
ABSTRACT

A Neural Inspired Grid Cell Aid for Robot Inertial Navigation

Moises Martinez, M.S.E.C.E.

Chairperson: Scott Koziol, Ph.D.

Accurate position information is needed for a robot's guidance and control sys-

tems. Therefore, the navigation system is foundational for a robot's interactions with

the world. This thesis explores a biologically inspired method of navigation with the

goal of improving navigational accuracy. The desire to integrate brain-inspired meth-

ods with conventional signal processing methods is based on animals' innate ability

to successfully navigate through habitats. Therefore, it is reasonable to explore the

way animals process brain signals to navigate and leverage it for robot navigation.

This thesis uses a combinatorial model of map formation and localization with grid

cells to aid dead reckoning with an accelerometer and gyroscope to show grid cells are

a viable aid in idiothetic navigation. The results show that the grid cell aided navi-

gation systems shows better performance with longer paths and higher noise values

with an improvement of 57.24 cm for a 32 m path with 3 σ noise.
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CHAPTER ONE

Introduction

Background and Motivations

A robot does not know where it is without a navigation system on board. The

navigation system answers the question a robot's user has of where it is in the world.

The navigation system allows a robot to output where its position is in the world

(in the form of an x-y-z plane coordinate location relative to the world) along with

additional information such as the orientation of the robot in yaw, pitch, and roll

angles.

The robot's navigation system information is necessary for higher level opera-

tions performed in a robot's guidance system and lower level operations performed in

a robot's control system. These two systems, respectively, plan the robot's path from

its current location to its goal and instructs the motors to move according to the path

planned. Figure 1.1 pictorially describes the roles of the Guidance, Navigation, and

Control systems, and 1.1 de�nes the systems' properties.

Accurate position information is needed for a robot's guidance and control sys-

tems. Therefore, the navigation system is a foundation for a robot's interactions with

the world. This thesis explores a biologically inspired method of navigation to improve

a navigation system's accuracy.

The desire to integrate brain-inspired methods with conventional signal process-

ing methods is based on the fact that animals show an innate ability to successfully

navigate through their habitats. Therefore, it is reasonable to explore the way animals

and humans process the brain signals to navigate and leverage it for robot navigation.
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Table 1.1 This table shows the function, question answered, and the standard method of execution
of the guidance, navigation, and control systems that are used by robots as it moves around the

environment [3].

Guidance Navigation Control

Function
Path Plan-
ning

Determine
Robot's State

Tracks Guid-
ance Commands
and Maintains
Stability

Question
Answered

What roads
should I take?

Where am I
now?

How do I adjust
acceleration and
steering?

Standard
Method

A* (A-star)
Kalman
Filter

Proportional In-
tegral Derivative
(PID) Controller

Start

Goal

Figure 1.1 This �gure describes the individual roles of a robot's guidance, navigation, and control
systems. a) Representation of a guidance system that performs a high level process of planning a
path from the initial position to the goal position. b) Representation of a navigation system that
uses sensor inputs to determine its location. c) Representation of a control system that performs
a low level process of tracking commands from the guidance system, maintains stability, and other
functions to keep the robot moving [1].

Conventional Robot Navigation Methods

There are three main methods of robot navigation. First, robots can navigate

using only internally sensed movement. This methods is called "dead reckoning" [4] [5].

The sensors measure forces like linear acceleration or rotational velocity that act on

the robot. Then they use algorithms with those read forces to calculate the position

of the robot. Position can also come from sensors in the form of wheels with rotary

encoders [6]. Dead reckoning navigation systems which rely on accelerometer and

gyroscope measurements are called Inertial Navigation Systems (INS) [5].
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A second method is navigation through the use of external information. Prox-

imity sensors, infrared sensors, cameras, global positioning systems, maps, etc. are

all technologies that rely on external stimulation to help robots know where they

are [7] [8] [4]. These readings can give numbers to o�set the position reading directly

or through �lters in order to be more accurate in navigation.

The third method deals with pattern recognition methods such as the Simul-

taneous Localization and Mapping (SLAM) method of navigation. [9] [10] [11] [12].

This method of navigation relies on the ability to identify landmarks, features, and

other unique identi�ers around the navigation space to form a map. The map corrects

the position as the robot navigates through the space, and makes position estimation

more accurate.

The navigation system used in this thesis is a dead reckoning system where

the robot's movement is sensed using an on-board INS that has accelerometers and

gyroscopes. A bene�t of dead reckoning systems is that they are immune to jam-

ming or lack of landmarks and features in the environment. This means they work

in environments where Global Positioning System (GPS) signals are not available

such as underwater, inside buildings, inside caves, etc. and if environments cannot be

measured with external sensors.

Biological Navigation Methods

Dogs, pigeons, salmon, and other animals navigate across tens to thousands

of kilometers to follow migration patterns, send messages, and �nd their way back

home [13] [14] [15] [16]. Mice navigate through mazes on their �rst attempt in lab

environments [17]. Humans show that their position estimations can build a cognitive

map for navigation similarly to SLAM systems [18] [19] [20].

Animal's hearing, touch, and other pseudo-sensors on their bodies all work

together to let animals know where they are in their habitats without the need of
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maps or landmarks [21] [16] [22] [23]. Rats were observed to navigate through a space

without visual or auditory cues to their goals [17]. In most mammals, there is a

vestibular system that acts as the pseudo-sensor. It feeds orientation and velocity

to feed information to the brain [24]. Special neurons in the brain called grid cells

receive information from the vestibular system and have been shown to be reliable

for navigation without external cues [21].

There are approximately 105 grid cells in a rat's brain [21]. When a grid cell �res,

it provides the rat with information on a possible position. For illustrate purposes,

call this "Set A" of locations. When a di�erent grid cell �res, it creates a second set

of possible locations which can be called "Set B".

Assume more grid cells �re until you have Sets A through Z where each provides

its set of location information. If you combine Set A with Set B, there will be positions

that match from both sets. Those matching positions narrow down possible locations

and form a separate "Set µ". You can combine up to 26 of the grid cell location sets

A-Z, until the set of possible locations µ narrows down to only one position. Then µ

is the position of the rat.

The key idea of grid cells is that each set of locations from individual grid cells

is not su�cient to determine a unique position. However, the sets can be combined

together to determine a unique position.

The reason why grid cells can form sets is because grid cells �re at even intervals

as a rat travels through space. The �ring intervals have been observed to be consistent

even after the rat travels 10 minutes and over 100 m [17]. The observation comes from

probing a speci�c section of the brain called the medial entorhinal cortex (MEC).

When one records grid cells as they �re in the (MEC), they form tessellating

triangles as shown in Figure 1.2 [21] [17]. A collection of the �ring patterns from

one grid cell across the navigational space is called the module or lattice of the grid
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cell. Di�erent grid cell modules can combine in such a way that they help an animal

localize. The consistent way modules form and grid cells �re allow them to be modeled.

y

x

3 cm

(a)

y

x

(b)

Figure 1.2 Neuroscientists can monitor the �ring patterns of a single grid cell in a rat's brain as the
rat moves across a space. The dots represent a grid cell �ring which can be mapped to a physical
position by recording the rat's location in the environment when a �ring occurs. The circles are a
section of the �ring pattern of the grid cell, and the red dots represents a position mapping. a) shows
a grid cell that �res every 3 cm. b) shows the repeated triangles the �ring from one grid cell form.

Thesis Topic

The consistency of grid cells allowed for algorithmic models to be formed from

them. There are combinatorial models to extract positions from the grid cells as well.

An INS model can be used in place of a vestibular system. This means that a grid

cell navigation system can be formed for a robot. Existing grid cell applications in

robotics can be seen in [25] and in a form of simultaneous localization and mapping

inspired by computational models of the hippocampus of rodents (RatSLAM) [12].

While those robots use grid cells for navigation, they also use cameras to look around

their environment to form a map, and adjust position while navigating through a

space.
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This thesis aims to answer the question:

�Does the addition of brain-inspired grid cell signal processing to a conventional

dead reckoning system improve the accuracy of its localization?�

Content Structure of this Thesis

This thesis is organized as follows.

Chapter Two

The second chapter of this thesis provides more details of navigation systems.

The �rst part of the chapter describes more details of INS based robot navigation,

and the second part describes more details of neuron based navigation.

Chapter Three

The third chapter of this thesis describes the algorithms used in estimating

position, orientation, and location in a navigation frame. It also details the algorithmic

method in which grid cells can be used to aid in the localization of the robot.

Chapter Four

The fourth chapter of this thesis describeshow the algorithms are applied in

simulation. Then the results from the simulation are displayed and analyzed.

Chapter Five

The last chapter of the this thesis discusses the simulation results and how viable

grid cell usage is in simulation. It also discusses possible ways to further expand on

the results from this thesis.
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CHAPTER TWO

Related Work

Robot Navigation

Robots cannot navigate without external or internal sensors and systems, so

mobile robots have a hierarchy of systems for movement. A path planning system

guides the robot's movement. Error correction methods like �lters, maps, cameras,

etc. help robots stay on path. At the base of its navigation systems, a robot can use

its movement's direction and acceleration to estimate its displacement from a starting

point [4].

The direction and acceleration are retrieved from from an accelerometer and

gyroscope that are the foundation of a robot's navigation system. Accelerometers and

gyroscopes exhibit errors in their readings [5] [26] [27]. Noise is the biggest contributor

to the sensor's error [4]. Noise is a random error that cannot be predicted or removed

completely. The noise limits consistency when running repeated trials [4].

Another contribution to the sensor's error is its bias. The sensor's manufactur-

ing process causes defects in the sensor. The defects make an o�set that is consistent

throughout the navigation process [4]. This error accrues in the navigation calcula-

tions.

The previous sensor errors need to be �ltered in order to accurately estimate the

robots position. If the errors are not �ltered out, then the measured position di�ers

from the true position. The di�erence, as the errors accrue, is called drift. The longer

a robot runs, the more the drift increases as can be seen in Figure 2.1 [5] [27].

