
ABSTRACT

Bayesian Spatial Misclassification Model for
Areal Count Data with Applications to COVID-19

Jinjie Chen, Ph.D.

Chairperson: James D. Stamey, Ph.D.

As of December 14, 2020, there have been more than 72.1 million confirmed

cases, of which more than 1.61 million have died of COVID-19 globally. In the United

States, there are more than 16,200,000 confirmed cases and 299,000 COVID-19-related

deaths, the most cases, and deaths of any country. However, even with the huge num-

ber of confirmed diagnoses, the public burden of the pandemic is still masked by

under-reporting and misclassification. Based on the Bayesian spatial model and Pois-

son regression, we study two topics, aiming to provide a flexible quantitative approach

for simulating and correcting the under-reporting and misclassification of COVID-19

at the US state level. Topic 1 quantifies under-reporting rates with Poisson-logistic

regression, combined with the prior information derived from the results of the SARS-

CoV-2 antibody sampling study, and then estimates the true case of COVID-19 in each

state of the US. Topic 1 also combines the Besag-York-Mollié 2 (BYM2) model to cor-

rect the bias of parameter estimation caused by ignoring the spatial auto-correlation.

Topic 2 proposes a bivariate Bayesian spatial misclassification model, which can simul-

taneously calibrate the misclassification of two counts of the same area (for example,

state or county). Deaths related to COVID-19 are considered to be misclassified to

other causes and vice versa (although the latter case is relatively fewer). In addi-

tion, because the number of deaths at the state level shows obvious spatial similarity,



BYM2 random effects are included to explain the variability beyond the covariates.

Our model was applied to state-level COVID-19 deaths and other deaths, achieving

satisfactory results that can be a reference for estimating the true COVID-19 deaths.

Topic 3 proposes and discusses the determination of sample size based on skew-normal

distribution. This method adopts Bayesian intensive simulation to overcome limita-

tions of closed-form approximation and normality assumption while ensuring sufficient

statistical power and nominal coverage of confidence interval (or credible set). Our

approach demonstrates good performance and application prospects.
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CHAPTER ONE

A Computationally Efficient Bayesian Hierarchical
Spatial Model for Under-reported Count Data

1.1 Introduction

Count data are commonly encountered in a variety of fields such as epidemiol-

ogy, criminology, and sociology. In many cases, the data recording process is error-

prone. Individuals or responsible agencies may fail to report the true count due to a

variety of reasons. For instance, under-reporting often occurs when sensitive questions

are asked in surveys, such as self-reported use of illegal drugs. But more often, it is

attributed to the imperfect process of data collection. The outbreak and fast global

spread of COVID-19 in early 2020 have been one of the most far-reaching public health

events in modern history. It is believed the cases of COVID-19 were significantly

under-reported at the early stage of the outbreak. Some governments thus missed the

best opportunity to contract the spread of COVID-19. Under-reporting is problem-

atic because it results in biased statistical inferences and may lead to poor decisions.

Therefore, it is essential to correctly estimate the reporting rates and corresponding

uncertainty for making a better decision about resource allocation. Recently, Stoner,

Economou, and Drummond Marques da Silva (2019) proposed a Bayesian hierarchi-

cal approach to model and correct the under-reporting of tuberculosis incidence in

Brazil. Their framework relies only on an informative prior distribution for the mean

reporting rate. The model is implemented in a fully Bayesian framework, which is

highly flexible and provides a posterior predictive distribution for unobserved true

counts, thus quantifying the uncertainty of the under-reporting.

Often, observational count data is collected over space. Hence it is also impor-

tant to account for spatial dependency. A commonly used spatial model for count
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data is Besag-York-Mollie (BYM) (Besag, York, & Mollié, 1991) which is a lognormal

Poisson model that decomposes the regional spatial effect into a sum of a structured

ICAR (intrinsic conditional auto-regressive) component φ and an unstructured com-

ponent θ (pure overdispersion). In BYM the structured and unstructured components

can not be seen independently from each other and are thus not identifiable. The lack

of identifiability often leads to poor convergence and makes the choice of hyperpri-

ors more difficult (e.g., Bernardinelli, Clayton, & Montomoli, 1995; MacNab, 2011;

Wakefield, 2007). Simpson et al. (2017) proposed a new modification of the commonly

known BYM model, termed the BYM2 model, consisting of a single-precision param-

eter and one mixing parameter. BYM2 addresses both the identifiability and scaling

issue of the BYM model (Riebler, Sørbye, Simpson, & Rue, 2016). Recently Morris

et al. (2019) report an effective way to execute BYM2 in Stan language.

In this chapter, we investigate a flexible Bayesian spatial hierarchical model that

can correct the under-reporting of areal count data through partial prior information.

In addition, we consider the potential spatial confounding effect which is col-linearity

between spatial random effect and fixed effect in spatial generalized linear mixed mod-

els (SGLMM). It is known that the spatial confounding may lead to biased estimates

of the fixed effects and inflated the variances of the estimates. Many researchers have

discussed this issue, proposing methods to eliminate spatial confounding, such as the

most commonly used restricted spatial regression (RSR), and principal components

analysis (PCA) methods. Methods based on RSR constrain the spatial effect to the

space orthogonal to fixed effects, thereby eliminating estimation bias and variance in-

flation. However, as pointed out by Hanks, Schliep, Hooten, and Hoeting (2015), the

constraint places an excessively strong and impractical assumption that the spatial

effect and the fixed effect are completely orthogonal. In the case of model mismatch

(random effects are from SGLMM and correlated with fixed effects), RSR may bias

the posterior mean and inappropriately shrink the variances. Hanks et al. (2015) pro-
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posed a posterior predictive method to correct the underestimation of the posterior

variance and ensure the coverage of the posterior credible sets to achieve nominal

coverage.

It is worth noting that PCA methods (variants of RSR) are computationally ef-

ficient than SGLMM, especially when the number of spatial areas N is large. However,

our simulation shows that the computation time of the BYM2 model (reparameter-

ization of Besag York Mollié Model) implemented in Stan is comparable to PCA

methods. Hanks et al. (2015) provides a nice discussion about the selection between

SGLMM and PCA.

