
ABSTRACT

Bayesian Inference for Bivariate Poisson Data with Zero-Inflation

Madeline L. Drevets, Ph.D.

Chairperson: John W. Seaman, Jr.

Multivariate count data with zero-inflation is common throughout pure and

applied science. Such count data often includes excess zeros. Zero-inflated Poisson

regression models have been used in several applications to model bivariate count

data with excess zeros. In this dissertation, we explore a Bayesian approach to

bivariate Poisson models where either one or both counts is zero-inflated, with a

primary focus on informative prior structures for these models. Bayesian treatments

of zero-inflated Poisson models have focused on diffuse prior structures for model

parameters. Nevertheless, we demonstrate that such an approach can be problematic

with respect to convergence. We offer an informative prior approach, and propose

methods of prior elicitation from a subject-matter expert. This includes exploration

of methods for informative prior construction for an association parameter, and a

multivariate distribution. We demonstrate our proposed methods within the context

of a clinical example.
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CHAPTER ONE

Introduction

The analysis of count data is essential to research throughout pure and applied

science. Count data outcomes are common in medical, healthcare, environmental,

and ecological studies. For example, in clinical trials, such count data may be

considered as markers for predictions of clinical outcomes such as safety and/or

efficacy. These counts might include the number of occurrence of adverse events in

a drug safety study. In psychological and behavioral studies outcomes recording the

frequencies of behavioral outcomes such as the number of occurrences of substance

abuse or the number of suicide attempts. Typically such counts include a larger

number of zeros than expected under standard count models, such as the Poisson or

negative binomial distributions. Count models in the literature generally distinguish

between two types (sources) of zeros: structural and sampling. It is assumed that

the process that generates the structural zeros always yields a zero count whereas

sampling zeros occur by chance and are assumed to be generated from a count

distribution such as the Poisson. Thus, we can think of structural zeros as the

“always zero group”, and we can think of sampling zeros as the “not always zero

group.”

There has been increased attention to analysis of count data containing ex-

cess zeros. Common models used for handling excess zeros in count data include

zero-inflated models and hurdle models. Zero-inflated models are mixture models

that consist of a distribution degenerate at zero and a standard count distribution

such as the Poisson. Examples of zero-inflated models include the zero-inflated Pois-

son (ZIP) model and the zero-inflated negative binomial (ZINB) model. Both ZIP

and ZINB models assume (account for) two sources of zeros: structural and sam-
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pling. The ZIP model is often used for fitting purely zero-inflated data, whereas

the ZINB model is often used for fitting data that exhibits both zero-inflation and

overdispersion. Hurdle models assume that the zero counts are generated from a

different process than the positive counts. In particular, a hurdle model assumes

that all zero counts are structural and assumes that all positive data come from a

truncated count distribution (i.e. truncated Poisson or truncated negative binomial

distribution). Thus, whereas a zero-inflated model assumes zero inflation due to

both structural and sampling zeros, a hurdle model assumes only structural zeros.

As a result of hierarchical Bayesian modeling and the availability of software

to implement methods such as MCMC, Bayesian inference for univariate and mul-

tivariate zero-inflated models has become more prevalent in the literature. Applica-

tions of Bayesian multivariate zero-inflated Poisson models in the literature include

occupational health data to assess significance of intervention on the reduction in

the number of musculoskeletal and non-mukculosketal injuries (Wang et al. (2003)),

outpatient psychiatric use data (Neelon et al. (2010)), plant population count data

(Majumdar and Gries (2010)), automobile insurance claims for three different types

of claims (Bermdez and Karlis (2011)), analysis of safety crash data at intersections

Dong et al. (2014), and the joint modeling of the number of blood donation and the

number of blood deferral (Mohammadi et al. (2016)). All of these depend on diffuse

priors for model parameters. Hence, despite the increased prevalence of Bayesian in-

ference for bivariate zero-inflated Poisson models, use of informative prior structures

applied to these models has not been explored in detail.

The focus of this dissertation is Bayesian inference for bivariate Poisson data

with zero-inflation. In Chapter Two we introduce a bivariate partial zero-inflated

Poisson model, which assumes that one outcome is zero-inflated and one outcome

is not zero-inflated. This model has not been covered in the literature. We discuss

diffuse priors for this model and demonstrate situations in which use of diffuse priors
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can be problematic with respect to convergence. We discuss informative prior struc-

tures, with a primary focus on methods of prior elicitation from a subject matter

expert within the context of a contextual adverse event drug safety trial. In Chapter

Three, we present a conditional representation of the bivariate partial zero-inflated

Poisson model and demonstrate how this alternate representation provides a plausi-

ble route of prior specification for the association parameter of our bivariate model.

In Chapter Four, we consider Bayesian inference for a bivariate zero-inflated Poisson

model, which assume both outcomes are zero-inflated. In this chapter, we extend

the ideas proposed in Chapters Two and Three to the bivariate zero-inflated Poisson

model. We discuss method for prior elicitation from a subject-matter expert for the

multinomial zero-inflation parameters, which is often a difficult task. We apply our

methods within the context of a study to investigate the safety and efficacy of a hy-

pothetical new drug. Throughout, we demonstrate potential uses of both the prior

predictive and posterior predictive distributions in the analysis of our hypothetical

clinical studies. These predictive distributions have not been covered in detail in the

literature for bivariate Poisson models with zero-inflation.
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CHAPTER TWO

A Bayesian Bivariate Partial Zero-Inflated Poisson Model

2.1 Introduction to Zero-Inflated Models

The analysis of count data is essential to research throughout pure and ap-

plied science. Such count data often includes excess zeros or overdispersion. Often

the number of zeros in a sample is underestimated standard count models. “Excess

zeros” refers to additional zeros that are present in data that cannot be accom-

modated by standard count models. For example, a Poisson model assumes that

the conditional variance of the dependent variable is equal to the conditional mean.

Overdispersion in the analysis of discrete data occurs when the variability in the

data is larger than expected under the assumed standard count distribution. If

overdispersion is not taken into account in the modeling process, it can lead to

underestimated variance and incorrect inference.

There has been increased attention to analysis of count data containing excess

zeros, and the analysis of such data is a primary focus of this dissertation. In clin-

ical trials, such count data may be considered as markers for predictions of clinical

outcomes such as safety and/or efficacy. For example, we might be interested in the

number of occurrence of adverse events in a drug safety study. Count data outcomes

are also common in prevention or intervention trials. For example, the frequency of

substance abuse or risky behaviors in psychosocial and behavioral studies. Typically

such counts include a larger number of zeros than expected under standard count

models, such as the Poisson or negative binomial distributions. Count models in

the literature generally distinguish between two types (sources) of zeros: structural

and sampling. It is assumed that the process that generates the structural zeros

always yields a zero count whereas sampling zeros occur by chance and are assumed
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to be generated from a count distribution such as the Poisson. Thus, we can think

of structural zeros as the “always zero group”, and we can think of sampling zeros

as the “not always zero group.” It is the structural zeros that are the “excess zeros”,

whereas sampling zeros are due to sampling variability. For example, suppose we

are modeling the number of children born to a woman. Some women might not have

children because they (or their partner) are physically unable to bear children (struc-

tural zero) whereas some women might be physically able to bear children, but do

not have children, (sampling zero). Neelon et al. (2010) distinguishes between struc-

tural and sampling zeros by referring to structural zeros as the “not-at-risk” group

and sampling zero as the “at-risk” group. We adopt this interpretation throughout

the dissertation.

Common models used for handeling excess zeros in count data include zero-

inflated models and hurdle models. Zero-inflated models are mixture models that

consist of a distribution degenerate at zero and a standard count distribution such as

the Poisson. Examples of zero-inflated models include the zero-inflated Poisson (ZIP)

model and the zero-inflated negative binomial (ZINB) model. Both ZIP and ZINB

models assume (account for) two sources of zeros: structural and sampling. The ZIP

model is often used for fitting purely zero-inflated data, whereas the ZINB model

is often used for fitting data that exhibits both zero-inflation and overdispersion.

Thus, they consist of two latent classes of observations; that is, whether or not a

zero is a structural or sampling zero is unobserved. Hurdle models assume that

the zero counts are generated from a different process than the positive counts. In

particular, a hurdle model assumes that all zero counts are structural and assumes

that all positive data come from a truncated count distribution (i.e. truncated

Poisson or truncated negative binomial distribution). Thus, whereas a zero-inflated

model assumes zero inflation due to both structural and sampling zeros, a hurdle

model assumes only structural zeros. In practice, it is this distinguishing feature
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that often guides the appropriateness of zero-inflated versus hurdle models in data

analysis (Rose et al. (2006)). The organization of this chapter is as follows: In

Section 2.1.1 we introduce common count models in the literature for zero-inflated

data, with a particular focus on the univariate zero-inflated Poisson distribution.

In Section 2.2 we introduce a bivariate partial zero-inflated Poisson distribution.

We give a Bayesian development which includes discussion of diffuse priors and

posterior inference for this model. In Section 2.3 we introduce a drug safety adverse

event study that will serve as a vehicle for which we apply our proposed methods

throughout this chapter. In Section 2.4 we demonstrate potential problems that can

arise in posterior inference for our Bayesian bivariate partial zero-inflated Poisson

model which leads to a discssion of nonidentified models in Section 2.5. In Section

2.6 we propose methods for informative prior construction for a Bayesian partial

zero-inflated Poisson model for both the non-regression and regression case. The

implementation of our propose methods of prior construction is illustrated within

the context of our clinical example in Section 2.7. Concluding comments are given

in Section 2.8.

2.1.1 Univariate Zero-Inflated Poisson Model

The literature is rich with analysis and applications of univariate ZIP models

(McCullagh and Nelder (1989), Lambert (1992), Johnson et al. (1997), Dagne (2004),

Ntzoufras and Karlis (2005),Rose et al. (2006), Baughman (2007), He et al. (2014)).

A univariate zero-inflated Poisson (ZIP) distribution (Cohen (1963)) is constructed

as a mixture of a Poisson distribution and a distribution that is degenerate at zero.

Let Y denote a random variable with probability mass function given by

Pr(Y = y) =


p+ (1− p)e−λ for y = 0

(1− p) e−λλy
y!

for y = 1, 2, . . .

(2.1)
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where 0 ≤ p ≤ 1 is the probability of excess zeros (or zero-inflation probability),

and λ is the mean of the Poisson distribution. We write Y ∼ ZIP(p, λ). In (2.1) the

model assumes two sources of zeros: a structural zero is observed with probability

p and a sampling zero is observed with probability 1 − p. In a ZIP model, it is

often of interest to estimate the proportion of structural zeros, p, and to estimate

the Poisson rate, in the “not always 0” group (Dagne (2004)).

The ZIP model in (2.1) represents sampling from a mixture of two subpopu-

lations: one subpopulation is considered “not at-risk” and yields a response count

of zero with probability one (structural zero), the other subpopulation is considered

“at-risk” and the responses follow a Poisson distribution. Sampling zeros may arise

from the “at-risk” population with probability exp(−λ). However, if the response is

zero, the membership (structural or sampling) is unobserved.

It can be shown that the moments of the univariate zero-inflated Poisson model

are

E(Y ) = (1− p)λ

and

Var(Y ) = (1− p)λ+ p (1− p)λ2.

Note that the mean of a ZIP model is smaller than that of a standard Poisson, since

0 < p < 1. Furthermore, Var(Y ) > E(Y ).

2.1.2 Univariate Zero-Inflated Regression Model

Consider Yi
ind∼ ZIP(pi, λi), i = 1, . . . , n, where n denotes the number of ob-

servations. We can incorporate covariates into the model through canonical link

functions, in generalized linear models (Lambert (1992)). In particular, for the ith

observation, we use a logistic regression model for the zero-inflation probability,

logit(pi) = x′iβ,
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where x and β are vectors of covariates and corresponding coefficients, respectively.

We use a log-linear model for the mean rate of the Poisson state,

log(λi) = w′iγ,

where w and γ are vectors of covariates and corresponding coefficients, respectively.

This representation allows the Poisson rate and zero-inflation probability to depend

on the same or different covariates. In the literature, the zero-inflation probability,

p, is often assumed constant across observations (see Ntzoufras and Karlis (2005),

Liu and Tian (2015)).

2.1.3 Bayesian Univariate Zero-Inflated Poisson Models

Bayesian treatments of the univariate ZIP model have been discussed in the

literature. For example, Ghosh et al. (2006) developed Bayesian ZIP models for

cross-sectional data, using Markov chain Monte Carlo (MCMC) methods with data

augmentation to obtain posterior samples. Bayesian inference for zero-inflated Pois-

son models found in the literature rely on relatively non-informative prior structures.

The univariate case is not the focus of this dissertation and thus for further discus-

sion of applications and treatments of this model we refer the reader to Ntzoufras

and Karlis (2005), Ghosh et al. (2006), Dagne (2004) and references therein.

2.2 Bivariate Partial Zero-Inflated Poisson Model

In this section we extend the univariate ZIP to a bivariate count response

vector. We introduce a bivariate partial ZIP model, which assumes one outcome is

zero-inflated and the other outcome is not zero-inflated. This case has not been cov-

ered in detail in the literature, but is worth exploring as this situation is commonly

encountered in medical applications.1

1 Personal acknowledgement to Dr. Ding-Geng (Din) Chen, Clinical Professor in the Department
of Biostatistics at the University of North Carolina Gillings School of Global Health, for suggestion
to explore this model.
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Suppose we have two Poisson counts, denoted Y1 and Y2, such that (Y1, Y2)

denotes a bivariate count vector. Further, suppose that Y1 is zero-inflated and Y2

is not zero-inflated. That is, we assume two sources of zeros for Y1, structural and

sampling, and assume only sampling zeros for Y2. We call this a bivariate partial

zero-inflated Poisson (BPZIP). It can be constructed from a mixture of a degenerate

distribution at 0 and a univariate Poisson distribution with parameter µ2, and a

bivariate Poisson (BP) distribution (see Appendix A for details of this distribution)

with parameters (λ0, λ1, λ2) as follows:

(Y1, Y2) ∼


(0,Poisson(µ2)) , with probability p

BP(λ0, λ1, λ2), with probability 1− p,
(2.2)

where λk > 0, k = 0, 1, 2, µ2 = λ2 + λ0, and 0 < p < 1 denotes the zero-inflation

(or excess proportion/probability of zeros than expected under a standard bivariate

Poisson count distribution) parameter such that p + (1 − p) = 1. In particular,

p represents the excess proportion of zeros for Y1 as this model assumes that the

zero-inflation is attributed to only Y1. This is in contrast to a bivariate zero-inflated

Poisson model which assumes both bivariate counts, Y1 and Y2, contribute the ob-

served excess zeros. We consider the bivariate ZIP model Chapter Four.

The BPZIP model in (2.2) consists of a zero-inflated Poisson and an ordinary

bivariate Poisson. For the bivariate Poisson component we use the trivariate reduc-

tion representation introduced by Johnson et al. (1997). This representation is most

commonly used in the literature (we refer the reader to Appendix A for more details

on the bivariate Poisson distribution). The trivariate reduction representation of the

BP distribution assumes that the bivariate responses (Y1, Y2) are positively corre-

lated. Thus, we propose the bivariate partial zero-inflated Poisson model in (2.2) as

a possible model to fit positively correlated bivariate count Poisson data where one

count is zero-inflated and the other count is not zero-inflated.
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Let (Y1, Y2) ∼ BPZIP(p,λ) where λ = (λ0, λ1, λ2). Then, for y1, y2 ∈ {0, 1, 2, . . .},

the bivariate joint probability mass function, fY1,Y2(y1, y2 | p,λ) ≡ fY1,Y2(y1, y2), is

given by

fY1,Y2(y1, y2) =



p e−(λ2+λ0) + (1− p) e−(λ1+λ2+λ0), y1 = 0, y2 = 0,

(1− p) e−(λ1+λ2+λ0) λ
y1
1

y1!
, y1 6= 0, y2 = 0,

p (λ2+λ0)y2 e−(λ2+λ0)

y2!
+ (1− p) λ

y2
2

y2!
e−(λ1+λ2+λ0), y1 = 0, y2 6= 0,

(1− p) e−(λ1+λ2+λ0) λ
y1
1

y1!

λ
y2
2

y2!

min(y1,y2)∑
m=0

(
y1
m

)(
y2
m

)
m!
(

λ0
λ1λ2

)m
, y1 6= 0, y2 6= 0.

(2.3)

In the applications we consider in this dissertation we typically take f(Y1,Y2)(0, 0) and

f(Y1,Y2)(y1, 0), y1 6= 0, to be small (compared to the bivariate ZIP model), particularly

when the rate of Y2 is small (i.e. close to zero).

Let yi = (y1i, y2i), i = 1, . . . , n, denote the observed bivariate outcomes. The

corresponding likelihood function is

`(pi,λi |yi) =
n∏
i=1

[f(y1i = 0, y2i = 0 | p,λ)]Ii1
n∏
i=1

[f(y1i = y1, y2i = 0 | p,λ)]Ii2

×
n∏
i=1

[f(y1i = 0, y2i = y2 | p,λ)]Ii3
n∏
i=1

[f(y1i = y1, y2i = y2 | p,λ)]Ii4 ,

(2.4)

where λi = (λ0i, λ1i, λ2i) and Iik is an indicator function defined as

Ii1 = 1 : if y1i = 0, y2i = 0,

Ii2 = 1 : if y1i 6= 0, y2i = 0,

Ii3 = 1 : if y1i = 0, y2i 6= 0, (2.5)

and

Ii4 = 1 : if y1i 6= 0, y2i 6= 0.
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It can be shown that the marginal distribution of Y1 is a univariate zero-inflated Pois-

son distribution, denoted Y1 ∼ ZIP(p, µ1), with corresponding marginal probability

mass function

fY1(y1 | p, µ1) ≡ Pr(Y1 = y1) =


p+ (1− p) e−µ1 , y1 = 0

(1− p)µ
y1
1 e−µ1

y1!
, y1 = 1, 2, 3 . . .

(2.6)

where p denotes the zero-inflation probability for Y1, (p+(1−p) = 1) and µ1 = λ1 + λ0.

Thus, Y1 can be a structural zero with probability p and a sampling zero with prob-

ability 1− p. The marginal rate associated with count Y1 among those “at-risk” for

Y1 is µ1. It follows that the mean and variance of Y1 are given by

E(Y1) = (1− p)µ1, (2.7)

and

Var(Y1) = (1− p)µ1 [1 + p µ1] , (2.8)

respectively.

Similarly, it can be shown that the marginal distribution of Y2 is a Poisson

distribution with mean, µ2, denoted Y2 ∼ Poisson(µ2). The marginal probability

mass function is given by

fY2(y2 |µ2) ≡ Pr(Y2 = y2) =
µy22 e

−µ2

y2!
, y2 = 0, 1, 2, (2.9)

where µ2 = λ2 + λ0. It follows that E(Y2) = Var(Y2) = µ2.

2.2.1 Bivariate Partial Zero-inflated Poisson Regression Model

Let (y1i, y2i) ∼ BPZIP(pi, λ0i, λ1i, λ2i), for i = 1, . . . , n where n denotes the

number of observations. We can represent the BPZIP model in such a way that

the Poisson parameters, λk, and zero-inflation parameter, p, depend on covariates

through canonical link, generalized linear models. In particular, we express the

Poisson parameters, λk as function of covariates via the logarithmic link and the
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zero-inflation parameter is related to covariates via the logit link. That is, for the

ith individual we have that

log(λk,i) = xTk,iγk, (2.10)

for k = 0, 1, 2, and

logit(pi) = log

(
pi

1− pi

)
= wT

i β, (2.11)

where xk,i and γk are vectors of covariates and corresponding regresssion coeffi-

cients, respectively, associated with λk, and wi and β are vectors of covariates and

corresponding regresssion coefficients, respectively, associated with the zero-inflation

parameter. Let q and r denote the number of covariates corresponding to λk and

p, respectively. Specifically, γk is a (q + 1) vector of regression coefficients and

β is a (r + 1) vector of regression coefficents. This parameterization allows the

same or different explanatory variables to affect the Poisson rates and zero-inflation

probability. In addition, this representation allows the Poisson rates to depend on

different explanatory variables, which extends the use of this model to a wide range

of applications (Mohammadi et al. (2016)).

Let yi = (y1i, y2i), i = 1, . . . , n. The BPZIP regression likelihood function is

given by

`(β,γk|yi) =
n∏
i=1

[f(y1i = 0, y2i = 0 | p,λ)]Ii1
n∏
i=1

[f(y1i = y1, y2i = 0 | p,λ)]Ii2

×
n∏
i=1

[f(y1i = 0, y2i = y2 | p,λ)]Ii3
n∏
i=1

[f(y1i = y1, y2i = y2 | p,λ)]Ii4 ,

(2.12)

where

pi =
exp(wT

i β)

1 + exp(wT
i β)

and for k = 0, 1, 2,

λk,i = exp(xTk,iγk),

and Iit, t = 1, . . . , 4, is an indicator function defined in (2.5).
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2.2.2 The Bayesian Partial Bivariate Zero-Inflated Poisson Model

Bayesian analysis of models of other zero-inflated models have appeared in the

literature. For example, Ghosh et al. (2006) relies on diffuse priors for inference of a

univariate zero-inflated Poisson model applied to manufacturing defects, Majumdar

and Gries (2010) and Mohammadi et al. (2016) rely on diffuse priors for inference of a

bivariate zero-inflated Poisson model applied to ecological outcomes and healthcare

outcomes, respectively. In this section, we discuss a Bayesian approach to our partial

bivariate zero-inflated Poisson model, which has not been addressed in the literature.

2.2.3 Diffuse Prior Structure: Bayesian BPZIP Non-regression Model

We first consider the BPZIP model in the absence of covariates as outlined in

Section 2.2. Consistent with the common approach in the literature on Bayesian in-

ference for univiariate and bivariate zero-inflated Poisson (BZIP) models (i.e. Ghosh

et al. (2006) and Majumdar and Gries (2010)), we assume that prior distributions

for the zero-inflation parameter, p, and Poisson parameters, λ = (λ0, λ1, λ2) are

independent. We will use the following conditional conjugate priors:

p ∼ Beta(a, b),

and for k = 0, 1, 2,

λk ∼ Gamma(ck, dk),

where a, b, ck, and dk are considered hyperparameters. In the absence of prior in-

formation regarding the zero-inflation probability, uniform (a = b = 1) or Jeffreys

(a = b = 0.5) are commonly used. The latter can be problematic, however, particu-

larly for values of p close to zero or one. This is further discussed in Section 2.4.1. In

the absence of prior information regarding the Poisson parameters, small values of

ck and dk for the prior on the λk’s result in a diffuse prior for λk with large variance.

For example, ck = 1 and dk = 0.01 for k = 0, 1, 2, where ck and dk are the shape

and rate, respectively. However, as we shall demonstrate, this prior distribution on
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λk can be problematic within the context of a bivariate partial zero-inflated Poisson

model.

2.2.4 Diffuse Prior Structure: Bayesian BPZIP Regression Model

Consider the BPZIP regression model outlined in Section 2.2.1, where p and

λ both depend on covariates. As in the non-regression case, we assume that the

prior distributions for all parameters are independent. Let γk = (γk,0, . . . , γk,q) be a

1× (q+1) vector of regression parameters consisting of an intercept and q covariates

corresponding to λk, k = 0, 1, 2. Further, let β = (β0, . . . , βr) be a 1×(r+1) vector of

regression parameters consisting of an intercept and r covariates corresponding to the

zero-inflation probability. We assume the elements of γk are mutually independent

and independent of the elements of β. Thus, the joint prior distribution is given by

π(β,γk) =
2∏

k=0

q∏
v=0

π(γk,v)
r∏

v=0

π(βv).

For example, for one covariate, the joint prior distribution is given by

π(β,γk) = π(β0)π(β1)
2∏

k=0

π(γk,0)π(γk,1). (2.13)

A typical prior structure places independent diffuse normal priors on both sets of

regression coefficients. That is,

β ∼ Nr(0,σ
2
βIr)

and

γk ∼ Nq(0,σ
2
γIq),

for k = 0, 1, 2, and where σ2
γ and σ2

β are chosen to be large (e.g. 103) to express

absence of prior information. Here Nd(ϕ,Λ) denotes a d-variate normal distribution

with mean vector ϕ and covariance matrix, Λ. Alternatively, we can place inverse-

gamma priors on σ2
γ and σ2

β, or proper uniform prior distributions on σγ and σβ.
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2.2.5 Posterior Inference for BPZIP Model

Suppose we have n bivariate outcomes where the ith observation is represented

by yi = (y1i, y2i) for i = 1, . . . , n and y = (y1, . . . ,yn) represents the vector of

the observed bivariate responses. Consider the non-regression case where `(p,λ |y)

denotes the likelihood given by (2.4). Again, we assume that the prior distributions

for all parameters are independent. Let π(p) denote the prior distribution for the

zero-inflation parameter, and let π(λk) denote the prior for λk, k = 0, 1, 2. Denote

the joint prior

π(λ) = π(λ0)π(λ1)π(λ2).

Then, the joint posterior distribution of (p,λ) is given by

π(p,λ|y) ∝ `(p,λ |y) π(p)π(λ),

which has a nonstandard density. Thus, Markov chain Monte Carlo (MCMC) meth-

ods, such as Gibbs sampling, are used to sample from the posterior distribution.

Gibbs sampling draws iteratively from the full conditional distributions of the model

parameters.2

We adapt a data augmentation method similar to that applied in Ghosh et al.

(2006) and Majumdar and Gries (2010).3 This method eases implementation of the

Gibbs sampler to generate samples from the posterior distribution of parameters of

interest. Inference for the BPZIP model relies on representing Y1 and Y2 in terms

of latent variables. From the model in (2.2) we have that (Y1, Y2) consists of two

underlying sub-populations;

2 The full conditionals for univariate zero-inflated models and hurdle models also do not have
closed forms (Neelon et al. (2010)).

3 Tanner and Wong (1987) propose data augmentation schemes to ease the computation of
posterior computations in models such that the data can be augmented in such a way that eases
sampling from the posterior distribution. This is commonly applied to missing value problems.
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(1) Subjects not at-risk for Y1 and at-risk for Y2

(2) Subjects at-risk for Y1 and Y2,

where “not at-risk” represents the case where a structural zero is always observed,

and “at-risk” represents the case where either a non-zero count or sampling zero is

observed. We do not actually observe which sub-population each bivariate observa-

tion is from. Furthermore, from the standard BP distribution described in Appendix

A we have that

Y1 = X1 +X0

and

Y2 = X2 +X0,

where X1, X2, and X0 are independent Poisson random variables with means λ1, λ2,

and λ0, respectively, such that λi > 0, i = 0, 1, 2. The observed data are the

counts Y1 and Y2 and the unobserved data are the counts X1, X2 and X0. It follows

that we can represent the BPZIP random variables in terms of latent (unobserved)

variables. Define the random variables Y1 and Y2 in terms of latent variables U and

X = (X1, X2, X0) such that

Y1 = (1− Ui)(X1 +X0), (2.14)

and

Y2 = X2 +X0, (2.15)

where Ui ∼ Bernoulli(p), and p is the zero-inflation probability for Y1. That is,

Ui =


1, if y1i = 0

0, if y1i > 0.

Further, the bivariate Poisson latent variables X1, X2, and X0 are independent Pois-

son random variables with means λ1, λ2, and λ0, respectively. Note that, per (2.14)

16



and (2.15), Y1 depends on three latent variables where as Y2 depends on two latent

variables. Denote the model parameters by θ = (p, λ1, λ2, λ0), the observed data

by Y = (Y1, Y2) and the latent (unobserved) data by Z = (U,X1, X2, X0). We are

interested in the posterior distribution, π(θ|Y), however, this is difficult to compute

directly. To ease computation, we obtain the posterior, π(θ|Y,Z) (often referred to

as the augmented data posterior), which is more straightforward to compute. In-

stead of sampling directly from the posterior, π(θ |Y), we sample from the posterior,

π(θ,Z |Y). In order to implement this method within a Gibbs sampling framework,

we must be able to sample from two conditional distributions, namely the posterior

distribution of augmented data, π(θ |Y,Z), and π(Z|θ,Y).

This can be extended to the regression model. The joint posterior distribution

is given by

π(U,X,βj,γk,σ
2
γ ,σ

2
β |Y) ∝ `(U,X,β,γk|Y)

2∏
k=0

{
q∏

v=0

π(γk,v)

}
r∏

v=0

π(βv),

which again has no closed form. Thus, for posterior inference we use MCMC meth-

ods, such as Gibbs sampling, to sample from the full conditionals, namely, π(θ |Y,Z)

and π(Z|θ,Y), where here θ = (γ0,γ1,γ2,β). This algorithm can be readily im-

plemented in software such as WinBUGS, OpenBUGS or JAGS (for both the non-

regression case and regression case), which use MCMC algorithms to generate sam-

ples from the posterior distribution of parameters (Plummer (2003), Sturtz et al.

(2005)). For this dissertation, inference for the BPZIP model was carried out using

JAGS through the R package rjags.

2.2.6 BPZIP Prior and Posterior Predictive Distributions

The prior and posterior predictive distributions are commonly used in the

implementation of Bayesian analysis for prediction. By using both of these joint dis-

tributions, we can model our uncertainty completely. We make use of both the prior

and posterior predictive distributions in Section 2.7.1 and Section 2.7.4, respectively.
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The prior predictive distribution is the expected value of the likelihood with respect

to the prior. Often we are interested in predicting the “next” observation or obser-

vations (e.g. gauging the prospects for a future sample). That is, suppose we want

to predict future bivariate observation(s) denoted ỹ (assumed independent from our

data y). We can make use of the posterior predictive distribution, which is defined

as the expected value of the BPZIP likelihood, evaluated at ỹ, with respect to the

BPZIP posterior distribution given the data. The posterior predictive distribution

for the BPZIP model has the form

π̃(ỹ|y, x̃) =

∫
Θ

`(ỹ |β,γk,y,x)π(β,γk |y,x)dθ, (2.16)

where x is the vector of covariates for the current sample, and x̃ is the vector of

covariates corresponding to the future observations, and θ is the vector of parameters

defined on Θ.

2.3 Application: Drug Safety Adverse Event Study

We consider a hypothetical study to investigate the safety of a new drug. Sup-

pose we want to study the safety of a new drug with respect to two side effects,

common to similar medications currently on the market. Specifically, suppose 100

subjects enroll in a six-month study to track the two adverse events. Throughout

the course of the six month study, the subjects were asked to recall the number of

occurrences of these two adverse events, which are known to be related. We assume

that observed person-time is the same for each individual subject. In addition, we

assume that not all subjects involved in this particular study are at-risk to expe-

rience a migraine, but that all subjects are at-risk to experience a nausea episode.

