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Topological inverse limits play an important in the theory of dynamical systems

and in continuum theory. In this dissertation, we investigate classical inverse limits

of Julia sets and set-valued inverse limits of arbitrary compacta. Using the theory

of Hubbard trees, the trunk of the Julia set of a postcriticallly finite polynomial is

introduced. Using this trunk, a characterization of indecomposability is provided

for inverse limits of post-critically finite polynomials restricted to their Julia sets.

Inverse limits with upper semicontinuous set-valued bonding maps are also

examined. We provide necessary and sufficient conditions for inverse limits of upper

semicontinuous functions to have the full projection property, answering a question

posed by Ingram [30]. The full projection property is an important tool in the study

of indecomposable inverse limits. A characterization of the full projection property

for arbitrary compacta is given based solely on the dynamics of the bonding functions

and a second characterization is given for the class of continuum-valued maps of trees

that are residual-preserving.
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CHAPTER ONE

Introduction

1.1 Motivation

Inverse limits play important roles in continuum theory and in the theory of

dynamical systems. Regarding dynamical systems, inverse limits allow dynamical

behavior to be investigated topologically. Dynamical properties of a function can

often be obtained by investigating the topological properties of the inverse limit that

the function generates.

In continuum theory, inverse limits often allow for very simple descriptions of

topological spaces that are otherwise very complex. All continua are homeomorphic

to inverse limits of compact, connected polyhedra (Theorem 2.13 in [45]), and even

many rather exotic continua, such as the pseudo-arc, can be constructed using an

inverse limit with a single bonding function [25].

Moreover, inverse limits provide important tools for constructing novel spaces

with interesting properties. One such class of interesting spaces is the class of in-

decomposable continua (see Definition 1.2.1). In 1910, Brouwer discovered the first

indecomposable continua when he constructed continua that are the common bound-

ary of three regions in the plane [14]. By 1920, indecomposable continua were being

studied in their own right by Mazurkiewicz, Janiszewski and Kuratowski [33, 41].

Since then, indecomposable continua have been studied extensively, both in applica-

tions and in their own right, and inverse limits have played a prominent role in their

construction. Using inverse limits, infinite families of indecomposable continua can

be constructed rather easily (see, for example, Definitions 1.3.3 and 1.4.3) and there

are many simple conditions that imply inverse limits are indecomposable. For ex-

1



ample, every map of the unit interval that is topologically exact generates an inverse

limit that is indecomposable (see Proposition 2.2.5).

The remainder of this dissertation is organized as follows. In the remainder

of Chapter 1, we provide background material. In Chapter 2, inverse limits of

postcritically finite polynomials are considered. In Chapter 3, we characterize the full

projection property for inverse limits of upper semincontinuous set-valued functions.

In Chapter 5, we investigate particular inverse limits of S2 known as Hagopian

Spheres. Finally, Chapter 5 contains concluding remarks.

1.2 Continuum Theory and General Topology

In this section, fundamental definitions and results from continuum theory are

provided.

A continuum is a compact, connected metrizable space. A Hausdorff contin-

uum is a compact, connected Hausdorff space. A compactum is a compact Hausdorff

space.

The class of continua is very deep and rich. Indecomposable continua provide

an example of the types of complex behavior that continua can exhibit.

Definition 1.2.1. A continuum, X, is said to be decomposable, if there exists two

proper subcontinua of X, A, B ⊂ X, such that X = A∪B. Otherwise, X is said to

be indecomposable.

The Brouwer-Janiszewski-Knaster (BJK) continuum is an example of an inde-

composable continuum. The BJK continuum can be constructed by winding a ray

over a Cantor set, as in Figure 1.1, and then taking the closure of the constructed

space. For more details see pg. 204 of [35]. Like the BJK continuum, all indecom-

posable continua “wind back on themselves” in the sense that no indecomposable

continuum is locally connected at any point (an easy corollary of Theorem V.48.V.2

of [35]).
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Figure 1.1. The Brouwer-Janiszewski-Knaster (BJK) continuum

The study of indecomposable continua naturally leads to the study of the

subcontinua of spaces and to the study of composants.

Definition 1.2.2. Let X be a metric space. The composant of a point x ∈ X is the set

of all points p in X for which there is a proper subcontinuum of X that contains both

p and x. Equivalently, the composant of x is the union of all proper subcontinua of

X that contain x.

As an example, the interval [0, 1] has three composants: the composant of 0 is

[0, 1), the composant of 1 is (0, 1], and the composant of every other point is [0, 1].

Composants play an important role in the study of indecomposable continua, as

illustrated by the following theorem.

Theorem 1.2.3. (Theorems 11.15 and 11.17 of [45]) Let X be a continuum. Then X

is indecomposable iff X has at least two disjoint composants, in which case X has

uncountably many composants, all of which are pairwise disjoint.

3



Having uncountably many composants is, in fact a characterization of indecom-

posable continua: all decomposable continua have either one or three composants

(Theorems 11.13 of [45]). However, some indecomposable Hausdorff continua have

only one or two composants [10].

The theory of dimension also plays an important role in continuum theory.

Before higher dimensions can be defined, zero dimensional space must be defined.

Definition 1.2.4. [26] A topological space X is said to be zero-dimensional if for

each point x ∈ X there is a neighborhood basis at x consisting of open sets whose

boundaries are empty.

To define higher dimensions, first point-wise dimension must be defined. The

following definition is inductive in nature.

Definition 1.2.5. [26] A topological space X is said to be have dimension ≤ N at

a point x, if there is a neighborhood basis of x of open sets whose boundaries have

dimension ≤ N − 1. The space X is said to have dimension N at x if the dimension

of X at x is ≤ N , but not ≤ N − 1.

The dimension of a topological space can then be defined inductively.

Definition 1.2.6. [26] A topological space X is said to have dimension ≤ N if X has

dimension ≤ N at each point x ∈ X. The space X is said to have dimension N if X

has dimension ≤ N but not ≤ N −1. The space X is said to be infinite dimensional

if X does not have dimension ≤ N for any N ∈ N.

We close this section with the definition of topological conjugacy. Topological

conjugacy can be thought of as the defining equivalency on topological dynami-

cal systems, playing the same role that homeomorphisms and isomorphisms do for

topological and algebraic spaces respectively.
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Definition 1.2.7. Let X and Y be topological spaces and let f : X → X, g : Y → Y

be continuous. Then f and g are said to be topologically conjugate, if there is a

homeomorphism h : Y → X such that f ◦ h = h ◦ g.

1.3 Inverse Limits

Inverse limits provide an important bridge between topological dynamics and

continuum theory. Under relatively mild hypotheses, they form compact, connected

metric spaces, allowing the tools of continuum theory to be used to describe dynam-

ical behavior. Moreover, even simple inverse limits can exhibit exotic topological

behavior. This enables novel continua to be constructed relatively easily and it

often allows known continua to be described in a simpler fashion.

Definition 1.3.1. For each i ∈ N, let Xi be a compact Hausdorff space and let

fi : Xi+1 → Xi be a continuous function. Then the inverse limit of the sequence

{Xi, fi}’s, lim←−{Xi, fi}, is the space {(x1, x2, . . .) ∈ Πi∈NXi : fj(xj+1) = xj for each

j ∈ N}, viewed as subspace of the product space, Πi∈NXi.

We will frequently refer to the functions in Definition 1.3.1 as the bonding

functions of the inverse limit, and the compacta Xi as the factor spaces of the

inverse limit. When the factor spaces are clear from context, we simply write lim←−fi

for lim←−{Xi, fi}. As mentioned above, only mild hypotheses are needed to ensure

that an inverse limit is a continuum, as the next theorem demonstrates.

Theorem 1.3.2. (Theorems 1.2, 1.3, 1.5 of [29]) For each i ∈ N, let Xi be a compact

Hausdorff space and let fi : Xi+1 → Xi be a continuous function. Then lim←−fi is a

compact Hausdorff space. Moreover, if each Xi is connected, then lim←−fi is connected,

and if each Xi is metrizable, then lim←−fi is metrizable. In particular, the inverse limit

of continua under continuous maps is a continuum.

The Knaster continua are examples of fairly exotic spaces that can be con-

structed from simple inverse limits.
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Definition 1.3.3. A Knaster Continuum is a continuum homeomorphic to lim←−{[0, 1], f}

for some open map f : [0, 1]→ [0, 1] that is not monotone.

The previously mentioned BJK continuum is an example of a Knaster contin-

uum, because it is homeomorphic to the inverse limit of the full tent map,

f(x) =


2x for 0 ≤ x ≤ 1

2

2− 2x for 1
2

< x ≤ 1

(See [45] for more details). All Knaster continua are indecomposable [48].

In 2004, Mahavier [38] investigated a generalized form of inverse limits on

the unit interval, by replacing the bonding functions that exist in traditional in-

verse limits, with multi-valued functions satisfying certain constraints. Two years

later, Ingram and Mahavier generalized this new type of inverse limit to arbitrary

compacta, using the notion of upper-semicontinuous set-valued functions.

Definition 1.3.4. [32] Let X and Y be compacta and let f : X → 2Y , where 2Y is

the set of closed subsets of Y . Then f is said to be upper semi-continuous, if for

each x ∈ X and each open set U ⊂ Y such that f(x) ⊂ U , there is an open set

V ⊂ X containing x, such that f(V ) ⊂ U .

Figure 1.2 provides an example of a set-valued function that is upper sem-

incontinuous and one that is not. Upper semicontinuous functions can be easily

characterized in terms of their graphs.

Definition 1.3.5. Let X and Y be compacta and let f : X → 2Y . The graph of f,

G(f), is the set {(x, y) ∈ X × Y : y ∈ f(x)}.

Theorem 1.3.6. (Theorem 1 of [32]) Let X and Y be compacta and let f : X → 2Y .

Then f is upper semi-continuous iff G(f) is a closed subset of X × Y .

Inverse limits with upper semicontinuous functions are defined similarly to

classical inverse limits.
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Figure 1.2: Set-Valued Functions. An example of a set-valued function that is upper semi-
continuous (a) and an example of a set-valued function that is not upper semi-continuous
(b).

Definition 1.3.7. [32] For each i ∈ N, let Xi be a compact Hausdorff space, and let

fi : Xi+1 → 2Xi be an upper semi-continuous set-valued function. Then the inverse

limit, lim←−{Xi, fi}, is the space {(x1, x2, . . .) ∈ Πi∈NXi : xj ∈ f(xj+1) for each j ∈ N},

viewed as subspace of the product space, Πi∈NXi.

While we have not defined them in this context, inverse limits can be defined

over factor spaces which are indexed by directed sets other than the natural numbers.

We will not work with inverse limits in this generality, but occasionally we will

investigate inverse limits whose factor spaces are indexed over the integers, rather

than over the natural numbers, using the following notation.

Definition 1.3.8. For each i ∈ Z, let Xi be a compact Hausdorff space, and let

fi : Xi+1 → 2Xi be an upper semi-continuous set-valued function. Then the inverse

limit, lim←−{Xi, fi, Z} is the space {(. . . , x−1, x0, x1, x2, . . .) ∈ Πi∈ZXi : xj ∈ f(xj+1)

for each j ∈ Z}, viewed as subspace of the product space, Πi∈ZXi.

When working with inverse limits over N and Z simultaneously, we will use

the notation lim←−{Xi, fi, N} for the inverse limit with directed set N.
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Like classical inverse limits, inverse limits with upper semicontinuous set-

valued functions form compacta under mild hypotheses.

Theorem 1.3.9. (Theorem 3 of [32]) For each i ∈ N, let Xi be a compact Hausdorff

space, and let fi : Xi+1 → 2Xi be an upper semi-continuous set-valued function.

Then lim←−fi is a compactum. Moreover, if each Xi is metrizable then lim←−fi is metriz-

able.

Similarly, lim←−{Xi, fi, Z} is a compactum if each Xi is a compactum and each

fi is upper semi-continuous, and lim←−{Xi, fi, Z} is metrizable if each Xi is metrizable.

Unlike inverse limits with ordinary functions, inverse limits with set-valued

functions needn’t be connected, even if every factor space is connected and the

graph of every bonding function is connected (see Example 1 of [32]). Establishing

necessary and sufficient conditions for connectedness of a set-valued inverse limit

is an open problem [31]. The following provides a useful sufficient condition for

connectedness of an inverse limit.

Theorem 1.3.10. (Theorem 5 of [32]) Suppose that for each i, Xi is a Hausdorff

continuum, and fi : Xi+1 → 2Xi is upper semi-continuous, such that for each x ∈

Xi+1, f(x) is connected. Then lim←−fi connected.

Definition 1.3.11. An upper semi-continuous function f : X → 2Y is said to be

continuum-valued, if, for each x ∈ X, f(x) is a continuum.

In view of Theorem 1.3.10, continuum-valued upper semicontinuous functions

on continua give rise to inverse limits that are continua.

1.4 Homogeneous Continua

In this section we consider a special class of continua: the homogeneous con-

tinua. In [51], Rogers described the classification of homogeneous continua as the
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most active area of research in continuum theory in the 1980s, and the topic contin-

ues be a very active area of research to this day. We borrow heavily from [37, 50, 51]

in this section.

Definition 1.4.1. A continuum X is said to be homogeneous if, for every x, y ∈ X,

there exists a homeomorphism h : X → X, such that h(x) = y.

Informally, homogeneous continua can be thought of as continua that exhibit

a high degree of uniformity. The simplest example of a homogeneous continuum is a

simple closed curve. Another is the Menger curve, which we define below. A graph

of the Menger curve is given in Figure 1.3.

Definition 1.4.2. [20] For a cube C ⊂ [0, 1] × [0, 1] × [0, 1] let D(C) denote the

decomposition of C into 27 congruent subcubes. Let C0 = {[0, 1] × [0, 1] × [0, 1]}.

For n ≥ 0, define Cn+1 inductively by Cn+1 = {C ′ ∈ D(C) : C ∈ Cn and C ′ meets

the 1-skeleton of C∗
n}, where C∗

n = ∪Cn. The set M =
⋂

n∈N C∗
n is called the Menger

curve.

R. D. Anderson [2] showed that the simple closed curve and the Menger curve

are the only one-dimensional non-degenerate homogeneous continua that are locally

connected. The simple closed curve can be thought of as a special member of the

class of solenoids.

Definition 1.4.3. [24] Let D denote the unit disk in the complex plane, that is

D := {z ∈ C : |z| ≤ 1}. Let d ∈ N. Then for the function fd : ∂D → ∂D given

by fd(z) = zd, the inverse limit lim←−fd is called the d-adic solenoid. More generally,

a topological space M is said to be a solenoid iff it is homeomorphic to an inverse

limit of the form lim←−fdi
for some sequence (di)i∈N of positive integers.

Since the factor space ∂D is a topological group (under complex multiplication)

and for each d ∈ N, fd is a group endomorphism, solenoids are examples of group-

9



Figure 1.3. The Menger Curve

theoretic inverse limits as well as topological inverse limits, and in fact, solenoids

are topological groups. It follows that all solenoids are homogeneous.

Theorem 1.4.4. (Problems 2.8, 2.16 of [45]) Every solenoid is homogeneous. More-

over, for d > 1, the d-adic solenoid is indecomposable.

Solenoids, are in fact, the only homogeneous continua whose only proper sub-

continua are arcs [24]. However, while solenoids are one dimensional, they are not

embeddable in the plane. In fact, there are only four known homogeneous continua

that are planar [37]: the point and the circle, and two more exotic continua, the

pseudo-arc and the circle of pseudo-arcs which we will describe briefly.

The pseudo-arc is an example of a continuum that is hereditarily indecom-

posable, that is, it is indecomposable and all of its proper subcontinua are also

indecomposable. We will not provide a constructive definition of the pseudo-arc,

but, non-constructively, the pseudo-arc may be defined as the only non-degenerate

hereditarily indecomposable continuum that is homeomorphic to an inverse limit of

arcs [11]. Continua that are homeomorphic to inverse limits of arcs are often called

10



chainable. The pseudo-arc can also be characterized as the only non-degenerate

homogeneous continuum that is chainable [12].

The circle of pseudo-arcs is a decomposable continuum that can be mapped

continuously onto the circle by a map f such that for every point x on the circle

f−1(x) is a pseudo-arc [13]. While it is unknown if any other planar homogeneous

continua exist beside the four we have listed, it is known that any other planar ho-

mogeneous continuum that doesn’t not separate the plane must be indecomposable

[34]. Moreover, any other planar homogeneous continuum that is indecomposable,

whether is separates the plane or not, must also be hereditarily indecomposable [23].