The outline of the remainder of this chapter is as follows. In Section 1.2, we in-

troduce the Poisson-Logistic (Pogit) model and explain how under-reporting is fully

modeled across space. Next, we discuss a solution to the non-identifiability prob-

lem in Section 1.3. In Section 1.4, we discuss spatial confounding, explain how it

influences the recovery of regression parameters, and discuss approaches to alleviate

confounding. In Section 1.5, we describe the proposed full Pogit model. We study

the inference and prediction performance of the various approaches via a simulation

study in Section 1.6 and apply BYM2 and PCA to a real-world data set in Section

1.7. We conclude with a discussion of our work in Section 1.8.

1.2 Pogit Model For Under-reporting Count Data

1.2.1 Pogit Model with BYM Structure

A popular model to account for under-reporting is the Pogit model proposed by

Winkelmann and Zimmermann (1993). The model consists of a binomial component

for the observed counts, z, conditional on the underlying unobserved true counts y

3



assumed to follow Poisson distribution,

zi ∼ Binomial(πi, yi) (1.1)

log

(
πi

1− πi

)
= Wβs (1.2)

yi ∼ Poisson(Eiλi) (1.3)

log(λ) = Xγs (1.4)

where πi models the reporting rates for region i, Ei and λi represent the offset and

true incidence rate, respectively. Vectors π = π1, · · · , πN and λ = λ1, · · · , λN are

related to linear predictors (may or may not include random effects) through logistic

and logarithm link functions, respectively. We denote the covariates for the reporting

procedure as W and those for the true counts as X, and correspondingly denote βs

and γs as the coefficient vectors for logistic and Poisson regressions, respectively.

Count data observed over space often exhibits spatial clustering or similarity.

Spatial dependency for adjacent areas sharing similar characteristics that can be mod-

eled by spatial auto-correlation. A commonly used Bayesian spatial model for areal

data is the Conditionally Autoregressive (CAR) model proposed by Besag (1974),

where the spatial effect of a particular region depends on the effects of all neigh-

boring regions. Besag et al. (1991) further proposed a more flexible model known as

BYM, where the spatial random effect is decomposed into two components: a struc-

tured component based on the Intrinsic Conditionally Autoregressive (ICAR) model,

and an unstructured Gaussian component. Let φ = (φ1, · · · , φN) denote the ICAR

component, and θ ∼ Normal(0, τ) be the unstructured effect, then equation (1.2) can

be rewritten as,

log(λ) = Xγs + φ+ θ. (1.5)

Both CAR and ICAR models smooth spatial random effect by pooling infor-

mation from neighborhoods. Given a set of N regions with well-defined boundaries,
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an N × N adjacency matrix A can be defined to depict the neighbor relationship.

To be specific, the (i, j) entry of A, denoted as ωij, is set to 1 if region i and j are

neighbors, or set to 0 otherwise. In addition, the diagonal elements of A, ωii, are all

0 as a region is not its own neighbor. Consequently A is a symmetric matrix with all

0 on the diagonal, and is typically sparse. The conditional distribution of the random

effect φi for region i is specified in terms of a weighted average of its neighbors and a

overall precision parameter τ ,

φi|φj, j 6= i, τ ∼ N

(
α
∑
i∼j

ωijφj, τ
−1

)
, (1.6)

where α ∈ (0, 1) is the proximity parameter to remedy the singularity of the overall

precision matrix for the joint distribution of φ. ICAR is a special case of CAR when

α = 1, see Banerjee, Carlin, and Gelfand (2014). The corresponding joint distribution

of φ modeled by CAR is

φ ∼MN
(
0, [τ(D − αA)]−1

)
, (1.7)

where D is an n × n diagonal matrix whose diagonal element dii equals the num-

ber of neighbors for region i. In ICAR, the above condition produces an improper

distribution as setting α = 1 creates a singular matrix (D − A). Furthermore, the

joint distribution is non-identifiable as adding any constant to all of the elements

of φ leaves the joint distribution unchanged. Adding a constraint such as
∑
φi = 0

resolves this problem.

Compared with ICAR, CAR suffers from at least two problems. Firstly, α is

difficult to interpret (Carlin, Banerjee, et al., 2003) and needs to take a value above

0.9. Secondly, in the MCMC sampling, α is assigned a prior and updated in each

iteration, while for ICAR α is constant and needs not be updated, thus CAR is

much more computationally expensive than ICAR especially when N is large. Our

simulation studies show that the computation time for sampling from a multivariate

Normal distribution with the precision matrix Q = D − αA increases exponentially
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as the number of regions N does. Morris et al. (2019) also argued that with the Stan

language, computing burden of det(Q) for CAR increases at a speed of O(N3), for

example, when N = 1000, it will take a billion operations for CAR. In contrast, for

ICAR the det(Q) is a constant 0 and thus can be dropped from the log likelihood. It

can be shown that for ICAR, the log probability density of φ is proportional to

n

2
log(det(Q))− 1

2
φ′Qφ (1.8)

where det(Q) = 0 as Q is singular, and a constant term can be dropped from the

log probability density in Stan, meaning fitting the ICAR model will be much faster

than fitting ICAR (Hoffman & Gelman, 2014), in particular when N is large.

1.2.2 A Computationally Efficient Implementation of ICAR in Stan

Morris et al. (2019) proposed an efficient implementation of the ICAR compo-

nent in Stan. They show that encoding adjacency entries as either 0 or 1 in A is

equivalent to an undirected graph with a set of N nodes and a set of edges, one edge

per pair of non-zero entries {i, j} and {j, i}. The joint specification of the ICAR ran-

dom vector φ centered at 0 with a common variance 1 leads to the pairwise difference

formulation:

p(φ) ∝ exp

(
−1

2

∑
i∼j

(φi − φj)2
)
. (1.9)

To obtain this result, consider the probability density function of ICAR:

p(φ) ∝ (2π)−n/2|[D −A]−1|1/2 exp

(
−1

2
φ′[D −A]φ

)
, (1.10)

dropping the constant terms (2π)−n/2 and |[D −A]−1|1/2 leads to:

p(φ) ∝ exp

(
−1

2
φ′[D −A]φ

)
, (1.11)
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taking the natural log yields:

log p(φ) = −1

2
φ′[D −A]φ+ c

= −1

2

(∑
i,j

φi[D −A]i,jφj

)
+ c

= −1

2

(∑
i,j

φiφjDi,j −
∑
i,j

φiφjAi,j

)
+ c

= −1

2

(∑
i

φ2
iDi,i −

∑
i∼j

2φiφj

)
+ c

= −1

2

(∑
i∼j

(φ2
i + φ2

j)−
∑
i∼j

2φiφj

)
+ c

= −1

2

(∑
i∼j

(φi − φj)2
)

+ c. (1.12)

Equation (1.12) holds because D is a diagonal matrix with Di,i equal to the number

of neighbors of region i and the off-diagonal entries equal 0, and the matrix A is

a symmetric matrix with entries ωi,j = 1 for neighbors i and j, 0 otherwise. As

mentioned above, φ is non-identifiable as adding any constant to all of the elements

of φ results in the same distribution. Adding the constraint
∑

i φi = 0 resolves the

non-identifiability problem.

