
ABSTRACT

Orbits, Pseudo Orbits, and the Characteristic Polynomial
of q-nary Quantum Graphs

Victoria K. Hudgins, Ph.D.

Mentor: Jonathan M. Harrison, Ph.D.

Quantum graphs provide a simple model of quantum mechanics in systems with

complex geometry and can be used to study quantum chaos. We evaluate the variance

of the coefficients of a quantum binary graph’s associated characteristic polynomial,

which is related to the quantum graph’s spectrum. This variance can be written as

a finite sum over pairs of short pseudo orbits on the graph with the same topological

and metric lengths. To account for all pairs of this type, we first count the numbers

of primitive periodic orbits and primitive pseudo orbits on general q-nary graphs by

exploiting properties of Lyndon words. We then classify the primitive pseudo orbits

on binary graphs by their numbers of self-intersections, the number of repetitions of

each self-intersection, and the lengths of self-intersections, in order to determine the

contributions of primitive pseudo orbit pairs to the variance. By arranging the sum

in a way that considers the contribution of each primitive pseudo orbit paired with

all possible partners, we can evaluate the sum over all pairs of primitive pseudo orbits

and then use the graph’s ergodicity to asymptotically determine the variance in the



limit of large binary graphs. The Bohigas-Giannoni-Schmit conjecture suggests spec-

tral statistics of generic quantum graphs are typically modeled by those of random

matrices, in the limit of large graphs. However, we show that, for families of binary

graphs, there is a uniform family-specific deviation from random matrix behavior in

the variance of coefficients of the characteristic polynomial. Related results for the

variance of the coefficients of the characteristic polynomial for general q-nary quantum

graphs are also investigated.
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CHAPTER ONE

Literature Review

1.1 Quantum Graphs

1.1.1 Graph Theory

It is hard to overstate the usefulness of graph theory, as this branch of mathematics

has found applications in many areas of science over the centuries. Graph theory was

invented by the Swiss mathematician Leonhard Euler in 1736 [51, 70, 113], when he

ventured to solve a popular problem of the day known as the Königsberg Bridges

Problem. The Pregel River ran through the the city of Königsberg, Prussia (located

on the modern site of Kaliningrad, Russia) and created an island called Kneiphof.

This island was connected to the north, south, and east banks of the river by a total

of seven walking bridges, see figure 1.1. The Königsberg Bridges Problem posed the

Figure 1.1. Euler’s sketch of the Königsberg Bridges Problem, 1736 [50, 113]
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question: is it possible for one to begin at any of the four landmasses and cross each

bridge precisely once? In particular, is it possible to do this and end at the same

place at which one began?

Euler considered the problem by reducing each landmass to a point with a label

A, B, C, or D and replacing each bridge with a line labeled a, b, c, d, e, f, or g, as

in figure 1.2. By concatenating landmass and bridge labels alternately, Euler could

C

A

B

D

e d

g

c

a b

f

Figure 1.2. A graph-theoretic rendering of the Königsberg Bridges Problem

represent possible walks through the city. In particular, Euler’s paper goes further

than listing all possible paths and solving by brute force; rather, he derives necessary

and sufficient conditions under which a problem of this type has a solution. Much of

what follows in subsequent chapters is concerned with problems of a similar nature

to Euler’s second question, with walks that begin and end at the same point, so we

will focus on that case here.
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Euler showed that a walk that begins and ends at the same point and uses each

bridge exactly once, an Eulerian circuit, exists if and only if the number of bridges

connected to each region of land is even. One can easily see this is a necessary

condition by imagining that one is an observer stationed at a particular landmass. If

a walker enters your region via a particular bridge, then the walker must leave that

region via another bridge, so the bridges connected to that region are used up in pairs.

And if the walker begins in your landmass, they will leave on a bridge, use up a pair of

bridges each time they visit, and there must be a single bridge remaining in order for

the walker to return to his starting region. Consequently, there is no Eulerian circuit

that solves the Königsberg Bridges Problem, as the number of bridges adjacent to

each region of land is odd.

Euler states in this same paper that he finds this solution interesting because,

while the problem is geometric in nature, the solution does not involve any tradi-

tional geometric measures. This makes the result a pre-cursor to the modern field

of topology. Moreover, the reader familiar with graph theory will recognize Euler’s

reduction of landmasses to points (or vertices) and of bridges to lines (or edges) as a

representation of the problem as a graph, a set of vertices connected by edges.

A related problem finds routes that visit each vertex precisely once, rather than

using each edge. These are referred to as Hamiltonian paths (or Hamiltonian circuits

when they start and end at the same vertex) for Sir William Hamilton who, in 1859,

sold the idea for a game entitled Around the World [70]. A regular dodecahedron

was drawn in two dimensions with each of its twenty vertices labeled by a letter A

through T, as in figure 1.3. Each letter represented a major city around the world,

3
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Figure 1.3. Hamilton’s Around the World game

and the goal was to determine a route that would pass through each city exactly once.

While this problem is intimately connected to the first example, it turns out to be

much more difficult to solve [4].

More generally, graph theory is used to study any sort of networking problem,

including traffic flows [102, 109, 114], activity of the brain [74, 83], social networking

[33, 105], sports analysis [36], and much more [41, 128, 135]. It is also deeply connected

to the famous Four-Color Theorem, which states that every map of countries, states,

provinces, etc. can be colored in such a way that any countries adjacent to one another

are colored differently and at most four colors are used. This was first hypothesized

in 1852 by Francis Guthrie and proven in 1977 by Appel and Haken [1, 42, 70].
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1.1.2 Origins of Quantum Graphs and Applications

Linus Pauling, who is consistently ranked as one of the most influential scientists

of all time [73], was an American chemist. He earned two Nobel prizes, one in chem-

istry in 1954 and the other for peace in 1962, and is generally considered to be the first

to study quantum graphs [11, 61]. In his 1936 paper, “The Diamagnetic Anisotropy

of Aromatic Molecules”, Pauling sought to calculate the magnetic anisotropy of aro-

matic hydrocarbons, magnetic effects associated to these molecules dependent on the

direction or axis considered. Pauling states [106],

Our problem is equivalent to that of calculating the magnetic effect of
the currents induced in a conducting network.. . . In order to simplify the
calculation we shall first consider rectilinear hexagonal nets, and then
make a small correction by replacing the outermost lines by circular arcs.

The “rectilinear hexagonal net” to which he refers is the network or graph, pictured

in figure 1.4. A key difference between Pauling’s model and the classical graph theory

of section 1.1.1 is that here Pauling is thinking of the “rectilinear hexagonal net” as

a net of wires embedded in the plane. Thus, the edges of the graph are not simply

denoting relationships between vertices, but can be thought of as intervals of the real

line. Following this idea, he then considers the Hamiltonian function for an electron in

a constant magnetic field of strength H parallel to the z-axis. A differential operator

paired with a graph that consists of intervals joined at vertices is what is now called

a quantum graph.

Pauling’s model was quickly denounced by other chemists; first by Kathleen Lons-

dale [92], who pointed out that it did not account for differences in isomers. While

the model did not survive for this application, it has evolved over the last eighty-four

5



Figure 1.4. Pauling’s diagram of the induced currents in anthracene [106]

years and been applied to many fields. As the relevant time-independent Schrödinger

equation is an ordinary differential equation [80], quantum graphs yield simple, yet

non-trivial, problems. The edges or wires of the graph are thought of as being width-

less, which is not an unreasonable assumption at the atomic and subatomic levels.

Some examples of applications include mesoscopic systems, waveguides, and An-

derson localization; see [18, 61, 84] for a survey of these examples and more. Meso-

scopic systems are systems whose dimensions are measured by only a few nanometers

and cannot be treated purely by classical or quantum physics, such as quantum wires

or quantum dots, and have been successfully modeled by quantum graphs [2, 38].

Quantum graphs have been used to study acoustic and electromagnetic waveguides,

which restrict transmission of a wave to one dimension with minimal loss of energy

[52] and quantum waveguides, which study the dynamics of quantum particles con-

strained to tubular structures or networks [30, 31, 133]. They have also been used to

study Anderson localization, or the absence of wave diffusion in a disordered medium

[3].
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Quantum graphs have also attracted significant attention in the study of quantum

chaos, and were first proposed as a model of quantum chaos in a series of papers by

Kottos and Smilansky [79, 80, 81, 82]. These seminal works established an exact trace

formula for the quantum spectrum, which we will explore in greater detail in section

1.2.4. This produced an explosion of interest in quantum graphs as models of quantum

chaos in the last two decades, a sampling of which will also be discussed in section

1.2.4. A comprehensive survey of results can be found in [18, 61]. To understand the

impact of these results, we turn now to an overview of quantum chaos.

1.2 Quantum Chaos

1.2.1 Chaotic Dynamics

A dynamical system is a triple consisting of a phase space, a set of times, and a rule

that describes how the phase space evolves over time. For example, the phase space

can be a manifold, with the evolution through time described by a diffeomorphism;

the phase space can be topological so that the evolution through time is described by

a homeomorphism; or, the phase space could be a measure space with its evolution

described by a measure-preserving transform. Some examples include a physical

system containing N particles where the state space is R6N , which stores the position

and momentum in each of three directions for each particle, governed by Hamilton’s

equations. Another example is the Bernoulli shift map on the product space of bi-

infinite sequences of elements from a finite set, each with a positive weight such that

the sum of the weights is one [107].
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A standard example that illustrates the difference between regular and chaotic

motion in a dynamical system is that of billiards. We start with a bounded planar

domain with piecewise smooth boundaries and let a particle within this domain move

in a straight line over time, with the stipulation that when the particle reaches the

boundary, the angle of reflection will be equal to the angle of incidence [23]. We often

refer to the domain itself as a billiard. Two examples of billiards are pictured in figure

1.5, a circular billiard and a Sinai billiard, a square region with a circle missing at

the center.

Figure 1.5. A circular billiard (left) and a Sinai billiard (right), each with a part of a
billiard trajectory. The trajectory in the Sinai billiard is ergodic, whereas the
trajectory in the circular billiard is not.

There many notions of chaotic motion in a dynamical system, including, but not

limited to: sensitivity of trajectories to initial conditions, ergodicity, mixing, and

entropy [107]. The reader familiar with basic notions of chaos is probably familiar

with the idea of trajectories sensitive to initial conditions. If two particles begin at

the same point on the circular billiard and travel at the same speed with velocity

8



vectors separated by an angle ε > 0, then the two trajectories will diverge linearly

with time; for the Sinai billiard, the same setup will yield trajectories that diverge

exponentially over time [23]. However, for our purposes it is more useful to consider

ergodicity and mixing as indicators of chaos.

Informally, in the context of billiards, ergodicity means that a typical trajectory

densely fills the billiard. Portions of typical trajectories are shown for both the circular

and Sinai billiards in figure 1.5. The portion of a trajectory shown for the Sinai billiard

will densely fill the region as the time evolution continues, so the Sinai billiard is

ergodic. However, a typical trajectory on the circular billiard avoids a smaller circular

region at the center of the billiard. Depending on the initial angle, typical trajectories

will not avoid the same circular region at the center of the billiard, but they will, in

general, not be space-filling.

Now consider coloring n particles in some region of the billiard red, and color n

particles blue in a second region, of the same size as the first region. Fix an initial

velocity vector for each particle and evolve each particle in each region for a long

period of time. After evolving each point for the same length of time, consider the

ratio of red to blue particles in a third region of the billiard. If the numbers of red and

blue particles are equal in this third region, and this occurs for all choices of regions

in the billiard, then the billiard is mixing. Informally then, a billiard is mixing, if

after a long time, particles that began in the same region are equally likely to end

anywhere. The Sinai billiard in figure 1.5 is not only ergodic, but mixing. Ergodicity

of a system does not necessarily imply mixing, but mixing implies ergodicity [112].

9



Ergodicity and mixing as notions of chaos will make more sense than exponential

divergence of trajectories in the graph setting, as the classical dynamics defined for a

graph will be probabilistic in nature. In particular, the dynamics will be defined by a

Markov chain such that the directed edges (which we will call bonds) of a graph are

the phase space, with the edge denoting position and the edge’s direction denoting

momentum [18]. We return to this in section 1.2.4.

1.2.2 Quantum Mechanics

Quantum mechanics explains the behavior of atomic and subatomic particles. The

laws of classical Hamiltonian mechanics do not apply on the atomic and subatomic

levels. A fundamental concept in quantum mechanics is wave-particle duality, which

asserts that at this small scale particles behave both like classical particles and like

waves. While this concept is widely accepted today, it took many physicists, including

Planck, Einstein, de Broglie, and Schrödinger several decades to develop [69, 103, 122].

Following this idea, around 1925 the Schrödinger equation, where quantum states are

described by a wavefunction, became a popular formulation of quantum mechanics.

In this description, the absolute value squared of a wave function is a probability

distribution for the position of a particle in the system [69].

Quantum mechanics is very different from classical mechanics, yet both describe

reality and there must be agreement between them. Niels Bohr proposed a Correspon-

dence Principle that asserts classical mechanics is the limit of quantum mechanics as

objects increase in size. With slightly more rigor, Bohr’s Correspondence Principle

claims that quantum mechanics transitions to classical mechanics in the classical limit
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of Planck’s constant ~→ 0, which corresponds to the limit of large energies or large

quantum numbers [67, 69, 103, 122].

In a series of papers published 1967-1971 [63, 64, 65, 66], Martin Gutzwiller ex-

plores this connection, and writes the density of quantum states for small values of

~ as a sum over all periodic orbits in the corresponding classical system. This is

the trace of the semiclassical Green’s function and is called a trace formula. Here, a

periodic orbit refers to a smoothly closed trajectory [65], which begins and ends at

the same point. In particular, Gutzwiller’s trace formula can be used to formulate

the density of quantum states for the Schrödinger equation on a billard domain, as

in figure 1.5, as a sum over trajectories that are periodic. This connects the quantum

spectrum to the classical periodic orbits of the system and as such is an important tool

in semiclassical quantum mechanics [123], which is the study of quantum mechanics

when Planck’s constant ~ is small.

1.2.3 Random Matrices and the BGS Conjecture

In 1992, Martin Gutzwiller [67] attempted to describe quantum chaos by dividing

up the study of mechanics into three areas, though admitting that in practicality

these divisions are non-existent, see figure 1.6. These divisions are regular classical

systems, chaotic systems, and quantum systems. The study of dynamical systems

has increasingly involved studying connections between regular and chaotic systems,

and a major tool for doing this is the Kolmogorov-Arnold-Moser (KAM) theorem,

which identifies when perturbations cause regular dynamics to become chaotic [129].

The major connection between regular classical systems and quantum systems is
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Figure 1.6. Gutzwiller’s diagram for understanding categories of mechanics [67].

Bohr’s Correspondence Principle, as introduced in section 1.2.1. It demonstrates that

classical mechanics can be obtained from quantum mechanics in the classical limit of

Planck’s constant ~ → 0. The relationships between classically chaotic systems and

quantum systems is the field of quantum chaos. For an overview of some problems

being addressed as of 2019, see [134].

One example used to study these connections is to consider a Schrödinger equation

on a classically chaotic billiard domain, such as the Sinai billiard in figure 1.5, on

which we saw that typical classical billiard trajectories are ergodic and mixing. If

one considers the Laplacian with Dirichlet boundary conditions on the Sinai billiard,

then the problem amounts to solving a time-independent Schrödinger equation that

represents a free particle in the domain. In general, computing the spectrum of the

Laplacian on a generic chaotic domain is difficult [23], but for the Sinai billiard, there

is a simple closed form [26], which was crucial in the original statement of the BGS

Conjecture, which we will describe shortly. These general difficulties highlight the

value of trace formulas, such as the one derived by Gutzwiller, that characterize the

12



quantum spectrum in terms of classical periodic orbits. Moreover, trace formulas

aid in answering questions of an asymptotic nature, relating the behavior of large

eigenvalues to the classical periodic orbits of the billiard flow.

Surprisingly, universal features arise in the spectrum of both regular and chaotic

quantum systems, first noted by Berry and Tabor for regular systems and by Bohigas,

Giannoni, and Schmit for chaotic systems. If a general dynamical system is regular,

then its spectrum is uncorrelated and displays Poisson statistics [22]. If, however, a

system is chaotic, then its spectrum is correlated and the spectral statistics resemble

those of an ensemble of random matrices (the ensemble is determined by the sym-

metries of the quantum system) [26]. Both the principles identified by Berry-Tabor

and Bohigas-Giannoni-Schmit (BGS) are still considered conjectures, in the sense

that they can only be shown for specific statistics in specific systems, but a lot of

numerical evidence and convincing proofs exist [10, 25, 29, 49, 57, 89, 91, 94, 95, 96,

100, 101, 110, 115]. It is interesting to note, however, that not all systems agree with

these conjectures [8], including the application that we consider in this thesis.

A typical semiclassical approach to obtain spectral statistics that satisfy the BGS

conjecture is to write the spectral statistic in terms of a trace formula for the spectrum;

for example, applying Gutzwiller’s result [66]. Many spectral statistics, such as the

form factor (the Fourier transform of the two-point correlation function), turn into a

double sum over pairs of orbits of the same length. In 1985, Berry showed that the

first type of pair that interferes constructively to contribute to the spectral rigidity

are pairs of identical orbits, or of mutually time-reversed orbits [21], and these pairs

produce the constant term in a series expansion in powers of ~. Another development
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in these proofs came from Sieber and Richter in 2001. In investigating the spectral

form factor, Sieber and Richter realized that orbits with a self-intersection, or figure

of eight shaped orbits, have partner orbits of the same length where one of the loops is

run in the opposite direction from that of the original orbit [120, 121], as in figure 1.7.

These orbits interfere with one another constructively and produce the linear term

Figure 1.7. A figure of eight shaped orbit as drawn by Sieber and Richter [121].

in the expansion in powers of ~. Müller et al. continued to develop this approach

by considering orbits with multiple self-intersections and obtained the whole form

factor expansion for small values of ~ [100, 101]. The same authors also introduced

computations with pseudo orbits, which are collections of periodic orbits, to this sort

of problem in [72, 99]. However, these results do not fully explain the correspondence

with the eigenvalue statistics of random matrix ensembles, as the calculations do not

show that the contribution from other orbit pairs sums to zero. However, heuristic

arguments suggest that the orbit pairs not evaluated are uncorrelated and should not

contribute.

Random matrices were first introduced by Wishart in 1928 [55, 132]. Their pop-

ularity increased throughout the 1950s after Wigner [130] proposed using them as

a model to understand statistical behaviour of slow neutron resonances in nuclear
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physics [55, 98]. In 1955, Wigner was also the first to investigate the Gaussian en-

sembles of random matrices [131].

The Gaussian ensembles of random matrices consist of Hermitian matrices whose

independent elements are independently distributed Gaussian random variables, and

whose probability distribution is invariant under unitary, orthogonal, or symplectic

transformations; thus, the ensembles are known as the Gaussian Unitary (GUE),

Gaussian Orthogonal (GOE), and Gaussian Symplectic (GSE) Ensembles, respec-

tively. When one considers that quantum systems either lack time-reversal invariance,

or are time-reversal invariant with the square of the time-reversal operator either 1 or

-1 [55, 68, 98], the corresponding Hamiltonian matrix operator is Hermitian (a com-

plex square matrix that is equal to its conjugate transpose), symmetric (a real-valued

square matrix that is equal to its transpose, a special case of Hermitian matrices), or

Hermitian quaternionic (a symmetric square Hermitian matrix composed of quater-

nions). Dyson introduced the classification of random matrix ensembles by their

time-invariant properties. The three possibilities discussed correspond to the GUE,

GOE, or GSE, respectively [44, 45, 46, 47, 48].

The seminal paper outlining the BGS Conjecture [26] begins with a comparison

of the level fluctuations of the quantum spectrum for the Sinai billiard with the level

fluctuations of the eigenvalues of the Gaussian Orthogonal Ensemble of random ma-

trices. After numerical analysis of the Sinai billiard’s spectrum, Bohigas-Giannoni-

Schmit conjecture that, in general, the quantum spectra of time-reversal invariant

classically chaotic systems can be universally modeled by the level fluctuations of the

Gaussian Orthogonal Ensemble; moreover, they conclude by proposing that quantum
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systems lacking time-reversal invariance should have spectra modeled by the Gaussian

Unitary Ensemble. It has since been observed that time-reversal invariant quantum

systems that lack rotational symmetry have spectra modeled by the Gaussian Sym-

plectic Ensemble [98].

1.2.4 Quantum Chaos on Graphs

For a quantum graph that pairs a metric graph with a self-adjoint differential

operator (the Hamiltonian), the standard way to define an associated classical dy-

namical system on the graph is to convert the quantum evolution operator governing

scattering of plane-waves at the graph vertices into a Perron-Frobenius operator gov-

erning transition probabilities between bonds of the graph [9, 18, 61, 78]. To do this,

one lets the state space of the quantum graph dynamics be the set of directed edges

(which we will call bonds) on the graph, where the choice of edge is position and the

direction of the edge is momentum. Then one takes the absolute value squared of

the scattering coefficients at a vertex to obtain the transition probabilities between

adjacent bonds at that vertex. Thus, the classical dynamics of the quantum graph is

a Markov chain, as the likelihood of transitioning to a particular bond depends only

on the current state.

Given some initial state (some bond), after time t ∈ N0, each bond has some

probability of being occupied with a total probability of one across all bonds. For

connected graphs there is only one invariant probability distribution, the constant

distribution, under the discrete Markov process. The classical dynamics is ergodic

if the probability of occupying a particular bond averaged over time approaches the
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invariant probability distribution [9, 61, 80]. One may also show for some graphs that

the Markov process is mixing, which is the stronger chaotic property that any initial

probability distribution converges to the invariant distribution under the Markov

process in the large time limit [61]. For a quantum graph to be ergodic and/or

mixing, it must be connected. However, a connected graph is not necessarily mixing.

Consider a graph with V vertices and E = V − 1 edges, with an edge between some

central vertex and each of the other vertices, a star graph; see figure 1.8. We will

Figure 1.8. A star graph with nine vertices and eight edges.

think here of the star graph having both an incoming and an outgoing bond associated

to each edge at the central vertex. The classical dynamics for a quantum star graph

are ergodic, but not mixing, as at each time step of the Markov chain, the state is

either an incoming or outgoing bond at v, and the transition probability to a bond

of the same type is always zero [61].

In 1984, Roth derived a trace formula using the heat kernel of a quantum graph

[116]. In a series of pioneering papers begun in 1997, Kottos and Smilansky were the

first to connect quantum graph models to the study of quantum chaos [79, 80, 81, 82].

They characterize the probabilistic ergodic classical dynamics of a quantum graph, as
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well as derive a trace formula for the density of states of a quantum graph’s spectrum

via a scattering approach. The trace formula is derived by expressing the density

of states in terms of traces of powers of the scattering matrix and then writing the

traces in terms of periodic orbits on the graph [18]. By periodic orbits we mean the

graph’s circuits, or sequences of vertices and edges on the graph that start and end

at the same vertex, where rotations of these sequences are considered to be the same

circuit. Of course these are generalizations of Eulerian circuits from the Königsberg

Bridges Problem or Hamiltonian circuits from the Around the World game in section

1.1.1. For a general quantum system, Gutzwiller’s trace formula is a semi-classical

approximation valid in the limit ~→ 0, while on a quantum graph the trace formula

exactly relates the quantum spectrum to the classical orbits independent of ~.

In 2002 and 2003, Berkolaiko, Schanz, and Whitney [19, 20] extended Berry’s

diagonal approximation [21] of a quantum graph’s form factor to include diagrams

of self-intersecting periodic orbits (orbits with repeated vertices) in analog to Sieber-

Richter [120, 121] and found pairs of periodic orbits that yield higher order approxi-

mations to the form factor. This approach on graphs was subsequently extended by

Müller et. al. [100, 101] in 2004 and 2005 to higher order contributions in general

systems; here the quantum graph result came first and inspired the general result.

Another result that expresses a spectral property of a quantum graph, the coeffi-

cients of a generic graph’s characteristic polynomial, in terms of orbits was obtained

by Band, Harrison, and Joyner [5] in analogy to the results of Müller et. al. [72, 99].

The formula expresses the n-th coefficient as a sum over pseudo orbits (collections

of periodic orbits) with n bonds. Our results in Chapters Four and Five will apply
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similar ideas to those introduced by Berkolaiko-Schanz-Whitney [19, 20] and Müller

et al. [100, 101] to the pseudo orbit formula.

The application of quantum graph models to the study of quantum chaos by

Kottos and Smilansky ignited an explosion of interest. Results on particular graphs

appeared quickly; a complete expansion of the form factor for star graphs is obtained

in [12, 13] by Berkolaiko, Bogolmony, and Keating; binary graphs are considered in

[124], and line-graphs are considered in [104]. An exact trace formula for the spectrum

of the Dirac operator on graphs is derived and the spectrum is shown to approach

GSE statistics in the semiclassical limit in [27, 28] by Bolte and Harrison.

Another topic in quantum chaos that has been studied on graphs is that of quan-

tum ergodicity, which is the property that, in the limit of increasing energies, the

eigenstates of a quantized ergodic classical Hamiltonian tend to equidistribute over

the appropriate energy shell. It has been shown by Berkolaiko, Keating, and Winn

[15, 16, 75] that star graphs are not quantum ergodic, which is used to show that,

in general, billiards with the addition of a point singularity (called Šeba billiards)

are not quantum ergodic either. However, quantum graphs constructed from interval

maps do exhibit quantum ergodicity [14]. Quantum ergodicity is discussed more gen-

erally on graphs in [60]. Another important related topic is the analysis of spectral

statistics via supersymmetric techniques introduced by Gnutzmann and Altland [59].

An extensive exposition of this topic can be found in [61].
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1.3 q-nary Graphs

Binary and q-nary graphs will be defined rigorously in section 2.5, but for now it

suffices to say that a binary graph will have an even number of vertices and twice

as many bonds such that, at each vertex, there are two incoming and two outgoing

bonds. More generally, a q-nary graph has a number of vertices that is a multiple

of q and has q times as many bonds, with q incoming and q outgoing bonds at each

vertex.

The subset of q-nary graphs in which the number of vertices is precisely a power

of q are called de Bruijn graphs [40]. The study of these graphs began with the search

for the shortest possible circular superstring that contains all strings of a given length

r. By enumerating these strings of length r over a q-nary alphabet and labeling each

of the qr vertices with one of these strings (see figure 1.9), de Bruijn showed that the

solution to this problem is exactly the problem of finding a Hamiltonian circuit. This
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1110000
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0100 01011000
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0110

0111

1100

1101 1110

1111

Figure 1.9. A binary de Bruijn graph with binary strings of length three labeling
the vertices and binary strings of length four labeling the edges.

is a hard problem computationally (and this was a growing concern when published

in 1946), but he also showed that this problem can always be converted to a search
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for an Eulerian circuit by labeling edges between vertices with a string of length r+1.

An edge exists from vertex u to vertex v if the first r digits of the edge label are the

vertex label of u and the last r digits of the edge label are the vertex label of v. Thus,

the solution to finding a superstring is precisely Euler’s solution to the Königsberg

Bridges Problem, and also happens to be much simpler computationally than finding

a Hamiltonian circuit.

The q-nary graph models have proven useful in biology, as shown by Pevzner and

many others. They can be used to assemble short-read sequences of DNA into a single

genome [37, 97]. They have proven useful in antibody sequencing [7], synteny block

reconstruction for highly duplicated genomes [108], and RNA assembly [62].

