
 
 

ABSTRACT 

Frequentist, Bayesian, and Zero-One Inflated Beta Regression Models 

Elysia A. Garcia 

Director: Jeanne S. Hill, Ph.D. 

The main objective of this paper is to introduce readers to the beta regression. The 
beta regression is unique in its ability to adapt to many data trends despite skewness and 
other factors. The beta regression is also unique in its use of proportions and percentiles 
as its dependent variable. The paper will look at the beta regression from different 
perspectives, consisting of frequentist and Bayesian, as well as adjusting for zero-one 
inflation. Finally, the paper will show the utilization of the beta regression in applications 
such as experimental studies concerning BMI percentiles and operational data on crude 
oil proportions after distillation. Statistical programs such as R and OpenBUGS will be 
used in this paper to give readers the tools needed to fit beta regression and interpret the 
output.  
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CHAPTER ONE 

Introduction 

The purpose of this paper is to provide an in-depth look into the beta regression. 

The paper will suffice as both a teaching tool for the concepts and methodology behind 

the regression, as well as a practical tool for applying the beta regression to real-life 

situations using various statistical programming packages. We will begin by introducing 

regression analysis and the beta regression's unique characteristics compared to other 

methods of regression analysis. As the paper moves on, we will begin to look at unique 

applications of the beta regression, specifically Bayesian modeling and zero-one 

inflation. By the end of this paper, it is hoped that readers not only learns a new and 

unique form of regression analysis, but can also grasp basic coding skills to apply said 

knowledge to better serve in their fields.  

There are many reasons for focusing on the beta regression. As a relatively new 

concept, beta regression addresses the issue of how to analyze data that contain a 

dependent, continuous proportion. Other more common and popular regressions, such as 

linear or logistic, cannot accommodate this situation well. Therefore, based on the 

flexible beta distribution, the beta regression has become the focus of many researchers 

who wish to delve and expand on this unique concept. 
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Regression Analysis (Linear, Logistic, and Poisson) 

To analyze the results of any study, one must first understand the methodology 

behind the results. A common statistical tool which analyzes graphically the correlation 

between variables is regression modeling.  

One of the most popular forms of regression analysis is the simple linear 

regression. Linear regression attempts to model the relationship between two variables by 

fitting a linear equation to observed data. One variable is considered to be an explanatory 

or predictor variable (x), and the other is considered to be a dependent or response 

variable (y). The model for this regression is as follows: 

 ܻ ൌ ଴ߚ ൅ ଵܺߚ ൅ ߳ 
(1.1)
 

with  ߚ଴ representing the intercept,  ߚଵ is the slope, and ߳ is the random error in the 

model. The expected value for this regression is ܧሺݔ|ݕሻ ൌ ଴ߚ ൅  .ଵܺߚ

In regression, we have one population for each value of x. We thus want to 

choose a line that best “fits” the data by minimizing the overall vertical difference 

between the line and the observed values, i.e. the residuals, thus allowing us to estimate 

the average value of Y. Following these concepts, if we want to do multiple linear 

regression, we would still have only our one dependent or response variable, but then 

have multiple predictor or explanatory variables which are independent, thus giving us 

the General Linear Model:  

 ܻ ൌ ଴ߚ ൅ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ଷݔଷߚ ൅ ⋯൅ ௡ݔ௡ߚ ൅ ߳. (1.2)
 

Another popular form of regression analysis is the logistic regression. Logistic 

regression is used for predicting the outcome of a categorical dependent variable based 
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on one or more independent predictor variables - in other words, logistic regression is 

used to predict binary (dichotomous) outcomes based on one or more independent 

predictor variables. This is what makes the logistic regression unique; there are only two 

possible outcomes, and the job of logistic regression is to estimate the probabilities of the 

two possible outcomes or the odds of the outcome of interest. 

The basic logistic function is given by  

 
݂ሺݖሻ ൌ

1
1 ൅ ݁ି௭

 
(1.3)
 

where   ݖ௜ ൌ ଴ߚ ൅ ሻݔሺܧ with an expected value	௜ݔଵߚ ൌ ௘ሺഁబశഁభೣ೔	ሻ

ଵା௘ሺഁబశഁభೣ೔	ሻ
 . 

The final example of regression analysis before we move into the beta regression 

is the Poisson regression. The Poisson regression is based on  the Poisson distribution 

which is used to calculate the probability of a given number of events (x) occurring in 

some fixed unit of measurement (time or space, for example) if these events occur with a 

known average rate of occurrence per unit of measurement (ߣ). The basic model, or 

probability model function (pmf), for the Poisson distribution is  

 
݂ሺݔሻ ൌ

݁ିఒߣ௫

!ݔ
, ݔ ൌ 1, 2, 3, … , ݊

(1.4)
 

with an expected value ܧሺݔሻ ൌ  For the Poisson regression, however, we have one .	ߣ

more variable which must be taken into account.  