Many other non-planar, one dimensional homogeneous continua have been

constructed (e.g. [44]). In higher dimensions, all compact, connected manifolds

are examples of decomposable homogeneous continua, as are countable products

of non-degenerate locally connected homogeneous continua [50]. Rogers [49] has

shown that no homogeneous continuum of dimension greater than one is hereditarily

indecomposable. However, it is unknown if there are homogeneous continua of any

dimension greater than one that are indecomposable [9].

In Chapter 4, we consider a class of spaces that have been proposed as possible

candidates for higher dimensional indecomposable homogeneous continua.

1.5 Complex Dynamics

Questions about convergence of the Newton-Ralphson method for approxi-

mating zeros of differentiable functions, led to the development the field of complex

dynamics, which attempts to describe the behavior of iterative systems of functions

of complex variables.

In this section we provide some preliminary definitions and results from com-

plex dynamics. We will restrict ourselves to dynamics of analytic functions of the

Riemann sphere, which are precisely the rational functions [8]. Because the dy-
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namics of rational functions of degree 1 are trivial and degenerate (see Problem

4-a of [43]), we will make a standing assumption that all rational functions under

consideration are of degree ≥ 2.

By Ĉ, we will denote the Riemann sphere, Ĉ = C∪{∞}, which is the one-point

compatification of the complex plane, C.

Given a function f : Ĉ→ Ĉ, the Riemann sphere can be decomposed into two

subsets: the region on which the dynamical behavior of f is simple and the region

on which the dynamical behavior of f is complicated. Before we make the previous

statement more precise, we provide a few definitions.

Definition 1.5.1. [8] Let X, Y be metric spaces and let for each n ∈ N, let fn : X →

Y . Then {fn}n∈N is said to converge locally uniformly to a function f , if, for each

x ∈ X, there is an open set U containing x such that fn converges uniformly to f

on U .

Definition 1.5.2. [8] Let X,Y be metric spaces. A collection of maps F = {fα :

X → Y |α ∈ A} is said to normal, if each sequence of maps fn ∈ F contains a

subsequence that converges locally uniformly.

Normal families of functions of the Riemann sphere correspond precisely with

families of equicontinuous functions of the Riemann sphere, per the Arzelà-Ascoli

Theorem.

Theorem 1.5.3. (Arzelà-Ascoli) [8] Let X ⊂ Ĉ be a connected open set. Then a

collection of maps F = {fα : X → Ĉ|α ∈ A} is normal iff it is equicontinuous.

We can now divide the Riemann sphere into the two subsets that we previously

mentioned.

Definition 1.5.4. [8] Let f : Ĉ→ Ĉ be analytic (i.e. a rational function). The Fatou

set of f , F (f) is the domain of normality of f , that is, the maximal open set on
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which the family {fn : n ∈ N} is normal. The Julia set of f , J(f) is the complement

of F (f).

We will often simply write J for the Julia set of f when the function f is

clear from context. Both J and F (f) are fully invariant, that is f−1(J) = J and

f−1(F (f)) = F (f).

By definition, the Fatou set is a portion of the Riemann sphere on which the

dynamics of f are simple. It is, in fact, the only portion of the Riemann sphere on

which the dynamics of f are simple. On the Julia set, the dynamics of f are very

complicated. We illustrate this with several theorems, but first we provide a few

definitions.

Definition 1.5.5. Let f : Ĉ → Ĉ be a rational function. A periodic point p of f is

said to be attracting if fp(U) ⊂ U for any sufficiently small neighborhood of p. If

there is a neighborhood U of p such that for every z ∈ U\{p}, there is an n ∈ N,

such that fn(p) 6∈ U , then p is said to be repelling.

Definition 1.5.6. [19] Let X be a topological space. A function f : X → X is said

to be topologically transitive if for every pair of open sets U, V ⊂ X, there is a k ∈ N

such that fk(U) ∩ V 6= ∅.

Definition 1.5.7. [19] Let X be a metric space. A function f : X → X is said to

have sensitive dependence on initial conditions if there exists a δ > 0 such that, for

any x ∈ X and any neighborhood N of x, there is a y ∈ N and an n ≥ 0 such that

d(fn(x), fn(y)) > δ.

Theorem 1.5.8. (Corollary 4.16 of [43]) There is a residual set G ⊂ J(f) such that

for every z ∈ G, {fn(z) : n ∈ N} is dense in J .

Theorem 1.5.9. (Theorem 14.2 of [43]) Let f : Ĉ→ Ĉ be a rational function. Then

for any open set U ⊂ Ĉ such that U ∩ J(f) 6= ∅, there exists an n ∈ N, such that

fn(U ∩ J(f)) = J(f).
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Theorem 1.5.10. (Theorem 14.1 of [43]) Let f : Ĉ→ Ĉ be a rational function. Then

J(f) is the closure of the periodic repelling points of f .

In [19], Devaney gave one of the most widely used definitions for dynamical

chaos.

Definition 1.5.11. (Definition 8.5 of Part I of [19]) Let X be a topological space and

let f : X → X be continuous. Then f is said to be chaotic on X if

(1) f has sensitive dependence on initial conditions,

(2) f is topologically transitive, and

(3) periodic points are dense in X.

From Theorems 1.5.9 and 1.5.10, it is quickly deduced that f |J(f) is chaotic

for any rational function f : Ĉ→ Ĉ with a non-degenerate Julia set.

We have made a distinction between attracting and repelling periodic points,

but we will need to draw finer distinction between periodic points. To this end, for

each periodic point p of f , we associate a complex number, λ, called the multiplier

of p.

Definition 1.5.12. [43] For a rational function, f : Ĉ → Ĉ, and a fixed point p of

f(w), let z be a uniformizing parameter so that z = 0 corresponds to the point

p. Then, in local coordinates, f(z) has a power series about z = 0 of the form

f(z) = λz + O(z2). The complex number λ is called the multiplier of the fixed

point. If p is a periodic point of period n, then the multiplier of p is defined to be

the multiplier of p as a fixed point of the function fn(z).

The multiplier of a periodic point encapsulates the notions of attracting and

repelling, as the following theorem demonstrates.
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Theorem 1.5.13. (Theorem 8.1 and Lemma 8.10 of [43]) A periodic point, p, is

attracting iff |λ| < 1. If |λ| > 1, then p is a repelling periodic point.

A periodic point for which |λ| = 1 is called a neutral periodic point. As a

special case of attracting periodic points, if λ = 0, then p is said to be superattracting.

One important property that distinguishes complex polynomials of degree two or

greater from other rational functions is that ∞ is a superattracting fixed point of

every polynomial [43].

At times, we will make use of Filled Julia Sets.

Definition 1.5.14. Let K ⊂ Ĉ be compact. Then the filling of K, is the union of K

and the bounded components of Ĉ\K. The Filled Julia set, K(f), is the filling of

J(f).

If f is a polynomial then ∞ ∈ F (f), and J(f) is the boundary of the un-

bounded Fatou component (Theorem IV.1.1 of [16]). For polynomials, the un-

bounded Fatou component is precisely the basin of attraction of ∞.

Definition 1.5.15. Let X be a metric space. Let f : X → X be continuous and let

c ∈ X be periodic under f . Then the basin of attraction of c is Ac := {x ∈ X :

fn(x)→ c as n→∞}.

We now turn to some important topological properties of the Julia set. In

regards to dimension, the Julia set of a rational function is always a one-dimensional

compactum, unless it is the entire Riemann sphere. The latter case cannot occur if

f is a polynomial.

Julia sets exhibit a high degree of self-similarity: locally almost every region of

the Julia set “looks like” almost every other region of the Julia set. More precisely,

we have the following theorem.
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Theorem 1.5.16. (Problem 4-d in [43]) Let f : Ĉ → Ĉ be a rational function.

Then there is a finite (possibly empty) set X := {z0 ∈ J : ∀z ∈ lim←−f such that

f(z1) = z0,∃i ∈ N such that zi is a critical point of f} such that for any z0 ∈ J(f)\X,

there is a dense set D ⊂ J(f) such that for any z ∈ D there is a homeomorphism h

from a neighborhood N of z0 to a neighborhood N ′ of z such that h(z0) = z.

We now turn to the components of the Fatou set, which also provide valuable

information about the dynamics of the function f . We note two important results.

Theorem 1.5.17. (Problem 4-i of [43]) Let f : Ĉ→ Ĉ be a rational function and U

be a component of F (f). Then f(U) is also a component of F (f).

Theorem 1.5.18. (Sullivan’s Nonwandering Domain Theorem) (Theorem 1 of [53])

Let f : Ĉ→ Ĉ be a rational function. Then every component of F (f) is eventually

periodic. That is, for every component U of F (f), there are integers n ≥ 0 and

m > 0, such that fn(U) = fn+m(U) = V , for some component V of F (f).

For arbitrary rational functions, even for polynomials, many topological prop-

erties of Julia sets are not well understood. The following are important open ques-

tions.

Question 1.5.19. ( [40] and [17]) Does there exists a rational function whose Julia

set is an indecomposable continuum? Does there exists a polynomial function whose

Julia set is an indecomposable continuum? Does there exists a quadratic polynomial

function whose Julia set is an indecomposable continuum?

It is known that Julia sets of rational functions can contain indecomposable

continua. Milnor and Lei [42] constructed a rational function whose Julia set is a

Sierpienski curve. Sierpienski curves, which are homeomorphic to a “face” of the

Menger curve defined in Section 3, are universal one dimensional planar continua

and hence contain homeomorphic copies of all one dimensional planar continua.
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Because many properties of Julia sets of arbitrary polynomials and rational

functions are so poorly understood, our main focus is on the set of polynomials that

are post-critically finite.

Definition 1.5.20. A polynomial function f : Ĉ → Ĉ is said to be post-critically

finite, if each critical point c of f satisfies {fn(c) : n ∈ N} is finite.

Note that all critical points of post-critically finite polynomials are either pe-

riodic (that is, fn(c) = c for some n ≥ 0) or pre-periodic (that is, c is not periodic

but, fn(c) = fn+m(c) for some n,m ≥ 1). In addition, all periodic points of post-

critically finite polynomials are either repelling or super-attracting (Corollary 14.5

of [43]).

In general, Julia sets of polynomials needn’t be connected, but if f is a post-

critically finite polynomial, then J(f) is both connected and locally connected (The-

orems 9.5, 19.6 and 19.7 in [43]). Moreover, the boundary of every Fatou component

is locally connected, which is a special case of Theorem 19.7 in [43].

Theorem 1.5.21. Let f be a post-critically finite polynomial. Then the boundary of

every component of F (f) is locally connected.

In [47], Roesch and Yin proved a stronger result: for arbitrary polynomials,

if F is a Fatou component that is not eventually mapped to a Siegel disk, then ∂F

is a Jordan curve. Siegel disks, whose definition we omit (see [43], only occur at

certain types of neutral fixed points and hence are not present in the Fatou sets of

post-critically finite polynomials. For more information about Julia sets we refer the

reader to [43] and [16].

1.6 Hubbard Trees

In [21], Douady and Hubbard constructed a combinatorial object, the Hubbard

Tree, to describe the dynamics of a postcritically finite polynomial on its Julia set.
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Topologically, Hubbard trees are much simpler than Julia sets. However, up to

conjugacy, it is possible to recover a polynomial f from its Hubbard tree, H(f),

together with the dynamics of f on H(f), and few other simple pieces of information

related to H(f) (see [21] and [46] for more details). In the remainder of this section

we formally define Hubbard trees and then list some important results about them.

We will first consider the case where f is a postcritically finite polynomial with

no periodic critical points. In this case, J(f) is a locally connected continuum that

does not contain a simple closed curve, that is a dendrite (see Theorem V.4.2 of

[16]). It follows that J(f) is uniquely arc-connected. Moreover, since dendrites are

nowhere dense in the plane, it follows that F (f) = A∞, so every critical point of f

is an element of J(f).

Definition 1.6.1. Let f be a postcritically finite polynomial such that no critical

point of f is periodic. The Hubbard Tree of f , H(f), is the minimal tree in J(f)

that contains all the critical points of f and their forward orbits. More formally, if

C = {z ∈ C : z = fn(c) for some n ≥ 0 and some c ∈ C such that f ′(c) = 0}, and

for each a, b ∈ J(f), [a, b] denotes the unique arc in J(f) that connects them, then

H(f) =
⋃

a,b∈C [a, b].

If f has at least one periodic critical point, c, of period p, then c is a superat-

tracting critical point of fp, and hence is an element of F (fp) = F (f).

Theorem 1.6.2. [46] Let f be a postcritically finite polynomial and let F be a

component of F (f). Then there is a homeomorphism φF : F → D that conjugates

f |F to zd for some d ∈ N.

Definition 1.6.3. Let f be a postcritically finite polynomial. If F is a bounded

component of F (f) then an internal ray of F is a ray of the form Rθ = φ−1
F ({reiθ :

0 ≤ r < 1}). If F is the unbounded component of f , then a ray of the form

Rθ = φ−1
F ({reiθ : 0 ≤ r < 1}) is called an external ray.
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Figure 1.4. A regulated arc

Using the above definitions, we may define regulated arcs, which will allow us

to define Hubbard trees. See Figure 1.4 for an example of a regulated arc.

Definition 1.6.4. Let f be a postcritically finite polynomial and let x, y ∈ K(f).

An arc A ⊂ K(f) from x to y is said to be regulated if, for every bounded Fatou

component F that meets A, A ∩ F is a subset of the closure of the union of two

internal rays of F .

Note that if f is pre-periodic, then K(f) = J(f) and all arcs in K(f) are

regulated.

Definition 1.6.5. Let f be a postcritically finite polynomial and let C denote the set

of critical points of f together with their forward orbits. Then the Hubbard tree of

f , H(f), is the union of the regulated arcs between the elements of C.

Note that if f has no periodic critical points then K(f) = J(f) and the above

definition reduces to our previous definition of H(f).

We close this section with a few properties of Hubbard trees and regulated

arcs.

Theorem 1.6.6. [46] Let f : Ĉ→ Ĉ be a postcritically finite polynomial. Then,

(1) H(f) is forward invariant, that is, f(H(f)) ⊂ H(f),
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(2) H(f) ∩ ∂F is finite for every bounded Fatou component, F and

(3) if A is a regulated arc in K(f) such that ∂A ⊂ H(f), then A ⊂ H(f).

We discuss more properties of Hubbard trees in Section 2.2.
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CHAPTER TWO

Inverse Limits of Julia Sets

2.1 Introduction

Inverse limits have proven to be a valuable tool for the investigation of dy-

namical systems. For example, in dynamical systems of the unit interval, Barge

and Martin [5, 7] established numerous relationships between the topology and dy-

namics of inverse limits and the dynamics of the bonding functions of those inverse

limits. Inverse limits have also been used to establish relationships among dynamical

properties, as in [6] by the same two authors.

However, to date, inverse limits of Julia sets have not received much attention

in the literature. In [15], Cabrera investigated inverse limits of quadratic polyno-

mials of the form fc(z) = z2 + c with 0 periodic with special attention given to

“regular leaf spaces”, which can be obtained by removing finitely many points from

the inverse limit, lim←−{f, Ĉ}. Cabrera showed that distinct values of c give distinct

regular leaf spaces. To date, this is the only paper we are aware that relates directly

to the study of inverse limits of Julia sets.

In this chapter, we consider the larger class of postcritically finite polynomi-

als, but we restrict our attention to the inverse limit along the Julia set, that is

lim←−{f |J , J}. In the case that J is a dendrite, this relates somewhat to a paper of

Baldwin [3], who gave, among other things, results on inverse limits of dendrites

under functions with a single critical point using kneading sequence theory.

The main result of this chapter is the following (see Theorems 2.4.5 and 2.5.11).

Theorem 2.1.1. Let f be a postcritically finite polynomial. Then the following are

equivalent:

(1) J is homeomorphic to either S1 or [0, 1].
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(2) f is conjugate to either zd or ±T for some Chebyshev polynomial, T.

(3) lim←− f |J is indecomposable.

(4) lim←− f |J is either a solenoid or Knaster continuum.

