
ABSTRACT

Global ˜SL(2,R) Representations of the Schrödinger Equation
with Time-dependent Potentials

Jose A. Franco, Ph.D.

Advisor: Mark R. Sepanski, Ph.D.

We study the representation theory of the solution space of the one-dimensional

Schrödinger equation with time-dependent potentials that possess sl2-symmetry. We

give explicit local intertwining maps to multiplier representations and show that the

study of the solution space for potentials of the form V (t, x) = g2(t)x2+g1(t)x+g0(t)

reduces to the study of the potential free case. We also show that the study of the

time-dependent potentials of the form V (t, x) = λx−2 +g2(t)x2 +g0(t) reduces to the

study of the potential V (t, x) = λx−2. Therefore, we study the representation theory

associated to solutions of the Schrödinger equation with this potential only. The

subspace of solutions for which the action globalizes is constructed via nonstandard

induction outside the semisimple category.
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CHAPTER ONE

Introduction

The original prolongation algorithm of Sophus Lie, was used in the early sev-

enties to show that the one-dimensional Schrödinger equation,

2iut + uxx = 2V (t, x)u

has different time-independent potentials that admit non-trivial, inequivalent Lie

symmetries (c.f. [4], [9]). These are

V1(x) = λ (1.1a)

V2(x) = λx (1.1b)

V3(x) = λx2 (1.1c)

V4(x) = λx−2 (1.1d)

V5(x) = λ1x
2 + λ2x

−2 (1.1e)

with arbitrary constants λ, λi ∈ R. Lie’s prolongation method provides the Lie alge-

bra of symmetry operators. If h3 denotes the three-dimensional Heisenberg algebra,

then the symmetry algebra is isomorphic to g := sl(2,R) n h3(R) for (1.1a), (1.1b),

and (1.1c) and it is isomorphic to sl(2,R)×R for (1.1d) and (1.1e). Early in the eight-

ies, it was shown that the time dependent potential V (t, x) = g2(t)x2 +g1(t)x+g0(t)

has the same symmetry Lie algebra g (c.f. [12]). General time-dependent poten-

tials V (t, x) = V (t, x) + g2(t)x2 + g1(t)x + g0(t), where V (t, x) is a function not of

the form g2(t)x2 + g1(t)x + g0(t), have smaller symmetry algebras. It is natural to

use representation theory to study the solution space of these differential operators.

However, since the resulting actions are not global, the techniques of representation

theory do not always apply.
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However, in the mid-nineties, it was shown in [6] that these actions could be

extended to global actions of the group. This motivated the study of the representa-

tion theory of the solution space for many other differential equations (c.f. [6], [11],

[10]). For instance, in 2005 M. Sepanski and R. Stanke decomposed the solution

space for the 1-dimensional potential free Schrödinger equation and studied it as a

global Lie group representation in [10]. Recently, they analyzed the n-dimensional

case, for the potential free Schrödinger equation (c.f. [11]).

By partially compactifying R2, it is possible to work with a natural subspace

of solutions for which the action of the symmetry group globalizes. The resulting

representations are analyzed. It turns out that a change of variables reduces (1.1a)-

(1.1c) to the potential free case and so are well understood [11].

However, the potential related to the inverse of the square of x, (1.1d) and the

potential (1.1e) can be related to an eigenvalue problem of the potential free case

for, essentially, the Casimir element. The study of the potential (1.1d) is important

in the study of the motion of a dipole in a cosmic string background (c.f. [3]). This

potential is also relevant in the fabrication of nanoscale atom optical devices, the

study of dipole-bound anions of polar molecules, and in the study of the behavior

of three-body systems in nuclear physics (c.f. [2]). Parts of this work have been

published in [7].

This work is organized as follows. In Section 2.1 the realization of the sym-

metry group is exposed. The solution spaces are embedded in the standard induced

representation spaces, the latter are exposed in this section, finally the group and

the algebra actions are explicitly calculated.

In Section 3.1 the spaces and isomorphisms by which the constant potential

reduces to the potential free case are shown. A very similar procedure is followed

in Sections 3.2 and 3.3 to show the isomorphisms used for the linear and quadratic

potentials respectively.
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In Section 4 we study the inverse square potential, (1.1d). The resulting rep-

resentations on the solution space are analyzed and decomposed into irreducible

sl2-modules. The eigenvalues that yield smooth solutions are indexed by the trian-

gular numbers. Moreover, their direct sum inherits a joint action of ˜SL(2,R) and

the three-dimensional Heisenberg group. This representation is also decomposed

into indecomposables. Finally, Section 4.5 shows how (1.1e) reduces to the same

eigenvalue problem as (1.1d).

In the last section we study the time-dependent potential V (t, x) = g2(t)x2 +

g1(t)x + g0(t). It will be shown to reduce via change of variables to the potential

free case. Moreover, the potential V (t, x) = λ/x2 + g2(t)x2 + g0(t) will be shown

to reduce to the eigenvalue problem studied in Chapter 4 via the same change of

variables.
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CHAPTER TWO

Preliminary Notation

2.1 The Group

Following [7], let G0 = SL(2,R) and let H3 denote the three dimensional

Heisenberg group with product,

(v1, v2, v3)(v′1, v
′
2, v
′
3) = (v1 + v′1, v2 + v′2, v3 + v′3 + v1v

′
2 − v2v

′
1).

Following the realization of the two-fold cover of G0 in [8], define the complex up-

per half plane D := {z ∈ C| Im z > 0} and let G0 act on D by fractional linear

transformations, that is, if g = ( a bc d ) ∈ G0 and z ∈ D then

g.z =
az + b

cz + d
.

Define d : G0 × D → C by d(g, z) := cz + d. Then there are exactly two smooth

square roots of d(g, z) for each g ∈ G0 and z ∈ D. The double cover can be realized

as:

G̃0 = {(g, ε)|g ∈ SL(2,R) and smooth ε : D → C

such that ε(z)2 = d(g, z) for z ∈ D
}

with the product defined by

(g1, ε1(z))(g2, ε2(z)) = (g1g2, ε1(g2.z)ε2(z)).

Finally, the symmetry group that we are interested in, is G := G̃0 n H3. Here G̃0

acts on H3 by the standard action on the first two coordinates and leaves the third

fixed.
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2.2 Parabolic Subgroup and Induced Representations

As in [11], we consider the parabolic subalgebra of lower triangular matrices

q ⊂ sl(2,R) with Langlands decomposition m⊕ a ⊕ n. If expG̃ : sl(2,R) → G̃0

denotes the exponential map then:

A := expG̃0
(a) = {(

(
t 0
0 t−1

)
, z 7→ e−t/2)|t ∈ R≥0}

N := expG̃0
(n) = {(( 1 t

0 1 ) , z 7→ 1)|t ∈ R}

N := expG̃0
(n) = {(( 1 0

t 1 ) , z 7→
√
tz + 1)|t ∈ R}.

Let k := {
(

0 θ
−θ 0

)
: θ ∈ R} then

K := expG̃0
(k) = {(

(
cos θ sin θ
− sin θ cos θ

)
, z 7→

√
cos θ − z sin θ)|θ ∈ R},

where
√
· denotes the principal square root in C. Writing M for the centralizer of

A in K then

M = {mj := (
( −1 0

0 −1

)j
, z → i−j)|j = 0, 1, 2, 3}.

Let W ⊂ H3 be given by W = {(0, v, w)|v, w ∈ R} ∼= R2 and let X := {(x, 0, 0)|x ∈

R}. Let us write w for the Lie algebra of W . Then P = MAN nW is the analogue

of a parabolic subgroup in G corresponding to p := qnw.

For later use, we notice that an element in g = [(( a bc d ) , z 7→ ε(z)), (u, v, w)] ∈ G

is in the image of the mapping P × (N × X) → G given by (p, n) 7→ pn, if a 6= 0.

This induces a decomposition of such g into its P and N ×X components,

[(( a bc d ) , z 7→ ε(z)), (u, v, w)] =[
(
(
a 0
c a−1

)
, z 7→ ε(z + b/a)), (0, v, w + (u+ bv/a)v)

]
·
[
(
(

1 b/a
0 1

)
, z 7→ 1), (u+ bv/a, 0, 0)

]
.

On the open dense set where a 6= 0, let p : G → P and n : G → N × X be the

projections from the previous decomposition.
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It is well known that the character group on A is isomorphic to the additive

group C so any character on A can be indexed by a constant r ∈ C and defined by

χr
(
(
(
t 0
0 t−1

)
, z 7→ e−t/2)

)
= tr

for t > 0. A character on M is parametrized by q ∈ Z4 and defined by χq(mj) = ijq.

A character on W can be parametrized by s ∈ C and defined by,

χs
(
(0, v, w)

)
= esw.

Finally, any character on P that is trivial on N is parametrized by a triplet (q, r, s)

where s, r ∈ C and q ∈ Z4 and defined by

χq,r,s

(
((−1)j

(
a 0
c a−1

)
, z 7→ i−je−a/2

√
acz + 1), (0, v, w)

)
= ijq|a|resw.

The representation space induced by χq,r,s will be denoted by I(q, r, s) and defined

by

I(q, r, s) := {φ : G→ C|φ ∈ C∞ and φ(gp) = χ−1
q,r,s(p)φ(g) for g ∈ G, p ∈ P}

the G-action on I(q, r, s) is given by (g1.φ)(g2) = φ(g−1
1 g2).

Since H3 = XW then G = (N × X)P a.e. But N × X is isomorphic to

R2 via (t, x) 7→ Nt,x := [(( 1 t
0 1 ) , z 7→ 1), (x, 0, 0)]. Since a section in the induced

representation is determined by its restriction to N ×X, this restriction induces an

injection of I(q, r, s) into C∞(R2) which is identified as

I ′(q, r, s) = {f ∈ C∞(R2)|f(t, x) = φ(Nt,x) for some φ ∈ I(q, r, s)}.

This space is endowed with the corresponding action so that the map φ 7→ f

where f(t, x) = φ(Nt,x), becomes intertwining. Thus I(q, r, s) ∼= I ′(q, r, s) as G̃0-

modules. As in the semisimple case, we will call this, the non-compact picture.
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2.2.1 The Action of G on I ′(q, r, s)

Fix g = ( a bc d ) ∈ G0. In order to write down the action of G on I ′(q, r, s) it is

helpful to find an explicit way extension of ε : D → C to the real line. This is done

in [11]. We review the construction here. Let (g, ε) ∈ G̃0 then d(g, z) = cz + d and

ε(z) can be written as

ε(z) = |d|1/2ip
√
c/dz + 1

for some p ∈ Z4. For x 6= −d/c the limit value can be calculated,

ε(x) = lim
z→x,z∈D

ε(z).

