ABSTRACT

Detecting Sigmoidal Trajectories in Structured Latent Curve Models: A Fit Measure
Performance and Parameter Recovery Simulation Study

Kevin E. Wells, Ph.D.
Chairperson: Grant B. Morgan, Ph.D.

This simulation study examined parameter estimate recovery and model se-
lection of structured latent curve models under varying conditions to provide rec-
ommendations on how to properly format longitudinal research when there is an «a
priori hypothesis of sigmoidal growth. To examine model selection, sigmoidal mod-
els were generated using the first order Taylor series approximation method detailed
in Browne and du Toit (1991) and analyzed as sigmoidal, linear, quadratic, and cu-
bic. Eleven fit measures were assessed to determine their performance in selecting
true sigmoidal models over competing incorrect models. The information criteria ex-
amined were the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), Bayesian Information Criterion with the Sclove sample size penalty adjustment
(aBIC), Consistent AIC (CAIC), Draper Information Criterion (DIC), the Hannan
and Quinn adjustment of AIC (HQ), and Sugiura’s adjustment of the AIC (AICc).
Other fit measures investigated were the Comparative Fit Index (CFI), the Tucker-
Lewis Index (TLI), the Root Mean Square Error of Approximation (RMSEA), and
the Standardized Root Mean Residual (SRMR). Parameter estimates were recovered
from converged correctly specified sigmoidal models to assess the amount of bias

present. Manipulated design factors for this study included sample size (50, 100, 200,



500, 1,000, and 1,500), the number of repeated measures (six, eight, and 10), the
location of the inflection point within the measurement window (6* = .25, .375, .5),
and the rate of change at the inflection point (p* = .125, .1875, .25). In addition to
model selection and parameter estimate bias, convergence proportions, coverage, and
standard error bias were also investigated. Results and recommendations are provided

within.
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CHAPTER ONE

Introduction

Latent growth curve models are one of several common methods used in educa-
tional, psychological, and social science research to analyze longitudinal data. Since
the inclusion of growth curve models within a structural equation modeling frame-
work (Meredith & Tisak, 1984, 1990), longitudinal data have typically been modeled
as one of the family of polynomial functions. That is, they have been modeled as lin-
ear, quadratic, or cubic functions (Bollen & Curran, 2006; Meredith & Tisak, 1990;
Preacher, Wichman, MacCallum, & Briggs, 2008). Subsequently, structured latent
curve models (SLCM) (Browne & du Toit, 1991) have been introduced that allow for
modeling of a variety of nonlinear functions including sigmoidal (S-shaped) growth
patterns. These sigmoidal growth models have several advantages over traditional
linear/quadratic/cubic modeling of data when used appropriately. First, unlike some
higher-order polynomial models, sigmoidal growth patterns are easily interpreted and
can easily map onto developmental theory. Among the parameters sigmoidal models
can estimate are the total change, the maximum rate of change, the timing of the
maximum change, and the amount of change that occurred prior to the timing of
the maximum change. Second, unlike the linear, quadratic, and cubic functions that
are unbounded, the sigmoidal models are bounded. Sigmoidal models have upper and
lower asymptotes whereas unbounded functions trend towards positive or negative
infinity given ample time. This is an important distinction because certain types of
longitudinal trends found in educational and social science research are bounded on
the upper and lower ends and do not continue ad infinitum. It is, therefore, more
consistent with the nature of these constructs, when applicable, to model bounded

growth with an easily interpreted bounded model.
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Background of the Problem

Analysis of longitudinal trajectories are frequently used in educational and so-
cial science research and have been for many years (Bollen & Curran, 2006). The
development of latent growth curve models and their incorporation into the structural
equation modeling framework have greatly increased the utility of longitudinal mod-
eling. One of the prime advantages to using latent growth curve models to analyze
patterns of change over time is the ability to assess global model fit. Unfortunately,
with latent growth curve models, the types of growth trajectories modeled in the
vast majority of research have been limited to polynomial type growth patterns, i.e.
linear, quadratic, and cubic. These models, while generally useful in describing local
trajectories, do not accurately represent growth within a bounded system. They also
offer only limited predictive ability because polynomial trajectories do not necessarily
map onto theoretical expectations of how real world growth occurs (Preacher, 2010).
Nonlinear growth trajectories have seen limited use in educational and social science
research, but have been widely used in other fields. Many of the nonlinear trajec-
tories used have been sigmoidal (S-shaped) functions. Of these sigmoidal functions,
a family of models including that includes the Gompertz curve (Gompertz, 1825),
Logistic curve (Verhulst, 1845), and the generalized logistic curve, also known as the
Richards curve, (Richards, 1959) has been commonly used for modeling bounded
growth patterns. Sigmoidal models, unlike some of the polynomial models, align well
with developmental theory and can be meaningfully interpreted. Among the parame-
ter estimates that these types of models can recover are the lower and upper bounds
of growth, total change, the maximum rate of change, the timing of the maximum
change, and the amount of change that occurred prior to the timing of the maximum
change.

Browne and du Toit (1991) introduced SLCMs that allow nonlinear functions

to be modeled within a latent growth curve framework. By using a first-order Taylor



series approximation, the partial derivatives with respect to the latent random coeffi-
cients only depend on fixed-effect parameters. This has the effect of making the model
linear with respect to the latent variables and thus able to be estimated using com-
mon structural equation modeling software. Although these models can be estimated
using common software, these functions are not native, not easily implemented, and
have not been well studied in spite of their potential usefulness.

Of the studies that have used SLCMs, most have done so as demonstrations of
the method. Applied examples have sample sizes ranging from just over 100 to as large
as 20k+. Yet, to date, there have been no published methodological studies examining
how easily or accurately SLCMs can be selected over competing incorrect models, nor
the extent to which recovered parameter estimates may be biased. This Monte Carlo
simulation provides recommendations for model selection over competing linear and
nonlinear models and provides guidance on properly structuring studies to minimize
parameter estimate bias. This simulation examined four fully crossed factors: number
of repeated measures, sample size, maximum rate of change, and the timing of the
inflection point. Each dataset was generated with a true sigmoidal growth pattern and
then analyzed as linear, quadratic, cubic, and sigmoidal. A number of fit measures
were used to select the best-fitting model and parameter estimates of the sigmoidal
models were recovered.

Prior to modeling applied data using SLCM models, it is important to under-
stand how they work. Finding the conditions under which parameter estimates may
become excessively biased and the conditions under which a sigmoidal model can
be correctly selected over incorrect competing models provides guidance for proper
use of this type of model. This study provides recommendations for how to prop-
erly structure longitudinal research to ensure adequate sample size and number of

repeated measures when there is an a priori hypothesis of sigmoidal growth as well



as recommendations for model selection when completing post hoc analysis of existing

data.

Purpose of Study

The purpose of this study was twofold. First, this study provides guidance and
recommendations regarding model selection through the use of fit measures to select
the true model over competing incorrect models. Two different families of models
were estimated in this study: polynomial and sigmoidal. The polynomial models were
linear, quadratic, and cubic. The sigmoidal models in this study were first-order Taylor
series approximations of the Richards curve (Browne, 1993; Browne & du Toit,
1991). A total of seven different information criterion, as well as four absolute or
incremental fit measures, were used to select the best-fitting model between linear,
quadratic, cubic, and sigmoidal models when the true simulated model was sigmoidal.
The second purpose of this study was to examine the quality of parameter estimates
recovered from correctly specified sigmoidal models under a variety of conditions
and provide recommendations for researchers in designing longitudinal studies when

theory suggests nonlinear bounded growth.

Overview of Procedures

A Monte Carlo simulation design was used to examine four fully crossed factors
with 1,000 converged replications per cell. The factors this study examines were: the
number of repeated measures (6, 8, 10), sample size (50, 100, 200, 500, 1,000, 1,500),
maximum rate of change (.125, .1875, .25), and the timing of the inflection point
expressed as a proportion of the number of repeated measures (.25, .375, .50). Each
dataset was generated with a true sigmoidal growth pattern and then analyzed as
linear, quadratic, cubic, and sigmoidal for a total of 162 cells, 162,000 datasets, and

648,000 analyzed models. Rates of convergence were recorded and discussed.



For each replication, the best-fitting model was selected for each fit measure.
For each condition, the proportion of times the true model was selected for each fit
measure was recorded. Higher proportions indicate better fit measure performance. A
logistic regression was run on the summary results to determine how the individual
manipulated factors contributed to fit measure performance. A variety of fit measures
will be used in model selection. These measures fall into two broad categories: com-
parative fit measures and absolute or incremental fit measures. The comparative fit
measures, as the name implies, are used for comparing competing models. The model
with the lowest value on a particular information criterion is considered better fitting
than those competing models with higher values. Comparative fit measures that were
used in this study were Akaike Information Criterion (AIC), (Akaike, 1973), Bayesian
Information Criterion (BIC), (Schwarz, 1978), and Bayesian Information Criterion
with the (Sclove, 1987) sample size penalty adjustment (aBIC). While these are the
fit indices most typically used and reported, several other information criteria will
be reported as well: Consistent AIC (CAIC), (Bozdogan, 1987), Hannan and Quinn
(1979) adjustment of AIC (HQ), Draper Information Criterion (DIC), (Draper, 1995),
and Sugiura’s adjustment of AIC (AICc), (Sugiura, 1978). Four absolute or incre-
mental fit measures were examined for this study, the comparative fit index (CFTI)
(Bentler, 1990), the Tucker-Lewis Index (TLI) (Tucker & Lewis, 1973), The Root
Mean Square Error of Approximation (RMSEA) (Steiger, 1990), and finally, the
Standardized Root Mean Residual (SRMR) (Joreskog & Sérbom, 1981).

Without a methodological basis to guide model selection, there is no evidence
as to the probability of correct model selection under any set of conditions. By sim-
ulating a wide range of conditions and examining model selection using a variety of
fit measures, this research provides guidelines and recommendations on how to ap-
propriately structure longitudinal research. The results of this study help to ensure

adequate sample size and number of repeated measures when there the hypothesis



of sigmoidal growth exists. It also provides guidance for correct model selection once

the data have been collected.

Parameter Recovery

After 1,000 converged replications were generated, parameter estimates were
recovered from the correctly specified sigmoidal model results. The parameters that
were recovered were the upper and lower asymptotes which describe the overall growth
of the latent curve, the maximum rate of growth, the timing of the maximum rate of
growth (the inflection point) as it occurs within the measurement window, and the
relative asymmetry of the latent curve. Using measures of raw and relative bias, the
quality of the recovered parameters was examined to determine the conditions under
which negligible bias occurs. ANOVAs were run to understand how the manipulated

factors contributed to overall parameter recovery quality.

Delimitations

This study provides a first step towards understanding the conditions under
which parameter estimates are relatively unbiased as well as the conditions that sig-
moidal SLCMs can be properly selected as the best-fitting model over incorrectly
specified competing models. However, like any Monte Carlo simulation, the findings
are generalizable only to the conditions that were simulated in the study. Typically,
a simulation of this nature would draw upon prior applied studies to guide the direc-
tion of the research and inform the decisions made regarding the conditions examined
within the study. Unfortunately, the body of applied work done with these types of
models is extremely sparse, so it is difficult to know what conditions would be realis-
tic. As a result, the conditions examined within this study may be overly broad, with
future research designed to focus on conditions under which correct model selection

becomes problematic.



CHAPTER TWO

Review of the Literature

Development of Growth Modeling

Latent growth curve models are a set of statistical methods that allow for the es-
timation of inter-individual variability in intra-individual patterns of change over time
within a structural equation modeling framework (Bollen & Curran, 2006; Curran,
Obeidat, & Losardo, 2010; Newsom, 2015; Preacher et al., 2008). The develop-
ment of structured latent curve modeling has its roots in exploratory factor analysis
before being reconceptualized within a confirmatory factor analysis framework, and
later, extended to incorporate Taylor series approximations of nonlinear functions.
This is a brief summary of the significant developments in the past 60 years leading
to structured latent curve models.

In an attempt to model longitudinal data, Baker et al. (1954) used factor anal-
ysis to extract factors from a correlation matrix and then analyzed them by treating
the different factors as differing stages of development. Although there were many
practical issues with his methodology, he was one of the first to tie factor analysis to
longitudinal growth. In 1958, two independent papers (Rao, 1958; Tucker, 1958)
both provided formal presentations of growth curve models within a factor analytic
framework. While still based on exploratory factor analysis and principal components
analysis, these were the first models to begin to look like modern latent growth curve
analysis. The factors of these models were conceptualized as growth components as
opposed to psychometric components. These early attempts to tie longitudinal growth
to exploratory factor analysis faced the problem of rotational indeterminacy where

there are an infinite number of solutions with identical fit.



The formulation of confirmatory factor analysis (CFA) (Joreskog, 1969) allowed
factors to be defined with specific properties and eliminated the indeterminacy issue.
Meredith and Tisak (1984, 1990) extended the previous work of Rao (1958) and
Tucker (1958) but instead used CFA as the foundation of their work. This not only
allowed the latent growth curves to have a specified shape but allowed for model fit
testing as with other structural equation models. Furthermore, Meredith and Tisak
(1990) demonstrated the implementation of latent growth curve models using common
software of the era. This led to a great deal of interest in latent growth curve models
and led to many extensions of the original.

One such extension was the introduction of structured latent curve models by
Browne and du Toit (1991). These models allowed nonlinear functions to be modeled
within a latent growth curve framework. To incorporate nonlinear growth into latent
growth curve analysis, first-order Taylor series approximations were used. Partial
derivatives with respect to the individual parameters of a function were used to rep-
resent individual latent growth factors. Rather than, for example, having two latent
growth factors for a linear model (intercept and slope), there could be more that rep-
resented the different aspects of growth of a nonlinear function. The factor loadings
of the latent growth factors themselves were complex nonlinear functions (Grimm,
Ram, & Estabrook, 2010) but only varied with time. This allowed estimation using

Mplus and other structural equation modeling software packages.

Latent Growth Curve Model Estimation
There are many excellent texts that describe model specification of latent growth
curve models (e.g., Bollen & Curran, 2006; Grimm, Ram, & Estabrook, 2016; New-
som, 2015; Preacher et al., 2008). For this description, I will draw from all of them

and attempt where possible to incorporate any standard model notation used.



Growth models, within the structural equation modeling framework, are fit in
the same way as restricted common factor models (Meredith & Tisak, 1990) where
the latent variables are the components of growth. As an example, in a linear model,
the latent variables are the intercept and slope. For a quadratic model they would be

intercept, slope, and quadratic. The restricted common factor model can be given as:

where y; is a T' x 1 vector of the manifest scores taken at time 7" for individual 7, A is
a T x p matrix of the factor loadings for the latent variables where p is the number of
latent growth factors in the model, n; is a p X 1 vector containing the factor scores for
the latent growth factors in the model for individual z, €; is a T' x 1 vector containing
random errors for individual . The factor scores for the latent variables i can further
be expressed as a function of the latent means and individual departures from those
means:

As above, n; is a p x 1 vector of the factor scores for the latent growth factors for
individual 4, « is a p X 1 vector of the latent means of the growth factors, and &; is a
p x 1 vector of the residuals associated with the latent growth factors.

From the common factor model given in Equation 2.1 and the function of the la-
tent means given in Equation 2.2 the mean and covariance structure of the model can
be derived. Within structural equation modeling, the mean and covariance structures
are used to calculate parameter estimates and measures of model fit. The mean struc-
ture is a function that represents the population means for each repeated measure
and is given as

p=A« (2.3)



where p is a T' x 1 vector representing the population means of the observed variables,
A is a T' x p matrix that represents the factor loadings of the latent growth factors,
and a is a p X 1 vector of the latent variable means.

The covariance structure is a function that represents the population variances

and covariances of the repeated measures and is given by
X =ATPA +06 (2.4)

where X is a T' x T matrix of the variances and covariances of the observed variables,
A is a T' X p matrix that represents the factor loadings of the latent growth factors,
W is a p X p matrix that represents the variances and covariances of the latent growth
factors, and © is a T' x T" matrix of the estimated residual variances.

For the covariance and means structure, there are four parameters of interest:
A, o, ¥, and ©. Sample matrices are shown below for a linear model (two latent

growth factors therefore p = 2) with four evenly spaced repeated measures (7' = 4).

10
11
A= (2.5)
1 2
1 3
aq
o= (2.6)
(&%)
v
o= " (2.7)
\IJQI \1122
0
0 6
= (2.8)
0 0 ¢
0 0 0 6
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Polynomial Latent Curve Models
Within the context of latent growth curve modeling, the family of polynomial

models typically follow the form of:
y = xot’ + zpt' + 2ot® + - + apt", (2.9)

Linear models are polynomials of the first degree, quadratics are polynomials of the
second degree and so on. The higher the degree of the polynomial, the closer the
potential fit between the data and the latent curve. In fact, it is possible to perfectly
fit a curve with k repeated measures using a polynomial of k—1 degrees. The drawback
to higher-degree polynomials is that the interpretation is nonsensical. In educational
and social science research, the only polynomial functions that are regularly used are
the linear, quadratic, and cubic models. Although the interpretation of linear models
is straightforward, quadratic and cubic equations can be difficult to interpret, and
rarely map onto developmental theory. In fact, Preacher et al. (2008) strongly cautions
against selection of a quadratic growth model over a linear model for the sole reason
that they fit better. The rationale is that the improved fit may be purely because
of idiosyncrasies in the sample data and there is rarely any theoretical underpinning
supporting quadratic growth. Nonetheless, quadratic and cubic functions are native

to common structural equation modeling software and are easily implemented.

Linear
The most commonly described form of latent growth curve model is the linear

growth curve model. The linear growth curve is described by the following equation:
Ynt = Qp1 + Qpal + €y (210)

It is a first degree polynomial meaning that in addition to the intercept, there is only
one additional latent growth factor included in the model: the slope. All polynomial

and structured latent curve models require a certain number of repeated measures
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for correct identification that is the number of latent growth factors 4+ 1. In this case,
a minimum of three repeated measures are necessary. Interpretation is straightffor-
ward with the intercept being initial level and slope representing growth per repeated
measure. These can either be fixed to a group mean, or allowed to individually vary.
Linear growth is monotonic meaning the growth is always increasing or always de-
creasing but it is not bounded meaning it will trend towards negative or positive
infinity given enough time. The matrix equivalent to Equation 2.10 for six evenly

spaced time points is as follows:

_ynl_ _1 O_ —enl_
Yn2 11 €n2
I R B L (2.11)
Ynd 1 3| |aye €nd
Yns 1 4 €ns
YUné 15 €n6

Quadratic
Another commonly used growth model is the quadratic, which is a second degree

polynomial. It is shown in the equation below.
Ynt = Qp1 + Qpal + an3t2 + €nt (212)

It is typically used when data shows nonlinearity to aid in model fit. It is easily
implemented in most structural equation modeling software. The quadratic func-
tion contains three growth factors which are the slope, intercept, and the quadratic
component. Interpretation of intercept and slope are the same, with the quadratic
component being interpreted as the rate of change of the change (slope) over time.
Because there are three latent growth factors in the quadratic model, a total of four

repeated measures are required to identify the model. Quadratic growth is not mono-
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tonic meaning it is either increasing or decreasing depending on the temporal location
of the observation and it is also not bounded. The matrix equivalent to Equation 2.12

is shown below:

Yn1 1 0 O €nl
Yn2 11 1 €n2
(67951
Yn3 1 2 4 €n3
= o | T . (2.13)
Yna 1 3 9 €End
an3
Yns 1 4 1 6 €ns
Yné ]. 5 25 €n6

Cubic
The final polynomial model that will be considered is the cubic model which is

a third degree polynomial. Its equation is as follows:
Ynt = Qp1 + Qual + an3t2 + &n4t3 + €nt- (214)

Like the quadratic model, it is typically used when data shows nonlinearity to
aid in model fit. It too is easily implemented in most structural equation modeling
software. The cubic function contains four growth factors which are the slope, inter-
cept, quaratic, and cubic components. Interpretation of the first three growth factors
are the same as the quadratic model, with the cubic component being interpreted as
the rate of change quadratic component over time. Essentially, the interpretation of
the model involves describing the rate of change of the rate of change of change over
time. Because there are four latent growth factors in the cubic model, a total of five
repeated measures are required to identify the model. Cubic growth, like quadratic,
is not monotonic meaning it is either increasing or decreasing depending on the tem-

poral location of the observation and it is also not bounded. The matrix equivalent
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to Equation 2.14 is shown below:

—ynl_ _1 0 0 O _ _Enl-
Yn2 1 1 1 1 -anl- €n2
UYn3 _ 1 2 4 16 QU2 N €n3 (2.15)
UYnd 1 3 9 27 3 €nd
Yns 1 4 16 64 | Q| €ns
Yn6 1 5 25 125 €n6

Structured Latent Curve Models

Although originally described as a linear model with the only latent growth
functions being intercept and slope, latent growth curves can take many forms. Poly-
nomial functions are a natural extension of the linear model and are the most com-
monly utilized latent curve models. Structured latent curve models as introduced by
Browne and du Toit (1991) further extend the types of models that can be used in
longitudinal structural equation modeling by allowing for a broad range of differ-
entiable functions to be used when modeling longitudinal growth. Of the functions
most commonly modeled using structured latent curve models are the exponential
function and sigmoidal or S-shaped functions. One of the most commonly used fam-
ilies of sigmoidal functions include the Gompertz curve (Gompertz, 1825) and the
Logistic curve (Verhulst, 1845). Richards (1959) demonstrated that the Gompertz
and Logistic curves could be subsumed by a new function referred to as the gener-
alized logistic or Richards function. The principal difference between the Gompertz
and Logistic curves was the relative asymmetry. That is, with the Logistic function,
50% of the growth happens by the point of inflection whereas, in the Gompertz curve,
the proportion of growth is only % or roughly 36.8%. The Richards curve includes an

additional parameter that allows for varying levels of asymmetry to be modeled. The
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Richards curve, like the Logistic and Gompertz curves, are all monotonic and they are

asymptotically bounded. It is the Richards curve that is the focus of this simulation.

Sigmoidal
Using the first-order Taylor series approximation method detailed in Browne
and du Toit (1991) and Browne (1993), the Richards curve is written as the mean of
the latent variables 7, 3, 9, p, v with its target function expressed as
Bn
(147 - exp(—palt = 6.)))7

Figure 2.1 depicts different levels of 7 which is the universal lower asymptote. (3, is the

total amount of change for individual n. Holding everything else constant, Figure 2.2
shows how different levels of § change the curve. ¢, is the time of most rapid change
for individual n. Figure 2.3 shows how changing § can re-center the inflection point
within the measurement window. p,, is the rate of approach to the upper asymptote
for individual n. Figure 2.4 shows how the slope of the curve changes as the values
of p change. Finally, v is the parameter that controls the asymmetry of the curve.
Under certain conditions, the Logistic curve and Gompertz curves are subsumed by
the Richards curve equation. When v = 1, the Richards curve equation collapses
into the Logistic curve equation. Likewise, as v approaches 0 from the positive, the
asymmetry of the Richards curve approaches the asymmetry of the Gompertz curve.
Figure 2.5 shows how different levels of v change the shape of the curve.

The target function of the Richards curve re-expressed as a first-order Taylor

series is as follows:

dy dy dy dy dy
Ynt a1311+a2aﬁl+a3351+a4apl+a5371+6t ( 7)

The matrix equivalent for six evenly spaced repeated measures is shown in Equa-

tion 2.18 where repeated measures are represented by y,¢, the universal lower asymp-

tote by aq, and the partial derivative of the target function with respect to i by g—i.
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Figure 2.1. Sigmoidal growth with different lower asymptotes (7).

The individual amount of overall growth from lower to upper asymptote is represented

by a2 and the partial derivative of the target function with respect to 5 by %. The

individual rate of approach to the asymptote is given by a,,3 and the partial derivative

of the target function with respect to ¢ by 5—(?1. The individual timing coefficient is

given by a4 and the partial derivative of the target function with respect to p by

Jy

EER The universal asymmetry of the curve is given by s, the partial derivative of
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Figure 2.2. Sigmoidal growth with different amounts of overall growth (J).

the target function with respect to v by %, and €,; is the time dependent residual.
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The partial derivatives of the latent variables, i, 3,9, p, v, are:

Oy
5 =1 (2.19)
pt
Oy _ _ er (2.20)

9B~ (yerr 1 ort);
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Figure 2.3. Sigmoidal growth with different locations of the inflection point (6) within
the measurement window.
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(2.23)

By using the Browne and du Toit (1991) method, the partial derivatives with
respect to the latent random coefficients only depend on fixed-effect parameters. This
makes the model linear with respect to the latent variables and thus able to be
estimated using common structural equation modeling software. In other words, the

partial derivatives become factor loadings in what is mathematically equivalent to
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Figure 2.4. Sigmoidal growth with different rates of change at the inflection point (p).

a common factor model and is thus estimatable using commonly used structural
equation modeling software. Figure 2.6 shows the curves of the partial derivatives
under a set of sample conditions indicating the factor loadings that each parameter
contributes to the model.

It should be noted that polynomial models are trivially a special case of struc-
tured latent curve models. Taking Equation 2.12 as an example, we can see that the

partial derivatives of ay,; and oyt and a,st? are:

oy
Fo =1 (2.24)
Oy
Fos —t (2.25)
Oy 2
o = #2. (2.26)
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Figure 2.5. Sigmoidal growth with different levels of relative asymmetry (7).

Which, assuming six evenly spaced repeated measures from 0 to 5, yields a factor

loading matrix of:

A= . (2.27)

1 4 16
1 5 25

Which is identical to the factor loading matrix depicted in Equation 2.13.
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Figure 2.6. Partial derivative curves of 3, 9, p, and 7.