In using the Poisson regression, one sees if the Poisson-distributed dependent 

variable (y) can be predicted from or explained by the other variables (ݔ௜ ). To do this, we 

use the following: 

 
lnሺߣሻ ൌ ௢ߚ ൅ ݔଵߚ ݎ݋ ߣ ൌ ݁ఉ೚݁ఉభ௫

(1.5)
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With this background knowledge, we can now move to the beta regression. 
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CHAPTER 2 

Beta Regression 

The beta regression model was initially introduced by Silvia L.P. Ferrari and 

Francisco Cribari-Neto in 2004. The model adapts to a continuous dependent variable 

which falls within a 0 to 1 interval. This distribution could model many different data 

types, such as proportions, fractions, or rates (Bayes, Bazán, García 2012). The reason 

why the beta distribution is used as the foundation for a regression model is basic; the 

beta distribution is a very flexible two-parameter family that can accommodate skewness 

and symmetry. Conditionally, that is, in a regression model, the beta distribution can 

accommodate many shapes (Smithson & Verkuilen 2006). The accommodating ability of 

the beta model addresses the problems of more variation around the mean and less around 

the upper and lower limits of the interval for the proportion, or extreme skewness and 

uniformity (Cribari-Neto & Zeileis 2010). 

 

Beta Regression Model and Maximum Likelihood Estimator 

The basic model for the beta distribution is as follows: 

 

 

(2.1)
 

where 0 < y < 1 and where p and q > 0 and Γ(.) is the gamma function which is defined 

as ߁ሺݔሻ ൌ ׬ ݐ௫݁ି௧݀ݐ
ஶ
଴ . The quantiles p and q are shape parameters, with p pulling 

density towards 0 and q pulling density towards 1. The expected value and variance for 

the beta distribution are ܧሺݕሻ ൌ ௣

௣ା௤
 and ܸሺݕሻ ൌ ݌ ൅  .respectively ݍ
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Ferrari and Cribari-Neto (2004) introduced a different parameterization for their 

modeling of the beta regression by setting ߤ ൌ ݌ሺ/݌ ൅ ߮ ሻ andݍ ൌ ݌ ൅  :ݍ

݂ሺݕ; ,ߤ ߮ሻ ൌ
Γሺ߮ሻ

Γሺμ߮ሻΓ൫ሺ1 െ ሻ߮൯ߤ
ఓఝିଵሺ1ݕ െ ,ሻሺଵିఓሻఝିଵݕ 0 ൏ ݕ ൏ 1 

(2.2) 
 

with 0 ൏ ߤ ൏ 1 and ߮ ൐ 0. The notation for this distribution is ܤ~ݕሺߤ, ߮ሻ with an 

expected value ܧሺݕሻ ൌ ሻݕand variance ܸሺ ߤ ൌ ሺ1ߤ െ ሻ/ሺ1ߤ ൅ ߮ሻ. The parameter ߮  is 

known as the precision parameter since the larger it becomes the smaller the variance of 

our dependent variable y for a set location parameter of	ߤ (Ferrari & Cribari-Neto 2004).  

The reason for such a transformation is because shape parameters such as p and q 

are difficult to interpret in terms of conditional expectations (Smithson & Verkuilen 

2006). Therefore, using Ferrari and Cribari-Neto's transformation, we adjust these 

parameters to create a location and precision parameters which are more easily 

interpreted within the context of regression analysis. 

To estimate these parameters, we use maximum-likelihood. The log-likelihood for 

the ݄݅ݐ observation ݕ௜ is  

,݌ሺܮ݈݊ ,ݍ ௜ሻݕ ൌ ln	Γሺ݌ ൅ ሻݍ െ ݈݊Γሺ݌ሻ െ lnΓሺݍሻ ൅ ሺ݌ െ 1ሻ lnሺݕ௜ሻ 

൅ሺݍ െ 1ሻlnሺ1 െ ௜ݕ ሻ 

(2.3) 
 

or, when undergone through Ferrari and Cribari-Neto's transformation, the log-likelihood 

function is ݈ሺߚ, ߮ሻ ൌ ∑ ݈௜ሺߤ௜, ߮ሻ
௡
௜ୀଵ , where 

݈௜ሺߤ௜, ߮ሻ ൌ Γሺ߮ሻ݃݋݈ െ log Γሺߤ௜߮ሻ െ Γ൫ሺ1݃݋݈ െ ௜ሻ߮൯ߤ ൅ ሺߤ௜߮ െ 1ሻ logሺݕ௜ሻ

൅ ሼሺ1 െ ௜ሻ߮ߤ െ 1ሽ logሺ1 െ  .௜ሻݕ

(2.4) 
 

This estimator was found by maximizing the sum of the log-likelihoods over the 

observations. 
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 Application 

To show an example of the beta regression in use, we will use the statistical 

program R.  