In addition we prove a number of other results concerning inverse limits of

postcritically finite polynomials. Most involve the “trunk” of J , a forward-invariant

subset of J that is closely related to the Hubbard tree of f . Perhaps the most

interesting is the following (Theorem 2.6.3):

Theorem 2.1.2. Let f : Ĉ→ Ĉ be a postcritically finite polynomial with Julia set J

with trunk T such that J\T 6= ∅. Let X = lim←−{f |J , J} and let T̃ =
⋂

i∈N π−1
i (T ) =

lim←−{f |T , T}. Then

(1) X\T̃ is connected,

(2) X\T̃ has c-many composants,

(3) the arc components of X\T̃ are precisely its composants,

(4) c-many arc components of X\T̃ are dense in X\T̃ and

(5) infinitely-many arc components of X\T̃ are not dense in X\T̃ .

The remainder of this chapter is organized as follows. We give general def-

initions in the remainder of this section. In Section 2 general results regarding

indecomposability of inverse limits are presented. Section 3 summarizes known re-

sults concerning Hubbard trees that we will need. Sections 4 and 5 address inde-

composability in inverse limits of postcritically finite polynomials without and with

periodic critical points respectively. Finally in Section 6 we consider the inverse limit

restricted to the trunk and also its complement.
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2.2 General Indecomposability Results

Before considering inverse limits of postcritically finite polynomials, we present

several results on indecomposability of inverse limits, most of which we will make

use of later.

Definition 2.2.1. A continuum X will be said to decompose finely if for every δ > 0,

there is a decomposition X = A ∪ B such that neither A nor B contains a ball of

radius δ.

Definition 2.2.2. If X is a topological space, then a map f : X → X is said to

be topologically exact if for every open set U ⊂ X there is an n ∈ N such that

fn(U) = X.

Remark 2.2.3. In the previous definition, if X is compact metric, then n depends

only on the size of U , that is, for every δ > 0 there exists an n ∈ N such that for

any x ∈ X and any U ⊃ Bδ(x), fn(U) = X.

Proposition 2.2.4. Suppose X is a continuum that does not decompose finely and

suppose that f : X → X is topologically exact. Then lim←−{X, f} is indecomposable.

Proof. Let A, B be subcontinua of lim←−{X, f} such that A ∪ B = lim←−{X, f}. Then

as X does not decompose finely, there is a δ > 0 such that for each n, one of πn(A),

πn(B) contains a ball of radius δ. So we may assume that πn(A) contains a δ-ball

for infinitely many n ∈ N . Then by topological exactness, πn(A) = X for infinitely

many n ∈ N and hence for every n ∈ N . It follows that A = lim←−{X, f}. Thus

lim←−{X, f} is indecomposable.

Proposition 2.2.5. Let X be a continuum containing an arc A, such that IntX(A) 6=

∅. Then X does not decompose finely and hence lim←−{X, f} is indecomposable for

any topologically exact map f : X → X.
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Proof. Let C ⊂ IntX(A) be an arc and let γ : [0, 1]→ C be a homeomorphism. Let

δ > 0 be small enough that γ(0, 1
3
), γ(1

3
, 2

3
) and γ(2

3
, 1) each contain a ball of radius

δ in X. Then for any decomposition X1 ∪ X2 = X, one of X1, X2, say X1, must

contain at least one of γ(0, 1
3
), γ(1

3
, 2

3
), γ(2

3
, 1). Then X1 contains a ball of radius δ,

so X does not decompose finely.

Proposition 2.2.6. Let X be a continuum irreducible about a finite set, but not

irreducible about any 2-point set. Then X does not decompose finely and hence

lim←−{X, f} is indecomposable for any topologically exact map f : X → X.

Proof. Let F = {a1, . . . an} be a minimal set about which X is irreducible. For each

i ≤ n, let Fi ⊃ F\{ai} be a proper subcontinuum of F . Choose δ > 0 such that, for

each i ≤ n, X\Fi contains a ball of radius δ.

Now let A ∪ B = X be any decomposition of X. Then at least one of A, B

contains two elements of {a1, . . . , an}. Without loss of generality, suppose that

a1, a2 ∈ A. Then a2 ∈ A ∩ F1 and A ∪ F1 ⊃ F , so A ∪ F1 = X. Then A ⊃ X\F1

and hence A contains a δ-ball.

The following is proved in a more general setting in [36].

Theorem 2.2.7. (Kuykendall) Let X be a continuum and f : X → X be a continuous

surjection. Then lim←−{X, f} is indecomposable iff for every ε > 0 there is a positive

integer n and three distinct points x, y, z ∈ X such that for any continuum M

containing two of them and any w ∈ X, d(fn(M), w) < ε.

2.3 Hubbard Trees and Related Concepts

In Chapter 1, we provided the definition of Hubbard trees. In this section we

provide some results on Hubbard trees that we make use of in later sections.

Lemma 2.3.1. Let x, y ∈ K(f), with A the regulated arc between them and let FB

denote the set of bounded Fatou components of f . Then for any other arc B ⊂ K(f)
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from x to y,

(1) A ∩ (J(f)\
⋃

F∈FB

∂F ) = B ∩ (J(f)\
⋃

F∈FB

∂F ) and

(2) each bounded Fatou component, F , satisfies A ∩ ∂F ⊂ B ∩ ∂F .

Thus A ∩ J(f) ⊂ B ∩ J(f).

Proof. (1) Let B be an arc between x and y. Since J(f) = ∂K(f), it follows by

Proposition 6 in Chapter 2, Section 6 of [21], that there is a regulated arc A′ between

x and y such that A′ ∩ (J(f)\
⋃

F∈FB

∂F ) = B ∩ (J(f)\
⋃

F∈FB

∂F ). As the regulated

arc between x and y is unique, A = A′.

(2) Immediate from the construction of regulated arcs. (See Proposition 6 in Chapter

2, Section 6 of [21].)

Lemma 2.3.2. (Lemma 1.8 of [46]) Let A be a regulated arc such that IntK(f)(A)

doesn’t contain any critical points. Then f |A is a homeomorphism.

2.4 Polynomials with Only Preperiodic Critical Points

Let f : Ĉ→ Ĉ be a polynomial such that every finite critical point is preperi-

odic. By Theorem V.4.2 in [16], J(f) is a dendrite. In this section we characterize

when lim←− f |J is indecomposable, but first we consider a more general case.

Theorem 2.4.1. Suppose that X is a dendrite and g : X → X is topologically exact.

Suppose further that there is a closed, forward invariant, connected set T ⊂ X such

that:

(1) X\T has at least three components and

(2) for any arc A ⊂ X with IntX(A) ⊂ X\T , g|A is injective.

Then lim←− g is decomposable.

Proof. Let x, y ∈ X and let xy denote the arc between them. For each n, define

xyn = gn(xy). We claim that, for each n, cl(xyn\T ) consists of 0, 1 or 2 arcs. As

T is connected and X is uniquely arc-connected, xy0 ∩ T is connected, so cl(xy0\T )
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has at most 2 components and the components must be arcs since xy0 is an arc.

Now suppose that cl(xyn\T ) consists of 0, 1 or 2 arcs. We will show that the same

holds for cl(xyn+1\T ). If xyn\T = ∅, then xyn+1 ⊂ T since T is forward invariant.

Otherwise, cl(xyn\T ) = A∪B, where A and B are arcs (allowing A = B). If A and

B are disjoint from T then xyn is an arc disjoint from T and hence xyn+1 is an arc

and the argument for the n = 0 case can be applied. So suppose that A meets T .

Then g(A) is an arc by (2) with at least one endpoint in T , so cl(g(A)\T ) is either

empty or it is an arc. The same holds for g(B) and hence cl(xyn+1\T ) consists of 0,

1 or 2 arcs.

Now by hypothesis, X\T has at least three components, but for each n,

gn(xy)\T misses all but possibly two of them. Thus by Kuykendall’s Theorem

(2.2.7), lim←− g is decomposable.

Lemma 2.4.2. Let A ⊂ J be an arc such that no separating point of A is a critical

point of f . Then f |A is injective.

Proof. This follows from Lemma 2.3.2.

The following is stated without proof in [1].

Lemma 2.4.3. If J is not an arc, then J has infinitely many branch points.

Proof. Let z0 be a branch point of J . If z1 ∈ f−1(z0) is a critical point, then

z1 6= z0 as f has no periodic critical points. Moreover, f is at least two-to-one in a

neighborhood of z1, so the valency of z1 is greater than the valency of z0. Hence z1

is also a branch point. Then as f has only finitely many critical points, it follows

that there is a branch point z of f such that no iterated preimage of z is a critical

point. Then by Theorem 1.5.16, J has infinitely many branch points.
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Lemma 2.4.4. If J is not an arc, then J\H(f) has infinitely many components.

Proof. As H(f) is the union of finitely many arcs and is uniquely arc-connected, it

suffices to show that H(f) contains infinitely many branch points of J . Suppose

not. Then there exists a neighborhood U in H(f) such that no point of U is a

branch point of J . Then U has interior in J . For cofinitely many z ∈ J there is a

dense set Dz ⊂ J such that for any z′ ∈ Dz there is a homeomorphism that maps

a neighborhood of z to a neighborhood of z′ (Theorem 1.5.16). Thus for cofinitely

many z ∈ J , there is a neighborhood of z that is an arc. Thus J has only finitely

many branch points, which is a contradiction to Lemma 2.4.3.

Theorem 2.4.5. Let f be a polynomial whose finite critical points are all preperiodic.

Then the following are equivalent:

(1) lim←− f |J is indecomposable.

(2) J is an arc.

(3) (Steinmetz) f is conjugate to ±Tn, where Tn is a Chebyshev polynomial.

(4) lim←− f |J is a Knaster continuum.

Proof. (1⇔ 2) If J is an arc, then the result follows from Proposition 2.2.5 since f is

topologically exact (Corollary 14.2 of [43]). If J is not an arc then by the preceding

lemmas, we may apply Theorem 2.4.1 and hence lim←− f |J is decomposable.

(2⇔ 3) This is part of Theorem A of [52].

(3⇒ 4) It is well-known (see for example, Theorem 1.4.1 of [8]) that J(Tn) =

[−1, 1]. Since Tn|[−1,1] has exactly n− 1 critical points, each of which maps to either

1 or −1, and Tn({−1, 1}) ⊂ {−1, 1}, the result follows.

(4⇒ 1) Well-known.
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2.5 Polynomials with Periodic Critical Points

Throughout this section, let f(z) be a postcritically finite polynomial such

that at least one finite critical point of f is periodic. Recall that the boundary of

every Fatou component of f is a Jordan curve (see Theorem 1.5.21 and the following

comments). In this section, we characterize when lim←− f |J is indecomposable.

Lemma 2.5.1. Let A, B ⊂ J be distinct Jordan curves. Then |A ∩B| ≤ 1.

Proof. Suppose that |A ∩ B| ≥ 2. Let C be a component of B\A. Then A ∪ C is

a theta-curve (that is a curve homeomorphic to the letter θ) and hence J is not the

boundary of the unbounded Fatou component, a contradiction.

Definition 2.5.2. The trunk of f , T is defined to be T = (H(f)∩ J(f))∪ (
⋃
{∂F : F

is a component of F (f) and F ∩H(f) 6= ∅}). (See Figure 2.1).

Figure 2.1: The Julia set (left) for the postcritically finite polynomial f(z) ≈ z4 +(2.683+
4.647i)z3 +(−3.599+6.234i)z2 and an illustration (right) highlighting the structure of the
Fatou components. The x’s denote the locations of points of critical orbits and the bold
region of the diagram denotes the trunk. “Lines” in the diagram indicate regions where
there are very small Fatou components. (Recall that the Julia set of a rational function
is the boundary of the union of the Fatou components in the grand orbit of any Fatou
component containing a periodic critical point (Cor. 4.12 of [43]))
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Lemma 2.5.3. T is a path-connected continuum.

Proof. To prove that T is compact, it suffices to show that T ′ := cl(
⋃
{∂F : F is

a component of F (f) and F ∩ H(f) 6= ∅}) ⊂ T . Let x ∈ T ′. For each i ∈ N, let

Fi be a bounded Fatou component of f with Fi ∩H(f) 6= ∅, and let xi ∈ ∂Fi such

that xi → x. If there is a Fatou component F such that Fi = F infinitely often,

then x ∈ ∂F ⊂ T . Otherwise, for any ε > 0, only finitely many Fatou components

have diameter greater than ε (by Lemma 19.4, Theorem 19.6 and the remarks after

Theorem 19.7 in [43]), so diam(∂Fi)→ 0. Hence x ∈ H(f). Since ∀i ∈ N, xi ∈ J ,

it follows that x ∈ H(f) ∩ J ⊂ T . Thus T is compact.

It remains only to show that T is path-connected. Let x, y ∈ T . Then there is a

regulated arc A0 ⊂ K(J) from x to y. Let {Fi} enumerate the bounded components

of F (f). For each i ∈ N such that Fi ∩ A0 6= ∅, |A0 ∩ ∂Fi| = 2 (by the definition of

regulated arcs), so we may choose an arc Ci ⊂ ∂Fi such that ∂Ci = A0 ∩ ∂Fi. Then

for each i ∈ N, define an arc Ai by

Ai =

 Ci ∪ (Ai−1\(A0 ∩ Fi)) if Fi ∩ A0 6= ∅

Ai−1 otherwise.

As only finitely many Fatou components have diameter greater than any ε, the Ai

converge to some arc A containing both x and y. For z ∈ A, either z ∈ A0\
⋃

i∈N Fi ⊂

H(f) ∩ J(f) ⊂ T or z ∈ ∂Fi for some i such that Fi ∩ A0 6= ∅, in which case

Fi ∩H(f) = ∅, so z ∈ T . Thus A ⊂ T is an arc between x and y as desired.

Lemma 2.5.4. If F is a bounded Fatou component such that |∂F ∩ T | is infinite,

then ∂F ⊂ T .

Proof. Let A = {G : G is a Fatou component, G∩H(f) 6= ∅ and ∂G∩ ∂F 6= ∅}. As

H(f)∩∂F is finite by Theorem 1.6.6 and for any bounded Fatou component G 6= F ,

we have that |∂G∩∂F | ≤ 1 by Lemma 2.5.1, it follows, by the definition of T , that A
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is infinite. Let G, H ∈ A be distinct and let x ∈ ∂G∩∂F, y ∈ ∂H∩∂F, xG ∈ G∩H(f)

and xH ∈ H ∩ H(f). Then there are regulated arcs A1, A2 and A3 connecting xG

to x, x to y and y to xH respectively such that Int(A2) ⊂ F . It follows that

A = A1 ∪ A2 ∪ A3 is the regulated arc from xG to xH . Then by Theorem 1.6.6,

A ⊂ H(f), so ∂F ⊂ T as desired.

Lemma 2.5.5. Let A ⊂ J be an arc. Then A ∩ T is connected and furthermore, for

any bounded Fatou component F , A ∩ ∂F is connected as well.

Proof. Identify A with the closed interval [0, 1] and suppose that (a, b) ⊂ J\T with

a, b ∈ A ∩ T . Let ab ⊂ T be an arc between a and b. Then C = ab ∪ (a, b) is a

Jordan curve in J . Then C must enclose a bounded Fatou component F . It follows

that ∂F = C as otherwise ∂F\C would not be accessible from the unbounded Fatou

component. Then ab ⊂ ∂F ∩ T so by Lemma 2.5.4, ∂F ⊂ T . But this implies

(a, b) ⊂ T , a contradiction. Thus A ∩ T is connected.

To prove that A ∩ ∂F is connected for any bounded Fatou component F , we

may construct a Jordan curve C like before. Then C and ∂F are distinct Jordan

curves in J with a, b ∈ C ∩ ∂F , which contradicts Lemma 2.5.1.

Remark 2.5.6. Applying Lemma 2.5.5, we may strengthen Lemma 2.5.4: If F is a

bounded Fatou component such that |∂F ∩ T | > 1, then ∂F ⊂ T .

Lemma 2.5.7. Every component of J\T gets mapped homeomorphically onto its

image by f .

Proof. Let C be a component of J\T and let x, y ∈ C. Since J contains no θ-curves,

it follows from Theorem VI.52.IV.4 of [35] that J is hereditarily locally connected.

Then C is a locally connected continuum and hence is also path-connected. Then
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by Corollary 5.4 in [22], C is locally path-connected. Let C̃ denote the filling of

C. Then C̃ is a locally path-connected continuum. Let A denote the regulated arc

from x to y in K(f). As C̃\T is a connected open subset of C̃, it follows that C̃\T

is path-connected. Let B denote an arc in C̃\T from x to y. Then by Lemma 2.3.1,

A ∩ T ⊂ (B ∩ J) ∩ T = ∅, so A ⊂ C̃\T . Thus no critical point of f is in A, so by

Lemma 2.3.2, f |A is injective. Then f(x) 6= f(y), so f |C is injective.

