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Advisor: Jonathan M. Harrison, Ph.D.

Quantum graphs were first introduced as a simple model for studying quantum

mechanics in geometrically complex systems. For example, Pauling [97] used quan-

tum graphs to study organic molecules by viewing the atomic nuclei as nodes and the

chemical bonds as one-dimensional connecting wires on which the electrons traveled.

In 1997, Kottos and Smilansky [76] proposed the use of quantum graphs as a model

for studying quantum chaos. Quantum chaos is the study of quantum systems with

underlying classical dynamics that exhibit chaos. It is conjectured that the energy

levels, or spectra, of quantum systems with classically chaotic dynamics exhibit spac-

ing statistics that are predicted by the Gaussian ensembles of random matrix theory

[27]. This contrasts with quantum systems with corresponding integrable classical

dynamics which have been shown to be modeled by a Poisson process [22]. However,

in certain cases of chaotic dynamics, the spectral statistics fall in a category of inter-

mediate statistics, which combine features associated with the Poisson and random

matrix models. In the field of quantum graphs, this is the case with the quantum

star graph [14, 12], one of the simpler models studied. Quantum circulant graphs,

the Cayley graphs of cyclic groups, are a natural extension of star graphs because of

their rotational symmetry. Chapter three of this dissertation finds secular equations

for quantum circulant graphs which are used to study their spectra. In chapter four,



the nearest neighbor spacing statistics and two-point correlation function of circu-

lant graphs are numerically analyzed. When the edge lengths of a circulant graph

are incommensurate, it displays random matrix statistics; however, when edge length

symmetry is introduced, intermediate statistics appear. Predictions for intermediate

statistics are also derived analytically and compared to the numerics in this chapter.

The quantum graph spectral zeta function for circulant graphs is found in chapter

five and used to compute the spectral determinant and vacuum energy. The final

chapter examines the spectra of quantum Cayley graphs of general finite groups.
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CHAPTER ONE

Literature Review

A quantum graph refers to a metric graph equipped with a differential op-

erator. Although the term quantum graph doesn’t begin to appear until the late

1990s and early 2000s, when they were first introduced as a model for quantum chaos

and quantum wires, the study of mathematical objects falling under the umbrella of

quantum graphs dates to the 1930s. Quantum graphs are significant because they

can serve as models for a myriad of naturally occurring systems in physics, mathe-

matics, and chemistry. The study of quantum graphs merits our attention because

it offers a simple, yet nontrivial, model for studying quantum phenomena which are

challenging to analyze in higher dimensions. The goal of this chapter is to evaluate

the history, significance, and applications of quantum graphs, specifically through the

lens of quantum chaos.

1.1 History of Quantum Graphs

1.1.1 Origins of Graph Theory

In 1736, Leonhard Euler laid the foundations for the field that would come

to be known as graph theory with his resolution of the Seven Bridges of Königsberg

problem [38]. In Königsberg, there were four distinct landmasses connected by seven

different bridges. As the citizens of Königsberg would stroll around the city, they

devised a game of trying to find a path around the city that crossed each bridge

exactly once. Although no such path could be found, no one was able to prove that

it was impossible either. This puzzle intrigued Euler, and he devised a mathematical

way of showing the impossibility of a solution.

1



Figure 1.1. Euler’s diagram for the Seven Bridges of Königsberg. Courtesy of the MAA
Euler Archive; see also [38].

Let us represent, as Euler did in figure 1.1, each of the landmasses in the city of

Königsberg by a capital letter, A,B,C,D. A bridge crossing between two landmasses,

say from A to B, would then be represented by the sequence AB or BA, depending

on the direction of crossing. Since the path chosen within each landmass is irrelevant

to the problem, a journey through the city could be given as a sequence of letters

representing the landmasses traveled on.

Figure 1.2 shows a mathematical representation of the Königsberg bridge prob-

lem using a graph. By converting the landmasses into vertices of a graph and the

bridges into edges connecting the different vertices, Euler implemented a new kind of

geometry. Up to this point, most geometry involved some notion of distance, such as

length or area. This new “geometry of position” [38] was primarily concerned with

relative positions of the objects involved and opened the door for the new fields of

graph theory and topology.

Euler’s solution to this problem utilized paths on graphs. Notice that a path

which traverses each of the seven bridges no more than once requires a sequence of at

most eight letters. Now consider an individual landmass, for example A. The letter A

2



A

B

C

D

Figure 1.2. A graph depiction of the Seven Bridges of Königsberg.

must be present at least three times in the sequence in order to cross all five bridges

connected to this landmass, since two occurrences can cover at most four crossings.

Similarly, the letters B, C, and D must be present at least twice in the sequence in

order to cross each of their three bridges. Adding this up, we see that a sequence

using every bridge must contain at least nine letters, which contradicts our original

assertion that the necessary sequence requires at most eight letters.

There are many other interesting topics related to the study of graphs, but the

idea of paths on graphs as sequences of vertices will continue to be relevant for our

study. We will also often be interested in looking at the orbits on a graph, which are

paths that begin and end at the same vertex. This idea of traversing a graph will turn

out to be important in our application of quantum graphs to the study of quantum

chaos.

1.1.2 Introduction of Quantum Graphs

One of the main principles of quantum mechanics is the concept of wave-

particle duality. This is the discovery that particles also exhibit wave-like properties.

In a quantum system, this can be modeled via the wavefunction, a mathematical

description of the state of a quantum system. Integrating the square modulus of the

3



wavefunction over a region of space gives the probability that the particle described

by the wavefunction is found in that region.

One of the first models a student in a course on quantum mechanics will consider

is that of a particle confined to a one-dimensional box. Inside of the box, the potential

is zero, so the movement of the particle is unrestricted. The potential outside the box

goes to infinity, guaranteeing that the particle has zero probability of being outside

the box. Determining the wavefunction in this context amounts to solving the time-

independent Schrödinger equation, a second-order differential equation, as a boundary

value problem on an interval of some given length.

This model can be viewed from a graph-theoretic perspective by considering

the endpoints of the interval as graph vertices and the interval as the edge connecting

these two vertices. In this model, viewing the edge as an interval requires introducing

a notion of distance to the graph. Such a graph, one where the edges are considered to

have lengths, is known as a metric graph. By linking together various one-dimensional

boxes at the ends of the intervals, we obtain a quantum mechanical system modeled

by a differential equation on the edges of a metric graph. The boundary of each inter-

val is now a vertex connecting different intervals, so we choose boundary conditions

at the vertices which govern the interactions between the different one-dimensional

boxes. Typically, this is done in a way that defines a self-adjoint operator in or-

der for the operator to represent an observable. This is a quantum graph: a metric

graph equipped with a differential operator (such as the Schrödinger operator) and

appropriate (typically self-adjoint) boundary conditions at the vertices.

In 1936, Pauling [97] sought to study the spectrum of free electrons in aromatic

organic molecules using a quantum graph model. The simplest of these molecules

is benzene, which consists of a hexagonal ring of six carbon atoms each of which

is bonded to a hydrogen atom. Many other aromatic molecules are derivatives of

4



benzene and share aspects of this hexagonal ring structure. For example, figure 1.3

depicts the molecule anthracene and its induced currents between carbon atoms.

Figure 1.3. The molecule anthracene and the induced currents between atoms. Reprinted
from [97] with the permission of AIP Publishing.

The use of quantum graphs as a model for aromatic hydrocarbons was given

a more detailed treatment in [103], where it was applied to organic molecules with

conjugated systems; that is systems containing alternating single and double chemical

bonds. The idea behind the free-electron model is that certain electrons are able to

move throughout the entire molecule, as opposed to being restricted to a single atom

or bond. Thus, by representing the various atoms in the molecule by graph vertices

and the chemical bonds between them by connecting edges, a quantum graph model

emerges. Figure 1.4 depicts Ruedenberg and Scherr’s conception of a one-dimensional

mathematical model for a branching point in an organic hydrocarbon.

Although it was later determined that this model overlooks several key as-

sumptions in its reduction to a one-dimensional problem, the use of quantum graphs

to study the spectra of carbon structures is reemerging in the past few decades.

Graphene, a regular hexagonal lattice of carbon atoms, has attracted a lot of atten-

tion in recent years. Graphene has many structural properties which make it useful in

engineering and manufacturing, such as its relative strength, flexibility, and efficient

5



Figure 1.4. A one-dimensional space modeling a branching point in the bond skeleton of an
organic molecule. Reprinted from [103] with the permission of AIP Publishing.

conductivity. In 2010, the Nobel Prize in Physics was awarded “for groundbreaking

experiments regarding the two-dimensional material graphene” [1]. At present, there

is a high demand for research on this promising new carbon allotrope. For more

on the applications of quantum graphs to the study of graphene and other carbon

nano-structures, see [86].

Another relevant structure of current interest which can be modeled by quantum

graphs is the photonic crystal [80, 85, 81]. A photonic crystal is a periodic dielectric

medium which affects the propagation of electromagnetic waves in a similar way to

how a semi-conductor affects the motion of electrons. The phenomenon of Anderson

localization refers to the absence of diffusion of waves in a medium with random

impurities or random perturbations. This can be modeled by a Schrödinger operator

with a random potential on a quantum graph [105, 40, 65]. Additionally, quantum

graphs can serve as models in mesoscopic and nanoscopic systems, such as quantum

wires and carbon nanotubes, which have relevance for advances in nanotechnology

[107, 113].
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1.1.3 Connections Between Discrete and Quantum Graphs

Discrete or combinatorial graphs can often have many of their properties en-

coded in matrices. One obvious example is the adjacency matrix, which gives infor-

mation about how vertices are connected in a graph. Another example is the discrete

Laplacian, which is a diagonal matrix of vertex degrees minus the aforementioned

adjacency matrix. Studying the spectral properties of these matrices is a field known

as spectral graph theory, and there are many useful connections between the spectra

of quantum graphs and their corresponding discrete graph spectra. For a quantum

graph equipped with the Laplace operator and standard vertex conditions, if the

edges of the graph have the same length L, then λ is in the spectrum if and only

if 1 − cos(L
√
λ) is in the corresponding spectrum of the discrete Laplace operator

[30, 95].

Another similarity between the two fields is the study of zeta functions, various

analogues of the Riemann zeta function. The Ihara zeta function on discrete graphs

was introduced in the 1960s [67] and can be used to relate closed paths on the graph

to the spectrum of its adjacency matrix. The Ihara zeta function is defined as a

product over closed non-backtracking paths on the graph, and it can be expressed

as the inverse of the characteristic polynomial of an oriented adjacency matrix. For

quantum graphs, spectral properties of the graph are often related to sums over

periodic orbits via trace formulae. A spectral zeta function for a quantum graph

can also be obtained in this way, but in chapter five, we will examine how a contour

integral technique introduced by Kirsten and McKane in [71, 72] can be used to obtain

a spectral zeta function for a quantum graph.

1.2 Quantum Chaos

At the turn of the 20th century, the foundations of quantum mechanics were

being laid through the work of such physicists as Planck, Einstein, Bohr, de Broglie,
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Born, Dirac, Heisenberg, Pauli, and Schrödinger. Around the same time, chaotic

behavior in classical mechanics was beginning to emerge, albeit slowly, for example

in the study of the three-body problem by Poincaré.

1.2.1 Chaotic Dynamics

The study of chaos theory involves dynamical systems that are considered

to exhibit deterministic chaotic behavior. Although there is no single agreed upon

mathematical definition of chaos, many share the characteristic of sensitivity to ini-

tial conditions. That is, a slight change in initial conditions results in a drastically

different outcome. One of the first major observations of this phenomenon was in the

three-body problem by Henri Poincaré. The three-body problem involves determin-

ing the motion of three point masses based on their interactions from their mutual

gravitational field. One often cited example models the motion of the Sun, Moon,

and Earth, though in practice any three particles can be used. As opposed to the

two-body problem, the three-body problem cannot be solved analytically for an arbi-

trary set of initial conditions. Poincaré observed that certain cases of the three-body

problem resulted in trajectories with seemingly random behavior. One example he

studied was a particular case of the restricted three-body problem, in which two of

the three bodies are held in orbit around their mutual center of mass and the mass of

the third body is much smaller than the other two [98, 99, 100, 101]. Minor changes

in the mass of the relatively infinitesimal third body would lead to distinct changes

in its trajectory, giving rise to the appearance of chaotic behavior.

Another property typically shared by chaotic dynamical systems is ergodicity.

Loosely speaking, a dynamical system is ergodic if the average of some function along

a trajectory is equal to the average over all points in the space. A useful example

of ergodicity is provided by considering dynamical billiards. A dynamical billiard is

a particle modeled by a point confined to some two-dimensional region of the plane.
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The particle moves in a straight line until hitting the region’s boundary, at which

point it bounces off without losing speed. The reflection off the boundary is specular;

that is, the angle of incidence equals the angle of reflection. Figure 1.5(a) depicts

the trajectory of a particle in a billiard with a circular boundary and figure 1.5(b)

displays a trajectory in a Bunimovich stadium.

(a) (b)

Figure 1.5. Dynamical billiards: (a) a trajectory of a particle in a circular billiard; (b) a
trajectory of a particle in the Bunimovich stadium.

A dynamical billiard is ergodic if the average of a function defined on the re-

gion along an individual trajectory over time is equal to the average over the region

of space. Intuitively, one can think about a system in which the trajectory of a

single particle will eventually cover the entire space evenly. The trajectory in the

Bunimovich stadium in figure 1.5(b) is an example of an ergodic dynamical system

because over time, the particle is equally likely to be anywhere inside the stadium.

On the other hand, the system depicted in figure 1.5(a) is not ergodic because the

probability of the particle being near the center of the circle is zero, regardless of how

long the trajectory continues. The trajectory of a particle in a circular billiard is an

example of integrable dynamics.

Ergodicity is actually the weakest condition in a hierarchy of similar properties

studied in ergodic theory. These include strong and weak mixing, Kolmogorov systems
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(or K-systems), and Bernoulli systems. It is generally accepted that every chaotic

system will fall somewhere in this hierarchy, but not every ergodic system is said to

be chaotic.

1.2.2 The BGS Conjecture and Random Matrices

Quantum chaos seeks to understand the link between quantum mechanics and

dynamical systems exhibiting classically chaotic behavior. For example, the billiards

shown in figure 1.5 are classical systems with dynamics determined by specular reflec-

tions, as described in the previous section. One can define a corresponding quantum

billiard by considering the Laplace equation on the same region with Dirichlet con-

ditions at the boundary where the wavefunction vanishes. A question of interest to

those studying quantum chaos is how the chaotic dynamics of the billiard are reflected

in the properties of the eigenvalues and eigenfunctions of the corresponding quantum

system.

In 1984, Bohigas, Giannoni, and Schmit observed that the spectral statistics

of quantum systems corresponding to classically chaotic systems appeared to share

certain universal properties. They conjectured that

Spectra of time reversal-invariant systems whose classical analogs are K-
systems show the same fluctuation properties as predicted by GOE (alter-
native stronger conjectures that cannot be excluded would apply to less
chaotic systems, provided that they are ergodic). [27]

Here the GOE refers to the Gaussian orthogonal ensemble of random matrices, and K-

systems are the Komolgorov systems included in the hierarchy of ergodic theory. This

conjecture sparked a great deal of interest in the more general relationship between

the spectra of classically chaotic quantum systems and the eigenvalue statistics of

ensembles of random matrices. Although the original conjecture was specific to K-

systems and the GOE, the general correspondence between classical chaos and random

matrix statistics is referred to as the BGS conjecture.
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The Gaussian orthogonal ensemble is the collection of real symmetric N × N

matrices with independent entries along and above the diagonal distributed according

to a normal Gaussian distribution. The probability distribution on this space of ma-

trices is invariant under orthogonal transformations, which, along with independent

matrix elements, is sufficient to derive a Gaussian distribution [58]. In the 1950s,

Wigner introduced this ensemble as a model for the Hamiltonians of large nuclei.

To be an effective model, the matrices must be Hermitian, and the invariance un-

der orthogonal conjugation is required for the matrix to describe a Hamiltonian with

time-reversal symmetry.

A Hamiltonian without time-reversal symmetry would be modeled by the space

of Hermitian matrices with a probability distribution that is invariant under unitary

transformations, which gives rise to the Gaussian unitary ensemble, or GUE. This is a

collection of complex Hermitian matrices with independent Gaussian distributed ele-

ments along and above the diagonal. The third commonly studied Gaussian ensemble

is the GSE, or Gaussian symplectic ensemble, which is the ensemble of matrices whose

elements are Gaussian distributed quaternions. The GSE corresponds to systems with

anti-unitary time-reversal symmetry.

Besides looking at properties of the spectrum, another area of study in quantum

chaos considers the properties of the eigenfunctions [117, 36, 118]. A system with

quantum ergodicity has wavefunctions which are equidistributed. More specifically,

for a sequence of wavefunctions, there exists a dense subsequence such that the limit of

the integral of some function against the square modulus of the wavefunctions over any

region is equal to the integral of the function over the region, assuming normalization

[108, 93]. The need for a subsequence is a result of the presence of scars, which

are wavefunctions that are localized around a classical periodic orbit. A system is

said to possess quantum unique ergodicity if all sequences of its wavefunctions are

equidistributed [88, 104].
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1.2.3 Quantum Graphs as a Model of Quantum Chaos

Kottos and Smilanksy were the first to propose quantum graphs as a useful

model to study quantum chaos. In their seminal 1997 paper [76], they showed that the

eigenvalues of the Schrödinger operator on a fully connected square graph matched

the nearest-neighbor spacing distributions for the eigenvalues of the GOE and GUE

as predicted by Bohigas, Giannoni and Schmit. The key innovation here is that

quantum graphs possess enough complexity to exhibit the characteristics of a chaotic

system, but because of their one-dimensional nature, they are also simple enough to

allow for greater mathematical analysis.

To understand the underlying chaotic dynamics of a quantum graph, we may

view a path on a graph as a classical trajectory. Along each edge, the one-dimensional

motion is determined. However, each vertex may present multiple possible directions

for the trajectory to continue, the choice of which is expressed using probability. For

example, if a particular vertex is connected to d distinct edges, then a path entering

that vertex may have d choices, each with probability 1/d, for which direction it will

continue. The probability does need not be equal for each choice of direction, and

indeed, this will not be the case for the graphs we consider. However, these transition

probabilities are independent of previous choices, which creates a Markov chain with

states described by vectors indexed by the directed edges of the graph. Ergodicity

on the graph implies that the probability of a trajectory ending on a particular edge

of the graph is equally likely after a large number of steps. This brings to mind the

idea of ergodicity as presented for dynamical billiards, where a particular trajectory

will eventually cover the interior of the billiard.

Since the introduction of quantum graphs as a model for quantum chaos, their

study has been applied to a wide range of topics in the field. Kottos and Smilansky

[76, 77] discovered an exact trace formula for the spectrum of quantum graphs (an

earlier trace formula was discovered by Roth [102] in a different context) which was
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used to derive the form factor, the Fourier tranform of the two-point correlation

function for the spectrum, in terms of periodic orbits on the graph. This was used

to analyze the spectral statistics of several classes of graphs, including star graphs

[14, 12], binary graphs [110], line graphs [94], and regular graphs [106]. In many of

these cases, random matrix statistics were observed, but star graphs were a notable

exception, displaying a form of intermediate statistics. Additional results for the

spectral statistics on graphs have also been obtained [8, 19, 20, 10, 29, 28, 63, 26].

Quantum graphs have also been used to approach scattering problems [78, 79,

112], study quantum ergodicity and eigenfunction statistics [16, 17, 15, 51, 47, 70],

and apply supersymmetric integral techniques [45, 46, 48, 49]. A thorough review of

the applications of quantum graphs in quantum chaos can be found in [50].

1.3 Symmetry

1.3.1 Circulant Graphs

Since the analogy for classical chaos on a graph relies on the transition prob-

abilities at the vertices of a graph, one might imagine that a certain amount of well-

connectedness is required for the graph to be sufficiently chaotic to display random

matrix statistics. Indeed, Berkolaiko and Keating showed in 1999 that the spec-

tral statistics for quantum star graphs, one of the simplest types of graphs, did not

match the predictions of random matrix theory [14], and they later showed, along

with Winn, that star graphs have no quantum ergodicity [17], despite being ergodic

in the classical sense. Tanner [110] proposed a conjecture in 2001 that related the

agreement with random matrix statistics to the spectral gap of the transition matrix.

The spectral gap is the difference between the largest and second largest eigenvalues,

and the spectral gap of the adjacency matrix for a graph is often used as a measure

of how well-connected a given graph is.
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Another measure of the well-connectedness of a graph is the graph diameter,

which is the maximum distance between two vertices on the graph. Marklof and

Strömbergsson were interested in looking at the diameter of random graphs. Although

this is a combinatorial graph property rather than a quantum one, it can also be said

that graphs with poor connectedness, in their case cycles, behave differently than a

typical graph. In many graph models, the diameter grows logarithmically with respect

to an increase in the number of vertices. However, on a cycle, this quantity grows

linearly. In their paper [89], Marklof and Strömbergsson considered a generalization of

cycles, known as circulant graphs. These can be seen as an interconnected collection

of cycles that behave much better with regards to growth in diameter.

In a similar fashion, a circulant graph can be seen as an extension of a star

graph. In any graph, each vertex is locally a star graph, but in a circulant graph, every

vertex is locally the same star graph. Additionally, circulant graphs have rotational

symmetry, which is another property shared with star graphs. This allows techniques

used on star graphs to be extended to circulant graphs, which we will make full use

of in chapters three, four, and five of this thesis.

1.3.2 Applications of Symmetry in Quantum Graphs

Throughout much of the second half of the 20th century, many mathematicians

and physicists were interested in answering the question posed by Marc Kac, “Can one

hear the shape of a drum?” [69]. This is fundamentally a question of isospectrality;

that is, do there exist differently shaped drums with identical spectra? In 1992,

Gordon, Webb, and Wolpert [53, 54] used a method developed by Sunada [109] to

construct a counterexample to Kac’s original supposition, but there is still plenty of

interest in the field of isospectrality.

In the early 2000s, as research in quantum graphs was beginning to flourish,

a similar question was posed as to whether or not one could hear the shape of a
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graph [57]. Gutkin and Smilansky showed that it was possible to hear the shape of

a quantum graph under certain conditions. These conditions require a graph with

incommensurate edge lengths and no loops (an edge connecting a vertex to itself) or

double edges. However, when those conditions are not satisfied, many examples of

isospectral graphs have been found.

Band, Parzanchevski, and Ben-Shach [7, 96] developed a method based on

Sunada’s that is used to construct isospectral quantum graphs. These quotient

graphs are constructed using representations of finite symmetry groups on the quan-

tum graph. The method allows one to construct isospectral graphs from graphs with

symmetry groups.

Although not a question of isospectrality, Joyner, Müller, and Sieber [68] used

the method of quotient graphs to construct a quantum graph which displayed GSE

random matrix statistics. Previously, these statistics had only been found in sys-

tems whose wavefunctions had half-integer spin, where the time-reversal operator is

anti-unitary. By constructing a quotient graph with geometric symmetry under the

quaternion group, GSE statistics were obtained for a system without spin. Finding

and studying the spectra of quotient graphs with symmetry based on more general

finite groups is the aim of chapter six.
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CHAPTER TWO

Background Information

The study of quantum graphs intersects with a wide swath of different mathe-

matical fields. The basic concepts and terminology of graph theory, functional anal-

ysis, algebraic representation theory, and probability and statistics all make appear-

ances, which still neglects to cover the various physical applications that can also be

found. This dissertation will attempt to be as self-contained as possible, but a deep

dive into all the topics represented would require volumes. So, before introducing

the necessary definitions and theorems, the author would like to recommend some

additional texts for the interested reader.

The definitive textbook on quantum graphs is [18] and many of the significant

results in the field are referenced there. Some other useful introductory papers in-

clude [82, 83, 84, 50] and more recently [11, 6]. There are numerous texts on graph

theory, but [35] provides a thorough introduction, as well as including more modern

developments. For insights into the relevant subfields of algebraic graph theory and

spectral graph theory, the author recommends [52] and [31], respectively.