Moreover, previous studies suggest positive association between the number of mi-

graines and the number of nausea episodes for those at-risk to the former. Thus, a

BPZIP model is appropriate in this scenario.
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Let (Y1i, Y2i) be a bivariate response count for the ith subject such that

Y1i = Number of migraines experienced during study,

and

Y2i = Number of nausea episodes experienced during study,

for i = 1, . . . , n, where n is the number of subjects in the study. We assume

(Y1, Y2) ∼ BPZIP(p,λ). From (2.2) we have that the data can arise from one of

two distributions:

(1) (Y1i, Y2i) ∼ (0,Poisson(µ2)): the subject is not at-risk to experience a mi-

graine but is at-risk to experience a nausea episode (with probability p).

(2) (Y1i, Y2i) ∼ BP(λ0, λ1, λ2): The subject is at-risk to experience a migraine

and is at-risk to experience a nausea episode (with probability 1− p).

Table 2.1 contains the interpretations of the bivariate partial zero-inflated

Poisson model parameters within the context of this hypothetical study.

This hypothetical study will be referred to throughout this chapter to facilitate

the illustration of several proposed methods of prior construction for a Bayesian

bivariate partial zero-inflated Poisson model. In addition, this hypothetical study

will be used to demonstrate plausible methods of prior elicitation and how they

can be applied in practice to scenarios such as the study described above as well as

several other applications.

2.3.1 JAGS Specifications for Posterior Inference

Posterior inference was carried out with JAGS using the R package rJAGS.

Inference was done with two chains. Initial values for parameters were randomly

generated from the corresponding prior distributions. We ran 160,000 iterations and

used the first 10,000 iterations as a burn-in. For the remaining 150,000 iterations we

19



Table 2.1: Interpretation of parameters for bivariate partial zero-inflated Poisson
model for hypothetical adverse event study.

Parameter Interpretation
p The zero inflation parameter. This is the proportion of excess

zeros for Y1. It can also be thought of as the probability
that a subject is not at-risk to experience Y1 and is at-risk to
experience Y2.

1− p The proportion of individuals that are at risk to experience
both a migraine and a nausea episode.

λ0 The rate associated with simultaneously experiencing both
adverse events; this is an association parameter, represents a
measure of dependency between outcomes Y1 and Y2.

λ1 The mean of experiencing just migraines; λ1 + λ0 is the rate
of experiencing migraines among those that are at-risk for
experiencing migraines.

λ2 The rate of experiencing just a nausea episode; λ2 + λ0 rep-
resents the mean of experiencing just a nausea episode.

sampled every 10th value to reduce autocorrelation. Accordingly, 30,000 parameter

values were retained for each chain.

2.3.2 Posterior Inference for Adverse Event Study

Suppose we want to evaluate the safety of this new drug as defined by some pre-

specified threshold that the number of migraines and the number of nausea episodes

does not exceed. Specifically, for critical values, c1 and c2, we are interested in the

posterior predictive probability that

Pr(Y1 < c1 and Y2 < c2 | data) ≥ δ, (2.17)

for some probability δ. For our example, we generated the data depicted in Figure

2.1, including a slight positive association between the two adverse events.
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Figure 2.1: Scatterplot and marginal count data for number of migraines and num-
ber of nausea episodes for n = 100 observations. True values of parameters are
λ = (2, 4, 8) and p = 0.60.

That is, as the number of migraines experienced by a subject increases the number

of nausea episodes also increases. Later we extend this example to account for age

as a covariate.

We consider relatively informative priors for model parameters, as indicated by

the red, dashed densites in Figure 2.2. Discussion of methods for prior construction

of model parameters within the context of the BPZIP model will be discussed in

detail in subsequent sections. Posterior inference was carried out with the JAGS

specifications described in Section 2.3.1. Standard diagnostics based on trace plots

and the Gelman-Rubin statistic indicate no problems with convergence (Gelman

and Rubin (1992), Brooks and Gelman (1998)). The resulting posterior densities

are shown in Figure 2.2.
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Figure 2.2: Priors (red, dashed) and posterior (black, solid) densities for BZIP model
parameters.

Table 2.2 provides the posterior estimates and corresponding 95% credible

intervals for model parameters.

Table 2.2: Posterior estimates and 95% credible intervals for BPZIP model
parameters.

Parameter Truth Mean SD 50% 2.5% 97.5%

λ0 2 1.931 0.909 1.860 0.412 3.823
λ1 4 3.018 0.933 3.060 1.153 4.698
λ2 8 7.792 0.958 7.854 5.817 9.456
p 0.60 0.626 0.040 0.626 0.546 0.703

In Section 2.4 we present several examples within the context of the drug safety

study in which inference for model parameters is problematic. We now evaluate the

safety of this new drug. Suppose in (2.17) we set c1 = 10, c2 = 18 and δ = 0.95.

That is, given the data from this study, we require the posterior predictive probability

that, given the data in Figure 2.1, the number of migraines is less than 8 and the
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number of nausea episodes is less than 18 is at least 0.95. That is,

Pr(Y1 < 10 and Y2 < 18 | data) ≥ 0.95.

This probability is easily computed with JAGS. Figure 2.3 shows a scatterplot for

the posterior predictive distribution for Y1 and Y2
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Figure 2.3: Scatterplot of the posterior predictive distribution for the number of
migraines and number of nausea episodes. The red dashed line indicates the pre-
specified critical safety limit for the number of migraines (c1), and the blue dashed
line indicates the prespecified critical safety limit for the number of nausea episodes
(c2).

In particular, using the posterior predictive distribution, we have that

Pr(Y1 < 10 and Y2 < 18 | data) = 0.98.

Hence, given the data from the current study, it appears that this drug is in fact safe

by this criterion. The FDA guidance on Bayesian methods (FDA (2010)) requires

that prior probabilities of such success criteria be considerably less than the requisite

success probability, in this case δ. This prior predictive probability of success is

Pr(Y1 < 10 and Y2 < 18 | prior) = 0.61,

which is indeed much less than δ = 0.95. The prior structure does not unreasonably

favor the desired threshold values.

23



2.4 BPZIP Examples

In this section, we present some problems that can arise in posterior inference

for BPZIP model parameters, particularly in a diffuse prior setting. We begin by

demonstrating a situation in which we have poor estimation of the zero-inflation

parameter, p. We follow this with an example exhibiting a lack of convergence for

the Poisson parameters λk, k = 0, 1, 2. For these examples, we did not consider

covariates.

For the examples in this section, we consider diffuse priors for model param-

eters. Specifically, for the Poisson parameters we assume λk ∼ Gamma(1, 0.01) as

the prior and for the zero-inflation parameter we consider p ∼ Beta(0.5, 0.5) as the

prior.4 These priors are depicted in Figure 2.4.

2
4

6
8

10

p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 200 400 600 800

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

λk

Figure 2.4: Diffuse priors on λk, k = 0, 1, 2 and p.

Posterior inference for all examples in this section was implemented in JAGS using

the specifications outlined in Section 2.3.1.

2.4.1 BPZIP Example: Potential Problems with Inference for Zero-inflation Prob-
abilty

In this example, we illustrate parameter values that can be problematic for

estimation of the zero-inflation probability. Specifically, we demonstrate that, for p

4 Here 1 and 0.01 denote the shape and rate parameter, respectively.
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close to 0.5 and small λk, poor estimates obtain for p. Suppose the data we generated

to simulate this hypothetical study are as depicted in Figures 2.5.
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Figure 2.5: Data for n = 50 observations generated to simulate the hypothetical
adverse event study. True values of parameters are λ = (0.5, 0.5, 3) and p = 0.5.

We consider diffuse priors on model parameters as presented in Section 2.4

and posterior inference was carried out with JAGS using the same specifications as

described in Section 2.3.1. The posterior distribution for p is shown in Figure 2.6.
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Figure 2.6: Posterior distribution for two chains (indicated by the red and blue
density) for zero-inflation probability. The true value of the zero-inflation probability
is indicated by the vertical dashed line.

The bimodality seen in the posterior for p suggests a lack of convergence of

the parameter p (this was further indicated by standard diagnostic tests such as
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trace plots and the Gelman-Rubin statistic). In addition, the posterior mode for

p is underestimated compared to the true value. It is possible that this can be

attributed to the fact that the model struggles to identify whether an observed zero

is structural or sampling. Increasing the initial burn-in length, chain length and

thinning rate yielded comparable results as shown here. This example demonstrates

a situation in which diffuse prior may not be appropriate. A possible remedy to

improve estimation of the zero-inflation probability could be to is to increase the

sample size to say n = 200 or 300. Alternatively, we could consider informative

priors for the zero-inflation probability. Construction of such is discussed in detail

in subsequent sections.

2.4.2 BPZIP Example: Potential Problems with Inference for Poisson Parameters

In this example, we demonstrate the lack of convergence for the Poisson param-

eters, λ. Consider again our adverse event study and suppose the data we generated

to simulate the hypothetical drug study are as depicted in Figure 2.7. Specifically,

we generated n = 100 observations from the model (Y1, Y2) ∼ BPZIP(p,λ), with

true values of the parameters are λ = (2, 3, 8) and p = 0.8. That is, the data were

generated in such a way that 80% of the population in our hypothetical adverse

event study is not at-risk to experience migraines.
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Figure 2.7: Data for n = 100 randomly generated observations from a BPZIP with
true values λ = (2, 3, 8) and p = 0.8.
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We again consider the diffuse priors shown in Figure 2.4. Posterior inference was

carried out in JAGS with the specifications described in Section 2.3.1. Figure 2.8

shows the posterior densities for λk’s.
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Figure 2.8: Posterior results for two MCMC chains (represented by the red and blue
densities) for the λk’s with diffuse priors. True values are λ = (2, 3, 8).

The irregular posteriors densities in Figure 2.8 suggest a lack of convergence of

the λk’s. Standard diagnostics based on trace plots, autocorrelation plots, and the

Gelman-Rubin statistic further suggest that convergence is questionable. We in-

creased length of initial burn-in, number of chains, number of iterations for each

chain, and thinning rate. Nevertheless, this did not observe convergence.

Moreover, there is a lack of posterior updating of the λk’s. Again, increasing

burn-in length, chain length and thinning rate did not improve posterior updat-

ing. This lack of posterior updating is a common feature in nonidentifiable models.

Specifically, the BPZIP model parameters, λ0, λ1, and λ2 appear to be unidentified.

Figure 2.9 shows the posterior densities for µ1 = λ1 + λ0 and µ2 = λ2 + λ0. In

contrast to the irregular posterior densities in Figure 2.8, the posterior densities for

µ1 and µ2 are smooth and unimodal. In addition, there is more updating a posteriori

compared to that seen in the posteriors for the λk’s. This is not surprising as the

observed data informs the model about the sums λ1 + λ0 and λ2 + λ0. The data

does not inform the model about the individual summands λ1, λ2, and λ0. This

contrast between the posterior densities for the individual summands, λk, and the
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Figure 2.9: Posterior densities for marginal rates µ1 and µ2.

sums µ1 and µ2 demonstrates the nonidentifiability of the model parameters λk and

the identifiability of the sums µ1 and µ2.

Now suppose we place a highly informative prior on λ0, while keeping the

priors on λ1 and λ2 diffuse. Namely, we assume

λ0 ∼ Gamma(2, 1),

where 2 and 1 denote the shape and scale parameter, respectively. This prior is

depicted in Figure 2.10.
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Figure 2.10: Informative gamma prior on λ0.

We repeat posterior inference with the same JAGS specifications as in Section 2.3.1.

Figure 2.11 and Table 2.3 shows the resulting posterior densities for the λk’s.

28



0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λ0

Chain

1

2

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λ1

Chain

1

2

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λ2

Chain

1

2

Figure 2.11: Posterior densities for two MCMC chains (represented by the red and
blue densities) for Poisson parameters with informative prior on λ0 and diffuse priors
on λ1 and λ2.

Table 2.3: Posterior estimates and corresponding credible intervals for λk’s when
consider an informative prior on λ0.

Parameter Truth Mean SD 50% 2.5% 97.5%

λ0 2 1.813 1.096 1.621 0.240 4.294
λ1 3 2.967 1.200 3.094 0.419 5.008
λ2 8 8.215 1.140 8.391 5.670 9.960

The smooth, unimodal posterior densities and standard diagnostics now suggest

convergence of the sampler. This example suggests informative priors as a remedy

for problems that nonidentifiability can cause. This is explored in greater detail in

subsequent sections.

2.4.3 Additional Remarks on Posterior Inference for BPZIP Parameters

We constructed a variety of other examples leading to the following tentative

conclusions with respect to inference for BPZIP model parameters. In several exam-

ples, we observed under-or overestimation for p for true values of p close to zero or

one and small n. The estimation of the zero-inflation probability seems to improve

with increasing sample size (e.g. n = 200, 300). Moreover, we consistently observed
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that diffuse priors on p, such as the Jeffreys or uniform, can be problematic, partic-

ular with small sample sizes.5

With respect to inference for the λk’s, in several examples, we observed that

the effects of nonidentifiability are more evident for values of λk close to zero and

close to each other (e.g. λ = (1, 1.5, 2)). As the values of λk become farther from

zero, and more distinguished from each other (e.g., λ = (5, 10, 20)), the effects of

nonidentifiability are less evident. In general, increasing the sample size does not

improve estimation of the λk’s (another observation that suggests nonidentifiability

of the λk’s). With respect to posterior inference for the sums, λ1 + λ0 and λ2 + λ0,

diagnostics suggest convergence and reasonable posterior estimates were obtained

for all values of the parameter space explored. Hence, the one-off examples using

simulated data indicate that identifiability of sums of parameters need not require

identifiable summands, as expected.

In general, we found that the diffuse prior approach in Section 2.2.3 can be

problematic with respect to convergence of the Gibbs sampler and thus problematic

for posterior inference of model parameters. These findings motivated the explo-

ration of informative priors for model parameters.

2.5 The Allure of Identifiability

Inference for nonidentifiable models can be problematic. This is the case

whether using frequentist methods or Bayesian methods. The identifiability prob-

lems of the bivariate partial zero-inflated Poisson model can be mitigated somewhat

by the use of Bayesian methods with informative priors. In Section 2.4.2 we demon-

strated that the Poisson parameters λ0, λ1 and λ2 are non-identifiable, but that

the sums λ1 + λ0 and λ2 + λ0 are identifiable. Throughout the dissertation, we

5 We conclude that the results of several examples with respect to posterior inference for p in
the BPZIP model were similar to those documented in Ghosh et al. (2006) in the context of the
univariate ZIP model. This is what we would expect as our BPZIP model consists of a univariate
ZIP model.
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assume that estimation of the individual Poisson components is of interest.6 Meth-

ods in the literature have been proposed to achieve identifiability of other models

such as the standard bivariate Poisson model and the bivariate zero-inflated Poisson

model. Theoretically, these methods could also be applied to our bivariate partial

zero-inflated Poisson model in (2.2). For example, identifiability can be obtained by

setting λ1 = λ2 (Yuen et al. (2015) do this in the context of a bivariate zero-inflated

Poisson). In the context of a BPZIP model, this constraint implies that the the

counts, Y1 and Y2, have equal rates among those “at-risk” to experience Y1. Karlis

and Ntzoufras (2003) achieve identifiability for the standard bivariate Poisson model

by assuming a standard set of constraints, such as sum to zero constraints. Since the

proposed BPZIP model consists of a standard BP distribution, we might also con-

sider such constraints. However, such a simplifying assumption is very informative

and does not seem reasonable in practice. Another option to obtain identifiability

could be to assume a fixed value as the prior for λ0. Again, this is extremely informa-

tive and not reasonable in practice. Mohammadi et al. (2016) alleviates the effects

of nonidentifiability for a bivariate zero-inflated Poisson model by assuming that

different covariates effect the individual Poisson rates. Such an assumption could

also be applied to the BPZIP model, however, it would seem that this approach has

limited use in practice.

An alternative, as used in other types of models with unmeasured confounding

components or measurement error models is to add constraints (Robert (1994),Gustafson

(2004)). For example, we could assume a strict ordering of the Poisson rates,

0 < λ0 < λ1 < λ2. Another option is to apply constraints to the sums λ1 + λ0

and λ2 + λ0. However, determining conceivable constraints on these sums would

be a difficult task. A potentially less extreme approach to mitigate problems non-

6 Note that, even if the goal is to provide inference for λ1 + λ0 and λ2 + λ0, despite reasonable
posterior inference for these quantities, it is important to note the lack of model convergence which
can compromise the results.
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identifiability can cause is using moderately informative priors. In particular, in

the context of the BPZIP regression model, an alternative is to place priors on the

regression coefficents such that the induced priors on the BPZIP model parameters

are relatively informative. The problems that nonidentifiability can cause in the

estimation of parameters for the bivariate partial zero-inflated Poisson model makes

the Bayesian approach to these models desirable as provided we supply a legitimate

probability distribution as the prior, Bayes theorem will output a legitimate prob-

ability distribution as the posterior distribution. (Gustafson (2015)). This is the

case whether or not the model is identifiable. Moreover, an aspect of the Bayesian

paradigm in nonidentifiable settings is that the prior distribution can be used as a

tool to identify parts of the parameter space that are not covered by the likelihood

(i.e. in this case λ1, λ2 and λ0), even though the choice of prior may affect the

identifiable part (Robert (1994)).

Bayesian inference does not require indentifiability in models. That is, pro-

vided we supply a legitimate prior distribution, Bayesian inference will supply a

legitimate posterior distribution. However, no statistical methodology is immune

from the consequences of nonidentifiable models. In Bayesian inference, nonidenti-

fiability typically presents convergence issues with associated Markov chain Monte

Carlo (MCMC) methods. Moreover, in the absence of MCMC convergence prob-

lems, identifiability issues manifest themselves in the failure of a prior to update a

posteriori. That is, there is little or no updating seen for the prior distribution of the

unidentified parameter compared identified parameters. Gustafson (2015) remarks

that

One intuitive way of thinking about Bayesian inference in the absence of parameter
identifiability is that the prior distributions play more of a role than usual (than
in identifiable models) in determining the posterior belief about the parameters
having seen the data.
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In what follows we propose plausible methods of informative prior construction

for the bivariate partial zero-inflated Poisson model. We begin with a discussion for

informative prior construction for the simpler case without covariates. We use this

to introduce prior elicitation tasks, which subsequently serve as a basis for prior

construction and elicitation in the case with covariates. We return to the drug

safety example as a vehicle for this development.

2.6 Informative Prior Structure for BPZIP Model

Bayesian methods for incorporating prior information in the analysis of zero-

inflated models has not been covered in detail in the literature. Nevertheless, such

methods seem desirable and can mitigate the effects of nonidentifiability. We offer

several relatively informative prior structures for model parameters and plausible

methods of prior elicitation from subject-matter experts for a Bayesian bivariate

partial zero-inflated Poisson model with and without covariates. Although, less

applicable in practice we use the non-regression case to introduce prior elicitation

tasks, which will serve as a basis for prior construction and prior elicitation in the

more complex case with covariates, which will be the primary focus.

2.6.1 Informative Priors on Poisson Parameters: Non-regression Case

We begin by discussing plausible methods of informative prior construction for

the Poisson parameters, λ, in the case of no covariates. We extend this to regression

models in Section 2.6. We assume a priori independence of λ0, λ1, and λ2 in (2.2).

That is,

π(λ) = π(λ0)× π(λ1)× π(λ2).

Consider a subset of the bivariate set of outcomes from the hypothetical drug safety

trial described in Section 2.3 such that all subjects are similar in age. That is, for the

sake of illustration, we assume age does not affect the Poisson rates or zero-inflation

probability. For reference, the interpretations of the Poisson rates in the context of
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the adverse event drug safety trial are presented in Table 2.1. This information will

be essential in the assessment tasks for the prior elicitation process.

In Section 2.4.2 we demonstrated the extent of informativeness on the rate of

simultaneously experiencing both Y1 and Y2, denoted by λ0, is critical in obtaining

reasonable posterior estimates, particularly when the prior distributions on λ1 and

λ2 are diffuse. This might suggest eliciting prior information from a subject matter

expert on λ0 as a solution to mitigate the deleterious effects of nonidentifiability.

However, the Poisson parameter, λ0, does not have an operational interpretation,

making prior elicitation from a subject matter expert implausible.7

Accordingly, we consider several options for prior construction, including prior

elicitation methods from a subject-matter expert for the Poisson rates λ1 and λ2

and provide plausible routes for elicitation on these quantities. One option is to

impose a constraint on the ordering of parameters λ1 and λ2. For example, in the

context of the adverse events example described in Section 2.3, suppose we have

prior knowledge that the counts associated with migraines (Y1) are often less than

the counts associated with nausea events (Y2). Given this information, we might

impose the constraint that the rate of experiencing migraines is less than the rate of

experiencing nausea events. That is, λ1 < λ2. The approach of adding constraints is

widely used in other types of models such as models with unmeasured confounding

components or measurement error models. Note that care should be taken when

imposing informative constraints that are not inherent in the likelihood.

A potentially less extreme approach is to incorporate a stochastic ordering of

the parameters λ1 and λ2 in the prior structure. Suppose again that, a priori, we

have reason to believe that the rate of experiencing just Y1 is less than the rate

of experiencing just Y2, λ1 < λ2, with some probability. In our example, suppose

a subject matter expert believes that the rate of experiencing just migraines (λ1)

7 An alternative might be to use historical information to construct a prior for λ0 if available.
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is less than the rate of experiencing just nausea (λ2). That is, Pr(λ1 < λ2) = 0.8.

One option to incorporate this stochastic ordering constraint in the prior structure

is with copulas. We will not explore this option further, and for more details of this

method we direct the reader to Nikoloulopoulos and Karlis (2009) and references

therein.

A more plausible approach is to elicit expert judgement on λ1 and λ2 as they

are conceivably observable quantities. The elictation of a gamma distribution is

well documented in the literature. We use the mode-percentile method of elicitation

to construct gamma distributions to reflect expert knowledge about the Poisson

parameters, λ1 and λ2. The assessment tasks involved in the elicititation of prior

information about the parameters λ1 and λ2 in the context of the hypothetical

adverse event study are as follows: To assess the expert’s knowledge and uncertainty

about λ1 the expert might be asked (recall that we are assuming age does not effect

the Poisson parameters), “Among those at-risk to experience migraines, how many

do you expect a subject to experience over the course of the study?” In response, the

expert relays a most likely value (mode) and most extreme value (upper percentile).

Their response is then translated into the parameters for a gamma distribution using

numerical methods to reflect this information (O’Hagan et al. (2006)). To assess the

expert’s knowledge and uncertainty about λ2 the expert is asked, “How many nausea

episodes do you expect a subject to experience over the course of the study?” In

response, the expert relays a most likely value (mode) and most extreme value (upper

percentile) which is then translated into the parameters of a gamma distribution.

A limitation of this approach is that it involves independent elicitation of

the modal value and percentile value (upper or lower) for constructing the prior

distributions of λ1 and λ2,

λ1 ∼ Gamma(c1, d1)
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and

λ2 ∼ Gamma(c2, d2).

Consequently, this approach is less reasonable as λ1 and λ2 are more dependent.

Again, copula methods might be used to remedy this deficiency. Conditional beta

distributions might also be used along with log transformations to [0,∞]. For more

on the latter approach, see Arnold et al. (2004)).

We now consider a simple method for modeling some degree of dependence

among λ1 and λ2. In the hypothetical adverse event example, suppose the subject-

matter expert believes that among subjects that experience both migraines and

nausea, the rate of experiencing just nausea (λ2) is always some percent greater

(or λ1 is always some percent smaller than λ2) than the rate of experiencing just

migraines (λ1). This dependence can be represented by

λ1 = ωλ2, (2.18)

where ω represents a proportionality constant. Construction of a prior for λ1 that

reflects the relationship described by (2.18) requires elicitation of a prior on the rate

of experiencing just Y2, λ2, and on the proportionality parameter, ω. Again, we use

the mode-percentile method of elicitation to construct a gamma prior distribution

on the rate of experiencing just nausea, λ2. This involves prompting the expert to

relay a most likely value (mode) along with an upper or lower bound (percentile)

to represent uncertainty. Again, in the context of the hypothetical adverse event

study the expert is asked, “How many nausea episodes do you expect a subject to

experience over the course of the study?” In response, the expert relays a most likely

value (mode) and most extreme value (upper percentile). Their response is then

translated into the parameters for a gamma distribution to reflect this information

using numerical methods (O’Hagan et al. (2006)). For example, suppose the expert

believes the most likely value for the number of nausea espisodes over the study
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is λ2 = 5 and that the most extreme value is λ2 = 8 (the 80th percentile). The

corresponding prior distribution on the rate of experiencing just nausea is

λ2 ∼ Gamma(c2 = 5.78, d2 = 1.05),

where c2 and d2 denote the shape parameter and scale parameter, respectively.

Next, we construct a prior for the proportionality parameter in (2.18). If the

expert believes that λ1 < λ2 with probability one, then 0 < ω < 1 and an appropriate

choice for a prior on ω that reflects this is a beta distribution or a truncated scaled

four parameter beta distribution. However, if it is possible that λ1 could be greater

than λ2, and hence possible for ω > 1, then a truncated Normal distribution, Gamma

distribution, or a half-t distribution (less informative option compared to a truncated

normal distribution) are appropriate choices as a prior distribution for ω. Note that

each of the aforementioned possible prior distributions for ω ensure that the range

of the prior for λ1 is positive. For purposes of illustration, we assume that it is

possible that ω > 1 and assume a truncated normal distribution as a prior for ω. In

particular, we can elicit information about ω from a subject-matter expert as follows

(1) The expert is asked “Consider a subset of 100 subjects. For what percent

of these subjects, do you think, the average number of nausea episodes will

be greater than the average number of migraines (λ2)?” Their response is

translated into the modal value of the truncated normal.

(2) The expert is then asked “What is the largest (smallest) percent that this

can be?” Their response is translated into a upper (lower) percentile.

As an example, suppose the expert says that the number of migraines will be less

than the number of nausea episodes in 80% of the subjects and that the smallest this

percentage can be is 65%. We construct a truncated normal distribution on ω using

80% as the modal value and 65% as the lower 20th percentile. This information
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yields the following prior on ω:

ω ∼ Truncated-Normal(0,∞)(µ = 0.8, σ = 0.18).

We now use the elicited prior distribution on λ2 and α to construct a prior on the

rate of nausea episodes, λ1. From (2.18), we have that

π(λ1) ∝ π(ω)π(λ2),

where π(λ2) and π(ω) denote the elicited gamma and truncated-normal densities,

respectively.

The resulting prior distributions based on the information obtained from the

expert are shown in Figure 2.12. Furthermore, Table 2.4 summarizes the mode and

25th percentile of the induced prior on λ1, as well as the mode and 25th percentile

of the gamma distribution based on the information collected from the expert on λ2.
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Figure 2.12: Induced prior on λ1 is in blue, and elicited gamma prior on λ2 is in
red. The mode and 25th percentile of the induced prior on λ1 is represented by the
dashed line and solid line, respectively.
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Table 2.4: Prior distributions on λ1 and λ2 based on the information elicited from
the expert.

Parameter Mode 25th Percentile

λ1 3.72 3.17
λ2 5.16 4.24

Providing feedback to the subject-matter expert is an essential part of the prior

elicitation process as it allows the expert to evaluate their assessed prior distribu-

tions. We elaborate more on possible ways to provide feedback to the expert to show

them the consequences/wisdom of their priors in Section 2.7.1. For our purposes, we

assume that the expert is satisfied with these priors for λ1 and λ2 accurately reflect

their prior knowledge.

2.6.2 Informative Priors on Zero-inflation Parameter: Non-regression Case

The posterior behavior of the zero-inflation parameter p in the bivariate partial

zero-inflated Poisson case is similar to that of a univariate zero-inflated Poisson

(see Ghosh et al. (2006)). Via several one-off examples using simulated data, we

observed that diffuse priors for the the zero-inflation parameter can be problematic,

particularly for small n (n = 50, 100) and small values of λk in which case the model

has trouble distinguishing between structural and sampling zeros (see Section 2.4.1).

Recall that p is the zero-inflation probability and represents the proportion

of individuals that are not at-risk to experience migraines (in the context of the

hypothetical adverse event study). This is a conceivably observable quantity about

which to elicit subject-matter expert opinion. There are several methods for eliciting

a beta distribution found in the literature. We adapt the method proposed by

Elfadaly and Garthwaite (2013a). In particular, Elfadaly and Garthwaite (2013a)

suggest eliciting a median, lower bound (25th percentile) and upper bound (75th

percentile) to determine parameters of a beta distribution that reflect the expert’s
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belief within a general context. We modify the general assessment tasks proposed by

Elfadaly and Garthwaite (2013a) to apply the the BPZIP model. Consider a subset

of the hypothetical adverse event example. The assessment tasks are as follows

(again here we assume that age does not effect the zero-inflation parameter):

(1) “Suppose we have 100 subjects from the study population. What, do you

think, is the percentage of these subjects that are not at-risk to experience

migraines?” Their response is taken to be the median.

(2) Next the expert is asked “Suppose the percentage of these subjects not at-

risk to experience migraines is actually higher than your initial assessment.

Given this information, what do you now think is the percentage of these

subjects not at-risk to experience migraines?” Their response is taken to be

the 75th percentile.

(3) Finally, the expert is asked “Suppose the percentage of these subjects not

at-risk to experience migraines is actually lower than your initial assessment.

Given this information, what do you think now think is the percentage of

these subjects not at-risk to experience migraines?” Their response is taken

to be the 25th percentile.

As an example, suppose the expert believes that the 25th percentile, median

and 75th percentile are 0.35, 0.40, and 0.45, respectively. This information can then

be translated in to the parameters of a beta distribution using numerical methods

(Garthwaite et al. (2005), Elfadaly and Garthwaite (2013a)). Specifically,

p ∼ Beta(17.6, 26.3). (2.19)

In practice, this prior would be shown to the expert to verify whether or not this

distribution accurately reflects their prior beliefs. Modifications are made until sat-

isfaction obtains.
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Prior effective sample size (ESS) is an important part of the feedback process.

Prior ESS (this is further illustrated in Section 2.7.1) is particularly important when

applying Bayesian methods in settings with a small to moderate sample size (Morita

et al. (2008)). The beta prior distribution in Figure 2.19 has a prior equivalent

sample size of about n = 44 observations, which is half of our study sample size

and, therefore, highly informative. In practice, we can relay this information to the

expert in order to see if they want to reconsider their prior choice. Although this is a

considerably informative prior assessment the data (rather than the prior) will still

dominate the posterior. We can also provide feedback by using the prior predictive

distribution to generate observations as plausible data that might result based on

the expert’s judgment. This provides feedback to the expert in a meaningful scale.