Methods of removing the errors have been used to make sensors more accurate

in their measurement [28]. One method is to use more sensors within the navigation

systems [27], and another is by using lasers, cameras, etc. to add "sight" and correct
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Figure 2.1 This �gure illustrates an inertial navigation system's growing position uncertainty as
time progresses. a) This shows the position estimation as a robot travels a curved path. b) has
circles around di�erent points of the estimation shown in a). The circle grows as time passes, giving
a visual cue to the error accruing.

for deviation while navigating [25]. Di�erent combinations of sensors have also been

used to improve position estimations in navigation systems with varying levels of

increased accuracy [8] [29] [30].

Numerical path integration models and other mathematical approximations for

position can be used to estimate a robot's position [25] [28] [31]. For this reason,

navigation has become strongly reliant on Kalman, FIR, and other �ltering methods in

order to maintain an accurate position estimation. Kalman �lters are commonly used

in robotics, and they use the readings from a GPS in order to keep drift low. However,

navigation in robotics would bene�t greatly if there was a localization system that

could be applied to dead reckoning to make it more accurate without relying on

external information like maps or landmarks. Grid cells do not need that external

information, thus �tting the speci�cations for the goal of this thesis to improve dead

reckoning without using external information.

Neuron Based Navigation

Grid cell research started in 1972 when it was proposed that the hippocampus

could be a spatial map [32]. It was observed that "rats with hippocampal damage are

reported to be hyperactive in novel environments, ..., and poor at spatial tasks such as

8



mazes and tasks which require the alteration of responses on successive trials [32]."

Tests were done on the hippocampus of rats to show brain activity as rats moved

around their habitats and navigated through mazes.

The properties of the activity in the rats' brain were recorded through similar

tests, and neurons were found to �re in another part of the brain called the medial

entorhinal cortex (MEC). Research also showed that the neurons of the MEC �re

consistently in a triangular pattern and are not interrupted [33]. These neurons that

consistently �red were given the name "grid cells", and the hippocampal neurons were

called "place cells". The grid cells persisted despite what happened with the place

cells. The grid cell's triangular pattern and their behavior suggested that grid cells are

"a part of a generalized, path-integration-based map of a spatial environment [34]."

The development, behavior, and characteristics of place cells and grid cells continues

to be studied and some other discoveries can be read in [35], [36], [37], [38], [39],

and [40].

Neuron properties (size, signal transfers, chemical handling, shape, etc.) dif-

fer according to their function [41] [42]. Despite this, models have been established

to show how neurons like grid cells generally work. An electronics-based model for

neurons and their transfer of energy can be modeled using capacitors [43].

Neurons have a resting potential that they hold when no stimulation happens.

Similarly, a capacitor will maintain a charge when isolated from a current sink or

source. A neuron will charge up, like a capacitor hooked into a source, when it receives

an electrical impulse. As long as the neuron continues to receive electrical impulses

from other neurons, the neuron will charge up until it reaches a certain threshold

voltage. Once it reaches that threshold, the neuron will �re, discharging itself, but

exciting another neuron. This is similar to when a capacitor's source is removed,

and it is connected to a sink. It stays at a resting potential until it receives another

excitation. The similarity is visually represented in Figure 2.2.
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This capacitor-like behavior is seen in the di�erent types of neurons as animals

navigate through their habitats when migrating, foraging, and their usual activities.

Oculomotor neurons and head direction neurons found in vertebrates create neuron

signals with the temporal de�ections of the eye [44]. Neurons in the rodent's subiculum

�re when its head points in a certain angular range [22]. The antenal lobe of insects

identify odors with constantly evolving �ring patterns [23].

Grid cells hold their own behavior and feed into place cells [34]. Grid cells are

located in the dorsolateral band of the medial entorhinal cortex, and they �re when

a rat is on a vertex of a virtual triangular lattice overlaid on the surface of their

navigation space. These �rings suggest that the grid cells encode an internal estimate

of the rat's position [21] [45] [46] [47] [48]. Mice have been placed in dark rooms and

navigated through mazes without the use of visual or auditory cues to prove this

point [17].

Grid cells studies reveal that rats can travel up to a kilometer without getting

lost in limited conditions, even through the triangular lattices cover no more than 10

m [21]. These patterns show position in a resolution as low as 25 cm after navigating

long distances [47] [34]. The analysis of the grid cells �ring as a rat moves across a

two-dimensional plane revealed that there is a relationship between the recordings of

all grid cells �ring and the position of a rat. Grid cells form a neural "code that is

fully combinatorial in capacity [21]." Combinatorial models have been developed to

emulate the grid cell's neural code that keeps rat navigation accurate [21].

Related Work Summary

In summary, combinatorial models for grid cells have been adopted into nav-

igation systems. Path planning algorithms have been developed with grid cells [2].

Simultaneous localization and mapping inspired by computational models of the hip-

pocampus of rodents (RatSLAM) have been developed in [12]. Grid cells have been

10



used alongside visual cues from cameras to form a map in an environment as the robot

navigates through a certain space [25]. This "visual odometry" allows for correction

while navigating and map building for more accurate navigation on repeated runs.

Grid cells are used as a formation for place cells along with some sensors to navigate

and map through a space simulataneously.

Unlike [12] and [25], this thesis does not use external information from cameras

for navigation or combine grid cells with place cells. This thesis uses a grid cell

combinatorial model of map formation and localization inspired by [21] to aid dead

reckoning with an accelerometer and gyroscope in order to show that grid cells are a

viable aid in idiothetic navigation.
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Figure 2.2 Comparing neurons with capacitors, (a), (d), and (g) represent the starting potential.
(b), (e), and (h) show the neuron and the capacitor charging when excited. (c), (f), and (i) show the
discharge. The �gure has gone through an excitation of a neuron from start to complete discharge
and is shown to behave similarly to a capacitor.
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CHAPTER THREE

Algorithms

The methods involved in navigating with grid cells, as have been described in

Chapters 1 and 2, are explained in this chapter. First, a mathematical explanation of

grid cell �ring is presented. This is followed by combinatorial methods in which grid

cells form a spatial map and correct location through it. Finally, the mathematics of

inertial navigation are presented.

Grid Cell Mapping

Grid cells form a spatial map from their �ring patterns in the medial entorhinal

cortex. The �ring patterns form triangular lattices and combinatorially produce po-

sition estimates across the navigation space [2]. The following algorithms model the

formation of spatial maps through grid cells [17].

Map Position Estimation

The medial entorhinal cortex is an idiothetic (or based o� of its self motion

rather than external stimuli like landmarks) path integrator [47] [17]. Grid cells also

hold their signals for as long as 10 minutes [17] even when no positional information

is gathered by the grid cells [21]. Each grid cell produces spikes periodically at a set

amount of displacement as they move across space. The combination of all spikes

observed encode space as shown in Figure (3.1) [21].

With the stability of the grid cell's �ring pattern and its periodicity, grid cell's

�rings pattern can be transformed into the Cartesian space as shown in Figure 3.1.
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Figure 3.1 a) shows one grid cell's �ring pattern. b) shows multiple grid cell's �ring patterns. c)
shows an x-y grid over the �ring patterns. Together, they show the progression of encoding positions
through multiple grid cell's �ring patterns as shown in equations (3.1) and (3.5).

1-Dimensional Grid Cell Mapping

Each grid cell �res o� repeated patterns that are called "lattices". The interval

at which each lattice forms is called "lattice periods." Lattice periods are measured

in centimeter spacings, with lattice periods ranging from 20 cm to 200 cm [2]. Each

grid cell's lattice and periods can be expressed algorithmically (3.1) [21].

χα(x) =
mod(x, λα)

λα
· 2π (3.1)

χα is a phase representation of the location at which the grid cell is located. x

is the internal estimate of the location of the grid cell's position in space. λα is the

lattice period of grid cell α. α is an index number for the grid cell.

There are an N number of grid cells throughout the medial entorhinal cortex.

Each spatial position is represented by a set (3.2) of grid cell phase mappings (3.1)

of its position [21].

X = (χ1(x), χ2(x), ..., χN(x)) (3.2)

The phase to spatial position mapping for one grid cell (3.1) are graphically

represented in Figure 3.2.
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/2

3 /2

2

0 cm 12 cm
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Figure 3.2 A grid cell �ring every 6 cm is converted into a phase. However, pi represents the locations
3 cm and 9 cm. This means each phase represents an ambiguous location on the axis for only one
grid cell as described in (3.1).

The set of spatial position mapping (3.2) is shown in Figure 3.3.

~X(x(t)) = (X1, X2, ..., XN) (3.3)

Equation (3.3) shows all positions represented on a one-dimensional vector by

grid cells [21]. Each X(x(t)) is a position as represented by (3.2). Figure 3.4 shows

the mapping of one axis with three grid cells.

Positions mapped will be limited by the capacity of grid cells to encode. So if

λ1 = 3 and λ2 = 4, then 12 distinct positions can be represented. In general lattices

will only have a range from 0 to D, where D is the capacity of displacement the grid

cells can encode to (3.4) [21].

D = LCM{λα|α = 1, .., N} − 1 (3.4)

LCM stands for the least common multiplier operation. Figure 3.5 shows that

two positions are mapped with the same phases, thus 12 cm could be read by those

three grid cells as 0 cm and vice versa.
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Grid Cell Estimation vs Truth
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Figure 3.3 Grid Cell Estimation vs Truth: When multiple grid cells are �red at the same locations,
they each provide their own phase. This means phases provided by di�erent grid cells, when com-
bined, represents location on the axis as described in (3.2). This �gure shows what location a grid
cell encodes to (on the y-axis) at every .5 cm along the axis with 6 grid cells the lattices sizes of 5,
7, 11, 13, 17, and 23 cm as used to provide the results presented in Chapter 4.

2-Dimensional Grid Cell Mapping

In order to make the spatial map cover a navigation plane, the math from the

one-dimensional equations must be applied to an orthogonal vector. In the case of

an x-y plane with an a map of x lattices, ~X established in (3.3), then the map of y

lattices can be calculated in (3.5) similarly to (3.1) with the x axis lattices [2].