For such x, it follows that

ε(x) =


|d|1/2ip

√
c/dx+ 1 if c/dx+ 1 > 0

|d|1/2ip+1
√
|c/dx+ 1| if c/dx+ 1 < 0 and c/d > 0

|d|1/2ip−1
√
|c/dx+ 1| if c/dx+ 1 < 0 and c/d < 0

This can be extended to any real value of x.

Proposition 2.1. Let f ∈ I ′(q, r, s), (g, ε) ∈ G̃0, and (u, v, w) ∈ H3. Then,

((g, ε).f)(t, x) = (a− ct)r−q/2ε(g−1.(t+ z))e
−scx2

a−ct f

(
dt− b
a− ct

,
x

a− ct

)
(2.1a)

((u, v, w).f)(t, x) = e−s(uv−2vx−tv2+w)f(t, x− u− tv). (2.1b)

Proof. This result is proved in a more general setting in [11]. Here we prove the

action in (2.1a) for our particular case. Consider the NMAN decomposition for a

given (g, ε) ∈ G̃0,

(g, ε) = (
(

1 b/d
0 1

)
, 1)(sgn(d)I2, i

p)(
(
|d|−1 0

0 |d|

)
, |d|1/2)(

(
1 0
c/d 1

)
,
√
c/dz + 1).

The action is computed as

((g, ε).f)(t, x) = φ((g, ε)−1Nt,x) = φ
(
(
(
d dt−b
−c a−ct

)
, ε(g−1.(t+ z))−1), (x, 0, 0))

)
.
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We look at the NP decomposition,

[
(
(
d dt−b
−c a−ct

)
, ε(g−1.(t+ z))−1), (x, 0, 0)

]
=

[
(
(

1 dt−b
a−ct

0 1

)
, 1), (

x

a− ct
, 0, 0)

]
·
[
(
( 1

a−ct 0
−c
a−ct a−ct

)
, ε(g−1.(t+ z))−1), (0,

−cx
a− ct

,
cx2

a− ct
)

]
.

Using the definition of I(q, r, s) and χq,r,s we obtain

((g, ε).f)(t, x) = (a− ct)r−q/2ε(g−1.(t+ z))e
−scx2

a−ct f

(
dt− b
a− ct

,
x

a− ct

)
.

Corollary 2.1. The action of ( a b
c −a ) ∈ sl(2,R) on I ′(q, r, s) is given by the differential

operator

(ct− a)x∂x + (ct2 − 2at− b)∂t + (ra− csx2 − rct). (2.2)

An element (u, v, w) ∈ h3 acts on I ′(q, r, s)µ1 by the differential operator

(tv − u)∂x + s(w − 2vx).

Proof. It follows from differentiating the group actions on I ′(q, r, s). For instance,

to compute the action of the element ( a 0
0 −a ) ∈ sl(2,R) we first use Proposition 2.1

to compute the action of the element

(
(
eaτ 0
0 e−aτ

)
, ε).f(t, x) = eaτrf

(
e−2aτ t, e−aτrx

)
Then we take d

dτ

∣∣
τ=0

to obtain,

ra− 2at∂t − ax∂x

which proves the statement for this element. The rest of the generators of the algebra

are computed similarly.
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If we denote the potential free Schrödinger operator by 2, then

2 = 2i∂t + ∂2
x.

By equation (3.8), the standard sl2-triple {h, e±} acts by

h = −x∂x − 2t∂t + r (2.3)

e+ = −∂t (2.4)

e− = tx∂x + t2∂t − (sx2 + rt) (2.5)

on the non-compact picture. Let

Ω = 1/2h2 − h+ 2e+e−

be the Casimir element in the enveloping algebra of sl(2,R). For use in later sections,

define the central element

Ω′ = 2Ω− r(r + 2).

Corollary 2.2. On I ′(q, r, s), Ω acts by

Ω =
1

2

(
4sx2∂t + x2∂2

x − (1 + 2r)x∂x + r(r + 2)
)
.

In particular, for r = −1/2 and s = i/2, Ω acts by

Ω =
1

2
(x22 + r(r + 2)).

Proof. A straightforward calculation using the actions of the standard sl2-triple and

the definition of the Casimir element gives the desired result.
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CHAPTER THREE

Time Independent Potentials

3.1 Constant Potential

3.1.1 The Algebra

We consider the constant potential case (1.1a). It is well-known that the

algebra of symmetry operators is isomorphic to g = sl(2,R) n h3(R), however we

were unable to find a convenient reference for the explicit form of the generators, so

we calculate them here. We calculate the conformal invariant differential operators

according to [12]. Similar results can be obtained by using the standard prolongation

algorithm.

With an eye towards future use, we begin the calculation for an arbitrary time-

dependent potential V (t, x). Suppose that L = A(t, x)∂x + B(t, x)∂t + C(t, x) is a

differential operator in g. Then it has to satisfy the following condition

[2− 2V (t, x), L] = ι(t, x)(2− 2V (t, x)),

which gives

2BVx + Cxx + 2iCt + 2AVt + (2iAt + Axx)∂t + (2Cx +Bxx + 2iBt)∂x

+ 2Ax∂xt + 2Bx∂
2
x = ι(t, x)(2− 2V (t, x)). (3.1)

Equating coefficients, we obtain the following system of partial differential equations

Ax = 0 (3.2a)

Bx = ι/2 (3.2b)

AVt +BVx +
1

2
Cxx + iCt = −ιV (3.2c)

2iAt + Axx = 2iι (3.2d)

2Cx +Bxx + 2iBt = 0. (3.2e)
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This gives the general form of the functions A, B, and C. For instance (3.2a)

implies A(t, x) = A(t) and together with (3.2d), gives B(t, x) = 1/2xAt + b(t) for

some function b(t) dependent on t. Equation (3.2e) gives C(t, x) = −1/4iAttx
2 −

ib′(t)x + c(t) for some function c. We substitute this in (3.2c) to obtain c. In the

particular case of the constant potential, the form of V (t, x) = V1(x) = λ yields

Attt = 0 which implies that

A(t) = c1t
2 + c2t+ c3.

We can also see that b′′(t) = 0 thus b(t) = c4t+ c5 which gives

B(t, x) = (c1t+
c2

2
)x+ c4t+ c5.

The zero degree coefficient in (3.1) gives

c′(t) = i(λ(2c1t+ c2) + 1/2Att)

from which we get

C(t, x) = −1

2
c1x

2 − ic4 − i(λ(c1t
2 + c2t) + 1/2c1t) + c6.

In summary, besides multiplying by a constant, we obtain the following conformal

invariant differential operators

X1 = t2∂t + tx∂x −
1

2
(ix2 − t− iλt2)

X2 = t∂t +
1

2
x∂x − iλt

X3 = ∂t

X4 = t∂x − ixu

X5 = ∂x.
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Considering the bracket relations between these operators and considering distin-

guished linear combinations, we obtain the following basis elements,

e+ :=− ∂t + iλ (3.4a)

e− :=t2∂t + tx∂x +
1

2
(t+ 2it2λ− ix2) (3.4b)

h :=− 2t∂t − x∂x − (
1

2
+ 2itλ) (3.4c)

ξ :=− ∂x (3.4d)

ψ :=t∂x − ix (3.4e)

ζ :=
1

2
i (3.4f)

with {h, e±} being isomorphic to the standard basis of sl(2,R) and {ξ, ψ, ζ} spanning

an isomorphic copy of the three dimensional Heisenberg algebra, h3(R), with ζ as

the central element. Hence, the algebra spanned is g = sl(2,R) n h3(R).

3.1.2 Multiplier Representation

From the point of view of physics, it is very natural to realize the action of

the symmetry group on a multiplier representation instead of a more Lie-theoretical

standard induced representation. In this section we set up an intertwining opera-

tor between these two pictures as well as determine a space for which the action

globalizes.

It is convenient to work first with what might be called the non-compact

picture of a multiplier representation. To that end, let νλ : N ×X → C be given by

νλ(Nt,x) = eiλt

and extend it to an open dense set of G (namely P (N ×X)) by

νλ(g) = νλ(n(g)).

For f ∈ I ′(q, r, s) define

f̃(t, x) = eiλtf(t, x) (3.5)
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and define

I ′(q, r, s)µλ = {f̃ ∈ C∞(R2)|f̃(t, x) = eiλtf(t, x) for f ∈ I ′(q, r, s)}.

The reason for the subscript µλ will become evident below. This space inherits a

unique G-module structure so that the map f → f̃ is intertwining.

Now we turn to a standard multiplier representation on G/P . We start by

defining the multiplier µλ : P (N ×X)× P (N ×X)→ C by

µλ(g1, g2) = νλ(g
−1
2 g1)/νλ(g

−1
2 ).

Let φ ∈ I(q, r, s) and define the map φ̃ on an open dense set of G/P by

φ̃(gP ) := µλ(g
−1, I)−1φ(g).

The multiplier representation space on G/P , denoted by F , is defined as the image

of this mapping, that is

F = {φ̃ | φ ∈ I(q, r, s)},

with the G-action given by

(g1.φ̃)(g2P ) = µλ(g1, g2)φ̃(g−1
1 g2P ).

We notice that the map φ → φ̃ is an intertwining map, because the easily verified

equality µλ(g
−1
2 g1, I) = µλ(g

−1
2 , I)µλ(g1, g2) implies that

(g1.φ̃)(g2P ) = µλ(g1, g2)φ̃(g−1
1 g2P ) = µλ(g1, g2)µλ(g

−1
2 g1, I)−1φ(g−1

1 g2)

= µλ(g
−1
2 , I)−1φ(g−1

1 g2) = g̃1.φ(g2P ).

Now we have a commutative diagram,

φ ∈ I(q, r, s) → f ∈ I ′(q, r, s)

↓ ↓

φ̃ ∈ F → f̃ ∈ I ′(q, r, s)µλ .
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Let φ̃ ∈ F then

φ̃(Nt,xP ) = νλ(N−t,−x)
−1f(t, x) = eiλtνλ(N−t,−x)

−1f̃(t, x) = f̃(t, x).

Hence, the bottom map is given by φ̃ 7→ f̃ if f̃(t, x) = φ̃(Nt,xP ).

3.1.3 Group Action on I ′(q, r, s)µλ

We will use the isomorphism between I ′(q, r, s) and I ′(q, r, s)µλ to transfer the

action of the group and consequently the action of the algebra to the latter space,

recovering the symmetry operators calculated in Section 3.1.1.

