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Cyclic motion patterns are those that repeat in a periodic sequence.  Researchers have 

traditionally quantified cyclic patterns using high-quality optical or video motion capture 

systems that are often expensive and cumbersome.  However, the modern emergence of 

accelerometers and gyroscopes embedded within common smart phones has inspired new 

research efforts to characterize motion patterns from these less expensive and more 

broadly-available tools. While many recent studies have focused on acceleration data, the 

present study seeks to derive the positional translation and orientation patterns from the 

smart phone data.  A primary challenge with deriving positional data from accelerometer 

sensors is that the data must be integrated twice with respect to time, and data noise 

accumulates into substantial drift.  For this study, the motion pattern of a mechanical 

horse was simultaneously recorded with a high-quality video motion capture system and 

with iPhone sensors.  Positional data was derived from the iPhone data using an 

algorithm that capitalized on the known fact that the motion pattern was cyclic.  

Comparison of the motion-capture and iPhone-derived data sets revealed that the 

algorithm was very successful at reproducing the patterns of angular orientation, but not 

successful at completely eliminating drift from the positional translation pattern. 
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CHAPTER ONE 

 
Introduction 

 

 
Background Information 

Cyclic motion patterns are readily apparent in both natural and synthetic 

applications.  These patterns vary in complexity, ranging from the simple motion of a 

pendulum swing to the more complex cycles of humans in motion.  Corporal movement 

patterns created by humans during routine activities such as walking have generated the 

interest of researchers in diverse fields, ranging from computer programming to 

mechanical engineering.  

 

Applications of Motion Pattern Quantification 

As the fields of computer vision and graphics have grown exponentially over the 

last few years, so too has the interest in quantifying human motion patterns.  In these 

fields, motion patterns can be used for a variety of applications, including the 

development of more accurate human animations in the film & digital media industry, the 

improvement of visual surveillance software in security industry, and the enhancement of 

computer-user interfaces in technology development industries (Fuentes et al.).  

  Moreover, the quantification of movement patterns is also of great interest in the 

field of biomedicine and biomechanical engineering.  For example, the movement 

patterns of elite athletes can provide a plethora of valuable information about the 

condition of the athlete’s body.  Motion pattern analysis of athletes may provide
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information about their range of motion, flexibility, and other performance indicators 

(Ellison, Rose, and Sahrmann).  This information may help athletic trainers better 

develop training programs for their athletes.  Likewise, irregular motion patterns may be 

indicative of developing injuries that are too subtle for typical diagnosis.  This can alert 

physicians and help them avoid injury progression.  The same concept can be applied to 

the health and performance monitoring of elite race horses.  Much time, effort, and 

money is spent to maintain their health and ensure they are at peak performance.  Unlike 

human athletes, however, animals cannot articulate their pain or injuries to their 

veterinarians.  However, subtle changes in the horse’s movement patterns may reveal 

such injuries and thus alert owners and veterinarians of potential problems.   

In addition to these sports medicine applications, the quantification of movement 

patterns is also valuable in the rehabilitation and therapy arena.  In this field, movement 

patterns can help determine post-therapy patient progress.  For example, Timed-Up-and-

Go (TUG) tests, trials commonly used to assess balance in elderly people, currently use 

devices that measure gait and movement (Milosevic, Jovanov, and Milenkovic).  

Quantifying these motion patterns (sitting, standing, and walking), can help therapists to 

more accurately assess the specific balance impairments (Milosevic, Jovanov, and 

Milenkovic).  Similarly, therapists can measure balance therapy progress by comparing 

motion patterns in this test before and after therapy.  Alternately, movement pattern 

quantification can be used to enhance other types of therapy.  For example, hippotherapy 

is a treatment strategy that incorporates horseback riding.  Hippotherapy has proven 

beneficial for individuals living with various forms of neuromuscular disability.  

Hippotherapists will select a particular horse that provides certain movement qualities 
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and features they feel will best serve the client receiving the treatment. The ability to 

quickly and effectively quantify the features of these movement patterns will facilitate the 

analysis, study, and sharing of which pattern may prove most effective for a given 

disability.  It can even facilitate the development of therapeutic devices that may also 

provide similar types of movements.  Overall, the quantification of movement patterns 

has valuable applications in a variety of industries.   

 

Movement Pattern Quantification Methods 

In addition to the numerous applications for movement patterns, there are also 

several methods for measuring movement patterns.  Traditionally, movement is assessed 

using data collected from sophisticated video motion capture systems.  The data from 

these video motion capture systems can be processed and used to recognize certain types 

of motion (Chiu et al.).  Researchers have explored several different methods to classify 

motion and improve motion recognition.  Among these methods are KFD algorithms, 

Bayesian/neural networks, support vector machines, and decision trees (Chiu et al.) 

  While video is the most popular motion capture system, other systems use either 

magnetic or inertial variations to measure changes in motion.  Magnetic motion capture 

systems measure the magnetic flux of a low-frequency magnetic field that is generated by 

a transmitter (Meta Motion).  Inertial motion capture systems attach accelerometers, 

gyroscopes, and magnetometers to the subject to measure the motion of the subject.  

Although easy to setup and use, quality inertial motion capture systems, are often very 

expensive (Roetenberg, Luinge, and Slycke).  Similarly, sophisticated video and 

magnetic motion capture systems are often expensive, complex, or time-consuming to 
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setup.  Thus, many researchers have begun to investigate simpler methods of motion 

capture by using the same tools as inertial motion capture systems (accelerometers and 

gyroscopes), but in a less expensive framework.    

 

Smart Phone Inertial Sensors 

 The use of accelerometers in motion capture applications has begun to gain in 

popularity, especially with the rapid escalation in the availability of smart phone 

technology.  The most recent smart phone technologies all contain a variety of sensors, 

including three-dimensional accelerometers, three-dimensional gyroscopes, 

magnetometers, and location/GPS sensors.  While the purpose of these sensors is to 

enhance the computer-user interface and improve usability of smart phone applications, 

their data output has potential motion capture utility as well.  Both iPhone and Android 

phones have applications (Sensor Data and Sensor Kinetics, respectively) that permit data 

collection from the phone’s internal sensors (Wavefront Labs).  The accelerometers 

measure translational acceleration in the x, y, and z planes, while gyroscopes measure 3-

plane rotational acceleration (Wavefront Labs).  Magnetometers provide information 

about the magnetic data that is used in conjunction with GPS input to produce location 

information (latitude, longitude, course, speed, and altitude) (Milosevic, Jovanov, and 

Milenkovic; Wavefront Labs).   