Some work for quantum q-nary graphs has also been done. Several results are

the work of Gregor Tanner in a series of papers [124, 125, 126] that investigate the

spectral statistics of binary and q-nary quantum graphs, in particular the form factor

and the autocorrelation function for a quantum graph’s spectral determinant, where

he uses binary and q-nary graphs as examples for both. The averaged autocorrelation

function of the spectral determinant is defined in [126] by the generating function

for the square moduli of the secular coefficients, producing an intimate connection

between these results and the results we will obtain regarding the variance of the

coefficients of the characteristic polynomial. We will see the same convergence (see

figure 1.10) for a particular family of binary graphs to the limit lim
n→∞
〈|an|2〉 = 5/8

for sequences of graphs with increasing vertex number when we investigate the sum

over pseudo orbits for this variance. In [6], Band, Harrison, and Sepanski apply the
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Figure 1.10. Convergence of the binary family with N = 3 · 2r vertices to the
asymptotic result 〈|an|2〉 = 5/8 in the limit r →∞ as shown by Tanner [126].

formula of Band, Harrison, and Joyner [5] for the coefficients of a graph’s characteristic

polynomial to de Bruijn graphs.

In this thesis, we will continue the application of the Band-Harrison-Joyner for-

mula studying the variance of a q-nary quantum graph’s characteristic polynomial’s

coefficients written as a double sum over the graph’s primitive pseudo orbits; in par-

ticular, we will find the limit of this variance for families of binary graphs for large

coefficients and increasingly large graphs within the family in Chapter Four. These

results will agree with Tanner [126] and diverge from random matrix theory. To do

this, we will first need to count the numbers of primitive pseudo orbits of a given

length on a binary graph; in Chapter Three we do this for all q-nary graphs. Prelim-

inary results for determining the variance of a general q-nary graph’s characteristic
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polynomial’s coefficients via a finite sum over pairs of pseudo orbits will be presented

in Chapter Five.
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CHAPTER TWO

Background

This chapter sets up the basic notation and ideas necessary to understand the

results described in Chapters Three, Four, and Five. In section 2.1, we outline some

fundamentals of graph theory, in particular the notation needed to discuss directed

graphs, as well as define periodic and pseudo orbits on a graph. In section 2.2, we

discuss two ways to quantize a metric graph and obtain a quantum graph, and we write

the characteristic polynomial of a quantum graph as a finite sum over the graph’s

pseudo orbits. Section 2.3 reviews the basics properties of permutations and the

symmetric group Sn used later. Section 2.4 defines words and, in particular, Lyndon

words over a finite alphabet. It also introduces results regarding the factorization

of words into Lyndon words and corresponding Lyndon tuples, and the standard

factorization of Lyndon words themselves. The last section, section 2.5, defines q-

nary graphs. It also explores the connection between words and labelings of de Bruijn

graphs, and discusses the vertex scattering matrices that we assign to the vertices of

q-nary graphs to quantize them.

2.1 Graph Theory

A graph Γ consists of a set of vertices V and a set of edges E . We will only

consider finite graphs with finite vertex and edge sets. Thus, a vertex belongs to the

set V = {0, 1, 2, . . . , V − 1}, and the size of the set of vertices is |V| = V . An edge

is an unordered pair of vertices e = {i, j} ∈ E ; two vertices i and j are adjacent if
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{i, j} is an edge. An edge e = {i, i} is called a loop. The number of edges in Γ is

|E| = E. An example of a graph is given in figure 2.1. To any graph we can associate

0 1

2

3

4

5

Figure 2.1. A graph with six vertices and eight edges.

an adjacency matrix AV , a square matrix with dimension V such that (AV )i,j = 1 if

vertices i and j are adjacent, and (AV )i,j = 0 otherwise. For the graph in figure 2.1,

the adjacency matrix is

AV =


1 1 0 0 1 0
1 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 0 0
1 0 0 0 0 1
0 1 0 0 1 0

 . (2.1.1)

Note that this matrix is symmetric, as (AV )i,j = (AV )j,i; this symmetry is due to the

fact that the edges are unordered pairs. The degree of a vertex v is the number of

vertices adjacent to it,

dv =
V−1∑
j=0

(AV )v,j =
V−1∑
i=0

(AV )i,v . (2.1.2)
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A path or a walk is a sequence of vertices p = v0v1 · · · vn such that {vi, vi+1} ∈ E

for all 0 ≤ i < n. Thus, the sequence of vertices and the edges between adjacent

pairs can be traversed in the order given. A path is of length n if it contains n edges.

If for every pair of vertices i, j there is a path of some length that starts at vertex

i and ends at vertex j, then the graph Γ is connected. In particular, the graph Γ is

connected if, for every pair of vertices i and j, there exists some power n such that

the i, j-th entry of (AV )n is nonzero; then the number of paths of length n between

vertices i and j is (AV )ni,j.

If an edge has a direction associated to it, then we will refer to the directed edge

b = (i, j) as a bond, where the pair of vertices (i, j) is ordered; the set of all bonds B

has size |B| = B. The origin and terminus of a bond can be specified by functions

o, t : B → V ; for some bond b = (i, j), the origin of b is o(b) = i and the terminus of b

is t(b) = j. The reversal of a bond b = (i, j) is given by b̄ = (j, i). The terms directed

graph or digraph generally refer to graphs that may have a mixture of directed and

undirected edges; however, for the purposes of this thesis, we assume that a directed

graph or digraph has only bonds and no undirected edges. A natural way to turn

a generic graph into a directed graph is to replace each edge with two bonds, one

running in either direction; the edge e = {i, j} would be replaced with the bond

b = (i, j) and its reversal b̄ = (j, i), making the size of the bond set B = 2E. We will

denote a bond’s direction on a graph with arrows; see figure 2.2.

For a directed graph, we say two vertices i and j are adjacent if either (i, j) or (j, i)

is in the set of bonds B. The adjacency matrix AV is defined such that (AV )i,j = 1

if there is a bond (i, j) ∈ B and (AV )i,j = 0 otherwise. The adjacency matrix for the
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Figure 2.2. A directed graph with six vertices and nine edges.

digraph in figure 2.2 is

AV =


1 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0

 . (2.1.3)

We define the outgoing bonds at v as the subset of B that have o(b) = v, and the

incoming bonds at v as the subset of B that have t(b) = v. We will use Bv to denote

the set of all bonds adjacent to v, both incoming and outgoing. The incoming degree

of a vertex v is the number of bonds that terminate at v,

dinv =
V−1∑
j=0

(AV )v,j =
∑
b∈Bv
t(b)=v

1 , (2.1.4)

and the outgoing degree of a vertex v is the number of bonds that originate at v,

doutv =
V−1∑
i=0

(AV )i,v =
∑
b∈Bv
o(b)=v

1 . (2.1.5)

Then the degree of a vertex v is the sum dv = dinv + doutv .
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A path or a walk on a directed graph is a sequence of vertices p = v0v1 · · · vn such

that (vi, vi+1) ∈ B for all 0 ≤ i < n and is of length n as it contains n bonds. As

with undirected graphs, we will call a directed graph connected if for every pair of

vertices i, j, there is a path of some length between them. Thus, the graph Γ is again

connected if for every pair of vertices i and j, there exists some power n such that

the i, j-th entry of (AV )n is nonzero. We note that the directed graph in figure 2.2 is

not connected, as there is no path from vertex four to vertex zero.

For both directed and undirected graphs, a path p = v0v1 · · · vn−1v0 that begins

and ends at the same vertex is a closed path or closed walk or circuit. A periodic orbit

γ is an equivalence class of closed paths under rotation; for some closed path p0 =

v0v1 · · · vn−1v0 belonging to a periodic orbit γ, each of the paths p1 = v1v2 · · · vn−1v0v1,

p2 = v2v3 · · · vn−1v0v1v2, . . . , pn−1 = vn−1v0v1 · · · vn−1 belong to γ also. The n-th

rotation of p0 is pn = p0. Let n′ be the smallest number of rotations such that

pn′ = p0. If n′ = n, then the periodic orbit γ is primitive. If n′ < n, then the periodic

orbit γ is a repetition of a shorter closed path γ′ of length n′, and the repetition

number of γ, or the number of repetitions of the shorter path γ′, is rγ = n/n′. For

a periodic orbit γ containing n bonds, the topological length is the number of bonds

Bγ in γ.

Any collection of periodic orbits γ̄ = {γ1, γ2, . . . , γmγ̄} is a pseudo orbit, and we

denote the number of periodic orbits in γ̄ by mγ̄. In analogy to periodic orbits, we

let the topological length of γ̄ be the sum of the topological lengths of the orbits it

contains,
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Bγ̄ =
∑
γj∈γ̄

Bγj . (2.1.6)

The collection γ̄ = {γ1, γ2, . . . , γM} is a primitive pseudo orbit if it contains only

primitive periodic orbits such that γi 6= γj for 1 ≤ i < j ≤ mγ̄. A pseudo orbit

is irreducible if the collection of periodic orbits contains each bond on the graph at

most once. Note that, irreducible pseudo orbits are primitive; however, a primitive

pseudo orbit need not be irreducible. In Chapter Three we will derive an algorithm

that counts the number of primitive periodic orbits of any length and the number of

primitive pseudo orbits of length n > p on q-nary graphs with V = p · qr vertices.

2.2 Quantum Graphs

2.2.1 Definitions of Quantum Graphs

As the graphs we consider in subsequent chapters are digraphs, we will write our

quantum graph definitions using digraph notation. As noted in section 1.1.2, a key

feature of a quantum graph is that the graph is viewed as a network of wires between

adjacent vertices, rather than only adjacency relations between vertices. To make a

directed graph a metric graph, we associate a positive length Lb to each bond b and

consider the interval [0, Lb]. While it is reasonable to consider bonds of semi-infinite

length in a quantum graph, we will consider only the case of finite bond lengths.

Given a metric graph, we assign a coordinate xb ∈ [0, Lb] to each bond such that the

coordinate increases in the direction of the bond. Thus, xb = 0 at o(b) and xb = Lb

at t(b). We do not require here that for any bond b, its reversal b̄ is also in the graph.
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A periodic orbit γ on a metric graph has not only a topological length, but a

metric length, the sum of the lengths of the bonds in γ, given by

Lγ =
∑
b∈γ

Lb . (2.2.1)

For a pseudo orbit γ̄ = {γ1, γ2, . . . , γmγ̄}, let the metric length of γ̄ be

Lγ̄ =
∑
γj∈γ̄

Lγj . (2.2.2)

As in [79, 80, 81, 82], we will assume henceforward that the graph’s bond lengths

are incommensurate, meaning that the set of bond lengths is rationally independent.

Thus, if we know the metric length of a periodic or pseudo orbit, we know which

bonds were used in the orbit and how many times.

Once we have a metric graph, we can assign functions to the intervals associated

to the bonds; a function f on the metric graph will be a B-tuple of functions on each

interval. We consider functions from the Hilbert space

L2(Γ) =
B⊕
b=1

L2([0, Lb]), (2.2.3)

with the inner product

〈f, g〉 =
∑
b∈B

∫ Lb

0

f(x)g(x) dx. (2.2.4)

Observables we wish to measure are described by self-adjoint operators acting on

functions in the Hilbert space. One such observable is the Hamiltonian, H, where

H : fb(xb)→ −
d2

dx2
b

fb(xb) + V (xb)fb(xb), (2.2.5)
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with domain consisting of functions in the second Sobolev space

H2(Γ) =
B⊕
b=1

H2([0, Lb]), (2.2.6)

satisfying appropriate vertex conditions such that the operator H is self-adjoint; one

example of such vertex conditions are the Neumann-like (standard/Kirchoff) vertex

conditions.

To define standard vertex conditions, we let fb(v) denote the value of the function

fb at the vertex v; so if o(b) = v, then fb(v) = fb(0), and if t(b) = v, then fb(v) =

fb(Lb). Similarly,
dfb
dxb

(v) =
dfb
dxb

(0) when v = o(b), and
dfb
dxb

(v) = −dfb
dxb

(Lb) when

v = t(b). In the standard vertex conditions, a function f on the metric graph Γ is

continuous at the vertices, fb1(v) = fb2(v) for all bonds b1, b2 ∈ Bv, and the outgoing

derivatives of f at vertex v sum to zero,

∑
b∈Bv

dfb
dxb

(v) = 0 . (2.2.7)

We note that these vertex conditions are called Neumann-like because at a vertex of

degree one, the condition reduces to a Neumann boundary condition. A metric graph

with an associated differential operator (that is typically self-adjoint) is a quantum

graph.

Solving the eigenproblem

Hf = Ef , (2.2.8)

one obtains wavefunctions, f , on Γ for which the energy, E, of the system is constant.

The point spectrum of H is the set of all energies that the quantum graph can attain.
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The standard vertex conditions are a special case of the δ-type vertex conditions,

where the function f is continuous at each vertex v, and the outgoing derivatives of

f at vertex v satisfy

∑
b∈Bv

dfb
dxb

(v) = αvf(v) . (2.2.9)

At a vertex of degree two, these δ-type vertex conditions correspond to a Schrödinger

equation with a Dirac δ potential on an interval. The δ-type vertex conditions inter-

polate between Neumann and Dirichlet vertex conditions. To obtain Neumann vertex

conditions, let αv = 0. Dirichlet vertex conditions, which require that the function

vanish at a vertex, are obtained by dividing both sides of (2.2.9) by αv and letting

αv →∞ [17]. In practice, Dirichlet vertex conditions are not generally considered on

quantum graphs, as they disconnect the set of intervals. All self-adjoint vertex condi-

tions were classified by Kostrykin and Schrader [18, 77] and alternative formulations

were provided by Kuchment et al. [56, 85] and Cheon et al. [35].

2.2.2 The Secular Equation of a Quantum Graph

Now we derive a secular equation, from which one can determine the spectrum of

a graph. Here we consider an undirected graph as a directed graph Γ, where to each

edge e = {i, j} we associate the bond b = (i, j) and its reversal b̄ = (j, i); thus, Γ has

B = 2E bonds. The derivation will be the same if we begin with a directed graph

with only a single bond between any pair of vertices and double the number of bonds

by adding the reversal of each bond to the set of bonds. We assume that Lb̄ = Lb and

that the relation xb̄ = Lb− xb holds on the coordinates along the intervals associated
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to bonds and their reversals. We consider solutions to the eigenproblem

−d2fb
dx2

b

= k2fb(xb) , (2.2.10)

the time-independent Schrödinger equation describing a free particle on each interval.

At each vertex, we will think of outgoing plane waves as living on the interval labeled

by outgoing bond b and incoming plane waves as living on the interval labeled by

incoming bond b̄, so solutions will be linear combinations of plane waves for k 6= 0

(see [86, 87]),

f(xb) = abe
ikxb + ab̄e

−ikxb̄ = abe
ikxb + eikLbab̄e

−ikxb , (2.2.11)

where the second equality is a result of the relation xb̄ = Lb − xb.

For a vertex v with a plane wave e−ikxb approaching v on the incoming bond b,

the wave will scatter when it reaches v into outgoing waves on all outgoing bonds

adjacent to v. Then we can write solutions along the bonds adjacent to v as
fb(xb) = e−ikxb + σ

(v)
b,b eikxb on b

fb′(xb′) = σ
(v)
b′,be

ikxb for b′ 6= b ,

(2.2.12)

where xb-coordinates are measured from the vertex v on each bond, f satisfies the

vertex conditions, and the coefficients σ(v)
b′,b are called the scattering coefficients at v.

We note that σ(v)
b′,b = 0 for all bonds b ∈ Bv that are not outgoing at v. Collecting

the scattering coefficients σ(v)
b′,b into a dv × dv matrix, we obtain the scattering matrix,

σ(v)(k), that depends on the wave number k. This scattering matrix can be shown

to be unitary for all vertex conditions that define a self-adjoint operator [18, 77]. For
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the negative Laplacian with Neumann vertex conditions (2.2.7), the scattering matrix

[80] is k-independent,

σ
(v)
b′,b =

2

dv
− δb′,b . (2.2.13)

The bond scattering matrix S(k) is a 2E × 2E matrix that collects all the vertex

scattering amplitudes,

Sb′,b(k) = δt(b),v δo(b′),v σ
(v)
b′,b(k), (2.2.14)

indicating that b is an incoming bond at vertex v and b′ is outgoing at v. Note that,

an incoming plane wave eikxb scatters to b′ having acquired a phase eikLb from equation

(2.2.11).

Now if

~a = (a1, . . . , aB, a1̄, . . . , aB̄)T (2.2.15)

is a vector of all 2E plane wave coefficients of an eigenfunction of the Laplacian, then

the coefficients of the plane waves must be in a steady state; thus,

~a = S(k)eikL~a (2.2.16)

for L = diag(L1, . . . , LE, L1, . . . , LE) = diag(L1, . . . , LB), a diagonal matrix of all

bond lengths. We refer to the matrix U(k) = S(k)eikL as the quantum evolution map.

Rewriting (2.2.16), we obtain

(I − S(k)eikL)~a = ~0 (2.2.17)

and note that (2.2.17) has a nontrivial solution if and only if
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det(I − S(k)eikL) = 0; (2.2.18)

equation (2.2.18) is called a secular equation of the quantum graph Γ. Solutions k of

the secular equation (2.2.18) are the square roots of the eigenvalues k2 of the graph

Laplacian. A similar derivation for a Schrödinger operator with non-zero potential

can be found in [117].

A commonly used alternative approach originated by Tanner [124] to define a

quantum graph is to specify the unitary quantum evolution map U(k) = S(k)eikL,

rather than beginning with a differential operator and vertex conditions. The matrix

S(k) will be defined following (2.2.14), so to determine U(k), we need only specify a

unitary vertex scattering matrix σ(v)(k) at each vertex. We define the spectrum of

the graph to be the values k2 that satisfy

det(I − U(k)) = 0 , (2.2.19)

in analogy to the spectrum of the Laplacian given by the secular equation (2.2.18).

We note that a k-dependent choice of vertex scattering matrix does not, in general,

result in a real spectrum. However, if the vertex scattering matrix is chosen to be

independent of the wave number k, the spectrum is real [18, 32, 61].

Popular choices of vertex scattering matrices include the Neumann matrix (2.2.13),

which encodes the Neumann vertex conditions for a generic graph and favors backscat-

tering over other transitions, and the Discrete Fourier Transform (DFT) matrix

σ
(v)
b′,b =

1
√
q

e2πi·b′b/q . (2.2.20)
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The DFT matrix is a natural choice of scattering matrix, as the probability of scat-

tering from an incoming bond b to an outgoing bond b′ is democratic, in the sense

that the probability of scattering from b to b′ is

|σ(v)
b′,b|

2 =


1/q if t(b) = o(b′) ,

0 otherwise .

(2.2.21)

Unitary matrices that retain democratic forward scattering probabilities but prohibit

backscattering are called equitransmitting matrices [71]; then,

|σ(v)
b′,b|

2 =


1

dv−1
if b′ 6= b ,

0 otherwise .

(2.2.22)

For some dimensions it is also possible to generate unitary scattering matrices with the

democratic property (2.2.21) from vertex conditions of a self-adjoint Laplace operator

on a metric graph [127]. See [18, 61, 71, 88] for more on these types of scattering

matrices. While it is standard to index σ(v) by the outgoing and incoming bonds, σ(v)
b′,b,

we can also index by the terminal and original points on these bonds, respectively,

σ
(v)
t(b′),o(b), since t(b) = o(b′) = v when σ(v)

b′,b is non-zero.

As the vertex scattering matrix σ(v)(k) and the bond scattering matrix S(k) will

be k-independent in what follows, we will henceforward suppress the dependence on

the spectral parameter k and refer to σ(v) and S. Now we can define the stability

amplitude of a periodic orbit, γ, as the product of scattering coefficients along γ,

Aγ = Sb2,b1Sb3,b2 · · ·Sbn,bn−1Sb1,bn . (2.2.23)
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Additionally, the stability amplitude of a pseudo orbit γ̄ is

Aγ̄ =
∏
γj∈γ̄

Aγj . (2.2.24)

When the bond scattering matrix is k-independent, we also have a Weyl law for

the average number of eigenvalues in an interval. Let N sp(k) count the number of

eigenvalues of U(k) that are less than k2 and let Nalg(k1, k2) count the number of roots

of the secular equation (2.2.19) in the interval (k1, k2). Then N sp(k) = Nalg(0, k) + c,

where c is the multiplicity of the zero eigenvalue. Note that, c is not necessarily the

multiplicity of the root zero of (2.2.19). The Weyl Law is [18],

Lemma 2.2.1. For a graph with a k-independent bond scattering matrix S,

Nalg(k1, k2) =
Tr(L)

2π
(k2 − k1) +R , (2.2.25)

where Tr(L) is the trace of the diagonal matrix of bond lengths L and thus, is the

total metric length of the graph. The constant R is uniformly bounded in k1 and k2.

2.2.3 The Characteristic Polynomial of a Quantum Graph

In general, any square matrix M of dimension N has a characteristic polynomial,

det(ζI −M) =
N∑
n=0

anζ
N−n . (2.2.26)

A discrete graph has a characteristic polynomial,

det(ζI − A) =
V∑
n=0

anζ
V−n , (2.2.27)
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where A is the graph’s V × V adjacency matrix. The characteristic polynomial of a

generic quantum graph with B = 2E bonds is

Fζ(k) = det(ζI − U(k)) =
B∑
n=0

an(k)ζB−n . (2.2.28)

Note that U(k) = SeikL is the graph’s quantum evolution map, so F1(k) = 0 is

the graph’s secular equation (2.2.19), which encodes the graph’s spectrum. As our

bond scattering matrix S is k-independent in what follows, we will also henceforward

suppress the dependency of the coefficients an(k) on k.

As the quantum evolution map is unitary, its inverse is its conjugate transpose.

Thus, there is a Riemann-Siegel lookalike formula [80] that connects pairs of coeffi-

cients of Fζ(k),

an = aBāB−n . (2.2.29)

Using the fact that U−1 = U∗,

Fζ(k) = det(ζI − U(k)) = det(−ζU(k)) det(ζ−1I − U∗(k)) . (2.2.30)

Then writing the last determinant as a polynomial (2.2.28),

Fζ(k) = det(−ζU(k))
B∑
n=0

ān(k)(ζ−1)B−n . (2.2.31)

Factoring out −ζ from the matrix determinant in (2.2.31), and using B = 2E,

Fζ(k) = (−ζ)B det(U(k))
B∑
n=0

ān(k)ζn−B = det(U(k))
B∑
n=0

ān(k)ζn . (2.2.32)

Hence, as aB = det(U(k)), we obtain (2.2.29).
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In [5], Band, Harrison, and Joyner derive a formula for the n-th coefficient of

the characteristic polynomial, writing it as a sum over primitive pseudo orbits of

topological length Bγ = n (2.1.6). The contribution of a particular pseudo orbit γ̄

to a coefficient is determined by the number of periodic orbits mγ̄ in γ̄, the metric

length (2.2.2) of γ̄, and the stability amplitude (2.2.24) of γ̄. A pseudo orbit of length

zero, 0̄, is a pseudo orbit containing no periodic orbits. Clearly m0̄ = B0̄ = L0̄ = 0

and we set A0̄ = 1. Now we have the following theorem from [5]. (This proof can be

found in the appendix of [5]; the proof in the main body of the paper is for a sum

over irreducible pseudo orbits.)

Theorem 2.2.1. The coefficients an(k) of the characteristic polynomial Fζ(k) with

U(k) = SeikL are given by

an =
∑

γ̄|Bγ̄=n

(−1)mγ̄Aγ̄e
ikLγ̄ , (2.2.33)

where γ̄ is a primitive pseudo orbit on the quantum graph for which U(k) is the

quantum evolution operator.

Proof. Recall the matrix identity

det(I − U(k)) = exp Tr ln(I − U(k)) = exp Tr

(
−
∞∑
j=1

[U(k)]j

j

)
, (2.2.34)

which holds for k + iε in the limit ε → 0. Applying (2.2.34) to the characteristic

polynomial Fζ(k), we obtain

Fζ(k) = ζB det(I − ζ−1U(k)) = ζB exp

(
−
∞∑
j=1

ζ−1Tj
j

)
, (2.2.35)
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where Tj = Tr([U(k)]j). The traces of the j-th powers of the quantum evolution map

U(k) = SeikL can be expressed as sums over periodic orbits,

Tj =
B∑

b1,...,bj=1

Ub2,b1Ub3,b2 · · ·Ub1,bj (2.2.36)

=
B∑

b1,...,bj=1

(Sb2,b1eikLb2 )(Sb3,b2eikLb3 ) · · · (Sb1,bjeikLb1 ) (2.2.37)

=
B∑

b1,...,bj=1

Sb2,b1Sb3,b2 · · ·Sb1,bje
ik(Lb1+Lb2+···Lbj ) . (2.2.38)

If we let the summation indices correspond to the bonds of the graph, then we have

periodic orbits γ = (b1, b2, . . . , bj). Thus,

Tj =
∑

γ|Bγ=j

j

rγ
Aγe

ikLγ , (2.2.39)

as there are j/rγ distinct cyclic rotations of γ.

Inserting (2.2.39) into (2.2.35), we obtain

Fζ(k) = ζB exp

− ∞∑
j=1

∑
γ|Bγ=j

ζ−j
Aγe

ikLγ

rγ

 . (2.2.40)

Equivalently, we can fix a primitive periodic orbit π and sum over its rotations, so

that

Fζ(k) = ζB exp

(
−

∑
π primitive

∞∑
r=1

ζ−rBπ
ArπeikrLπ

r

)
. (2.2.41)

Using the series expansion of ln(1− x) and properties of logarithms, we have
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Fζ(k) = ζB exp

( ∑
π primitive

ln(1− ζ−BπAπeikLπ

)
(2.2.42)

= ζB
∏

π primitive

(1− ζ−BπAπeikLπ) . (2.2.43)

If we expand the infinite product in (2.2.43), we would have a series where each

term is associated to a collection of primitive periodic orbits without repetition, i.e.,

a primitive pseudo orbit. Of course, the characteristic polynomial has only finite

powers of ζ; in particular,

Fζ(k) = ζB
B∑
n=0

anζ
−n , (2.2.44)

so many of the contributions from primitive pseudo orbits will cancel, and the result

follows.

First, we examine the mean values of the coefficients of the characteristic polyno-

mial averaged over the spectral parameter k,

〈an〉k =
∑

γ̄|Bγ̄=n

(−1)mγ̄Aγ̄ lim
K→∞

1

K

∫ K

0

eikLγ̄ dk . (2.2.45)

As characteristic polynomials are monic and using the Rieman-Siegel formula (2.2.29),

trivially 〈a0〉k = 〈aB〉k = 1; this can also be obtained by evaluating a0 over the

primitive pseudo orbit 0̄, as defined above. For 0 < n < B, the mean value of the

n-th coefficient is 〈an〉k = 0 as Lγ̄ 6= 0.

Hence, the first non-trivial moment of the coefficients of the characteristic poly-

nomial is the variance. The variance can be written as a sum over pairs of primitive

pseudo orbits;
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〈|an|2〉k =
∑
{γ̄,γ̄′}:

Bγ̄=Bγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ lim
K→∞

1

K

∫ K

0

eik(Lγ̄−Lγ̄′ ) dk (2.2.46)

=
∑
{γ̄,γ̄′}:

Bγ̄=Bγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′δLγ̄ ,Lγ̄′ . (2.2.47)

Thus, only pairs of primitive pseudo orbits of both the same topological and metric

lengths will contribute to 〈|an|2〉k. As the graph’s bond lengths are incommensurate,

each pseudo orbit in a pair of primitive pseudo orbits {γ̄, γ̄′} that contributes to

(2.2.47) must visit each bond the same number of times.

We must find pairs of primitive pseudo orbits having the same topological and

metric lengths in order to get nonzero contributions to (2.2.47). The simplest way

in which to obtain pairs of this type is to pair a primitive pseudo orbit with itself,

called the diagonal contribution. If a graph has time-reversal symmetry, then pairing

a pseudo orbit with its reversal would be considered to also be part of the diagonal

contribution; however, for all the examples we consider, the graphs lack time-reversal

symmetry. This diagonal contribution to the variance is expected to be a significant

contribution, as diagonal pairings can be considered for every primitive pseudo orbit.