Proposition 3.1. Let f̃ ∈ I ′(q, r, s)µλ, (g, ε) ∈ G̃0, and (u, v, w) ∈ H3. Then,

((g, ε).f̃)(t, x) = (a− ct)r−q/2ε(g−1.(t+ z))

· e
iλ

(
b+(a−d)t−c(isx2/λ+t2)

a−ct

)
f̃

(
dt− b
a− ct

,
x

a− ct

) (3.6a)

((u, v, w).f̃)(t, x) = e−s(uv−2vx−tv2+w)f̃(t, x− u− tv). (3.6b)

Proof. The proof of Equation (3.6b) is not different than (2.1b), because the multi-

plier is trivial when restricted to the Heisenberg group, and (3.6a) is easily obtained

from (2.1a) by applying the intertwining operator (3.5) two times as follows:

((g, ε).f̃)(t, x) = eiλt((g, ε).f)(t, x) = eiλt(a− ct)r−q/2ε(g−1.(t+ z))

· e
−scx2

a−ct f

(
dt− b
a− ct

,
x

a− ct

)
= e−i

dt−b
a−ct teiλt(a− ct)r−q/2ε(g−1.(t+ z))

· e
−scx2

a−ct f̃

(
dt− b
a− ct

,
x

a− ct

)
, (3.7)

which proves the proposition.

Corollary 3.1. The action of ( a b
c −a ) ∈ sl(2,R) on I ′(q, r, s)µλ is given by the differ-

ential operator

(ct− a)x∂x + (ct2 − 2at− b)∂t + (ra− csx2 − rct− (2at+ b− ct2)iλ). (3.8)
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An element (u, v, w) ∈ h3 acts on I ′(q, r, s)µλ by the differential operator

(tv − u)∂x + s(w − 2vx).

Proof. It follows from differentiating the group actions on I ′(q, r, s)µλ . For example,

to calculate the action of be+, we consider the action of the group element from

Proposition 3.1

(( 1 0
cτ 1 ) , ε).f(t, x) = (1− τt)re

−cτsx2−iλct2
1−cτt f

( t

1− cτt
,

x

1− cτt
)
.

Then we take d
dτ

∣∣
τ=0

and we obtain

−crt− csx2 − iλct2 + ct2∂t + cxt∂x,

which corresponds to the asserted action. The rest of the generators of the algebra

are computed similarly.

Remark 3.1. Notice that the action of the algebra on I ′(q, r, s)µ1 with r = −1/2

and s = i/2 correspond with the action of the algebra of symmetry operators for

the constant potential Schrödinger equation. Also, one can recover the actions on

I ′(q, r, s) by setting λ = 0.

By Equation (3.8), the standard sl2-triple acts on I ′(q, r, s)µλ by

h = −x∂x − 2t∂t + (r − 2iλt)

e+ = −∂t − iλ

e− = tx∂x + t2∂t − (sx2 − iλt2 + rt).

Using these expressions, the following corollary follows directly.

Corollary 3.2. On I ′(q, r, s)µλ, Ω acts by

Ω =
1

2

(
4sx2∂t + x2∂2

x − (1 + 2r)x∂x + r(r + 2) + 4isλx2
)
.

In particular, for s = i/2 and r = −1/2, it acts by Ω = 1
2
(x2(2− 2λ) + r(r + 2)).
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An immediate consequence of this corollary is that for the special parameters,

r = −1/2 and s = i/2, we have

ker Ω′ = ker(2− 2λ)

in I ′(q, r, s)µλ . In the setting of I(q, r, s) and I ′(q, r, s) this kernel has been decom-

posed into its K-types and the representation theory of this space has been worked

in more generality (c.f. [11]). Under the isomorphism (3.5) all these results can be

transfered to the case of F and I ′(q, r, s)µλ .

3.2 Linear Potential

We now turn to the case where V2(x) = λx. Proceeding as in Section 3.1.1

one can calculate the algebra generators substituting V (t, x) = V2(x). In this case,

the algebra of symmetry operators is spanned by

e+ :=− ∂t + tλ∂x +
1

2
λ(t2λ− 2x)i (3.9a)

e− :=t2∂t + t(x− t2λ

2
)∂x −

1

8
(4it+ t4λ2 − 12t2λx+ 4x2)i (3.9b)

h :=− 2t∂t +
1

2
(3t2λ− 2x)∂x +

1

2
(t3λ2 − 6tλx+ i)i (3.9c)

ξ :=− ∂x − iλt (3.9d)

ψ :=t∂x − (x− λt2

2
)i (3.9e)

ζ :=
1

2
i. (3.9f)

The algebra spanned is g = sl(2,R) n h3(R) therefore, we will continue to use

the group G.

3.2.1 Multiplier Representation

As in Section 3.1.2 we need to define the appropriate multiplier representation

space. We start by defining a change of coordinates map γ : R2 → R2 by

(t, x) 7→ (t, x+
λt2

2
).
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Now define νλ : N ×X → C by

νλ(Nt,x) = e−
1
3
it3λ2+iλtx

and extend it to a map on an open dense subset of G by νλ(g) = νλ(n(g)). Notice

that νλ was defined differently in Section 3.1. However, we will use the same notation

because these two maps will play the same role in each respective case and there is

no risk of confusion. This will be done in the next cases without further comment.

For f ∈ I ′(q, r, s) define

f̃(t, x) = e
1
6
iλ2t3+itλxf

(
t, x+

λt2

2

)
. (3.10)

The space that would be called the non-compact picture of the multiplier represen-

tation is

I ′(q, r, s)µλ = {f̃(t, x) ∈ C∞(R2)|f(t, x) ∈ I ′(q, r, s)}

with the G-action that makes the map f → f̃ an intertwining map.

To define the multiplier representation, we let µλ : P (N×X)×P (N×X)→ C

by µλ(g1, g2) = νλ(g
−1
2 g1)/νλ(g

−1
2 ), and for φ ∈ I(q, r, s) we define

φ̃(gP ) = µλ(g
−1, I)−1φ(g)

on an open dense set of G/P . As before, the multiplier representation space,

I(q, r, s)µλ , is defined as the image of this mapping. Since

φ̃(N
t,x+λt2

2

P ) = νλ(N−t,−x−λt2
2

)φ(N
t,x+λt2

2

)

= νλ(N−t,−x−λt2
2

)f(t, x+
λt2

2
) = f̃(t, x)

then the intertwining map from φ̃→ f̃ is given by

f̃(t, x) = φ̃(N
t,x+λt2

2

P ).
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We then have the commutative diagram

φ ∈ I(q, r, s) → f ∈ I ′(q, r, s)

↓ ↓

φ̃ ∈ F → f̃ ∈ I ′(q, r, s)µλ .

3.2.2 Group Actions on I(q, r, s)µλ

We can translate the action of G on I ′(q, r, s) to an action on I ′(q, r, s)µλ . We

record this in the following

Proposition 3.2. Let f̃ ∈ I ′(q, r, s)µλ and (u, v, w) ∈ H3 then

((u, v, w).f̃)(t, x) = e−iλt(u+tv)−s(uv−2vx−tv2+w)f̃(t, x− u− tv).

Let (g, ε) ∈ G̃0 and define Γ := x+λt2/2
a−ct −

λ(dt−b)2

2(a−ct)2 and Φ := dt−b
a−ct then

((g, ε).f̃)(t, x) = (a− ct)r−q/2ε(g−1.(t+ z))eiλ
2t( 1

6
t2−x)

· eiλ2Φ(− 1
6

Φ2+Γ)e
−sc(x+λt2/2)2

a−ct f̃ (Φ,Γ) .

Proof. This is straightforward calculation using (3.10) on (2.1a) and on (2.1b). For

G̃0, apply Equation (3.10), then Equation (2.1a) on the second line, and then Equa-

tion (3.10) on the third line:

((g, ε).f̃)(t, x) = e
1
6
iλ2t3+itλx((g, ε).f)

(
t, x+

λt2

2

)
= e

1
6
iλ2t3+itλx(a− ct)r−q/2ε(g−1.(t+ z))e

−sc(x+λt2/2)2

a−ct f

(
dt− b
a− ct

,
x+ λt2/2

a− ct

)
= (a− ct)r−q/2ε(g−1.(t+ z))eiλ

2t( 1
6
t2−x)eiλ

2Φ(− 1
6

Φ2+Γ)e
−scx2

a−ct f̃ (Φ,Γ) .

The calculation for H3 is similar and omitted.
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Corollary 3.3. The action of ( a b
c −a ) ∈ sl(2,R) on I ′(q, r, s)µλ is given by the differ-

ential operator

(bλt+ aλt2 + (x− λt2

2
)(ct− a))∂x + (ct2 − 2at− b)∂t +

(
ra− cs

(
x+

λt2

2

)2

−rct− iλ(at

(
λt2

2
− 3x

)
+ b

(
x− λt2

2

)
− 2ct2x)

)
. (3.11)

An element (u, v, w) ∈ h3 acts on I ′(q, r, s)µλ by the differential operator

(tv − u)∂x + [2v(sx+
λt2(i+ s)

2
)− ituλ+ sw].

Proof. This follows directly from differentiating the actions in Proposition 3.2. For

example we compute the action of ce−. Using Proposition 3.2 we calculate,

(( 1 0
cτ 1 ) , ε).f(t, x) = (1− cτt)reiλ2t( 1

6
t2−x) · eiλ2Φ(− 1

6
Φ2+Γ)e

−scτ(x+λt2/2)2

1−cτt f
(
Φ,Γ

)
with Φ = t

1−τt and Γ = x+λ2t2/2
1−cτt −

λ2t2

2(1−cτt)2 . The coefficient that multiplies ∂x is

dΓ

dτ

∣∣∣∣
τ=0

= ct(x+ λ2t2/2)− cλ2t3 = ct(x− λ2t2/2).

The coefficient multiplying ∂t is

dΦ

dτ

∣∣∣∣
τ=0

= ct2.

Finally, the multiplication term of the differential operator corresponds to the deriva-

tive of the terms that multiply f̃ in the group action, for which we obtain

− rct− iλ2(t2 − 2x)

2

dΦ

dτ

∣∣∣∣
τ=0

+ iλ2Φ
dΓ

dτ

∣∣∣∣
τ=0

− sc(x+
λt2

2
)2

= −rct− iλ2(t2 − 2x)

2
ct2 + iλ2ct2(x− λ2t2/2)− sc(x+

λt2

2
)2

= −rct+ 2iλ2ct2x− sc(x+
λt2

2
)2. (3.12)

The other generators are calculated similarly.
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From Corollary 3.3, the standard sl2-triple acts on I ′(q, r, s)µλ by

e+ := −∂t + tλ∂x +
1

2
λ(t2λ− 2x)i

e− := t2∂t + t(x− t2λ

2
)∂x − rt+ 2iλ2t2x− s(x+

λt2

2
)2

h := −2t∂t +
1

2
(3t2λ− 2x)∂x +

1

2
(t3λ2 − 6tλx) + r.