 Some researchers have already begun using these sensor applications for motion 

pattern analysis.  For example, a group of researchers at the University of Alabama at 

Huntsville developed an application to use the iPhone’s accelerometers and gyroscopes to 

conduct the TUG test (Milosevic, Jovanov, and Milenkovic).  The sensors in the phone, 
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which is attached to the subject’s chest, measure the acceleration and orientation of the 

subject.  By comparing this to known acceleration/orientation patterns, the application 

(sTUG) was able to recognize whether the person was sitting, standing, or walking 

(Milosevic, Jovanov, and Milenkovic).   

 

Problem 

Although some groups have started using smart phone accelerometer data for motion 

pattern analysis and recognition, to our knowledge no studies have yet determined 

whether the accelerometer data can be accurately manipulated to produce position data.  

Producing position data would enable simplified analysis of the cyclic features of the 

motion pattern being measured.  One can obtain position by integrating the accelerometer 

data twice with respect to time.  

However, this integration provides some challenges.  Smart phone sensors 

produce accelerometer data that includes noise associated with the signal.  When that data 

is integrated twice in time to acquire the position data, the noise accumulates and causes 

the position data to drift dramatically from the actual motion pattern being measured.  

Fortunately, the true value of a cyclic motion pattern lies in the local features that are 

repeated over the period of motion.  Hence, the absolute positions are not critical, and the 

drifts can be ignored (factored out of the data).  A Baylor research group led by Dr. Brian 

Garner has begun to develop an algorithm to process the raw accelerometer data and 

extract only the relative, periodic motion features that provide value in this analysis.   
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Purpose 

The purpose of the present study is to verify the accuracy of the algorithm being 

developed by Dr. Garner.  This study will test the accuracy of the finalized algorithm by 

comparing motion data produced from a smart phone to known motion patterns that have 

been measured using a video motion capture system.  Overall, this study aims to develop 

and test a quick, simple, accessible, and reliable method to measure, quantify, and 

analyze the cyclic movement patterns of humans and animals.   

 

Solution 

Experimental Overview 

The first step of this study of cyclic movement pattern quantification is collecting 

raw data.  The team will use the application entitled “Sensor Data” to access and collect 

information from the accelerometers and gyroscopes embedded in an iPhone.  The 

second step is to process the raw data, so that the cyclic movement pattern features can be 

extracted, analyzed, and interpreted.  The team will use Dr. Garner’s algorithm to factor 

out signal noise and highlight the local, cyclic features of the motion pattern.  The final 

step of this study is to test and verify the cyclic movement pattern quantification 

methodology.  Our team will use a mechanical horse device that produces a known and 

carefully controlled, complex three-dimensional movement pattern similar to that of 

riding a live horse.  We will attach the iPhone, running the Sensor Data application, to 

this device to measure the accelerometer data.  We will simultaneously record the motion 

using a sophisticated motion capture system.   Subsequently, the team will process the 
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information provided by the Sensor data application using our algorithm. Results will 

then be compared to the motion data of the mechanical horse that is collected by the 

motion capture system.   

 

Thesis Overview 

This thesis is organized into four chapters, with this Introduction serving as 

Chapter One.  Chapter Two will explore existing research that relates to this thesis and 

illuminates the value of the results of the current study.  Chapter Three will detail the 

experimental methods and materials used to collect data from the iPhone, measure 

motion patterns with video motion capture systems, and process the data from both 

systems.  Chapter Four will detail the results of the experiment and the comparison 

analyses between known motion patterns and those produced by the iPhone sensors.  The 

final chapter, Chapter Five, will discuss the results, describe the implications of the 

research, detail the limitations of the study, and present possibilities for future research. 
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CHAPTER TWO 

Literature Review 

 

Recently, inertial motion capture systems have grown in popularity, especially in 

the gaming, film, and digital media industries.  Professionals in these industries typically 

use inertial sensors to conduct ambulatory motion analysis in order to accurately recreate 

human motion in a digital framework.  Inertial systems offer a plethora of benefits 

compared to other motion capture systems.  First, high quality inertial motion capture 

systems are typically simple to assemble and configure.  For example, one popular 

inertial motion capture system, Xsens MVN, consists of a full body suit that is embedded 

with 17 inertial and magnetic sensors (Roetenberg, Luinge, and Slycke).  These sensors 

wirelessly transmit their signal to a computer where the data is loaded into visualization 

software.  The assembly and configuration of this system takes less than 10 minutes, yet 

yields excellent results (Roetenberg, Luinge, and Slycke).  Moreover, inertial motion 

capture systems are better suited for a wider range of environments.  Optical motion 

capture systems typically require specialized lighting in order to ensure that the all of the 

optical markers are clearly identifiable.  Inertial motion capture systems have no such 

limitations, and are thus suited for both indoor and outdoor purposes (Roetenberg, 

Luinge, and Slycke).  However, the benefits offered by a quality inertial motion capture 

system come at a significant cost. Quality systems can range from $5000-$80000, 

depending on the complexity (Meta Motion). 
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Yet, the core components of the inertial motion capture systems—inertial sensors 

and gyroscopes—are available at a fraction of the cost.  Many researchers have begun to 

use such accelerometers and gyroscopes for their research in cyclic motion patterns.  Yet, 

each study that utilizes inertial sensors is unique because the accelerometer data in each 

investigation is processed and applied through different techniques.  Primarily, 

researchers have developed two primary methods for processing the raw accelerometer 

data into useful motion data.  Typically, researchers will use the accelerometer data in 

conjunction with pattern matching and motion recognition algorithms.  However, some 

researchers integrate the accelerometer data to acquire position or velocity data and 

develop a more traditional motion pattern.  Each method introduces different challenges 

and limitations.  