As (−1)2mγ̄ is positive for every diagonal pair {γ̄, γ̄}, the diagonal contribution to

(2.2.47) is given by

〈|an|2〉diag =
∑

γ̄|Bγ̄=n

|Aγ̄|2 . (2.2.48)
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We will further simplify this contribution for quantum q-nary graphs in section 2.5

and evaluate it in Chapter Three as an application of counting primitive periodic and

primitive pseudo orbits.

2.3 The Symmetric Group Sn

In this section and section 2.4 we will discuss some results that allow for analysis of

families of q-nary quantum graphs (as in sections 2.2 and 1.3). Both permutations and

Lyndon words will be used extensively throughout the upcoming chapters to analyze

the variance of the coefficients of the characteristic polynomial. The following content

and related notions can be found in [90, 118].

The symmetric group Sn consists of all bijections from the set {1, 2, . . . , n} to

itself. The group is equipped with a multiplication operation that composes these

functions; thus, sequences of permutations are applied to the set {1, 2, . . . , n} from

right to left. The elements of the group are called permutations and are notated in

three common ways. First, a permutation π ∈ Sn can be represented by a two-line

notation that shows where elements map,

(
1 2 · · · n− 1 n

π(1) π(2) · · · π(n− 1) π(n)

)
. (2.3.1)

If the permutation π ∈ S6 of six elements is given by

π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 5, π(5) = 4, π(6) = 6 , (2.3.2)

then the two line form of π is

π =

(
1 2 3 4 5 6
2 3 1 5 4 6

)
. (2.3.3)
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Of course, the first line is fixed, so we could just as easily represent the permutation

by a second form, a one-line notation, that neglects the first line of the previous

notation. Then the one-line notation associated to the example (2.3.2) is π = 231546.

The third notation, which we will discuss next, also only has one line and traditionally

requires use of parentheses, so it is standard to drop the parentheses in this one-line

notation, so as not to confuse the two.

If we iterate applications of the map π on some element i ∈ {1, 2, . . . , n}, elements

of the infinite sequence i, π(i), π2(i), π3(i), . . . cannot all be distinct. Let r be the

smallest natural number such that πr(i) = i; then,

(i, π(i), π2(i), . . . , πr−1(i)) (2.3.4)

is a cycle. This means that for distinct elements a1, a2, . . . , ak ∈ {1, 2, . . . , n} with

k ≤ n, a cycle ρ = (a1 a2 · · · ak) is such that ρ(ai) = ai+1 for i = 1, . . . , k − 1 and

ρ(ak) = a1; also, ρ(a) = a for any a 6∈ {a1, a2, . . . , ak}. A cycle on k elements is called

a k-cycle.

Let π be a permutation that consists of the cycles π1, π2, . . . , πm. If an element

a ∈ {1, 2, . . . , n} is fixed by all the cycles of π, so πi(a) = a for all i = 1, . . . ,m, then

a is a fixed point of the permutation π. A set of cycles π1, π2, . . . , πm is disjoint if

for every element a ∈ {1, 2, . . . , n} such that πi(a) 6= a for some i = 1, 2, . . . ,m, then

πj(a) = a for all j 6= i.

It is well understood [90] that every permutation in the symmetric group Sn can

be written as a product of disjoint cycles and that disjoint cycles commute. We

will primarily use this third notation, the disjoint cycle decomposition, to represent
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a permutation, π = π1π2 · · · πm where the cycles πi are disjoint. We note that it is

standard to leave fixed points out of the disjoint cycle decomposition of a permutation.

For the example (2.3.2), the disjoint cycle decomposition of π is π = (1 2 3)(4 5),

composed of a 3-cycle π1 = (1 2 3), a 2-cycle π2 = (4 5), and the 1-cycle π3 = (6)

which yields the fixed point 6. The identity permutation e = (1)(2) · · · (n) is the

permutation whose disjoint cycle decomposition is the product of all 1-cycles.

It is also well-known [90] that every permutation in Sn for n ≥ 2 can be written as

a product of 2-cycles, called transpositions, which follows from the fact that a k-cycle

(a1 a2 · · · ak) can be written as a product of k − 1 transpositions, (a1 a2 · · · ak) =

(a1 a2)(a2 a3) · · · (ak−1 ak). Note that a product of transpositions is not unique. For

the example (2.3.2), we can write π = (1 2)(2 3)(4 5)(5 6)(5 6); however, we may

also write π = (1 2)(2 3)(4 5)(5 6)(5 6)(4 6)(4 6). However, both of these products

contain an odd number of transpositions. In particular, there is no permutation that

can be written as both a product of an even number of transpositions and a product

of an odd number of transpositions [90]. Thus, we call a permutation even (odd) if

it is the product of an even (odd) number of transpositions and define the sign of a

permutation by a function sgn : Sn → {−1, 1}, by

sgn(π) =


1 if π is a product of an even number of transpositions,

−1 otherwise,

(2.3.5)

for π ∈ Sn.

As a k-cycle can be written as a product of k − 1 transpositions, it is even (odd)

if and only if k is odd (even). Thus, we can determine the sign of a permutation
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by considering the lengths of cycles in its disjoint cycle decomposition. We saw that

π from the example (2.3.2) was odd from its transposition products; moreover, its

disjoint cycle decomposition has a 3-cycle, a 2-cycle, and a 1-cycle, or two even cycles

and an odd cycle. Thus, π = (1 2 3)(4 5) is odd, as it contains an odd number of odd

cycles. The following proposition shows that we can relate the sign of a permutation

to the number of cycles in its disjoint cycle decomposition.

Proposition 2.3.1. Let σ ∈ Sn. Denote by T (σ) the total number of cycles in the

disjoint cycle decomposition of the permutation σ, and

sgn(σ) = (−1)n+T (σ) . (2.3.6)

Proof. This proof is due to Klingsberg [76]. Let E(σ) and O(σ) denote the num-

bers of even-length and odd-length cycles in the disjoint cycle decomposition of σ,

respectively, so the total number of cycles in σ is T (σ) = E(σ) +O(σ). Here we will

consider fixed-points as cycles of length one, so that the number of fixed points in σ

is included in O(σ). Let l(ρ) denote the length of a cycle ρ of σ. Then

` =
∑

ρ: l(ρ) is even

l(ρ) +
∑

ρ: l(ρ) is odd

l(ρ) . (2.3.7)

Now the first sum in (2.3.7) is clearly even, so n is even if and only if the second sum

is even, which occurs if and only if the number of terms in the sum, O(σ), is even.

Therefore, O(σ) ≡ n (mod 2).

Now since cycles of even (odd) length can only be written as an odd (even) number

of transpositions and are therefore odd (even), it follows that a permutation σ is even
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(odd) if and only if E(σ) is even (odd). Thus, sgn(σ) = (−1)E(σ). As a result,

sgn(σ) = (−1)T (σ)−O(σ) = (−1)T (σ)−n = (−1)T (σ)+n . (2.3.8)

The alternating group An is the subgroup of Sn containing only the even per-

mutations of Sn and contains exactly half the elements of Sn [90]. It will be useful

subsequently to know that the numbers of odd and even permutations in Sn are the

same.

2.4 Words and Lyndon Words

As in section 2.3, we continue discussing classic results that will allow for analysis

of families of q-nary quantum graphs (as in sections 2.2 and 1.3). Permutations

will be used to represent primitive pseudo orbits in subsequent chapters, but they

will not be sufficient to label all primitive pseudo orbits. Here we cover results about

words and Lyndon words that will be used in Chapter Three and extended to Lyndon

tuples in Chapters Four and Five; Lyndon tuples will allow us to label all primitive

pseudo orbits and thus to analyze the variance of the coefficients of the characteristic

polynomial (2.2.47). The content of this section and related notions can be found in

[34, 43, 53, 54, 93].

Let the set A be an alphabet [93]. We refer to the elements of the alphabet

as letters or digits. In upcoming examples, we will use the finite alphabet A =

{0, 1, . . . , q− 1}. A word w over the alphabet A is a finite sequence of elements from

w = (a0, a1, . . . , a`−1) with ai ∈ A for i = 0, . . . , `− 1. We denote the set of all words

47



over the alphabet A by A∗. This set has the operation of concatenation associated

to it so that, for ai, bj ∈ A for 1 ≤ i ≤ `, 1 ≤ j ≤ m,

(a0, a1, . . . , a`−1)(b0, b1, . . . , bm−1) = (a0, a1, . . . , a`−1, b0, b1, . . . , bm−1) . (2.4.1)

As this operation is associative, we will simply write words as the concatenation of

their letters, w = a0a1 · · · a`−1. The length of a word w is the number of letters in it,

|w| = `. An `-word is a word of length ` for ` ≥ 0. Thus, we may consider a letter

a ∈ A to be a word of length one. Moreover, we let the empty sequence be the empty

word, which has length zero, and we denote it by ε. For any word w, εw = wε = w.

A word x ∈ A∗ is a factor of the word w ∈ A∗ if there exist words u, v ∈ A∗ such

that w = uxv; any concatenation of words yielding a word w is called a factorization

of w. The factor x is a proper factor of w if x 6= w. If w is given by w = uv, then u is

a prefix of w and v is a suffix of w. If u 6= w, then u is a proper prefix of w; similarly,

v is a proper suffix of w if v 6= w.

A word is primitive if it cannot be written as multiple concatenations of a shorter

word. Two words x and y are conjugate if there exist words u, v ∈ A∗ such that

x = uv and y = vu. A set of words that are pairwise conjugate is an equivalence class

of A∗ as any word in the class can be obtained by a cyclic permutation of the letters

of another.

The alphabet A has a natural total order; for example, if A = {0, 1, . . . , q − 1},

then we set 0 / 1 / · · · / q − 1. We extend this ordering to a total order on A∗\{ε},

called the lexicographic or dictionary order, where for any two words w,w′ ∈ A∗\{ε},

w / w′ if and only if either
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a) w′ = wx for some x ∈ A∗\{ε}, or,

b) w = xuy and w′ = xvz with u / v for u, v ∈ A and x, y, z ∈ A∗.

A Lyndon word is a primitive word that is the least lexicographically in its conjugacy

class; thus, a word w is a Lyndon word if and only if for all u, v ∈ A∗\{ε} such that

w = uv, also w = uv / vu. We denote the set of all Lyndon words over A by L, and

include the alphabet A itself as Lyndon words of length one.

We will use Lyndon words extensively to label periodic and pseudo orbits in Chap-

ters Three, Four, and Five, so here we include some standard results taken from [43,

54, 93] that will be relevant to our work.

Proposition 2.4.1. A non-empty word w is a Lyndon word if and only if it is

strictly smaller than each of its proper suffixes.

Proof. If w is strictly less than each of its proper suffixes, then w = uv with u, v

non-empty, and uv / v. Therefore, uv / vu and w is a Lyndon word.

If w = uv is a Lyndon word for u, v non-empty words, then uv / vu. Note that

u cannot begin with the prefix v, as then v / u and w is not a Lyndon word. Thus,

uv / v.

If w ∈ L\A, a Lyndon word that is not a single letter, and if w = rs such that

r, s ∈ L and s is of maximal length, then the pair (r, s) is the standard factorization

of w. We note the following related characterizations.
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Proposition 2.4.2. For a Lyndon word w ∈ L\A, with w = rs for r, s ∈ L, then

(r, s) is the standard factorization of w if and only if s is the smallest proper suffix of

w lexicographically.

Proof. Suppose s is the smallest proper suffix of w in lexicographic order. If r ∈ A,

then s is of maximal length. If r 6∈ A, then r = ab for some non-empty words a, b.

Suppose w = rs = abs such that a, bs ∈ L. As bs ∈ L, bs is smaller lexicographically

than any of its proper suffixes by proposition 2.4.1. But s / bs, as both are proper

suffixes of w, a contradiction. Thus, s is of maximal length.

Suppose s is of maximal length such that both r and s are in L. If r ∈ A, then

s ∈ L implies, by proposition 2.4.1, that s is strictly less than all its proper suffixes,

making it the least of all the proper suffixes of w. If r 6∈ A, then suppose that s is

not the smallest proper suffix of w lexicographically. As s ∈ L, s is smaller than each

of its proper suffixes by proposition 2.4.1, so there exist non-empty words a and b so

that r = ab and w = abs with bs the smallest proper suffix of w. As bs is the smallest

proper suffix of w, we have already proven that bs must be of maximal length so that

both a, bs ∈ L, a contradiction. Therefore, s is the smallest proper suffix of w.

Proposition 2.4.3. A non-empty word w ∈ L if and only if w ∈ A or w = rs with

r, s ∈ L and r / s. If there exists a pair (r, s) with w = rs such that s, w ∈ L and

s is of maximal length, then r ∈ L and (r, s) is the standard factorization of w with

r / rs / s.

A classic result of Chen, Fox, and Lyndon [6, 34, 43, 53, 54, 93], states that every

non-empty word in A∗\A has a unique factorization as a non-increasing sequence of

50



Lyndon words in lexicographic order. In particular, in Chapters Three, Four, and

Five, we will rely on the subset of words with strictly decreasing decomposition to

label primitive pseudo orbits, as in [6].

Theorem 2.4.1. Every non-empty word w can be uniquely formed by concatenat-

ing a non-increasing sequence of Lyndon words in lexicographic order. So

w = l1l2 . . . lk , (2.4.2)

where l1, . . . , lk ∈ L and li D li+1, for i = 1, . . . , k− 1, using the lexicographic order.

It will also be useful in Chapters Four and Five to consider not only Lyndon words,

but tuples of Lyndon words. In fact, the Lyndon tuples over a multiset, that we will

subsequently define, are generalizations of permutations from the symmetric group.

To define a multiset [53, 54], we consider the finite alphabet A = {1, 2, . . . , µ}. A

multiset M over A is given by pairing the alphabet with a function f : A → N0. The

multiplicity of a letter a ∈ A in M is given by f(a), and the cardinality of M is

∑
a∈A

f(a) = ` . (2.4.3)

For simplicity, we will denote M = [1m1 , 2m2 , . . . , µmµ ], where ma = f(a) for a ∈ A.

Then consider an `-word w = a0a1 . . . a`−1 that uses each element of M exactly once;

thus, the length of the word |w| = ` is the cardinality of M . Recalling theorem 2.4.1,

there is a unique Lyndon factorization of w = lk . . . l2l1 such that li is a Lyndon word

for i = 1, . . . , k, and lk D · · · D l2 D l1. For those words with a strictly decreasing

factorization such that lk . · · · . l2 . l1, we let the Lyndon tuple of w over M be
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tup(w) = (l1, l2, . . . , lk). We denote the set of all Lyndon tuples over the set M by

L(M).

For any non-empty `-word w with tup(w) = (l1, l2, . . . , lk) ∈ L(M), we define the

Lyndon index of w to be the number iL(w) = ` − k. A non-empty `-word w with

tup(w) = (l1, l2, . . . , lk) ∈ L(M) is called even (odd) if its Lyndon index iL(w) is even

(odd). Note that, we are only assigning a notion of parity to `-words that have a

strictly decreasing Lyndon word decomposition.

The following theorem of Faal [54] says that the set of even (or odd) Lyndon tuples

is exactly half the size of the set of all Lyndon tuples, so there are the same numbers

of odd and even Lyndon tuples. We will reserve the proof of this theorem for Chapter

Four, as the tools used to prove it will be re-used in subsequent proofs regarding the

primitive pseudo orbits of a binary graph.

Theorem 2.4.2. Let A = {1, 2, . . . , µ} be a finite ordered alphabet and

M = [1m1 , 2m2 , . . . , µmµ ] (2.4.4)

be a multiset over A of cardinality ` > 1. Then, the number of even `-words over M

is the same as the number of odd `-words over M .

Last, we note that these results for Lyndon tuples over multisets are indeed gen-

eralizations of permutations, in the sense that they are sets of bijections from a set to

itself. If we consider the multisetM = [1, 2, . . . , µ] over an alphabet A = {1, 2, . . . , µ}

such that the multiplicity of each element is one, then the number of µ-words over M

is µ!, the number of permutations of µ elements. Each word has a strictly decreasing

Lyndon decomposition, as all elements of the multiset have multiplicity one. Thus, to
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each of the µ! words there is a unique associated Lyndon tuple; the Lyndon tuples are

in bijection with the permutations of Sµ. Let the word w correspond to the Lyndon

tuple tup(w) = (l1, l2, . . . , lk). Each Lyndon word is some concatenation of letters,

li = a1ia2i · · · aci that corresponds to a ci-cycle (a1i a2i · · · aci) in the disjoint cycle

decomposition of a permutation πw.

2.5 q-nary Graphs

Here we define the q-nary graphs as described in section 1.3. These include the de

Bruijn graphs with V = qr vertices [40], which generalize to graphs with V = p · qr.

Quantum de Bruijn graphs were studied in [6, 124, 125, 126] with generalizations in

the binary case (q = 2) included in [124, 125, 126]. All of the results in subsequent

chapters will be for families of q-nary graphs.

A q-nary graph is a directed graph with V = p ·qr vertices and B = p ·qr+1 bonds,

where p and q are relatively prime positive integers, r ∈ N, and q ≥ 2, see [6, 124,

125, 126]. Numbering the vertices 0, . . . , V − 1, the V × V adjacency matrix has the

form,

(AV )i,j =



δqi,j + δqi+1,j + · · ·+ δqi+q−1,j 0 ≤ i < V/q

δqi−V,j + δqi+1−V,j + · · ·+ δqi+q−1−V,j V/q ≤ i < 2V/q

...
...

δqi−(q−1)V,j + δqi+1−(q−1)V,j + · · ·+ δqi+q−1−(q−1)V,j (q − 1)V/q ≤ i < V

,

(2.5.1)

where δi,j is the Kronecker delta function and 0 ≤ j < V . More succinctly,
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(AV )i,j = δqi (mod V ),j + δqi+1 (mod V ),j + · · ·+ δqi+q−1 (mod V ),j . (2.5.2)

The formula (2.5.1) for the adjacency matrix indicates that all entries of one are in

consecutive columns, with q per row. For example, the binary graph with 22 vertices,

see figure 2.3, has the adjacency matrix,

A4 =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 . (2.5.3)

00 11

01

10

000

001

010

011

100

101

110

111

Figure 2.3. The binary graph with V = 22 vertices and B = 23 bonds

Families of q-nary graphs with fixed q ≥ 2 and p = 1, or V = qr for some r ∈ N,

are called de Bruijn graphs, as in [6, 40, 124, 125, 126] and as introduced in section

1.3. Three examples of de Bruijn graphs are shown in figures 1.9, 2.3, and 2.4; the

first two are binary graphs and the third is ternary. As these de Bruijn graphs have

qr vertices, we label the vertices with the numbers 0, 1, . . . , V − 1 written in base q.

These numbers in base q are r-words over the alphabet A = {0, 1, . . . , q − 1} = Zq.

To see this, consider linear combinations of powers of q,
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112 122

221

210

211

021

202 020

000 222

111

010 212101 121

200

002 022

220

Figure 2.4. The ternary graph with V = 32 vertices and B = 33 bonds [6].

w =
r−1∑
i=0

ai · qr−1−i , (2.5.4)

with ai ∈ Zq for all i = 0, . . . , r − 1. Then label the vertex by the r-word

w = a0a1 · · · ar−1 . (2.5.5)

Note that a q-nary graph with V = p · qr such that p 6= 1 cannot be labeled in this

way; for graphs of this type, we label the vertices 0, 1, . . . , q − 1, as in figure 2.5.

Once this vertex labeling is made, we can label the bonds with the numbers

0, 1, . . . , B − 1 written in base q in such a way that the bond labels encode the

vertex adjacency relations. As there are q outgoing bonds at each vertex, we let a

vertex labeled by a0a1 . . . ar−1 be connected by an outgoing bond to each of the q

vertices labeled by a1a2 . . . ar−1ar, for every choice of ar ∈ Zq. This corresponds to

the adjacency relation (2.5.1). To see this, let the vertices i and j be given by,
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i = a0q
r−1 + a1q

r−2 + · · · ar−2q + ar−1 , (2.5.6)

j = a1q
r−1 + a2q

r−2 + · · · ar−1q + ar , (2.5.7)

for any ar ∈ Zq. Then qi+ wr (mod V ) ≡ j, so Ai,j = 1. Thus we label bonds with

(r+ 1)-words in such a way that the bond labeled a0a1 . . . ar−1ar connects the vertex

labeled a0a1 . . . ar−1 to the vertex labeled a1 . . . ar−1ar (see also [6]).

0

1

5

3

2

7

6

4

8

9

Figure 2.5. The binary graph with V = 5 · 2 vertices and B = 5 · 22 bonds

Moreover, this labeling extends to path labels on q-nary graphs. Consider a q-

nary word w = a0a1 · · · an+r−1 of length n+ r. Taking consecutive groups of digits of

length r, we get a sequence of n+ 1 labels that represent adjacent vertices,

a0a1 · · · ar−1 → a1a2 · · · ar → · · · → anan+1 · · · an+r−1 , (2.5.8)

with a bond connecting each vertex in the sequence (as the origin) to the next vertex

(as the terminus), and thus the sequence represents a path of length n. Note that we

could also take consecutive groupings of digits of length r + 1 to get a sequence of n

labels that represent bonds and obtain the same path.
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To label a closed path, we observe that a word of length n labels a closed path

of length n when one lets the groupings of r digits labeling vertices cycle back to the

beginning as necessary. Consider a q-nary word w = a0a1 · · · an−1 of length n. Taking

consecutive groups of digits of length r that cycle back to the beginning, we get a

sequence of n+ 1 labels that represent vertices,

a0a1 · · · ar−1 → a1a2 · · · ar → · · · → ana1 · · · ar−2 → a0a1 · · · ar−1 , (2.5.9)

and we can see that the sequence of vertex labels begins and ends on the same vertex,

with a bond connecting each vertex in the sequence (as the origin) to the next vertex

(as the terminus); thus, this sequence, therefore w labels a closed path of length n.

It is important to note that all paths and closed paths can be labeled in this way.

Given a path p = v0v1 · · · vn, the vertex labels are

a0a1 · · · ar−1, a1a2 · · · ar, · · · , an−r+1an−r+2 · · · an , (2.5.10)

and the word that labels the path is w = a0a1 · · · an.

In the chapters that follow, we will choose the doutv × dinv vertex scattering matrix

σ(v) at each vertex v of a quantum q-nary graph to be the unitary q × q Discrete

Fourier Transform (DFT) matrix, in keeping with [6, 18, 124, 125, 126]. For the

primitive q-th root of unity ω = e2πi/q, the scattering matrix is given by

σ(v) =
1
√
q


1 1 1 · · · 1
1 ω ω2 · · · ωq−1

1 ω2 ω4 · · · ω2(q−1)

...
...

...
...

1 ωq−1 ω2(q−1) · · · ω(q−1)(q−1)

 , (2.5.11)
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or more succinctly by (2.2.20). As discussed previously, this matrix makes scattering

from any incoming bond b to each outgoing bond b′ at a vertex v equally likely.

For q-nary quantum graphs equipped with the Discrete Fourier Transform vertex

scattering matrix (2.5.11), the square modulus of every non-zero scattering coefficient

is 1/q; thus for these graphs, |Aγ̄|2 = q−n if γ̄ is a pseudo orbit of topological length

n. Considering the form of the diagonal contribution (2.2.48), we need only to count

the number of primitive pseudo orbits of length n in order to determine the diagonal

contribution to the n-th coefficient’s variance. We denote by PPOV (n) the number

of primitive pseudo orbits of length n on a q-nary graph with V vertices; so,

〈|an|2〉diag =

(
1

q

)n
· PPOV (n) . (2.5.12)

In Chapter Three we will determine PPOV (n) for q-nary graphs with V = p · qr

vertices.

We will see that Lyndon words can be used to uniquely label primitive periodic

orbits for q-nary graphs with V = qr vertices in Chapter Three, as in [6]. In particular,

we will develop these previous results to use Lyndon words to count the number of

primitive periodic orbits for q-nary graphs with V = p · qr vertices. Then we will

use permutations from the symmetric group or Lyndon tuples over multisets to label

primitive pseudo orbits on q-nary graphs. Having specified a vertex scattering matrix

for the vertices of a q-nary graph Γ and applied labelings to count primitive pseudo

orbits of Γ, then we will be able to use these results to evaluate the variance of the

coefficients of Γ’s characteristic polynomial.
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CHAPTER THREE

Counting Primitive Periodic and Pseudo Orbits on q-nary Graphs

In this chapter, we will develop a method for counting the numbers of primitive

periodic orbits and primitive pseudo orbits on q-nary graphs. Both have previously

been calculated in [6] for de Bruijn graphs, when the number of vertices on the graph is

V = qr, so we will summarize these results and then derive an algorithm for counting

primitive periodic orbits and primitive pseudo orbits when the number of vertices is

V = p · qr for p > 1 and p relatively prime to q. The algorithm will relate the number

of primitive periodic orbits of length n to the number of q-nary Lyndon words of

length n by considering the trace of the n-th power of the graph’s adjacency matrix.

The number of primitive pseudo orbits will be counted by computing their generating

function. As an application, we evaluate the diagonal contribution to the variance

(2.2.47) for graphs with V = p · qr vertices.

3.1 Counting Primitive Periodic Orbits

3.1.1 Primitive Periodic Orbits on q-nary de Bruijn Graphs

To count the number of primitive periodic orbits of length n on a q-nary de

Bruijn graph with V vertices, POV (n), we relate this quantity to the number of q-

nary Lyndon words of length n. Recall from section 2.4 that a Lyndon word is a word

that is strictly less in lexicographic order than all of its cyclic permutations [93]. For

example, the binary word 00011 is a Lyndon word because it comes before all of its
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rotations, 00110, 01100, 11000, and 10001, in dictionary order. An example of a word

that is not a Lyndon word would be 0101, because two rotations will result in the

same word and neither is less than the other in dictionary order.

Recall from section 2.5 that, when V = qr, closed paths of length n can be

labeled by words of length n over a q-nary alphabet. In particular, the word 00011

corresponds to a closed path of length five. If V = 23, then the digits are read in

consecutive groupings of r = 3 to denote the labels of the vertices that the path

corresponding to 00011 traverses. Thus,

000→ 001→ 011→ 110→ 100→ 000 (3.1.1)

on the de Bruijn graph with eight vertices, see figure 1.9 in section 1.3.

An equivalence class of closed paths under rotation is a periodic orbit; thus, a

periodic orbit can be represented by a word and all its rotations. If an equivalence

class of words under rotation has a unique smallest word in lexicographic order, then

this word will uniquely identify a periodic orbit. In addition, as a primitive periodic

orbit is not a repetition of a shorter orbit, these words correspond to primitive periodic

orbits and are not equivalent to any of their rotations; thus, a Lyndon word uniquely

identifies a primitive periodic orbit. The Lyndon word 00011 uniquely corresponds to

the primitive periodic orbit that contains the closed paths labeled by 00011, 00110,

01100, 11000, and 10001.

Therefore, when V = qr, the graph’s primitive periodic orbits of length n are in

bijection with q-nary Lyndon words of length n, so POV (n) = Lq(n). Note that this

bijection does not directly depend on the number of vertices, only that the graph is
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a q-nary de Bruijn graph, so V = p · qr vertices where p = 1. Thus, we will suppress

the values of p and r and write,

POq(n) = Lq(n) . (3.1.2)

3.1.2 Primitive Periodic Orbits on General q-nary Graphs

In the case that V = p · qr with p 6= 1 and p relatively prime to q, we can still

relate POV (n) to Lq(n), but there is no longer a straightforward bijection between

periodic orbits and Lyndon words. However, we will see that the number of primitive

periodic orbits will remain independent of r, so we change notation from POV (n) to

POp,q(n) henceforward. To show how POp,q(n) relates to Lq(n) for any value of p,

we start from the trace of the n-th power of the graph’s adjacency matrix. In order

to show the r-independence, we show that the non-zero eigenvalues of the adjacency

matrix are unaffected by changes in r; increasing r only increases the multiplicity of

the eigenvalue zero.

Let AV be the V ×V adjacency matrix of the q-nary graph with V = p ·qr vertices.