Remark 2.5.8. An argument similar to the one in the proof Lemma 2.5.7 can be

used to show that, for every Fatou component F which doesn’t contain any critical

points, f |F is a homeomorphism.

Lemma 2.5.9. f(T ) ⊂ T .

Proof. As H(f) and J are both forward invariant, it suffices to show that f(∂F ) ⊂

T for every bounded Fatou component F , satisfying F ∩ H(f) 6= ∅. Let F be

any such Fatou component and let x, y be in the postcritical set of f such that

xy ∩ F 6= ∅, where xy is the unique arc in H(f) from x to y. Then f(xy) ⊂ H(f),

so f(F ) ∩ H(f) 6= ∅. As F is a Fatou component, f(∂F ) = ∂(f(F )), so by the

definition of T , f(∂F ) ⊂ T as desired.

Lemma 2.5.10. If F (f) has infinitely many connected components then so does J\T .

Proof. Let F be a Fatou component that contains a critical point of f . As T\∂F

only meets finitely many components of J\∂F , it suffices to show that ∂F contains

infinitely many separating points of J . Suppose not. Then there is a point x ∈ ∂F

and a neighborhood U of x in J such that no point of U ∩∂F is a separating point of

J . As J is locally connected, we may assume that U is connected. Then fk(U) = J

for sufficiently large k, but fk(∂F ) = ∂(fk(F )) ( J , so U\∂F 6= ∅. Then U ∩ J

contains a simple triod S that has one endpoint, z, in U\∂F and two endpoints in

∂F . Let y denote the branch point of this triod and let A denote the arc from z to
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y in S. Then as y ∈ U is not a separating point of J, there is an arc B ⊂ J\{y}

from z to a point w of ∂F\{y}, with B ∩ ∂F = {w}. Then A ∪ B contains an arc

C such that C ∩ ∂F = {y, w}, a contradiction to Lemma 2.5.5.

Theorem 2.5.11. Let f : Ĉ → Ĉ be a postcritically finite polynomial such that at

least one finite critical point of f , c, is periodic. Then the following are equivalent:

(1) lim←− f |J is indecomposable

(2) lim←− f |J is a d-adic solenoid for some d ≥ 2

(3) J is homeomorphic to S1

(4) the Fatou set of f has exactly 2 components

(5) c is the only critical point of f and f(c) = c

(6) f is topologically conjugate to g(z) = zd for some d ≥ 2.

Proof. (6⇒ 3) and (3⇒ 4) are well-known. We will show (2⇒ 1⇒ 4⇒ 5⇒ 6⇒

2).

(2⇒ 1) Well-known.

(1 ⇒ 4) Suppose that F (f) does not have exactly 2 components. As at least

one finite critical point of f is in F (f), F (f) cannot be connected. It follows by

Theorem IV.1.2 of [16], that F (f) must have infinitely many components. Let

U1, U2, U3 be distinct components of J\T as guaranteed by Lemma 2.5.10 and let

x, y ∈ J . Let xy be an arc between x and y in J . Then xy\T consists of 0, 1, or 2

arcs, by Lemma 2.5.5. Proceeding by induction, define xyn := fn(xy) and suppose

that cl(xyn\T ) consists of at most two components, A and B, both of which are

arcs. Then by Lemma 2.5.9, f(xyn ∩ T ) ⊂ T . A\T is a topological ray, so f(A\T )

is as well, by Lemma 2.5.7. It follows that f(A) is an arc with at least one endpoint

in T , so by Lemma 2.5.5, cl(f(A)\T ) is either empty or it is an arc. The same holds

for f(B). Thus, by induction, for every n, xyn misses one of U1, U2, U3. Therefore

by Kuykendall’s Theorem (2.2.7), lim←−f |J is decomposable.
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(4 ⇒ 5) Let Fc and F∞ denote the components of the Fatou set containing c

and ∞ respectively. Then it follows from our hypothesis and Corollary 4.12 of [43]

that Fc and F∞ are the basins of attraction of c and ∞ respectively. So if c′ 6= c

were another a point of a periodic critical orbit, then it would be a superattracting

fixed point under some iterate of f and hence would belong to a Fatou component

distinct from Fc and F∞, which is a contradiction. Thus we have that c is a fixed

critical point and there are no other periodic critical points.

Now suppose that c′ is a preperiodic critical point in J . Then at least one

external ray lands at f(c′), so at least 2 external rays land at c′ since f is at least 2-

to-1 in a neighborhood of c′ (see Lemma 18.1 in [43]). Then c′ separates J (Lemma

17.5 of [43]), so J\∂Fc 6= ∅, a contradiction to J = ∂Fc (see Corollary 4.12 of [43]).

Now suppose that c1 is a preperiodic critical point in F (f). Since F (f) has

only 2 components and fn(c1) 6→ ∞, it follows that c1 is an element of Fc, which

is the basin of attraction of c. Let m1 denote the least positive integer such that

fm1(c1) = c. Let [c, fm1−1(c1)] denote the regulated arc between c and fm−1(c1).

Then [c, fm1−1(c1)] does not get mapped injectively by f , so it must contain a critical

point c2 in its interior. As with c1, fm2(c2) = c for some least integer m2. Proceeding

by induction, for each i ∈ N, let ci+1 ∈ Int([c, fmi−1(ci)]) be a critical point of f

and let mi+1 denote the least positive integer such that fmi+1(ci+1) = c so that for

each i ∈ N, we have fmi−1([c, ci]) ⊃ [c, ci+1]. As f only has finitely many critical

points, there is a least integer k such that ck = ci for some i 6= k. Let r denote

the least integer greater than k such that ck = cr, and let µ = Σr−1
i=k (mi − 1). Then

fµ([c, ck]) ⊃ [c, cr] and fµ(c) = fµ(ck) = c so, for some x ∈ [c, ck], fµ(x) = ck. It

follows that [x, ck] contains a fixed point of fµ, call it y. Then y ∈ J(fµ) = J(f), so

ck 6∈ Fc, a contradiction.

Thus f has a single finite critical point and that critical point is fixed.
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(5⇒ 6) The only such polynomials are of the form f(z) = a(z− c)d + c, which

are topologically conjugate to g(z) = zd.

(6⇒ 2) It is well known that J(g) = ∂D. So f |J is topologically conjugate to

a d-fold cover of S1, and hence lim←− f |J is a d-adic solenoid.

2.6 Structure of Inverse Limits of PCF Polynomials

In this section we extend the definition of trunk to the entire collection of

postcritically finite polynomials. The inverse limit of the trunk plays a role in inverse

limits of Julia sets similar to that played by the core of a tent map in inverse limits of

intervals (see [28]). We will show that lim←− f |J contains at least one indecomposable

subcontinuum (Proposition 2.6.4 and Theorem 2.6.7) and that any indecomposable

subcontinuum of lim←− f |J must intersect lim←− f |T (follows from Theorem 2.6.3).

Definition 2.6.1. Let f : Ĉ→ Ĉ be a postcritically finite polynomial. If f has at least

one periodic critical point then the trunk of f was given by Definition 2.5.2. If all

critical points of f are preperiodic we will now define the trunk of f by T = H(f).

Lemma 2.6.2. f−n(T ) meets only finitely many components of J\T .

Proof. f−n(H(f)) is a tree whose endpoints are among the orbits of f−n({fm(c) :

c ∈ C, m ∈ N0 and f ′(c) = 0}) (Corollary 2.2 of [46]). The result is clear if

T = H(f). Otherwise f−n(T ) = f−n((H(f) ∩ J) ∪
⋃
{∂F : F is a Fatou component

and F ∩ H(f) 6= ∅}) = (f−n(H(f)) ∩ J) ∪
⋃
{∂F : F is a Fatou component and

F ∩ f−n(H(f)) 6= ∅} and the result follows.

Theorem 2.6.3. Let f : Ĉ→ Ĉ be a postcritically finite polynomial with Julia set J

with trunk T such that J\T 6= ∅. Let X = lim←−{J, f |J} and let T̃ =
⋂

i∈N π−1
i (T ) =

lim←−{T, f |T}. Then

(1) X\T̃ is connected,

(2) X\T̃ has c-many composants,
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(3) the arc components of X\T̃ are precisely its composants,

(4) c-many arc components of X\T̃ are dense in X\T̃ and

(5) infinitely-many arc components of X\T̃ are not dense in X\T̃ .

Proof. (1) follows immediately from (4), so we only prove (2) - (5). Let C denote

the set of components of J\T .

Let Γ = {η ∩ X : η ∈ CN and ∀i ∈ N, f(ηi+1) ⊃ ηi}. Define σ̂ : Γ → Γ by

σ̂(η ∩X) = (η2 × η3 × η4 × · · · ) ∩X. For each n ∈ N and each γ ∈ Γ, define An
γ =

X∩(fn−1(γn)×fn−2(γn)×· · ·×f(γn)×γn×γn+1×· · · ) = {x ∈ X : xi ∈ γi ∀i ≥ n}.

For each γ ∈ Γ, cl(γ1) ' lim←− (f |cl(γi+1), cl(γi)) = cl(γ), since each f |cl(γi+1) is

a homeomorphism. Then since T is forward-invariant, γ ' γ1 which is an open,

connected subset of the locally arc-connected space J , and hence is arc-connected.

Then for each γ ∈ Γ, Uγ :=
⋃

n∈N An
γ is the nested union of arc-connected sets and

hence is arc-connected. Note that X\T̃ =
⋃

γ∈Γ Uγ. We will show that each Uγ is

both a composant and an arc-component of X\T̃ .

Suppose Uγ 6= Uλ. It follows that γi 6= λi for infinitely many i. Let x ∈ Uγ and

y ∈ Uλ, and choose N ∈ N large enough that x ∈ AN
γ and y ∈ AN

λ . Suppose that

xy ⊂ X is a continuum containing x and y. Then we have for infinitely many i > N ,

that γi 6= λi and πi(xy) is a connected set that meets both γi and λi. For such i,

πi(xy) ∩ T 6= ∅. Then for every i ∈ N, πi(xy) ∩ T 6= ∅ since T is forward-invariant.

For each i ∈ N, let zi ∈ xy such that πi(z
i) ∈ T . Since T is forward-invariant, it

follows that πk(z
i) ∈ T for all k < i. Let zij be a subsequence that converges to some

z ∈ xy. Since T is closed, it follows that z ∈ T̃ . Thus xy ∩ T̃ 6= ∅, and hence Uγ and

Uλ are in distinct composants of X\T̃ . So the arc components (and composants) of

X\T̃ are precisely the distinct Uγ’s. This proves (3).

Now define an equivalence relation ∼ on Γ by γ ∼ λ iff γi = λi cofinitely. Then

as C is countable, for each γ ∈ Γ, the equivalence class [γ] is countable. However, for
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each η ∈ C there are least two distinct elements η′, η′′ ∈ C such that f(η′), f(η′′) ⊃ η,

so |Γ| = c. Thus |{Uγ : γ ∈ Γ}| = |Γ/ ∼ | = c, which proves (2).

For each n ∈ N0 let Tn = {η ∈ C : fn(η) ∩ T = ∅ and fn+1(η) ∩ T 6= ∅}. By

Lemma 2.6.2, Tn is finite for each n. As f is topologically exact, Tn must also be

nonempty for each n. So for each n ∈ N, let ηn ∈ Tn. Since fn−1(ηn) ∈ T1 for each

n, there must be an η1 ∈ T1 such that fn−1(ηn) = η1 for infinitely many n. Then for

every n ∈ N, ∃λ ∈ Tn such that fn−1(λ) = η1. By induction, for each i > 1 we may

choose an ηi ∈ Ti such that (a) f(ηi) = ηi−1 and (b) for all n > i, ∃λ ∈ Tn such that

fn−i(λ) = ηi. Then (η1 × η2 × · · · ) ∩X ∈ Γ and f(ηn) ∩ T = ∅ for all n ∈ N. Let

A = {Uσ̂i(η1×η2×··· ) : i ∈ N}. Note that A is infinite.

Claim: Uλ is dense in X\T iff f(λn) ∩ T 6= ∅ for infinitely many n ∈ N.

If f(λn) ∩ T 6= ∅ for only finitely-many n then choose N large enough that

f(λn) ∩ T = ∅ for all n ≥ N . Then π−1
N (J\(T ∪ λN)) is an open set that doesn’t

intersect Uγ.

On the other hand, if f(λn) ∩ T 6= ∅ for infinitely many n ∈ N, then for each

such n, λn ∈ T0. Since T0 is finite and each element of T0 is open in J\T , there

must be a p ∈ N such that fp(µ) = J for each µ ∈ T0. Then for all x ∈ X\T̃ and all

n ∈ N, there exists a y ∈ Uλ such that πi(x) = πi(y) for all i < n. Thus Uλ is dense.

By the claim, A is an infinite set of distinct components of X\T̃ which are not

dense. This proves (5).

Now let η ∈ T0 and let λ, λ′ be elements of C that meet f−1(η). Choose p ∈ N

large enough that fp(η) = J . Then for each x ∈ 2ω, there is a γ ∈ Γ such that for

all n ∈ N, γn(p+1) = η and γn(p+1)+1 =

 λ if xn = 0

λ′ if xn = 1.

This proves (4).

We now restrict our attention to the case where f has no periodic critical

points and J\T 6= ∅. Let A denote the set of vertices of T , that is, A = {A ⊂ T : A
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is an arc and A∩ V = ∂A} where V is the union of the set of points in the orbits of

the critical points of f and the set of branch points of H(f).

Proposition 2.6.4. Let f be a postcritically finite polynomial with no periodic critical

points. Then there exists a positive integer N such that g(x) := fN(x) satisfies

g(I) = g2(I) for every I ∈ A. Moreover, for every I ∈ A′ = {I ∈ A : ∀I ′ ∈

A, g(I) ⊂ g(I ′) or g(I)∩g(I ′) is finite}, the inverse limit lim←− f |g(I) is indecomposable.

Proof. For each I ∈ A, let kI and pI denote the preperiod and period of I respec-

tively; that is, the least positive integers, kI and pI such that fkI (I) = fkI+pI (I). Let

N be any positive integer such that LCMI∈A(pI) divides N and N ≥ kI , ∀I ∈ A.

It follows that for all I ∈ A, g(I) := fN(I) = g2(I), as desired.

We will now show that lim←− g|g(I) is indecomposable. It follows from Theorem

A of [46] that there are at least two distinct arcs, I1, I2 ∈ A′ ∩ 2g(I). Then g(I1) ⊂

g(g(I)) = g(I), so g(I1) = g(I2) = g(I), as I ∈ A′.

Now suppose that lim←− g|g(I) = A∪B where A, B are subcontinua of lim←− g|g(I).

Let n ∈ N. Then as g(I) is uniquely arc-connected, one of πn+1(A), πn+1(B) contains

Ii for some i ∈ {1, 2}. Without loss of generality, suppose that πn+1(A) ⊃ I1. Then

πn(A) ⊃ g(I1) = g(I). As n was arbitrary, lim←− g|g(I) is indecomposable.

Corollary 2.6.5. Let f and g be as in Proposition 2.6.4. Let ∼ denote the equivalence

relation on A′ given by I1 ∼ I2 iff g(I1) = g(I2). Then lim←− f |T contains at least

|A′/ ∼ | distinct indecomposable subcontinua, each two of which meet at most at a

single point.

We now consider the case where f has at least one periodic critical point.

Lemma 2.6.6. Let f be a PCF polynomial with at least one periodic critical point.

Suppose that the Fatou set of f has at least one component F which (1) doesn’t

contain any point of any critical orbit and (2) satisfies ∂F ⊂ T . Then lim←− f |T is

decomposable.
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Proof. By Sullivan’s Non-wandering Domain Theorem (Theorem 16.4 of [43]), every

Fatou component is either periodic or preperiodic. Thus either every Fatou com-

ponent F satisfying hypotheses (1) and (2) is periodic or we may assume that F is

strictly preperiodic. By Proposition 1.6.6, H(f) ∩ ∂F is finite, so ∂F\H(f) is the

union of disjoint open arcs, A1, . . . , Am. As ∂F ⊂ T and F doesn’t contain any

points of critical orbits, T must separate ∂F , so m ≥ 2. Let G denote a Fatou

component that contains a periodic critical point. Choose ε small enough so that

(i) ∀w ∈ ∂G, ∂G\{w} contains an ε-ball in T ,

(ii) ∀w ∈ ∂F , ∂F\{w} contains an ε-ball in T ,

(iii) ∀i ≤ m, Ai contains an ε-ball in T and

(iv) if F is periodic with period p then ∀n ≤ p, ∀i ≤ m, fn(Ai) contains an ε-ball in

T .