Corollary 3.4. Let s = i/2 and r = −1/2. Then, the Casimir element, Ω, acts on

I ′(q, r, s)µλ by Ω = 1/2((x+ λt2

2
)2(2− 2λx)) + r(r + 2)). In particular,

ker Ω′ = ker(2− 2λx)

in I ′(q, r, s)µλ.

This means that the space of solutions to the Schrödinger equation with linear

potential in I ′(q, r, s)µλ is isomorphic to the space of solutions ker Ω′ ⊂ I ′(q, r, s).

The latter has been studied in more generality in [11].

3.3 Harmonic Oscillator

For the potential V3(x) we consider −λ2/8 instead of λ, allowing λ to be

real or purely imaginary, in order to simplify the calculations. When λ is real the

equation represents the repulsive harmonic oscillator, if it is imaginary, the equation

corresponds to the attractive harmonic oscillator. The symmetry operators in both

cases correspond to each other through λ 7→ iλ, so there is no loss of generality in

considering just one of these two cases.

Substituting V (t, x) = −1/8λ2x2 in equation (3.1) the generators of the algebra

can be computed as in Section 3.1.1. The algebra of symmetry operators is spanned

by

e+ :=− 1

λ
(1 + coshλt)∂t −

1

2
x sinhλt∂x +

1

4
(iλx2 coshλt− sinhλt) (3.13a)

e− :=− 1

λ
(1− coshλt)∂t +

1

2
x sinhλt∂x −

1

4
(iλx2 coshλt− sinhλt) (3.13b)
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h :=− 2

λ
sinhλt∂t − x coshλt∂x +

1

2
(λx2 sinhλt− coshλt) (3.13c)

ξ :=− cosh
λt

2
∂x +

1

2
iλx sinh

λt

2
(3.13d)

ψ :=− sinh
λt

2
∂x +

1

2
iλx cosh

λt

2
(3.13e)

ζ :=− 1

2
iλ. (3.13f)

Similar to Section 3.1, the algebra is isomorphic to g = sl(2,R) n h3(R).

3.3.1 Multiplier Representation

To construct the required multiplier representation space for this case, we will

follow the same procedure presented in the previous cases. Here, the change of

coordinates is γ : R2 → R2 and it is given by

γ(t, x) =

(
tanh

λt

2
, x sech

λt

2

)
.

This induces a map on N .

We define νλ : N ×X → C by

νλ(Nγ(t,x)) = e−
iλ
4
x2 tanh λt

2 (sech
λt

2
)−1/2

and we extend it to a map on an open dense set of G by νλ(g) = νλ(n(g)). Let

f ∈ I ′(q, r, s) and define a map f 7→ f̃ by

f̃(t, x) = e−
iλ
4
x2 tanh λt

2 (sech
λt

2
)−1/2f

(
tanh

λt

2
, x sech

λt

2

)
. (3.14)

We define the space I ′(q, r, s)µλ as the image of this map. For use in the following

section we record the inverse of this map,

f(t, x) = e
iλtx2 cosh(λt/2)2

4 (1− t2)−1/4f̃

(
2

λ
arctanh t, x cosh

λt

2

)
(3.15)

for t ∈ (−1, 1). Notice that f̃ ∈ I ′(q, r, s)µλ determines the map f ∈ I ′(q, r, s) only

on (−1, 1)× R. Therefore, this map gives an isomorphism between I ′(q, r, s)µλ and
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I ′(q, r, s)(−1,1)×R := {f ∈ C∞((−1, 1)× R) | f(t, x)

= e
iλtx2 cosh(λt/2)2

4 (1− t2)−1/4f̃

(
2

λ
arctanh t, x cosh

λt

2

)
for f ∈ I ′(q, r, s)µλ}.

Clearly there exists a restriction map I ′(q, r, s)→ I ′(q, r, s)(−1,1)×R.

In order to construct the multiplier representation space, let

µλ : P (N ×X)× P (N ×X)→ C

by

µλ(g1, g2) = νλ(g
−1
2 g1)/νλ(g

−1
2 ).

For φ ∈ I(q, r, s) define on an open dense set of G/P the intertwining map φ̃(gP ) =

µλ(g
−1, I)−1φ(g) and regard the multiplier representation

I(q, r, s)µλ

as the image of this mapping. Finally we use the fact that

f̃(t, x) = µλ(γ(Nt,x)
−1, I)f(γ(t, x))

to write the intertwining map from I(q, r, s)µλ to I ′(q, r, s)µλ explicitly as

φ̃ 7→ f̃ whenever φ̃(Nγ(t,x)P ) = f̃(t, x).

We then have the commutative diagram

φ ∈ I(q, r, s) → f ∈ I ′(q, r, s)

↓ ↓

φ̃ ∈ F → f̃ ∈ I ′(q, r, s)µλ .

where the bottom and right maps are isomorphisms.

3.3.2 Group Actions on I ′(q, r, s)µλ

The group acts on I ′(q, r, s)(−1,1)×R in the same way as on I ′(q, r, s), however

the action is not a global one. In this Section, we use the isomorphism in (3.14) and
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(3.15) to transfer the action of the group on I ′(q, r, s)(−1,1)×R to a local action on

I ′(q, r, s)µλ .

Proposition 3.3. Let f̃ ∈ I ′(q, r, s)µλ and (u, v, w) ∈ H3. Then

((u, v, w).f̃)(t, x) = e
iλ
4

tanh λt
2

(2x−u cosh λt
2
−v sinh λt

2
)(u cosh λt

2
+v sinh λt

2
)

· e−s(uv−2vx sech λt
2
−v2 tanh λt

2
+w)f̃

(
t, x− u cosh

λt

2
− v sinh

λt

2

)
. (3.16)

Let g = ( a bc d ) ∈ SL(2,R) and let (g, ε) ∈ G̃0. Define Ξ :=
x sech λt

2

a−c tanh λt
2

and Ψ =

d tanh λt
2
−b

a−c tanh λt
2

. Then the action of (g, ε) on I ′(q, r, s)µλ is given by

((g, ε).f)(t, x) =
(
cosh(arctanh Ψ) sech

λt

2

)1/2
(a− c tanh

λt

2
)r−q/2

· ε(g−1.(tanh
λt

2
+ z))e

iλ
4

(x2 tanh λt
2
−Ξ2 tanh λΨ

2
)−scxΞ sech λt

2

· f̃
(

2

λ
arctanh Ψ,Ξ cosh

(λ
2

Ψ
))

. (3.17)

Proof. This follows from applying the isomorphism (3.14) to the actions (2.1a) and

(2.1b) calculated in Proposition 2.1. We will show the calculation of (3.16):

((u, v, w).f̃)(t, x) = e−
iλ
4
x2 tanh λt

2 (sech
λt

2
)−1/2

· ((u, v, w).f)

(
tanh

λt

2
, x sech

λt

2

)
= e−

iλ
4
x2 tanh λt

2 (sech
λt

2
)−1/2e−s(uv−2vx sech λt

2
−tanh λt

2
v2+w)

· f(tanh
λt

2
, x sech

λt

2
− u− tanh

λt

2
v).

Using (3.15) we transform f into f̃ and obtain the asserted result. The same proce-

dure is used to compute the action of elements in G̃0.

The action of the group is just local, because (3.17) is not defined for every

(g, ε) ∈ G̃0, only for group elements such that
d tanh λt

2
−b

a−c tanh λt
2

∈ (−1, 1).
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Corollary 3.5. Let ( a b
c −a ) ∈ sl(2,R), then it acts, on I ′(q, r, s)µλ, by the differential

operator

− 1

2
(2ax coshλt+ bx sinhλt− cx sinhλt)∂x −

1

λ
(2a sinhλt− b(1 + coshλt)

+ c(1− coshλt))∂t +
1

2
a(1 + 2r − coshλt+ iλx2 sinhλt)

− b

4
(−iλx2 coshλt+ sinhλt) + c(−sx2 − r tanh

λt

2
+

1

4
(−ix2(2λ+ 4is

+ λ cosh
λt

2
) + sinh

λt

2
) tanh2 λt

2
). (3.18)

An element (u, v, w) ∈ h3 acts, on I ′(q, r, s)µλ, by the differential operator

(v sinh
λt

2
− u cosh

λt

2
)∂x +

1

2
iλux sinh

λt

2
− 1

4
ivx(−λ− 8is+ λ coshλt) sech

λt

2
.

Proof. These actions follow from differentiating the actions in Proposition 3.3. For

this case we will calculate the action of be+. Let Ξ = x sech λt
2

and Ψ = tanh λt
2
− τb

then the coefficient that multiplies ∂t is

d

dτ
(
2

λ
arctanh(tanh

λt

2
− bτ))

∣∣∣∣
τ=0

= −2b

λ
cosh2 λt

2
.

The coefficient that multiplies ∂x is

d

dτ
(x sech(

λt

2
) arctanh(tanh

λt

2
− bτ))

∣∣∣∣
τ=0

= −2b

λ
sinh

λt

2
.

Finally, the zero order term in the differential operator correspondent to be+ is

d

dτ
(
(
cosh(arctanh Ψ) sech

λt

2

)1/2
e
iλ
4

(x2 tanh λt
2
−Ξ2 tanh λΨ

2
)−scxΞ sech λt

2
)

∣∣∣∣
τ=0

= − b
2

sinhλt+
bλx2

4
i coshλt.

The calculation for the other generators of the algebra follows the same procedure.

Notice that for r = −1/2 and s = iλ/4, the actions in the corollary correspond

with the ones in (3.13).
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Corollary 3.6. Let s = iλ/4 and r = −1/2. Then the Casimir element, Ω, acts on

I(q, r, s)µλ by Ω = 1
2
(x2(2 + λ2x2/4) + r(r + 2)). In particular,

ker Ω′ = ker(2 + λ2x2/4)

in I ′(q, r, s)µλ.

Proof. By (3.18), the sl2-triple acts by

h = −x cosh(λt)∂x −
2

λ
sinh(λt)∂t +

1

2
(1 + 2r − cosh(λt) + iλx2 sinh(λt))

e+ = −1

2
x sinh(λt)∂x −

1

λ
(1 + cosh(λt))∂t +

1

4
(− sinh(λt) + iλx2 cosh(λt))

e− =
1

2
x sinh(λt)∂x −

1

λ
(1− cosh(λt))∂t − sx2 − r tanh

λt

2

+
1

4
(−ix2(2λ+ 4is+ λ cosh

λt

2
) + sinh

λt

2
) tanh2 λt

2
.