2.1 Notions from Graph Theory

A combinatorial graph (or graph) Γ consists of a set of vertices V = {vi} and

a set of undirected edges E = {ej} connecting pairs of vertices. Let V = |V|, the

number of vertices in Γ, and E = |E|, the number of edges. Two vertices u and

v are said to be adjacent, written u ∼ v, if there exists an edge e ∈ E connecting

them, which we will often denote by the unordered pair {u, v}. If e ∈ E is an edge

connecting the vertex v ∈ V to some other vertex in V , e is said to be incident to v.

Denote the set of all edges incident to the vertex v ∈ V by Ev. The degree of a vertex
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dv is defined as the number of edges incident to the vertex v. The adjacency matrix

of a graph is a V × V matrix J , where

Jij =


1 if i ∼ j

0 otherwise.

(2.1)

A path on a graph can be given as a connected sequence of edges, e1e2 . . . em,

or vertices, v0v1 . . . vm, such that ei connects vi−1 and vi for all i = 1, . . .m − 1. A

closed path is a path in which v0 = vm; that is, the path ends on the vertex where it

began. The topological length of a path is the number of edges in that path, m in the

above example. The topological distance between two vertices in a graph is defined

as the minimum number of edges in a path between them.

2.1.1 Directed Graphs

By assigning a direction to each edge in a graph, the graph becomes a directed

graph, or digraph. Directed edges are often referred to as bonds, particularly in the

physics literature, though this notation also appears elsewhere. Each bond b has

an origin vertex, o(b), and a terminal vertex, t(b). The reversal of b is the bond

with opposite direction, denoted b. So, o(b) = t(b) and t(b) = o(b). Using this

notation, a path on a directed graph is defined as a sequence of bonds b1b2 . . . bm

such that t(bi) = o(bi+1) for all i = 1, . . . ,m − 1, and a closed path is one in which

t(bm) = o(b1). One standard way of converting an undirected graph into a directed

graph is to replace each edge with two directed bonds, b and b. Unless otherwise

specified, directed graphs in this dissertation are assumed to be defined in this way.

2.1.2 Metric Graphs

A combinatorial graph Γ becomes a metric graph G by assigning each edge of

Γ a positive length Le ∈ (0,∞). One straightforward way of obtaining a metric graph
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is to embed the graph Γ in Rn and define the lengths of the edges as the distance

between vertices in the natural way. However, we do not require that a metric graph

is able to be embedded for a particular choice of edge lengths.

On a metric graph G, an edge of length Le can be viewed as corresponding

to a closed interval [0, Le], oriented so that 0 is associated to one vertex and Le is

associated to the other. There are two possible ways of achieving this, but the chosen

orientation will not affect the operators we study. We may then consider coordinates

xe ∈ [0, Le] on each edge in the natural way. The distance between the coordinate xe

and the vertex associated to 0 is xe and the distance between the coordinate and the

vertex associated to Le is Le − xe. Then the metric distance (or distance) between

any two points x, y ∈ G is defined as the minimum metric distance between them,

measured along the edges of the graph.

On a directed graph where each edge has been replaced by the bonds b and

b, we let Lb = Lb in the associated metric graph. We choose to orient the interval

associated to each bond b in such a way that the coordinate xb = 0 at o(b) and xb = Lb

at t(b), and similarly on the reversal b, the coordinate xb = 0 at o(b) and xb = Lb at

t(b). This orientation is shown in figure 2.1, and consequently, xb and xb are related

by xb = Lb − xb, as shown.

xb = 0 xb = Lb

xb = 0xb = Lb

b
xb

b

xb

Figure 2.1. A pair of directed bonds, b and b. Each bond is associated to the interval [0, Lb]
with opposite orientations.
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2.2 Introduction to Quantum Graphs

If we assign a metric to a combinatorial graph in the way described in the

previous section, this allows us to define functions fe(xe) on each edge e ∈ E as

functions on its associated interval. Then, functions on G are defined as an E-tuple

of the functions fe. In this way, a function f(x) on G is defined at every intermediate

point along each edge of the graph. From this, we can construct function spaces,

such as the space of continuous functions C(G) or the square-integrable functions,

L2(G) :=
⊕

e∈E L
2[0, Le].

A quantum graph (G,H) is defined as a metric graph G equipped with a differ-

ential operator H acting on the functions of the graph. We will often suppress H in

notation and refer to G as a quantum graph. The most commonly studied operator

is the Laplace operator, or negative second derivative, acting on functions defined on

each edge,

H : f(xe) 7→ −
d2f

dx2
e

. (2.2)

Another commonly studied operator is the Schrödinger operator [74]. The mag-

netic Schrödinger operator acts on a directed bond b as

f(xb) 7→ −
(

d

dxb
− iAb

)2

f(xb) + V (xb)f(xb) , (2.3)

where V is an electric potential and Ab is a magnetic vector potential. Unlike the

Laplace operator and general Schrödinger operator, the magnetic Schrödinger opera-

tor is dependent on the choice of direction of the bonds since Ab = −Ab.

The chosen direction for the bonds is also relevant for the Dirac operator. All

self-adjoint realizations of the Dirac operator on a metric graph were defined in [29].

The time-independent Dirac operator on an interval is

f(xb) 7→ −i~cα
df

dxb
+mc2βf(xb) , (2.4)
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where α and β are matrices satisfying α2 = β2 = 1 and αβ + βα = 0, which is the

Dirac algebra in one dimension.

For the remainder of this dissertation, our operator of study will be the Lapla-

cian (2.2). In order to fully define this operator, we must assign it a domain. In our

case, the set of functions on G must belong in the direct sum of the second Sobolev

space on each edge, which we denote H̃2(G) =
⊕

e∈E H
2[0, Le]. Matching conditions

at the vertices, referred to as vertex conditions, are then chosen to complete the defi-

nition of the operator domain to make it self-adjoint. We will discuss these in detail

in the next section.

2.2.1 Vertex Conditions

It is often desirable in the study of quantum graphs that vertex conditions be

chosen in a way which makes the operator self-adjoint, as this lends itself naturally to

applications. A standard choice for vertex conditions in this case are the Neumann-

like (or Neumann-Kirchoff) conditions,

f(x) is continuous on G, and (2.5)

∀v ∈ V ,
∑
e∈Ev

d

dxe
fe(v) = 0 . (2.6)

All derivatives are assumed to be taken in the outgoing direction from v, so d
dxe
fe(v)

is either f ′e(0) or −f ′e(Le), depending on the chosen orientation of the edge.

Another important set of vertex conditions are the Dirichlet conditions. These

require that

fe(v) = 0 for all v ∈ V , e ∈ Ev . (2.7)

The result is a decoupling of the edges of the graph, since these conditions remove

any relationship between them. Despite this, Dirichlet conditions will turn out to
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be relevant in the study of symmetric quantum graphs, so we will return to them in

future chapters.

For the Laplace operator acting on a quantum graph, there is a complete charac-

terization of vertex conditions which define a self-adjoint operator. These conditions

are defined locally, meaning the conditions at each vertex only involve values of the

function and its derivatives at the ends of the intervals incident to the vertex. In

general, non-local conditions can always be made local by identifying the necessary

vertices into a single vertex with local conditions. There are three equivalent charac-

terizations of the self-adjoint vertex conditions for a quantum graph [18, 73, 43, 59].

In each of the following, we assume the statement holds for every vertex v with degree

dv of the quantum graph.

The first characterization expresses the vertex conditions at v using two dv×dv

matrices, Av and Bv. Matching conditions at v are defined by the matrix equation

AvF (v) + BvF ′(v) = 0 , (2.8)

where F (v) is a vector of function values at v on each incident edge and F ′(v)

is a vector of the values of the corresponding derivatives at v, taken in the outgoing

direction. For the vertex conditions (2.8) to define a self-adjoint Laplacian, the matrix

AvB
∗
v must be self-adjoint and the dv × 2dv augmented matrix (Av|Bv) must have

maximal rank. Neumann-like vertex conditions (2.5)–(2.6) given in this way can take

the form,

Av =


1 −1

1 −1
. . . . . .

1 −1
0 · · · 0

 Bv =


0

. . .
0

1 · · · 1

 , (2.9)

where the remaining elements in Av and Bv are zero. We can recover the Neumann-like

conditions by substituting the matrices in (2.9) into (2.8). The first dv − 1 equations
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requires continuity at v, while the last equation requires the sum of derivatives at v

to be zero.

The self-adjoint vertex conditions at v can also be defined uniquely by a dv×dv

unitary matrix Uv. In this case, the function must satisfy

i(Uv − I)F (v) + (Uv + I)F ′(v) = 0 , (2.10)

where F (v) and F ′(v) are defined in the same manner as (2.8). One can check the

equivalence of these conditions by noting that the matrix Uv = −(Av − iBv)−1(Av +

iBv) is unitary for matrices Av and Bv defining self-adjoint vertex conditions, and

substituting this into (2.10) yields (2.8) after simplification.

Finally, we can define self-adjoint vertex conditions in terms of three orthogonal

projection operators PD,v, PN,v, and PR,v, where PR,v := Idv − PD,v − PN,v, and an

invertible self-adjoint operator Λv. The projection operators act on the space Cdv and

Λv acts on the subspace PR,vCdv . Here, we require that

PD,vF (v) = 0 ,

PN,vF
′(v) = 0 ,

PR,vF
′(v) = ΛvPR,vF (v) .

(2.11)

We refer to PD,v and PN,v as the Dirichlet and Neumann parts of the vertex conditions,

respectively. PR,v is called the Robin part, and one can easily check that it does not

appear under the Neumann-like (2.5)–(2.6) or Dirichlet conditions (2.7) described

above.

One of the main objects of study in the field of quantum graphs is the spectrum

of the operator associated to the quantum graph. As shorthand, we will often refer

to this as the spectrum of the quantum graph. For the Laplace operator, this means

we consider the set of all λ = k2 which satisfy
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−d2f

dx2
= k2f(x) . (2.12)

The vertex conditions for a particular quantum graph will determine the eigenfunc-

tions and corresponding eigenvalues of the quantum graph. In general, we will be

using Neumann-like conditions (2.5)-(2.6), and the set of eigenvalues under these con-

ditions will be referred to as the Neumann spectrum. Similarly, if we consider (2.12)

with Dirichlet conditions at the vertices (2.7), we will refer to the set of eigenvalues

as the Dirichlet spectrum.

2.2.2 Scattering Matrices

Consider a quantum graph consisting of the Laplacian and a metric graph

with a single vertex v incident to a set of edges of infinite length. If all the edges

of the graph are oriented so that 0 corresponds to the vertex v, then we may view

the exponential function e−ikxe on some edge e associated to [0,∞) as an incoming

plane-wave which will scatter when it hits v into outgoing plane-waves eikx along all

the edges incident to v. A solution to the Laplace equation (2.12) on the interval

[0,∞) can be written as a superposition of these exponential functions, so


fe(xe) = e−ikx + σ(v)

e,e eikx on the edge e ,

fe′(xe′) = σ
(v)
e′,ee

ikx on the edge e′ 6= e .

(2.13)

The σ(v)
e,e and σ

(v)
e′,e are scattering coefficients which determine how the incoming

plane-wave scatters at the vertex v. In particular, σ(v)
e,e is the reflection coefficient

which determines the backscattering on the edge e and σ
(v)
e′,e is the scattering amplitude

from the edge e onto the edge e′. These scattering coefficients can be collected into

a dv × dv matrix σ(v)(k) that encodes scattering at the vertex v. This matrix, known

as the vertex scattering matrix, can be determined directly from any of the vertex
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conditions (2.8), (2.10), or (2.11). This is summarized in the following lemma, given

as a theorem in [18].

Lemma 2.1. For vertex conditions on a quantum graph giving rise to a self-adjoint

differential operator, the matrix σ(v)(k) is unitary, and

I) If the vertex conditions are given in the form (2.8), then

σ(v)(k) = −(Av + ikBv)−1(Av − ikBv) . (2.14)

II) If the vertex conditions are given in the form (2.10), then

σ(v)(k) = −(Uv − I + k(Uv + I))−1(Uv − I− k(Uv + I)) . (2.15)

III) If the vertex conditions are given in the form (2.11), then

σ(v)(k) = −PD,v + PN,v − (Λv − ik)−1(Λv + ik)PR,v . (2.16)

Notice that an immediate consequence of the third part of this lemma is that

σ(v) is k-independent whenever the Robin part PR,v = 0. There are other equivalent

characterizations of k-independence that can be found in [18]. For the remainder of

this dissertation, our vertex conditions will contain no Robin part, and therefore the

scattering matrix will be independent of k. In particular, the scattering matrix σ(v)

at a vertex v with Neumann-like vertex conditions (2.9) is

σ(v) = −(Av + ikBv)−1(Av − ikBv) =
2

dv
E− I , (2.17)

where dv is the degree of v and E is a dv × dv matrix of all ones.

Now let the edge e be viewed as two directed bonds b and b, as described in

section 2.1.1. We number the bonds b = 1, . . . , E and let b = b + E. Then the bond
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scattering matrix is the 2E × 2E matrix S(k) whose elements are determined by the

vertex scattering matrices,

[S(k)]b′b = δt(b),vδo(b′),vσ
(v)
b′,b . (2.18)

Example 2.2 (The Quantum Star Graph). A standard introductory example in the

field is the quantum star graph, shown in figure 2.2, equipped with the Laplace

operator and Neumann-like vertex conditions (2.5)–(2.6). The simple structure of

the quantum star graph allows for easy direct computation, and we will return to this

example often throughout this chapter.

Figure 2.2. A star graph with five edges.

The bond scattering matrix for a quantum star graph can be easily derived.

Neumann-like vertex conditions at the central vertex of a star graph are given by the

matrices (2.9), so the vertex scattering matrix at the central vertex is σ(v) = 2
E
E− I,

as in (2.17). The scattering matrix at the outlying vertices is the 1×1 identity matrix

σ(v) = 1. Therefore, the bond scattering matrix for a quantum star graph is the block

matrix

S =

(
0 2

E
E− I

I 0

)
, (2.19)

which is k-independent since the vertex conditions are Neumann-like.
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2.3 Secular Equations

One way of studying the spectrum of a quantum graph is through a secular

equation. A secular equation is an equation whose roots correspond to the eigenvalues

of the quantum graph. One way of finding a secular equation is by using the scattering

matrix approach, which can give a secular equation for any set of self-adjoint vertex

conditions.

2.3.1 Bond Scattering Matrix Approach

Consider the solution to (2.12) along an edge e which has been replaced by

two directed bonds, b and b. This solution can be written as a superposition of

plane-waves, one living on each of the two directed bonds,

fb(xb) = abe
ikxb + abe

ikxb . (2.20)

The plane-wave eikxb is outgoing with respect to the vertex o(b), and eikxb is outgoing

with respect to the vertex o(b). However, these bonds are associated to the same edge

e, so their coordinates are related by xb = Lb − xb. Thus, fb(xb) may be written

fb(xb) = abe
ikxb + abe

ikLb−xb

= abe
ikxb + eikLbabe

−ikxb .

(2.21)

For some vertex v, let α be a vector of the coefficients for the outgoing plane-

waves relative to v. This means that, for every edge e ∈ Ev which has been replaced

with the directed bonds b and b, either v = o(b), in which case ab is the outgoing

coefficient, or v = o(b), in which case ab is the outgoing coefficient. Similarly, let β

be a vector of the coefficients for the incoming plane-waves relative to v. That is, if

v = t(b), then eikLbab is the incoming coefficient, and if v = t(b), then the incoming

coefficient is eikLbab. Then these vectors are related via the vertex scattering matrix
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by

α = σ(v)(k)β . (2.22)

Noting that the outgoing amplitudes at one vertex correspond to the incoming

amplitudes at another vertex, we may collect these in a single vector γ of all 2E

coefficients,

γ = (a1, . . . , aE, a1, . . . , aE)T . (2.23)

Then for γ to define an eigenfunction on the graph, it must satisfy

γ = S(k)eikLγ , (2.24)

where S(k) is the bond scattering matrix (2.18) and L is a diagonal matrix of the

edge lengths,

L =



L1
. . .

LE
L1

. . .
LE

 . (2.25)

Non-trivial solutions to (2.24) are found by solving

det(I− S(k)eikL) = 0 , (2.26)

which is a secular equation for the quantum graph. If the bond scattering matrix S is

k-independent, the secular equation ensures that one can find the eigenvalues of the

quantum graph with correct multiplicity. The following theorem was given as several

theorems with associated proofs in [18].

Theorem 2.3. Consider the eigenvalue problem for the operator H acting as − d2

dx2e

on each edge e of a metric graph G with finitely many edges. The operator domain

consists of functions belonging to H̃2(G) which satisfy self-adjoint vertex conditions
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given in one of the forms (2.8), (2.10), or (2.11). If the vertex conditions have no

Robin part, then k2 ∈ C \ {0} is an eigenvalue with multiplicity m if and only if k is

a root of (2.26) with the same multiplicity.

The agreement of the multiplicities relies on the fact that linearly independent

vectors γ in (2.24) uniquely define linearly independent eigenfunctions of (2.12) on G.

Because the matrix S(k)eikL is unitary, I−S(k)eikL is diagonalizable, so the dimension

of its nullspace is equal to the algebraic multiplicity of 0 as its eigenvalue. This in

turn corresponds to the multiplicity of a root of the secular equation (2.26).

Example 2.4 (The Quantum Star Graph Revisited). Consider the quantum star graph

with E edges as described in example 2.2. The bond scattering matrix is

S =

(
0 2

E
E− I

I 0

)
, (2.27)

as in (2.19), and consequently the secular equation may be written as

det

(
I (I− 2

E
E)eikL

−eikL I

)
= 0 . (2.28)

Simplification via row operations, determinant identities, and multiplication by the

non-zero factor det eikL ultimately yields

(
E∑
j=1

tan(kLj)

)
E∏
j=1

cos(kLj) = 0 , (2.29)

which is a secular equation for the quantum star graph equipped with the Laplace

operator and Neumann-like vertex conditions.

2.3.2 Direct Application of Vertex Conditions

Although the bond scattering matrix derivation of a secular equation applies

very broadly to any quantum graph with given self-adjoint vertex conditions, in prac-
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tice this version of the secular equation can be difficult to analyze for large or compli-

cated graphs. However, by placing restrictions on the vertex conditions or considering

particular classes of discrete graphs, different techniques can be used to find alterna-

tive forms of the secular equation, which are simpler and more amenable to analysis.

This has been done for quantum star graphs, where a direct application of the vertex

conditions yields a simpler form of the secular equation. We will utilize this tech-

nique extensively in future chapters, but here we provide the star graph example to

illustrate the basics of the method.

Consider the eigenvalue equation on each edge of the star graph,

−d2fe
dx2

e

= k2fe(xe) , (2.30)

whose solutions can be written as

fe(xe) = Ae sin kxe +Be cos kxe . (2.31)

If we choose an edge orientation so that Le is associated to the central vertex along

each edge e, the vertex conditions (2.5)–(2.6) can be written,

fe(Le) = φ for some constant φ and ∀e ∈ E , (2.32)

f ′e(0) = 0 at each peripheral vertex , (2.33)

E∑
j=1

f ′j(Lj) = 0 . (2.34)

Applying condition (2.33) to (2.31) requires Ae = 0. Assuming that cos kLe 6= 0,

we can evaluate the fe at the central vertex and use continuity (2.32) to solve for

Be = φ sec kLe, so

fe(xe) = φ sec kLe cos kxe , (2.35)
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where φ is some constant representing the value of the function on the quantum graph

at the central vertex.

To get a secular equation, we can sum the derivatives along each of the edges

evaluated at the central vertex, as in condition (2.34), to obtain

E∑
j=1

tan kLj = 0 . (2.36)

It is assumed that k 6= 0, as this is a trivial eigenvalue, and φ 6= 0, which would be

equivalent to Dirichlet conditions at the central vertex.

Notice that (2.36) agrees with (2.29), except that the latter includes the term∏E
j=1 cos(kLj). Recall that the derivation of (2.36) required the assumption that

cos kLe 6= 0 for any Le, which corresponds to the case where φ = 0. Treating this

case separately, the Neumann-like condition (2.34) at the central vertex implies k2 is

an eigenvalue of multiplicity m−1 whenever k is a pole of m of the tan functions. The

secular equation (2.29) makes this case explicit, but (2.36) obtains the majority of

the spectrum. In fact, when the edge lengths are incommensurate, all the eigenvalues

can be found from (2.36).

2.4 Weyl’s Law

A spectral counting function is a function which counts the total number of

eigenvalues less than some parameter λ. In 1911 [115], Herman Weyl described the

asymptotic behavior of the spectral counting function for the Laplace-Beltrami op-

erator with Dirichlet boundary conditions on some bounded domain in Rn as the

parameter λ approaches infinity. It is now common in spectral theory to refer to

similar results for any differential operator as a Weyl law.

For the spectrum of a quantum graph, it is often useful to count the roots of

the secular equation, k =
√
λ, instead of the eigenvalues of the graph since the set
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of values k on an interval grows linearly with the size of the interval. The function

N(a, b) which counts the roots in (a, b) will be referred to as an algebraic counting

function. Spectral counting functions for quantum graphs appear in [76, 77, 50].

The simplified proof provided here appears in [18], but it was first given in [56] and

requires the following lemma from [18]

Lemma 2.5. For a unitary matrix S and matrix SeikL with eigenvalues eiθ(k) and

corresponding normalized eigenvectors u(k),

dθ

dk
= 〈u(k),Lu(k)〉 . (2.37)

Consequently, θ(k) is increasing as a function of k.

Theorem 2.6 (Weyl’s Law for Quantum Graphs). Let N(a, b) be the algebraic counting

function of a quantum graph with non-Robin boundary conditions. Then,

N(a, b) =
L
π

(b− a) + r (2.38)

where L = L1 + L2 + · · ·+ Le and r is uniformly bounded in a, b.

Proof. Suppose that 0 /∈ (a, b) and let eiθj(k) be the eigenvalues of SeikL. Then each

eigenvalue of the quantum graph corresponds to a phase θj(k) = 2mπ for some

m ∈ Z. These phases are increasing and we can count the eigenvalues from each of

the j phases individually,

1

2π
(θj(b)− θj(a))− 1 ≤ Nj(a, b) ≤

1

2π
(θj(b)− θj(a)) + 1 , (2.39)

where Nj(a, b) is the algebraic counting function associated to the phase θj(k). This

difference of phases can be written as an integral,
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|Nj(a, b)| ≤
1

2π

∫ b

a

dθj
dk

dk + 1 , (2.40)

so summing over all j phases,

|N(a, b)| ≤ 1

2π

∫ b

a

2E∑
j=1

dθj
dk

dk + 2E

≤ 1

2π

∫ b

a

2E∑
j=1

〈uj ,Luj〉 dk + 2E

≤ 1

2π

∫ b

a

Tr(L) dk + 2E

≤ L
π

(b− a) + 2E .

(2.41)

Alternatively, we may write

N(a, b) =
L
π

(b− a) + r (2.42)

where r is an error term such that |r| ≤ 2E.

2.5 Quotient Graphs

In [7, 96] Band, Parzanchevski, and Ben-Shach introduced a method for con-

structing isospectral graphs using representations of symmetric groups acting on the

graph. Joyner, Müller, and Sieber [68] applied this method to construct a quantum

graph which displayed GSE statistics without introducing spin. This method will be

used in chapter three (see 3.3.2) and extensively in chapter six.

2.5.1 Preliminaries

A symmetry of a quantum graph is an automorphism of the metric graph

which preserves both the edge lengths and vertex conditions with respect to the

symmetry group G. For a quantum graph with Neumann-like vertex conditions and
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the Laplacian, we will denote the eigenspace of the graph with eigenvalue λ as

Φ(λ) = ker(H− λI) . (2.43)

A left action of the symmetry group G on G induces an action of G on the function

space H̃2(G) by

(σf)(x) = f(σ−1x) , (2.44)

for all σ ∈ G. The eigenspace Φ(λ) can be decomposed into subspaces Φj(λ) each

transforming according to an irreducible representation Rj,

Φ(λ) =
s∑
j=1

Φj(λ) . (2.45)

A fundamental domain is a subset of the graph which generates the whole

graph under the action of the symmetry group. When determining the fundamental

domain, it is sometimes useful to add dummy vertices to the graph. These are vertices

of degree two with Neumann-like conditions which can be introduced at any point

(usually the midpoint) of an interval without changing the graph spectrum. We let G̃

denote the graph G with added dummy vertices. A quotient graph G/R with respect

to some D-dimensional irreducible representation R of the symmetry group G is then

constructed from D copies of the fundamental domain. Some identification among

the vertices of the copies of the fundamental domain is done in such a way that the

eigenspace of the quotient graph is isomorphic to the subspace of the eigenspace of G

which transforms according to the representation R.