Yβ(y) =
mod(y, λβ)

λβ
· 2π (3.5)

Yβ is location on the lattice at which the grid cell is located. y is the internal

estimate of the location of the grid cell's position in space. λβ is the lattice period of

grid cell β. β is an index number.
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  /2 3  /2 2   /2 3  /2 2   /2 3  /2 2   /2 3  /2 2

Figure 3.4 A map of positions on a one-dimensional axis is encoded with three grid cells. The red
line shows the combination of phases that represent locations 0, 3, 6, and 9 [2]. The three grid cells
lattice periods are of 12 cm, 6 cm, and 3 cm.

As in the case of (3.2), N number of grid cells throughout the medial entorhi-

nal cortex can be combined together for a location representation as in (3.6). The

combinations of internal estimations from (3.6) build a vector of locations for the Y

axis.

Υ = (Y1(y), Y2(y), ..., YN(y)) (3.6)

~Y = (Υ1,Υ2, ...ΥN) (3.7)

With two axes mapped, there is a space formed by the X and Y vectors from

(3.3) and (3.7) called µ. µ from (3.8) can be visually represented in Figure 3.6.

µ = { ~X, ~Y } (3.8)

Adding Error

The capacity calculation (3.4) works only in an ideal case. As the grid cells con-

tinue to operate over time, the neuron's capacity is reduced and the map deteriorates.

The deterioration of the grid cell's capacity [21] is approximated by (3.9).
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Figure 3.5 This �gure shows that mapping for position 12 and position 0 are the same thus showing
its capacity with grid cells with spacing 3, 6, and 12 cm will only read up to 11 cm as shown in
(3.4) [2].

Dest =
λ

δφ

N−1

(3.9)

λ is the set of grid cell lattice periods. 1
δφ

is the set of number of distinguishable

phases for each lattice. N is the total number of grid cells encoding the map.

There is a drift that occurs in the mapping as the object travels across space

and localizes. The drift is calculated in (3.10) and is visually represented in Figure 3.7

and Figure 3.8 in order to visualize (3.10). Figure 3.8 shows thresholds (represented

by dotted lines) have shifted upwards causing a di�erent representation of a location.

∆x =
√
Dtrans∆t (3.10)

Dtrans = CV 2/N (3.11)

CV is a coe�cient of variation of the spiking intervals. CV is a ratio of the

standard deviation of spikes �red by the grid cells with the mean �ring ratio which is

set at 1
8
[17]. N is the neural network size. This happens to be a number of neurons

recorded in [17] which is set at 105 or 107 in some of this thesis' experiments. The

values were take directly from the analysis of a rat's medial entorhinal cortex to model

grid cells appropriately [17].
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Figure 3.6 This �gure shows the localization for arbitrary position (5,7) on the x-y plane through
the �ring of the grid cells of size 3, 6, and 12 cm. [2] Each blue square represents the phase that
each grid cell takes as shown in (3.1) and (3.6). To see the phase encodings of the �gure that will
be used for localization see Figure 4.3.

Inertial Navigation and Localization

Grid cells receive signals to �re from the inertial movement sensing system

within mammals called the vestibular system [34] [49]. This vestibular system feeds

inertial data to the grid cells, giving the grid cells the appropriate stimulation to spike

and form lattices. This thesis does not focus on vestibular system modeling, however,

because in our system the ubiquitous inertial navigation system (INS) provides inertial

data to the robot. That means an INS can be used as an input to stimulate grid cells.

The INS also provides an established idiothetic navigator to which to compare the

grid cell's performance.

Inertial navigation systems use measurements from an accelerometer and gy-

roscope and apply the kinematic equations of motion to track the position and ori-

entation of a robot. For this thesis, the inertial navigation system in the simulation

mimics a rate gyroscope and a 2-axis accelerometer to measure angular velocity and

linear acceleration [25] [31] [5].

19



Figure 3.7 This shows the phases the map has encoded for position 5 on one axis

Figure 3.8 This shows (3.10) after 600 seconds (10 minutes) of navigating for position 5.

Kinematic Equations

A inertial navigation system uses kinematic equations to properly manipulate

the gyroscope and accelerometer measurements to provide position information as an

output. The kinematic equations describe the relationships among the robot, sensors,

and navigation frame.

In order to get position from the acceleration readings, it is necessary to inte-

grate both acceleration and velocity into a displacement. The measured acceleration

is as read from the sensor. The estimated velocity, vestimated, is calculated through the

integration of the acceleration (3.12).

vestimated = v0 +

∫ t2

t1

ameasured dt (3.12)
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Figure 3.9 (a) shows a robot and the measurements read from the accelerometer and gyroscope
(which are done relative to the body which is called the body frame). (b) shows a global frame that
we can read from which is called the navigation frame. (c) shows how the robot moves through the
navigation frame and its angle of change in direction.

Where v0 is the initial velocity, and ameasured is the acceleration measured and

integrated from time t1 to t2.

The estimated position, destimated, is calculated is calculated through the inte-

gration of the velocity (3.13).

destimated = d0 +

∫ t2

t1

vestimated dt (3.13)

Where d0 is the initial displacement, and vestimated is the estimated velocity from

(3.12) and integrated from time t1 to t2.

Equations (3.12) and (3.13) are in one-dimension and measured in relation to

the body of the object that is moving (the body frame). The equations can be used

to calculate a position from an orthogonal acceleration thus extending to a second

dimension.

A gyroscope can measure an angular rate of change. By integrating the angular

rate ω from a gyroscope over time, one can estimate the orientation (yaw angle) of

the robot, θestimated, (3.14).

θestimated = θ0 +

∫ t2

t1

ω dt (3.14)
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Figure 3.10 This �gure shows the way that the INS readings from the gyroscope and accelerometer
are manipulated through the algorithms in order to establish a position.

Where θ0 is the initial orientation of the robot, and ω is the measured angular

velocity which is integrated from time t1 to t2.

Equation (3.14) estimates an angle which is then used to convert the acceleration

and velocity from the body frame to the navigation frame.

Position Estimation

The angle retrieved from the gyroscope through the use of (3.14) can be used to

create a rotation matrix. The rotation matrix in (3.15) transforms the measurements

from the body frame to the navigation frame. In order to do this, the accelerations in

the orthogonal axes (ax−measured and ay−measured) is placed into a state space matrix

(3.16).

C =

 cos(θestimated) sin(θestimated)

−sin(θestimated) cos(θestimated)

 (3.15)
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ameasured =

ax−measured
ay−measured

 (3.16)

The body frame accelerations (3.15) are multiplied by the frame transformation

matrix (3.16) to express the measured accelerations in the navigation frame (3.17).

ax−navigation
ay−navigation

 = C × ameasured (3.17)

A trapezoidal estimation method of numerical integration can be used to esti-

mate position with sensor readings occurring every τ second intervals (3.18-3.20).

vnavigation(t) = vnavigation(t− 1) +
anavigation(t)− anavigation(t− 1)

2
∗ τ (3.18)

dnavigation = dnavigation(t− 1) +
vnavigation(t)− vnavigation(t− 1)

2
∗ τ (3.19)

dnavigation =

xnavigation
ynavigation

 (3.20)

A system block diagram of the full inertial navigation system is visually repre-

sented in Figure 3.10. The position output from the inertial navigation system is the

input of this grid cell mapping system. The �rst step of the grid cell mapping system

is that the estimated position is transformed into a phase for each of the grid cells

that formed the map for navigation. The position from the inertial navigation system

is used as x and y in grid cell equations (3.1) and (3.5). The full interaction between

the INS and the grid cell map to navigate is shown later in Figure 4.1.
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Error in Inertial Navigation

The equations from the previous section show position accurately in an ideal

environment. However, errors in sensing and calculations result in navigation systems

providing position outputs that deviate from their true values. In order to model a

realistic gyroscope sensor for simulation, (3.21) is used.

ωmeasured = ωb × ωsf + ωbias + ωsensitivity + ωnoise (3.21)

Equation (3.21) includes errors that a real gyroscope would have included in

its readings. ωb represents the measurement without error. The ωsf , ωbias, ωsensitivity,

and ωnoise represent the scale factor error (a manufacturing tolerance error), bias

(an o�set that happens due to manufacturing), sensitivity (a measurement resolution

factor of the gyroscope), and noise (a stochastic o�set from true readings) from the

sensor's speci�cation sheet.

Accelerometers also have errors which should be modeled for more accurate

position estimation. In order to properly simulate a realistic accelerometer reading,

(3.22) is used.

ameasured = ascalefactor × ab + abias + anoise (3.22)

As with (3.21) the ascalefactor, abias, and the anoise are the scale factor, bias,

and noise. The parameters are device speci�c, and are found on the accelerometer's

speci�cation datasheet. The ab is the acceleration without error.
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CHAPTER FOUR

Simulation and Results

The algorithms presented in the previous chapter are implemented in this chap-

ter. First, the combination of the INS and grid cell algorithms are described as well

as the Matlab simulation code implementing the algorithms. This is followed by a

detailed description mapping the theoretical mathematics to the simulation imple-

mentations. The last part of this chapter shows the results of using this code to

simulate navigation over large spaces. Navigation performance is assessed when the

robot performs a square movement pattern with a simple velocity and acceleration

pro�le.

Grid Cell Aided Navigation System

Grid cell navigation, when described in neuroscience literature, does not typi-

cally describe the details of how the grid cells are activated based on the rat's move-

ment. The grid cell's �rings are measured directly from rat's brains [17], and the

physical (spatial) mapping is recorded as the rat moves. This thesis explores model-

ing the grid cells receiving their excitation from velocity estimates derived from an

INS. This INS-to-Grid Cell system interaction is shown in the block diagram in Figure

4.1.

Figure 4.1 shows the interactions of the algorithms described in Chapter 3. The

algorithms in the model were simulated using Matlab in order to gather results for

this thesis. Matlab code implementing each of the blocks in Figure 4.1 is included in

Appendix B. The correlation of Chapter 3 equations to Matlab code implementation

is summarized in Table 4.1.
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Table 4.1 Each one of the equations has a place in the code that is in the Appendices. The lines of
code and �le they're under are listed in the table above.

