = tf.keras.applications.resnet50.ResNet50(

include_top=True, input_shape=input_shape ,

weights=’imagenet’, classes=1000,

classifier_activation=’softmax’

)(inputs)

model = tf.keras.Model(inputs, RN50)

Listing 1.1: Implementation of a RESNET50 Image Classification Neural Network

2



Many of the open-sourced models are utilized by taking advantage of a technique

known as transfer learning. Transfer learning allows existing models to be used by copying

some, or all, of their layers, training weights, and biases into new models. This allows

newly developed models to take advantage of state-of-the-art performance without having

to design an entirely new model from scratch.

While the design and development of models has been made easier with these tool

boxes, the quality of a model ultimately depends on the quality of the training data. Data

which is used to train and evaluate a model is also known as in-distribution data. In an ideal

scenario, a deployed model will only interact with in-distribution data, which results in a

high confidence output. One of the biggest challenges to real-world deployments, however,

is the identification and mitigation of out-of-distribution data.

Chapter Two provides a historical review of the current techniques to identify out-

of-distribution data. To address the issues associated with out-of-distribution data, the neu-

ral network watchdog technique has been developed to identify out-of-distribution data

and mitigate it’s impact on model performance. Chapter Three introduces the high level

concepts of the neural network watchdog, which are then demonstrated in Chapter Four.
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CHAPTER TWO

Historical Review and Literature Survey

The prevalence of neural networks continues to increase as the tools and techniques

for regression and classification tasks become more readily available. Despite their recent

popularity, neural networks date back to the 1950’s, when Rosenblatt et al. created the first

functional perceptron [72]. Research and development associated with neural networks has

continued since the development of the perceptron, and in more recent years has garnered

public attention with events such as AlphaGo’s successful defeat of Lee Sedol [21]. An

introductory overview of the history of neural networks is provided by Yadav et al. [99].

The increase in popularity, both academically and industrially, has been spurred by

and helped to spur the rapid development of open source tools, such as TensorFlow [1] and

PyTorch [65]. Various implementations of neural networks, developed using these tools,

can be found throughout a variety of industries. Garg et al. published a survey of neural

network techniques present in the medical industry in [20], which discusses the use of var-

ious deep neural network techniques, such as Convolutional Neural Networks and Support

Vector Machines as they apply to a variety of medical topics. Similar studies have been

published which discuss applications such finance [62], oil and gas [27], manufacturing

[76], agriculture [39], and autonomous driving [24].

2.1 Out-of-Distribution Detection

As mentioned in Chapter One, one of the biggest challenges associated with neural

networks is the impact of identifying and the process to mitigate out-of-distribution data.

As systems become more complex, and pipelines are transitioned from evaluation to pro-

duction environments, the need for online out-of-distribution detection increases [28]. Out-

of-distribution detection is often times closely coupled to anomaly detection [22, 31, 60],

often referred to as novelty filtering [14, 26, 79, 80].
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There have been several techniques applied to identify anomalous data, as demon-

strated by the surveys performed by Chalapathy and Chawla [11], Thudumu et al. [82],

and Pang et al. [63]. Bulusu et al. [10] and Wang et al. [89] provide a more in-depth

analysis of the various techniques used in deep neural network anomaly detection. Several

of these techniques are highlighted in the following sections. While the techniques intro-

duced have shown vast improvement in anomaly detection, several challenges still remain,

as demonstrated by Nguyen et al. [59].

2.1.1 Probability Based Models

One common approach to anomaly detection is the use of probabilistic models, such

as those presented by Ren et al. [71] and Hechtlinger et al. [30]. These approaches have

demonstrated improvements over more traditional probability methods, such as the soft-

max based probabilities discussed by Hendrycks and Gimpel [31]. The probability models

are not limited to image tasks, however, other tasks such as network intrusion detection

[40] also take advantage of probabilistic models.

2.1.2 Component Analysis Techniques

The use of principal component and independent component analysis have gained

traction as methods for anomaly detection. Huang et al. [33] provide a good introduction

to principal component analysis based anomaly detection. Wang, Yang, and Li [88] discuss

the use of independent component analysis, coupled with Bayesian platforms for anomaly

detection. Principal and independent component analysis techniques have commonly been

used for anomaly detection in hyper-spectral data analysis [25, 36, 38, 50], as well as in

network intrusion detection systems [3, 15, 16, 90, 96].

2.1.3 Clustering Techniques

Many machine learning applications use clustering techniques for classification and

regression. Clustering methods allow for anomaly detection by examining several metrics,
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including distance [5, 43, 45, 47, 53, 57, 69]. One limitation associated with anomaly de-

tection clustering techniques is the decreased performance in the presence of large numbers

of anomalous data.

2.1.4 Autoencoders

The area of anomaly detection that is of most interest to this research is the autoen-

coder. Autoencoders have demonstrated successful anomaly detection [52, 70, 75, 104]

through a variety of methods, including feature extraction [73, 101, 98], probabilistic re-

construction [4, 46, 94], latent representation analysis [66, 77, 86], generative exploitation

[51], and reconstruction error analysis [7, 8, 9, 17, 18, 42].

2.2 Autoencoders

The autoencoder is a fundamental component of the neural network watchdog. Au-

toencoders have demonstrated use in a variety of applications beyond anomaly detection.

Some of the more popular applications of autoencoders include noise reduction [12, 23, 49,

84, 102, 103], object detection [19, 44, 55, 68], feature extraction [56, 67, 74, 97, 100], and

data generation [32, 35, 41, 87].

As an unsupervised learning method, the autoencoder implicitly learns by estimat-

ing a lower dimensional manifold on which training data lives [80, 81]. The feature space

dimension is determined by the cardinality of the autoencoder’s input and output. The di-

mension of the latent representation is determined by the size of the bottleneck or waist

layer of the autoencoder. As a result, data presented to a properly trained autoencoder will

generate an output similar to the input [7].

The ability to generate an output which is similar to an input is leveraged by the

neural network watchdog [7, 8, 9]. When out-of-distribution data is presented to a trained

autoencoder, an output is generated which deviates from the initial input. This deviation

is leveraged by calculating an error and comparing it to a determined threshold. Errors

exceeding the threshold are labeled as out-of-distribution and are discarded.
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CHAPTER THREE

Methods

The neural network watchdog is a technique which can help mitigate the impact of

out-of-distribution data on classification and regression networks. This is achieved by using

a generative network to reconstruct the input data and using this reconstruction to calculate

a difference score. The difference score is compared to a threshold in order to determine

whether input should be considered in or out of distribution. The selection of threshold

criteria is application specific, and may be adjusted to match desired system performance.

The following chapter outlines the design and implementation methodology of a neural

network watchdog.

3.1 The Neural Network Watchdog

A neural network watchdog can be implemented in a variety of architectures, and

can vary greatly in size, scale, and complexity. These architectures fall in to three primary

categories, Disjoint, Symbiotic, and Multi-tier. All three of the watchdog categories are

comprised of three core components:

(1) Generative Network or Component

(2) Error Measurement Mechanism

(3) Defined Error Threshold

3.1.1 Generative Component

An autoencoder is used as the generative component of the watchdog. As seen

in Chapter Two, autoencoders show remarkable flexibility, but are of specific interest due

to their generative capabilities. An autoencoder can be decomposed in to two primary

components, an encoder and a decoder, which share a common latent space. Figure 3.1

shows an example structure of an autoencoder.
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Figure 3.1: An autoencoder is comprised of an encoder and decoder, with a shared latent
space.