2.5.2 Construction of a Quotient Graph

Let G be the graph given in figure 2.3(a) with Neumann-like vertex conditions

and edge lengths L1, L2, and L3, as shown. Consider the group of rotations of the
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square generated by counterclockwise rotation by π/2, denoted σ,

G = 〈σ〉 = {ι, σ, σ2, σ3} , (2.46)

where here ι is the group identity element. A one-dimensional representation R of G

is

R : {ι 7→ (1), σ 7→ (i), σ2 7→ (−1), σ3 7→ (−i)} . (2.47)

(a)

L1

L2L3

(b)

ṽ1 ṽ2 ṽ3 ṽ4

ẽ1 ẽ2 ẽ4

ẽ3
σẽ4

Figure 2.3. (a) The graph G with edge lengths L1, L2, and L3; (b) the graph G̃ with
fundamental domain shown in bold and representatives for the edge and vertex orbits.

We construct the quotient graph G/R, shown in figure 2.4, as follows. First,

identify a fundamental domain under the group action of G on the graph. This will

consist of one fourth of the graph G̃ with dummy vertices. For example, figure 2.3(b)

depicts one option for a fundamental domain where dummy vertices have been added

at the four corners of the square. For some λ ∈ C, let f̃ be a function on G̃ in the

eigenspace of λ which transforms according to the irreducible representation R, and

consider the action of the elements of G on the function f̃ .

By (2.47), we know the group action of σ implies σf̃ = if̃ . Neumann-like vertex

conditions at ṽ1 then imply that

f̃ẽ1(ṽ1) = f̃σẽ4(ṽ1) = if̃ẽ4(ṽ4) , (2.48)
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f̃ ′ẽ1(ṽ1) = f̃ ′σẽ4(ṽ1) = if̃ ′ẽ4(ṽ4) . (2.49)

This suggests that we should identify ṽ1 and ṽ4 as the vertex v1 in the quotient graph

with vertex conditions,

fe1(v1) = ife4(v1) , (2.50)

f ′e1(v1) + if ′e4(v1) = 0 , (2.51)

where f is now a function on the quotient graph G/R. The vertices v2 and v3 retain

the Neumann-like vertex conditions of their predecessors ṽ2 and ṽ3. The final form

of the quotient graph G/R is shown in figure 2.4. The edge e2 has length L2, the

edge e3 has length L3, and the edges e1 and e4 have length L1/2. Conditions at the

vertex v1 multiply by a phase factor of i, while the vertices v2 and v3 have standard

Neumann-like vertex conditions.

v2v3

v1

e1

e2

e4

e3

Figure 2.4. The quotient graph G/R.

2.6 Spectral Statistics

In 1977, Berry and Tabor [22] conjectured that the spectrum of a quantum

system corresponding to a system with integrable classical dynamics behaves like a

collection of independent random variables. More specifically, statistics of the spac-
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ings between adjacent eigenvalues are modeled by a Poisson distribution. On the other

hand, for systems whose classical dynamics are chaotic, the BGS conjecture [27] tells

us that we should expect to see spectral statistics which match the predictions of

random matrix theory.

Despite what one might expect, not all systems classify neatly into these two

mutually exclusive categories. These conjectures are understood to hold generically,

as there exist counter-examples for each case, see [22] for the former and [24, 87] for

the latter. Additionally, there are many different systems which are said to exhibit

intermediate statistics, as they fall somewhere between the extremes of Poisson and

Gaussian statistics. One such example is the quantum star graph, which displays

intermediate statistics of the same type as a rectangular billiard perturbed by a point

singularity [12, 14]. In this section, we will give background on the basics of random

matrix theory, which will be used in chapter four.

2.6.1 Random Matrices

A random matrix is a matrix whose elements are random variables. Generally,

the elements are assumed to be independent and identically-distributed, but often

conditions on the structure of the matrix, such as the requirement that the matrix be

symmetric, will cause certain elements to be correlated. We are typically interested in

considering a collection of random matrices whose elements are governed by the same

probability distribution. This collection is referred to as a random matrix ensemble.

There are many different ensembles studied in random matrix theory (RMT), see for

example [91, 4], but in the study of quantum chaos, the three primary ensembles of in-

terest are the Gaussian ensembles, so called because their elements are determined by

a Gaussian distribution. It turns out, however, that the probability densities for these

three ensembles can be entirely determined by considering two conditions on the set

of matrices which arise from their applications to quantum physics [58]. These con-
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ditions are independently distributed elements in the upper triangular portion of the

matrix and an invariant probability distribution under some class of transformations.

To illustrate this, we will construct the probability density function ρ(H) for a

2×2 matrix H in the Gaussian orthogonal ensemble, or GOE. In many respects, this is

the simplest of the Gaussian ensembles and is also the one which we will be primarily

considering in chapter four. We require H to be symmetric and have real-valued

elements, H11, H22, and H12. The construction relies entirely on the assumption that

the three matrix elements are independent,

ρ(H) = ρ(H11)ρ(H22)ρ(H12) (2.52)

and that ρ(H) is invariant under orthogonal transformation. That is, for some or-

thogonal matrix Q,

ρ(H) = ρ(QHQT ) . (2.53)

Let us consider an infinitesimal orthogonal matrix viewed as rotation by the

infinitesimal angle Θ. More precisely, Θ = O(ε) where ε� 1. So then

Q =

(
1 + O(ε2) −Θ + O(ε2)
Θ + O(ε2) 1 + O(ε2)

)
(2.54)

and the transformation H̃ = QHQT results in

H̃ =

(
H11 − 2ΘH12 + O(ε2) H12 + Θ(H11 −H22) + O(ε2)

H12 + Θ(H11 −H22) + O(ε2) H22 + 2ΘH12 + O(ε2)

)
. (2.55)

From equations (2.52)–(2.53), we see that

ρ(H) = ρ(H̃) = ρ(H̃11)ρ(H̃22)ρ(H̃12) , (2.56)

which implies
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ρ(H) = ρ(H)

{
1−Θ

(
2H12

ρ′(H11)

ρ(H11)
− 2H12

ρ′(H22)

ρ(H22)

−(H11 −H22)
ρ′(H12)

ρ(H12)

)
+ O(ε2)

}
.

(2.57)

The coefficient of Θ must vanish, which yields three differential equations for ρ(H11),

ρ(H22), and ρ(H12). Solving these gives a probability density function of the form

ρ(H) = C exp(−ATrH2) . (2.58)

The N × N Gaussian orthogonal ensemble is described by the probability density

function

ρ(H) = Ce−(N TrH2)/4 , (2.59)

with normalization constant C.

The Gaussian unitary ensemble (GUE) and the Gaussian symplectic ensemble

(GSE) can be derived in a similar fashion, see [58]. The N × N Gaussian unitary

ensemble is the space of N ×N complex-valued Hermitian matrices governed by the

probability density function

ρ(H) = Ce−(N TrH2)/2 , (2.60)

with normalization constant C. Matrices in the GUE are invariant under unitary

transformations. The N ×N Gaussian symplectic ensemble consists of N ×N block

matrices composed of quaternions. Matrices in this ensemble are invariant under

symplectic transformation and are governed by the probability density function

ρ(H) = Ce−(N TrH2) , (2.61)

with normalization constant C.
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When comparing the spectral statistics of some quantum system to the various

ensembles of random matrices, one is often interested in the distribution of the nor-

malized spacings between eigenvalues. In order to compare the statistics for sets of

eigenvalues with different average spacings, we unfold the spectra so that the mean

spacing is one. One of the main statistics considered is the nearest-neighbor spacing

statistic. This is the probability density of the distance between pairs of adjacent

eigenvalues. Wigner computed this quantity for the 2× 2 random matrix ensembles:

PW (s) =



π
2
se−s

2π/4 GOE matrices ,

32
π2 s

2e−s
24/π GUE matrices ,

218

36π3 s
4e−s

264/9π GSE matrices .

(2.62)

These are called the Wigner surmises [116] and are plotted in figure 2.5 along with

the nearest-neighbor spacing distribution for a Poissonian random process. Wigner

surmised that these were the actual density functions for all N × N Gaussian en-

sembles, but it was shown by Mehta [90] that this is not the case. Despite this, the

Wigner surmises provide an excellent approximation, with an error less than 10−3 in

the limit N →∞.

0 1 2 3
0

0.5

1

GOE

GUE

GSE

Poisson

Figure 2.5. The Wigner surmises for the nearest-neighbor spacing distributions of the three
Gaussian ensembles of random matrices and the Poisson distribution.
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CHAPTER THREE

Quantum Circulant Graphs

3.1 Circulant Graphs

Circulant graphs, the Cayley graphs of cyclic groups, possess a high degree of

symmetry which naturally extend the star graph examples introduced in the previous

chapter. Although a secular equation for a quantum graph can be defined from

the bond scattering matrix, equation (2.26), we can formulate an alternative secular

equation using the vertex conditions directly, as we did for a quantum star graph in

section 2.3.2.

There are several equivalent characterizations of circulant graphs, as seen in

[37, 3, 23, 21, 114, 66, 92]. In a Cayley graph, every element of the group σ ∈ G is

assigned a vertex. Then, for some finite generating set Ω, edges correspond to the

pairs of vertices (σ, στ) and (σ, στ−1) for σ ∈ G and τ ∈ Ω. For a circulant graph with

n vertices, we consider the group Z/nZ = Zn as the set of integers {0, . . . , n−1} with

group operation addition modulo n. For example, the circulant graphs in figure 3.1

are Cayley graphs of the cyclic groups Z6, Z10, and Z13, with generating sets {1, 2},

{2, 4, 5}, and {1, 3, 4}, respectively.

A second definition of a circulant graph is a graph that can be inscribed inside a

regular polygon, such that the graph’s vertices lie at the polygon’s corners and every

rotational symmetry of the polygon is also a symmetry of the inscribed graph. So a

cyclic permutation of the vertices of a circulant graph is a graph automorphism. In

figure 3.1, one sees that the first circulant graph can be inscribed in a regular 6-gon,

the second in a regular 10-gon, and the third in a regular 13-gon.

Our primary definition of a circulant graph is more constructive and motivated

by the one used in [89]. A circulant graph with n vertices, labeled v = 1, . . . , n, is
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defined by a vector a = (a1, . . . , ad) such that

0 < a1 < a2 < · · · < ad < n/2 . (3.1)

In general, it is possible that ad = n/2, resulting in a double-edge, but we will assume

this is not the case for circulant graphs that we study. For vertices u, v ∈ V , we say

that u ∼ v if and only if |u − v| ≡ ah (mod n) for some ah ∈ a. When ad < n/2,

each vertex v has d incoming edges, connecting to vertices v − ah (mod n), and d

outgoing edges to vertices v + ah (mod n), so these circulant graphs are 2d-regular.

We use the notation Cn(a) for a circulant graph with n vertices defined by the vector

a. Figure 3.1 shows the circulant graphs C6(1, 2), C10(2, 4, 5), and C13(1, 3, 4).

(a)

2

1

6

5

4

3

(b)

3

2
1

10

9

8

7
6

5

4

(c)

4

3
2113

12

11

10

9
8 7

6

5

Figure 3.1. Examples of circulant graphs: (a) the circulant graph C6(1, 2); (b) the circulant
graph C10(2, 4, 5) with double edge; (c) the circulant graph C13(1, 3, 4).

Without loss of generality, we will assume all circulant graphs that we study

are connected. The following lemma gives a necessary and sufficient condition for

circulant graphs to be connected.

Lemma 3.1. Cn(a) is connected if and only if gcd(a1, . . . , ad, n) = 1.

Proof. For the purposes of this proof, we relabel the vertex n as 0, so the vertices of

Cn(a) are V = {0, 1, . . . , n−1}. Let gcd(a1, . . . , ad, n) = g. Then, by a generalization
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of Bézout’s identity (see for example [64]), there exist integers x0, x1, . . . , xd such that

nx0 + a1x1 + a2x2 + · · ·+ adxd = g (3.2)

and g is the smallest integer of this form. Additionally, every number that can be

written like the left-hand side of (3.2) is a multiple of g. By definition, a path in

Cn(a) from vertex u to vertex v must satisfy

v − u ≡
d∑

h=1

βhah (mod n) , (3.3)

where βh are integers. Note that, if βh = 0 for all h, then u = v and the path is

closed.

Suppose that g = 1. Then for any v, there exist integers x0, x1, . . . , xd such that

nx0v + a1x1v + a2x2v + · · ·+ adxdv = v . (3.4)

This is equivalent to (3.3) for u = 0 and βh = xhv, so there exists a path from 0 to

any vertex v, since v was arbitrary. This implies that there exists a path from any

vertex v1 to any vertex v2, as we can always choose the path through 0, so Cn(a) is

connected.

Suppose that g 6= 1. For an arbitrary vertex v, a path from 0 to v has the form

(3.3), or equivalently

mn+ β1a1 + β2a2 + · · ·+ βdad = v . (3.5)

Since this equation has the form of (3.2), v must be a multiple of g. For Cn(a) to be

connected, every v = 1, . . . , n − 1 must be a multiple of g, which is only possible if

g = 1.
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Another significant characterization of circulant graphs involves their adjacency

matrices. The adjacency matrix of a circulant graph is a circulant matrix [37].

Definition 3.2. An N ×N circulant matrix C is uniquely determined by a row vector

c = (c1, . . . , cN), which becomes the first row of C. Every subsequent row of C is a

cyclic permutation of c, with each element moved one place to the right relative to

the previous row,

C =


c1 c2 · · · cN
cN c1 · · · cN−1
...

...
. . .

...
c2 c3 · · · c1

 . (3.6)

The highly symmetric and simple structure of circulant matrices gives them

many useful properties. In particular, we can write the determinant of a circulant

matrix as a product of polynomials whose coefficients are the elements of the row

vector that uniquely defines the matrix. The following definitions and results are

from [32].

Definition 3.3. The representer of a circulant matrix C, where C is uniquely defined

by c = (c1, . . . , cN), is the polynomial

p(z) = c1 + c2z + · · ·+ cNz
N−1 . (3.7)

Theorem 3.4. Let C be an N ×N circulant matrix with representer p(z) as in (3.7).

Then the determinant of C is given by

detC =
N∏
j=1

p
(
ωj−1

)
, (3.8)

where ω = exp(2πi/N) is the N th primitive root of unity.

When the circulant matrix is a real-valued matrix, as will be true in our case,

this determinant formula simplifies further.
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Corollary 3.5. Let C be a circulant matrix as given in theorem 3.4. If the elements of

c are real-valued, the determinant of C can be written as

detC =


p(1)

(N−1)/2∏
j=1

∣∣p (ωj)∣∣2 when N is odd ,

p(1)p(−1)

(N/2)−1∏
j=1

∣∣p (ωj)∣∣2 when N is even .

(3.9)

Proof. Notice that ω0 = 1, so

detC = p(1)
N−1∏
j=1

p
(
ωj
)
. (3.10)

Suppose N is odd. Splitting the product at j = (N − 1)/2 and letting j′ = N − j,

N−1∏
j=1

p
(
ωj
)

=

(N−1)/2∏
j=1

p
(
ωj
) (N−1)∏
j=(N+1)/2

p
(
ωj
)

=

(N−1)/2∏
j=1

p
(
ωj
) (N−1)/2∏

j′=1

p
(
ωN−j

′
)
.

(3.11)

Since ωN−j
′
= ωj′ and p

(
ωj′
)

= p (ωj′) when the coefficients of p are real-valued, we

have

detC = p(1)

(N−1)/2∏
j=1

∣∣p (ωj)∣∣2 , (3.12)

when N is odd. The case where N is even follows similarly.

An undirected circulant graph can be given direction (see 2.1.1) in a very natural

way. For v−u ≡ ah (mod n), h ∈ {1, . . . , d}, denote the directed edge from u to v as

(u, v). Assign the length Lu,v to the edge (u, v) ∈ E so that [0, Lu,v] is the associated

interval. We choose an orientation on the edges which matches the direction of (u, v)

described above. So then 0 corresponds to the vertex u and Lu,v corresponds to v. A

circulant graph endowed with this metric will be denoted Cn(L;a).
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3.2 Quantum Circulant Graphs

We are interested in identifying the spectrum of quantum circulant graphs

Cn(L;a) equipped with the Laplace operator and Neumann-like vertex conditions

(2.5)–(2.6). Our goal is to find a secular equation for quantum circulant graphs by

directly applying the vertex conditions to solutions of the Laplace equation on each

edge, analogously to the method outlined in section 2.3.2. The main results from the

rest of this chapter appear in [62].

As seen in section 2.2, results on a quantum graph are frequently independent

of the edge orientation, but we choose the orientation given in the previous section

for the purposes of calculation. The Laplace equation on each oriented edge (u, v) of

the graph reads

−d2fu,v
dx2

u,v

= k2fu,v(xu,v) . (3.13)

We can express the vertex conditions (2.5)–(2.6) at a particular vertex v using the

directed circulant graph notation as

fu,v(Lu,v) = φv = fv,w(0), for all (u, v), (v, w) ∈ E , (3.14)∑
(v,w)∈E

f ′v,w(0)−
∑

(u,v)∈E

f ′u,v(Lu,v) = 0 , (3.15)

where φv is the value of f at the vertex v, rather than a fixed constant.

3.2.1 Secular Equation for Generic Circulant Graphs

In this section, we apply a technique similar to the one used for star graphs (see

2.3.2) to construct a secular equation for a quantum circulant graph. Fix a vertex v

and consider f restricted to the oriented edge (v, w), for some w ∼ v. We write the

solution to (3.13) on this edge as

fv,w(xv,w) = Av,w sin kxv,w +Bv,w cos kxv,w , (3.16)
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which is analogous to (2.31) for star graphs. Since fv,w(0) = φv, we see that Bv,w = φv.

Assuming sin kLv,w 6= 0, we can use fv,w(Lv,w) = φw to solve for Av,w. Notice that

sin kLv,w = 0 corresponds to eigenvalues in the Dirichlet spectrum (see 2.2.1). We

will revisit this special case in section 3.4. So for sin kLv,w 6= 0, (3.16) written in

terms of the values at the vertices is

fv,w(xv,w) =

(
φw − φv cos kLv,w

sin kLv,w

)
sin kxv,w + φv cos kxv,w . (3.17)

Differentiating (3.17) and evaluating at vertex v,

f ′v,w(0) = k [φw csc kLv,w − φv cot kLv,w] . (3.18)

Now consider f restricted to the oriented edge (u, v) for some other vertex u ∼ v

in the appropriately oriented way. Then (3.17) reads

fu,v(xu,v) =

(
φv − φu cos kLu,v

sin kLu,v

)
sin kxu,v + φu cos kxu,v , (3.19)

so

f ′u,v(Lu,v) = k

[
φv cot kLu,v − φu

(
cos2 kLu,v
sin kLu,v

− sin kLu,v

)]
= k [φv cot kLu,v − φu csc kLu,v] .

(3.20)

Combining (3.18) and (3.20), the vertex condition (3.15) reads

k
∑

(v,w)∈E

(φw csc kLv,w − φv cot kLv,w)

− k
∑

(u,v)∈E

(φv cot kLu,v − φu csc kLu,v) = 0 .

(3.21)
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As the edge lengths are independent of direction (see 2.1.2), we can combine

(3.21) into a single sum over all vertices adjacent to v, independent of orientation.

Since k 6= 0, ∑
w∼v

(φw csc kLv,w − φv cot kLv,w) = 0 . (3.22)

Each vertex v ∈ V will have an associated equation (3.22). This results in a

system of n equations, one for each of the n vertices. Let φ = {φ1, . . . , φn} be a

vector of the values of f at each of the vertices. Then, the system of equations can

be written in matrix form

M(k)φ = 0, (3.23)

where M(k) is the n× n matrix with

[M(k)]ii = −
∑
v∼i

cot kLi,v , (3.24)

[M(k)]ij =


csc kLi,j i ∼ j ,

0 i 6∼ j .

(3.25)

For a given value of k, φ solves (3.23) if and only if it is an eigenvector of M(k)

corresponding to the eigenvalue 0. So, we have a solution to (3.23) if and only if k is

a root of the secular equation

detM(k) = 0 . (3.26)

The multiplicity of a root of (3.26) will be the same as the algebraic multiplicity of 0 as

an eigenvalue of M(k). Since M(k) is symmetric for all k, it is diagonalizable, so the

multiplicity of the eigenvalue 0 is the same as the dimension of the null space of M(k).

The eigenfunctions of the Laplacian on Cn(L;a) are the vectors f = {fu,v}(u,v)∈E ,

where the fu,v are defined in (3.19). Thus each linearly independent φ in the null
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space ofM(k) uniquely defines a linearly independent eigenfunction f of the Laplacian

with the eigenvalue k2. This proves the following theorem, first given in [62].

Theorem 3.6. Let k ∈ R such that sin kLu,v 6= 0, for all Lu,v ∈ L. Then λ = k2 is

an eigenvalue of (3.13) on Cn(L;a) with q linearly independent eigenfunctions if and

only if k is a root of (3.26) with multiplicity q.

3.3 Symmetric Quantum Circulant Graphs

We will also consider a more specialized metric for Cn(L;a) which respects the

underlying symmetry of Cn(a). Fix a vector l = {l1, . . . , lh} and assign edge lengths

to Cn(L;a) such that the edge (u, v) has length lh whenever |u − v| ≡ ah (mod n).

We refer to this as a symmetric quantum circulant graph and let Cn(l;a) denote a

circulant graph with this metric. In order to derive a secular equation for this type

of graph, we use the characterization of a circulant graph as a graph with a circulant

adjacency matrix (see section 3.1).

3.3.1 Secular Equation for Symmetric Circulant Graphs

For a symmetric quantum circulant graph Cn(l;a), the matrix M(k) defined

in (3.24)-(3.25) is

[M(k)]ii = −2
d∑

h=1

cot klh , (3.27)

[M(k)]ij =


csc klh if |i− j| ≡ ah (mod n) ,

0 otherwise .

(3.28)

We show this matrix is a circulant matrix and utilize the properties of circulant

matrices to evaluate detM(k) for a symmetric quantum circulant graph.

Lemma 3.7. Let Cn(l;a) be a symmetric quantum circulant graph. Then M(k) defined

in (3.27)–(3.28) is a circulant matrix.
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Proof. For each ah ∈ a, let Γh := Cn(ah) be the subgraph of Cn(a) containing only

edges connected via ah, and let Jh be its adjacency matrix. Each Γh is also a circulant

graph, so each Jh is a circulant matrix. Then

M(k) =

(
−2

d∑
h=1

cot klh

)
In +

d∑
h=1

(csc klh) Jh , (3.29)

where In is the n× n identity matrix. As a linear combination of circulant matrices

is a circulant matrix [32], M(k) is a circulant matrix.

The representer, definition 3.3, of the matrix M(k) is given in the following

lemma.

Lemma 3.8. The representer for the circulant matrix M(k) of a symmetric quantum

circulant graph is

p(z) =
d∑

h=1

[
−2 cot(klh) +

(
zah + zn−ah

)
csc(klh)

]
. (3.30)

Proof. The first row of the matrix M(k) is given by m = (m1, . . . ,mn), where mj =

[M ]1j as defined in (3.27)-(3.28). Clearly, m1 = −2
∑d

h=1 cot klh. For each ah ∈ a,

there are edges of length lh connecting the vertex 1 to 1+ah and n+1−ah. Therefore

mah+1 = mn+1−ah = csc klh, and for all other j, mj = 0.

As shown in theorem 3.4, the determinant of a circulant matrix can be expressed

using the representer evaluated at ωj, where ω = exp (2πi/n) and j = 0, . . . n − 1.

Since the secular equation is a function of k, we introduce functions pj(k) where

pj(k) := p(ωj). Then,

pj(k) = 2
d∑

h=1

[
− cot(klh) +

(
cos

(
2πjah
n

))
csc(klh)

]
. (3.31)

When j = 0, cos (2πjah/n) = 1, so this simplifies to
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p0(k) = 2
d∑

h=1

tan

(
klh
2

)
, (3.32)

and for n even, j = n/2 implies cos (2πjah/n) = (−1)ah , so

pn/2(k) = 2

 d∑
h=1

ah is even

tan

(
klh
2

)
−

d∑
h=1

ah is odd

cot

(
klh
2

) . (3.33)

It is interesting to note the similarity between (3.32) and the standard secular equation

for a star graph (2.36).