Equation Number .m File

3.1 posfromGCmap
3.2 gridcellmap
3.3 gridcellmap
3.4 gridcellmap
3.5 posfromGCmap
3.6 gridcellmap
3.7 gridcellmap
3.8 gridcellmap
3.9 gridcellmap
3.10 posfromGCmap
3.11 IMU
3.12 IMU
3.13 IMU
3.14 IMU
3.15 IMU
3.16 IMU
3.17 INSwGridCellAid
3.18 INSwGridCellAid
3.19 INSwGridCellAid
3.20 IMU
3.21 IMU
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Figure 4.1 Dead Reckoning Using Grid Cells: This �gure shows the interaction of the equations
described in Chapter 3.

Step 1: Neural Mapping in the Grid Cell ("Vector Navigation") System

The model starts with a mapping of the space through grid cells. This sub-

system is depicted by the Neural Mapping block in Figure 4.1b. This map's bound-

aries are calculated using (3.4). For example, for grid cell modules with 3, 6, and 12

spacings, the grid cells modules can map up to 12 cm in each axis (x and y).

Equations (3.2) and (3.6) represent di�erent sets of phases for a location in

space. These form the sets of locations (3.3) and (3.7) for the grid cell modules as

shown in Figure 4.2. The sets will then form a map (3.8) on which to navigate.

The mapping is done in the Matlab �le gridcellmap.m in Appendix B. This code

is simpli�ed in pseudocode shown in Algorithm 1. The code sets the number of grid

cell modules and the interval between grid cell �rings. Then it encodes the module
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~X = {X1, X2, X3}
w/ X1, X2, and X3 being modules with spacing 3, 6, and 9 respectively.

X1 = {0, π
15
, 2π
15
, π
5
, 4π
15
, π
3
, ...}

X2 = {0, π
30
, π
15
, π
10
, 2π
15
, π
6
, ...}

X3 = {0, π
60
, π
30
, π
20
, π
15
, π
12
, ...}

~X = {0} = {0, 0, 0}
~X = {1} = {π

3
, π
6
, π
12
}

~X = {2} = {2π
3
, π
3
, π
6
}

µ = { ~X, ~Υ}

Figure 4.2 This shows the phase representations of the locations being mapped with modules of
interval 3, 6, and 9 and a resolution of 1 cm. These vectors are then fed into the full map in ~X. The
same process is used to map ~Υ.

into phases according to the strength of the grid cell's �ring. These encoded phases

get stored into a map to allow for localization to occur. This neural mapping can be

seen as a pre-processing or initialization step and only needs to be performed once

before the Grid Cell localization starts.

Step 2: Neural Localization

The Neural Localization process, shown by the box in Figure 4.1b, can begin

once the neural mapping pre-processing is �nished and INS data is sent to the Neural

Localization algorithm.

Preparing the Neural Localization Input Data. As shown in Figure 4.1, es-

timated velocity is the input into the Neural Localization algorithm. The source of

this estimated velocity, however, are the robot's gyroscope and accelerometer sensors.

Before being integrated to estimate velocity, the acceleration data �rst needs to be

expressed in the navigation frame. The gyroscope data is integrated over time to es-
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Algorithm 1 Grid Cell Mapping Code

1: procedure Grid_Cells_Mapping
2:

3: Set number of Modules
4: Set X �ring interval for all Modules
5: Set Y �ring interval for all Modules
6:

7: for X grid cell measurements do
8:

9: for all Modules do
10:

11: Encode Modules with Phase Encode Equation
12: Put Phases into Map
13:

14: end for
15:

16: end for
17:

18: for Y grid cell measurements do
19:

20: for all Modules do
21:

22: Encode Modules with Phase Encode Equation
23: Put Phases into Map
24:

25: end for
26:

27: end for
28:

29: end procedure
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timate the robot's yaw angle, θestimated (3.14), and then θestimated is used to create

the frame transformation matrix between the body frame and the navigation frame

(3.15). The frame transformation matrix, C, is then used in (3.17) to express the

robot's acceleration in the Navigation frame. Finally, a trapezoidal estimation inte-

gration method (3.18) is used to estimate the robot's velocity. This velocity is the

input to the Neural Localization algorithm.

The simulated accelerometer and gyroscope data data for the square cases is

generated using matlab �le sqraccmet.m. The sqraccmet.m code is simpli�ed using

pseudocode as shown in Algorithm 2. The code sets the time step and a state space

representation of the kinematics with an initial value. As acceleration is measured,

the estimated velocity is updated through trapezoidal estimations. The velocity is the

input to Algorithm 3 which will update position with the grid cell assistance. This is

expanded upon in the next section.

Algorithm 2 Kinematic Equations
1: procedure Kinematic_Equations
2:

3: Set Time Step
4: Initialize State Space Representation
5: Find Velocity through Trapezoidal Estimation
6: Find Position through Trapezoidal Estimation
7: Update State Space Representation
8:

9: for Acceleration Readings do
10:

11: Find Velocity through Trapezoidal Estimation
12: Find Angle through Trapezoidal Estimation
13: Use Rotation Matrix to �nd Velocity in navigation frame
14:

15: end for
16: Set Position from Localize Procedure
17:

18: end procedure
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xmod(λ3) = 5mod(3)
3
· 2π = 4π

3

xmod(λ6) = 5mod(6)
6
· 2π = 5π

3

xmod(λ12) = 5mod(12)
12

· 2π = 5π
6

ymod(λ3) = 7mod(3)
3
· 2π = π

3

ymod(λ6) = 7mod(6)
6
· 2π = π

3

ymod(λ12) = 7mod(12)
12

· 2π = 7π
6

µest = {5, 7} = {{4π
3
, 5π

3
, 5π

6
}, {π

3
, π
3
, 7π

6
}}

Figure 4.3 This shows the phase representations of the position fed by the INS. These values are
stored and compared to the mapping values available in the initial mapping µ. On match, the grid
cells will return the value from the grid cell map.

Localization through the Vector Navigation System. The estimated velocity

from the inertial navigation system is the input to the grid cell system. Path in-

tegration is then performed using 1) the INS velocity estimate, and 2) the Neural

Localization system's current estimate of position (4.1).

destimated = dgridcellestimate +

∫ t2

t1

vestimated dt (4.1)

This estimated position is encoded into phases using (3.2) and (3.5). The phase

converted data gets compared to the map that was formed at the beginning (3.8).

This gives an estimated position through grid cells.

If the Neural Localization path integration system calculates a coordinate (5,7),

then those are the inputs to phase encoding equations (3.2) and (3.5). If each one of

the modules has spacings α and β = 3, 6, and 12 then the calculations are shown

in Figure 4.3. The provided sets ~X = {4π
3
, 5π

3
, 5π

6
} and ~Υ = {π

3
, π
3
, 7π

6
} are compared

to map µ = { ~X, ~Υ} and return {5, 7} as a coordinate shown in Figure 4.4. A visual

representation of the thresholds of phases being decoded from the map (XGC ,YGC) is

shown in Figure 4.5
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µ = {{X1, X2, X3, ...}, {Υ1,Υ2,Υ3, ...}} =
{{{0, 0, 0}, {π3 ,

π
6 ,

π
12}, {

2π
3 ,

π
3 ,

π
6 }, ...}, {{0, 0, 0}, {

π
3 ,

π
6 ,

π
12}, {

2π
3 ,

π
3 ,

π
6 }, ...}}

µest = {5, 7} = {{4π3 ,
5π
3 ,

5π
6 }, {

π
3 ,

π
3 ,

7π
6 }}

(XGC , YGC) =

{



(0, 0), µest = {{0 < xmod(λ3) <
π
3 , 0 < xmod(λ6) <

π
6 , 0 < xmod(λ12) <

π
12},

{0 < ymod(λ3) <
π
3 , 0 < ymod(λ3) <

π
6 , 0 < ymod(λ12) <

π
12}}

(0, 1), µest = {{0 < xmod(λ3) <
π
3 , 0 < xmod(λ6) <

π
6 , 0 < xmod(λ12) <

π
12},

{π3 < ymod(λ3) <
2π
3 ,

π
6 < ymod(λ6) <

π
3 ,

π
12 < ymod(λ12) <

π
6 }}

(1, 0), µest = {{π3 < xmod(λ3) <
2π
3 ,

π
6 < xmod(λ6) <

π
3 ,

π
12 < xmod(λ12) <

π
6 },

{0 < ymod(λ3) <
π
3 , 0 < ymod(λ6) <

π
6 , 0 < ymod(λ12) <

π
12}}

... ...
(5, 6), 4π

3 < xmod(λ3) < 2π, 5π3 < xmod(λ6) < 2π, 5π6 < xmod(λ12) <
π
2 },

{0 < ymod(λ3) <
2π
3 , 0 < ymod(λ6) <

π
6 , π < ymod(λ12) <

7π
6 }}

(5, 7), µest = {{4π3 < xmod(λ3) < 2π, 5π3 < xmod(λ6) < 2π, 5π6 < xmod(λ12) <
π
2 },

2π
3 < ymod(λ3) <

4π
3 ,

π
3 < ymod(λ6) <

2π
3 ,

7π
6 < ymod(λ12) <

4π
3 }}

(6, 7), µest = {{0 < xmod(λ3) <
2π
3 , 0 < xmod(λ6) <

π
6 , π < xmod(λ12) <

7π
6 },

{2π3 < ymod(λ3) <
4π
3 ,

π
3 < ymod(λ6) <

2π
3 ,

7π
6 < ymod(λ12) <

4π
3 }}

... ...


(XGC , YGC) = (5, 7)

Figure 4.4 This shows how the position is found from the map once the estimated position is encoded.
The values in the piecewise function are found in the mapping phases as seen are equivalent to the
ones in µ above.

This updated position gets fed back into (4.1), and the localization happens at

the next step. The next estimated position can be seen in Figure 4.6. As each step

happens, the mapping degrades over time according to (3.10).