Then we consider AV as a q × q block matrix with blocks of dimensions V/q × V/q,

where we label the q blocks in the last row of AV by Bµ for µ = 0, 1, . . . , q − 1.

Considering that each row of blocks in AV is identical (see (2.5.1) and (2.5.2)), we

can write the last row of AV as

[AV ]i,m = δqi,m + δqi+1,m + · · ·+ δqi+q−1,m , (3.1.3)

where 0 ≤ i < V/q and 0 ≤ m < V . To access the µ-th block within this row of

blocks, we use the column index range µV/q ≤ m < (µ + 1)V/q. Thus, we can let
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0 ≤ i, j < V/q for each block matrix Bµ with µ = 0, 1, . . . , q − 1 and write

Bµ
i,j = δqi,j+µV/q + δqi+1,j+µV/q + · · ·+ δqi+q−1,j+µV/q . (3.1.4)

For simplicity of notation in the following lemma, we let

Ap =

q−1∑
µ=0

Bµ , (3.1.5)

where B0, . . . , Bq−1 are p× p blocks in Apq.

Lemma 3.1.1. For a q-nary graph with V = p ·qr vertices, the nonzero eigenvalues

of the adjacency matrix AV are also eigenvalues of Ap with identical multiplicity;

furthermore, the multiplicity of zero as an eigenvalue of AV is at least V − p.

Proof. Consider the matrix AV − λIV , for V = p · qr with r ≥ 1, as a q × q block

matrix with blocks of size V/q×V/q. Considering the form of AV (2.5.1) and (2.5.2),

we note that subtracting the q-th row of blocks from each of the first q − 1 rows

above it will eliminate all entries of one from the upper rows of blocks. Doing so

also creates block diagonal matrices containing the parameter λ along the diagonal

in the q-th column of blocks; as making linear combinations of rows does not affect

the determinant, det(AV − λIV ) can be written∣∣∣∣∣∣∣∣∣∣∣∣∣

diag(−λ) 0 0 · · · 0 diag(λ)
0 diag(−λ) 0 · · · 0 diag(λ)
0 0 diag(−λ) 0 · · · diag(λ)
... . . . . . . . . . . . . ...
0 · · · 0 0 diag(−λ) diag(λ)
B0 B1 B2 · · · Bq−2 Bq−1 − λIV/q

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.1.6)

Next, take each of the first q − 1 columns and add them to the q-th column; this

block-triangularizes the matrix and the last block contains the sum of all the Bµ
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blocks. However, entry-wise this sum is

q−1∑
µ=0

Bµ
i,j =

q−1∑
µ=0

q−1∑
κ=0

δqi+κ,j+µV/q =

q−1∑
κ=0

δ(qi+κ) (mod (V/q)),j =
[
AV/q

]
i,j

; (3.1.7)

so det(AV − λIV ) is

∣∣∣∣∣∣∣∣∣∣∣∣∣

diag(−λ) 0 0 · · · 0 0
0 diag(−λ) 0 · · · 0 0
0 0 diag(−λ) 0 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 0 diag(−λ) 0
B0 B1 B2 · · · Bq−2 AV/q − λIV/q

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.1.8)

As the determinant of a block-triangular matrix is the product of the determinants

of the diagonal blocks,

det(AV − λIV ) = (−λ)(q−1)V/q det(AV/q − λIV/q) . (3.1.9)

Thus, the only non-zero eigenvalues of AV are those of AV/q. Therefore, the only

non-zero eigenvalues of AV for V = p · qr with r ≥ 1 are those of Ap, by induction on

r.

Now that we know the non-zero eigenvalues of AV for V = p · qr with r ≥ 1 are

precisely the non-zero eigenvalues of Ap, we of course wish to determine these. To

determine the eigenvalues of Ap, we will first write Ap in an alternate form that will

allow us to apply results for eigenvalues of a generalized permutation matrix.

A permutation matrix is a square matrix that has precisely one entry of one in

each row and column and zeros elsewhere. It follows that the p× p identity matrix Ip

is a permutation matrix and one could think of other permutation matrices as being
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obtained from the identity matrix by permutations π ∈ Sp of its rows (or columns)

[118]. See section 2.3 for more information about the permutation group.

A generalized permutation matrix is a square matrix that has precisely one non-

zero entry in each row and column. These matrices always factor as a product of

a diagonal matrix containing the nonzero entries and a permutation matrix [58].

This permutation matrix is associated to some permutation π which decomposes

into disjoint cycles. Let (i1 i2 . . . ic) be a c-cycle of π for 1 ≤ c ≤ p, and let the

nonzero entries of the generalized permutation matrix in these columns be denoted

by ai1 , ai2 , . . . , aic . Then a factor of the characteristic polynomial associated to the

generalized permutation matrix is given in, [58], by

(
λc −

c∏
j=1

aij

)
. (3.1.10)

We now let S be the p× p permutation matrix

S =


0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...
0 0 . . . 0 1
1 0 . . . 0 0

 , (3.1.11)

and note that Sp = Ip. Note also that S is a circulant matrix, as for i = 0, . . . , p− 1,

the i-th row of S is i rotations of the 0-th row. It can be shown that circulant

matrices are diagonalized by Discrete Fourier matrices of the same dimensions [39]

(see definition in (2.5.11)), and we will utilize this fact in the next lemma. We also

define the p× p matrix H, which has a single non-zero entry;
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Hi,j =


1 if i = j = 0

0 otherwise

, (3.1.12)

where 0 ≤ i, j ≤ p − 1. Using H will allow for an entry-by-entry construction of Ap

via matrix multiplication. We now write Ap as

Ap =

(
p−1∑
h=0

Sp−hHSqh

)
(I + S + S2 + · · ·+ Sq−1) . (3.1.13)

When H is left-multiplied by Sp−h, entries in the (p − h) (mod p)-th row are deter-

mined; subsequent right-multiplication by Sqh sends a non-zero entry in the (p −

h) (mod p)-th row to the column labeled by qh (mod p). As the original adja-

cency matrix AV had q consecutive entries, the right multiplication by the matrices

I, S, S2, . . . , Sq−1 duplicates the first entry in the next q − 1 consecutive columns in

Ap, with wrapping back to the first column as necessary. Note that, if p < q, then

some of these entries will overlap and Ap may contain non-zero entries that are greater

than one.

A classic theorem of Birkhoff [24] states that any doubly stochastic matrix can be

decomposed into a weighted sum over permutation matrices. While this is not the

decomposition that we have just used, we do point out that there is a long history of

decomposing matrices using permutation matrices. Now we can use this form of Ap

to find its eigenvalues.

Lemma 3.1.2. The matrix Ap has a simple eigenvalue of q and all other eigenvalues

are comprised of complete sets of roots of unity.
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Proof. Let F be a p× p Discrete Fourier Transform matrix; then,

F−1SF = D = diag(1, ξ, ξ2, . . . , ξp−1) , (3.1.14)

where ξ = e2πi/p, the primitive p-th root of unity. Let Ãp be the matrix given by

F−1ApF ; so,

Ãp = F−1

(
p−1∑
h=0

Sp−hHSqh

)
(I + S + S2 + · · ·+ Sq−1)F (3.1.15)

= F−1

(
p−1∑
h=0

Sp−hHSqh + Sp−hHSqh+1 + · · ·Sp−hHSqh+q−1

)
F (3.1.16)

= F−1

(
p−1∑
h=0

q−1∑
κ=0

Sp−hHSqh+κ

)
F . (3.1.17)

As Ãp is obtained by a similarity transform of Ap, they have the same eigenvalues.

Now making the substitution S = FDF−1, we have

Ãp =

p−1∑
h=0

q−1∑
κ=0

Dp−hF−1HFDqh+κ . (3.1.18)

Now we note that (F−1H)F =
1

p
· 1p, as

F−1HF =
1
√
p


1 0 . . . 0
1 0 . . . 0
...

... . . . ...
1 0 . . . 0

 1
√
p


1 1 1 · · · 1
1 ξ ξ2 · · · ξp−1

1 ξ2 ξ4 · · · ξ2(p−1)

...
...

...
...

...
1 ξp−1 ξ2(p−1) · · · ξ(p−1)(p−1)

 . (3.1.19)

So

Ãp =
1

p

(
p−1∑
h=0

q−1∑
k=0

Dp−h1pDqh+k

)
, (3.1.20)

and the i, j-th entry of Ãp for 0 ≤ i, j ≤ p− 1 is
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[Ãp]i,j =
1

p

p−1∑
h=0

(ξi)p−h(ξj)qh
q−1∑
k=0

(ξ)jk (3.1.21)

=
1

p
(1 + ξj + ξ2j + · · ·+ ξ(q−1)j)

p−1∑
h=0

ξip−ih+qjh (3.1.22)

=
1

p
(1 + ξj + ξ2j + · · ·+ ξ(q−1)j)

p−1∑
h=0

ξh(qj−i) (3.1.23)

=


1 + ξj + ξ2j + · · ·+ ξ(q−1)j if qj − i mod p ≡ 0

0 otherwise

, (3.1.24)

where ξip = 1 since ξ is the primitive p-th root of unity.

We now show that Ãp is a generalized permutation matrix, which we then use

to find its characteristic polynomial and eigenvalues. Consider two columns of Ãp

numbered j1, j2 ∈ {0, 1, . . . , p − 1}, such that j1 6= j2. Thus, j1 6≡ j2 mod p and so

qj1 6≡ qj2 mod p. Then considering row numbers i1, i2 ∈ {0, 1, . . . , p − 1} such that

both qj1− i1 (mod p) ≡ 0 and qj2− i2 (mod p) ≡ 0 implies that i1 6= i2. Thus, given

any column, it has a single nonzero entry in a row unique from any other column’s

row with nonzero entry. By a similar argument, we can also show that each row has

a single nonzero element, so Ãp is a generalized permutation matrix.

In order to determine the characteristic polynomial of Ãp, we must know the cycle

structure of the permutation π ∈ Sp associated to Ãp. To determine which entries

of Ãp are contained in a c-cycle of π for some 1 ≤ c ≤ p, consider powers of Ãp.

According to the definition of Ãp in (3.1.24), the only non-zero entry of column j

occurs in row qj (mod p). If we multiply Ãp by itself, the non-zero entry in column

j of [Ãp]
2 will be determined by the position of the non-zero entry in column qj
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(mod p); the only non-zero entry in this column is in row q2j (mod p). It will take

c iterations of Ãp for the non-zero entry in column j to return to row qj (mod p).

Consequently, the condition that a c-cycle belongs to the disjoint cycle decomposition

of the permutation π associated to Ãp is

qcj ≡ j (mod p) , (3.1.25)

for some column number j and some positive integer c.

Now we multiply the entries as defined in (3.1.24) in the columns numbered

j, qj (mod p), q2j (mod p), . . . , qc−1j (mod p) (3.1.26)

to obtain a divisor of the characteristic polynomial of Ãp, in the form of equation

(3.1.10),

[
λc −

(
q−1∑
h=0

(ξj)h

)(
q−1∑
h=0

(ξqj)h

)
· · ·

(
q−1∑
h=0

(ξq
c−1j)h

)]
. (3.1.27)

Every Ãp will contain a 1-cycle associated to the first entry, as qj ≡ j (mod p) for

j = 0, and the non-zero entry in this first entry is always 1+ξ0+(ξ0)2+· · · (ξ0)q−1 = q.

Thus, the first part of the lemma is proved, as the characteristic polynomial of Ãp

will always have a divisor (λ− q).

It remains to show that any other cycle in the permutation associated to Ãp

produces a divisor (λc − 1) of the characteristic polynomial, producing eigenvalues

that are complete sets of c-th roots of unity. Again the divisor will have the form

(3.1.27), and we first show that

[(
q−1∑
h=0

(ξj)h

)(
q−1∑
h=0

(ξqj)h

)
· · ·

(
q−1∑
h=0

(ξq
c−1j)h

)]
=

qc−1∑
h=0

(ξj)h . (3.1.28)

68



Note that if c = 1, then this statement is trivially true, as the left-hand side contains

only the first factor. Assume that (3.1.28) is true for c− 1 with c ≥ 2. Then we know

that

(
q−1∑
h=0

(ξj)h

)(
q−1∑
h=0

(ξqj)h

)
· · ·

(
q−1∑
h=0

(ξq
c−2j)h

)
=

qc−1−1∑
h=0

(ξj)h

 . (3.1.29)

Multiplying both sides of this equation by
(
q−1∑
κ=0

(ξq
c−1j)κ

)
yields q times as many

terms on the right-hand side as were previously there, and the right-hand side reads

q−1∑
κ=0

qc−1−1∑
h=0

ξj(κq
c−1+h) =

q−1∑
κ=0

(κ+1)qc−1−1∑
l=κqc−1

ξjl =

qc−1∑
l=0

ξjl , (3.1.30)

where the change of variables l = κqc−1 + h yields the formula (3.1.28).

It follows from (3.1.25) that (qc − 1)j ≡ 0 (mod p) for all j in a particular cycle

of length c. As ξ is the primitive p-th root of unity, and since p consecutive powers

of a p-th root of unity sum to zero, for j 6= 0,

qc−1∑
h=1

(ξj)h = 0 . (3.1.31)

Thus, the characteristic polynomial has divisors (λc−1) for each cycle of length c ≥ 2

of the permutation π associated to the generalized permutation matrix Ãp. For fixed

points of π, the characteristic polynomial has a divisor (λ− 1), except in the case of

the guaranteed cycle of length one which corresponds to the first column of Ãp and

yields a divisor (λ− q) of the characteristic polynomial.

Combining lemmas 3.1.1 and 3.1.2, we now see that, Ap has no eigenvalues of zero

and therefore, zero is an eigenvalue of AV with multiplicity V − p.
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It is clear that AV (2.5.1) should always have an eigenvalue of q, as the correspond-

ing eigenvector is simply a vector of ones. In addition, this agrees with previous results

[125] for p = 1, as A1 = [q], implying that all other eigenvalues of AV are zero when

p = 1. Thus, ordering the eigenvalues |λ0| ≥ |λ1| ≥ |λ2| ≥ · · · |λV−1| of AV , the

spectral gap of AV is

|λ0| − |λ1| =


q, p = 1

q − 1 otherwise

; (3.1.32)

note that when p 6= 1, λ1 = 1.

Summing the n-th power of each of the roots in a complete set of c-th roots of

unity will result in zero unless n is a multiple of c; if c|n, then

c−1∑
j=0

(e2πij/c)n = c . (3.1.33)

If c 6 |n, let ζ = e2πin/c, and the sum of the n-th power of each of the c-th roots of

unity can be written

Q =
c−1∑
j=0

ζj . (3.1.34)

Note that,

ζQ =
c−1∑
j=0

ζj+1 =
c−1∑
j=0

ζj , (3.1.35)

as ζc = ζ0 = 1. Thus, ζQ = Q and so Q(ζ − 1) = 0. If c 6 |n, then ζ 6= 1 and the sum

of the n-th powers of the roots of unity is zero.
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As a result, we obtain the following corollary to lemmas 3.1.1 and 3.1.2.

Corollary 3.1.1. For a q-nary graph with V = p · qr vertices, let βp,q(c) count the

number of cycles of length c > 1 associated to Ãp. Let βp,q(1) + 1 be the number of

1-cycles associated to Ãp so that βp,q(1) counts the number of 1-cycles, excluding the

1-cycle that yields the eigenvalue q. Then

Tr((AV )n) = qn +
∑
d|n

d · βp,q(d) . (3.1.36)

Proof. The trace of the n-th power of AV is the sum of the n-th powers of the

eigenvalues of AV . As previously stated, the sum of the n-th powers of a complete

set of d-th roots of unity is d if d|n and zero otherwise. Thus, if βp,q(d) 6= 0 and d|n,

then there are βp,q(d) complete sets of d-th roots of unity, and we get a contribution

of d · βp,q(d) to the sum.

In order to count the number of primitive periodic orbits of length n, we consider

powers of the adjacency matrix AV and notice that the trace of (AV )n counts the

number of closed paths of length n on the graph, both primitive and non-primitive.

In particular, letting POp,q(n) denote the number of primitive periodic orbits of length

n,

Tr((AV )n) =
∑
d|n

d · POp,q(d) =
∑
d|n
d6=n

d · POp,q(d)

︸ ︷︷ ︸
number of non-primitive

closed paths

+ n · POp,q(n)︸ ︷︷ ︸
number of primitive

closed paths

, (3.1.37)

where the factors of d and n account for each of the distinct vertices that a closed

path could begin on within each periodic orbit equivalence class.
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Extending the results in [6] for q-nary de Bruijn graphs with V = qr vertices,

we will use the previous results to relate the number of primitive periodic orbits of

length n on a q-nary graph with V = p · qr vertices to the number of q-nary Lyndon

words of length n. To do so, we first notice that there are a total of qn words of

length n over a q-nary alphabet. Words of length n can be Lyndon words, rotations

of Lyndon words, repetitions of shorter Lyndon words, or rotations of repetitions of

shorter Lyndon words. If a word of length n is not a repetition of a shorter word,

i.e., a Lyndon word or a rotation of a Lyndon word, then there are n members of its

equivalence class by rotation. If a word of length n is a repetition of a shorter word

of length d, where d|n, then there are d members of its equivalence class by rotation.

Thus, we have the following classic result on counting words [93], which is similar in

form to corollary 3.1.1 and equation (3.1.37).

Lemma 3.1.3.

∑
d|n

d · Lq(d) = qn (3.1.38)

Now we can put these results together to obtain a theorem that precisely counts

the number of primitive periodic orbits of length n in terms of Lyndon words of length

n and the numbers of cycles of length n associated to Ãp.

Theorem 3.1.1. For a q-nary graph with V = p·qr vertices, the number of primitive

periodic orbits of length n is POp,q(n) = Lq(n) + βp,q(n). Hence, for n ≥ p, we have

POp,q(n) = Lq(n).
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Proof. First, note that for βp,q(1) ≥ 0,

POp,q(1) = Tr(AV ) = q + βp,q(1) = Lq(1) + βp,q(1). (3.1.39)

Let n be a prime. Then by corollary 3.1.1 and lemma 3.1.3, with (3.1.37) and

(3.1.39) applied,

POp,q(1) + nPOp,q(n) = Tr((AV )n) (3.1.40)

= qn + βp,q(1) + nβp,q(n) (3.1.41)

= Lq(1) + nLq(n) + βp,q(1) + nβp,q(n) , (3.1.42)

so POp,q(n) = Lq(n).

Now let n be a product of m ≥ 2 primes and assume that the result holds for all

divisors d of n that are a product of less than m primes. Then by (3.1.37), corollary

3.1.1, and lemma 3.1.3,

∑
d|n

d · POp,q(d) = Tr((AV )n) =
∑
d|n

d · [Lq(d) + βp,q(d)] , (3.1.43)

and the result follows by induction on m.

It is important to note that the theorem agrees with the previously known result

[6] that when p = 1, POq(n) = Lq(n), which was easy to see when we looked at

labeling periodic orbits with words as in section 3.1.1. If p = 1, then A1 = [q] and

Tr((Aqr)
n) = qn, so

∑
d|n

d · POp,q(d) =
∑
d|n

d · Lq(d) , (3.1.44)

and by induction on the number of divisors of n, the result follows.
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3.2 Counting Primitive Pseudo Orbits

Now that we can count primitive periodic orbits, we wish to count primitive pseudo

orbits. Once we know the numbers of primitive pseudo orbits of each length, we will

be able to calculate the diagonal contribution to the variance in (2.5.12) for q-nary

graphs with V = p ·qr vertices. When p = 1, we have a de Bruijn graph, and counting

the numbers of primitive pseudo orbits of a particular length is equivalent to counting

the number of strictly decreasing standard Lyndon word decompositions of words of

the same length, which was accomplished with a generating function argument by

Band, Harrison, and Sepanski in [6]. As we will use similar arguments to extend the

result when p > 1, we will first examine their argument.

3.2.1 Primitive Pseudo Orbits on q-nary de Bruijn Graphs

Recall first the Chen-Fox-Lyndon theorem [34, 93] from section 2.4.

Theorem 3.2.1. Every non-empty word w can be uniquely formed by concatenat-

ing a non-increasing sequence of Lyndon words in lexicographic order. So

w = l1l2 . . . lk , (3.2.1)

where l1, . . . , lk ∈ L and li D li+1, for i = 1, . . . , k− 1, using the lexicographic order.

For de Bruijn graphs, the decomposition of any q-nary word of length n cor-

responds to a pseudo orbit on the graph, as each Lyndon word in the decomposi-

tion corresponds uniquely to a primitive periodic orbit. As a primitive pseudo orbit

does not contain any repeated periodic orbits, primitive pseudo orbits correspond
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to words with strictly decreasing Lyndon word decompositions, where wi . wi+1 for

i = 1, . . . , n− 1, as then no Lyndon words are repeated in the decomposition.

For example, the standard decomposition of the binary words of length four are

shown below, with parentheses indicating the decomposition. The words with strictly

decreasing decomposition are marked in bold font.

(0)(0)(0)(0) (0001) (001)(0) (0011)

(01)(0)(0) (01)(01) (011)(0) (0111)

(1)(0)(0)(0) (1)(001) (1)(01)(0) (1)(011)

(1)(1)(0)(0) (1)(1)(01) (1)(1)(1)(0) (1)(1)(1)(1)

In [6], it is shown that the number of strictly decreasing decompositions of q-nary

words of length n where n ≥ 2 is given by

Strq(n) = (q − 1)qn−1 . (3.2.2)

In the preceding example, it is clear that Str2(4) = 8. To obtain (3.2.2), a generating

function is defined for the number of strictly decreasing standard decompositions,

P (x) =
∞∑
n=0

Strq(n) · xn , (3.2.3)

where Strq(0) = 1 and Strq(1) = q. This generating function is equivalently

P (x) =
∞∏
l=1

(1 + xl)Lq(l) , (3.2.4)

as the set of all words with strictly decreasing decompositions is in bijection with the

set of all subsets of Lyndon words (without repetition). It is clear that any collection

of unique Lyndon words can be ordered lexicographically and will correspond to a
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word with strictly decreasing decomposition. The Chen-Fox-Lyndon theorem shows

that any word with a strictly decreasing decomposition will correspond uniquely to a

subset of Lyndon words without repetition.

To obtain (3.2.2), it is enough to show that P = F on some interval, where

F (x) =
qx2 − 1

qx− 1
= 1 + qx+

∞∑
n=2

(q − 1)qn−1xn . (3.2.5)

This is accomplished in [6] by noting that P (0) = F (0) = 1 and showing that

d

dx
logP =

d

dx
logF (3.2.6)

on the interval (−1, 1).

3.2.2 Primitive Pseudo Orbits on General q-nary Graphs

When V = p · qr with p > 1 and n is sufficiently large, we will show that the

number of primitive pseudo orbits on the graph, PPOp,q(n), is a constant multiple of

the p = 1 result for de Bruijn graphs, PPOq(n) = (q − 1)qn−1. We will also derive

this p, q-dependent constant from the cycles of the permutation associated to Ãp.

We define a generating function for the numbers of primitive pseudo orbits of

length n,

P (x) =
∞∑
n=0

PPOp,q(n) · xn , (3.2.7)

where PPOp,q(0) = 1 and PPOp,q(1) = q. Then we note that we can use an equivalent

form of P (x),
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P (x) =
∞∏
l=1

(1 + xl)POp,q(l) , (3.2.8)

as the set of primitive pseudo orbits of length n is precisely the set of subsets of

primitive periodic orbits without repetition. But we know from theorem 3.1.1 how

POp,q(n) relates to Lq(n); precisely, for any βp,q(n) 6= 0 associated to Ãp, there are

βp,q(n) additional primitive periodic orbits (beyond the number of Lyndon words) of

length n on the graph. Therefore, we can write

P (x) = (1 + xc1) · · · (1 + xcα)
∞∏
l=1

(1 + xl)Lq(l) , (3.2.9)

where each cj is the length of a cycle of Ãp (excluding the cycle of length one corre-

sponding to λ0 = q), α is the total number of these cycles, and

α∑
j=1

cj = p− 1 . (3.2.10)

Note that these cj need not differ from one another.

Theorem 3.2.2. For a q-nary graph with V = p·qr vertices, the number of primitive

pseudo orbits of length n > p is

PPOp,q(n) = Cp,q · (q − 1)qn−1 , (3.2.11)

where

Cp,q =


1 when p = 1 ,

α∏
j=1

(1 + q−cj) when p > 1 .

(3.2.12)

Furthermore, Cp,q is bounded above by a constant that grows at most linearly in p,
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1 ≤ Cp,q ≤
(

1 +
1

q

)
(p− 1) . (3.2.13)

Proof. First we note that

(1 + xc)F (x) = (1 + xc)

[
1 + qx+

∞∑
n=2

(q − 1)qn−1xn

]
(3.2.14)

=

[
1 + qx+

∞∑
n=2

(q − 1)qn−1xn

]
+

[
xc + qxc+1 +

∞∑
n=2

(q − 1)qn−1xn+c

]
.

Changing variables with m = n+ c, we then have

(1 + xc)F (x) = 1 + qx+ · · ·+ [(q − 1)qc−1 + 1]xc + [(q − 1)qc + q]xc+1 (3.2.15)

+
∑

m=c+2

[(q − 1)qm−1 + (q − 1)qm−c−1]xm

= 1 + qx+ · · ·+ [(q − 1)qc−1 + 1]xc + [(q − 1)qc + q]xc+1 (3.2.16)

+ (1 + q−c)
∑
n=c+2

(q − 1)qn−1xn .

Assume there is a single cycle associated to Ãp; note that its length must be p−1.

Then

P (x) = (1 + xp−1)F (x) (3.2.17)

= 1 + qx+ · · ·+ [(q − 1)qp−2 + 1]xp−1 + [(q − 1)qp−1 + q]xp (3.2.18)

+ (1 + q−(p−1))
∞∑

n=p+1

(q − 1)qn−1xn .

Thus, for n > p, Cp,q = (1 + q−(p−1)) and the number of primitive pseudo orbits of

length n is PPOp,q(n) = (1 + q−(p−1))(q − 1)qn−1.

Now let us assume that the cycle lengths associated to Ãp are c1, c2, . . . , cα and,

using (3.2.10),
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2 +
α−1∑
j=1

cj = 2 + [(p− 1)− cα] = p− cα + 1 , (3.2.19)

we have the following inductive hypothesis,

α−1∏
j=1

(1 + xcj)F (x) =

p−cα∑
n=0

Cnx
n +

α−1∏
j=1

(1 + q−cj)

[
∞∑

n=p−cα+1

(q − 1)qn−1xn

]
, (3.2.20)

where Cn are the coefficients of xn for n = 0, 1, . . . , p− cα. Multiplying both sides by

(1 + xcα), we find that powers of x that are at least p+ 1 are given by

α−1∏
j=1

(1 + q−cj)

[
∞∑

n=p+1

(q − 1)qn−1xn +
∞∑

n=p−cα+1

(q − 1)qn−1xn+cα

]
, (3.2.21)

where a change of variables in the second sum, m = n + cα, results in powers of x

that are at least p+ 1 being given by

α−1∏
j=1

(1 + q−cj)

[
∞∑

n=p+1

(q − 1)qn−1(1 + q−cα)xn

]
, (3.2.22)

which demonstrates the result in (3.2.12).

To see that Cp,q is bounded as in (3.2.13), note that the lower bound is obtained

when p = 1. As all the cycle lengths add to p − 1 (3.2.10), the greatest number of

cycles that could be associated to Ãp would be p−1, and then each would have length

c = 1, yielding the upper bound for Cp,q.

3.3 The Diagonal Contribution to the Variance of the Coefficients of a q-nary
Quantum Graph’s Characteristic Polynomial

The previous result for the number of primitive pseudo orbits now enables us to

find the diagonal contribution to 〈|an|2〉k for any q-nary graph with V = p ·qr vertices.
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Recall that the variance of the coefficients of the graph’s characteristic polynomial

(2.2.47) is given by a sum over pairs of primitive pseudo orbits of the same topological

and metric lengths. The primary contribution to the variance will be the diagonal

contribution, which pairs each primitive pseudo orbit with itself.