Some researchers have sought to simplify inertial motion capture by using smart 

phone accelerometers in their research efforts to quantify cyclic motion patterns.  The 

data from smart phone accelerometers can be processed in a manner similar to regular 

accelerometers.  However, smart phone accelerometers produce their own set of 

challenges.  For example, smart phone inertial sensors tend to be lower quality and thus 

introduce more noise into the signals.  Thus, it is helpful to test the accuracy of smart 

phone accelerometers by comparing the motion data they produce to the motion data 

produced by a higher quality motion capture system.  However, this task itself introduces 

complications since there is currently not a standardized method of comparing different 

motion patterns. 

The present study utilizes smart phone accelerometers to measure cyclic 

movement patterns and must address many of the issues discussed above.  Before 
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examining the methods that the current study uses to process and utilize accelerometer 

data, however, it is helpful to review related studies and research.  This chapter is broken 

into three sections.  The first details research that utilizes accelerometers to measure 

motion patterns, examines their data processing techniques, and highlights any challenges 

they experienced.  The second section details research that utilizes smart phone 

accelerometers to measure motion patterns, examines their data processing techniques, 

and highlights any challenges they experienced.  The final section addresses research that 

attempts to develop a standardized method of comparing cyclic motion patterns.   

 

Accelerometer Research & Data Analysis 

As mentioned above, there are a variety of ways to process accelerometer data, 

depending on the desired information and available computational resources.  By far, the 

majority of researchers utilized pattern-matching algorithms or motion recognition 

software to match the accelerometer data against known motion patterns.  Each research 

study described below highlighted a different motion recognition method, and revealed 

the complexity of using accelerometers to measure cyclic motion patterns.  

A 2008 study by Slyper and Hodgins attempted to create a simplified, less 

expensive version of the Xsens inertial motion capture systems.  The researchers affixed 

five accelerometers to a shirt that could be worn by the subject during tests.  The 

acceleration data sets from the shirt sensors transmit to a computer program employing a 

wavelet-matching algorithm (Slyper and Hodgins).  This algorithm matched the 

accelerometer readings to known, preprocessed motion patterns.  Whenever a match was 

found, the system would recreate the motion on a digital rendering of the human subject.  
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Slyper and Hodgins discovered that their method relied heavily on repeatable 

accelerations.  In other words, the system easily recognized distinct motions that were 

repeated for a period of time (such as jumping jacks), but had difficulty recognizing 

smaller, quicker movements (Slyper and Hodgins).   

A 2011 study by Mesbah, et al, utilized several 3-axis accelerometers to monitor 

fetal movement episodes.  The accelerometer data from each axis was then used to 

calculate the root mean square of the acceleration magnitudes (Mesbah et al.).  If the 

RMS value was greater than a predetermined threshold value, the motion was classified 

as a fetal movement.  This study’s limitations included the fact that the method could 

only identify fetal activity from inactivity.  Moreover, the study did not offer any method 

to differentiate between fetal movements and small maternal movements (Mesbah et al.).   

A 2012 study conducted by Yao, et al, similarly utilized multiple 3-axis 

accelerometers to monitor sleep positions, in an effort to improve research on obstructive 

sleep apnea syndrome.  The accelerometer sensors were attached to the forehead and 

chest of the patient.  The raw accelerometer data collected from each axis was then 

converted into the angular domain using a CORDIC algorithm (Yao et al.).  This 

algorithm produced the tilt angles relating to the patient’s head inclination or rotation.  

When used in conjunction with other research, the tilt angles produced from the 

accelerometer data may help clinicians identify and correct early symptoms of 

obstructive sleep apnea syndrome (Yao et al.). 

All of these research efforts used accelerometers to measure different aspects of 

movement patterns.  Each study processed the accelerometer data differently, but all of 
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them compared the processed acceleration data to known motion patterns.  However, 

some other researchers used the acceleration data to produce position data.  

For example, a 2013 study conducted by Cho and Shieh involved the design and 

testing of a smart belt that detects the gait of human walking or running at various speeds.  

The researchers desired that the smart belt be able to detect acceleration, velocity, and 

absolute position of the human subject.  The relative acceleration data was used to 

identify the type of gait (standing, walking, running, etc), but obtaining position data 

proved more difficult.  The researchers recognized that simply integrating the 

acceleration data twice with respect to time to obtain position would yield significant 

error in the absolute position of the signal (Yao et al.).  Thus, Cho and Shieh instead 

partitioned the acceleration data into small time intervals that could be treated as a 

continuous system without accuracy losses.  For each window, they calculated the 

average velocity.  The distance the subject moved during each window was then 

calculated by multiplying the velocity by the time of the interval.  The sum of the 

distance moved during each time interval yielded the distance that the subject moved 

during the entire test (Yao et al.). 

A 2004 study by Grimnes, et al, involved suturing an accelerometer to the left 

ventricle of a pig’s heart.  Grimnes then applied a Butterworth high-pass filter to the 

acceleration data to remove any inaccuracies (Grimnes et al.).  The filtered data was then 

integrated twice using a trapezoidal integral approximation, with the high-pass filter 

applied after each integration (Grimnes et al.).  Similarly, a 2013 study conducted by Li 

used accelerometers to calculate velocity and position data for welding techniques.  Li 

used similar processing methods as Grimnes to filter the acceleration data and integrate 
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for position data.  However, both of these studies were concerned primarily with 

obtaining approximations of the absolute position.  Our current study is concerned with 

producing a repeatable, cyclic motion pattern that represents relative motion. 

 

Smart Phone Accelerometer Research 

In addition to the above research involving motion capture with accelerometers, 

there are also several researchers that are beginning to utilize smart phone accelerometers 

in their studies.  In order to better understand the benefits/drawbacks of employing smart 

phone accelerometers, several studies were reviewed.   

A 2012 study by Cho, et al, employed a smart phone as a handheld game 

controller for a digital game of tennis.  The researchers accessed the acceleration data 

produced by the smart phone’s inertial systems and created a pattern-matching algorithm 

that enabled the smart phone to recognize the player’s strokes based on the accelerations 

produced (Cho et al.).  Cho noted that their algorithm would not be able to differentiate 

between two movements that produced similar acceleration vectors. 