An experimental version of R was first developed in 1995 by Ross Ihaka and 

Robert Gentleman. The program has experienced immense popularity, and as an open 

environment program, it invites improvements (Ihaka 1998).The language of R is similar 

to other programming languages such as C++, and it allows more control over results and 

simulations compared to SAS or JMP, thus making it a rising program in academia.  

Using the “Gasoline Yield” data set in R, we can recreate a beta regression 

analysis. The “Gasoline Yield” data set consists of operational data of the proportion of 

crude oil converted to gasoline after distillation and fractionation. We have six variables 

within this data set, with “yield”, or the proportion of crude oil to gasoline after 

distillation and fractionation, being our characteristic proportion needed for the analysis. 

The other two variables of interest for our analysis are “temp”, the temperature (degrees 

F) at which all gasoline has vaporized, and “batch”, the factor indicating unique batch of 

conditions. Other variables included in the data set are “gravity”, “pressure”, and 

“temp10”, which is the temperature (degrees F) at which 10 percent of crude oil has 

vaporized.  

 

 

Figure 1: Sample of “Gasoline Yield” 
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The data set “Gasoline Yield”, apart from possessing the necessary presence of a 

dependent variable between 0 and 1, proves to be the perfect example for displaying the 

beta regression.  

Figure 2 shows two histograms which both display the same data, but shows the 

data fit to two different distributions: the beta distribution, and the normal distribution. 

As mentioned before, one of the main objectives in regression analysis is to find a 

distribution which will best “fit” the data and thus reduce residual error. By doing so, one 

can get the best possible information from the data. In analyzing the two graphs, it is 

clear that the beta distribution best fits the data since it covers the majority of the density 

plot. The normal distribution, however, neglects to cover many of the data points near 

zero and in turn slightly inflates those points in the center of the graph. Thus with this 

knowledge, one can confidently apply the beta regression the “Gasoline Yield” data.  

 

 

Figure 2: Histogram and theoretical densities for “Gasoline Yield” data set. The two 
histograms display the same data fit to the beta distribution and the normal distribution. 

 

To use the beta regression, the “betareg” package has to be downloaded to R first. 

After this is completed, you can begin your regression analysis. The following code was 

used to create the regression analysis. 
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A brief overview of the coding can be described in the following: the first three 

lines of code install the necessary packages needed to do beta regression in R, as well as 

opening the necessary libraries within the package. These libraries provide the tools and 

commands needed. The fourth line opens the data, “Gasoline Yield”, which is stored in 

the betareg package. We then create the functions for our regression with “yield” as our 

dependent variable and “batch” and “temp” as our independent predictor variables. The 

summary command then gives us basic statistics on the functions, and the lrtest gives the 

likelihood ratio tests. Finally, we output our descriptive plots.  

The coding gives the following output. 

 

install.packages("betareg", "FILE LOCATION") 
library(betareg) 
library(lmtest) 
data("GasolineYield", package = "betareg")  
gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield)  
gy_logit2 <- betareg(yield ~ batch + temp | temp, data = GasolineYield) 
summary(gy_logit) 
summary(gy_logit2) 
lrtest(gy_logit, gy_logit2) 
set.seed(123)  
plot(gy_logit, which = 1:4, type = "pearson") 
plot(gy_logit, which = 5, type = "deviance", sub.caption = "")  

Figure 3: R code for Beta regression using “Gasoline Yield” 
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Figure 4: Summary statistics for "Gasoline Yield" data from R. 
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Figure 5: Likelihood ratio test for "Gasoline Yield" data in R 

 

 

Figure 6:  Residual plot for “Gasoline Yield” in R 

 

 

Figure 7: Cook's distance plot for "Gasoline Yield" in R 
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Figure 8: Generalized leverage vs predicted values plot for "Gasoline Yield" in R 

 

 

Figure 9: Residuals vs linear predictor plot for "Gasoline Yield" in R 
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Figure 10: Half-normal plot of residuals for “Gasoline Yield” data in R 

 

 The R code utilized for beta regression outputs a milieu of graphics and data, with 

much of the outputs being beyond basic statistical understanding. The purpose and 

interpretation of the R outputs is as follows. 