Empirical Examples

Structured latent curve models have not been widely used in applied research.

This may be due to several reasons including the lack of native support within com-

mon structural equation modeling software. Grimm and Ram (2009) and Grimm et al.

(2010) demonstrated the use of sigmoidal latent curve models using Mplus (L. Muthén

& Muthén, 2015) and OpenMX (Boker et al., 2011). Having shown it is possible to

model nonlinear growth of various forms, there is little reason not to model growth

more realistically. If theory suggests that latent growth follows the form of a spe-
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cific function, that function should be modeled. Use of polynomial functions that do
not map onto theoretical developmental trajectories simply because they are easy to
implement and show adequate model fit should be discouraged. The onus is on the
researcher to select an appropriate model as opposed to letting software dictate what
models are available.

To identify previous studies that used or demonstrated structured latent curve
models, FBSCOhost was used to search the Fducational Research Complete, Educa-
tion Resources Information Center (ERIC), PsycINFO, Psychology and Behavioral
Sciences Collection and PsycARTICLES databases. Keywords used included: Gom-
pertz, Richards, structured latent curve, structured latent, exponential, and various
combinations of those terms. It must be noted that this search did not discover several
relevant studies referenced within other studies. When dealing with large volumes of
published research, searches such as this are not exhaustive.

A total of 16 published studies were found ranging in publication data from 1991
to 2015. Several of the studies used multiple datasets for a total of 20 datasets. Of the
published studies, six were purely empirical with the remainder being demonstrations
of structured latent curve models with included empirical examples. The sample size
ranged from 103 (Dodonov & Dodonova, 2012) to 21,260 (Cameron, Grimm, Steele,
Castro-Schilo, & Grissmer, 2015) with a median sample size of 275. Three of the
datasets used had sample sizes in excess of 12,686 whereas thirteen of the studies
had sample sizes of 383 or fewer. See Table 2.1 for the five number summaries for
the sample sizes and repeated measures from the review of research. The number of
repeated measures used in applied research ranged from four to 12 with the median
amount of repeated measures being nine. In the majority of studies, multiple types
of models were fit to the data. Fourteen of the studies made use of the exponential
model, thirteen used sigmoidal models (Logistic, Gompertz, or Richards), four used

polynomial models, two used hyperbolic models, and one used a Preece-Baines model.
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Table 2.1

Summary of Conditions for 16 Structured Latent Curve Studies

Statistic Sample Size Repeated Measure
Min 103 4

Q1 145 5.5
Median 275 9

Q3 834 9.5

Max 21,260 12

Some of these models require as few as four repeated measures to be properly iden-
tified. For example, the exponential function required a minimum of four repeated
measures, whereas the Richards curve requires a minimum of six repeated measures

for proper identification.

Potential Applications

Throughout the lifespan of individuals, there are periods during which develop-
ment (or decline) occurs significantly more rapidly than at other times (Blakemore &
Mills, 2014; Lupien, McEwen, Gunnar, & Heim, 2009). These are called sensitive
periods. Bornstein (1989) contends they are meaningful in that, among other reasons,
they provide evidence of endogenous and exogenous forces exerting differential effects
that profoundly influence development. It is theorized that these periods do not begin
and end abruptly, but rather begin and end gradually (Knudsen, 2004). If plotted,
they could look similar to probability density curves and exhibit differing amounts
of skewness and kurtosis depending on the structure of the period. The integral of
this type of function is the cumulative distribution function that represents the area
under the probability density curve at any given point on the z axis. For non-uniform
density functions, this is an asymptotic sigmoidal curve.

If we assume that these sensitive periods, when plotted, look similar to a normal

probability distribution, we can make certain conjectures. There exists a developmen-
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tal density function that represents an arbitrary amount of development that occurs at
a particular point in time and when that function is integrated becomes a cumulative
developmental function. The cumulative developmental function would represent the
total amount of development that had occurred in a specific domain at a particular
point in time. Domains with sensitive periods, therefore, should have developmental
trajectories that can be modeled longitudinally as sigmoidal functions. Furthermore,
the latent trajectory of these developmental constructs can be used not only descrip-
tively but predictively. Conversely, latent growth curves that demonstrate sigmoidal
trajectories when differentiated can be used to identify the timing of sensitive periods
within the measured construct. To my knowledge, this connection has not appeared
in the literature.

It should be noted that L. L. Thurstone (1955) used the Gompertz curve to
model growth on subscale scores of the Primary Mental Abilities battery (T. G. Thur-
stone & Thurstone, 1947). The subscales were Perceptual Speed, Space, Reasoning,
Number, Memory, Verbal, and Word Fluency. Thurstone used longitudinal and cross-
sectional data to fit Gompertz curves to subscale means to predict asymptotic adult
values on these subscales. Although this was prior to latent curve modeling and the
advent of the generalized logistic function, it shows that sigmoidal curves have demon-

strated utility in educational and psychological research.

Model Selection
Statistically based model selection via model fit measures falls into three over-
arching categories (Kenny, 2015). First are comparative fit measures. These measures
are typically based on information theory and are only useful when comparing two
or more models with the best model having the lowest score. The second category of
fit measures is incremental fit indices. These fit measures compare the hypothetical

model to a baseline model. For these models, lower scores indicate worse fit. Finally,
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there are the absolute fit measures. For these measures, a value of zero indicates

perfect fit with higher values indicating worse fit.

Comparative Fit Measures

Fiit measures based on information theory were originally introduced by Akaike
(1973) with what is now call the Akaike information criterion (AIC) as a way of com-
paring competing statistical models. Shortly afterward, Schwarz (1978) introduced

the Bayesian information criterion (BIC) that followed a similar mathematical form:
—2log L(0) 4 penalty term (2.28)

where —2 times the log likelihood of the model is modified by a penalty term based
on sample size and/or number of parameters in the model. After the AIC and BIC,
there have been several other information criteria based fit measures that use different
penalty terms to improve performance in selecting the best model. Although these
models appear on the surface to be very similar, the theory behind their development
is fundamentally different. Essentially there are two families of models: those based
on the AIC and those based on the BIC. For a technical discussion of the conceptual
differences of AIC based and BIC based criteria, see Burnham and Anderson (2003).

AIC. The Akaike information criterion (AIC), Akaike (1973), was among
the first information criterion. Akaike formalized the relationship between Kullback-
Leibler information (Kullback & Leibler, 1951) and maximum likelihood. This allowed
the use of maximized log-likelihood as an approximation for the distance between the
true model and the hypothesized model. Akaike acknowledged that researchers can
only approximate truth and that out of a series of candidate models, none were true
and the goal was to find the one that came closest to truth. Thus, AIC will attempt

to find the model closest to the truth for any given sample size. It is expressed by the
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equation:

AIC = —2log L(6) + 2p (2.29)

where p is the number of free parameters in the model. Although AIC is still one of the
most frequently used comparative fit measures, Woodroofe (1982) showed that AIC is
not consistent. That is, as sample size approaches infinity, AIC does not converge on
a true model. This is not necessarily a problem considering the AIC is not attempting

to find the true model, only the one closest to the truth.

AICc. The corrected AIC (AICc), is a corrected version of the AIC give by:

2p(p + 1)

AlCc= -2 L 2 .
Cec log L(0) + p+N—p—1

(2.30)

where N is the sample size and p is the number of free parameters to be estimated. The
AICc is based on work by Sugiura (1978) and further explored by Hurvich and Tsai
(1989). Although the AIC is an unbiased estimator of Kullback-Leibler information, it
performed poorly in practice when the number of parameters in relation to the sample
size was large (Burnham & Anderson, 2003; Sugiura, 1978). Because AIC and AICc
converge when sample size is large, AICc is recommended over AIC especially in cases
where the ratio of sample size to the number of parameters in the model is less than

40 (Burnham & Anderson, 2003).

CAIC. To address the inconsistency found in AIC, Bozdogan (1987) intro-

duced the CAIC, a consistent version of AIC:
CAIC = —2log L(0) + p(log N + 1) (2.31)

where N is the sample size and p is the number of free parameters to be estimated.
The CAICs penalty term allows for consistency by modeling sample size into the
criterion. Additionally, the penalty term is larger than AIC or BIC and therefore will

tend to favor more parsimonious models. The CAIC departs conceptually from AIC
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in that AIC tends to select less parsimonious models as being closer to “truth” and

thus minimizing Kullback-Leibler divergence.

H@. The Hannan and Quinn (1979) information criterion (HQ), was origi-
nally developed as a consistent version of AIC that would be useful for autoregressive

and time series models. The equation for the HQ is given as:
HQ = —2log L(6) + 2p log (log(N)) (2.32)

where N is the sample size and p is the number of free parameters to be estimated.

BIC.  The Bayesian information criterion (BIC) was proposed by Schwarz
(1978). The BIC is based on the assumption that a true model exists, it is one of
the models being considered, the goal is to select the true model, and that the true
model exists independently of sample size (Burnham & Anderson, 2003). The BIC
equation is:

BIC = —2log L(0) + plog N (2.33)

where N is the sample size and p is the number of free parameters to be estimated.
BIC has an advantage over AIC in that it is consistent and performs better as sample

size increases. That is, it will converge on the “true” model with a probability of 1.

aBIC. Sclove (1987) suggested a sample size adjustment to the penalty term
of BIC. The penalty term comes from Rissanen (1978) who looked at model selection
for autoregressive time series models. The Sclove adjustment replaces the original N

with N* in the penalty term where

N +2
N* =" "% 2.34
o (2.34)
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Thus, the Bayesian information criterion (aBIC) with the Sclove (1987) adjustment
is

N +2
aBIC = —2log L(0) + plog (%) . (2.35)

where N is the sample size and p is the number of free parameters to be estimated.

DIC. In another attempt to improve small sample performance, Draper
(1995) adjusted the penalty of the BIC and although this penalty term is negligi-
ble as sample size tends towards infinity, Draper indicates that it can improve correct

model selection in small to moderate sample sizes. The DIC is given as:

DIC = —2log L(0) + plog <2ﬁ) : (2.36)
7T

where N is the sample size and p is the number of free parameters to be estimated

and 7 is the mathematical constant.

Incremental Fit Measures

Correct specification of a baseline model is necessary for the estimation and
interpretation of the comparative fit index (CFI) and the Tucker-Lewis Index (TLI).
Preacher (2010) points out that the majority of structural equation modeling soft-
ware uses a baseline model where the means and variances of the observed variables
are estimated and covariances are constrained to zero. While this is appropriate for
structural equation models that do not incorporate a mean structure, it is an inap-
propriate baseline model for latent growth curve models. Widaman and Thompson
(2003) describe in detail what is necessary to select a correct baseline model. In the
case of polynomial functions as well as the sigmoidal functions discussed in this study,
they share the same baseline model which is a no-growth (intercept only) model where
only the mean of the intercept and the residual variances of the observed variables

are estimated. It is necessary to generate this model independently and then use the
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resulting y? values to recalculate the CFI and TLI rather than relying on the val-
ues provided by the software. Doing this will also generate a baseline RMSEA, that
Kenny (2015) suggests needs to be above 0.158 for CFI and TLI to be informative.
Kenny (2015) further indicates that CFI and TLI are analogous to R? and thus the
worst possible model would have a fit of zero, and the best possible would have a fit
of one. Both the TLI and CLI depend on the size of the correlation in the data. If

the correlations are low, the TLI and CFI will be low.

CFI.  The comparative fit index (Bentler, 1990) is an incremental fit index
based on the non-centrality measure. It was proposed to summarize the relative re-
duction in the non-centrality parameter of a tested model over a baseline model. The
CFI describes the relative improvement in fit on a scale of 0 to 1 with 1 higher scores

being better. The equation for the CFI is:

max(x? — dfy,0)
max(z% — dfy, 2% — dfn,0)

CFI=1- (2.37)

TLI. The Tucker-Lewis index was proposed by Bentler and Bonett (1980) as
a non-normed fit index based on earlier work by Tucker and Lewis (1973) to evaluate
the fit of exploratory factor analysis models (Bentler, 1990). The TLI differed from
the Normed Fit Index (Bentler & Bonett, 1980) in that it added a penalty for model
complexity by including degrees of freedom in the equation. The TLI compares the
proposed model against a baseline model to determine how well a model fits. Higher

scores are better than low scores. The equation for the TLI is:

IN _ T
TLI =4y v (2.38)
TN
dfy 1

Absolute Fit Measures
These measures can be used to assess how well a model fits compared to a

theoretical best fitting model that would have a fit of zero.
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RMSEA. The root mean square error of approximation (RMSEA) (Steiger
& Lind, 1980) is a parsimony corrected index that is based on the non-centrality
parameter. According to Steiger (2000), the rationale behind the RMSEA was to
develop a way to determine how good model fit is in the population and how well
it has been described by the sample. One advantage RMSEA enjoys over other fit
measures is that it is possible to construct confidence intervals around the estimate.

The equation for RMSEA is:

(2.39)

SRMR. The standardized root mean square residual (SRMR) (Joreskog &
Sorbom, 1981) is defined as the standardized mean difference between non-duplicated

elements of the actual correlation matrix and the model-implied correlation matrix:

8ii5jj

p(p+1)

| 2Z0 S (—)

(2.40)

Unlike some structural equation models, latent growth curves make use of a
mean structure in their estimation. The SRMR only uses the actual and model-implied
correlation matrices in its estimation and not the mean structure of the model. As
such, it is possible to have a poorly specified mean structure and still have good fit
of the covariance structure. Although Wu, West, and Taylor (2009) caution against
its use in structural equation models that include a mean structure, an SRMR value
indicating good fit combined with other measures that indicate poor fit may point
to a problem in the mean structure of the model, so it may have use as a diagnostic

tool.
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Summary

Structured latent curve models allow a flexible framework for modeling longi-
tudinal data within a structural equation modeling framework where there are both
theory about the developmental trajectory of the construct and a differentiable func-
tion that describes the growth. Introduced by Browne and du Toit (1991), the method
saw little empirical use until Grimm et al. (2010) demonstrated the technique using
Mplus and OpenMX. To date, there have been no published simulation studies of
structured latent curve models that examine either model selection or parameter
bias. In spite of this, applied researchers have begun using the technique. Without
guidance for sample size, number of repeated measures, or other parameters of inter-
est, it is unclear if these researchers have selected the correct model to describe the
data, or how biased the recovered parameter estimates are. Simulation studies are
needed to provide support for the decisions these and future researchers will make on
the structure of their data collection if these types of models are being used.

The subsequent chapters describe the research design and methodology of a
simulation study examining sigmoidal structured latent curve models, provide the
statistics related to model selection and parameter estimate bias, discussion of the

findings, and recommendations for applied researchers.
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CHAPTER THREE
Methodology

Structured Latent Curve Models

Latent growth curve models are one of several common methods used in ed-
ucational, psychological, and social science research to analyze longitudinal data.
Typically, longitudinal data have been modeled as first order (linear), second order
(quadratic), or third order (cubic) polynomials. One possible reason is that linear,
quadratic, and cubic models can be easily fit with readily available statistical soft-
ware. More recently, however, several researchers have demonstrated that nonlinear
structured latent curve models (SLCMs) can be fit using R, Mplus, and SAS (e.g.,
Grimm & Ram, 2009; Grimm et al., 2010; Grimm, Ram, & Hamagami, 2011).
SLCMs allow additional flexibility for the researcher because they allow for modeling
of sigmoidal (S-shaped) and other nonlinear growth patterns. As more researchers
explore SLCMs in applied research, caution is recommended because there have been
no published methodological studies investigating how model selection or parameter
recovery. The purpose of this study was to fill the gap in the literature. It does so
by examining fit measure performance in selecting the sigmoidal model over compet-
ing incorrect models when the true model is sigmoidal and assessing the quality of

recovered parameter estimates under simulated conditions.

Model Estimation
Two different families of models were estimated: polynomial and sigmoidal. The
polynomial models were linear, quadratic, and cubic. As an example, the third order

polynomial (cubic) model is expressed as:

Ynt = On1 + ot + Qpst? + ot + € (3.1)
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where «,,; is the predicted value of the intercept for individual n when ¢t = 0, a9,
a3, and a,y are the linear, quadratic, and cubic change components, and €,; is the
residual for individual n at time t. In the case of the quadratic function, a4 is set
equal to zero. For the linear, both «,3 and «,4 are set equal to zero. The sigmoidal
models in this study were estimated using the first-order Taylor series approximation
method detailed in Browne and du Toit (1991) and Browne (1993), the Richards curve
is written as the mean of the latent variables i, p, 8, 6,7 and is expressed as:

Bn
(147 - exp(—palt — 6,)))7

Ynt =i+ + €t (3.2)

where ¢ is the universal lower asymptote, 3, is the total amount of change for
individual n, ¢, is the point of inflection which is the time of most rapid change for
the individual n, p, is the maximum rate of change which occurs at the inflection
point also known as the rate of approach to the upper asymptote for individual n,
is the parameter that controls the asymmetry of the curve, and ¢,; is the residual for

individual n at time t.

Fit Measures
All models were estimated using Mplus (version 7.4, L. Muthén & Muthén,
2015) which provides some fit measures natively. These measures fell into two different
categories: relative and absolute fit measures. Beyond the native Mplus fit measures,
there were several additional fit measures that were calculated based on summary
information generated in R (version 3.3.2, R Development Core Team, 2016) with

the MplusAutomation package (Hallquist, 2014).

Comparative Fit Measures
All of the comparative fit measures, also known as information criteria, work in
the same general manner. There is a value based on the log likelihood with a penalty

term which differs from criterion to criterion. The penalty term corrects for parsi-
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mony and/or sample size. When comparing models, the one with the lowest value
on a particular criterion is considered better fitting than competing models with
higher values. Mplus reports Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), and Bayesian Information Criterion with the Sclove sample size
penalty adjustment (aBIC). While these are the fit indices most typically used and
reported, several other information criteria were reported as well: Consistent AIC
(CAIC), Draper Information Criterion (DIC), the Hannan and Quinn adjustment of
AIC (HQ), and Sugiura’s adjustment of the AIC (AICc). While most of these are not
commonly used, they are easily calculated and are assessed in this study due to their

potential to perform well in the simulated conditions.

Absolute and Incremental Fit Measures

In addition to the three information criteria that Mplus natively generates, it
also generates several measures of absolute and incremental fit. The comparative fit
index (CFI) is an incremental fit index and describes the relative improvement in fit
between the null model and a hypothesized model while compensating for sample size
(Bentler, 1990). Values should range from 0 to 1 with values above .90 indicating good
fit (Hu & Bentler, 1999) in models without a mean structure. The Tucker-Lewis Index
(TLI), also called the non-normed fit index, is a parsimony corrected incremental fit
index that includes a penalty for complex models (Tucker & Lewis, 1973). Like the
CF1I, values on the TLI should range from 0 to 1 with values above .95 indicating good
fit (Hu & Bentler, 1999) in models without a mean structure. The Root Mean Square
Error of Approximation (RMSEA) is a parsimony corrected absolute fit index that is
based on the non-centrality parameter (Steiger, 1990). Values range from 0 to 1 with
.06 or lower considered acceptable (Hu & Bentler, 1999) in models without a mean
structure. Finally, the Standardized Root Mean Residual (SRMR) is an absolute fit

index where the average difference between non-duplicated elements of the actual
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correlation matrix and the model-implied correlation matrix (Joreskog & Sérbom,
1981). Values range from 0 to 1 with .08 or lower considered adequate fit of the
covariance structure (Hu & Bentler, 1999). It should be noted that recommended
values from Hu and Bentler (1999) were not based on models with a mean structure,
such as growth models, therefore these cutoff values are not realistic or appropriate

for the models simulated in this study.

Data Generation

When testing new methodologies, it is important to have data with known pa-
rameterization. It is usually not possible to do this with non-simulated data. Monte
Carlo simulations allow data to be generated using known values and structures and
then attempt to recover those structures with the methodological procedure of inter-
est. For this study, SLCMs were generated with known parameters for the following:
relative asymmetry, inflection point, rate of change at inflection point, lower asymp-
tote, and overall growth. All parameters were allowed to have some randomness and
thus variance. Once generated, several competing models were fitted to determine if
the true model was the best-fitting. That is, sigmoidal data with known parameters
were simulated and then analyzed using linear, quadratic, cubic, and Richards mod-
els to examine how well the correct model (sigmoidal) was preferred over competing
models. Finally, parameter estimates were recovered from converged true models to

assess parameter estimate bias and standard error bias.

Manipulated Factors

Repeated Measures
It is important to have an idea of the minimum number of repeated measures
necessary to correctly select any particular model. This number varies depending on

the number of parameters that are estimated when fitting the model. With only two
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time points, a linear model can be perfectly identified every time. Therefore, to test for
goodness of fit, the minimum number of repeated measures for correct identification
of a linear model is three. When the model is quadratic, this number increases to four
due to the additional parameter that needs to be estimated. Cubic models require
five repeated measures to be correctly identified. Likewise, five repeated measures
are required for Logistic and Gompertz sigmoidal models due to the fact that the
relative asymmetry parameter () is not estimated, but explicitly included in the
model. When v = 1, the Richards model is equivalent to the Logistic model and
as vy approaches zero, the Richards function approaches the Gompertz function. For
the Richards model, relative asymmetry () is estimated along with lower asymptote
(1), total amount of growth (), maximum rate of change (p), and timing of the
inflection point (0). The Richards function, therefore, requires a minimum of six
repeated measures for proper identification. Applied use of the sigmoidal SLCMs
ranged from five (Rast, 2011) to ten repeated measures(Cameron et al., 2015). This
study simulated six, eight, and ten equally spaced repeated measures which captured
a range from the minimum required repeated measures to a number not exceeding

the upper limit seen in applied research.

Sample Size

Like other structural equation models, SLCMs have a lower bound on sample
size required to correctly select a model depending on the parameters. Applied studies
investigating SLCMs are sparse. At the low end of the sample size range, Dodonov
and Dodonova (2012) used a sample size of 103 fit to modified exponential and logistic
models. At the high end of the sample size range (n = 20,000+), two studies have
examined sigmoidal growth patterns using data from large public datasets such as
the Early Childhood Longitudinal Survey Kindergarten Cohort (ECLS-K) and the
National Longitudinal Survey of Youth Children and Young Adults (NLSY-CYA) (see
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Cameron et al., 2015; Grimm et al., 2010). A lower bound on sample size required
for model selection has not been established, therefore, it was essential to investigate
minimum sample sizes required for correct selection over competing models. Likewise,
it was important to select a range of sample sizes from small to relatively large to
understand the levels where correct model selection fails. For this study, six different

sample sizes will be examined: 50, 100, 200, 500, 1,000, and 1,500.

Timing of the Inflection Point

The point of inflection is defined as the point on a curve where the concavity
changes, and is usually tested mathematically by taking the second derivative of the
function. The point where f”(z) = 0, and f”(z) < 0 on one side and f”(z) > 0 on the
other side is the point of inflection. Because this study examined different numbers of
repeated measures, 0* was used as a proportion as opposed to a raw repeated measure

value where

J

O = RM—1

(3.3)

For example, when using six repeated measures, the mid-point of the SLCM ¢ equal
to 2.5 which is the midpoint between the t = 2 and ¢ = 3 repeated measure. This
point is 6* = .50 and it will remain stable for different repeated measures. Changes in
the inflection point will result in changes in the shape of the curve as it appears within
the measurement window which can increase the chances of an incorrect model being
selected. By examining different levels, the way timing affects correct model selection
over a similar but incorrect competing model can be better understood. On this mat-
ter, applied research provides little practical guidance. Cameron et al. (2015) as well
as Grimm et al. (2010) examine early childhood reading or mathematics achievement
and therefore their results indicate similar inflection points. To compensate for the
lack of variability in applied studies, this study examined three different values for the

timing of the inflection point: * = .25, .375, and .50 which correspond to § = 1.25,
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1.875, 2.5 for six repeated measures, 1.75, 2.625, 3.5 for eight repeated measures, and

2.25, 3.375, 4.5 for 10 repeated measures.

Maximum Rate of Change
In the Richards function, as well as the Logistic and Gompertz functions, the
maximum rate of change occurs at the point of inflection. Also called the rate of
approach, the maximum rate of change has the effect of flattening out the sigmoidal
curve so that it begins to look similar to a linear model when using certain sets of
conditions. As with the choice of the inflection point, the sparsity of applied research
means there is, again, little guidance on selection of realistic values. In this study,
three values for the maximum rate of change were simulated: .125, .1875, and .25.
The instantaneous rate of change at the inflection point is obtained by taking the
partial derivative of the Richards target function with respect to time, then setting
time equal to the simulated § parameter. For the Richards function, this rate of change

is
. B*p

p = T
(y+ D+ 1)~
The maximum rate of change is dependent on three different parameters,

(3.4)

(overall growth), p (rate of approach), and 7 (relative asymmetry). In this study, the
values of # and ~ are non-manipulated factors that were both set to 1.0. As such, to
simulate maximum rates of change values where p* is equal to .125, .1875, and .25 |
the value of p was simulated as 0.5, 0.75, and 1.0 respectively. Lower values of p are

flatter than higher values.

Model Simulation Summary

In addition to sample size, the factors this study examined are the number
of repeated measures (6, 8, 10), maximum rate of change (p = .5,.75,1.0), and the
timing of the inflection point (§ = .25,.375,.50). The overall shape of the curves

being simulated for six repeated measures are shown in Figure 3.1, for eight repeated
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measures in Figure 3.2, and for 10 repeated measures in Figure 3.3. Each individual

curve will be simulated with sample sizes of 50, 100, 200, 500, 1,000, and 1,500.
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Figure 3.1. Simulated growth curves for six repeated measures.