Let {a, b, c} be any three points of T . By Kuykendall’s Theorem (2.2.7), it

suffices to show that there is a continuum ab between a and b such that for every

n ∈ N, fn(ab) misses an ε-ball in T .

If a, b ∈ ∂F then we may choose an arc ab ⊂ ∂F . Then if F is strictly

preperiodic, for all n ∈ N we have that |fn(ab) ∩ ∂F | ≤ 1 by Lemma 2.5.1. On the

other hand, if F is periodic then |fn(ab) ∩ ∂G| ≤ 1 by Lemma 2.5.1. In either case,

for every n ∈ N, fn(ab) misses an ε-ball in T as desired.

Now consider the case where a 6∈ ∂F . Then we may choose an arc A ⊂ T

containing a and b such that A∩Al = ∅ for some l ≤ m and such that for all Fatou

components U with A ∩ ∂U 6= ∅, we have ∂(A ∩ ∂U) ⊂ H(f).

If every Fatou component that satisfies (1) and (2) is periodic then let p denote

the period of F so that fp(F ) = F . Then if T ′ denotes the filling of T , F is

the only pre-image of itself under fp|T ′ , as otherwise there would be a preperiodic

Fatou component that satisfies (1) and (2). By Remark 2.5.8, for each i, f i|∂F is a

homeomorphism. Then fp|∂F permutes ∂F ∩H(f) and so as it is a homeomorphism,
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it must permute the set {A1, . . . , Am}. So for every n ∈ N, ∃k ≤ m such that

fnp(A) ∩ Ak = ∅. Then for all n ∈ N, ∃k ≤ m such that fn(A) ∩ fn mod p(Ak) = ∅.

Thus for every n ∈ N, fn(ab) misses an ε-ball in T as desired.

It remains only to consider the case where F is strictly preperiodic. In this

case, for each bounded Fatou component U with ∂U ⊂ T , we will define an arc AU

such that for all n ∈ N, fn(AU)∩Al = ∅. If fn(A∩ ∂U)∩Al = ∅ for all n ∈ N then

let AU = A ∩ ∂U . Otherwise fN(U) = F for precisely one N ∈ N as F is strictly

preperiodic. In this case, since F doesn’t contain any points of critical orbits, neither

does U , f(U), . . . , fN(U) = F , so fN |∂U is a homeomorphism (Remark 2.5.8). Then

fN(A∩ ∂U) ⊃ Al, so we define AU = cl(∂U\A). Thus in either case, we have for all

n ∈ N, that

fn(AU) ∩ Al = ∅. (2.1)

Now let {U1, U2, . . .} enumerate {U ∈ Fatou Components : |A ∩ ∂U | > 1},

which may or may not be finite. Let A1 = (A\∂U1) ∪ AU1 and by induction define

Ai+1 =

 (Ai\∂Ui+1) ∪ AUi
if i + 1 < |{U1, U2, . . .}|

Ai otherwise.

Then ab = lim Ai is a subcontinuum of T containing a and b. For any x ∈ ab, we

have that x ∈ AUi
for some i, and hence, by (2.1), for all n ∈ N, fn(x) 6∈ Al. Thus

fn(ab) misses an ε-ball as desired.

For each x ∈ Ĉ, let ω(x) = {fn(x) : n ∈ N0}.

Theorem 2.6.7. Let f be a PCF polynomial with at least one periodic critical point

and let C =
⋃

ω(c) where the union is taken over the set of periodic critical points.

Then either:

(1) lim←− f |T is a solenoid, or

(2) lim←− f |T is a decomposable continuum containing at least |C| distinct solenoids,

no two of which meet at more than a single point.
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Proof. Distinct points c1, c2 of C are superattracting fixed points of sufficiently high

iterates of f and hence lie in distinct bounded Fatou components (see Cor 4.12

of [43]). It follows that lim←− f |T contains |C| distinct solenoids, S1, . . . S|C|, no

two of which can meet at more than a single point. We now show that lim←− f |T is

decomposable whenever it is not a solenoid.

If there is some bounded Fatou component F with ∂F ⊂ T such that F

does not contain any point of any critical orbit, then lim←− f |T is decomposable by

Lemma 2.6.6. Otherwise every bounded Fatou component F with ∂F ⊂ T , contains

a point of a critical orbit.

Let T ′ =
⋂

n∈N fn(T ) so that f(T ′) = T ′ and lim←− f |T = lim←− f |T ′ . Let

A1, . . . , Am denote the closures of the components (if there are any) of (J ∩H(f) ∩

T ′)\
⋃
{∂F : F is a bounded complementary domain of T ′}. Note that each Ai has

interior in T ′. Let F1, . . . , FM denote the bounded complementary domains of T ′,

which are also Fatou components of f . As f(H(f) ∩ T ) ⊂ H(f) ∩ T and f has at

least one periodic critical point, it follows that M ≥ 1. If m + M = 1 then lim←− f |T

is a solenoid by Theorem 2.5.11. Otherwise, S := {A1, . . . , Am, ∂F1, . . . ∂FM} has at

least two elements.

Now, for each i, j, |Ai ∩ Aj| ≤ 1 by definition, and |∂Fi ∩ ∂Fj| ≤ 1 by

Lemma 2.5.1. By Theorem 1.6.6, Ai∩∂Fj is finite, so by Lemma 2.5.1, |Ai∩∂Fj| ≤ 1.

Thus for all D, D′ ∈ S, if D 6= D′ then |D ∩ D′| ≤ 1. For each x in T ′, let V (x)

denote the number of elements of S that contain x. (This is the “valency” of x, in

some sense.) For each Ai, f(Ai) is a subset of H(f), so for each Fj, we have that

f(Ai)∩ ∂Fj is finite. Since f(Ai) is also a connected subset of J , |f(Ai)∩ ∂Fj| ≤ 1.

Then, since
⋃

j≤M ∂Fj is fully invariant under f |T ′ , it follows that, for each Ai,

f(Ai) ⊂ Ak for some Ak. Then as S is finite and f |T ′ is surjective, it follows that f

permutes the elements of S. It follows for every x ∈ T ′, that V (f(x)) ≥ V (x) and

hence that V (f(x)) = V (x), since S is finite.
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We will say that an element S ∈ S separates T ′ if ∪(S\{S}) is disconnected.

Choose L ∈ S such that L does not separate T ′. Then there is a sequence {Li ∈ S}i∈N

with L1 = L such that f(Li+1) = Li for each i ∈ N. It follows that A = lim←−{f, Li}

is a continuum. Now if D ∈ S such that D separates T ′, then there are distinct

points x1, x2 ∈ D with V (x1), V (x2) > 1. Then f(x1), f(x2) ∈ f(D) and f(x1) 6=

f(x2) since V (x1) = V (f(x1)), so f(D) separates T ′. Thus the pre-image of a non-

separating element of S is a non-separating element of S. Thus Ki =
⋃
S\{Li} is

a continuum for each i. Since f(Ki+1) = Ki, it follows that B = lim←−{f, Ki} is a

continuum. Then A ∪B is a decomposition of lim←− f |T .

Remark 2.6.8. In Theorem 2.6.7, even if |C| = 1, lim←− f |T need not be a solenoid: for

the postcritically finite polynomial f(z) = 4(−1−
√

2)2/3z2 + 4(−1−
√

2)1/3z3 + z4,

it can be shown that |C| = 1 but lim←− f |T is still decomposable. (See Figure 2.1.)

Remark 2.6.9. In the proof of Theorem 2.6.7, a case was considered where J ∩H(f)

possibly had interior H(f). However, we conjecture that J ∩H(f) is nowhere dense

in H(f) for any postcritically finite polynomial with a periodic critical point.

41



CHAPTER THREE

Inverse Limits of Upper Semi-Continuous Functions

3.1 Motivation

For each i ∈ N, let Xi be a compact Hausdorff space and let fi : Xi+1 → 2Xi be

a surjective, upper semicontinuous set-valued function so that lim←−fi is a compactum.

We will define f i
j(x) = πj(π

−1
i (x)). Note that if j < i then f i

j(x) = fj◦· · ·◦fi−1(x) and

if j > i then f i
j(x) = (fj−1)

−1◦· · ·◦(fi)
−1(x). We will denote {(xj, xj+1) : ∃z ∈ lim←−fi

such that zj = xj and zj+1 = xj+1} by πj,j+1(lim←−fi). If Ui ⊂ Xi for each i ≤ n, we

will denote {x ∈ lim←−fi : xi ∈ Ui ∀i ≤ n} by
︷ ︸︸ ︷
U1 × · · · × Un. In general we will not

distinguish between an upper semicontinuous function f : X → 2Y , and its graph

G(f) = {(x, y) ∈ X × Y : y ∈ f(x)}. Throughout this chapter, we will use the

notation |x| exclusively for cardinality. Following Ingram [31], if f : X → 2Y is

single-valued at every point, that is |f(x)| = 1 for all x ∈ X, then we will call f a

mapping.

To motivate our study, consider the following result from the study of classical

inverse limits.

Proposition 3.1.1. Suppose that for each i ∈ N, Xi is a continuum and fi : Xi+1 → Xi

is a continuous surjective mapping. If K is a proper closed subset of lim←−fi, then

πj(K) 6= Xj for cofinitely many j ∈ N.

The above proposition provides an important tool for establishing the inde-

composability of inverse limits. In particular, if it can be shown that all subcontinua

H, K of lim←−fi such that H ∪K = lim←−fi satisfy πj(H) = Xj or πj(K) = Xj infinitely

often, then it follows that lim←−f is indecomposable.

In general, Proposition 3.1.1 does not hold if the bonding functions are allowed

to be upper-semicontinuous set-valued functions, as the following example illustrates.
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Example 3.1.2. [31] Let f : [0, 1]→ 2[0,1] be given by f(x) = [0, 1] for all x ∈ [0, 1].

Then lim←−f = [0, 1]ω and K = {(x, x, . . .) ∈ [0, 1]ω} satisfies πi(K) = [0, 1] for all

i ∈ N.

A more interesting example is provided in Example 3.3. In light of the above,

we define the following.

Definition 3.1.3. (Compare [31]) Let D be either N or Z. A set K ⊂ lim←−{Xi, fi, D}

will be said to have full projections in infinitely many coordinates if πi(K) = Xi

for infinitely many i ∈ D. We will say that lim←−fi has the full projection property if

there is no proper closed subset of lim←−fi that has full projections in infinitely many

coordinates.

Definition 3.1.4. (Compare [31]) Let D be either N or Z. We will say that a

connected inverse limit, lim←−fi, has the continuum full projection property if there is no

proper subcontinuum of lim←−fi that has full projections in infinitely many coordinates.

In [31], Ingram asked for conditions on upper semicontinuous functions that

imply that lim←−fi has the full projection property and the continuum full projection

property. He proved the following theorem, which makes use of the full projection

property:

Theorem 3.1.5. [31] For each i ∈ N , let ni ∈ N, let Ti be a simple ni-od (that is,

a cone over a ni-point discrete set) and let fi : Ti+1 → 2Ti be upper semicontinuous

such that there are disjoint open sets U, V ⊂ Ti+1 such that f |U∪V is single-valued

and fi(U) = fi(V ) = Ti. If lim←−f is connected and lim←−f has the continuum full

projection property then lim←−f is indecomposable.

Varagona [55] showed that some upper semicontinuous functions from [0, 1]

to [0, 1] whose graphs are sin(1/x) curves have indecomposable inverse limits. Along

the way, he provided a condition for upper semicontinuous functions of the unit

interval to have the full projection property:
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Lemma 3.1.6. (Lemma 3.1 of [55]) Let f : [0, 1]→ 2[0,1] be an upper semicontinuous

function with the property that lim←−f is a continuum. Suppose that, for some A ⊂

[0, 1], f |[0,1]\A is a function, f([0, 1]\A) = [0, 1], and P = {(p1, p2, . . .) ∈ lim←−f : pi 6∈ A

for all i} is a dense subset of lim←−f . Then whenever H is a proper closed subset of

lim←−f , there exists some positive integer N such that if n ≥ N , πn(H) 6= [0, 1].

Cornelieus [18] gave a necessary and sufficient condition for an inverse limit

to have the full projection property, but in order to apply his characterization, one

needs detailed knowledge of the inverse limit. In the remainder of this chapter,

we provide more conditions that are necessary and/or sufficient to imply the full

projection property. In the next section, we provide necessary conditions, sufficient

conditions and also necessary and sufficient conditions (Theorems 3.2.6 and 3.2.10)

for inverse limits of upper semicontinuous functions of arbitrary compacta to have

the full projection property. Then in Section 3, we restrict our attention to residual-

preserving continuum-valued maps of graphs. We provide a necessary and sufficient

condition for residual-preserving continuum-valued maps of trees to have the full

projection property (Theorem 3.3.17). Our focus in both sections is on conditions

that don’t rely upon knowledge of the inverse limit, but depend only upon the dy-

namics of the bonding functions. We then conclude this chapter with some examples

in Section 4.

3.2 Full Projections in Inverse Limits of Compact Hausdorff Spaces

For this section, we will make a standing assumption that all upper semicon-

tinuous functions are surjective.

Definition 3.2.1. An inverse limit, lim←−fi, will be said to have the weak full projection

property if there is no proper closed subset K of lim←−fi, such that πi(K) = Xi for all

i ∈ N.
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Definition 3.2.2. Let f : X → 2Y be upper semicontinuous. f is said to be irreducible

with respect to domain if no closed subgraph of G(fi) has full domain, that is,

π1(H) 6= X for every closed set H ( G(fi).

Lemma 3.2.3. lim←−fi has the full projection property iff lim←−fi has the weak full pro-

jection property and for each i ∈ N, fi is irreducible with respect to domain.

Proof. By contrapositive. Clearly if lim←−fi does not have the weak full projection

property, then it does not have the full projection property. So suppose that for

some i ∈ N, there is an H ( G(fi), such that H is closed and the domain of H is

Xi+1. Let K = π−1
i,i+1(H). Then Ki+1 = Xi+1 and it follows that Kj = Xj for all

j > i. Then K is a proper closed subset of lim←−fi with full projections in infinitely

many coordinates. Thus lim←−fi does not have the full projection property.

Now suppose that lim←−fi has the weak full projection property and for each

i ∈ N, fi is irreducible with respect to domain. Suppose that K ⊂ lim←−fi has full

projections in infinitely many coordinates. Let n ∈ N such that πn+1(K) = Xn+1.

Then πn+1,n(K) is a closed subgraph of G(fn) with full domain, so πn+1,n(K) =

G(fn). Hence, πn(K) = Xn. It follows inductively that πi(K) = Xi for all i ∈ N. By

hypothesis, lim←−fi has the weak full projection property, so it follows that K = lim←−fi.

Thus lim←−fi has the full projection property.

Lemma 3.2.4. lim←−{Xi, fi, Z} has the full projection property iff lim←−{Xi, fi, Z} has

the weak full projection property, and for each i ∈ N, no subgraph of G(fi) has full

domain and no subgraph of G(fi) has full range.

Proof. Clearly if lim←−{Xi, fi, Z} does not have the weak full projection property, then

it does not have the full projection property. Suppose that for some i ∈ Z, there is

an H ( G(fi), such that H is closed and either the domain of H is Xi+1 or the range

of H is Xi. Let K = π−1
i,i+1(H). If the domain of H is Xi+1 then Kj = Xj for all

j > i. Otherwise, the range of H is Xi and Kj = Xj for all j < i. Either way, K is
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a proper closed subset of lim←−fi with full projections in infinitely many coordinates.

Thus lim←−{Xi, fi, Z} does not have the full projection property.

To prove the converse, suppose that K ⊂ lim←−{Xi, fi, Z} has full projections in

infinitely many coordinates. Let n ∈ N such that πn(K) = Xn. Then πn+1,n(K) is

a closed subgraph of G(fn) with full range. Then by hypothesis, πn+1(K) = Xn+1.

By induction, it follows that πi(K) = Xi for all i ≥ n. Similarly, πn,n−1(K) is a

closed subgraph with full domain, so πn−1(K) = Xn−1 and by a similar argument

πi(K) = Xi for all i ≤ n. By hypothesis, lim←−{Xi, fi, Z} has the weak full projection

property, so it follows that K = lim←−{Xi, fi, Z}. Thus lim←−{Xi, fi, Z} has the full

projection property.