 Another 2012 study by Bai, et al, worked towards the design and implementation 

of a fall monitor system.  Smart phones are uniquely suited for fall detection because 

almost everyone has access to a smart phone that contains inertial sensors.  Moreover, 

acceleration patterns of a falling individual are very unique, and thus easily recognized by 

a computer program (Bai, Wu, and Tsai).  Once the acceleration patterns are matched to 

known fall acceleration patterns, GPS can be activated to determine where the fall 

occurred (Bai, Wu, and Tsai). This application would be of significant help to elderly 

individuals at risk for severe injury upon falling.   
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 Yet another 2012 study by Ryu, et al, utilized a smart phone, attached to the back 

of a human subject, to conduct ambulatory gait analysis.  In this study, Ryu applied a 

low-pass filter to the initial acceleration data in order to remove any irregularities.  In 

order to obtain position displacement, the acceleration data was integrated twice with 

respect to time and a high-pass filter was applied to remove integration drift (Ryu et al.).  

This study was particularly helpful because it highlighted some of the issues that 

typically arise when using smart phones as motion capture devices.  Namely, smart phone 

accelerometer signals may have irregular sampling intervals, present alignment problems, 

and introduce other inaccuracies not seen with regular accelerometers (Ryu et al.). 

 

Standardized Motion Capture Comparison  

Several of the studies highlighted above compare their inertial motion capture data to 

data captured from a quality optical motion capture system.  For example, the 2012 study 

by Ryu used optical motion capture data verify the gait analysis they conducted with 

smart phone accelerometers (Ryu et al.).  The 2011 study by Mesbah used an ultrasound 

system to verify the accuracy of accelerometers in the detection of fetal movements 

(Mesbah et al.).  However, to our knowledge, no studies developed a standardized 

method to compare motion patterns produced by accelerometers to those produced by 

optical motion capture systems.  

  



15 
 

CHAPTER THREE 

Materials & Methods 

 

Data Collection 

To collect the requisite data for this experiment, we used both three-dimensional 

video motion capture and smart phone accelerometer technology.  Although both the 

accelerometers and the motion capture system could be used to record virtually any 

motion, we chose to model the mechanical horse designed and built by Dr. Brian Garner 

and his graduate students (shown below).  Measuring the mechanical horse’s motion  

 

Figure 1: Mechanical horse designed and constructed by Dr. Brian Garner and his 
graduate students. 

served a dual purpose.  First, the horse’s motion produces a sufficiently complex, yet also 

cyclic pattern.  We were able to capture both a known motion pattern from the video 

motion capture system and an experimental motion pattern from the smart phone 
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accelerometers.  Since the video and inertial motion capture systems can easily measure 

this cyclic motion, it is ideal for testing the validity of the algorithm used to process the 

smart phone accelerometer data. Second, accurate measurement of the mechanical horse 

motion may foster additional research in this subset of biomechanics.   For example, the 

ability to quickly and easily quantify a horse’s motion pattern using smart phone 

technology may improve practices in fields such as hippotherapy and equine racing. 

 

Motion Capture System Trials    

Three-dimensional video motion capture systems typically use a series of cameras 

and a set of markers to record motion.  The cameras surround the observation space, and 

may connect to each other in a “daisy-chain” pattern.  A computer, connected to the lead 

camera, synchronizes all cameras via an electrical signal.  The markers—typically small 

spheres wrapped in reflective tape or small light sources (such as an LED bulb)—are 

attached to the subject using adhesive tape.  The position of any given marker can be 

accurately triangulated only when sensed by at least two cameras.  Additionally, the 

system must be properly calibrated.  After proper configuration and calibration, the 

motion capture software will process the data retrieved from each reflective marker and 

return the position of the marker (x, y, and z) throughout the test.       

   In this study, we configured Baylor University’s PhaseSpace IMPROV 

(PhaseSpace, Inc., San Leandro, CA) video motion capture system in the Human Health 

& Sciences laboratory.  Eight cameras were arranged into a semi-circle array, with 

Camera 1 serving as the lead camera.  The system was calibrated using a reflective wand 

and PhaseSpace Calibration software.   
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Figure 2: PhaseSpace IMPROV drivers and calibration wand. 

 

After calibration, we placed the mechanical horse in the observation space and 

synchronized the LED markers to a driver.  For each trial, the motion capture system 

returned the three dimensional coordinates (x, y, and z) of each marker at every instant 

during the capture period.  All video trials were conducted at the system’s maximum 

Figure 3: Cameras were arranged in a semi-circle around the observation space for the 
motion capture of the mechanical horse’s motion patterns 
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capture rate, 120 Hz.  From the computer’s frame of reference, the positive x-axis refers 

to forward motion, the positive z-axis refers to lateral motion to the right of the horse, and 

the positive y-axis refers to upward motion.   For this research study, we used a total of 

twelve LED markers.  The first four were placed on the stationary base of the motion 

capture system.  Since these markers were immobile throughout the test, they were 

designed to help correlate the motion capture coordinate system to the base coordinate 

system of the mechanical horse.  Three markers were placed on the rear of the 

mechanical horse’s saddle and two were placed on the front of the saddle.  One marker 

was placed on the handle of the mechanical horse.  This marker serves as the “origin” of 

the mechanical horse’s coordinate system.  The final two markers were affixed to a pelvis 

belt, consisting of a Velcro strap attached to a rigid metal bar.  This pelvis belt was 

attached the rider to help track the motion of the rider’s pelvis more accurately.   

Figure 4: Posterior view of the markers on the mechanical horse and rider (right).  
Anterior view of markers on the mechanical horse saddle/handle with no rider (left).  The 
marker on the handle serves as the origin of the mechanical horse’s coordinate system. 
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After constructing the observation space and configuring the equipment, we 

conducted two groups of three trials (six total), each lasting approximately 30 seconds.  