 Figure 4 displays basic summary statistics for each variable and the overall 

model, giving such information as p-values, z-scores, and estimates of value. Figure 5 

shows the results of the likelihood ratio test. The likelihood ratio test is used to compare 

the “fit” of a lesser model with fewer parameters and a general model which is nested, 

which in our example is gy_logit and gy_logit2. The nested model allows the variance or 

precision to change for each temperature. In laymen’s terms, the likelihood ratio test is 

used to compute the difference in the deviance of the two models. The test indicates that 

the second or nested model is preferred (p-value = 0.03681). Figure 6 shows the residual 

plot for the model, which shows if there is constant variance and can indicate if there is 

an interfering variable of side effect in the model, which will be apparent if there is an 

obvious pattern in the points. Figure 7 shows Cook’s Distance plot, which shows the 

overall influence of each observation on the model. On our plot, observation four is the 
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most obvious and only observation on the graph, thus indicating a high impact. In such a 

situation, it would probably be beneficial to analyze the model without this variable to 

see how it compares. Figure 8 shows the general leverage plot which displays the 

composition of the sum of squares for a hypothesis test. These plots reveal information 

regarding the degree of fit, the residuals, influential observations, non-fitting points, 

nonlinearities, and even colinearity (Sall 1990). Figure 9 shows the residuals plotted 

against the linear predictors. This plot gives the same information as Figure 6, but instead 

uses future values which are estimated as a function of our sample and model. Finally, 

Figure 10 shows the half-normal plot for the residuals. This plot takes the absolute value 

of the residuals and then arranges them in increasing order, thus easily indicating the 

outliers in the residuals (Friendly 2000).   
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CHAPTER 3 

 Bayesian Beta Regression 

A Bayesian analysis on our already-established beta regression gives us another 

technique for statistical inference. Bayesian analysis takes a different perspective from 

the common frequentist ideas for statistical analysis. While a frequentist uses a sample to 

estimate the true value of a population parameter, Bayesian analysis uses a sample to 

better estimate a parameter modeled with an established prior distribution. This prior 

distribution can account for subjective information one may have about the parameter.  

The choice of priors will be considered later.  However, one should note that the 

introduction of a prior constitutes an additional assumption (Hair 2010). By revising the 

prior with our observed sample data we obtain the posterior distribution using Bayes 

Theorem.  

ሻߠሺ݌ሻߠ|ݕሺ݌

׬ ߠሻ݀ߠሺ݌ሻߠ|ݕሺ݌
. 

(3.1)
 

One of the most crucial components to Bayesian analysis is choosing the prior. 

Choosing a prior distribution for your analysis is not simple. There are three means in 

which one can choose a prior: subjective, objective (i.e. informative), or diffuse (i.e. 

noninformative). The first method allows the individual to choose the prior subjectively, 

or based on the experimenter’s personal probability that ߠ lies in any given subset of Ɵ. 

The second method uses past data as a prior, either from historical data or past 

experiments. Essentially, one could use the posterior distributions of previous 

experiments or expert opinions and make it the prior. Finally, a noninformative approach 
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to choosing one's prior distribution expresses ignorance as to the value of ߠ. Therefore, 

stated in a more vernacular fashion, the best prior is one which can fit the data and can 

assist in increasing the accuracy of the sample distribution. Based on what we know 

about beta regression and its properties, it is easy to understand why the beta regression is 

often used in tangent with Bayesian analysis (Seaman).  

The benefits of using Bayesian analysis on our data is that, in some comparisons, 

Bayesian analysis is superior in its estimation precision (Hair 2010). Bayesian analysis 

also allows for conjoint models to be estimated at the individual level whereas previously 

only aggregate models were possible. However, to do Bayesian analysis, there may be the 

need for a large sample to keep the prior distribution from becoming too influential. 

 

Bayesian Beta Regression Model and Maximum Likelihood Estimator 

The Bayesian beta regression model we consider is  

,௜ߤ|௜ݕ ߮௜, ,௜ݔ ,௜ߤሺ߮௜ܽݐ݁ܤ~௜ߚ ߮௜ሺ1 െ ௜ߤ ሻሻ 

ሻ	௜ߤሺݐ݅݃݋݈ ൌ ௜ݔሺ	ߤ൫ݐ݅݃݋݈
ᇱሻ൯ ൌ ௜ݔ

ᇱߚఓ 

ఓሻߚሺ݌ ∝ 1 

(3.2)

 

where ݌ሺߚఓሻ is an improper flat prior on the ߚఓ  vector. 