We demonstrate use of the prior predictive distribution as a tool to provide feedback

in Section 2.7.1.

2.6.3 Conditional Means Priors

Inference for generalized linear models often relies on diffuse priors for regres-

sion coefficients as outlined in Section 2.2.4. We showed that placing diffuse priors

on regression coefficients in the BPZIP model can be problematic as often result in

convergence issues. If we have prior data, we can use it to construct the prior (power

priors, mixture priors etc.). If not, we can elicit subject-matter expert opinion to

construct the prior structure. Bedrick et al. (1996) developed an approach by which

priors for regression parameters can be specified via indirect elicitation. The priors

produced by this method (namely, the induced priors on regression coefficients) are

referred to as conditional means priors, or BCJ priors, and are commonly used on

regression parameters in generalized linear models. In particular the conditional

means prior (CMP) method involves eliciting prior information about expectations

of mean responses corresponding to observables with fixed covariates.
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It is difficult to elicit prior information directly on regression coefficents be-

cause it is often hard for subject-matter experts to think in terms of intercepts and

partial slopes. The CMP approach addresses this problem by instead eliciting in-

formation from experts on average response values at specific covariate values, a

quantity that is in the scale of the model’s observables, and therefore thus has a

more meaningful interpretation. This information is subsequently used to induce

priors on the regression coefficients.

The general procedure for specifying CMPs is as follows. Specific values of

predictor variables are selected for which prior information will be obtained. For r

covariates, we choose K r-dimensional (1× r) vectors of covariate values. Priors are

then elicited for the mean of the responses for each of the K covariate vectors, hence

the name “conditional means prior”, as these means are conditioned on the covariate

values. These priors are then used to induce a prior on the regression parameters.

Consider the general form of a generalized linear model. For i = 1, . . . , n, let

yi have density g(yi |µi,φ) with µi = f(x′iβ), where x′i represents a r × 1 vector of

covariates and β is the corresponding r−dimensional vector of regression coefficients.

That is, yi ∼ g(yi |µi,φ), E(Yi) = µi, and f−1(µi) = x′iβ. In this context, f−1

represents the link function (e.g. for binomial, f−1 is the logit(µi)) and φ represents

a vector of nuisance parameters. The goal is to induce a prior distribution on the

regression coefficients, β, based on priors elicited on the mean vector, µ, at various

covariate configurations of xi through link function, f−1(·). (h is the inverse link

function here)

Suppose we have K covariate vector configurations. We define the K×r design

matrix

X̃ =


x̃1

...

x̃K

 ,
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where the rows represent K distinct values of covariate vector xi (i.e. if r = 2,

x̃1 = (1, 25), x̃2 = (1, 65)). Note that it is convenient for X̃ to be nonsingular and

thus, we require K = r. Moreover, it should be emphasized that the x̃i, i = 1, . . . , K

values are hypothetical values, not actual observed data values. Denote the covariate

configurations, x̃h for h = 1, . . . , K. For each covariate configuration, x̃h, a prior is

elicited for the corresponding mean response value µ̃h = h(x̃hβ). This informative

prior is elicited from an expert and denoted as Gh. Note that all the Gh’s are

assumed to be independent which in turn indicates that the covariate configurations

x̃h are assumed to be sufficiently distinct.

The general prior structure for the conditional means prior approach can be

derived as follows. Define the matrix

µ̃ =


µ̃1

...

µ̃K

 =


f(x̃′1β)

...

f(x̃′Kβ)

 ≡ f(X̃β).

Note that f corresponds to some monotonic increasing and invertible function. Com-

mon selections for f are the logistic, probit and complementary log-log functions.

Since we construct X̃ in such a way that it is invertible, we can solve for β and

obtain:

β = X̃−1f−1(µ̃),

where, for example, if f is the logistic transform, then f−1(µ̃) = logit(µ̃). Thus, the

induced priors on the regression coefficients, β are defined as

β =


β1

...

βK

 ∼ X̃−1f−1



G1

...

GK


 .

This induced prior often has no closed form. This is not problematic as posterior

computations can be readily handled by Monte Carlo methods.
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2.6.4 Conditional Means Priors for a Bayesian BPZIP Regression Model

We can represent a BPZIP model in terms of a generalized linear model

such that the zero-inflation parameter and Poisson parameters depend on covariates

through canonical link generalized linear models as in (2.11) and (2.10), respectively.

Thus, the BPZIP model lends itself well to the conditional means prior approach

for model parameters. Consider our adverse event drug safety study in Section 2.3.

The data we generated to simulate this study for n = 100 subjects between the age

of 20 and 80 are depicted in Figures 2.13 and 2.14.
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Figure 2.13: Ages and marginal data for counts Y1 and Y2 for n = 100 subjects.

Figure 2.14 suggests a positive association. As the number of migraines experienced

by a subject increases the number of nausea episodes also increases.

Table 2.5 provides the model parameter summary for subject i and adverse

event k, i = 1, . . . , n, k = 0, 1, 2 (k = 0 denotes both adverse events).
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Figure 2.14: Scatterplot illustrating the joint association between the number of
migraines and the number of nausea episodes.

Table 2.5: Model parameter summary for subject i.

Parameter Interpretation
pi The probability that the ith subject age xi years-old is not

at-risk to experience migraines.

λ1i The mean rate of experiencing just a migraine (among those
at risk to experience migraines) for a subject age xi years old.

λ2i The mean rate of experiencing just a nausea episode for a
subject age xi years old.

λ0i The mean rate associated with simultaneously experiencing
both migraines and nausea for a xi-year-old subject.

β0 If covariates are centered, the log odds that a subject aged
x̄ = 46 is not at-risk to experience migraines.

β1 The log odds that a subject aged xi is not at-risk to expe-
rience migraines; eβ1 represents the increased (or decreased)
odds that a subject is not at-risk for migraines for a one year
increase in age.

γk,0 If covariates are centered, average log adverse event rate for
a subject aged x̄ = 46.

γk,1 Average change in log adverse event rate for a one year in-
crease in age; For a one-year increase in age, the expected
number of adverse event k increases (decreases) by a factor of
eγk,1 .
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Figure 2.15 provides a diagram illustrating the conditional means prior as

applied to the hypothetical adverse event study.

Figure 2.15: Bayesian BPZIP model with conditional means priors in context of
hypothetical adverse event study.

We first consider elicitation of a conditional means prior for the logistic regres-

sion parameters used to model the zero-inflation probability. Within the context of

a hypothetical adverse event study, pi denotes the probability that the ith subject is

not at-risk to experience migraines. In particular, for the ith subject we have that

logit(pi) = x′iβ

= β0 + β1 xi,

where xi represents the single covariate, age. Since there are two regression coeffi-

cients, β0 and β1, the design matrix, X̃, will consist of two covariate configurations.

Bedrick et al. (1996) discuss guidelines for value selection for covariate configura-

tions. For example, we require that the values of x̃i and x̃j, i 6= j are sufficiently

“far apart” so that knowledge of elicitation at covariate configuration x̃i does not in-

fluence elicitation at covariate configuration x̃j. For our hypothetical adverse event

example, we assume that the difference between age 25 and age 65 represents suffi-

ciently distinct responses. Since we have two regression coefficients, we consider two
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covariate configurations for the design matrix, X̃. In particular, let x̃1 = 25 years

old and x̃2 = 65 years old.

Applying the conditional means prior approach, we elicit information about

the mean zero-inflation probability at the two choosen covariate configurations, age

25 and age 65, and subsequently induce priors on β. There are several methods

discussed in the literature on elicitation of parameters for a beta distribution (see

Hughes and Madden (2002), O’Hagan et al. (2006)). We use a method proposed by

Elfadaly and Garthwaite (2013a) to elicit univariate beta distributions as priors on

p̃ = (p̃25, p̃65), which involves assessments of a median value, and two quartiles (upper

75th percentile and lower 25th percentile) as a measure of the expert’s uncertainty.

Numerical methods are then used to solve for the parameters of a beta distribution

that reflects the information collected from the subject-matter expert. For further

detail of the numerical methods used to solve for the beta parameters see Elfadaly

and Garthwaite (2013a).

Consistent with the assessment tasks outlined in Elfadaly and Garthwaite

(2013a), the elicitation process with a subject-matter expert with respect to their

judgment about the zero-inflation probability is conducted as follows. At both age

25 years old and 65 years old, the subject-matter expert is asked a series of three

questions (one for assessment of a median value, one for assessment of the lower

quartile and one for assessment of a upper quartile) in order to represent the expert’s

knowledge and uncertainty.

(1) To assess the median, the expert is asked “Suppose we have 100 subjects

from the study population that are xi years old. What, do you think, is the

percentage of these xi year old subjects that are not at-risk for experiencing

migraines? Their response is taken to be the median value.

(2) Next, to assess a lower quartile for the percentage of subjects not at-risk

for experiencing migraines, the expert is asked,“Suppose the percentage of
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xi year-old subjects that are not at-risk for experiencing migraines is ac-

tually less than your initial assessment (that is, their median assessment

is too high). Given this information, what would you now estimate as the

percentage?” Their response is taken to be the 25th percentile.

(3) Finally, to obtain an upper quartile the expert is asked “Suppose the per-

centage of xi year-old subjects not at-risk for experiencing migraines is ac-

tually greater than your initial assessment (that is, their median assessment

is too low). Given this information, what would you now estimate as the

percentage?” Their response is taken to be the 75th percentile.

A primary goal in the prior elicitation process is to represent knowledge and

uncertainty of a subject matter expert on conceivably observable quantities familiar

to the expert. Note that in the exchange described above, we asked the expert to

consider a group of 100 subjects that are 25 years old and a group of 100 subjects

that are 65 years old. We did not ask the expert to assess one subject that is 25

years old or one subject that is 65 years old. This is an important distinction. We

want to prompt the expert to think about a group of xi year old subjects, not an

individual subject that is xi years old as an individual’s assessment is superior for

an aggregate rather than an individual.

Following the conditional means priors approach outlined in Section 2.6.3, we

induce priors on β as follows. We have that p̃ = f(x′iβ), where here f is the logistic

model, and the inverse, f−1, is the logit link function. Thus, the resulting prior at

xi = 25 years old is

pxi=25 ≡ logit−1 (β0 + β1(25)) ∼ Beta(10.40, 4.60)

and the resulting prior at xi = 65 is

pxi=65 ≡ logit−1 (β0 + β1(65)) ∼ Beta(4.60, 10.40).
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Suppose we obtain the information in Table 2.6 corresponding to the expert from

the assessment tasks above.

Table 2.6: Prior information collected from expert about the zero-inflation
probability.

Parameter 25th percentile Median 75th percentile

p25 0.62 0.70 0.78
p65 0.22 0.30 0.38

The resulting beta prior density plots are shown in Figure 2.16. In practice,

these densities are presented to the subject-matter expert for feedback and may be

adjusted if the elicited densities do not accurately reflect their beliefs.
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Figure 2.16: Informative beta priors for p at age 25 and 65.

The conditional means priors for β0 and β1 are the resulting induced priors given by

β = X̃−1logit(p̃).

For this example, we have thatβ1

β0

 ∼ X̃−1logit

Beta(10.40, 4.60)

Beta(4.60, 10.40)

 ,
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where

X̃ =

1 25

1 65

 .
The induced priors on β have no closed form but can easily be simulated as shown

in Figure 2.17.
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Figure 2.17: Simulated density plots for the induced priors on β0 and β1.

Similarly, we can elicit conditional means priors for the Poisson regression used

to model the number of adverse events represented by the bivariate response vector

(Y1, Y2). In particular, for the ith subject we have

log(λk,i) = x′iγk

= γk,0 + γk,1 xi,

where γk,0 and γk,1 denote the intercept and slope, respectively, corresponding to λk,i.

Here the log link function replaces the logistic function. That is, f(x′iγk) = log(x′iγk)

and the inverse, f−1 is the exponential function. The covariate configurations are

again x̃i = 25 years old and xi = 65 years old where we assume that this difference

in age renders sufficiently distinct responses.

For the Poisson parameters, λk,i, k = 0, 1, 2 the assessment tasks for the elicita-

tion of a modal value and quartile (upper or lower bound) for a gamma distribution

process are as follows. Note that the choice of whether to elicit an upper bound or
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a lower bound is problem dependent and left to the judgement of the researcher as

to which they feel is more natural and best gauges the expert’s uncertainty. For our

purposes we elicit an upper bound from the expert when evaluating their knowledge

about the rates of occurrence of the adverse events of interest in the study popu-

lation. In general, we obtain a value for the upper bound by asking the expert to

relay a most extreme value. O’Hagan et al. (2006) discusses the choice of percentile

to represent the expert’s most extreme value. We choose the 80th percentile to rep-

resent the expert-relayed most extreme value.8 First, we prompt the expert about

expectations for λ1, the rate of experiencing just migraines. For xi = 25 and xi = 65,

the expert is asked a series of questions:

(1) “Suppose we have subjects from the study population aged xi years-old that

are at-risk to experience migraines. What, do you think, is the most likely

value for the number of migraines experienced by these subjects over the

course of the study?” Their response is taken to be the mode.

(2) Next, we prompt the expert to suggest an upper bound to assess their uncer-

tainty. The expert is asked “What, do you think, is the largest the number

of migraines can be among subjects aged xi?” Their response is taken to be

the 80th percentile.

Next, we elicit information about λ2 by assessing the expert’s judgment about the

number of nausea episodes. Similarly, we elicit information about the rate, λ0, of

experiencing both adverse events.

We assume that we have prior information to construct a moderately informa-

tive prior on λ0. Elicitation about λ0 may be difficult in practice. A subject-matter

8 The literature on prior elicitiation suggests that the choice of the most extreme value relayed
by the expert to represent the 67-80 percentile is far better than setting the value as the 90-95
percentile as even the most circumspect expert tends to be over-confident in their ability to make
assessments (O’Hagan et al. (2006)).
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expert may have difficulty assessing the simultaneous rate of two events. We propose

a method of prior elicitation to obtain an informative prior for λ0 in Chapter Three.

Table 2.7 shows the information we assume has been collected from the expert

about the rates of the adverse events in our example.

Table 2.7: Prior information collected from expert about the Poisson parameters.

Parameter Mode 80th percentile

λ1,xi=25 4 7
λ1,xi=65 8 11
λ2,xi=25 6 9
λ2,xi=65 16 19
λ0,xi=25 2 4
λ0xi=65 3 5

The information in Table 2.7 is translated in to the parameters of a gamma distri-

bution to get the following gamma priors for λ1:

λ1,xi=25 ≡ exp (γ1,0 + γ1,1(25)) ∼ Gamma(4.49, 1.15),

λ1,xi=65 ≡ exp (γ1,0 + γ1,1(65)) ∼ Gamma(10.59, 0.83),

and the following gamma priors for λ2

λ2,xi=25 ≡ exp (γ2,0 + γ2,1(25)) ∼ Gamma(7.22, 0.96),

and

λ2,xi=65 ≡ exp (γ2,0 + γ2,1(65)) ∼ Gamma(30.44, 0.54).

Finally, suppose we have the following gamma priors for λ0:

λ0,xi=25 ≡ exp (γ0,0 + γ1,0(25)) ∼ Gamma(3.37, 0.84),

and

λ0,xi=65 ≡ exp (γ0,0 + γ1,0(65)) ∼ Gamma(5.11, 0.73).
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Prior density plots are shown in Figure 2.18. In practice, we would obtain feedback

from the subject-matter expert and may adjust the prior distributions accordingly.

We assume the expert is satisfied with resulting priors.
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Figure 2.18: Informative gamma distributions for λk, k = 0, 1, 2, at age 25 and 65.

The conditional means priors for the regression coefficients, γk,0 and γk,1,

k = 0, 1, 2, are given by

γk,0
γk,1

 ∼ X̃−1 log

Gamma(c1k, d1k)

Gamma(c2k, d2k)

 ,
where

X̃ =

1 25

1 65

 .
Again, these induced priors have no closed form but can be simulated and are shown

in Figure 2.19.

53



0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5
γ0,0

0.0

0.1

0.2

0.3

0.4

0.5

−2 0 2
γ1,0

0.0

0.2

0.4

0.6

−2 0 2
γ2,0

0

5

10

15

20

−0.05 0.00 0.05 0.10
γ0,1

0

10

20

0.00 0.05
γ1,1

0

10

20

30

0.000 0.025 0.050 0.075
γ2,1

Figure 2.19: Simulated density plots for induced priors on γk,0 and γk,1.

Although we consider a single covariate, the conditional means prior approach

described above can be extended to the case with multiple covariates. Moreover, we

assume that the Poisson parameters and zero-inflation probability depend on the

same covariate (age). The conditional means prior approach to a Bayesian BPZIP

model can be extended to the case where the Poisson parameters and zero-inflation

parameter depend on different covariates.

2.7 Implementing CMP Approach for a Bayesian BPZIP Regression Model

Within the context of the hypothetical adverse event study, suppose we have

a well-informed expert. That is, the expert is reasonably accurate in his/her as-

sessments of the modal value but also has some uncertainty in his/her assessments.

Furthermore, the expert is equally confident in their assessments made for subjects

in the range of 20-30 years old as they are in their assessments for subjects in the

range of 60-70 years old.
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For convenience we again present the information collected from the expert in

Table 2.8 using the assessment tasks described in Section 2.6.4. For example, the

expert believes that a subject aged 25 will most likely experience 6 nausea episodes

and no more than 9. The information obtained about each of the Poisson parameters

is translated into the parameters of a gamma distribution and, using numerical

methods, the information obtained about the zero-inflated proportion is translated

into the parameters of a beta distribution. Then, using the CMP approach, we

induce priors on the regression coefficients. These densities are shown in Figure 2.17

and Figure 2.19.

Table 2.8: Summary of prior information collected from the expert.

Parameter Mode 80th percentile

λ1,xi=25 4 7
λ1,xi=65 8 11
λ2,xi=25 6 9
λ2,xi=65 16 19
λ0,xi=25 2 4
λ0,xi=65 3 5

Parameter 25th percentile Median 75th percentile

p25 0.62 0.70 0.78
p65 0.22 0.30 0.38

2.7.1 Providing Feedback to Expert

Providing feedback to the expert about the implications of their prior assess-

ments is an essential part of the prior elicitation process. This allows the expert to

confirm whether or not the resulting prior distributions accurately reflect their prior

beliefs and if necessary allows the opportunity for modifications of the prior struc-

ture. For example, we might show the expert the resulting prior densities shown in

Figure 2.16 and Figure 2.18. Alternatively, we can use the prior predictive distri-

bution as a tool to provide the feedback in a scale that is perhaps more meaningful
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to the expert. Specifically, we can use the prior predictive distribution to generate

hypothetical data that might result given their prior assessments. This can easily be

implemented in OpenBUGS or JAGS. We might, for example, generate data from

the prior predictive distribution corresponding to ages 25, 45, and 65, with a sample

size of n = 100. Table 2.9 summarizes possible data that might result.

Table 2.9: Summary of hypothetical dataset generated from the prior predictive
distribution for ages 25, 45, and 65 based on the expert’s prior assessments.

Variable Age Mean SD Variance Median 2.5% 97.5%

Y1 25 2.43 4.31 18.57 0 0 14
Y1 45 4.75 5.48 29.99 0 0 16
Y1 65 8.78 6.93 48.10 10 0 22
Y2 25 9.79 4.42 19.54 9 3 20
Y2 45 13.60 4.48 20.08 13 6 23
Y2 65 20.21 5.71 32.57 20 10 32

Figure 2.20 provides a scatterplot and histogram for plausible data that could

result based on the expert’s prior judgment. All three scatter plots suggest positive

association between the number of migraines and number of nausea episodes. The

bar plots for the number of migraines (Y1) suggest a decrease in the proportion of

subjects not at-risk to experience migraines as age increases. In addition, the bar

plots indicate that the expert’s assessments suggest an increase in the number of

occurrences of migraines and nausea episodes as age increases. These hypothetical

data allows the expert to evaluate and modify their prior assessments in a meaningful

scale.
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Figure 2.20: Simulated data based on prior predictive distribution for number of
migraines and number of nausea episodes for n = 100 subjects age 25, 45, and 65
based on information collected from expert.

We can also provide the expert with the induced priors at several ages as

another way to gauge the consequences of their prior assessments. The interval

widths at priors for age 25 and age 65 in Figure 2.21 reflect that the expert is

equally confident in his/her assessments at these ages. Figure 2.21 is also consistent

with the histograms in Figure 2.20, which indicate that the expert believes the rate

of experiencing adverse events increases with increasing age, while the probability

of not being at risk to experience migraines decreases with increasing age.
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Figure 2.21: Prior median (red dot), 10th percentile and 90th percentile (black dots)
based on experts knowledge.

2.7.2 Prior Effective Sample Size

Another way to assess the prior distribution is to understand the prior equiv-

alent sample size (ESS) implied by our choice of prior. Morita et al. (2008) discuss

the importance of the prior ESS. Denote ne as the prior ESS. The information in

the prior is equivalent to an independent sample of size ne, that is independent of

the actual sample of size n. This allows one to gauge the realism of the prior. For

example, if ne is inordinately large, one should be concerned about the prior having

too great an influence on the posterior, relative to the observed data. This ques-

tion is one that is sure to be asked in this context, particularly for the posteriors

for quantities related to λ0, λ1, and λ2 as the priors for these parameters will not
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be updated as much compared to the priors of identified parameters. That is, the

elicited priors for λ0, λ1, and λ2 will dictate the resulting posteriors more so than

the elicited priors for p. The prior effective sample size for the priors in Figure 2.16

and Figure 2.18 are provided in Table 2.10. All of these prior ESS values are quite

small compared to the sample size of n = 100.

Table 2.10: Prior equivalent sample size.

Parameter Prior ESS

λ0,25 1
λ0,65 1
λ1,25 1
λ1,65 1
λ2,25 1
λ2,65 1
p25 15
p65 15

2.7.3 Posterior Inference for Adverse Event Study

Suppose that the expert feels the prior distributions accurately reflect his/her

beliefs. In this section we provide posterior inference for model parameters. Figure

2.22 provides the induced priors (specified indirectly via the CMP approach) and

resulting posterior densities for the regression coefficients, as constructed in Section

2.6.4. The JAGS specifications are as described in Section 2.3.1. Standard diagnos-

tics based on trace plots and the Gelman-Rubin statistic indicate no problems with

convergence.
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Figure 2.22: Prior (red, dashed) and posterior (black, solid) for regression coefficients.
Here prior precision is independent of age. True values are indicated by vertical solid
black line.
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Table 2.11: Posterior results for regression coefficients with well-informed expert
across all ages basic CMP.

Parameter Truth Mean SD Median 2.5% 97.5% Width

β0 1.906 1.576 0.559 1.571 0.506 2.682 2.175
β1 −0.042 −0.037 0.012 −0.036 −0.060 −0.015 0.045
γ0,0 0.439 0.385 0.735 0.471 −1.272 1.580 2.851
γ0,1 0.010 0.011 0.013 0.010 −0.013 0.039 0.053
γ1,0 1.009 0.799 0.415 0.824 −0.088 1.542 1.631
γ1,1 0.017 0.018 0.007 0.018 0.004 0.032 0.028
γ2,0 1.279 1.328 0.220 1.340 0.867 1.723 0.855
γ2,1 0.023 0.021 0.003 0.021 0.014 0.029 0.014

Note that the true value for each regression parameter is contained within

their respective 95% credible interval. The posterior 95% credible interval for β1

suggests that the odds that a subject is at-risk to experience migraines is between

e20(0.0149) = 1.35 and e20(0.0600) = 3.32 times greater for a 20-year increase in age.

The posterior density and corresponding 95% credible interval for γ1,1 suggest that

for a 20-year increase in age, the number of migraines increases by a factor between

e20(0.0044) = 1.09 and e20(0.0328) = 1.93, with probability 0.95. Similarly, the posterior

density and corresponding 95% credible interval for γ2,1 suggest an that for a 20-year

increase in age, the number of nausea episodes increases by a factor between 1.34

and 1.80, with probability 0.95.

Figure 2.23 shows the priors and posteriors for the zero-inflation probability

and Poisson parameters at age 25, 45 and 65.
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Figure 2.23: Prior (red, dashed) and posterior (black, solid) densities for BPZIP
model parameters. Here prior precision is independent of age.
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Table 2.12: Posterior results for model parameters with well-informed expert across
all ages basic CMP.

Parameter Truth Mean SD Median 2.5% 97.5% Width

λ0,25 1.998 2.137 0.850 2.068 0.706 3.957 3.251
λ0,45 2.445 2.563 0.721 2.528 1.262 4.063 2.801
λ0,65 2.992 3.279 1.085 3.211 1.375 5.578 4.202
λ1,25 4.197 3.660 0.881 3.628 2.029 5.459 3.430
λ1,45 5.896 5.220 0.786 5.235 3.635 6.709 3.074
λ1,65 8.284 7.591 1.178 7.623 5.184 9.793 4.609
λ2,25 6.405 6.589 0.868 6.600 4.878 8.253 3.375
λ2,45 10.167 10.155 0.811 10.188 8.478 11.659 3.181
λ2,65 16.138 15.738 1.220 15.785 13.245 18.000 4.754
µ1,25 6.195 5.798 0.592 5.771 4.711 7.017 2.306
µ1,45 8.342 7.784 0.425 7.776 6.967 8.634 1.666
µ1,65 11.277 10.870 0.612 10.855 9.710 12.111 2.400
µ2,25 8.403 8.727 0.468 8.719 7.847 9.681 1.834
µ2,45 12.612 12.719 0.384 12.721 11.966 13.483 1.517
µ2,65 19.131 19.017 0.654 19.011 17.751 20.332 2.580
p25 0.699 0.654 0.066 0.656 0.517 0.777 0.260
p45 0.499 0.478 0.045 0.478 0.390 0.568 0.177
p65 0.299 0.307 0.060 0.305 0.197 0.431 0.234

The posterior densities shown in Figure 2.23 show more updating a posteriori

for µ1 and µ2 compared to λ0, λ1 and λ2. This is not surprising as the data informs

the model about µ1 and µ2, but does not inform the model about the individual

summands, λ0, λ1 and λ2. The nonoverlapping 95% credible intervals for µ1 and µ2

for xi = 25, 45, and 65 suggest that, among those at-risk for migraines, the rate of

experiencing migraines increases. This is similarly seen for the rate of experiencing

nausea episodes. All of these inferences are consistent with the model we used to

generate the data.
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2.7.4 Critical Safety Factor

In practice, it is often of interest to compare a new treatment to the current

standard of care. Suppose previous studies have shown that, for the current standard

of care,

Pr (Y1 + Y2 > 25| Experience both Events) ≤ 0.30,

where Y1 +Y2 denotes total number of migraines and nausea episodes experienced by

a subject. We can use the posterior predictive distribution to assess this probability

for the hypothetical drug.
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Figure 2.24: Posterior predictive distribution of the probability that the number of
adverse events for a subject age xi exceeds 25, given the subject experiences both
events, given the data for the current study.

Figure 2.24 is the probability that the number of adverse events for a subject

age xi exceeds 25, given the subject experiences both adverse events with respect

to the posterior predictive distribution given by 2.16. Figure 2.24 suggests that the

hypothetical drug might be superior to current standard of care with respect to this

metric for subjects less than or equal to 50 years-old, but that the current standard

of care is superior for ages greater than 50.

64



2.7.5 Another Illustration: Posterior Inference Based on an Expert Unfamilar with
Older Ages

As another illustration, suppose we ask the expert for the ages about which

they are most comfortable making assessments about and for the ages about which

they are least comfortable making assessments about. In response, the expert says

that they are most familiar with individuals age 20-30 years-old and least familiar

with individuals over the age of 60. That is, the expert is increasingly uncertain

with increasing age. Suppose elicitation from this expert yields the information in

Table 2.13.

Table 2.13: Prior information collected from expert that is more uncertain in
assessments at age 65 compared to assessments at age 25.

Parameter Mode 80th Percentile

λ1,xi=25 4 7
λ1,xi=65 8 16
λ2,xi=25 6 9
λ2,xi=65 15 25
λ0,xi=25 2 4
λ0,xi=65 3 6

Parameter 25th Percentile Median 75th Percentile

p25 0.62 0.70 0.78
p65 0.15 0.30 0.45

Note that the elicited percentiles at age 65 are wider than those in Table 2.8,

representing the expert’s increased uncertainty at older ages. This information col-

lected from the expert suggests the prior information at certain ages shown in Figure

2.25. The increased prior interval widths at older ages in Figure 2.25 further illus-

trate the expert’s increased uncertainty with increasing age. Moreover, the prior

densities in Figure 2.26 demonstrate the effect of the expert’s increasing uncertainty

with age on the induced priors specified on the regression coefficients. Based on

the information collected from the expert we again make use of the prior predictive
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Figure 2.25: Prior median (red dot) and 10th percentile and 90th percentile (black
dots) based on information collected from an expert.

distribution to generate a possible data set that could result based on the expert’s

judgment. For our purposes we assume we have presented feedback as in Section

2.7.1 and that the expert is satisfied with the resulting priors. Posterior inference

was implemented in JAGS with the specifications outlined in Section 2.3.1. Stan-

dard diagnostic tests based on trace plots and the Gelman-Rubin statistic indicate

convergence for all parameters.

Note that true values of parameters are again contained within their respective

95% credible intervals. Furthermore, the increased uncertainty of the expert at age

65 is reflected in the increased width of the 95% posterior credible intervals at age 65

in Table 2.15 compared to the respective credible intervals in Table 2.12. However,
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Figure 2.26: Prior (red, dashed) and posterior (black, solid) densities for regression
coefficients. Here prior precision is not independent of age.

we did not observe increased interval width for µ1 or µ2, as expected.

2.8 Summary

We have discussed a Bayesian approach to a bivariate partial zero-inflated

Poisson model. We have shown how relatively informative priors can mitigate the

effects nonidentifiability can cause. We have demonstrated how in nonidentifiable

settings the prior distribution can be used as a tool to identify parts of the parameter
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Table 2.14: Posterior results for regression coefficients based on priors obtained
from an expert that is less confident making assessments for older ages.

Parameter Truth Mean SD Median 2.5% 97.5% Width

β0 1.906 2.087 0.603 2.077 0.949 3.301 2.351
β1 −0.042 −0.039 0.012 −0.038 −0.064 −0.015 0.048
γ0,0 0.439 0.591 0.680 0.653 −0.914 1.733 2.647
γ0,1 0.010 0.010 0.013 0.011 −0.017 0.035 0.053
γ1,0 1.009 1.319 0.398 1.335 0.481 2.058 1.576
γ1,1 0.017 0.011 0.008 0.011 −0.007 0.025 0.032
γ2,0 1.279 1.366 0.246 1.383 0.837 1.803 0.966
γ2,1 0.023 0.019 0.004 0.019 0.010 0.028 0.017

Table 2.15: Posterior results for model parameters based on priors obtained from an
expert that is less confident making assessments for older ages.