We follow Morris et al. (2019) to encode the neighbor relations as a set of

edges and two groups of nodes, indexed as node 1 and node 2: node 1 holds the

set of indexes corresponding to φi and node 2 holds the indexes corresponding to φj.

Encoding ICAR in this way needs less memory and computation time than the typical

way of sampling from a multivariate normal distribution when the precision matrix

is sparse. To illustrate it, we construct a 3 × 2 regular grid as a simple example as

shown in Figure 1.1. This map consists of a single component with neighbor relations:

(1 ∼ 2, 1 ∼ 3, 2 ∼ 4, 3 ∼ 4, 3 ∼ 5, 4 ∼ 6, 5 ∼ 6). The corresponding adjacency
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Figure 1.1: A map over 6 regions.

matrix A and neighbor counts matrix D are:

A =



0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 1 0

0 1 1 0 0 1

0 0 1 0 0 1

0 0 0 1 1 0


,D =



2 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 2


The precision matrix Q is defined as

Q = D −A =



2 -1 -1 0 0 0

-1 2 0 -1 0 0

-1 0 3 -1 -1 0

0 -1 -1 3 0 -1

0 0 -1 0 2 -1

0 0 0 -1 -1 2


(1.13)

There are 6 regions labeled 1 to 6 and 7 edges as shown in table 1.1. In this example,

encoding equation (1.13) requires a total of 14 elements (see table 1.1), while the

precision matrix has 36 elements, 16 of which are 0. In general, if the average number

of pairwise neighbors is M for an area consisting of N × N regions, the spaces to

store the nodes are N × M where M ≤ N but the full precision matrix requires
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Table 1.1: Example of node 1 and 2 labeling for edges

edge1 edge2 edge3 edge4 edge5 edge6 edge7
node1 1 1 2 3 3 4 5
node2 2 3 4 4 5 6 6

N ×N spaces. Moreover, M increases much more slowly as N does thus the pairwise

encoding becomes more and more efficient. For exampleM = 3.6 for a 10×10 regular

grid and increases slightly to 3.87 when the size expands to 30× 30.

1.2.3 Reparameterization of BYM Model - BYM2

Fitting the BYM model using MCMC methods is difficult since either compo-

nent of the model can account for most or all of the individual-level variance. Morris

et al. (2019) present an implementation of the BYM2 model (Riebler et al., 2016;

Simpson et al., 2017), a reparameterization of the BYM model. In BYM2, the sum of

the structured component φ and the unstructured component θ are re-parameterized

as,

φ+ θ = σ
(√

ρθ̃ +
√

(1− ρ)/sφ̃
)
, (1.14)

where σ represents the overall standard deviation, ρ controls the proportion of the

variance modeled by the ICAR φ̃ scaled by s such that var(φ̃i) ≈ 1 and the hetero-

geneous effect θ̃ has a fixed standard deviation 1. A critical condition that var(θi) ≈

var(φi) ≈ 1 is required for the assumption that σ is 1. Riebler et al. (2016) and Morris

et al. (2019) recommend scaling the model so the geometric mean of var(θi) is 1. The

scaling factor is computed from the adjacency matrix using the "inla.scale.model()"

function available from the R-INLA package (Lindgren, Rue, et al., 2015). Function

"inla.scale.model()" returns a sparse matrix scaled so the geometric mean of the

marginal variances of Q is one.
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1.3 Spatial Confounding and Remedies

Spatial confounding is the multicollinearity between spatially varying covari-

ates and spatial random effects. Fitting a spatial regression model usually focuses on

estimating the fixed effects of interest while taking into account the spatial correla-

tion, but adding spatial random effects may cause a significant change in the posterior

mean and variance of the regression coefficients. Reich, Hodges, and Zadnik (2006) an-

alyzed the scenario and proposed a diagnostic for the posterior variance inflation and

an approach to mitigate spatial confounding. Hodges and Reich (2010) noted that the

confounding may be strong enough that a significant fixed effect under a non-spatial

linear model becomes insignificant when spatial effects are included. Paciorek (2010)

shows that spatial confounding can lead to biased estimates, in particular when spatial

random effects with a large effective range of spatial autocorrelation are smoothed.

A commonly used approach to mitigate potential spatial confounding is the

restricted spatial regression (RSR) models, in which the spatial random effect φ is

constrained to be orthogonal to the fixed effects in X (Guan & Haran, 2018; Hodges

& Reich, 2010; Hughes & Haran, 2013; Reich et al., 2006). Let P = X(X ′X)−1X ′,

then the linear predictor of the SGLMM is rewritten as

f(µ) = Xβ + φ+ θ (1.15)

= Xβ + Pφ+ (In − P )φ+ θ

= Xβ +X(X ′X)−1X ′φ+ (In − P )φ+ θ

= X
[
β + (X ′X)−1X ′φ

]
+ (In − P )φ+ θ

= Xδ + (In − P )φ+ θ (1.16)

= Xδ + φ∗ + θ, (1.17)

where φ∗ ∼ N(0,τsQ),θ ∼ N(0, τhI), and

δ ≡ β + (X ′X)−1X ′φ (1.18)
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are referred to as the unconditional regression coefficients by Hanks et al. (2015) as

opposed to the conditional regression coefficients β. φ∗ ≡ (In − P )φ are the spatial

random effects that are orthogonal to X. Hanks et al. (2015) demonstrate that the

RSR model imposes strong assumptions on the fixed effects in the spatial model. They

show that under model misspecification, the posterior credible sets for δ obtained by

RSR will be inappropriately underestimated when the true model is SGLMM. They

also propose a posterior predictive approach to expand RSR credible intervals based

on equation (1.16). If we denote δ̃(t) as the tth MCMC posterior sample of δ, then the

tth posterior sample for β is

β̃(t) = δ̃(t) − (X ′X)−1X ′φ̃∗
(t)
. (1.19)

Hughes and Haran (2013) noticed that the RSR model also reduces the number

of model parameters from n + p + 1 to n + 1. To see this, consider the spectral

decomposition of I −P , yielding the orthogonal basis Ln×(n−p), equation (1.15) can

be written as

f(µ) = Xβ +Lη + θ. (1.20)

The prior for the random effect η reduces to

p(η|τ) ∝ exp{−τ
2
η′QRη}, (1.21)

where QR = L′QL.