Applying corollary 3.5 to M(k) gives the following result, which also appears

in [62].

Theorem 3.9. Let Cn(l;a) be a symmetric quantum circulant graph, and let pj(k) be

defined as in (3.31)–(3.33). Suppose that k 6= mπ/lh for any m ∈ Z and any lh ∈ l.

I. If n is odd and k is a qth root of

p0(k)

(n−1)/2∏
j=1

|pj(k)|2 = 0 , (3.34)

then λ = k2 is an eigenvalue of Cn(l;a) with multiplicity q.

II. If n is even and k is a qth root of

p0(k)pn/2(k)

(n/2)−1∏
j=1

|pj(k)|2 = 0 , (3.35)

then λ = k2 is an eigenvalue of Cn(l;a) with multiplicity q.

3.3.2 Derivation of the Secular Equation Using Quotient Graphs

The secular equation derived in the previous section was obtained using the

secular equation of a general quantum circulant graph, theorem 3.6. An alternative
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method for obtaining the spectrum of a symmetric quantum circulant graph utilizes

the quotient graph defined in section 2.5.

Recall that the quotient graph exploits the symmetry of a quantum graph to

decompose its spectrum into subspectra whose eigenfunctions transform according

to irreducible representations of the symmetry group. A circulant graph Cn(l;a) is

symmetric under a rotation of the vertex lables σ(v) = v+ 1. If Cn(l;a) is embedded

in the plane, as in figure 3.1, this is equivalent to rotation by 2π/n. The cyclic group

generated by σ is Zn and has irreducible complex representations Rj, j = 0, . . . , n−1,

where

Rj(σ) = eiθj (3.36)

for θj = 2πj/n.

The left action of Zn on an eigenfunction f of Cn(l;a) is defined as

(σf)(x) = f(σ−1x) . (3.37)

Then, f transforming according to the representation Rj is

(σf)(x) = Rj(σ)f(x) = eiθjf(x) . (3.38)

The quotient graph for a symmetric quantum circulant graph Cn(l;a) with

given representation Rj can be constructed following the procedure defined in [7,

96] and outlined in section 2.5.2. To construct the quotient graph Cn(l;a)/Rj, we

introduce a dummy vertex of degree two with Neumann-like vertex conditions at the

midpoint of each edge of the circulant graph. Recall that introducing such dummy

vertices does not change the spectrum of the original graph (see 2.5.1), and a function

on the graph is continuous with a continuous first derivative at the new vertices due

to the Neumann-like conditions. For simplicity, we keep the original coordinates
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when introducing the dummy vertices, so an edge corresponding to the interval [0, lh]

is simply broken into subintervals [0, lh/2] and [lh/2, lh] with a dummy vertex at

x = lh/2. Eigenfunctions on the original graph are obtained from eigenfunctions on

the graph with dummy vertices by joining corresponding edge pairs. Figure 3.2(a)

shows a circulant graph with dummy vertices.

(a)

1

6

5

4

3

2

(b)

1

Figure 3.2. (a) The circulant graph, C6(l; (1, 2)), with dummy vertices. The dummy vertices
are denoted by open dots, and edges in the fundamental domain are shown with solid lines.
(b) The quotient graph C6(l; (1, 2))/Rj with respect to one of the irreducible representations
given by Rj(σ) = exp(iπj/3).

The subgraph consisting of the vertex v = 1 with a pair of adjacent dummy

vertices for each h ∈ (1, . . . , d) forms a fundamental domain containing two edges

with length lh/2 for each h. The quotient graph is constructed by identifying the

two dummy vertices on edges of length lh/2 in the fundamental domain, as depicted

in figure 3.2(b). The quotient graph then has d vertices of degree two and a central

vertex of degree 2d. The central vertex retains the standard conditions (3.14)–(3.15)

but we must introduce new vertex conditions at the other vertices which depend on

the representation Rj.

For a function f on the quotient graph, let fh− denote the function on the

interval [0, lh/2] and fh+ the function on [lh/2, lh]. Then at the hth degree two ver-
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tex, the vertex conditions for a function transforming according to the irreducible

representation Rj take the form

fh−(lh/2) = eiahθjfh+(lh/2) , (3.39)

f ′h−(lh/2) = eiahθjf ′h+(lh/2) . (3.40)

The spectrum of the quotient graph is the subset of the spectrum of the circulant

graph whose eigenfunctions transform according to the irreducible representation Rj.

A solution to (3.13) on the pair of edges h± can be written as a piecewise

function defined on [0, lh/2) ∪ (lh/2, lh],

fh(xh) =


Ah sin(kxh) +Bh cos(kxh) if 0 ≤ xh < lh/2 ,

Ahe
−iahθj sin(kxh) +Bhe

−iahθj cos(kxh) if lh/2 < xh ≤ lh .

(3.41)

Let φ be the value of an eigenfunction of the quotient graph at the central vertex.

Assuming k 6= mπ/lh for m ∈ Z, then

fh(xh) =



φ[eiahθj csc(klh)− cot(klh)] sin(kxh)

+ φ cos(kxh)

if 0 ≤ xh < lh/2 ,

φ[csc(klh)− e−iahθj cot(klh)] sin(kxh)

+ φe−iahθj cos(kxh)

if lh/2 < xh ≤ lh .

(3.42)

The vertex condition (3.15) at the central vertex requires,

d∑
h=1

f ′h(0)− f ′h(lh) = 0 , (3.43)

so for φ 6= 0,

2
d∑

h=1

cos(ahθj) csc(klh)− cot(klh) = 0 . (3.44)
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Notice that (3.44) is equivalent to pj(k) = 0, for pj(k) defined in (3.31). Since

the roots of (3.44) correspond to the eigenvalues of Cn(l;a) in the subspace trans-

forming according to Rj, for k 6= mπ/lh, we obtain the whole non-Dirichlet spectrum

by taking the union over j = 0, . . . , n− 1. Therefore, a secular equation whose roots

correspond to this union can be obtained by multiplying the equations in (3.44) for

all j. This is equivalent to the secular equation obtained in theorem 3.9, since the

determinant formula applied there is simplified from theorem 3.4.

3.4 Dirichlet Spectrum

We have considered Neumann-like vertex conditions on our quantum circulant

graphs. However, in each of these cases, we have identified a secular equation which

is only valid for sin kLe 6= 0. Recall that the roots of sin kLe = 0 correspond to

eigenvalues of the quantum graph with an alternative set of vertex conditions for which

the Laplace operator is self-adjoint, namely the Dirichlet conditions (2.7). Although

finding the spectra of the graph with Dirichlet and Neumann-like vertex conditions

are different problems, it is possible that eigenvalues in the Dirichlet spectrum may

also appear in the Neumann spectrum. That is, we want to determine if there is

a subset of eigenvalues under Neumann-like vertex conditions which also fall in the

Dirichlet spectrum.

Consider a general quantum circulant graph Cn(L;a) with Neumann-like vertex

conditions. If k2 = (mπ/Le)
2 is in the spectrum for some edge e and some m ∈

N, this Dirichlet eigenvalue can be removed by perturbing the edge lengths L. So

for almost all vectors of edge lengths L, the Dirichlet spectrum and the Neumann

spectrum do not overlap. Despite the fact that this is true in general, because of the

additional edge-length symmetry present in Cn(l;a), some Dirichlet eigenvalues do

appear under Neumann-like vertex conditions for the symmetric quantum circulant
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graph. To determine which of these occur and with what multiplicity, it is useful to

return to the quotient graph.

3.4.1 Symmetric Circulant Graphs

Fix some ag ∈ a and consider k = mπ/lg for some given m ∈ N. Then, for

h 6= g, solutions to (3.13) on the edge h of the quotient graph are given piecewise by

(3.41). However, on the edge g we have

fg(xg) =


Ag sin(mπ

lg
xg) + φ cos(mπ

lg
xg) if 0 ≤ xg < lg/2 ,

Age
−iagθj sin(mπ

lg
xg) + φe−iagθj cos(mπ

lg
xg) if lg/2 < xg ≤ lg ,

(3.45)

where φ is the value of the eigenfunction of the quotient graph at the central vertex.

By continuity at the central vertex, fg(lg) = φ, which gives the restriction that

φ e−iagθj(−1)m = φ . (3.46)

This is always satisfied for φ = 0, which yields the quotient graph eigenfunction

fg(xg) =


Ag sin(mπ

lg
xg) if 0 ≤ xg < lg/2 ,

Age
−iagθj sin(mπ

lg
xg) if lg/2 < xg ≤ lg ,

(3.47)

on the edge set g±, and fh(xh) ≡ 0 for h 6= g. If we apply the vertex condition (3.43)

at the central vertex,

mπ

lg
Ag
[
1− e−iagθj(−1)m

]
= 0 , (3.48)

so either Ag = 0, which would be a trivial solution, or

eiagθj = (−1)m . (3.49)
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Since eiθj is the jth primitive nth root of unity, this requires jag to be a multiple of n

when m is even and 2jag to be an odd multiple of n when m is odd.

We now consider (3.46) and assume that φ 6= 0. Thus, eiagθj = (−1)m is now

required to satisfy continuity at the central vertex,, which implies that f ′g(0) = f ′g(lg).

Substituting this into the vertex condition (3.43), we obtain

d∑
h=1
h6=g

cos(θjah) csc

(
mπlh
lg

)
− cot

(
mπlh
lg

)
= 0 . (3.50)

The derivative of the left hand side of equation (3.50) with respect to an edge length is

non-zero. Hence if this condition is satisfied for some set of edge lengths a perturbation

of any edge length will remove this. Thus, for edge lengths lh chosen from (1−ε, 1+ε),

equation (3.50) is not satisfied for almost all choices of edge lengths. In this case, the

only Dirichlet eigenvalues correspond to eigenfunctions which vanish at the central

vertex.

Lemma 3.10. Let Cn(l;a) be a symmetric quantum circulant graph (d ≥ 2) equipped

with the Laplace operator and satisfying Neumann-like vertex conditions. Then for

almost every l ∈ (1− ε, 1 + ε)d and all for m ∈ N, m2π2/l2h is in the spectrum of the

graph if some j ∈ {0, . . . , n− 1} satisfies the condition:

2jah = qn for some odd/even q when m is odd/even. (3.51)

The multiplicity of m2π2/l2h is equal to the number of distinct j’s under which (3.51)

is satisfied, and the corresponding eigenfunctions are zero at the graph vertices.

Corollary 3.11. Let Cn(l;a) be as in lemma 3.10. Then (2p)2π2/l2h is in the spectrum

of the graph for almost every l ∈ (1− ε, 1 + ε)d and all p ∈ N.

Proof. Since m = 2p is even, condition (3.51) is always satisfied for j, q = 0.
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Corollary 3.12. Let Cn(l;a) be as in lemma 3.10 with n being odd. Then (2p+1)2π2/l2h

is not in the spectrum of the graph for almost any l ∈ (1− ε, 1 + ε)d and any p ∈ N.

Proof. Since m = 2p+ 1 is odd, q must be odd. A product of odd numbers is odd, so

qn cannot equal 2jah, which is even. Thus, condition (3.51) cannot be satisfied.

3.5 Weyl Law for Symmetric Circulant Graphs

Recall from section 2.4 that the Weyl law gives the density of graph eigenval-

ues. To see that the Weyl law fits with the secular equations, we can estimate how

many roots of the secular equation fall in a given interval. Recall that the spectrum

of Cn(l;a) is divided into subspectra whose eigenfunctions transform according to

the irreducible representations Rj combined with the subset of the spectrum that

intersects with the Dirichlet spectrum. To confirm that these are indeed all of the

eigenvalues, we compare our results to the standard Weyl law for quantum graphs.

We will do this by counting the number of roots found for each function pj(k) and

then summing over all values of j, as well as including the appropriate parts of the

Dirichlet spectrum.

Consider the function pj(k) and differentiate termwise with respect to k. The

derivative is positive, so pj(k) is strictly increasing for all real values of k. Conse-

quently, there is exactly one zero of pj(k) between each pair of adjacent asymptotes.

By counting the asymptotes of pj(k) on a given interval (a, b), we will also have

counted the roots of pj(k) = 0 in that interval, up to a small error. We will denote

the number of roots of pj(k) = 0 on the interval (a, b) by the function Nj(a, b).

For p0(k) = 0 defined in (3.31), the spacing between asymptotes of tan(klh/2)

is 2π/lh. So, the number of asymptotes in the interval (a, b) from a fixed h is approx-

imately the length of the interval divided by the spacing of the asymptotes; that is,

it falls between (b− a)(lh/2π)− 1 and (b− a)(lh/2π) + 1. Summing over all values of
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h,

(b− a)

2π

d∑
h=1

lh − d ≤ # of p0 asymptotes ≤ (b− a)

2π

d∑
h=1

lh + d . (3.52)

Since there is one root between each pair of asymptotes, the total number

of roots in the interval (a, b) may be one less, the same as, or one more than the

number of asymptotes in that interval, depending on where they fall in relation to

the endpoints. So,

(b− a)L
2πn

− d− 1 ≤ N0(a, b) ≤ (b− a)L
2πn

+ d+ 1 , (3.53)

where L = n
∑d

h=1 lh is the total length of the graph. When n is even, we have the

function pn/2(k), whose asymptotes are (2q − 1)π/lh for even ah and 2qπ/lh for odd

ah. In either case, the spacing between asymptotes is 2π/lh and so the bounds in

(3.53) are also bounds for Nn/2(a, b).

For 1 ≤ j ≤ b(n− 1)/2c, the asymptotes of pj(k) will be zeros of sin(klh) unless

2jah = 0 (mod n) . (3.54)

First, let us consider a value of j that does not satisfy (3.54) for any h = 1, . . . , d.

In this case, the spacing between asymptotes for a fixed h is π/lh. Summing over all

values of h bounds the number of asymptotes,

(b− a)

π

d∑
h=1

lh − d ≤ # of pj asymptotes ≤ (b− a)

π

d∑
h=1

lh + d , (3.55)

and counting the total number of roots as before gives

(b− a)L
πn

− d− 1 ≤ Nj(a, b) ≤
(b− a)L
πn

+ d+ 1 . (3.56)
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Now suppose that a fixed j satisfies (3.54) for at least one value of h. This

condition is equivalent to condition (3.51) for a given value of j in lemma 3.10.

Consequently, every missing asymptote of pj(k) corresponds to an added Dirichlet

eigenvalue. Instead of counting the total roots, Nj(a, b), we count the total eigenvalues

associated to pj(k), denoted Ñj(a, b). This is bounded by

(b− a)L
πn

− d− 1 ≤ Ñj(a, b) ≤
(b− a)L
πn

+ d+ 1 . (3.57)

Since there are no Dirichlet eigenvalues for the case where j does not satisfy (3.54),

note that Ñj(a, b) = Nj(a, b). So equation (3.57) holds for j ∈ {1, . . . , b(n− 1)/2c}.

Finally, to obtain the Weyl law, we must sum the eigenvalues associated to

each j. Recall that in theorem 3.9, each pj(k) for 1 ≤ j ≤ b(n− 1)/2c is squared,

so eigenvalues associated to these j have multiplicity two and are counted twice. By

corollary 3.11, every graph has the Dirichlet eigenvalues 2qπ/lh for m ∈ N and all

h = 1, . . . , d. Additionally, for graphs with an even number of vertices, (2q + 1)π/lh

is also included in the spectrum for all h. Consequently, we define

ND(a, b) =


# of

2qπ

lh
in (a, b),∀h = 1, . . . , d when n is odd ,

# of
mπ

lh
in (a, b),∀h = 1, . . . , d when n is even .

(3.58)

Then putting the bounds on the eigenvalues for each j together we obtain the following

result.

Theorem 3.13. Let Cn(l;a) be a symmetric quantum circulant graph equipped with

the Laplace operator and satisfying Neumann-like vertex conditions. The number of

eigenvalues in the interval (a, b) is

N(a, b) =
(b− a)L

π
+ r (3.59)
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where L = n
∑d

h=1 lh is the total length of the graph, and |r| ≤ nd + n + d, so it is

uniformly bounded in the length of the interval.

Proof. First, let n be odd. Then

N(a, b) = N0(a, b) +ND(a, b) + 2

(n−1)/2∑
j=1

Ñj(a, b) , (3.60)

and so

|N(a, b)| ≤ (b− a)L
2πn

+ d+ 1 +
(b− a)L

2πn
+ d+ 2

(n−1)/2∑
j=1

[
(b− a)L
πn

+ d+ 1

]

≤ (b− a)L
πn

+
(b− a)L(n− 1)

πn
+ 2d+ 1 + d(n− 1) + (n− 1)

≤ (b− a)L
π

+ dn+ d+ n .

(3.61)

When n is even,

N(a, b) = N0(a, b) +Nn/2(a, b) +ND(a, b) + 2

n/2−1∑
j=1

Ñj(a, b) . (3.62)

Therefore,

|N(a, b)| ≤ (b− a)L
2πn

+ d+ 1 +
(b− a)L

2πn
+ d+ 1 +

(b− a)L
πn

+ d

+ 2

n/2−1∑
j=1

[
(b− a)L
πn

+ d+ 1

]

≤ 2(b− a)L
πn

+
(b− a)L(n− 2)

πn
+ 3d+ 2 + d(n− 2) + (n− 2)

≤ (b− a)L
π

+ dn+ d+ n ,

(3.63)

which completes the proof.

60



Comparing this result with theorem 2.6, we observe consistency with the estab-

lished Weyl law for quantum graphs, although our bound r is not as good of a bound

as in theorem 2.6.
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CHAPTER FOUR

Spectral Statistics

One of the major applications of quantum graphs is the study of quantum

chaos. Specifically, we look at statistics of the eigenvalues of a quantum circulant

graph and compare their statistical properties to predictions for various classes of

quantum systems that are classically chaotic. The analytic results in this chapter

appear in [62], along with a sampling of the numerical results presented.

4.1 Nearest-Neighbor Spacing Statistics

The BGS conjecture states that the spectra of quantum systems which corre-

spond to classically chaotic systems exhibit spectral fluctuations predicted by ensem-

bles of random matrices [27]. Specifically, systems with time reversal invariance are

proposed to match the probability distributions of the GOE. Kottos and Smilansky

showed that quantum graphs serve as a model for quantum chaos [76], so we are in-

terested in examining the nearest-neighbor spacing statistics of a quantum circulant

graph and comparing it with the predictions of random matrix theory.

Consider a sequence of roots {kj} of the secular equation (3.26) so that k2
j = λj

is in the spectrum of the Laplace operator with Neumann-like conditions on Cn(L;a).

To compare statistics of sequences whose average spacings differ, it is necessary to

unfold the spectra so that the average spacing is 1. Since the average density of the

kj given by the Weyl law is π/L where L is the total length of the graph (see theorem

2.6 or theorem 3.13), setting k̂j = kjL/π achieves this normalization. The nearest-

neighbor spacings are then given by the sequence sj = k̂j+1 − k̂j with probability

distribution
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P (x) = lim
N→∞

1

N

N∑
j=1

δ(x− sj) , (4.1)

where δ is the Dirac delta function.

For an N ×N random matrix from the GOE, the joint probability distribution

function of its eigenvalues [91] is

ρN(x1, . . . , xN) = const× exp

(
−1

2

N∑
j=1

x2
j

)∏
j<k

|xj − xk| . (4.2)

For large N , the probability that a randomly chosen interval of length s contains no

eigenvalues is then given by

ρE(s) = lim
N→∞

∫
· · ·
∫

(−∞,−ss/2)∪(ss/2,∞)

ρN(x1, . . . , xN) dx1 · · · dxN , (4.3)

where here s is the mean spacing of eigenvalues, see [91]. To obtain the probability

density for the nearest-neighbor spacings, P (s), observe that ρE(s) − ρE(s + δs) is

the probability that the interval s is empty and the adjacent interval δs is not empty.

The probability that δs will contain more than one eigenvalue is of second order or

higher in δs. So taking the limit as δs → 0 and dropping the higher order terms

gives us that − [ dρE(s)/ ds] δs is the probability of s being empty and δs containing

exactly one level. Analogous reasoning allows us to conclude that

P (s) =
d2ρE
ds2

. (4.4)

In general, these distributions are difficult to work with, but a suitable approx-

imation is given by the Wigner surmise. For the GOE, this is computed by letting

N = 2 so that

63



PW (s) = C

∫∫
R2

δ(s− |x2 − x1|)× e−(x1+x2)/2 dx1 dxn , (4.5)

where C is such that
∫∞

0
PW (s) ds = 1 [91]. As a result,

PW (s) =
πs

2
e−πs

2/4 . (4.6)

Interestingly, the deviation between the actual distribution and the Wigner surmise

is quite small, according to [58] on the order of 10−4, so we will use the simpler

expression in our figures.

Another function of note is the integrated nearest-neighbor spacing distribution.

This is defined as

I(s) =

∫ s

0

P (x) dx , (4.7)

and gives the probability that the spacing between nearest-neighbors is less than

or equal to s. For the Wigner surmise for the GOE, the corresponding integrated

distribution is

IW (s) = 1− e−πs
2/4 . (4.8)

4.1.1 Numerical Results for Generic Circulant Graphs

To compare our results with the statistical predictions, we chose a quantum

circulant graph and computed its roots numerically using the secular equation (3.26)

from the previous chapter. We evaluated (3.26) at evenly spaced values of k and

found the sign changes. After removing sign changes resulting from asymptotes of

the secular equation, we applied the secant method to find the roots. We numerically

computed the kj for several different sample circulant graphs up to j ≈ 50,000 using

this method. Then we plotted a histogram of the normalized spacings sj against the

Wigner surmise for the GOE (4.5).

64



The use of quantum graphs as a model for quantum chaos was first proposed

by Kottos and Smilanksy in 1997 [76], who used a similar method to show numerical

agreement between the statistics of quantum graphs and the predictions of the BGS

conjecture [27]. As expected, we see this same agreement in figures 4.1, 4.2, and 4.3,

further adding to the large body of evidence for this claim.

We also plotted the integrated spacings for these graphs, which is the accumu-

lated total spacings less than a particular value. This is shown in figures 4.4, 4.5, and

4.6. The difference between the data and the random matrix prediction, shown in the

inset, shows a systematic deviation which is due to the comparison with the Wigner

surmise rather than the actual random matrix result.

Figure 4.1. Histogram of the nearest-neighbor spacing distribution for the quantum cir-
culant graph C16(L; (1, 3, 5, 7)) with incommensurate edge lengths for 50,009 eigenvalues
plotted against the Wigner surmise for the GOE distribution.
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Figure 4.2. Histogram of the nearest-neighbor spacing distribution for the quantum cir-
culant graph C24(L; (1, 2, 3, 6)) with incommensurate edge lengths for 50,011 eigenvalues
plotted against the Wigner surmise for the GOE distribution.

Figure 4.3. Histogram of the nearest-neighbor spacing distribution for the quantum cir-
culant graph C49(L; (3, 4, 9, 12, 15, 19, 20)) with incommensurate edge lengths for 50,036
eigenvalues plotted against the Wigner surmise for the GOE distribution.
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Figure 4.4. The integrated nearest-neighbor spacing distribution for the quantum circulant
graph C16(L; (1, 3, 5, 7)) plotted against the GOE Wigner surmise. The inset shows the
difference between the distribution and the numerical data.

Figure 4.5. The integrated nearest-neighbor spacing distribution for the quantum circulant
graph C24(L; (1, 2, 3, 6)) plotted against the GOE Wigner surmise. The inset shows the
difference between the distribution and the numerical data.
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Figure 4.6. The integrated nearest-neighbor spacing distribution for the quantum circulant
graph C49(L; (3, 4, 9, 12, 15, 19, 20)) plotted against the GOE Wigner surmise. The inset
shows the difference between the distribution and the numerical data.

4.2 Intermediate Statistics

In the case of symmetric quantum circulant graphs, the spectrum decomposes

into subspectra whose eigenfunctions transform according to irreducible representa-

tions of the cyclic group (see 3.3.2). As we will see, these subspectra do not follow

the spectral statistics of random matrix theory as proposed by the BGS conjecture.

