
 
 
 
 
 
 
 
 

ABSTRACT 
 

Surface Embedded Green Function Method Applied to Ag(111) 
 

David A. Katz, M.S.  
 

Advisor: Gregory A. Benesh, Ph.D. 
 
 

 Theoretical self-consistent calculations utilizing the 

Surface Embedded Green Function (SEGF) method have been 

performed on the Ag(111) surface. Analysis of the surface 

energetics reveal an energy minimum in the low temperature 

limit at an outerlayer contraction of 0.5% which agrees 

well with low energy electron diffraction and ion 

scattering studies. The predicted Ag(111) work function of 

4.75 eV is in excellent agreement with the experimental 

value from photoelectron measurements. Furthermore, a 

surface state is predicted to exist at 0.15 eV below Ef, in 

very good agreement with a state observed experimentally in 

photoelectron spectroscopy at 0.12 eV below Ef.. The best 

agreement with experiment across this diverse set of 

surface phenomena is obtained with the current 

implementation of the SEGF method. 



Page bearing signatures is kept on file in the Graduate School. 

Surface Embedded Green Function Method Applied to Ag(111) 
 

by 
 

David A. Katz, B.S. 
 

A Thesis 
 

Approved by the Department of Physics 
 

___________________________________ 
Gregory A. Benesh, Ph.D., Chairperson 

 
Submitted to the Graduate Faculty of  

Baylor University in Partial Fulfillment of the  
Requirements for the Degree 

of 
Master of Science 

 
 

 
Approved by the Thesis Committee 

 
___________________________________ 

Gregory A. Benesh, Ph.D., Chairperson 
 

___________________________________ 
Kenneth T. Park, Ph.D. 

 
___________________________________ 

Dwight P. Russell, Ph.D. 
 

___________________________________ 
Vincent S. Cronin, Ph.D. 

 
 
 
 
 

Accepted by the Graduate School 
August 2010 

 
___________________________________ 

J. Larry Lyon, Ph.D., Dean 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Copyright © 2010 by David A. Katz 
 

 All rights reserved 



iii 

 
 
 

TABLE OF CONTENTS 
 
 
LIST OF FIGURES...........................................v 

LIST OF TABLES..........................................vii 

ACKNOWLEDGMENTS........................................viii 

DEDICATION...............................................ix 

CHAPTER 

I. Introduction....................................1 

II. Method..........................................9 

 A.  Theoretical Techniques of Surface 
     Physics.....................................9 

 
 B.  The SEGF Method............................10 

 C.  Choice of Basis............................18 

 D.  The Charge Density.........................23 

 E.  The Electrostatic Potential................25 

 F.  The Exchange-Correlation Potential.........29 

 G.  Structural Optimization....................30 

III. Silver.........................................33 

 A.  Computational Details......................33 

 B.  Surface Relaxation.........................41 

 C.  Charge Density.............................46 

 D.  Work Function..............................47 

 E.  Density of States..........................55 



iv 

 F.  Conclusion.................................63 

REFERENCES...............................................65 

 



v 

 
 
 

LIST OF FIGURES  
 
 

2.1 The semi-infinite crystal...........................11 

2.2 Programmatic diagram of the self-consistent 
 calculation.........................................19 

3.1 The FCC lattice.....................................34 

3.2 Surface geometry....................................36 

3.3 The 2D Brillouin zone k-point sampling..............38 

3.4 The dependence of total energy on RMS iteration
 error...............................................42 
 
3.5 Dependence of the total energy on outer layer 
  position............................................43 

3.6 Self-consistent Ag(111) total charge density........48 

3.7 Diagram of a photoemission spectrometer.............49 

3.8 Dependence of work function on outer layer 
  expansion...........................................51 

3.9  Dependence of the error in work function with RMS  
 error in successive potentials......................52 
 
3.10 Calculated work function dependence on LAPW 
 basis size..........................................54 

3.11 Experimental UPS spectra taken by Kevan and 
  Gaylord.............................................56 

3.12 The DOS at Γ  for the surface region and for each  
 sub-region of the surface...........................58 
 
3.13 Selection of k-points to determine the behavior of 
  the surface state near Γ ...........................59 
 
3.14 Total density of states.............................61 
 



vi 

3.15 Experimental k-resolved inverse photoemission 
 spectrogram of the Ag(111) surface..................62 



vii 

 
 
 

LIST OF TABLES 
 
 

3.1 Comparison of the present calculated interlayer 
 expansion with other theoretical and experimental 
 values..............................................45 
 
3.2 Comparison of calculated the Ag (111) work  
 functions with the experimentally determined 
 value...............................................53 
 



viii 

 
 
 

ACKNOWLEDGMENTS 
 
 

 I thank Dr. Gregory Benesh for his guidance and 

support in helping me attain a level of understanding and 

competency in this field. I cherish our many conversations. 

I appreciated discussing with you not just the current 

state of theoretical condensed matter physics but how the 

field evolved from problems encountered in earlier 

approaches. I am appreciative of Dr. Kenneth Park, Nancy 

Yu, and Zhu Ke for including me in your discussions on 

experimental surface physics, design of experimental 

apparati, and analysis of experimental data. My sincere 

appreciation is extended to Dr. Dwight Russell and Dr. 

Vincent Cronin for their willingness to take time out of 

their schedules to serve on my thesis committee and for 

allowing me to share with them this work. Also, I want to 

thank the entire Physics faculty, fellow graduate students, 

and Baylor University for their support and kindness.  



ix 

 
 
 

DEDICATION 
 
 
 
 
 
 

 
To My Loving Wife 



1 

 
 
 

CHAPTER ONE 
 

Introduction 
 
 

Surface physics describes physical and chemical 

processes that occur in the first few atomic layers at the 

boundaries of solids.  The surface region has proven to be 

unique, for the surface is the transition region from 

vacuum to solid and plays host to most interactions that 

solid bodies have with the external environment.  On 

surfaces, one may observe the adsorption and diffusion of 

atoms, the photo-electric effect, and electron conduction.  

These phenomena are made possible by the unique electronic 

and chemical properties of the surface region.   

The advent of Scanning Tunneling Microscopy (STM) in 

1981 allowed us to probe matter at the atomic level became 

a reality, providing a boon to the field of surface 

physics.  STMs have also made it possible to probe the 

local density of electron states in the surface region.  

Because processes involving surface adsorption can now be 

imaged experimentally, the field of surface physics has 

advanced rapidly.  In the succeeding decades, surface 

physics has been concerned in large part with reconciling 
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images of the surface with our understanding of surface 

processes.   

In addition to atomic-scale images of surfaces, the 

diversity in the types of surfaces encountered has 

increased rapidly as crystalline growth techniques have 

evolved.  Molecular Beam Epitaxy (MBE) has enabled the 

study of heterogeneous inorganic structures.  MBE permits 

the study of engineered surfaces which produce effects that 

are unobtainable with simple thermodynamic growth 

techniques.   

Simultaneously, the semiconductor industry, a core 

constituent of the larger solid state community, has 

increased microchip speeds through scaling the manufacture 

of semiconductor components to smaller and smaller 

dimensions.  As microchip dimensions involved for the 

construction of microchips have approached the 45 nm scale, 

it has been found that the performance of these chips can 

no longer be predicted without accounting for the influence 

of surface effects on microchip operation.  The need for 

greater processor capabilities in industry has run headlong 

into surface physics; for a greater understanding of the 

unique electro-chemical environment of the surface region 

is required to adequately predict the behavior of these 

devices.  Through the ability to manipulate and observe new 
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phenomena and the desire to predict the behavior of novel 

surfaces, further development of the theoretical basis of 

surface physics is required.   

Theoretical surface physics is rooted in the density-

functional theory (DFT) of Hohenberg, Kohn, and Sham1,2.  

Hohenberg and Kohn’s theory1 allows for the replacement of 

the many-body problem with an equivalent set of coupled 

single-body problems.  Without such a simplification, the 

computational resources necessary to model even simple 

compounds would be extraordinary.   