When out-of-distribution data is presented to a trained autoencoder, an output is

generated which deviates from the initial input. This deviation is leveraged by calculating

an error and comparing it to a determined threshold. Errors exceeding the threshold are

labeled as out-of-distribution, and are discarded.

3.1.2 Difference Measurement

A variety of input difference measurement techniques exist, each with their own

advantages and disadvantages. Some of the most common calculations are distance based

measures, including the mean squared error (MSE), root mean squared error (RMSE), and

mean absolute error (MAE). Equations for these calculations can be found in Equations 3.1,

3.2, and 3.3 .

MS E =

∑
(x − x̂)2

n
(3.1)

RMS E =

√∑
(x − x̂)2

n
(3.2)
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MAE =

∑
|x − x̂|
n

(3.3)

These calculations can be readily applied to a variety of different data types such as

images and time-series sequences. There are times, however, where more advanced calcu-

lations may be required. For example, structural similarity, or SSIM, is a well demonstrated

image similarity technique [91, 92], which is commonly used in modern video and image

analysis. The calculation for structural similarity can be found in Equation 3.4 [91]. As

can be seen, the difference calculations can increase greatly in complexity.

S S IM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.4)

The constants C1 and C2 are defined by Equations 3.5 and 3.6, where L represents

the data input range value, and K1 and K2 are constants with a value Kn << 1 [91].

C1 = (K1 ∗ L)2 (3.5)

C2 = (K2 ∗ L)2 (3.6)

3.1.3 Defined Error Threshold

The selection of an appropriate threshold is determined based on the desired perfor-

mance of the system. There are a number of trade-offs or concessions that may be made,

depending on the desired level of out-of-distribution filtering. For example, a very tight

threshold (i.e., a low RMSE value), may result in fantastic out-of-distribution detection,

but may also result in the elimination of a considerable number of in-distribution inputs

as well. Conversely, a loose threshold may allow for nearly all in-distribution inputs to be

accepted, but also permit a multitude of out-of-distribution inputs to be accepted as well.

In disjoint and symbiotic watchdogs, the threshold comparison aspect of the watch-

dog is simply an evaluation of the difference measurement and the threshold. In a multi-tier

watchdog, several different thresholds may be required, depending on the techniques used
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Figure 3.2: The structure of a disjoint watchdog. This structure allows for independent
training and deployment of the core and generative networks.

at each tier. Table 3.1 shows a high level summary of some of the trade-offs between design

complexity, design flexibility, and training complexity associated with the three architec-

tures.

3.2 Disjoint Neural Network Watchdog

The most simple watchdog architecture is the disjoint watchdog, which is com-

prised of entirely independent generative and core networks [7]. This allows for the gen-

erative network to be designed and developed without impacting the design of the core

classification network. Figure 3.2 shows the structure of a typical disjoint watchdog, where

the output of the threshold comparison is passed into the classifier if it is determined to be

in-distribution, and is otherwise discarded.

One of the advantages to the disjoint watchdog is the ability to train and deploy the

generative component and the core classifier independently. This flexibility allows for the

continuous improvement of both networks with minimal impact to the other, and greatly

simplifies the input pipeline when compared to other watchdog architectures.
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Figure 3.3: The structure of a symbiotic watchdog. This structure takes advantage of shared
input layers, which allows for the watchdog to make decisions based on the same latent
space representations as the core classifier.

3.3 Symbiotic Neural Network Watchdog

The symbiotic watchdog architecture is comprised of a hybrid generative-classification

network, where the generative network and core classifier share common input layers up

to the latent space [8]. Figure 3.3 shows the general structure of a symbiotic watchdog.

This structure allows the watchdog to determine input validity on the same latent space

representations that are used in the core classification network.

Since the core classifier and the watchdog share the layers between the input and

the latent space, training the symbiotic network must take in to account the impact of back-

propagation from two output sources. The symbiotic network must take bias and weight

impacts from both the generative and classification components, which leads to a more

complex development, training, and deployment process. The trade off for this complexity

is that this architecture leads to higher accuracy and more optimized computational perfor-

mance.
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Figure 3.4: An example multi-tier watchdog structure which combines an autoencoder
with a binary classifier. This type of structure allows for a less stringent threshold function,
while still providing similar out-of-distribution detection performance.

Table 3.1: Watchdog Architecture Summary

Architecture Design Complexity Design Flexibility Training Complexity
Disjoint Medium Low Low

Symbiotic Medium Medium High
Multi-tier Varies High Varies

3.4 Multi-tier Neural Network Watchdog

The multi-tier neural network watchdog is comprised of multiple sub-networks,

which are combined to provide more advanced data distribution detection capabilities. This

architecture allows for the use of different threshold settings and analysis techniques by

combining different neural network types. One example is the combination of an autoen-

coder and a binary classifier, where the autoencoder uses a standard error function for the

threshold, and the binary classifier is then used to further differentiate between low-error

out-of-distribution and in-distribution inputs [18]. An example of this type of architecture

can be seen in Figure 3.4.

Other potential multi-tier architectures exist as well, such as the example seen in

Figure 3.5. Since various sub-networks can be combined based on desired performance
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Figure 3.5: An example multi-tier watchdog structure which uses two autoencoders, one
designed for grayscale images and one for color images, which both feed into the difference
measurement.

criteria, the multi-tier approach allows for the greatest flexibility, at the cost of complexity

and scalability. Table 3.1 shows the subjective design complexity and flexibility of the

different watchdog architectures, as well as the associated training complexity.

3.5 Implementing a Neural Network Watchdog

The design, development, and deployment of a neural network watchdog can vary

depending on the type of watchdog being developed. Disjoint watchdogs may be designed,

trained, and deployed entirely separate from the core classification network. Since symbi-

otic watchdogs share layers with the core classifier, the combined network must be trained

prior to deployment. The process for implementing a multi-tier watchdog will vary de-

pending on the specific design.
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3.5.1 Training a Neural Network Watchdog

The successful deployment of a neural network watchdog is directly dependent

upon the quality of the generative component’s training. The training processes for each of

the disjoint, symbiotic and multi-tier watchdogs is described below.

3.5.1.1 Disjoint Watchdog Training. The training process for a disjoint watch-

dog focuses on the autoencoder training process. Once the structure of the autoencoder

has been defined, it is trained using the identical training data used to train the core clas-

sifier. The training process for the autoencoder is not required to use the same training

hyperparameters as the core classifier.

3.5.1.2 Symbiotic Watchdog Training. The training process for a symbiotic

watchdog involves simultaneous training of the core classifier and generator components.

Since both the generator and classifier share common layers, the back propagation portion

of network training adjusts weights based on both loss functions. The loss weights of

each component must be adjusted to simultaneously optimize classification accuracy and

generator quality. An example of how loss weights are defined in a model can be found

Listing in 3.1.

symbiotic.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=.001),

loss={

"Classifier": tf.keras.losses.categorical_crossentropy ,

"Generator": tf.keras.losses.MSE,

},

loss_weights=[1.0,0.75],

metrics = [’accuracy’]

)

Listing 3.1: Symbiotic Watchdog Weight Definition
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3.5.1.3 Multi-tier Watchdog Training. The training process for a multi-tier watch-

dog is similar to the disjoint watchdog. The training can be performed independently from

the core classifier, assuming no symbiotic methods are used. Depending upon the watch-

dog’s design, the training data may require modification to accommodate different distri-

bution detection mechanisms.