In fact, these spectral statistics fall into a class known as intermediate statistics.

Classically chaotic quantum systems are conjectured to have spectral statistics

in agreement with the predictions of the Gaussian ensembles of random matrices.

In contrast, classically integrable systems typically give rise to Poisson statistics,

indicating an uncorrelated spectrum. Between these two extremes lie a variety of

examples of intermediate statistics.

A prototypical example of a system giving rise to intermediate statistics is the

Šeba billiard. This is a rectangular quantum billiard (integrable system) perturbed by
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a point singularity. The well-studied star graph also belongs to this same class [14, 12].

Despite what one might wish to believe, intermediate statistics are by no means

universal [55]. Harrison and Winn [63] found a type of intermediate statistics distinct

from the star graph for the Dirac rose graph, a single vertex with d loops equipped

with the Dirac operator. This in turn was adapted from methods of Bogomolny,

Gerland, and Schmit in [26].

4.2.1 Two-Point Correlation Function

As seen in figure 3.2, the quotient graph of a symmetric quantum circulant

graph is topologically a rose graph. For symmetric circulant graphs, we can ob-

tain predictions for the two-point correlation function of the subspectra transforming

according to an irreducible representation Rj by applying arguments developed in

[25, 26]. The two-point correlation function is defined as

R2(x) = lim
N→∞

1

N

N∑
n=1

N∑
m=1

δ(x− (k̂n − k̂m)) . (4.9)

Notice that R2(x) is not a probability distribution, since it contains two sums from 1

to N but has a normalization factor of 1/N .

To analyze the spectral statistics of a symmetric quantum circulant graph, we

consider both small and large parameter asymptotics of the two-point correlation

function. That is, we examine how R2(x) behaves as x→ 0 and x→∞, respectively.

After obtaining suitable estimates, we compare these with numerical results in section

4.2.4.

4.2.2 Small Spacing Asymptotic Estimate

The method follows from [63] but will be reproduced here for completeness.

Recall the secular equation for the subspectra of a symmetric quantum circulant graph

transforming according to an irreducible representationRj in section 3.3.2, and define
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pj(k) = 2
d∑

h=1

cos(ahθj) csc(klh)− cot(klh) , (4.10)

so that pj(k) = 0 corresponds to (3.44). The dominant behavior of R2(x) for small

x comes from closely spaced roots. To analyze these statistics, we can approximate

with the zeros of a function with three randomly-distributed poles,

r1

k − c1

+
r2

k − c2

+
r3

k − c3

= 0 . (4.11)

where r1, r2, r3 are random residues and c1, c2, c3 are random poles.

Rearranging (4.11) gives the quadratic equation,

(r1 + r2 + r3)k2 − (r1(c2 + c3) + r2(c1 + c3) + r3(c1 + c2))k

+ r1c2c3 + r2c1c3 + r3c1c2 = 0 ,

(4.12)

whose two solutions are

k± =
r1(c2 + c3) + r2(c1 + c3) + r3(c1 + c2)±

√
D

2(r1 + r2 + r3)
, (4.13)

with

D = (r1(c2 + c3) + r2(c1 + c3) + r3(c1 + c2))2

− 4(r1c2c3 + r2c1c3 + r3c1c2)(r1 + r2 + r3) .

(4.14)

Shifting all the poles by any constant C, so (c1, c2, c3) 7→ (c1 +C, c2 +C, c3 +C), also

shifts both zeros by C so that the spacing k+ − k− is unchanged. Thus, we choose

coordinates such that

(r1(c2 + c3) + r2(c1 + c3) + r3(c1 + c2)) = 0 , (4.15)
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which simplifies (4.14) to

D = −4(r1c2c3 + r2c1c3 + r3c1c2)(r1 + r2 + r3)

= 4(r1 + r2 + r3)

(
r2(r2 + r3)

r1 + r2

c2
1 +

r1(r1 + r3)

r1 + r2

c2
2 +

2r1r2

r1 + r2

c1c2

)
.

(4.16)

Averaging over the poles c1, c2 and the residues r1, r2, r3 gives the main contri-

bution to the two-point correlation function,

E[R2(x)] ≈ 1

2
E

[∫ ∞
−∞

∫ ∞
−∞

δ(x−∆k) de1 de2

]
, (4.17)

where

∆k = k+ − k− =

√
D

r1 + r2 + r3

, (4.18)

and with D as in (4.16). To evaluate (4.17), transform to polar coordinates by defining

e1 =

√
r1 + r2

r2(r2 + r3)
ρ cosφ , (4.19)

e2 =

√
r1 + r2

r1(r1 + r3)
ρ sinφ , (4.20)

so (4.17) becomes

E[R2(x)] ≈ 1

2
E

[∫ 2π

0

∫ ∞
0

(r1 + r2)ρ√
r1r2(r1 + r3)(r2 + r3)

×

δ

x− 2ρ√
r1 + r2 + r3

(
1 +

2
√
r1r2 cosφ sinφ√

(r1 + r3)(r2 + r3)

)1/2
 dρ dφ

 .

(4.21)

Rescaling δ(x− αρ) = δ(x− ρ)/|α|2, where

α =
2√

r1 + r2 + r3

(
1 +

2
√
r1r2 cosφ sinφ√

(r1 + r3)(r2 + r3)

)1/2

, (4.22)
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yields

E[R2(x)] ≈1

2
E

[
(r1 + r2)√

r1r2(r1 + r3)(r2 + r3)

r1 + r2 + r3

4
×

∫ 2π

0

(
1 +

2
√
r1r2 cosφ sinφ√

(r1 + r3)(r2 + r3)

)−1

dφ

∫ ∞
0

δ (x− ρ) ρ dρ

 .

(4.23)

To evaluate the integral over φ, we use the integral formula

∫ 2π

0

dφ

1 + a cosφ sinφ
=

2π√
1− a2/4

, (4.24)

applicable when |a| < 2. So,

∫ 2π

0

(
1 +

2
√
r1r2 cosφ sinφ√

(r1 + r3)(r2 + r3)

)−1

dφ = 2π

(
1− r1r2

(r1 + r3)(r2 + r3)

)−1/2

= 2π

√
(r1 + r3)(r2 + r3)

(r3)1/2
√

(r1 + r2 + r3)
,

(4.25)

which when substituted into (4.23),

E[R2(x)] ≈ π

4
E

[
(r1 + r2)

√
(r1 + r2 + r3)

√
r1r2r3

∫ ∞
0

δ (x− ρ) ρ dρ

]

≈ πx

4
E

[
(r1 + r2)

√
(r1 + r2 + r3)

√
r1r2r3

]
.

(4.26)

Assuming the rj are identically distributed gives the symmetrized form

E[R2(x)] ≈ πx

6
E

√(r1 + r2 + r3)3

r1r2r3

 . (4.27)

Now to determine the rj, consider the function ψ(x, θ) = cos θ cscx− cotx, so

that (4.10) becomes
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pj(k) =
d∑

h=1

ψ(klh, ahθj) . (4.28)

We can rewrite ψ(x, θ) as a Laurent series by observing

cotx =
1

x
+ 2

∞∑
m=1

x

x2 −m2π2
, (4.29)

and

cscx =
1

x
+ 2

∞∑
m=1

(−1)mx

x2 −m2π2
, (4.30)

so that

ψ(x, θ) =
∞∑

m=−∞

((−1)m cos θ − 1)

(
1

x+mπ
− mπ

1 +m2π2

)
. (4.31)

This shows that pj(k) has a sequence of poles at k = mπ/lh, for h = 1, . . . , d with

residues r = (−1)m cos(ahθj)− 1. For a fixed h, the poles of pj(k) are evenly spaced,

so closely spaced poles must come from different h.

For a given circulant graph Cn(l;a) and a fixed representation Rj, the val-

ues ahθj are a finite set of integer multiples of 2πj/n distributed in [0, πj]. We

can treat ahθj as a discrete random variable if we randomly generate the circu-

lant graph. This is done by performing a Bernoulli trial on each possible value of

ah ∈ {1, . . . , b(n− 1)/2c}. As n grows large, ahθj can be approximated by a contin-

uous, uniformly distributed random variable in [0, π]. To avoid the presence of any

Dirichlet eigenvalues (see section 3.4), which are regularly spaced and would therefore

affect the statistics, we will assume that n is a large prime, so that n and j have no

common factors.

The next part of the method relies on an argument in [26]. Returning to (4.27),

we will consider the random residues

ri = 1− cos θi , (4.32)

73



where θi is uniformly distributed in [0, π]. As described above, θi will serve as a model

for ahθj, so that ri will correspond to the residues given in (4.31). The expectation

in (4.27) clearly diverges when r is small, but its leading behavior is

E

√(r1 + r2 + r3)3

r1r2r3

→ 3E [r] E

[
1√
r

]2

. (4.33)

Evaluating

E [r] =
1

π

∫ π

0

(1− cosφ) dφ = 1 , (4.34)

we see that the divergence stems from E {1/
√
r}. To remedy this, we introduce a

cutoff φ0 at zero, so

E

[
1√
r

]
=

1

π

∫ π

φ0

dφ√
1− cosφ

≈ −
√

2

π
lnφ0 . (4.35)

The value φ0 is proportional to x with logarithmic accuracy, so φ0 → x/c for some

constant c. Therefore, plugging (4.34) and (4.35) into (4.33),

E[R2(x)] ≈ 1

4π
ln2
(x
c

)
x , (4.36)

which gives an estimate for the asymptotic behavior of R2(x) for small x [62].

4.2.3 Large Spacing Asymptotic Estimate

To examine the large parameter asymptotics, we study the Fourier transform

of the two-point correlation function, R2(x), called the form factor K(τ). Consid-

ering the small parameter asymptotics of K(τ) will determine the large parameter

asymptotics of R2(x). To do this, we write K(τ) in terms of periodic orbits using the

trace formula. This technique is adapted from a method used in [14, 63].

Before introducing the form factor, we must include some necessary terminology

regarding periodic orbits on graphs. A periodic orbit p is an equivalence class of closed
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paths with respect to cyclic shifts. That is,

p = [e1e2 . . . em−1em] ∼= [e2e3 . . . eme1] ∼= . . . ∼= [eme1 . . . em−2em−1] . (4.37)

We will generally omit the brackets.

The topological length of a periodic orbit is the number of edges in the periodic

orbit. For example, the periodic orbit p in (4.37) has topological length m. The set

of all periodic orbits of topological length m is denoted Pm. In a metric graph, the

metric length Lp of a periodic orbit p is the sum of the lengths of all the edges in p,

so

Lp = Le1 + Le2 + · · ·+ Lem−1 + Lem =
∑
ej∈p

Lej , (4.38)

where Lej is the metric length of the edge ej.

A primitive periodic orbit is one which is not a repetition of a shorter orbit.

Suppose the orbit p of topological length m is a repetition of the primitive periodic

orbit p′ with topological length m′. Then, the repetition number of p is rp = m/m′.

Finally, Ap is the stability amplitude of the periodic orbit p. This is the product

of the elements of the scattering matrices of all the vertices in the periodic orbit.

Recall that σ(v) is the vertex scattering matrix at the vertex v 2.13 where σ
(v)
e′,e gives

the coefficient when scattering from e to e′. So we have

Ap = σ(vi1 )
e2,e1

σ(vi2 )
e3,e2
· · · σ(vim−1

)
em,em−1

σ(vim )
e1,em

, (4.39)

where vij = t(ej) for j = 1, . . . ,m.

As in [18], the form factor of a quantum graph is

K(τ) =
1

4L2

∞∑
n=1

∑
p,q∈Pn

ApAqLpLq
rprq

δ

(
τ − Lp

2L

)
δLp,Lq . (4.40)
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If we choose the distinct edge lengths to be incommensurate, then δLp,Lq ensures that

any pair of orbits which contribute to the form factor visit each edge the same number

of times, so they must have the same topological length n. So if P is the set of all

periodic orbits on the graph, we can rewrite the form factor as

K(τ) =
1

4L2

∑
p,q∈P

ApAqLpLq
rprq

δ

(
τ − Lp

2L

)
δLp,Lq . (4.41)

Let L be the set of all possible lengths of periodic orbits. A periodic orbit with

length L ∈ L is a member of the degeneracy class associated to that length. Sorting

(4.41) by degeneracy class,

K(τ) =
1

4L2

∑
L∈L

L2δ

(
τ − L

2L

)∑
p∈P
Lp=L

Ap
rp


2

. (4.42)

Let Pt be the set of periodic orbits of topological length t. Then we define

K̃(t, E) =
E

2L2

∑
L∈L

L2

∑
p∈Pt
Lp=L

Ap
rp


2

, (4.43)

where E = |E| is the number of edges, so that K̃(t, E)→ K(τ) weakly as E →∞ if

t/2E → τ as E →∞.

Recall the quotient graph of a symmetric circulant graph Cn(l;a), section 3.3.2.

The quotient graph has d edges, one corresponding to each element of the vector a,

and its metric length is LQ =
∑d

h=1 lh, so (4.43) becomes

K̃(t, d) =
d

2(LQ)2

∑
L∈L

L2

∑
p∈Pt
Lp=L

Ap
rp


2

. (4.44)
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Now, define

K̃j(t, d) =
d

2(LQ)2

∑
L restricted
to j edges

L2E

∑
p∈Pt
Lp=L

Ap
rp


2

, (4.45)

which is the expectation of K̃(t, d) restricted to j edges and averaged over random

phases θi from the previous section. So then,

E [K(τ)] = lim
d→∞
t/2d→τ

d∑
j=1

K̃j(t, d) . (4.46)

To approximate E [K(τ)], we will select terms from (4.45) whose orbits give the

largest contribution as the number of edges increases to infinity. This turns out to be

those orbits who exhibit maximal back-scattering. To see why, consider the vertex

scattering matrix for the vertex v with degree dv and Neumann-like conditions,

σ(v) =
2

dv
E− I , (4.47)

where E is the dv × dv matrix of ones and I is the dv × dv identity matrix. In the

quotient graph, dv = 2d at the central vertex, so the contribution from back-scattering

is increasingly more significant as d→∞.

4.2.3.1 Orbits restricted to one edge. We first consider the case where j = 1,

that is periodic orbits restricted to a single edge e. When t, the topological length

of p, is even, maximal back-scattering is achieved by repeated transitions from e to ē

and back to e, where ē is the reversal of e. So, the contributing orbits take the form

p = eēeē · · · eēeē . (4.48)

Since the the transition from e to ē involves back-scattering at the central

vertex v, the scattering coefficient σ(v)
ē,e = (1/d− 1)eiθe , where eiθe is the phase factor
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picked up at the midpoint dummy vertex. On the other hand, σ(v)
e,ē = (1/d− 1)e−iθe ,

since traversing the edge e in the opposite direction picks up the inverse factor e−iθe .

The stability amplitude (4.39) is the product of these coefficients,

Ap =

(
1

d
− 1

)t
. (4.49)

The repetition number of p is rp = t/2, as there are t/2 copies of eē. We choose

edge lengths l ∈ (1−1/d, 1+1/d) so that l→ 1 as d→∞. Thus, we can approximate

L ≈ t and LQ ≈ d. Because there are d choices for the edge e, we have

K̃1(t, d) ≈ (d)1
d

2d2
t2

((
1− 1

d

)t
t/2

)2

≈ 2

(
1− 1

d

)2t

,

(4.50)

where (d)1 = d!/(d − 1)! is the Pochhammer symbol, or falling factorial. Letting

t→ 2dτ as d→∞,

lim
d→∞
t/2d→τ

K̃1(t, d) ≈ lim
d→∞

2

(
1− 1

d

)4dτ

= 2e−4τ ,

(4.51)

which is the same result obtained for j = 1 and even t for rose graphs in [63].

When t is odd, there are two possible orbits restricted to one edge that achieve

maximal back-scattering, corresponding to a transition ee or ēē,

p =


ēeēe · · · ēee ,

eēeē · · · eēē .
(4.52)
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As before, there are (t − 1)/2 repetitions of eē, resulting in a contribution of

(1/d − 1)t−1. The remaining scattering coefficients are σ(v)
e,e = (1/d)eiθe and σ(v)

ē,ē =

(1/d)e−iθe , so (4.39) is

Ap =


(

1
d
− 1
)t−1 1

d
eiθe ,(

1
d
− 1
)t−1 1

d
e−iθe ,

(4.53)

respectively.

Finally, both orbits are primitive, so rp = 1. Choosing appropriate edge lengths

and approximating L and L as before, we have

K̃1(t, d) ≈ (d)1
t2

2d

(
1− 1

d

)2t−2(
1

d

)2

E
[
(eiθe + e−iθe)2

]
≈ t2

2d2

(
1− 1

d

)2t−2

E
[
4 cos2 θe

]
.

(4.54)

Consequently,

lim
d→∞
t/2d→τ

K̃1(t, d) ≈ lim
d→∞

8τ 2

(
1− 1

d

)4dτ−2

E
[
cos2 θe

]
= 4τ 2e−4τ . (4.55)

Since odd and even values of t are equally distributed, the total contribution to (4.46)

for j = 1 is the average of (4.51) and (4.55):

(1 + 2τ 2)e−4τ . (4.56)

4.2.3.2 Orbits restricted to two edges. To better understand the general case,

we first consider the case where j = 2. We will denote the two edges on which the

orbit lives as e1 and e2. To achieve maximal back-scattering, we split the topological

length t into an orbit of length t1 on e1 and an orbit of length t2 on e2 such that

t = t1 + t2. There are 22 = 4 possibilities for t1 and t2 to be even or odd, each with a

weight of approximately t/4:
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1. t1 is odd and t2 is odd, so t is even.
(
t
2

possibilities
)

Here, there are 22 = 4 members of the degeneracy class, given by

p =



e1ē1e1ē1 · · · e1ē1e1e2ē2e2 · · · ē2e2, (transitions: e1e2, e2e1)

ē1e1ē1e1 · · · ē1e1ē1e2ē2e2 · · · ē2e2, (transitions: ē1e2, e2ē1)

e1ē1e1ē1 · · · e1ē1e1ē2e2ē2 · · · e2ē2, (transitions: e1ē2, ē2e1)

ē1e1ē1e1 · · · ē1e1ē1ē2e2ē2 · · · e2ē2, (transitions: ē1ē2, ē2ē1)

(4.57)

which yield stability amplitudes (4.39),

Ap =



(
1

d
− 1

)t−2
exp(iθe1) exp(iθe2)

d2(
1

d
− 1

)t−2
exp(−iθe1) exp(iθe2)

d2(
1

d
− 1

)t−2
exp(iθe1) exp(−iθe2)

d2(
1

d
− 1

)t−2
exp(−iθe1) exp(−iθe2)

d2

(4.58)

respectively.

2. t1 is odd and t2 is even, so t is odd.
(
t−1

2
possibilities

)
Here, there are 22 = 4 members of the degeneracy class, given by

p =



e1ē1e1ē1 · · · e1ē1e1e2ē2 · · · e2ē2, (transitions: e1e2, ē2e1)

ē1e1ē1e1 · · · ē1e1ē1e2ē2 · · · e2ē2, (transitions: ē1e2, ē2ē1)

e1ē1e1ē1 · · · e1ē1e1ē2e2 · · · ē2e2, (transitions: e1ē2, e2e1)

ē1e1ē1e1 · · · ē1e1ē1ē2e2 · · · ē2e2, (transitions: ē1ē2, e2ē1)

(4.59)

which yield stability amplitudes (4.39),
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Ap =



(
1

d
− 1

)t−2
exp(iθe1)

d2(
1

d
− 1

)t−2
exp(−iθe1)

d2(
1

d
− 1

)t−2
exp(iθe1)

d2(
1

d
− 1

)t−2
exp(−iθe1)

d2

(4.60)

respectively.

3. t1 is even and t2 is odd, so t is odd.
(
t−1

2
possibilities

)
Here, there are 22 = 4 members of the degeneracy class, given by

p =



ē1e1ē1e1 · · · ē1e1e2ē2e2 · · · ē2e2, (transitions: e1e2, e2ē1)

e1ē1e1ē1 · · · e1ē1e2ē2e2 · · · ē2e2, (transitions: ē1e2, e2e1)

ē1e1ē1e1 · · · ē1e1ē2e2ē2 · · · e2ē2, (transitions: e1ē2, ē2ē1)

e1ē1e1ē1 · · · e1ē1ē2e2ē2 · · · e2ē2, (transitions: ē1ē2, ē2e1)

(4.61)

which yield stability amplitudes (4.39),

Ap =



(
1

d
− 1

)t−2
exp(iθe2)

d2(
1

d
− 1

)t−2
exp(iθe2)

d2(
1

d
− 1

)t−2
exp(−iθe2)

d2(
1

d
− 1

)t−2
exp(−iθe2)

d2

(4.62)

respectively.

4. t1 is even and t2 is even, so t is even.
(
t−2

2
possibilities

)
Here, there are 22 = 4 members of the degeneracy class, given by
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p =



e1ē1e1ē1 · · · e1ē1e2ē2 · · · e2ē2, (transitions: ē1e2, ē2e1)

ē1e1ē1e1 · · · ē1e1ē2e2 · · · ē2e2, (transitions: e1ē2, e2ē1)

e1ē1e1ē1 · · · e1ē1ē2e2 · · · ē2e2, (transitions: ē1ē2, e2e1)

ē1e1ē1e1 · · · ē1e1e2ē2 · · · e2ē2, (transitions: e1e2, ē2ē1)

(4.63)

which yield (4.39), in all cases,

Ap =

(
1

d
− 1

)t−2
1

d2
. (4.64)

In each of the above possibilities, the orbit is primitive, so the repetition number

is rp = 1. As in the previous section, we choose edge lengths to approximate L ≈ t

and L ≈ d, which gives

K̃2(t, d) ≈ (d)2

2

t2

2d

(
1− 1

d

)2t−4(
1

d

)4
t

4
E[4 + 2eiθe1 + 2e−iθe1 + 2eiθe2

+ 2e−iθe2 + eiθe1eiθe2 + e−iθe1eiθe2 + eiθe1e−iθe2 + e−iθe1e−iθe2 ]2

≈ t3

16d3

(
1− 1

d

)2t−4(
16 + E[16 cos2 θe1 ] + E[16 cos2 θe2 ]

+ E
[
ei(θe1+θe2 ) + ei(θe2−θe1 ) + ei(θe1−θe2 ) + e−i(θe1+θe2 )

]2)
≈ t3

16d3

(
1− 1

d

)2t−4(
16 + 8 + 8 + 4

)
≈ 18t3

(2d)3

(
1− 1

d

)2t−4

.

(4.65)

Letting t→ 2dτ as d→∞,

lim
d→∞
t/2d→τ

K̃2(t, d) ≈ lim
d→∞

18τ 3

(
1− 1

d

)4dτ−4

= 18τ 3e−4τ .

(4.66)
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4.2.3.3 Orbits restricted to j edges. In general, if an orbit is restricted to j

edges of the graph, e1, . . . , ej, maximizing back-scattering requires minimizing tran-

sitions between edges. So think of splitting the orbit into j orbits, each living on a

single edge such that

t1 + · · ·+ tj = t , (4.67)

where tl is the length of the orbit living on el for l = 1, . . . , j. This limits the number

of transitions to j, so there are t− j back-scatterings.

To weight the various contributions to the form factor, we must consider both

the number of ways to decompose the sum in (4.67) and the relative density of odd

and even tl. Despite the fact that these are not independent, since even and odd tl

are evenly distributed, we may represent this weight for large t by the product

1

2j

(
t− 1

j − 1

)
∼ tj−1

2j(j − 1)!
. (4.68)

In the above expression, 1/2j gives the relative density of j different odd and even

tl,
(
t−1
j−1

)
gives the number of possible ways to choose transition points in (4.67), and

(t− 1)!/(t− j)! ∼ tj−1.