The many-body problem consists of a system of 

interacting electrons and ions, with a Hamiltonian given 

by: 

IIextI EVVTTH ++++= int .      (1.1) 

The first term is the electron kinetic energy operator 

defined in atomic units as: 

   ∑∇−=
i

iT 2

2
1

.       (1.2) 

For ions with mass IM  the kinetic energy operator is 

defined as: 

∑ ∇−=
I

I
I

I M
T 2

2
1

.      (1.3) 

The external potential generated by the ions that acts 

on electrons is defined by: 
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∑
−

−=
Ii Ii

I
ext

Rr
Z

V
,

.      (1.4) 

where ir  denotes the position of the ith electron, IZ  denotes 

the charge of the Ith ion, and IR  is the position of the 

same ion.  

The electron-electron interaction potential is defined 

as: 

∑
≠ −

=
ji ji rr

V 1
2
1

int .       (1.5) 

 

 

 Lastly, the ion-ion interaction potential is defined 

as: 

∑
≠ −

=
JI JI

JI
II

RR
ZZ

E
2
1

.      (1.6) 

The Hohenberg-Kohn theory1 states that for any system 

of interacting particles in a static external potential 

(thus, 0=IT ), there exists a universal functional for the 

energy in terms of the particle density )(rn .  The ground 

state energy of the interacting system 0E , is the global 

minimum of this energy functional, and the density that 

minimizes this functional is the ground state particle 

density )(0 rn .  
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 In solid state physics applications, we seek to 

replace the many-body Hamiltonian of a system of 

interacting electrons with a single body equation for the 

charge density with an effective Hamiltonian.  However, no 

exact representation of the energy functional has been 

found for electrons in an arbitrary configuration.  The 

inability to find the energy functional is due to the 

exchange and correlation effects exhibited by pairs of 

electrons.   

 Representations for the energy functional are known 

for certain electronic configurations, most notably the 

homogeneous electron gas.  Kohn and Sham2 utilized this 

success and created an approximation for the exchange 

correlation effects via the Local Density Approximation 

(LDA).  To do so requires assuming that the ground state 

density can be represented by the ground state of an 

auxiliary system of non-interacting particles, and that the 

auxiliary Hamiltonian possesses an effective local 

potential.  

In the LDA, the form of the effective local potential 

is the sum of the ordinary columbic potential and a new 

exchange-correlation potential found from the homogeneous 

gas of the same particle density as the average particle 
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density of the local region of interest.  The electrostatic 

coulomb potential is defined as: 

∑∫ −
−

−
=

I I

I
es

Rr
Z

rr
rrdrV

'
)'('),( 3 ρρ .          (1.7) 

The LDA exchange correlation potential is: 

)(
)],([

)()],([)(
r

r
rrrV xc

xcxc δρ
ρδε

ρρε += ,         (1.8) 

where xcε  is the exchange energy per electron, and for an 

unpolarized electron gas is: 

3
1

)(3
4
3)],([ ⎟

⎠
⎞

⎜
⎝
⎛−=

π
ρρε rrx .       (1.9) 

Thus, the effective Hamiltonian may be written as: 

  IIxceseff EVVTH +++= .        (1.10) 

By taking the expectation value of effH  we find the 

energy functional; and by minimizing this expectation value  

with respect to density variations, we may find the ground 

state charge density, )(0 rρ , defined as: 

2
0 )()( ∑=

i
rr iψρ ,           (1.11) 

where     

[ ] iiixces EVVT ψψ =++ ,       (1.12) 

and the sum is over all occupied states.  Equation (1.12) 

represents the one-electron-like Schrödinger equation.   
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DFT-LDA forms the basis for theoretical surface 

calculations, and though no formal proof has been offered 

to support the LDA, its ability to accurately model 

electronic systems has been verified in a great many 

computational studies.  

 Though DFT theory is an exact theory, the LDA is not.  

When the charge density varies greatly, or if strongly 

correlated pairs of electrons exist, the LDA exhibits 

computational errors.  For charge density variations, 

gradient corrections may be added to improve the 

approximation, but there is a cost in the loss of the local 

character in the potential.  Near atomic centers, charge 

density variations become too great for even gradient 

corrections.  However, near these atomic centers we may 

approximate the potential as only varying radially, thus 

recovering the ability to solve the Dirac equation 

directly.  Strongly correlated systems of electrons, like 

those found in solids containing partially-filled d- and f- 

bands, violate the LDA because electrons in d- and f- band 

orbitals are spatially confined and strong columbic 

repulsion exists, giving rise to an underestimated 

correlation effect.  Modifications of the LDA to include 

these effects produce the so-called LDA+U methods.  
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Application of the DFT-LDA methodology to surfaces 

introduces no new sources of error other than those found 

for solids.  Since the charge density in the vacuum region 

is slowly-varying, the vacuum region charge density is well 

represented by the LDA.  The greatest challenge to modeling 

surfaces is not DFT or the LDA, but adequately representing 

the electronic environment without excessive computational 

demand.    
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CHAPTER TWO 
 

Method 
 
 

A.  Theoretical Techniques of Surface Physics 
 

Slab and slab super-cell geometries are commonly used 

in surface calculations.  These geometries place atomic 

cores in two-dimensional slabs running parallel to the 

desired surface and stacked in the normal direction.  One 

limitation of theoretical studies based on slab geometries 

is the inadequate number of layers used to represent the 

bulk.  Solids are typically millions of layers deep, not 

the 5-20 layers commonly used in slab calculations.  Thin 

slabs only crudely approximate the environment of the 

surface, and the limitations are clearly observed in the 

inaccuracy of the density of states produced from such 

methods.  

In solids, the splitting of electronic degeneracies 

from the exclusion principle causes electrons to exist in 

continua of states, called electronic bands.  The small 

number of layers utilized in slab methods proves 

insufficient for describing states with a wavevector 

component normal to the surface, and rather than forming 

band continua, only discrete levels exist instead.   
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To avoid the pitfalls associated with traditional 

slab-based methods, the alternative technique of the 

Surface Embedded Green Function (SEGF) was developed.3,4  

The objective was to more closely model the surface 

environment, without increasing computational expense, by 

embedding a slab onto the semi-infinite bulk crystal.  The 

approximation employed in the SEGF method is that, at a 

certain depth from the vacuum-surface interface, the 

crystal becomes bulk-like.  In situations where there 

exists adequate free electron density (as found in metals), 

effective screening of the surface occurs over a short 

range, and bulk-like character is regained in a few atomic 

layers.  The advantages of such an approach is that 

accurate charge densities, densities of states, and work 

functions may be calculated with significantly less 

computational demand, since 3-layer SEGF calculations 

typically compete in accuracy with 15-20 layer slabs.5  

 
B.  The SEGF Method 

 
The SEGF method divides the crystal into two regions: 

the surface (which includes several atomic layers and the 

vacuum region just outside the crystal) and the bulk 

substrate.  The method assumes that the bulk wave function 

)(rψ  is given and is exact, since it may be derived from 
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solving the Schrödinger equation using other methods (e. g.  

MJW, WIEN2k).  We seek to find the surface region wave 

function, )(rφ , that matches onto )(rψ  over the embedding 

surface S .  This is accomplished by minimizing the energy 

expectation value with respect to variations in )(rφ .  

Figure 2. 1 depicts the way in which space is divided to 

solve the Schrödinger equation for )(rφ .  

 

 
 

 Figure 2.1:  The semi-infinite crystal.  Region I 
 includes the vacuum, surface muffin-tin spheres, and 
 interstice, and region II contains the truncated bulk 
 substrate.  
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To minimize the energy with respect to )(rφ , we must 

first express the energy in terms of )(rφ  and the bulk Green 

function.  From the time-independent Schrödinger equation 

we have: 

>ΦΦ<
>ΦΦ<

=
)(|)(

)(||)(
rr

rHrE ,        (2.1) 

where 
⎭
⎬
⎫

⎩
⎨
⎧

≡Φ
regionbulkthein)(

regionsurfacethein)(
)(

r
r

r
ψ
φ

.   