This Neural Localization code is simpli�ed in pseudocode shown in Algorithm

3. The code gets the number of modules and map from Algorithm 1 and velocity and

time step from Algorithm 2. It then sets the coe�cient of variation to include the map

deviation over time and phase threshold to map values appropriately. The position is

then updated with a trapezoidal estimation from velocity from Algorithm 2 and the

previous grid cell estimation. This position is then encoded into phases, and found

in the map. As time passes, the map degrades, and the code accounts for that. The

position found from the grid cell map is then the updated position estimation.
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Algorithm 3 Grid Cell Decoding Algorithm

1: procedure Localize_From_Grid_Cell_Map
2:

3: Set Number of Modules
4: Set Time Step
5: Set Velocity
6: Set Map
7: Set Coe�cient of Variation
8: Set Phase Thresholds
9:

10: for all Modules do
11:

12: if 1st Position Step then
13:

14: Find Position through Trapezoidal Estimation with ...
15: Grid Cell Position Estimate
16:

17: end if
18:

19: Set Phase Values for Position
20:

21: end for
22:

23: if 1st Position then
24:

25: Set 1st Mapping position
26:

27: else
28:

29: Find Position from Map
30:

31: end if
32:

33: for each Mapping do
34:

35: Add Time Step to Find total Time
36: Add Error to Map phase values according to Time passed
37:

38: end for
39:

40: end procedure
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(a)

(b)

Figure 4.5 This �gure is a visualization of the thresholds for the phases that represent each location.
a) shows the phases that represent position 5 for the x axis and b) shows the phases that represent
position 7 for the y axis as was solved for in 4.4.

Method Validation

In order to con�rm the validity of the methods established in the algorithms

section, the simulations were run without any error on the paths created for testing.

In order to do that, the error equations were not added into the estimations of po-

sition for both the inertial navigation and the grid cell aided navigation. Navigation

performance is assessed when the robot performs a square movement pattern with a

simple velocity and acceleration pro�le.
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µ = {{X1, X2, X3, ...}, {Υ1,Υ2,Υ3, ...}} =
{{{0, 0, 0}, {π3 ,

π
6 ,

π
12}, {

2π
3 ,

π
3 ,

π
6 }, ...}, {{0, 0, 0}, {

π
3 ,

π
6 ,

π
12}, {

2π
3 ,

π
3 ,

π
6 }, ...}}

µest = {5.1, 7.1} = {{4.2π3 , 5.1π3 , 5.1π6 }, {
1.1π
3 , 1.1π3 , 7.1π6 }}

(XGC , YGC) =

{


... ...
(5, 6), µest = {{4π3 < xmod(λ3) < 2π, 5π3 < xmod(λ6) < 2π, 5π6 < xmod(λ12) <

π
2 },

{0 < ymod(λ3) <
2π
3 , 0 < ymod(λ6) <

π
6 , π < ymod(λ12) <

7π
6 }}

(5, 7), µest = {{4π3 < xmod(λ3) < 2π, 5π3 < xmod(λ6) < 2π, 5π6 < xmod(λ12) <
π
2 },

2π
3 < ymod(λ3) <

4π
3 ,

π
3 < ymod(λ6) <

2π
3 ,

7π
6 < ymod(λ12) <

4π
3 }}

(6, 7), µest = {{0 < xmod(λ3) <
2π
3 , 0 < xmod(λ6) <

π
6 , π < xmod(λ12) <

7π
6 },

{2π3 < ymod(λ3) <
4π
3 ,

π
3 < ymod(λ6) <

2π
3 ,

7π
6 < ymod(λ12) <

4π
3 }}

... ...


(XGC , YGC) = (5, 7)

Figure 4.6 This shows localization when o�set by .1 to see what happens whenever there's a di�er-
ence in the estimated position. This shows the grid cell's resiliency to change.

Square Path Test Cases

The set paths for testing were an 80x80 cm square within 1m2 area, and an 8x8

m square held within a 10 m2 area. These lengths and areas were chosen in order to

represent di�erent spaces that could be traveled by a robot or animal and have been

observed in [21] for grid cell data from rats. The 1 m2 area could represent a cage or

maze, and the 10 m2 area could represent an apartment or backyard.

Each of these paths is traveled in 100 s and 1000 s and the paths traveled will

be 320 and 3200 cm respectively thus going past the limits tested physically on rats

according to [17]. The grid cells were set at 5, 23, 59, 101, 153, and 171 cm respectively

to meet capacity requirements in (3.4) and (3.9) and give a diversity of grid cells.

The base-line (error free) model results shown as Figures 4.7 and 4.8 verify that

the models work at following the paths. The INS without error follows the true path

closely. The acceleration and angle change immediately at the corners. The velocity

stays consistently at 3.2 cm/s in whatever direction of travel it takes as shown in

Figure 4.7.
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Figure 4.7 a) shows the true acceleration at 32 cm/s2 and true velocity at 3.2 cm/s as the path is
followed. b) shows that the turns are being taken and the simulation following the path turns at the
square's 4 corners.
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Figure 4.8 a) and b) show data for a 1 m2 space, and c) and d) show data for 10 m2 space. The
inertial navigation with no error added shows negligible deviation in magnitude from the true path.
Both navigation systems show no worsening as they travel along the path.

The grid cells follow along, increasing error as shown in the spikes of Figure 4.8b

and Figure 4.8d until it meets the phase change necessary for its position reading to

match up with a mapping set up in the area.
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Error Simulation

The veri�cation of the base-line model in the previous section allows for further

studies involving the addition of error as shown in (3.10), (3.21), and (3.22) for the

inertial and grid cell aided navigation.

GC Navigation Excited by INS Dead Reckoning Position Estimates

The basis of this thesis is grid cell navigation like in rat's brains. Thus, we want

to emulate the system as closely as possible. In order to do that, the interactions that

occur in a rat's brain have been modeled in Figure 4.9.

xGC, yGC
position
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Grid Cell Firings
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Figure 4.9 This �gure shows the interaction of systems within the brain in rats.

For an initial experiment, the noise added is random and within 1 standard

deviation of error as shown in Table 4.2. Because of the added noise, Dead Reckoning

results in values of acceleration, integrated velocity, and integrated angles that deviate

from the baseline as shown in Figure 4.10 with its e�ects on velocity seen in Figure

4.13. The estimated positions using only dead reckoning now stray away from the

paths as shown in Figure 4.11. Figure 4.11 also shows that the grid cell navigation
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Table 4.2 This table shows the values of the errors derived from the speci�cation sheet for the
accelerometer and gyroscope models used in this thesis.

Type of Error Magnitude

σaccel .038259 cm/s2

scalefactoraccel 1.000382 cm/s2

biasaccel .00039 cm/s2

σgyro .038 rad/s
scalefactorgyro 1.0069565 rad/s

biasgyro .006891 rads/s

alone can provide an improvement not only through the average movement away from

the path, but as well as in the standard deviation of the error. A problem with this

method is that the localization is not being performed with positions being updated

as if the grid cells were �ring like the brains in rats. Figure 4.9 shows a block diagram

of thee interaction of grid cells and positioning in a rat's brain.
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Figure 4.10 This shows the test data for Figure (4.11) and 4.12. a) This shows some variation in
the acceleration with noise. b) This shows some variation in the angle. Deviations of heading angle
are evident when compared to the noise free headings in Figure 4.7b.

GC Navigation Excited by Simulated Inertial Measurements

The process between sensed movement and grid cell activation is not well docu-

mented in the neuroscience literature. It can be assumed that it is activated from the
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Figure 4.11 a) and b) show data for a 1 m2 space, and c) and d) show data for 10 m2 space. The
inertial and grid cell aided navigation are shifting away from the true path.

vestibular system, but the grid cell's lattice �res whenever the rat is in a position to

allow for it to happen with little correlation to other systems [21]. Until this connec-

tion is made, the grid cells must be excited by something that estimates movement

like the inertial navigation system. Thus, the inertial navigation and grid cell aided

navigation positions can be merged as shown in Figure 4.1. The estimated velocity

from noisy INS data can be input to the grid cell algorithm. This results in Figure

4.12. For the experiment in Figure 4.12, the improvement on average is .3039 cm and

has a standard deviation of 1.3267 cm for the 1 m2 space and .08514 cm and 2.5339

cm for the 10 m2 space. The average improvement is the mean of the improvement
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at every discrete location along the path traveled, and that mean is then used to

calculate the standard deviation.
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Figure 4.12 a) and b) show data for a 1 m2 space, and c) and d) show data for 10 m2 space. The
inertial navigation with error added shows position estimations o� of the true path, and the grid
cell aided navigation shows an improvement compared to inertial navigation alone.

Statistical Veri�cation

In order to assess if the improvement shown in Figure 4.12 is statistically signif-

icant, each one of these paths was traversed 1000 times with the inertial navigation

system and the grid cell aided system as shown in Figure 4.1. The average path taken

by the robot and the average error over the paths taken are shown in Figure 4.14.

The average path taken by the robot is a set (4.2) �lled with values calculated in
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Figure 4.13 This �gure shows the velocity with error as the paths in 4.12 are being followed. a)
shows the velocity for the 1 m path and b) shows the velocity for the 10m path

(4.3) where N is the total number of runs, n is the step in each run, and destimated(n)i

is the position estimate at a step for a run.

pavg = {davg1 , davg2 , ..., davgn} (4.2)

davgn =

∑N
i=1 destimated(n)i

N
(4.3)

The average error over the paths is calculated in a similar fashion. The error

estep(n)i is calculated in (4.6) by subtracting the true position from the estimated

position for time step n. Then (4.5) is used to average the error at the same time step

n for all runs 0-N . Finally, the average error over the path (4.4) is a set built from

those values.

eavg = {estepavg1 , estepavg2 , ..., estepavgn} (4.4)

estepavgn =

∑N
i=1 estep(n)i

N
(4.5)

estep(n)i = destimated − truth (4.6)

The data in Figure 4.12 shows that there is not improvement, on average, using

the Grid Cell algorithm to aid the INS. The improvement on average is -.4593 cm

and deviates by .8097 cm for the 1 m2 space and -11.2014 cm and 30.3218 cm for
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the 10 m2 space. These results represent only one standard deviation of noise for the

inertial navigation system.
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Figure 4.14 a) and b) show data for a 1 m2 space, and c) and d) show data for 10 m2 space. These
values are the average value for 1000 runs with 1 standard deviation of noise using 4.1. The average
does not show improvement unlike the results in 4.11 that uses system described in Figure 4.9.