Relative Asymmetry

Non-Manipulated Factors

The Richards function contains an additional parameter () over the Logistic

and Gompertz functions that controls the relative asymmetry of the function. That

is, the value of v determines which asymptote, upper or lower, the inflection point
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Figure 3.2. Simulated growth curves for eight repeated measures.

is nearest. When v = 1, the Richards function is equivalent to the Logistic function
which represents symmetrical growth where 50% of growth occurring prior to the
inflection point. As v approaches zero, the Richards curve approximates the shape of
the Gompertz curve which is an asymmetrical curve with approximately 36.8% (2) of
growth occurring prior to the inflection point. This is calculated by taking the partial
derivative of the Richards function with respect to S and setting time equal to the

simulated parameter . The proportion of growth occurring prior to the inflection
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Figure 3.3. Simulated growth curves for ten repeated measures.

point is given by

1
(v + 1)~

(3.5)

Due to the limited scope of this research, comparisons between different sigmoidal

functions were not included. The percentage of growth occurring prior to the inflection

point (7*) was set to 50%, therefore the value of v was fixed to 1 when generating

data.
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Asymptotes

Unlike linear models where an intercept and slope are specified, the Richards
function has parameters for a lower asymptote and overall amount of growth. With
guidance from L. K. Muthén and Muthén (2002) as well as Whittaker and Khojasteh
(2017), the simulated data have the lower asymptote set to zero and the overall growth
set to .2 per repeated measure. This provided an overall growth for a six repeated
measure model of 1.0 which is equivalent to the overall slope of .2 recommend for linear
longitudinal data simulations. Bounded sigmoidal models, however, are conceptually
different from unbounded linear models and the overall growth can be treated as a
scaling constant. As such, the overall growth was held at 1 for numbers of repeated
measures to aid in interpretation of results. All simulated outcome variables were
continuous. Again, using guidance from L. K. Muthén and Muthén (2002) as well
as Whittaker and Khojasteh (2017), the residual variances of the manifest variables
at each measurement occasion were set to .5 which represents constant variance over
time. Variances of the latent variables 3, §, and p were also set to .5 and the variances
of ¢ and v were constrained to zero because these represent universal intercept and

relative asymmetry respectively.

Condition Summarization

Non-Convergence

Non-convergence is a routine problem when estimating Latent Growth Curve
models (Preacher, 2010) as well as other structural equation models. It was, therefore,
reasonable to expect that non-convergence would be observed when fitting SLCMs.
Those models that did not converge, or had other estimation errors, were excluded
from the fit measure summary and parameter estimate bias calculations as has been
done in previous studies (e.g., Flora & Curran, 2004; Morgan, 2015; Yang-Wallentin,

Joreskog, & Luo, 2010). The rate of non-convergence was tracked and the proportions
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were reported. In an attempt to minimize non-convergence while being mindful of the
time-consuming nature of simulations of this nature, plausible starting values were
used. It was beyond the scope of this study to individually investigate and attempt

to rectify convergence issues within each simulated dataset.

Model Selection

A model was considered correctly selected when the sigmoidal model was se-
lected as the best-fitting for each fit measure within each replication. Results were
scored as zero (an incorrect model was selected as the best-fitting) or one (the true
sigmoidal model was selected as the best-fitting). The mean of the results for each
condition was the proportion of correctly selected models with higher means indi-
cating better accuracy than lower means. Finally, a logistic regression was run on
the results to determine how the individual manipulated factors contributed to fit

measure performance.

Comparative Fit Measures

For all converged solutions, fit measures were collected from Mplus or calculated
from the model summaries extracted from the Mplus output for each individual con-
dition. The fit measures collected or calculated were: 1) Akaike Information Criterion
(AIC), 2) Bayesian Information Criterion (BIC), 3) Bayesian Information Criterion
with sample size adjustment (aBIC), 4) Consistent AIC (CAIC), 5) Draper Infor-
mation Criterion (DIC), 6) Hannan and Quinns adjustment of AIC (HQ), and 7)

Sugiuras adjustment of AIC (AICc).

Absolute and Incremental Fit Measures
For all converged solutions, fit measures were extracted from Mplus output for
each individual condition. The fit measures examined were: 1) the comparative fit

index (CFI), 2) the Tucker-Lewis Index (TLI), 3) the Root Mean Square Error of
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Approximation (RMSEA), and 4) the Standardized Root Mean Residual (SRMR).
Although these are stand-alone measures that can be used without model comparison
if there are pre-established standards for what constitutes acceptable fit, the Hu and
Bentler (1999) guidelines for use of these measures were developed on confirmatory
factor models that did not include a mean structure. In the absence of appropriate
guidance, these measures were used in a manner similar to the comparative fit mea-
sures where the model with the best score (higher score for CFI and TLI or lower score
for RMSEA and SRMR) was selected. If the true model and a competing incorrect
model had the same best score, the true model was scored as correctly selected. In
either case, the mean of the results for each condition was the proportion of correctly
selected models with higher means indicating better accuracy than lower means. A
logistic regression was run on the results to determine how the individual manipulated

factors contribute to fit measure performance.

Parameter Recovery

After data were generated and convergence tested to ensure that there were
1,000 converged solutions for each model analyzed as a Richards model, parameter
estimates were extracted from the Mplus output for each replication. The parame-
ter estimates that were recovered were the unique latent parameter estimates from
the Richards model. These parameters were the universal lower asymptote (7), the
calculated upper asymptote (5*), and the timing of most rapid change within the
window of measurement (§*). Also included were the instantaneous maximum rate of
change (px) which was calculated from Equation 3.4 using the p parameter estimated
in Mplus and the proportion of growth that occurred prior to the inflection point (v*)
which was calculated using Equation 3.5 and was based on the v parameter estimated

in Mplus.
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Bias. 'The parameter estimate bias of each individual parameter was assessed
to determine the extent of bias under differing conditions. The relative bias of a
parameter estimate is given by the equation:

relative Bias(f) = Z (ej 9_ 9) /n (3.6)

Jj=1

where 9} is the recovered parameter estimate from each sample j of a given parameter,
0 is the true value of the parameter, and n is the number of replications within a
particular condition. In the case of 7, the relative bias cannot be calculated because

the value of the true parameter is zero. In this case, raw bias was estimated:

A (0, 0)
raw Bias(0) = ; — (3.7)
Once bias was calculated on a per-parameter basis, the results were evaluated to
determine the conditions under which the amount of bias became problematic using
guidance from B. Muthén, Kaplan, and Hollis (1987) and Hoogland and Boomsma

(1998).

Coverage. Coverage is the proportion of times that the simulated true popu-
lation value is contained within a confidence interval constructed around the recovered
parameter estimate (Hancock & Mueller, 2013). Coverage is used to assess the ade-
quacy of confidence intervals and is affected by bias that is present in either recovered
parameter estimates or recovered standard errors. As an example, if coverage for a
particular parameter was determined to be .90, that would mean that 90% of the sim-
ulated parameter estimates would fall within a 95% confidence interval constructed
around the simulated population parameter. Collins, Schafer, and Kam (2001) indi-
cate that coverage is the empirical type I error rate which should be compared to the
nominal type I error rate, which in this case is .95. They suggest that coverage rates
should be no less than .90, below which point they are problematic. L. K. Muthén

and Muthén (2002) indicate that coverage proportions should fall between .91 and
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.98 to be considered acceptable. Both Bandalos and Leite (2013) and Enders (2001)

use the Collins et al. (2001) cutoff, and that will be the cutoff used in this study.

Standard Error Bias.  Standard error bias was calculated similar to the
method of calculating paramater bias. The main difference between them is that
rather than explicitly simulating the true values, as in the case of the parameters,
standard errors must be calculated after the simulation. The equation for standard
error bias is ) A

relative Bias(SE(0)) = Z (SE(QL;)E_(SE(H)> /n (3.8)

Jj=1

where SE(0) is the estimated population standard error and SE (6;) is the recovered

standard error estimate from each sample j of a given parameter.

Empirical Example

As an example of the use of structured latent curve models in applied research,
math achievement scores from the Early Childhood Longitudinal Study, Kindergarten
Class of 1998-1999 (ECLS-K) (Tourangeau, Nord, Lé, Sorongon, & Najarian, 2009)
were fit with linear, quadratic, cubic, and Richards models. Using the previously
discussed fit measures, the best fitting model was selected and the parameters in-
terpreted. Although this data have been previously analyzed using structured latent
curve models (Cameron et al., 2015), the partial derivatives for the latent basis curves
in the models presented in the Cameron et al. (2015) paper are different from the ones

derived here and should be treated as different models.

Summary
The purpose of this study was to examine sigmoidal structured latent curve
models under varying conditions to provide recommendations on how to properly
structure longitudinal research. This is necessary to ensure adequate sample size and

number of repeated measures when there is an a prior: hypothesis of sigmoidal growth.
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Recommendations are provided for model selection when completing post hoc analysis
of existing data as well as for which fit measures work best under those conditions. The
manipulated factors in this simulation included sample size (six conditions), repeated
measures (three conditions), point of inflection (three conditions), and rate of change
at the inflection point (three conditions) for a total of 162 conditions. Each condition
was replicated 1,000 times for a total of 162,000 datasets.

Once the data were generated, each dataset was analyzed in Mplus (L. Muthén
& Muthén, 2015) as linear, quadratic, cubic, and sigmoidal models for a total of
648,000 analyses. Upon completion of the analysis, the conditions were summarized
using the MplusAutomation package (Hallquist, 2014) within R (R Development
Core Team, 2016). Fit measures not natively generated within Mplus were calcu-
lated and saved with the summary data. For each replication, the best-fitting model
was selected for each fit measure. For each condition, the proportion of times the true
model was selected for each fit measure was recorded. Higher proportions indicated
better fit measure performance. A logistic regression was also run on the summary re-
sults to determine how the individual manipulated factors contributed to fit measure
performance. Parameter estimates were then recovered from each converged Richards
solution and the quality of those estimates was assessed. An ANOVA with two-way in-
teractions and main effects was run to determine the extent to which the manipulated

variables contributed to biased parameter estimates.
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CHAPTER FOUR

Results

Convergence Rates

To ensure that there were 1,000 converged replications for each of the 162 con-
ditions of this study, 1,000 datasets for each cell were generated to test convergence.
Once the 162,000 data sets were generated, the Richards model was used to ana-
lyze the data. Models that converged were scored a one and those that did not were
scored a zero. These convergence rates were used to calculate how many replications
were needed for each condition to ensure 1,000 converged replications for parameter
estimate bias and model selection evaluations. To judge the impact of the various ma-
nipulated factors on convergence rates, logistic regressions were run and odds ratios
(OR) were calculated to be used as a measure of effect size. Odds ratios are an indica-
tion of the relative measure of effect between a reference and an intervention group.
In this case, the reference group was: a sample size of 50, the number of repeated
measures of six, the location within the measurement window (6*) of 0.25, and the
maximum rate of change (p*) of 0.125. Because of the large number of data sets used
in this simulation, all p values, unless explicitly stated, are assumed to be < .001. In
an effort to make sure that the highest possible convergence rates were achieved while
being mindful of the time involved in analyzing a large number of data sets, plausible
starting values were used.

Convergence rates varied drastically on a cell by cell basis with many of the
conditions having unacceptably low rates of convergence. The overall convergence rate
was 70.4% with individual conditions ranging from 6.9% to 100% (see Table 4.1). For
conditions with six repeated measures, the rates of convergence were poorest with a

mean of 52.0%. The condition with the lowest rate of convergence (6.9%) was the
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condition with a sample size of 50, the lowest maximum rate of change, and the
most centered timing of the inflection point. The highest convergence rate, for six
repeated measures, was 96.7% in the condition with a sample size of 1,500 and the
highest maximum rate of change and most centered timing of the inflection point. For
eight repeated measures, the mean convergence rate was 68.2% ranging from 21.2%
to0 99.4% and observed under the same conditions as six repeated measures. For 10
repeated measures the mean convergence rate was 74.2%. The lowest convergence
rate for 10 repeated measures was 33.6% and occurred in the condition with a sample
size of 50, the lowest maximum rate of change and the most off-centered timing of
the inflection point. The highest convergence rates were 100% and occurred under
several different conditions where the sample size was 1,500. A logistic regression was
run to understand how the different levels of the manipulated parameters impacted
convergence rates (see Table 4.2). Increasing the number of repeated measures from
six to eight with all other conditions held equal, increased the odds of convergence
roughly 3.4 times (OR = 3.44, 95% CI: 3.34-3.54). Increasing from six to 10 repeated
measures increased odds of convergence by roughly 7.3 times (OR = 7.31, 95% CI:
7.07-7.55).

The location of the inflection point within the measurement window (6*) had
relatively little impact on the rate of convergence. An increase from 0* = .25 to
d* = .375 resulted in a 30% increase in the odds of convergence (OR = 1.30, 95%
CI: 1.26-1.34) and an increase to 6* = .5 resulted in a 13% increase in the odds of
convergence (OR = 1.13, 95% CI: 1.09-1.16).

The maximum rate of change parameter (p*) had a larger impact than §* on
convergence rates, but not as large as the impact of increasing the number of repeated
measures. An increase from p* = .125 to p* = .1875 increased the odds of convergence
by 2.7 times (OR = 2.67, 95% CI: 2.59-2.75) and an increase to p* = .5 increased
odds of convergence by roughly 4 times (OR = 4.01, 95% CI: 3.88-4.14).

20



Table 4.2

Logistic Regression for Convergence Rates

Condition Beta  Std. Error  z value  Pr(>|z]) OR 25%  97.5%

(Intercept) -2.97 0.02 -125.96 < 0.001 0.05 0.05 0.05
RM =8 1.23 0.02 80.89 < 0.001 3.44 3.34 3.54
RM =10 1.99 0.02 119.11 < 0.001 7.31 7.07 7.55
n = 100 0.77 0.02 38.79 < 0.001 2.15 2.07 2.24
n = 200 1.54 0.02 75.94 < 0.001 4.66 4.48 4.85
n = 500 2.45 0.02 110.90 <0.001 11.54 11.06  12.05
n = 1,000 3.03 0.02 125.86 <0.001  20.76 19.80  21.76
n = 1,500 3.36 0.03 131.08 <0.001  28.83 2741 30.31
0* =0.375 0.26 0.02 16.97 < 0.001 1.30 1.26 1.34
0*=10.5 0.12 0.02 7.74 < 0.001 1.13 1.09 1.16
p*=0.1875  0.98 0.02 63.96 < 0.001 2.67 2.59 2.75
p* = 0.25 1.39 0.02 86.81 < 0.001 4.01 3.88 4.14

Note. n = sample size. §* = location of the inflection point within the measurement win-
dow expressed as a proportion. p* = rate of change at the inflection point. RM = repeated
measures. OR = odds ratio. Reference level sample size = 50, repeated measures = 6, §* =
0.25, and p* = 0.125.

Of all manipulated conditions, sample size had the largest impact on the rates
of convergence. The mean convergence rate for n=>50 was 31.1% across all conditions.
An increase in sample size from 50 to 100 increased the rate of convergence to 46.0%.
The odds of convergence increased by just over 2 times (OR = 2.15, 95% CI: 2.07-
2.24). Increasing to 200 brought the convergence rate to 61.5% and increased the
odds by roughly 4.5 times (OR = 4.66, 95% CI: 4.48-4.85). When the sample size
was 500, the convergence rate was 77.1%. The increase in sample size from 50 to 500
improved the odds of convergence by over 11.5 times (OR = 11.54, 95% CI: 11.05-
12.05). Increasing from 50 to 1,000 increased the convergence rate to 84.8% and made
the odds of convergence 20.8 times more likely (OR = 20.76, 95% CI: 19.80-21.76).
Moving from a sample size of 50 to 1,500, the convergence rate was 88.2% and the

odds of convergence increased by 28.8 times (OR = 28.83, 95% CI: 27.41-30.31).
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Coverage

Coverage is the proportion of times that the simulated true population value is
contained within a confidence interval constructed around the recovered parameter
estimate. For this study, the Collins et al. (2001) guideline that coverage values under
.90 are problematic were used. Coverage rates were examined for each parameter used
in the Richards model: lower asymptote (), upper asymptote (5*), maximum rate of
change (p*), location of the inflection point (0*), and the relative asymmetry (v*). To
better understand the impact of the various manipulated factors on coverage rates,
logistic regressions were run and odds ratios were calculated to be used as a measure
of effect size. Odds ratios are a relative measure of effect between a reference and
an intervention group. As with convergence, the reference group was: a sample size
of 50, the number of repeated measures of 6, the location within the measurement
window (0*) of 0.25, and the maximum rate of change (p*) of 0.125. Because of the
large number of data sets used in this simulation, all p values, unless explicitly stated,

are assumed to be < .001. Individual parameters are discussed below.

Lower Asymptote (i)

Under the conditions simulated in this study, coverage rates for the lower asymp-
tote were for the most part unacceptably low. This may be due in part to the direction
of the offset of the location of the inflection point. Because of the direction of the off-
set, more information was available for the upper portion of the sigmoidal curve than
for the lower portion. Had the location of the inflection point been offset in such
a way as to provide more information on the lower part of the curve, it is possible
that the coverage for the lower asymptote would have improved. The overall coverage
proportion was .82 across all conditions with individual cells ranging from .37 to .97

(see Table 4.3). The conditions where coverage was .90 or greater tended to be those
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conditions with eight or 10 repeated measure and the location of the inflection point
was centered within the measurement window.

Logistic regression results were used to determine which of the manipulated
conditions had the largest impact on the rate of coverage for the lower asymptote
parameter (see Table 4.4). The location of the inflection point within the measurement
window (§*) had a larger impact on the proportion of coverage for the lower asymptote
parameter than any manipulated factor except the number of repeated measures. An
increase from 0* = .25 to 6* = .375 resulted in a 77% increase in the odds of coverage
(OR = 1.77,95% CI: 1.72-1.83) and an increase to §* = .5 resulted in a 3 fold increase
in the odds of coverage (OR = 3.02, 95% CI: 2.92-3.13).

The maximum rate of change parameter (p*) had a larger impact than sample
size on coverage proportions, but not as large as the impact of increasing the number
of repeated measures. An increase from p* = .125 to p* = .1875 increased the odds of
coverage by 65% (OR = 1.65, 95% CI: 1.60-1.71) and an increase to p* = .5 increased
odds of coverage by roughly 2.8 times (OR = 2.79, 95% CI: 2.69-2.88).

Increasing the number of repeated measures from six to eight with all other
conditions held equal, increased the odds of coverage by just over 2 times (OR =
2.09, 95% CI: 2.03-2.16). Increasing from six to 10 repeated measures increased those
odds by a little under 3.6 times (OR = 3.59, 95% CI: 3.47-3.72).

Of all manipulated conditions, sample size had the smallest impact on the rates
of coverage. An increase in sample size to 100 decreased the odds of coverage by 11%
(OR = 0.89, 95% CI: 0.86-0.93). An increase in sample size to 200 was not statistically
significant (p = .788, OR = 1.01, 95% CI: 0.96-1.05). The increase in sample size to
500 improved the odds of coverage by 35% (OR = 1.35, 95% CI: 1.29-1.41). Increasing
sample size to 1,000 increased the odds of coverage 64% (OR = 20.76, 95% CI: 19.80-
21.76). Finally, when sample size was 1,500, the odds of coverage increased by 92%
over when sample size was 50 (OR = 1.92, 95% CI: 1.83-2.02).
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Table 4.4

Logistic Regression Results for Lower Asymptote (i) Coverage
Condition Beta  Std. Error  zvalue Pr(>[z|) OR  25% 97.5%

(Intercept) -0.21 0.02 -9.82 < 0.001 0.81 0.78 0.85
RM =8 0.74 0.02 46.71 < 0.001 2.09 2.03 2.16
RM =10 1.28 0.02 71.80 < 0.001 3.59 3.47 3.72
n = 100 -0.11 0.02 -5.05 < 0.001 0.89 0.86 0.93
n = 200 0.01 0.02 0.27 0.788 1.01 0.96 1.05
n = 500 0.30 0.02 12.75 < 0.001 1.35 1.29 1.41
n = 1,000 0.50 0.02 20.57 < 0.001 1.64 1.57 1.72
n = 1,500 0.65 0.02 26.30 < 0.001 1.92 1.83 2.02
0* =0.375 0.57 0.02 36.20 < 0.001 1.77 1.72 1.83
0*=10.5 1.11 0.02 62.78 < 0.001 3.02 2.92 3.13
p* = 0.1875 0.50 0.02 31.76 < 0.001 1.65 1.60 1.71
p* = 0.25 1.02 0.02 58.41 < 0.001 2.79 2.69 2.88

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Upper Asymptote (5*)

Contrary to coverage rates for the lower asymptote, coverage proportions for the
upper asymptote parameter were, for the most part, above the Collins et al. (2001)
.90 threshold. The overall coverage proportion was .90 across all conditions with
individual cells ranging from .65 to .97 (see Table 4.5). With six repeated measures,
those conditions where the maximum rate of change was highest tended to have
acceptable coverage across all sample sizes. With eight repeated measures, only those
conditions with the lowest maximum rate of change had values below .90. When the
number of repeated measures was 10, all conditions were .90 or above.

The results of a logistic regression were used to determine which of the ma-
nipulated conditions had the largest impact on the rate of coverage for the upper
asymptote parameter (see Table 4.6). The location of the inflection point within the

measurement window (6*) had a small impact on the proportion of coverage for the
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lower asymptote parameter. Contrary to the lower asymptote results, the most offset
location of the inflection point allowed for better estimation of the upper asymptote
with the reference level performing better than the other levels of this parameter. An
increase from 6* = .25 to 6* = .375 resulted in a 10% decrease in the odds of coverage
(OR = 0.90, 95% CI: 0.86-0.94) and an increase to 6* = .5 resulted in a 31% decrease
in the odds of coverage (OR = 0.69, 95% CI: 0.67-0.72).

The maximum rate of change parameter (p*) had the second largest impact on
coverage proportions, second only to the number of repeated measures. An increase
from p* = .125 to p* = .1875 increased the odds of coverage by 2.3 times (OR = 2.25,
95% CI: 2.16-2.34) and an increase to p* = .5 increased odds of coverage by roughly
3.3 times (OR = 3.26, 95% CI: 3.12-3.41).

The number of repeated measures parameter had the largest impact on coverage
proportions. An increase in the number of repeated measures from six to eight, with
all other conditions held equal, increased the odds of coverage by 2.4 times (OR =
2.40, 95% CI: 2.31-2.50). Increasing from six to 10 repeated measures increased those
odds by a little under 3.4 times (OR = 3.38, 95% CI: 3.23-3.53).

As with the lower asymptote parameter, sample size had the smallest impact on
the rates of coverage. An increase in sample size from 50 to 100 decreased the odds of
coverage by 21% (OR = 0.79, 95% CI: 0.75-0.84). The increase in sample size to 200
diminished the odds of coverage by 18% (OR = 0.82, 95% CI: 0.77-0.86). An increase
in sample size to 500 was not statistically significant (p = .132, OR = 0.96, 95% CI:
0.90-1.01). An increase in sample size to 1,000 increased the odds of coverage 11%
(OR = 1.11, 95% CI: 1.05-1.18). When sample size was increased from 50 to 1,500,
the odds of coverage increased by only 26% (OR = 1.26, 95% CI: 1.18-1.34).
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Table 4.6

Logistic Regression Results for Upper Asymptote (B*) Coverage
Condition Beta  Std. Error  zvalue Pr(>[z|) OR  25% 97.5%

(Intercept) 1.29 0.03 46.05 < 0.001 0.64 3.44 3.84
RM =8 0.88 0.02 42.76 < 0.001 2.40 2.31 2.50
RM =10 1.22 0.02 53.78 < 0.001 3.38 3.23 3.53
n = 100 -0.23 0.03 -7.91 < 0.001 0.79 0.75 0.84
n = 200 -0.20 0.03 -6.97 < 0.001 0.82 0.77 0.86
n = 500 -0.05 0.03 -1.51 0.132 0.96 0.90 1.01
n = 1,000 0.11 0.03 3.39 0.001 1.11 1.05 1.18
n = 1,500 0.23 0.03 7.25 < 0.001 1.26 1.18 1.34
0* = 0.375 -0.11 0.02 -4.96 < 0.001 0.90 0.86 0.94
0*=10.5 -0.37 0.02 -17.24 < 0.001 0.69 0.67 0.72
p* = 0.1875 0.81 0.02 39.70 < 0.001 2.25 2.16 2.34
p* = 0.25 1.18 0.02 52.19 < 0.001 3.26 3.12 3.41

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Mazimum Rate of Change (p*)

Coverage rates were excellent for the maximum rate of change parameter. The
overall proportion of coverage .96 across all conditions with individual cells ranging
from .91 to .99 (see Table 4.7).

Logistic regression used to determine the impact of the manipulated conditions
on the rate of coverage for the maximum rate of change parameter. Because of the
uniformity of the results, odds ratios were very low with many of the results being not
statistically significant so all p values were reported for this parameter (see Table 4.8).

The location of the inflection point within the measurement window (6*) had
little impact on the proportion of coverage for the maximum rate of change parameter.
An increase from ¢* = .25 to ¢* = .375 resulted in a 6% decrease in the odds of
coverage (p = .028, OR = 0.94, 95% CI: 0.89-0.99) and an increase to §* = .5 resulted
in a 6% increase in the odds of coverage (p = .045, OR = 1.06, 95% CI: 1.00-1.13).
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The maximum rate of change parameter (p*) also had little impact on coverage
proportions. An increase from p* = .125 to p* = .1875 increased the odds of coverage
by 15% (p < .001, OR = 1.15, 95% CI: 1.09-1.22) and an increase to p* = .5 increased
odds of coverage by 1% (p = .709, OR = 1.01, 95% CI: 0.96-1.07).