Using these expressions, the result is obtained by a straightforward calculation.

Let S be the image of ker Ω′(−1,1)×R under the map (3.14). Then we have the

following diagram:

I ′(q, r, s) → I ′(q, r, s)(−1,1)×R → I ′(q, r, s)µλ

↑ ↑ ↑

ker Ω′ → ker Ω′(−1,1)×R → S ⊂ ker Ω′µλ

where the vertical maps are given by inclusion and the map ker Ω′ → ker Ω′(−1,1)×R

is given by restriction. The latter map is surjective and since the elements in ker Ω′

are analytic functions, it is also injective. The study of this solution space reduces

to the study of ker Ω′ ⊂ I ′(q, r, s) which has already been studied in [11]. Notice

that the right two columns of the diagram are just local representations of the group

and the spaces on the left column are global representations of the group.
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CHAPTER FOUR

Eigenvalue Problem of the Potential Free Schrödinger Equation

As seen, the representation theory for nearly all the potentials possessing sl2-

symmetry, reduces to the potential free case, therefore it is well understood (c.f.

[11]). Here we study the remaining case where V (t, x) = λx−2. Interestingly, it will

reduce to an eigenvalue problem of Ω′. To see this, recall from Section 2.1 the sl2

part of the symmetry algebra acts by

e+ := −∂t (4.1a)

e− := t2∂t + tx∂x −
1

2
(x2 + it)i (4.1b)

h := −2t∂t + x∂x −
1

2
(4.1c)

on I ′(q, r, s). In Corollary 2.2 we showed that the Casimir element Ω, acts by

Ω =
1

2

(
4sx2∂t + x2∂2

x − (1 + 2r)x∂x + r(r + 2)
)

and the central element Ω′ acts by the differential operator

Ω′ = x2(4s∂t + ∂2
x − (1 + 2r)/x∂x)

on I ′(q, r, s). The subspace ker(Ω′ − 2λ) in I ′(q, r, s) is the same as ker(2− 2λ/x2)

in I ′(q, r, s).

We begin the study with a result on the invariance under G̃0 and the subgroup

{(0, 0, w)|w ∈ R} ⊂ H3.

Proposition 4.1. The subspace ker(Ω′−2λ) in I ′(q, r, s) is invariant under the action

of G̃0 and under the action of the subgroup {(0, 0, w)|w ∈ R} of H3. The space is

not left invariant by the complement of {(0, 0, w)|w ∈ R} in H3.
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Proof. Since Ω is in the center of the enveloping algebra of g, the G̃0-invariance is

clear. Let (u, v, w) ∈ H3. Using the action on Corollary 2.1 we can calculate

[2− 2λ/x2, (u, v, w)] = [2i∂t + ∂2
x − 2λ/x2, (tv − u)∂x + i/2(w − 2vx)]

= [2i∂t, (tv − u)∂x] + [∂2
x, i/2(w − 2vx)]

− 2[λ/x2, (tv − u)∂x]

= 2iv∂x − 2iv∂x +
4λ(tv − u)

x3
=

4λ(tv − u)

x3
.

This is zero for every t ∈ R only if u = 0 and v = 0, this proves the invariance under

{(0, 0, w)|w ∈ R} of H3.

Though, all ofH3 does not leave ker(Ω′−2λ) invariant, it will play an important

role in linking together different G̃0-invariant kernels.

4.1 The Compact Picture

The group G̃0 has Iwasawa decomposition G̃0 = KAN and the product induces

a diffeomorphism G ∼= (K × X) × (AN nW ). Since (AN nW ) ⊂ P , an element

φ ∈ I(q, r, s) is completely determined by its restriction to K ×X. Moreover, since

(K ×X) ∩ P = M we have that the restriction of φ ∈ I(q, r, s) (which we will still

denote by φ) satisfies φ(gm) = χq,r,s(m)φ(g) for g ∈ K ×X and m ∈M .

There exists an isomorphism between K × X and S1 × R given by (θ, y) 7→

[(gθ, εθ), (y, 0, 0)] and it can be shown that this map is 4π-periodic with respect to

θ. Thus we can identify φ ∈ I(q, r, s) with a map F : S1 × R → C, φ 7→ F iff

φ([(gθ, εθ), (y, 0, 0)]) = F (θ, y). Then F ∈ C∞(S1 × R) and F (θ + 4π, y) = F (θ, y).

The function F inherits from φ additional ”‘parity”’ identities. By the defini-

tion, εθ+πj(z)2 = cos(θ + πj)− z sin(θ + πj) = (−1)jεθ(z). We then get

F (θ + πj, (−1)jy) = φ([(gθ+πj, εθ+πj), ((−1)jy, 0, 0)]) = φ([(gθ, εθ), (y, 0, 0)]mj)

= χq,r,s(mj)
−1φ([(gθ, εθ), (y, 0, 0)]) = i−jqF (θ, y).
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Define

I ′′(q, r, s) = {F ∈ C∞(R2)|F (θ + 4π, y) = F (θ, y)

and F (θ + jπ, (−1)jy) = i−jqF (θ, y)}. (4.2)

Then the map φ 7→ F is a vector space isomorphism between I(q, r, s) and I ′′(q, r, s).

The space I ′′(q, r, s) inherits a unique G-module structure, so that this map becomes

an intertwining map. We call this the compact picture, as in the semisimple case,

though K ×X is not compact here.

In turn, the isomorphism T induces an isomorphism between I ′(q, r, s) and

I ′′(q, r, s) which we will write out explicitly. We begin with the following decompo-

sition:

[(gθ, εθ), (y, 0, 0)] = [(( 1 tan θ
0 1 ) , z 7→ 1), (y sec θ, 0, 0)]

· [(
(

1/ cos θ 0
− sin θ cos θ

)
, εθ), (0,−y tan θ, y2 tan θ)].

Since F (θ, y) = φ([(gθ, εθ), (y, 0, 0)]) then

F (θ, y) = χq,r,s([(
(

1/ cos θ 0
− sin θ cos θ

)
, εθ), (0,−y tan θ, y2 tan θ)])−1

· φ([(( 1 tan θ
0 1 ) , z 7→ 1), (y sec θ, 0, 0)]) = (cos θ)−re−sy

2 tan θf(tan θ, y sec θ) (4.3)

for f ∈ I(q, r, s) and θ ∈ (−π/2, π/2). Since F ∈ I ′′(q, r, s), this expression

can be extended smoothly to any θ ∈ R by using the fact that F (θ + jπ, y) =

i−jqF (θ, (−1)jy) and continuity to get to the integer multiples of π/2. Then we

define the isomorphism T : I ′(q, r, s)→ I ′′(q, r, s) by T (f) = F . The inverse to this

map can be calculated and it is:

f(t, x) = (1 + t2)−r/2e
stx2

1+t2F (arctan t, x(1 + t2)−1/2). (4.4)

Under this isomorphism, via the chain rule, we obtain

∂t ↔
1

2
(−y sin 2θ∂y + cos2 θ∂θ + 2sy2 cos 2θ − 1/2r sin 2θ) (4.5a)
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∂x ↔ 2sy sin θ + cos θ∂y. (4.5b)

This will enable us to transfer the actions of the algebra from the non-compact

picture, I ′(q, r, s), to the compact picture, I ′′(q, r, s).

Define a standard basis of sl2(C) given by

κ = i(e− − e+)

and

η± = 1/2(h± i(e+ + e−)).

Applying Equations (4.5) to the action in Corollary 2.1, it can be shown that the

sl2-triple just defined acts on I ′′(q, r, s) by the differential operators

κ = i∂θ (4.6)

η± =
1

2
e∓2iθ

(
y∂y ∓ i∂θ − (1/2± 2isy2)

)
. (4.7)

Proposition 4.2. If Ω′′ denotes the differential operator by which the central element

Ω′ acts on I ′′(q, r, s) then

Ω′′ = y2

(
4s∂θ + 4s2y2 + ∂2

y +
1 + 2r

y
∂y

)
.

Proof. Under the isomorphism I ′(q, r, s) ∼= I ′′(q, r, s) we obtain the following expres-

sions:

4sx2∂t 7→ y2(−4sy tan θ∂y + 4s∂θ + 8s2y2 − 4s2y2 sec2 θ + 2sr tan θ)

x2∂2
x 7→ y2(4s2y2 tan2 θ + ∂2

y + 4sy tan θ∂y + 2s tan θ)

(1 + 2r)x∂x 7→ (1 + 2r)y2(2s tan θ + 1/y∂y).

Adding them we get

1

y2
Ω′′ = 4s∂θ + 4s2y2 + ∂2

y +
1 + 2r

y
∂y.
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4.2 K-types

Lemma 4.1. Let (gθ′ , εθ′) ∈ K and F ∈ I ′′(q, r, s) then (gθ′ , εθ′).F (θ, y) = F (θ− θ′, y)

Proof.

(gθ′ , εθ′).F (θ, y) = φ([(gθ′ , εθ′)
−1(gθ, εθ), (y, 0, 0)])

= φ([(gθ−θ′ , εθ−θ′), (y, 0, 0)]) = F (θ − θ′, y)

There exists an isomorphism K ∼= S1 given by (gθ, εθ) 7→ eiθ/2. Therefore,

the characters on K are of the form χKm(gθ, εθ) = e−imθ/2 for m ∈ Z. Using Lemma

4.1, a weight vector Fm ∈ I ′′(q, r, s) of weight m
2

, for the action of K, satisfies

(gθ′ , εθ′).Fm(θ, y) = Fm(θ − θ′, y) = e−imθ
′/2Fm(θ, y). Setting θ = 0 and θ′ = −θ we

obtain Fm(θ, y) = e−imθ/2Fm(0, y). Let F̃m(y) := Fm(0, y) so that a weight vector is

of the form

Fm(θ, y) = e−imθ/2F̃m(y).

Lemma 4.2. Fix m ∈ Z and F̃ ∈ C∞(R). Then F (θ, y) = e−imθ/2F̃ (y) is annihilated

by Ω′′ − 2λ if and only if F̃ (y) is annihilated by the differential operator

D = y2∂2
y − (2λ−my2 + y4)

Proof. Explicitly calculating the action of Ω′′ − 2λ on F (θ, y) = e−imθ/2F̃ (y), one

obtains that (Ω′′ − 2λ)F = e−imθ/2DF̃ .

Proposition 4.3. There exist a K-finite vector of weight m
2

in ker(Ω′′−2λ) ⊂ I ′′(q, r, s)

iff

l =
1

2
(1 +

√
1 + 8λ) (4.8)

is a positive integer (equivalently, λ = l(l−1)/2 for l ∈ Z>0) and m ≡ 2l+q mod 4.