With independent data, the likelihood function is given by  

,ߚሺܮ ߮ሻ ൌෑ
Γሺ߮ሻ

Γሺܨሺݔ௜
ሻ߮ሻΓሺ߮ሺ1ߚ் െ ௜ݔሺܨ

ሻሻሻߚ்
௜ݕ
ி൫௫೔

೅ఉ൯ఝିଵ
ሺ1 െ ௜ሻ൫ଵିிሺ௫೔ݕ

೅ఉሻ൯ିଵ

௡

௜ୀଵ

 
(3.3)

 

and the posterior distribution is 

,ߚሺ݌ ሻݕ|߮ ൌ
,ߚሺܮ ߮ሻ݌ሺߚ, ߮ሻ

׬ ,ߚሺܮ ߮ሻ݌ሺߚ, ߮ሻ݀߮݀ߚ
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∝ෑΓሺܨሺݔ௜
ሻ߮ሻΓሺ߮ሺ1ߚ் െ ௜ݔሺܨ

ሻሻሻିଵߚ்
௡

௜ୀଵ

௜ݕ
ி൫௫೔

೅ఉ൯ఝ
ሺ1 െ ௜ሻఝ൫ଵିிሺ௫೔ݕ

೅ఉሻ൯ 

ൈ ,ߚሺ݌ ߮ሻΓሺ߮ሻ௡ 

(3.4)

 

 

 (Branscum, Johnson, & Thurmond 2007). 

 

Application 

For this application example, we will be using a statistical software called 

OpenBUGS. In the earliest stages, BUGS was a software package for performing 

Bayesian inference using Gibbs sampling, a technique using Monte Carlo Markov Chains 

to randomly select a sample (Lunn, Spiegelhalter, Thomas, & Best 2009). The Medical 

Research Council Biostatistics Unit in Cambridge first began the BUGS project in 1989, 

and the program has become a popular statistical modeling package (2009). The program 

has expanded to adapt with time, finally giving public users WinBUGS – the Microsoft 

Windows incarnation of the software – and finally now OpenBUGS which is a more 

accommodating and improved product. 

BUGS is a package meant to perform Bayesian inference. The development of 

this package reflects an even larger trend within the statistical community towards the 

application of Bayesian ideas in the past few decades. As Lunn and co-authors mention in 

their paper, “The BUGS project: Evolution, critique and future directions”, BUGS was 

able to bring Bayesian modeling into the general awareness by making such applications 

easier and more accurate (2009). The application of this software goes beyond just that of 

a teaching tool for statistics students and researchers, but is also used in such settings as 
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disease mapping, ecology, genetics, coastal engineering, behavioral studies, and 

automated music transcription (2009).  

To perform the tasks given to it, BUGS uses Gibbs Sampling which is linked to 

Monte Carlo Markov Chains (MCMC). The program gives outputs and creates a sample 

from the distribution and priors given for the Bayesian modelling by going through 

multiple simulations until convergence is achieved. The user tells the program how many 

simulations it should do, and with greater iterations the results become better. What we 

want to achieve is a result which best represents and fits our model. With MCMC, the 

results of the previous simulations are constantly taken into account and used for the 

readjustment of the samples. 

Now that we understand what OpenBUGS is doing to create our regression 

analysis, we can look at the coding. The following coding includes data accumulated 

through a Baylor University project in conjunction with the “Straw to Bread” program by 

undergraduate student, Eric Goethe. The data, titled in this thesis as “BMI data”, includes 

various variables concerning the effects of water quality on the body mass index 

percentiles in children in rural western Kenya.  

 

 

Figure 11: Sample of BMI data 
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The variables of interest for our model are “bmi”, which is body mass index 

percentiles, “wsource”, which indicates whether water consumption is from ground water 

only or tank water, and “watloc”, which is various numerical water location names. The 

variable “bmi” is used as the dependent proportion ݕ and “wsource” and “watloc” as the 

independent ݔ variables. The prior distribution we will be using for this regression 

analysis is the normal distribution. The code is as follows: 

 

 