Corollary 3.3.1. For a q-nary graph with V = p · qr vertices, the diagonal contri-

bution to the variance of the coefficients of Fζ(k) over k is

〈|an|2〉diag = Cp,q ·
(
q − 1

q

)
, (3.3.1)

for p < n < B − p with Cp,q as defined in (3.2.12).

Proof. As in (2.5.12), the diagonal contribution is given by

〈|an|2〉diag =

(
1

q

)n
· PPOp,q(n) , (3.3.2)

so we need only know the number of primitive pseudo orbits of length n. By theorem

3.2.2,

〈|an|2〉diag =

(
1

q

)n
Cp,q · (q − 1)qn−1 , (3.3.3)

which produces the result.

We have now used the results on counting primitive periodic and primitive pseudo

orbits on q-nary graphs to obtain the diagonal contribution to (2.2.47). As in [6], when

V = qr, Cp,q = 1 and

〈|an|2〉diag =
q − 1

q
. (3.3.4)
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3.4 Examples

Here we consider examples of graphs for which the diagonal contribution to the

variance of the graph’s characteristic polynomial’s coefficients (2.2.47) is computed.

Example 3.4.1. If we consider a binary graph with V = 3·2r vertices, the permuta-

tion π associated to Ã3 has the expected fixed point associated to λ = 2 and a 2-cycle

associated to the primitive roots of unity 1, -1. Thus, PO3,2(n) = L2(n) when n 6= 2

and PO3,2(2) = L2(2) + 1. As a result, C3,2 = 1 + 2−2 = 5/4 and 〈|an|2〉diag = 5/8. �

Example 3.4.2. As a second example, let a binary graph have V = 5 · 2r vertices.

Then the permutation π associated to Ã5 has the fixed point associated with the

eigenvalue λ = 2 and a 4-cycle associated to the primitive fourth roots of unity. Then

PO5,2(n) = L2(n) when n 6= 4 and PO5,2(4) = L2(4)+1. Thus, C5,2 = 1+2−4 = 17/16

and 〈|an|2〉diag = 17/32. �

Example 3.4.3. Now consider a ternary graph with V = 2 · 3r vertices. The

permutation π associated to Ã2 has the fixed point associated with λ = 3 and an

additional fixed point associated with λ = 1. Therefore, PO2,3(n) = L3(n) for n ≥ 2

and PO2,3(1) = L3(1) + 1. As a result, C2,3 = 1 + 3−1 = 4/3 and 〈|an|2〉diag = 8/9. �

Example 3.4.4. As a final example, consider a ternary graph with V = 5 · 3r

vertices. The permutation π associated to Ã5 has the fixed point corresponding

to λ = 3 and 4-cycle associated to the primitive fourth roots of unity. Therefore,
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PO5,3(n) = L3(n) for n 6= 4 and PO5,3(4) = L3(4) + 1. As a result, C5,3 = 1 + 3−4 =

82/81 and 〈|an|2〉diag = 164/243. �

3.5 Conclusions

In [126], Tanner investigates the autocorrelation function of a quantum graph’s

spectral determinant after averaging the function over an ensemble of quantum graphs

that preserves the underlying classical dynamics. This autocorrelation function can

be written in terms of the generating function of the square moduli of the secular

equation’s coefficients. The square moduli of the secular equation’s coefficients is

precisely the 〈|an|2〉k (2.2.47), as F1(k) (2.2.19) corresponds to the secular equation

(2.2.18). Obtaining this generating function is split into determining the permanent

of a matrix and then considering non-diagonal contributions. The permanent can be

replaced by a similar formula that corresponds to periodic orbits on the graph. He

shows for which coefficients the diagonal contribution (approximated by this periodic

orbit formula) is expected to be the variance of those coefficients and gives a closed

form for the diagonal contribution. As an example, he numerically computes the

square moduli of the secular equation’s coefficients for the family of binary graphs

with V = 3 · 2r vertices for several values of r, comparing his results for the diagonal

contribution of 0.625 from both the matrix permanent and the periodic orbit formula.

He finds that, as predicted, the variance of these coefficients numerically approaches

the diagonal contribution for all but the first two coefficients (and the last two, due

to symmetry) in the semiclassical limit of an increasing sequence of graphs.
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Our diagonal contribution computation for the family of binary graphs with

V = 3 · 2r matches Tanner’s diagonal and numerical results. As our calculations

for the number of primitive pseudo orbits are valid for n > p, we expect that 〈|an|2〉k

approaches 〈|an|2〉diag for large n and r, with increasing r corresponding to the semi-

classical limit for quantum graphs. This will be shown for binary graphs in Chapter

Four and investigated for general q-nary graphs in Chapter Five. However, the way

in which this is approached is new.

In standard calculations of spectral statistics such as the form factor, pairs of orbits

of the same length are shown to contribute to different orders of a series expansion

of the form factor. In [19, 20], Berkolaiko, Schanz, and Whitney show that both

second- and third-order approximations of a series expansion of the form factor for a

time-reversal invariant quantum graph are zero. As we expect that in the semiclassical

limit, the variance of the graph’s characteristic polynomial’s coefficients will approach

the diagonal contribution, it is reasonable to expect that the off-diagonal contributions

will be zero. While we do show that 〈|an|2〉k approaches 〈|an|2〉diag for large n and r

for families of binary graphs with V = p · 2r vertices and fixed p in Chapter Four,

summing the off-diagonal contributions alone will not be the manner in which we carry

out the calculation. Rather, we will consider for every individual primitive pseudo

orbit its set of possible partners with the same topological and metric lengths and

sum the contributions of all these pairs. For most types of primitive pseudo orbits,

we will find that these contributions to the variance (2.2.47) are collectively zero; it

is important to note that each of these contributions will contain a diagonal pair.
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Preliminary results for calculating the variance (2.2.47) for general q-nary graphs will

be addressed in Chapter Five.
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CHAPTER FOUR

Computing the Variance of the Coefficients for a Binary Quantum Graph’s
Characteristic Polynomial

In this chapter, we evaluate the entire double sum for the variance of the co-

efficients of the characteristic polynomial (2.2.47) for binary graphs, for which we

previously obtained the diagonal contribution (3.3.1). In order to evaluate the sum

(2.2.47), we must produce all primitive pseudo orbit pairs that have the same topo-

logical and metric lengths. To do so, we consider primitive pseudo orbits that contain

repeated sequences of vertices and/or bonds and reorder the bonds to generate part-

ners of the same length.

We will show that for a family of binary graphs with the number of vertices V =

p · 2r, in the limit r →∞ the variance agrees with the result obtained by evaluating

the diagonal contribution. Thus, we may think of the off-diagonal contributions as

vanishing in the limit of large graphs. However, to compute the variance we will

not separate the diagonal and off-diagonal contributions, but rather consider the

contribution to (2.2.47) from each primitive pseudo orbit along with all its potential

partners.

4.1 Self-Intersections in Pseudo Orbits on Binary Graphs

As the set of bond lengths of the graph is assumed to be incommensurate, the

only way in which to construct primitive pseudo orbit pairs with the same topological

and metric lengths is to use the same bonds in each pseudo orbit. The most obvious
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way to do this is to take diagonal pairs in which γ̄′ = γ̄, as in Chapter Three.

To construct pairs of primitive pseudo orbits with the same topological and metric

lengths such that γ̄′ 6= γ̄, we consider primitive pseudo orbits with a self-intersection

(or encounter). Here we will define what it means for a primitive pseudo orbit to have

a single self-intersection; multiple self-intersections will be defined in section 4.1.4.

Consider a primitive pseudo orbit γ̄ = {γ1, γ2, . . . , γmγ̄}. For 1 ≤ j ≤ mγ̄, each γj

is a primitive periodic orbit and can be written as a sequence of vertices and bonds.

A self-intersection, or an `-encounter, is a subsequence of repeated vertices and/or

bonds v0, v1, . . . , vñ−1, vñ that appears exactly ` times in the primitive periodic orbit

sequences of γ̄ such that the vertices s1, s2, . . . s` immediately preceding v0 and the

vertices f1, f2, . . . , f` immediately following vñ are distinct for some pair, i.e., si 6= sj

for some 1 ≤ i < j ≤ ` and fi′ 6= fj′ for some 1 ≤ i′ < j′ ≤ `. Note that if ` ≥ 3, there

will only be two distinct choices of incoming vertices labeled s1, s2, . . . , s` and only

two distinct choices of outgoing vertices labeled f1, f2, . . . , f`, due to the structure of a

binary graph. The subsequence v0, v1, . . . , vñ−1, vñ is referred to as an `-encounter as it

is repeated ` times in γ̄. It is unnecessary that all repetitions of the encounter sequence

are contained in a single periodic orbit of γ̄. For γ̄ to contain a single self-intersection,

however, the periodic orbits not containing the encounter sequence cannot collectively

contain any vertex more than once or intersect the orbits containing the encounter

sequence; otherwise, there would be more than one self-intersection. The encounter

length is the number of bonds ñ in the self-intersection; if ñ = 0, then the `-encounter

is a single vertex. We call the sequences of vertices and bonds that begin at vñ and

end at v0 links.

86



In the following sections, we classify primitive pseudo orbits based on their num-

ber of self-intersections, the number of times each self-intersection is repeated, and

whether the intersections are of length zero, as pairs generated from primitive pseudo

orbits with only short 2-encounters contribute differently to the variance (2.2.47).

4.1.1 A Single 2-Encounter

Consider the simplest self-intersection, a single 2-encounter. Denote a primitive

pseudo orbit by γ̄ = {γ1, γ2, . . . , γmγ̄}. Each primitive periodic orbit γj ∈ γ̄ for

1 ≤ j ≤ mγ̄ can be written as a sequence of vertices. The subsequence of vertices

v0, v1, . . . , vñ−1, vñ is a 2-encounter if it appears exactly twice in the primitive periodic

orbit sequences of γ̄ such that the two vertices s1 and s2 immediately preceding v0 are

distinct, s1 6= s2, and such that the two vertices f1 and f2 immediately following vñ

are distinct, f1 6= f2; moreover, no subsequence of the 2-encounter is repeated three

or more times. Note that, it is possible that ñ = 0 so that the 2-encounter is a single

vertex. The two sequences of vertices that begin at vñ and end at v0 are the called

links, and must not be identical, else the pseudo orbit is not primitive. If γ̄ contains

a single 2-encounter, then no vertices except those on the encounter will be repeated

in the collection of primitive pseudo orbits.

Example 4.1.1. In figure 4.1, portions of graphs are shown, from which we will

construct examples of primitive pseudo orbits that have a single 2-encounter. Let

γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive pseudo orbit where γ1 is a sequence of vertices

and bonds shown in figure 4.1(a) such that
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(a)

v0

v1

vñ−1

vñ
f1

s1

f2

s2

link1 link2

(b)

v

f1

s1

f2

s2

link1 link2

Figure 4.1. Portions of graphs from which a primitive pseudo orbit containing a
figure eight orbit can be constructed. Primitive pseudo orbits will contain
self-intersections (a) along ñ > 0 bonds or (b) where the intersection is a single
vertex v, so ñ = 0.

γ1 = (s1, v0, v1, . . . , vñ−1, vñ, f2, . . . , s2, v0, v1, . . . , vñ−1, vñ, f1, . . . , s1) . (4.1.1)

The primitive periodic orbits γ2, . . . , γmγ̄ do not contain any of the vertices in γ1, and

they collectively contain no vertex more than once. Note here that γ1 is a figure eight

orbit as described in [19, 121]. Then the vertex sequence v0, v1, . . . , vñ−1, vñ, which

includes the bonds (v0, v1), (v1, v2), . . . , (vñ−1, vñ) is a 2-encounter; the encounter

length is the number of bonds ñ. The self-intersection is entered from each of the two

distinct vertices s1, s2; after entering from s1 (or s2) the orbit exits the self-intersection

to vertex f2 (or f1, respectively) with each exit vertex f1, f2 distinct. We refer to the

remaining sequences as links ; in 4.1(a)

link1 = (vñ, f1, . . . , s1, v0) , (4.1.2)

and

link2 = (vñ, f2, . . . , s2, v0) . (4.1.3)
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Then the primitive pseudo orbit γ̄′ = {γ′, γ′′, γ2, . . . , γmγ̄} where

γ′ = (s1, v0, v1, . . . , vñ−1, vñ, f1, . . . , s1) , (4.1.4)

and

γ′′ = (s2, v0, v1, . . . , vñ−1, vñ, f2, . . . , s2) , (4.1.5)

has the same topological and metric lengths as γ̄, as each of γ′ and γ′′ contains one

link of the figure eight in γ1 and one traversal of the encounter sequence. Thus in both

γ̄ and γ̄′ all bonds are used the same number of times and the encounter sequence is

used twice in total. Note that, this is the only way to reorder the sequence in such

a way as to pair γ̄ with a partner γ̄′ 6= γ̄ of the same topological and metric lengths,

and that mγ̄′ = mγ̄ + 1, as we have split one orbit in γ̄ into two orbits in γ̄′. �

Example 4.1.2. We also note a similar example, in which the primitive pseudo

orbit γ̄ = {γ1, γ2, . . . , γmγ̄} contains the vertex sequence v0, v1, . . . , vñ−1, vñ as a 2-

encounter with

γ1 = (s1, v0, v1, . . . , vñ−1, vñ, f1, . . . , s1) , (4.1.6)

and

γ2 = (s2, v0, v1, . . . , vñ−1, vñ, f2, . . . , s2) , (4.1.7)

such that the primitive periodic orbits γ3, . . . , γmγ̄ do not contain any of the vertices

in γ1 or γ2, and they collectively contain no vertex more than once. Then the only

way to pair γ̄ with a primitive pseudo orbit γ̄′ 6= γ̄ such that Bγ̄′ = Bγ̄ and Lγ̄′ = Lγ̄

is to join γ1, γ2 at the self-intersection and obtain
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γ = (s1, v0, v1, . . . , vñ−1, vñ, f2, . . . , s2, v0, v1, . . . , vñ−1, vñ, f1, . . . , s1) , (4.1.8)

with γ̄′ = {γ, γ3, . . . , γmγ̄}. Note mγ̄′ = mγ̄ − 1. �

Both of the previous examples also make sense in the context that the encounter

occurs at a single vertex, i.e., ñ = 0. If we replace the encounter sequence of vertices,

v0, v1, . . . , vñ−1, vñ, with the single vertex v and use the previous orbit sequences as

they appear in figure 4.1(b), then these are examples of 2-encounters of length zero.

4.1.2 A Single `-Encounter with Distinct Links

Now we consider a single `-encounter contained in a primitive pseudo orbit with

distinct links on a binary graph when ` ≥ 2. Let γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive

pseudo orbit. Each primitive periodic orbit γj ∈ γ̄ for 1 ≤ j ≤ mγ̄ can be written as a

sequence of vertices. The subsequence of vertices v0, v1, . . . , vñ−1, vñ is an `-encounter

if it appears exactly ` times in the primitive periodic orbit sequences of γ̄ such that

the vertices s1, s2, . . . s` immediately preceding v0 and the vertices f1, f2, . . . , f` im-

mediately following vñ are distinct for some pair, i.e., si 6= sj for some 1 ≤ i < j ≤ `

and fi′ 6= fj′ for some 1 ≤ i′ < j′ ≤ `; moreover, no subsequence of the `-encounter is

repeated `+1 or more times. Here we note that for a binary graph there are only two

incoming and two outgoing bonds at each vertex, so there will necessarily be repeated

vertices adjacent to the self-intersection when ` ≥ 3; we do not include these as part

of the self-intersection as they are not repeated the maximum number of times `.

However, the collection of primitive periodic orbits that do not contain the encounter

sequence contains no vertex more than once. Note that it is possible that ñ = 0 so
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that the `-encounter is a single vertex. Each of the ` sequences of vertices that begin

at vñ and end at v0 is a link ; here we require that no two link sequences are the same.

Example 4.1.3. Let γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive pseudo orbit where, let-

ting enc = (v0, v1, . . . , vñ−1, vñ) be the encounter sequence, the primitive periodic

orbit γ1 is given by

γ1 = (s2, enc, f1, . . . , s1, enc, f2, f
′
2 . . . , s

′
2, s2, enc, f2, f

′′
2 , . . . , s

′′
2, s2) , (4.1.9)

a sequence of vertices and bonds corresponding to figure 4.2 such that none of these

vertices are repeated in γ2, . . . , γmγ̄ and they collectively contain no vertex more than

once. Twice the bond (s2, v0) appears at the beginning of the encounter sequence and

twice the bond (vñ, f2) appears at the end of the encounter sequence. This is simply

necessitated by the structure of a binary graph, and we do not count either bond as

part of the 3-encounter along enc = (v0, v1, . . . , vñ−1, vñ), as neither is repeated thrice.

It follows that the links in this example are given by

link1 = (vñ, f1, . . . , s1, v0) , (4.1.10)

link2 = (vñ, f2, f
′
2, . . . , s

′
2, s2, v0) , (4.1.11)

link3 = (vñ, f2, f
′′
2 , . . . , s

′′
2, s2, v0) . (4.1.12)

In generating partner pseudo orbits for γ̄ that have the same topological and metric

lengths, there are exactly six partner orbits; these correspond to the elements of the

permutation group S3. To see this, we note that a traversal of the encounter sequence

is always followed by traversal of a link and vice versa. Thus, we will notate a periodic

orbit as simply a sequence of links and assume that the encounter sequence follows
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v0

v1

vñ−1

vñ
f1

s1

f2

s2

f ′′2

f ′2

s′2

s′′2

link1 link2 link3

Figure 4.2. A portion of a graph from which a primitive pseudo orbit with an
3-encounter with three distinct links can be constructed.

each link. Then γ1, as stated in (4.1.9), is equivalent to γ1 = (link1, link2, link3) and

corresponds to the permutation of links (1 2 3). The possible partner pseudo orbits

of γ̄ are listed in table 4.1. �

Table 4.1. All of the primitive periodic orbits that could replace
γ1 = (link1, link2, link3) to produce a partner pseudo orbit γ̄′ in example 4.1.3.

Orbit(s) replacing γ1 in γ̄′ Permutation mγ̄′

None (1 2 3) mγ̄′ = mγ̄

γ = (link1, link3, link2) (1 3 2) mγ̄′ = mγ̄

γ′ = (link1, link2), γ′′ = (link3) (1 2) mγ̄′ = mγ̄ + 1
γ′ = (link1, link3), γ′′ = (link2) (1 3) mγ̄′ = mγ̄ + 1
γ′ = (link2, link3), γ′′ = (link1) (2 3) mγ̄′ = mγ̄ + 1

γ′ = (link1), γ′′ = (link2), γ′′′ = (link3) e mγ̄′ = mγ̄ + 2

Note that, this notation can also be applied to the single 2-encounter case in

examples 4.1.1 and 4.1.2 using elements of S2. In example 4.1.1, the permutation

(1 2) corresponds to γ1 ∈ γ̄ and the only partners of γ̄ are γ̄′ = γ̄ and γ̄′ such that
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γ1 is replaced with γ′, γ′′ corresponding to the identity permutation e. In example

4.1.2, the permutations are reversed; γ̄ corresponds to the identity permutation, and

the only partners of γ̄ are itself and the primitive pseudo orbit γ̄′ such that γ1 and

γ2 are replaced by γ with corresponding permutation (1 2). In general, a primitive

pseudo orbit γ̄ on a binary graph with a single `-encounter and ` distinct links can be

represented by a member of the permutation group S`. Thus, all the possible partner

orbits γ̄′ correspond to elements of S`.

4.1.3 A Single `-Encounter with Repeated Links, ` ≥ 3

Now we consider primitive pseudo orbits γ̄ containing a single `-encounter, ` ≥ 3,

where one or more links are repeated in γ̄. The partner pseudo orbits are no longer

in bijection with the elements of S`, as permuting sets of repeated links does not

produce unique pseudo orbits. To deal with this, we will consider a generalization of

permutations of a set of link indices to Lyndon tuples over a multiset of link indices.

To see the necessity of this, consider the following example.

Example 4.1.4. Consider the portion of a graph shown in figure 4.1(b) and let

γ̄ = {γ1, γ2, . . . , γmγ̄} be such that

γ1 = (s2, v, f1, . . . , s1, v, f1, . . . , s1, v, f2, . . . , s2) , (4.1.13)

or in link notation, γ1 = (link1, link1, link2). The primitive periodic orbits that do not

contain the encounter sequence collectively contain no vertex more than once. While

this pseudo orbit contains three links, the partner primitive pseudo orbits no longer

correspond to the elements of S3, as permuting the first two links leaves the orbit
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unchanged. In fact, the only partners of γ̄ are γ̄′ = γ̄ and γ̄′ = {γ′, γ′′, γ2, . . . , γmγ̄}

where γ′ = (link1) and γ′′ = (link1, link2). �

Proposition 2.4.2 of Faal [54] regarding Lyndon tuples over a multiset allows us

to conclude that the numbers of primitive pseudo orbits with odd and even numbers

of periodic orbits are the same. For background and the setup of multisets, Lyndon

tuples, and even/odd `-words, see section 2.4. This will be important in the remainder

of the chapter where we compute the variance of the coefficients of a binary graph’s

characteristic polynomial via a sum over pairs of primitive pseudo orbits.

We will reserve the proof of proposition 2.4.2 until we can prove a weighted version,

theorem 4.1.1, that implies proposition 2.4.2. The proof of the weighted sum theorem

will involve a map that will be useful to us later in computing contributions of orbit

pairs to (2.2.47). It is interesting to note that proposition 2.4.2 was originally stated

as a coin arrangements lemma and proven by Sherman [119]. If we have a fixed

collection of ` objects of which m1 are of the first kind, m2 are of a second kind,

up through mµ of the µ-th kind, and b`,k is the number of “exhaustive unordered

arrangements of these symbols into k disjoint, nonempty, circularly ordered sets such

that no two circular orders are the same and none are periodic” [54, 119], then we

have the identity

∑̀
k=1

(−1)kb`,k = 0 (4.1.14)

when ` > 1. In the case that the multiplicity of each object is one, b`,k counts the

number of elements of S` with k disjoint cycles (these are Stirling numbers), and
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implies that the number of permutations with an even number of cycles is the same

as the number of permutations with an odd number of cycles, as noted in section

4.1.2.

Example 4.1.5. Let M = [12, 22, 3]. Note that there are
5!

2! · 2!
= 30 words over

this multiset. The words that have a strictly decreasing Lyndon factorization are

shown with their corresponding Lyndon tuple in table 4.2. Note that there are six

Table 4.2. The 5-words over the multiset M = [12, 22, 3] that have strictly
decreasing Lyndon factorizations with their corresponding Lyndon tuples.

Even 5-words Lyndon tuples Odd 5-words Lyndon tuples
11223 (11223) 12231 (1, 1223)
11232 (11232) 12321 (1, 1232)
11322 (11322) 13221 (1, 1322)
12123 (12123) 12312 (12, 123)
12132 (12132) 13212 (12, 132)
12213 (12213) 13122 (122, 13)
21231 (1, 123, 2) 21123 (1123, 2)
21312 (12, 13, 2) 21213 (1213, 2)
21321 (1, 132, 2) 21132 (1132, 2)
23121 (1, 12, 23) 23112 (112, 23)
31221 (1, 122, 3) 31122 (1122, 3)
32112 (112, 2, 3) 32121 (1, 12, 2, 3)

words not included here. The words 22113, 22131, 22311, 23211, 31212, and 32211

have decreasing Lyndon decompositions that are not strictly decreasing. Moreover,

we note that 22131 and 23211 have decompositions with an even number of Lyndon

words - (1, 13, 2, 2) and (1, 1, 2, 23) - while the remainder have decompositions

with odd numbers of Lyndon words. It is interesting to note that the parity result in

proposition 2.4.2 is only stating that the subset of words with an associated Lyndon
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tuple, in which Lyndon words are not repeated, has equal numbers of words with odd

and even Lyndon index. �

In order to prove proposition 2.4.2, we first recall some well-known properties of

Lyndon words; for preliminary details, see section 2.4. Recall from section 2.4 that

a Lyndon word w is by definition strictly smaller lexicographically than any of its

rotations, so for any factorization w = uv with u, v non-empty, uv / vu. A suffix of

the non-empty word w is any word v such that w = uv. If u, v are both non-empty,

then v is a proper suffix of w. If w ∈ L\A, a Lyndon word that is not a single letter,

and w = rs such that s is of maximal length with r, s ∈ L, then the pair (r, s) is the

standard factorization of w.

The following lemma comes from Faal [54].

Lemma 4.1.1. If w = rs is a Lyndon word with r, s ∈ L and r / s with

a) r ∈ A, then (r, s) is the standard factorization of w.

b) r not a single letter, then let the standard factorization of r be (r1, s1). If s/ s1,

then (r, s) is the standard factorization of w.

Proof.

a) If r ∈ A and s ∈ L, then s is clearly of maximal length.

b) Let the standard factorization of r be given by (r1, s1) and s / s1. Suppose,

for the sake of contradiction, that s is not of maximal length. Then r = r′1s
′
1

such that r′1 ∈ L and s′1s ∈ L. By proposition 2.4.1, s′1 / s. If s1 E s′1, then
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s1 / s, a contradiction. So let s1 . s
′
1. We know that r = r1s1 = r′1s

′
1 where

s1 is the proper suffix of maximum length such that both r1, s1 ∈ L; therefore,

s′1 is a proper suffix of s1. But as s1 is a Lyndon word, s1 / s
′
1 by proposition

2.4.1, a contradiction. Thus, s is of maximal length and (r, s) is the standard

factorization of w.

As in [54], we now prove proposition 2.4.2 by proving a weighted generalization.

In particular, we note that the definition of splittable Lyndon words and the mapping

between odd and even Lyndon words that is involved in this proof will be used in

subsequent proofs to compute contributions of pseudo orbit pairs to (2.2.47).

For a word w with an associated Lyndon tuple, tup(w) = (l1, l2, . . . , lk) such that

l1 / l2 / · · ·/ lk, the first Lyndon word l1 in tup(w) is splittable if it is not a single letter

and its standard factorization (r1, s1) satisfies s1 / l2. We define the weight of a letter

a ∈ A to be a formal variable xa. For any Lyndon word l = a1a2 · · · a`, the weight

wt(l) = xa1xa2 · · ·xa` is the product of the weights of its letters. Further, the weight

of the Lyndon tuple tup(w) = (l1, l2, . . . , lk) associated to a word w is the product of

the weights of its Lyndon words,

wt(w) =
k∏
i=1

wt(li) . (4.1.15)

Denote the set of all odd `-words over M by O and the set of even `-words over M

by E. The following theorem generalizes proposition 2.4.2.

97



Theorem 4.1.1. Let A = {1, 2, . . . , µ} be a finite ordered alphabet and

M = [1m1 , 2m2 , . . . , µmµ ] (4.1.16)

be a multiset over A of cardinality ` > 1. The weighted sum of even `-words over M

is the same as the weighted sum of odd `-words over M ,

∑
w∈E

wt(w) =
∑
w∈O

wt(w) . (4.1.17)

Proof. Let w be an `-word with Lyndon tuple tup(w) = (l1, l2, . . . , lk). We consider

two cases depending on whether l1 is splittable.

If l1 is splittable, let the standard factorization of l1 be the pair (r1, s1). Then

there is a mapping f1(w) 7→ w′ such that

tup(w′) = (r1, s1, l2, . . . , lk) . (4.1.18)

Note that tup(w′) is in fact a Lyndon tuple as l1 splittable implies s1 / l2. More-

over, this map is well-defined, weight-preserving, and parity-changing, since wt(l1) =

wt(r1) · wt(s1) and iL(w′) = iL(w)− 1.