In this case, if λ 6= 0, there exists a unique (up to scalar multiples) weight vector of
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weight m
2

in ker(Ω′′ − 2λ) ⊂ I ′′(q, r, s) and it is given by

Fm(θ, y) = e−imθ/2e−y
2/2yl 1F1

(
1 + 2l −m

4
, l +

1

2
, y2

)
(4.9)

where 1F1 are the congruent hypergeometric functions of the first kind.

Proof. By Lemma 4.2, for Fm to be in ker(Ω′′− 2λ) ⊂ I ′′(q, r, s), it is necessary that

DF̃m = 0. Because of the form of D, it respects the decomposition of F̃m in terms

of its even and odd components. Moreover, each of the components is determined

by its value on R+. Working first with y ≥ 0 we can write F̃m(y) = e−y
2/2H(y2) for

some smooth function H. Then, the condition DF̃m = 0 is equivalent to

(
4y4∂2

y + (2y2 − 4y4)∂y + ((m− 1)y2 − 2λ))H(y2) = 0. (4.10)

Following [5], the Frobenius method for this equation yields a solution spanned by

two linearly independent solutions. The indicial roots for this equation are

l1 =
1

2
(1−

√
1 + 8λ)

and

l2 =
1

2
(1 +

√
1 + 8λ).

Then, the first linearly independent solution is of the form

H1(y2) = yl2(1 +
∞∑
j=1

cj(l2)y2j)

for some cj(l2) ∈ R. This function extends to a smooth function on R only if l2 ∈ Z≥0

iff λ = 0 or λ is a triangular number (i.e., λ = k(k − 1)/2 for some k ∈ Z>1).

If λ 6= 0, the difference between the indicial roots is an odd integer (i.e.,
√

1 + 8λ), and the second solution is of the form

H2(y2) = aH1(y2) ln |y2|+ yl1(1 +
∞∑
j=1

cj(l1)y2j) (4.11)

for some a, cj(l1) ∈ R. Since l1 < 0, H2 is not continuous at y = 0.
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Let l = l2 and write F̃m(y) = e−y
2/2ylL(y2). Applying the differential operator

D to a function of the form e−y
2/2ylL(y2) we obtain the differential equation

4y2L′′(y2) + 2(1 + 2l − 2y2)L′(y2)− (1 + 2l −m)L(y2) = 0. (4.12)

Recall the confluent hypergeometric differential equation is

(z∂2
z + (b− z)∂z − a)1F1(a, b, z) = 0

(c.f. [1]). This equation has well known solutions in the form of confluent hyperge-

ometric functions of the first and second kind. However, the smoothness condition

required by being in I ′′(q, r, s) shows that the unique solution to (4.12) corresponds

to a multiple of the confluent hypergeometric function of the first kind. We may

therefore take L(y2) = 1F1

(
1+2l−m

4
, l + 1

2
, y2
)
.

Finally, a simple calculation using the required parity condition on elements

in I ′′(q, r, s) from Equation (4.2) applied to Fm(θ, y) reduces to

e−imπj/2(−1)jl = i−jq

which is equivalent to m− 2l ≡ q mod 4.

So far, we have established the theorem for non-negative values of y. Extend

F̃ to R by F̃m(y) = e−y
2/2yl 1F1

(
1+2l−m

4
, l + 1

2
, y2
)

which is even or odd depending

on the parity of l. Since DF̃m(y) = 0 for y ≥ 0 and D is even, DF̃m(y) = 0 for

y ∈ R. Moreover, Fm is manifestly smooth and the unique extension to all R.

If λ = 0 then l = 0 or l = 1, which corresponds to the potential free case

and again, it is known that there exists a unique solution for each l. The solutions

correspond to the even (l = 0) and the odd (l = 1) solutions found there (c.f.,

[11]).

Notice that we have set up a correspondence between the set of eigenvalues

with non-empty eigenspace in I ′′(q, r, s) and Z≥0 via λ = l(l − 1)/2. This corre-

spondence will be one-to-one (except for λ = 0 where it is two-to-one). For λ 6= 0
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the corresponding parameter l can be recovered by l = 1
2
(1 +

√
1 + 8λ). For the

potential free case, λ = 0, we have associated the parameters l = 0 and l = 1.

To use in the following section we record the following properties of the con-

gruent hypergeometric function (c.f. [1])

dn

dzn
1F1(a, b, z) =

(a)n
(b)n

1F1(a+ n, b+ n, z) (4.13a)

b 1F1(a, b, z)− b 1F1(a− 1, b, z)− z 1F1(a, b+ 1, z) = 0 (4.13b)

b(1− b+ z) 1F1(a, b, z) + b(b− 1) 1F1(a− 1, b− 1, z)

− az 1F1(a+ 1, b+ 1, z) = 0

(4.13c)

(a− 1 + z) 1F1(a, b, z) + (b− a) 1F1(a− 1, b, z)

(1− b) 1F1(a, b− 1, z) = 0

(4.13d)

(a− b+ 1) 1F1(a, b, z)− a 1F1(a+ 1, b, z) + (b− 1) 1F1(a, b− 1, z) = 0 (4.13e)

4.3 Structure of ker(Ω′′ − 2λ) ⊂ I ′′(q, r, s)

In this section we will study the structure of ker(Ω′′ − 2λ)K as an sl2-module.

Proposition 4.4. With l = 1
2
(1 +

√
1 + 8λ) as in Proposition 4.3 and m ≡ 2l + q

mod 4, let

Ψm,l(θ, y) = e−imθ/2e−y
2/2yl 1F1

(
1 + 2l −m

4
, l +

1

2
, y2

)
.

The sl2-triple {κ, η±} acts on Ψm,l by

κ.Ψm,l =
m

2
Ψm,l (4.14)

η±.Ψm,l = −2l + 1±m
4

Ψm±4,l (4.15)

Lowest weight vectors occur if m ≡ 2l + 1 mod 4 and the lowest weight vector is of

the form

e−
1
2

(2l+1)iθe−
y2

2 yl.
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Highest weight vectors occur if m ≡ −2l− 1 mod 4 and the highest weight vector is

of the form

e
1
2

(2l+1)iθe
y2

2 yl.

Proof. In Equations (4.6) and (4.7), we wrote down the action of the sl2-triple

{κ, η±}. The stated action of κ follows by inspection. Directly applying the dif-

ferential operator η+ gives

η+.Ψm,l(θ, y) = e−i(m±4)θ/2e−y
2/2yl
−1− 2l +m

4(1 + 2l)
((1 + 2l)

· 1F1

(1 + 2l −m
4

, l +
1

2
, y2
)

+ 2y2
1F1

(5 + 2l −m
4

, l +
3

2
, y2
)

).

Applying (4.13c) with a = 1+2l−m
4

and b = l + 1
2

to the action of η+ we obtain

η+.Ψm,l(θ, y) = −1

4
e−i(m±4)θ/2e−y

2/2yl((4l − 2)

· 1F1

(−3 + 2l −m
4

, l − 1

2
, y2
)
− (3− 2l +m) 1F1

(1 + 2l −m
4

, l +
1

2
, y2
)

).

Using (4.13b) we obtain the desired result. For η−, we similarly apply (4.13b) with

a = 5+2l−m
4

and b = l + 1
2

to obtain the desired result.

The assertion about the highest and lowest weights follow from the action of

η± as differential operators; since the weight vectors that are annihilated by each

of these are the ones correspondent to the weights ∓(2l + 1) respectively. Directly

evaluating and observing that 1F1(a, a, z) = ez and 1F1(0, b, z) = 1, the given

expressions are obtained.

Definition 4.1. Let Hl = ker(Ω′′−2λ)K denote the K-finite vectors in ker(Ω′′−2λ) ⊂

I ′′(q, r, s). For k ∈ Z≥0 define

Hk = spanC{Ψm,k : m ≡ 2k + q mod 4 for m ∈ Z}. (4.16)

For q ≡ 1 mod 4 and k ∈ Z≥0 define

H+
k = spanC{Ψm,k : m ≥ 2k + 1 and m ≡ 2k + 1 mod 4 for m ∈ Z}. (4.17)
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Figure 4.1. A basis of Hl is represented when q is even.

For q ≡ −1 mod 4 and k ∈ Z≥0 define

H−k = span{Ψm,k : m ≤ −(2k+ 1) and m ≡ −(2k+ 1) mod 4 for m ∈ Z}. (4.18)

Lemma 4.3. If q ≡ −1 mod 4, then H−l is the unique irreducible sl2-submodule of

Hl. If q ≡ 1 mod 4, then H+
l is the unique irreducible sl2-submodule of Hl.

Proof. From Equation (4.15), follows irreducibility when ±(2l + 1) 6= m for any

m ∈ Z, this occurs when q ∈ 2Z. We can have 2l + 1 = m for some m ∼= 2l + q

mod 4 iff q ∼= 1 mod 4 and a lowest weight occurs in this case. Similarly, q ∼= −1

mod 4 implies that a highest weight occurs. Since the highest and lowest weight

cannot occur in the same representation, the action Equation (4.15) implies that

H+
l (resp. H−l ) is clearly the unique irreducible submodule of Hl.

Theorem 4.1. Given q ∈ Z4 and l = 1
2
(1 +

√
1 + 8λ), then as sl2-modules:

(1) If q ≡ 0 mod 4 or q ≡ 2 mod 4 then Hl = ker(Ω′′ − 2λ)K is irreducible as

an sl2-module.

(2) If q ≡ −1 mod 4, then H−l is the only irreducible submodule and the compo-

sition series for ker(Ω′′ − 2λ)K is given by

0 ⊂ H−l ⊂ Hl.

(3) If q ≡ 1 mod 4, then H+
l is the only irreducible submodule and the compo-

sition series of ker(Ω′′ − 2λ)K is given by sl2-submodule

0 ⊂ H+
l ⊂ Hl.
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Figure 4.2. A basis of Hl is represented when q = 1.

Proof. Follows from Lemma 4.3.

Figure 4.1 shows a graphic representation of a basis of Hl. Each dot represents

the C-span of theK-finite vector parametrized bym and k. Up to non-zero multiples,

η+ (resp. η−) moves each dot to the right (resp. to the left) and κ leaves each dot

fixed. Figure 4.2 shows a graphic representation of a lowest weight module. The

K-finite vectors to the right of the parenthesis form H+
l .

4.4 Heisenberg Action and Connections with Other Kernels

In this section we will examine the action of the Heisenberg algebra. This will

allow us to join all the (non-zero) eigenspaces together in one representation.