Expanding equation (2.1) in atomic units, we obtain: 

∫ ∫

∫ ∫ ∫∫ ∫∫
+

∂
∂

−
∂
∂

++
=

I II

I II s s s
s

s
s

rdrd
n

rd
n

rdrdHrd
E

2323

*2*223*3

||||
2
1

2
1||

ψϕ

ψϕφφψεφφ
.  (2.2) 

To obtain an expression for E in terms of the region I 

trial function )(rφ , we must rewrite terms involving )(rψ .  

These are the terms containing the normal derivative of the 

wave function )(rψ  at the surface and the probability 

amplitude integrals for )(rψ .  

  For terms involving the surface integral of 
sn∂

∂ψ
, we 

utilize the properties of the bulk Green function at the 

interface.  To illustrate, )(rψ  satisfies Schrödinger’s 

equation in the bulk region:  

0)()(
2
1 2 =⎥⎦

⎤
⎢⎣
⎡ −+∇− rrV ψε .               (2.3) 
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Thus, the bulk Green function satisfies: 

)'()',()(
2
1 2 rrrrGrV o −=⎥⎦

⎤
⎢⎣
⎡ −+∇− δε .           (2.4) 

Multiplying equation (2.3) by )',( rrGo  and (2.4) by )(rψ , 

Subtracting, and integrating over the bulk volume we 

obtain: 

[ ]∫ ∇−∇=
II

oo rrGrrrrGrdr )',()()'()',('
2
1)( 223 ψψψ .      (2.5) 

The application of Green’s Theorem yields: 

∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

−=
s s

s
s

s

s
ss n

rrG
r

n
r

rrGrdr
)',(

)(
)(

)',(
2
1)( 0

0
2 ψ

ψ
ψ .  (2.6) 

Neumann boundary conditions are imposed on the interface 

plane of the bulk substrate, namely:  

0
),( '

0 =
∂

∂

s

s

n
rrG

.  

On the embedding plane, equation (2.6) reduces to: 

∫∫ ∂
∂

−=
s s

s
ssss n

r
rrGrdr

)'(
)',('

2
1)( 0

2 ψ
ψ .        (2.7) 

Inverting equation (2.7) gives: 

)'()',('2 1
0

2
sss

s
s

s

rrrGrd
n

ψψ −∫∫−=
∂
∂

. 

Since Φ  is assumed to be continuous on the boundary, 

)'()'( ss rr φψ = .  Thus, 
sn∂

∂ψ
 may be expressed as: 
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)'()',('2
)( 1

0
2

sss
s

s
s

s rrrGrd
n
r

ϕ
ψ −∫∫−=
∂

∂
.        (2.8) 

 To rewrite the probability amplitude integrals over 

region II, the complex conjugate of the Schrödinger 

equation in the bulk region is multiplied by a variation in 

)(rψ , yielding: 

δψεψψδψ ** =H .       (2.9) 

Variation of the bulk Schrödinger equation with respect to 

energy and )(rψ  results in: 

δψεδεψδψ +=H .      (2.10) 

Multiplication by )(* rψ  yields: 

δψψεδεψψδψψ *** +=H .        (2.11) 

Subtracting equation (2.9) from equation (2.11) gives: 

δεψψψδψδψψ *** =− HH .        (2.12) 

Isolating the modulus squared and integrating over the 

volume gives the probability amplitude integral: 

∫

∫∫

⎥⎦
⎤

⎢⎣
⎡ ∇−∇−=

⎥⎦
⎤

⎢⎣
⎡ −=

II

IIII

rrrrrd

rHrrHrrdrrrd

)()()()(
2
1

)()()()()()(

*22*3

**3*3

ψ
δε

δψ
δε

δψψ

ψ
δε

δψ
δε

δψψψψ
 .  (2.13) 

Next, utilizing Green’s Identity and noting again that at 

the surface )'()'( ss rr φψ =  we obtain: 

∫∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

∂
−

∂
∂

∂
∂

=
s s

ss

s

s
ss

II n
rr

n
r

rrdrd
)()()(

)(
2
1 *

*2*3 ψ
ε

φψ
ε

φψψ .    (2.14) 
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Substituting from equation (2.8), for 
sn∂

∂ψ
 we conclude: 

∫∫∫∫∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−=
−

s
s

ss
sss

sII

r
rrG

rrdrdrd )'(
)',(

)('
1

0*22*3 φ
ε

φψψ .    (2.15) 

 The expressions from equations (2.15) and (2.8) are 

substituted into (2.2) to obtain the energy in terms of the 

bulk Green function and the trial wave function in the 

surface region: 

∫ ∫∫∫∫

∫ ∫∫ ∫∫ ∫∫

∂
∂′−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−+
∂
∂

+

= −

−
−

I s
ssss

s

I s s
ss

s
ss

s
ss

r
G

rrdrdrd

r
G

Grrdrd
n

rrdHrd
E

)'()('||

)'()(')(
2
1

1
0*2223

1
01

0
*22*2*3

φ
ε

φϕ

φ
ε

εφφφφφ

. 

(2.16) 

We choose to represent )(rφ  in terms of the Linearized 

Augmented Plane Wave6 (LAPW) basis set, )}({ riχ , and minimize 

E with respect to the set of coefficients, }{ ia , in the LAPW 

expansion of )(rφ .  Expanding equation (2.16) in this basis 

and evaluating for the special k-point denoted by K , yields 

the following matrix representation for the effective 

Schrödinger equation in the surface region: 

( ) ∑∑ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−++

−
−

j
jijj

j

ijK

ijKij aOEa
G

EGH
ε

ε
)(

)(
1

,01
,0 ,    (2.17) 
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where 

s

j
sisjiij n

r
rrdrHrrdH

∂

∂
+= ∫∫∫∫∫

)(
)(

2
1)()( *2*3 χ

χχχ ,     (2.18) 

)'()',()(')( *1
,0

*221
,0 sjssKsissijK rrrGrrdrdG χχ −− ∫∫ ∫∫= ,     (2.19) 

and 

)()(*3 rrrdO jiij χχ∫∫∫= .       (2.20) 

Now, the surface Green function, ),',( ErrGK , may be 

calculated by solving the analogous equation: 

( ) ijkj
k

ik
ikK

ikKik gEO
G

EGH δε
ε

ε =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∂

∂
−++∑

−
− )(

)(
)(

1
,01̀

,0 ,   (2.21) 

where,  

∑=
ji

jiijK rrEgErrG
,

* )()()(),',( χχ .     (2.22) 

By evaluating at E=ε , equation (2.21) is reduced to: 

ijkj
k

ikikKik EgEOGH δ=−+∑ − )(])([ 1
,0 .       (2.23) 

ikO  is completely defined from the choice of the basis, 

and 1
,0

−
KG  is obtained from the scattering properties of the 

bulk crystal for planar geometries or through self-

consistent calculations7,8.  It may be evaluated 

independently of the surface calculation.  1
,0

−
KG  contains 

the influence of the bulk region on the surface and can be 

thought of as an embedding potential.  However, ikH  matrix 
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elements contain the effective local potential, which 

depends on the surface charge density.  If the potential 

were known to great accuracy, the solution of equation 

(2.22) would follow directly.  Once the matrix equation is 

solved for )(Egkj , the charge density may be obtained by 

integrating the imaginary part of ),,( ErrGK
′  up to the Fermi 

energy: 

[ ]∫∑∑
∞−

∗

⎭
⎬
⎫

⎩
⎨
⎧ −−+==

fE

ijij
Kji

ji
K

K iEgiEg
i

dErrrr )()(
2
1Im1)()()()(

,,

* εε
π

χχρρ .  

(2.24) 

Similarly, the density of states may also be obtained as: 

[ ]∑ ∫∑
⎭
⎬
⎫

⎩
⎨
⎧ −−+== ∗∗

Kji
ijijji

K
K iEgiEg

i
rrrdEE

,,

3 )()(
2
1Im)()(1)()( εεχχ

π
σσ .  