The RSR model can only slightly reduce the dimension of the random effects,

and ignores the underlying graph that represents the spatial structure (labeled by

M). To this end, Hughes and Haran (2013) proposed a principal component analysis

approach based on the Moran operator and re-parameterization of RSR model. The

Moran operator is modified from the numerator of Moran’s I statistic, a popular

measure of spatial dependence proposed by Moran (1950),

IX(A) =
n

1′A1

y′(I − 11′/n)A(I − 11′/n)y

y′(I − P )y
.

11



Replacing I− 11′/n with I−P results in the Moran operator for X with respect to

M ,

IX(A) =
n

1′A1

y′(I − P )A(I − P )y

y′(I − P )y
. (1.22)

Boots and Tiefelsdorf (2000) showed that the eigenvectors of the Moran op-

erator exhaust all possible spatial patterns that can arise on the underlying graph

M . Moreover, since the repulsion of random effects is not desired in most real world

applications, the eigenvectors corresponding to negative eigenvalues can be discarded

directly, resulting in an almost 50% reduction of the dimension. Hughes and Haran

(2013) showed that a much greater reduction is possible in practice, with 50-100 eigen-

vectors being enough for most data sets. By only retaining r � n eigenvectors of the

Moran operator, the so-called sparse areal mixed model (SAMM) is

f(µ) = Xβ +Rn×rηr + θ,

where ηr is an r-dimensional random vector. Here, ηr has a multivariate normal

prior with mean 0 and precision matrix τQr, where Qr = R′QR, and R contains the

first r � n eigenvectors of the Moran operator. The computation speed of SAMM is

expected to improve significantly compared with RSR.

1.4 Full Pogit Model with BYM, BYM2, PCA and PPD

The model adopted by Stoner et al. (2019) ignores that the spatial confounding

may have an impact on the recovery of the regression coefficients and the estima-

tion of the reporting rate, as they may focus more on the accuracy of prediction

rather than coefficient inference. R package NIMBLE was used to implement the

MCMC sampling via AFSS sampler to optimizes the random walk. The mixing of

the chains requires 800K iterations and a 400K burn-in which is pretty slow. Here,

we make use of Stan language for all MCMC sampling, and use BYM2 or SAMM to

replace BYM. Our simulations show that only a few thousand iterations are needed
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to achieve convergence. Moreover, we compared the performances of the Pogit with

BYM2 (Pogit-BYM2) and Pogit with SAMM (Pogit-SAMM) in the presence and

absence of spatial confounding. For Pogit-BYM2, equation (1.4) becomes

log(λ) = Xγs + σ
(√

ρθ̃ +
√

(1− ρ)/sφ̃
)
, (1.23)

while for Pogit-SAMM equation (1.4) is replaced by

log(λ) = Xγs +Rn×rηr + θ. (1.24)

Pogit model equations (1.1)-(1.4) treat the true but unknown counts as latent

variables to account for the bias when estimating the Poisson regression coefficients.

This leads to slow-mixing of the MCMC chains. In addition, since the true count is

unknown, (1.1)-(1.4) is difficult to express directly in Stan language. Conveniently,

the following reparameterization is recommended based on summing out the latent

variables:

zi ∼ Poisson(πiλi) (1.25)

yi − zi ∼ Poisson((1− πi)λi) (1.26)

Equation (1.25) is much more efficient in terms of mixing speed, and samples

of the latent variable y can be generated using equation (1.26). However, equation

(1.25) is over parameterized as the same observed counts zi could result from either

a high reporting rate, πi, multiplied by a low Poisson mean, λi, or vise versa. This

means infinite groups of parameters will satisfy the same likelihood function of z in

the absence of prior information or any completely reported observations.

If additional information in the data is available, for example, a gold standard

for a small set of completely reported counts, informative priors can be derived to

eliminate non-identifiability. On the other hand, it is often impractical or even impos-

sible to obtain any complete data. In such cases, expert opinion or results of similar
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studies can be used to determine informative priors. In the following simulations, we

will assume a mildly informative prior for the intercept of the logistic regression.

1.5 A Simulation Study

In this section, we apply models (1.25) and (1.26) to simulated under-reported

Poisson data. 100 data sets were simulated based on the same spatial structure, which

is a 20 by 20 regular grid. The design matrix X = [x y], where x = (x1, · · · , x400)′,

y = (y1, · · · , y400)′ are the standardized vertices of x- and y-coordinates. We let γs =

(2, 2). Under this experimental design, [x y] will be confounded with ICAR random

effects. For the under-reporting (logistic) regression, we set βs = (0, 2) with a single

covariate drawn from U(−1, 1).

We first simulated random effects from the BYM model (ICAR spatial effects).

Since ICAR is improper, that is, the precision matrix τQ is a singular matrix, we

can not get random effects from ICAR directly. Instead we will follow the method of

Guan and Haran (2018) to simulate ICAR effects using the eigen components of τQ.

Let (λi, ei) denote the eigenpairs of τQ, and we simulate ai ∼ N(0, λ−1i ) for λi 6= 0.

Then φ =
∑

i aiei has the desired distribution. We set τ = 4 for spatial effects, and

τe = 9 for the overall precision of the random errors. A level plot of simulated spatial

random effects is shown in Figure 1.2. Since in this case, ICAR is the true model

for spatial effects, we will adopt the posterior prediction recommended by Hanks et

al. (2015) to adjust for the inappropriate narrowness of posterior credible sets for γs

when using the PCA approach.