Parameter Truth Mean SD Median 2.5% 97.5% Width

λ0,25 1.998 2.377 0.899 2.308 0.834 4.289 3.455
λ0,45 2.445 2.971 0.975 2.908 1.273 5.039 3.766
λ0,65 2.992 3.945 1.629 3.796 1.233 7.488 6.255
λ1,25 4.197 4.945 1.075 4.922 2.908 7.084 4.175
λ1,45 5.896 6.247 1.052 6.289 4.097 8.173 4.075
λ1,65 8.284 8.058 1.730 8.168 4.433 11.119 6.686
λ2,25 6.405 5.786 0.890 5.808 4.000 7.468 3.468
λ2,45 10.167 9.436 1.026 9.490 7.285 11.277 3.991
λ2,65 16.138 15.492 1.745 15.601 11.779 18.520 6.740
p25 0.699 0.682 0.058 0.684 0.561 0.790 0.229
p45 0.499 0.517 0.045 0.517 0.427 0.605 0.177
p65 0.299 0.348 0.067 0.346 0.223 0.487 0.264

space that are not covered by the likelihood, namely for the unobserved Poisson

parameters λ0, λ1 and λ2. We also demonstrated that use of such informative priors

alleviates convergence issues often present when using a diffuse prior structure for

model parameters. We proposed and described methods of prior elicitation for a

BPZIP model within the context of a hypothetical adverse event drug safety study.

Finally, we propose a tool by which to provide feedback to the expert to illustrate the

the implications of their prior structure. Namely, in Section 2.7.1, we demonstrated
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Figure 2.27: Prior (red, dashed) and posterior (black, solid) for BPZIP model pa-
rameters. Here prior precision is not independent of age.

how we can use the prior predictive distribution as a tool to provide feedback to the

expert by showing them the implications of their prior assessments in a meaningful

scale.

We applied the conditional means prior approach to a BPZIP regression model

and described methods of prior elicitation from a subject-matter expert within the

context of a hypothetical adverse event drug safety study. We discussed prior as-
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sessment questions for subject-matter experts about operational quantities, such as

the rate of experiencing just one or the other adverse event and the proportion of

subjects not at-risk to experience an adverse event (specifically, the adverse event

denoted by Y1) at different covariate values.

Throughout this discussion, we assumed a highly informative prior on the

parameter λ0. The parameter, λ0 is an association parameter, and represents a

measure of dependency between the two bivariate outcomes. Within the context of

the hypothetical adverse event example, prior elicitation for this parameter requires

prompting an expert to think about the simultaneous rate of experiencing both

adverse events, a quantity that is difficult for an expert to make assessments about.

We return to this difficult issue in Chapter Three.
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CHAPTER THREE

Prior Elicitation for Bayesian Conditional Partial Zero-inflated Poisson Models
with Conditional Probabilities

In Chapter Two, we introduced a bivariate partial zero-inflated Poisson (BPZIP)

model which assumes one count is zero-inflated and one count is not zero-inflated

(see (2.2) in Section 2.2). We demonstrated that diffuse priors can be problematic

and offer nonidentifiability as the culprit for lack of convergence for the Poisson pa-

rameters. We proposed informative prior structures to mitigate the effects caused

by nonidentifiability. Finally, we suggested plausible methods of prior elicitation for

BPZIP model parameters, with the exception of the association parameter λ0. Prior

information on association parameters can be difficult to elicit directly because they

are rarely on a scale familiar to the expert. For example, within the context of the

adverse event example described in Section 2.3, prior elicitation for this parameter

requires prompting an expert to think about the simultaneous rate of experiencing

both adverse events. The focus of this chapter is to provide a plausible route of prior

specification for the association parameter λ0.

A critical aspect of prior elicitation is that the assessment tasks involve prompt-

ing the expert about their expectations for conceivably observable quantities. One

alternative is to specify a power prior on λ0 based on historical data. Another

option could be to design and conduct a study that would provide information

about the simultaneous occurrence of Y1 and Y2. For example, within the context

of the adverse event study in Section 2.3, if we observed the count for the number

of migraines accompanied by a nausea episode for the ith subject, estimation for

λ0 would be straightforward. Recall the standard bivariate Poisson distribution,
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(Y1, Y2) ∼ BP(λ1, λ2, λ0), such that

Y1 = X1 +X0, (3.1)

and

Y2 = X2 +X0, (3.2)

where X1, X2 and X0 are independent Poisson random variables with positive means

λ1, λ2, and λ0, respectively. In context of the adverse event study, X1 represents the

count for exclusive migraines, X2 represents the count for exclusive nausea episodes

and X0 represents the count for having a migraine and being nauseated. These

counts, X0, X1 and X2, are not observed. The underlying subject-level contingency

table shown in Table 3.1 shows the data that we would design the study to collect.

Table 3.1: Underlying counts for the ith subject for a BPZIP model.

(Y1, Y2) Y2 = 0 Y2 > 0 fY1(y1)
Y1 = 0 n00 n02 n00 + n02

Y1 > 0 n10 n12 n10 + n12

fY2(y2) n00 + n10 n02 + n12 Ni

Here, Ni denotes the total count for subject i. From this table, n12 is the count

that represents the number of times subject i had a migraine and was also nauseated.

It is this count that could be used to specify a prior on λ0 for a subsequent trial.1 In

the absence of such prior data, informative priors must be constructed using expert

opinion. Thus, in what follows we propose an alternative prior structure that allows

for direct elicitation about a conditional probability, a quantity that is in a scale

familiar to the expert. The expert’s knowledge about this quantity is then used to

specify a prior on λ0.

1 If we in fact had this individual level data then it would make estimation of the parameters λ1,
λ2 and λ0 straightforward. For example, the count n10 would inform X1 in the bivariate Poisson
(BP) (see Appendix A), the count n02 would inform X2 in the BP and the count n12 would inform
X0. However, we assume throughout that we only observe Y1 = X1 +X0 and Y2 = X2 +X0.
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The organization of this chapter is as follows: In Section 3.1 we develop a

conditional representation of the joint probability mass function for a Bayesian bi-

variate partial zero-inflated Poisson model. We extend this representation to the

regression case in Section 3.2. In Section 3.3 we discuss informative prior construc-

tion for the conditional representation of the BPZIP model, with an emphasis on

prior construction for an association parameter. In Section 3.4, we discuss a condi-

tional means prior approach for the conditional representation of the BPZIP model.

We describe prior elicitation from a subject-matter expert within the context of an

adverse event drug safety study. We offer use of the prior predictive distribution as

a tool to provide feedback to the subject matter expert, and propose the posterior

predictive distribution as a tool for a clinician. Concluding comments are given in

Section 3.5.

3.1 A Bayesian Conditional Bivariate Partial Zero-inflated Poisson Model

AlMuhayfith et al. (2015) propose a conditional method for estimating the pa-

rameters of standard bivariate Poisson and zero-inflated bivariate Poisson regression

models within a frequentist framework. This method involves the use of conditional

probability theory to represent the joint probability mass function, fY1,Y2(y1, y2), as

the product of the marginal and conditional distribution. We can, of course, write

fY1,Y2(y1, y2) = fY2 |Y1(y2 | y1)× fY1(y1) (3.3)

or

fY1,Y2(y1, y2) = fY1 |Y2(y1 | y2)× fY2(y2). (3.4)

AlMuhayfith et al. (2015) show that for both a standard bivariate Poisson (BP) and

a bivariate zero-inflated Poisson (BZIP) regression model, the conditional method

yields almost identical model performance (based on Akaike Information Criterion)

and parameter estimates compared to the standard method of using the joint dis-

tribution. For their purposes, AlMuhayfith et al. (2015) recommend the conditional
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method for inference of a standard BP or BZIP regression model as the conditional

method is less computationally intensive compared to the standard method.

We extend the conditional representation to the Bayesian bivariate partial

zero-inflated Poisson model. Namely, we rewrite the joint probability mass function

of (Y1, Y2) as a product of the conditional distribution and the marginal distribu-

tion. Our motivation for representing the BPZIP regression model as a product of

a conditional distribution and a marginal distribution is that it provides a plausible

route of elicitation to specify a prior on λ0 via direct elicitation of an conceivably

observable quantity.

Suppose we have a bivariate count vector (Y1, Y2) ∼ BPZIP(p, λ0, λ1, λ2), where

Y1 is zero-inflated and Y2 is not zero-inflated as in (2.2). Then the joint probability

mass function is given by (2.3). The conditional distribution of Y2 given Y1 for the

BP part of (2.2) is2

fY2 |Y1(y2 | y1) =

min(y1,y2)∑
m=0

(
y1

m

)
θm(1− θ)y1−m e

−λ2λy2−m2

(y2 −m)!
, (3.5)

where θ = λ0
λ1+λ0

. It can be shown that (Kocherlakota and Kocherlakota (1992)) the

conditional distribution of Y2 |Y1 is a convolution of a Poisson random variable with

parameter λ2 and a binomial random variable with parameters (y1, θ). Namely, let

W ≡ X0|Y1 and T ≡ X2. Then Z = W + T is the sum of two independent discrete

random variables with corresponding probability distribution

Pr(W + T = z) = fZ(z) =
z∑

m=0

fW (m)fT (z − x)

=

min(y1,y2)∑
m=0

(
y1

m

)(
λ0

λ1 + λ0

)m(
λ1

λ1 + λ0

)y1−m
︸ ︷︷ ︸

Binomial(y1,θ)

e−λ2
λy2−m2

(y2 −m)!︸ ︷︷ ︸
Poisson(λ2)

.

Thus, Z is the convolution of a binomial random variable, X0|Y1, and a Poisson ran-

dom variable, X2, where X0 and X2 are latent variables from the BP representation

2 Note that this conditional distribution applies to observations that are at-risk for Y1 as a
subject cannot experience Y1 if they are not at-risk.
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in (3.1) and (3.2). The conditional mean and variance are given by

E(Y2 |Y1) = λ2 + θy1 (3.6)

and

Var(Y2 |Y1) = λ2 + θ(1− θ)y1. (3.7)

Following (3.3), the conditional representation of the BP joint probability mass

function is

fY1,Y2(y1, y2) = fY2 |Y1(y2 | y1)× fY1(y1)

=

min(y1,y2)∑
m=0

θm(1− θ)y1−m e
−λ2λy2−m2

(y2 −m)!
× eµ1µy11

y1!

= fCBP(y1, y2 | θ, µ1, λ2), (3.8)

where µ1 = λ1 + λ0 and θ = λ0
µ1

. Thus, the conditional representation of the BPZIP

model in (2.2), fCBPZIP(y1, y2 | p, θ, µ1, λ2) ≡ fCBPZIP(y1, y2), is given by

fCBPZIP(y1, y2) =



p+ (1− p)fCBP(y1 = 0, y2 = 0 | θ, µ1, λ2), y1 = 0, y2 = 0

(1− p)fCBP(y1 = y1, y2 = 0 | θ, µ1, λ2), y1 6= 0, y2 = 0,

p+ (1− p)fCBP(y1 = 0, y2 = y2 | θ, µ1, λ2), y1 = 0, y2 6= 0

(1− p)fCBP(y1 = y1, y2 = y2 | θ, µ1, λ2), y1 6= 0, y2 6= 0.

(3.9)

We use this representation of the CBPZIP throughout this chapter.3 We write

(Y1, Y2) ∼ CBPZIP(p, θ, µ1, λ2).

One way in which the conditional representation could be used to construct

a prior for λ0 is via the conditional expectation in (3.6). In particular, we could

artificially make y1 a covariate and prompt an expert to suggest a most likely value

3 Note that we could have also represented the BPZIP model using (3.4). For our purposes, we
use (3.9) throughout.
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(as well as a most extreme value) for the conditional probability, Y2|Y1, for a spe-

cific value of Y1. As an illustration, within the context of the adverse event study

described in Section 2.3, we might prompt an expert about their expectations for

the probability that given a subject experienced 6 migraines, the subject also ex-

perienced nausea, Pr(Y2|Y1 = 6). To do this we would ask the expert “Suppose we

have 100 subjects that have experienced y1 = 6 migraines. What, do you think,

is the percentage of these subjects that also experienced nausea?” Their response

would be taken as the modal value. We then would ask for a most extreme value

to assess the the expert’s uncertainty. In practice, however, it is not ideal to ask an

expert about their expectations for a specific value of the response (or dependent)

variable.4

Another option, which is the focus of what follows, is use of the distribu-

tion X0 |Y1 ∼ Binomial(y1, θ). In particular, this representation suggests a plausible

method in which we can use expert judgment about an elementary event to indirectly

specify a prior on λ0. By definition,

Y1
iid∼ Bernoulli(θ). (3.10)

Thus, θ is the probability associated with each independent Bernoulli event. Within

the context of the adverse event drug safety trial, θ represents the conditional prob-

ability that, given a subject has a migraine, the subject is also nauseated. This

suggests how we can indirectly specify a prior for λ0 via direct elicitation on a con-

ditional probability (which is in a scale familiar to an expert). From (3.10) we have

that for each independent event, (subject has a migraine), the probability that the

individual is also nauseated is θ. That is, θ represents the probability:

Pr(subject is nauseated | subject has a migraine).

4 Note this is not what is done in the CMP construction. There we ask the expert about their
expectations for specific values of independent variables.
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In this way, we have described an operational quantity about which we can directly

elicit information. Perhaps most importantly, we have introduced a plausible way

in which we can use the expectations of the expert about θ to inform λ0.5

3.2 CBPZIP Regression Model

Let (Y1i, Y2i) ∼ BPZIP(pi, λ0i, λ1i, λ2i) for i = 1, . . . , n. We denote the condi-

tional bivariate partial zero-inflated Poisson (CBPZIP) as (Y1i, Y2i) ∼ CBPZIP(pi, θi, µ1i, λ2i),

where µ1i denotes the marginal rate of experiencing Y1 among those “at-risk” to ex-

perience Y1, λ2i is the rate associated with just Y2, θi is the conditional probability

that, given the ith subject experiences Y1, they simultaneously experience Y2, and

pi is the zero-inflation probability (associated with Y1).

We can represent the CBPZIP model in such a way that the parameters depend

on covariates in a generalized linear model. In particular, for the ith subject we have

that

log(µ1,i) = xTi φ,

log(λ2,i) = zTi γ2,

logit(θi) = vTi α, (3.11)

and

logit(pi) = wT
i β.

where xi and φ are vectors of covariates and corresponding regression coefficients,

respectively, for the marginal rate of Y1, zi and γ are vectors of covariates and

corresponding regression coefficients, respectively, for the rate of just Y2, vi and α

are vectors of covariates and corresponding regression coefficients, respectively, for

the conditional probability that, given the ith subject experiences Y1, the ith subject

5 We could easily have used the conditional distribution of Y1|Y2 to get at an informative prior
for λ0. In this case, we would elicit information about the probability that given a subject is
nauseated, the subject also has a migraine (i.e. Pr(X0|Y2)).
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also is experiencing Y2. Finally, wi and β are vectors of covariates and corresponding

regression coefficients for the zero-inflation parameter. This representation allows

for different parameters to depend on different covariates. It follows that,

λ0,i = θi × µ1,i, (3.12)

λ1,i = µ1,i − λ0,i, (3.13)

and

µ2,i = λ2,i + λ0,i. (3.14)

We provide the a summary of the model parameters within the context of our adverse

event example in Table 3.3 in Section 3.4. Let yi = (y1i, y2i), i = 1, . . . , n. The

CBPZIP regression likelihood function is given by

`(φ,γ2,α,β|yi) =
n∏
i=1

[fCBPZIP(y1i = 0, y2i = 0 | pi, θi, µ1,i, λ2,i)]
Ii1

×
n∏
i=1

[fCBPZIP(y1i = y1, y2i = 0 | pi, θi, µ1,i, λ2,i)]
Ii2

×
n∏
i=1

[fCBPZIP(y1i = 0, y2i = y2 | pi, θi, µ1,i, λ2,i)]
Ii3

×
n∏
i=1

[fCBPZIP(y1i = y1, y2i = y2 | pi, θi, µ1,i, λ2,i)]
Ii4 , (3.15)

where

pi =
exp(wT

i β)

1 + exp(wT
i β)

,

λ2,i = exp(zTi γ2),

θi =
exp(vTi α)

1 + exp(vTi α)
,

µ1,i = exp(xTi φ),
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and Iit, t = 1, . . . , 4, is an indicator function defined in (2.5). For our purposes we use

the conditional representation as an alternative prior structure for data generated

the BPZIP model introduced in Chapter Two.

The CBPZIP regression model assumes that the Poisson parameters λ2,i and

µ1,i depend on covariates in a generalized linear model, and inference for the Poisson

parameters λ0,i and λ1,i are induced via (3.12) and (3.13). This is different from the

BPZIP regression model in Section 2.2.1, which assumes the Poisson parameters λk,i,

k = 0, 1, 2 depend on covariates in a generalized linear model. Thus, when comparing

inference for the two representations of the BPZIP model, it is reasonable to compare

the regression coefficients for λ2 and p.

3.3 An Alternate Prior Structure for a Bayesian BPZIP Model

The conditional representation of the BPZIP model provides an alternative

method of prior construction for data that are assumed to follow a bivariate partial

zero-inflated Poisson distribution (see (2.2)). Note that the conditional representa-

tion does not introduce constraints that make the Poisson parameters, λk, k = 0, 1, 2

identifiable. Unsurprisingly, our conditional formulation does not render the λk’s

identifiable. Hence, based on what we observed the BPZIP model, informative pri-

ors are still needed.

3.3.1 Application: Adverse Event Drug Safety Study

Consider again the hypothetical adverse event study introduced in Section 2.3.

Let (Y1i, Y2i) be a bivariate response count for the ith subject such that

Y1i = Number of migraines experienced during study

Y2i = Number of nausea episodes experienced during study,

for i = 1, . . . , n, where n is the number of subjects in the study. A scatterplot and

histogram of the bivariate outcomes are presented again in Figure 3.1.
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Figure 3.1: Ages and marginal data for counts Y1 and Y2 for n = 100 subjects.

3.3.2 Prior Construction for CBPZIP Model: Non-regression Case

As in Chapter Two we first describe the assessment tasks for prior construction

for the CBPZIP model in the non-regression case and then extend to the regression

case in Section 3.4. The conditional representation of the BPZIP model require

priors for µ1, λ2, θ, and p. Priors for λ0, λ1, and µ2 are subsequently induced

using (3.12), (3.13) and (3.16), respectively. Within the context of the hypothetical

adverse event study, µ1 represents the rate of experiencing migraines among those

at-risk for migraines, λ2 represents the rate of experiencing just nausea, p represents

the proportion of subjects not at-risk to experience migraines (the zero-inflation

parameter), and θ is the conditional probability that given a subject has a migraine,

the subject is also (simultaneously) nauseated. For purposes of illustration, we first

assume that model parameters do not depend on covariates.
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We use the mode-percentile method of elicitation to translate information ob-

tained from an expert into informative prior distributions on µY1 and λ2. To elicit

information about µ1, the expert is prompted to suggest a most likely value and

most extreme value for the number of migraines experienced by subjects at-risk for

migraines over the course of the study. Similarly, to elicit information about λ2,

the expert is prompted to suggest a most likely value and most extreme value for

the number of exclusive nausea episodes. This information is then translated into

the parameters of a gamma distribution for µ1 and λ2. Next, to assess the expert’s

judgement about p, the proportion of subjects not at-risk to experience migraines,

the expert is asked a series of three questions to obtain a median, upper and lower

bound as described in Chapter Two. This information is then translated into the

parameters of a beta distribution that represents the expert’s knowledge and uncer-

tainty about the zero-inflation probability. Finally, we adapt the assessment tasks

proposed in Elfadaly and Garthwaite (2013a) to assess the expert’s expectations

about θ, the conditional probability that given a subject has a migraine, the subject

is also nauseated. Using numerical methods, this information is translated into the

parameters of a beta distribution on θ.

Finally, we induce a prior on λ0, λ1 and µ2 using (3.12), (3.13), and (3.14),

respectively. Note that because we are assuming informative priors for model pa-

rameters, theoretically, we need not be concerned about the induced priors on λ0, λ1

and µ2. This is in contrast to a diffuse prior setting, in which we need be concerned

with the priors induced on λ0, λ1 and µ2.

The above information is summarized in Table 3.2, which includes parameter

interpretations within the context of the hypothetical adverse event drug safety

study, whether the prior is elicited or induced and the corresponding prior.
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Table 3.2: Summary of model parameters and prior construction.

Parameter Interpretation Elicit/Induce Prior
µ1 The marginal rate of experiencing

migraines (Y1) among those at-risk
to experience migraines

Elicit Gamma(c1, d1)

µ2 The marginal rate that a subject ex-
periences nausea (Y2).

Induce µ2 = λ2 + λ0

θ The conditional probability that
given a subject experiences mi-
graines (Y1), the subject also experi-
ences nausea (Y2).

Elicit Beta(aθ, bθ)

λ0 The rate of simultaneously experi-
encing migraines (Y1) and nausea
(Y2).

Induce λ0 = θ × µ1

λ1 The rate of just experiencing mi-
graines (Y1)

Induce λ1 = µ1 − λ0

λ2 The rate of just experiencing nausea
(Y2)

Elicit Gamma(c2, d2)

p Proportion of subjects not at-risk to
experience migraines

Elicit Beta(a, b)

3.3.3 Example: Specification of Prior for λ0 Via Direct Elicitation on Conditional
Probability

In this section we demonstrate how prior information obtained from an expert

about θ can be used to indirectly specify a prior on λ0. Consider the hypothetical

adverse event drug safety study described in Section 2.3. To assess the expert’s ex-

pectations about θ, we adapt the assessment tasks proposed in Elfadaly and Garth-

waite (2013a) to translate information obtained from an expert into informative

distributions for θ. In particular, the expert is asked a series of three questions:
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(1) To assess the median, the expert is asked “Suppose we have 200 at-risk

subjects from the study population that have a migraine.6 What, do you

think, is the percentage of these subjects that are also nauseated?” Their

response is taken to be the median.

(2) Next, to assess the lower quartile, the expert is asked “Suppose the per-

centage of subjects that have experienced a migraine and are also nauseated

is actually less than your initial assessment. Given this information, what

would you now estimate as the percentage?” Their response is taken to be

the 25th percentile.

(3) Finally, to obtain an upper quartile, the expert is asked “Suppose the per-

centage of subjects that have a migraine and are also nauseated is actually

greater than your initial assessment. Given this information, what would

you now estimate as the percentage?” Their response is taken to be the

75th percentile.

Suppose we the expert relays 0.45, 0.50, and 0.55 as the 25th, 50th, and 75th per-

centile, respectively. That is, the expert believes that, 50% of subjects that have a

migraine are also nauseated. Using numerical methods, this information collected

from the expert is translated into the parameters of a beta distribution.

Next, we elicit information about µ1, the marginal rate of experiencing mi-

graines among subjects at-risk for migraines. We do this by prompting the expert

to suggest a most likely value for the number of migraines experienced by subjects

over the course of the study, as well as a most extreme value to represent their uncer-

tainty. Similarly, we elicit information about λ2 by assessing the expert’s judgment

about the number of nausea episodes. Finally, we elicit information about the pro-

6 In this context,“at-risk” subjects refers to subjects that are at-risk to experience migraines,
and hence are at-risk to experience both adverse events
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portion of subjects not “at-risk” to experience migraines using the same assessment

tasks outlined in Section 2.6.4.

The information directly obtained from the expert about θ (conditional prob-

ability of a subject experiencing a migraine and simultaneously being nauseated)

and µ1 can then be used to indirectly specify a prior on λ0 via

λ0 = θ × µ1.

Suppose the expert believes that the most likely value for the number of migraines

among those at-risk for migraines is 6 (mode) and no more than 10 (80th percentile).

The information collected from the expert about θ and µ1 can be translated into the

parameters of a beta and gamma distribution shown in Figure 3.2.
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Figure 3.2: Prior distributions on θ and µ1 based on information collected from
expert. Namely, θ ∼ Beta(22.88, 22.88) and µ1 ∼ Gamma(5.11, 1.46).

Using (3.12) we obtain the prior for λ0 shown in Figure 3.3. The distribution

in Figure 3.3 suggests that the expert believes the most likely value for the number

of simultaneously experiencing both adverse events is about 3 and is most likely not

less than 1 and no more than 7.7

7 The prior distribution shown in Figure 3.3 is simulated. Neverthless, this distribution does
have a closed form. Specifically, the prior for λ0 is the product of a beta random variable and
a gamma random variable. The distribution of this product has a closed form and is derived in
Nadarajah and Kotz (2005).
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Figure 3.3: A prior distribution on λ0.

3.4 Conditional Means Prior Approach for a Conditional BPZIP Model

We now consider informative prior construction for the regression case. We can

represent the conditional bivariate partial zero-inflated Poisson model in such a way

that the model parameters depend on covariates in a generalized linear model as in

(3.11). Thus, the conditional representation of the BPZIP model introduced in this

chapter lends itself to the conditional means prior approach introduced in Section

2.6.3. Per Section 2.6.3, the conditional means prior approach involves eliciting

information from a subject-matter expert about conceivably observable quantities

at covariate configurations that render sufficiently distinct responses. Priors for

regression coefficients are then specified via indirect elicitation.

In the hypothetical adverse event drug safety study, we are interested in the

joint modeling of two adverse events (migraines and nausea episodes) experienced

by subjects enrolled in a study for a new drug. We assume that model parameters

depend on a single covariate, age, xi. In particular, for the ith subject we have that

log(µ1,i) = φ0 + φ1xi,

log(λ2,i) = γ2,0 + γ2,1xi,

logit(θi) = α0 + α1xi,
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and logit(pi) = β0 + β1xi. (3.16)

For our purposes, we choose xi = 25 years old and xi = 65 years old as the covariate

configuration for which we elicit information. Here we are assuming that this age

difference yields sufficiently distinct responses. Accordingly, the prior assessment

tasks for parameters µ1, λ2, p and θ involve prompting the expert about expecta-

tions for subjects aged xi = 25 and xi = 65. Table 3.3 provides the model parameter

summary for subject i and adverse event j = 1, 2. The conditional means prior

approach for the conditional representation of the CBPZIP model involves eliciting

information from subject-matter experts about µ1, λ2, θ, and p. Priors for regres-

sion coefficients are subsequently specified via indirect elicitation. Additionally, we

induce priors on the Poisson parameters λ0, λ1 and µ2 for the ith subject age xi

years old via (3.12), (3.13) and (3.14), respectively. Figure 3.4 provides a diagram

illustrating the conditional means prior for a CBPZIP model as applied to the hypo-

thetical adverse event drug safety study. Note differences from the diagram in Figure

2.15, which illustrates the CMP approach for the standard joint representation of the

BPZIP model. Namely, the CMP approach in Figure 2.15 involves prior elicitation

about the Poisson rates λ1, λ2 and λ0, and p, and indirect specification of priors on

regression coefficients for these parameters via the CMP approach. Priors are then

induced on µ1 and µ2. Figure (3.4) suggests that we might potentially observe more

posterior updating of λ0 compared to that seen in Chapter Two as λ0 is updated by

µ1 (a parameter the data informs the model about).8

3.4.1 CMP Approach to Alternate Prior Structure: Prior Assessment Tasks

The prior assessment tasks involve prompting the expert about expectations

for subjects aged xi = 25 and xi = 65. We assume we have a well informed expert

across all ages. We first consider elicitation of a conditional means prior for the

8 See Appendix F for simulation results.
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Table 3.3: Model parameter summary for the ith subject.

Parameter Interpretation
pi The probability that the ith subject age xi years-old is not at-risk to experience

migraines.

µ1,i The mean rate of experiencing migraines (among those at risk to experience
migraines) for a subject age xi years old.

µ2,i The mean rate of experiencing a nausea episode for a subject age xi years old.

θi The conditional probability that among subjects at risk to experience mi-
graines, given subject i has a migraine, subject i is also nauseated.

λ1,i The mean rate of of experiencing just a migraine (among those at risk to
experience migraines) for a subject age xi years old.

λ2,i The mean rate of experiencing just a nausea episode for a subject age xi years
old.

λ0,i The mean rate associated with simultaneously experiencing both migraines and
nausea for a xi-year-old subject.

α0 If covariates are centered, the log odds that a subject aged x̄ = 46 that is at
risk to experience migraines, has a migraine and is nauseated (simultaneously
experiences both adverse events).

α1 The log odds that a subject aged xi that is at-risk to experience migraines, has
a migraine and is nauseated; eα1 represents the increased (or decreased) odds
that a subject at-risk for migraines experiences a migraine and is nauseated for
a one year increase in age.

β0 If covariates are centered, the log odds that a subject aged x̄ = 46 is not at-risk
to experience migraines.

β1 The log odds that a subject aged xi is not at-risk to experience migraines; eβ1

represents the increased (or decreased) odds that a subject is not at-risk for
migraines for a one year increase in age.

φ0 Average log adverse event rate for experiencing migraines for a subject aged
x̄ = 46.

φ1 Average change in log adverse event rate for experiencing migraines (among
those at-risk to experience migraines) for a one-year increase in age; For a one-
year increase in age, the expected number of migraines increases (decreases) by
a factor of eφ1 .

γ2,0 Average log adverse event rate for just experiencing nausea for a subject aged
x̄ = 46.

γ2,1 Average change in log adverse event rate for experiencing just nausea for a one
year increase in age; For a one-year increase in age, the expected number of
exclusive nausea episodes increases (decreases) by a factor of eγ2,1 .
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Figure 3.4: Bayesian conditional representation for a bivariate partial zero-inflated
Poisson with conditional means priors in the context of the hypothetical adverse
event study. Dashed lines to λ0, λ1 and µ2 indicate that priors for these quantities
are induced based on information elicited from the expert for other quantities.
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Poisson regression used to model the number of adverse events represented by the

bivariate response vector (Y1, Y2). To elicit information about µ1, the rate of expe-

riencing migraines, among those at-risk for migraines, at age xi = 25 and xi = 65,

the expert is asked a series of questions to assess their knowledge and uncertainty:

(1) “Suppose we have subjects from the study population aged xi that are at-

risk to experience migraines. What, do you think, is the most likely value

for the number of migraines experienced by these subjects over the course

of the study?” Their response is taken to be the mode.

(2) Next, we prompt the expert to suggest an upper bound to assess their un-

certainty. The expert is asked, “What, do you think, is the largest number

the number of migraines can be among these xi-year-old subjects?” Their

response is taken to be the 80th percentile.