Recall that the element (u, v, 0) ∈ h3(R) acts on I ′(q, r, s) by (tv−u)∂x−2svx

so, under the isomorphism (4.3), the elements

E∓ := (1,±i, 0) ∈ h3(C)

act by the differential operators

∓e±iθ(±∂y − 2isy)

Proposition 4.5. Let m ∈ Z and k ∈ Z≥0. Then,

E−.Ψm,k =
(1 + 2k −m)(k − 1)

(2k − 1)(2k + 1)
Ψm−2,k+1 − kΨm−2,k−1

and

E+.Ψm,k =
(1 + 2k +m)(k − 1)

2(2k − 1)
Ψm+2,k+1 − kΨm+2,k−1.
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Proof. Combining (4.13b) and (4.13e) with a+ 1 instead of a, one obtains

1F1(a, b, z) = 1F1(a, b− 1, z)− az

b(b− 1)
1F1(a+ 1, b+ 1, z). (4.19)

Using Equation (4.13e) with b + 1 in place of b and combining it with (4.13c), one

obtains

1F1(a, b, z) = − 1F1(a− 1, b− 1, z) +
b− a
b− 1

z 1F1(a, b+ 1, z) (4.20)

Using Equation (4.13a) we can compute the action of E± directly. Let a = 1+2k−m
4

and b = k + 1/2. Then it is straightforward to see

E−.Ψm,k = −1

2
e−i(m+2)θ/2−y2/2yk−1

(
(−1 + 2b) 1F1(a, b, y2)

+ 4ay2/b 1F1(a+ 1, b+ 1, y2)
)
.

Applying (4.19), one gets the first equation.

A similar calculation using Equation (4.13a) shows

E+.Ψm,k =
1

2
e−i(m−2)θ/2−y2/2yk−1

(
(1− 2b+ 4y2) 1F1(a, b, y2)

− 4ay2/b 1F1(a+ 1, b+ 1, y2)
)

An application of (4.13c) gives

E+.Ψm,k = −1

2
e−i(m−2)θ/2−y2/2yk−1

(
4(b− 1) 1F1(a− 1, b− 1, y2)

+ (3− 2b) 1F1(a, b, y2)
)

and substituting in the expression in (4.20) gives the desired result.

From Equation (4.8), it follows that if the eigenvalue λ corresponds to the

parameter l, then λ+ l+ 1 corresponds to the parameter l+ 1 and λ− l corresponds

to the parameter l − 1.

The following corollary follows immediately from the previous proposition.

It will be useful in seeing that the action of the Heisenberg algebra preserves the

structure of highest and lowest weight submodules in H.
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Corollary 4.1. If m = 2k + 1, the action of E± on the lowest weight is given by

E−.ψ2k+1,k = −kΨ2k−1,k−1

and

E+.ψ2k+1,k =
(2k + 1)(k − 1)

2k − 1
Ψ2k+3,k+1 − kΨ2k+3,k−1.

If m = −(2k + 1), the action of E± on the lowest weight is given by

E−.ψ−(2k+1),k =
2(k − 1)

2k − 1
Ψ−2k−3,k+1 − kΨ−2k−3,k−1

and

E+.ψ−(2k+1),k = −kΨ−2k+1,k−1.

Proof. This follows directly from the previous proposition.

We now will show how Proposition 4.5 and Corollary 4.1 imply that the action

of h3 ties together the kernels indexed by k, in a g-module. Recall, the cases where

k = 0 and k = 1 correspond to the potential free case.

Definition 4.2. Let

H =
⊕
l∈Z≥0

Hl. (4.21)

Whenever the spaces are defined, let

H± =
⊕
l∈Z≥2

H±l . (4.22)

Theorem 4.2. Let q ∈ Z4 and k ∈ Z≥0. With respect to the action of g:

(1) If q = 0 or q = 2, the composition series of H is

0 ⊂ H0 ⊕H1 ⊂ H

where each vertical strip corresponds to an irreducible sl2-representation.
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Figure 4.3. Graphical representation of the composition series when q is even.
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Figure 4.4. Graphical representation of the composition series when q = 3.

(2) If q ≡ −1 mod 4, then the composition series of g-submodules of H is as

follows

0 ⊂ H−0 ⊕H−1 ⊂ H0 ⊕H1 ⊂ H0 ⊕H1 ⊕H− ⊂ H.

(3) If q ≡ 1 mod 4, then the composition series of g-submodules of H is

0 ⊂ H+
0 ⊕H+

1 ⊂ H0 ⊕H1 ⊂ H0 ⊕H1 ⊕H+ ⊂ H.

Proof. Let q ≡ 0 mod 4 or q ≡ 2 mod 4. Proposition 4.5 shows that the action of

E± sends elements in H0 only to H1 and the action of E± sends elements in H1 only

to H0. Under this assumption on q, each Hk is irreducible under the sl2 action, thus

H0⊕H1 is irreducible under the g action. Now we look at the quotient H/(H0⊕H1).

Let π : H → H/(H0 ⊕H1) be the natural projection. Let Hk denote the image of

Hk under π, then the image of H under π can be decomposed as a direct sum as
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Figure 4.5. Graphical representation of the composition series when q = 3.
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H =
⊕

j Hkj as an sl2-module. Proposition 4.5 implies that E±.Hkj has a non-zero

component in Hkj−1 and in Hkj+1, for kj ≥ 2.

Since the Hkj−1 and Hkj+1 are inequivalent sl2-representations, then E±.Hkj

generates Hkj−1 ⊕ Hkj+1 under the action of sl(2,R). Irreducibility follows easily

from this.

The proofs of (2) and (3) are essentially identical, therefore we will only look

at the proof of (3). Irreducibility of H+
0 ⊕ H+

1 under g follows from irreducibility

under sl2 and from the actions on the lowest weights described in Corollary 4.1.

Next we look at the quotient (H0 ⊕ H1)/(H+
0 ⊕ H+

1 ). For j ∈ {0, 1}, write

Hj for the image of Hj under the natural projection H0 ⊕H1 → (H0 ⊕H1)/(H+
0 ⊕

H+
1 ). Then, H0 gets sent to H1 and H1 gets sent to H0 by the action of the

Heisenberg algebra. This, together with irreducibility of H0 and H1 under sl2, gives

irreducibility under g.

Finally, we look at the quotient (H0⊕H1⊕H+)/(H0⊕H1). Write
⊕

k≥0H
+
k

for the image of H0 ⊕ H1 ⊕ H+ under the natural projection. The Heisenberg

algebra acts as before, and E±.H
+

kj
has a component in H

+

kj−1 and in H
+

kj+1, for

kj ≥ 2. Hence any non-zero element in Hk for k ≥ 2 generates the whole space.

4.5 An Eigenvalue Problem for the Quadratic Case

Corollary 3.6 states that Ω acts on I ′(q, r, s)µλ by Ω = 1
2
(x2(2 + λ2

1x
2/4) +

r(r + 2)). Replacing λ2
1/4 by −2λ1 on obtains that Ω′ − 2λ2 acts by

Ω′ − 2λ2 = x2(2− 2λ1x
2)− 2λ2 = x2(2− 2(λ1x

2 + λ2/x
2)).

Then, the solution space of the Schödinger equation with the potential V5(x) =

λ1x
2 + λ2/x

2, as a local G-representation, is equivalent to studying a subspace of

the kernel of Ω′ − 2λ2 in I ′(q, r, s)µλ . To construct this subspace we let Sλ2 be the

image of ker(Ω′ − 2λ2) ⊂ I ′(q, r, s)(−1,1)×R under the map (3.14) as in Section 3.3.2.
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Then we have the following diagram:

I ′(q, r, s) → I ′(q, r, s)(−1,1)×R → I ′(q, r, s)µλ

↑ ↑ ↑

ker(Ω′ − 2λ2) → ker(Ω′ − 2λ2)(−1,1)×R → S ⊂ ker(Ω′ − 2λ2)µλ .

The study of this solution space, Sλ2 , as a local representation reduces to the study

of ker(Ω′ − 2λ2) ⊂ I ′(q, r, s) which was done in Section 4.
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CHAPTER FIVE

Time-Dependent Potentials

It has been shown in [12] that the only time-dependent potentials that preserve

the complete sl2-symmetry are potentials of the form V (t, x) = g2(t)x2 + g1(t)x +

g0(t) + λ/x2 with λg1(t) = 0. If λ = 0 the symmetry Lie algebra is isomorphic to

g = sl2 n h3 and it is isomorphic to sl(2,R)× R otherwise.

We show that when λ = 0, there exists a local intertwining isomorphism

between the solution space of the potential free Schrödinger equation and the solution

space of the Schrödinger equation with this time-dependent potential in I(q, r, s).

When λ 6= 0 we can reduce this problem to the eigenvalue problem studied in

Section 4 under the same change of variables. Therefore, this completes the study

of all non-trivial time-dependent and independent potentials that preserve at least

the sl2-symmetry.

By substituting V (t, x) = g2(t)x2 + g1(t)x + g0(t) in (3.1) and equating the

coefficients of the powers of x to find the generators of symmetry algebra, one gets

the following system of ordinary differential equations:

A′′′ + 8g2A
′ + 4g′2A = 0 (5.1a)

b′′ + 2g2b = −3

2
g1A

′ − g′1A (5.1b)

c′ =
1

4
A′′ + i(g0A

′ + g′0A) + ibg1. (5.1c)

It was shown in [12] that two real, linearly independent, nontrivial solutions of

b′′ + 2g2b = 0, χ1 and χ2, can be used to write three linearly independent nontrivial

solutions to equation (5.1a). Moreover, they can be chosen in such way that the

Wronskian W (χ1, χ2) = 1. These three solutions are defined then by ϕj = χ2
j for

j ∈ {1, 2} and ϕ3 = 2χ1χ2.
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The symmetry algebra can be realized as first order differential operators. In

that case, the h3 part corresponds to the span of:

ξ = −χ1∂x + iχ′1x− iC1 (5.2a)

ψ = χ2∂x − iχ′2x+ iC2 (5.2b)

ζ =
1

2
i (5.2c)

where Cj(t) =
∫ t

0
χjg1 for j ∈ {1, 2}. Let

Al = −χlCl

for l ∈ {1, 2} and let

A3 = −(χ1C2 + χ2C1).

Similarly, the sl(2,R) part is generated by the differential operators:

Lj = (−1)j+1(ϕj∂t +
(1

2
ϕ′jx+Aj

)
∂x + Bj) (5.3)

for 1 ≤ j ≤ 3, where

Bj = −1

4
iϕ′′jx

2 − iA′jx+
1

4
ϕ′j + ig0ϕj + iDj,

Dl = −1
2
C2
l for l ∈ {1, 2} and D3 = −C1C2. The following bracket relations hold:

[L3, L1] = −2L1, [L3, L2] = 2L2, and [L2, L1] = L3. Note that, in order to have a

standard sl2-triple, our definition of the L2 operator differs in sign with respect to

the definition in [12].