3.6 Deploying a Neural Network Watchdog

Once the watchdog has been trained and verified, it is ready for deployment. The

deployment can be treated as either an entirely new system, or as a modification to existing

systems, depending on the application.

3.6.1 Disjoint and Multi-tier Watchdog Deployment

Disjoint and multi-tier neural network watchdogs are typically deployed prior to the

core classifier, often as a part of the input pipeline. The watchdog is placed at the end of

the pipeline, enabling distribution mitigation after the preprocessing has been completed.

Generative network outputs are compared to their inputs, where any errors exceeding the

threshold are discarded. Outputs permitted by the watchdog are then passed directly in to

the core classifier.

3.6.2 Symbiotic Watchdog Deployment

Since a symbiotic watchdog is built in to the core classifier, the model can be de-

ployed with no additional modifications to the input pipeline. The classification output is

temporarily gated until the generator output has been verified. If the generator’s output and

input deviate in excess of the permitted threshold, the classification’s output is discarded.
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CHAPTER FOUR

Experimentation and Results

In order to demonstrate the feasibility of the neural network watchdog, several ex-

periments have been developed and performed to demonstrate the design, development and

evaluation of the different watchdog architectures on a variety of different input data types.

These experiments include the demonstrations of a disjoint, a symbiotic and a multi-tier

watchdog in coordination with an image classification network, as well as a disjoint watch-

dog used in coordination with a signal analysis and classification network.

4.1 Disjoint Watchdog Image Classifier Experiment

In this experiment, a disjoint watchdog is designed for use with a classification

neural network, which is designed to classify hand written digits from the MNIST dataset.

The disjoint watchdog will consist of an autoencoder for input reconstruction, combined

with a root mean squared error threshold function. In order to evaluate the feasibility of

the watchdog, out-of-distribution data from the Fashion MNIST [95] will be added to the

evaluation data.

4.1.1 Network Structures

For this experiment, both the core classifier and the autoencoder are convolutional

neural networks. The networks are designed independently from one another, and as such,

have slightly different architectures. It would be feasible to design the autoencoder using

several of the layers of the core classifier, however, for the purposes of demonstration, the

autoencoder has been developed from scratch.

4.1.1.1 Classifier Structure. The core classifier is comprised of three 2D convolu-

tion layers, with each layer paired with a pooling layer. After the convolution and pooling

layers, a flatten layer is used to reduce the representation to our latent space, which is one
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dimensional. Dropout is applied at this step to help mitigate over-fitting during training,

then a fully connected (dense) layer is added to reduce the latent space to the number of

classes present in the training and evaluation (in-distribution) dataset. A softmax activation

is then used for our output. Figure 4.1 shows the summary plot of the classifier.

4.1.1.2 Autoencoder Structure. The autoencoder architecture, shown in Fig-

ure 4.2, is designed as a separate encoder and decoder, seen in Figures 4.3 and 4.4 which

are then combined. The encoder is comprised of two 2D convolution layers, as well as a

flatten layer and a dense layer to produce a 16 element latent space. The decoder is com-

prised of a dense layer to convert the latent space back to the flattened dimension, then a

reshape layer to allow for transpose layers to be used. Three layers of transposes are used

to reproduce the original input shape.

4.1.2 Training and Evaluation Data

Two subsets of data are used for the training and evaluation of the core classifier,

disjoint watchdog, and the combined system. The training dataset is comprised of 60,000

in-distribution images, while the test dataset is comprised of 10,000 in-distribution and

10,000 out-of-distribution images.

4.1.2.1 In-Distribution Data. The MNIST dataset is comprised of 70,000 black

and white images of hand-written numbers, with values between 0 and 9. For the purposes

of this experiment, the dataset will be split in to 50,000 images for training, 10,000 images

for training validation, and 10,000 images for evaluation. The training, validation, and test

datasets contain an equal distribution of digit classes. An example of the MNIST digits can

be seen in Figure 4.5.

4.1.2.2 Out-of-Distribution Data. The Fashion MNIST dataset is also comprised

of black and white images of different types of clothing, such as boots, shoes, jackets, and

pants. The mixed distribution dataset will include 10,000 images from the Fashion MNIST
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Figure 4.1: The summary plot of the core classification convolutional neural network.
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Figure 4.2: The summary plot of the autoencoder neural network, which is the generative
component of the watchdog.

Figure 4.3: The summary plot of the encoder portion of the autoencoder, which is respon-
sible for generating the latent space representation of the input.
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Figure 4.4: The summary plot of the decoder portion of the autoencoder, which is respon-
sible for generating an output from a latent space representation.

Figure 4.5: Example images from the MNIST Dataset.
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Figure 4.6: Example images from the Fashion MNIST Dataset.

Table 4.1: Disjoint Watchdog Training Hyperparameters

Hyperparameter Value
Epochs 10

Batch Size 128
Dropout 0.15

dataset. Since the Fashion MNIST and MNIST images are both 28 by 28 pixel images,

no additional augmentation is required for this experiment. An example of the Fashion

MNIST clothing items can be seen in Figure 4.6

4.1.3 Training the Networks

The training process for both the core classifier and autoencoder is straight forward

with a disjoint watchdog. The classification network is trained to match the labels to an

input image, whereas the autoencoder is trained to match an input image to itself. Since

the networks are independent, they may be trained in either order, and if desired, using

different hyperparameters. For this experiment, the autoencoder and core classifier will use

identical hyperparameters, which are defined in Table 4.1.
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4.1.4 Threshold Evaluation and Selection

The threshold value is determined by the desired end performance of the system.

Once the autoencoder has been trained, it can be used to reconstruct the test images. Once

the test images have all been reconstructed, the difference function may be calculated for

each image. For this experiment, the RMSE is calculated for the in-distribution and the

out-of-distribution images. Figures 4.7 and 4.8 show examples of in-distribution and out-

of-distribution inputs, outputs, and difference images to the autoencoder.

Figure 4.7: Original, regenerated, and difference images of a sample from the MNIST
dataset. The RMSE for this example is: ≈ 4.1091

Figure 4.8: Original, regenerated, and difference images of a sample from the Fashion
MNIST dataset. The RMSE for this example is: ≈ 8.2966

The easiest method for determining a threshold using a distance based metric, such

as the RMSE, is to perform a brute-force calculation of how many images are permitted
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Figure 4.9: Number of images permitted by the watchdog, as a function of RMSE threshold
value.

at each threshold value. Figure 4.9 shows a breakdown of how many MNIST and Fash-

ion MNIST images are permitted at each RMSE value. From our observations, a RMSE

threshold value of between 4 and 5 is a strong candidate for selection.

4.1.5 Network Performances

With a potential threshold value selected, the network performances can be evalu-

ated. In order to evaluate the quality of the core classifier, the in-distribution accuracy will

be used. This accuracy serves as the baseline, and represents a best-case scenario for system

performance. The autoencoder and difference score are evaluated on the ability to distin-

guish between in-distribution and out-of-distribution images from the mixed-distribution

dataset. The final evaluation includes the autoencoder with difference score and the core

classifier, also known as the guarded classifier. The guarded classifier is evaluated on the

mixed-distribution dataset.