We fit the simulated data set with five models: the standard Pogit with no spa-

tial effects (NS for short), the Pogit-BYM (BYM for short), the Pogit-BYM2 (BYM2

for short), the Pogit-PCA (PCA for short) and the Pogit-PCA-PPD model (PPD

for short) with 100 eigenvectors. The simulation result for one single data set with

confounded ICAR effects is listed in Table 1.2. Figure 1.3 shows the corresponding
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Figure 1.2: Spatial random effects of one simulated data.

point estimates and 95% confidence intervals (CIs) of the coefficients. Firstly, for the

regression coefficient parameters (βs, γs), the 95% CIs obtained by NS are too nar-

row, while those obtained by BYM are inappropriately too wide (in particular for γs)

due to the existence of spatial confounding. Secondly, PCA and PPD models have

almost same estimates of βs, but for γs, PPD corrects the inappropriate narrowness.

Thirdly, the result obtained by the BYM2 model is surprisingly comparable to that

of PPD, which indicates that the reparameterization of BYM may benefit the correc-

tion for spatial confounding naturally. In order to further compare the performance

of different models in the case of confounding, Table 1.3 lists results across 100 data

sets. Two measures are considered for comparison: mean square error (MSE) and 95%

CI coverage. BYM2 and PPD are comparable and perform best. Table 1.4 lists the

average CI length where we see BYM2 outperforms PPD by providing more accurate

confidence interval (shorter length).
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Table 1.2: Model comparison, point and 95% CI estimates for one single data set with
confounding spatial effect.

Mean (95% CI)
NS BYM BYM2 PCA PPD

β0 -0.12 (-0.46, 0.24) 0.24 (-0.47, 0.90) 0.26 (-0.30, 0.77) 0.35 (-0.22, 0.90) 0.35 (-0.22„0.90)
β1 1.82 (1.48, 2.20) 2.25 (1.63, 2.93) 2.17 (1.66, 2.72) 2.27 (1.70, 2.84) 2.27 (1.70„2.84)
γ1 2.18 (2.04, 2.33) 2.03 (0.72, 3.38) 1.97 (1.48, 2.47) 1.93 (1.74, 2.15) 2.17 (1.36, 3.04)
γ2 2.13 (1.98, 2.28) 1.68 (0.34, 3.04) 1.89 (1.40, 2.38) 1.95 (1.75, 2.18) 2.03 (1.14, 2.91)

Figure 1.3: Boxplots illustrating inference for a simulated Pogit dataset with ICAR
effects: under-reporting coefficients in the first row; Poisson regression coefficients in
the second row.
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Table 1.3: Model comparisons (1): coverage and mean squared error(MSE) for 100
confounded Pogit data sets with n = 400.

NS BYM BYM2 PCA PPD
β0(coverage) 0.048(39%) -0.052(97%) 0.019(95%) -0.021(94%) -0.021(94%)
β0 MSE 0.679 0.299 0.308 0.309 0.309

β1(coverage) 2.113(48%) 2.036(97%) 2.015(94%) 2.021(93%) 2.021(93%)
β1 MSE 0.506 0.265 0.262 0.266 0.266

γ1(coverage) 2.082(25%) 1.981(100%) 2.028(89%) 2.018(50%) 2.009(97%)
γ1 MSE 0.518 0.425 0.407 0.412 0.426

γ2(coverage) 2.074(16%) 1.982(100%) 2.028(94%) 2.003(44%) 2.005(96%)
γ2 MSE 0.562 0.407 0.397 0.412 0.449

Table 1.4: Model comparisons (2): CI length for 100 confounded Pogit data sets with
n = 400.

NS BYM BYM2 PCA PPD
β0 0.571 1.549 1.154 1.248 1.248
β1 0.613 1.258 0.995 1.055 1.055
γ1 0.265 2.908 1.343 0.545 1.945
γ2 0.266 2.913 1.348 0.544 1.943
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Figure 1.4: Simulation study of 100 Pogit datasets with confounded ICAR effects,
n = 400: distribution of βs and γs for Pogit-BYM2, Pogit-SAMM, Pogit-PPD and
Pogit-NS. All distributions center around the truth. Pogit-BYM2, Pogit-SAMM and
Pogit-PPD are comparable, while Pogit-NS is inferior in the sense of larger variance
and bias for all parameters.
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Table 1.5 shows the results of 100 simulated non-confounded data sets. We see

that in terms of MSE and coverage, the performance of BYM and BYM2 are both

inferior to PCA and PPD. PCA is better than PPD in coverage (the former is closer

to the nominal value of 95%). In addition, Table 1.6 shows that the length of CI

given by the PCA method is also better than that of PPD and BYM2. Therefore, we

believe that the PCA model is optimal in a non-confounded situation. The result is

as expected since the spatial effect and X are completely orthogonal. The correction

in the PPD model is redundant and only increases the uncertainty of the posterior

samples. Figures 1.5 and 1.6 show that although BYM2 does not perform as well as

PCA and PPD in this case, it still presents a significant improvement over BYM.

Table 1.5: Model comparisons I: coverage and MSE for non-confounded Pogit data
with n = 400.

NS BYM BYM2 PCA PCA-PPD
β0(coverage) 0.019(54%) -0.062(100%) -0.010(100%) -0.043(95%) -0.043(95%)
β0 MSE 0.401 0.257 0.263 0.240 0.240

β1(coverage) 2.022(62%) 0.000(100%) 1.993(97%) 1.978(94%) 1.978(94%)
β1 MSE 0.334 0.232 0.24 0.214 0.214

γ1(coverage) 2.062(59%) 1.985(100%) 2.023(100%) 1.998(97%) 1.999(100%)
γ1 MSE 0.179 0.178 0.143 0.102 0.098

γ2(coverage) 2.072(71%) 1.983(100%) 2.020(100%) 2.015(94%) 2.019(100%)
γ2 MSE 0.185 0.197 0.162 0.108 0.114

Table 1.6: Model comparisons 2: CI length for 100 non-confounded Pogit data sets
with n = 400.

NS BYM BYM2 PCA PPD
β0 0.581 1.580 1.180 0.986 0.986
β1 0.613 1.267 1.012 0.890 0.890
γ1 0.270 2.896 1.483 0.438 0.658
γ2 0.270 2.892 1.481 0.439 0.658
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Figure 1.5: Boxplots illustrating inference for a simulated Pogit dataset with orthog-
onal spatial effects: Under-reporting coefficients in the first row; Poisson regression
coefficients in the second row.
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Figure 1.6: Simulation study of 100 Pogit datasets with non-confounded spatial random
effects, n = 400: distribution of βs and γs for Pogit-BYM2, Pogit-SAMM, Pogit-
PPD and Pogit-NS. All distributions center around the truth. Pogit-BYM2, Pogit-
SAMM and Pogit-PPD are comparable, while Pogit-NS is inferior in the sense of
larger variance and bias for all parameters.
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We conclude our simulation study with a brief discussion. Pogit- BYM2, Pogit-

PCA, and Pogit-PPD are all variants of the Pogit-BYM model used by Stone et al.