As we have seen in the previous cases, it is only odd values of tl that contribute

phases exp(±iθel) to the scattering amplitude since the even values cause the terms

to cancel. So, suppose there are r indices {i1, . . . , ir} for which til is odd. Then,

Ap =

(
1

d
− 1

)t−j
1

dj
ω
αi1
ei1
· · ·ωαir

eir
, (4.69)

where ωeil = exp(iθel) and αil = ±1. There are 2j members of each degeneracy class,

corresponding to j choices of el or ēl, and there are 2r possibilities for αil = ±1. For

a given r, there are
(
j
r

)
ways to choose r odd indicies, and we sum over all possible

values of r. Since rp = 1 in all cases,
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E

∑
p∈Pt
Lp=L

Ap


2

=

j∑
r=0

(
j

r

)
E

(1

d
− 1

)t−j
1

dj

∑
αil

=±1

2j−r
(
ω
αi1
ei1
· · ·ωαir

eir

)2

=

(
1

d
− 1

)2t−2j
1

d2j

j∑
r=0

{(
j

r

)
22j−2r

×E
[
22r cos2 θei1 · · · cos2 θeir

]}
(4.70)

which simplifies to

E

∑
p∈Pt
Lp=L

Ap


2

=

(
1

d
− 1

)2t−2j
1

d2j

j∑
r=0

(
j

r

)
22j−r (4.71)

Finally, there are (d)j/j number of ways to choose j bonds on which the orbit

is restricted, where the 1/j factor removes cyclic permutations. Combining all this

into (4.45) and approximating L ≈ t and L ≈ d results in

K̃j(t, d) ≈ (d)j
j

t2

2d

(
1− 1

d

)2t−2j
1

d2j

tj−1

2j(j − 1)!

{
j∑
r=0

(
j

r

)
22j−r

}

≈ tj+1

(2d)j+1j!

(
1− 1

d

)2t−2j

{6j} .

(4.72)

Letting d→∞ as t/2d→ τ ,

lim
d→∞
t/2d→τ

K̃j(t, d) ≈ lim
d→∞

τ j+16j

j!

(
1− 1

d

)4dτ−2j

≈ τ j+1e−4τ 6j

j!
. (4.73)

Notice that substituting j = 2 equals the result in (4.66), as expected.

To find the expected value for the form factor K(τ), we substitute (4.56) and

(4.73) into (4.46),

84



E [K(τ)] ≈ (1 + 2τ 2)e−4τ + τe−4τ

∞∑
j=2

6j

j!
τ j

=
(
1− τ − 4τ 2

)
e−4τ + τe2τ .

(4.74)

So, for small τ , we approximate (4.74) by its Maclaurin series,

E [K(τ)] ≈ 1− 4τ + 10τ 2 − 2

3
τ 3 − 28

3
τ 4 + O(τ 5) . (4.75)

Since K(τ) is the Fourier transform of R2(x), the small asymptotic behavior of

τ will determine the large asymptotic behavior of x. Specifically, if

1− k(τ) =

∫ ∞
−∞

(1− r(x))e2πixτ dx , (4.76)

holds for some functions k(τ) and r(x), then for even k(τ) such that

k(τ) ∼ 1 +
∞∑
l=1

alτ
l , (4.77)

we have

r(x) ∼ 1 + 2<

{
∞∑
l=1

(
−i

2π

)l+1
all!

xl+1

}
. (4.78)

So, using the coefficients of (4.75) applied to the previous equation gives the approx-

imation

E[R2(x)] ∼ 1 +
2

π2x2
− 1

2π4x4
+ O

(
1

x6

)
. (4.79)

This result [62] is similar to the corresponding asymptotic approximations for

the two-point correlation functions of the star graph and the Dirac operator on a rose

graph. For the star graph, the full series expansion is [14, 12]

R2(x) ∼ 1 +
2

π2x2
+

76

π4x4
+ O

(
1

x6

)
, (4.80)
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and for the rose graph, it is [63]

R2(x) ∼ 1 +
2

π2x2
− 13

8π4x4
+ O

(
1

x6

)
. (4.81)

The main distinction between these three cases is the difference in the coefficient of

the third term. Whereas for the star graph, it is 76/π4, for the rose graph and the

symmetric quantum circulant quotient graph, the coefficient is negative: −13/8π4 in

the former and −1/2π4 in the latter.

4.2.4 Numerical Analysis of Two-Point Correlation Function

When comparing the numerical statistics to the estimates (4.36) and (4.79),

we considered the subspectra for a symmetric quantum circulant graph separately,

as well as looking at the average over all the subspectra. We numerically computed

the eigenvalues corresponding to each of the irreducible representations Rj for several

different symmetric quantum circulant graphs. To avoid a large number of Dirichlet

eigenvalues in the spectrum, we primarily considered symmetric quantum circulant

graphs with a prime number of vertices.

For a given graph Cn(l;a), the vector a was randomly generated by using a

Bernoulli trial on each integer in {1, . . . , (n − 1)/2}, with probability 1/2. We then

chose a handful of its representations Rj and evaluated ≈ 20,000,000 roots for each

by using the functions pj(k) (3.31). To numerically evaluate R2(x), we approximated

the Dirac delta function in (4.9) by the boxcar function,

g(x) =


1

ε
x ∈ [−ε/2, ε/2] ,

0 otherwise ,

(4.82)

so that, for small ε and large N ,
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R2(x) ≈ 1

N

N∑
n=1

N∑
m=1

g(x− (an − am)) . (4.83)

In our case, this amounted to dividing the interval [0, 4] into sub-intervals of length

ε = 0.04, counting the number of total spacings that fell into each interval, and

multiplying this by a factor of about 25/20,000,000.

Figure 4.7 shows the numerically computed two-point correlation function for

the subspectra corresponding to the representations R401 and R2051 of a symmetric

quantum circulant graph with 7919 vertices. These statistics are plotted against the

small (4.36) and large (4.79) parameter asymptotic approximations computed in the

previous sections. The constant in (4.36) was computed to be c ≈ 5.514 for R401 and

c ≈ 5.507 for R2051 by using a least squares curve fitting algorithm for x < 0.55.

(a) (b)

Figure 4.7. Two-point correlation functions for the subspectra of the symmetric quantum
circulant graph C7919(l;a) transforming according to two different irreducible representa-
tions. Both are plotted along with predictions for the small and large parameter asymp-
totics: (a) the two-point correlation function plotted for 20,000,089 eigenvalues from the
subspectrum transforming according to R401; (b) the two-point correlation function plotted
for 20,000,553 eigenvalues from the subspectrum transforming according to R2051.

Using a graph with the same number of vertices, we wanted to compute the

two-point correlation function averaged over all the non-trivial irreducible represen-

tations, since the predictions are the same for all irreducible representations without
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Dirichlet eigenvalues. The trivial representation, corresponding to j = 0 was omitted

from these averages due to the presence of Dirichlet eigenvalues. To get compara-

ble statistics, we calculated around 5,000 eigenvalues for each representation Rj for

a total of about 20,000,000 roots. The R2(x) estimates were obtained individually

for each representation Rj and then averaged over all the j. These are also plotted

against the asymptotic estimates, shown in figure 4.8. The constant c ≈ 5.367 was

computed using the same method.

Figure 4.8. The two-point correlation function plotted for 5,362 eigenvalues from each of the
subspectra of the symmetric quantum circulant graph C7919(l;a) transforming according to
the irreducible representations Rj , averaged over j = 1, . . . , 3959.

For completeness, we also considered the statistics of the quantum circulant

graph C4409(l;a). The numerically computed two-point correlation function for the

subspectra corresponding to the representations R1796 and R1095 are shown in figure

4.9, along with the small (4.36) and large (4.79) parameter asymptotic approxima-

tions. We again used a least squares curve fitting algorithm for x < 0.55 to find c in

(4.36). For R1796, we found c ≈ 5.4976 and for R1095, we found c ≈ 5.4862. The aver-
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aged two-point correlation function for C4409(l;a) over all the non-trivial irreducible

representations, plotted against the asymptotic estimates, is shown in figure 4.10,

with constant c ≈ 5.7756 computed using the same method. These figures, along

with figures 4.7 and 4.8 demonstrate agreement between the numerical statistics for

a symmetric quantum circulant graph and the asymptotics we derived. This shows

that symmetric circulant graphs serve as an example of intermediate statistics.

(a) (b)

Figure 4.9. Two-point correlation functions for the subspectra of the symmetric quantum
circulant graph C4409(l;a) transforming according to two different irreducible representa-
tions. Both are plotted along with predictions for the small and large parameter asymp-
totics: (a) the two-point correlation function plotted for 20,000,191 eigenvalues from the
subspectrum transforming according toR1796; (b) the two-point correlation function plotted
for 19,999,975 eigenvalues from the subspectrum transforming according to R1095.
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Figure 4.10. The two-point correlation function for 5,368 eigenvalues from each of the
subspectra of the symmetric quantum circulant graph C4409(l;a) transforming according to
the irreducible representations Rj , averaged over j = 1, . . . , 2204.
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CHAPTER FIVE

Spectral Zeta Function

The spectral zeta function of a quantum graph is a generalization of the Rie-

mann zeta function; instead of summing over the integers, one sums over the eigenval-

ues of the graph. For the Laplace operator on a quantum graph with Neumann-like

vertex conditions, its spectrum will be non-negative [75, 9]. So ordering the spectrum,

0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · , with λi = k2
i , the associated spectral zeta function is defined

as

ζ(s) =

∞∑′

i=0

k−2s
i , (5.1)

where the prime indicates that any eigenvalues of zero are omitted from the sum. We

will see that the spectral zeta function encodes many of quantum graph’s spectral

properties. In [60, 61], the spectral zeta function for a quantum graph with general

vertex conditions was constructed for the Laplace and Schrödinger operators. We

construct the spectral zeta function for quantum circulant graphs using a contour

integral technique introduced in [71, 72]. The results presented here for quantum

circulant graphs first appeared in [62].

5.1 Symmetric Circulant Graph Zeta Function

For a symmetric quantum circulant graph, the secular equation is given as a

product of functions pj(k) defined in (3.31)–(3.33). The spectrum of the quantum

graph decomposes into subspectra whose eigenfunctions transform according to the

irreducible representations Rj (see 3.3.2). Additionally, the eigenvalues in these sub-

spectra which are not Dirichlet eigenvalues correspond to the zeros of pj(k). For each

j ∈ {0, . . . , bn/2c}, we define a spectral zeta function consisting of the subspectrum

associated to that value of j. Let 0 < kj0 ≤ kj1 ≤ kj2 ≤ · · · be the positive zeros of

91



pj(k) for each j. Then for <(s) > 1,

ζj(s) = ζjD(s) +

∞∑′

i=0

k−2s
ji

. (5.2)

The term ζjD(s) in (5.2) is the sum over the Dirichlet eigenvalues corresponding

to eigenfunctions transforming according to the irreducible representation Rj for j =

1, . . . , n/2. For j = 0, ζ0D(s) includes those Dirichlet eigenvalues which are present

for every symmetric quantum circulant graph, corollary 3.11, namely 2mπ/lh for all

h = 1, . . . , d. This is because these are precisely the Dirichlet eigenvalues whose

eigenfunctions transform according to the trivial representation. Then

ζ(s) =


ζ0(s) + 2

(n−1)/2∑
j=1

ζj(s) when n is odd ,

ζ0(s) + ζn/2(s) + 2

(n/2)−1∑
j=1

ζj(s) when n is even ,

(5.3)

is the spectral zeta function for a symmetric quantum circulant graph.

5.1.1 Integral Representation of ζ0(s)

We describe a procedure to produce an integral representation of ζ0(s) valid

for <(s) < 1. We will then be able to obtain the other ζj(s) in a similar fashion. The

method for constructing ζ0(s) begins by defining a complex-valued function f0(z)

whose zeros on the positive real-axis correspond to the zeros of the p0(k). Recall that

p0(k) = 2
∑d

h=1 tan (klh/2) (3.32) and define

f0(z) =
1

z

d∑
h=1

tan

(
zlh
2

)
, (5.4)

where z = k + it ∈ C. Note that the zeros of f0 are zeros of p0, except that the zero

at the origin has been removed by multiplication by 1/z. We now choose a contour C
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which encloses the zeros of f0(z) on the positive real axis and avoids its poles. Figure

5.1 gives an example of such a contour. By the argument principle,

1

2πi

∫
C
z−2sf

′(z)

f(z)
dz =

∞∑′

i=0

(k0i)
−2s , (5.5)

where the k0i are the zeros of f0(z). So,

ζ0(s) = ζ0D(s) +
1

2πi

∫
C
z−2s d

dz
log f0(z) dz . (5.6)

C

zeros
poles

Figure 5.1. A contour C, which encloses the zeros of f(z) on the positive real axis and
avoids its poles.

To obtain an analytic continuation of (5.6), we perform a contour transforma-

tion from C to a contour C ′, so that C ′ lies along the imaginary axis with a loop around

each pole of f0(z), as shown in figure 5.2. We may then write

ζ0(s) = ζ0D(s) + ζ0P (s) + ζ0I (s) , (5.7)

where ζ0I (s) is the integral along the imaginary axis and ζ0P (s) is the contribution

from the poles of f0(z).Since ζ0D(s) is the sum over Dirichlet eigenvalues associated
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to p0(k),

ζ0D(s) =
∞∑
m=1

d∑
h=1

(
2mπ

lh

)−2s

=
∞∑
m=1

(2m)−2s
d∑

h=1

(
π

lh

)−2s

. (5.8)

C ′

zeros
poles

Figure 5.2. The contour C′, which lies along the imaginary axis and loops around the poles
of f(z).

To find ζ0P (s), we sum the residues at the poles of f0(z). Since f0(z) is a sum

of tan functions, the poles are located at z = (2m− 1)π/lh, and we have

ζ0P (s) =
∞∑
m=1

(2m− 1)−2s
d∑

h=1

(
π

lh

)−2s

. (5.9)

When combined with the Dirichlet eigenvalues (5.8), we obtain

ζ0D(s) + ζ0P (s) =
∞∑
m=1

(2m)−2s
d∑

h=1

(
π

lh

)−2s

+
∞∑
m=1

(2m− 1)−2s
d∑

h=1

(
π

lh

)−2s

=

[
∞∑
m=1

(2m)−2s +
∞∑
m=1

(2m− 1)−2s

]
d∑

h=1

(
π

lh

)−2s

= ζR (2s)
d∑

h=1

(
π

lh

)−2s

,

(5.10)

where ζR(s) is the Riemann zeta function.
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We now turn to the integral along the imaginary axis,

ζ0I (s) =
1

2πi

∫
Im

z−2s d

dz
log f0(z) dz =

1

2πi

∫ −∞
∞

(it)−2s d

dt
log f0(it) dt . (5.11)

As tan(it) = i tanh(t), we let f̂0(t) =
∑d

h=1 tanh (tlh/2). Then write ζ0I (s) as

ζ0I (s) =
1

2πi

∫ −∞
0

(it)−2s d

dt
log f0(it) dt

+
1

2πi

∫ 0

∞
(it)−2s d

dt
log f0(it) dt

=
(−i)−2s

2πi

∫ ∞
0

t−2s d

dt
log

(
f̂0(t)

t

)
dt

− i−2s

2πi

∫ ∞
0

t−2s d

dt
log

(
f̂0(t)

t

)
dt

=
sin πs

π

∫ ∞
0

t−2s d

dt
log

(
f̂0(t)

t

)
dt .

(5.12)

To determine for what values of s this integral converges, we consider the asymptotic

behavior of f̂0(t)/t,

f̂0(t)

t
∼



d∑
h=1

(
lh
2
− l3ht

2

24

)
+ O(t4) as t→ 0 ,

d∑
h=1

(
1

t
+ O

(
e−tlh

t

))
as t→∞ .

(5.13)

Therefore d
dt

log f̂0(t)/t is proportional to t near zero, and d
dt

log f̂0(t)/t is asymptotic

to 1/t as t → ∞. Consequently, the integral representation (5.12) holds in the strip

0 < <(s) < 1.

We are interested in using the spectral zeta function to compute the spectral

determinant and vacuum energy of the graph, see sections 5.3 and 5.4. In order to do

this, we need an analytic continuation of the spectral zeta function which is valid at

95



least for −1/2 ≤ <(s) ≤ 0. So, to extend the region where the integral representation

of ζ0I (s) converges, we split the integral in (5.12) at t = 1 and expand the logarithm

in the integral over (1,∞). We obtain

ζ0I (s) =
sin πs

π

[∫ 1

0

t−2s d

dt
log

f̂0(t)

t
dt+

∫ ∞
1

t−2s d

dt
log f̂0(t) dt− 1

2s

]
, (5.14)

which converges for all s with <(s) < 1.

By combining (5.10) and (5.14), we obtain an analytic continuation convergent

for <(s) < 1,

ζ0(s) = ζR (2s)
d∑

h=1

(
π

lh

)−2s

+
sinπs

π

[∫ 1

0

t−2s d

dt
log

f̂0(t)

t
dt

+

∫ ∞
1

t−2s d

dt
log f̂0(t) dt− 1

2s

]
.

(5.15)

This is an integral representation of the spectral zeta function for the subspectrum

with eigenfunctions transforming according to the trivial representation, R0.

5.1.2 Integral Representation of ζj(s)

For other values of j we follow the same procedure. Recall the definition of

pj(k) for 1 ≤ k ≤ b(n− 1)/2c (3.31) and define for each j

fj(z) = z
d∑

h=1

[
cos

(
2πjah
n

)
csc(zlh)− cot(zlh)

]
. (5.16)

Observe that the zeros of fj again correspond to the zeros of pj, with now a pole

removed at the origin by multiplication by z. We represent ζj(s) with the contour

integral

ζj(s) = ζjD(s) +
1

2πi

∫
C
z−2s d

dz
log fj(z) dz , (5.17)
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where C is the same contour as in figure 5.1 that encloses the zeros of fj(z) on

the positive real axis and avoids its poles and ζjD(s) is the sum over the Dirichlet

eigenvalues corresponding to eigenfunctions transforming according to the irreducible

representation Rj. We again use the contour transformation from C to the contour

C ′ shown in figure 5.2, and write

ζj(s) = ζjD(s) + ζjP (s) + ζjI (s) . (5.18)

To evaluate the integral along the imaginary axis, define

f̂j(t) =
d∑

h=1

[
coth (tlh)− cos

(
2πjah
n

)
csch (tlh)

]
. (5.19)

Note that in this case, fj(it) = −tf̂j(t), so ζjI (s) is

ζjI (s) =
sinπs

π

∫ ∞
0

t−2s d

dt
log
(
tf̂j(t)

)
dt . (5.20)

Asymptotically as t→ 0, we see that

tf̂j(t) ∼
d∑

h=1

(
1− cos(2πjah/n)

lh
+

2 + cos(2πjah/n)

6
lht

2

)
+ O(t4) , (5.21)

and as t→∞,

tf̂j(t) ∼
d∑

h=1

t

(
1− 2 cos

(
2πjah
n

)
e−tlh + 2e−2tlh

− 2 cos

(
2πjah
n

)
e−3tlh + O

(
e−4tlh

))
,

(5.22)

so equation (5.20) is defined for 0 < <(s) < 1. To extend the region of convergence,

we can again split the integral at t = 1 and expand, so
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ζjI (s) =
sin πs

π

[∫ 1

0

t−2s d

dt
log tf̂j(t) dt+

∫ ∞
1

t−2s d

dt
log f̂j(t) dt+

1

2s

]
. (5.23)

This integral representation of ζjI (s) is valid for <(s) < 1.

To find ζjP (s), we must determine the poles of fj(z). In general, these occur

for z = mπ/lh, since these are roots of sin(zlh) = 0, but for those j and h which

satisfy (3.51), a set of poles are removed. As mentioned in section 3.5, each missing

pole corresponds to an added Dirichlet eigenvalue. We will see that the expression

ζjP (s) + ζjD(s) remains the same regardless of whether j is associated to Dirichlet

eigenvalues or not.

To show this, first let n be even and fix a value j ∈ {1, . . . , (n/2)− 1}. Define

the sets

H
(e)
j := {h ∈ {1, . . . , d} : jah ≡ 0 (mod n)} , (5.24)

H
(o)
j := {h ∈ {1, . . . , d} : jah ≡ n/2 (mod n)} . (5.25)

These are the values of h for which there are Dirichlet eigenvalues k2 = (mπ/lh)
2

replacing the poles of fj(z) for even and odd m, respectively. Notice that H
(e)
j and

H
(o)
j are disjoint for a fixed j.

The contribution to ζj(s) from the Dirichlet eigenvalues is

ζjD(s) =
∞∑
m=1

(2m)−2s
∑
h∈H(e)

j

(
π

lh

)−2s

+
∞∑
m=1

(2m− 1)−2s
∑
h∈H(o)

j

(
π

lh

)−2s

, (5.26)

and consequently, the poles of fj(z) are
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ζjP (s) =
∞∑
m=1

(m)−2s

d∑
h=1

(
π

lh

)−2s

−
∞∑
m=1

(2m)−2s
∑
h∈H(e)

j

(
π

lh

)−2s

−
∞∑
m=1

(2m− 1)−2s
∑
h∈H(o)

j

(
π

lh

)−2s

.

(5.27)

Combining (5.26) and (5.27)

ζjD(s) + ζjP (s) = ζR (2s)
d∑

h=1

(
π

lh

)−2s

, (5.28)

where ζR(s) is the Riemann zeta function.

Now, let n be odd and observe that only those k2 for which k is an even

multiple of π/lh will be present in the Dirichlet spectrum. Again, fix a value j ∈

{1, . . . , (n− 1)/2} and define

Hj := {h ∈ {1, . . . , d} : jah ≡ 0 (mod n)} , (5.29)

which is the set of values of h for which the poles of fj(z) are replaced by Dirichlet

eigenvalues. Then,

ζjD(s) =
∞∑
m=1

(2m)−2s
∑
h∈Hj

(
π

lh

)−2s

, (5.30)

and

ζjP (s) =
∞∑
m=1

(m)−2s

d∑
h=1

(
π

lh

)−2s

−
∞∑
m=1

(2m)−2s
∑
h∈Hj

(
π

lh

)−2s

, (5.31)

which again yields (5.28) when combined.

The combined spectral zeta function for the subspectrum associated toRj, with

<(s) < 1, is then
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ζj(s) = ζR (2s)
d∑

h=1

(
π

lh

)−2s

+
sinπs

π

[∫ 1

0

t−2s d

dt
log tf̂j(t) dt

+

∫ ∞
1

t−2s d

dt
log f̂j(t) dt+

1

2s

]
.

(5.32)

5.1.3 Integral Representation of ζn/2(s)

For even n, we must also consider zeros of the function pn/2(k), which is defined

slightly differently from the other pj(k) (3.33). Let,

fn/2(z) = z

 d∑
h=1

ah is even

tan

(
zlh
2

)
−

d∑
h=1

ah is odd

cot

(
zlh
2

) , (5.33)

so that fn/2(z) has the same zeros as pn/2(k) and the pole at the origin has been

removed.

As before, we write ζn/2(s) as a contour integral and perform a contour trans-

formation so that

ζn/2(s) = ζn/2D(s) + ζn/2P (s) + ζn/2I (s) . (5.34)

The derivation of ζn/2I follows the previous cases, ultimately yielding

ζn/2I (s) =
sinπs

π

[∫ 1

0

t−2s d

dt
log tf̂n/2(t) dt

+

∫ ∞
1

t−2s d

dt
log f̂n/2(t) dt+

1

2s

]
,

(5.35)

valid for <(s) < 1, where

f̂n/2(t) =
d∑

h=1
ah is even

tanh

(
tlh
2

)
+

d∑
h=1

ah is odd

coth

(
tlh
2

)
. (5.36)

When ah is even, the poles of fj(z) are z = (2m− 1)π/lh. However, when ah is

even, ahn/2 is a multiple of n, so the Dirichlet eigenvalues are k2 = (2mπ/lh)
2. On
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the other hand, when ah is odd the poles are z = 2mπ/lh and the Dirichlet eigenvalues

are k2 = ((2m− 1)π/lh)
2. In either case, summing over all h,

ζn/2D(s) + ζn/2P (s) = ζR (2s)
d∑

h=1

(
π

lh

)−2s

, (5.37)

which is again the same as (5.28).

5.1.4 Full Symmetric Spectral Zeta Function

Summing the functions for each j according to equation (5.3), we obtain the

spectral zeta function of a symmetric quantum circulant graph. This result appears

in [62].