The number of repeated measures parameter had the largest, although still
small, impact on coverage proportions. An increase in the number of repeated mea-
sures from six to eight decreased the odds of coverage by 24% (p < .001, OR = 0.76,
95% CI: 0.72-0.81). Increasing from six to 10 repeated measures decreased those odds
by 35% (p < .001,0R 0.65, 95% CI: 0.61-0.69).

There were no statistically significant differences between any of the sample
sizes and the reference group. An increase in sample size from 50 to 100 increased
the odds of coverage by 5% (p = .255, OR = 1.05, 95% CI: 0.97-1.14). The increase
in sample size to 200 increased the odds of coverage by 8% (p = .064, OR = 1.08,
95% CI: 1.00-1.17) .An increase in sample size to 500 increased odds of coverage by
6% (p = .171, OR = 1.06, 95% CI: 0.98-1.15). An increase in sample size to 1,000
increased had no effect on the odds of coverage (p = .967, OR = 1.00, 95% CI:
0.92-1.09). When sample size was increased from 50 to 1,500, the odds of coverage
decreased by 4% (p = .291, OR = 0.96, 95% CI: 0.89-1.04).

Location of the Inflection Point (6*)

Although not as good as the maximum rate of change parameter, coverage pro-
portions for the location of the inflection point parameter were mostly above the
Collins et al. (2001) .90 threshold. The overall coverage proportion was .92 across
all conditions with individual cells ranging from .69 to .98 (see Table 4.9). With six
repeated measures, those conditions where the maximum rate of change was highest
tended to have acceptable coverage across all sample sizes. With eight repeated mea-

sures, conditions with sample sizes 500 or more had acceptable convergence rates.
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Table 4.8

Logistic Regression Results for Maximum Rate of Change (p*) Coverage
Condition Beta  Std. Error  z value  Pr(>|z|) OR 25%  97.5%

(Intercept) 3.23 0.04 76.30 <0.001  25.16 23.16 27.33
RM =8 -0.27 0.03 -8.76 < 0.001 0.76 0.72 0.81
RM =10 -0.43 0.03 -14.28 < 0.001 0.65 0.61 0.69
n = 100 0.05 0.04 1.14 0.255 1.05 0.97 1.14
n = 200 0.08 0.04 1.86 0.064 1.08 1.00 1.17
n = 500 0.06 0.04 1.37 0.171 1.06 0.98 1.15
n = 1,000 0.00 0.04 0.04 0.967 1.00 0.92 1.09
n = 1,500 -0.04 0.04 -1.06 0.291 0.96 0.89 1.04
0* =0.375 -0.06 0.03 -2.20 0.028 0.94 0.89 0.99
0*=0.5 0.06 0.03 2.00 0.045 1.06 1.00 1.13
p*=0.1875  0.14 0.03 4.77 < 0.001 1.15 1.09 1.22
p*=0.25 0.01 0.03 0.37 0.709 1.01 0.96 1.07

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

When the number of repeated measures was 10, conditions with sample sizes 200 or
more had proportions of .90 or above.

The results of a logistic regression were used to understand which of the ma-
nipulated conditions had the largest impact on the rate of coverage for the location
of the inflection point parameter (see Table 4.10). The location of the inflection point
within the measurement window (0*) had the second largest, although still small, im-
pact on the proportion of coverage for the location of the inflection point parameter.
An increase from §* = .25 to ¢* = .375 resulted in an 81% increase in the odds of
coverage (OR = 1.81, 95% CI: 1.73-1.89) and an increase to 0* = .5 resulted in a 2.3
times increase in the odds of coverage (OR = 2.26, 95% CI: 2.16-2.36).

The maximum rate of change parameter (p*) had the second smallest impact on

coverage proportions. An increase from p* = .125 to p* = .1875 increased the odds of
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coverage by 21% (OR = 1.21, 95% CI: 1.16-1.26) and an increase to p* = .5 increased
odds of coverage by 53% (OR = 1.53, 95% CI: 1.46-1.60).

The number of repeated measures parameter had the smallest impact on cov-
erage proportions. An increase in the number of repeated measures from six to eight,
with all other conditions held equal, increased the odds of coverage by only 10% (OR
= 1.10, 95% CI: 1.06-1.15). Increasing from six to 10 repeated measures increased
those odds by a 25% (OR = 1.25, 95% CI: 1.19-1.30).

Unlike the coverage proportions of some of the other manipulated parameters,
sample size had the largest impact on the rates of coverage showing a monotonic
increase in proportion as sample size increased. An increase in sample size from 50
to 100 increased the odds of coverage by 36% (OR = 1.36, 95% CI: 1.29-1.43). The
increase in sample size to 200 diminished the odds of coverage by 90% (OR = 1.90,
95% CI: 1.80-2.00) .An increase in sample size to 500 increased the odds of coverage
by nearly 3 times (OR = 2.95, 95% CI: 2.77-3.13). An increase in sample size to
1,000 increased the odds of coverage 3.2 times (OR = 3.18, 95% CI: 2.98-3.38). When
sample size was increased from 50 to 1,500, the odds of coverage increased by about

3.5 times (OR = 3.45, 95% CI: 3.23-3.68).

Relative Asymmetry (v*)

Coverage rates, although not as good as for the relative asymmetry parame-
ter, were mostly good for the relative asymmetry parameter. Of the 162 individual
conditions simulated for this study, coverage was .90 or above in 150 of them. The
remaining 12 conditions had coverage rates of .88 or .89. The overall proportion of
coverage was .93 across all conditions with individual cells ranging from .88 to .99
(see Table 4.11). Like the maximum rate of change parameter, there were numerous

p-values > .001 so they were reported for this parameter.
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Table 4.10

Logistic Regression Results for Location of the Inflection Point (6*) Coverage
Condition Beta  Std. Error  zvalue Pr(>[z]) OR  25% 97.5%

(Intercept) 1.01 0.03 38.75 < 0.001 2.75 2.62 2.90
RM =8 0.10 0.02 4.52 < 0.001 1.10 1.06 1.15
RM =10 0.22 0.02 9.86 < 0.001 1.25 1.19 1.30
n = 100 0.31 0.03 11.91 < 0.001 1.36 1.29 1.43
n = 200 0.64 0.03 22.97 < 0.001 1.90 1.80 2.00
n = 500 1.08 0.03 34.33 < 0.001 2.95 2.77 3.13
n = 1,000 1.16 0.03 35.86 < 0.001 3.18 2.98 3.38
n = 1,500 1.24 0.03 37.43 < 0.001 3.45 3.23 3.68
0* =0.375 0.59 0.02 27.70 < 0.001 1.81 1.73 1.89
0*=10.5 0.81 0.02 35.91 < 0.001 2.26 2.16 2.36
p* = 0.1875 0.19 0.02 8.99 < 0.001 1.21 1.16 1.26
p* = 0.25 0.42 0.02 18.84 < 0.001 1.53 1.46 1.60

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

The location of the inflection point within the measurement window (6*) had a
small impact on the proportion of coverage for the relative asymmetry parameter. An
increase from 0* = .25 to 0* = .375 resulted in a 30% decrease in the odds of coverage
(p < .001, OR = 0.70, 95% CI: 0.67-0.74) and an increase to §* = .5 resulted in a
26% decrease in the odds of coverage (p < .001, OR = 0.74, 95% CI: 0.71-0.78).

The maximum rate of change parameter (p*) had little impact on coverage
proportions. An increase from p* = .125 to p* = .1875 increased the odds of coverage
by 6% (p = .026, OR = 1.06, 95% CI: 1.01-1.11) and an increase to p* = .5 increased
odds of coverage by 8% (p = .002, OR = 1.08, 95% CI: 1.03-1.13).

The number of repeated measures parameter had the largest, although still
small, impact on coverage proportions. An increase in the number of repeated mea-

sures from six to eight decreased the odds of coverage by 34% (p < .001, OR = 0.67,
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95% CI: 0.63-0.70). Increasing from six to 10 repeated measures decreased those odds
by 33% (p < .001,0R 0.67, 95% CI: 0.64-0.71).

There were no statistically significant differences between sample sizes of 500,
1,000, or 1,500 and the reference group. Smaller sample sizes had very small effect
sizes. An increase in sample size from 50 to 100 decreased the odds of coverage by
10% (p = .004, OR = 0.90, 95% CI: 0.84-0.97). The increase in sample size to 200
decreased the odds of coverage by 12% (p < .001, OR = 0.88, 95% CI: 0.82-0.94).
An increase in sample size to 500 decreased odds of coverage by 4% (p = .203, OR
= 0.96, 95% CI: 0.89-1.13). Increasing to 1,000 decreased the odds of coverage by 5%
(p = .158, OR = 0.95, 95% CI: 0.89-1.02). When sample size was increased to 1,500,
the odds of coverage decreased by 3% (p = .594, OR = 0.98, 95% CI: 0.92-1.05).

Table 4.12

Logistic Regression Results for Relative Asymmetry (v*) Coverage
Condition Beta  Std. Error  zvalue Pr(>[z]) OR  25% 97.5%

(Intercept) 3.18 0.04 85.49 <0.001 2410 2240  25.92
RM =8 -0.41 0.03 -15.97 < 0.001 0.66 0.63 0.70
RM =10 -0.40 0.03 -15.45 < 0.001 0.67 0.64 0.71
n = 100 -0.10 0.03 -2.91 0.004 0.90 0.84 0.97
n = 200 -0.13 0.03 -3.71 < 0.001 0.88 0.82 0.94
n = 500 -0.04 0.04 -1.27 0.203 0.96 0.89 1.03
n = 1,000 -0.05 0.04 -1.41 0.158 0.95 0.89 1.02
n = 1,500 -0.02 0.04 -0.53 0.594 0.98 0.92 1.05
0" = 0.375 -0.35 0.03 -13.91 < 0.001 0.70 0.67 0.74
0*=10.5 -0.30 0.03 -11.63 < 0.001 0.74 0.71 0.78
p*=0.1875  0.05 0.02 2.22 0.026 1.06 1.01 1.11
pt=0.25 0.07 0.02 3.04 0.002 1.08 1.03 1.13

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, §* = 0.25, and p* = 0.125.
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Parameter Recovery

The generalized logistic function, also known as the Richards function, has five
parameters in its equation: the lower asymptote (i), the total amount of growth (5),
the maximum rate of change (p), the timing of the inflection point within the measure-
ment window (d), and the relative asymmetry () of the curve. Because structured
latent curves use the Taylor series approximation method (Browne, 1993; Browne
& du Toit, 1991), a partial derivative or each parameter was taken and put into
an additive form similar to polynomial models. Each partial derivative is a latent
growth factor in the same way that intercept and slope are latent growth factors in
linear growth models. However, the partial derivatives of the Richards curve are com-
plex nonlinear equations and so additional consideration was required to understand

implications of the parameters simulated and recovered.

Parameter Estimate Bias

1,000 converged solutions for each model were analyzed using the Richards
model and parameter estimates were extracted from the Mplus output for each repli-
cation. The parameter estimates to be recovered were: the universal lower asymptote
(1), the location of the upper asymptote (/5*), the timing of most rapid change within
the window of measurement as a proportion (§*), the instantaneous maximum rate
of change (p*), and the proportion of growth that occurs prior to the inflection point
(7*). Published guidelines for how much parameter bias is acceptable ranges from .05
(Hoogland & Boomsma, 1998) to .10-.15 (B. Muthén et al., 1987). For this sim-
ulation, .10 was considered the upper limit on acceptable parameter estimate bias.
Summary statistics for parameter estimate bias are presented in Table 4.13. Results
are reported for each parameter individually. Due to the non-normality of the pa-

rameter bias, non-parametric aligned rank transform ANOVA were used to generate
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effect sizes for comparison. Partial omega squared (wg) was reported as a measure of

effect size.
Table 4.13

Descriptive Statistics of Overall Parameter Bias
Paramater Mean Bias sd Median Bias Skewness Kurtosis
) -0.07 0.51 0.02 -10.83 246.13
5* -0.01 0.12 -0.01 1.11 8.06
P 0.16 0.35 0.06 3.2 16.77
o* 0.06 0.33 0.03 0.79 5.09
y* 0.06 0.29 0.03 0.26 0.41

Note. Sample size = 162000. i = lower asymptote. 5* = upper asymptote. 6* = location of
the inflection point within the measurement window expressed as a proportion. p* = rate
of change at the inflection point. v* = relative asymmetry.

Lower Asymptote (i)

Because the simulated true parameter value for the lower asymptote was zero,
it was not possible to calculate relative bias for this parameter. As such, raw or
absolute bias was used. Because raw bias was used, the results for this parameter
cannot necessarily be interpreted in the same context as the other parameters that use
relative bias (Bandalos & Leite, 2013). Overall, for the lower asymptote, parameter
estimation bias was non-uniform. Most of the bias was negative and ranged in absolute
measures from 0 to .31. In non-absolute measures the range was -0.31 to 0.22 (see
Table 4.14). An aligned rank transform ANOVA with two-way interactions and main
effects was run on the results (see Table 4.15).

Parameter estimate bias across the different sample sizes was fairly consistent.
When sample size was 50, the mean parameter estimate bias was -.05. At 100, bias
increased to -.06 and from 200 to 1,000 held steady at -.06 before falling again to -.06
when sample size was 1,500. The effect size for sample size was small (%27 = 0.021,

p < .001).
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Counterintuitively, bias for the lower asymptote parameter estimate increased
in absolute terms as the number of repeated measures increased. When the number of
repeated measures was six, mean parameter estimate bias was -.03. At eight repeated
measures, mean parameter estimate bias had risen to -.08. At 10 repeated measures,
mean bias remained at -.08. The effect size for this manipulated parameter although
small, was the largest effect for the lower asymptote parameter (wz =0.044, p < .001).

Again, counterintuitively, as the maximum rate of change increased, the amount
of parameter estimate bias also increased in absolute terms. When p* = .125, bias
was -.03. At p* = .1875, bias increased to -.07 and when the maximum rate of change
was highest, p* = .5, bias was -.09. The effect size for this parameter was small (wz
= 0.040, p < .001).

When §* = .25, parameter estimate bias was .-.07, which increased to -.08 when
0* = .375. When ¢6* = .5, bias decreased to -.04. The effect size for the location of the
inflection point within the measurement window was small ((w = 0.026, p < .001)

The only two-way interaction that had an effect size .01 or larger was the inter-
action between the number of repeated measures and the maximum rate of change.

For this interaction, the effect size was small (w} = 0.011, p < .001).

Upper Asymptote (5*)

Because the true value for the upper asymptote was simulated as non-zero,
relative bias could be calculated for this parameter and provided more interpretability
than the raw bias presented for the lower asymptote. Overall parameter estimate
bias for the upper asymptote was very good (see Table 4.16). Generally speaking,
parameter estimate bias was acceptable (.10 or less) under all conditions when the
number of repeated measures was eight or 10. When the number of repeated measures
was six, only in conditions with the lowest maximum rate of change and sample sizes

500 or fewer had an unacceptable bias. Parameter estimate bias ranged, in absolute
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Table 4.15

Results of Aligned Rank Transformed ANOVA for Estimation of Lower Asymptote

(i)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wg

SS 5! 6.81E+12 3.11E+14 709.25 < 0.001 0.021
RM 2 1.40E+13 3.04E+14 3727.38 < 0.001 0.044
P 2 1.25E+13 3.03E+14 3342.20 < 0.001 0.040
o* 2 8.65E+12 3.21E+14 2182.13 < 0.001 0.026
SS x RM 10 2.66E+12 3.13E+14 137.44 < 0.001 0.008
SS x p* 10 2.28E+12 3.12E+14 118.43 < 0.001 0.007
RM x p* 4 3.41E+12 3.11E+14 443.95 < 0.001 0.011
SS x 6* 10 7.65E+11 3.13E+14 39.64 < 0.001 0.002
RM x ¢§* 4 1.31E+12 3.13E+14 169.64 < 0.001 0.004
prox 0* 4 1.60E+12 3.12E+14 207.52 < 0.001 0.005

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

terms, from 0 to -.17 and in non-absolute terms from -.17 to .02 with a mean bias of
-.01. An aligned rank transform ANOVA with two-way interactions and main effects
was run on the results (see Table 4.17) to assess the practical effects of the manipulated
parameters.

For all sample sizes, parameter estimate bias was acceptable. When sample size
was 50, the mean parameter estimate bias for the upper asymptote was -.02. An
increase in sample size to 100 increased bias slightly to -.03. As sample size increased
from 200 to 1,500, parameter estimate bias decreased from -.02 to 0.0. The effect size
for sample size was small (wf, = 0.021, p < .001).

Likewise, bias was acceptable for all numbers of repeated measures. When the
number of repeated measures was six, mean parameter estimate bias was -.04. At eight

repeated measures, mean parameter estimate bias had fallen 0.0 where it remained
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for 10 repeated measures. This manipulated parameter had a medium practical effect,
and was the largest effect for the upper asymptote parameter (wﬁ = 0.063, p < .001).

As the maximum rate of change increased, the amount of parameter estimate
bias decreased. When p* = .125, bias was -.04. At p* = .1875, bias was -.01 and when
the maximum rate of change was highest, p* = .5, bias was 0.0. The effect size for
this parameter was small to medum (wf) = 0.059, p < .001).

Unlike the other parameters, as delta increased, so did the parameter estimate
bias. When §* = .25, parameter estimate bias was -.01, remaining steady when 0* =
.375. As 0* = .5, bias increased slightly to -.02. The effect size for this parameter was
very small, although statistically significant (w2 = 0.005, p < .001).

There were three two-way interaction effects that had effect sizes .01 or larger.
The first was the interaction between the number of repeated measures and the max-
imum rate of change parameter (w? = 0.034, p < .001). The second interaction was

p

between sample size and the maximum rate of change (wg = 0.011, p < .001). The
third interaction was between sample size and the number of repeated measures (wg

= 0.010, p < .001).

Mazimum Rate of Change (p*)

The maximum rate of change is essentially the instantaneous slope at the in-
flection point. Like the upper asymptote, the true simulated values for this parameter
were non-zero so relative bias was calculated. Overall, bias was worse for this param-
eter than for the upper asymptote (see Table 4.18). Parameter estimate bias ranged
from 0 to 1.03. Mean parameter estimate bias under all conditions was positive with
the highest mean bias of any parameter at .16. When the number of repeated mea-
sures was six or eight, acceptable levels of bias were found in where the sample size
was 500 or greater. When the number of repeated measures was 10, acceptable levels

of bias were found in conditions where the sample size was between 200 and 500 de-
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Table 4.17

Results of Aligned Rank Transformed ANOVA for Estimation of Upper Asymptote

(8*)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wg

SS 5! 7.31E+12 3.45E+14 686.61 < 0.001 0.021
RM 2 2.22E+13 3.29E+14 5468.42 < 0.001 0.063
P 2 2.08E+13 3.31E+14 5092.32 < 0.001 0.059
o* 2 1.77TE+12 3.00E+14 409.01 < 0.001 0.005
SS x RM 10 3.42E+12 3.48E+14 158.89 < 0.001 0.010
SS x p* 10 3.97TE+12 3.48E+14 184.68 < 0.001 0.011
RM x p* 4 1.19E+13 3.40E+14 1422.78 < 0.001 0.034
SS x 6* 10 5.95E+11 3.501E+14 27.48 < 0.001 0.002
RM x ¢§* 4 1.52E+12 3.00E+14 175.86 < 0.001 0.004
prox 0* 4 3.32E+11 3.51E+14 38.26 < 0.001 0.001

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

pending on the maximum rate of change value. An aligned rank transform ANOVA
with two-way interactions and main effects was run on the results (see Table 4.19).

As sample size increased, parameter estimate bias monotonically decreased.
When sample size was 50, the mean parameter estimate bias for the upper asymptote
was .45. As sample size increased to 100, bias dropped to .26. When sample size was
200 biased fell to .14. Once sample size reached 500, parameter estimate bias fell to
acceptable levels, in this case, .05. When the sample size was 1,000 or greater, bias
was .02. Sample size had a very large practical effect on parameter estimate bias for
this parameter (w) = 0.215, p < .001).

When the number of repeated measures was six, mean parameter estimate bias
was .26. At eight repeated measures, mean parameter estimate bias had fallen to .013.
At 10 repeated measures, mean bias was acceptable at .08. The effect size for this

manipulated parameter was medium to large (wf) = 0.137, p < .001).
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As the maximum rate of change increased, the amount of parameter estimate
bias decreased. When p* = .125, bias was .23. At p* = .1875, bias was .14 and when
the maximum rate of change was highest, p* = .5, bias was finally just acceptable at
.10. The effect size for this parameter was medium (wg = 0.091, p < .001) and had
the third largest practical effect on the estimation of this parameter.

The location of the inflection point parameter remained above .10 bias across
its three levels. When 6* = .25, parameter estimate bias was .17, decreasing to .15
when §* = .375 or §* = .5. The effect size for this parameter was very small, although
statistically significant (w? = 0.005, p < .001).

There were three two-way interaction effect that had an effect size .01 or larger
for this parameter. The first was the interaction between sample size and the number
of repeated measures (wg = 0.078, p < .001). Next was the interaction between

sample size and the maximum rate of change (wf, = 0.056, p < .001). Finally, there
was the interaction between the number of repeated measures and the maximum rate

of change (w; = 0.040, p < .001).

Location of the Inflection Point (§*)

The location of the inflection point within the measurement window was a
manipulated condition that had non-zero simulated true values. As such, relative
bias was calculated and reported. Parameter estimate bias for this parameter ranged,
in absolute terms from 0 to .60 and non-absolute terms from -.08 to .60 with a mean
bias of .06. (see Table 4.20). The majority of cells had a positive bias with only a
few exhibiting negative bias. The majority of conditions had acceptable levels of bias
across all numbers of repeated measures. The conditions with unacceptable levels
tended to have fewer repeated measures, smaller maximum rates of change, and more

offset locations of the inflection point. An aligned rank transform ANOVA with two-
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Table 4.19

Results of Aligned Rank Transformed ANOVA for Estimation of the Maximum Rate
of Change (p*)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wg

SS ) 7.55E+13 2.76E+14 8855.83 < 0.001 0.215
RM 2 4.68E+13 2.95E+14 12838.65 < 0.001 0.137
P 2 3.13E+13 3.12E+14 8126.23 < 0.001 0.091
o* 2 1.56E+412 3.45FE+14 366.14 < 0.001 0.005
SS x RM 10 2.67TE+13 3.15E+14 1373.18 < 0.001 0.078
SS x p* 10 1.92E+13 3.25E+14 955.31 < 0.001 0.056
RM x p* 4 1.38E+13 3.33E+14 1678.56 < 0.001 0.040
SS x 6* 10 5.87TE+11 3.46E+14 27.46 < 0.001 0.002
RM x ¢§* 4 2.49E+11 3.47TE+14 29.03 < 0.001 0.001
prox 0* 4 5.80E+11 3.46E+14 67.83 < 0.001 0.002

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

way interactions and main effects was run on the results (see Table 4.21) to assess
the practical effects of the manipulated parameters.

Increases in the sample size resulted in a monotonic decrease in parameter
estimate bias for this parameter. When sample size was 50, the mean parameter
estimate bias for the location of the inflection point was .13. As sample size increased
to 100 or greater, bias became acceptable. At 100, bias was .10, falling to .07 at a
sample size of 200. When sample size was 500 biased decreased to .04 and then fell
to .02 when sample size was 1,000. When sample size increased to 1,500, parameter
estimate bias increased to .01. The effect size for sample size had small practical
significance (w? = 0.03, p < .001).

As the number of repeated measures increased, parameter estimate bias fell.
When the number of repeated measures was six, mean parameter estimate bias was

.11. At eight repeated measures, mean parameter estimate bias had fallen to an ac-
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ceptable level of .05. At 10 repeated measures, mean bias fell further to 0.03. The
effect size for this manipulated parameter was small (wg = 0.025, p < .001).

As the maximum rate of change increased, the amount of parameter estimate
bias decreased. When p* = .125, bias was .10. At p* = .1875, bias was .06 and when
the maximum rate of change was highest, p* = .5, bias remained acceptable at .04.
The effect size for this parameter was small (wf) = 0.013, p < .001).

For the location of the inflection point parameter, the initial level, 0* = .25,
had an unacceptable amount of parameter estimate bias at .14. This decreased to .04
when 6* = .375 and .01 when 0* = .5. The effect size for this parameter was small to
medium (w? = 0.054, p < .001).

There were three two-way interaction effects that had an effect size .01 or larger
for this parameter. The first was the interaction between sample size and the location
of the inflection point (w? = 0.025, p < .001). Next was the interaction between the
number of repeated measures and the location of the inflection point (wﬁ = 0.035,

p < .001). Finally, there was the interaction between the maximum rate of change

and the location of the inflection point (w) = 0.022, p < .001).