Next, we elicit information about λ2 by assessing the expert’s judgment about the

number of nausea episodes. This is done using the same assessment tasks as in

Section 2.6.4. For xi = 25 and xi = 65, the expert is asked a series of questions:

(1) “Suppose we have subjects from the study population aged xi years-old.

What, do you think, is the most likely value for the number of just (exclu-

sive) nausea episodes experienced by subjects aged xi over the course of the

study?” Their response is taken to be the mode.

(2) Next, we prompt the expert to suggest an upper bound to represent their

uncertainty. The expert is asked “What, do you think, is the largest the

number of (exclusive) nausea episodes can be among subjects aged xi?”

Their response is taken to be the 80th percentile.

The information collected from the expert for the Poisson parameters is summarized

in Table 3.4.
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Table 3.4: Expert elicited information on Poisson parameters from well-informed
expert across all ages.

Parameter Mode 80th percentile

µ1,25 5 10
µ1,65 10 15
λ2,25 6 10
λ2,65 15 20

This information is translated into the parameters of a gamma distribution.

In particular,

µ1,25 ≡ exp (φ0 + φ1(25)) ∼ Gamma(c1, d1),

µ1,65 ≡ exp (φ0 + φ1(65)) ∼ Gamma(c2, d2),

and
λ2,25 ≡ exp (γ2,0 + γ2,1(25)) ∼ Gamma(c3, d3),

λ2,65 ≡ exp (γ2,0 + γ2,1(65)) ∼ Gamma(c4, d4),

where c and d denote the shape and scale hyperparameters for the gamma distribu-

tions. The resulting prior density plots are shown in Figure 3.5.
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Figure 3.5: Priors on µ1 and λ2 based on information collected from expert.

In practice, these prior distributions are presented to the expert for feedback on

whether or not the distributions accurately reflect their prior belief. Modifications

are made until satisfactory. Suppose the above expert is satisfied with these resulting

prior distributions. Then, the conditional means priors for the regression coefficients,

φ0 and φ1 are given byφ0

φ1

 ∼ X̃−1 log

Gamma(3.37, 2.10)

Gamma(7.22, 1.61)

 ,
and the conditional means priors for the regression coefficients, γ2,0 and γ2,1 are given

by γ2,0

γ2,1

 ∼ X̃−1 log

 Gamma(5.11, 1.46)

Gamma(12.52, 1.30)

 ,
where

X̃ =

1 25

1 65

 .
These induced priors have no closed form but can be simulated and are shown in

Figure 3.6.
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Figure 3.6: Simulated density plots for the induced priors on the regression coeffi-
cients corresponding to µ1 and λ2.

Next, we consider elicitation of a conditional means prior for the logistic regres-

sion parameters used to model the conditional probability, θ and the zero-inflation

parameter, p. To elicit information the conditional probability that given a subject

in the study has a migraine, the subject is also nauseated, the expert is asked a

series of three questions. At age xi = 25 and xi = 65:

(1) To assess the median, the expert is asked“Suppose we have 100 at-risk sub-

jects from the study population that are xi years old that have a migraine.9

What, do you think, is the percentage of these xi year old subjects that

are also nauseated?” Their response is taken to be the median.

(2) Next, to assess the lower quartile for the percentage of subjects that are

nauseated given they have a migraine, the expert is asked “Suppose the per-

centage of xi year-old subjects that are nauseated given they have a migraine

is actually less than your initial assessment. Given this information, what

9 In this context,“at-risk” subjects refers to subjects that are at-risk to experience migraines,
and hence are at-risk to experience both adverse events.
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would you now estimate as the percentage?” Their response is taken to be

the 25th percentile.

(3) Finally, to obtain an upper quartile, the expert is asked “Suppose the per-

centage of xi year-old subjects that are nauseated given they have a migraine

is actually greater than your initial assessment. Given this information, what

would you now estimate as the percentage?” Their response is taken to be

the 75th percentile.

We elicit information about the zero-inflation probability, p, by asking the expert

about their expectations about the proportion of individuals not at-risk to experience

migraines. These assessment tasks are identical to those in Section 2.6.4. At both

age xi = 25 years old and xi = 65 years old,

(1) To assess the median, the expert is asked “Suppose we have 100 subjects

from the study population that are xi years old. What, do you think, is the

percentage of these xi year old subjects that are not at-risk for experiencing

migraines? Their response is taken to be the median value.

(2) Next, to assess a lower quartile for the percentage of subjects not at-risk

for experiencing migraines, the expert is asked,“Suppose the percentage of

xi year-old subjects that are not at-risk for experiencing migraines is ac-

tually less than your initial assessment (that is, their median assessment

is too high). Given this information, what would you now estimate as the

percentage?” Their response is taken to be 25th percentile.

(3) Finally, to obtain an upper quartile the expert is asked “Suppose the per-

centage of xi year-old subjects not at-risk for experiencing migraines is ac-

tually greater than your initial assessment (that is, their median assessment

is too low). Given this information, what would you now estimate as the

percentage?” Their response is taken to be the 75th percentile.
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Suppose the information collected from the expert is that summarized in Table 3.5.

Table 3.5: Expert elicited information on conditional probability and zero-inflation
parameter assuming a well-informed expert across all ages.

Parameter 25th Percentile Median 75th Percentile

θ25 0.25 0.32 0.39
θ65 0.20 0.27 0.34
p25 0.65 0.70 0.75
p65 0.25 0.30 0.35

This information in obtained about θ and p in Table 3.5 is translated into parameters

of a beta distribution. The resulting priors for age xi = 25 and xi = 65 are

θ25 ≡ logit−1 (α0 + α1(25)) ∼ Beta(aθ,25, bθ,65)

and

θ60 ≡ logit−1 (α0 + α1(65)) ∼ Beta(aθ,65, bθ,65).

Similarly, for p we have that the resulting priors at xi = 25 and xi = 65 years old

are

p25 ≡ logit−1 (β0 + β1(25)) ∼ Beta(ap,25, bp,25)

and

p65 ≡ logit−1 (β0 + β1(65)) ∼ Beta(ap,65, bp,65).

These resulting beta prior densities for p and θ based on the expert’s expectations

at age xi = 25 and xi = 65 are shown in Figure 3.7.
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Figure 3.7: Priors based on information collected from expert about θ and p at age
xi = 25 and xi = 65.

The conditional means priors for α are the resulting induced priors given byα0

α1

 ∼ X̃−1logit

Beta(6.59, 13.73)

Beta(5.05, 13.25)

 ,
and the conditional means priors for β are the resulting induced priors given byβ0

β1

 ∼ X̃−1logit

Beta(26.71, 11.59)

Beta(11.59, 26.71)

 ,
where

X̃ =

1 25

1 65

 .
The induced priors on α and β have no closed form but can easily be simulated as

shown in Figure 3.8.
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Figure 3.8: Simulated density plots for the induced priors on the regression coeffi-
cients corresponding to conditional probability, θ, and zero-inflation probability, p
assuming a well-informed expert across all ages.

Finally, we obtain priors for λ0, λ1 and µ2 at age xi = 25 and xi = 65 using

(3.12), (3.13) and (3.14). From (3.12) we have that the prior for λ0 is the product

of a beta distribution and a gamma distribution. This is a nonstandard density,

but has a closed form and is derived in Nadarajah and Kotz (2005). It follows

that the priors for (3.13) and (3.14) is the difference and the sum, respectively, of a

gamma distribution and the product of a beta distribution and a gamma distribution.

Simulated density plots for these induced priors are shown in Figure 3.9.
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Figure 3.9: Density plots for the induced priors for λ0, λ1 and µ2 at xi = 25 and 65
based on information collected from the well-informed expert.

3.4.2 Using Prior Predictive as a Tool to Provide Feedback to Expert about λ0.

A primary objective of this chapter is inference for the association parameter,

λ0, which represents the dependence between the joint events Y1 and Y2. In Chapter

Two, we used the prior predictive distribution as a tool to provide feedback to the

expert about the implications of their prior assessments in a meaningful scale. In

this section, we demonstrate how the prior predictive distribution can be used as

a tool to explore the implications of the expert’s knowledge on the simultaneous

occurrence of both adverse events. Recall the information collected from the expert

from the assessment tasks outlined in Section 3.4.1:
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Table 3.6: Prior information collected from a well informed expert across all ages.

Parameter Mode 80th percentile

µ1,25 5 10
µ1,65 10 15

Parameter 25th percentile Median 75th percentile

θ25 0.25 0.32 0.39
θ65 0.20 0.25 0.34
p25 0.65 0.70 0.75
p65 0.25 0.30 0.35

This information is then translated into the priors shown in Figure 3.5 (top two

graphs) and Figure 3.7.

In the introduction of this chapter we note that if subject-level counts for

the number of migraines with nausea are available then posterior inference for λ0 is

straightforward. Similarly, if we have subject-level counts for the number of exclusive

migraines and the number of exclusive nausea episodes, posterior inference for λ1

and λ2, respectively, is straightforward. Although, the observed data in Figure 3.16

still does not provide these counts, we can use prior predictive distribution as a tool

to generate plausible data for these unobserved counts (particularly, X1, X2 and X0

from the bivariate Poisson distribution in (3.1) and (3.2)) based on the information

collected from the expert using the alternate prior elicitation tasks in Section 3.4.1.

As an example, we generate data from the prior predictive distribution cor-

responding to age 25, with n = 200 to demonstrate the implications of the prior

assessments in Table 3.6. Based on the expert’s expectation’s about µ1 and p at

xi = 25, we first use the prior predictive distribution to generate plausible data for

Y1, the number of migraines experienced over the study. This is shown in top left

plot in Figure 3.10. Now consider only subject that experienced a migraine. This

subset is shown in the top right plot in Figure 3.10. For illustration purposes, assume

that θ25 = 0.32 (the median value elicited from the expert). This suggests that the
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expert believes that, for a subject age 25 experiencing a migraine, the probability

they will also experience nausea is 0.32. That is, for each migraine event (among

subjects age 25) we have Y1i ∼ Bernoulli(0.32).
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Figure 3.10: Prior predictive distribution for number of migraines for n = 200 sub-
jects aged 25 (left) and prior predictive for number of migraines given a subject
experienced migraines (right). The bottom left plot is the possible frequencies for
the number of migraines among subjects age 25 that were accompanied by nausea.
Assuming θ = 0.32.

We can use this information to generate possible counts for the number of migraines

accompanied by nausea for the ith subject given the number of migraines they

experienced over the course of the study (the data represented in the top right

histogram in Figure 3.10). These counts can be thought of as the unobserved counts,

X0 in Table 3.1 and are depicted in the bottom left histogram in Figure 3.10. It is
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this count that we could then be used to construct a prior on λ0. For example, we

could use the mode and 80th percentile of the counts to construct a gamma prior

distribution for λ0 at xi = 25. The bottom right plot shows the relationship between

the number of migraines with nausea and the number of (just/exclusive) migraines

based on this plausible data set generated from the prior predictive distribution

and assuming θ = 0.32. For example, this plot suggests that among subjects age

25 (at-risk to experience migraines) that experienced 5 migraines, the number of

those migraines that were accompanied with nausea ranges from about 0 to 5. The

Bayesian approach allows us to account for the uncertainty in θ25. Based on the

expert’s assessments, take θ25 ∼ Beta(6.59, 13.73). We select several values for θ25

across the prior parameter space to obtain a possible prior for λ0 for subjects age

25, as shown in Figure 3.11.
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Figure 3.11: A prior distribution for λ0 for subjects of age 25. Namely,
λ0,25 ∼ Gamma(2.85, 0.97).

Similarly, we can obtain a plausible prior for λ0 at xi = 65 based on the

expert’s assessments. In a previous section, we acknowledged that designing a study

to provide information about the unobserved counts X0, X1, and X2 may not be a
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viable option. In this section we have demonstrated how we can make use of the

prior predictive distribution to visualize these unobserved counts.

3.4.3 Providing Feedback to the Expert

Providing feedback to the expert about the implications of their prior assess-

ments is an essential aspect of the prior elicitation process. This allows the expert

the opportunity for modifications to their assessments if the expert feels the result-

ing priors do not accurately reflect their prior beliefs. As in Section 2.7.1 we use

the prior predictive distribution as a tool to provide feedback to the expert in a

meaningful scale. For example, we might generate data from the prior predictive

distribution corresponding to ages 25, 45, and 65, with a sample size of n = 100. For

our purposes we assume that we show the expert a scatterplot and histograms for

a hypothetical dataset based on their assessments and that the expert is satisfied.

As another visual representation to show the expert the consequences of their prior

assessments, we can provide the expert with information about the induced priors

at certain ages as presented in Figure 3.12.

For example, Figure 3.12 suggests that the expert believes that the probability

that a subject has a migraine and is nauseated is slightly less for older ages compared

to that for younger ages. Similarly, we can present the expert a visual representation

of the implications of their assessments on parameters that we do not directly elicit

information about. For example, the induced priors for λ0, λ1 and µ2 for certain

ages are shown in Figure 3.13.
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Figure 3.12: Induced prior median (red dot), 10th percentile and 90th percentile
(black dots) based on a well-informed expert’s expectations of these quantities.

Moreover, Figure 3.13 indicates that the expert’s direct assessment of other

quantities, suggests a slight increase in the number of migraines accompanied by

nausea for subjects that are older in age. Moreover, Figure 3.13 suggests that the

expert expects that the number of exclusive migraines and the number of nausea

episodes will be greater in older subjects compared to younger subjects.
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Figure 3.13: Induced prior median (red), 10th percentile and 90th percentile (black
dots) based on expert’s expectations of other operational quantities.

3.4.4 Posterior Inference Based on Information Obtained Via Alternate Elicitation

We assume that, based on the feedback in Section 3.4.3, the expert is satis-

fied with the prior distributions in Section 3.4.1. Posterior inference was carried

out with the same specifications as in Section 2.3.1. We repeat them here for con-

vienence. Namely, posterior inference was carried out in JAGS with two chains.

Initial values for parameters were randomly generated from the corresponding prior

distributions. We ran 160,000 iterations and used the first 10,000 iterations as a

burn-in. For the remaining 150,000 iterations we sampled every 10th value to re-

duce autocorrelation. Accordingly, 30,000 parameter values were retained for each

chain. Standard diagnostic methods based on trace plots and the Gelman-Rubin

statistic revealed no convergence issues. The resulting posterior distributions for the

regression coefficients are shown in Figure 3.14.
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Figure 3.14: Prior (red, dashed) and posterior (black, solid) densities for BPZIP
regression coefficients. True value of coefficient is indicated with vertical line. Here
prior precision is independent of age.

Table 3.7: Posterior inference for regression coefficients. Priors specified indirectly
via the CMP approach based on knowledge from a well-informed expert across all

ages.

Parameter Truth Mean SD Median 2.5% 97.5% Width

φ0 1.449 1.441 0.165 1.443 1.111 1.763 0.651
φ1 0.015 0.015 0.003 0.015 0.009 0.021 0.012
γ2,0 1.279 1.209 0.214 1.219 0.765 1.603 0.838
γ2,1 0.023 0.024 0.003 0.024 0.016 0.031 0.015
β0 1.906 1.713 0.506 1.711 0.736 2.729 1.993
β1 −0.042 −0.037 0.010 −0.037 −0.058 −0.018 0.040
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Posterior inference for γ2 and β is comparable to that presented in Section

2.7.3 using the standard representation of the BPZIP model. Moreover, the 95%

credible intervals in Table 3.7 suggest that age is a significant factor in the estimation

of p, λ2 and µ1. For example, the 95% credible interval for β1 suggests that the

odds of being at-risk to experience a migraine is between about e20∗0.0178 = 1.43

and e20∗0.0583 = 3.21 times greater for each additional 20-year increase in age with

probability 0.95. Similarly, this suggests that the odds of being at-risk for a migraine

is 4.52 times greater for subjects age 65 compared to subjects age 25 (this applies

to any 40 year difference in age). Posterior inference for γ2,1 suggests that for a

20-year increase in age, we expect to see the number of nausea episodes to increase

by a factor between 1.38 and 1.87, with probability 0.95. Similarly, the 95% credible

interval for φ1 suggests that for a 20-year increase in age, we expect to see the

number of migraines increase by a factor between 1.21 and 1.52. These results are

consistent with the data we generated to simulate this example.

Similar to the posterior inference presented in Section 2.7.3, in Figure 3.15,

we see more posterior updating of µ1 and µ2 compared to that seen for λ0, λ1 and

λ2. Recall, the conditional representation for the BPZIP model proposed in this

chapter does not introduce constraints that make the model identifiable. However,

with the conditional representation, the λk’s are updated somewhat through µ1 and

µ2, both of which are directly informed by the data (see Figure 3.4). As a result, the

conditional representation of the BPZIP model potentially allows for more posterior

updating of the λk’s.

Posterior distributions for the Poisson parameters and zero-inflation parameter

at the elicited ages xi = 25, and xi = 65 are shown in Figure 3.15.

105



0 10 20 30 40
0.

0
0.

2
0.

4
0.

6
µ1,25

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

µ1,65

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

λ2,25
10 20 30 40

0.
00

0.
10

0.
20

λ2,65

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

p25

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

p65

0 5 10 15 20

0.
0

0.
2

0.
4

λ0,25
0 5 10 15

0.
00

0.
10

0.
20

0.
30

λ0,65

0 5 10 15 20 25

0.
0

0.
2

0.
4

λ1,25
0 5 10 15 20 25 30

0.
00

0.
10

0.
20

0.
30

λ1,65

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

µ2,25
10 20 30 40

0.
0

0.
2

0.
4

0.
6

µ2,65

Figure 3.15: Prior (red, dashed) and posterior (black, solid) densities for model
parameters at xi = 25 and xi = 65. Priors shown are based on expectations of a
well-informed expert across all ages.
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Table 3.8: Posterior inference for Poisson parameters and the zero-inflation
parameter based on priors obtained from a well-informed expert across all ages.

Parameter Truth Mean SD Median 2.5% 97.5% Width

λ0,25 1.998 2.145 0.611 2.112 1.067 3.441 2.374
λ0,45 2.445 2.472 0.534 2.445 1.504 3.602 2.097
λ0,65 2.993 2.923 0.932 2.852 1.305 4.925 3.621
λ1,25 4.197 4.360 0.725 4.342 2.976 5.849 2.873
λ1,45 5.896 5.838 0.612 5.838 4.636 7.048 2.412
λ1,65 8.284 7.732 1.006 7.772 5.664 9.599 3.935
λ2,25 6.400 6.459 0.688 6.461 5.099 7.793 2.693
λ2,45 10.151 10.269 0.657 10.288 8.911 11.489 2.578
λ2,65 16.100 16.391 1.127 16.433 14.072 18.490 4.418
p25 0.700 0.722 0.051 0.724 0.615 0.817 0.201
p45 0.500 0.493 0.041 0.492 0.412 0.574 0.162
p65 0.300 0.286 0.048 0.264 0.177 0.365 0.188

The smaller posterior credible interval widths observed at age 45 compared to

the credible interval widths at age 25 and 65 reflects the fact that there are more

subjects close in this age in the hypothetical study. Thus, there is more data to

update the posterior quantities at age 45 compared to age 25 and 65.

The conditional BPZIP model representation adapted in this chapter does not

involve inference for covariates corresponding to the Poisson parameters, λ0, and

λ1.10 Nevertheless, the Bayesian paradigm readily allows for posterior inference

of λ0 and λ1 at certain ages. Figure 3.16 shows the posterior median (red) and

95% credible interval (black) at certain ages, as well as the corresponding posterior

densities for λ0 and λ1. The top right plot in Figure 3.16 suggests that the posterior

mode for λ0 slightly shifts from about 2 to 3 with increasing age. This suggests

a slight difference in the rate of simultaneously experiencing both migraines and

nausea as age increases. This is further seen in the top left graph which suggests a

slight increase in the posterior median. The bottom two plots in Figure 3.16 suggest

10 This is different from the BPZIP regression model in Chapter Two which allows for inference
on regression coefficients for covariates related to λ0 and λ1.
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Figure 3.16: Posteriors for λ0 and λ1 at certain ages. The left plots show the posterior
median (black dot) and 95% credible intervals (red dots) for certain ages. The right
plots are the posterior densities for certain ages.

an increase in the number of exclusive migraines experienced by subjects as age

increases.

Note that we do not include posterior inference for θ and corresponding re-

gression coefficients α. For our purposes, the conditional representation allows us a

way in which we can plausibly specify a prior for λ0. In particular, we propose the

prior assessment tasks in Section 3.4.1 as an alternative to the assessment tasks pro-

posed in Section 2.6.4 for data that follow the BPZIP model in (2.2). Thus, for our

purposes we are not interested in posterior inference for parameters θ and α. That

is, our use of the conditional probability, θ, is in prior construction, not posterior

inference. Determining if the conditional representation of the BPZIP model
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reduces computation time as AlMuhayfith et al. (2015) found with the standard BP

and bivariate zero-inflated Poisson distribution is an area for further research.

3.4.5 Posterior Predictive Distribution as a Tool for Clinician

In this section, we make use of the posterior predictive distribution as a tool for

a clinician to assess what a future patient that is xi years old taking this medication

might expect to experience given everything we know (i.e. given the current data,

prior information, and posterior). Figures 3.17 and 3.18 represent the posterior

predictive distributions for the adverse events of interest.

Figures 3.17 and 3.18 could be used as a tool by a clinician to assess what a

patient age xi that is at-risk for both migraines and nausea episodes might expect

to experience while taking this new drug. For example, suppose a clinician has a

55-year old patient that he/she has just prescribed this new drug. Based on Figure

3.17, the probability that the patient is at-risk to experience migraines is between

about 63% and 70%. Furthermore, based on the conditional posterior distribution

that given the patient is at-risk to experience migraines, the clinician can inform the

patient that they might expect to experience about 9 migraines (and no more than

16 migraines) over a 6-month period. Similarly, Figure 3.18 suggests this patient

can expect to experience about 15 nausea episodes and no more than 22, over a 6

month period.
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Figure 3.17: Posterior predictive distribution of number of migraines (represented by
box plots) given a subject age xi is at-risk for migraines, and the marginal posterior
distribution for the probability that a subject age xi is at-risk for migraines (the
red dots represent the posterior median, the blue dots represent the 25th and 75th
percentile, and the green dots represent the 2.5th and 97.5th percentile).
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Figure 3.18: Posterior predictive distribution for number of nausea episodes (repre-
sented by box plots) for a subject age xi.

3.4.6 Another Illustration: Expert Less Confident with Older Ages.

As another illustration, we now suppose that the expert is not equally confident

across all ages. In particular, suppose that we have an expert that is comfortable

making assessments about subjects age 20-30 years old, but becomes increasingly

uncertain in their assessments as age increases from age 30. We demonstrate the

implications of this increasing uncertainty on posterior inference. Inference was car-

ried out using the same specifications as in Section 3.4.4. Using the same assessment

tasks outlined in Section 3.4.1 we collect the information provided in Table 3.9.
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Table 3.9: Prior information collected from expert that is more uncertain with
increasing age.

Parameter Mode 80th percentile

µ1,25 5 10
µ1,65 10 20
λ2,25 6 10
λ2,25 15 25

Parameter 25th percentile Median 75th percentile

θx̃i=25 0.25 0.32 0.39
θx̃i=65 0.17 0.27 0.37
px̃i=25 0.65 0.70 0.75
px̃i=65 0.18 0.30 0.42

Note that the elicited percentile information in Table 3.9 is widened to account

for the increased uncertainty at older ages. This is further shown in Figures 3.19

and 3.20
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Figure 3.19: Induced prior median (red dot), 10th percentile and 90th percentile
(black dots) based on expert’s expectations.
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Figure 3.20: Induced prior median (red dot), 10th percentile and 90th percentile
(black dots) based on expert’s expectations.

The resulting posterior densities for regression coefficients are shown in Figure

3.21.
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Figure 3.21: Prior (red, dashed) and posterior (black, solid) for regression coefficients.
Priors reflect beliefs of an expert that is less confident making assessments about
older ages.
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Table 3.10: Posterior inference for regression coefficients.

Parameter Truth Mean SD Median 2.5% 97.5% Width

φ0 1.449 1.478 0.172 1.481 1.139 1.813 0.673
φ1 0.015 0.014 0.003 0.014 0.008 0.019 0.012
γ2,0 1.280 1.122 0.178 1.129 0.752 1.454 0.702
γ2,1 0.023 0.025 0.003 0.025 0.018 0.031 0.014
β0 1.906 1.994 0.501 1.985 1.028 2.999 1.971
β1 −0.042 −0.042 0.011 −0.042 −0.065 −0.021 0.044

Posterior inference for model parameters at age xi = 25 and 65 is shown in

Figure 3.22. The larger width of the prior densities at age 65 compared to priors

at age 25 reflects the increasing uncertainty of the expert with older ages. The

increased uncertainty is also reflected in the prior ESS for the priors that result

from the expert’s assessments. As an example, the expert’s assessments about the

proportion of subjects age xi = 25 and 65 not at-risk for migraines in Table 3.9 can

be translated into the parameters of a beta distribution using numerical methods.

Namely,

p̃25 ∼ Beta(26.71, 11.59)

and

p̃25 ∼ Beta(2.98, 6.63).

From these priors we have that the expert’s assessments for subjects age 25 is equiva-

lent to about 38 observations, whereas the expert’s assessments for subjects age 65 is

equivalent to about 9 observations. Posterior inference for model parameters is pro-

vided in Table 3.11. Note that the truth for all parameters is contained within their

respective 95% credible intervals. Furthermore, the 95% credible interval widths at

age 65 are are comparable to those in Table 3.8 reflecting the increased prior un-

certainty at older ages. We constructed a similar example with n = 200, in which

we compared the posterior results for priors obtained from a well informed expert,
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Figure 3.22: Comparison of posterior densities based on prior assessments of a well-
informed expert (solid, black) and an expert that is less confident with assessments
at older ages (dashed, black).
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and posterior results for priors obtained from an expert that is less confident mak-

ing assessments for older ages. We observed that for n = 200, the increased prior

uncertainty was not reflected in the posterior as is the case for n = 100.

Table 3.11: Posterior inference for parameters based on priors obtained from an
expert less confident with increasing age.

Parameter Truth Mean SD Median 2.5% 97.5% Width

λ0,25 1.9981 1.8925 0.5311 1.8588 0.9642 3.0217 2.0575
λ0,45 2.4454 2.4787 0.7271 2.4415 1.1717 4.0015 2.8298
λ0,65 2.9928 3.3654 1.5100 3.2184 0.8751 6.6343 5.7592
λ1,25 4.1971 4.3124 0.6966 4.2910 3.0036 5.7216 2.7180
λ1,45 5.8967 5.6461 0.7810 5.6553 4.0718 7.1233 3.0515
λ1,65 8.2846 7.3119 1.5627 7.4143 4.0119 10.0529 6.0410
λ2,25 6.4000 5.7863 0.6229 5.7978 4.5491 6.9862 2.4371
λ2,45 10.1509 9.5318 0.7793 9.5634 7.9350 10.9817 3.0467
λ2,65 16.1000 15.7737 1.6173 15.8800 12.3459 18.5981 6.2522
p25 0.7000 0.7152 0.0525 0.7176 0.6060 0.8116 0.2056
p45 0.5000 0.5218 0.0447 0.5218 0.4338 0.6092 0.1754
p65 0.3000 0.3225 0.0658 0.3197 0.2009 0.4585 0.2576

Finally, we provide posterior inference for λ0 and λ1 at certain ages in Figure

3.23. These plots again suggest that as age increases there is a slight increase in

the number of occurrence of both adverse events, an increase in the number of

exclusive migraines, and the number of nausea episodes. The posterior densities

and corresponding intervals for λ0 and λ1 suggest increased posterior variability

(compared to that shown in Figure 3.16). This increased posterior variability for

older ages is not observed when comparing the posterior plots for µ2 in Figure 3.16

to those in Figure 3.23. This this not surprising as the prior dictates the posterior for

λ0 and λ1 (nonidentifiable parameters) more so than for µ2 (identifiable parameter).

3.5 Summary

We have developed a conditional representation of the Bayesian BPZIP model.

We demonstrated that the conditional representation provides a method for prior
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Figure 3.23: Posteriors for λ0 and λ1 across several ages when assuming increased
uncertainty with increasing age. The left plots show the posterior median (black
dot) and 95% credible intervals (red dots) for certain ages. The right plots are the
posterior densities for certain ages.

construction of the association parameter, λ0, via direct elicitation of a conditional

expectation. We also demonstrated that the conditional representation potentially

allows for more posterior updating of the unidentified Poisson parameters λ0, λ1 and

λ2 compared to the joint representation of the BPZIP model in Chapter Two. We

proposed and described methods of prior elicitation for a CBPZP model within the

context of a hypothetical adverse event drug safety study. We illustrated how we

might use the prior predictive distribution to visualize the unobserved counts un-

derlying the BP distribution in our BPZIP model. Finally, we propose the posterior

predictive distribution as a tool for a clinician within the context of the drug safety

study.
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CHAPTER FOUR

A Bayesian Bivariate Zero-Inflated Poisson Model

Thus far we have discussed a BPZIP model where one outcome is zero-inflated

and one outcome is not zero-inflated. In particular, we presented a Bayesian analysis

and proposed methods of prior construction for model parameters. In this chapter,

we extend the ideas proposed in Chapter Two and Chapter Three to a Bayesian

bivariate zero-inflated Poisson (BZIP) model, where both outcomes are assumed

zero-inflated. In medical, healthcare, environmental, and ecological studies, exis-

tence of excessive zeros in count data is common. If the zeros are ignored for the

sake of simplifying the analysis, valuable information will be lost and can result in

biased estimates of the parameters and potentially misleading findings. In this chap-

ter, we develop Bayesian methods for fitting the general BZIP model, ultimately in

a regression setting.

The organization of this chapter is as follows: In Sections 4.1 and 4.1.1 we in-

troduce a bivariate zero-inflated Poisson model. In Section 4.2 we develop a Bayesian

BZIP model, which includes diffuse prior structures and methods for posterior infer-

ence. In Section 4.3 we demonstrate potential problems that can arise in posterior

inference for BZIP models, particularly in a diffuse prior setting. In Section 4.4

we discuss common approaches in the literature for mitigating the effects of non-

identifiability for inference of Poisson parameters. In Section 4.5 we intoduce a

clinical example to investigate the safety and efficacy of a new drug. This example

serves as a vehicle for which we illustrate our proposed methods for BZIP inference

throughout this chapter. In Section 4.6 we offer methods for informative prior con-

struction for a Bayesian BZIP model. We discuss, in detail, prior elicitation from

a subject-matter expert. This includes prior elicitation of a Dirichlet distribution
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for zero-inflation parameters using conditional beta distributions, and a conditional

means priors approach for Poisson parameters. Concluding comments are given in

Section 4.7.