Theorem 5.1. Let Cn(l; (a1, . . . , ad)) be a symmetric quantum circulant graph that is

equipped with the Laplace operator and Neumann-like vertex conditions. The spectral

zeta function for Cn(l;a), with <(s) < 1, is

ζ(s) = nζR(2s)
d∑

h=1

(
π

lh

)−2s

+
(n− 2) sinπs

2πs

+
sinπs

π

{∫ 1

0

t−2s d

dt
log

f̂0(t)

t
dt+

∫ ∞
1

t−2s d

dt
log f̂0(t) dt

+ 2

(n−1)/2∑
j=1

[∫ 1

0

t−2s d

dt
log tf̂j(t) dt+

∫ ∞
1

t−2s d

dt
log f̂j(t) dt

]}
,

(5.38)

when n is odd and
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ζ(s) = nζR(2s)
d∑

h=1

(
π

lh

)−2s

+
(n− 2) sinπs

2πs

+
sinπs

π

{∫ 1

0

t−2s d

dt
log

f̂0(t)

t
dt+

∫ 1

0

t−2s d

dt
log tf̂n/2(t) dt

+

∫ ∞
1

t−2s d

dt
log f̂0(t) dt+

∫ ∞
1

t−2s d

dt
log f̂n/2(t) dt

+ 2

(n/2)−1∑
j=1

[∫ 1

0

t−2s d

dt
log tf̂j(t) dt+

∫ ∞
1

t−2s d

dt
log f̂j(t) dt

]}
,

(5.39)

when n is even.

5.2 Generic Circulant Graph Zeta Function

Although the structure of the secular equation is not quite as simple for a

generic quantum circulant graph, we can still apply the contour integral technique to

obtain its spectral zeta function. In this case, we assume that all the edge lengths of

the quantum circulant graph are incommensurate in order to avoid any unaccounted

for eigenvalues in the Dirichlet spectrum, which would superimpose eigenvalues and

poles in the construction. Recall that the secular equation for such a graph is

detM(k) = 0 , (5.40)

where the n× n matrix M(k) (3.24)–(3.25) is defined by

[M(k)]ij =


−
∑

v∼i cot kLi,v i = j ,

csc kLi,j i ∼ j ,

0 otherwise .

(5.41)

We define a complex-valued function whose zeros match those of detM(k) and

use the argument principle to express the zeta function as a contour integral. Let
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f(z) = zn−2 detM(z) , (5.42)

so that the zeros of f correspond to the roots of the secular equation. Multiplication

by zn−2 removes the pole at the origin without introducing an additional zero. This

is because the first nonzero coefficient in the expansion of det zM(z) about z = 0

belongs to the z2 term, as we will see.

The zeta function for a generic quantum circulant graph is expressed as the

contour integral,

ζ(s) =
1

2πi

∫
C
z−2s d

dz
log f(z) dz , (5.43)

where C is a contour which encloses the zeros of f on the positive real axis and avoids

its poles, as in figure 5.1. We deform the contour C to a contour C ′, as shown in

figure 5.2, so that C ′ lies along the imaginary axis and loops around each pole of f(z).

This allows the zeta function to be written as the sum of residues at the poles of f ,

denoted ζP (s), and an integral along the imaginary axis, ζI(s), so

ζ(s) = ζP (s) + ζI(s) . (5.44)

The poles of f occur when z = mπ/Le, and so the sum of residues at the poles

is

ζP (s) =
∞∑
m=1

∑
e∈E

(
mπ

Le

)−2s

= ζR(2s)
∑
e∈E

(
π

Le

)−2s

. (5.45)

If we define a function f̂(t) = det M̂(t) where M̂(t) is

[
M̂(t)

]
ij

=


−
∑

v∼i coth tLi,v i = j ,

csch tLi,j i ∼ j ,

0 otherwise ,

(5.46)
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then tn−2f̂(t) = f(it). So the integral along the imaginary axis can be written,

ζI(s) =
sinπs

π

∫ ∞
0

t−2s d

dt
log tn−2f̂(t) dt . (5.47)

Expanding the elements of tM̂(t) near t = 0,

[
tM̂(t)

]
ij
∼



−
∑
v∼i

(
1

Li,v
+
Li,v
3
t2 + O

(
t4
))

i = j ,

1

Li,j
− Li,j

6
t2 + O

(
t4
)

i ∼ j ,

0 otherwise .

(5.48)

From this, tnf(t) = det[tM̂(t)] tends to zero as t approaches zero, since the sum of

the elements of each row of tM̂(t) is zero. So, we may write

tnf̂(t) = det[tM̂(t)] ∼ ct2 + O(t4) (5.49)

near t = 0, since the expansions of coth(t) and csch(t) contain only odd powers of

t. Without loss of generality we can assume c 6= 0. If c was zero for some choice of

edge lengths it can be made non-zero by an arbitrarily small perturbation. Hence,

the integral in equation (5.47) converges for 0 < <(s) < 1.

To obtain an analytic continuation valid for all <(s) < 1 we can again split the

integral at t = 1 and develop the integral over (1,∞),

ζI(s) =
sin πs

π

[∫ 1

0

t−2s d

dt
log tn−2f̂(t) dt

+

∫ ∞
1

t−2s d

dt
log f̂(t) dt+

(n− 2)

2s

]
.

(5.50)

From this, we obtain the main result of this section.
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Theorem 5.2. Let Cn(L;a) be a quantum circulant graph equipped with the Laplace

operator and Neumann-like vertex conditions. If the edge lengths are incommensurate,

the spectral zeta function for <(s) < 1 is

ζ(s) = ζR(2s)
∑
e∈E

(
π

Le

)−2s

+
(n− 2) sinπs

2πs

+
sin πs

π

{∫ 1

0

t−2s d

dt
log tn−2f̂(t) dt+

∫ ∞
1

t−2s d

dt
log f̂(t) dt

}
.

(5.51)

Although this theorem is only valid for quantum circulant graphs with incom-

mensurate edge lengths, we notice that we can obtain the result for symmetric quan-

tum circuant graphs, theorem 5.1, by letting f̂(t) = det M̂(t) =
∏n−1

j=0 f̂j(t).

5.3 Spectral Determinant

The spectral determinant is a generalization of the determinant of a matrix to

infinite dimensional linear operators. Formally, the spectral determinant of a linear

operator is the product of its eigenvalues. Since the spectral zeta function represents

a sum over the spectrum of an operator, we may use it to define a regularized spectral

determinant. For example, since formally

ζ ′(0) = − log
∞∏
i=1

k2
i , (5.52)

the spectral determinant of the Laplace operator H can be defined as

detH = e−ζ
′(0) . (5.53)

As we have obtained an analytic continuation of ζ(s) valid at s = 0, we are able to

compute this quantity.
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The spectral determinants of quantum graph Hamiltonians have been studied

in [2, 33, 34, 111]. Here, we present a simplified version for quantum circulant graphs

equipped with the Laplace operator with Neumann-like vertex conditions.

5.3.1 Spectral Determinant for Symmetric Circulant Graphs

From the zeta function for a quantum circulant graph with edge symmetry,

theorem 5.1, one can compute the spectral determinant. Taking the derivative of ζ(s)

for odd n,

ζ ′(0) = −dn log 2π + n

d∑
h=1

log
π

lh
− log

 f̂0(t)

t

(n−1)/2∏
j=1

∣∣∣tf̂j(t)∣∣∣2
∣∣∣∣∣∣

t=0

+ log

f̂0(t)

(n−1)/2∏
j=1

∣∣∣f̂j(t)∣∣∣2
∣∣∣∣∣∣

t→∞

= − log

2E−1L
ndn

d∏
h=1

lnh

(n−1)/2∏
j=1

[
d∑

h=1

1

lh

(
1− cos

2πjah
n

)]2
 ,

(5.54)

where L = n
∑d

h=1 lh is the total length of the graph. Similarly, when n is even, we

have,

ζ ′(0) = −dn log 2π + n
d∑

h=1

log
π

lh
− log

f̂0(t)f̂n/2(t)

(n/2)−1∏
j=1

∣∣∣tf̂j(t)∣∣∣2
∣∣∣∣∣∣

t=0

+ log

f̂0(t)f̂n/2(t)

(n/2)−1∏
j=1

∣∣∣f̂j(t)∣∣∣2
∣∣∣∣∣∣

t→∞

= − log

2E−1L
ndn

d∏
h=1

lnh

(n/2)−1∏
j=1

[
d∑

h=1

1

lh

(
1− cos

2πjah
n

)]2 d∑
h=1
ah odd

2

lh

 .

(5.55)

By exponentiating equations (5.54) and (5.55), we obtain the spectral determinant.
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Theorem 5.3. The spectral determinant of the Laplace operator of a quantum circulant

graph Cn(l,a) with symmetric edge lengths and standard vertex conditions is

det ∆ =
2E−1L
ndn

d∏
h=1

lnh

(n−1)/2∏
j=1

[
d∑

h=1

1

lh

(
1− cos

2πjah
n

)]2

, (5.56)

when n is odd and

det ∆ =
2E−1L
ndn

d∏
h=1

lnh

(n/2)−1∏
j=1

[
d∑

h=1

1

lh

(
1− cos

2πjah
n

)]2 d∑
h=1
ah odd

2

lh
, (5.57)

when n is even. In both cases, d is the number of elements in a, E = nd is the

number of edges, and L = n
∑d

h=1 lh is the total length of the graph.

5.3.2 Spectral Determinant for Generic Circulant Graphs

Similarly we can use theorem 5.2 to compute the spectral determinant of a

generic quantum circulant graph.

Theorem 5.4. The spectral determinant of the Laplace operator of a quantum circulant

graph Cn(L;a) with standard vertex conditions is

det ∆ = (−1)nc

(
2d−1

d

)n ∏
(i,j)∈E

Li,j , (5.58)

where d is the number of elements in a and c is the first nonzero coefficient in the

expansion of det[tM̂(t)] about zero.

Proof. Note that

ζ ′(0) = −nd log 2π +
∑

(i,j)∈E

log
π

Li,j
− log

(
tn−2f̂(t)

)∣∣∣
t=0

+ log f̂(t)
∣∣∣
t→∞

(5.59)
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where f̂(t) = det M̂(t) as defined in (5.46). As t → ∞, M̂(t) ∼ −2dIn, and so

f̂(t) ∼ (−2d)n. To evaluate tn−2f̂(t) as t → 0, recall that tn det M̂(t) ∼ ct2 + O(t4),

since the constant term in the expansion must be zero. For any given circulant graph,

the elements of tM̂(t) can be expanded as in equation (5.48) and the first nonzero

coefficient of its determinant, c, is straightforward to compute from (5.49).

A form of the spectral determinant of a general quantum graph using the spec-

tral zeta function was developed by Harrison, Kirsten, and Texier in [60, 61]. For the

Laplace operator on a quantum graph, the zeta function can be written in terms of

local vertex conditions given by the matrices A and B. The spectral determinant is

det ∆ =
2E

cN

E∏
e=1

Le det

(
A− B

(
L−1 −L−1

−L−1 L−1

))
, (5.60)

where cN is the first non-zero coefficent belonging the highest power of t in det(A−tB)

and L is a diagonal matrix of the lengths of the edges.

In the case of the Laplacian with Neumann-like vertex conditions, Friedlander

[41] explicitly computed the spectral determinant to be

det ∆ = 2E
L
V

∏
e∈E Le∏
v∈V d(v)

det′R , (5.61)

where E and V are the total edges and vertices, respectively, and d(v) is the degree

of the vertex v. The notation det′R refers the pseudo-determinant of R, the product

of all its non-zero eigenvalues. The matrix R is the Dirichlet-Neumann operator

evaluated at zero, which is given by

Rij =


∑

v∼i L
−1
iv i = j∑

(i,j)∈E L
−1
ij i 6= j

. (5.62)
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For a quantum circulant graph, V = n, E = nd, and d(v) = 2d for all v, where d is

the length of the vector a. The matrices M̂(t) and R are related, and in fact,

lim
t→0
−tM̂(t) = R . (5.63)

Equations (5.58) and (5.61) imply that c = (−1)nL det′(R)/n.

5.4 Vacuum Energy

Another application of the spectral zeta function is to compute the regularized

vacuum (Casimir) energy associated with the graph [60]. In quantum field theory,

vacuum energy is the ground state energy of a quantum vacuum, that is the lowest

possible energy a quantum system may have. To understand this, consider that the

energy levels of a single quantum harmonic oscillator with potential k2x2/2 are given

by

En =

(
1

2
+ n

)
k . (5.64)

According to quantum field theory, the total energy of a system is given by the sum

of the energies at all points in the space, so for a one-dimensional field, formally

E =
∞∑
j=0

(
1

2
+ nj

)
kj . (5.65)

If we consider the vacuum state, where all the nj are zero, this becomes

E0 =
1

2

∞∑
j=0

kj , (5.66)

which is divergent. Experimental results show the existence of an attractive force

between two uncharged parallel metallic plates in a vacuum, known at the Casimir

effect. This force quickly drops off at large distances, but it demonstrates that the
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change in energy in a vacuum with respect to the space between plates is a meaningful

quantity.

To compute these differences in energy, a regularization is necessary to make

the divergent sums of energies into finite quantities which can be compared. One

common procedure for regularizing vacuum energy is to introduce a cutoff term etkj

and consider the limit t → 0. Another regularized vacuum energy can be defined

via analytic continuation of the spectral zeta function, which is the method we will

employ here. Although vacuum energy in a one-dimensional graph does not have a

clear physical meaning, the underlying ergodicity of a quantum graph can provide a

simplified model for studying the vacuum energy in a chaotic system.

Since kj =
√
λj, the vacuum energy is formally given as the sum of the square

roots of the eigenvalues of the Laplacian,

1

2

∞∑
j=0

√
λj =

1

2

∞∑
j=0

kj . (5.67)

The zeta-regularized vacuum energy is then defined as,

Ec =
1

2
ζ

(
−1

2

)
. (5.68)

This quantity has been investigated for general quantum graphs in [13, 42, 44] using

the trace formula and in [60] using the general spectral zeta function. Results on star

graphs have also been obtained in [13, 60] using both methods. We develop explicit

formulas for the vacuum energy of a quantum circulant graph using the spectral zeta

function.

5.4.1 Results on Circulant Graphs

Using the zeta function in theorem 5.1, we evaluate ζ(−1/2) to compute the

vacuum energy of a symmetric circulant graph.
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Theorem 5.5. The vacuum energy of the Laplace operator of a quantum circulant graph

Cn(l,a) with symmetric edge lengths and standard vertex conditions is

Ec =
n− 2

2π
− 1

2π

∫ 1

0

t
d

dt
log

tn−2f̂0(t)

(n−1)/2∏
j=1

[
f̂j(t)

]2

 dt

− 1

2π

∫ ∞
1

t
d

dt
log

f̂0(t)

(n−1)/2∏
j=1

[
f̂j(t)

]2

 dt− nπ

24

d∑
h=1

(lh)
−1 ,

(5.69)

when n is odd and

Ec =
n− 2

2π
− 1

2π

∫ 1

0

t
d

dt
log

tn−2f̂0(t)f̂n/2(t)

(n−1)/2∏
j=1

[
f̂j(t)

]2

 dt

− 1

2π

∫ ∞
1

t
d

dt
log

f̂0(t)f̂n/2(t)

(n−1)/2∏
j=1

[
f̂j(t)

]2

 dt− nπ

24

d∑
h=1

(lh)
−1 ,

(5.70)

when n is even.

Similarly the zeta function of a generic circulant graph, theorem 5.2, provides

an integral formulation for its vacuum energy.

Theorem 5.6. The vacuum energy of the Laplace operator of a quantum circulant graph

Cn(L,a) with standard vertex conditions is

Ec =
n− 2

2π
− 1

2π

∫ 1

0

t
d

dt
log tn−2f̂(t) dt

− 1

2π

∫ ∞
1

t
d

dt
log f̂(t) dt− π

24

∑
(i,j)∈E

(Li,j)
−1 .

(5.71)

For a symmetric quantum circulant graph, the spectral zeta function can be

obtained from (5.51) where f̂(t) =
∏n−1

j=0 f̂j(t). Then, as expected, the vacuum energy

for a symmetric quantum circulant graph in theorem 5.5 is a special case of theorem

5.6, when f̂(t) is defined in this way.
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5.4.2 Comparison with Previous Results

The force between uncharged plates in a vacuum is the change in vacuum energy

as the distance between the plates changes. This is known as the Casimir force and

it can be computed by taking the derivative of the regularized vacuum energy with

respect to an edge length. A formulation of this quantity using the spectral zeta

function was studied in [60, 61].

For the Laplace operator on a quantum graph with local vertex matching con-

ditions given by matrices A and B, an analytic continuation of the zeta function can

be written as

ζ(s) =
ζR(2s)

π2s

∑
e∈E

L2s
e +

sin πs

π

[∫ 1

0

t−2s d

dt
log f̂(t) dt

+

∫ ∞
1

t−2s d

dt

(
log(t−N f̂(t))− cN−j

cN tj

)
dt+

N

2s
− cN−jj

cN(2s+ j)

]
,

(5.72)

where

f̂(t) = det

(
A− tB

(
coth(tL) − csch(tL)
− csch(tL) coth(tL)

))
∼ det(A− tB) = cN t

N + cN−jt
N−j + O(tN−j−1)

(5.73)

such that cN and cN−j are the highest non-zero coefficients in the expansion of the

determinant. This analytic continuation converges for <(s) > −(j + 1)/2, and in

general, we expect that j = 1, so ζ(−1/2) diverges due to the last term in (5.72).

Because of the divergence of the integral, Ec also diverges for a general quantum

graph, but the Casimir force is well-defined and was found to be

F β
c =

π

24L2
β

+
1

π

∫ ∞
0

∂

∂Lβ
log f̂(t) dt . (5.74)
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In our case, the vacuum energy for a quantum circulant graph was able to be

computed because our formulation is not divergent at s = −1/2. Computing the

Casimir force on a quantum circulant graph will give a similar result to (5.74).

Well-defined vacuum energies for star graphs in various cases were also found.

In [13], the vacuum energy for a quantum star graph with Neumann conditions and

equal edge lengths is

Ec =
(E − 3)π

48L
, (5.75)

where E is the number of edges and L is the length of an edge. This is consistent with

the results found in [60] using the spectral zeta function. Vacuum energies were also

found for quantum star graphs with both Neumann and Dirichlet vertex conditions,

and also for quantum star graphs with incommensurate edge lengths [60].
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CHAPTER SIX

Quantum Cayley Graphs of Finite Groups

Quotient graphs were first introduced by Band, Parzanchevski, and Ben-Shach

[7, 96] and can be used to analyze the spectrum of a quantum graph with a symmetry

group by decomposing its spectrum into subspectra transforming according to the

irreducible representations of that symmetry group. The technique for constructing

a quotient graph was introduced in section 2.5. The quotient graphs of quantum

circulant graphs, the Cayley graphs of cyclic groups, were analyzed in section 3.3.2.

This chapter considers a quotient graph model based on Cayley graphs of more general

finite groups, which is joint work with Mark Sepanski.

6.1 Construction of the Model

We first encountered Cayley graphs in chapter three as one of the characteri-

zations of circulant graphs. In general, a Cayley graph of a group G is determined by

the choice of a set of generators, Ω. The vertices of the Cayley graph are the elements

of the group, and two vertices are connected by an edge if one is obtained from the

other by right multiplication with an element of Ω. The set Ω does not contain the

identity and the inverse of every element in Ω is also in Ω. This ensures that the

Cayley graph is not directed and that no vertex is connected to itself.

We consider a finite group G where Ω contains two elements of order at least

three, α and β, and their inverses,

Ω := {α, α−1, β, β−1} . (6.1)

Then, Γ is the Cayley graph of the group G with generating set Ω, so that V = G

and E = {(σ, στ) : σ ∈ G, τ ∈ Ω}. The set of edges in Γ can be partitioned into
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two equivalence classes based on the group generators α and β. These are defined as

[E ]α = {(σ, στ) : σ ∈ G, τ ∈ {α, α−1}} and [E ]β = {(σ, στ) : σ ∈ G, τ ∈ {β, β−1}}. To

make Γ a metric graph G, we assign edge lengths based on the equivalence classes of

E . For an edge e ∈ [E ]α, the length of e is 2lα, and for e ∈ [E ]β, the length of e is 2lβ.

Here, the factor of two is for convenience in future calculations.

The group G is a symmetry group for the metric graph G and acts on G by left

multiplication. The graph G may be viewed as a quantum graph by considering the

Laplace operator with Neumann-like vertex conditions at all the vertices. The group

action of G on an eigenfunction f is defined by

(σf)(x) = f(σ−1x). (6.2)

For a given D-dimensional irreducible representation R of G, we define the D × D

matrix representation of the group elements by

Mσ = R(σ) . (6.3)

Recall that the construction of a quotient graph relies on first choosing a fun-

damental domain for G (see section 2.5). For the quotient graph G/R, we want to

construct a graph whose eigenfunctions transform according to the D-dimensional

representation R. In the case where D ≥ 2, we have two equivalent ways of treating

the group action of R on the eigenfunctions of G. We can view f as a D-dimensional

vector-valued function on each edge of the fundamental domain (see [68] for an ex-

ample of this method), or we can take D copies of the fundamental domain where

f is scalar-valued on each edge. The latter is the method used in [7, 96] and is the

strategy we will employ here.

To construct G/R, we take D copies of a fundamental domain of G and de-

termine vertex conditions on the quotient graph so that eigenfunctions transform
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according to the D-dimensional irreducible representation R. We do this by intro-

ducing dummy vertices at the midpoints of the edges of G. As discussed in 3.3.2, this

will not change the spectrum of the quantum graph. Using the same technique ap-

plied on circulant graphs, we will keep the coordinates of the edges unchanged by the

introduction of the dummy vertices. The edge (ι, α) associated to the interval [0, 2lα]

splits into edges corresponding to the subintervals [0, lα] and [lα, 2lα]. Similarly, the

edge (ι, β) corresponding to [0, 2lβ] splits into edges associated to [0, lβ] and [lβ, 2lβ].

We will let α0 denote the dummy vertex on the edge (ι, α) and similarly β0 is the

dummy vertex on (ι, β). The fundamental domain for G consists of the edges (ι, α0),

(α−1
0 , ι), (ι, β0), and (β−1

0 , ι) and their endpoints, as depicted in figure 6.1. We assume

the edges are oriented so that (ι, α0) and (ι, β0) are associated to [0, lα] and [0, lβ],

respectively, and similarly, (α−1
0 , ι) and (β−1

0 , ι) correspond to [lα, 2lα] and [lβ, 2lβ].

ι

α0

α

α−1
0

α−1

β0

β
β−1

0
β−1

Figure 6.1. A subgraph of the quantum graph G with dummy vertices. The fundamental
domain is shown with solid lines and vertices.

Since the fundamental domain contains four edges, taking D copies for the

quotient graph implies that the quotient graph will have 4D edges. Let (ιj, α0j),

(α−1
0j
, ιj), (ιj, β0j), and (β−1

0j
, ιj) denote the edges on the jth copy of the fundamental

domain. Then, define
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f(ι,α0) =
(
f(ι1,α01 ), . . . , f(ιD,α0D

)

)T
, (6.4)

f
(α

−1
0 ,ι)

=
(
f(α−1

01
,ι1), . . . , f(α−1

0D
,ιD)

)T
, (6.5)

f(ι,β0) =
(
f(ι1,β01 ), . . . , f(ιD,β0D )

)T
, (6.6)

f
(β

−1
0 ,ι)

=
(
f(β−1

01
,ι1), . . . , f(β−1

0D
,ιD)

)T
, (6.7)

as vectors of the function restricted to the D copies of an edge in the fundamental

domain. The vectors of derivatives are defined similarly as

f ′
(ι,α0) =

(
f ′(ι1,α01 ), . . . , f

′
(ιD,α0D

)

)T
, (6.8)

f ′
(α

−1
0 ,ι)

=

(
f ′

(α−1
01
,ι1)
, . . . , f ′

(α−1
0D
,ιD)

)T
, (6.9)

f ′
(ι,β0) =

(
f ′(ι1,β01 ), . . . , f

′
(ιD,β0D )

)T
, (6.10)

f ′
(β

−1
0 ,ι)

=

(
f ′

(β−1
01
,ι1)
, . . . , f ′

(β−1
0D
,ιD)

)T
, (6.11)

where the derivatives are taken with respect to the edge orientation previously defined.