Relative Asymmetry (v*)

The relative asymmetry parameter represents the amount of growth that occurs
prior to the point of inflection. This was a non-manipulated condition that was set
at v* = 0.5 which represents a symmetrical growth curve. Because the simulated
true value was non-zero, relative bias was used for this parameter. Overall, parameter
estimate bias was very good with very few conditions exceeding the 0.10 threshold for
acceptable parameter estimate bias (see Table 4.22). The conditions where bias was
unacceptable were in conditions with sample sizes 100 or fewer where the location of
the inflection point was not the most offset level. Parameter estimate bias for relative

asymmetry ranged, in absolute measures from 0 to .16 and in non-absolute measures

79



Table 4.21

Results of Aligned Rank Transformed ANOVA for Estimation of the Location of the
Inflection Point (6*)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wg

SS 5! 1.04E+13 3.43E+14 985.19 < 0.001 0.030
RM 2 8. 72E+12 3.45E+14 2046.53 < 0.001 0.025
P 2 4.75E+12 3.49E+14 1102.10 < 0.001 0.013
o* 2 1.91E+13 3.33E+14 4630.67 < 0.001 0.054
SS x RM 10 1.27E+12 3.03E+14 58.36 < 0.001 0.004
SS x p* 10 7.08E+11 3.53E+14 32.46 < 0.001 0.002
RM x p* 4 1.87E+12 3.52E+14 215.53 < 0.001 0.005
SS x 6* 10 8.79E+12 3.45E+14 412.88 < 0.001 0.025
RM x ¢§* 4 1.23E+13 3.42FE+14 1461.14 < 0.001 0.035
prox 0* 4 7.73E+12 3.46E+14 904.19 < 0.001 0.022

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

from -.03 to .16 with a mean bias of .05. An aligned rank transform ANOVA with
two-way interactions and main effects was run on the results (see Table 4.23).

For the relative asymmetry parameter, parameter estimate bias was acceptable
across all sample sizes. When sample size was 50, the mean parameter estimate bias
was .10. As sample size increased, bias decreased, finally reaching a bias of .02 when
sample size was 1,500. The effect size for sample size on parameter estimate bias for
the relative asymmetry parameter was very small (wz = 0.008, p < .001).

Parameter estimate bias was relatively stable across the different numbers of
repeated measures. When the number of repeated measures was six, mean parameter
estimate bias was .06. At eight repeated measures, mean parameter estimate bias had
fallen to .05. At 10 repeated measures, mean bias remained an acceptable .05. The
effect size for the number of repeated measures was effectively zero, however it was

still statistically significant (wz = 0.000, p < .001).
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As with the number of repeated measures, the maximum rate of change had
little impact on the amount of parameter estimate bias which remained acceptable
at all levels. When p* = .125, bias was .05. At p* = .1875, bias remained at .05 and
when the maximum rate of change was highest, p* = .5, bias increased slightly to
.06. The effect size for the maximum rate of change condition was effectively zero,
however it was still statistically significant (wf) = 0.000, p < .001).

For the relative asymmetry parameter, the initial level, 0* = .25, had the small-
est parameter estimate bias at .04. This increased to a still acceptable .05 when
0* = .375 and to .07 when ¢* = .5. The effect size for the location of the inflection
point was effectively zero, however it was still statistically significant (wf) = 0.000,

p < .001).

Table 4.23

Results of Aligned Rank Transformed ANOVA for Estimation of Relative
Asymmetry (v*)

Effect df Sum Sq.? Sum Sq. Res.? F value  Pr (>F) w?

SS 5) 2.86E+12 3.51E+14 263.42 < 0.001 0.008
RM 2 5.02E410 3.54E+14 11.48 < 0.001 0.000
P 2 1.29E+11 3.54E+14 29.62 < 0.001 0.000
0 2 3.92E+11 3.53E+14 89.77 < 0.001 0.001
SS x RM 10 1.15E+11 3.54E+14 5.28 < 0.001 0.000
SS x p* 10 6.51E+410 3.54E+14 2.98 0.001 0.000
RM x p* 4 4.89E+10 3.54E+14 5.59 < 0.001 0.000
SS x o 10 9.89E+10 3.54E+14 4.52 < 0.001 0.000
RM x ¢* 4 6.91E+4+10 3.54E+14 7.91 < 0.001 0.000
prox 0F 4 8.88E+10 3.54E+14 10.16 < 0.001 0.000

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =

rate of change at the inflection point. § = location of the inflection point within the mea-

surement window.

& Type III sum of squares.
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Standard Error Bias

Analysis of standard error bias was done in a manner similar to how parameter
estimate bias was analyzed. The standard deviations of the parameter estimates were
used as the empirical standard errors in this simulation (Bandalos & Leite, 2013).
The standard error estimates recovered were: the universal lower asymptote (i), the
location of the upper asymptote (5*), the timing of most rapid change within the
window of measurement as a proportion (0*), the instantaneous maximum rate of
change (p*), and the proportion of growth that occurred prior to the inflection point
(7*). Results are reported for each parameter individually. Hoogland and Boomsma
(1998) suggest that standard error bias should not exceed £10%. Due to the non-
normality of the standard error bias, non-parametric aligned rank transform ANOVA
were used to generate effect sizes for comparison. Partial omega squared (w}%) was

reported as a measure of effect size.

Lower Asymptote (i)

Much like parameter estimate bias for the lower asymptote parameter, standard
error bias for the lower asymptote was non-uniform. Table 4.24 shows that individual
conditions where bias was within acceptable limits are not necessarily adjacent to
other cells that are also within acceptable limits. Standard error bias for this param-
eter ranged, in absolute measures from 0 to 1.61 with a mean bias of .22. An aligned
rank transform ANOVA with two-way interactions and main effects was run on the
results (see Table 4.25).

When sample size was 50, the mean standard error bias was .63. As sample size
increased, bias decreased, finally reaching .09 bias when sample size was 500. When
sample size was 1,000 or 1,500, standard error bias was -.02. The effect size for sample

size was, however, very small (w2 = 0.007, p < .001).
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Likewise, an increase in the number of repeated measures reduced bias. When
the number of repeated measures was six, mean standard error bias was .54. At
eight repeated measures, mean standard error bias had fallen to .15. At 10 repeated
measures, mean bias was an acceptable -.02. Again, as with sample size, the effect
size for this manipulated parameter was very small although statistically significant
(wf, = 0.001, p < .001).

As the maximum rate of change increased, the amount of standard error bias
decreased. When p* = .125, bias was .36. At p* = .1875, bias fell to .22 and when the
maximum rate of change was highest, p* = .5, bias fell to an acceptable level of .09.
The effect size for this parameter was effectively zero (wi = 0.000, p < .001).

The location of the inflection point within the measurement window, on the
other hand, had the highest effect size for the lower asymptote standard error bias
((w2 = 0.016, p < .001), although still considered a small effect. When 0* = .25,
standard error bias was .54, falling to .12 when ¢* = .375. When 0* = .5, bias was
an acceptable .02. The only two-way interaction effect that had an effect size .01 or
larger was the interaction between sample size and the location of the inflection point

within the measurement window (wI% = 0.010, p < .001).

Upper Asymptote (5*)

Unlike the lower asymptote parameter, the upper asymptote parameter seemed
to have more distinct patterns of standard error bias (Table 4.26). Generally speak-
ing, standard error bias was within acceptable limits when the number of repeated
measures was eight or 10 and the maximum rate of change was not at its lowest level.
The same held true for six repeated measures, adding in the provision that sample
size was 1,000 or greater. Standard error bias for this parameter ranged, in absolute

terms from 0 to .61 with a mean bias of .12. An aligned rank transform ANOVA with
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Table 4.25

Results of Aligned Rank Transformed ANOVA for Standard Error Estimate Bias of
Lower Asymptote (i)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wg

SS ) 1.86E+12 2.55E+14 236.84 < 0.001 0.007
RM 2 2.13E+11 2.47E+14 70.02 < 0.001 0.001
P 2 5.22E+10 2.41E+14 17.51 < 0.001 0.000
o* 2 4.20E+12 2.52E+14 1350.17 < 0.001 0.016
SS x RM 10 1.92E+12 2.37TE+14 131.32 < 0.001 0.008
SS x p* 10 2.69E+11 2.40E+14 18.13 < 0.001 0.001
RM x p* 4 1.41E+11 2.40E+14 23.81 < 0.001 0.001
SS x 6* 10 2.47TE+12 2.36E+14 169.33 < 0.001 0.010
RM x ¢§* 4 1.75E+12 2.39E+14 296.11 < 0.001 0.007
prox 0* 4 7.64E+11 2.39E+14 129.44 < 0.001 0.003

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

two-way interactions and main effects was run on the results (see Table 4.27) to assess
the practical effects of the manipulated parameters.

When sample size was 50, the mean standard error bias for the upper asymptote
was .19. As sample size increased, bias decreased, again, reaching .09 bias when sample
size was 500. When sample size was 1,000 or 1,500, standard error bias was .06. The
effect size for sample size was, however, very small (wz = 0.005, p < .001).

Likewise, an increase in the number of repeated measures reduced bias. When
the number of repeated measures was six, mean standard error bias was .26. At eight
repeated measures, mean standard error bias had fallen to an acceptable level of .08.
At 10 repeated measures, mean bias remained acceptable at .02. The effect size for
this manipulated parameter was zero, although statistically significant (%27 = 0.000,

p < .001).
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As the maximum rate of change increased, the amount of standard error bias
decreased. When p* = .125, bias was .23. At p* = .1875, bias was .10 and when the
maximum rate of change was highest, p* = .5, bias remained acceptable at .09. The
effect size for this parameter was negligible ((w? = 0.001, p < .001).

Unlike the other parameters, as delta increased, so did the standard error bias.
When ¢* = .25, standard error bias was acceptable at .09, increasing to .11 when
0* = .375. At 6* = .5, bias increased more to .16. Like the number of repeated
measures, the effect size for this parameter was zero, although statistically significant
(wg = 0.000, p < .001).

The only two-way interaction that had an effect size .01 or larger was the inter-
action between the number of repeated measures and the maximum rate of change
parameter (wz = 0.011, p < .001). This was the largest effect for the standard error
bias of the upper asymptote. The second largest effect for this parameter was the
interaction between sample size and the number of repeated measures (w? = 0.008,

p

p < .001) and while significant the practical effect was less than .01.

Mazimum Rate of Change (p*)

Similar to the upper asymptote parameter, the maximum rate of change pa-
rameter has distinct patterns of standard error bias (Table 4.28). When the number
of repeated measures was six, acceptable levels of bias were found in conditions with
the highest maximum rate of change, the location of the inflection point at either of
the highest two levels, and the sample size was 100 or greater. When the number of
repeated measures was eight or 10 and the sample size was 200 or greater, standard
error bias was acceptable in most conditions. Standard error bias for this parameter
ranged, in absolute terms from 0 to .49 with a mean bias of .03. An aligned rank
transform ANOVA with two-way interactions and main effects was run on the results

(see Table 4.29) to assess the practical effects of the manipulated parameters.
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Table 4.27

Results of Aligned Rank Transformed ANOVA for Standard Error Estimate Bias of
Upper Asymptote (B*)

Effect df Sum Sq.* Sum Sq. Res.? F value  Pr (>F) w?

SS ) 1.52E+12 3.16E+14 156.18 < 0.001 0.005
RM 2 6.00E410 3.17E+14 15.35 < 0.001 0.000
P 2 2.86E+11 3.11E+14 74.50 < 0.001 0.001
0 2 1.24E+11 3.09E+14 32.44 < 0.001 0.000
SS x RM 10 2.52E+12 3.00E+14 133.93 < 0.001 0.008
SS x p* 10 2.47E+11 3.08E+14 13.02 < 0.001 0.001
RM x p* 4 3.49E+12 3.03E+14 466.58 < 0.001 0.011
SS x o 10 3.51E+11 3.07E+14 18.53 < 0.001 0.001
RM x 6* 4 1.07TE+12 3.06E+14 141.65 < 0.001 0.003
prox 0* 4 1.02E+12 3.07E+14 134.90 < 0.001 0.003

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

When sample size was 50, the mean standard error bias for the maximum rate of
change was .04. As sample size increased, bias decreased to .01 at 100, then increased
slightly to .02 at a sample size of 200. When sample size was 500 biased increased to
.05 before decreasing to .04 when sample size was 1,000 or larger. The effect size for
sample size was the largest for the maximum rate of change parameter (wg = 0.085,
p < .001).

Unlike sample size, where all levels had acceptable standard error bias, when
the number of repeated measures was six, mean standard error bias was .16. At eight
repeated measures, mean standard error bias had fallen to an acceptable level of -.01.
At 10 repeated measures, mean bias increased but remained acceptable at -.06. The
effect size for this manipulated parameter was the second largest although small (wg

= 0.056, p < .001).
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As the maximum rate of change increased, the amount of standard error bias
decreased. When p* = .125, bias was .09. At p* = .1875, bias was .03 and when the
maximum rate of change was highest, p* = .5, bias remained acceptable at -.02. The
effect size for this parameter was (w. = 0.046, p < .001).

The location of the inflection point parameter remained below .10 bias across
its three levels. When 0* = .25, standard error bias was .06, decreasing to .01 when
0* = .375. When §* = .5, bias increased to .02. The effect size for this parameter was
negligible, although statistically significant (wf) = 0.002, p < .001).

The only two-way interaction effect that had an effect size .01 or larger was the
interaction between sample size and the number of repeated measures (w? = 0.033,

p

p < .001).

Table 4.29

Results of Aligned Rank Transformed ANOVA for Standard Error Estimate Bias of
Mazimum Rate of Change (p*)

Effect df  Sum Sq.*  Sum Sq. Res®  Fvalue  Pr (>F) w?

SS ) 2.90E+13 3.14E+14 2996.03 < 0.001 0.085
RM 2 1.78E+413 3.02E+14 A4774.21 < 0.001 0.056
P 2 1.47TE413 3.06E+14 3877.59 < 0.001 0.046
0 2 5.07TE+11 3.19E+14 128.68 < 0.001 0.002
SS x RM 10 1.05E+13 3.02E+14 561.83 < 0.001 0.033
SS x p* 10 1.47E+412 3.18E+14 74.59 < 0.001 0.005
RM x p* 4 6.99E+11 3.18E+14 88.96 < 0.001 0.002
SS x o 10 9.43E+11 3.18E+14 48.02 < 0.001 0.003
RM x ¢* 4 7.55E+10 3.19E+14 9.58 < 0.001 0.000
prx 0F 4 1.26E+12 3.18E+14 160.74 < 0.001 0.004

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.
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Location of the Inflection Point (6*)

The location of the inflection point parameter had distinct patterns of standard
error bias (Table 4.30). When the number of repeated measures was six, acceptable
levels of standard error bias were sparse, primarily occurring where the location of
the inflection point was centered and the maximum rate of change was at the highest
level. When the number of repeated measures was eight and the location of the
inflection point was not at the lowest level, or when it was, the maximum rate of
change was at its highest level, bias levels were acceptable. At 10 repeated measures,
bias levels were acceptable except when the maximum rate of change was lowest
and the location of the inflection point was most offset. Standard error bias for this
parameter ranged, in absolute terms from 0 to .46 with a mean bias of .08. An aligned
rank transform ANOVA with two-way interactions and main effects was run on the
results (see Table 4.31) to assess the practical effects of the manipulated parameters.

Changes in the sample size did not result in a monotonic change in parameter
estimate bias for this parameter. When sample size was 50, the mean standard error
bias for the location of the inflection point was .05. As sample size increased, bias
increased to .10 at 100, then increased slightly to .11 at a sample size of 200. When
sample size was 500 biased decreased to .09 and then fell to .06 when sample size was
1,000. When sample size increased to 1,500, standard error bias increased to .08. The
effect size for sample size had small practical significance (w2 = 0.023, p < .001).

As the number of repeated measures increased, standard error bias fell. When
the number of repeated measures was six, mean standard error bias was .20. At eight
repeated measures, mean standard error bias had fallen to an acceptable level of
.05. At 10 repeated measures, mean bias fell further to 0.00. The effect size for this
manipulated parameter was very small (wg = 0.003, p < .001).

As the maximum rate of change increased, the amount of standard error bias

decreased. When p* = .125, bias was unacceptable at .12. At p* = .1875, bias was .08
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and when the maximum rate of change was highest, p* = .5, bias remained accept-
able at .05. The effect size for this parameter was negligible, although statistically
significant (w2 = 0.001, p < .001).

For the location of the inflection point parameter, the initial level, 0* = .25, had
an unacceptable amount of standard error bias at .18. This decreased to .03 when
0* = .375 and when 0* = .5. The effect size for this parameter was negligible, although
statistically significant (w? = 0.002, p < .001).

There were no two-way interaction effects that had an effect size .01 or larger.
The largest practical effect was the interaction between sample size and the number

of repeated measures (wg = 0.006, p < .001).

Table 4.31

Results of Aligned Rank Transformed ANOVA for Standard Error Estimate Bias of
Location of the Inflection Point (0*)

Effect df Sum Sq.* Sum Sq. Res.? F value  Pr (>F) w?

SS ) 7.3TE+12 3.16E+14 756.09 < 0.001 0.023
RM 2 8.23E+11 3.22E+14 206.59 < 0.001 0.003
P 2 1.90E+11 3.17E+14 48.38 < 0.001 0.001
0 2 7.57E+11 3.28E+14 186.96 < 0.001 0.002
SS x RM 10 1.92E+12 3.16E+14 98.52 < 0.001 0.006
SS x p* 10 5.22E+11 3.17E+14 26.70 < 0.001 0.002
RM x p* 4 4.17E+11 3.16E+14 53.42 < 0.001 0.001
SS x o 10 1.43E+11 3.17E+14 7.28 < 0.001 0.000
RM x 6* 4 2.59E+11 3.16E+14 33.17 < 0.001 0.001
pr X 0* 4 3.76E+11 3.16E+14 48.16 < 0.001 0.001

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =

rate of change at the inflection point. § = location of the inflection point within the mea-

surement window.

& Type III sum of squares.
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Relative Asymmetry (v*)

Standard error bias for the relative asymmetry parameter was generally un-
acceptably high. When the number of repeated measures was 10, the majority of
individual cells had an acceptable amount of bias. When the number of repeated
measures was eight, fewer than half of the cells were acceptable. At six repeated mea-
sures, only 1 in 5 had acceptable levels of bias (see Table 4.32). Standard error bias
for this parameter ranged, in absolute measures from 0 to 1.12 with a mean bias of
.23. An aligned rank transform ANOVA with two-way interactions and main effects
was run on the results (see Table 4.33).

For the relative asymmetry parameter, standard error bias only became ac-
ceptable when sample size was 1,000 or larger. When sample size was 50, the mean
standard error bias was .45. As sample size increased, bias decreased, finally reach-
ing .09 bias when sample size was 1,000. Bias remained at .09 when sample size was
1,500. The effect size for sample size on standard error bias for the relative asymmetry
parameter was small (w2 = 0.022, p < .001).

An increase in the number of repeated measures reduced bias. When the number
of repeated measures was six, mean standard error bias was .47. At eight repeated
measures, mean standard error bias had fallen to .17. At 10 repeated measures, mean
bias was an acceptable .07. The effect size for the number of repeated measures was
the largest for this parameter, however, it was still small (w§ = 0.034, p < .001).

As the maximum rate of change increased, the amount of standard error bias
decreased but was unacceptably high at all levels. When p* = .125, bias was .34.
At p* = 1875, bias fell to .22 and when the maximum rate of change was highest,
p* = .5, bias fell to .15. The effect size for this parameter was small (wf) = 0.010,
p < .001).

For the relative asymmetry parameter, the initial level, 6* = .25, had an unac-

ceptable amount of standard error bias at .34. This improved to a still unacceptable
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A8 when 6* = .375 and 6* = .5. The effect size for this parameter was negligible,
although statistically significant (wg = 0.002, p < .001).

The only two-way interaction effect that had an effect size .01 or larger was the
interaction between sample size and the number of repeated measures (wg = 0.013,

p < .001).

Table 4.33

Results of Aligned Rank Transformed ANOVA for Standard Error Estimate Bias of
Relative Asymmetry (v*)

Effect df Sum Sq.* Sum Sq. Res.? F value Pr (>F) wﬁ

SS 5} 7.35E+12 3.26E+14 730.90 < 0.001 0.022
RM 2 1.12E+13 3.23E+14 2812.07 < 0.001 0.034
p* 2 3.24E+12 3.25E+14 806.19 < 0.001 0.010
o* 2 6.86E+11 3.32E+14 167.42 < 0.001 0.002
SS x RM 10 4.38E+12 3.22E+14 219.97 < 0.001 0.013
SS x p* 10 8.32E+10 3.28E+14 4.11 < 0.001 0.000
RM x p* 4 1.58E+12 3.26E+14 196.81 < 0.001 0.005
SS x o* 10 3.54E+11 3.28E+14 17.49 < 0.001 0.001
RM x §* 4 2.61E+11 3.27E+14 32.29 < 0.001 0.001
p*ox 4 1.63E+11 3.28E+14 20.18 < 0.001 0.000

Note. Residual df = 161946. SS = sample size. RM = number of repeated measures. p =
rate of change at the inflection point. § = location of the inflection point within the mea-
surement window.

& Type III sum of squares.

Summary of Fit Measure Results

The overall accuracy of each fit measure, as well as the accuracy by each con-
dition, is shown in Table 4.34. To assess the influence of the manipulated factors
on fit measure performance, logistic regressions were run and odds ratios (OR) were
calculated to be used as a measure of effect size. Odds ratios are an indication of the
relative measure of effect between a reference and an intervention group. In this case,
the reference group was: a sample size of 50, the number of repeated measures of 6,
the location within the measurement window (6*) of 0.25, and the maximum rate of
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change (p*) of 0.125. Each fit measure is discussed in detail below. Because of the
large number of data sets used in this simulation, all p values, unless explicitly stated,

are assumed to be < .001.

Akaikes Information Criterion

Under the conditions simulated in this study, AIC had the overall best perfor-
mance of the information criteria. Across all conditions, it selected the correct model
62.6% of the time (see Table 4.34). The accuracy ranged from 9.0% when the sample
size was the smallest, the number of repeated measures was lowest, the maximum
rate of change was lowest, and the location of the inflection point was most offset to
100% under a variety of less adverse conditions (see Table 4.35). AIC was the best
performing information criterion when the number of repeated measures was six: the
minimum number required identify the Richards model. Under conditions with eight
or 10 repeated measures, it was the second most accurate of the information criterion.
When sample size was 200 or larger, AIC was the best performer of the information
criterion and the second best when sample size was below 200. AIC performed best
when the location of the inflection point was most offset, and second best when un-
der the other two levels of this condition. When the maximum rate of change was
the lowest of the three conditions, AIC performed better than the other information
criterion and second best when it was the highest rate of change.

A logistic regression was run to determine which of the manipulated conditions
had the largest impact on the performance of the AIC in selecting the correct model
(see Table 4.36). Of the manipulated conditions, the location of the inflection point
within the measurement window (6*) had the smallest impact on the performance of
AIC. An increase from 6* = .25 to §* = .375 resulted in a 91% increase in the odds
of correct model selection (OR = 1.91, 95% CI: 1.85-1.97) and an increase to 0* = .5

resulted in a 35% increase in the odds of correct model selection (OR = 1.35, 95% CI:
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1.31-1.39). It is interesting to note that all of the information criteria performed better
when 0* was equal to .375, which was the middle level of this condition indicating a
slightly off-centered location of the inflection point.

The maximum rate of change parameter (p*) had a larger impact than §* on
AIC performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 2.2 times (OR = 2.16, 95% CI: 2.09-2.22) and an increase
to p* = .5 increased the odds by roughly 4.6 times (OR = 4.62, 95% CI: 4.47-4.77).

Increasing the number of repeated measures from six to eight with all other
conditions held equal, increased the odds of AIC selecting the true sigmoidal model
by 5.5 times (OR = 5.50, 95% CI: 5.33-5.67). Increasing from six to 10 repeated
measures increased those odds by a little over 16.5 times (OR = 16.65, 95% CI:
16.07-17.26).

Of all manipulated conditions, sample size had the largest impact on the per-
formance of AIC. An increase in sample size from 50 to 100 increased the odds of
AIC correctly selecting the true model by just over 1.7 times (OR = 1.72, 95% CI:
1.65-1.79). Increasing to 200 increased the odds by roughly 3.3 times (OR = 3.33,
95% CI: 3.20-3.47). When the sample size was 500 the odds of correct model selection
improved by almost 9 times (OR = 8.80, 95% CI: 8.42-9.20). Increasing from 50 to
1,000 made the odds of correct model selection 18 times more likely (OR = 18.02,
95% CI: 17.18-18.91). When the sample size was 1,500, the odds of correct model
selection increased by almost 26 times (OR = 25.96, 95% CI: 24.67-27.31).

Corrected AIC

Overall, the AICc performed worse than AIC with an accuracy rate of 54.4%.
Generally speaking, the AICc uniformly underperformed the AIC with the exception
of conditions with a sample size of 1,500 in which case, the two criteria performed

equally well with an 86% accuracy rate (see Table 4.34). Accuracy on a per cell
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Table 4.36

Logistic Regression Results for AIC
Condition Beta  Std. Error  z value  Pr(>|z]) OR 25%  97.5%

(Intercept) -3.46 0.03 -137.85 < 0.001 0.03 0.03 0.03
RM =8 1.70 0.02 107.89 < 0.001 2.50 2.33 5.67
RM =10 2.81 0.02 154.67 <0.001 16.65 16.07  17.26
n = 100 0.54 0.02 26.17 < 0.001 1.72 1.65 1.79
n = 200 1.20 0.02 27.48 < 0.001 3.33 3.20 3.47
n = 500 2.18 0.02 96.79 < 0.001 8.80 8.42 9.20
n = 1,000 2.89 0.02 118.16 <0.001 18.02 17.18 1891
n = 1,500 3.26 0.03 125.95 <0.001 2596 24.67 2731
0* = 0.375 0.64 0.02 40.44 < 0.001 1.91 1.85 1.97
0*=0.5 0.30 0.02 18.98 < 0.001 1.35 1.31 1.39
p*=0.1875  0.77 0.02 49.56 < 0.001 2.16 2.09 2.22
p* = 0.25 1.53 0.02 92.17 < 0.001 4.62 4.47 4.77

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

basis ranged from 0% under many conditions when sample size was the smallest to
100% under a number of conditions where the sample size was at least 1,500 or the
maximum rate of change was at its highest (see Table 4.37). AICc tied AIC as the best
performing information criterion when the sample size was 1,500. Under conditions
where the sample size was 500 or 1,000, the AICc performed second best of the
information criteria. However, when sample size was 50, it was the worst performing
fit measure with an accuracy rate of only 2.8%.