4.1 Bivariate Zero-Inflated Poisson Model

Suppose we have two Poisson counts denoted Y1 and Y2 such that (Y1, Y2)

denotes a bivariate count vector. In Chapter Two we discussed the case where one

outcome is zero-inflated and one outcome is not zero-inflated. In this chapter we

consider the case where both Poisson counts, Y1 and Y2, are zero-inflated. The

bivariate zero-inflated Poisson model is used to model count data with abundance of

zero observations that come from two sources: sampling zeros and structural zeros.

The most common representation of the BZIP data model found in the literature

is that introduced in Li et al. (1999), and is the representation that we use for our

joint count distribution. More recently, variations of the BZIP distribution proposed

by Li et al. (1999), have appeared. See, for example, Walhin (2001), Wang et al.

(2003), Dong et al. (2014), and Mohammadi et al. (2016).

A BZIP model can be constructed from a mixture of a point mass at (0,0), two

univariate Poisson distributions with parameters µ1 and µ2, and a bivariate Poisson

(BP) distribution with parameters (λ0, λ1, λ2) as follows:

(Y1, Y2) ∼



(0, 0), with probability p0

(Poisson(µ1), 0), with probability p1

(0,Poisson(µ2)), with probability p2

BP(λ0, λ1, λ2), with probability p3,

(4.1)

where p3 = 1−p0−p1−p2, µ1 = λ1 +λ0, and µ2 = λ2 +λ0. The BZIP model in (4.1)

assumes that both counts, Y1 and Y2, contribute to the observed excess zeros. This

is in contrast to the BPZIP model in (2.2) which assumes that the zero-inflation is

attributed to only Y1. In addition, the BZIP model assumes both structural and
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sampling zeros for both Y1 and Y2. Again, this is in contrast to the BPZIP model

which assumes structural and sampling zeros for Y1, and only sampling zeros for

Y2.1 As a result, the BZIP model introduces more parameters compared to the

BPZIP model to account for the zero-inflation. As with the BPZIP model, we use

the trivariate reduction representation of the BP distribution (see Appendix A).

Thus, the BZIP model in (4.1) is appropriate for modeling bivariate zero-inflated

Poisson counts that exhibit positive association.

Let (Y1, Y2) ∼ BZIP(p,λ) where p = (p0, p1, p2, p3),
3∑
j=0

pj = 1, and λ = (λ0, λ1, λ2).

Then the bivariate joint probability mass function, fY1,Y2(y1, y2|p,λ) ≡ fY1,Y2(y1, y2),

is given by, for y1, y2 ∈ {0, 1, 2, . . .},

fY1,Y2(y1, y2) =



p0 + p1 e
−(λ1+λ0) + p2 e

−(λ2+λ0) + p3 e
−(λ1+λ2+λ0), y1 = 0, y2 = 0,

1

y1

p1 (λ1 + λ0)y1 e−(λ1+λ0) + p3 λ
y1
1 e−(λ1+λ2+λ0), y1 6= 0, y2 = 0,

1

y2!
p2 (λ2 + λ0)y2 e−(λ2+λ0) + p3 λ

y2
2 e−(λ1+λ2+λ0), y1 = 0, y2 6= 0,

p3 e
−(λ1+λ2+λ0) λ

y1
1

y1!

λ
y2
2

y2!

min(y1,y2)∑
m=0

(
y1
m

)(
y2
m

)
m!
(

λ0
λ1λ2

)m
, y1 6= 0, y2 6= 0.

(4.2)

In the applications we consider in this dissertation, we typically take f(Y1,Y2)(0, 0)

and f(Y1,Y2)(y1, 0), y1 6= 0, to be large (compared to the BPZIP model). It can be

shown that

E(Y1, Y2) = p3 [(λ1 + λ0) (λ2 + λ0) + λ0] ,

and

Cov(Y1, Y2) = p3 λ0 + [p3 p0 − p1 p2] (λ1 + λ0)(λ2 + λ0).

1 For a comparison of the BPZIP and BZIP model see Appendix E.
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Moreover, the correlation is given by

ρBZIP ≡ Corr(Y1, Y2) =
p3 λ0 + [p3 p0 − p1 p2] (λ1 + λ0)(λ2 + λ0)√

σ2
Y1
σ2
Y2

,

where σ2
Y1

and σ2
Y2

denote the variance of Y1 and Y2, respectively.

Let yi = (y1i, y2i), i = 1, . . . , n, denote the bivariate outcomes. The corre-

sponding likelihood function is

`(pi,λi |yi) =
n∏
i=1

[f(y1i = 0, y2i = 0 |p,λ)]Ii1
n∏
i=1

[f(y1i = y1, y2i = 0 |p,λ)]Ii2

×
n∏
i=1

[f(y1i = 0, y2i = y2 |p,λ)]Ii3
n∏
i=1

[f(y1i = y1, y2i = y2 |p,λ)]Ii4 ,

(4.3)

where pi = (p0i, p1i, p2i, p3i), λi = (λ0,i, λ1,i, λ2,i) and Iik is an indicator function

defined as

Ii1 = 1 : if y1i = 0, y2i = 0,

Ii2 = 1 : if y1i 6= 0, y2i = 0,

Ii3 = 1 : if y1i = 0, y2i 6= 0, (4.4)

and

Ii4 = 1 : if y1i 6= 0, y2i 6= 0.

It can be shown that the marginal distribution of Y1 is a univariate ZIP that is a

mixture of point mass at 0 with probability p0 + p2 and a Poisson distribution with

parameter µ1 with probability 1− (p0 + p2). This is denoted Y1 ∼ ZIP(p0 + p2, µ1).

That is,

Y1 ∼


0, with probability p0 + p2,

Poisson(µ1), with probability p1 + p3,
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with corresponding marginal probability mass function

fY1(y1 | p0, p2, µ1) ≡ Pr(Y1 = y1) =


(p0 + p2) + (1− p0 − p2) e−µ1 , y1 = 0

(1− p0 − p2)
µ
y1
1 e−µ1

y1!
, y1 = 1, 2, 3 . . . ,

(4.5)

where µ1 = λ1 + λ0 and
∑3

j=0 pj = 1. Thus, Y1 can be a structural zero with

probability p0 + p2 and a sampling zero with probability p1 + p3. It follows that the

mean and variance of Y1 are given by

E(Y1) = (p1 + p3)µ1, (4.6)

and

Var(Y1) = (p1 + p3)µ1 [1 + (p0 + p2)µ1] . (4.7)

Similarly, it can be shown that the marginal distribution of Y2 is a univariate

ZIP, denoted Y2 ∼ ZIP(p0 + p1, µ2). That is,

Y2 ∼


0, with probability p0 + p1,

Poisson(µ2), with probability p2 + p3,

with corresponding marginal probability mass function

fY2(y2 | p0, p1, µ2) ≡ Pr(Y2 = y2) =


(p0 + p1) + (1− p0 − p1) e−µ2 , y2 = 0

(1− p0 − p1)
µ
y2
2 e−µ2

y2!
, y2 = 1, 2, 3 . . . ,

where µ2 = λ2 + λ0 and
∑3

j=0 pj = 1. Thus, Y2 can be a structural zero with

probability p0 + p1 and a sampling zero with probability p2 + p3. It follows that the

mean and variance of Y2 are

E(Y2) = (p2 + p3)µ2, (4.8)

and

Var(Y2) = (p2 + p3)µ2 [1 + (p0 + p1)µ2] . (4.9)
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4.1.1 Bivariate Zero-Inflated Poisson Regression Model

Let (y1i, y2i) ∼ BZIP(pi,λi), for i = 1, . . . , n, where n denotes the number of

observations, pi = (p0,i, p1,i, p2,i, p3,i) denotes the vector of zero-inflation parameters

for the ith observation and λi = (λ0,i, λ1,i, λ2,i) denotes the Poisson parameters for

the ith observation. We can represent the BZIP model in such a way that the

Poisson parameters, λk, and mixture probabilities, pj, depend on covariates through

canonical link, generalized linear models. In particular, we express the Poisson

parameters λk, k = 0, 1, 2, as a function of covariates via the logarithmic link and

the zero-inflation parameters, pj, j = 0, 1, 2, is related to covariates via the logit

link. That is, for the ith observation, we have that

log(λk,i) = xTk,iγk, (4.10)

for k = 0, 1, 2, and

log

(
pj,i

1−
∑2

j=0 pj,i

)
= wT

j,iβj, (4.11)

for j = 0, 1, 2, where xk,i and γk are vectors of covariates and corresponding regres-

sion coefficients, respectively, associated with the kth λ, and wj,i and βj are vectors

of covariates and corresponding regression coefficients, respectively, associated with

jth zero-inflation parameter (or mixture probability). Let q and r denote the num-

ber of covariates corresponding to λk and pj, respectively. Specifically, γk is a (q+1)

vector of regression coefficients and βj is a (r + 1) vector of regression coefficients.

This parameterization allows the same or different covariates to affect the Possion

rates and zero-inflation probabilities. For example, it is common to assume that the

Poisson parameters depend on covariates and that the zero-inflation probabilities do

not depend on covariates (e.g. Mohammadi et al. (2016)). In addition, this repre-

sentation allows for the Poisson rates (and similarly the zero-inflation parameters)

to depend on different covariates, which extends the use of this model to a wide
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range of applications. For example, Wang et al. (2003) assume that λ1 and λ2 depend

on covariates and that λ0 does not depend on covariates.2

Let yi = (y1i, y2i), i = 1, . . . , n. The BZIP regression likelihood is given by

`(βj,γk |yi) =
n∏
i=1

[f(y1i = 0, y2i = 0 |p,λ)]Ii1
n∏
i=1

[f(y1i = y1, y2i = 0 |p,λ)]Ii2

×
n∏
i=1

[f(y1i = 0, y2i = y2 |p,λ)]Ii3
n∏
i=1

[f(y1i = y1, y2i = y2 |p,λ)]Ii4 ,

(4.12)

where, for i = 1, 2, . . . , n, j = 0, 1, 2, and k = 0, 1, 2, we have

pj,i =
exp(wT

j,iβj)

1 +
2∑
j=0

exp(wT
j,iβj)

,

p3,i =
1

1 +
2∑
j=0

exp(wT
j,iβj)

,

and

λk,i = exp(xTk,iγk),

and Iit, t = 1, . . . , 4, is an indicator function defined as in (4.4).

Frequentist inference for bivariate zero-inflated Poisson model parameters in

the literature include maximum likelihood estimation (MLE) and method of mo-

ments estimation (MME) (e.g., Li et al. (1999) and Yuen et al. (2015)). Due to

the complexity of fitting multivariate zero-inflated Poisson models, the procedure

of maximum likelihood estimation is difficult to implement and there are no closed

form expressions for the MLEs. Li et al. (1999) suggest that confidence intervals

constructed based on the MLEs may be wider than needed (particularly when Pois-

son means are large), but that intervals constructed based on MMEs may have less

2 It is not uncommon in the literature to assume that λ0 does not depend on covariates (e.g.
Wang et al. (2003), Mohammadi et al. (2016)).
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than desired coverage probabilty. Maximum likelihood estimation for BZIP model

parameters can be implemented via an expectation-maximization (EM) algorithm

(see Wang et al. (2003) and Li et al. (1999)). However, convergence of the EM algo-

rithm for the BPZIP, is often dependent on initial values. Some propose the MMEs

as initial values of parameters. Neverthless, Liu and Tian (2015) demonstrate that

this is not always appropriate as the MMEs for the BZIP model may be outside the

feasible region in which case they cannot be directly treated as the initial values of

parameters.

4.2 The Bayesian Bivariate Zero-inflated Poisson Model

As a result of hierarchical Bayesian modeling and the availability of software to

implement methods such as MCMC, Bayesian inference for multivariate zero-inflated

models has become more prevalent in the literature. Applications of Bayesian mul-

tivariate zero-inflated Poisson models in the literature include occupational health

data to assess significance of intervention on the reduction in the number of muscu-

loskeletal and non-mukculosketal injuries (Wang et al. (2003)), outpatient psychiatric

use data (Neelon et al. (2010)), plant population count data (Majumdar and Gries

(2010)), automobile insurance claims for three different types of claims (Bermdez

and Karlis (2011)), analysis of safety crash data at intersections Dong et al. (2014),

and the joint modeling of the number of blood donation and the number of blood de-

ferral (Mohammadi et al. (2016)). Bayesian inference in the aforementioned sources

rely on diffuse priors for model parameters. Hence, despite the increased prevalence

of Bayesian inference for bivariate zero-inflated Poisson models, use of informative

prior structures applied to these models has not been explored in detail.

4.2.1 Diffuse Prior Structure: Bayesian BZIP Non-regression Model

We first consider the BZIP model in the absence of covariates. As with the

BPZIP model, we assume that prior distributions for the zero-inflation parameters,
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p = (p0, p1, p2), and Poisson parameters, λ = (λ0, λ1, λ2), are independent. We will

use the following conditional conjugate priors:

p ∼ Dirichlet(h1, h2, h3, h4),

and for k = 0, 1, 2,

λk ∼ Gamma(ck, dk),

where hk, k = 1, . . . , 4, ck and dk are considered hyperparameters. In the absence of

prior information regarding the zero-inflation parameters, uniform (h1 = h2 = h3 =

h4 = 1) or Jeffreys prior (h1 = h2 = h3 = h4 = 0.5) are commonly used. In the

absence of prior information regarding the Poisson parameters, small values of ck

and dk for the prior on the λk’s result in a diffuse prior for λk with large variance.

For example, ck = 1 and dk = 0.01 for k = 0, 1, 2, where ck and dk are the shape and

rate parameter, respectively. In Section 2.4, we demonstrated that such “diffuse”

priors can be problematic.

4.2.2 Diffuse Prior Structure: Bayesian BZIP Regression Model

Consider the BZIP regression model outlined in Section 4.1.1, where p and

λ both depend on covariates. As in the non-regression case, we assume that the

prior distributions for all parameters are independent. Let γk = (γk,0, . . . , γk,q) be a

1× (q+1) vector of regression parameters consisting of an intercept and q covariates

corresponding to λk. Further, let βj = (βj,0, . . . , βj,r) be a 1 × (r + 1) vector of

regression parameters consisting of an intercept and r covariates corresponding to

pj. We assume the elements of γk are mutually independent and independent of the

elements of βj. It follows that the joint prior distribution is given by

π(βj,γk) =
2∏

k=0

q∏
v=0

π(γk,v)
3∏
j=0

r∏
v=0

π(βj,v)
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A typical prior structure places independent diffuse normal priors on both sets of

regression coefficients. That is,

γk ∼ Nq(0,σ
2
γIq),

and

βj ∼ Nr(0,σ
2
βIr),

where k = 0, 1, 2 and σ2
γ and σ2

β are chosen to be large (e.g. 103) to express absence

of prior information. Here Nd(ϕ,Λ) denotes a d-variate normal distribution with

mean vector ϕ and covariance matrix, Λ. Alternatively, we can place inverse-gamma

priors on σ2
γ and σ2

β, or proper uniform prior distributions on σγ and σβ.

The prior structure outlined above is common in the literature. Neverthless,

we have found that, in practice, using diffuse priors for the regression coefficients

in this model leads to convergence issues in MCMC implementations. For example,

Majumdar and Gries (2010) presents a Bayesian analysis for bivariate plant counts

in which they are primarily interested in estimation of the expected value of the two

counts, E(Y1) and E(Y2), and the probability of zero counts, Pr(Y1 = 0, Y2 = 0),

Pr(Y1 = 0), and Pr(Y2 = 0). Note that these are all functions of µ1 and µ2, which

are updated by the data per the marginal distributions in (4.5) and (4.1). In discus-

sion of convergence of the Gibbs sampler, Majumdar and Gries (2010) note that the

corresponding summary diagnostics for these quantities indicate no potential prob-

lem with the sampler and yield consistent posterior estimates. In particular, they

remark that “These diagnostics should not be taken as a proof of convergence of

the chains, however if there were any problems, usually the diagnostic factors point

to some potential problems.” Nevertheless, we have found that this is often not the

case (see Appendix 4.0.1). Via simulation we observed that convergence of the ex-

pectations and probabilities of interest does not necessarily indicate convergence of

λ0, λ1, and λ2, making posterior inference for such parameters problematic. It is not
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surprising that diagnostics indicate convergence of these expectations and probabil-

ities. For example, note that (4.6), (4.8) and (4.2) indicate that E(Y1), E(Y2) and

Pr(Y1 = 0, Y2 = 0) are functions of identifiable quantities. Thus, these quantities

are also identifiable.3

4.2.3 Posterior Inference for BZIP Model

Suppose we have n bivariate outcomes where the ith observation is represented

by yi = (y1i, y2i) for i = 1, . . . , n and y = (y1, . . . ,yn) represents the vector of the

observed bivariate responses. Consider the non-regression case where `(p,λ |y)

denotes the likelihood given by (4.3). We assume that the prior distributions for

all parameters are independent. Let π(pj) denote the prior distribution for pj, j =

0, 1, 2, 3, and let π(λk) denote the prior distribution λk, k = 0, 1, 2. Then, the joint

posterior distribution of (p,λ) is given by

π(p,λ|y) ∝ `(p,λ |y)

{
3∏
j=0

π(pj)
2∏

k=0

π(λk)

}
,

which has no closed form-expression. Thus, posterior computation proceeds using

MCMC methods, such as Gibbs sampling, to sample from the posterior distribution.

Similar to posterior inference for the BPZIP regression model (discussed in

Section 2.2.5), inference for the BZIP model relies on representing Y1 and Y2 in

terms of latent variables. From the model in (4.1) we have that (Y1, Y2) consists of

four underlying sub-populations (or mixtures);

(1) Subjects not at-risk for Y1 or Y2

(2) Subjects at-risk for Y1 and not at-risk for Y2

(3) Subjects not at-risk for Y1 and at-risk for Y2

3 Note that functions of identifiable quantities are identifiable. However, sums that are identifi-
able with a common summand (e.g., λ0) does not imply that the common summand is identifiable.
Similarly, identifiable sums does not imply identifiable summands (Gustafson (2015)).
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(4) Subjects at-risk for Y1 and Y2,

where “not at-risk” represents the case where a structural zero is always observed,

and “at-risk” represents the case where either a non-zero count or sampling zero

is observed. We do not actually observe which sub-population (or mixture) each

subject is from. We can represent the BZIP random variables in terms of latent

(unobserved) variables. In particular, we define the random variables Y1 and Y2 in

terms of latent variables U and X, where U = (U0, U1, U2, U3), U3 = 1−U0−U1−U2

and X = (X1, X2, X0) such that

Y1 = (1− U0)(1− U2)(X1 +X0), (4.13)

and

Y2 = (1− U0)(1− U1)(X2 +X0), (4.14)

where U ∼ Multinomial(1,p). That is, U = u, where

u =


(1, 0, 0, 0), if y1i = 0 and y2i = 0

(0, 1, 0, 0), if y1i 6= 0 and y2i = 0

(0, 0, 1, 0), if y1i = 0 and y2i 6= 0

(0, 0, 0, 1), if y1i 6= 0 and y2i 6= 0.

Further, the latent variables, X1, X2, and X0 are the underlying independent

Poisson random variables with means λ1, λ2, and λ0, respectively that form the

standard BP (see Appendix A). That is, Y1 = X1 +X0 and Y2 = X2 +X0, such that

the observed data are the counts Y1 and Y2 and the unobserved data are the counts,

X1, X2 and X0.4 Denote the model parameters by θ = (p,λ), the observed data

by Y = (Y1, Y2) and the latent (unobserved) data by Z = (U,X). We are interested

in the posterior distribution, π(θ|Y), however, this is difficult to compute directly.

To ease computation, we obtain the posterior, π(θ|Y,Z) (often referred to as the

4 Per (4.13) and (4.14), Y1 and Y2 both depend on four latent variables. This is in contrast
to the BPZIP model, where Y1 and Y2 depend on differing numbers of latent variables (i.e. Y1
depends on three, and Y2 depends on two).
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augmented data posterior, Tanner and Wong (1987)), which is more straightforward

to compute. Instead of sampling directly from the posterior, π(θ |Y), we sample

from the posterior, π(θ,Z |Y). In order to implement this method within a Gibbs

sampling framework, we must be able to sample from two conditional distributions,

namely the posterior distribution of the augmented data, π(θ |Y,Z), and π(Z|θ,Y).

This can be extended to the regression model. The joint posterior distribution

is given by

π(U,X,βj,γk,σ
2
γ ,σ

2
β |Y) ∝ `(U,X,βj,γk|Y)

2∏
k=0

{
q∏

v=0

π(γk,v)

}
2∏
j=0

{
r∏
r=0

π(βj,r)

}
,

which again has no closed form. Thus, for posterior inference we use MCMC

methods, such as Gibbs sampling, to sample from the full conditionals, namely,

π(θjk |Y,Z) and π(Z|θjk,Y), where here θjk = (βj,γk). This algorithm can be

readily implemented in software such as WinBUGS or OpenBUGS (for both the

non-regression case and regression case). For this dissertation, inference for the

BZIP model was carried out using WinBUGS through the R package R2WinBUGS.5

4.2.4 BZIP Prior and Posterior Predictive Distributions

The prior and posterior predictive distributions are commonly used in the

implementation of Bayesian analysis for prediction. By using both of these joint

distributions, we can model our uncertainty completely. The prior predictive distri-

bution is the expected value of the likelihood with respect to the prior. Often we

are interested in predicting the “next” observation or observations (e.g. gauging the

prospects for a future sample). That is, suppose we want to predict future bivariate

observation(s) denoted ỹ (assumed independent from our data y). We can make

use of the posterior predictive distribution, which is defined as the expected value of

5 We explored implementation of the BZIP model in JAGS, however, specification of a multi-
nomial distribution for u proved problematic (JAGS prompted that actual data be provided for u,
instead of sampled values from a Dirichlet prior). In addition, implementation of this model was
explored in STAN. However, at the time STAN was not recommended for multivariate analysis.
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the BZIP likelihood, evaluated at ỹ, with respect to the BZIP posterior distribution

given the data. The posterior predictive distribution for the BZIP model has the

form

π̃(ỹ|y, x̃) =

∫
Θ

`(ỹ |βj,γk,y,x)π(βj,γk |y,x)dθ, (4.15)

where x is the vector of covariates for the current sample, and x̃ is the vector of

covariates corresponding to the future observations, and θ is the vector of parameters

defined on Θ.

4.3 BZIP Examples: Problems with Posterior Inference

Similar to Section 2.4, we constructed a variety examples for posterior inference

of our BZIP model. As with the BPZIP models in Section 2.4, we found convergence

issues in MCMC implementations of our BZIP model, particularly in a diffuse prior

setting. Namely, there is a lack of convergence for the Poisson parameters, λk. As

before, the reason for these difficulties is a lack of identifiability. This is hardly

surprising given the additional parameters needed for the BZIP model. Despite the

addition of zero-inflation parameters, the mixture probabilities remain identifiable

due to the constraint that
∑3

j=0 pj = 1. Nevertheless, we observed that, in some

cases, the model struggles to identify which of the four mixtures an observation is

from. In such cases, diffuse priors for the zero-inflation parameters presented in

Section 4.2.1 and Section 4.2.2 are not appropriate. This is particularly the case

for small n (n = 50, 100) and small values of λk, k = 0, 1, 2. In this section, we

demonstrate a situation in which we have poor estimation of the mixture probabili-

ties. We refer the reader to Appendix 4.0.1 for an example demonstrating the lack

of convergence for the BZIP Poisson parameters.

4.3.1 R2WinBUGS Specifications for Posterior Inference

Posterior inference was carried out with WinBUGS using the R package R2WinBUGS.

Inference was done with two chains, and initial values were specified for each chain.
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We ran 300,000 iterations and used the first 100,000 iterations as a burn-in. For the

remaining 200,000 iterations we sampled every 10th value to reduce autocorrelation.

Accordingly, 20,000 parameter values were retained for each chain.

4.3.2 Posterior Inference for Mixture Probabilities

In this example, we illustrate an example where diffuse priors on p prove prob-

lematic and results in poor posterior estimates of the pj’s. We generated n = 50 ob-

servations from a BZIP model with true values of parameters, p = (0.65, 0.15, 0.15, 0.05),

λ = (1, 1, 0.5). The data are depicted in Figure 4.1.
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Figure 4.1: Data for n = 50 observations generated from a BZIP model with true
values p = (0.65, 0.15, 0.15, 0.05), λ = (1, 1, 0.5), and n = 50.

We consider diffuse normal priors for regression coefficients, namely, for j = 0, 1, 2,

βj ∼ N(0, σ2 = 1, 000).

The resulting induced priors on the pj’s are shown in Figure 4.2. Posterior inference

was carried out with WinBUGS using the same specifications as described in Section

4.3.1. The resulting posterior densities and summary results are shown in Figure 4.3

and Table 4.1.
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Figure 4.2: Induced priors on pj for diffuse normal priors on regression coefficients.
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Figure 4.3: Posterior densities (black, solid line) and true value (black, dashed vertical
line) for mixture probabilities with diffuse priors.
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Table 4.1: Posterior summary results for mixture probabilities and n = 50.

Parameter Truth Mean SD 2.5% 97.5% Width

p0 0.65 0.5852 0.1254 0.2893 0.7575 0.4682
p1 0.15 0.2578 0.1198 0.0941 0.5310 0.4369
p2 0.15 0.1006 0.0713 0.0000 0.2513 0.2513
p3 0.05 0.0564 0.0696 0.0008 0.2556 0.2548

The irregular, bimodal posteriors reflect that there is little updating a posteri-

ori. These examples demonstrate that, for small n and diffuse priors, we have poor

estimation of the pj’s due to the small amount of observed data to update the priors.

Furthermore, in this example, the Poisson rates were chosen to be small (close to

zero) to illustrate that, for small λk and small n, it appears that the model struggles

to identify which of the four mixtures in (4.1) the bivariate observations (Y1, Y2) are

from. Increasing the initial burn-in length, chain length and thinning rate did not

improve posterior results.

Now suppose we increase the sample size to n = 100. The data generated from

a a BZIP model with true values p = (0.65, 0.15, 0.15, 0.05) and λ = (1, 1, 0.5) is

shown in Figure 4.4.
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Figure 4.4: Data for n = 100 observations generated from a BZIP model with true
values p = (0.65, 0.15, 0.15, 0.05), λ = (1, 1, 0.5).
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We again consider diffuse priors on regression coefficients as shown in Figure 4.2.

We repeat inference in WinBUGS using the same specifications as in Section 4.3.1.

The resulting posterior densities and summary results are shown in Figure 4.5 and

Table 4.2.
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Figure 4.5: Posterior densities (black, solid line) and true value (black, dashed vertical
line) for diffuse priors βj for mixture probabilities.

Table 4.2: Posterior summary results for mixture probabilities and n = 100.

Parameter Truth Mean SD 2.5% 97.5% Width

p0 0.65 0.7225 0.0545 0.6062 0.8197 0.2135
p1 0.15 0.1117 0.0401 0.0422 0.1984 0.1562
p2 0.15 0.1324 0.0429 0.0619 0.2279 0.1660
p3 0.05 0.0334 0.0269 0.0038 0.1005 0.0967

The densities in Figure 4.5 show more posterior updating compared to the

posterior densities in Figure 4.3. Moreover, Figure 4.5 and Table 4.2 indicate that,

for this example, increasing the sample size to n = 100, improves estimation of the
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mixture probabilities. In general, however, we observed that increasing sample size

does not improve estimation of the pj’s.

We constructed a variety of other examples leading to the following tentative

conclusions with respect to inference for BZIP mixture probabilities. Specifically, we

identified certain situations that suggest value in informative priors. For example, as

p0 increases to one, the potential value of informative priors for posterior inference

strengthens. This is because the effective sample size (the number of non-zero data)

becomes smaller as the probability that both Y1 and Y2, mainly estimated by p0,

increases to one. In addition, we observed that, when the true value of p3 is small

relative to the other mixture probabilities, informative priors are worth exploring.

Small values of p3 indicate that the number of non-zero counts is small relative to

the number of zero counts, which in turn can potentially impact the estimation of

the Poisson rates.

4.4 Additional Remarks: The Allure of Nonidentifiability and Possible Approaches

In Section 2.5, we discussed common approaches in the literature for handling

the issue of nonidentifiability. The approaches discussed therein can also be applied

to the BZIP model. For example, identifiability can be obtained by setting λ1 =

λ2 (i.e. assuming Y1 and Y2 are identically distributed), which implies that the

counts, Y1 and Y2, have equal rates (see Yuen et al. (2015)). We could also obtain

identifiability by assuming a fixed value as the prior for λ0. Again, this is extremely

informative and not reasonable in practice. Mohammadi et al. (2016) alleviate the

effects of nonidentifiability by assuming different covariates to effect the individual

Poisson rates. Such an approach may not be realistic in practice.

An alternative, as used in other types of models with unmeasured confounding

components or measurement error models, is to add constraints. For example, we

could assume a strict ordering of the Poisson rates: 0 < λ0 < λ1 < λ2. Another
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option would be to apply constraints to the sums λ1 + λ0 and λ2 + λ0. However,

determining conceivable constraints on these sums would be a difficult task, al-

most unrealistically so. A potentially less extreme approach to mitigate problems

nonidentifiability can cause is using moderately informative priors. In Chapters

Two and Three, we discuss in detail methods for informative prior specification for

the Poisson parameters. These methods can be readily implemented in the BZIP

model. In contrast, the additional zero-inflation parameters requires more complex

and more involved methods for prior elicitation from a subject-matter expert than

those described for the BPZIP model. This will be a focus of what follows. Some

applications in the literature (Wang et al. (2003), Mohammadi et al. (2016)) simplify

(4.1) and instead represent the BZIP model as a mixture of a point mass at (0, 0)

and a bivariate Poisson. That is,

(Y1, Y2) ∼


(0, 0), with probability p0,

BP(λ0, λ1, λ2), with probability 1− p0.

(4.16)

The corresponding joint probability mass function is

f(Y1,Y2)(y1, y2 | p,λ) =


p0 + (1− p0) exp(−λ0 − λ1 − λ2), y1 = 0, y2 = 0

(1− p0)fBP (y1, y2 |λ0, λ1, λ2), y1 6= 0 or y2 6= 0,

where fBP (y1, y2 |λ0, λ1, λ2) denotes the probability mass function of the standard

BP distribution provided in Appendix A. Note that this representation reduces

the number of zero-inflation parameters to one, accounting for the case that both Y1

and Y2 are structural zeros. For this simplified representation, the methods discussed

for prior construction on the zero-inflation parameter in Chapters Two and Three

are appropriate. If the researcher is only interested in inference for the probability

that both outcomes are structural zeros and the probability that both outcomes

are not zero-inflated then the simplified representation of the BZIP model in (4.16)

is appropriate. However, if the researcher is interested in identifying observations
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from the four subpopulations represented in (4.1), then the simplified model is not

appropriate. For our purposes, we suppose that inference for the four zero-inflation

parameters is of interest and consider the full BZIP model in (4.1).