Frequency was set at 30 Hz for the first trial in each group and then increased by 15 Hz 

for each subsequent trial. The first three trials involved one female, able-bodied adult 

rider who was 5 ft. 1 in. tall and weighed 120 pounds.  Experiments for assessing humans 

riding on the mechanical horse were approved by the Baylor IRB.  The rider wore the 

pelvis belt described above, to more accurately track her pelvic motion.  The last three 

trials followed the same pattern as the first three, but were conducted without a rider.  

 

Smart Phone Inertial Sensors 

Most modern smart phones contain a variety of sensors that help orient it and 

improve the function of its applications.  Among these sensors are three that contribute 

significantly to motion capture—three-dimensional accelerometers, three-dimensional 

gyroscopes, and location/GPS sensors.  Lately, some application developers have created 

applications to access and utilize these sensors.  One such application, Sensor Data, runs 

on the iPhone. This application, created by Wavefront Labs, accesses the three-

dimensional accelerometers and gyroscopes.  Thus, this application allows the iPhone to 

be used as an inertial motion capture system.  The Sensor Data application has two modes 

 

Figure 5: Lateral view of the markers on the base of the mechanical horse--view is
identical for both sides of the horse. 
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of operation—streaming mode and capture mode.  Streaming mode sends the stream of 

sensor data from the device directly to an external computer.  This facilitates real-time 

data collection. Capture mode collects the sensor data at a specified rate (ranging from 1-

100 Hz) and stores it in a file on the phone.  Each captured data set file can be found in 

the application “Library”.  Additionally, the application creates a website address that 

allows the user access to the data files from their home computer.  These files are CSV 

(comma-separated values) and thus easily exported into a spreadsheet.  Moreover, Sensor 

Figure 6: Sample library of data files created by using the capture mode of the Sensor Data 
application. 

 



21 
 

Data contains a configuration tab that allows the user to select specific information 

collected by the application.  For example, users can choose to gather accelerometer data 

while ignoring the latitude/longitude data.  This lets the user adapt the application to their 

individual needs  

For the purposes of this study, all available data was collected.  However, the x, y, and z 

accelerations, as well as the roll, pitch and yaw measurements, were of primary interest. 

For this research study, we used the latter mode of operation at a sampling 

frequency of 100 Hz.  We conducted thirteen trials using an iPhone 4, with the first six 

coinciding with the motion capture trials discussed earlier.  For the first three trials, the 

rider placed the iPhone between her legs to secure it.  However, we wanted the iPhone to 

measure the mechanical horse’s motion and not the rider’s motion.  Therefore, she was 

Figure 7: User interface of Sensor Data application in the 
capture mode. 
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asked to secure the smart phone gently enough that her body’s motion did not affect the 

iPhone.  For the next three trials there was no rider, so the smart phone was placed flat on 

the saddle back, as close to the handle (origin) as possible.   

After these six trials, we stopped recording data samples using the motion capture 

system.  However, we took seven more samples using the iPhone 4 Sensor Data 

application.  For three of these trials, the iPhone was placed near the handle and tilted 

upwards at an angle.  The mechanical horse was then operated at 30, 45, and 60 Hz while 

the iPhone captured data at each frequency.  For the next three trials, the iPhone was once 

again placed near the handle but twisted sideways.  The same process was then repeated.  

Finally, the iPhone was placed flat on the saddle, as far from the handle as possible.  Data 

was collected while operating the mechanical horse at 60 Hz.  These last seven samples 

were collected primarily to give Dr. Garner more data to analyze and help improve his 

algorithm. 

 

Data Analysis   

Processing Motion Capture Data 

 For each motion capture, the raw data files consisted of the recorded three-

dimensional trajectories of each marker throughout the trial duration. The goal was to 

create a representative, single-cycle movement pattern of the saddle that reflects the 

translational (x,y,z) trajectories of the saddle coordinate system origin, and the angular 

(roll, pitch, yaw) trajectories of the saddle orientation.  This format would allow us to 

easily compare the motion capture data to the processed iPhone data, or to other motion 
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capture trials. Achieving this goal required the five steps listed below, which were 

performed on each of the six data sets collected. 

 

1.) Orient: Each LED marker in the Phasespace IMPROV system is labeled 

with a specific number, so that the computer can track individual markers.  However, 

these LED’s are not labeled with the associated number.  Thus, the first step of data 

processing was to determine where each marker was placed on the mechanical horse.  

We graphed the top view, lateral view, and frontal view of the motion of each marker.  

Analyzing these graphs helped us determine where each marker was located.  These 

correlations are summarized in Table 2.1.  

 

2.) Change coordinate system:  Once the markers were defined according to 

their position on the mechanical horse, we were able to use them to orient the 

coordinate system of the mechanical horse’s base with respect to the motion capture 

coordinate system.  The marker on the handle of the mechanical horse served as the 

origin of the base coordinate system.  Using a rotation matrix, we rotated the x, y, and 

z coordinates of each marker so as to express them all in terms of the base coordinate 

system. This allowed us to analyze the actual movement of the mechanical horse, 

rather than movement from perceived by the motion capture system. 
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3.) Calculate kinematic measurements: Once all coordinates were rotated 

into the base coordinate system, we wanted to model the periodic translational and 

angular movement of the mechanical horse over the entire trial.  The translational 

motion was easily modeled by plotting the x, y, and z coordinates of Marker 0 (origin 

marker) over the trial time.  The angular shift required some additional, simple 

calculations. The roll, pitch, and yaw were all calculated by constructing three 

vectors.  One vector pointed from Marker 4 to Marker 1, the second vector pointed 

from Marker 3 to Marker 2, and the final vector pointed from Marker 6 to Marker 0.  

Then, the angle between the x and y axes was calculated for each vector.  This 

supplied three estimates for the pitch angle.  The average of all three pitch estimates 

became our pitch angle.  Similarly, the angle between the x and z axes was calculated 

for each vector.  This calculation yielded three estimates for the yaw angle and, once 

Marker Orientation 

Marker Number  General Location  Specific Location 

39 Rider Pelvis Belt Right  

40 Rider Pelvis Belt Left 

5 Base (Fixed) Forward Left 

16 Base (Fixed) Back Left 

17 Base (Fixed) Forward Right 

15 Base (Fixed) Back Right 

1 Saddle Corners Forward Left 

2 Saddle Corners Forward Right 

3 Saddle Corners Back Right 

4 Saddle Corners Back Left 

6 Saddle  Middle Saddle 

0 Handle (Origin) Front Handle 

Table 2.1: Correlation between marker number and location of marker on mechanical 
horse. 
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again, the average of these estimates became our final representation of yaw.  The 

angle between the y and z axes yielded only two estimates for roll, as Marker 0 and 

Marker 6 were assumed to be perfectly aligned in the yz plane.  The average of the 

two estimates yielded our final roll angle.      