(2.25) 

 Since the potential is not known to arbitrary 

accuracy, we solve (2.23) self-consistently.  An initial 

guess for the charge density produces an electrostatic 

potential as the solution of Poisson’s equation.  The 

exchange-correlation terms are computed and then added to 

the electrostatic potential.  The Hamiltonian is then 

formed and the surface Green function obtained by solving 

equation (2.23).  The output charge density is then 

computed via equation (2.24).  This process is repeated 

until consistency between input and output charge density 
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is achieved.  To keep the iteration process stable, the 

output charge density is mixed with the input charge 

density to form a new input charge density.  The process is 

diagrammatically outlined in Figure 2.2.  

 
C.  Choice of Basis 

As illustrated in Figure 2.1, the surface region 

geometry is composed of three unique sub-regions: the 

vacuum, muffin-tin, and interstitial regions.  We seek to 

find a basis set of functions that can accurately represent 

surface wavefunctions in all three regions.  An important 

consideration is the quadratic increase in the number of 

matrix elements to be calculated and the cubic increase in 

computational time caused by increasing basis size.  Thus, 

a set of basis functions is sought which is capable of high 

accuracy with minimal size.  The Linearized Augmented Plane 

Wave (LAPW) basis was chosen to expand the charge density, 

because this basis can accurately represent the charge 

density in each sub-region with reasonable size.6  

The LAPW basis functions are piecewise defined in each 

sub-region and are continuous with continuous derivatives 

everywhere, including across the bounding surface of the 

sub-regions.  The piecewise definition of the basis allows  
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 Figure 2.2: Programmatic diagram of the self-
 consistent calculation.  
 

Guess of charge density
 in surface region 

Free atom charge density

Calculation of output charge 
density via surface Green function 

Calculation of potential via 
soln.  of Poisson’s Eqn.  and 
addition of exch-corr pot 

Recalculate potential with 
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freedom to choose an appropriate basis for each unique sub-

region.   

Since the interstitial region has a slowly-varying 

charge density, an expansion in plane waves will converge 

quickly to the actual charge density.  Plane waves with 

high wave numbers may largely be neglected, as these waves 

contribute to variations over shorter distances.  Further, 

a plane wave expansion simplifies the solution of Poisson’s 

equation and the evaluation of matrix elements.   

The interstitial plane wave basis functions are: 
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where mK  is a wave vector defined by mm GKK +=  and mG  is a 

reciprocal lattice vector,  z
d
nkn ˆ~
π

=  where d~  is slightly 

larger than the slab thickness, and Ω  is the volume of the 

surface region.  

Inside the muffin-tins, plane wave expansions will not 

converge quickly, for near the atomic cores the charge 

density changes rapidly.  However, a model potential and 

Hamiltonian can be constructed to generate the basis 

functions for the expansion of the actual charge density 

and potential in the muffin-tin.   
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The model potential is constructed by taking the 

spherically-averaging the muffin-tin potential from the 

prior SEGF cycle.  The shape approximation made in 

generating the model potential facilitates solution, for in 

spherical coordinates with a potential possessing only 

radial dependence, the Schrödinger equation may be written 

as: 

)(')(')(
2

ˆ

2
1

2

2

2

2

rErrV
r
L

r
χχ =⎥

⎦

⎤
⎢
⎣

⎡
++

∂
∂

−     (2.27) 

where, 
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Then utilizing separation of variables, we obtain from the 

angular equations the spherical harmonic solutions ),( ϕθlmY , 

and from the radial equation we may obtain the radial 

solution )(ruL  from: 
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where L is the collective angular momentum index.  

The basis functions are then: 

l
LL iYErur ),(),()( ϕθχ = .       (2.30) 

In general, this function will not match onto the 

interstitial basis in both value and slope at the muffin-

tin boundary.  Thus, additional freedom must be included in 
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the basis.  If a linear combination of such functions with 

differing L, augmented with a linear combination of energy-

derivative radial solutions is used, then sufficient 

variational freedom is obtained.  The linear combination 

may be chosen such that the boundary conditions are 

satisfied at the muffin-tin radius.  So, for each 

inequivalent atom, the basis functions inside the muffin-

tin are given by: 
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where zkKK nmmn ˆ±=± .  The energy derivative Lu  functions are 

included to provide variational freedom over a range of 

energies, not merely at energy LE .  

The vacuum region exhibits periodic symmetry in the 

two dimensions running parallel to the surface.  

Perpendicular to the surface the model potential depends 

only on the normal coordinate z.  The model potential is 

constructed on a linear mesh in z.  From the planar-

averaged potential of the prior SEGF cycle, the basis 

functions are found by solving Schrödinger’s equation in 

vacuum with the model potential.  Plane waves accurately 

represent the slowly varying x- and y-dependence of surface 

wave functions, since they are solutions of the Schrödinger 
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equation with a constant potential.  The z-dependent 

portion of the basis functions are solutions of: 
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where, 
22

mm GKK +=  and zE  is chosen to be near the Fermi 

energy.   

 The vacuum region’s basis functions must also have 

sufficient variational freedom in energy.  This is 

accomplished by adding energy derivative solutions mv  to 

our basis.  This produces a basis set that is reasonably 

complete over an energy range about zEE = .  Thus, 

[ ] rKi
zmmnzmmnmn

meEzEzr •+= ),(),()( νβναχ .       (2.33) 
 
 

D.  The Charge Density 
 

 The expansion coefficients for the surface Green 

function are calculated by inverting equation (2.23).  By 

applying the basis definition in equation (2.24), the 

expansion coefficients for the charge density in each sub-

region may be expressed in terms of the integral of the 

surface Green function coefficients.    

 For the interstitial region, the charge density is 

expanded in plane waves as:  
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From equation (2.24) and the basis, )(rKρ  is found to be: 
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The expansion coefficient mnρ  can now be expressed by 

equating equations (2.34) and (2.35); this gives:  
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where, 
2
1

=f if    mnn'm' = or  1 =f , otherwise.  

 Inside the muffin-tins, the charge density is expanded 

as:  
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The expansion coefficient )(, rKLρ  can be found in terms of 

the surface Green function by expanding equation (2.24) and 

equating this to equation (2.38).  This process yields: 
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where, 
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and a similar expression defines )(~
mnL KB ± .  

 The vacuum charge density is expanded as: 
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where [ ]),(),()( zmmnzmmnmm EzEzz νβναγρ += .  

 The )(zmρ  coefficients are obtained by equating 

equation (40) to the energy integration of the Green 

function in the vacuum basis, and are found to be: 
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E.  The Electrostatic Potential 

 
 The electrostatic potential is obtained by solving 

Poisson’s equation in each of the three sub-regions.  The 
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process is greatly facilitated by expanding the potential 

in the same basis as the charge density.  In the vacuum 

region, the charge density is given by equation (2.40).  

The electrostatic potential is expanded similarly as: 
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Equation (2.42) is substituted into Poisson’s equation, and 

the following differential equation for )(zVm  in terms of 

)(zKρ  is obtained: 
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Equation (43) is solved numerically for )(zVm  under the 

boundary conditions that the electrostatic potential goes 

to a constant as z tends to ∞− , and that it matches in 

value and slope to the interstitial potential at the 

vacuum-interstitial plane.  By considering the m=0 case, we 

find a free constant which is the value the electrostatic 

potential takes at large distances, denoted as the vacuum 

constant 0φ .  The difference between the Fermi energy, the 

highest occupied energy state, and 0φ  gives the minimum 

energy required to remove an electron from the surface, 

which is defined as the work function.  For other values of 

m, another constant emerges, denoted as mC , which will aid 
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in matching the potential solution in the vacuum region to 

the interstitial potential.  