In order to define the appropriate multiplier representation space we start by

defining a change of variables γ : R2 → R2 by

γ(t, x) :=

(∫ t

0

1

χ2
2

,
1

χ2(t)
x+

∫ t

0

C2

χ2
2

)
.

In the following, we assume that the required integrability conditions are satisfied.

We define ν : N ×X → C by

ν(Nγ(t,x)) = e

∫ t
0
B2(u)

χ2
2(u)

+
(

1

χ2
2(u)

( 1
2
ϕ′2(u)x+A2(u))

)2

du
.
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Extend ν to a map to an open dense subset of G by ν(g) = ν(n(g)). Let f ∈ I ′(q, r, s)

and define the map f 7→ f̃ by

f̃(t, x) = e

∫ t
0
B2(u)

χ2
2(u)

+
(

1

χ2
2(u)

( 1
2
ϕ′2(u)x+A2(u))

)2

du
f(γ(t, x)). (5.4)

The space I ′(q, r, s)µ is defined as the image of I ′(q, r, s) under this map, and

is given the structure of a G-module that makes the map intertwining. On this space

the action of the Lie algebra corresponds to the differential operators in Equation

(5.2) and Equation (5.3).

Next we construct the multiplier representation. We start by defining the

multiplier

µ(g1, g2) = ν(g−1
2 g1)ν(g−1

2 )−1.

For φ ∈ I(q, r, s) define, on an open dense set of G/P , the map

φ̃(gP ) = µ(g−1, I)−1φ(g).

As before, we define I(q, r, s)µ as the image of I(q, r, s) under the map φ→ φ̃.

Finally, the intertwining map from I(q, r, s)µ to I ′(q, r, s)µ is given by

φ̃ 7→ f̃ whenever f̃(t, x) = φ̃(Nγ(t,x)P ).

5.1 Group Action on I ′(q, r, s)µ

In this section we calculate the local action of G on I ′(q, r, s)µ and we show

that the study of the solution space for this general potential reduces to the study of

the kernel of the differential operator Ω′ as in the potential free case. For notational

convenience, define

ρ(t, x) = ν(Nγ(t,x)).

Proposition 5.1. Fix g = ( a bc d ) ∈ G0 and let (g, ε) ∈ G. Define Θ(t) =
∫ t

0
1
χ2

2
and

Ξ(t, x) = 1
χ2(t)

x+
∫ t

0
C2
χ2

2
. Then
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((g, ε).f̃)(t, x) =
ρ(t, x)

ρ ◦ γ−1
(
dΘ−b
a−cΘ ,

Ξ
a−cΘ

)(a− cΘ)r−q/2

ε(g−1.(Θ + z))e
−scΞ2

a−cΘ f̃ ◦ γ−1

(
dΘ− b
a− cΘ

,
Ξ

a− cΘ

)
. (5.5)

For (u, v, w) ∈ H3(R)

((u, v, w).f̃)(t, x) =
ρ(t, x)

ρ ◦ γ−1 (Θ,Ξ− u− vΘ)
e−s(uv−2vΞ−v2Θ+w)

f̃ ◦ γ−1 (Θ,Ξ− u− vΘ) . (5.6)

Proof. This proposition follows directly from using the isomorphism determined by

Equation (5.4) on the actions computed in Proposition 2.1.

We will show that by differentiating these actions we recover the generators of

the algebra of symmetry operators found by Truax in [12]. This reduces the study

of the solution space of the time-dependent potentials in I ′(q, r, s)µ to the study of

the solution space of the potential free Schrödinger equation in I ′(q, r, s) studied in

[11]. We start with some useful calculations

Lemma 5.1. The functions χ1(t) and χ2(t) satisfy

(1)

χ1 = χ2

∫ t

0

1

χ2
2

,

(2)

A1 =

(∫ t

0

1

χ2
2

)2

A2 − χ2

(∫ t

0

1

χ2
2

)∫ t

0

C2

χ2
2

,

(3)

ϕ′1 =

(∫ t

0

1

χ2
2

)2

ϕ′2 + 2

∫ t

0

1

χ2
2

.

Proof. Since χ1χ
′
2−χ2χ

′
1 = 1, follows that χ2

∫ t
0

1
χ2

2
= χ2

∫ t
0

χ1χ′2−χ2χ1

χ2
2

= χ1. To prove

the second statement, one uses part one in the definition of Aj and integration by

parts. To prove the third statement, one uses part one and the definition of ϕj.
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Corollary 5.1. For r = −1/2 and s = i/2 the standard sl2-basis {h, e+, e−} acts

on I ′(q, r, s)µ by the differential operators {L3, L2, L1} respectively. An element

(u, v, w) ∈ H3(R) acts on the same space, by

(uχ2 − vχ1)∂x − i(uχ′2 + vχ′1)x+ i(uC2 + vC1 − sw)

Proof. All these calculations are similar. We only provide the details for the action

of e− since it is more involved. Let γ−1(t, x) = (Θ−1(t),Ψ(t, x)). Using (5.5), we

obtain

((( 1 0
c 1 ) , ε).f̃)(t, x) =

ρ(t, x)

ρ
(
Θ−1

(
Θ

1−cΘ

)
,Ψ
(

Ξ
1−cΘ

))(1− cΘ)r−q/2

ε(g−1.(Θ + z))e
−scΞ2

1−cΘ f̃

(
Θ−1

(
Θ

1− cΘ

)
,Ψ

(
Ξ

1− cΘ

))
.

We next take d
dc

∣∣
c=0

to obtain the action of e−. For the coefficient of ∂t we obtain

−Θ2(t)
∂Θ−1

dt

∣∣∣∣
t=Θ

= χ2(t)2

(∫ t

0

1

χ2
2

)2

= χ2
1(t) = ϕ1(t).

The first equality above follows from differentiating, the second equality from Lemma

5.1, and the third equality from the definition of ϕ1.

For the coefficient of ∂x we obtain

Θ(t)Ξ(t, x)
∂Ψ

∂x
+ Θ(t)2∂Ψ

∂t
= Θ(t)Ξ(t, x)χ2 + Θ(t)2(

1

2
ϕ′2x+A2) =

xΘ +
1

2
x(ϕ′1 − 2Θ) +A1 =

1

2
ϕ′1x+A1.

The first equality above follows from differentiating, the second from computing the

partial derivatives of the inverse function, and the third by Lemma 5.1.

Lastly, we compute the multiplication term. To this end, we start by comput-

ing the following expression

B2Θ2 − i

2
Ξ2 − rΘ = B1 +

ix2ϕ′2Θ

χ2
2

+ ix(Θ
C2

χ2

− χ′2Θ

∫ t

0

C2

χ2
2

) − iΘC2

∫ t

0

C2

χ2
2

.
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Since the multiplication term is given by Θ2B2 − i
2
Ξ2 − rΘ + 1

ρ(t,x)
∂ρ
∂x

∂Ψ
∂x

Ξ(t, x)Θ =

Θ2B2 + iΘ(−χ′2x+ C2)(1/χ2x+
∫
C2/χ

2
2) = B1, the operator corresponding to e− is

L1.

To conclude this section, we will compute the action of Ω. To begin we deter-

mine the action of the Casimir element for the sl2-triple on I ′(q, r, s)µ with the special

parameters s = i/2 and r = −1/2. From the definition of Ω = 1
2
h2 + h + 2e−e+,

notice that the second order terms can come only from 1
2
h2 + 2e−e+. The coefficient

of ∂2
t is 1

2
ϕ2

3 − 2ϕ1ϕ2 = 0. The coefficient of ∂t∂x is

ϕ3(1/2ϕ′3x+A3)− 2(ϕ1(1/2ϕ′2x+A2) + ϕ2(1/2ϕ′1x+A1)) = 0.

The coefficient of ∂2
x is

1

2

(
1

2
ϕ′3x+A3

)2

− 2

(
1

2
ϕ′1x+A1

)(
1

2
ϕ′2x+A2

)
=

1

2
(x− χ1C2 + χ2C1)2.

The coefficient of ∂t is equal to

B3ϕ3 − 2(B2ϕ1 + B1ϕ2 + ϕ1ϕ
′
2) + ϕ3 = i(x− χ1C2 + χ2C1)2.

The coefficient of ∂x can be shown to equal zero. Finally, the multiplication term is

1

2
B2

3 − i
1

2

(
1

2
ϕ′3x+A3

)(
1

2
ϕ′′3x+A′3

)
+ B3 − 2 (B1B2

−i
(

1

2
ϕ′′2x+A′2

)
(1/2ϕ′1x+A1) + ϕ1

∂B2

∂t

)
.

Using the fact that χ′′j = 2g2(t)χj for j ∈ {1, 2}, the coefficient of x4 is equal to

1/8ϕ′′1ϕ
′′
2 − 1/32(ϕ′′3)2 = 1/8(−(χ1χ

′′
2)2 + 2χ2χ2χ

′′
1χ
′′
2 − (χ2χ

′′
1)2

− 4χ′1χ
′′
2(χ1χ

′
2 − χ2χ

′
1)− 4χ′2χ

′′
1(χ2χ

′
1 − χ1χ

′
2))

= −g2(t)(χ′1χ2 − χ1χ
′
2)2 = −g2(t).

Similarly, it can be shown that the coefficient of x3 is

−1/8A′3ϕ′′3 + 1/2(A′1ϕ′′2 +A′2ϕ′′1) = −g1(t) + 2(χ1C2 − χ2C1)g2(t).
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The coefficient of x2 is

−g0(t) + 2(χ1C2 − χ2C1)g1(t).

The coefficient of x is

−g0(t)(χ1C2 − χ2C1) + 2(χ1C2 − χ2C1)g1(t)

and finally, the multiplication term is

(χ1C2 − χ2C1)2g0(t)− 3/8.

Putting all these together we obtain the following corollary.

Corollary 5.2. For the parameters r = −1/2 and s = i/2, the Casimir element acts

on I(q, r, s)µ by

Ω =
1

2

[
(x− χ1C2 + χ2C1)2(2− 2(g2(t)x2 + g1(t)x+ g0(t)))− 3/4

]
.

In particular,

ker Ω′ = ker
(
2− 2(g2(t)x2 + g1(t)x+ g0(t))

)
in I ′(q, r, s)µ.

If λ 6= 0 then g1(t) ≡ 0 and Ω′ acts by Ω′ = x2(2− 2(g2(t)x2 + g0(t))). Thus

ker(Ω′ − 2λ) = ker
(
2− 2(g2(t)x2 + g0(t) + λ/x2

)
in I ′(q, r, s)µ.
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