 

Figure 8: Roll, Pitch, and Yaw of mechanical horse. 

 

These first three data analysis steps were originally performed using a technical 

computing program called MATLAB.  However, these steps were eventually 

integrated directly into Dr. Garner’s algorithm, so that the motion capture data and 

the iPhone data process simultaneously.  This enables the algorithm to output the 

motion capture data and the iPhone data in an identical format, which simplifies 

comparison. 

 

Processing Smart Phone Accelerometer Data  

 The majority of data processing for the iPhone accelerometer data occurred when 

the data for each trial was imported into Dr. Garner’s algorithm.  Dr. Garner’s algorithm 
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selects the three translational accelerations and three rotational accelerations calculated 

by the iPhone.  It then integrates the selected data twice with respect to time to obtain 

position data.  However, this amplifies any noise found in the original signal.  The 

algorithm then capitalizes on the known cyclic nature of the movement patterns to 

identify cyclic periods, and factor out the drift component.  Details of the algorithm are 

beyond the scope of this thesis.  The final result is a cyclic motion pattern that represents 

the global motion pattern of the iPhone.  At this point, the iPhone data set and the motion 

capture data sets have identical formats (six vectors consisting of x, y, z, roll, pitch, yaw 

data), and are prepared for comparison.     

 

Processing Data Sets for Comparison  

At this point, the two data sets were imported into MATLAB, for plotting and 

comparison.  Before the two sets could be accurately compared, however, they required 

some additional processing. 

1) Normalize Time:  First, we normalized the time vector. The motion capture 

and the iPhone data vectors were of different sizes, which made them difficult 

to compare graphically.  The difference in vector size existed for two primary 

reasons. First, the iPhone and motion capture trials ran for different amounts 

of time.  Second, the sampling rate of the iPhone differed from that of the 

motion capture system.  Normalizing the time vector helped resolve the first 

difference. Scaling the data sets helped resolve the second difference. 

2) Scale Data Sets: Since the sampling rate of the iPhone was approximately 

half of the sampling rate of the motion capture system, the iPhone vectors 
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contained less data points.  Thus, when the time vector was normalized, the 

periodic motion produced by the iPhone appeared to be half the size of the 

periodic motion produced by the motion capture system.  Thus, the iPhone 

data was scaled to match the motion capture data.   

3) Shift Data Sets:  Moreover, the origin of the iPhone differed from that of the 

motion capture system.  Thus, the iPhone data was shifted left to 

accommodate the differing origins.  

After these changes, the iPhone and motion capture data could be easily plotted and 

compared to each other.  
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CHAPTER FOUR 

Results 

 

As discussed above, the motion of the mechanical horse was recorded on both the 

optical motion capture system and on the inertial sensors of the iPhone for six separate 

trials.  The first three trials recorded the mechanical horse’s motion with a rider at three 

different speeds (30, 45, 60 Hz).  The second three trials recorded the mechanical horse’s 

motion without a rider at the same three speeds (30, 45, 60 Hz).  While the team 

endeavored to synchronize the iPhone recordings with the motion capture recordings, 

some of the samples were started late, or had to be restarted mid-recording.  For this 

reason, this chapter only presents the results from Trial 2 (with rider) and Trial 5 (without 

rider).  These trials were both recorded at 45 Hz, and did not involve any recording 

errors. 

In sum, graphical results follow, depicting the relative, periodic motion of the 

mechanical horse in the x, y, and z-coordinate trajectories, as well as the periodic roll, 

pitch, and yaw angles detected during the trial.  Data are shown for the motion of the 

mechanical horse with a rider and without a rider.  Each data set includes the motion of 

the mechanical horse as recorded by both the optical motion capture system and by the 

iPhone Sensor Data application. 

Figures 9 through 11 show the average spatial translations of the mechanical 

horse from the perspective of a viewer observing from behind (back view), above (top 

view), or lateral (side view).  The Lissajous plots reflect the magnitude and patterns of 
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the mechanical horse’s translations in one spatial direction versus the translations in 

another spatial direction.  The spatial translations recorded by the iPhone are plotted on 

the same plots as those recorded by the motion capture system. 

Figures 12 through 14 show the linear translations of the periodic motion of the 

mechanical horse. Figures 15 through 17 show the angular measurements of the periodic 

motion of the mechanical horse.  The iPhone data sets are plotted on the same plots as the 

motion capture data sets to aid visual comparison. 

 

Spatial Views of Mechanical Horse Motion 

 Figure 9 shows the mechanical horse’s translation as viewed from behind the 

mechanical horse (back view).  For this view, the y-coordinate (vertical motion) is plotted 

versus the z-coordinate (lateral motion).  In both Trial 2 and Trial 5, the motion capture 

system traced a very clear, repeatable butterfly shape.  The processed iPhone data, 

however, did not have a clear pattern and indicated much larger translations in both the 

lateral and vertical directions.  The trial with a rider, Trial 2, indicated a more random 

pattern with significant outliers in the vertical direction.  The trial with no rider, displayed 

a more repeatable pattern that Trial 2, but was not as a precise as the motion capture 

system pattern. 

 Figure 10 shows the mechanical horse’s translation as viewed from the side of the 

mechanical horse (side view).  For this view, the y-coordinate (vertical motion) is plotted 

versus the x-coordinate (forward motion).  In both Trial 2 and Trial 5, the motion capture 

system produced a repeatable, kidney-shaped pattern.  This pattern is somewhat evident 

in the iPhone data from Trial 5, but almost non-existent in Trial 2.  Both iPhone data sets 
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indicated significant variations in both the vertical and forward directions, and did not 

indicate clear repeatability. 