4.5 Application: Adverse Event Study

We consider a hypothetical study to compare a new treatment with a standard

of care with respect to safety. A study to evaluate the safety of this new drug has

already been completed and the results suggest that the new treatment is safe. Now,

we want to investigate whether the new treatment is superior to the current standard

of care with respect to safety. Namely, we want to assess whether the new treatment

reduces the number of two side effects, common to similar medications currently

on the market. The study consists of n = 100 subjects that suffer from a variety

of neurological disorders. Subjects are randomized to a treatment group (receive

new treatment) or control group (receive current standard of care). We assume

that the subjects are similar in characteristics such as age, gender, etc. Throughout

the course of the six-month study, the subjects were asked to recall the number of

occurrence of two adverse events, which are known to be related. We assume that

the observed person-time is the same for each subject. Let (Y1i, Y2i) be a bivariate

response count for the ith subject such that

Y1i = Number of migraines experienced during study

Y2i = Number of seizures experienced during study,

for i = 1, . . . , n, where n is the number of subjects. We assume (Y1, Y2) ∼ BZIP(p,λ)

is appropriate here. In contrast to the adverse event drug safety application consid-

ered in Chapters Two and Three, in this application we assume that both adverse

events attribute to the zero-inflation.
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From (4.1) we have that the data can arise from one of four mixtures:

(1) (Y1i, Y2i) ∼ (0, 0): the subject is not at-risk for migraines or seizures (with

probability p0).

(2) (Y1i, Y2i) ∼ (Poisson(µ1), 0): The subject is at-risk for migraines, but not

at-risk for seizures (with probability p1).

(3) (Y1i, Y2i) ∼ (0,Poisson(µ2)): The subject is not at-risk for migraines, but is

at risk for seizures (with probability p2).

(4) (Y1i, Y2i) ∼ BP(λ0, λ1, λ2): The subject is at-risk for both the migraines and

seizures (with probability p3).

The data we generated to simulate this hypothetical study are depicted in Figures

4.6 and 4.7.
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Figure 4.6: Marginal data for the number of migraines and the number of seizures
for n = 100 subjects.
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Figure 4.7: Scatterplot illustrating the joint association between the number of mi-
graines and the number of seizures for n = 100 subjects.

For our purposes we assume that the Poisson parameters depend on a binary

covariate that indicates treatment group for the ith subject. That is, we assume the

kth Poisson mean, k = 0, 1, 2 and ith subject

log(λk,i) = γk,0 + γk,1xi, (4.17)

where

xi ≡


1, new treatment,

0, current standard of care.

(4.18)

We are interested in the effect, if any, this new treatment has on the reduction of

the occurrence of these two adverse events. Further, we want to compare the new

treatment to the current standard of care. Table 4.3 contains the model parameter

summary for the ith subject.
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Table 4.3: Model parameter summary for subject i.

Parameter Interpretation
λ1,i The mean rate of exclusive migraines for subject i.

λ2,i The mean rate of exclusive seizures for subject i.

λ0,i The mean rate of both migraines and seizures for subject i.

γk,0 Average log adverse event rate for a unit for current standard
of care.

γk,1 Average change in log rate of migraines for the ith subject
in the new treatment group; eγk,1 represents the increased (or
decreased) odds of adverse event rate for a subject receiving
the new treatment.

p0i The proportion of subjects not at-risk for migraines or
seizures.

p1i The proportion of subjects that are at-risk for migraines, but
are not at-risk for seizures.

p2i The proportion of subjects that are not at-risk for migraines,
but are at risk for seizures.

p3i The proportion of subjects that are at-risk for migraines and
seizures.

To evaluate whether the new treatment is superior to the current standard

of care with respect to safety, suppose we are interested in the posterior predictive

probability that among subjects that experience both adverse events, the number of

migraines, the number of seizures, and the number of both migraines and seizures,

is less for the new treatment compared to the current standard of care. That is, for

some probability, δ, we are interested in the posterior predictive probability that

Pr(Y1,1 < Y1,0 | data) ≥ δ, (4.19)

Pr(Y2,1 < Y2,0 | data) ≥ δ, (4.20)
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and

Pr(Y1,1 + Y2,1 < Y1,0 + Y2,0 | data) ≥ δ, (4.21)

where Y1,0 and Y2,0 denote the number of migraines and the number of seizures,

respectively, for the current standard of care, and Y1,1 and Y2,1 denote the number

of migraines and the number of seizures, respectively, for the new treatment. Here,

we assume δ = 0.90.

4.6 Informative Prior Structure for Bayesian BZIP Model

In Chapter Two we suggest the use of informative priors as a method to

alleviate the effects that nonidentifiability can cause. We specifically consider prior

elicitation from a subject-matter expert to construct informative priors for model

parameters. The informative priors proposed for the Poisson rates in Chapters Two

and Three can easily be extended to the BZIP model. In contrast, due to the

increased number of zero-inflation parameters, the methods for prior construction

used for the BPZIP zero-inflation parameter are not sufficient for the BZIP model.

Thus, here we focus on methods of prior construction for p and refer the reader to

Chapters Two and Three for prior construction for Poisson parameters.

The BZIP model requires prior specifications for three zero-inflation parame-

ters (the distribution for the fourth zero-inflation parameter can be determined using

the constraint that
∑3

j=0 pj = 1). This is in contrast to the BPZIP model, which

requires prior specification for a single zero-inflation parameter. In Section 4.3 we

showed that a diffuse Dirichlet prior distribution on p can be problematic in some

cases. In these cases, providing information on the pj’s is essential for estimation

of the pj’s (and model convergence in some cases). We adapt the methods pro-

posed in Elfadaly and Garthwaite (2013a) and propose plausible methods of prior

elicitation for the BZIP zero-inflation parameters. This involves eliciting a Dirichlet

distribution for a multinomial model using conditional beta variates (recall that in
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a BZIP model we assume the zero-inflation parameters are multinomial and that

each observation can come from only one mixture). To our knowledge, methods for

eliciting an informative Dirichlet prior distribution has not been applied to mixture

probabilities in a bivariate or multivariate zero-inflated Poisson model setting.

4.6.1 Dirichlet Prior: Zero-inflation Parameters

A BZIP model assumes a multinomial distribution for the zero-inflation pa-

rameters, pj. Hence, we assume that the pj’s are independent and each bivariate

observation (Y1, Y2) belongs to one and only one of the four mixtures that make up

the BZIP model in (4.1). In Bayesian statistics, it is well known that the Dirich-

let distribution is a conjugate prior for the probability parameters of multinomial

models. This distribution preserves the unit-sum constraint for the probability pa-

rameters of multinomial probabilities so that a subject matter expert’s assessment

must satisfy a number of requirements for statistical coherence (Elfadaly and Garth-

waite (2013a)). For example, if there are only two categories, the lower probability

quartile of one category and the upper probability quartile of the other category

must sum to one. As the number of categories increases, the number of require-

ments also increases. These requirements are complex and have no simple closed

form. As statisticians, a critical objective of the elicitation process is to choose as-

sessment tasks that lead to a coherent set of assessments, preferably without the

expert having to be conscious of the statistical requirements.

In general, eliciting parameters of multivariate distributions is not an easy

task. Elfadaly and Garthweite (2013a and 2013b) propose methods for eliciting an

informative prior distribution for multinomial models. In particular, they propose

methods for quantifying expert opinion about the hyperparameters of both the stan-

dard Dirichlet distribution and a generalized Dirichlet distribution, referred to as the

Connor-Mosimann, both of which are conjugate prior distributions for a multino-
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mial model. Elfadaly and Garthweite (2013a and 2013b) apply their methods within

the context of multinomial proportions that do not depend on covariates. This is

done based on conditional quartile assessments of beta conditional distributions. De-

composition of the Dirichlet elicitation process into the assessment of several beta

distributions helps reduce the complexity of eliciting a multivariate distribution. The

median and quartiles of univariate beta distributions are assessed and translated in

to the parameters of a Dirichlet distribution. We discuss construction of a Dirichlet

distribution and suggest plausible assessment tasks to prompt an expert about their

expectations of the zero-inflation parameters.

4.6.2 Prior Assessment Tasks for Elicitation of a Dirichlet Distribution

Elicitiation of multivariate distributions often require difficult assessment tasks

by an expert. Accordingly, Elfadaly and Garthwaite (2013a) propose elicitation

methods for the Dirichlet distribution that involve asking the expert to think about

univariate distributions. The assessment tasks for the elicitation of a Dirichlet in-

volve asking the expert to assess conditional quartiles. We adapt the assessment

tasks outlined in Elfadaly and Garthwaite (2013a) to apply to the BZIP zero-inflation

parameters, which has not done previously. For j = 4 mixture probabilities, the con-

jugate Dirichlet prior has the form

π(p1, . . . , p4) =
Γ(N)

Γ(h1) · · ·Γ(h4)
ph1−1

1 · · · , ph4−1
4 , (4.22)

where N =
∑4

j=1 hj and hj > 0. It can be shown that N is the prior effective

sample size for a Dirichlet prior and multinomial likelihood. To elicit the vector of

hyperparameters, h = (h1, . . . , h4), we can make use of the fact that the conditional

distributions of the Dirichlet variates are scaled beta distributions.

Consider our adverse event example in Section 4.5, where we assume that the

zero-inflation parameters do not depend on covariates. In this example, the zero-

inflation parameters, p, form the multinomial categories that we want to quantify

144



expert opinion about. For reference, the interpretations of the zero-inflation param-

eters in the context of the adverse event example are presented in Table 4.3. This

information will be essential in the assessment tasks for the prior elicitation process.

In this example, we assume that some of the n = 100 subjects will not be at-risk for

either adverse event, whereas some subjects will be at-risk for one of both adverse

event. Furthermore, we assume we have a well informed expert that is familiar with

medications similar to that under study, and familiar with the subject population.

To elicit a Dirichlet prior distribution for p based on univariate beta distri-

butions, the expert is first asked to order the mixture proportions from the most

likely (probable) to the least likely (probable). Elfadaly and Garthwaite (2013a)

suggest prompting the expert to order in this way because the conditional distri-

butions to be assessed are less skewed which may lead to easier assessment tasks.

That is the distribution that we expect to be the most skewed (corresponding to the

smallest mixture proportion) will be determined automatically based on the expert’s

assessment of the other three mixtures.

Suppose, for our example, the subject-matter expert gives the following order:

p0 > p3 > p1 > p2. (4.23)

That is, the expert believes that the majority of the 100 subjects will not be at-

risk for migraines or seizures. Based on the expert’s ordering in (4.23) we begin by

eliciting information about the percentage of subjects not at-risk for migraines or

seizures. The expert is asked a series of three of questions (one for assessment of a

median value, one for assessment of the lower quartile and one for assessment of a

upper quartile) in order to represent the expert’s knowledge and uncertainty.

(1) To assess the median, the expert is asked “Suppose we have 100 subjects.

What, do you think, is the percentage of these subjects that are not at-risk

for either adverse event?” Their response will be the median value.
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(2) Next, to assess a lower quartile,“Suppose the percentage of subjects that are

not at-risk for either adverse event is actually less than your initial assess-

ment (that is, their median assessment is too high). Given this information,

what would you now estimate as the percentage?” Their response is taken

to be the 25th percentile.

(3) Finally, to obtain an upper quartile the expert is asked “Suppose the per-

centage of subjects that are not at-risk for either adverse event is actually

greater than your initial assessment (that is, their median assessment is too

low). Given this information, what would you now estimate as the percent-

age?” Their response is taken to be the 75th percentile.

Suppose the expert’s assessment of the lower, middle (median) and upper quartile

are p0,0.25 = 0.48, p0,0.50 = 0.55, and p0,0.75 = 0.62, respectively. This information is

then translated into the parameters of a beta distribution using numerical methods.

The elicitation of the remaining zero-inflation parameters relies on assessment

of conditional quartiles. Per the expert’s initial ordering, we next ask the expert

about their expectations for the percentage of the 100 subjects that are at-risk for

both adverse events. When making assessments about this percentage, the expert

is told to assume that the percentage of subjects that are not at-risk to experience

either adverse event is 55% (i.e. their median assessment). In this way, the expert

is actually making assessments about p3|p0, instead of just p3. The expert is again

asked a series of three questions:

(1) To assess the median of p3|p0, the expert is asked “Given that the percentage

of the 100 subjects not at-risk for either adverse event is 55%, what, do you

think, is the percentage of the remaining subjects that are at-risk for both

adverse events?” Their response is taken to be the median value.
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(2) Next, to assess a lower quartile for p3|p0, the expert is asked,“Suppose the

percentage of subjects that are at-risk for both adverse events is actually less

than your initial assessment (that is, their median assessment is too high).

Given this information, what would you now estimate as the percentage?”

Their response is taken to be the 25th percentile.

(3) Finally, to obtain an upper quartile for p3|p0, the expert is asked “Suppose

the percentage of subjects at-risk for both adverse events is actually greater

than your initial assessment (that is, their median assessment is too low).

Given this information, what would you now estimate as the percentage?”

Their response is taken to be the 75th percentile.

Suppose the experts assessments for the lower, middle, and upper quartile are

p3,0.25|(p0 = 0.55) = 0.13, p3,0.50|(p0 = 0.55) = 0.20, and p3,0.75|(p0 = 0.55) = 0.27,

respectively. These conditional quartile assessments can be translated into the pa-

rameters of a conditional scaled beta distribution.

Similarly, we elicit information about the distribution of p1|p0, p3. In their

assessments about the percentage of subjects just at risk migraines, the expert is told

to assume their initial (median) assessments for p0 and p3 are exactly p0,0.50 = 0.55

and p3,0.50 = 0.20. That is, the expert is asked to assume that 55% of the 100

subjects are not at-risk for both adverse events and 20% are at risk for both adverse

events. The expert is then prompted to relay a median, lower and upper quartile for

the percentage of the remaining subjects that are at-risk for just migraines. Suppose

the expert’s assessments for the lower, middle, and upper quartile are p1,0.25|(p0 =

0.55, p3 = 0.20) = 0.10, p1,0.50|(p0 = 0.55, p1 = 0.20) = 0.15, and p1,0.75|(p0 =

0.55, p3 = 0.20) = 0.20, respectively.

Finally, the three conditional quartiles for the percentage of the 100 subjects

that are at-risk for just seizures, p3|(p0 = 0.55, p3 = 0.20, p1 = 0.15) is computed
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automatically using the unit-sum constraint. The information collected from the

expert is summarized in Table 4.4.

Table 4.4: Expert elicited conditional quartiles. Here the median is the expert’s
initial median assessment, and the 25th and 75th percentiles are the conditional

lower and conditional upper quartiles, respectively.

Parameter 25th Percentile Median 75th Percentile

p0 0.48 0.55 0.62
p3 | p0 = 0.55 0.13 0.20 0.27
p1 | (p0 = 0.55, p3 = 0.20) 0.10 0.15 0.20
p2 | (p0 = 0.55, p3 = 0.20, p1 = 0.15) 0.05 0.10 0.20

Often the prior elicitation process outlined above requires reconciliation of the

assessed parameters for the beta distributions to ensure that the expert’s assessment

of the conditional quartiles satisfy mathematical properties of the Dirichlet distri-

bution (see Elfadaly and Garthwaite (2013a) for more detail). Implementation of

the above assessment tasks can be done using the free, readily available interactive

PEGS-Dirichlet software (Elfadaly and Garthwaite (2013c)) developed by Elfadaly

and Garthwaite (2013a). The software consists of several features that assist the

subject-matter expert throughout the elicitation process. Figure 4.8 emulates some

of the graphics involved of this software. To begin, the expert assesses the conditional

medians. The top left plot in Figure 4.8 is a visual after the expert has assessed the

conditional medians. The top of each bar represents the assessed medians by the

expert. The red bars denote values that should be treated as the truth. Here, the

expert specifies the median value of p0 = 0.55, indicated by the red bar in the top

left plot. Next, the expert specifies a value for p3 | p0 = 0.55. The red dotted lines

above the bar for p3 represents the maximum value for the assessed median of p3

conditional on their assessment that p0 = 0.55. Similarly, the red dotted line above

p1 indicates that given the experts assessments of p0 = 0.55 and p3 = 0.20, their as-
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Figure 4.8: Prior elicitation of a Dirichlet distribution based on expert’s assessments
of conditional quartiles.

sessed median value for p1 cannot exceed 0.25. In this way, the interactive software

guides the expert to make assessments consistent with mathematical constraints,

namely the unit-sum constraint. The median value for p2 | p0, p3, p1 (indicated by

the green bar in the top left plot) is automatically computed by the software based

on the expert’s assessments for the previous three categories.

Next, the expert is asked to assess the upper and lower conditional quartiles.

The expert begins by assessing the quartiles for the most likely category p0, as shown

by the top right plot in Figure 4.8. The orange dotted lines are suggested boundaries

for the expert. Namely, the expert is advised to assess his/her conditional quartiles

between these dotted lines to obtain a marginal distribution for p0 that is unimodal

with a mode that is neither near zero or one, which often is not representative of the
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expert’s opinion.6 The blue solid lines represent the expert’s assessments for the

lower and upper quartile of p0. Next, the expert assesses the conditional quartiles

for p3 | p0 = 0.55. This is shown in the bottom left plot in Figure 4.8. The bar

for p0 becomes red to indicate that, when making assessments about p3, the expert

should assume that the true value for p0 is 0.55. The red dotted line above the bar

for p3 in the bottom left graph represents an upper boundary for which p3 cannot

exceed based on the expert’s assessment of p0. The expert’s assessed lower and upper

quartile for p3 | p0 = 0.55 are indicated by the blue solid lines. Next, the expert is

asked to asses the quartiles for p1 assuming that the true values for p0 and p3 are

0.55 and 0.20, respectively. The expert’s assessed conditional quartiles for p1 are

represented by the blue solid lines above p1 in the bottom right plot of Figure 4.8.

Finally, the upper and lower quartiles for the last category, p2, are automatically

computed based on the expert’s assessments of the first three categories. This is

represented by the blue solid lines over the yellow bar in the bottom left plot.

As the expert makes their assessments of the upper and lower quartiles, the

software also provides a visual of the assessed distribution based on their assessments.

In addition, to help the expert during the task, the software shows the resulting as-

sessed marginal (for p0) or conditional (for the remaining mixtures) beta distribution

based on the experts assessments. This allows the expert to modify his/her assess-

ments if they feel the resulting density does not accurately represent their beliefs.

The marginal beta distribution for p0 and conditional scaled beta distributions are

shown in Figure 4.9. The mixture probabilities must sum to one and the quartile

assessments for the different categories must also meet certain requirements. The

PEGS-Dirichlet software computes the hyperparameters of the Dirichlet distribution

by using the parameters of the beta distributions based on the expert’s assessments

6 Elfadaly and Garthwaite (2013a) developed this software for data that is not zero-inflated. If
the expert believes that, for example, the vast majority of observations are not at-risk for either
adverse event, the expert might make assessments near these boundaries.
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as shown in Figure 4.9. This requires reconciliation of the expert’s assessments

in order to satisfy mathematical constraints (we refer the reader to Elfadaly and

Garthwaite (2013a) for more details on this).
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Figure 4.9: Marginal and conditional scaled distributions for mixture probabilities
based on expert’s assessments. The blue vertical line represents the expert’s assess-
ment of the median and the red horizontal lines represent the expert’s assessment
for the lower and upper quartiles.

Since it is easier for an expert to think in terms of univariate distributions,

we often want to provide feedback about their assessments in terms of the marginal

distribution, if possible. Even though the assessed probability quartiles are based

on conditional assessments, with the exception of the most likely category (here p0),

it is easier for the expert to think in terms of the univariate distributions.

Table 4.5: Marginal (unconditional) medians and quartiles implied by the expert’s
conditional assessments.

Parameter 25th Percentile Median 75th Percentile

p0 0.48 0.55 0.63
p3 0.14 0.19 0.26
p1 0.09 0.13 0.19
p2 0.05 0.09 0.14

Thus, if possible, we want to show the expert the marginal quartiles for each pj

based on their conditional assessments. Accordingly, it is the marginal quartiles that
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are presented to the expert for feedback on whether or not the resulting distribu-

tions accurately reflect their beliefs. If the expert feels that the suggested marginal

percentiles do not accurately reflect their belief, modifications can be made until

they are satisfactory. For our purposes, we assume the expert is satisfied with the

marginal quartile values provided in Table 4.5. The resulting elicited Dirichlet prior

distribution is

p ∼ Dirichlet(h1 = 10.61, h2 = 2.79, h3 = 2.67, h4 = 1.90).

This is equivalent to a prior ESS of about ne = 19 observations. In addition, based on

the marginal and conditional quartiles in Table 4.5, we can compute the prior ESS for

the individual mixtures. The estimated prior ESS from the marginal distribution

for p0 is about ne = 22. Similarly, the estimated prior ESS from the conditional

distribution for p3|p0 = 0.55 yields ne = 17 and the conditional distribution of

p1|p0 = 0.55, p3 = 0.20 yields ne = 17.

4.6.3 Remarks about Choice of Dirichlet as Prior Distribution

The standard Dirichlet distribution is the most widely used prior for multi-

nomial models due to its tractability, simplicity and conjugacy. Nevertheless, there

are several limitations of this distribution that have been well-documented in the

literature. For example, the standard Dirichlet distribution has a limited number of

parameters (i.e. a k-variate Dirichlet is specified by k parameters) and thus lacks flex-

ibility to represent prior belief (Aitchison (1986) and O’Hagan and Forster (2005)).

In addition, the Dirichlet distibution imposes a negative correlation between the

mixture probabilties, which might not be appropriate or accurately represent prior

belief. Lastly, Dirichlet variates that have the same mean necessarily have equal

variances (O’Hagan and Forster (2005)).

Elfadaly and Garthwaite (2013a) propose the Connor-Mosimann distribution

(one generalization of the Dirichlet distribution) as a more flexible option for a prior
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to quantify expert opinion on proportions. The Connor-Mosimann distribution re-

quires a larger number of parameters than the standard Dirichlet distribution. In

particular, it has 2(j− 1) hyperparameters to represent opinion about j parameters

compared to the Dirichlet which has just j hyperparameters to represent j param-

eters. Moreover, the Connor-Mosimann distribution has desirable properties such

as conjugacy and reasonable tractability, and the 2(j − 1) hyperparameters can be

determined from the same assessments as the Dirichlet distribution. The Connor-

Mosimann distribution has a more flexible dependence structure. This more general

covariance structure allows for positive correlation among mixture probabilities with

the exception that the first mixture component (or most likely category), is always

negatively correlated with the other mixture probabilities. We do not consider the

Connor-Mosimann distribution here, but this is a topic for future research as in some

cases it more accurately reflects prior belief of an expert.

4.6.4 Conditional Means Prior Approach for Poisson Parameters

For our hypothetical healthcare adverse event example, we assume that the

Poisson parameters depend on covariates. Thus, for the Poisson parameters, we use

the conditional means prior approach discussed in Chapter Three to elicit a prior

on the Poisson parameters, µ1 and λ2, and induce priors on λ1 and λ0 by eliciting

information about the conditional probability, θ. Thus, we combine a conditional

means prior approach for the Poisson parameters with the elicitation of a Dirichlet

distribution for the zero-inflation parameters as outlined above. It can be shown

that we can represent the BZIP model as a product of the conditional and marginal

distributions as in Chapter Three. As in Chapter Three, we use the conditional

representation of the BZIP joint distribution given by (3.3). The conditional repre-

sentation of the BZIP model in (4.1), fCBZIP(y1, y2 |p, θ, µ1, λ2) ≡ fCBZIP(y1, y2), is
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given by

fCBZIP(y1, y2) =



p0 + (1− p0)fCBP(y1, y2 | θ, µ1, λ2), y1 = 0, y2 = 0,

(p1 + p3)fCBP(y,y2 | θ, µ1, λ2), y1 6= 0, y2 = 0,

(p2 + p3)fCBP(y,y2 | θ, µ1, λ2), y1 = 0, y2 6= 0,

(1− p0 − p1 − p2)fCBP(y1, y2 | θ, µ1, λ2), y1 6= 0, y2 6= 0,

where fCBP(y1, y2 | θ, µ1, λ2) is as defined in (3.8). As before, we can represent the

conditional BZIP representation in such a way that the parameters depend on co-

variates in a generalized linear model. Within the context of the adverse event drug

safety study, for the ith subject in treatment group xi, we have that

log(µ1,i) = φ0 + φ1xi,

log(λ2,i) = γ2,0 + γ2,1xi,

and
logit(θi) = α0 + α1xi,

where xi is as defined in 4.18. As in Chapter Three, it follows that,

λ0,i = θi × µ1,i,

λ1,i = µ1,i − λ0,i,

and
µ2,i = λ2,i + λ0,i.

Table 4.6 provides the model parameter summary for subject i and adverse event

j = 1, 2.
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Table 4.6: Model parameter summary for the ith subject.

Parameter Interpretation
µ1,i The mean rate of experiencing migraines (among those at risk to

experience migraines) for a subject receiving treatment xi.

µ2,i The mean rate of experiencing a seizure for a subject receiving
treatment xi.

θi The conditional probability that among subjects at-risk for both
adverse events, given subject i has a migraine, subject i also has a
seizure.

α0 The log odds that an at-risk subject receiving the current standard
of care has a migraine and a seizure (simultaneously experiences
both adverse events).

α1 The log odds that an at-risk subject receiving treatment xi has a
migraine and a seizure; eα1 represents the increased (or decreased)
odds that an at-risk subject receiving the new treatment has a
migraine and has a seizure (compared to the current standard of
care).

φ1 Average change in log adverse event rate for experiencing migraines
(among those at-risk to experience migraines) for a subject receiv-
ing the new treatment compared to current standard of care; For
a subject receiving the new treatment, the expected number of mi-
graines increases (decreases) by a factor of eφ1 compared to current
standard of care.

γ2,0 Average log adverse event rate for exclusive seizures for a subject
receiving the current standard of care.

γ2,1 Average change in log adverse event rate for experiencing exclusive
seizures for a subject receiving new treatment compared to standard
of care; For a subject receiving the new treatment, the expected
number of exclusive seizures increases (decreases) by a factor of
eγ2,1 compared to current standard of care.

We refer the reader to Table 4.3 for interpretations of λ0,i, λ1,i, and λ2,i. To

begin, we elicit information about µ1 by assessing the expert’s judgment about the
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number of migraines experienced by a subject. For both treatments, xi = 0 and

xi = 1, the expert is asked a series of questions:

(1) “Consider subjects that are receiving the new treatment, what, do you think,

is the most likely value for the number of migraines?” Their response is taken

to be the mode.

(2) Next, we prompt the expert to suggest an upper bound to represent their

uncertainty. The expert is asked “What, do you think, is the largest the

number of migraines can be among subjects with the new treatment.” Their

response taken to be the 80th percentile.

Similarly, we prompt the expert about their expectations for the number of seizures

for subjects that are in the new treatment group. The information collected from

the expert is summarized in Table 4.7.

Next, we elicit information about the number of (exclusive) seizures. To do

this the expert is asked:

(1) “Consider subjects that are in the treatment group, what do you think, is

the most likely value for the number of just seizures?” Their response is

taken to be the mode.

(2) Next, we prompt the expert to suggest an upper bound to represent their

uncertainty. The expert is asked “What, do you think, is the largest the

number of just seizures can be among subjects with the new treatment.”

Their response is taken to be the 80th percentile.

Similarly, we ask the expert about their expectations for subjects that are taking

the current standard of care. Suppose the information collected from the expert is

that summarized in Table 4.7.
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Table 4.7: Expert elicited information on Poisson parameters.

Parameter Mode 80th percentile

µ1,0 6 12
µ1,1 4 10
λ2,0 5 10
λ2,1 4 8

This information obtained in Table 4.7 can be translated into parameters of a

gamma distribution. In particular,

µ1,0 ≡ exp (φ0 + φ1(0)) ∼ Gamma(3.37, 2.53),

µ1,1 ≡ exp (φ0 + φ1(1)) ∼ Gamma(2.41, 2.83),

and λ2,0 ≡ exp (γ2,0 + γ2,1(0)) ∼ Gamma(3.37, 2.11),

λ2,1 ≡ exp (γ2,0 + γ2,1(1)) ∼ Gamma(3.37, 1.69),

These resulting gamma densities are shown in Figure 4.10. Using the CMP

approach as in Section 3.4 we obtain the induced priors for φ and γ2. These induced

priors have no closed form but can easily be simulated as shown in Figure 4.11.

Next, we consider elicitation of a conditional means prior for the logistic re-

gression parameters used to model the conditional probability, θ. In the context of

the drug safety study, θ represents the conditional probability that given an at-risk

subject has a migraine, the subject also has migraine.7 To elicit information the

conditional probability the expert is asked to assume that the subject is at-risk for

both adverse events. For xi = 0 and xi = 1:

(1) To assess the median, the expert is asked“Suppose we have 100 at-risk sub-

jects from the study population that in treatment group, xi and have a

7 In this context,“at-risk” subjects refer to subjects at-risk for both adverse events.
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Figure 4.10: Priors based on information collected from expert about µ1 and λ2 for
current standard of care and new treatment.
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Figure 4.11: Simulated density plots for the induced priors on the regression coeffi-
cients corresponding to µ1 and λ2.

migraine. What, do you think, is the percentage of these subjects that also

have a seizure” Their response is taken to be the median.
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(2) Next, to assess the lower quartile for the percentage of subjects that have

a seizure given the subject has reported a migraine, the expert is asked

“Suppose the percentage of subjects that are receiving the treatment xi that

have a seizure given they have a migraine is less than your initial assessment.

Given this information, what would you now estimate as the percentage?”

Their response is taken to be the 25th percentile.

(3) Finally, to obtain an upper quartile, the expert is asked “Suppose the per-

centage of subjects with intervention xi that have a seizure given they have

a migraine is actually greater than your initial assessment. Given this infor-

mation, what would you now estimate as the percentage?” Their response

is taken to be the 75th percentile.

Suppose the information collected from the expert is that summarized in Table 4.8.

Table 4.8: Expert elicited information on conditional probability.

Parameter 25th Percentile Median 75th Percentile

θ0 0.22 0.30 0.38
θ1 0.22 0.30 0.38

This information obtained about θ in Table 4.8 can be translated into param-

eters of a beta distribution using numerical methods. In particular, the resulting

priors for standard of care, xi = 0, and the new treatment,xi = 1, are

θ0 ≡ logit−1 (α0 + α1(0)) ∼ Beta(4.6, 10.4)

and

θ1 ≡ logit−1 (α0 + α1(1)) ∼ Beta(4.6, 10.4).