Lemma 3.2.5. Suppose that U =
︷ ︸︸ ︷
U1 × · · · × Un is a basic open set in lim←−fi such that

πk(lim←−fi\U) 6= Xk. Then there is a j ≤ n such that πj(lim←−fi\U) 6= Xj.

Proof. If k ≤ n we are done, so suppose that k > n. Let K = lim←−fi\U . Let

z ∈ Xk\K. Then for all i ≤ n, fk
i (z) ⊂ Ui. Let w ∈ fk

n(z). Then for all x ∈ lim←−fi

such that xn = w, xi ∈ Ui for all i ≤ n. Thus πn(lim←−fi\U) ⊂ Xn\{w}.

Theorem 3.2.6. lim←−fi has the weak full projection property iff for all n ∈ N, for all

x ∈ lim←−fi and for every basic open neighborhood U1× · · ·×Un of (x1, . . . , xn), there

is a positive integer i ≤ n and a y ∈ Xi such that f i
j(y) ⊂ Uj for all j ≤ n.

Proof. Suppose that for all n ∈ N, for all x ∈ lim←−fi and for every basic open

neighborhood U1 × · · · × Un of (x1, . . . , xn), there is a positive integer i ≤ n and

a y ∈ Xi such that f i
j(y) ⊂ Uj for all j ≤ n. Let K ( lim←−fi be closed. Then

for some n ∈ N and for each i ≤ n there is an open set Ui ⊂ Xi such that U =︷ ︸︸ ︷
U1 × · · · × Un 6= ∅ and K ⊂ lim←−fi\U . Then by hypothesis, there is an i ≤ n and a

z ∈ Xi such that for all y ∈ lim←−fi with yi = z, we have that y ∈ U . Then z 6∈ πi(K).

As K was arbitrary, lim←−fi has the weak full projection property.
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Now suppose that lim←−fi has the weak full projection property. Let x ∈ lim←−fi

and let U =
︷ ︸︸ ︷
U1 × · · · × Un be a basic open neighborhood of x. Then K = lim←−fi\U

does not have full projections in all coordinates, so by Lemma 3.2.5, there is an

i ≤ n such that Ui\πi(K) 6= ∅. Let y ∈ Ui\πi(K). Then for all z ∈ lim←−fi such that

zi = y, zj ∈ Uj for all j ≤ n. Thus f i
j(y) ⊂ Uj for all j ≤ n, as desired.

Observe that Theorem 3.2.6 proves and generalizes Proprosition 3.1.1. We also

have some novel corollaries.

Corollary 3.2.7. If f : X → X is a mapping, then lim←−f−1 has the weak full projection

property.

Proof. As f is a mapping, lim←−f has the weak full projection property, and hence

satisfies the conclusion of Theorem 3.2.6. Then lim←−f−1 also satisfies the conclusion,

and hence the hypothesis as well.

By f |A×B, we will denote the upper semicontinuous function whose graph is

G(f) ∩ (A×B). For iterates of f and closed sets K ⊂ lim←−fi, we will use f i
j |K(x) to

denote πj((πi|K)−1(x)).

In [31], Ingram asked for conditions on bonding functions under which closed

subsets of an inverse limit are the inverse limits of their projections. We provide

conditions with the following two corollaries.

Corollary 3.2.8. Suppose K ⊂ lim←−fi is closed. If for every basic open set U =︷ ︸︸ ︷
U1 × · · · × Un that meets lim←−fi|Ki×Ki+1

, there is a y ∈ K and an i < n such that

f i
j |K(yi) ⊂ Uj for all j ≤ n, then K = lim←−fi|Ki×Ki+1

Proof. By Theorem 3.2.6, lim←−fi|Ki×Ki+1
has the weak full projection property. Then

since K ⊂ lim←−fi|Ki×Ki+1
has full projections in each coordinate, K = lim←−fi|Ki×Ki+1

.
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Corollary 3.2.9. Every closed subset of lim←−fi is the inverse limit of its projections iff

for every closed set K ⊂ lim←−fi and for every basic open set U =
︷ ︸︸ ︷
U1 × · · · × Un that

meets lim←−fi|Ki×Ki+1
, there is a y ∈ K and an i < n such that f i

j |K(yi) ⊂ Uj for all

j ≤ n.

Proof. If there is a closed subset K, for which the no such y exists, then by The-

orem 3.2.6, there is a closed subset K ′ of K with the same projections as K in all

coordinates. Then K ′ is not the inverse limit of its projections. The converse follows

follows from Corollary 3.2.8.

The following is an altered version of Theorem 3.2.6 which we make use of

later.

Theorem 3.2.10. For each i ∈ N, let Xi be a compactum and let fi : Xi+1 → 2Xi

be upper semicontinuous. Then lim←−fi has the weak full projection property iff, for

all n ∈ N, for all x ∈ lim←−fi and for every basic open neighborhood U1 × · · · × Un

of (x1, . . . , xn), there is a positive integer i ≤ n and a y ∈ Xi such that f i
j(y) ⊂

πj(
︷ ︸︸ ︷
U1 × · · · × Un) for all j ≤ n.

Proof. This follows immediately from Theorem 3.2.6 as Uj ⊃ πj(
︷ ︸︸ ︷
U1 × · · · × Un) for

each j ≤ n.

Let n ∈ N and let x ∈ lim←−fi. Let U1 × · · · × Un be a basic open neighborhood

of (x1, . . . , xn). By Theorem 3.2.6, there is a positive integer i ≤ n and a y ∈ Xi

such that f i
j(y) ⊂ Uj for all j ≤ n. It follows that for each j ≤ n, f i

j(y) ⊂

πj(
︷ ︸︸ ︷
U1 × · · · × Un).

Theorem 3.2.11. Let f : X → 2X . Suppose that for each x ∈ X, and each open set

V that meets f−1(x), there is an open set U containing x such that for every z ∈ U

there is a w ∈ V such that f(w) = {z}. Then lim←−f has the weak full projection

property.
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Proof. Let x ∈ lim←−fi and let U1× · · · ×Un be an open neighborhood of (x1, . . . , xn).

Let Wn = Un. Now suppose that 0 ≤ m < n − 1 and for each i ≤ m, Wn−i has

been defined such that Wn−i is open, xn−i ∈ Wn−i ⊂ Un−i and if i ≥ 1 then, for

all z ∈ Wn−i, there is a w ∈ Wn−i+1 such that f(w) = {z}. Then by hypothesis,

there is an open set U containing xn−m−1 such that for all z ∈ U there is a w ∈

Wn−m such that f(w) = {z}. Then we may define Wn−m−1 = U ∩ Un−m−1. Since

xn−m−1 ∈ U ∩ Un−m−1, Wn−m−1 is non-empty. By induction, we may define Wi for

each i ∈ {1, . . . , n}.

Now let y1 ∈ W1. Then there is a y2 ∈ W2 such that f(y2) = {y1}. Proceeding

by induction, for each 1 < i ≤ n, by the construction of Wi, there is a yi ∈ Wi such

that f(yi) = {yi−1}. Then for each i < n, f i(yn) = {yn−i} ⊂ Wi ⊂ Ui. Therefore,

by Theorem 3.2.6, lim←−f has the weak full projection property.

Proposition 3.2.12. lim←−{X, f, N} has the weak full projection property iff lim←−{X, f, Z}

has the weak full projection property.

Proof. Suppose that lim←−{X, f, N} has the weak full projection property. Let U =︷ ︸︸ ︷
U−n × · · · × Un be a basic open set in lim←−{X, f, Z}. Then U ′ := {(x1, x2, . . .) ∈

lim←−{X, f, N} : ∃(. . . , y−1, y0, y1, . . .) ∈ lim←−{X, f, Z} such that xi = yi−n−1 for all

1 ≤ i ≤ 2n + 1} is open in lim←−{X, f, N}. Then by Lemma 3.2.5, lim←−{X, f, N}\U ′

does not have full projection in some coordinate i ≤ n. It follows that lim←−{X, f, Z}\U

does not have full projection in the (i− n− 1)st coordinate. Thus lim←−{X, f, Z} has

the weak full projection property.

Now suppose that lim←−{X, f, N} does not have the weak full projection prop-

erty. Then there is a basic open set U =
︷ ︸︸ ︷
U1 × · · · × Un of lim←−{X, f, N} and such that

lim←−{X, f, N}\U has full projections in all coordinates. Let U ′ = {(. . . , x−1, x0, x1, . . .) ∈

lim←−{X, f, Z} : (x1, x2, . . .) ∈ U}. Then lim←−{X, f, Z}\U ′ has full projections in all pos-

itive coordinates. Also, as π1(lim←−{X, f, N}\U) = X, it follows, from the surjectivity
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of f , that lim←−{X, f, Z}\U ′ has full projections in all non-positive coordinates. Thus

lim←−{X, f, Z} does not have the weak full projection property.

Definition 3.2.13. Let X be a compact Hausdorff space. An upper semicontinuous

function f : X → 2X is said to be re-expanding if there is an open set U ⊂ X such

that fn(U) = {x} for some x ∈ X and some n ∈ N and fm(x) is non-degenerate for

some m ∈ N.

Proposition 3.2.14. Suppose that X is a compact Hausdorff space with no isolated

points, and let f : X → 2X be upper semicontinuous. If f is re-expanding, then

lim←−f does not have the weak full projection property.

Proof. Let U, n, m, x be as given in Definition 3.2.13. As X has no isolated

points, let Un+m+1 ( U be non-empty open. Let U1 be any open set such

that fm(x) ∩ U1 6= ∅ and fm(x)\U1 6= ∅. Consider the non-empty open set

W =
︷ ︸︸ ︷
U1 ×X2 × · · · ×Xn+m × Un+m+1, where Xi := X for all i. Let y ∈ W . Then

ym+1 = x, so, for all i ≥ m + 1, f i
1(yi) meets X\U1, by definition of U1. Simi-

larly, for all i ≤ m, f i
m(yi) ⊃ {x}, so f i

n+m+1(yi) ∩ (U\Un+m+1) 6= ∅. Therefore, by

Theorem 3.2.6, lim←−f does not have the weak full projection property.

3.3 Continuum-Valued Maps of Graphs

As in the previous section, we will assume that all upper semi-continuous

functions are surjective.

Establishing necessary and sufficient conditions for an inverse limit of upper

semi-continuous functions to be connected is currently an open problem (Problems

2.2 and 2.3 of [31]). One significant sufficient condition is the following.

Theorem 3.3.1. (Theorem [31]) Let X be a continuum and f : X → 2X be upper-

semicontinuous. If f is the union of continuum-valued upper semicontinuous func-
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tions, at least one of which intersects all the others and is surjective, then lim←−f is

connected.

However, if such an f is the union of more than one continuum-valued func-

tion, then it will not have the full projection property, since it will necessarily fail

to be irreducible with respect to domain. Thus, for the purpose of constructing

indecomposable continua using the full projection property, only the subclass of

continuum-valued upper semicontinuous functions needs to be considered. In this

section, we restrict our attention to continuum-valued maps of finite graphs. We

will freely make use of the following two propositions.

Proposition 3.3.2. (Theorem 4 of [32]) Let f : X → 2Y be upper semi-continuous

and continuum-valued. Then G(f) is connected.

Proposition 3.3.3. Let G be a finite graph and Y a compactum. Let f : G→ 2Y be

upper semicontinuous and continuum-valued. Then for any connected set C ⊂ G,

f(C) is connected.

Proof. Let Cn ⊂ C be a sequence of continua such that Ci ⊂ Ci+1 for each i, and C =⋃
n∈N Cn. It follows from Proposition 3.3.2, that each f(Cn) is connected, since f |Cn

is an upper semicontinous, continuum-valued function. Then f(C) =
⋃

n∈N f(Cn) is

the union of connected sets containing a common point, and hence is connected.

Definition 3.3.4. An upper semicontinuous function f : X → 2X is residual-preserving,

if, for each open set U ⊂ X and each residual set R ⊂ U , f(R) is residual in f(U)◦.

Before examining residual preserving maps, we provide an example of a class

of maps that are irreducible with respect to domain but not residual preserving.

Example 3.1. Let C denote the Cantor middle-thirds set. Let {An}n∈N enumerate

the maximal open intervals in [0, 1]\C. For each n ∈ N , let an ∈ [0, 1]. Then

G = (C× [0, 1])∪
⋃

n∈N(An×{an}) is the graph of an upper-semicontinuous function
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Figure 3.1: The graph of an upper semicontinuous function that is irreducible with respect
to domain but is not residual preserving.

f : [0, 1] → 2[0,1]. A graph of one such G is given in Figure 3.1. The an’s may be

chosen so that f is irreducible with respect to domain. Since [0, 1]\C is dense and

open, but f([0, 1]\C) = {an : n ∈ N} is countable, f is not residual preserving. The

an’s may be chosen so that f is re-expanding, in which case, by Theorem 3.2.14,

lim←−f does not have the full projection property. Alternatively, if the an’s are chosen

such that f is not re-expanding, it is not difficult to show that lim←−f has the full

projection property, using Theorem 3.2.6.

Lemma 3.3.5. Let G be a finite graph. Suppose that f : G→ 2G is continuum-valued

such that G(f) is irreducible with respect to domain. Then S = {x ∈ G : f(x) is

single-valued } is residual.

Proof. Let d be the arc-length metric on G and let D be a countable dense subset of

G that contains the endpoints of G. For each n ∈ N, let An = {x ∈ G : diam(f(x)) ≥
1
n
}. Note that each An is closed. Suppose, for the sake of contradiction, that An

has interior in G for some n ∈ N. Let U ⊂ An be open in G and for each y ∈ G let

Ty = {x ∈ U : y ∈ f(x)}. As f is upper semicontinuous, each Ty is closed in U . Since

U =
⋃

y∈D Ty, it follows, by the Baire Category Theorem, that there is a q ∈ D such
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that Tq has interior in U . Let A = {y ∈ G : d(q, y) = 1/(2n)}. Since G is a graph, A

is finite. Also, for each x ∈ Tq, diam(f(x)) ≥ 1
n

as Tq ⊂ An, so x ∈
⋃

a∈A Ta. Then

T ◦
q ⊂

⋃
a∈A Ta, so by the Baire Category Theorem, there is an a ∈ A such that Ta

has interior in T ◦
q . Let V ⊂ Tq ∩Ta be open in G. Let B1, . . . Bm enumerate the arcs

in G that connect a and q. For each v ∈ V , we have that q, a ∈ f(v), so Bj ⊂ f(v)

for some Bj. Then V ⊂
⋃

i≤m f−1(B◦
i ), so, by the Baire Category Theorem, there is

a k ≤ n such that f−1(B◦
k) has interior in V . Let W ⊂ f−1(B◦

k) ∩ V be non-empty

open in G. Then G(f)\(W ×B◦
k) is a proper closed subset of G(f) with full domain,

which contradicts our hypothesis. Thus each An is nowhere dense.

Then by the Baire Category Theorem,
⋃

n∈N An is nowhere dense in G. Since

G = S ∪ (
⋃

n∈N An), it follows that S is residual.

Corollary 3.3.6. Suppose that f : G → 2G is continuum-valued such that G(f) is

irreducible with respect to domain. Then for every open neighborhood U of every

point x ∈ G, and for every open neighborhood V of every y ∈ f(x), there is a u ∈ U

and a v ∈ V such that f(u) = {v}.

Proof. Let K = {(x, y) ∈ G(f) : f(x) = {y}}. Then by Lemma 3.3.5, π1(K) is

dense in G. Then π1(K) = G, so by hypothesis, K = G(f). The result follows.

Definition 3.3.7. If f : X → 2X is upper semicontinuous such that f−1(x) is totally

disconnected for each x ∈ X, then f is said to be a light map.

Note that for continuum-valued maps on graphs, f : G → 2G is light iff for

every open set U ⊂ G, f(U) is not a singleton. We will provide a characterization

of when inverse limits of residual-preserving maps on trees have the full projection

property, but first we provide a simpler sufficient condition for maps on graphs that

is often easier to verify.

Theorem 3.3.8. Let G be a finite graph and f : G → 2G be a light, residual-

preserving, continuum-valued, upper-semicontinuous map such that for every x ∈ G,
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every y ∈ f(x), every connected open neighborhood U of x, and every component C

of U\{x}, y ∈ f(C). Then lim←−f has the full projection property iff f is irreducible

with respect to domain.