If tup(w) is such that l1 is not splittable, then there is a mapping f2(w) 7→ w′

such that

tup(w′) = (l0, l3, . . . , lk) , (4.1.19)

where l0 = l1l2. Note that by proposition 2.4.1, l0 is a Lyndon word, and l0 / l2 / l3

so tup(w′) is a Lyndon tuple. Moreover, this map is well-defined, weight-preserving,

and parity-changing, since wt(l0) = wt(l1) · wt(l2) and iL(w′) = iL(w) + 1.

Thus, every Lyndon tuple associated to an even `-word maps to a unique Lyndon

tuple associated to an odd `-word, and these partial mappings are invertible. There-
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fore, there is a total mapping that is a weight-preserving bijection from E to O, where

for w such that tup(w) = (l1, l2, . . . , lk),

f(w) =


w1 if tup(w1) = f1(tup(w)) when l1 is splittable,

w2 if tup(w2) = f2(tup(w)) when l1 is not splittable.

(4.1.20)

Thus, the weighted sums over E and O are equal.

Of course, if the formal weight associated to each letter is one, this is proposition

2.4.2. We use this result to show that the set of primitive pseudo orbit partners of γ̄

with an associated link set given by multiset M is balanced in terms of the odd/even

parity of the number of primitive periodic orbits contained in each pseudo orbit in

section 4.3.2.

4.1.4 Multiple Encounters

We now consider primitive pseudo orbits with multiple self-intersections. Let

γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive pseudo orbit; each primitive periodic orbit γj ∈ γ̄

for 1 ≤ j ≤ mγ̄ can be written as a sequence of vertices. The subsequence of vertices

v0i, v1i, . . . , vñ−1i, vñi is a self-intersection or an `i-encounter if it appears exactly `i

times in the primitive periodic orbit sequences of γ̄ such that the vertices s1i, s2i, . . . s`i

immediately preceding v0i and the vertices f1i, f2i, . . . , f`i immediately following vñi

are distinct for some pair, i.e., shi 6= sj i for some 1 ≤ hi < ji ≤ `i and fh′i 6= fj′i

for some 1 ≤ h′i < j′i ≤ `i, for all i = 1, . . . , N . Note that it is possible that ñi = 0

so that the `i-encounter is a single vertex. Then γ̄ has N self-intersections of types
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~̀ = (`1, `2, . . . , `N). The collection of primitive periodic orbits that do not contain

the encounter sequence contains no vertex more than once.

At the i-th encounter there are `i sequences of vertices that begin at vñi and each

of these ends at v0j for some j = 1, . . . , N ; there are also `i sequences of vertices at

that end at v0i and began at vñj for some j = 1, . . . , N . These sequences do not

contain encounter sequences, and we refer to them as outgoing and incoming links at

the encounter, respectively. In the previous cases of having a single encounter, each

link was necessarily both incoming and outgoing to the single encounter (and thus

we did not distinguish them); in the case of multiple encounters, a link sequence need

not necessarily be both at the i-th encounter. As in section 4.1.1, if `i = 2 for some

encounter, then the two incoming links must be distinct (similarly for the outgoing

links), else the encounter is not of maximum length. However, if `i ≥ 3 for some

encounter, then there will be at least two distinct incoming links and at least two

distinct outgoing links, but links may be used more than once.

In order to obtain a primitive pseudo orbit with multiple self-intersections, it

may be that γ̄ contains multiple periodic orbits such as those described in examples

4.1.1, 4.1.2, or 4.1.3 that do not overlap one another. It is also possible to construct

primitive pseudo orbits with multiple self-intersections from the portions of graphs

drawn in figure 4.3, as in the following examples.

Example 4.1.6. Let γ̄ = {γ1, γ2, . . . , γmγ̄} where γ1 = (link1, link2, link3, link4) is

an orbit on the portion of the graph pictured in figure 4.3(a), and no other orbit in

γ̄ repeats vertices contained in γ1 or has encounters. Then γ̄ has two 2-encounters of
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v v′

(a)

link1

link2

link4

link3 v v′

(b)

link1

link2

link3

link4

Figure 4.3. Portions of graphs from which primitive pseudo orbits with multiple
encounters can be constructed.

length zero at the vertices v and v′. Note that link1 is both incoming and outgoing

at the 2-encounter v, while link2 is outgoing at v and incoming at the 2-encounter

v′; link4 is outgoing at v′ and incoming at v while link3 is incoming and outgoing at

v′. �

Example 4.1.7. Let γ̄ = {γ1, γ2, . . . , γmγ̄} where γ1 = (link1, link2, link3, link4) is

an orbit on the portion of the graph pictured in figure 4.3(b), and no other orbit in

γ̄ repeats vertices contained in γ1 or has encounters. Then γ̄ has two 2-encounters

of length zero at the vertices v and v′. Note that link1 and link3 are outgoing at the

2-encounter v and incoming at the 2-encounter v′, while link2 and link4 are outgoing

at v′ and incoming at v. �

Example 4.1.8. Let γ̄ = {γ1, γ2, . . . , γmγ̄} where γ1 = (link1, link2, link3, link3, link4)

is an orbit on the portion of the graph pictured in figure 4.3(a), and no other orbit

101



in γ̄ repeats vertices contained in γ1 or has encounters. Then γ̄ has a 2-encounter of

length zero at the vertex v and a 3-encounter of length zero at the vertex v′. �

When a primitive pseudo orbit contained a single encounter, we generated its part-

ner pseudo orbits by reordering links. We will do something similar here; however, we

need to rearrange the order in which outgoing links are traversed following incoming

links at each self-intersection in order to generate all partner orbits. To do so, we will

use what we call connection diagrams at each encounter.

We will denote each of the incoming links by a point on the left-hand side of

the diagram and each of the outgoing links by a point on the right-hand side of the

diagram. Each primitive pseudo orbit γ̄ has a unique arrangement of which outgoing

links follow which incoming links at each of the i = 1, . . . , N encounters. In the case

where each of the `i incoming links and each of the `i outgoing links are distinct, this

arrangement is given by a permutation ρi ∈ S`i ,

ρi =

(
1 2 . . . `i

ρi(1) ρi(2) . . . ρi(`i)

)
. (4.1.21)

In the case of a single encounter with distinct links, this permutation also denotes

the order in which link1, link2, . . . , link`i are traversed, as before, since there are no

other encounters at which the ordering of vertex sequences can change. For multiple

encounters, this permutation will only tell us the ordering of incoming and outgoing

links at a particular encounter; in particular, the incoming j-th link is followed by

the outgoing ρi(j)-th link, for j = 1, . . . , `i. See figure 4.4 for an example of how,

at a 3-encounter, each possible connection diagram corresponds to a member of the

symmetric group S3.
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3

1′
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3′

Figure 4.4. All the possible connection diagrams at a 3-encounter with distinct
incoming links 1, 2, 3, and distinct outgoing links 1’, 2’, 3’.

Now consider the case of the i-th encounter of type `i where some of the incoming

and/or outgoing links are repeated. We consider two multisets at the i-th encounter,

M in
i = [1m

in
1 , 2m

in
2 , . . . , µm

in
µ ] and M out

i = [(1′)m
out
1 , (2′)m

out
2 , . . . , (µ′)

mout
µ′ ]. Then we

consider connection diagrams ρ̂i at each encounter from the set Ŝ`i of ways to uniquely

rearrange connections between M in
i and M out

i ,

ρ̂i =

(
1 . . . 1 2 . . . 2 µ . . . µ

ρ̂i(1) . . . ρ̂i(1) ρ̂i(2) . . . ρ̂i(2) ρ̂i(µ) . . . ρ̂i(µ)

)
, (4.1.22)

where there are min
j copies of each incoming link index in the upper row for j =

1, . . . , µ. When µ = µ′ = `i, then Ŝ`i is the symmetric group S`i . Otherwise, the size

of the set is |Ŝ`i | < `i!. See figure 4.5 for an example of all the possible connection

diagrams at a 4-encounter with repeated links such that M in
i = [12, 2, 3] and M out

i =

[13, 2].To any pseudo orbit there is an associated vector ~̀= (`1, `2, . . . , `N) of encounter

types and a vector ~ρ = (ρ̂1, ρ̂2, . . . , ρ̂N) of connection diagrams that determine the

1

1

2

3

1′

1′

1′

2′

1

1

2

3

1′

1′

1′

2′

1

1

2

3

1′

1′

1′

2′

Figure 4.5. All the possible connection diagrams at a 4-encounter with one repeated
incoming link in M in

i = [12, 2, 3] and one repeated outgoing link in M out
i = [13, 2].
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connections between incoming and outgoing links at each encounter. Note that,

as the vector ~ρ always depends on the vector ~̀, we will not explicitly denote this

relationship. Given vectors ~̀ and ~ρ associated to a sequence of vertices and bonds,

we let the unique primitive pseudo orbit determined by them be denoted γ̄(~ρ). To

generate all the partner orbits of a particular primitive pseudo orbit γ̄(~ρ), we will

need to consider all possible connection diagrams at each of the N encounters that

result in primitive pseudo orbits γ̄′(~ρ) as ~ρ ranges over all connection diagrams.

4.2 An Alternative Formulation of the Variance Sum

As derived in (2.2.47), the variance of the coefficients of the graph’s characteristic

polynomial can be written as a finite sum over primitive pseudo orbit pairs where

both orbits in the pair have topological length n and the same metric length,

〈|an|2〉k =
∑
{γ̄,γ̄′}:

Bγ̄=Bγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′δLγ̄ ,Lγ̄′ . (4.2.1)

Given a primitive pseudo orbit γ̄ of topological length n, this pseudo orbit γ̄ has a

well-defined number of self-intersections 0 ≤ N ≤ n. If N = n, each vertex is a

self-intersection, but no self-intersections contain bonds. While this type of orbit will

appear infrequently, if ever, on q-nary graphs, it is an obvious upper bound on the

number of self-intersections on a primitive pseudo orbit. We will denote the set of

primitive pseudo orbits with topological length n and N self-intersections by PnN .

Further, we let the set Pγ̄ be the set of all primitive pseudo orbits γ̄′ such that

Bγ̄′ = Bγ̄ and Lγ̄′ = Lγ̄. As we assume the bond lengths of our graph are incommen-

surate, a pseudo orbit γ̄′ must traverse the same bonds as γ̄ the same number of times
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in order for γ̄′ to belong to Pγ̄. This implies that for γ̄ ∈ PnN , also Pγ̄ ⊂ PnN . We

denote the contribution of pairs including a given primitive pseudo orbit γ̄ to 〈|an|2〉k

by

Cγ̄ =
∑
{γ̄,γ̄′}
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ ; (4.2.2)

then

〈|an|2〉k =
n∑

N=0

∑
γ̄∈PnN

Cγ̄ . (4.2.3)

Note that, the sum (2.2.47) is a double sum over the primitive pseudo orbits γ̄ and

γ̄′, where terms in the sum can only be non-zero if the topological and metric lengths

of the two pseudo orbits are equal. Moreover, the sets PnN are disjoint for differing

values of n and/or N . Thus, this alternative formulation of the sum accounts for each

pair of primitive pseudo orbits with the same topological and metric lengths exactly

once.

4.3 Computing Cγ̄

It remains to find the contribution Cγ̄ (4.2.2) defined in section 4.2 for each primi-

tive pseudo orbit γ̄. For a fixed length n, we classify primitive pseudo orbits based on

the number of self-intersections N , the number of times ~̀= (`1, `2, . . . , `N) that each

self-intersection is repeated, and the number N0 of these self-intersections of length

zero. The vertex scattering matrix at each vertex of the graph is the 2 × 2 Discrete

Fourier Transform matrix (2.5.11),

σ(v) =
1√
2

(
1 1
1 −1

)
; (4.3.1)
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note that all entries of this matrix are real-valued. We will then proceed to show that

for most types of primitive pseudo orbits, the contribution Cγ̄ is zero. For the two

cases with nonzero contribution, primitive pseudo orbits without self-intersections and

primitive pseudo orbits with only 2-encounters of length zero, we will compute these

contributions and asymptotically determine the size of the sets of pseudo orbits of

these types to show that the variance of the binary graph’s characteristic polynomial’s

coefficients agrees with the diagonal approximation of Chapter Three in the limit of

large graphs.

4.3.1 A Single `-Encounter with ` ≥ 2 of Positive Length and ` Distinct Links

First we consider the contribution Cγ̄ of a primitive pseudo orbit which has N = 1

self-intersections, the encounter length ñ > 0 is positive, and where the links adjacent

to the encounter are distinct. We have already shown that the primitive pseudo orbit

γ̄ with an `-encounter corresponds uniquely to some permutation in S`, and that

the partner pseudo orbits γ̄′ ∈ Pγ̄ are in bijection with the elements of S`. Moreover,

recall from section 2.3 that the numbers of odd and even permutations in S` are equal.

Here, we will show the sign of the permutation depends on the number of primitive

periodic orbits in the primitive pseudo orbit, while the scattering amplitude product

Aγ̄Āγ̄′ is the same for all partners γ̄′ of γ̄, and consequently the contribution is Cγ̄ = 0.

Let ñ > 0, as in examples 4.1.1, 4.1.2, and 4.1.3, and consider the stability ampli-

tudes Aγ̄ and Aγ̄′ . We let Alinki denote the product of scattering amplitudes at the

vertices on linki between vñ and v0, for i = 1, 2, . . . , `. Let Aenc denote the product

of scattering amplitudes at the vertices along the self-intersection between v0 and vñ.
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We note that γ̄ will pick up a scattering coefficient from each of the incoming vertices

s1, . . . , s` to v1 at v0 and a scattering coefficient from vñ−1 to each of the outgoing

vertices f1, . . . , f` at vñ. Thus, the stability amplitude Aγ̄ is

Aγ̄ =

 mγ̄∏
h=1

γh has no encounter

Aγh

A`enc

(∏̀
i=1

Alinkiσ
(v0)
v1,si

σ
(vñ)
fi,vñ−1

)
. (4.3.2)

Permuting the order in which links are traversed to obtain partner orbits γ̄′ does

not change any of these scattering coefficients, so Aγ̄′ = Aγ̄. Then as the scattering

amplitudes are given by the real-valued 2 × 2 Discrete Fourier Transform matrix

(4.3.1),

Aγ̄Āγ̄′ =

(
1

2

)n
. (4.3.3)

Thus, the contribution (4.2.2) of all pairs associated to a fixed primitive pseudo

orbit γ̄ of this type is

Cγ̄ =

(
1

2

)n ∑
{γ̄,γ̄′}
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′ . (4.3.4)

We note that (−1)mγ̄ is fixed, so we need only know the number of primitive periodic

orbits in each possible partner of γ̄.

In section 4.1.2, we saw that for a particular γ̄ with an `-encounter, each partner

orbit γ̄′ ∈ Pγ̄ could be associated to a unique element of S`. We remind the reader

that the sign of a permutation is related to the number of cycles in its disjoint cycle

decomposition by proposition 2.3.1. The following corollary relates the sign of a

permutation to the number of primitive periodic orbits in a primitive pseudo orbit.
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Corollary 4.3.1. Let γ̄ be a primitive pseudo orbit with an `-encounter and `

distinct links, and σγ̄ ∈ S` its associated permutation. Then

(−1)mγ̄ = sgn(σγ̄) · (−1)` . (4.3.5)

Proof. Note that the number of primitive periodic orbits mγ̄ in γ̄ corresponds to the

total number of cycles T (σγ̄) in σγ̄. So sgn(σγ̄) = (−1)mγ̄+` and the result follows.

Thus, we have the following contribution to (4.2.3).

Lemma 4.3.1. For any primitive pseudo orbit γ̄ containing a single `-encounter of

positive length for ` ≥ 2 with ` distinct links, Cγ̄ = 0.

Proof. From (4.3.4) and corollary 4.3.1,

Cγ̄ =

(
1

2

)n
sgn(σγ̄)

∑
σγ̄′∈S`

sgn(σγ̄′) ; (4.3.6)

as the number of odd and even permutations in S` is the same, the result follows.

4.3.2 A Single `-Encounter with ` ≥ 3 of Positive Length with Repeated Links

As in section 4.3.1, we note that a primitive pseudo orbit with a single `-encounter

for ` ≥ 3 of positive length with repeated links also has Aγ̄ = Āγ̄′ , and thus, Aγ̄Āγ̄′ =

2−n. As in section 4.1.3, the set of links defines a multisetM . To each primitive pseudo

orbit with repeated links, there is an associated Lyndon tuple tup(w) = (l1, l2, . . . , lk)

over a word w of length ` from the set of Lyndon tuples L(M) over M . Each Lyndon

word li in tup(w) uniquely corresponds to a primitive periodic orbit in γ̄, so the

number of periodic orbits in γ̄ is the number of Lyndon words in tup(w). As the
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Lyndon index iL(w) = `− k, we have

mγ̄ = `− iL(w) . (4.3.7)

Lemma 4.3.2. For any primitive pseudo orbit γ̄ containing a single `-encounter of

positive length for ` ≥ 3 with repeated links, Cγ̄ = 0.

Proof. From proposition 2.4.2 and (4.3.7),

Cγ̄ =

(
1

2

)n
(−1)2`+iL(w)

∑
tup(w′)∈L(M)

(−1)iL(w′) = 0 . (4.3.8)

4.3.3 A Single `-Encounter with ` ≥ 3 of Length Zero

Now we consider a primitive pseudo orbit γ̄ with a single `-encounter where ` ≥ 3

and the length of the encounter is zero. We treat the cases when the links are distinct

and when there are repeated links simultaneously by describing the contribution using

the multiset notation. When all the links are distinct, each element of the multiset

has multiplicity one. This case is treated separately from the case where the self-

intersection has positive length, as here the product of stability amplitudes depends

on how many times the single negative scattering coefficient at v (see (4.3.1)) appears

in Aγ̄Āγ̄′ . To show that Cγ̄ = 0, we will show that any Lyndon tuple over M with

even (odd) Lyndon index uniquely maps to a Lyndon tuple over M with odd (even)

Lyndon index such that the corresponding pseudo orbits have the same number of

negative scattering coefficients associated to them.
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Consider figure 4.6, where we zoom in on the encounter vertex v and the adjacent

vertices. We have previously labeled the adjacent vertices by s1, . . . , s` and f1, . . . , f`,

but noted that the incoming and outgoing sets of vertices can have only two distinct

members on a binary graph; for simplicity, here we will label the incoming vertices

by a and b and the outgoing vertices by c and d. In order for v to be traversed by γ̄

v

a

b

c

d

`− I

I

`− J

J

Figure 4.6. An `-encounter at vertex v with the incoming and outgoing bonds at v.
Links are not pictured, but each link begins at either vertex c or d and ends at
either vertex a or b.

a total of ` times, γ̄ must enter through bonds (a, v) and (b, v) a total of ` times, with

each bond used at least once (otherwise the encounter is not of length zero). Without

loss of generality, the diagram can be labeled so that the bond (b, v) is traversed I

times and the bond (a, v) is traversed ` − I times. Similarly, we label the diagram

such that bond (v, d) is used J times and the bond (v, c) is therefore used `−J times.

We will also assume that `− J ≥ 2, as ` ≥ 3.

Without loss of generality, we will assign the scattering coefficient σ(v)
c,b to be the

single negative scattering coefficient in (4.3.1). Thus, to compute Cγ̄, we need to

consider the number of times that a link ending with the bond (b, v) is followed by a
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link beginning with the bond (v, c) in γ̄ and each of its partner orbits. For a primitive

pseudo orbit γ̄, we assign the link labels such that the multiset C ⊂M of links ending

at the bond (v, c) consists of the first ν labels for ν < µ,

C = [1m1 , 2m2 , . . . , νmν : linki begins with bond (v, c) for 1 ≤ i ≤ ν] . (4.3.9)

As `− J ≥ 2, so also |C| ≥ 2. Then let B ⊂M be the multiset such that

B = [imi : linki ends with bond (b, v)] . (4.3.10)

Note that if linki is repeated mi times in γ̄, then i has multiplicity mi in M , and

thus has multiplicity mi in the set B or C in which it is present. It is possible for the

intersection of multisets B and C to be non-empty.

Here we will rely on the mapping f (4.1.20) between odd and even Lyndon tuples

defined in the proof of theorem 4.1.1.

Proposition 4.3.1. Let M = [1m1 , 2m2 , . . . , µmµ ] be a multiset where mi > 0 for

all i = 1, . . . , µ, and let B,C ⊂ M be defined as above. Let T : L(M) → N0 be

a function that counts the number of times a label from the set B is followed by a

label from the set C (cyclically) in the Lyndon words of some Lyndon tuple tup(w).

If f(w) = w′, then T (tup(w)) = T (tup(w′)).

Proof. LetM,B, and C be multisets as described and tup(w) = (l1, l2, . . . , lk) ∈ L(M)

for w = lk . . . l2l1 the strictly decreasing Lyndon decomposition, so l1 / l2 / · · · / lk.

Note that l1 must begin with the letter one.

If l1 is not a splittable Lyndon word, either l1 is a single letter or its standard

factorization (r1, s1) does not satisfy s1 / l2. Suppose l1 ∈ A; then l2 begins with an
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element of C, as |C| ≥ 2. Under the map f the first two words of the Lyndon tuple are

combined into l0 = l1l2 and the letter l1 is now followed by an element of C, the first

letter of l2, and the last letter of l2 is now followed (cyclically) by the letter l1, which

is also an element of C. Then for Lyndon tuples tup(w) and tup(w′) = (l0, l3, . . . , lk)

such that f(w) = w′, also T (tup(w)) = T (tup(w′)).

Suppose l1 6∈ A does not split because it has standard factorization (r1, s1) with

s1 . l2. We claim that s1 . l2 implies that l2 must begin with an element of C. If l1

contains a single element of C, then as |C| ≥ 2 and l1 / l2 / · · ·/ lk with each a Lyndon

word, l2 begins with an element of C. Otherwise, l1 contains multiple elements of C;

as s1 is the minimum proper suffix lexicographically of l1 by proposition 2.4.2, it must

also begin with an element of C. As l2 / s1 by assumption, l2 must also begin with an

element of C. As l1 is not splittable, the map f combines l1 and l2 into l0 = l1l2; so

f(w) = w′ for tup(w) and tup(w′) = (l0, l3, . . . , lk) and also T (tup(w)) = T (tup(w′)).

If l1 is splittable, then |l1| ≥ 2 and l1 has standard factorization (r1, s1) such

that s1 / l2. We claim that in order for l1 to split, it must contain at least two

elements of C. For the sake of contradiction, assume that l1 has only one element of

C, which must be the leading one. Then the least proper suffix s1 of l1 begins with

an element that is greater than all elements of C. But as |C| ≥ 2, l2 must begin with

an element of C, and s1 . l2, a contradiction. As l1 contains at least two elements

of C, consider its standard factorization (r1, s1); as s1 is the least proper suffix of l1

lexicographically by proposition 2.4.2, both r1 and s1 begin with elements of C. Then

for Lyndon tuples tup(w) and tup(w′) = (r1, s1, l2, . . . , lk) such that f(w) = w′, also

T (tup(w)) = T (tup(w′)).
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If a primitive pseudo orbit γ̄ corresponds to the Lyndon tuple tup(w), then

T (tup(w)) is the number of times that the scattering coefficient σ(v)
c,b appears in Aγ̄.

We have shown that the partner orbits of a primitive pseudo orbit γ̄ are given by all

the Lyndon tuples in L(M). As a result of the labeling of links in proposition 4.3.1,

the map f between odd and even Lyndon tuples does not change the number of times

any letter in a Lyndon tuple (in particular, any letter in the multiset B) is followed

(cyclically) by a letter in the multiset C. Thus, for any even (odd) Lyndon tuple

tup(w) associated to a partner orbit γ̄′ ∈ Pγ̄, the map f produces an odd (even) Lyn-

don tuple tup(w′) such that T (tup(w)) = T (tup(w′)). Therefore, the number of times

that σ(v)
c,b appears in Āγ̄′ is associated to the same number of primitive pseudo orbits

γ̄′ with mγ̄′ even as with mγ̄′ odd. As a result, we have the following contribution to

(4.2.3).

Lemma 4.3.3. For any primitive pseudo orbit γ̄ containing a single `-encounter of

length zero for ` ≥ 3, Cγ̄ = 0.

Proof. Let γ̄ be a primitive pseudo orbit containing a single `-encounter of length

zero for ` ≥ 3, where γ̄ corresponds to some Lyndon tuple tup(w) ∈ L(M). The

partner pseudo orbits γ̄′ ∈ Pγ̄ correspond to all the Lyndon tuples tup(w′) ∈ L(M).

Consider the number of times T (tup(w′)) that a tuple tup(w′) has a letter from the

set B followed (cyclically) by a letter from the set C in its Lyndon words. The value of

T (tup(w′)) must be from the set {I−min{I, J}, I−min{I, J}+1, . . . ,min{I, `−J}}.

We let the index α range over this set, and consider the elements of L(M) by subsets

with the same value α. Then by proposition 4.3.1 and the correspondence between
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a Lyndon tuple’s Lyndon index and the number of periodic orbits in a pseudo orbit

(4.3.7),

Cγ̄ =

(
1

2

)n
(−1)2`+T (tup(w))+iL(w)

min{I,`−J}∑
α=I−min{I,J}

(−1)α
∑

tup(w′)∈L(M):
T (tup(w′))=α

(−1)iL(w′) = 0 .

(4.3.11)

4.3.4 Pairs of Primitive Pseudo Orbits with Multiple Encounters

As in section 4.1.4, a primitive pseudo orbit γ̄ contains a finite number of en-

counters N of types ~̀= (`1, `2, . . . , `N) with a connection vector ~ρ = (ρ1, ρ2, . . . , ρN)

that shows the order in which the incoming links are followed by outgoing links at

each of the N encounters in γ̄. Here we show that if any of these self-intersections

is of positive length, or of length zero at an `i-encounter for `i ≥ 3, then the total

contribution of γ̄ paired with all its possible partners is zero. Here we assume that

at least one encounter is of either of these types; the case where all N encounters are

2-encounters of length zero will be covered in section 4.3.5.

To see this, consider the contribution Cγ̄ (4.2.2) to the variance of the coefficients

of the graph’s characteristic polynomial (4.2.3). For a particular primitive pseudo

orbit γ̄, we wish to generate all the partner primitive pseudo orbits γ̄′ ∈ Pγ̄. Here we

will do so by considering each γ̄′(~ρ) that is primitive as the elements of ~ρ range over

all the connection diagrams at each encounter, ρ̂i ∈ Ŝ`i for i = 1, . . . , N . Then the

contribution Cγ̄ is given by

Cγ̄ =
∑

ρ̂N∈Ŝ`N

· · ·
∑
ρ̂1∈Ŝ`1

(−1)mγ̄+mγ̄′(~ρ)Aγ̄Āγ̄′(~ρ) . (4.3.12)
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Lemma 4.3.4. For any primitive pseudo orbit γ̄ containing N self-intersections of

types ~̀ = (`1, `2, . . . , `N) such that at least one self-intersection is either of positive

length or is an `i-encounter of length zero with `i ≥ 3, Cγ̄ = 0.

Proof. As there are a finite number of self-intersections, possible connection diagrams

at each encounter can be summed over in any order. Without loss of generality, let

the first encounter be of either positive length or of type `1 ≥ 3 with length zero. We

wish to first compute the innermost sum,

∑
ρ̂1∈Ŝ`1

(−1)mγ̄+mγ̄′(~ρ)Aγ̄Āγ̄′(~ρ) , (4.3.13)

when all other connection diagrams ρ̂i ∈ Ŝ`i are fixed for i = 2, . . . , N in the partner

pseudo orbit γ̄′(~ρ).