 Figure 11 shows the mechanical horse’s translation as viewed from above the 

mechanical horse (top view).  For this view, the x-coordinate (forward motion) is plotted 

versus the z-coordinate (lateral motion).  In both Trial 2 and Trial 5, the motion capture 

data produced a repeatable, figure-8 shape pattern.  The iPhone data from the top view 

displayed a more repeatable pattern than the other two views, but it was still not as 

precise as the motion capture data.  Moreover, the iPhone data from Trial 2 did not 

display the same figure 8 pattern as the motion capture system.  The iPhone data from 

Trial 5 indicated a more repeatable, figure 8 pattern than Trial 2. 

 

Translation Motion of Mechanical Horse 

 Figure 12 displays the periodic motion of the mechanical horse in the x-direction 

(forward motion).  The motion capture data from both Trial 2 and Trial 5 indicates a 

clearly periodic motion with one valley and one crest per period.  In Trial 2, the iPhone 

data also indicated a periodic motion.  However, in this trial, the periodic motion varies 

more significantly.  The amplitude appears to match that of the motion capture system for 

the first two periods, but then the amplitude of the iPhone data increases for the next two 

periods.  This pattern continues for the remainder of the trial.  Trial 5 matches the 

periodic motion of the motion capture system very closely, with only a few outliers 

occurring near the beginning and end of the trial. 

 Figure 13 displays the periodic motion of the mechanical horse in the y-direction 

(vertical motion).  The motion capture data from both Trial 2 and Trial 5 indicates a 
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periodic motion with one valley and two crests per period.  Trial 2 shows a periodic 

motion in the iPhone data, but the features vary from period to period.  Some periods 

demonstrate one crest and one trough, while others appear to have two crests.  

Additionally, there is a significant trough that occurs approximately 40% of the way 

through the trial.  The iPhone data from Trial 5 has a somewhat more consistent periodic 

motion with two crests per period.  The amplitude of the Trial 5 iPhone data is very close 

to that of the motion capture data, but the periodic pattern is not as consistent. 

 Figure 14 displays the periodic motion of the mechanical horse in the z-direction 

(lateral motion).  The motion capture data from both Trial 2 and Trial 5 indicates a 

periodic motion that consists of two crests (one higher than the other) and two valleys 

(one lower than the other).  The iPhone data from both Trial 2 and Trail 5 exhibited a 

trend similar to the motion capture data, but the features were not as well defined.  

Moreover, the amplitude of the top crests increased as the trial progressed.  

 

Angular Motion of Mechanical Horse  

 Figure 15 displays the mechanical horse’s periodic roll motion.  In Trial 2, there is 

significant alignment between the motion capture data and the iPhone data.  Both appear 

to have one valley and one crest.  However, the amplitude of the iPhone data begins 

slightly lower than that of the motion capture data and gradually increases to a height 

greater than the motion capture system.  In Trial 5, there is also significant alignment 

between the motion capture data and the iPhone data.  In this trial, both appear to have 

one valley and one crest, but there is also an additional graphical feature that appears near 

the origin.  This feature is not evident in the Trial 2 graphs.  
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 Figure 16 displays the periodic pitch motion of the mechanical horse.  Trial 2 

exhibits significant alignment between the motion capture data and the iPhone data. Both 

have one clear peak and on clear trough per period, but the amplitude of the Trial 2 

iPhone peaks fluctuate more than the motion capture peaks.  Trial 5 exhibits even better 

alignment between the motion capture data and the iPhone data.  Both sets have one clear 

trough and one clear peak per period.  Neither the iPhone data nor the motion capture 

data exhibit significant variance in their amplitude, but the iPhone amplitude is 

consistently less than that of the motion capture data. 

 Figure 17 displays the periodic, yaw motion of the mechanical horse.  Both Trial 

2 and Trial 5 exhibit excellent alignment between the motion capture data and the iPhone 

data.  Both appear to have one valley and one crest per cycle.  In Trial 5, however, 

additional features appear at the valleys/crests of both the iPhone and the motion capture 

data.  The Trial 2 data appears smoother, and does not exhibit the finer features seen in 

the Trial 5 data.  
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Figure 9: Motion of the mechanical horse as viewed from behind. Motion recorded for a 
trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 10: Motion of the mechanical horse as viewed from the side. Motion recorded for 
a trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 11: Motion of the mechanical horse as viewed from above. Motion recorded for a 
trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 12: Periodic motion of the mechanical horse in the x-direction. Motion recorded 
for a trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 13: Periodic motion of the mechanical horse in the y-direction. Motion recorded 
for a trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 14: Periodic motion of the mechanical horse in the z -direction. Motion recorded 
for a trial with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 15: Periodic roll motion of the mechanical horse. Motion recorded for a trial with 
a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 16: Periodic pitch motion of the mechanical horse. Motion recorded for a trial 
with a rider (Trial 2) and a trial without a rider (Trial 5). 
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Figure 17: Periodic yaw motion of the mechanical horse. Motion recorded for a trial with 
a rider (Trial 2) and a trial without a rider (Trial 5). 
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CHAPTER FIVE 

Discussion 

 

The aim of this study is to determine if Dr. Garner’s algorithm can adequately 

process the iPhone data to accurately yield the periodic motion of a complex, cyclic 

motion.  We have focused on the motion of a mechanical horse because this produces a 

sufficiently complex motion, and may yield valuable results for future research in 

hippotherapy or equine racing. 

 

Analysis of Results 

Similarities are apparent between the motion recorded by the optical motion 

capture system and the motion recorded by the iPhone.  However, most of the data 

indicated that the processed iPhone data was still much less accurate than that of the 

motion capture data. 

  The Lissajous plots revealed that the iPhone could not accurately trace the cyclic 

motion patterns of the mechanical horse in a spatial framework.  For each spatial graph, 

the amplitude range of the iPhone was much larger than that of the motion capture 

system.  Moreover, the iPhone spatial trace did not follow a repeatable pattern, except in 

the side view and in the top view.  Even in these views, the pattern traced was imprecise 

and did not demonstrate the same accuracy as the motion capture system.  The Lissajous 

plots also revealed that the rider of the mechanical horse may have interfered with iPhone 

recording.  The spatial traces from the trial without a rider demonstrated a far more 
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repeatable pattern than any of the traces from the trial with a rider.  Thus, it appears that 

the iPhone may have been influenced by the rider’s motion. 