The action of α ∈ G on G maps the edge (ι, α) to the edge (α−1, ι) and con-

sequently maps (ι, α0) to (α−1, α−1
0 ). With the given edge orientation, Neumann-like

conditions at the vertex α−1
0 require

f
(α

−1
0 ,ι)

(lα) =Mαf(ι,α0)(lα) , (6.12)

f ′
(α

−1
0 ,ι)

(lα) =Mαf
′
(ι,α0)(lα) . (6.13)

Similarly, the action of β ∈ G on G maps (ι, β) to (β−1, ι) and (ι, β0) to (β−1, β−1
0 ).

So the Neumann-like conditions at β−1
0 require

f
(β

−1
0 ,ι)

(lβ) =Mβf(ι,β0)(lβ) , (6.14)
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f ′
(β

−1
0 ,ι)

(lβ) =Mβf
′
(ι,β0)(lβ) . (6.15)

Identification among the vertices is determined by the matricesMα andMβ. Identify

the vertices α−1
0j

and α0k whenever [Mα]jk 6= 0 and identify β−1
0j

and β0k whenever

[Mβ]jk 6= 0. For the purposes of visualizing the quotient graph under a generic

representationR, we may assume that all of the elements ofMα andMβ are nonzero,

so that the vertices α0k and α−1
0j

are identified for all j and k, and similarly for β0k

and β−1
0j

, as shown in figure 6.2. When zero elements are present this can result in a

decoupling phenomena, similar to Dirichlet boundary conditions, which would split

the identified vertex. However, this information is encoded in the vertex conditions

and need not affect the topology of the graph.

ι1 ιD

α0

β0

. . .

f(α−1
01
,ι1)

f(ι1,α01 )

f(ι1,β01 )

f(β−1
01
,ι1)

Figure 6.2. A general quotient graph G/R with respect to a D-dimensional representation
R, where G is the Cayley graph of a finite group with two distinct generators, α and β,
each with order at least three.
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6.1.1 Secular Equation

A secular equation can be derived from the vertex conditions which produces

a symmetric formula with similarities to the secular equations of star graphs and

circulant graphs. Consider the Laplace equation on some edge e of the quotient

graph

− d2

dx2
e

fe(xe) = k2fe(xe) , (6.16)

where fe is the function f restricted to the edge e. For k 6= 0, we can write fe as a

linear combination of sin(kx) and cos(kx), where the e in xe is suppressed for ease of

notation. So,

f(ι,α0)(x) = A1 sin(kx) +B1 cos(kx) , (6.17)

f
(α

−1
0 ,ι)

(x) = A2 sin(kx) +B2 cos(kx) , (6.18)

f(ι,β0)(x) = A3 sin(kx) +B3 cos(kx) , (6.19)

f
(β

−1
0 ,ι)

(x) = A4 sin(kx) +B4 cos(kx) , (6.20)

where Ai and Bi are D-dimensional vectors of coefficients of the sine and cosine

functions, for i = 1, . . . , 4.

Since (ιj, α0j) and (ιj, β0j) are respectively identified with [0, lα] and [0, lβ] for

j = 1, . . . , D, continuity at the ιj vertices implies that B1 = B3 = φ, where φ is a

vector with jth component φj = f(ιj). As we have chosen to identify the directed

edge (α0, ιj) with [lα, 2lα] and (β0, ιj) with [lβ, 2lβ] for all j, the vertex conditions

(6.12)–(6.13) at the identified α0 vertex imply

A2 sin(klα) +B2 cos(klα) =MαA1 sin(klα) +Mαφ cos(klα) , (6.21)

A2 cos(klα)−B2 sin(klα) =MαA1 cos(klα)−Mαφ cos(klα) . (6.22)
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Assuming sin(klα) 6= 0 and cos(klα) 6= 0, multiply (6.21) by sin(klα) and (6.22) by

cos(klα) and add them together to obtain

MαA1 = A2 . (6.23)

Multiplying (6.21) by cos(klα) and (6.22) by sin(klα) gives

Mαφ = B2 . (6.24)

Similarly, substituting (6.19) and (6.20) in the vertex conditions (6.14)–(6.15) at the

identified β0 vertex and assuming sin(klβ) 6= 0 and cos(klβ) 6= 0, we obtain

MβA3 = A4 , (6.25)

Mβφ = B4 . (6.26)

By continuity at the ιj vertices, f
(α

−1
0 ,ι)

(2lα) = φ = f
(β

−1
0 ,ι)

(2lβ). So, if sin(2klα) 6= 0

and sin(2klβ) 6= 0, we can solve for A1 and A3,

A1 =M−1
α φ csc(2klα)− φ cot(2klα) , (6.27)

A3 =M−1
β φ csc(2klβ)− φ cot(2klβ) . (6.28)

This gives us a system of equations in terms of the vector φ and the matrices

Mα and Mβ. Since the ιj vertices are subject to Neumann-like conditions, taking

the outgoing derivatives and summing to zero implies that

f ′
(ι,α0)(0) + f ′

(ι,β0)(0)− f ′
(α

−1
0 ,ι)

(2lα)− f ′
(β

−1
0 ,ι)

(2lβ) = 0 . (6.29)

Substituting in (6.17)–(6.20), including the determined coefficients, gives
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csc(2klα)M̂αφ+ csc(2klβ)M̂βφ− 2 [cot(2klβ) + cot(2klα)]φ = 0 , (6.30)

where

M̂α =
(
Mα +M−1

α

)
, (6.31)

M̂β =
(
Mβ +M−1

β

)
. (6.32)

This gives the following theorem.

Theorem 6.1. Let k ∈ C be such that k 6= mπ/2lα and k 6= mπ/2lβ for m ∈ Z. Then

k2 is an eigenvalue of the graph Laplacian whenever k is a root of

det
[
csc(2klα)M̂α + csc(2klβ)M̂β − 2 (cot(2klα) + cot(2klβ)) ID

]
= 0 . (6.33)

6.2 Including Subgraphs

In order to see good spectral statistics, it is often desirable to have a large and

well-connected quantum graph. One way of enlarging a graph without changing its

underlying symmetry is to replace the vertices of the graph with identical subgraphs

(see [5, 39] for the first known usages of this technique and [83] for an overview). This

method was employed in [68] to find a quantum graph displaying GSE statistics.

6.2.1 The K4 Subgraph

To increase the complexity of the quotient graph, we replace each of the ιj ver-

tices with a copy of K4, the complete graph on four vertices. Each of these subgraphs

must be identical in connectivity and length in order to preserve the symmetry of the

quotient graph, and we assign Neumann-like conditions at all the new vertices. The

new quotient graph, denoted Ĝ/R, is shown in figure 6.3. We label the four vertices

of the jth copy of K4 as ιmj , for m = 1, . . . , 4. Then, the subgraph is connected to
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the α0 and β0 vertices as shown in figure 6.4. That is, we now have the edges (ι1j , α0),

(α−1
0 , ι2j), (ι3j , β0), and (β−1

0 , ι4j), which are associated to intervals of length lα and lβ

in the same manner as previously.

α0

β0

f(ι1,α01 )

f(α−1
01
,ι1)

f(ι1,β01 )

f(β−1
01
,ι1)

f(ιD,α0D
)

f(α−1
0D
,ιD)

f(ιD,β0D )

f(β−1
0D
,ιD)

. . .

Figure 6.3. The quotient graph Ĝ/R where each vertex ιj has been replaced with a copy of
K4.

Define f
(m1,m2)
j as the function f restricted to some directed edge (ιm1

j , ιm2
j ) in

the jth copy of the subgraph K4. The edge (ιm1
j , ιm2

j ) is given the length lm1,m2 for

all j and associated to the interval [0, lm1,m2 ] in such a way that ιm1
j corresponds to

0 and ιm2
j corresponds to lm1,m2 . Due to continuity at the ιmj vertices, we define four

vectors φm of length D, where φmj = f(ιmj ) for m = 1, . . . , 4, j = 1, . . . , D. For ease

of notation, write the vector form f (m1,m2) = {f (m1,m2)
1 , . . . , f

(m1,m2)
D }T . So then,

f (m1,m2)(x) = A(m1,m2) sin(kx) + φm1 cos(kx) . (6.34)
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ι1j ι2j

ι3jι4j

f
(1,2)
j

f
(2,3)
j

f
(2,4)
j

f
(3,1)
j

f
(4,1)
j

f
(4,3)
j

f(ιj ,α0j
) f(α−1

0j
,ιj)

f(ιj ,β0j
)

f(β−1
0j
,ιj)

Figure 6.4. The jth copy of the subgraph K4 in the quotient graph Ĝ/R.

and by continuity at the ιmj vertices, if sin(klm1,m2) 6= 0, then,

A(m1,m2) = φm2 csc(klm1,m2)− φm1 cot(klm1,m2) . (6.35)

Proceeding as before, represent f(ι,α0),f(ι,β0),f(α−1
0 ,ι)

,f
(β

−1
0 ,ι)

as in (6.17)–

(6.20). By continuity, we now have B1 = φ1 and B3 = φ3. We may apply the

vertex conditions (6.12)-(6.13) at the α0 vertex in same manner as previously,

A2 sin(klα) +B2 cos(klα) =MαA1 sin(klα) +Mαφ
1 cos(klα) , (6.36)

A2 cos(klα)−B2 sin(klα) =MαA1 cos(klα)−Mαφ
1 cos(klα) . (6.37)

Assuming that sin(klα) 6= 0 and cos(klα) 6= 0, we again obtain

MαA1 = A2 , (6.38)

Mαφ
1 = B2 , (6.39)
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and similarly at the β0 vertex,

MβA3 = A4 , (6.40)

Mβφ
3 = B4 . (6.41)

Noting that f
(α

−1
01
,ι1)

(2lα) = φ2 and f
(β

−1
01
,ι1)

(2lβ) = φ4, we have

A1 =M−1
α φ

2 csc(2klα)− φ1 cot(2klα) , (6.42)

A3 =M−1
β φ

4 csc(2klβ)− φ3 cot(2klβ) , (6.43)

so that all the coefficients are written in terms of φm for m = 1, . . . , 4, and the Mα

and Mβ matrices.

Taking the derivative along each and summing to zero at each of the ιj vertices

gives the four matrix equations,

M−1
α φ

2 csc(2klα)− φ1 cot(2klα) +
4∑

k=2

[
φk csc(kl1,k)− φ1 cot(kl1,k)

]
= 0 , (6.44)

Mαφ
1 csc(2klα)− φ2 cot(2klα) +

4∑
k=1
k 6=2

[
φk csc(kl2,k)− φ2 cot(kl2,k)

]
= 0 . (6.45)

M−1
β φ

4 csc(2klβ)− φ3 cot(2klβ) +
4∑

k=1
k 6=3

[
φk csc(kl3,k)− φ3 cot(kl3,k)

]
= 0 , (6.46)

Mβφ
3 csc(2klβ)− φ4 cot(2klβ) +

3∑
k=1

[
φk csc(kl4,k)− φ4 cot(kl4,k)

]
= 0 . (6.47)

If we let Φ be the concatenated column vector of the φm, this system can be written

in matrix form as

M̂(k)Φ = 0 , (6.48)
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where M̂(k) is a 4D× 4D block matrix. Let a = csc(2klα) and b = csc(2klβ), so that

M̂(k) is defined by

M̂(k) =



D1 C1,2 + aM−1
α C1,3 C1,4

C1,2 + aMα D2 C2,3 C2,4

C1,3 C2,3 D3 C3,4 + bM−1
β

C1,4 C2,4 C3,4 + bMβ D4


, (6.49)

with D ×D matrix subblocks,

Di = −

 4∑
k=1
k 6=i

cot(kli,k)

 ID − cot(2klα)ID, i = 1, 2 (6.50)

Di = −

 4∑
k=1
k 6=i

cot(kli,k)

 ID − cot(2klβ)ID, i = 3, 4 (6.51)

Ci,j = csc(kli,j)ID . (6.52)

A secular equation for Ĝ/R is then given by

det
[
M̂(k)

]
= 0 . (6.53)

6.2.2 The K5 Subgraph

The choice of K4 for the subgraph replacing the ιj vertices is arbitrary; in

theory, any connected subgraph will do. As an example, we will provide part of

the derivation of a secular equation where the ιj vertices are replaced by K5, the

completely connected graph on five vertices. This quotient graph, which we will call
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ˆ̂G/R, is shown in figure 6.5. The procedure follows nearly identical to the previous

section.

α0

β0

f(ι1,α01 )

f(α−1
01
,ι1)

f(ι1,β01 )

f(β−1
01
,ι1)

f(ιD,α0D
)

f(α−1
0D
,ιD)

f(ιD,β0D )

f(β−1
0D
,ιD)

. . .

Figure 6.5. The quotient graph
ˆ̂G/R where each vertex ιj has been replaced with a copy of

K5.

Label the five vertices of the jth copy of K5 as ιmj for m = 1, . . . , 5, so that we

have the edges (ι1j , α0), (α−1
0 , ι2j), (ι3j , β0), and (β−1

0 , ι4j), as shown in figure 6.6. Define

f
(m1,m2)
j as previously and assign the length lm1,m2 to the edge (ιm1

j , ιm2
j ) for all j. By

continuity, define the vectors φm of length D for m = 1, . . . , 5 analogously to the

previous section. Using the vector form f (m1,m2) = {f (m1,m2)
1 , . . . , f

(m1,m2)
D }T , we may

write

f (m1,m2)(x) = (φm2 csc(klm1,m2)− φm1 cot(klm1,m2)) sin(kx) + φm1 cos(kx) , (6.54)

for sin(klm1,m2) 6= 0.
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ι1j ι2j

ι3jι4j

ι5j

f
(1,2)
j

f
(2,3)
j

f
(2,4)
j

f
(2,5)
j

f
(3,1)
j

f
(4,1)
j

f
(4,3)
j

f
(4,5)
j

f
(5,1)
j

f
(5,3)
j

f(ιj ,α0j
) f(α−1

0j
,ιj)

f(ιj ,β0j
)

f(β−1
0j
,ιj)

Figure 6.6. The jth copy of the subgraph K5 in the quotient graph
ˆ̂G/R.

The functions f(ι,α0),f(ι,β0),f(α−1
0 ,ι)

,f
(β

−1
0 ,ι)

are given as in (6.17)–(6.20) and

because of our choices for vertex labels, Ai and Bi for i = 1, . . . , 4 are the same as

in the K4 case. Thus, the analogue to the system of equations given in (6.44)–(6.47)

is given by

M−1
α φ

2 csc(2klα)− φ1 cot(2klα) +
5∑

k=2

[
φk csc(kl1,k)− φ1 cot(kl1,k)

]
= 0 , (6.55)

Mαφ
1 csc(2klα)− φ2 cot(2klα) +

5∑
k=1
k 6=2

[
φk csc(kl2,k)− φ2 cot(kl2,k)

]
= 0 , (6.56)

M−1
β φ

4 csc(2klβ)− φ3 cot(2klβ) +
5∑

k=1
k 6=3

[
φk csc(kl3,k)− φ3 cot(kl3,k)

]
= 0 , (6.57)

Mβφ
3 csc(2klβ)− φ4 cot(2klβ) +

5∑
k=1
k 6=4

[
φk csc(kl4,k)− φ4 cot(kl4,k)

]
= 0 , (6.58)

4∑
k=1

[
φk csc(kl5,k)− φ5 cot(kl5,k)

]
= 0 , (6.59)
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where (6.59) is the equation for the ι5j vertices. Letting Φ be the concatenated column

vector of φ1, . . . ,φ5, we may write

ˆ̂
M(k)Φ = 0 , (6.60)

as in (6.48). In this case,
ˆ̂
M(k) is the 5D × 5D block matrix given by



D1 C1,2 + aM−1
α C1,3 C1,4 C1,5

C1,2 + aMα D2 C2,3 C2,4 C2,5

C1,3 C2,3 D3 C3,4 + bM−1
β C3,5

C1,4 C2,4 C3,4 + bMβ D4 C4,5

C1,5 C2,5 C3,5 C4,5 D5



, (6.61)

with subblocks

Di = −

 5∑
k=1
k 6=i

cot(kli,k)

 ID − cot(2klα)ID, i = 1, 2 , (6.62)

Di = −

 5∑
k=1
k 6=i

cot(kli,k)

 ID − cot(2klβ)ID, i = 3, 4 , (6.63)

D5 = −

(
4∑

k=1

cot(kl5,k)

)
ID , (6.64)

Ci,j = csc(kli,j)ID . (6.65)

Here, a and b are defined as above and so we have the secular equation
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det
[

ˆ̂
M(k)

]
= 0 , (6.66)

for the quotient graph
ˆ̂G/R.

6.3 Numerical Results

We took a slightly different approach from chapter four when searching for roots

of these secular equations. Rather than searching for zeros of the matrix determinant

directly, we considered the eigenvalues of the matrix as functions of k and searched

for their roots. Although finding the eigenvalues of a large numerical matrix may be

slightly more computationally expensive than finding the determinant, these eigen-

value functions are much more well-behaved in terms of the employed root-finding

algorithm, which ultimately resulted in greater efficiency.

The justification for the procedure relies on the fact that eigenvalues of a ma-

trix whose entries are continuous functions are themselves continuous. Clearly the

elements of our matrix are not continuous on the whole real line since cosecant and

cotangent have regularly spaced asymptotes. However, because we know the location

of these poles, we can partition our interval into subintervals with the asymptotes

serving as endpoints. Within any of these subintervals, the elements of the matrix

will be continuous and therefore the eigenvalues will be also.

We evaluated M(k) as defined in (6.49) at evenly spaced values of k on the

subintervals determined by the asymptotes. We found the eigenvalues of each of

these matrices and sorted them into a matrix so that each column was increasing

smallest to largest. In this way, each row of the matrix corresponds to an eigenvalue

viewed as a continuous function evaluated at evenly spaced values of k. We looked

for sign changes on each row of the matrix and used a bracketing algorithm to find

the roots. By checking against the Weyl law for quantum graphs (see 2.4), we were

able to confirm that no roots were missed using this method.
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6.3.1 Results for the Group SL(2, 7)

For the Cayley graph of the group G = SL(2, 7) with generators

α =

(
0 1

−1 0

)
β =

(
0 −1

1 −1

)
, (6.67)

let G denote the corresponding quantum graph. We looked at the spectral statistics

of three quotient graphs of G with subgraphs included at the vertices. First, we

looked at Ĝ/R6, which is the quotient graph with a copy of K4 at each of the vertices

with respect to the 6-dimensional representation R6. We also considered a quotient

graph with respect to the same representation,
ˆ̂G/R6, where each of the vertices was

replaced with a copy of K5. Finally, we examined Ĝ/R8, the quotient graph with

respect to the 8-dimensional representation R8 with a copy of K4 included at each

vertex.

The irreducible 6-dimensional representation R6 can be given as

Mα =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


, (6.68)

for the generator α and

Mβ =



0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

−1 −1 −1 −1 −1 −1


, (6.69)
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for the generator β. Histograms of the nearest-neighbor spacing distribution for

approximately 50,000 eigenvalues of Ĝ/R6 and Ĝ/R6 are shown in figures 6.7 and

6.9, respectively. The corresponding integrated distributions are in figures 6.8 and

6.10. We included the Poisson distribution in both sets of figures for comparison.

Figures 6.11 and 6.12 show the two-point correlation function for Ĝ/R6 and
ˆ̂G/R6,

respectively, which we computed using the method described in section 4.2.4.

The irreducible 8-dimensional representation R8 can be given as

Mα =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0


, (6.70)

for generator α and

Mβ =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 0


, (6.71)

for generator β. The histogram of the nearest-neighbor spacing distribution for G/R8

is shown in figure 6.13, the integrated nearest-neighbor distribution is in figure 6.14,

and the two-point correlation function is in figure 6.15.
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Figure 6.7. Histogram of the nearest-neighbor spacing distribution for the quantum graph
Ĝ/R6 with respect to the irreducible 6-dimensional representation given in (6.68)–(6.69) for
49,927 eigenvalues plotted against the Poisson distribution.

Figure 6.8. The integrated nearest-neighbor spacing distribution for the quantum graph
Ĝ/R6 with respect to the irreducible 6-dimensional representation given in (6.68)–(6.69)
plotted against the Poisson distribution.
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Figure 6.9. Histogram of the nearest-neighbor spacing distribution for the quantum graph
ˆ̂G/R6 with respect to the irreducible 6-dimensional representation given in (6.68)–(6.69) for
50,604 eigenvalues plotted against the Poisson distribution.

Figure 6.10. The integrated nearest-neighbor spacing distribution for the quantum graph
ˆ̂G/R6 with respect to the irreducible 6-dimensional representation given in (6.68)–(6.69)
plotted against the Poisson distribution.
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Figure 6.11. The two-point correlation function plotted for 49,927 eigenvalues for the
quantum graph Ĝ/R6 with respect to the irreducible 6-dimensional representation given
in (6.68)–(6.69).

Figure 6.12. The two-point correlation function plotted for 50,604 eigenvalues for the

quantum graph
ˆ̂G/R6 with respect to the irreducible 6-dimensional representation given

in (6.68)–(6.69).
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Figure 6.13. Histogram of the nearest-neighbor spacing distribution for the quantum graph
Ĝ/R8 with respect to the irreducible 8-dimensional representation given in (6.70)–(6.71) for
50,212 eigenvalues plotted against the Poisson distribution.

Figure 6.14. The integrated nearest-neighbor spacing distribution for the quantum graph
Ĝ/R8 with respect to the irreducible 8-dimensional representation given in (6.70)–(6.71)
plotted against the Poisson distribution.
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Figure 6.15. The two-point correlation function plotted for 50,212 eigenvalues for the
quantum graph Ĝ/R8 with respect to the irreducible 8-dimensional representation given
in (6.70)–(6.71).
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APPENDIX

List of Symbols and Notation

(d)j Pochhammer symbol (falling factorial), i.e. d!/(d− j)!
A,B Matrices defining vertex conditions

Ap Stability amplitude of periodic orbit p

b Directed edge (bond)

b Reversal of the bond b

C A contour in the complex plane

C(G) Space of continuous functions on the metric graph G
Cn(a) Circulant graph with n vertices generated by a

Cn(L;a) Quantum circulant graph

Cn(l;a) Symmetric quantum circulant graph

d Length of a in Cn(a)

dv Degree of the vertex v

D Dimension of a representation

∆ Laplace operator

E[x] Expectation value of x

E Set of edges

E Number of edges (size of the set E)

Ev Set of edges incident to the vertex v

E Matrix of ones

Ec Regularized vacuum energy

fe(xe) Function defined on the interval [0, Le] associated to the edge e

F (v) Vector of function values at v on each edge e ∈ Ev
F ′(v) Vector of outgoing derivative values at v on each edge e ∈ Ev
G A group

Γ Combinatorial graph

G Metric graph (shorthand for quantum graph)

(G,H) Quantum graph

G/R Quotient graph with respect to irreducible representation R
H Differential operator (Hamiltonian)

H̃2(G) Direct sum of the second Sobolev space on each edge of G
I Identity matrix
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ι Identity element for the group G

I(s) Integrated nearest-neighbor spacing distribution

J Adjacency matrix

k Root of secular equation, i.e.
√
λ

k̂j Normalized root of secular equation, i.e. kjπ/L
K(τ) Form factor (Fourier transform of R2(x))

λ Eigenvalue

Le Length of the edge e

lh Length of an edge belonging to a set of edges with equal length

L Diagonal matrix of edge lengths

L Total metric length of a graph

L Set of all possible lengths of periodic orbits

L2(G) Space of square-integrable functions on the metric graph G
Mσ Matrix representation of σ by R, i.e. R(σ)

N(a, b) Algebraic counting function

o(b) Origin vertex of the bond b

Ω Generating set for a Cayley graph

Φ(λ) Eigenspace of the graph with eigenvalue λ

Φj(λ) Subspace of Φ(λ) transforming according to Rj

p(z) Representer of a circulant matrix

Pm Set of periodic orbits of topological length m

P (s) Nearest-neighbor spacing probability density function

PW (s) Wigner surmise for the Gaussian ensembles of random matrices

ρ(x) Probability density function

rp Repetition number of periodic orbit p

R Irreducible representation

R2(x) Two-point correlation function

<(s) Real part of s

σ(v)(k) Vertex scattering matrix at v

S(k) Bond scattering matrix

t(b) Terminal vertex of the bond b

V Set of vertices

V Number of vertices (size of the set V)

{u, v} The (undirected) edge connecting u and v

u ∼ v The vertex u is adjacent to the vertex v

ζ(s) Spectral zeta function
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