 In the interstitial region, the electrostatic 

potential arises from the charge residing in all three sub-

regions.  The contribution from the charge inside the 

muffin-tin spheres may be computed through a multipole 

expansion.  The electrostatic potential outside a sphere 

due to a localized charge distribution MTρ  inside the 

sphere is given by: 
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where lmq  is the multipole moment of the charge density.  

Since the potential is determined from the multipole 

expansion of the charge density, and not the actual charge 

density itself, a pseudo-charge density )(~ rMTρ  may be 

substituted for the actual charge density in the muffin-tin 

spheres, so long as it possesses the same multipole 

moments.  Using the pseudo-charge method of Weinert9, the 

charge density in the muffin-tins is expanded in plane 

waves.  The pseudo-charge expansion coefficients { }mnρ~  are 

chosen so as to reproduce the actual multipoles of the 

charge distribution.  Thus, the contribution to the 

potential generated by )(~ rMTρ  in the interstitial region is 
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identical to that generated by the actual charge density.  

The charge density used to calculate the electrostatic 

potential in the interstitial region is: 
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 Now, )(~ rρ  is inserted into Poisson’s equation and the 

equation is solved over the whole unit cell (interstitial 

and muffin-tin) for the electrostatic potential, )(int rV .  

Though )(int rV  is defined over the whole unit cell, it is 

valid only in the interstitial region.  )(int rV  is found to 

be: 
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 The electrostatic potential in the muffin-tin region, 

)(rVMT  is found by numerically solving Poisson’s equation 

for )(, rV KL .  This is accomplished by using the actual charge 

density in the muffin-tins MTρ  from equation (2.38) and 

(2.39).  The solution has the form: 
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F.  The Exchange-Correlation Potential 

 
Once the electrostatic potential has been calculated, 

the only unknown potential term remaining is the exchange-

correlation potential )(rVxc .  Unfortunately, the value given 

for )],([ rx ρε  in equation (1.9) systematically underestimates 

the actual value )],([ rx ρε ; and the error worsens as the 

charge density increases to levels typical of metallic 

atoms.  Perdew and Zunger10 improved upon )],([ rxc ρε  by using a 

parameterization developed by Ceperley and Alder11 which 

more accurately models the behavior of an electron gas at 

high densities.  

 Here )],([ rxc ρε  is found to be the sum of the exchange 

energy, )],([ rx ρε , and the correlation energy, )],([ rc ρε ; where 

)],([ rx ρε  is the ordinary Hartree-Fock contribution given in 

spin polarized form as:  
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Defining sr  as 
13

3
4 −= ρπ

sr , )],([ rc ρε is parameterized at low 

densities ( 1≥sr ) as: 
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For high densities ( 10 <≤ sr ), )],([ rncε  is parameterized as: 

DrCBrAr ssc +++= )ln()ln()],([ρε .     (2.50) 

The parameterization constants are fixed by evaluating the 

expression with the known values for )],([ rxc ρε  from the fully 

polarized and unpolarized gases.  At intermediate 

polarizations, the standard interpolation formula of von 

Barth and Hedin is applied.12 This gives the correlation 

energy for a local charge density polarization, 
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ρ
ρρξ

−+ −
= , 

as: 

)]],([)],([)[()],([)],([ rrfrr U
c

P
c

U
cc ρερεξρερε −+=     (2.51) 

where, 
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and )],([ rU
c ρε  and )],([ rP

c ρε  are the correlation energies of 

the unpolarized and polarized electron gases, respectively. 

   
G.  Structural Optimization 

 
A common phenomenon exhibited in surfaces is 

structural relaxation.  Due to the absence of some of their 

neighboring atoms, surface atoms often relax into positions 

that are unavailable to bulk atoms.  These positions, 
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though not energetically favorable in the bulk, become 

favorable at the surface where the potential is different.     

To investigate the possibility of these relaxed 

geometries, the total energy required to form the surface 

arrangement is calculated for various likely geometries.  

The most favorable geometry is the one lowest in energy.   

The total energy functional, ][ρE , is computed for a 

given structure by taking the expectation value of the 

Hamiltonian (1.10) with the ground state charge density for 

that structure, so ][ρE  is given by: 
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)],([ rxc ρε  is obtained by summing equations (2.48) and (2.51).  

),( rVes ρ  for each of the three sub-regions is given by 

equations (2.41), (2.45), and (2.47).  From the positions 

of the atomic cores in the given structure, IIE  can be 

evaluated directly from equation (1.6) for a representative 

unit cell.  Summing the one-electron Schrödinger-like 

equations given in (1.12) and isolating the kinetic terms 

yields:  
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 However, the one-electron energy eigenvalues, iE , are 

not explicitly computed except for the core electrons.   

Instead, the density of states is computed from equation 

(2.25).  Therefore, it is more convenient to express the 

kinetic energy as: 

∑ ∫∫∫ −−+=
i

xcesi rrrVdrrrVdEEdEET )()()()()(][ 33 ρρσρ ,  (2.54) 

where the index runs over the core electron states.11   

Although the SEGF method has proven successful in a 

number of surface calculations, the number and diversity of 

surfaces investigated is relatively few in comparison to 

those employing slab geometries.  Thus, application of this 

method to the Ag(111) surface will present an interesting 

test of the SEGF method against older slab-based 

techniques.  
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CHAPTER THREE 
 

Silver 
 

 
A.  Computational Details 

The Ag(111) surface is the most stable surface plane 

of silver, allowing for easy sample preparation.  

Consequently, this surface has been the focus of many 

experimental studies.  The large amount of experimental 

data available is useful for testing the accuracy with 

which the SEGF method can model surface phenomena.  

Experimentally observed phenomena include the presence of a 

slight surface relaxation,14,15,16 a Shockley-type surface 

state,17 and work function measurements.18  

The crystalline lattice structure of silver is face 

centered cubic.  Experimental x-ray diffraction studies 

report the length of a side of the cubic lattice to be 7.62 

au in the low temperature limit.19 LDA first principles 

calculations predict a lattice constant between 7.46-7.88 

au.20,21 The bulk calculation of Moruzzi, Janak, and Williams 

(MJW) yielded a lattice constant of 7.79 au,22 a value 2% 

larger than the experiment.  The embedding potential for 

our SEGF calculation was generated from the MJW bulk 

potential; so, deviations from the bulk lattice constant 
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given in the structural study will be reported with respect 

to the MJW lattice constant.   

 

 Figure 3.1: The FCC lattice.  A (111) plane is 
 highlighted in red.   

 

 To model the surface region, a three-layer slab was 

embedded onto a semi-infinite bulk silver lattice.  The 

(111) slab possesses 3-fold rotational symmetry about any 

lattice point.  The two basis vectors that define the 

translational symmetry of the (111) surface possesses 

lengths equal to the nearest-neighbor spacing, and are 
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oriented at 1200 with respect to each other (See Figure 

3.2a). 

 From the FCC structure and the MJW lattice parameter 

an interlayer spacing of 4.50 au and a nearest neighbor 

distance of 5.51 au was obtained.  The muffin-tin radius 

was chosen to be 2.75 au, so that neighboring muffin-tin 

spheres touched.  Three layers were used in the present 

calculation; therefore, the height of the unit cell, 

excluding the vacuum, was 14.50 au.  Since there exists an 

ABC stacking of (111) planes in the FCC structure, the 

outermost layer resides over the first bulk layer (See 

Figure 3.2b).  The x-y origin was chosen to be centered on 

an atom in this plane.   The origin of the z-axis was 

chosen to be in the middle of the slab, that is, in the 

center of the second layer. 

The shell structure of a free silver atom possesses a 

complete 4d shell and a partially-filled 5s orbital.   