4.1.5.1 Core Classifier Performance. After training the core classifier with the

parameters described in Table 4.1, the core classifier scores a 98.62% accuracy on the in-

distribution test dataset. The Receiver Operator Curves, or ROC curves for the individual
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Figure 4.10: The ROC curves for the core classifier, by individual class.

classes, as well as the aggregated performance can be seen in Figures 4.10 and 4.11. These

curves indicate a strong ability to correctly classify the in-distribution test data.

4.1.5.2 Autoencoder Performance. After training the autoencoder with the hy-

perparameters mentioned in Table 4.1, the autoencoder is evaluated in coordination with

the difference score. Figure 4.12 shows the autoencoders performance as a function of the

RMSE value calculated between the reconstruction and original images. This curve indi-

cates a strong ability to differentiate between in-distribution and out-of-distribution data

contained in the mixed-distribution dataset.

4.1.6 Watchdog Guarded Classifier Performance

The watchdog guarded evaluation measures the combined autoencoder, difference

score, and core classifier performance as one unit. The input data is first evaluated by

the autoencoder and compared to the threshold, prior to being passed along as an input to

the core classifier. The performance of the watchdog guarded classifier is evaluated using

RMSE values of 4.0, 4.5, 5.0, and 5.5, which can be seen in Figure 4.13.
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Figure 4.11: The ROC curve for the core classifier’s aggregate performance.

Table 4.2: Number of mixed distribution test images permitted at certain threshold values

Threshold Value In-Distribution Out-of-Distribution
2.5 6086 5
3.5 9202 61
4.5 9879 433

7.25 10000 3074
12.0 10000 9746

As previously discussed, a threshold value between 4.0 and 5.0 provides strong

classifier performance while mitigating the impact of most out-of-distribution data. Ta-

ble 4.2 shows a breakdown of the number of in- and out-of-distribution images permitted

at certain RMSE threshold values. The final selection of the threshold value depends on

the application’s desired performance, and whether capturing all of the in-distribution data

is more valuable than rejecting all of the out-of-distribution data.

4.2 Symbiotic Watchdog Image Classifier Experiment

In this experiment, a symbiotic watchdog is designed to guard and classify images

from the MNIST dataset. The symbiotic watchdog will consist of a single input, multiple
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Figure 4.12: The Autoencoder ROC as a function of RMSE threshold value.

output network, combined with a root mean squared error threshold function. In order to

evaluate the feasibility of the watchdog, out-of-distribution data from the Fashion MNIST

and the KMNIST datasets will be added to the test data.

4.2.1 Network Structure

Unlike the disjoint watchdog, the symbiotic watchdog is comprised of a single in-

put, multi-output neural network. This network combines the generative capabilities of

the autoencoder with the classifier. This architecture allows the classifier and generator to

share a common latent space, which is also referred to as the waist. Figure 4.14 shows the

architecture of the symbiotic neural network. As can be seen, a single 28 by 28 pixel image

input produces a classification probability, as well as a reconstructed 28 by 28 pixel image.

4.2.2 Training and Test Data

As with the disjoint experiment, two subsets of data are used for the training and

evaluation of the symbiotic watchdog. The training dataset is comprised of 50,000 in-

distribution images, with an additional 10,000 images used for validation of the training.
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Figure 4.13: The ROC curves of the watchdog guarded classifier with RMSE threshold
values of 4.0, 4.5, 5.0, and 5.5.

The mixed distribution test dataset is comprised of 30,000 images, where 10,000 images

will be in-distribution and 20,000 will be out-of-distribution images.

4.2.2.1 In-Distribution Data. As with the disjoint watchdog, the symbiotic watch-

dog experiment will use the MNIST dataset with the same 50,000 training, 10,000 valida-

tion, and 10,000 test images. The training, validation, and test datasets contain an equal

distribution of digit classes.

4.2.2.2 Out-of-Distribution Data. The out-of-distribution data used in the mixed-

distribution test dataset will include 10,000 images from the Fashion MNIST dataset, as

well as 10,000 images from the KMNIST dataset. The KMNIST, or Kuzushiji-MNIST

[13], is also comprised of 70,000 28 by 28 pixel black and white images of cursive Japanese

characters. Since the Fashion MNIST, MNIST, and KMNIST images are all 28 by 28

pixels, this experiment also does not use any additional data augmentation. Examples of

the KMNIST images can be seen in Figure 4.15.

27



Figure 4.14: The structure of the symbiotic watchdog neural network.
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Figure 4.15: Example images from the KMNIST Dataset.

4.2.3 Training the Networks

One of the challenges associated with developing and training a symbiotic neural

network is understanding the impact of training bias. To demonstrate how adjusting the

weights of the classification and generator outputs of the symbiotic network, nine different

networks have been developed with varying weights. Table 4.3 shows the weight percent-

ages for the symbiotic networks. In addition to the nine symbiotic networks, a disjoint

watchdog is developed and trained to provide a comparison of watchdog techniques. All

of the networks are trained using the 60,000 image in-distribution MNIST dataset with the

hyperparameters shown in Table 4.4.

4.2.4 Threshold Evaluation and Selection

Determining the threshold for a symbiotic watchdog takes a similar approach as the

disjoint watchdog. The symbiotic network’s generator output is compared to the original

input image, and the RMSE is calculated. Figure 4.16 shows an example plot of the calcu-

lated RMSE values for the entire test dataset, measured on the Symbiotic-E network, which

utilizes 100% weights from both the classifier and generator outputs. There is variation in

the level of RMSE error with each symbiotic networks, due to how the weights and biases
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Table 4.3: Symbiotic Watchdog Training Weight Biases

Network Name Classifier Weight Generator Weight
Symbiotic-A 1.00 0.0
Symbiotic-B 1.00 0.25
Symbiotic-C 1.00 0.50
Symbiotic-D 1.00 0.75
Symbiotic-E 1.00 1.00
Symbiotic-F 0.75 1.00
Symbiotic-G 0.50 1.00
Symbiotic-H 0.25 1.00
Symbiotic-I 0.0 1.00

Table 4.4: Symbiotic Watchdog Training Hyperparameters

Hyperparameter Value
Epochs 10

Batch Size 64
Dropout 0.25

are adjusted during back-propagation. Figure 4.17 shows the number of images permitted

by the watchdog, as a function of the RMSE value for several of the symbiotic, as well as

the independent watchdogs. From these observations, a RMSE threshold value of between

2.5 and 3.5 is a strong candidate for selection.

4.2.5 Network Evaluations

The symbiotic watchdog is evaluated on several criteria, including training and eval-

uation times, in-distribution classification accuracy, unguarded mixed distribution classifi-

cation accuracy, and guarded watchdog classification accuracy.

4.2.5.1 Training and Evaluation Times. One of the proposed advantages to us-

ing a symbiotic watchdog is the reduced training and evaluation time. Table 4.5 shows a

breakdown of the training and evaluation times for all ten networks used in this experiment.

The training and evaluation was performed using the hyperparameters listed above using
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Figure 4.16: Sample plot of the RMSE values of the test dataset, generated by the
Symbiotic-E network.

a Google Colab1 GPU based notebook. While the training and evaluation times do vary

depending on resource availability, the symbiotic network has shown an approximate 17%

improvement in training time, and an approximate 40% improvement in evaluation time.