One standard deviation of noise only shows noise that will happen at most 68%

of the time. That means, that in order to get more complete results, the results for 2

and 3 standard deviations should be shown in order to include noise that will happen

up to 99.7% of the time. Figure 4.15 show the average path and error of 1000 runs

for the paths with 3 standard deviations of noise.

Table 4.3 summarizes the results that characterize the improvement seen when

using the grid cell aided navigation systems with 1, 2, and 3 standard deviations of

noise applied. The data in Table 4.3 indicates that the Grid Cell aided systems show

better performance with longer paths and higher noise values.
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Figure 4.15 a) shows data for a 1 m2 space, and b) show data for 10 m2 space. These values are
the average value for 1000 runs with 3 standard deviation of noise. c) and d) show that longer paths
and higher error show better performance with grid cells aided navigation.

Grid Cell Variations

Grid Cells come in many di�erent sizes. Their capabilities cannot be fully tested

by only using one set of grid cells. In order to evaluate the algorithm's sensitivity to

grid size, sets that span the range of observed grid cell spacings were run with all

three sigmas of errors within the 10 m2 space. Five di�erent spacing sets were chosen

to cover the range. Each set is composed of six grid cells. The sets are: {5, 7, 11,

13, 17, 23}, {29, 31, 37, 41, 43, 47}, {53, 59, 61, 67, 71, 73}, {101, 103, 107, 109,

113, 127}, and {179, 181, 191, 193, 197, 199} with all values in cm. The 10 m2 space

contains positions that go beyond the largest observed grid cell spacing, making it a

viable space to test out the range of the grid cells.
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Table 4.3 The mean, standard deviation, min, and max of the improvement of the combined
systems from inertial navigation alone. The combined systems show better performance at longer

paths and higher noise values.

Noise Mean Std. Dev Min Max

1 m2 Space

1σ -10.581 5.182 -24.642 0
2σ -1.861 4.705 -10.967 2.894
3σ -.2920 3.529 -12.728 3.699

10 m2 Space

1σ -26.763 26.481 -94.771 5.434
2σ -45.291 36.6818 -115.706 0
3σ 57.240 97.914 -99.998 276.072

Table 4.4 reveals how di�erently sized grid cell spacings a�ect the performance.

The largest improvement was shown to be 57.246 cm on average. With the lowest

standard deviation reads at 20.243 cm. The best improvements are shown to come

from grid cell spacings between the 40-80 cm spacings.
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Table 4.4 The mean, standard deviation, min, and max of the di�erent grid cell spacings are shown
on this table. The data for the second and third spacing show to be the better grid cell sizes for
improving position estimations.

GC Spacings (cm) Mean Std.
Dev

Min Max

1σ noise

5, 7, 11, 13, 17, 23 -12.685 23.352 -101.255 4.670
29, 31, 37, 41, 43, 47 -22.601 20.243 -92.750 8.964
53, 59, 61, 67, 71, 73 -27.458 24.538 -109.763 9.235

101, 103, 107, 109, 113, 127 -24.608 26.329 -104.158 22.193
179, 181, 191, 193, 197, 199 -63.443 29.949 -162.314 7.857

2σ noise

5, 7, 11, 13, 17, 23 -19.933 60.640 -111.731 143.121
29, 31, 37, 41, 43, 47 -21.800 63.683 -153.682 64.017
53, 59, 61, 67, 71, 73 41.933 31.848 -135.707 3.546

101, 103, 107, 109, 113, 127 13.699 52.421 -113.320 82.809
179, 181, 191, 193, 197, 199 -5.218 47.706 -143.581 77.684

3σ noise

5, 7, 11, 13, 17, 23 42.152 103.623 -46.325 305.117
29, 31, 37, 41, 43, 47 8.801 116.764 -152.167 294.357
53, 59, 61, 67, 71, 73 51.951 105.073 -97.777 289.330

101, 103, 107, 109, 113, 127 57.246 114.960 -75.063 301.573
179, 181, 191, 193, 197, 199 1.566 109.684 -171.735 203.854
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CHAPTER FIVE

Discussion

A series of assumptions were used throughout the thesis. The �rst assumption is

that changes in acceleration and rotation are instantaneous. This means the simulated

travel on the path is formed with instantaneous acceleration changes with no loss of

momentum. The focus of this thesis is in the inaccuracies of the sensors to see the

value in implementing grid cells in navigation on an physical system.

Another assumption is that grid cells hold a uniform lattice and larger lat-

tices are scaled versions of the smaller lattices. This is the main assumption for the

equations derived in [21] that were used in this thesis.

One more assumption made in [21] was that grid cells with a regular periodic

response hold the same period throughout their use. Research provides evidence that

the assumption is correct, but tests still need to be done on the large scale travels

with rats [21].

Future Work

A next step for this project is to implement grid cell aided navigation on a

robot that will travel the square path as in this thesis. The full dynamics of motion

can be observed as well. A physical proof of improvement on the inertial navigation

system with grid cells will allow for further projects with grid cell navigation to move

forward.

Though the scope of this thesis is in dead reckoning/idiothetic navigation, grid

cell navigation has shown improved navigation results in other forms of navigation.

Research in algorithmic place cell development [36] [40], visual odometry with grid

cells [50], and other forms of improvement in path integration and simultaneous local-
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ization and mapping [12] show that grid cell navigation is a viable way for autonomous

navigation to move forward.

One positive aspect of mimicking grid cell �ring patterns on electronic devices

is that lattices are not limited on electronic devices. For dead reckoning using grid

cells, sizes of lattice periods outside the natural range are not a problem and could

be applied without the limitations of physical neurons (keeping the assumption of

periodicity not changing). If the implementation of the neuromorphic circuit were

done, the grid cells could be made as small as possible to increase the resolution of

the grid cell readings.

However, the physical implementations of neuromorphic circuits are the key to

implementing the grid cell based navigation used in this thesis. Since we do not have

that, the grid cells will rely on current navigation inputs from accelerometers and

gyroscopes for spiking patterns, and it is not as accurate as modeled grid cells. The

simulation of current physical capabilities shows that vector navigation can improve

dead reckoning in select situations.

There have been experiments with algorithms that use visual sensors [50] to

work with grid cells for navigation. This, however, adds visual cues, formations of

place cells, and reliance on other sensors. This thesis looks upon the improvement of

the dead reckoning method that is available without these external cues.

One proposed way of achieving grid cell spiking, is to use di�erent sized "wheels"

to represent the di�erent lattices formed by grid cells. As the wheels rotate, the

grid cell �rings are stimulated to emulate the consistent �ring periods described in

this thesis. With the formation of consistent �ring periods with wheels, grid cell

stimulation occurs without the need for an INS to drive the grid cells like in this

thesis. This can be seen in Figure 5.1.

Slippage is a main concern in implementing grid cells with wheels. If the wheels

desynchronize, it would increase translational drift. A wheel with a 25 cm circumfer-
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Figure 5.1 This �gure (taken from [1]) shows a way in which grid cell �ring patterns can be estab-
lished without having to rely on an INS for input.

ence, if desynchronized by 10 mm on each wheel rotation, would be o� by 1 meter

after having traveled 250 m. If the desynchronization were increasing steadily by 10

mm, then at those 250 m traveled, the location reading would be o� by 50.5 m.

Conclusion

In this thesis, dead reckoning with only an inertial navigation system and dead

reckoning with a grid cell aided inertial navigation system are shown to be compara-

ble. This thesis proposes that grid cell dead reckoning is a viable form of autonomous

and idiothetic navigation, that in select situations removes error and improves per-

formance on average. An inertial navigation system with and without grid cell aid

were simulated traveling a square of varying lengths and covering di�erent amounts of

space. The inertial navigation system was simulated by modeling accelerometer and

gyroscope readings, and then estimating a position using the kinematic equations.

The grid cell aid was simulated by mapping the navigation space through grid cell

models and using INS provided velocities for localization. The paths were built to test
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within and past the distance limitations observed through a rat's grid cell �ring pat-

terns as they navigated deprived of their senses. The simulated results validate that

the grid cell aided navigation is comparable and, in some cases, better in accuracy

than dead reckoning alone through di�erent paths and spaces.

In order to progress the experiment in this thesis, physical implementation

needs to be pursued to show physical results in dead reckoning and its combination

with grid cell mapping and localization. It is also in the best interest to pursue a

physical implementation of vector navigation in order to show the accuracy of vector

navigation on its own.
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APPENDIX A

Top Level Code for Simulation

clear;

close all;

%% Constants

%Making sure the seed stays the same. Any int works here.

%You can comment the function out to have a random seed every

time.

rng(1);

global NO_NOISE

NO_NOISE = 0;

n = .1;

mapbounds = 100;

vector = 1:n:mapbounds;

precision = 1;

sam = mapbounds;

neuralmapsize = 10^5;

scaling = mapbounds /100;

params.accelnoise = .000382;

params.accelbias = 0.0003924;
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params.accelsf = [1+.000382 randn *0.05 ; randn *0.05 1+.000382];

params.gyronoise = 0.038;

params.gyrobias = .006891;

params.gyrosf = 1+.0069565;

intervals = [5 7 11 13 17 23];

%% Setting Up Vectors

[sqrx , sqry] = sqr(vector , precision , 10* scaling , 80* scaling ,

mapbounds);

disp('Path Set');

%% Forming Map

[xvec ,yvec ,xgccombos ,ygccombos] = gridcellmap(intervals ,

mapbounds , scaling);

disp('GC map formed.');

[gcsqrxpos , gcsqrypos , inssqrxpos , inssqrypos ] = ...

localize( sqrx , sqry , xvec , yvec , xgccombos , ygccombos ,

intervals , params , neuralmapsize);

disp('INS Done');

%% Error Calculation

gcsqrid = errdist(gcsqrxpos , gcsqrypos , sqrx , sqry);
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inssqrid = errdist(inssqrxpos , inssqrypos , sqrx , sqry);

improvement = inssqrid - gcsqrid;

disp('Error Calc Done')

code/OneRunResults.m
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APPENDIX B

Code for Equations

function [accelnav , velnav] = IMU(sqrx , sqry , params)

%This builds the output for the INS from a simulated

accelerometer and

%gyroscope. The output is the navigation frame acceleration and

velocity.