Although the 4d shell is complete in the free atom, the d-

electrons in the solid may not be treated as (inert) core 

electrons since they contribute substantially to the 

crystalline bonding and lie relatively close to the Fermi 

energy.  Consequently, d-bands are included in the valence 

structure when calculating electronic properties.   With 

the inclusion of the 5s electron, each Ag atom possesses a 



36 

 

a) 

 

b) 

Figure 3.2: Surface geometry.  (a) Top View 
 (parallelogram represents the surface unit cell.  (b) 
 Side view of the AA vertical plane.   
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total of eleven valence electrons.  With such a large 

number of electrons per atom and the lack of 2D inversion 

symmetry, a substantial basis set is required.  We have 

chosen a basis set of fifty LAPW basis functions per atom, 

or a total of 150 LAPW basis functions for the three-layer 

slab.  To allow sufficient variational freedom at the bulk 

interface plane, the distance defining the z-component of 

the LAPW basis was chosen slightly larger than the 

thickness of the slab. 

The number of plane waves used to expand the charge 

density in the interstitial region was one thousand 

consisting of 258 star components.  Inside the muffin-tins, 

the charge density was computed on a logarithmic radial 

grid of 331 points extending up to the muffin tin radius.  

Angular momentum components up to l=8 were used to expand 

the charge density and potential inside the muffin-tins.  

The vacuum region charge density was calculated on a linear 

mesh of 100 points extending out to 10 au from the surface.  

This distance was deemed to be sufficient since the charge 

density at the outermost mesh point was of the order of   

10-24 electrons/au3. 

A k-point mesh of 36 two-dimensional special k-points 

was generated using Cunningham’s method23 to sample the 
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irreducible part of the surface Brillouin zone.  The k-

point mesh is depicted in Figure 3.3. 

 

 

Figure 3.3: The 2D Brillouin zone k-point sampling.  
The Brillouin zone for a hexagonal crystal is inset in 
the upper left corner of this figure.  Outlined in 
blue is the irreducible wedge of the Brillouin zone.  
Inset in the lower right is the irreducible wedge with 
36 special k-points selected by Cunningham’s method.23   
 

In calculating the contour integral of the energy, 31 

points were sampled using the Gauss-Chebyshev numerical 

integration technique.  The error in calculating the total 

charge from sampling 15 or 31 pts was less than 10-4 

electrons, or eight digits of agreement in charge at any 

given k-point, which was considered to be adequate 

convergence. 

Since only a finite number of energy points can be 

sampled in calculating the density of states, a slight 

imaginary component is added when performing the energy 

integration.  This broadens the delta function behavior the 
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surface exhibits in occupancy of energy states, allowing 

for the discrete set of sampling points to adequately 

represent the density of states.  The value for the 

imaginary part of the energy used was 1*10-3 Hartree.  This 

value is chosen large enough for adequate numerical 

stability, and small enough to prevent an artificial 

broadening of the surface’s electronic states energy 

distribution.   

The embedding plane was placed just below the third-

layer’s muffin-tin sphere at 7.25 au in the z-direction 

(into the crystal).  In this position, the embedding plane 

is not symmetrically located between atomic planes; thus, 

the potential varies more widely along the surface than for 

an embedding plane placed midway between layers.  However, 

this placement prevents a numerical instability (called 

ghost bands) that occurs for certain choices of LAPW bases 

when the embedding plane is placed symmetrically between 

layers.4 The value of the potential along the embedding 

plane was chosen to be equal to the potential zero in the 

bulk calculation.  Fifty randomly selected points were 

sampled along this plane and used to fit the potential. 

 In expanding the embedding potential, a total of 37 

plane waves were used.  This small number has been found to 

be sufficient for expansions limited to the interstitial 
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region.  The bulk embedding potential was computed from the 

spherically-averaged bulk muffin-tin potential, combined 

with a constant interstitial potential.  For the surface 

calculation, the full potential, with no shape 

approximation, was used.  Since the bulk interstitial 

potential is constant and the surface potential is not, 

there is a slight distortion in the charge density that 

most affects the layer nearest to the embedding plane.  

Three layers proved sufficient to screen this imperfection, 

so that the topmost layer is unperturbed by the slight 

mismatch in potential. 

The exchange-correlation potential and energy were 

found by using the interpolation method of Ceperley and 

Alder.11 The exchange-correlation potential was fitted in 

the interstitial region for the first 150 star coefficients 

with 400 randomly selected points.  This fitting resulted 

in a least squares error of 1.8*10-4 Hartree for the 

exchange correlation energy.  For the muffin-tin region, a 

Taylor series expansion was made about the spherically-

averaged radial charge density out to first order.  

Likewise in the vacuum region, a Taylor series expansion 

was made to first order by using the z-planar-averaged 

charge density.   
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B.  Surface Relaxation 
 

 To investigate the presence of surface relaxation on 

the Ag (111) surface, the total energy of 15 different 

lattice spacings was computed.  To prevent the muffin-tin 

of the outermost layer from protruding into the vacuum 

region for an expanded interlayer spacing or from 

overlapping neighboring muffin-tins upon contraction, the 

muffin-tin radius of the outermost layer was reduced by 

14%.  The surface relaxation for the current work is given 

as a percentage of the bulk layer spacing of 4.50 au.  

Negative values represent contraction, whereas positive 

values indicate expansion of the interlayer spacing.   

 The root mean square (RMS) error between successive 

potentials was calculated as a measure of convergence.  All 

trials were considered converged when an RMS iteration 

error below 5*10-10 Hartree was achieved.  The convergence of 

total energy with iteration error is depicted in Figure 

3.4. 

By varying the spacing of the outermost layer, an 

energy minimum was detected near a 0.5% contraction, 

corresponding to a layer spacing of 4.48 au.  For this 

spacing, the total energy was calculated to be -15921.2102 

Hartree.  The contraction of 0.5% represents only a slight 
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deviation from the bulk interlayer spacing.  Since the top 

layer’s deviation was so slight, no investigation of a 

 

Figure 3.4: The dependence of total energy on RMS 
iteration error.  By converging to within 5*10-10 

Hartree in successive potentials, we see the total 
energy converge to deviations on the order of a few 
tenths of an eV.   

 

multilayer relaxation was undertaken.  The total energy’s 

dependence with interlayer spacing is presented in Figure 

3.5. Prior theoretical investigations have been conducted 

on the (111) plane of silver.  A slab calculation was 

performed in which the semi-infinite geometry of the 

surface was replaced by a repeated slab geometry consisting 
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of a sequence of seven layers of atoms separated by five 

layers of vacuum.  Two studies using differing 

implementations of the embedded atom method (EAM) have also 

been conducted.  In the EAM, an approximate pair-wise 

potential is generated 

 
 Figure 3.5: Dependence of the total energy on outer 
 layer position.  Energy values are given with respect 
 to their deviation from the energy minimum value -
 15921.2102 Hartree. 

 
 

between the surface region atoms and the first few nearest 

neighbor atoms in the bulk.  Another study utilizing the 

Linearized Muffin-Tin Orbital method within the Atomic 

Spheres Approximation (LMTO-ASA) has also been conducted.  
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The basis set within the LMTO differs from the plane wave 

basis utilized in our calculation.  This choice of basis 

greatly complicates the solution of the electrostatic 

potential, so a shape approximation is made where the 

potential is taken to be the potential of that generated 

from a spherically averaged charge density.  In addition to 

the shape approximation of the potential the semi-infinite 

geometry of the surface is treated in the repeated slab 

geometry of seven layers of atoms separated by ten layers 

of vacuum. 

 Though the predicted 0.5% contraction of the current 

study is smaller than prior theoretical investigations, it 

is closer to the observed value.  Experimental results of 

Low Energy Electron Diffraction (LEED) and High Energy Ion 

Scattering (HEIS) both indicate a 0.0% contraction.14,15.  

However, a Medium Energy Ion Scattering (MEIS) experiment 

measured a 2.5% contraction of the outermost layer of 

Silver, in contrast to the LEED and HEIS results.16 Thus, 

the best agreement is then found with the current 

theoretical model and these experimental results 

  The results of experimental and theoretical studies 

on the two outermost layers of the Ag(111) surface are 

summarized in Table 3.1.  Thus, the best agreement is then 

found with the current theoretical model and these  
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Table 3.1: Comparison of the present calculated interlayer 
expansion with other theoretical and experimental values.  
d12 denotes the interlayer spacing change between the first 

and second layers.  All values are given as a percent 
deviation from the equilibrium lattice constant. 