Due to the complexity of the Pogit model itself, the spatial confounding(if exists) will

make the problem even more complicated. Our simulation study shows that if spa-

tial confounding does exist, Pogit-BYM2 is better than other models, while in spite

of compelling advantages in computation speed, Pogit-PCA introduces a too strong

assumption, resulting in biased estimates of regression coefficients. The bias can be

corrected by PPD though slightly inferior to Pogit-BYM2. In contrast, if the spatial

confounding does not exist (that is, the spatial effect and the fixed effect are orthogo-

nal), the incorrect adoption of Pogit-PCA will lead to underestimation of the impact

of spatial covariates on the response, as the correlation between spatial covariates

and spatial random effects might inflate the variance. In the absence of a compelling

reason to assume that the random effects should be orthogonal to the fixed effects,

conservative Pogit-BYM2 or Pogit-PPD are recommended to avoid the risk arisen by

model misspecification. Overall, Pogit-BYM2 shows satisfactory performance under

both situations, so in the next section, we will apply the Pogit-BYM2 model to a

real-world data set.

1.6 Application

Addressing COVID19 is a pressing health concern. Inadequate knowledge about

the extent of the coronavirus disease 2019 (COVID-19) epidemic has challenged pub-

lic health responses and planning. Most reports of confirmed cases rely on polymerase

chain reaction-based testing of symptomatic patients. These estimates of confirmed

cases may fail to account for individuals who have unwittingly recovered from the

infection, individuals with mild or no symptoms, and individuals with symptoms who

have not been tested due to limited availability of tests (Sood et al., 2020). Time-lag

bias and failure of proactive contact tracing and containment will also lead to un-
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derestimation of the number of people who are infected with the virus. According to

Rajgor, Lee, Archuleta, Bagdasarian, and Quek (2020), one unique situation allowed

for an accurate estimate of COVID-19 incidence rate, specifically, the outbreak of

COVID-19 among passengers on board the Diamond Princess cruise ship who were

quarantined between Jan 20, and Feb 29, 2020. This scenario provided a population

living in a defined territory without most other confounders, such as imported cases,

defaulters of screening, or lack of testing capability. 3711 passengers and crews were

on board, of whom 705 became sick and tested positive for COVID-19 and seven died.

Accordingly, the infection rate is as high as 19% in this particular situation. Of course,

the special structure of the cruise ship and the dense crowds could have accelerated

the spread of COVID-19, thus the infection rate, in this case, is estimated to be higher

than community transmission on average, but it still indicates that the infection rate

of COVID-19 is much higher than the reported numbers in many countries including

the US, in particular in the early stage of the Pandemic. Many studies support this

argument. For example, in a community seroprevalence study in Los Angeles County,

the prevalence of antibodies to SARS-CoV-2 was 4.65% (bootstrap CI 2.52%−7.07%)

indicating that approximately 367, 000 (198, 890− 557, 998) adults had SARS-CoV-2

antibodies, which is substantially greater than the 8430 cumulative number of con-

firmed infections in the county by April 10 (Sood et al., 2020). In other words, the case

reporting rate was only 2.30% (1.51%− 4.24%). Another antibodies study of SARS-

CoV-2 by Bendavid et al. (2020) implies that by early April, the case reporting rate

is approximately 1.85% (1.10%− 4.00%) in Santa Clara County, CA. Hortacsu, Liu,

and Schwieg (2020) estimate 4% − 14% (1.5% − 10%) of actual infections that had

been reported in US up to March 16, accounting for an assumed reporting lag of 8(5)

days. Ribeiro, Bernardes, et al. (2020) estimate a 12.99% reporting rate in Brazil by

March 20.
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We collected the state-level daily accumulated COVID-19 cases of U.S. from

https://covidtracking.com/. Figure 1.7 shows the state-level map of total con-

firmed COVID-19 cases per 10,000 people in the USA by April 30,2021, 2020. A

total of 1,071,003 confirmed cases was reported in the 48 contiguous US states and

Washington DC. Among the studied states, the highest incidence of COVID-19 was

in New York State (304,372 cases in total, 15.4 per 100,000 population). According to

the global Moran’s I statistic (Moran’s I = 0.21, p = 0.00006), the state-level COVID-

19 prevalence presents highly positive auto-correlations or clustered patterns. We also

collected state-by-state risk factors from https://www.americashealthrankings.org.

Table 1.7 gives a detailed description for each variable. It is believed that insufficient

COVID-19 testing capability at the early stage of the pandemic was the key factor

leading to under-reporting. Historical testing data by states are also collected from

covidtracking.com. Moreover, box plots of the risk factors presented in Figure 1.8

show that there are few extreme cases in the covariates.

Figure 1.7: States-level confirmed COVID-19 cases/10K population by March 31, 2020.

The different scales among the covariates can cause convergence problems and

other difficulties in model fitting. We decided to standardize the variables before

fitting, mainly for the following purposes: 1. optimizing the MCMC sampling, our

experience shows that standardization can accelerate the model convergence process,
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in particular for a complex model like ours; 2. easing interpretation, for example, after

standardizing the "Testing" variable, the intercept of the logit part can be directly

explained as the reporting rate at the logit level given mean testing level; 3. facilitating

the identification of important risk factors; 4. reducing multicollinearity.

Table 1.7: Risk factors used for US COVID-19 cases.

Variable description Variable name
Total Population Pop
Population Density (per Sq. Mile) Popdensity
Percent of Persons Without Insurance Uninsured
Percent Physically Inactive Persons (20 Years and Over) Inactive
Percent Obese Persons (20 Years and Over) Obesity
Percent Current Smokers (Persons 18 Years and Over) Smoking
Percentage of adults who reported binge drinking Excessive_Drinking
Air pollution - particulate matter AirPollution
Number of deaths due to drug injury per 100K Drug_death
Multidimensional Deprivation Index MDI
The total number of testing Testing

Figure 1.8: Distributions of the potential covariates.
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Table 1.8: Summary statistics of potential covariates.