Proof. If f is not irreducible with respect to domain, then by Lemma 3.2.3, f does

not have the full projection property.

Now suppose that f is irreducible with respect to domain. By Lemma 3.2.3,

it suffices to show that f has the weak full projection property.

Let U =
︷ ︸︸ ︷
U1 × · · · × Un be a non-empty open set and let x ∈ U . Let Cn be

a component of Un\{xn}. Now suppose that Ci+1 has been defined, such that Ci+1

is a component of V \{xi+1} for some connected open set V ⊂ Ui+1. Then as f is

light and continuum-valued, f(Ci) is a non-degenerate continuum, and hence has

interior in G. Moreover, since xi ∈ f(Ci+1) by hypothesis, it follows that f(Ci)∩Ui

has interior in Ui. Then there is a connected open set Vi containing xi, such that

f(Ci+1) ∩ Ui contains a component, Ci of Vi\{xi}. Then by induction, we have, for

each i < n, an open set Ci ⊂ Ui, such that f(Ci+1) ⊃ Ci.

Let Sn = Cn ∩ S, where S = {x ∈ G : f(x) is single-valued }. It follows

from Lemma 3.3.5 that Sn is residual in Cn. By induction, for each i < n, let

Si = f(Ci+1 ∩ S). Since each Ci is open and f is residual-preserving, it follows that

Si is residual in Ci for each i < n.

Now let y1 ∈ S1. Then by induction, for each i < n, there is a yi+1 ∈ Si+1 such

that f(yi+1) = {yi}, since Si ⊂ S. Then yn ∈ Un and for all i < n, f i(yn) = {yn−i} ⊂

Un−i. Therefore by Theorem 3.2.6, lim←−f has the weak full projection property.

Lemma 3.3.9. Let G be a finite graph and let f : G → G be a continuum-valued

map that is irreducible with respect to domain. Then for all x ∈ G, {y ∈ f(x) :

f−1(y) = {x}} is finite.
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Proof. Let U ⊂ G be an open neighborhood of x that is small enough that U\{x}

consists of disjoint open arcs A1, . . . , An, such that Ai is an arc, for each i ≤ n.

Then, for each i ≤ n, f(Ai) is connected, as f is continuum-valued. Moreover,

as f is irreducible with respect to domain, (
⋃

i≤n f(Ai)) ∩ f(x) is dense in f(x).

Then
⋃

i≤n f(Ai) =
⋃

i≤n f(Ai) ⊃ f(x). But for each i ≤ n, f(Ai)\f(Ai) is finite,

since G is a graph and f(Ai) is connected. Thus f(x)\f(U\{x}) is finite.

Lemma 3.3.10. Let G be a finite graph and let f : G → G be a continuum-valued

map that is irreducible with respect to domain. If there are open sets U1, . . . Un ⊂ G

such that πn(
︷ ︸︸ ︷
U1 × · · · × Un) = {y} for some y ∈ G then lim←−f does not have the weak

full projection property.

Proof. Let U =
︷ ︸︸ ︷
U1 × · · · × Un and let x ∈ U so that xn = y. If, for every i ≤ n, πi(U)

is finite, then, for every i ≤ n, πi(lim←−f\U) ⊃ G\πi(U) = G, so πi(lim←−f\U) = G for

every i ≤ n. Then by Lemma 3.2.5, we are done.

So suppose that there is an i < n such that πi(U) is infinite, and let j denote

the maximal such i. We may assume for each i ∈ {j + 1, . . . , n}, that πi(U) = {xi},

as otherwise, we can redefine Ui so that it does not contain the finitely many elements

of πi(U) other than xi.

Let Z = {z ∈ πj(U) : |f−1(z)| = 1}. By Lemma 3.3.9, Z is finite, since

πj(U) ⊂ f(xj+1). Thus πj(U)\Z 6= ∅. Redefine Uj := Uj\Z, so that U is still

open, but now |f−1(z)| > 1 for all z ∈ πj(U) and hence f−1(z)\Uj+1 6= ∅, for all

z ∈ πj(U). Let w ∈ U . Then, for all i ≤ j, either f i
j(wi) ⊂ πj(U), in which case

f i
j+1(wi)\πj+1(U) 6= ∅, or f i

j(wi)\πj(U) 6= ∅. Moreover, for all i ∈ {j + 1, . . . , n},

πi(lim←−f\U) = G, in particular, wi ∈ πi(lim←−f\U), so there is a k ≤ n such that

f i
k(wi)\Ui 6= ∅. Therefore, by Theorem 3.2.10, lim←−f does not have the weak full

projection property.
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Definition 3.3.11. For an upper semicontinuous function f : X → 2X we define

f ∗n(x) = {(w1, . . . , wn) ∈ Xn : wn ∈ f(x) and wi ∈ f(wi+1) ∀i < n}.

Definition 3.3.12. Let G be a finite graph and f : G→ 2G be upper semicontinuous.

Let x ∈ X, (w1, . . . , wn−1) ∈ f ∗(n−1)(x) and for each i ≤ n let Ui ⊂ G be connected

and open such U1 × . . .× Un is a neighborhood of (w1, . . . , wn−1, x). For each com-

ponent C of Un\{x}, the trail of C with respect to U1 × · · · × Un is the collection

A1(C), . . . , An(C) where An(C) = C and Ai(C) = f(Ai+1(C)) ∩ Ui for each i < n.

Remark 3.3.13. Note that, in Definition 3.3.12, if G is a tree, then each Ai(C) is

connected.

Definition 3.3.14. Let G be a finite graph and let f : G → 2G be an upper semi-

continuous function. For an x ∈ G, an n ∈ N, a (w1, w2, . . . wn−1) ∈ f ∗(n−1)(x),

and an open set U1 × · · · × Un containing (w1, . . . , wn−1, x), we will say that a com-

ponent C of Un\{x} shadows (w1, . . . , wn−1, x), if wi ∈ Ai(C) for each i < n and

wi ∈ f(Ai+1(C)◦) for each i < n such that Ai+1(C)◦ 6= ∅.

Definition 3.3.15. Let G be a finite graph. An upper semicontinuous function f :

G→ 2G will be said to have the component shadowing property if for every x ∈ X,

every n ∈ N, every (w1, w2, . . . wn−1) ∈ f ∗(n−1)(x), and every open set U1 × · · · × Un

containing (w1, . . . , wn−1, x) such that each Ui is connected, there is a component C

of Un\{x} that shadows (w1, . . . , wn−1, x).

Examples of functions which fail to satisfy for the component shadowing prop-

erty are given in Figure 3.2.

Lemma 3.3.16. Let G be a finite graph and let f : G→ 2G be an upper semicontin-

uous function with the component shadowing property. Let x ∈ G and let n ∈ N.

Then for any point (w1, . . . , wn−1) ∈ f ∗(n−1)(x), there is an open set V1 × · · · × Vn

and a component C of Vn\{x} such that C shadows (w1, . . . , wn−1) ∈ f ∗(n−1)(x) with
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Figure 3.2: Two upper semicontinuous functions that don’t have the component shadow-
ing property. The function in graph (a) fails to satisfy xi ∈ Ai(C) for each i < 3 and
each component C of U3\{x3}. The function in graph (b) satisfies that condition for a
component C of U3\{x3}, but fails to satisfy xi ∈ f(Ai+1(C)◦) for each i < 3 such that
Ai+1(C)◦ 6= ∅.

respect to any open set W1 × · · · ×Wn such that Wn = Vn and Wi is a connected

open subset of Vi for each i < n.

Proof. Let Cn denote the collection of components of Un\{x} that shadow

(w1, . . . , wn−1) ∈ f ∗(n−1)(x) with respect to U1 × · · · × Un. Let Vn = Un. Now

suppose that Vn, . . . , Vi+1 have been defined. If there exists an open set D ⊂ Ui such

that Ai+1(C)◦ = ∅ with respect to U1 × · · · × Ui−1 × D × Vi+1 × · · · × Vn, then let

Vi = D, for some such D. Otherwise, let Vi = Ui.

Let {U j
n−1 : j ∈ N} enumerate a countable local basis at wn−1 such that

each U j
n−1 is a connected open subset of Vn−1 with U j+1

n−1 ⊂ U j
n−1. As Cn is finite,

there exists at least one component C ∈ Cn such that C shadows (w1, . . . , wn−1) ∈

f ∗(n−1)(x) with respect to V1 × · · · × Vn−2 × U j
n−1 × Vn for infinitely many j. Let

Cn−1 = {C ∈ Cn : C shadows V1×· · ·U j
n−1×Vn for infinitely many j}. By induction,

for each i < n, define Ci = {C ∈ Ci+1 : C shadows V1 × · · ·U j
i × Vi+1 × · · · × Vn for

infinitely many j}.

Let C ∈ C1. For each i ≤ n, let Wi ⊂ Vi be a connected open set, with

wi ∈ Wi. Then as C ∈ C1, for each i < n there is an open set V ′
i ⊂ Wi such that C
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shadows (w1, . . . , wn−1, x) with respect to V ′
1 × · · · × V ′

n−1 × Un. Hence, C shadows

W1 × · · · ×Wn−1 × Un.

Theorem 3.3.17. Let T be a finite tree and let f : T → T be a continuum-valued,

residual-preserving map. Then lim←−f has the full projection property iff f has the

component shadowing property, is irreducible with respect to domain, and is not

re-expanding.

Proof. Suppose that f has the component shadowing property, is irreducible with

respect to domain, and is not re-expanding. Let n ∈ N and let x ∈ lim←−f . Let Un

be a connect open neighborhood of xn. Let U1 × · · · ×Un denote a neighborhood of

(x1, . . . , xn) of the type that is guaranteed by Lemma 3.3.16, and let C denote the

corresponding component of Un\{xn}.

Let Sn = C ∩ S, where S = {y ∈ X : f(y) is single-valued}. By Lemma 3.3.5,

S is residual in T , so Sn is residual in C◦ = C = An. Let Vn = Un. We proceed by

induction.

Suppose that Vi+1 ⊂ Ui1 is a connected open neighborhood of xi and Si+1 is a

residual set in Ai+1(C) with respect to U1×· · ·×Ui×Vi+1×· · ·×Vn, and suppose that

Ai+2(C) is a non-degenerate connected set. If Ai+1(C)◦ = ∅, then Ai+1(C) = {xi+1}

and i + 1 < n since C is a non-degenerate connected set. Then for any yi+2 ∈ Si+2,

f j(yi+2) = {xi+2−j}, for each j ∈ {1, . . . , i + 1}, as f is not re-expanding. Similarly,

for each n ≥ k > i + 1, there is a yk ∈ Sk such that f(yk) = {yk−1}. Then by

Theorem 3.2.6 and Lemma 3.2.3, lim←−f has the full projection property.

So we may suppose that Ai+1(C)◦ 6= ∅. Then as T is a tree, Ai+1(C)◦ has only

finitely many components. Thus, by the component shadowing property, there is a

component B of Ai+1(C)◦ such that either

(1) f(B) = {xi}, or
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(2) f(B) is a non-degenerate connected set and x ∈ f(B).

In the former case, let yi+1 ∈ B∩Si+1 and proceed as before. In the latter case, as B

is open and f(B) has interior in T , f(Si+1∩B) is residual in f(B)◦, since f is residual-

preserving. Then, since f(B) is connected, f(Si+1) is residual in f(B). Let Vi ⊂ Ui

be a connected open neighborhood of xi such that f(B) contains a component of

Ui\{xi}. Then f(Si+1 ∩B) is residual in f(B), so Si := f(Si+1) ∩ S ∩ Vi is residual

in Ai(C) for the open set U1 × · · · × Ui−1 × Vi × · · · × Vn.

Proceeding by induction, S1 is residual in A1(C) for the open set V1 × · · · ×

Vn−1×Un. Define Vn = Un. By induction, choose for each i < n, a yi+1 ∈ Si+1∩Vi+1

such that f(yi+1) = {yi}. Then for all j < n, f j(yn) = {yn−j} ⊂ Vn−j ⊂ Un−j, so by

Theorem 3.2.6 and Lemma 3.2.3, lim←−f has the full projection property.

To prove the converse, consider its contrapositive. In light of Lemma 3.2.3 and

Proposition 3.2.14, suppose that lim←−f is irreducible with respect to domain, is not

re-expanding, and does not have the component shadowing property. We consider

two separate cases.

First suppose that there is an x ∈ T , an n ∈ N, a (w1, w2, . . . wn−1) ∈

f ∗(n−1)(x), and an open set U1 × · · · × Un containing (w1, . . . , wn−1, x), such that

each Ui is connected and for each component C of Un\{x} there is an i < n such

that wi 6∈ Ai(C). Let Vn = Un. For each i < n, let Ci denote the (possibly empty)

set of components C of Un\{x} such that wi 6∈ Ai(C). For each i < n, let Vi denote

the component of Ui\
⋃

C∈Ci
Ai(C) that contains wi, so that V :=

︷ ︸︸ ︷
V1 × · · · × Vn is

non-empty. Then, for each z ∈ Un\{x}, there is an i < n such that z 6∈ Vi, so

πn(V ) = {x}. Thus, by Lemma 3.3.10, lim←−f does not have the weak full projection

property.

It remains only to consider the case where there is an x ∈ X, n ∈ N,

(w1, w2, . . . wn−1) ∈ f ∗(n−1)(x), an open set U1×· · ·×Un containing (w1, . . . , wn−1, x)

such that each Ui is connected, and a non-empty collection C of components
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of Un\{x} such that for each C ∈ C, wi ∈ Ai(C) for each i < n and there

is an iC < n, such that wiC 6∈ f(AiC+1(C)◦) and AiC+1(C)◦ 6= ∅. In this

case, wiC ∈ f(AiC+1(C))\f(AiC+1(C)◦). Let ViC be a connected open subset of

UiC\f(AiC+1(C)◦) that contains wiC . Then for all y ∈ U1× · · · ×ViC × · · ·Un−1×C,

yic 6∈ f(AiC+1(C)◦), but yiC ∈ f(AiC+1(C)). By the upper semicontinuity of f ,

f(AiC+1(C)) ⊂ f(AiC+1(C)), so yic+1 ∈ ∂AiC+1(C). Thus πi+1(U1 × · · · × ViC ×

· · ·Un−1 × C) ⊂ ∂AiC+1(C) is finite.

If, for each C ∈ C, U1 × · · · × ViC × · · ·Un−1 × C is empty, then let Wi = Ui ∩⋂
{ViC : C ∈ C and iC = i} for each i < n. Then for all C ∈ C, W1×· · ·×Wn−1×C =

∅. By an argument similar to the previous case, for each component C of Un\{x}

such that C 6∈ C, W1×· · ·×Wn−1×C is also empty. Thus πn(W1×· · ·×Wn−1×Un) =

{x}. It follows by Lemma 3.3.10, that lim←−f does not have the weak full projection

property.

Similarly, if there is a C ∈ C, such that πn(U1 × · · · × ViC × · · ·Un−1 × C)

is non-empty, but finite, then, by Lemma 3.3.10, lim←−f does not have the weak full

projection property.

Otherwise, let C ∈ C and let D ⊂ UiC+1 be connected such that πiC+1(U1×· · ·×

ViC ×D× · · · ×Un) = {yC} for some yC ∈ ViC . Then f(yC)∩ (T\f(AiC+1(C)◦) 6= ∅.

However, AiC+1(C)◦∪{yC} is connected, so f(AiC+1(C)◦∪{yC}) is connected. Hence

f(yC) meets f(AiC+1(C)◦). Then for all z ∈
︷ ︸︸ ︷
U1 × · · · × ViC ×D × · · ·Un, ziC+1 = yC .

So f(ziC+1) ∩ (T\ViC ) 6= ∅, and |f iC+1
n (ziC+1)| > 1. Therefore, by Theorem 3.2.6,

lim←−f does not have the weak full projection property.

3.4 Examples

In this section, we construct examples that illustrate results on the full pro-

jection property from the previous sections in this chapter.
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Example 3.4.1. Let C denote the Cantor middle-thirds set and let I denote the set

of components of [0, 1]\C. For each I = (a, b) ∈ I, let AI denote the line segment

in [0, 1]× [0, 1] from (a, 0) to (b, 1). Let f denote the upper semicontinuous function

whose the graph is G(f) = (C × [0, 1])∪
⋃

I∈I AI . The graph of f is given in Figure

3.3.

Figure 3.3. The function described in Example 3.4.1.