Figure 12: OpenBUGS code for Bayesian Beta Regression 

Model 
 
{ 
for(i in 1:N) { 
Y[i]~dbeta(a[i],b[i]) 
a[i]<-abs(((1-mu[i])*mu[i]*mu[i]-mu[i]*sg[i])/sg[i]) 
b[i]<-abs((1-mu[i])*(mu[i]-mu[i]*mu[i]-sg[i])/sg[i]) 
logit(mu[i])<-bo+b1*x1[i]+b2*x2[i] 
sg[i]<-exp(co+c1*x1[i]) 
} 
bo~dnorm(0,1) 
b1~dnorm(0,0.1) 
b2~dnorm(0,0.01) 
co~dnorm(0,0.01) 
c1~dnorm(0,0.2) 
} 
 
data  
 
list(Y=c(0.423069, 0.385912, 0.994682,0.000000001, 0.476023, 0.449935, 
0.27766, 0.073578, 0.026433, 0.933666, 0.940669, 0.978365, 0.999987, 
0.993495, 0.999923, 0.998277, 0.667372, 0.848145, 0.746585, 0.249899,…, 
0.589789),  
x1=c(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …, 1), 
x2=c(332, 332, 332, 10, 116, 116, 116, 338, 338, 338, 338, 338, 338, 338, 338, 
338, 8, 8, 8, 8, …, 6), N=156) 
 
Inits 
list(bo=0, b1=0, b2=0,co=3, c1=0) 
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 There are three parts to the coding: the model, the data, and the initials. The 

model outlines the beta regression as Y[i] and then goes on to define the beta parameters 

as “a” and “b”. These parameters are then reparameterized as a function of the mean (μ) 

and variance (σଶ) (Cepeda-Cuervo 2012). Then a prior distribution is given toܾ௢,	ܾଵ, ܾଶ, 

ܿ௢, and ܿଵ. Under the data are included 156 observation with variables “bmi”=Y, 

“wsource”=	ݔଵ, and “watloc”= ݔଶ. Finally, the initial values indicate where to start the 

MCMC.  

The code outputs statistics for each variable, or node, as well as graphs of their 

distributions. 

 

 

Figure 13: Summary statistics for BMI data from OpenBUGS 

 

 

Figure 14: Posterior Densities for BMI data for OpenBUGS 
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 Figure 13 shows the node statistics which gives the formal parameter estimates. 

The table gives the estimates for the means and standard deviations of each parameter, as 

well as the median and the 95% credible interval. The final estimate given in the table is 

the Markov Chain error, which gives the margin of error for the mean estimate. The 

smaller this error is, the more confidence we can have in our parameter estimates 

(Geyer). Figure 14 shows the posterior density estimates for each parameter in the model. 

The desired effect is to have a normal distribution, however, with our model, the densities 

lack this quality, thus indicating that the parameter estimates did not veer towards a 

certain range. The only posterior density which does seem to take on normal, though 

skewed, shape is ܿଵ. The posterior density of ܾଶ also has a distinguishable shape, though 

it appears more gamma than normal.  

The final part of this chapter will compare the frequentist and Bayesian beta 

regression statistics. Using the BMI data, we look specifically at the summary statistics 

using R and OpenBUGS and compare the results.  

   
 
Frequentist 

   
 
Bayesian 

 

 Mean Standard 
Error 

95% CI    Mean Standard 
Error 

95 % CI 

Intercept 
(bo) 
 

-0.4915 0.1736 (-0.921,  
-0.235) 

 1.288 0.1058 (1.043, 
1.457) 

Water 
source 
(b1) 
 

0.1357 0.2138 (-0.283, 
0.555) 

 0.3917 0.124 (0.218, 
0.66) 

Water 
location 
(b2) 

0.0003 0.00040 (-0.0005, 
0.001) 

 -0.2192 0.01047 (-0.245, 
-0.207) 

 

Table 1: This table compares the frequentist and Bayesian outputs computed from using 
the BMI data. 

Frequentist and Bayesian Summary Statistics for BMI Data 
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 When comparing the descriptive statistics from the two classes of thought, there is 

an obvious difference in the outputs. While the summary statistics from the frequentist 

beta regression reveal the variables water source and water location to be not significant 

at α = 0.05,  the Bayesian beta regression reveals all variables to be significant when 

considered at the same level of significance. This illustrates that Bayesian inference can 

be more expressive in regression analysis because of its use of prior distributions. This, of 

course, depends on the appropriateness of the prior as well.
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CHAPTER 4 

 Zero-One Inflated Beta Regression 

While beta regression is very useful because of its versatility, there are some 

limitations to the model. One such limitation is that observation of zero or one can cause 

extreme bias. Therefore, these observations must be scaled away from these values. 

Inflated beta regression takes this into account and allows complete modeling of the 

entire continuous interval from zero to one (Swearingen, Meliguizo Castro, & Bursac 

2012). 