 The periodic translational movement patterns indicated that processed iPhone data 

could not accurately reveal the cyclic, periodic motion of the mechanical horse.  In both 

the y-direction and the z-direction, the iPhone data did not accurately trace the data 

captured by the motion capture system.  However, the iPhone was able to more 

accurately trace the motion in the x-direction.  This anomaly is likely due to the fact that 

the motion in the x-direction revealed a more continuous curve, with less small graphical 

features than the y and z directions.  The periodic translational movement patterns also 

confirmed the theory that the rider’s motion may have interfered with the iPhone.  The 

translational motion from the iPhone matches that of the motion capture system much 

more in the trial without a rider.  This is most noticeable in the x-direction.  

  The angular translational movement patterns were the most promising.  These 

motion patterns indicated that the iPhone could accurately reveal the cyclic, periodic 

motion pattern of the mechanical horse.  Moreover, these patterns indicated that the 

rider’s motion had little impact on the iPhone’s measurement of the mechanical horse’s 

rotational motion.  In both trials, the iPhone accurately traced the roll, pitch, and yaw 

motion of the mechanical horse.  However, both the pitch and yaw motion patterns 

revealed that the iPhone struggled to accurately measure the finer features of these 

motions patterns when there was a rider.  
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Limitations of Study 

 This preliminary study had several limitations that made it difficult to perform a 

robust analysis.  The most significant limitation was that we did not have the opportunity 

to accurately identify the error source that caused the processed iPhone data to differ 

from the motion capture data.  There were several possible error sources in this 

experiment.  First, the iPhone was not securely mounted to the mechanical horse and may 

have shifted slightly during the trials, causing the data to exhibit unwanted motion.  

Second, during trials with a rider, the iPhone was placed gently between the rider’s legs.  

However, the data strongly indicates that this placement caused the motion of the rider to 

interfere with the iPhone’s capture of the mechanical horse’s motion.  Third, there is a 

possibility that the iPhone sensors were not accurately calibrated and thus caused 

additional drift that was not factored out.  Finally, and most probably, there is a 

possibility that Dr. Garner’s algorithm still requires improvement in processing the 

iPhone data. 

 There were other minor, difficulties that may have affected the accuracy of the 

results.  First, the exact sampling rate employed by the motion capture system was 

unknown. Thus, when the data was altered to accommodate the difference between the 

iPhone sampling rate and the motion capture sampling, the alterations only represented 

an approximation.  Second, it was difficult to synchronize the start of the iPhone capture 

with the start of the motion capture system.  This may have caused slight anomalies in the 

data near the beginning and the end of the trials.  Third, there was not time to adequately 

analyze the effect that the mechanical horse’s speed had on the iPhone’s capture of the 
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motion.  Higher speeds may have caused the iPhone to move more freely on the 

mechanical horse, and thus alter the accuracy of the data.  Finally, the small scope of this 

study was one of the most limiting factors.  This study only recorded the motion of the 

mechanical horse, and did not attempt to record other similar, cyclic motions.  Further 

experimentation needed to correct these limitations are described below. 

 

Future Work 

 Further research must be conducted to verify and improve the results of this study.  

First, this study should be repeated with a few modifications.  First, a mounting system 

for the iPhone should be developed in order to reduce/remove extraneous motion.  

Second, special care should be taken to ensure that the rider’s motion does not interfere 

with the iPhone’s recording of the mechanical horse’s motion.  Third, a method should be 

developed to synchronize the recordings from the motion capture system to that of the 

iPhone.  Fourth, the exact sampling rate of the optical motion capture system should be 

recorded.  Better yet, the sampling rate of the optical motion capture system should be 

matched to that of the iPhone sensors.  These changes will help remove error sources and 

improve the accuracy of the data. 

  Moreover, another study should be conducted to identify other possible error 

sources.  First, the iPhone should be used to record other known, quantifiable motion 

patterns.  This data can then be processed through Dr. Garner’s algorithm in order to 

verify its accuracy or illuminate areas of improvement.  Second, these experiments 

should be repeated using other iPhone versions, or other smart phones such as Android or 



46 
 

Windows phones.  This may help identify what role, if any, the iPhone’s inertial sensors 

paly in the accuracy of the results.  

 

Conclusion 

 Overall, the initial results of this study are promising.  The processing of the 

iPhone inertial sensors data by Dr. Garner’s current algorithm is not accurate enough to 

produce precise, global, absolute motion patterns for complex movements.  However, it 

seems promising that the data from these sensors can be processed to reveal the periodic, 

local movement patterns of complex cyclic motions.  The processing method employed 

by Dr. Garner’s algorithm proved to be very accurate for rotational motion (roll, pitch, 

yaw), but does not yet yield as much accuracy for translational motion (x, y, z).  

Moreover, the iPhone data appeared to be more accurate when there was no rider on the 

mechanical horse.  Additional research should be conducted to more accurately identify 

the error sources in this experiment, determine which conditions yield the most accurate 

iPhone data, and to continue to verify the accuracy of Dr. Garner’s algorithm.  
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A brief description of the recorded data trials follows.  Additionally, this appendix 

contains the Lissajous plots, the periodic translational motion plots, and the periodic 

angular motion plots for the four trials not discussed in the Results section. 

Trial  
Duration 
(seconds) 

Horse Speed 
(Hz) Conditions/Notes  

1 30 30 

Iphone flat, near handle 
Heather riding the mechanical horse during 
sample 

2 30 45 

Iphone flat, near handle 
Heather riding the mechanical horse during 
sample 

3 30 60 

Iphone flat, near handle 
Heather riding the mechanical horse during 
sample 
Sample started late on Iphone 

4 40 30 

No rider; IPhone flat, near handle 
Started w/no motion and then re-started 
w/motion 

5 30 45 No rider; IPhone flat, near handle 

6 40 60 
No rider; IPhone flat, near handle 
Sample started late 
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