The beta distributions that result from the information collected about the expert’s

expectations are shown in Figure 4.12.
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Figure 4.12: Priors based on information collected from expert about conditional
probability that given a subject has a migraine, they also have a seizure.

Using the CMP approach as in Section 3.4 we obtain the induced priors for

α0 and α1. These induced priors have no closed form but can easily be simulated as

shown in Figure 4.13.
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Figure 4.13: Simulated density plots for the induced priors on the regression coeffi-
cients corresponding to θ.

Finally, the induced priors on λ0, λ1 and µ2 for the current standard of care

and the new treatment are shown in Figure 4.14.

4.6.5 Using Prior Predictive Distribution as Tool to Provide Feedback to Expert

Here we provide feedback to the expert regarding the implications of their as-

sessments for the mixture probabilities in Section 4.6.2 and their assessments about

the Poisson parameters. Providing feedback to the expert about the implications of
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Figure 4.14: Simulated density plots for the induced priors on the λ0, λ1 and µ2 for
the current standard of care (left densities) and the new treatment (right densities)
based on information collected from the expert.

their prior assessments is an essential part of the prior elicitation process. This al-

lows the expert to confirm whether or not the resulting prior distributions accurately

reflect their prior beliefs and if necessary allows the opportunity for modifications of

the prior structure. As in Section 2.7.1, we can use the prior predictive distribution

as a tool to provide the feedback in a scale that is meaningful to the expert. Specif-

ically, we can use the prior predictive distribution to generate hypothetical data

that might result given their prior assessments. This can easily be implemented in

WinBUGS. We might, for example, generate data from the prior predictive distribu-

tion corresponding to the current standard of care (xi = 0) and the new treatment

(xi = 1), for a sample size of n = 100. Table 4.9 summarizes possible data that

might result.

161



Table 4.9: Summary of hypothetical dataset generated from the prior predictive
distribution for current standard of care (x = 0) and for new treatment (x = 1)

based on the expert’s prior assessments.

Variable Trt. Group Mean SD 2.5% 97.5%

Y1 Standard 3.05 5.59 0 17
Y1 New 1.48 3.62 0 12
Y2 Standard 2.37 4.56 0 15
Y2 New 1.27 2.88 0 9

Figure 4.15 provides a scatterplot and histogram for plausible data that could

result based on the expert’s prior judgment.
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Figure 4.15: Simulated data based on prior predictive distribution for number of
migraines and number of seizures for n = 100 subjects taking the current standard
of care (top three plots) and n = 100 subjects taking the new drug (bottom three
plots) based on information collected from expert.
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Both scatterplots in Figure 4.15 suggest positive association between the number of

migraines and the number of seizures. Moreover, the histograms for the number of

migraines and the number of seizures indicate that the expert’s assessments suggest

a slight decrease in the number of these adverse events events for the new treatment

compared to the current standard of care. These hypothetical data allows the expert

to evaluate and modify their prior assessments in a meaningful scale. In practice we

would show the expert several realizations of these prior predictive distributions.

4.6.6 Posterior Inference for Adverse Event Study

We assume that based on the feedback provided to the expert about the impli-

cations of their prior structure, they are satisfied that the elicited priors accurately

reflect their beliefs. Posterior inference was carried out in WinBUGS using the same

specifications as outlined in Section 4.3.1. Standard diagnostics based on trace plots

and the Gelman-Rubin statistic indicated no problems with convergence. Table 4.11

provides the posterior results for the BZIP model parameters based on the expert’s

assessments.

Table 4.10: Posterior inference for regression coefficients.

Parameter Mean SD 50% 2.5% 97.5% Width

γ2,0 1.578 0.281 1.621 0.907 2.003 1.096
γ2,1 −0.839 0.365 −0.855 −1.523 −0.075 1.448
φ0 2.336 0.070 2.337 2.195 2.471 0.276
φ1 −1.449 0.188 −1.444 −1.831 −1.097 0.734

Posterior densities for the regression coefficients are shown in Figure 4.17.

Posterior inference for φ1 suggests that the number of migraines experienced by

subjects increases by a factor between 3.4 and 6.1 for those taking the current

standard of care compared to those subjects receiving the new treatment. Posterior

inference for γ2,1 suggests that the number of seizures increases by a factor between
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Figure 4.16: Prior (red, dashed) and posteriors (black, solid) densities for BZIP
regression coefficients based on expert’s assessments.

1.05 and 4.88 for subjects receiving the current standard of care compared to the

treatment group.

Table 4.11 provides the posterior results for the BZIP model parameters based

on the expert’s assessments. The posterior densities in Figure 4.17 and the posterior

results in Table 4.11 for λ0,0 and λ0,1 suggest that the simultaneous rate of occurrence

of migraines and seizures is less for the new treatment compared to the current

standard of care. Similarly, the posterior densities for λ1 and λ2 suggest that the

rate of exclusive migraines and the rate of exclusive seizures is less for the new

treatment compared to the current standard of care.

We now evaluate whether the new treatment is superior to the current standard

of care with respect to safety using the criteria (4.19), (4.20) and (4.21). That

is, given the data from the current study, we require that the posterior predictive
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Figure 4.17: Prior (red, dashed) and posteriors (black, solid) densities for BZIP
parameters based on expert’s assessments.

Table 4.11: Posterior inference for Poisson parameters and mixture probabilities for
both treatment groups in drug safety study.

Parameter Mean SD 50% 2.5% 97.5% Width

λ0,0 3.116 1.111 3.050 1.181 5.460 4.279
λ0,1 0.707 0.293 0.674 0.238 1.366 1.128
λ1,0 7.248 1.229 7.272 4.778 9.572 4.794
λ1,1 1.758 0.419 1.732 1.004 2.642 1.638
λ2,0 5.024 1.265 5.057 2.477 7.412 4.935
λ2,1 2.150 0.471 2.145 1.239 3.090 1.851
p0 0.530 0.047 0.530 0.438 0.621 0.182
p1 0.136 0.033 0.134 0.078 0.206 0.128
p2 0.127 0.032 0.125 0.069 0.195 0.126
p3 0.207 0.039 0.205 0.136 0.287 0.151
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Figure 4.18: Posterior densities for mixture probabilities.

probability that, among subjects that experienced both adverse events, the number

of migraines, the number of seizures, and the sum of both events, is less for the

new treatment compared to the current standard of care. In particular, using the

posterior predictive distribution, we have that

Pr(Y1,1 < Y1,0 | data) = 0.98,

Pr(Y2,1 < Y2,0 | data) = 0.92,

and

Pr(Y1,1 + Y2,1 < Y1,0 + Y2,0 | data) = 0.98,

where, again, Y1,0 and Y2,0 denote the number of migraines and the number of

seizures, respectively, for the current standard of care, and Y1,1 and Y2,1 denote the

number of migraines and the number of seizures, respectively, for the new treatment.

Hence, given the data from the current study, it appears that the new treatment is

superior to the current standard of care in reducing the number of adverse events, by

this criteria. The FDA guidance on Bayesian methods requires that prior probabili-
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ties of such success criteria be considerably less than the requisite success probability,

in this case δ. These prior predictive probability of success is

Pr(Y1,1 < Y1,0 | prior) = 0.55,

Pr(Y2,1 < Y2,0 | prior) = 0.57,

and

Pr(Y1,1 + Y2,1 < Y1,0 + Y2,0 | prior) = 0.60,

which are indeed much less than δ = 0.90. The prior structure does not unreasonably

favor the desired criteria. Furthermore, Figure 4.19 shows the prior predictive dis-

tribution and the posterior predictive distribution for the number of migraines, the

number of seizures, and the number of both migraines and seizures among subjects

that experienced both adverse events. The top box plots reflect these distributions

with respect to the expert’s prior assessments. The bottom box plots reflect these

distributions given the data in Figure 4.6.

The top three prior predictive box plots in Figure 4.19 reflect that the expert

believes that the number of adverse events experienced by subjects receiving the new

treatment will be less compared to subjects receiving the current standard of care.

Nevertheless, the overlap in the prior predictive distributions for the new treatment

and the current standard of care further indicates that the prior structure does

not unreasonably favor the new treatment. The posterior predictive distributions

in Figure 4.19 suggest that among those that experience both adverse events, the

number of migraines, the number of seizures, and the number of both adverse events

is less for subjects receiving the new treatment compared to those receiving the

current standard of care.
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Figure 4.19: Prior predictive (left) and posterior predictive distributions (right) for
the number of adverse events among those that have experienced both adverse events
for the new treatment (red) and current standard of care (blue). The right boxplots
reflect the distribution of the number of both adverse events (top), number of mi-
graines (middle), and number of seizures (bottom) among those that experienced
both adverse events, given the expert’s prior assessments. The right boxplots reflect
the distribution of the number of both adverse events (top), number of migraines
(middle), and number of seizures (bottom) among those that experienced both ad-
verse events, given the prior, data and the posterior.
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4.6.7 Posterior Predictive as Tool for Clinician

In Section 3.4.5, we used the prior predictive distribution as a tool for a clini-

cian to assess what a future patient might expect given the current data. Similarly, in

this section, we make use of the posterior predictive distribution as a tool for a clin-

ician to assess what a future patient taking treatment xi might expect to experience

given the current data. Figure 4.20 represents the posterior predictive distribution

for the number of migraines and/or the number of seizures for an at-risk subject for

the four subpopulations in (4.1).

Figure 4.20 could be used as a tool by a clinician to assess what a patient

receiving treatment xi, that is at-risk for either just migraines (top right boxplots),

just seizures (second row, right boxplots), or both (bottom two right box plots) might

expect to experience. For example, based on the conditional posterior predictive

distribution that given a patient is at-risk for both adverse events, the clinician can

inform a patient receiving the current standard of care that they might expect to

experience about 8 (and no more than 14 seizures) over a 6-month period. Similarly,

the clinician can inform a patient that is at-risk for both events receiving the new

treatment that they might expect to experience about 3 seizures (and no more than

7).
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Figure 4.20: Conditional posterior predictive distribution for number of adverse
events (represented by the boxplots) given a subject is at-risk and the corresponding
marginal posterior density for the probability that a subject is at-risk.
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4.7 Summary

We have discussed a Bayesian approach to a bivariate zero-inflated Poisson

regression model. Despite the increased prevalence of Bayesian inference for zero-

inflated models in the literature, informative priors for these models have not yet

been explored in detail. We offer methods for prior construction and show how

relatively informative priors can mitigate the effects nonidentifiability can cause.

We have demonstrated how in nonidentifiable settings the prior distribution can be

used as a tool to identify parts of the parameter space that are not covered by the

likelihood, namely for the unobserved Poisson parameters λ0, λ1 and λ2. We also

demonstrated that use of such informative priors alleviates convergence issues often

present when using a diffuse prior structure for model parameters. We proposed and

described methods of prior elicitation for a BPZIP model within the context of a

clinical example. We offer methods for prior elicitation of a multivariate distribution,

namely a Dirichlet distribution for the zero-inflation parameters. Finally, we extend

the methods of informative prior construction via the CMP approach developed in

Chapters Two and Three to the BZIP model. We demonstrate the use of the prior

predictive distribution as tool by which to provide feedback to the expert to illustrate

the the implications of their prior structure.

171



APPENDICES

172



APPENDIX A

The Bivariate Poisson Distribution

Let (Y1, Y2) denote a bivariate Poisson (BP) such that (Y1, Y2) ∼ BP(λ0, λ1, λ2).

Several representations of a BP distribution have been proposed in the literature

(Kocherlakota and Kocherlakota (1992)). For the BP distribution in our BPZIP

model in Chapters Two and Three and the BZIP model in Chapter Four, we use

the BP representation derived via the trivariate reduction method (Johnson et al.

(1997)). This is the representation most commonly adopted in the literature. This

representation is based on the joint distribution the sums of independent, latent ran-

dom variables. In particular, consider the random variables joint random variables

Y1 and Y2. Using the trivariate reduction representation we have that

Y1 = X1 +X0, and Y2 = X2 +X0, (A.1)

where X1, X2, and X0 are independent Poisson random variables with means λ1, λ2,

and λ0, respectively, such that λi > 0, i = 0, 1, 2. This representation of the BP

can be used to model positively correlated count data. Alternate parameterizations

of the BP distribution make use of convolutions and conditional distributions. We

refer the reader to Johnson et al. (1997) for further detail. Further, extensions based

on mixtures have been proposed to allow for a more flexible correlation structure

and overdispersed marginal distributions, however these models are not without

limitations (Nikoloulopoulos and Karlis (2009)).

Let (Y1, Y2) ∼ BP(λ0, λ1, λ2). The joint probability mass function is given by

fBP (y1, y2) = Pr(Y1 = y1, Y2 = y2)

= e−(λ1+λ2+λ0)λ
y1
1

y1!

λy22

y2!

min(y1,y2)∑
m=0

(
y1

m

)(
y2

m

)
m!

(
λ0

λ1λ2

)m
, (A.2)

173



where λ0, λ1, λ2 > 0, and y1, y2 ∈ {0, 1, 2, 3, . . .}. It follows that the marginal distri-

bution of Y1 and Y2 are Poisson with mean λ1 + λ0 and λ2 + λ0, respectively. Since

the sum of independent Poisson random variables is also a Poisson random variable,

it follows that the marginal distribution of Y1 is Poisson with rate λ1 +λ0. Similarly,

the marginal distribution of Y2 is Poisson with rate λ2 + λ0.

A.1 Inference for the BP Distribution

Let yi = (y1i, y2i), i = 1, . . . , n denote the observed bivariate outcomes. The

corresponding likelihood function is

L(λ |y) =
n∏
i=1

e−(λ1+λ2+λ0) λ
y1i
1

y1i!

λy2i2

y2i!

min(y1i,y2i)∑
m=0

(
y1i

m

)(
y2i

m

)
m!

(
λ0

λ1λ2

)m
, (A.3)

where λ = (λ0, λ1, λ2). Inference for the BP model is not an easy task, due to the

complicated and intractable form of the likelihood, which involves the product of n

summations, as shown in expression (A.3). Historically, the complicated form of the

likelihood has been an obstacle for both Frequentist inference and Bayesian inference

for the BP model (Karlis and Tsiamyrtzis (2008)).

The trivariate reduction representation of the BP in (?? allows for estimation

of parameters, λ, via the EM algorithm in the frequentist paradigm. However,

convergence of the MLEs obtained via the EM algorithm can be sensitive to initial

values.

A.2 Potential Limitations of Trivariate Reduction Representation

Although the random variables Y1 and Y2 are generated from sums of additive

variables, Y1 and Y2 are not independent. The covariance between Y1 and Y2 is

Cov(Y1, Y2) = Cov(X1 +X0, X2 +X0) = Var(X0) = λ0

and the correlation coefficient between Y1 and Y2 is given by

ρBP = Corr(Y1, Y2) =
λ0√

(λ1 + λ0)(λ2 + λ0)
.
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Holgate (1964) showed that the correlation coefficient cannot exceed the square root

of the ratio of the smaller to the larger of the means of the two marginal distributions.

This is a potential limitiation of this representation of the BP distribution. Moreover,

this representation assumes λ0 > 0. Hence this representation only allows for positive

correlation between Y1 and Y2. We refer the reader to Johnson et al. (1997) for a

representation of the BP distribution that allows for negative correlation between

Y1 and Y2.

Finally, Berkhout and Plug (2004) proposes a general bivariate count model

using conditional probabilities that can be applied to Poisson counts and can be used

to estimate two correlated count data processes, allowing for negative as well as pos-

itive correlation. The model is referred to as conditional Poisson model (CPM).

Nevertheless, the model proposed by Johnson et al. (1997) that allows for positive

correlation is the most prevalent in the literature and the representation that we

adopt in this dissertation. Accordingly, we consider applications where the assump-

tion of positive correlation is appropriate.
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APPENDIX B

Data Generation of Bivariate Partial Zero-Inflated Poisson Model

The process used to generate data for the BPZIP model introduced in Chapter

Two is described here. We discuss the data generation within the context of the

adverse event drug safety study in Section2.3. Recall that a BPZIP model can be

constructed as follows:

(Y1, Y2) ∼


(0,Poisson(µ2)) , with probability p

BP(λ0, λ1, λ2), with probability 1− p,
(B.1)

We begin by discussing how the zero-inflation parameter, p is generated. In the con-

text of the adverse event drug safety study, an observation is not at-risk for Y1 with

probability p and is at-risk for Y1 with probability 1 − p. The rmultinom function

in R generates a specified number of random values from a specified multinomial

distribution. In this case, we can use the rmultinom function with specified param-

eters n (sample size), size (in this case 1) and prob (in this case a vector of length

2 with values for p and 1− p. Specifically, we generate the zero-inflation parameters

with rmultinom(n,1,probs=c(p,1-p)). This produces a 2× n matrix, where each

column is a random vector consisting of a 0 or 1, which determines if the ith subject

is at-risk for Y1. If the first row is a 1, then the subject is not at-risk for Y1 (and

Y1 is a structural 0), and if the second row is a 1, then the subject is at-risk for Y1.

Once we determine whether the ith observation is at-risk for Y1 (e.g. which mixture

in (B.1) each observation is from), we need to generate the corresponding bivariate

counts. To do this we use the rpois function in R. In particular,

• For all subjects for which row one is assigned a value of 1 by rmultinom, Y1 is

a structural zero and Y2 is a Poisson random variable. Thus, Y1 is assigned
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a value of zero (structural zero) and the corresponding positive count for

Y2 can be generated using the rpois function with specified parameters n

(in this case 1) and λ (in this case λ2 + λ0, where values of λ2 and λ0 are

provided by the user.

• For all subjects for which row two is assigned a value of 1 by rmultinom,

Y1 and Y2 are Poisson random variables with parameters µ1 = λ1 + λ0 and

µ2 = λ2 + λ0, respectively. This is our bivariate Poisson distribution. To do

this we use the rpois function in R as follows:

X0 <- rpois(1, lam0)

X1 <- rpois(1, lam1)

X2 <- rpois(1, lam2)

Y1[i] <- X0 + X1

Y2[i] <- X0 + X2

where lam0, lam1 and lam2 are specified by the user. The above process is

then repeated n times, where n is the desired number of bivariate observa-

tions.

In the adverse event drug safety study in Section 2.3, we assume that both the

probability that a subject is not at-risk for migraines, p, and the Poisson parameters,

λ = (λ0, λ1, λ2), depend on a single covariate, age. Assume that subjects in the study

are all between the ages of 20 and 80 years old, with slightly more subjects closer

to age 20 than age 80. Further, assume the mean age for subjects in the study is

around 48 years. To reflect this, we generate the subjects’ ages from a shifted four-

parameter beta distribution. Specifically, Beta[20,80](1.4, 1.6), rounded to the nearest

whole number.

For examples in the dissertation that do not assume the model parameters

depend on covariates (e.g. age), we generate the bivariate counts as described above

with constant values of p, λ0, λ1, and λ2. In adverse event drug safety study, where

we assume parameters depend on age, slight modifications are required for data
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generation. Instead of constant values for p, λ0, λ1, and λ2, these values change

depending on subject’s age. In particular, for the ith subject, age xi, we have

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, (B.2)

and for k = 0, 1, 2,

λk,i = exp(γk,0 + γk,1xi). (B.3)

To best assess the proposed methods of prior construction, we want the gen-

erated data to accurately reflect the expert opinion in Section2.7. That is, we want

the data to reflect the expert’s belief that the probability a subject is at-risk for

migraines increases with increasing age, and that the number of adverse events in-

creases with increasing age. Specifically, we want the data to reflect the expert’s

expectations at the ages for which we elicit information (i.e. xi = 25 and xi = 65).

We considered two methods to generate the Poisson counts based on the assumed

relationship that log(λi) is linearly related to age. Both involve working backwards

and yield comparable results. One method we considered involved using a scaled

beta distribution to transform λi on a desired interval (where the desired value for

λi at 25 and 65 is the minimum and maximum, respectively). We subsequently took

the logarithm of these values, and employed maximum likelihood methods in R to

obtain estimates for γk,0 and γk,1 that reflect the desired relationship. Finally, using

the maximum likelihood estimates for γk,0 and γk,1, we can generate values of λi

which subsequently can be used to generate the bivariate adverse event counts.

An alternative method is to work backwards and set up a system of two equa-

tions using the logarithm of (B.3). Namely, set λi at desired values for xi = 25

and xi = 65. This yields a system of two equations and two unknowns to solve for

estimates of γk,0 and γk,1. These estimates can be used to generate the λi which can

subsequently be used to generate the Poisson counts. Similarly, we can work back-

wards using (B.2) to set up a system of two equations and two unknowns to obtain

178



estimates for β0 and β1, which can subsequently be used to generate the probability

that a subject is not at-risk to experience migraines. For our adverse event drug

safety study, this yields β0 = 1.9064, β1 = −0.0424, γ0,0 = 0.4397, γ0,1 = 0.0101,

γ1,0 = 1.0094, γ1,1 = 0.017, γ2,0 = 1.2797, and γ2,1 = 0.0231.
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APPENDIX C

Data Generation for BZIP Model

The process used to generate data for the BZIP model discussed in Chapter

Four is described here. To do this we extend the data generation process is described

in Section B, too account for the additional zero-inflation parameters, or mixtures

in our BZIP model. A BZIP model can be constructed from a mixture of a point

mass at (0,0), two univariate Poisson distributions with parameters µ1 and µ2, and

a bivariate Poisson (BP) distribution with parameters (λ0, λ1, λ2) as follows:

(Y1, Y2) ∼



(0, 0), with probability p0

(Poisson(µ1), 0), with probability p1

(0,Poisson(µ2)), with probability p2

BP(λ0, λ1, λ2), with probability p3,

(C.1)

To generate which of the four possible mixtures an observation is from, we again

use the rmultinom function in R. In this case we use the rmultinom function with

specified parameters n (sample size), size (in this case 1) and prob (in this case a

vector of length 4, representing the four zero-inflation parameters). This produces

a 4× n matrix, where each column is a random vector consisting of one row with a

value of 1 and three rows of 0’s, which determines which mixture the ith observation

is from. In particular,

• If the first row is assigned a value of, 1 then the ith observation is not at-risk

for either adverse event and both Y1 and Y2 are assigned a value of zero (i.e.

both Y1 and Y2 are structural zeros).

• If the second row is assigned a value of 1, then the ith observation is at-risk

for Y1, but not at-risk for Y2. We generate the Poisson count for Y1 using the
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rpois function in R with specified parameters n (in this case 1) and lambda

(in this case λ1 + λ0), and assign Y2 a value of zero.

• If the third row is assigned a value of 1, then the ith observation is not

at-risk for Y1, but at-risk for Y2. We generate the Poisson count for Y2 using

the rpois function in R with specified parameters n (in this case 1) and

lambda (in this case λ2 + λ0), and assign Y1 a value of zero.

• Finally, if the fourth row is assigned a value of 1, then the ith observation

is at-risk for both Y1 and Y2. We generate the bivarate Poisson counts as

described in Appendix B.

To best assess the proposed methods of prior construction, we want to generate

data for the adverse event study in Section 4.5 that reflects the expert’s beliefs. To

reflect the expert’s belief that the at-risk probabilities is not dependent on treatment

group, we assume constant values for the zero-inflation parameters, p. To reflect the

expert’s belief the new medication reduces the number of adverse events experienced

among at-risk subjects, we can work backwards as described in Section B to obtain

the estimates: γ0,0 = 1.2528, γ0,1 = −1.2528, γ1,0 = 1.9459, γ1,1 = −1.2528, γ2,0 =

1.3863, and γ2,1 = −0.6931.
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APPENDIX D

Bivariate Zero-Inflated Poisson Model

4.0.1 Example: Demonstrating Nonidentifiability of λk’s for BZIP Model

Consider an set of outcomes from the hypothetical drug efficacy study. We

use the method described in Appendix C to generate data for a sample of n = 250

subjects with true values of parameters λ = (4, 7, 1). Histograms of the marginal

distributions of the data are provided in Figure D.1.
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Figure D.1: Marginal distributions of Y1 (left) and Y2 (right) for n = 250 subjects.

Consistent with what is done in the literature, we place diffuse normal priors

on regression coefficients. For example, in the case where the Poisson rates λ do not

depend on covariates we have for the ith individual that

log(λk,i) = βk, k = 0, 1, 2,

where βk ∼ N(0, σ2 = 100). For example, the prior on β1 (interpret) and the

resulting induced prior on the rate of experiencing just adverse event A (λ1) are

shown in Figure D.2.
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Figure D.2: Induced prior on λ1 with diffuse prior on β1: β1 ∼ N(0, σ2 = 100).

Similarly, we induce priors on the rate of experiencing just adverse event B

(λ2) and the rate of experiencing both adverse event A and adverse event B (si-

multaneously). Figure D.3 shows the resulting posterior densities for λ0, λ1 and

λ2.
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Figure D.3: Posterior densities for λ0, λ1 and λ2 with diffuse priors.

The bimodal posterior densities suggest a lack of convergence. Convergence di-

agnostics such as the autocorrelation plots, trace plots (see Figure D.6), and Gelman-

Rubin statistic further suggest a lack of convergence.

Figure D.4: Trace plots for two MCMC chains with diffuse priors for λ0 (left plot),
λ1 (middle plot), and λ2 (right plot).
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Thus, posterior results are meaningless. Furthermore, the lack of updating a

posteriori is characteristic of what is observed for nonidentifiable models. Thus, we

propose the culprit for the bimodal posteriors as nonidentifiability. The posterior

densities for µ1 and µ2 are shown in Figure D.5.
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Figure D.5: Posterior densities for µ1 = λ1 + λ0 and µ2 = λ1 + λ0.

The unimodal, smooth posterior densities for µ1 and µ2 suggest convergence

(standard diagnostic tests such as trace plots and the Gelman-Rubin statistic indi-

cate convergence). This is characteristic of identifiable parameters and thus suggest

that although the individual summands λ1, λ2 and λ0 are nonidentifiable, the sums,

µ1 and µ2 are identifiable.
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APPENDIX E

Comparison of BPZIP Model and BZIP Model

Table E.1: Comparison of bivariate partial zero-inflated Poisson model and
bivariate zero-inflated Poisson model.

Property BPZIP BZIP

Y1
Assumes not all at-risk

for Y1

Assumes not all at-risk
for Y1

Y2
Assumes all at-risk

for Y2

Assumes not all at-risk
for Y2

Marginal
Distributions

Y1 ∼ ZIP(p, λ1 + λ0)
Y2 ∼ Poisson(λ2 + λ0)

Y1 ∼ ZIP(p0 + p2, λ1 + λ0)
Y2 ∼ ZIP(p0 + p1, λ2 + λ0)

Sources of
Zeros

Y1: structural and sampling
Y2: sampling

Y1: structural and sampling
Y2: structural and sampling

Number of
Mixtures

2 4

Zero-Inflation
Parameters

p p = (p0, p1, p2, p3)

Poisson parameters λ = (λ0, λ1, λ2) λ = (λ0, λ1, λ2)

Latent variable
representation

Y1 : (U,X)
Y2 : X

Y1 : (U,X)
Y2 : (U,X)
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APPENDIX F

Simulation Results Comparing BPZIP and CBPZIP Representation

In Chapter Three we discuss a conditional representation for the BPZIP model

and illustrate how this representation provides a route of prior construction for the

association parameter, λ0. We suggest that the conditional representation poten-

tially allows for more posterior updating of the nonidentified parameters, λ0, λ1, and

λ2, namely through µ1. Here we consider a small simulation study with 100 repli-

cations to compare the credible interval widths for λ0, λ1 and λ2 between the joint

representation of the BPZIP model and the conditional representation of the BPZIP

model. We generate 100 data sets for sample sizes n = 100 and 200. For each data

set, appropriate priors were specified for the joint and conditional representation

such that the prior variability for all model parameters is comparable. Simulations

were conducted in JAGS using the specification in Section2.3.1. A random sample

of the M = 100 simulations was selected to check for convergence. Standard diag-

nostics based on trace plots and the Gelman-Rubin statistic indicate no problems

with convergence.

Results for these simulations are summarized below. Tables F.1 and F.2, show

the true value for each parameter, as wells as the mean and median of the 100

posterior means for n = 100. These tables also include the median width of the 95%

credible intervals, and their coverage. Tables F.4 and F.5 include this information

for simulations with n = 200. As expected, the coverage for λ0, λ1 and λ2 is one

for all simulations. These results further illustrated as box plots in Figures F.1

and F.2 for n = 100 and Figures F.3 and F.4 for n = 200. In each box plot, the

horizontal line represents the true value for the corresponding parameter. The center

point of each box represents the median of the 100 posterior means. The average
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of 100 posterior 2.5th and 97.5th percentiles. Finally, the grey boxes represent ±1

simulation standard deviation.

Simulation comparing the interval widths for λ1, λ2 and λ0 using the condi-

tional representation versus the joint representation of the BPZIP model.
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Figure F.1: Simulation results for n = 100 and M = 100 for the joint representation
of BPZIP model.

Table F.3 provides comparison of the average posterior credible interval widths

for the Poisson parameters obtained with the joint representation and the conditional

representation. Note that the widths for the conditional representation are smaller

compared to that obtained with the the joint representation. This further seems

to suggest that the conditional representation allows for more posterior updating.

Furthermore, the standard deviation of the 100 posterior credible interval widths is
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smaller for the conditional representation compared to the joint representation for

all parameters.

Table F.3: Simulation results for n = 100 and M = 100 for the joint representation
and conditional representation of the BPZIP model.

Parameter Representation Prior Width Mean Posterior Width

λ0 Joint 10.3256 4.7264
λ0 Conditional 10.5851 2.7127
λ1 Joint 12.4168 4.8494
λ1 Conditional 12.3533 2.9070
λ2 Joint 13.3676 4.8841
λ2 Conditional 13.3676 2.9779
µ1 Joint 19.6538 1.6300
µ1 Conditional 20.0135 1.6376
µ2 Joint 20.4389 1.2355
µ2 Conditional 20.7644 1.2405

The smaller 95% credible interval widths for λ0, λ1 and λ2 with the condi-

tional representation compared to the joint representation suggests more posterior

updating of these parameters for n = 100. This is also seen below with n = 200.

Furthermore, the 95% credible interval widths for λ0, λ1 and λ2 for the joint rep-

resentation are comparable for n = 100 and n = 200. On the other hand, the 95%

credible interval for the conditional representation for n = 200 are slightly less wide

than those for n = 100. Additional simulations are needed to further investigate this.

Furthermore, the standard deviation of the 100 posterior credible interval widths is

smaller for the conditional representation compared to the joint representation for

all model parameters.
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Figure F.3: Simulation results for n = 200 and M = 100 for joint representation of
the BPZIP model.
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