This improvement can be attributed to two major factors:

(1) Symbiotic watchdogs networks only require one data-loading cycle

(2) Symbiotic watchdog networks have fewer total parameters than disjoint watchdog

guarded networks

4.2.5.2 In-Distribution Accuracy. The in-distribution accuracy of the classifiers

can be seen in Figure 4.18. The performance for nearly all of the symbiotic classifiers

closely matches the performance of the independent classifier. Figure 4.19 shows the upper

left quadrant, which further highlights the strong performance of the classifiers. The only

observed exception is Symbiotic-I, where the zero percent classifier weight bias does not

permit improved accuracy as training progresses.

1Google Colab can be found at: https://colab.research.google.com/
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Figure 4.17: Number of images permitted by the watchdog, as a function of RMSE thresh-
old value, for the Independent and Symbiotic-E Watchdogs.

4.2.5.3 Unguarded Mixed-Distribution Accuracy. The unguarded mixed distri-

bution accuracy of the classifiers can be seen in Figure 4.20. The accuracy performance of

the symbiotic classifiers closely matches the performance of the independent network, with

the exception of Symbiotic-I as expected. The curves also match well with the 2:1 ratio of

out-of-distribution to in-distribution data of the mixed distribution test dataset.

Examples of the symbiotic watchdog reconstructions can be found in Figures 4.21,

4.22, and 4.23.

4.2.5.4 Guarded Symbiotic Classifier Performance. The guarded classifier per-

formance is evaluated using RMSE threshold values of 3.5, 4.0, and 4.5. Based on the

unguarded mixed distribution results, Symbiotic-I will be removed the remaining analysis.

The results of the three threshold evaluations can be seen in Figures 4.24, 4.25, and 4.26.

At first examination, Symbiotic-A shows very weak performance when implement-

ing the threshold function. This can be attributed to the zero percent generator bias dur-

ing training, which results in poor reconstruction performance. In addition, the indepen-

dent watchdog performs worse than the symbiotic watchdogs (excluding Symbiotic-A and
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Table 4.5: Symbiotic Watchdog Training and Evaluation Times

Network Name Training Time Evaluation Time
Symbiotic-A 203s 2.34s
Symbiotic-B 203s 2.65s
Symbiotic-C 202s 2.65s
Symbiotic-D 202s 2.24s
Symbiotic-E 197s 2.23s
Symbiotic-F 203s 2.25s
Symbiotic-G 203s 2.26s
Symbiotic-H 203s 2.24s
Symbiotic-I 204s 2.25s
Independent 244s 3.76s

Symbiotic-I) at similar RMSE thresholds. This difference can be attributed to the lower

RMSE values calculated for the autoencoder input regeneration.

4.3 Multi-tier Watchdog Image Classification Experiment

In this experiment, a multi-tier watchdog is designed to guard a traffic sign recog-

nition classification neural network. The multi-tier watchdog used in this experiment con-

sists of an autoencoder first tier and a binary classifier second tier. The autoencoder is

trained using identical data and hyperparameters as the core classifier, as seen with a dis-

joint watchdog experiment. The binary classifier is trained using a generated dataset, and is

designed to further differentiate between lower error out-of-distribution images and higher

error in-distribution images. In order to evaluate the feasibility of the multi-tier watchdog,

out-of-distribution from the CIFAR-10 and CIFAR-100 datasets will be added to the test

data.

4.3.1 Network Structures

The multi-tier watchdog experiment consists of three independent (disjoint) neural

networks, the autoencoder, the binary classifier, and the core classifier.
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Figure 4.18: The in-distribution test dataset classification ROC curves. The performance
of the symbiotic networks A through H, and the independent network are graphically in-
distinguishable.

4.3.1.1 Autoencoder Structure. The autoencoder structure can be found in Fig-

ure 4.27. The encoder portion of the network is comprised of four 2D Convolution layers,

with a max pooling layer applied after the second and fourth convolutions. The network

is then flattened and reduced to an 800 element latent space dimension. The decoder is

comprised of a fully connected layer and a reshape layer, followed by four 2D Transpose

layers, with an up sampling layer before the 1st and 3rd transpose layers. This structure

allows us to reproduce a standard image size of 32 by 32 pixels across three channels.

4.3.1.2 Binary and Core Classifier Structures. The core and binary classifier

structures follow a similar pattern to the encoding portion of the autoencoder, containing

four convolution layers, with pooling layers after the second and fourth convolutions. Batch

normalization has been implemented after the pooling layers in both of these networks,

which helps to reduce over-fitting. The binary and core classifier structures can be found

in Figures 4.28 and 4.29. There are two significant differences between the binary and core

classifiers:
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Figure 4.19: The upper left quadrant of the in-distribution test dataset classification ROC
curves. The performance of the symbiotic networks and the independent network are
graphically indistinguishable.

(1) The core classifier produces a 43 class softmax prediction output, whereas the

binary classifier produces a two class softmax prediction output.

(2) The binary classifier includes a 2D cropping layer to remove boundary artifacts.

4.3.2 Training and test Data

The multi-tier watchdog uses two subsets of data for training and evaluation. The

training set for the autoencoder and the core classifier will consist of in-distribution images

only. The training set for the binary classifier is generated using a modified and independent

version of the autoencoder.

4.3.2.1 In-Distribution Data. The German Traffic Sign Recognition Dataset, or

GTSRB, is used as the in-distribution data. The GTSRB is a color image dataset comprised

of approximately 51,800 images from 43 different classes of road signs [78]. The training

dataset for the autoencoder and core classifier will consist of 29,400 images, with another

9,800 images used for training validation. The test dataset will consist of 10,000 images,

which have been randomly sampled from the remaining approximately 12,600. To ensure
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Figure 4.20: The unguarded mixed-distribution classification ROC curves.

Figure 4.21: Original image and symbiotic reconstructions of a Fashion MNIST jacket.

Figure 4.22: Original image and symbiotic reconstructions of a MNIST nine digit.
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Figure 4.23: Original image and symbiotic reconstructions of a KMNIST Su character.

repeatability, the random sampling uses a seed value which ensures identical performance

across system and test iterations. An example of the in-distribution traffic signs can be seen

in Figure 4.30

4.3.2.2 Out-of-Distribution Data. The out-of-distribution data used in the mixed-

distribution test dataset includes 10,000 images from both the CIFAR-10 and CIFAR-100

datasets2. Both the CIFAR-10 and CIFAR-100 consist of 60,000 color images of various

animals and objects. Example images from the datasets can be seen in Figures 4.31 and

4.32.

4.3.3 Training the Networks

The training process for a multi-tier watchdog will vary, depending on the final

architecture and development process. For the watchdog proposed in this experiment, a

three phase training process is implemented. The hyperparameters for training the networks

can be found in Tables 4.6 and 4.7.

4.3.3.1 First Phase. The first training phase is responsible for the training of both

the autoencoder and core classifier. A data augmentation pipeline is developed to artifi-

cially increase the amount of training data through the use of various image manipulation

2More information about these datasets can be found at https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 4.24: ROC curves for the Symbiotic and Independent Watchdogs, using an RMSE
threshold of 3.5.