A logistic regression was run to determine which of the manipulated conditions
had the largest impact on the performance of the AICc in selecting the correct model
(see Table 4.38). Much like the AIC, the location of the inflection point within the
measurement window (0*) had the smallest impact on the performance of AICc. An
increase from 0* = .25 to 0* = .375 resulted in a 2.5 times increase in the odds of

correct model selection (OR = 2.53, 95% CI: 2.44-2.63) and an increase to * = .5
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resulted in a 57% increase in the odds of correct model selection (OR = 1.57, 95%
CI: 1.52-1.63).

The maximum rate of change parameter (p*) had a larger impact than §* on
AICc performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 2.6 times (OR = 2.64, 95% CI: 2.55-2.74) and an increase
to p* = .5 increased the odds by 7.3 times (OR = 7.31, 95% CI: 7.03-7.61).

An increase in the number of repeated measures from six to eight increased the
odds of AICc selecting the true sigmoidal model by nearly 7.5 times (OR = 7.45, 95%
CI: 7.18-7.73). Increasing from six to 10 repeated measures increased those odds over
31 times (OR = 31.64, 95% CI: 30.24-33.10).

Much like the AIC, sample size had the largest impact on the performance of
AlICc. However, the odds ratios of the AICc were as much as 50 times larger than
the AIC under similar conditions. This does not indicate better performance; it just
reflects a large improvement over the poor performance of AICc under the reference
conditions. An increase in sample size from 50 to 100 increased the odds of AIC
correctly selecting the true model by just over 26 times (OR = 26.37, 95% CI: 24.28-
28.65). Increasing to 200 increased the odds by roughly 117 times (OR = 116.57, 95%
CI: 107.12-126.86). When the sample size was 500 the odds of correct model selection
improved by over 400 times (OR = 423.53, 95% CI: 387.75-462.61). Increasing the
sample size to 1,000 made the odds of correct model selection almost 1,000 times
more likely (OR = 987.56, 95% CI: 900.95-1082.50). Finally, when the sample size
was 1,500, the odds of correct model selection increased by nearly 1,500 times (OR
= 1487.35, 95% CI: 1354.01-1633.82).

Consistent AIC
Overall, the CAIC was the worst performing information criteria with an accu-

racy rate of only 30%. The lone condition where CAIC did not perform worse than
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Table 4.38

Logistic Regression Results for AICc
Condition Beta Std. Error z value Pr(>|z|) OR 2.5% 97.5%

(Intercept)  -7.91 0.05 -156.77 < 0.001 0.00 0.00 0.00
RM =8 2.01 0.02 106.30 < 0.001 7.45 7.18 7.73
RM =10 3.45 0.02 149.50 < 0.001 31.64 30.24 33.10
n = 100 3.27 0.04 7747 < 0.001 26.37 24.28 28.65
n = 200 4.76 0.04 110.30 < 0.001  116.57  107.12  126.86
n = 500 6.05 0.05 134.32 < 0.001  423.53  387.75  462.61
n = 1,000 6.90 0.05 147.23 < 0.001  987.56  900.95 1082.50
n = 1,500 7.30 0.05 152.43 < 0.001 1487.35 1354.01 1633.82
0* =0.375 0.93 0.02 49.55 < 0.001 2.53 2.44 2.63
0*=10.5 0.45 0.02 24.76 < 0.001 1.57 1.52 1.63
p*=0.1875 0.97 0.02 93.39 < 0.001 2.64 2.55 2.74
p* = 0.25 1.99 0.02 99.27 < 0.001 7.31 7.03 7.61

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

any other fit measure was when sample size was 50 (see Table 4.34) and in that case,
it was the second worst performing. Accuracy on a per cell basis ranged from 0%
under a large number of conditions where the number of repeated measures was six
or when the maximum rate of change was at its lowest to 100% when sample size was
high and/or the number of repeated measures was greatest (see Table 4.39). While
it is possible that CAIC would continue to perform better as sample size increases,
those conditions were not simulated.

Results of a logistic regression were used to determine which of the manipulated
conditions had the largest impact on the performance of the CAIC when selecting
the correct model (see Table 4.40). Much like other fit measures, the location of the
inflection point within the measurement window (6*) had the smallest impact on
the performance of CAIC. An increase from §* = .25 to §* = .375 resulted in an

increase in the odds of correct model selection by 15.5 times (OR = 15.59, 95% CI:

105



‘jurod uoroepUI oY) Je dFueyd Jo 9jel = J

*

‘uorprodold & se MOPUIM JTOWIDINSLIU S} UM Julod TOTPQPUI 91} JO UOIYed0] = ¢ ozIs o[dwres = U "soinseswt pajeadal = NY 270N

00T 00T 00T 00T 00T 00T 00T 86°0 69°0 00G°T

00T 00T 660 00'T 00°'T 00'T 00T 18°0 770 000°'T

00T 96°0 29°0 00'T 00T 060 880 zg0 LT°0 006 o1

080 9¢°0 80°0 960 99°0 00 Zr0 8T°0 L0°0 002

1€°0 80°0 €00 G5 0 2z0 800 2z 0 110 70°0 00T

010 €0°0 100 €0 01°0 €00 91°0 80°0 €00 0S

00T 86°0 920 00'T 00°'T z8°0 060 70 z1o 00G°T

00'T €L0 c0°0 00'T 1670 o 1970 ¥20 L0°0 000°'T

6.0 710 100 L6°0 250 L0°0 620 600 €00 009 g

e1o 100 000 120 90°0 100 1710 70°0 100 002

20°0 100 000 010 200 000 c0'0 200 1070 00T

200 10°0 000 €00 10°0 000 70°0 10°0 10°0 0¢

80 00°0 000 18°0 2070 00°0 e10 €00 000 00G°T

L0°0 00°0 000 9%°0 200 000 800 200 000 000°T

10°0 000 000 90°0 00°0 000 €00 10°0 000 005 9

000 00°0 000 100 00°0 000 100 000 000 002

000 00°0 000 000 00°0 000 000 000 000 00T

000 000 000 000 00°0 000 000 000 000 0S
6c0=. G8r0=.9 0=, Ge0=.9 G810=.0 Gro=.9 ¢¢0=.9 c8ro=.9 sero=./ WY

GLED =40

Gc'0 =9

DIV buisy) sppopy (pprowbig pagoa)ag fijpoalsor) fo uogiodosg

6¢7 Sl198L

106



14.75-16.48) and an increase to 0* = .5 resulted in a 4.1 times increase in the odds of
correct model selection (OR = 4.13, 95% CI: 3.93-4.35).

While still relatively small for CAIC, the maximum rate of change parameter
(p*) had alarger impact than 6* on correct model selection. An increase from p* = .125
to p* = .1875 increased the odds of correct model selection by just over 7 times (OR
= 7.18, 95% CI: 6.80-7.58) and an increase to p* = .5 increased the odds by over 52
times (OR = 52.07, 95% CI: 48.85-55.51).

Increasing the number of repeated measures had a very large impact on the per-
formance on the CAIC mainly due to poor performance at the six repeated measures
reference level. An increase in the number of repeated measures from six to eight
increased the odds of CAIC selecting the correct model by 87 times (OR = 87.08,
95% CI: 80.94-93.69). Increasing from six to 10 repeated measures increased those
odds nearly 2100 times (OR = 2097.28, 95% CI: 1908.44-2304.81).

Similar to the performance gains by increasing the number of repeated measures,
sample size increases resulted in very large odds ratios due to the poor performance
of this fit measure with small sample sizes. An increase in sample size from 50 to
100 increased the odds of CAIC correctly selecting the true model 3.1 times (OR =
3.14, 95% CI: 2.85-3.46). Increasing sample size to 200 increased the odds by roughly
20 times (OR = 20.08, 95% CI: 18.29-22.05). Further increasing the sample size to
500 increased the odds of correct model selection 246 times (OR = 245.72, 95% CI:
222.14-271.80). Increasing the sample size to 1,000 made the odds of correct model
selection 1390 times more likely (OR = 1390.30, 95% CI: 1244.63-1553.01). Finally,
when the sample size was 1,500, the odds of correct model selection increased by over

4000 times (OR = 4028.03, 95% CI: 4531.43).
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Table 4.40

Logistic Regression Results for CAIC
Condition Beta  Std. Error z value Pr(>|z]) OR 2.5% 97.5%

(Intercept)  -14.52 0.09 -161.87 < 0.001 0.00 0.00 0.00
RM =8 4.47 0.04 119.67 < 0.001  87.08 80.94 93.69
RM =10 7.65 0.05 158.88 < 0.001 2097.28 1908.44 2304.81
n = 100 1.14 0.05 22.85 < 0.001 3.14 2.85 3.46
n = 200 3.00 0.05 62.93 < 0.001  20.08 18.29 22.05
n = 500 5.50 0.05 106.94 < 0.001 245.72 22214  271.80
n = 1,000 7.24 0.06 128.16 < 0.001 1390.30 1244.63 1553.01
n = 1,500 8.30 0.06 138.16 < 0.001 4028.03 3580.55 4531.43
0* =0.375 2.75 0.03 96.74 < 0.001 15.59 14.75 16.48
0*=10.5 1.42 0.03 04.29 < 0.001 4.13 3.93 4.35
pr=0.1875 197 0.03 71.27 < 0.001 7.18 6.80 7.58
p* = 0.25 3.95 0.03 121.23 < 0.001  52.07 48.85 95.51

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Hannan and Quinn adjustment of AIC

The HQ, much like the DIC discussed below, was neither one of the best infor-
mation criterion, nor one of the worst. It performed worse than the AIC, the aBIC,
and the AICc, but better than the CAIC or the BIC and about the same as the DIC.
Its overall accuracy rate was 49.9% (see Table 4.34). Accuracy on a per cell basis
ranged from 1% under conditions with six repeated measures and the smallest maxi-
mum rate of change up to 100% under more optimal conditions where the number of
repeated measures was eight or 10 (see Table 4.41).

Logistic regression results were used to determine which of the manipulated
conditions had the largest impact on the performance of the HQ in correct model
selection (see Table 4.42). Much like the other information criterion, the HQ showed
a preference when selecting models where 0* was .375. An increase from 6* = .25 to

0* = .375 resulted in a 3.8 times increase in the odds of correct model selection (OR =
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3.78, 95% CI: 3.65-3.92) whereas an increase from §* = .25 to §* = .5 resulted in a 2
times increase in the odds of correct model selection (OR = 2.02, 95% CI: 1.95-2.09).

The maximum rate of change parameter (p*) had a larger impact than §* on
HQ performance. An increase from p* = .125 to p* = .1875 resulted in the odds of
correct model selection increasing by 3.2 times (OR = 3.15, 95% CI: 3.04-3.26). An
increase to p* = .5 increased the odds by 11 times (OR = 10.92, 95% CI: 10.50-11.36).

Increasing the number of repeated measures from six to eight resulted in a
corresponding increase in the odds of HQ selecting the true model by 17.4 times (OR
= 17.40, 95% CI: 16.70-18.13). Increasing from six to 10 repeated measures increased
those odds over 100 times (OR = 100.79, 95% CI: 95.93-105.90).

Although the HQ performed much like the DIC, unlike the DIC, sample size
increase resulted in a monotonic increase in the odds of correct model selection. An
increase in sample size from 50 to 100 increased the odds of correctly selecting the
true model by 67% (OR = 1.67, 95% CI: 1.59-1.76). Increasing sample size to 200
increased the odds by 4.4 times (OR = 4.40, 95% CI: 4.19-4.62). When the sample
size was 500 the odds of correct model selection improved by 18.3 times (OR = 18.30,
95% CI: 17.35-19.30). Increasing the sample size to 1,000 made the odds of correct
model selection 59 times more likely (OR = 58.73, 95% CI: 55.38-62.30). Finally,
when the sample size was 1,500, the odds of correct model selection increased by over

108 times (OR = 108.46, 95% CI: 101.87-115.47).

Bayesian Information Criterion

Much like the CAIC, the BIC performed very poorly overall with the second
worst accuracy rate of any fit measure at 34.4%. When sample size was 50, the BIC
performed better than 2 other information criteria, but that accuracy rate was still
only 8.3% (see Table 4.34). Aside from that lone condition, BIC only performed better

than CAIC for the remaining conditions. Accuracy on a per cell basis ranged from
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Table 4.42

Logistic Regression Results for HQ)
Condition Beta  Std. Error  z value Pr(>|z|) OR 25%  97.5%

(Intercept) -6.66 0.04 -175.86 < 0.001 0.00 0.00 0.00
RM =8 2.86 0.02 136.30 < 0.001 17.40 16.70 18.13
RM =10 4.61 0.03 182.96 < 0.001  100.79  95.93  105.90
n = 100 0.52 0.03 20.32 < 0.001 1.67 1.59 1.76
n = 200 1.48 0.03 58.48 < 0.001 4.40 4.19 4.62
n = 500 291 0.03 106.88 < 0.001 18.30 17.35 19.30
n = 1,000 4.07 0.03 135.55 < 0.001 58.73 95.38 62.30
n = 1,500 4.69 0.03 146.60 < 0.001 108.46 101.87 115.47
0* =0.375 1.33 0.02 71.51 < 0.001 3.78 3.65 3.92
0*=0.5 0.70 0.02 38.98 < 0.001 2.02 1.95 2.09
pr=0.1875 1.15 0.02 62.60 < 0.001 3.15 3.04 3.26
p* = 0.25 2.39 0.02 119.25 < 0.001 10.92 10.50 11.36

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

0% under a large number of conditions where the number of repeated measures was
six to 100% when sample size was high and/or the number of repeated measures was
greatest (see Table 4.43). BICs preference for more parsimonious models was likely
the cause of its poor performance when selecting complex models such as the Richards
model in this study.

Logistic regression results were used to determine the impact of the manipulated
conditions on the performance of the BIC when selecting the correct model (see
Table 4.44). The location of the inflection point within the measurement window (&%)
had the smallest impact on the performance of the BIC. An increase in ¢* from .25 to
375 resulted in an increase in the odds of correct model selection by 9.3 times (OR
= 9.25, 95% CI: 8.83-9.70) and an increase to 0* = .5 resulted in a 3.2 times increase

in the odds of correct model selection (OR = 3.18, 95% CI: 3.04-3.32).

111



‘jurod uoroepUI oY) Je dFueyd Jo 9jel = J

*

‘uorprodold & se MOPUIM JTOWIDINSLIU S} UM Julod TOTPQPUI 91} JO UOIYed0] = ¢ ozIs o[dwres = U "soinseswt pajeadal = NY 270N

00T 00T 00T 00'T 00°'T 00'T 00T 660 8L°0 00G°T

00T 00T 00T 00'T 00°'T 00'T 00T 760 LS°0 000°'T

00'T 660 8L°0 00'T 00T 76°0 260 €9°0 ¥20 006 o1

060 96°0 61°0 660 6.0 870 760 9z°0 z10 002

250 12°0 600 eL0 8¢°0 ST°0 ze0 LT°0 800 00T

8Z°0 1710 600 €v0 12°0 010 8%0 LT°0 010 0¢

00'T 660 o 00'T 00°'T 680 76°0 960 61°0 00G°T

00'T 180 710 00'T 860 8G0 cL0 €0 z1o 000°'T

060 620 €00 660 69°0 710 60 710 L0°0 009 g

8Z°0 €00 100 ley) 710 €00 LT0 80°0 €00 002

600 €0°0 100 ze0 c0'0 100 z1ro €00 z0°0 00T

L0°0 €00 200 010 70°0 200 110 G0'0 70°0 0¢

LV0 200 000 880 €10 00°0 ST°0 70°0 10°0 00G'T

GT°0 000 000 6S°0 c0°0 000 e1r o €00 1070 000°T

200 000 000 ¥1°0 100 000 90°0 200 000 005 9

000 00°0 000 z0°0 00°0 000 z0°0 000 000 002

000 00°0 000 1070 00°0 000 200 000 000 00T

1070 000 000 1070 00°0 000 1070 1070 000 0S
ez0=.9 G681 0=.9 cr0=.0 Gz0=.9 G810=.9 Sro0=.9 cg0=.0 ¢810=.9 6g10=.9 I

GLED =40

Gc'0 =9

DIE buis) spppopy (oprowbig pagoajag fijpoastor) fo uorgiodoig

€7’V Sl9=8L

112



Like other fit measures, the maximum rate of change parameter (p*) had a
larger impact than 6* on correct model selection. An increase from p* = .125 to
p* = .1875 increased the odds of correct model selection by 5 times (OR = 5.03, 95%
CI: 4.80-5.27) and an increase to p* = .5 increased the odds by 28.6 times (OR =
28.56, 95% CI: 27.09-30.11).

Increasing the number of repeated measures had a relatively large impact on
the performance on the BIC. An increase in the number of repeated measures from
six to eight increased the odds of selecting the correct model by 53 times (OR =
53.11, 95% CI: 49.98-56.43). Increasing from six to 10 repeated measures increased
those odds 773 times (OR = 772.63, 95% CI: 716.20-833.52).

Like other fit measures, sample size increases resulted in increases in perfor-
mance. In the case of BIC, an increase in sample size from 50 to 100 increased the
odds correctly selecting the true model 2 times (OR = 2.02, 95% CI: 1.88-2.17). In-
creasing sample size to 200 increased the odds 8 times (OR = 8.08, 95% CI: 7.54-8.66).
Increasing the sample size to 500 increased the odds of correct model selection 58.5
times (OR = 58.53, 95% CI: 54.36-63.02). Increasing the sample size to 1,000 brought
the odds of correct model selection to 251 times more likely (OR = 251.14, 95% CI:
231.57-272.35). When the sample size was 1,500, the odds of correct model selection
increased to 630 times (OR = 630.15, 95% CI: 577.75-687.30) over when the sample

size was 0.

Sample Size Adjusted BIC

Sample size adjusted BIC had the second best overall performance of the infor-
mation criteria studied in this simulation. Across all conditions, it selected the correct
model 62.3% of the time (see Table 4.34). The accuracy ranged from 2.0% when the
sample size was large, the number of repeated measures was lowest, the maximum

rate of change was lowest, and the location of the inflection point was centered to
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Table 4.44

Logistic Regression Results for BIC
Condition Beta  Std. Error  z value Pr(>|z|) OR 25%  97.5%

(Intercept)  -11.34 0.07 -174.15 < 0.001 0.00 0.00 0.00
RM =8 3.97 0.03 128.17 < 0.001  53.11 49.98 56.43
RM =10 6.65 0.04 171.83 < 0.001  772.63 716.20 833.52
n = 100 0.70 0.04 19.24 < 0.001 2.02 1.88 2.17
n = 200 2.09 0.04 59.31 < 0.001 8.08 7.54 8.66
n = 500 4.07 0.04 107.98 < 0.001  58.53 54.36 63.02
n = 1,000 2.53 0.04 133.54 < 0.001 251.14 231.57 272.35
n = 1,500 6.45 0.04 145.53 < 0.001  630.15 577.75 687.30
0* = 0.375 2.22 0.02 92.80 < 0.001 9.25 8.83 9.70
0*=10.5 1.16 0.02 51.08 < 0.001 3.18 3.04 3.32
p*=0.1875  1.62 0.02 68.12 < 0.001 5.03 4.80 5.27
p* = 0.25 3.35 0.03 12428 < 0.001  28.56 27.09 30.11

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

100% under a variety of less adverse conditions (see Table 4.45). aBIC was the best
performing information criterion when the number of repeated measures was eight
or 10 and second best when the number of repeated measures was six. When sample
size was under 200, aBIC was the best performer of the information criterion and the
second best when sample size was 200. aBIC performed second best when the loca-
tion of the inflection point was most offset, and best when under the other two levels
of this condition. When the maximum rate of change was the highest of the three
conditions, aBIC performed better than the other information criterion and second
best under the other rate of change levels.

Results of a logistic regression show which of the manipulated conditions had
the largest impact on the performance of the aBIC in selecting the correct model (see
Table 4.46). As with other fit measures, the location of the inflection point within the

measurement window (0*) had the smallest impact on the performance of the aBIC.
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An increase from ¢0* = .25 to 0* = .375 resulted in a 2.2 times increase in the odds
of correct model selection (OR = 2.17, 95% CI: 2.10-2.23) and an increase to 0* = .5
resulted in a 1.6 times increase in the odds of correct model selection (OR = 1.59,
95% CI: 1.55-1.64).

The maximum rate of change parameter (p*) had a larger impact than §* on
aBIC performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 2 times (OR = 2.01, 95% CI: 1.95-2.07) and an increase
to p* = .5 increased the odds by roughly 4.4 times (OR = 4.42, 95% CI: 4.28-4.55).

Increasing the number of repeated measures from six to eight with all other
conditions held equal, increased the odds of aBIC selecting the true sigmoidal model
by 6.2 times (OR = 6.21, 95% CI: 6.03-6.39). Increasing from six to 10 repeated
measures increased those odds by just under 16 times (OR = 15.84, 95% CI: 15.33-
16.37).

Unlike previously reported information criteria, sample size did not have the
largest impact on the performance of aBIC. An increase in sample size from 50 to
100 increased the odds of correctly selecting the true model by a mere 8% (OR =
1.08, 95% CI: 1.04-1.12). Increasing to 200 increased the odds by 25% (OR = 1.25,
95% CI: 1.20-1.30). When the sample size was 500 the odds of correct model selection
improved by almost 2.1 times (OR = 2.13, 95% CI: 2.05-2.22). Increasing to 1,000
made the odds of correct model selection almost 4 times more likely (OR = 3.86, 95%
CI: 3.70-4.03). When the sample size was 1,500, the odds of correct model selection

increased by almost 5.5 times (OR = 5.46, 95% CI: 24.67-27.31).

Draper Information Criterion
The DIC, much like the HQ above, was neither one of the best information
criterion, nor one of the worst. It performed worse than the AIC, the aBIC, and the

AlICc, but better than the CAIC or the BIC and about the same as the HQ. Its overall
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Table 4.46

Logistic Regression Results for aBIC
Condition Beta  Std. Error  z value  Pr(>|z]) OR 25%  97.5%

(Intercept) -2.65 0.02 -117.15 < 0.001 0.07 0.07 0.07
RM =8 1.83 0.01 123.88 < 0.001 6.21 6.03 6.39
RM =10 2.76 0.02 164.36 <0.001 1584 1533 16.37
n = 100 0.08 0.02 3.73 < 0.001 1.08 1.04 1.12
n = 200 0.22 0.02 11.04 < 0.001 1.25 1.20 1.30
n = 500 0.76 0.02 36.43 < 0.001 2.13 2.05 2.22
n = 1,000 1.35 0.02 61.97 < 0.001 3.86 3.70 4.03
n = 1,500 1.70 0.02 75.04 < 0.001 5.46 5.22 5.71
0* =0.375 0.77 0.02 20.67 < 0.001 2.17 2.10 2.23
0*=10.5 0.47 0.01 31.20 < 0.001 1.59 1.55 1.64
p*=0.1875  0.70 0.01 47.35 < 0.001 2.01 1.95 2.07
p* = 0.25 1.49 0.02 93.71 < 0.001 4.42 4.28 4.55

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

accuracy rate was 49.2%. Generally speaking, the DIC uniformly underperformed the
more well-known AIC and aBIC (see Table 4.34). Accuracy on a per cell basis ranged
from 0% under conditions with six repeated measures, the smallest maximum rate
of change, centered inflection point and sample sizes 500 or greater to 100% under
more optimal conditions where the number of repeated measures was eight or 10 (see
Table 4.47).

Logistic regression results were used to determine which of the manipulated
conditions had the largest impact on the performance of the DIC in selecting the
correct model (see Table 4.48). Much like the other information criterion, the DIC
performed better when selecting models where 6* was .375. An increase from 0* = .25
to 0* = .375 resulted in a 4 times increase in the odds of correct model selection (OR
= 3.98, 95% CI: 3.84-4.12) whereas an increase from 6* = .25 to §* = .5 resulted in a 2

times increase in the odds of correct model selection (OR = 2.16, 95% CI: 2.09-2.24).
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The maximum rate of change parameter (p*) had a larger impact than §* on
DIC performance. An increase from p* = .125 to p* = .1875 resulted in the odds of
correct model selection increasing by 2.8 times (OR = 2.83, 95% CI: 2.74-2.93). An
increase to p* = .5 increased the odds by 9.7 times (OR = 9.65, 95% CI: 9.30-10.02).

The number of repeated measures had the largest impact on the performance
of DIC. Increasing the number of repeated measures from six to eight resulted in a
corresponding increase in the odds of DIC selecting the true model by 15.9 times (OR
= 15.89, 95% CI: 15.29-16.51). Increasing from six to 10 repeated measures increased
those odds over 87 times (OR = 87.40, 95% CI: 83.52-91.46).