However, this is precisely a sum that we have computed in lemma 4.3.1, 4.3.2, or

4.3.3. Having fixed the internal connection diagrams at all but the first encounter,

reconnecting incoming and outgoing links at the first encounter is equivalent to con-

sidering all orderings of links that both begin and end at that first encounter, as in

sections 4.3.1, 4.3.2, and 4.3.3. So to sum over the primitive pseudo orbit partners

of γ̄ in (4.3.13), we consider permutations or Lyndon tuples (as appropriate) of links

(rather than connection diagrams) that intersect at the first encounter. Hence, the

sum in (4.3.13) is zero and Cγ̄ = 0.
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4.3.5 Pairs of Primitive Pseudo Orbits with One or More 2-Encounters of Length
Zero

Lastly, we consider the contribution Cγ̄ to (4.2.3) from pairs of primitive pseudo

orbits that have any number N of 2-encounters all of length zero, so N = N0. These

are the only types of pseudo orbits with encounters that contribute nonzero terms

Cγ̄ to (4.2.3). We have already covered the contributions of 2-encounters of positive

length in section 4.3.1; however, in computing the contributions of 2-encounters of

any length simultaneously, we obtain a Vandermonde-type identity that we have not

been able to find in the literature. See Appendix A for details.

Let us consider the stability amplitude associated to each primitive pseudo orbit

in a pair with a single 2-encounter at a vertex in the pseudo orbit γ̄. The only

two examples of a pseudo orbit with such a single 2-encounter are those described

in examples 4.1.1 and 4.1.2, letting ñ = 0. First, we will show that the product of

stability amplitudes is the same for each example.

We let Alinki denote the product of scattering amplitudes at the vertices on linki

where each link begins and ends at the encounter vertex v, for i = 1, 2. If we let γ̄

and γ̄′ be as in example 4.1.1, then

Aγ1 = Alink1Alink2σ
(v)
f1,s1

σ
(v)
f2,s2

. (4.3.14)

However, for γ̄′, the reordering of the links at v necessarily changes the scattering

coefficients, and

Aγ′Aγ′′ = Alink1Alink2σ
(v)
f1,s2

σ
(v)
f2,s1

. (4.3.15)
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Considering a single self-intersection in {γ̄, γ̄′}, all other orbits in γ̄ are unchanged in

γ̄′, and therefore have identical stability amplitudes. So,

Aγ̄Āγ̄′ =

(
mγ̄∏
h=2

|Aγh|2
)
|Alink1|2|Alink2 |2σ

(v)
f1,s1

σ
(v)
f2,s2

σ̄
(v)
f1,s2

σ̄
(v)
f2,s1

. (4.3.16)

Note that if we consider a pseudo orbit γ̄ with a single 2-encounter as in example

4.1.2, then

Aγ1Aγ2 = Alink1Alink2σ
(v)
f1,s2

σ
(v)
f2,s1

, (4.3.17)

and

Aγ = Alink1Alink2σ
(v)
f1,s1

σ
(v)
f2,s2

, (4.3.18)

so Aγ̄Aγ̄′ is the same for examples 4.1.1 and 4.1.2.

Now, as s1 6= s2 and f1 6= f2, all four entries of the binary scattering matrix (4.3.1)

appear in the product of the scattering amplitudes,

σ
(v)
f1,s1

σ
(v)
f2,s2

σ̄
(v)
f1,s2

σ̄
(v)
f2,s1

= −
(

1

2

)2

. (4.3.19)

Note that all scattering amplitudes are real-valued when q = 2, and that ñ = 0

implies

Aγ̄Āγ̄′ = −
(

1

2

)n
. (4.3.20)

Now consider primitive pseudo orbits with N 2-encounters of length zero and

N = N0. There is an associated vector ~ρ of connection diagrams (permutations

ρi ∈ S2 for i = 1, . . . , N) that determine how the two incoming links are followed

by the two outgoing links at the i-th encounter in γ̄, as in section 4.3.4. We then

consider the partner pseudo orbits γ̄′(~ρ) generated by considering all possible vectors
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~ρ with ρi ∈ S2 for i = 1, . . . , N . For any self-intersection v at which the permutation

from S2 is the same in both γ̄ and γ̄′(~ρ), the scattering coefficients from (4.3.1) at the

self-intersection v are the same in each of the pseudo orbits and the product is 1/4.

However, at the i-th self-intersection v for which ρi = (1 2) in γ̄ but ρi = (1)(2) in

γ̄′(~ρ) (or vice versa), each of the scattering coefficients in σ(v) appears exactly once

in Aγ̄Āγ̄′(~ρ). Thus, if j is the number of 2-encounters of length zero in γ̄ at which the

connection diagram is changed in γ̄′, then

Aγ̄Āγ̄′ = (−1)j
(

1

2

)n
. (4.3.21)

To understand the factor (−1)mγ̄+mγ̄′ in (4.2.2) for any general pair {γ̄, γ̄′} with

N = N0 2-encounters, consider first the particular type of pseudo orbit with N =

N0 = 1 self-intersection. If the self-intersection is contained in a periodic orbit γ ∈ γ̄,

then reordering links at this self-intersection will result in two orbits γ′, γ′′ ∈ γ̄′,

thereby increasing the number of periodic orbits in γ̄′ relative to γ̄; so mγ̄′ = mγ̄ + 1.

If the self-intersection comes from a repeated sequence of vertices where one traversal

is in some γ′ ∈ γ̄ and the second traversal is in γ′′ ∈ γ̄ for γ′ 6= γ′′, then reordering links

at this self-intersection will join the two orbits and decrease the number of periodic

orbits in γ̄′ relative to γ̄; so mγ̄′ = mγ̄ − 1. As there is only one 2-cycle permutation

of the exit vertices, a reordering at a single self-intersection must either increase or

decrease the number of orbits in a pseudo orbit by one, and the value of mγ̄ + mγ̄′

depends on the orbit structure. However, as it suffices to know the parity of −1 for

any structure with j reordered self-intersections, it is enough to recognize that the
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parity of (−1)mγ̄′ is the same as (−1)mγ̄ if γ̄′ was obtained from γ̄ by reordering at an

even number of self-intersections, and the parity of mγ̄′ differs from that of mγ̄ if γ̄′

was obtained from γ̄ by reordering at an odd number of self-intersections. So if j is

the number of 2-encounters at which links are reordered to obtain γ̄′, then

(−1)mγ̄+mγ̄′ = (−1)j . (4.3.22)

Let P̂nN ⊂ PnN be the set of all primitive pseudo orbits of length n with N self-

intersections such that ~̀= (2, . . . , 2). Moreover, let P̂nN=N0
be the subset of P̂nN such

that each 2-encounter has length zero.

Lemma 4.3.5. For any primitive pseudo orbit γ̄ ∈ P̂nN=N0
for N > 0, the contri-

bution of all primitive pseudo orbit pairs {γ̄, γ̄′} to (4.2.3) is

Cγ̄ = 2N ·
(

1

2

)n
. (4.3.23)

Proof. Let γ̄ ∈ P̂nN=N0
and consider partner orbits γ̄′ ∈ Pγ̄. We let the number of

self-intersections at which link connections are rearranged be indexed by j; then

Cγ̄ =
∑
{γ̄,γ̄′}
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ =

(
1

2

)n N∑
j=0

(−1)2j

(
N

j

)
, (4.3.24)

by equations (4.3.21) and (4.3.22), and as there are
(
N
j

)
ways of choosing j self-

intersections to rearrange at a time. Noting the well-known identity [111],

N∑
j=0

(
N

j

)
= 2N , (4.3.25)

the result follows.
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Note that for any pseudo orbit, if the partner pseudo orbit is generated by rear-

ranging at no self-intersections (j = 0), then that particular term belongs also to the

diagonal contribution.

We have now seen that a primitive pseudo orbit containing only 2-encounters of

length zero is the only type of pseudo orbit with self-intersection(s) with a non-zero

contribution Cγ̄ to (4.2.3). Thus, we have the following theorem.

Theorem 4.3.1. The variance of the n-th coefficient of a binary quantum graph’s

characteristic polynomial (4.2.3) is given by the number of primitive pseudo orbits

of length n without self-intersections, and the number of primitive pseudo orbits of

length n with N = N0 > 0 self-intersections that are 2-encounters of length zero,

〈|an|2〉k =
1

2n

(
|Pn0 |+

n∑
N=1

2N · |P̂nN=N0
|

)
. (4.3.26)

Proof. Combining lemmas 4.3.1, 4.3.2, 4.3.3, 4.3.4, and 4.3.5, the result follows.

Theorem 4.3.2. In the limit of long pseudo orbits, the variance 〈|an|2〉k of a binary

graph’s characteristic polynomial is

lim
n→∞
〈|an|2〉k =

Cp,q
2

, (4.3.27)

where Cp,q is as defined in (3.2.12).

Proof. We seek to asymptotically determine the sizes of the relevant sets P̂nN=N0
in

(4.3.26). To have a 2-encounter of length zero, a periodic orbit must pass through

some vertex v twice and subsequently exit on a different bond the second time. The
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probability that the orbit leaves v on a different bond the second time it visits v than

it did the first time is 1/2 and thus, the probability is (1/2)N that a pseudo orbit

with N self-intersections has N = N0. So for n sufficiently large,

|P̂nN=N0
| ≈

(
1

2

)N
· |P̂nN | . (4.3.28)

Let (P̂nN)c = PnN\P̂nN be the set of all primitive pseudo orbits of topological length

n with N self-intersections that have ~̀= (`1, `2, . . . , `N) repetitions, such that at least

one `i ≥ 3. In order to have an `-encounter with ` ≥ 3, after a 2-encounter the pseudo

orbit must return to the first vertex of the encounter sequence v0 for a third time.

There are many ways to make an encounter in a pseudo orbit, as there are n possible

points of intersection, but only one way to make a 2-encounter into a 3-encounter (or

` > 3 encounter) by intersecting at the encounter vertex.

As binary graphs are mixing [124], the probability to land on any vertex after a

large number of steps is B−1. Hence, the number of orbits in (P̂nN)c scales with the

size of PnN asymptotically like 1/B. Thus, for large enough n,

|P̂nN | ≈ |PnN | . (4.3.29)

Substituting (4.3.28) and (4.3.29) in (4.3.26), for n large enough,

〈|an|2〉k ≈
(

1

2

)n n∑
N=0

|PnN | . (4.3.30)

Noting that the sets PnN are pairwise disjoint for differing values of 0 ≤ N ≤ n, and

that the union of them is the set of all primitive pseudo orbits PPOp,2(n) of length

n, we have that, for large n,
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〈|an|2〉k ≈
(

1

2

)n
· PPOp,2(n) = Cp,q · 2n−1

(
1

2

)n
, (4.3.31)

as the number of primitive pseudo orbits PPOp,2(n) is given by (3.2.11).

The characteristic polynomial Fζ(k) has B + 1 coefficients where an = āB−n

(2.2.29), so 〈|an|2〉k = 〈|aB−n|2〉k. The limit n→∞ is thus understood in the context

of simultaneously increasing the number of coefficients. This amounts to increasing

the size of the graph within a particular family by fixing the ratio n/B and letting

r → ∞ in the number of bonds B = p · 2r+1. Moreover, this limit of large graphs

corresponds to the semiclassical limit of increasing eigenvalue density in the quantum

graph setting.

4.4 Examples

To demonstrate our result numerically, we generate a q-nary graph in MatLab of

the appropriate dimensions with each of the B bond lengths uniformly distributed

random numbers in the interval [0.9, 1.1]. We expect the mean spacing of the square

roots of the graph’s eigenvalues k to be approximately the ratio of pi to the total length

of the graph by the Weyl law in lemma 2.2.1. Then we generate the characteristic

polynomial of U(k) = SeikL as in (2.2.28) for each value of k. For the numerics plotted

in figures 4.7, 4.8, and 4.9, the characteristic polynomial was typically evaluated for 50

million mean spacings; for the larger values of B, MatLab was run on Baylor’s Kodiak

high performance computing cluster. However, for B = 160, the simulation appeared

to have converged quickly, so we ended the simulation at 26.5 million mean spacings;
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Figure 4.7. Variance of coefficients of the characteristic polynomial for a family of
binary graphs with p = 1 averaged over a window of 50,000,000 mean spacings. The
plot shows the convergence to the diagonal contribution 〈|an|2〉diag = 1/2.

for B = 192, the simulation ended at 20.9 million mean spacings. For B = 320, the

simulation met the maximum run time on Kodiak after 23.9 million mean spacings.

The variance of the coefficients for the binary family of graphs with V = 2r vertices

and B = 2r+1 bonds is shown in figure 4.7 for r = 3, 4, 5, 6; it approaches 1/2, as r

increases. This value was given by theorem 4.3.2 where C1,2 = 1. To see that these

numerics agree with our formula, consider the following example.

Example 4.4.1. Consider the binary graph with V = 8 vertices and B = 16

bonds, as in figure 1.9. As p = 1, the number of primitive periodic orbits of length

n is exactly the number of binary Lyndon words, PO2(n) = L2(n). Moreover, the

number of primitive pseudo orbits of topological length n is PPO2(n) = 2n−1. These

primitive pseudo orbits can be sorted into sets of those without self-intersections,

and those with only 2-encounters of length zero. Table 4.3 shows the sizes of these
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sets for all applicable numbers of self-intersections for 0 ≤ n ≤ 8. For a detailed

description of how these set sizes are determined using Lyndon words, see Appendix

B. For 9 ≤ n ≤ 16, the Rieman-Siegel formula (2.2.29) applies to the variance. The

formula for the variance (4.3.26) is applied to obtain the variance in the fifth column.

The values of the variance 〈|an|2〉k for a random matrix of bond lengths are averaged

over 50 million mean spacings, as in figure 4.7 for B = 16 and are given in the

penultimate column. The error between our formula and the numerics is shown in

the last column. �

Table 4.3. For a binary graph with V = 8 vertices and B = 16 bonds, the sizes of
the sets of primitive pseudo orbits for which Cγ̄ 6= 0 and the resulting variance for
the first half of the characteristic polynomial’s coefficients are given. The last two
columns give the numerical values of the variance shown in figure 4.7 and the error

between our formula and the numerics.

n |Pn0 | |P̂nN=N0=1| |P̂nN=N0=2| 〈|an|2〉k Numerics Error
0 1 0 0 1 1.000000 0.000000
1 2 0 0 1 0.999991 0.000009
2 2 0 0 1/2 0.499999 0.000001
3 4 0 0 1/2 0.499999 0.000001
4 8 0 0 1/2 0.499999 0.000001
5 8 8 0 3/4 0.749998 0.000002
6 8 20 0 3/4 0.749986 0.000014
7 16 16 8 5/8 0.624989 0.000011
8 16 16 24 9/16 0.562501 -0.000001

The variance of the coefficients for the binary family of graphs with V = 3 · 2r

vertices and B = 3 ·2r+1 bonds is shown in figure 4.8 for r = 1, 2, 3, 4, 5; it approaches

5/8, as r increases. This value was given by theorem 4.3.2 where C3,2 = 5/4, as

calculated in example 3.4.1. To see that these numerics agree with our formula,

consider the following example.
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Figure 4.8. Variance of coefficients of the characteristic polynomial for a family of
binary graphs with p = 3 averaged over a window of 50,000,000 mean spacings. The
plot shows the convergence to the diagonal contribution 〈|an|2〉diag = 5/8.

Example 4.4.2. Consider the binary graph with V = 6 vertices and B = 12

bonds. As p = 3, the number of primitive periodic orbits of length n is exactly

the number of binary Lyndon words, PO3,2(n) = L2(n) for n 6= 2, and PO3,2(2) =

L2(2) + 1. Moreover, the number of primitive pseudo orbits of topological length n is

PPO3,2(n) = 5 · 2n−3 for n > 3. These primitive pseudo orbits can be sorted into sets

of those without self-intersections, and those with only 2-encounters of length zero.

Table 4.3 shows the sizes of these sets for all applicable numbers of self-intersections

for 0 ≤ n ≤ 6. For a detailed description of how these set sizes are determined using

Lyndon words, see Appendix C. For 7 ≤ n ≤ 12, the Rieman-Siegel formula (2.2.29)

applies to the variance. The formula for the variance (4.3.26) is applied to obtain

the variance in the fifth column. The values of the variance 〈|an|2〉k for a random

matrix of bond lengths are averaged over 50 million mean spacings, as in figure 4.8
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for B = 12 and are given in the penultimate column. The error between our formula

and the numerics is shown in the last column. �

Table 4.4. For a binary graph with V = 6 vertices and B = 12 bonds, the sizes of
the sets of primitive pseudo orbits for which Cγ̄ 6= 0 and the resulting variance for
the first half of the characteristic polynomial’s coefficients are given. The last two
columns give the numerical values of the variance shown in figure 4.8 and the error

between our formula and the numerics.

n |Pn0 | |P̂nN=N0=1| 〈|an|2〉k Numerics Error
0 1 0 1 1.000000 0.000000
1 2 0 1 1.000000 0.000000
2 3 0 3/4 0.750001 -0.000001
3 6 0 3/4 0.750003 -0.000003
4 10 4 7/8 0.874999 0.000001
5 8 4 1/2 0.499998 0.000002
6 8 8 3/8 0.374999 0.000001

The variance of the coefficients for the binary family of graphs with V = 5 · 2r

vertices and B = 5 · 2r+1 bonds is shown in figure 4.9 for r = 2, 3, 4, 5; it approaches

17/32, as r increases. This value was given by theorem 4.3.2 where C5,2 = 17/16, as

calculated in example 3.4.2.

4.5 Conclusions

We have evaluated the entire sum (2.2.47) over all pairs of primitive pseudo orbits

of the same topological and metric lengths on quantum binary graphs. This was done

by formulating the pseudo orbit sum (4.2.3) so that each primitive pseudo orbit is

paired with every possible partner. Once we evaluated this sum, we then applied

asymptotic arguments regarding the number of primitive pseudo orbits of particular

types on binary graphs and found that our results agree with both the previous results

of Band-Harrison-Sepanski and Tanner [6, 126], as well as with numerical simulations.
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Figure 4.9. Variance of coefficients of the characteristic polynomial for a family of
binary graphs with p = 5 averaged over a window of 50,000,000 mean spacings. The
plot shows the convergence to the diagonal contribution 〈|an|2〉diag = 17/32.

Our result is very specific, in that the spectral statistic considered is the variance

of the coefficients of a quantum binary graph’s characteristic polynomial, the graph

structure makes the formulation of the variance a finite sum over pseudo orbits, and

that counting all the primitive pseudo orbits is possible on a binary graph. However,

this is the first case in the literature where similar sums over orbit pairs have been

completely evaluated. Typically, after doing partial sums over particular types of

orbits, heuristic arguments justify neglecting the other orbits. Here, the only asymp-

totic argument involves determining the relative sizes of sets of contributing orbits in

the large graph limit, after having evaluated the entire sum for any graph size.

We also point out that as the spectral statistic we evaluated did not involve a series

expansion in some semi-classical parameter, and thus every pair of pseudo orbits

contributed in the same way, we used a cancellation mechanism that is not found

elsewhere in the literature either. This involved considering diagonal and off-diagonal
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pairs together, in order to get contributions of zero from most sets of related pseudo

orbit pairs. Of course, this is not possible for evaluation of all spectral statistics, but

it offers a new approach, when applicable.

As binary graphs lack time-reversal invariance, the appropriate random matrix

statistic to compare to is the variance of the coefficients of the characteristic poly-

nomial over the Gaussian Unitary Ensemble of random matrices, 〈|an|2〉 = 1. Our

asymptotic result, whilst constant, does not agree with the random matrix result.

Rather it should be seen as a case where the universal random matrix result is

multiplied by a system-specific constant. One can also see that if the result that

limn→∞〈|an|2〉k = Cp,q ·
q − 1

q
holds for q-nary graphs generally, then at least for de

Bruijn graphs (where p = 1), a sequence of graphs with increasing connectivity q

and increasing size r → ∞ does approach the random matrix result. Preliminary

investigation of the variance (2.2.47) for general q-nary graphs is the focus of Chapter

Five.
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CHAPTER FIVE

Computing the Variance of the Coefficients for a q-nary Quantum Graph’s
Characteristic Polynomial

In this chapter, we formulate preliminary results for the variance 〈|an|2〉k (2.2.47)

of the coefficients of the characteristic polynomial for q-nary quantum graphs, for

which we previously obtained the diagonal contribution (3.3.1). As in Chapter Four,

to evaluate the whole sum (2.2.47), we must produce primitive pseudo orbit pairs

with distinct members that have the same topological and metric lengths. To do so,

we again consider orbits that contain repeated sequences of vertices and bonds.

We formulate the variance of the coefficients of a quantum q-nary graph’s charac-

teristic polynomial as in (4.2.3), summing contributions of all the partners of a given

primitive pseudo orbit. In the case of binary graphs, the stability amplitude prod-

uct Aγ̄Āγ̄′ = ±2−n was real-valued, and we could factor 2−n out of the contribution

(4.2.2) from a primitive pseudo orbit and each of its partners and deal with only

the corresponding sign for each partner. For q-nary graphs, there is a corresponding

factor of q−n in Aγ̄Āγ̄′ for any primitive pseudo orbit pair {γ̄, γ̄′} of the same topolog-

ical and metric lengths. Thus, the contribution of a primitive pseudo orbit with an

encounter of positive length paired with each of its partners of the same length will

be zero, as in Chapter Four. However, here we must deal with complex scattering

coefficients and we will need to average over the ways to assign these coefficients to
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each of the incoming and outgoing vertices when considering primitive pseudo orbits

with a self-intersection of length zero.

5.1 Self-Intersections in Pseudo Orbits on q-nary Graphs

Again, we wish to construct primitive pseudo orbit pairs {γ̄, γ̄′} with the same

topological and metric lengths such that γ̄′ 6= γ̄. We let self-intersections, `-encounters,

encounter length, and links be defined in the same way as in Chapter Four. We first

consider primitive pseudo orbits with a single encounter.

In Chapter Four we examined contributions to the variance 〈|an|2〉k for binary

graphs from pseudo orbit pairs with at least one self-intersection. To extend the

approach to q-nary graphs we must consider multiple distinct incoming and outgoing

bonds at the ends of the encounter, see figure 5.1. Thus, for q-nary graphs with

q ≥ 3, scattering coefficients from the Discrete Fourier Transform matrix (2.5.11) will

typically be complex. Because the pairs of primitive pseudo orbits with the same

v

0

1

2

q − 1

q − 1

2

1

0

. . .
. . .

Figure 5.1. On a q-nary graph, at self-intersection v, there are q possible choices of
incoming bonds and q possible choices of outgoing bonds.

topological and metric lengths traverse the same bonds the same numbers of times,

the only scattering coefficients that differ between the two pseudo orbits are those

picked up at an encounter of length zero. There are q2 possible scattering coefficients
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at any given vertex; we can use up to `2 of these in the partner pseudo orbits associated

with an `-encounter of length zero. The results in Chapter Four simplify, as q2 = `2

for a single 2-encounter on a binary graph. Additionally, the stipulation that not

all incoming and outgoing bonds are the same at an encounter means that for a 2-

encounter both must be different, and so Aγ̄Āγ̄′ includes all `2 = q2 = 4 possible

scattering coefficients at the encounter vertex precisely once for γ̄′ 6= γ̄. For an

`-encounter on a q-nary graph, this will not typically be the case.

5.1.1 A Single Encounter of Positive Length

For a pseudo orbit with a single encounter, rearranging the order that links are

taken following the encounter produces pseudo orbit partners with the same length,

such that primitive pairs contribute to (4.2.3). As in sections 4.1.2 and 4.1.3, primitive

pseudo orbits with a single `-encounter can be represented by either permutations

from the symmetric group S` if all ` links are distinct, or by Lyndon tuples over a

multiset with size ` if any of the links are repeated. Some examples of primitive

pseudo orbit pairs on a ternary graph follow.

Example 5.1.1. Let γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive pseudo orbit where, let-

ting enc = (v0, v1, . . . , vñ−1, vñ) be the 3-encounter sequence, the primitive periodic

orbit γ1 is given by

γ1 = (s3, enc, f1, . . . , s1, enc, f2, . . . , s2, enc, f3, . . . , s3) , (5.1.1)

a sequence of vertices and bonds corresponding to the portion of a ternary graph in

figure 5.2 such that none of these vertices are repeated in γ2, . . . , γmγ̄ and no vertex
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in γ2, . . . , γmγ̄ is used collectively more than once. It follows that the links in this

v0 v1 vñ−1 vñ

f1

f2

f3

s1

s2

s3

link1

link3

link2

Figure 5.2. A portion of a graph from which a primitive pseudo orbit containing a
3-encounter with distinct links can be constructed.

example are given by

link1 = (vñ, f1, . . . , s1, v0) , (5.1.2)

link2 = (vñ, f2, . . . , s2, v0) , (5.1.3)

link3 = (vñ, f3, . . . , s3, v0) . (5.1.4)

There are exactly six partner pseudo orbits for γ̄ that have the same topological

and metric lengths; these correspond to the elements of the permutation group S3.

We see this by associating to each primitive partner orbit of γ̄ a permutation from

S3, where γ1 = (link1, link2, link3) corresponds to the link permutation (1 2 3), as in

section 4.1.2. Then the possible partner pseudo orbits of γ̄ are the same as those in

table 4.1. �

Example 5.1.2. Let γ̄ = {γ1, γ2, . . . , γmγ̄} be a primitive pseudo orbit where, let-

ting enc = (v0, v1, . . . , vñ−1, vñ) be the 4-encounter sequence, the primitive periodic

orbit γ1 is given by
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γ1 = (s3, enc, f1, . . . , s1, enc, f2, . . . , s2, enc, f3, . . . , s3) , (5.1.5)

and the primitive periodic orbit γ2 is given by

γ2 = (s1, enc, f1, . . . , s1) , (5.1.6)

sequences of vertices and bonds corresponding to the portion of a ternary graph in

figure 5.2 such that none of these vertices are repeated in γ3, . . . , γmγ̄ and no vertex

in γ3, . . . , γmγ̄ is used collectively more than once. It follows that the links in this

example are the same as the links in example 5.1.1, but that here the first link is used

twice.

In generating partner pseudo orbits for γ̄ that have the same topological and

metric lengths, there are exactly ten partner orbits; these correspond to the Lyndon

tuples of the link index multiset M = [12, 2, 3] as shown in table 5.1. The two

Table 5.1. The 4-words over the multiset M = [12, 2, 3] that have strictly decreasing
Lyndon factorizations with their corresponding Lyndon tuples.

Even 4-words Lyndon tuples Odd 4-words Lyndon tuples
1123 (1123) 1231 (1, 123)
1132 (1132) 1312 (12, 13)
1213 (1213) 1321 (1, 132)
2131 (1, 13, 2) 2113 (113, 2)
3121 (1, 12, 3) 3112 (112, 3)

4-words 2311 and 3211 over M are not included, as neither corresponds to a Lyndon

tuple. �

As a result, we have the following lemma concerning contributions of primitive

pseudo orbits with a single encounter of positive length and their partner orbits. The

proof is the same as the proofs of lemmas 4.3.1 and 4.3.2.
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Lemma 5.1.1. For any primitive pseudo orbit γ̄ containing a single `-encounter of

positive length, Cγ̄ = 0.