Table 4.6: Multi-tier Watchdog Training Hyperparameters for the Autoencoder and
Classifier

Hyperparameter Value
Epochs 25

Batch Size 128
Dropout 0.35

techniques. This augmentation allows both the autoencoder and the core classifier to be

trained for longer while mitigating the risk of over-fitting associated with small training

sample sizes. The parameters used for the image augmentation can be found in Table 4.8.

4.3.3.2 Second Phase. The second training phase is responsible for the training

and execution of an image generator network to build the dataset used to train the binary

classifier. In this phase, a generative network is developed using the same architecture

as the autoencoder [18]. The previously trained autoencoder and error function are used

to establish the training criteria for the generative network. The generative network is
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Figure 4.25: ROC curves for the Symbiotic and Independent Watchdogs, using an RMSE
threshold of 4.0.

Table 4.7: Multi-tier Watchdog Training Hyperparameters for the binary classifier

Hyperparameter Value
Epochs 5

Batch Size 64
Dropout 0.35

then trained to produce images within a certain percentage of the error determined by the

threshold. An example of the generated images can be seen in Figure 4.33.

4.3.3.3 Third Phase. The third phase of training uses the generator network to

produce a subset of the data used to train the binary classifier. The generator produces

images that are considered to be out-of-distribution, which are then combined with the

original training images to produce a two-class dataset. The binary classifier is then trained

on the two-class dataset.
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Figure 4.26: ROC curves for the Symbiotic and Independent Watchdogs, using an RMSE
threshold of 4.5.

Table 4.8: Training Image Augmentation Parameters

Augmentation Type Augmentation Value Description
Rotation Range 20 Allows for random rotations of up to 20 degrees

Width Shift Range .15 Allows for up to 15% horizontal shift
Height Shift Range .15 Allows for up to 15% vertical shift

Zoom Range .15 Allows for up to 15% image zoom
Horizontal Flip True Enables random horizontal flipping

Vertical Flip True Enables random vertical flipping
Rescale 1/255.0 Scales the pixel values to [0,1]

4.3.4 Threshold Evaluation and Selection

The threshold function for the multi-tier watchdog is a structural similarity mea-

surement [91, 92]. Initial calculations were made using an RMSE threshold, however, after

further evaluation, the performance of the RMSE system was not sufficient. Transitioning

the threshold function to the structural similarity measurement allowed for more reliable

image difference measurements across multiple color channels.
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Figure 4.27: Network structure of the multi-tier watchdog’s autoencoder.
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Figure 4.28: Network structure of the multi-tier watchdog’s core classifier.
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Figure 4.29: Network structure of the multi-tier watchdog’s binary classifier.
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Figure 4.30: Example images from the GTSRB dataset.

Figure 4.31: Example images from the CIFAR-10 dataset.

Figure 4.32: Example images from the CIFAR-100 dataset.
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Figure 4.33: Example images generated for the binary classification training dataset.

4.3.5 Network Evaluations

The multi-tier watchdog performance is evaluated on several criteria. The core

classifier is evaluated on the in-distribution classification accuracy. The autoencoder and

threshold function are evaluated on the ability to differentiate between in-distribution and

out-of-distribution data. The binary classifier is evaluated on the ability to differentiate

between near-threshold generated images and the original in-distribution images. The

watchdog is evaluated on the combined autoencoder, binary classifier and core classifier

performance.

4.3.5.1 Autoencoder and Threshold Evaluation. The autoencoder and difference

score are evaluated using the mixed distribution dataset. Figure 4.34 shows the ROC curve

of the autoencoder, as a function of the structural similarity score. Figures 4.35 and 4.36

show examples of original, reconstructed, and structural similarity difference images. Ta-

ble 4.9 shows the structural similarity score of both example images, as well as the RMSE

value as a point of reference.

4.3.5.2 Core Classifier Performance. The core classifier’s performance is eval-

uated on the in-distribution GTSRB images. The core classifier scores a 95.7% accuracy

across all 43 classes of the dataset. The normalized ROC curve can be seen in Figure 4.37.
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Figure 4.34: The ROC curve for the multi-tier watchdog’s autoencoder, evaluated on the
mixed-distribution test dataset.

Table 4.9: Structural Similarity and RMSE values for Figures 4.35 and 4.36

Image SSIM Difference Score Calculated RMSE
Direction of Travel Sign 0.8689 3.8384

CIFAR Boat Image 0.7081 5.8583

4.3.5.3 Binary Classifier Performance. The binary classifier is evaluated on a test

subset of the generated near threshold and the original in-distribution. The binary classifier

shows a strong ability to differentiate between the near-threshold out-of-distribution and

in-distribution images.

4.3.5.4 Unguarded Mixed Distribution Performance. The unguarded mixed dis-

tribution accuracy of the system can be seen in Figure 4.39. As expected, the performance

of the core classifier rapidly degrades with the introduction of out-of-distribution data. The

curve matches the 2:1 ratio of out-of-distribution to in-distribution data of the mixed distri-

bution test dataset.
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Figure 4.35: The original, autoencoder reconstructed, and difference images for a sample
sign image.

Figure 4.36: The original, autoencoder reconstructed, and difference images for a sample
CIFAR image.

4.3.5.5 Guarded Mixed Distribution Performance. The guarded classifier per-

formance is evaluated using a structural similarity score threshold of 0.85, 0.87, and 0.90.

The performance of the core classifier improves as the structural similarity score threshold

increases, as seen in Figure 4.40. As expected, the performance of the system increases as

the watchdog threshold becomes more stringent.

4.4 Disjoint Watchdog Signal Identification and Classification Experiment

In this experiment, a disjoint watchdog is designed in coordination with colleagues

at Virginia Tech [17] to guard a communications signal classification neural network. These

networks are designed to identify and classify various communication and radar based

waveforms. The disjoint watchdog consists of an autoencoder used for power spectral den-

sity reconstruction, coupled with a root mean squared error threshold function. In order to
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Figure 4.37: The ROC curve for the core classifier, evaluated on the in-distribution test
dataset.

evaluate the feasibility of the signal detection watchdog, out-of-distribution data is gener-

ated using MATLAB’s Time-Frequency toolbox.

4.4.1 Network Structures

Unlike the previous experiments, the network architectures of the signal classifier

and watchdog differ. The primary difference in network architecture is attributed to the

different input data types. The classifier is designed to work with raw waveform data,

whereas the autoencoder is designed to work with power spectral density data.

4.4.1.1 Classifier Structure. The classification network is a deep multi-layer per-

ceptron comprised of several fully connected, or Dense layers used in combination with

dropout layers. The network is designed to work with a 4,096 element Fast Fourier Trans-

form signal input to produce one of four waveform classifications. The structure of the

signal classification network can be seen in Figure 4.41.

4.4.1.2 Autoencoder Structure. The autoencoder network is comprised two sub-

networks, an encoder and decoder. The encoder is comprised of three 2D convolutional
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Figure 4.38: The ROC curve for the binary classifier, evaluated on the generated near-
threshold dataset.

layers, combined with a dense layer to produce a 16 element latent space representation.

The decoder is comprised of a dense layer which feeds in to four 2D transpose layers. The

autoencoder is designed to work with a power spectral density analysis of the signal. The

structure of the autoencoder can be seen in Figure 4.42.

4.4.2 Training and Evaluation Data

Two sets of data are used for the evaluation of the watchdog and signal classi-

fier. The training dataset is comprised of 40,000 in-distribution waveforms, and the test

dataset is comprised of 12,800 in-distribution waveforms, combined with 12,800 out-of-

distribution waveforms.