 

Zero-One Beta Regression Model and Maximum Likelihood Estimator 

For zero-inflation, a new parameter ߨ଴ is added to account for the probability of 

observations at zero. The resulting density function is 

݂ሺݕ; ,଴ߨ ,ߤ ߮ሻ ൌ ൜
,଴ߨ ݕ ൌ 0

ሺ1 െ ;ݕ଴ሻ݂ሺߨ ,ߤ ߮ሻ, 0 ൏ ݕ ൏ 1 
(4.1) 

 

Where 

݂ሺݕ; ,ߤ ߮ሻ ൌ
Γሺ߮ሻ

Γሺ߮ߤሻΓሺ߮ሺ1 െ ሻሻߤ
ఓఝିଵሺ1ݕ െ ,ሻሺଵିఓሻఝିଵݕ 0 ൏ ݕ ൏ 1. 

(4.2) 

 

Following this logic, one-inflation follows a similar pattern and a new parameter ߨଵ is 

added to the beta distribution to account for the probability of observations at one. Thus, 

the density function is 

݂ሺݕ; ,ଵߨ ,ߤ ߮ሻ ൌ ൜
ሺ1 െ ;ݕଵሻ݂ሺߨ ,ߤ ߮ሻ, 0 ൏ ݕ ൏ 1

,ଵߨ ݕ ൌ 1
 

(4.3) 
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Inflated beta distributions incorporate degenerate probability statements to 

produce a unique density function. For zero-one inflated beta regression, the two new 

parameters, ߨ଴  and	ߨଵ, are added to account for the probability of observations at both 

zero and at one. 

଴ߨ ൌ ଴ሻିଵߚ′௜ݔሺݐ݅݃݋݈ ܽ݊݀ ଵߨ ൌ ଵሻିଵߚ′௜ݔሺݐ݅݃݋݈  
(4.4) 

 

Thus we create the density function for the zero-one inflated beta regression: 

݂ሺݕ; ,଴ߨ ,ଵߨ ,ߤ ߮ሻ ൌ ൝
,଴ߨ ݕ ൌ 0

ሺ1 െ ଴ሻሺ1ߨ െ ;ݕଵሻ݂ሺߨ ,ߤ ߮ሻ, 0 ൏ ݕ ൏ 1
,ଵߨ ݕ ൌ 1

 
(4.5) 

 

The expected value for y within the zero-one inflated beta regression is as 

follows: 

ሻݕሺܧ ൌ 0 ∗ ଴ߨ ൅ 1 ∗ ଵߨ ൅ ሺ1ߤ െ ଴ߨ െ ଵሻߨ ൌ ௜ߤ଴ଵߨ ൅  ଵߨ
(4.6)
 

where ߨ଴ଵ ൌ ሺ1 െ ଴ߨ െ  .ଵሻ (Ospina & Ferrari 2012, Wieczorek & Hawala 2011)ߨ

  

Application 

 Finding a situation in which zero-one inflated beta regression can be applied is 

easy; however developing a coding specific for this purpose proves difficult. After 

intensive research, no coding could be found that directly applies to data which suffers 

from zero-one inflation with relation to beta regression modeling. Efforts are currently 

underway by myself in conjunction with departmental advisors within Baylor 

University’s Department of Statistical Science to develop a OpenBUGS code which 

adjusts for inflated data.  However, in the absence of coding, this paper can instead 

provide real life examples of data and situations where zero-one inflated beta regression 
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modeling can be applied. Referring back to former mentioned data sets, one in particular 

shows a prime example of inflation at both zero and one within the dependent variable.  

 The BMI dataset provides an example of a situation when zero-one inflated beta 

regression can be applied. In Figure 15, it can be clearly seen that the data contain more 

points towards zero and one, thus making any parameter estimation extremely biased.   

 

 

Figure 15: Histogram and theoretical densities for BMI data set fit to the beta 
distribution. 
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CHAPTER 5 

Conclusion 

 With the conclusion of this paper, it is hoped that readers grasp the unique 

abilities of the beta regression in the face of other regression models. As a model that 

depends on a continuous dependent variable between 0 and 1, the beta regression can be 

used to model many data trends despite skewness, making it an invaluable tool in 

research. Building on this, it is hoped that readers can also feel comfortable in utilizing 

the beta regression in various coding settings, such as R and OpenBUGS, as well as with 

different perspectives such as frequentist and Bayesian, and also by adjusting for zero-

one inflation. Finally, and most importantly, it is hoped that readers can interpret outputs 

in order to make educated and confident conclusions on their data.  