Since S = {x ∈ [0, 1] : |f(x)| = 1} = [0, 1]\C is dense in [0, 1] and G(f |S) is

dense in G(f), it follows that f is irreducible with respect domain. It is not difficult

to show that f is residual preserving. Note that for every point x at which f is

multi-valued and for every connected open set U ⊂ [0, 1] that contains x, there is

a component D of U\{x} such that f(D ∩ S) = [0, 1]. From this observation, it is

not difficult to show that f has the component shadowing property. Hence, by The-

orem 3.3.17, lim←−f has the full projection property. Furthermore by Theorem 3.1.5,

lim←−f is indecomposable. We can generalize this example by replacing each of the

line segments AI with arbitrary single-valued functions of the form g : I → [0, 1]

such that {g(a), g(b)} = {0, 1}.

Example 3.4.2. For each n ∈ N, let A2n ⊂ [0, 1] × [0, 1] denote the line segment

from (22n−1+1
22n , 1

2
) to (22n+1

22n+1 , 1
4
), and let A2n+1 ⊂ [0, 1]× [0, 1] denote the line segment
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Figure 3.4. The function described in Example 3.4.2.

from (22n+1
22n+1 , 1

4
) to (22n+1+1

22n+2 , 1
2
), so that S = (1

2
× [1

4
, 1

2
]) ∪

⋃
n≥2

An is homeomorphic

to a “sin( 1
x
) curve.” Let B1 denote the line segment from (0, 1

2
) to (1

4
, 0) and let

B2 denote the line segment from (1
4
, 0) to (1

2
, 1

4
). Let B3 denote the line segment

from (3
4
, 1

2
) to (1, 1). Let f be the upper-semicontinuous function whose graph is

G(f) = B1 ∪B2 ∪ S ∪B3. The graph of f is given in Figure 3.4.

Note that f is irreducible with respect to domain. Since f |[0,1]\{ 1
2
} is residual-

preserving, it is not difficult to show that f is also residual preserving. Let x ∈

π−1
1 (1

2
) ∩ π−1

2 (1
2
) ∩ π−1

3 (0). Let U = [0, 1
8
). Then U\{x3} has only one component,

C = (0, 1
8
). But f 2(C) ⊂ (0, 1/4), so x1 = 1

2
6∈ f 2(C). Thus f does not have the

component shadowing property. Therefore by Theorem 3.3.17, lim←−f does not have

the full projection property.
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CHAPTER FOUR

Hagopian Spheres

4.1 Motivation

In [54], van Mill constructed an infinite dimensional Hausdorff continuum that

is indecomposable and homogeneous. However, in metric continua, the following

question is still open: does there exist an indecomposable, homogeneous continuum

of dimension greater than one? The question dates back at least as far as 1983 [50]

Bellamy [9] considered inverse limits of spheres using branch coverings as

possible candidates for indecomposable homogeneous continua of dimension two.

He dubbed these inverse limits Hagopian Spheres in honor of C. L. Hagopian, who

suggested the idea. Bellamy focused primarily on standard Hagopian Spheres, which

are inverse limits using maps of the following form.

Definition 4.1.1. Let N ∈ N. We will call a map f : S2 → S2, a spin map, if it

is of the form f = R−1 ◦ D ◦ R, where R is an isometry of S2 and D is given in

spherical coordinates by D(θ, φ) = (θ, Nφ), where θ is the elevation and φ is the

azimuthal angle. The natural number N will be called the degree of the map. The

points Np(f), Sp(f) := R(π, 0), R(−π, 0) will be called the north pole and south pole

of f , respectively.

Recall that all isometries of S2 are rotations, inversions, or a product of the

two [39]. Bellamy showed that any inverse limit with spin maps of odd degree is

decomposable and posed the question as to whether any inverse limit of spin maps

could be indecomposable. In this chapter, we answer that question in the affirmative,

showing that for any even number N , there is a collection of spin maps fi of degree

N such that lim←−fi is indecomposable.
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4.2 Indecomposable Inverse Limits of Spin Maps

Lemma 4.2.1. Let M ⊂ S2 be a continuum and let f be a spin map. If f−1(M) is

connected then either M separates the north pole of f from the south pole of f or

M ∩ {Np(f), Sp(f)} 6= ∅.

Proof. Suppose that M does not separate Np(f) from Sp(f) and suppose that M ∩

{Np(f), Sp(f)} = ∅. Then as S2\M is open, there is an arc A ⊂ S2\M from Np(f)

to Sp(f). Then f−1(A) contains a simple closed curve that separates f−1(M).

Definition 4.2.2. [45] Let X, Y be topological spaces. A continuous function f :

X → Y is said to be confluent, if for each continuum M ⊂ Y , each component of

f−1(M) is mapped onto M by f .

Note that spin maps are confluent and compositions of confluent maps are

confluent.

Lemma 4.2.3. Let X = lim←−{Xi, fi} where each fi is confluent. Then X is indecom-

posable iff for all i ∈ N and for each proper decomposition Xi = Ai ∪ Bi, either

(f j
i )−1(Ai) or (f j

i )−1(Bi) is disconnected for some j > i.

Proof. Suppose that X = A ∪ B is a proper decomposition of X, and suppose

that for each i ∈ N, there exists a ji > i such that at least one of (f ji

i )−1(Ai),

(f ji

i )−1(Bi) is disconnected. Without loss of generality, suppose that for infinitely

many i, (f ji

i )−1(Ai) is disconnected. Then for each such i there exists at least two

components M1, M2 of (f ji

i )−1(Ai), and, as f ji

i is confluent, each gets mapped onto

Ai. Then Aji
meets only one of M1, M2, so without loss of generality, suppose that

M2 ⊂ Bji
. Then f ji

i (Bji
) ⊃ f ji

i (M2) = Ai, so Bi = Xi. As i was arbitrarily large, it

follows that B = X, which contradicts the definition of B.
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Figure 4.1. The spin map fi from Lemma 4.2.4

Now suppose there exists an i ∈ N and some decomposition Xi = Ai∪Bi, such

that, for each j > i, both (f j
i )−1(Ai) and (f j

i )−1(Bi) are connected. Then π−1
i (Ai)

and π−1
i (Bi) are proper subcontinua of X such that X = π−1

i (Ai) ∪ π−1
i (Bi).

Lemma 4.2.4. Let x ∈ S2 and ε > 0. Then for any N ∈ 2N, there exist spin maps

f1, . . . , fn of degree N such that f−1
n ◦ f−1

n−1 ◦ · · · ◦ f−1
1 (Bε(x)) contains a point z and

the antipodal point of z.

Proof. We may assume that ε < π. Let p1 be a point of distance 2
3
ε from x. Let

f1 be a spin map of degree N with Np(f1) = p1 that fixes x. Then, since N is

even, f−1
1 (Bε(p1)) contains a line segment L1 of length 4

3
ε with p1 as its midpoint.

Proceeding by induction, for each i > 1 such that Li−1 does not contain antipodal

points, let pi be an endpoint of Li−1 and let fi be a spin map of degree N with

Np(fi) = pi that fixes Li−1. Then Li = f−1
i (Li−1) is a line segment of length 2i

3
ε (see

Figure 4.1). Then for some i, the length of Li is greater than π and hence contains

a point z and its antipodal point. As Li ⊂ f−1
i ◦ f−1

n−1 ◦ · · · ◦ f−1
1 (Bε(x)), the result

follows.

Theorem 4.2.5. For any N ∈ 2N, there exists a collection of spin maps, {fi}, of

degree N such that lim←−{S
2, fi} is indecomposable.
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Proof. For each i ∈ N, let Xi = S2 and let {Bεj
(xj) : j ∈ N} denote a basis of S2.

Let {aj ∈ N×N : j ∈ N} denote an enumeration of N×N such that bi := π1(ai) > i

for all i > 1 and b1 := π1(a1) = 1. Then by Lemma 4.2.4, there exist spin maps

fb1 , . . . , fn1−1 of degree N such that f−1
n1−1 ◦ · · ·◦f−1

b1
(Bε1(xa1)) contains a point z and

its antipodal point. Let fn1 denote a spin map of degree N with Np(fn1) = z. Then

by Lemma 4.2.1, f−1
n1
◦ · · · ◦ f−1

b1
(Bεa1

(xa1)) separates f−1
n1
◦ · · · ◦ f−1

b1
(Xb1\Bεa1

(xa1)).

Proceeding by induction, suppose that fni−1 has been defined. Then f−1
ni−1
◦

· · · ◦ f−1
bi

(Bεai
(xai

)) contains an open ball, so there exist spin maps fni−1+1, . . . , fni−1

of degree N such that f−1
ni−1 ◦ · · · f−1

bi
(Bεai

(xai
)) contains a point zi and its antipodal

point. As before, let fni
denote a spin map of degree N with Np(fni

) = zi. Then by

Lemma 4.2.1, f−1
ni
◦ · · · ◦ f−1

bi
(Bεai

(xai
)) separates f−1

ni
◦ · · · ◦ f−1

bi
(Xbi
\Bεai

(xai
)).

Then for any i and any proper subcontinuum M ⊂ Xi = S2, there exists

an xaj
∈ Xi such that M ⊂ S2\Bεaj

(xaj
). Then for some n > i, (fn

i )−1(M) is

disconnected, so by Proposition 4.2.3, lim←−{S
2, fi} is indecomposable.

We note that in the construction in Theorem 4.2.5, the spin maps do not have

to all be of the same degree. In fact, any function fi may be replaced with a spin

map of any even degree. Morever, after the construction of maps f1 through fn1 , any

finite number of confluent maps (not just spin maps) may inserted into the inverse

limit, provided that fn1+1 and subsequent maps are adjusted accordingly. The same

may occur after each fni
has been defined. With appropriate bonding maps inserted

between fni
and fni+1 for each i, it is hoped that a homogeneous inverse limit may

be constructed. However, it remains unknown if any inverse limit of spin maps is

homogeneous.

Question 4.2.6. Does there exist a collection of spin maps such that lim←−fi is homoge-

neous? Does there exist a collection of spin maps such that lim←−fi is indecomposable

and homogeneous?
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CHAPTER FIVE

Conclusion

5.1 Summary

Topological inverse limits play an important role in the theory of dynamical

systems and in continuum theory. In this dissertation, we investigate classical inverse

limits of Julia sets and set-valued inverse limits of arbitrary compacta.

Using the theory of Hubbard trees, the trunk of a Julia set was introduced.

Examination of the trunk led to a characterization of indecomposability in inverse

limits of post-critically finite polynomials restricted to their Julia sets. The trunk

was also observed to behave similarly to the core of a tent map. Results for in-

verse limits of Julia sets that are similar in nature to Bennett’s Theorem for inverse

limits of intervals were given. It was also shown that inverse limits of Julia sets of

postcritically finite polynomials are never hereditarily decomposable. However all

indecomposable subcontinua of the inverse limit of a post-critically finite polynomial

must intersect the inverse limit of the trunk.

Inverse limits with upper semicontinuous set-valued bonding maps have just

begun to be studied. We provided necessary and sufficient conditions for inverse

limits of upper semicontinuous functions to have the full projection property, an-

swering a question posed by Ingram [31]. In Theorem 3.2.6 such a characterization

for inverse limits of arbitrary compacta was given based solely on the dynamics of

the bonding functions. In Theorem 3.3.17, a characterization was given for the class

of continuum-valued maps of trees that are residual-preserving. As corollaries, a

condition was established for when a closed subset of an inverse limit is the inverse

limit of its projections and a necessary and sufficient condition for all closed subsets

of an inverse limit to have that property was provided. A number of other neces-
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sary conditions and sufficient conditions were provided in various contexts. As a

corollary, a necessary and sufficient condition was given for every closed subset of

an inverse limit to be the inverse limit of its projections.

Finally, we answered a question of Bellamy on whether or not inverse limits of

spin maps could be indecomposable. We complimented his result showing that odd

degree spin maps could not produce indecomposable inverse limits by showing that

even degree spin maps could. It remains an open question as to whether or not any

such inverse limit is homogeneous. An affirmative answer to that question would

solve a major open problem in the classification of homogeneous continua.

5.2 Open Problems

The following are open questions for further research.

Question: Are there postcritically finite polynomials f, g : Ĉ→ Ĉ that are not

topologically conjugate such that lim←−f |J(f) is homeomorphic to lim←−gJ(g)?

In general, questions of about homeomorphisms of inverse limits are difficult.

For example, the Ingram Conjecture asked if distinct tent maps of the interval nec-

essarily gave rise to distinct inverse limits. The conjecture dates back to at least

the mid nineties [27], was only recently proven in 2009 [4], despite considerable

attention. However, while post-critically finite polynomials are in some ways more

complex than tent maps (e.g., postcritically finite polynomials can have more than

one critical point), this question still may be tractable, as distinct (i.e. not topo-

logically conjugate) polynomials generally have distinct Julia sets, and when they

do not (e.g. f(z) = z2 and f(z) = z3), their inverse limits are often easily distin-

guished. Moreover, the theory of Hubbard trees provide a powerful tool to study

this question.
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Question: Let f : Ĉ → Ĉ be a polynomial that is not post-critically finite.

What conditions imply that lim←−f |J(f) is indecomposable? What conditions imply

that lim←−f |J(f) is decomposable?

The same questions could be posed for non-polynomial rational functions. An

interesting special case would be the rational functions for which J(f) = Ĉ.

One of the major uses of the full projection property is to prove that an in-

verse limit is indecomposable. For this purpose, a weaker property, the continuum

full projection property is sufficient. Because connectedness in inverse limits of up-

per semi-continuous functions is not well understood, the continuum full projection

property appears to be a difficult property to characterize at present. However,

establishing relationships between the full projection property and the continuum

full projection property seems to be a plausible way to develop necessary conditions

and sufficient conditions for an inverse limit to have the continuum full projection

property.

Definition 5.2.1. Let f : X → 2X be upper semicontinuous. An upper semi-

continuous function g : X → 2X is said to be a skeleton of f , if g is irreducible

with respect to domain and G(g) ⊂ G(f).

Question: Let f : X → 2X be upper semicontinuous and suppose that the

inverse limit of every skeleton of f has the full projection property. What conditions

on f and X ensure that lim←−f has the continuum full projection property? Conversely,

if the inverse limit of some skeleton of f does not have the full projection property,

what conditions on f and X ensure that lim←−f does not have the continuum full

projection property?

In [31], Ingram constructed an inverse limit with the continuum full projection

property and showed that it was indecomposable. Using results from this disserta-

tion, it is not difficult to show that the inverse limit of the only skeleton of the

bonding function for that inverse limit has the full projection property. Currently,
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we are not aware of any inverse limits for which the bonding function f has the

continuum full projection property and some skeleton of f does not have the full

projection property.

Question: [50] Is there an indecomposable homogeneous continuum of dimen-

sion greater than 1?

If there are indecomposable homogeneous continua of dimension greater than

one, then perhaps an affirmative answer to the following question would be a signif-

icant step towards constructing one.

Question: Is there a homogeneous Hagopian sphere? Is there a standard

Hagopian sphere that is homogeneous?

The class of indecomposable standard Hagopian spheres constructed in this

dissertation is plausibly large enough to intersect the set of homogeneous standard

Hagopian spheres, if the latter class is non-empty.
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première partie. Publ Math. Orsay, 1984-1985.

[22] J. Grispolakis and E. D. Tymchatyn. σ-connectedness in hereditarily locally
connected spaces. Trans. Amer. Math. Soc., 1979.

[23] Charles L. Hagopian. Indecomposable homogeneous plane continua are hered-
itarily indecomposable. Trans. Amer. Math. Soc., 224(2):339–350 (1977),
1976.

[24] Charles L. Hagopian. A characterization of solenoids. Pacific J. Math.,
68(2):425–435, 1977.

[25] George W. Henderson. The pseudo-arc as an inverse limit with one binding
map. Duke Math. J., 31:421–425, 1964.

[26] John G. Hocking and Gail S. Young. Topology. Addison-Wesley Publishing
Co., Inc., Reading, Mass.-London, 1961.

[27] W. T. Ingram. Inverse limits on [0, 1] using tent maps and certain other piece-
wise linear bonding maps. In Continua (Cincinnati, OH, 1994), volume
170 of Lecture Notes in Pure and Appl. Math., pages 253–258. Dekker, New
York, 1995.

[28] W. T. Ingram. Periodicity and indecomposability. Proc. Amer. Math. Soc.,
123(6):1907–1916, 1995.

[29] W. T. Ingram. Inverse limits, volume 15 of Aportaciones Matemáticas: In-
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