Unlike the other information criterion, sample size increase did not result in a
monotonic increase in the odds of correct model selection. An increase in sample size
from 50 to 100 decreased the odds of DIC correctly selecting the true model by 12%
(OR = 0.88, 95% CI: 0.84-0.92). Increasing sample size to 200 increased the odds by
roughly 47% (OR = 1.47, 95% CT: 1.41-1.54). When the sample size was 500 the odds
of correct model selection improved by 4.3 times (OR = 4.30, 95% CI: 4.10-4.50).
Increasing the sample size to 1,000 made the odds of correct model selection 11 times
more likely (OR = 11.06, 95% CI: 10.52-11.63). Finally, when the sample size was
1,500, the odds of correct model selection increased by nearly 20 times (OR = 19.94,

95% CI: 18.91-21.02).

Root Mean Square Error of Approximation

Unlike the information criteria discussed previously, the RMSEA can be used
as a stand-alone fit measure that can be used to assess how well a model fits based on
certain pre-established cut-offs. Unfortunately, the established cut-offs (Hu & Bentler,
1999) are not applicable to the type of models being investigated, and without guid-
ance for appropriate cut-off values, RMSEA, SRMR, CFI, and TLI were used com-

paratively much like the information criteria. That is, the values for the true model
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Table 4.48

Logistic Regression Results for DIC
Condition Beta  Std. Error  z value  Pr(>|z]) OR 25%  97.5%

(Intercept) -5.53 0.03 -167.68 < 0.001 0.00 0.00 0.00
RM =8 2.77 0.02 140.87 < 0.001 1589 1529 16.51
RM =10 4.47 0.02 192.87 <0.001 8740 83.52 91.46
n = 100 -0.13 0.02 -5.501 < 0.001 0.88 0.84 0.92
n = 200 0.39 0.02 16.40 < 0.001 1.47 1.41 1.54
n = 500 1.46 0.02 60.32 < 0.001 4.30 4.10 4.50
n = 1,000 2.40 0.03 93.57 <0.001 11.06 10.52 11.63
n = 1,500 2.99 0.03 110.55 <0.001 1994 1891  21.02
0* =0.375 1.38 0.02 77.64 < 0.001 3.98 3.84 4.12
0*=0.5 0.77 0.02 44.82 < 0.001 2.16 2.09 2.24
p*=01875  1.04 0.02 60.40 < 0.001 2.83 2.74 2.93
p* = 0.25 2.27 0.02 119.50 < 0.001 9.65 9.30 10.02

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

were compared against the values for the competing polynomial models and the best
score indicates the model selected.

Under the conditions simulated in this study, the RMSEA had the overall best
performance of any fit measure. Across all conditions, RMSEA selected the correct
model 82.8% of the time. RMSEA was the best performing information criterion for
all numbers of repeated measures, all sample sizes, all maximum rates of change, and
all inflection point locations (see Table 4.34). On a per-cell basis, the accuracy was
no less than 70.0

Results of a logistic regression were used to determine which of the manipulated
conditions had the largest impact on the performance of the RMSEA when selecting
the correct model (see Table 4.50). Unlike many of the information criteria, the odds
ratios for the RMSEA were relatively small due to its consistent performance across

the conditions.
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Of the manipulated conditions, the location of the inflection point within the
measurement window (6*) had smallest impact on the performance of RMSEA. An
increase from §* = .25 to §* = .375 resulted in a 7% increase in the odds of correct
model selection (OR = 1.07, 95% CI: 1.03-1.10) and an increase to §* = .5 resulted in
a 12% decrease in the odds of correct model selection (OR = 0.88, 95% CI: 0.85-0.91).
Like the information criterion, RMSEA performed better when 0* was equal to .375,
which was the middle level of this condition indicating a slightly off-centered location
of the inflection point.

Much like with the information criterion, the maximum rate of change param-
eter (p*) had a larger impact than 0* on correct model selection. An increase from
p* = .125 to p* = .1875 increased the odds of correct model selection by 29% (OR =
1.29, 95% CI: 1.25-1.33) and an increase to p* = .5 increased the odds by 75% (OR
= 1.75, 95% CI: 1.69-1.81).

Increasing the number of repeated measures from six to eight with all other
conditions held equal, increased the odds of RMSEA selecting the true sigmoidal
model by 56% (OR = 1.56, 95% CI: 1.51-1.61). Increasing from six to 10 repeated
measures increased those odds by a little over 2.6 times (OR = 2.63, 95% CI: 2.64-
2.72).

Of the manipulated conditions, sample size had a slightly larger impact on the
performance of RMSEA than other conditions. An increase in sample size from 50 to
100 increased the odds of RMSEA correctly selecting the true model by 15% (OR =
1.15, 95% CI: 1.10-1.20). Increasing to 200 increased the odds by 32% (OR = 1.32,
95% CI: 1.27-1.38). When the sample size was 500 the odds of correct model selection
improved by 86% (OR = 1.86, 95% CI: 1.78-1.95). Increasing from 50 to 1,000 made
the odds of correct model selection roughly 2.5 times more likely (OR = 2.48, 95%
CI: 2.36-2.60). When the sample size was 1,500, the odds of correct model selection
increased by almost 2.9 times (OR = 2.89, 95% CI: 2.75-3.03).
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Table 4.50

Logistic Regression Results for RMSEA
Condition Beta  Std. Error  zvalue Pr(>[z|) OR  25% 97.5%

(Intercept) 0.47 0.02 22.24 < 0.001 1.60 1.53 1.66
RM =8 0.44 0.02 28.46 < 0.001 1.56 1.51 1.61
RM =10 0.97 0.02 95.70 < 0.001 2.63 2.54 2.72
n = 100 0.14 0.02 6.65 < 0.001 1.15 1.10 1.20
n = 200 0.28 0.02 13.18 < 0.001 1.32 1.27 1.38
n = 500 0.62 0.02 27.62 < 0.001 1.86 1.78 1.95
n = 1,000 0.91 0.02 37.87 < 0.001 2.48 2.36 2.60
n = 1,500 1.06 0.02 42.65 < 0.001 2.89 2.75 3.03
0* =0.375 0.06 0.02 3.84 < 0.001 1.07 1.03 1.10
0*=10.5 -0.13 0.02 -8.02 < 0.001 0.88 0.85 0.91
p* = 0.1875 0.26 0.02 16.03 < 0.001 1.29 1.25 1.33
p*=0.25 0.56 0.02 33.19 < 0.001 1.75 1.69 1.81

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Standardized Root Mean Residual

The SRMR is the standardized mean difference between non-duplicated ele-
ments of the actual correlation matrix and the model-implied correlation matrix. As
such, SRMR does not explicitly model the mean structure of the growth model. As
such, this fit measure was not appropriate for use with the types of models this sim-
ulation study examined. However, as mentioned previously, the measure may serve
diagnostically, when used with other absolute or incremental fit measures, to indi-
cate problems in the mean structure of a model. Overall, the SRMR was the worst
performing of the incremental and absolute fit measures with an accuracy rate of
50.5% and was outperformed by the best information criterion. Generally speaking,
the SRMR uniformly underperformed the RMSEA, TLI, and CFI under all condi-
tions (see Table 4.34). Accuracy on a per cell basis ranged from the teens under many

conditions when there were six repeated measures and the location of the inflection
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point was centered to 100% under a conditions with 10 repeated measures, sample
sizes of 1,000 or higher, the highest maximum rate of change, and all but the centered
location of the inflection point (see Table 4.51).

Logistic regression was run to determine which of the manipulated conditions
had the largest impact on the performance of the SRMR in selecting the correct
model (see Table 4.52). Unlike every other fit measure, the location of the inflection
point within the measurement window (6*) did not have the smallest impact on the
performance of SRMR. Also unlike every other fit measure, as the location of the
inflection point became more centered, the odds ratios of correct model selection
monotonically decreased. An increase from ¢* = .25 to 0* = .375 resulted in a 39%
reduction in the odds of correct model selection (OR = 0.61, 95% CI: 0.60-0.63) and
an increase to 0* = .5 resulted in a 66% decrease in the odds of correct model selection
(OR = 0.34, 95% CI: 0.33-0.35).

The maximum rate of change parameter (p*) had a smaller impact than ¢* on
SRMR performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 1.5 times (OR = 1.45, 95% CI: 1.41-1.49) and an increase
to p* = .5 increased the odds by 2.3 times (OR = 2.25, 95% CI: 2.18-2.31).

Increasing the number of repeated measures from six to eight increased the odds
of SRMR selecting the true sigmoidal model by nearly 3.5 times (OR = 3.44, 95% CI:
3.35-3.53). Increasing from six to 10 repeated measures increased those odds nearly
9 times (OR = 8.93, 95% CI: 8.67-9.19).

Much like the other absolute and incremental fit measures, effect sizes were
small in comparison with those of the information criteria. This does not necessarily
indicate better or worse performance; in this case, it was just reflective of the rela-
tive inconsistency of the SRMR. An increase in sample size from 50 to 100 was not
statistically significant (p = .073, OR = 1.04, 95% CI 1.00-1.08). Increasing to 200
increased the odds correct model selection by roughly 27% (OR = 1.27, 95% CT: 1.22-
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1.32). When the sample size was 500 the odds of correct model selection improved
by 2 times (OR = 2.03, 95% CI: 1.95-2.11). Increasing the sample size to 1,000 made
the odds of correct model selection nearly 3.3 times more likely (OR = 3.26, 95%
CI: 3.14-3.39). Finally, when the sample size was 1,500, the odds of correct model

selection increased by just over 4 times (OR = 4.11, 95% CI: 3.95-4.27).

Table 4.52

Logistic Regression Results for SRMR
Condition Beta  Std. Error  zvalue Pr(>|z|) OR  25% 97.5%

(Intercept) -1.58 0.02 -78.22 < 0.001 0.21 0.20 0.21
RM =8 1.23 0.01 88.61 < 0.001 3.44 3.35 3.53
RM = 10 2.19 0.01 147.07 < 0.001 8.93 8.67 9.19
n = 100 0.04 0.02 1.79 0.073 1.04 1.00 1.08
n = 200 0.24 0.02 12.32 < 0.001 1.27 1.22 1.32
n = 500 0.71 0.02 36.19 < 0.001 2.03 1.95 2.11
n = 1,000 1.18 0.02 59.52 < 0.001 3.26 3.14 3.39
n = 1,500 1.41 0.02 70.04 < 0.001 4.11 3.95 4.27
0* = 0.375 -0.49 0.01 -35.35 < 0.001 0.61 0.60 0.63
0*=10.5 -1.09 0.01 -76.60 < 0.001 0.34 0.33 0.35
p* = 0.1875 0.37 0.01 26.91 < 0.001 1.45 1.41 1.49
p* = 0.25 0.81 0.01 57.54 < 0.001 2.25 2.18 2.31

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Comparative Fit Index

Under the conditions simulated in this study, the CFI had the second best over-
all performance of any fit measure, performing only slightly worse than the RMSEA.
Across all conditions, it selected the correct model 81.1% of the time (see Table 4.34).
The accuracy ranged from 69% when the sample size was 1,000, the number of re-
peated measures was lowest, maximum rate of change was lowest, and the location
of the inflection point was centered to 100% under a variety of conditions where the

number of repeated measures was 10 and sample size was 500 or larger(see Table 4.53).
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CFI was the second best performing fit measure when the number regardless of sam-
ple size, the number of repeated measures, the location of the inflection point, or the
maximum rate of change.

Results of a logistic regression show which of the manipulated conditions had
the largest impact on the performance of CFI in selecting the correct model (see
Table 4.54). Much like the RMSEA, and unlike the information criterion, the odds
ratios for the CFI were relatively small due to its consistent and relatively good
performance across the conditions.

As with other fit measures, the location of the inflection point within the mea-
surement window (6*) had smallest impact on the performance of CFI. An increase
from 6* = .25 to §* = .375 was not statistically significant (p = 0.356, OR = 1.02,
95% CI: 0.98-1.05) whereas an increase to §* = .5 resulted in a 17% decrease in the
odds of correct model selection (OR = 0.83, 95% CI: 0.80-0.86).

The maximum rate of change parameter (p*) had a larger impact than §* on
CFI performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 27% (OR = 1.27, 95% CI: 1.23-1.31) and an increase to
p* = .5 increased the odds by roughly 68% (OR = 1.68, 95% CI: 1.63-1.73).

Increasing the number of repeated measures from six to eight with all other
conditions held equal, increased the odds of CFI selecting the true sigmoidal model
by 47% (OR = 1.47, 95% CI: 1.42-1.51). Increasing from six to 10 repeated measures
increased those odds by just under 2.5 times (OR = 2.46, 95% CI: 2.38-2.54).

Unlike many other of the fit measures examined in this study, sample size did
not have the largest impact on the performance of CFI. An increase in sample size
from 50 to 100 increased the odds of correctly selecting the true model by 11% (OR
= 1.11, 95% CI: 1.07-1.16). Increasing to 200 increased the odds by 23% (OR = 1.23,
95% CI: 1.18-1.28). When the sample size was 500 the odds of correct model selection

improved by 58% (OR = 1.58, 95% CI: 1.51-1.65). Increasing to 1,000 made the odds
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of correct model selection 2 times more likely (OR = 2.02, 95% CI: 1.93-2.11). When
the sample size was 1,500, the odds of correct model selection increased by 2.3 times

(OR = 2.31, 95% CI: 2.21-2.42).

Table 4.54

Logistic Regression Results for CFI
Condition Beta  Std. Error  zvalue Pr(>|z]) OR  25% 97.5%

(Intercept) 0.54 0.02 26.05 <0.001 1.71  1.65 1.78
RM =8 0.38 0.01 25.58 < 0.001 1.47 1.42 1.51
RM = 10 0.90 0.02 54.17 < 0.001 2.46 2.38 2.54
n = 100 0.10 0.02 5.09 < 0.001 1.11 1.07 1.16
n = 200 0.20 0.02 9.74 < 0.001 1.23 1.18 1.28
n = 500 0.46 0.02 21.01 < 0.001 1.58 1.51 1.65
n = 1,000 0.70 0.02 30.97 < 0.001 2.02 1.93 2.11
n = 1,500 0.84 0.02 35.83 < 0.001 2.31 2.21 2.42
0* = 0.375 0.01 0.02 0.92 0.356 1.02  0.98 1.05
0*=0.5 -0.19 0.02 -11.90 < 0.001 0.83 0.80 0.86
p* = 0.1875 0.24 0.02 15.68 < 0.001 1.27 1.23 1.31
p*=0.25 0.52 0.02 32.23 < 0.001 1.68 1.63 1.73

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, 0* = 0.25, and p* = 0.125.

Tucker-Lewis Index

Under the conditions simulated in this study, the TLI consistently performed
worse than the CFI due to the increased penalty placed on complex models. It was the
third best, out of four, absolute and incremental fit measures in performance. In spite
of its weak performance, it still better overall than any of the information criteria.
Across all conditions, it selected the correct model 64.7% of the time (see Table 4.34).
The accuracy ranged from 36% when the sample size was 200, the number of repeated
measures was lowest, maximum rate of change was lowest, and the location of the

inflection point was least offset from center to 100% under multiple conditions where
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the number of repeated measures was 10 and sample size was 1,000 or larger (see
Table 4.55). TLI did not perform as well as CFI under any condition.

Logistic regression results show which of the manipulated conditions had the
largest impact on the performance of TLI in selecting the correct model (see Ta-
ble 4.56). Unlike the information criterion, the odds ratios for the TLI were relatively
small due to its consistent performance across the conditions.

As with other fit measures, the location of the inflection point within the mea-
surement window (0*) had smallest impact on the performance of TLI. An increase
from 0* = .25 to 0* = .375 was increased the odds of correct model selection by
a mere, but statistically significant 4% (OR = 1.04, 95% CI: 1.01-1.07) whereas an
increase to 6 = .5 resulted in a 23% decrease in the odds of correct model selection
(OR = 0.77, 95% CI: 0.75-0.79).

The maximum rate of change parameter (p*) had a larger impact than §* on
TLI performance. An increase from p* = .125 to p* = .1875 increased the odds of
correct model selection by 53% (OR = 1.53, 95% CI: 1.49-1.57) and an increase to
p* = .5 increased the odds over 2.3 times (OR = 2.34, 95% CI: 2.27-2.40).

Holding all other conditions equal, an increase in the number of repeated mea-
sures from six to eight increased the odds of TLI selecting the true sigmoidal model by
2.5 times (OR = 2.45, 95% CI: 2.39-2.51). Increasing from six to 10 repeated measures
increased those odds by just under 5.4 times (OR = 5.38, 95% CI: 5.23-5.54).

Like CFI, sample size did not have as large of an impact as the number of
repeated measures did on the performance of TLI. An increase in sample size from
50 to 100 increased the odds of correctly selecting the true model by 14% (OR =
1.14, 95% CI: 1.10-1.18). Increasing to 200 increased the odds by 41% (OR = 1.41,
95% CI: 1.36-1.46). When the sample size was 500 the odds of correct model selection
improved by 2.3 times (OR = 2.25, 95% CI: 2.16-2.33). Increasing to 1,000 made the
odds of correct model selection 3.3 times more likely (OR = 3.26, 95% CI: 3.14-3.39).
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When the sample size was 1,500, the odds of correct model selection increased by

nearly 4 times (OR = 3.93, 95% CI: 3.78-4.09).

Table 4.56

Logistic Regression Results for TLI
Condition Beta  Std. Error  zvalue Pr(>|z|) OR  25% 97.5%

(Intercept)  1.04 0.02 53.15 < 0.001 2.83 273 2.94
(Intercept) — -1.13 0.02 5881 <000l 032 031 034
RM = 8§ 0.90 0.01 6787  <0.001 245 239 251
RM = 10 1.68 0.01 11533  <0.001 538 523 554
n = 100 0.13 0.02 698 <0001 114 110 118
n = 200 0.34 0.02 1855  <0.001 141 136  1.46
n = 500 0.81 0.02 4231 <0001 225 216  2.33
n = 1,000 1.18 0.02 59.41 < 0.001 326 3.14  3.39
n = 1,500 1.37 0.02 67.13  <0.001 393 378  4.09
§*=0375  0.04 0.01 2.78 0.006 104 101 107
5 =05 -0.26 0.01 1889  <0.001 077 075  0.79
p*=0.1875  0.42 0.01 3133 <0001 153 149 157
P =025 0.85 0.01 60.31  <0.001 234 227 240

Note. n = sample size. § = location of the inflection point within the measurement win-
dow. p = rate of change at the inflection point. RM = repeated measures. OR = odds ratio.
Reference level sample size = 50, repeated measures = 6, §* = 0.25, and p* = 0.125.

Empirical Example

The Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999
(ECLS-K) data set (Tourangeau et al., 2009) is a longitudinal survey that collected
data on students cognitive, physical, and social-emotional development. The ECLS-K
used multistage cluster sampling to obtain a representative sample of roughly 22,000
kindergarteners beginning in the 1998-1999 school year. These students, their parents,
and their teachers were surveyed and assessed longitudinally until the 8th grade. For
this study, math achievement was examined. In the ECLS-K, math achievement is
represented by vertically linked item response theory (IRT) scaled scores for 7 time

periods: fall kindergarten, spring kindergarten, fall first grade, spring first grade,
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spring third grade, spring fifth grade, and spring eighth grade. See Table 4.57 for
summary statistics. Missing data was handled using full information maximum like-
lihood because the missingness was assumed to be missing at random. Figure 4.1
shows a random sample of individual trajectories for the ECLS-K mathematics IRT
scores. These trajectories indicate the possibility of nonlinear growth over time. To
assess this growth, a total of four models were fit to the ECLS-K math achievement
data: linear, quadratic, cubic, and Richards models. Additionally, an appropriate null
model was run to establish a baseline y? for calculating CFI and TLI and to determine
a baseline RMSEA. All of the comparative, absolute, and incremental fit measures

discussed previously were used in model selection.

Table 4.57

Summary Statistics for ECLS-K Math IRT Scores

Grade n Mean sd Skewness Kurtosis
Fall Kindergarten 18,636 2591 9.10 1.41 4.19
Spring Kindergarten 19,649 36.27 12.00 1.06 2.35
Fall 1st grade 5,223 43.26 14.39 0.91 1.60
Spring 1st grade 16,635 61.26 18.09 0.52 0.39
Spring 3rd grade 14,374 98.72 24.71 -0.03 -0.70
Spring 5th grade 11,274 123.69 24.79 -0.60 -0.22
Spring 8th grade 9,285 142.22 22.01 -0.89 0.29

Note. n= sample size.

Of the four models, the Richards model was selected as having the best over-
all fit (see Table 4.58). For the Richards model, the baseline RMSEA was above
0.158 indicating that the CFI and TLI should be interpreted for this model (Kenny,
2015). Both the CFI (.981) and TLI (.971) indicate the model fit well. The Richards
model RMSEA was .106 indicating poor model fit according to Hu and Bentler (1999)
however it should be noted that those cutoffs were established for three-factor CFA

models, and may not be appropriate for structured latent curve models or any struc-
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Figure 4.1. Longitudinal plot of math IRT scores of a 2% random sample from the
Early Childhood Longitudinal Study - Kindergarten.

tural equation model incorporating a mean structure. Of the models considered, The
Richards model had the lowest (best) RMSEA value. As far as the information crite-
rion, again, the Richards model had the lowest scores on all of them versus competing
models which indicated that it was the best fitting.

A brief interpretation of the parameters of the Richards model follows. Relative
asymmetry (v) is the defining feature of the Richards curve in comparison to the
Logistic or Gompertz curves. In this case, v was equal to -.074 which means that
math achievement growth was asymmetrical with 35.4% of total growth occurring
prior to the inflection point. The lower asymptote (i) was -1.7 and grew a total of
148.9 points to an upper asymptote () of 147.2. The rate of approach parameter
(p) was equal to .397 which means that the maximum rate of change was 22.6 at the

point of inflection (9). In the case of the ECLS-K, the timing parameter, or point
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Table 4.58

Model Fit Statistics for Growth Models, ECLS-K Math Achievement

Fit Measure Linear Quadratic Cubic Richards
X2 46,765.1 7,219.8 5,518.7 4,014.7
Parameters 12 16 21 18
CFI 0.778 0.966 0.974 0.981
TLI 0.500 0.942 0.966 0.971
RMSEA 0.311 0.134 0.137 0.106
RMSEA 5% 0.308 0.134 0.132 0.103
RMSEA 95% 0.313 0.140 0.137 0.108
SRMR 1.030 0.076 0.051 0.066
AIC 754,426 714,888 713,197 711,687
BIC 754,521 715,016 713,364 711,831
aBIC 754,483 714,964 713,298 711,773
CAIC 754,533 715,032 713,385 711,849
DIC 754,499 714,986 713,326 711,798
HQ 754,457 714,930 713,252 711,734
AlICc 754,426 714,889 713,197 711,687

Note. Baseline RMSEA was 0.608.

of inflection, corresponds to a grade level and indicates that on average, a student
in this study had achieved approximately 35.4% of his or her growth by second six
weeks of the first grade (§ = 1.17) and it was at this time that growth was most
rapid. Additional information about the characteristics of the students is given by
examining the correlations between freely estimated parameters. The total change
component was significantly correlated with the rate of approach (p < .001, r =
.297). This indicates that those students who had higher overall growth tended to
grow at a faster rate than those students with lower overall growth. Total change was
negatively correlated (p < .001, r = -.235) with the timing parameter. This indicates
that students who had higher overall growth started earlier than those who grew less.
Finally, the rate of approach negatively correlated (p < .001, r = -.728) with the
timing parameter indicating that students who grew at a faster rate tended to change

earlier than those who grew at a slower rate.
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The Richards model provides an easily interpreted set of parameters that are
useful in describing ECLS-K math development over time. An interpretation of the
next closest fitting model would involve discussing the rate of change of the rate
of change of change over time. It is often difficult to map that onto an interpretable
developmental theory. Gompertz and Logistic models were not considered in this case,
however, if they were, it is possible that the Gompertz model would have been selected
due to the relative asymmetry parameter being very close to zero. The Gompertz
model lacks the relative asymmetry parameter and therefore would have been more

parsimonious to an equivalent Richards model.
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CHAPTER FIVE

Discussion

This simulation study was the first methodological investigation of sigmoidal
structured latent curve models. Although parameter estimate bias and fit measure
performance were of primary concern, convergence rates, coverage proportions, and
standard error bias were also investigated. Manipulated conditions in this study in-
cluded three different numbers of repeated measures, six sample sizes, three max-
imum rates of change, and three different locations of the inflection point of the
curve within the measurement window. Parameters included in the model included
the lower asymptote, the upper asymptote, the maximum rate of change, the location
of the inflection point, and the relative asymmetry of the latent curve. There were
162 individual conditions, with 1,000 converged data sets examined per condition for
162,000 total data sets. To evaluate fit measure performance, 11 different fit measures
were examined (AIC, BIC, aBIC, AIC¢, CAIC, DIC, HQ, RMSEA, SRMR, CFI, and
TLI).

Convergence

Rates of convergence are a real issue for applied researchers who are modeling
structured latent curve models. Under some of the conditions in the present study,
convergence rates were less than 10%. In a simulation study, non-converged repli-
cations are easily taken into consideration, and if necessary a new dataset can be
generated. In an applied study, where it could potentially take years to collect the
necessary data, minimization of non-convergence should be taken into consideration.
Although beyond the scope of this study, there are steps that can be taken to get non-

converging models to converge. It is possible to increase the number of iterations, the
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number of random starts, or provide appropriate starting values for maximum like-
lihood estimation. In some cases, this will allow the model to converge. Because of
this, the rates of convergence in this study should be considered “worst case” under
the conditions that were simulated.