4.4.2.1 In-Distribution Data. The in-distribution dataset is comprised of wave-

form signals which fall in to one of the following four categories:

(1) Single Carrier

(2) Single-Carrier Frequency Division Multiple Access

(3) Orthogonal Frequency Division Multiplexing

(4) Linear Frequency Modulation
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Figure 4.39: The ROC curve for the unguarded core classifier, evaluated on the mixed-
distribution test dataset.

These signals categories are then further divided into 8 equal sets of 1,250 wave-

forms training and 400 test waveforms respectively, using the following modulation tech-

niques:

(1) BPSK

(2) QPSK

(3) 16-PSK

(4) 64-PSK

(5) 4-QAM

(6) 16-QAM

(7) 64-QAM

(8) 256-QAM

4.4.2.2 Out-of-Distribution Data. The out-of-distribution test data is comprised

of waveform signals which fall in to one of the following four categories:

(1) FM Radio Signals

(2) AM Radio Signals

(3) Bluetooth Low Energy 5.0 (BLE)

(4) White Noise
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Figure 4.40: The ROC curve for the multi-tier watchdog guarded core classifier with struc-
tural similarity scores of 0.85, 0.87, and 0.89.

As with the in-distribution dataset, these four categories are further divided into 8

equal sets of 400 test waveforms using the previously mentioned modulation techniques.

4.4.3 Training the Networks

The training process for the classification network is performed by first applying

various signal impairments to the waveforms, including phase offset, frequency offset and

various signal fading techniques [17]. Once these impairments have been applied, the

classifier is trained using a batch size of 128 waveforms, trained over 50 epochs.

The training process for the autoencoder network is performed similarly, with the

same signal impairments being applied to the training waveforms, prior to converting to

the power spectral density of the signal. The power signal density of each signal is then

used to train the autoencoder, using the same batch size and training epoch parameters as

the classification network.

4.4.4 Threshold Evaluation and Selection

The selection of a threshold function in this experiment varies from the previous

experiments, which relied on a signal value threshold for distribution determination. Based
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Figure 4.41: The signal classification network structure.
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Figure 4.42: The power spectral density autoencoder network structure.
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Figure 4.43: An example plot of the RMSE values of communication, radar, and unknown
signals.

on the experiments results, an RMSE range is selected, as opposed to a single value. An

example of the RMSE ranges for various signal types can be seen in Figure 4.43. The

threshold range is selected based on the minimum and maximum RMSE values calculated

on the in-distribution dataset.

4.4.5 Signal Classification Performance Evaluation

4.4.5.1 Core Classifier Performance. The performance of the signal classification

network is evaluated based the ability to classify signals which are subject the previously

mentioned perturbations. The performance of the classifier on the in-distribution dataset

can be seen in Figure 4.44.

4.4.5.2 Watchdog Performance. The addition of the watchdog for improves the

mixed-distribution when using higher fidelity FFT analysis. Figure 4.45 shows the aggre-

gated performance of the watchdog guarded classification network when using a 16,384

element FFT prior to autoencoder regeneration.
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Figure 4.44: The classifier performance of in-distribution data, as a function of SNR.

Figure 4.45: The watchdog guarded mixed-distribution performance of the classifier, as a
function of SNR.
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CHAPTER FIVE

Discussion and Conclusion

The design, development, and evaluation of four neural network watchdogs are pre-

sented. The neural network watchdog allows for the on-line detection of out-of-distribution

data in a machine learning system without the need for additional preprocessing. The data

presented demonstrates the proof of concept on image and waveform data, however, the

technique can be applied other data types as well.

The value of out-of-distribution data detection and filtering is evident when the va-

lidity of input data cannot be determined. The neural network watchdog is deployed to

allow for in-situ distribution detection, by being built into the input pipeline or designed di-

rectly in to the neural network. The techniques can be specialized to accommodate desired

system performance.

The three primary categories of neural network watchdogs, disjoint, symbiotic, and

multi-tier have all demonstrated the ability to detect and remove out-of-distribution data

from classification networks. The degree of performance improvement is related to several

factors, including complexity of the data, availability of training and evaluation data, and

the complexity of the core and watchdog networks. The three categories have advantages

and disadvantages compared to one another.

The disjoint watchdog is the most simple architecture to develop and deploy. It’s

independent architecture allows for easy deployment in the data pipeline with minimal

execution impact. This fact allows the disjoint watchdog to be developed for an existing

system, including black box networks, if access to the training data is available.

The symbiotic watchdog is more constrained in terms of development and deploy-

ment when compared to the disjoint architecture. Since the symbiotic network is designed
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directly into the core network, a symbiotic watchdog cannot be implemented on an exist-

ing system without first retraining the network. With shared latent space representations,

however, the symbiotic neural network has demonstrated higher reliability detection with

reduced computational costs.

The multi-tier watchdog approach allows for the most design flexibility. The com-

position of multiple watchdog layers allows for the fine tuning for optimal performance,

however, the costs of development and deployment increase as tiers become more complex.

The deployment of a multi-tier watchdog is similar to that of a simple disjoint watchdog,

allowing the system to be applied to an existing neural network.

The selection of a difference function and the threshold value will also vary with the

type and complexity of data. For example, an RMSE threshold may be appropriate for sin-

gle channel data types, where as more complex analysis may be required for multi-channel

data. A tight threshold is appropriate for a system where classification on in-distribution

only is critically important. On the other hand, a more relaxed threshold is appropriate

when it is desired to capture all of the in-distribution data at the cost of permitting some

out-of-distribution data.

5.1 Future Work

The neural network watchdog concept can be further improved for more reliable

out-of-distribution detection, using a number of different methods. The generative com-

ponents can make use of deeper neural network architectures to produce more precise la-

tent space representations. The training process for the generative components can also

be expanded to include various augmentation techniques to greatly increase the amount

of training data. The generative components may also be improved by implementing addi-

tional input pre-processing, which is common practice in the deployment of neural network

based systems.

Additional watchdog techniques can also be developed to accommodate different

data input types, such as text, audio, video, or sensor data. These data types can take
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advantage of different neural network types, such as recurrent neural networks or Long-

Short Term Memory neural networks, which allow for more advanced input representations

to be learned.