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
AirPol 4.400 6.800 7.400 7.476 8.200 12.800 1.450

Obesity 22.900 28.700 30.900 31.461 34.400 39.500 3.864
Drug_death 7.200 14.200 19.900 20.782 24.700 48.300 8.866

Excessive_Drinking 11.300 16.400 18.200 18.171 19.400 26.300 3.101
Smoking 9.000 14.500 16.100 16.606 19.000 25.200 3.324

Uninsured 2.800 5.700 8.100 8.090 9.700 17.500 2.988
Inactivity 16.400 22.000 23.800 24.165 26.700 32.400 3.836

MDI 8.300 10.800 13.400 13.980 16.400 21.800 3.914
Popdensity 6.000 52.000 106.000 424.327 231.000 11011.000 1566.865

1.6.1 Models for Comparison

Besides the proposed full model (equations 1.1-1.4) labeled as M4, three reduced

models (labeled as M1, M2 and M3 below) are also fitted for comparison,

M1 Naive Poisson: zi ∼ Poisson(Eiλi),

log(λ) = Xγs + θ.

M2 Under-reporting only: zi ∼ Binomial(πi, yi),

log

(
πi

1− πi

)
= Wβs,

yi ∼ Poisson(Eiλi),

log(λ) = Xγs + θ.

M3 Spatial only: zi ∼ Poisson(Eiλi),

log(λ) = Xγs + φ+ θ.

1.6.2 Priors

For the regression parameters, we assume diffuse normal prior

βs ∼ N(0, 102), s = 1, · · · , k − 1 (1.27)

γs ∼ N(0, 102), s = 0, 1, · · · , j − 1 (1.28)
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where, k and j are the column numbers of W and X, respectively. A relative in-

formative prior is needed for the intercept of the logistic regression β0. We assume

that the mode of reporting rates πi is around 0.1, and that Pr(πi > 0.3) is tiny ( i.e.

1−Pr(πi <= 0.3) = 0.0001) which results in a beta(7, 55) prior on πi. If covariates in

W are all standardized, β0 can be interpreted as the log-odds of reporting rate at the

average level of covariates. In this case if we assume logit(p0) = β0, it is reasonable to

directly assign beta(7, 55) prior on p0, and implicitly induce a prior on β0. Note that

a Jacobian adjustment is required for the log likelihood statement in Stan language

(Carpenter et al., 2017).

1.6.3 Results

We fitted the four models described in section 1.6.1 to the state-level Covid-

19 cases. Point estimates and 90% CIs of regression coefficients are presented in

Figure 1.9. As M1 and M2 ignore the spatial dependency, the confidence interval of

the regression coefficient is inappropriately narrow, leading to the conclusion that

all covariates are statistically significant, although M2 takes into account the under-

reporting of the data, resulting in significantly different point estimates from M1. In

contrast, both M3 and M4 have spatial structure (BYM2), so the confidence intervals

is much wider than those of M1 and M2, which is in line with expectations. In this case,

only obesity (M3 and M4) and death from drug use (M4) are statistically significant

at 90% confidence level, reflecting the huge influence of the spatial dependency on

the estimation of regression coefficients. In addition, we found that both M2 and

M4 models support a positive correlation between the covariate "Testing" and the

reporting rate, with coefficient estimate of 0.54 (90% CI: 0.20-0.95) by M4. In other

words, it is reasonable to believe that as of April 2020, there exist varying degrees of

under-reporting in continental states of the United States, and the severity of under-

reporting is negatively correlated with the standardized number of tests per capita.
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To see it, we present the posterior estimates of reporting rate for all 49 states in

Figure 1.10.

The full model (M4) indicates that at the early stage of the pandemic (as of

April 31, 2020), Rhode Island has the highest reporting rate, about 48.75% (95% CI:

13.97%-89.07%), followed by Massachusetts, with a reporting rate of about 39.36%

(95% CI: 12.15%-75.28%), New York State follows with a reporting rate of approxi-

mately 31.74% (95% CI: 10.83%-62.69%). By contrast, Kansas State has the lowest

reporting rate of 7.75% (95% CI: 3.64-13.44%), while South Carolina has the second-

lowest rate of 7.97% (95% CI: 3.76-13.69%).

Figure 1.9: Point estimates and 90% CIs of coefficients fitted by four models described

in section 1.6.1.
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Figure 1.10: Point estimates and 95% CIs of state-level Covid-19 reporting rates.

Figure 1.11 shows a clear, monotonically increasing (estimated) relationship

between covariate "Testing" and the probability of reporting πi. The 95% credible

interval does not incorporate a horizontal line that implies no relationship. Overall,

states with very low testing z-scores (< −1) have approximately one-sixth of the

reporting probability of ones with high testing z-scores (> 3).

Table 1.9 lists reported and estimated COVID-19 cases in 10 states (5 most

and 5 least). It suggests that potentially tens of thousands of cases were unreported.

For example, 304,372 COVID-19 cases were reported in New York state as of April

of 2020, while M4 estimates over 1.25 million people had been infected by then.

Figure 1.12a compares the empirical distribution of the observed COVID-19

cases to the distributions of 200 replicated data sets, ‘yrep’, from the posterior pre-

dictive distribution, and the 200 posterior predictive samples are centered around the

empirical density, showing no systematic divergence. This is indicative of a good fit

for the model. Figure 1.12b compares the median of the observed COVID-19 cases
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Figure 1.11: Posterior mean predicted effect of testing ability on the reporting proba-
bility of COVID-19, with associated 95% credible interval.

Table 1.9: Comparison between reported and predicted cases for 5 most and 5 least
states

State Reported Estimate 2.50% 97.50%
North Dakota 1067 5592 2413 12496
Wyoming 559 5922 2781 12788
Montana 453 6347 2978 13474
Vermont 866 6937 3228 15170
West Virginia 1118 9976 4704 21851
Pennsylvania 45763 512674 241643 1085573
Illinois 52918 534930 252330 1136623
California 48917 609516 288815 1301314
New Jersey 118652 918559 427005 1990627
New York 304372 1254965 540881 2829135

y to medians of 200 replicated data ‘yrep’ from posterior samples. We see T (y) is

roughly centered at the histogram of 200 predicted medians, again indicating a good

fit.

1.7 Conclusion

In this chapter, we investigate a flexible Bayesian hierarchical spatial model for

correcting the under-reporting of count data and apply it to the state-level COVID-19

case in U.S. as of April 30, 2020. The model proposed here is based on "Pogit" model,
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(a) Compare the empirical distribution
of the data y to the distributions of 200
replicated data yrep.