For example, an initial run of the full data set resulted in an overall convergence
rate of 64.8%. In an effort to judge the impact of altering the number of iterations
for the estimation algorithm in Mplus, this was increased from the default of 1,000 to
50,000. This increased the overall convergence rate by only 5.6% yet it took over four
times longer to run the models. Although the convergence rates did increase, without
fully understanding if these models are finding local maxima or global maxima, the
impact on parameter estimate bias is unknown. As such, the final models used in
this study were estimated using only plausible starting values. Increasing numbers of
random starts for a small sample of conditions was also investigated; however, the
increased length of time to run the full set of conditions would have increased the
computational time by an estimated eight months. For applied researchers working
with a single or small number of data sets, using high numbers of iterations, multiple
random starts, plausible starting values, or using numerical integration may allow
convergence when models analyzed using the default Mplus values fail.

Examination of the odds ratios in Table 4.2 make it clear that sample size
played the largest role in convergence, followed by the number of repeated measures.
The location of the inflection point within the measurement window played relatively
little role in convergence, and as long as it falls somewhere within the measurement
interval it probably will not adversely impact convergence enough to matter if sample
size and the number of repeated measures are adequate. The rate of maximum change,
although not discusses in previous literature, acts as a scaling constant along the x-
axis, similar to how overall growth is a scaling constant for the y-axis. That is, having

a more rapid rate of change allows more of the sigmoidal curve to be measured in the
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same amount of time. For example, if p* were set to 1, 90% of the growth curve may
be captured within 10 repeated measures. If that p* were equal to 0.1, the amount of
growth captured in the same 10 repeated measures may only be 30%. It is important
for the applied researcher to have an idea of the length of time involved in the growth
of the measured construct to ensure than an adequate amount of the growth curve is
being captured.

Consider convergence to be analogous to power in the sense that convergence
of the data would be the null hypothesis, and power would be the ability to reject
a false null which would be a nonconvergent model. It is a common rule of thumb
to use 80% power as a lower bound in acceptability. In the case of the Richards
curve, six repeated measures are the bare minimum to identify the model. Based
on the results of this simulation, convergence rates when there were six repeated
measures never met or exceeded 80% under any sample size used in this simulation.
Therefore, where convergence is a primary concern in data analysis, either sample sizes
exceeding 1,500 or numbers of repeated measures exceeding six are recommended.
When eight repeated measures are used, a sample size of 500 exceeded the 80%
threshold. Likewise, with 10 repeated measures with a sample size of 200 would have
average convergence rates of 80%. Although a threshold lower than 80% will allow
more flexibility in designing a study, the tradeoff is a higher risk of non-convergence.
Regardless of recommendations, it is up to the applied researcher to assess the risk
of non-convergence and plan data collection accordingly. If the applied researcher is
doing post hoc analysis of existing data and the model converges, it is possible to
extract relatively unbiased parameter estimates at lower sample sizes or numbers of

repeated measures than were recommended above.
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Coverage

Coverage is the proportion of times that a simulated true population value is
contained within a confidence interval constructed around the parameter estimate.
As such, coverage can be impacted by parameter estimate bias. Much like parameter
estimate bias, and standard error bias, coverage is examined on a per-parameter basis,
and although some of the parameters had good coverage across most conditions, other
parameters displayed problematic coverage.

For the lower asymptote (i) parameter, coverage tended to be poor except
when the location of the inflection point was centered. This is due to the fact that
differing inflection point locations caused the curve to be shifted in a way that allowed
more information about the upper portion of the curve to be available the more the
inflection point was offset. Because the lower asymptote is retrospective, it may not
necessarily be as important to applied researchers as predicting future outcomes.
Therefore having a problematic lower asymptote may not be an issue, especially if
the benefit is having reduced bias when predicting an upper asymptote.

The upper asymptote (/5*), unlike the lower asymptote, benefits from an offset
inflection point. This is most apparent when there are only six repeated measures.
Coverage, although higher, is still generally low except when the maximum rate of
change is at its highest level. For eight and 10 repeated measures, most conditions are
acceptable except those with the lowest maximum rate of change. Sample size had
little effect on this parameter.

Coverage of the maximum rate of change parameter was uniformly good across
all conditions as was the relative asymmetry parameter. Juxtaposed with those,
was the location of the inflection point parameter where larger sample sizes (100
or greater) and more centered locations of the inflection point (6* = 0.375 or 0.5)

contributed to higher rates of coverage.

140



Overall, coverage is a tradeoff between the upper and lower asymptotes unless

more of the latent growth curve can be captured within the measurement window.

Parameter Estimate Bias

Effect sizes ranged from a high of wg = .22 for the effect of sample size on
the maximum rate of change to effectively wg = .00 for most of the main effects
and two-way interactions for relative asymmetry. In the case of relative asymmetry,
the small effect sizes were the result of uniformly good parameter estimate bias in
almost all cases. This contrasts with the lower asymptote parameter where the small
effect sizes were the result of a lack of pattern in improvement across conditions and
uniformly marginal bias. Ultimately, the effect sizes merely pointed out where there
were uniform improvements in bias across conditions. Their use, while informative to
an extent, do not play a large part in providing guidance for structuring longitudinal
research where there is an expectation of sigmoidal growth.

Parameter estimate bias varied greatly across parameters and although bias
should be estimated on a per-parameter basis, decisions and recommendations must
be made holistically by taking into account all the available evidence. The goal is
to suggest minimum acceptable guidelines for the number of repeated measures and
sample size when structuring a study using the Richards model. Furthermore, the issue
of convergence must be included in any decision. Guidelines for what is considered
acceptable parameter bias have been published by Hoogland and Boomsma (1998) as
well as B. Muthén et al. (1987). This amount ranges from 0.5 in the case of Hoogland
to 0.10 to 0.15 for Muthén. For this study, 0.10 was the cutoff used for acceptable
bias.

For the lower asymptote (i) parameter, bias was seemingly random which could
lead to excessive and unexpected bias when using any number of repeated measures or

any sample size. However, when the timing of the inflection point was centered within
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the measurement window, bias was generally 0.10 or less for all sample sizes and all
repeated measures with one exception. Bear in mind that raw bias was calculated for
this parameter, and therefore cannot be interpreted the same way as the parameters
calculated with relative bias.

Upper asymptote (8*) parameter estimate bias, on the other hand, was uni-
formly unbiased across all conditions except where p* had the lowest simulated max-
imum rate of change and there were only six repeated measures. For this parameter,
any sample size was acceptable when using eight or 10 repeated measures, and when
there was six repeated measures caution is only warranted when the maximum rate
of change is at its lowest.

For the maximum rate of change (p*) parameter bias, sample size and number
of repeated measures had the strongest effects on the outcome. Examination of p*
parameter estimate bias, it was possible to achieve relatively unbiased estimates for
six repeated measures with a sample size of 1000, for eight repeated measures, a
sample size of 500, and for 10 repeated measures with a sample size of 200.

For the location of the inflection point (6*) parameter, as the simulated value
of 6* becomes more centered within the measurement window, the estimates became
less biased. Likewise, as sample size and number of repeated measures increases,
bias diminished. As long as the location of the inflection point was relatively centered
within the measurement window and the maximum rate of change is not at its lowest,
bias was acceptable.

Relative asymmetry (7*) had generally unbiased estimates across nearly all
conditions. Even when sample size was small, bias only became problematic when
the location of the inflection point was centered for small sample sizes (100 or less)

and there were eight or 10 repeated measures.
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Standard Error Bias

Standard error bias was, overall, problematic within the context of this sim-
ulation. Maximum likelihood estimation was used for this study because it was the
default method for longitudinal models with continuous manifest variables in Mplus
L. Muthén and Muthén (2015) and it had been used in applied use of structured la-
tent curve models (e.g., Cameron et al., 2015; Grimm & Ram, 2009; Grimm et al.,
2010). Maximum likelihood may not be appropriate for estimating standard errors
for these models, however. There are several other options available that estimate
standard errors differently that may be more robust to violations of the assumptions
of maximum likelihood. Future research should be done to determine which estima-
tor works best for recovering standard errors within structured latent curve models.
Because maximum likelihood estimation of standard errors may not have been appro-
priate for these types of models, the only recommendation regarding standard errors
is a reminder that larger sample sizes and more repeated measures will be less biased

than those with fewer repeated measures and smaller sample sizes.

Model Selection

The overall accuracy of 11 different fit measures was assessed to determine how
well they performed at selecting the true sigmoidal model over competing incorrect
polynomial models. For this, seven different information criteria were examined: 1)
Akaike Information Criterion (AIC), 2) Bayesian Information Criterion (BIC), 3)
Bayesian Information Criterion with sample size adjustment (aBIC), 4) Consistent
AIC (CAIC), 5) Draper Information Criterion (DIC), 6) Hannan and Quinns ad-
justment of AIC (HQ), and 7) Sugiuras adjustment of AIC (AICc). Three of them,
the AIC, BIC, and aBIC are natively provided by Mplus. The remaining four were

calculated externally.
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Of the information criterion, AIC and aBIC worked the best with overall ac-
curacy rates of .63 and .62 respectively. AIC performed better than any other infor-
mation criterion when sample size was 200 or larger. aBIC performed better when
sample size was below 200. AIC worked best with six repeated measures, whereas
aBIC performed best when there were eight or 10 repeated measures. aBIC worked
best when the maximum rate of change was at its highest, AIC performed best un-
der the other conditions. aBIC worked best when the location of the inflection point
was centered, AIC worked best under the other conditions. None of the information
criteria that were calculated externally to Mplus performed well enough under any
condition to consider using. Of note is that BIC was the second worst fit measure
examined for identifying the true sigmoidal model. Perhaps this was due to BIC’s
known preference for parsimonious models.

In addition to the information criteria, four absolute or incremental fit measures
were examined: 1) the comparative fit index (CFI), 2) the Tucker-Lewis Index (TLI),
3) the Root Mean Square Error of Approximation (RMSEA), and 4) the Standardized
Root Mean Residual (SRMR). Typically these fit measures are used to judge how well
a model fits versus a pre-established cut-off value. Because the (Hu & Bentler, 1999)
guidelines for use of these measures were developed on confirmatory factor models
that did not include a mean structure, commonly used cutoffs are not appropriate.
As such, these fit measures were used comparatively against the measures generated
by the polynomial models. It should be noted that Mplus does not use an appropriate
null model for growth models. As such, an appropriate null model was run to establish
a baseline y? for calculating CFI and TLI.

RMSEA was the best performing fit measures with an overall accuracy rate of
83% and had the best performance across all sets of conditions. Coming in a close
second to the RMSEA was the CFI which had an overall accuracy rate of 81%.

The TLI had an accuracy rate, in some cases, nearly 30% lower than the CFL. It is
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sometimes recommended to use either CFI or TLI when reporting results. In the case
of these models, CFI was more accurate. Finally, there was the SRMR. It performed
poorly as was expected. SRMR only uses the covariance structure of the model and
does not consider a mean structure making it generally inappropriate for growth

models.

Recommendation

Convergence

As previously stated, for the Richards curve, six repeated measures are the bare
minimum to identify the model. In light of the low convergence that is prevalent in
conditions when there are six repeated measures, sample size would have to exceed the
highest sample in this simulation, 1,500. For eight repeated measures with a sample
size of 500 or 10 repeated measures with a sample size of 200 average convergence rates
are at or over 80%. Future research on convergence rates when using high numbers
of iterations, random starts, or numeric integration may relax the large sample sizes

needed to achieve a high probability of convergence.

Parameter Estimate Bias

For the applied researcher using these models, it may possible to design a perfect
study. It will have lots of repeated measures, a large sample size, and will encompass
as close to 100% of the developmental curve as possible. This scenario, however, is
unrealistic. It is important to, therefore, be mindful of what the parameters of interest
are when using these types of models. For example, it may not be possible to measure
100% of the developmental curve. In that case, the applied researcher should decide
if predicting an upper asymptote is more important than retrospectively finding the
lower asymptote because it is going to be a trade-off. If the upper asymptote is of

importance, the data collection must be designed so that there is more information
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available for the upper part of the sigmoidal curve by ensuring the inflection point is
offset to the left.

If understanding the maximum rate of growth is the primary parameter of in-
terest, it is paramount to have sample sizes of at least 1,000 for six repeated measures,
500 for eight repeated measures and 200 for 10 repeated measures. The location of
the inflection point within the measurement window seems like a trivial parameter
beyond assuring you are capturing the correct portion of the developmental curve.
If this is the parameter of interest, bias seems to be less the more centered this pa-
rameter is within the measurement window. Unfortunately, theoretical expectations
of when this growth occurs will be the main guidance for structuring data collection.
The relative asymmetry parameter is the defining feature of the Richards model, and
there is relatively little bias for this parameter across the range of conditions. Only
11 of the 162 conditions were over the .10 bias threshold, with the largest bias being

.16 and that is with a sample size of 50.

Fit Measures

Selection of appropriate fit measures when selecting among competing models
is an important consideration. Based on the results of this simulation, the RMSEA
and CFI are recommended when selecting among competing models that includes
at least one Richards model. Although there have been no guidelines established for
stand-alone use, when used comparatively, they are the best at selecting the true
sigmoidal model over competing polynomial models.

Among the information criteria, the AIC and aBIC performed the best and
are recommended. Although under certain sets of conditions, their performance was
unacceptably low, they did perform better than the alternatives that were native to

Mplus as well as those calculated externally. When sample size was under 200, the
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aBIC performed better than AIC as well as when the number of repeated measures

was above the minimum number necessary to identify the model.

Limatations and Future Research

This study provides a first step towards understanding the conditions under
which sigmoidal structured latent curve models exhibit excessive parameter bias and
provides guidance on how to structure longitudinal studies where there is the expecta-
tion of sigmoidal growth. However, like any Monte Carlo simulation, the findings are
generalizable only to the conditions that are simulated in the study. Typically, a sim-
ulation of this nature would draw upon prior applied studies to guide the direction of
the research and inform the decisions made regarding the conditions examined within
the study. Unfortunately, published use of structured latent curve models have pri-
marily focused on methodological demonstrations (e.g., Blozis, 2004; Browne, 1993;
Browne & du Toit, 1991; Grimm & Ram, 2009; Neale & McArdle, 2000, etc.) as
opposed to examinations of data in applied research. The applied data that have been
examined have typically involved either small datasets (e.g., Dodonov & Dodonova,
2012; Grimm et al., 2011; Rast & Zimprich, 2009) or large longitudinal datasets
such as the ECLS-K and the National Longitudinal Survey of Youth (NLSY) (e.g.,
Cameron et al., 2015; Grimm et al., 2010). It was, therefore, necessary to select
a range of sample sizes from small to relatively large to understand the levels where
parameter estimate bias becomes excessive.

All growth models require a minimum number of repeated measures for model
fit based on the parameterization of the model. A minimum of six repeated measures
was required to estimate a sigmoidal SLCM when relative asymmetry is estimated
rather than being explicitly included in the model. The applied use of the SLCMs
ranged from four to 12 repeated measures. Future studies with additional repeated

measures may aid in SLCM model selection if some of the other parameterization
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are sub-optimal. Likewise, reconceptualizing repeated measures intervals may provide
further insight on whether the number of repeated measures is more important or
if the amount of growth that occurs between the baseline and the final repeated
measure. For example, adding two additional measurement occasions can either be
done by extending the length of a study or by spacing the measurement occasions
closer together.

Due to the limited scope of this study, all true models were generated as sig-
moidal models with relative asymmetry () set to 1, which is the equivalent of the
Logistic model. Future studies should look at the effects of different values of () on
model selection. Likewise, the family of sigmoidal models that include the Richards
model also includes the Gompertz and Logistic where the relative asymmetry is im-
plicitly fixed by their equations. It would be more parsimonious to use one of these
models over the Richards model, where the relative asymmetry must be estimated, if
they align with theoretical expectations. In his book on nonlinear regression model-
ing, Ratkowsky (1983) examined parameter estimate bias for a number of sigmoidal
models using multiple parameterizations for each model. Using his research as guid-
ance, it may be possible to find alternatives to the Richards model that are much less
biased and yet still informative.

Other design issues that can be addressed in future studies include the effects of
variance on correct model selection, the effects of non-equally spaced repeated mea-
sures, the effects of different levels of overall growth, and the effects of missing data to
name a few. Clearly, there is work to be done beyond the scope of this study regarding
sigmoidal structured latent curve model selection. Additionally, information regard-
ing sigmoidal structured latent curve models can be extended into a line of simulation
research involving model performance and selection within growth mixture modeling
framework. The goal is to use these and future results to provide recommendations on

how to appropriately structure longitudinal research to ensure adequate sample size
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and number of repeated measures when there is an a priori hypothesis of sigmoidal
growth and to provide recommendations for model selection when completing post
hoc analysis of existing data. Ultimately, by testing structured latent curve models
under a variety of conditions, applied researchers can use realistic models that align
with theoretical expectations of growth and have confidence in the results.

In summary, this dissertation provides the first methodological investigation of
parameter estimate bias and model selection of sigmoidal structured latent growth
models. The flexibility of these models allows applied researchers to use nonlinear
growth models that are more grounded in developmental theory than polynomial
models. When used appropriately, these models can provide new insight into the
types of trajectories that realistically model growth in educational and social science

research.
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APPENDIX A

Sample M Plus Data Generation Code

montecarlo:

names = yll-y16;

nobs = 1500;

seed = 6541500;

nreps = 1000;

repsave = all;

save = 0:\DisHolding\Condition 54\Condition54_rep*.dat
Model montecarlo:

1 BY yi1e1

yl201

yl3e1

yl4e1

yl5e1

yl6@1l ;

a BY y1100.0758581800212435
y120@0.182425523806356
y13@0.377540668798145

y1400 .622459331201854
y150@0.817574476193644
y16@0.924141819978756

d BY y11@-0.0701037165451082
y12@-0.149146452070333
y13@-0.235003712201594
y14@-0.235003712201594
y15@-0.149146452070333
y16@-0.0701037165451081 ;

r BY y11@-0.17525929136277
y12@-0.223719678105499
y13@-0.117501856100797
y1400.117501856100797
y15@0.223719678105499
y160@0.17525929136277 ;

g BY y1100.125526165173793
y1200.16123475637676
y13@0.132749963866643
y140@0.0600899303093475
y150@0.0155239031748601
y160@0.00280158608165023 ;
yl1-y16@.5;

[a@1] (a);
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[1e0] (1);

[reo];

[de0];

[geo];

100 a*x.5 d*.5 r*x.5 g@O0;
1 WITH a@0 r@0 d@0O g@O;
a WITH rx0 d4*x0 g@oO;

r WITH d*0 g@O0;

d WITH g@O;

OUTPUT: Tech9;
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APPENDIX B
Sample M Plus Command File for Richards Analysis

TITLE: conditionb4_repl_test4d
DATA: file is conditionb4_repl.dat;
VARIABLE: names are yll1-yl16;
Analysis: Processors = 8;
MODEL:

1 BY yi11x (RL1)
y12 (RL2)

y13 (RL3)

y14 (RL4)

y15 (RL5)

y16 (RL6);

a BY yi11*x (RA1)
y12 (RA2)

y13 (RA3)

y14 (RA4)

y15 (RAB)

y16 (RA6);

d BY y11* (RD1)
y12 (RD2)

y13 (RD3)

y14 (RD4)

y15 (RD5)

y16 (RD6) ;

r BY y11x (RR1)
y12 (RR2)

y13 (RR3)

y14 (RR4)

y15 (RR5)

y16 (RR6);

g BY y11x (RG1)
y12 (RG2)

y13 (RG3)

y14 (RG4)

y15 (RG5)

y16 (RG6) ;
yll-y16x*;
[y11-y16@01];

[1*] (1);

[ax] (a);

[re0];

[de0];

[ge0];

1@0 a*x d* r*x g@O;
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WITH a@0 r@0 d@O0 g@o;

WITH r* d* gO0;

WITH d* gQo0;

d WITH goo0;

MODEL CONSTRAINT:

new(r*x0.5 d*x1.25 g*1 as ds rs gs);

as = a+l;

ds = d/5;

rs = (axr)/((g+1)*x(g+1)"(1/g));

gs = 1/((g+1)~(1/g));

RL1 = 1;

RL2 =1

RL3 = 1;

RL4 = 1;
1
1

R p K

’

I

RL5 =

RL6 =

RA1 = exp((r*0)/g)/(gxexp(d*r)+exp(r*0))~(1/g);

RA2 = exp((r*1)/g)/(g*xexp(d*r)+exp(r*1))~"(1/g);

RA3 = exp((r*2)/g)/(gxexp(d*r)+exp(r*x2))~(1/g);

RA4 = exp((r*3)/g)/(gxexp(d*xr)+exp(r*3))~(1/g);

RA5 = exp((r*4)/g)/(gxexp(d*r)+exp(r*x4))~(1/g);

RA6 = exp((r*5)/g)/(gxexp(dxr)+exp(r*5))~(1/g);

RD1 = (-1)*(a*r*exp ((r*0+d*xg*r)/g))/(g*xexp(d*r)+exp(r*0)) " ((g
+1)/g);

RD2 = (-1)*(a*r*exp((r*1+d*xg*r)/g))/(g*xexp(d*r)+exp(r*1)) - ((g
+1)/g);

RD3 = (-1)*(a*r*xexp ((r*2+d*xg*r)/g))/(gxexp(d*r)+exp(r*2)) " ((g
+1)/g);

RD4 = (-1)*(a*r*xexp ((r*3+d*xg*xr)/g))/(gxexp(d*r)+exp(r*3)) " ((g
+1)/g);

RD5 = (-1)*(a*r*xexp ((r*4+d*xg*xr)/g))/(gxexp(d*r)+exp(r*4)) " ((g
+1)/g);

RD6 = (-1)x*(a*xrxexp ((r*5+d*xgxr)/g))/(gxexp(d*r)+exp(r*5)) "~ ((g
+1)/g);

RR1 = ((a*exp(d*r)*0-axd*exp (d*r))*exp((r*x0)/g))/(g*xexp(d*r)+
exp(r*0)) "~ ((g+1)/g);

RR2 = ((a*xexp(d*r)*1-axd*exp(d*r))*exp((r*x1)/g))/(g*xexp(d*r)+
exp(rx1))~((g+1)/g);

RR3 = ((a*exp(d*r)*2-axd*exp(d*r))*exp((r*2)/g))/(gxexp(d*r)+
exp(r*2))~((g+1)/g);

RR4 = ((axexp(d*r)*3-a*xdxexp(dx*r))*xexp((r*x3)/g))/(gxexp (d*r)+
exp(r*3)) "~ ((g+1)/g);

RR5 = ((a*exp(d*r)*4-axd*exp(d*r))*exp((r*4)/g))/(g*xexp(d*r)+
exp(r*4)) -~ ((g+1)/g);

RR6 = ((a*xexp(d*r)*5-axd*exp(d*r))*exp((r*5)/g))/(grxexp(d*r)+
exp(r*5)) -~ ((g+1)/g);

3
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RG1 = ((axgxexp(d*r)+a*xexp(r*0))*exp((r*0)/g)*log(exp(r*0)+g*
exp(d*r))+((-a*xg*exp(d*r))-a*xgxr*xexp (d*r)*0-a*xr*0*xexp (r*0))
xexp ((r*x0)/g))/ ((gxexp (d*xr)+exp(r*x0)) " (1/g)*(g~3*xexp (d*r)+
g 2%exp(r*0)));

RG2 = ((axg*exp(dxr)+axexp(r*1))*xexp((r*1)/g)*log(exp(r*1)+g*
exp (d*xr))+((-a*g*exp (d*r))-axgxr*xexp (d*r)*l-a*xr*xl*xexp(r*1))
*exp ((r*1)/g))/ ((g*xexp(d*r)+exp(r*1))~(1/g)*(g " 3xexp(d*r)+g
"2xexp(rx*1)));

RG3 = ((a*g*xexp(d*r)+a*xexp(r*2))*exp((r*2)/g)*log(exp(r*2)+g*
exp (dxr))+((-a*g*exp (d*r))-a*xgxr*exp (d*r)*2-a*xr*2*xexp (r*2))
xexp ((r*2)/g))/ ((g*xexp(d*r)+exp(r*2)) "~ (1/g)* (g 3*xexp (d*r)+
g 2*xexp(r*2)));

RG4 = ((a*g+*exp(d*r)+a*xexp(r*3))*exp((r*3)/g)*log(exp(r*3)+g*
exp (d*r))+((-a*xgxexp(d*r))-a*g*r*xexp (d*r)*3-a*r*3*exp (r*3))
xexp ((r*3)/g))/ ((gxexp(d*r)+exp(r*3)) " (1/g)* (g 3*xexp (d*r)+g
"2xexp (r=*3)));

RG5 = ((axg*exp(d*r)+a*xexp(r*4))*exp((r*x4)/g)*xlog(exp(r*4)+gx
exp(d*r))+((-a*xgxexp (d*r)) -a*gxr*xexp (d*r)*4-axr*xd*xexp (r*x4))
xexp ((r=*4)/g))/ ((gxexp(d*r)+exp(r*4)) "~ (1/g)* (g "3xexp (d*r)+g
"2%exp(rx*4)));

RG6 = ((ax*g*exp(d*r)+axexp(r*5))*exp((r*5)/g)*log(exp(r*5)+g*
exp(d*r))+((-a*xg*exp(d*r))-a*xgxr*xexp (d*r)*5-a*xr*5*xexp (r*5))
*xexp ((r*5)/g))/ ((gxexp(d*r)+exp(r*5)) " (1/g)* (g "3*xexp (d*r)+g
"2xexp (r=*5)));

OUTPUT: TECH1 TECH9;
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