 
 

Technique  
 

d12 
 

d23 

 
Present work 

 

 
-0.5 

 
* 

 
LEED experiment14 

 
0.0 

 
0.0 
 

 
HEIS experiment15 

 
0.0 
 

 
* 

 
MEIS experiment16 

 
-2.5 

 
0.6 
 

 
Embedded atom method24 

 
-1.2 

 
0.5 
 

 
LMTO-ASA 7+10vac25 

 

 
-1.5 

 
0.1 

 
Embedded atom method26 

 
0.94 

 
-0.07 

 
 

Slab 7+5vac27 
 

-1.0 
 

-0.2 
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experimental results.  A possible source of error impacting 

the current study’s prediction of the Ag(111) surface 

relaxation is the inaccuracy in the bulk lattice constant 

imported from the MJW bulk calculation.  Since the 

contraction of the top layer is so slight, the 2% deviation 

between the MJW bulk interlayer spacing and experiment is 

of the order of reduction found in the surface interlayer 

spacing compared to the bulk interlayer spacing witnessed 

in other experimental and theoretical studies.   

 
C.  Charge Density 

 Compared to atoms in the infinite crystal the semi-

infinite crystal can show charge depletion in atoms near 

the surface.  This depletion is caused by the difference in 

potential electrons near the surface experience.  However, 

the Fermi energy should be unperturbed from the bulk value, 

since the number of bulk layers dwarfs the surface region, 

creating an adequate thermodynamic reservoir of electrons.  

Thus, to calculate the charge density, the surface Green 

function is integrated up to the bulk Fermi energy to 

determine the surface occupancy, rather than artificially 

requiring charge neutrality.  The charge density was said 

to have achieved self-consistency when the RMS error in 

potentials was less than 5*10-10 Hartree.  For the optimal 
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structural parameters, a total valence charge density of 

32.96 electrons was found for three surface layers 

indicating a depletion of charge in the surface region of 

0.04 electrons with respect to the bulk.   

 The total valence charge residing in the vacuum region 

was found to be 0.09 electrons, and a total of 3.28 

electrons resided in the interstitial region.   

 The total valence charge density is illustrated in 

Figure 3.6.  The average interstitial charge density was 

found to be 0.004 electrons/au3.  Constant density contours 

were then found by starting from the average interstitial 

charge density in steps of this density up to a density of 

0.06 electrons/au3.  The results were plotted in Figure 3.6 

to illustrate the charge density variations in the Ag(111) 

surface.  At the bottom of the figure, the appearance of a 

fourth layer can be observed.  It is interesting to note 

that this layer is not actually present in the calculation- 

its appearance is due to the bulk embedding potential and 

illustrates the influence the bulk region has on the 

embedded surface region. 

 
D.  Work Function 

 
The work function is measured using a photoemission 

spectrometer (Figure 3.7).  A monochromatic light source  
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Figure 3.6: Self-consistent Ag(111) total charge 
 density in a vertical plane across a unit cell.  (The 
 vacuum is at the top of the figure).  Distances are 
 measured from the embedding plane and are given in au. 
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 Figure 3.7: Diagram of a photoemission spectrometer. 

 
with νhE =  shines light on a sample. This produces 

electrons via the photoelectric effect.  Electrons entering 

the surface at polar angle θ , and azimuthal angle φ , are 

focused through an electrostatic lens and passed through a 

hemispherical electrostatic analyzer.  This allows 

electrons of only a particular kinetic energy to pass, and 

the resulting current of these electrons is measured with 

the aid of an electron multiplier tube.  Light, viewed as a 

stream of photons with a well defined energy, impinges on 

the surface, exciting some of the electrons within the 

surface.  If the electrons are weakly bound to the surface, 

they can be emitted.  An energy analyzer detects the 

electron current as a function of kinetic energy.  The 

emitted electrons having the greatest kinetic energy are  
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those most weakly bound to the surface.  The difference 

between the photon energy and the highest observed kinetic 

energy of emitted electrons is the work function: the 

minimum amount of energy required to remove an electron 

from the surface. 

The experimental precision of the hemispherical 

electrostatic energy analyzer limits experimental precision 

to approximately one hundredth of an eV.  Yet, systematic 

uncertainties in sample preparation and cleanliness of the 

surface can greatly affect the ultimate precision of the 

measurement.  Using photoemission spectroscopy, Dweydari 

and Mee found the Ag(111) work function to be 4.74 eV.18  

 As discussed in Chapter 2, the work function was 

calculated theoretically by taking the difference in the 

vacuum constant and the Fermi energy.  As can be seen in 

Figure 3.8, the calculated work function proved to be 

largely insensitive to the outer layer displacement, since 

a 16% change in lattice size altered the work function 

value by less than 2%.  By taking the relaxed geometry 

found from the total energy calculation, a theoretical work 

function for Ag was found to be 4.745 eV, which compares 

extremely well with the experimental value of 4.74 eV.    

In performing the self-consistent calculations, the 

work function was converged more rapidly than the total 
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Figure 3.8: Dependence of work function on outer layer 
expansion.   

 

energy as can be seen in Figure 3.9.  For the total energy, 

convergence was achieved when the RMS error in successive 

potentials was on the order of 10-10 Hartrees.  For the work 

function, convergence to within 0.1 eV was obtained when 

the RMS error in successive potentials was still of the 

order of 10-7 Hartrees. 

   Other theoretical work function studies have been 

conducted for the work function of Ag(111) (Table 3.2).  A 

slab calculation was performed using 7 atomic layers 
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Figure 3.9: Dependence of the error in work function 
 with RMS error in successive potentials. 

 

separated by 5 vacuum layers.28 A prior SEGF study with an 

LAPW basis of Ishida was conducted using 2 slab layers, and 

neglecting structural relaxations.8 Another SEGF study 

utilizing a Linearized Muffin-Tin Orbitals basis set within 

the Atomic Sphere Approximation (LMTO-ASA) was performed 

with four layers of atoms and two of vacuum and no 

structural relaxation, to model the (111) surface of 

silver.29  
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Table 3.2: Comparison of calculated the Ag(111) work 
 functions with the experimentally determined value. 

 
   

Work function for 
the Ag(111) surface 

 
Present work 

 
4.75 eV 

 
Experiment18 

 
4.74 eV 

 
Seven-layer slab28 

 
4.67 eV 

 
LMTO-SEGF four-layer29 

 
5.01 eV 

 
SEGF two-layer8 

 
4.97 eV 

 

The present results are in better agreement with 

experiment than all previous theoretical work (Table 3.2).  

Earlier SEGF studies overestimated the work function by 

more than two tenths of an eV.  This study provides no 

evidence of the SEGF method overestimating the work 

function in the case of silver.  Errors obtained in 

calculating the work function in prior studies appear to be 

from the implementation of the SEGF method.    

However, the level of agreement with experiment and 

this study exhibits is somewhat fortuitous, as there is an 

uncertainty introduced in the calculation based on the 

finite size of the LAPW basis functions.  Figure 3.10 

illustrates the convergence of the work function with LAPW 

basis size for a calculation utilizing 2 slab layers.  From 
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this analysis the estimated error in the work function from 

finite basis size could be as large as 0.05 eV. 

 

Figure 3.10: Calculated work function dependence on 
 LAPW basis size.  For a two-layer slab with no 
 relaxation in atomic positions, the basis size was 
 extended up to 240 LAPWS, illustrating the influence 
 of basis size on computed work function.  Due to 
 computational time limits, extending the basis size 
 further than 150 LAPWs to show convergence for a 
 three-layer slab would be impractical. 

 

Further error could have occured by enforcing bulk 

behavior after only 3-layers.  Since the difference in work 

function between 2 and 3 layers was found to be on the 

order of one tenth an eV, as Figure 3.10 also demonstrates, 

the error in modeling the semi-infinite crystal with only 
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three layers deviating from bulk behavior is estimated as 

less than a tenth of an eV. 