 As for the future of this thesis, I have plans to continue my work and research 

concerning the beta regression. As of now, it is my goal to develop an OpenBUGS 

coding which can accommodate zero-one inflated beta regression modeling. I also plan to 

continue applying and critiquing my work with the beta regression with various other 

data sets including another data set collected from the Straw to Bread program 

concerning lead levels in water and BMI percentiles as well as a multitude of childhood 

factors which can contribute to early on-set obesity in the local Waco demographic.  
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APPENDIX A 

R code to create Figure 2 

 

 

APPENDIX B 

R code to create Figure 15 
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APPENDIX C 

R Code to do beta regression on BMI data 

 

 

APPENDIX D 

Complete OpenBUGS code to Figure 12 

model 
{ 
for(i in 1:N) { 
Y[i]~dbeta(a[i],b[i]) 
a[i]<-abs(((1-mu[i])*mu[i]*mu[i]-mu[i]*sg[i])/sg[i]) 
b[i]<-abs((1-mu[i])*(mu[i]-mu[i]*mu[i]-sg[i])/sg[i]) 
logit(mu[i])<-bo+b1*x1[i]+b2*x2[i] 
sg[i]<-exp(co+c1*x1[i]) 
} 
bo~dnorm(0,1) 
b1~dnorm(0,0.1) 
b2~dnorm(0,0.01) 
co~dnorm(0,0.01) 
c1~dnorm(0,0.2) 
} 
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data  
list(Y=c(0.423069, 0.385912, 0.994682,0.000000001, 0.476023, 0.449935, 0.27766, 
0.073578, 0.026433, 0.933666, 0.940669, 0.978365, 0.999987, 0.993495, 0.999923, 
0.998277, 0.667372, 0.848145, 0.746585, 0.249899, 0.47601, 0.565654, 0.288196, 
0.846573, 0.331747, 0.534659, 0.801769, 0.826486, 0.253655, 0.863, 0.637899, 
0.117,0.000000001, 0.177876, 0.570263, 0.913651, 0.10184, 0.053064, 0.088573, 0.36, 
0.940812, 0.432466, 0.63915, 0.000000001, 0.000000001, 0.000000001, 0.000000001, 
0.000000001, 0.856, 0.00476, 0.000000001, 0.091668, 0.445, 0.363732, 0.409038, 
0.751336,0.000000001, 0.626209, 0.283, 0.534, 0.64244, 0.073862, 0.015, 0.700635, 
0.040836, 0.594232, 0.969675, 0.009, 0.267746, 0.694049, 0.666329, 0.94, 0.979, 
0.908885, 0.965728, 0.946, 0.388161, 0.839488, 0.011747, 0.092726, 0.548237, 
0.173665, 0.7149, 0.001124, 0.002, 0.831953, 0.830909, 0.969, 0.724501, 0.479081, 
0.708137, 0.94, 0.905339, 0.72259, 0.338741, 0.04692, 0.996718, 0.50275, 0.652648, 
0.71318, 0.421708, 0.54, 0.30841, 0.001954, 0.008753,0.000000001, 0.068685, 
0.241527, 0.268616, 0.043973, 0.057917, 0.026516, 0.420656, 0.619609, 0.572666, 
0.679, 0.803234, 0.727357, 0.492, 0.981041, 0.257, 0.636, 0.966, 0.218266, 0.000494, 
0.663646, 0.993599, 0.197284, 0.179911, 0.099875, 0.547462, 0.209801, 0.995835, 
0.662246, 0.000000001,0.000000001, 0.000000001, 0.000000001, 0.981, 0.46517, 
0.162613, 0.671, 0.87484, 0.01231, 0.869269, 0.161747, 0.704, 0.866575, 0.998536, 
0.152747, 0.718642, 0.673, 0.533, 0.459589, 0.162, 0.589789),  
x1=c(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 
x2=c(332, 332, 332, 10, 116, 116, 116, 338, 338, 338, 338, 338, 338, 338, 338, 338, 8, 8, 
8, 8, 8, 8, 8, 8, 333, 333, 333, 333, 333, 333, 332, 134, 134, 134, 134, 134, 134, 75, 75, 
75, 75, 75, 75, 84, 84, 84, 84, 84, 84, 116, 116, 116, 116, 116, 116, 121, 121, 121, 121, 
121, 121, 1471, 1471, 335, 19, 19, 19, 19, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 10, 10, 10, 75, 75, 75, 75, 75, 75, 336, 336, 336, 75, 75, 75, 75, 75, 75, 75, 75, 10, 
10, 10, 10, 10, 331, 331, 333, 337, 332, 8, 8, 8, 332, 134, 134, 6, 8, 1471, 1471, 1471, 75, 
75, 75, 75, 84, 84, 84, 84, 84, 335, 335, 335, 116, 116, 116, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), 
N=156) 
 
Inits 
list(bo=0, b1=0, b2=0,co=3, c1=0) 
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APPENDIX E 

R code for Confidence Interval in Table 1 
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