For successful commercialization, a neural network watchdog would need to have

minimal impact to the training and execution time of a machine learning system, while

providing ideal distribution detection. Research aimed at reducing the computational com-

plexity of the watchdog, as well as pipeline optimization will allow for reduced develop-

ment and operation costs of machine learning systems which implement a neural network

watchdog.
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APPENDIX

Python Code

import tensorflow as tf

import tensorflow.keras.layers as layers

def define_simple_model(shape, filters=8, kernel_size=(3, 3),

pool_size=(2, 2), dropout=.25, num_classes=1):

"""

This function creates a simple Convolutional Neural Network for

image classification

:param shape: Input Image Shape

:param filters: The base number of filters to be used in the

convolution layers

:param kernel_size: kernel size of the convolutions

:param pool_size: MaxPooling pool size

:param dropout: Dropout settings for training

:param num_classes: Number of Classes in the dataset

:return: Returns a CNN model based on the input parameters

"""

model = tf.keras.models.Sequential()

model.add(layers.Conv2D(input_shape=shape, filters=filters,

kernel_size=kernel_size ,

activation=tf.keras.activations.relu))
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model.add(layers.MaxPool2D(pool_size=pool_size))

model.add(layers.Conv2D(filters=filters * 2, kernel_size=

kernel_size ,

activation=tf.keras.activations.relu))

model.add(layers.MaxPool2D(pool_size=pool_size))

model.add(layers.Conv2D(filters=filters * 4, kernel_size=

kernel_size ,

activation=tf.keras.activations.relu))

model.add(layers.MaxPool2D(pool_size=pool_size))

model.add(layers.Flatten())

model.add(layers.Dropout(dropout))

model.add(layers.Dense(num_classes))

model.add(layers.Activation(tf.keras.activations.softmax))

return model

Listing A.1: An example function used to create a convolutional neural network image
classifier

# Network design and training hyperparameters

input_shape = img_shape

batch_size = 64

kernel_size = (3,3)

pool_size = (2,2)

latent_dim = 64

filters = 64

dropout = .25

Epochs = 10

# Define The CNN Model
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cnn = tf.keras.models.Sequential()

cnn.add(tf.keras.layers.Conv2D(filters = filters, kernel_size =

kernel_size , activation = ’relu’, input_shape =

input_shape))

cnn.add(tf.keras.layers.MaxPooling2D(pool_size))

cnn.add(tf.keras.layers.Conv2D(filters = filters,

kernel_size = kernel_size , activation = ’relu’))

cnn.add(tf.keras.layers.MaxPooling2D(pool_size))

cnn.add(tf.keras.layers.Conv2D(filters = filters,

kernel_size = kernel_size , activation = ’relu’))

cnn.add(tf.keras.layers.MaxPooling2D(pool_size))

cnn.add(tf.keras.layers.Flatten())

cnn.add(tf.keras.layers.Dropout(dropout))

cnn.add(tf.keras.layers.Dense(num_labels))

cnn.add(tf.keras.layers.Activation(’softmax’))

cnn.compile(loss = ’categorical_crossentropy’, optimizer = ’

adam’,metrics = [’accuracy’])

# Define the Autoencoder Model

inputs = tf.keras.layers.Input(shape = input_shape , name = ’

encoder_input’)

x = tf.keras.layers.Conv2D(filters = filters,

kernel_size= kernel_size , activation = ’relu’)(inputs)
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x = tf.keras.layers.Conv2D(filters = filters*2,

kernel_size= kernel_size , activation = ’relu’)(x)

shape = tf.keras.backend.int_shape(x)

x = tf.keras.layers.Flatten()(x)

latent = tf.keras.layers.Dense(latent_dim , name = ’

latent_vector’) (x)

encoder = tf.keras.Model(inputs, latent, name = ’encoder’)

latent = tf.keras.layers.Input(shape = (latent_dim , ),

name = ’decoder_input’)

x = tf.keras.layers.Dense(shape[1] * shape[2] * shape[3])(

latent)

x = tf.keras.layers.Reshape((shape[1], shape[2], shape[3]))(x)

x = tf.keras.layers.Conv2DTranspose(filters = filters*2,

kernel_size = kernel_size , activation = ’relu’)(x)

x = tf.keras.layers.Conv2DTranspose(filters = filters,

kernel_size = kernel_size , activation = ’relu’)(x)

outputs = tf.keras.layers.Conv2DTranspose(filters = 1,

kernel_size = kernel_size ,

activation = ’sigmoid’, padding = ’same’,

name = ’decoder_output’)(x)

decoder = tf.keras.Model(latent, outputs, name = ’decoder’)
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autoencoder = tf.keras.Model(inputs, decoder(encoder(inputs)),

name = ’autoencoder’)

autoencoder.compile(loss=’mse’, optimizer = ’adam’)

Listing A.2: The code used to define the models of a disjoint neural network watchdog

import tensorflow as tf

def make_symbiotic_model(input_shape , filters, kernel_size ,

latent_dim , dropout, num_labels):

"""

:param input_shape: Input image shape

:param filters: The base number of filters used in the

convolutional layers

:param kernel_size: kernel size of the convolutions

:param latent_dim: dimension of latent space/waist layer

:param dropout: dropout amount for classification sub-layers

:param num_labels: number of labels for classifier sub-layers

:return: Returns a symbiotic neural network model based on

input parameters

"""

inputs = tf.keras.layers.Input(shape=input_shape , name=’

common_input’)

x = tf.keras.layers.Conv2D(filters=filters,

kernel_size=kernel_size , activation=’relu’)(inputs)

x = tf.keras.layers.Conv2D(filters=filters * 2,

kernel_size=kernel_size , activation=’relu’)(x)
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shape = tf.keras.backend.int_shape(x)

x = tf.keras.layers.Flatten()(x)

core = tf.keras.layers.Dense(latent_dim , name=’waist’)(x)

# Classifier Network sub-layers

flat = (tf.keras.layers.Flatten())(core)

drop = (tf.keras.layers.Dropout(dropout))(flat)

dense = (tf.keras.layers.Dense(num_labels))(drop)

class_out = (tf.keras.layers.Activation(’softmax’))(dense)

# Generator Network sub-layers

x = tf.keras.layers.Dense(shape[1] * shape[2] * shape[3])(core)

x = tf.keras.layers.Reshape((shape[1], shape[2], shape[3]))(x)

x = tf.keras.layers.Conv2DTranspose(filters=filters,

kernel_size=kernel_size , activation=’relu’)(x)

gen_out = tf.keras.layers.Conv2DTranspose(filters=1,

kernel_size=kernel_size , activation=’relu’)(x)

symbiotic_model = tf.keras.Model(inputs=inputs,

outputs=[class_out , gen_out], )

return symbiotic_model

Listing A.3: A function used to create a Symbiotic Neural Network Watchdog.

# Create a TensorBoard Callback to display training logs

tb_cb = tf.keras.callbacks.TensorBoard(log_dir=log_dir,

histogram_freq=1)
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# Network Training Hyperparameters

batch_size = 64

Epochs = 10

# Compile the symbiotic model, using 1.0 for both classifier

# and generator training weights

symbiotic_model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=.001),

loss={

"Classifier": tf.keras.losses.categorical_crossentropy ,

"Generator": tf.keras.losses.MSE,

},

loss_weights=[1.0,1.0],

metrics = [’accuracy’])

# Train the symbiotic neural network

symbiotic_model.fit(image_training_data ,

{"Classifier" : labels_training_data ,

"Generator": image_training_data},

epochs = Epochs, batch_size = batch_size ,

callbacks=[tb_cb])

Listing A.4: Example code used to compile and train a symbiotic watchdog model.

import numpy as np
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# Define a function to calculate image RMSE values

def img_rmse(image1, image2):

"""

:param image1: First Image

:param image2: Second Image

:return: Root Mean Squared Error, RMSE

"""

error = np.sqrt(np.sum((image1.astype(’float’)-image2.astype(

’float’))**2))

return error

# Determine whether input image should be permitted or rejected

def permit_input(original_image , generated_image , threshold):

"""

:param original_image: Original input image

:param generated_image: Watchdog regenerated image

:param threshold: Threshold Value

:return: Whether the image should be permitted

"""

if img_rmse(original_image , generated_image) < threshold:

return True

else:

return False

Listing A.5: An example function used determine whether an image should be permitted
or rejected by a watchdog.
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