%% Constants

%Whether or not we choose to include noise

global NO_NOISE;

% This is the time step in seconds.

dt = .1;

%% Accelerations

%Instantiating the true acceleration

trueaccel = zeros(2,(size(sqrx ,2)));

disp('Forming true acceleration vector ')

%Setting up the accelerations to move around the true square

path

trueaccel (2,1) = 50*.64; %Y accel
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trueaccel(2,round((size(sqrx ,2) *.25))) = -50*.64; %Y de-accel

trueaccel(1,round((size(sqrx ,2) *.25))+1) = 50*.64; %X accel

trueaccel(1,round((size(sqrx ,2) *.5))) = -50*.64; %X de-accel

trueaccel(2,round((size(sqrx ,2) *.5))+1) = -50*.64; %Y accel

trueaccel(2,round((size(sqrx ,2) *.75))) = 50*.64; %Y de-accel

trueaccel(1,round((size(sqrx ,2) *.75))+1) = -50*.64; %X accel

disp('Finished forming true acceleration vector ');

%Instantiating angular velocity and angle

truetheta (1) = 90*pi/180; %initial angle (Truth)

truethetadot (1) = 0; %initial angular velocity (Truth)

%Instantiating velocity for calculations

vel = zeros(2,(size(sqrx ,2)));

%True Velocity (Navigation Frame)

for i = 2:size(vel ,2)

vel(:,i) = vel(:, i-1) + trueaccel(:,i-1)*dt;

end

%% Angles
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disp('Forming true angle vector.');

for i = 2:size(sqrx ,2)

% sqrx and sqry are true position

% calculate heading from the true positions

truetheta(i) = atan2(sqry(i)-sqry(i-1),sqrx(i)-sqrx(i-1));

if and(truetheta(i) > pi/2, truetheta(i-1) < -pi/2)

truetheta(i) = -truetheta(i);

end

% calculate angular rate

if (truetheta(i) - truetheta(i-1)) < pi/2

truethetadot(i) = (truetheta(i) - truetheta(i-1))/dt;

else

truethetadot(i) = (2*pi -( truetheta(i) - truetheta(i-1))

)/dt;

end

end

disp('Finished forming true angle vector ')
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%% Simulate Accelerometer and Gyroscope from True Data

disp('Simulating Accelerometer and Gyroscope Sensors ');

%Rotating from true data into body data in order to simulate

sensors.

for i = 1:size(trueaccel ,2)

accelbody(:,i) = [cos(truetheta(i)) sin(truetheta(i)); -sin

(truetheta(i)) cos(truetheta(i))]* trueaccel(:,i);

end

%Initialize Simulated Sensor Data

sensortheta (1) = truetheta (1);

INSpos (:,1) = [sqrx (1); sqry (1)];

velnav(:,i) = [0; 0];

accelnoise = params.accelnoise;

accelbias = params.accelbias;

accelsf = params.accelsf;

gyronoise = params.gyronoise;

gyrobias = params.gyrobias;

gyrosf = params.gyrosf;

for i = 2: length(accelbody)

%Establishing rotation matrix for body to navigation frame
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Rb2N = [cos(sensortheta(i-1)) -sin(sensortheta(i-1)); sin(

sensortheta(i-1)) cos(sensortheta(i-1))]; %Using

previous heading estimate

if NO_NOISE == 1

accelnav(:,i) = Rb2N*accelbody(:,i-1); %rotate the True

measured Body acclerations into Navigation frame

using the heading which is estimated based on no

noise

else

noisyaccel (:,i) = accelsf * accelbody(:,i-1) +

accelnoise*randn + accelbias*randn; %add noise to

the Body Frame accelerometer

accelnav(:,i) = Rb2N*noisyaccel (:,i); %rotate the

noisy measured Body acclerations into Navigation

frame using the estimate of the heading based on

they gyro output

end

%Integrate acceleration to find current estimate of

Velocity (Nav frame)

velnav(:,i) = velnav(:,i-1) + accelnav(:,i)*dt;

%Integrate velocity to find current estimate of position (

Nav frame)

INSpos(:,i) = INSpos(:,i-1) + velnav(:,i)*dt;

58



%Estimate the NEW heading (Navigation frame) based on Gyro

data

if NO_NOISE == 1

sensortheta(i) = sensortheta(i-1) + truethetadot(i)*dt;

%Gyroscope Input (truth)

else

noisygyro(i) = truethetadot(i)*gyrosf + gyrobias*randn

+ gyronoise*randn; %add noise to the true angular

velocity

sensortheta(i) = sensortheta(i-1) + noisygyro(i)*dt; %

Gyroscope Input

end

end

disp('Simulation of accelerometer and gyroscope complete.');

end

code/IMU.m

function [ gcposestx , gcposesty , drposestx , drposesty ] =

INSwGCaid(sqrx , sqry , velnav , ...

accelnav , xvec , yvec , xgcombos , ygccmobos , intervals ,

neuralmapsize , timescale)

%% Kinematic

% Time Step

ts = .1;
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% Initializing State Space Matrices

xstatespace = [sqrx; velnav (1,:); accelnav (1,:)];

ystatespace = [sqry; velnav (2,:); accelnav (2,:)];

statex (:,1) = xstatespace (:,1);

statey (:,1) = ystatespace (:,1);

%% Trapeziodal Estimations

%Integration through Trapezpoidal Approximation

disp('Integrating for INS estimations!');

for i = 2:size(xstatespace ,2)

statex(3,i) = xstatespace (3,i);

statey(3,i) = ystatespace (3,i);

statex(2,i) = statex(2,i-1)+(( statex(3,i-1)+(( statex(3,i)-

statex(3,i-1))/2))*ts);

statey(2,i) = statey(2,i-1)+(( statey(3,i-1)+(( statey(3,i)-

statey(3,i-1))/2))*ts);

statex(1,i) = statex(1,i-1)+(( statex(2,i-1)+(( statex(2,i)-

statex(2,i-1))/2))*ts);

statey(1,i) = statey(1,i-1)+(( statey(2,i-1)+(( statey(2,i)-

statey(2,i-1))/2))*ts);
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end

%Localization through grid cell spatial map.

disp('Using Grid Cell Aid!');

[gcposestx ,gcposesty] = posfromGCmap(intervals , xgcombos ,

ygccmobos , ...

xvec , yvec , sqrx , sqry , statex (2,:),statey (2,:), neuralmapsize

, timescale);

%Saving INS estimations without grid cell aid.

[drposestx] = statex (1,:);

[drposesty] = statey (1,:);

end

code/INSwGCAid.m

function [xvec , yvec , xgccombos , ygccombos] = gridcellmap(

intervals , mapbounds , scaling)

%gridcellmap will form the spatial map allowed by the

combinations of grid

%cell firing intervals.

%Number of modules

m = size(intervals ,2);
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%Ideal Mapping Capacity

%phi = lcm(lcm(lcm(lcm(lcm(intervals (1),intervals (2)),intervals

(3)), ...

% intervals (4)), intervals (5)), intervals (6)) - 1;

%Number of distinguishable phases

invphi = sum(intervals .* intervals/mapbounds*scaling);

%Mapping capacity

capacity = (invphi)^(m-1);

%Killing the program if the capacity is not enough.

if (capacity < mapbounds)

under = mapbounds - capacity;

fprintf('Your capacity covers up to %f and needs to increase

capacity by %f.'...

, capacity , under);

return

end

%Setting neuron spikes through mapping space for x and y

xmaxfire1 = 0: intervals (1):mapbounds;

xmaxfire2 = 0: intervals (2):mapbounds;

xmaxfire3 = 0: intervals (3):mapbounds;

xmaxfire4 = 0: intervals (4):mapbounds;

xmaxfire5 = 0: intervals (5):mapbounds;

xmaxfire6 = 0: intervals (6):mapbounds;
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ymaxfire1 = 0: intervals (1):mapbounds;

ymaxfire2 = 0: intervals (2):mapbounds;

ymaxfire3 = 0: intervals (3):mapbounds;

ymaxfire4 = 0: intervals (4):mapbounds;

ymaxfire5 = 0: intervals (5):mapbounds;

ymaxfire6 = 0: intervals (6):mapbounds;

%Forming the combinations of spikes across the map

xgccombos = union(union(union(union(union(xmaxfire1 , xmaxfire2)

, ...

xmaxfire3), xmaxfire4), xmaxfire5), xmaxfire6);

disp(xgccombos);

ygccombos = union(union(union(union(union(ymaxfire1 , ymaxfire2)

, ...

ymaxfire3), ymaxfire4), ymaxfire5), ymaxfire6);

%This will not map phases at every integer value , so if these

phases are

%mapped , they will look odd. It however is not.

%Instantiating the X axis and Y axis representation of phases

xvec = zeros(1,size(xgccombos ,2));

yvec = zeros(1,size(ygccombos ,2));
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%Setting phase representations for every spike combination.

disp('Building Spatial Map');

for i = 1:( size(xgccombos ,2) -1)

%This sets every X axis location representation

for k = 1:m

%Setting the phase representation

xvec(k,i) = (mod(xgccombos(i), intervals(k))/intervals(

k))*2*pi;

end

%This sets every Y axis location tied to each X axis

location rep

for j = 1:( size(ygccombos ,2) -1)

for k = 1:m

%Setting the phase representation

yvec(k,j) = (mod(ygccombos(j),intervals(k))/

intervals(k))*2*pi;

end
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end

end

disp('Finished Building Spatial Map');

end

code/gridcellmap.m

function [ yourxpos , yourypos ] = posfromGCmap(intervals ,

xgccombos , ygccombos ...