 
E.  Density of States 

The Density of States (DOS) is defined as the number 

of electronic states per unit energy.  Although no direct 

measurement is possible, photoemission spectroscopy allows 

experimenters to indirectly probe the density of states.  

Figure 3.7 displays a typical photoemission experimental 

setup.  As the spectrometer scans across kinetic energies, 

intensity variations in the electron beam are observed.  

The trajectories of excited electrons are determined from 

the momentum possessed in the surface region before 

excitation.  By mapping the intensity of excited electrons 

across differing trajectories, the density of states as a 

function of k-space may be found, and by integrating across 

the whole space of trajectories, an image of the total 

density of states may be found.  However, due to the 

difficulty of experimental resolution, precise measurement 

for one particular k-point is not possible; instead, a 

small region of k-space is sampled.   

Surface states are detectable features of 

photoemission spectra.  These states arise from the loss of 

the bulk Born-von Karman boundary conditions allowing for 
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non-periodic solutions of Schrödinger’s equation.  Surface 

states fall into two classes.  One type, called Tamm 

states, typically possess small decay lengths and are 

located in the center of bulk band gaps.  The second type 

are called Shockley states.  Shockley states generally have 

longer decay lengths and may have large amplitudes in 

interior layers.   

Kevan and Gaylord reported observing a Shockley 

surface state when investigating the photoemission spectrum 

of Ag (see Figure 3.11).17  

 

Figure 3.11: Experimental Ag(111) UPS spectra taken by 
Kevan and Gaylord.17 The Γ  surface state is observed 
as a peak just below the Fermi energy.  Located 
further below this state are the 4d-bands of silver.   



57 

The feature observed just below the Fermi energy in Figure 

3.11 is the Shockley surface state that exists near Γ .  

This surface state is located at 0.12±0.01 eV below the 

Fermi level.17 Theoretically, the total DOS in the surface 

region is given by Equation 2.25.  In evaluating the total 

DOS, we may choose to integrate across only a particular 

region of space; this allows for us to investigate the 

contributions to the DOS arising from different localities.    

In Figure 3.12, the Γ  DOS contributions for various 

regions are plotted.  The DOS for the surface region near Γ  

still possesses sharp delta function-like peaks.  This 

indicates the value of 1*10-3 Hartree for the imaginary part 

of the energy is properly chosen.  A surface state is 

clearly observed at 0.22 eV below the Fermi level.  By 

analyzing the relative amplitude of the surface state peak 

to other features in the DOS near the first point in the 

vacuum region, the surface state is clearly observed as the 

dominant occupied state.  The surface state is present 

throughout the entire surface region, reaching a maximum in 

muffin-tins of the second layer.  Inside the muffin-tins of 

the third layer, located nearest to the embedding plane of 

the bulk, the surface state occupancy is relatively small 

compared to features deeper in the valence band.  This 
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Figure 3.12: The DOS at Γ  for the surface region and 
 for each sub-region of the surface.  Note the 
 difference in  scaling for vacuum and total surface 
 regions. 
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indicates the decay of the surface state into the bulk.  

From the bulk band structure provided by MJW, the location 

of the surface state is within the s-p bulk band gap of Ag, 

and is a true surface state.   

 By assuming a 5o uncertainty in emission angle and an 

emitted electron energy of 40 eV, an electron wave number 

of 1.72 au-1 was found to sweep a radius of 0.15 au-1 in the 

2-D Brillouin zone.  On a regular grid, 19 K-points were 

sampled in the irreducible wedge of the 2-D Brillouin zone. 

 

 
Figure 3.13: Selection of k-points to determine the 
behavior of the surface state near Γ .  The irreducible 
wedge of the Brillouin zone is highlighted in blue.  
The annulus of k-space sampled by the experiment is 
highlighted in red. 
 
 
The surface state peak in this region of k-space was 

computed to occur at 0.15 eV below the Fermi energy.  This 

shows a discrepancy in the location of the surface state of 

0.03 eV.  A prior theoretical study,30 using the direct-

transition model based on the bulk states reported a 

predicted value of 0.19 eV.  This indicates the more 
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accurate treatment of the surface undertaken in the SEGF 

method.   

 By summing over a total of 36 special k-points in the 

2-D Brillouin zone, the total density of states was 

calculated for the surface region.  Since the entire 2-D 

Brillouin zone is sampled to generate the total DOS, each 

k-point DOS is averaged together.  Near Γ  this state is a 

surface state, yet away from Γ  the surface state 

transitions to a surface resonance above the Fermi energy.   

So, in the total density of states, the surface peak is 

seen lying unoccupied above the Fermi energy.  This 

resonance is not observable through photoemission 

spectroscopy, since there is no electron residing in the 

states above the Fermi energy.  Instead, it can be detected 

by inverse photoemission spectroscopy.  In inverse 

photoemission spectroscopy, an electron incident to the 

surface becomes trapped in the surface potential and emits 

a photon to conserve energy.  The difference in the emitted 

photon energy and incident electron energy is the change in 

potential of the electron.   

 From Figure 3.14, a surface resonance is predicted to 

be observed at 0.26 eV above the Fermi energy.  Figure 3.15 

illustrates the results of a k-resolved inverse 

photoemission spectrum.31  The feature located just above  
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Figure 3.14: Total density of states.  For the surface 

 region and for each sub-region of the surface the 
 occupancy in states per eV is plotted against energy 
 as measured from the Fermi energy.  Generated by 
 sampling 36 special k-points smoothing of the surface 
 DOS into a continuous spectrum is clearly visible. 
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Figure 3.15: Experimental k-resolved inverse 

 photoemission spectrogram of the Ag(111) surface.31 
 Using a fixed photon energy of 9.7 eV along the Γ -K  
 direction.   
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the Fermi energy is a surface resonance having a slight k-

dependence sweeping a region from 0.1 eV near Γ  to 0.5 eV.   

Considering the full width at half maximum in the inverse 

photoemission spectrum, this represents excellent 

agreement.    

Prior SEGF studies have failed in attempts to recreate 

realistic total densities of states.32,33 Methods included 

either artificial broadening the observed peaks or by 

summing k-points.  The k-point summation method has been 

demonstrated to work on the Ag surface, and could be 

utilized on other surfaces.  The primary requisite to 

successfully employing the k-point summation method is that 

an adequate number of k-points be summed.   

 
F.  Conclusion 

 
 The Ag(111) surface has been successfully examined by 

means of the SEGF method.  A reasonable prediction of the 

relaxed surface geometry has been made by computing the 

geometry having the least energy.  Although prior SEGF 

investigations overestimated the work function of the 

Ag(111) surface, the current study predicts a work function 

in excellent agreement with experiment.  No evidence is 

found of systematic errors in applying the SEGF method to 

the Ag(111) surface.  The method as implemented produces 
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exceptional agreement with observed photo-electron 

spectroscopy data.  In investigating the energetics of 

surface states, the best agreement has been found with 

experiment using the SEGF method as opposed to other 

theoretical methods.  Also, a method for accurately 

generating the total DOS for the surface region has been 

successfully implemented.    

 The excellent treatment of the Ag(111) surface by the 

SEGF method warrants investigation into the interaction 

adatoms have with the surface.  In particular, atomic 

oxygen is known experimentally to form an ordered overlayer 

on the Ag(111) surface.34 By modeling this surface, the 

accuracy the SEGF method could be tested on more diverse 

surface phenomena, such as the activation energy for 

desorption of oxygen from the Ag(111) surface or the 

changes in electronic structure induced on the Ag(111) 

substrate from the presence of the oxygen.  Also, analysis 

of the energy barriers of hydrogen diffusion across the 

Ag(111) surface would be of interest to experimenters 

utilizing inelastic electron tunneling spectroscopy, since 

either the prior theoretical model inaccurately treated the 

surface or are not consistent with our current 

understanding of surface diffusion.   
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