Proof. As the stability amplitudes of γ̄ and γ̄′ are the same when the encounter

length ñ > 0, the product Aγ̄Āγ̄′ is q−n. Thus, if γ̄ has a single `-encounter with `

distinct links, and corresponds to the permutation σγ̄ ∈ S`, then the partners γ̄′ ∈ Pγ̄

correspond to the elements of S`, and

Cγ̄ =

(
1

q

)n
sgn(σγ̄)

∑
σγ̄′∈S`

sgn(σγ̄′) = 0 . (5.1.7)

If γ̄ has an `-encounter with at least one repeated link for ` ≥ 3, and it corresponds

to the Lyndon tuple tup(w) ∈ L(M), then the partners γ̄′ ∈ Pγ̄ are the elements of

L(M), and

Cγ̄ =

(
1

q

)n
(−1)iL(w)

∑
tup(w′)∈L(M)

(−1)iL(w′) = 0 . (5.1.8)

5.1.2 One or More 2-Encounters with Length Zero

In the binary graph case, we picked a particular primitive pseudo orbit γ̄ with

a single 2-encounter of length zero, assigned a scattering matrix at the encounter

vertex, and found that the way in which we assigned scattering coefficients did not

affect the contribution Cγ̄. This was because q2 = `2 and every bond used adjacent

to the 2-encounter had to be distinct, so all scattering coefficients at the encounter

appeared exactly once in Aγ̄Āγ̄′ when pairing γ̄ with the partner γ̄′ 6= γ̄ of the same

length. Here, the argument of Aγ̄Āγ̄′ depends on the way in which we assign the
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scattering vertex σ(v) at the encounter vertex v. So for any choice of primitive pseudo

orbit γ̄, we will average over the possible ways of assigning scattering coefficients at

v. Since the sum over primitive pseudo orbit pairs (2.2.47) is finite, we can average

over the ways of assigning scattering coefficients at any vertex, then evaluate the sum

using the average value of Aγ̄Āγ̄′ for each primitive pseudo orbit pair. Moreover,

this result would then be evaluated asymptotically in the limit of large coefficients

on large graphs, analogously to theorem 4.3.2. Given an orbit with an encounter of

length zero on a large graph, there will be many other orbits with the same structure

at different locations on the graph, but with different assignments of the scattering

matrix at the encounter. Averaging over the assignments of the scattering matrix at

the encounter vertex will therefore not affect the large graph asymptotics, even for a

single realization of the scattering matrix assignments on that large graph.

We begin by considering a single 2-encounter of length zero on a q-nary graph.

Though there are q choices of incoming and q choices of outgoing bonds at the en-

counter vertex (see figure 5.1), only two of each of these will be used in the 2-encounter.

If we zoom in on the encounter vertex and the adjacent bonds that appear in a prim-

itive pseudo orbit, the structure is the same as in figure 4.6 with I = J = 1. In order

to enforce the structure of a 2-encounter of length zero, we place constraints on the

choices of vertices a, b, c, and d, namely,

a 6= b and c 6= d. (5.1.9)

The product of stability amplitudes for the primitive pseudo orbit pair in example

4.1.1 with a single 2-encounter of length zero, where a figure eight primitive periodic
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orbit is broken into two orbits, is given in (4.3.16). Without loss of generality, the

index begins at h = 3 if {γ̄, γ̄′} is as in example 4.1.2, where two primitive periodic

orbits are joined to make a figure eight orbit. Using the scattering matrix (2.2.20),

Aγ̄Āγ̄′ =

(
1

q

)n
σ

(v)
d,aσ

(v)
c,b σ̄

(v)
c,a σ̄

(v)
d,b (5.1.10)

=

(
1

q

)n
e2πi(ad+bc−ac−bd)/q (5.1.11)

=

(
1

q

)n
e2πi(a−b)(d−c)/q . (5.1.12)

In the other pair of different pseudo orbits considered in the case of a 2-encounter

of length zero, example 4.1.2, where two orbits in the pseudo orbit are joined at the

encounter vertex to obtain the partner orbit, we saw that the product of stability

amplitudes was the same and so will also be given by (5.1.12). For both examples, as

in the case of binary graphs, mγ̄′ = mγ̄ ± 1, and so mγ̄ + mγ̄′ = 2mγ̄ ± 1, depending

on whether the figure eight is in γ̄ or γ̄′. Then for a single 2-encounter of length zero

on a q-nary graph, we obtain the following average.

Lemma 5.1.2. For a single 2-encounter of length zero on a q-nary graph, the

average value of Aγ̄Āγ̄′ for γ̄′ 6= γ̄ is

〈Aγ̄Āγ̄′〉 = − 1

q − 1

(
1

q

)n
. (5.1.13)

For a diagonal pair γ̄′ = γ̄, |Aγ̄|2 = q−n.
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Proof. Using (5.1.12),

〈Aγ̄Āγ̄′〉 =

(
1

q

)n
q−1∑

a,b,c,d=0

e2πi(a−b)(d−c)/q(1− δa,b)(1− δc,d)

q−1∑
a,b,c,d=0

(1− δa,b)(1− δc,d)

(5.1.14)

=

(
1

q

)n −q3 + q2

q4 − 2q3 + q2
(5.1.15)

= − 1

q − 1

(
1

q

)n
, (5.1.16)

where we enforce the conditions (5.1.9).

Again, let the set P̂nN=N0
denote the set of primitive pseudo orbits of topological

length n having N self-intersections, all of which are 2-encounters of length zero.

Lemma 5.1.3. For any primitive pseudo orbit γ̄ ∈ P̂nN=N0
for N > 0, the average

contribution of all primitive pseudo orbit pairs {γ̄, γ̄′} to (4.2.3) is

Cγ̄ =

(
q

q − 1

)N
·
(

1

q

)n
. (5.1.17)

Proof. As γ̄ contains N 2-encounters of length zero, index the number of 2-encounters

at which γ̄ is rearranged to obtain a partner pseudo orbit γ̄′ ∈ Pγ̄ by j. Then

Cγ̄ =

(
1

q

)n N∑
j=0

(−1)2j

(
1

q − 1

)j (
N

j

)
. (5.1.18)

Using the binomial expansion,

N∑
j=0

(
N

j

)
xj = (x+ 1)N . (5.1.19)

the result follows.
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Note that, in the case of binary graphs where q = 2, this result is equivalent to

lemma 4.3.5.

5.1.3 A Single `-Encounter of Length Zero with ` Distinct Links

Now we consider a single `-encounter in a primitive pseudo orbit pair with dis-

tinct links on a q-nary graph; thus, each of the incoming (and outgoing) bonds at

the encounter vertex is distinct and the connection diagram can be described as a

permutation of the exit vertices from S`. Given an `-encounter, we find the average

of Aγ̄Āγ̄′ when the connection diagram at the encounter is an `-cycle. We claim that

this is sufficient to describe partner orbits having connection diagrams associated to

any permutation in S`. For a 3-encounter, if the connection diagram is a 2-cycle, then

the pairs of pseudo orbits have the structure already considered for a 2-encounter,

and the average was already evaluated in lemma 5.1.2. By induction on the length

of the cycles considered, we obtain an average for pairs described by any connection

diagram that is a single cycle. We use the disjoint cycle factorization of a permutation

in S` to evaluate the average for pairs with the partner pseudo orbit generated by

any permutation ρ ∈ S`.

At an encounter of length zero, the stability amplitude product Aγ̄Āγ̄′ is given in

general by

Aγ̄Āγ̄′ =

(
1

q

)n [
ωs1f1+s2f2+···+s`f`ω̄s1fρ(1)+s2fρ(2)+···+s`fρ(`)

]
, (5.1.20)

where ρ is a permutation that describes which exit vertices from the encounter follow

which entrance vertices to the encounter, as in the connection diagrams introduced
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in section 4.1.4. We use the identity permutation e to describe the ordering of exit

vertices in γ̄. We will consider the average when the permutation ρ is a single `-cycle.

The scattering coefficients come from the Discrete Fourier Transform matrix (2.5.11),

and the value of Aγ̄Āγ̄′ depends on the way that the scattering coefficients are assigned

at the encounter vertex. At an `-encounter of length zero the entry vertices s1, . . . , s`

cannot all be the same (and neither can the exit vertices f1, . . . , f`); otherwise, the

encounter is not of length zero.

Here we derive the average value of the stability amplitude product for primitive

pseudo orbit pairs containing a single `-encounter of length zero, where the permuta-

tion ρ generating γ̄′ is an `-cycle.

Lemma 5.1.4. For a single `-encounter of length zero on a q-nary graph and the

partners γ̄′ ∈ Pγ̄ of γ̄ such that γ̄′ 6= γ̄, where the permutation ρ generating γ̄′ is an

`-cycle, the average value of Aγ̄Āγ̄′ is

〈Aγ̄Āγ̄′〉 = − 1

q`−1 − 1

(
1

q

)n
. (5.1.21)

Proof. We find the average value of Aγ̄Āγ̄′ by evaluating

∑̀
j=1

q−1∑
sj ,fj=0

∏̀
j=1

ωsj(fj−fρ(j))

(
1−

∏̀
i=2

δs1,si

)(
1−

∏̀
i=2

δf1,fi

)
∑̀
j=1

q−1∑
sj ,fj=0

(
1−

∏̀
i=2

δs1,si

)(
1−

∏̀
i=2

δf1,fi

) . (5.1.22)

The individual sums are

∑̀
j=1

q−1∑
sj ,fj=0

(
1−

∏̀
i=2

δs1,si

)(
1−

∏̀
i=2

δf1,fi

)
= q2(q`−1 − 1)2 , (5.1.23)
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and

∑̀
j=1

q−1∑
sj ,fj=0

∏̀
j=1

ωsj(fj−fρ(j))

(
1−

∏̀
i=2

δs1,si

)(
1−

∏̀
i=2

δf1,fi

)
(5.1.24)

=
∑̀
j=1

q−1∑
fj=0

(
1−

∏̀
i=2

δf1,fi

)[
q`
∏̀
i=1

δfi,fρ(i) − q

]
(5.1.25)

=
∑̀
j=1

q−1∑
fj=0

−q

(
1−

∏̀
i=2

δf1,fi

)
(5.1.26)

= −q2(q`−1 − 1) . (5.1.27)

To evaluate the second sum, we note that, as ρ has a single cycle,
∏`

i=1 δfi,fρ(i) is zero

unless all the fi are equal. As this is not possible, the result follows.

We now use the disjoint cycle factorization of a permutation to describe the average

value of Aγ̄Āγ̄′ for any combination of rearrangements of the exit vertices at an `-

encounter.

Corollary 5.1.1. For a single `-encounter of length zero on a q-nary graph and the

partners γ̄′ ∈ Pγ̄ of γ̄ such that γ̄′ 6= γ̄, let ρ be the permutation of the exit vertices

that generates γ̄′. Let ρ = ρ1ρ2 · · · ρm be the disjoint cycle decomposition of ρ, where

ρi is a ki-cycle and ki > 1; we ignore fixed points in the decomposition, as they do

not generate any rearrangements at the encounter. Then the average value of Aγ̄Āγ̄′

is

〈Aγ̄Āγ̄′〉 = (−1)m
(

1

q

)n m∏
i=1

1

qki−1 − 1
, (5.1.28)

and |Aγ̄|2 = q−n.
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5.2 Examples

As in Chapter Four, we numerically determined 〈|an|2〉k by averaging coefficients

of the characteristic polynomial over a window of values of k with typically 50 million

mean spacings. For B = 162, we ended the simulation’s run on Baylor’s Kodiak high

performance computing cluster at 23.75 million mean spacings, as it appeared to have

converged very quickly. For B = 486, the simulation met its maximum run time on

Kodiak at 9.6 million mean spacings.

The variance of the coefficients for the ternary family of graphs with V = 2 · 3r

vertices and B = 2 · 3r+1 bonds is shown in figure 5.3 for r = 1, 2, 3, 4; it approaches

0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

1.1

n/B

〈|a
n
|2 〉

k

B = 18
B = 54
B = 162
B = 486

8/9

Figure 5.3. Variance of coefficients of the characteristic polynomial for a family of
ternary graphs with p = 2 averaged over a window of 50,000,000 mean spacings.
The plot shows the convergence to the diagonal contribution 〈|an|2〉diag = 8/9.

the diagonal contribution of 8/9, as r increases. This value is determined by theorem

4.3.2 with C2,3 = 4/3, as evaluated in example 3.4.3. The variance of the coefficients

for the ternary family of graphs with V = 5 · 3r vertices and B = 5 · 3r+1 bonds is
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shown in figure 5.4 for r = 0, 1, 2; it approaches the diagonal contribution of 164/243,

as r increases. This value is determined by theorem 4.3.2 with C5,3 = 82/81, as

evaluated in example 3.4.4.
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B = 15
B = 45
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164/243

Figure 5.4. Variance of coefficients of the characteristic polynomial for a family of
ternary graphs with p = 5 averaged over a window of 50,000,000 mean spacings.
The plot shows the convergence to the diagonal contribution 〈|an|2〉diag = 164/243.

5.3 Conclusions and Future Work

It seems that we should be able to obtain the full range of results for q-nary graphs

that mirror those for binary graphs. However, these results will be for the variance

of the coefficients averaged over the assignment of the vertex scattering matrices. As

discussed, this additional averaging will not effect the asymptotics of the variance

of the coefficients in the large coefficient (equivalently long pseudo orbit) and large

graph limit.

We can already show that a primitive pseudo orbit γ̄ with a single self-intersection

of positive length and its partners have a net zero contribution. Moreover, we can
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determine the contribution Cγ̄ for a primitive pseudo orbit γ̄ with multiple self-

intersections, so long as each is a 2-encounter of length zero; this result agrees with

the similar result for binary graphs. We know how to evaluate the average of the

product of stability amplitudes for a primitive pseudo orbit containing a single `-

encounter. After all types of multiple encounter scenarios are evaluated, we believe

the variance formula for binary graphs (4.3.26) will generalize to a sum that requires

determining the size of the set of primitive pseudo orbits without self-intersections,

and the sizes of sets of primitive pseudo orbits containing only `-encounters of length

zero for ` ≤ q. Lastly, our analysis thus far and our numerics for ternary graphs point

to an asymptotic result,

lim
n→∞
〈|an|2〉k = Cp,q ·

q − 1

q
, (5.3.1)

in the semiclassical limit of large graphs, which is the diagonal contribution.
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APPENDIX A

A New Vandermonde Identity

Here we consider an alternative calculation of Cγ̄ for primitive pseudo orbits that

have only 2-encounters of any length. The result relies on a Vandermonde-type iden-

tity that we have not been able to find elsewhere in the literature.

Consider a primitive pseudo orbit γ̄. If j is the number of 2-encounters at which

the connections between incoming and outgoing links are reordered in the partner

γ̄′, then (−1)mγ̄+mγ̄′ = (−1)j as in (4.3.22). We showed previously with (4.3.14),

(4.3.15), (4.3.17), (4.3.18), that for a pair of primitive pseudo orbits {γ̄, γ̄′} with a

single 2-encounter of positive length, the product of scattering amplitudes along an

encounter is the same for γ̄ and γ̄′. For a pair of primitive pseudo orbits {γ̄, γ̄′}

with a single 2-encounter of length zero, the product of scattering amplitudes at the

encounter vertex v is −1/4, (4.3.19), when γ̄′ 6= γ̄. Thus, for primitive pseudo orbit

pairs with multiple 2-encounters, each self-intersection of length zero at which the

links are reordered in γ̄′ will contribute a factor of −1 to Aγ̄Āγ̄′ . Let the number of

2-encounters of length zero at which the connections between incoming and outgoing

links are reordered in the partner γ̄′ be k; then,

Aγ̄Āγ̄′ = (−1)k
(

1

2

)n
. (A.0.1)

Now we compute Cγ̄ in the case that γ̄ has N > 0 self-intersections, each of which

is a 2-encounter, with N0 of these of length zero. Note that N0 can be zero and
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at most N . We will index the number of self-intersections at which incoming and

outgoing link connections are reordered in γ̄′ by j, and index the number of these

self-intersections of length zero by k; note k ≤ j. So for a fixed γ̄ with N 2-encounters

and N0 2-encounters of length zero, the contribution to (4.2.3) is

Cγ̄ =
∑
{γ̄,γ̄′}
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ (A.0.2)

=

(
1

2

)n N∑
j=0

(−1)j
j∑

k=0

(−1)k
(
N0

k

)(
N −N0

j − k

)
(A.0.3)

=

(
1

2

)n
·


2N when N0 = N

0 when N0 < N .

(A.0.4)

Note that the inner sum in (A.0.3) is an alternating Vandermonde sum. We prove

(A.0.4) using the following lemma.

Lemma A.0.1.

N∑
j=0

j∑
k=0

(−1)j+k
(
N0

k

)(
N −N0

j − k

)
=


2N when N0 = N

0 when N0 < N

. (A.0.5)

Proof. If N0 = N , then by the identity (4.3.25),

N∑
j=0

j∑
k=0

(−1)j+k
(
N

k

)
δj−k,0 =

N∑
j=0

(
N

j

)
= 2N . (A.0.6)

If N0 < N , then summing over the j, k-triangle horizontally rather than vertically,

and re-indexing the inner sum where i = j − k, we obtain
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N∑
j=0

j∑
k=0

(−1)j+k
(
N0

k

)(
N −N0

j − k

)
=

N∑
k=0

N∑
j=k

(−1)j+k
(
N0

k

)(
N −N0

j − k

)
(A.0.7)

=
N∑
k=0

(
N0

k

)N−k∑
i=0

(−1)i
(
N −N0

i

)
. (A.0.8)

Notice that when k > N0,
(
N0

k

)
= 0, so we reduce the upper limit of k to N0. Similarly,

the summation over i should range from zero up to a fixed N − k for fixed k, but(
N−N0

i

)
= 0 if i > N−N0. Thus, the contribution to the inner sum is zero if i > N−k

where k < N0. Hence,

N∑
j=0

j∑
k=0

(−1)j+k
(
N0

k

)(
N −N0

j − k

)
=

N0∑
k=0

(
N0

k

)N−N0∑
i=0

(−1)i
(
N −N0

i

)
. (A.0.9)

However, the sum over i is identically zero [111], and the lemma holds.
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APPENDIX B

The Primitive Pseudo Orbits for the Binary Graph with Eight Vertices

For the binary graph with V = 8 vertices and B = 16 bonds, shown in figure 1.9,

the variance of the coefficients of the graph’s characteristic polynomial were given in

table 4.3. Here we explain how the sizes of the relevant sets were determined.

Recall that as the number of bonds is precisely a power of two (here p = 1), the

primitive periodic orbits of length n correspond uniquely to binary Lyndon words of

length n. Moreover, the primitive pseudo orbits of length n correspond uniquely to the

binary words of length n that have a strictly decreasing Lyndon decomposition. Table

B.1 lists the sizes of all sets of primitive pseudo orbits of the lengths corresponding

to the first half of the characteristic polynomial’s coefficients. Note that, P0
0 = {0̄},

the empty pseudo orbit.

Table B.1. For a binary graph with V = 8 vertices and B = 16 bonds, the sizes of
the sets of primitive pseudo orbits for 0 ≤ n ≤ 8 are given.

n PPO2(n) |Pn0 | |P̂nN=N0=1| |P̂nN=N0=2| |{γ̄ : Bγ̄ = n,Cγ̄ = 0}|
0 1 1 0 0 0
1 2 2 0 0 0
2 2 2 0 0 0
3 4 4 0 0 0
4 8 8 0 0 0
5 16 8 8 0 0
6 32 8 20 0 4
7 64 16 16 8 24
8 128 16 16 24 72
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For the non-empty sets of orbits in table B.1, the words with strictly decreasing

Lyndon decomposition corresponding to the primitive pseudo orbits are listed.

P1
0 = {(0), (1)} (B.0.1)

P2
0 = {(01), (1)(0)} (B.0.2)

P3
0 = {(001), (01)(0), (011), (1)(01)} (B.0.3)

P4
0 = {(0001), (001)(0), (0011), (011)(0),

(0111), (1)(001), (1)(01)(0), (1)(011)} (B.0.4)

P5
0 = {(00011), (0011)(0), (00111), (0111)(0),

(1)(0001), (1)(001)(0), (1)(0011), (1)(011)(0)} (B.0.5)

P5
N=N0=1 = {(00001), (0001)(0), (00101), (01)(001)

(01011), (011)(01), (01111), (1)(0111)} (B.0.6)

P6
0 = {(000111), (001011), (001101), (1)(00011),

(00111)(0), (01)(0011), (1)(0011)(0), (011)(001)} (B.0.7)

P6
N=N0=1 = {(000011), (000101), (001111), (010111),

(1)(00001), (00011)(0), (00101)(0), (1)(00101),

(1)(00111), (01011)(0), (1)(01011), (01111)(0),

(01)(0001), (0111)(01), (1)(0001)(0), (1)(0111)(0),

(01)(001)(0), (1)(01)(001), (011)(01)(0), (1)(011)(01)} (B.0.8)

{γ̄ : Bγ̄ = 6, Cγ̄ = 0} = {(000001), (00001)(0), (011111), (1)(01111)} (B.0.9)
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P7
0 = {(0001011), (0001101), (001011)(0), (0010111),

(001101)(0), (0011101), (01)(00011), (01)(0011)(0),

(01)(00111), (011)(0001), (011)(001)(0), (0111)(001),

(1)(001011), (1)(001101), (1)(01)(0011), (1)(011)(001)} (B.0.10)

P7
N=N0=1 = {(0000111), (000111)(0), (0001111), (001111)(0),

(010111)(0), (0111)(01)(0), (1)(000011), (1)(000101),

(1)(00011)(0), (1)(000111), (1)(00101)(0), (1)(00111)(0),

(1)(01)(0001), (1)(01)(001)(0), (1)(01011)(0),

(1)(011)(01)(0)} (B.0.11)

P7
N=N0=2 = {(0000101), (000101)(0), (01)(00001), (01)(0001)(0),

(0101111), (01111)(01), (1)(010111), (1)(0111)(01)} (B.0.12)

{γ̄ : Bγ̄ = 7, Cγ̄ = 0} = {(0000001), (000001)(0), (0000011), (000011)(0),

(0001001), (001)(0001), (001)(0011), (0010101),

(0011)(001), (0011011), (0011111), (01)(00101),

(0101011), (01011)(01), (011)(0011), (0110111),

(0111)(011), (011111)(0), (0111111), (1)(000001),

(1)(00001)(0), (1)(001111), (1)(01111)(0),

(1)(011111)} (B.0.13)
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P8
0 = {(00010111), (00011101), (0010111)(0), (0011101)(0),

(01)(000111), (01)(00111)(0), (0111)(0001), (0111)(001)(0),

(1)(0001011), (1)(0001101), (1)(001011)(0), (1)(001101)(0),

(1)(01)(00011), (1)(01)(0011)(0), (1)(011)(0001),

(1)(011)(001)(0)} (B.0.14)

P8
N=N0=1 = {(00001011), (00001101), (0001011)(0), (0001101)(0),

(00101111), (00111101), (01)(000011), (01)(00011)(0),

(01)(001111), (011)(00001), (011)(0001)(0), (01111)(001),

(1)(0010111), (1)(0011101), (1)(01)(00111),

(1)(0111)(001)} (B.0.15)

P8
N=N0=2 = {(00001111), (00010011), (00011001), (0001111)(0),

(001)(00011), (00101101), (0011)(0001), (00110111),

(00111011), (01011)(001), (0101111)(0), (011)(00101),

(011)(00111), (011)(01)(001), (0111)(0011), (01111)(01)(0),

(1)(0000101), (1)(0000111), (1)(000101)(0), (1)(000111)(0),

(1)(01)(00001), (1)(01)(0001)(0), (1)(010111)(0),

(1)(0111)(01)(0)} (B.0.16)
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{γ̄ : Bγ̄ = 8, Cγ̄ = 0} = {(00000001), (0000001)(0), (00000011), (00000101),

(0000011)(0), (00000111), (00001001), (0000101)(0),

(0000111)(0), (0001001)(0), (00010101), (00011011),

(00011111), (001)(00001), (001)(0001)(0), (00100101),

(0010011)(0), (00100111), (00101)(001), (0010101)(0),

(00101011), (0011)(001)(0), (00110101), (0011011)(0),

(00111)(001), (0011111)(0), (00111111), (01)(000001),

(01)(00001)(0), (01)(000101), (01)(00101)(0),

(01)(001011), (01)(001101), (0101011)(0), (01010111),

(01011)(01)(0), (01011011), (010111)(01), (01011111),

(011)(00011), (011)(0011)(0), (011)(01011), (0110111)(0),

(01101111), (0111)(011)(0), (01111)(011), (011111)(01),

(0111111)(0), (01111111), (1)(0000001), (1)(000001)(0),

(1)(0000011), (1)(000011)(0), (1)(0001001), (1)(0001111),

(1)(001)(0001), (1)(0010011), (1)(0010101), (1)(0011)(001),

(1)(0011011), (1)(001111)(0), (1)(0011111), (1)(01)(00101),

(1)(0101011), (1)(01011)(01), (1)(0101111), (1)(011)(0011),

(1)(0110111), (1)(0111)(011, (1)(01111)(01),

(1)(011111)(0), (1)(0111111)} (B.0.17)
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APPENDIX C

The Primitive Pseudo Orbits for the Binary Graph with Six Vertices

For the binary graph with V = 6 vertices and B = 12 bonds in figure C.1, the

variance of the coefficients of the graph’s characteristic polynomial were given in table

4.4. Here we explain how the sizes of the relevant sets were determined.

0

1 2

3 4

5

Figure C.1. The binary graph with V = 3 · 2 vertices and B = 3 · 22 bonds

As the number of bonds B = 3 · 22 has a factor of three, the primitive periodic

orbits of length n are not in bijection with the set of binary Lyndon words of length

n. Here, we use words over the vertex label alphabet V = {0, 1, 2, 3, 4, 5} to represent

a closed path and rotations of the word represent closed paths that belong to the

same periodic orbit. A word of length n corresponds to a closed path of length n.

For example, the word 013 labels the path of length of three that traverses vertices

0, 1, 3, and returns to 0. We use parentheses to mark differing periodic orbits in

the primitive pseudo orbit. Table C.1 lists the sizes of all sets of primitive pseudo

orbits of the lengths corresponding to the first half of the characteristic polynomial’s
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coefficients. As C3,2 = 5/4, the number of primitive pseudo orbits of length n is

PPO3,2(n) = 5 · 2n−3 for n > 3, by theorem 3.2.2. Note that, P0
0 = {0̄}, the empty

pseudo orbit.

Table C.1. For a binary graph with V = 6 vertices and B = 12 bonds, the sizes of
the sets of primitive pseudo orbits for 0 ≤ n ≤ 6 are given.

n PPO2(n) |Pn0 | |P̂nN=N0=1| |{γ̄ : Bγ̄ = n,Cγ̄ = 0}|
0 1 1 0 0
1 2 2 0 0
2 3 3 0 0
3 6 6 0 0
4 10 6 4 0
5 20 8 4 8
6 40 8 8 24

For the non-empty sets of orbits in table C.1, the words corresponding to the

primitive pseudo orbits are listed.

P1
0 = {(0), (5)} (C.0.1)

P2
0 = {(13), (24), (5)(0)} (C.0.2)

P3
0 = {(013), (13)(0), (24)(0), (254), (5)(13), (5)(24)} (C.0.3)

P4
0 = {(1243), (24)(13), (254)(0), (5)(013), (5)(13)(0), (5)(24)(0)} (C.0.4)

{γ̄ : Bγ̄ = 4, Cγ̄ = 0} = {(0013), (013)(0), (2554), (5)(254)} (C.0.5)

P5
0 = {(01243), (12543), (1243)(0), (5)(1243),

(24)(013), (254)(13), (24)(13)(0), (5)(24)(13)} (C.0.6)

P5
N=N0=1 = {(5)(0013), (2554)(0), (5)(013)(0), (5)(254)(0)} (C.0.7)
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{γ̄ : Bγ̄ = 5, Cγ̄ = 0} = {(00013), (0013)(0), (01313), (13)(013),

(24254), (254)(24), (25554), (5)(2554)} (C.0.8)

P6
0 = {(012543), (12543)(0), (254)(013), (254)(13)(0),

(5)(01243), (5)(1243)(0), (5)(24)(013), (5)(24)(13)(0)} (C.0.9)

P6
N=N0=1 = {(001243), (01243)(0), (24)(013)(0), (24)(0013),

(2554)(13), (5)(12543), (5)(254)(24), (554312), } (C.0.10)

{γ̄ : Bγ̄ = 6, Cγ̄ = 0} = {(000013), (00013)(0), (001313), (01313)(0)

(124243), (124313), (13)(0013), (13)(013)(0)

(13)(1243), (24)(1243), (24254)(0), (254)(24)(0)

(2554)(24), (25554)(0), (5)(00013), (5)(0013)(0)

(5)(01313), (5)(13)(013), (5)(24254), (5)(254)(24)

(5)(2554)(0), (5)(25554), (554242), (555542)} (C.0.11)
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