, xvec , yvec , sqrx , sqry , velx , vely , neuralmapsize , scale)

% posfromGCmap will decode the position of the object to

whatever motion you give

% it with the path vectors. xvec and yvec are sets of phases

that encode locations

% on each axis.

%% Constants

m = size(intervals , 2); %modules

ts = .1; %time step in seconds

cv = 1/8; % coefficient of variance (ratio)

scalefix = 1;

phthresh1 = min(intervals)*pi/intervals (1); %threshold for

firing interval 1
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phthresh2 = min(intervals)*pi/intervals (2); %threshold for

firing interval 2

phthresh3 = min(intervals)*pi/intervals (3); %threshold for

firing interval 3

phthresh4 = min(intervals)*pi/intervals (4); %threshold for

firing interval 4

phthresh5 = min(intervals)*pi/intervals (5); %threshold for

firing interval 5

phthresh6 = min(intervals)*pi/intervals (6); %threshold for

firing interval 6

%% Find Position from GC Map

disp('Getting positions from GC spatial map.');

for i = 1:size(velx (1,1: scale:(end -scalefix)) ,2)

%positions from INS through trapezoidal estimation

if i > 1

sqrx(i) = sqrx(i-1)+(( velx(round(i*scale -(scale -1)))+(( velx(

round(i*scale))-velx(round(i*scale -(scale -1))))/2))*ts*

scale);

sqry(i) = sqry(i-1)+(( vely(round(i*scale -(scale -1)))+(( vely(

round(i*scale))-vely(round(i*scale -(scale -1))))/2))*ts*

scale);
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end

for k = 1:m

% Making each position estimation into a phase value

xoi(i,k) = mod(abs(round(sqrx(i))),intervals(k))/

intervals(k)*2*pi;

yoi(i,k) = mod(abs(round(sqry(i))),intervals(k))/

intervals(k)*2*pi;

end

% separating out the phases

xph1 = xoi(i,1);

xph2 = xoi(i,2);

xph3 = xoi(i,3);

xph4 = xoi(i,4);

xph5 = xoi(i,5);

xph6 = xoi(i,6);

yph1 = yoi(i,1);

yph2 = yoi(i,2);

yph3 = yoi(i,3);

yph4 = yoi(i,4);

yph5 = yoi(i,5);

yph6 = yoi(i,6);

%Finding the spatial map index for the x position
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a = find(xvec (1,:) + phthresh1 > xph1 & xvec (1,:)-

phthresh1 < xph1 ...

& xvec (2,:) + phthresh2 > xph2 & xvec (2,:)- phthresh2

< xph2 ...

& xvec (3,:) + phthresh3 > xph3 & xvec (3,:)- phthresh3

< xph3 ...

& xvec (4,:) + phthresh4 > xph4 & xvec (4,:)- phthresh4

< xph4 ...

& xvec (5,:) + phthresh5 > xph5 & xvec (5,:)- phthresh5

< xph5 ...

& xvec (6,:) + phthresh6 > xph6 & xvec (6,:)- phthresh6

< xph6 );

if isempty(a)

xvec_save = xvec; %save the original xvec before

changing zero values

for indexx = 1: length(intervals)

zero_indices = find(xvec(indexx ,:) == 0);

xvec(indexx ,zero_indices) = 2*pi;

end

a = find(xvec (1,:) + phthresh1 > xph1 & xvec (1,:)-

phthresh1 < xph1 ...

& xvec (2,:) + phthresh2 > xph2 & xvec (2,:)- phthresh2 <

xph2 ...
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& xvec (3,:) + phthresh3 > xph3 & xvec (3,:)- phthresh3 <

xph3 ...

& xvec (4,:) + phthresh4 > xph4 & xvec (4,:)- phthresh4 <

xph4 ...

& xvec (5,:) + phthresh5 > xph5 & xvec (5,:)- phthresh5 <

xph5 ...

& xvec (6,:) + phthresh6 > xph6 & xvec (6,:)- phthresh6 <

xph6 );

xvec = xvec_save; %return xvec back to what it was

before to capture the other side of the symmetry

end

b = find(yvec (1,:) + phthresh1 > yph1 & yvec (1,:) -

phthresh1 < yph1 ...

& yvec (2,:) + phthresh2 > yph2 & yvec (2,:) - phthresh2

< yph2 ...

& yvec (3,:) + phthresh3 > yph3 & yvec (3,:) - phthresh3

< yph3 ...

& yvec (4,:) + phthresh4 > yph4 & yvec (4,:) - phthresh4

< yph4 ...

& yvec (5,:) + phthresh5 > yph5 & yvec (5,:) - phthresh5

< yph5 ...

& yvec (6,:) + phthresh6 > yph6 & yvec (6,:) -

phthresh6 < yph6 );

if isempty(b)
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yvec_save = yvec; %save the original yvec before

changing zero values

for indexy = 1: length(intervals)

zero_indices = find(yvec(indexy ,:) == 0);

yvec(indexy ,zero_indices) = 2*pi;

end

b = find(yvec (1,:) + phthresh1 > yph1 & yvec (1,:) -

phthresh1 < yph1 ...

& yvec (2,:) + phthresh2 > yph2 & yvec (2,:) - phthresh2

< yph2 ...

& yvec (3,:) + phthresh3 > yph3 & yvec (3,:) - phthresh3

< yph3 ...

& yvec (4,:) + phthresh4 > yph4 & yvec (4,:) - phthresh4

< yph4 ...

& yvec (5,:) + phthresh5 > yph5 & yvec (5,:) - phthresh5

< yph5 ...

& yvec (6,:) + phthresh6 > yph6 & yvec (6,:) -

phthresh6 < yph6 );

yvec = yvec_save; %return yvec back to what it was before

to capture the other side of the symmetry

end

%debugging purposes

if i ==1
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xovecpos(i) = round(sqrx (1)/intervals (1))+round(sqrx (1)/

intervals (2))+...

round(sqrx (1)/intervals (3))+round(sqrx (1)/intervals (4))+...

round(sqrx (1)/intervals (5))+round(sqrx (1)/intervals (6));

elseif isempty(a)

xovecpos(i) = xovecpos(i-1);

elseif le(abs(sqrx(i)),min(intervals)/2)

xovecpos(i) = 1;

elseif size(a,2) > 1

bigx = bigx + 1;

xovecpos(i) = a(size(a,2));

else

xovecpos(i) = a;

end

if i ==1

yovecpos(i) = round(sqry (1)/intervals (1))+round(sqry (1)/

intervals (2))+...

round(sqry (1)/intervals (3))+round(sqry (1)/intervals (4))+...

round(sqry (1)/intervals (5))+round(sqry (1)/intervals (6));

elseif isempty(b)

yovecpos(i) = yovecpos(i-1);

elseif le(abs(sqry(i)),min(intervals)/2)

yovecpos(i) = 1;

elseif size(b,2) > 1

yovecpos(i) = b(1);%b(size(b,2));

else

yovecpos(i) = b;
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end

for g = 1:size(xgccombos ,2)

% Deterioration of the map (translation of tha map over

time)

xgccombos(g) = xgccombos(g) + round(sqrt((i-1)/

neuralmapsize*cv^2) ,3);

ygccombos(g) = ygccombos(g) + round(sqrt((i-1)/

neuralmapsize*cv^2) ,3);

end

if i == 1

yourxpos(i) = sqrx (1);

else

yourxpos(i) = xgccombos(xovecpos(i));

end

if i == 1

yourypos(i) = sqry (1);

else

yourypos(i) = ygccombos(yovecpos(i));

end

sqrx(i) = yourxpos(i);

sqry(i) = yourypos(i);

end
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end

code/posfromGCmap.m

function [ sqrx , sqry ] = sqr( Vector , Precision , Start , Length

, mapbounds )

%sqr is a function that forms a square in the middle of the

boundaries of

%the space allocated.

disp('Forming true path.');

for i = 1:size(Vector ,2)

if Start > mapbounds | Start+Length > mapbounds | Start < 0

| Start+Length < 0

disp('The Start or Length is outside of the boundaries '

);

return;

else

if i > (3* size(Vector ,2)/4)

sqrx(i) = round(Start+Length -((i-(3* size(Vector ,2)

/4))*Length ...

/(size(Vector ,2)/4)),Precision);

sqry(i) = Start;
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elseif i > (size(Vector ,2)/2)

sqrx(i) = Start+Length;

sqry(i) = round(Start+Length -((i-(size(Vector ,2)/2)

)*Length ...

/(size(Vector ,2)/4)),Precision);

elseif i > (size(Vector ,2)/4)

sqrx(i) = round(Start +((i-(size(Vector ,2)/4))*

Length ...

/(size(Vector ,2)/4)),Precision);

sqry(i) = Start+Length;

elseif i > 1

sqrx(i) = Start;

sqry(i) = round(Start+(i*Length /(size(Vector ,2)/4))

,Precision);

elseif i > 0

sqrx(i) = Start;

sqry(i) = Start;

end
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if sqrx(i) > mapbounds

sqrx(i) = round(sqrx(i)/mapbounds ,Precision);

end

if sqry(i) > mapbounds

sqry(i) = round(sqry(i)/mapbounds ,Precision);

end

end

end

disp('Finished building true path.');

end

code/sqr.m

function [ ierrt ] = errdist(yourxpos , yourypos , ox, oy)

%errorcalc ends up calculating the error between the true path

and

%the predicted path

% Instantaneous error

for i = 1: size(ox ,2)

if round(ox(i) ,4) == 0 & round(oy(i) ,4) == 0

ierrx(i) = 0;
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ierry(i) = 0;

elseif round(ox(i) ,4) == 0

ierrx(i) = 0;

ierry(i) = abs(( yourypos(i)-oy(i)));

elseif round(oy(i) ,4) == 0

ierrx(i) = abs(( yourxpos(i)-ox(i)));

ierry(i) = 0;

else

ierrx(i) = abs(( yourxpos(i)-ox(i)));

ierry(i) = abs(( yourypos(i)-oy(i)));

end

end

ierrt = sqrt(ierrx .^2 + ierry .^2);

code/errdist.m
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