(b) Compare the median the data y to
medians of 200 replicated data yrep from
posterior samples.

Figure 1.12: Model checking.

which combines Poisson regression and logistic regression the former of which is used

to represent the true counting process, and the latter is used to quantify the reporting

rate of each state. One key flexibility of the model is that it can estimate the true

reporting rate of any sub-region by borrowing information from other regions, given

moderately informative prior information on average reporting rate. In addition, the

model considers the spatial dependency among states, through the BYM2 structure.

As a reparameterization of the commonly used BYM structure, the BYM2 model

solves the unidentifiable issue of spatial random effects and random errors, resulting

in great improvement of MCMC convergence.

Chapter 1 also discusses the impact of spatial confounding on the Pogit model.

Through simulation, the pros and cons of the four different approches are compared

with and without spatial confounding. We conclude that the model mismatch signifi-

cantly reduce the accuracy of parameter estimation. We suggest that the BYM2-based

spatial structure is most appropriate when it is uncertain whether spatial confounding

exists.

When applying the Pogit-BYM2 model (M4) to state-level COVID-19 data, we

confirmed that there are varying degrees of under-reporting in various states in U.S. ,

and the degree of under-reporting is negatively correlated with the standardized num-
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ber of tests per capita. Furthermore, we found that most states have low reporting

rates. It should not be surprising, as most states lacked sufficient testing capabilities

in the early stages of the pandemic. The low number of reports in turn made people

ignore the seriousness of the disease and slowed down the effective measures taken by

governments, enterprises and households, leading to the rapid spread of the epidemic.

It is worth noting that the statistically significant risk factors identified by M4 should

not be over-interpreted, as our model is not entirely based on epidemiological disease

transmission patterns, nor has it considered all possible factors, plus the state-level

data is aggregated. All in all, the main contribution of this application is to estimate

the under-reporting severity of various states in U.S. based on the data of serolog-

ical study, expecting that governments can pay more attention to similar infectious

diseases during early stage of epidemic in future.
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CHAPTER TWO

A Bayesian Bi-variate Spatial Model for Correcting
Diagnostic Misclassification between Two Counts

2.1 Introduction

The analysis of count data subject to misclassification is an important problem

in many epidemiological, medical and environmental applications. Failing to account

for misclassification can bias estimates and underestimate standard errors, leading to

underestimation of some risk factors and overestimation of others (Stamey, Young,

& Seaman Jr, 2008). Two approaches are commonly used to correct for misclassifica-

tion. If a gold standard measurement exists, a main-study large sample plus a small

validation sample can improve estimation, see Lyles (2002); in contrast, if no gold

standard is available, a Bayesian approach with subjective prior information on at

least some subset of the parameters is an alternative, for example, Joseph, Gyorkos,

and Coupal (1995). Sposto, Preston, Shimizu, and Mabuchi (1992) extend the likeli-

hood approach used for under-reported counts by Whittemore and Gong (1991), to

model misclassified counts via Poisson regression. A Bayesian approach implemented

by Stamey et al. (2008) provides an alternative method for modeling misclassified

counts with Poisson regression.

Potential spatial dependency in misclassified counts has received considerably

less attention. Though the spatial structure, if it exists, might have been modelled

by the known fixed effects, it is common for some spatial structure to remain in the

residuals. There are two potential sources for the remaining spatial auto-correlation.

One is from unmeasured or unknown covariates that are spatially correlated and the

other is inherent neighborhood and/or clustering effects (Lee, 2013).
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For a single count response variable, univariate CAR or ICAR is commonly used

to account for spatial dependency. In the case of misclassified counts, two responses

are investigated simultaneously (for instance, deaths due to cancer and deaths due

to non-cancer). Therefore, a bivariate spatial model is necessary to account for the

correlation across responses (Jin, Carlin, & Banerjee, 2005). It is intuitive to extend

the univariate CAR (Besag, 1974) to a multivariate version. For instance, Gelfand

and Vounatsou (2003) and Carlin et al. (2003) provide generalizations of the proper

Multivariate CAR (MCAR) model that allow for different propriety parameters for

each response.

In this chapter, we extend the model of Stamey et al. (2008) by incorporating a

Multivariate CAR structure. This chapter is organized as follows. In section 2.2, the

hierarchical Bayesian model with misclassification and spatial structure is discussed

in detail. We investigate the way to incorporate correlated spatial effects into the bi-

variate misclassification in section 2.3. In section 2.4 we conducted a simulation study.

In section 2.5 we apply the model to a real-world data set. We provide concluding

comments in section 2.6.

2.2 Misclassification Model of Bivariate Count Data With Independent Spatial
Random Effects

The model of Stamey et al. (2008) has two fallible samples, y1 = (y11, y21, · · · , yN1)
′

and y2 = (y12, y22, · · · , yN2)
′, assuming yi1 ∼ Poisson(Eiµi1) and yi2 ∼ Poisson(Eiµi2).

The quantity N is the sample size for both groups and Ei are offsets. Parameters

µi1 = λi1(1 − p1) + λi2p2 and µi2 = λi2(1 − p2) + λi1p1 are the Poisson rates of the

observed (fallible) data in the ith unit. The parameters λi1 and λi2 are the true in-

cidence rates. The quantity p1 is defined as the probability that a count truly from

group 1 is misclassified as belonging to group 2 while p2 is the probability that a

count of group 2 is incorrectly labeled to group 1. To facilitate the description of the
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model, we will label group 1 as, for example, death due to cancer, and group 2 as

death due to non-cancer.

Let X ≡ [xi] be the matrix of covariates, where xi is the vector of covariates

for the ith unit. The true incidence rates are assumed to depend on the covariates

through the log link function

log(λig) = x′iβ
g, i = 1, · · · , N, g = 1, 2 (2.1)

where βg is the vector of regression parameters for count response g. We extend model

(2.1) by adding spatial random effects to linear predictors of λig. Assuming φ1 and

φ2 are independent spatial random effects for each response, respectively, then (2.1)

becomes

log(λig) = x′iβ
g + φgi , (2.2)

The joint likelihood of the observable data subject to misclassification is proportional

to

N∏
i=1

[λi1(1− p1) + λi2p2]
yi1 [λi2(1− p2) + λi1p1]

yi2

× exp{−Ei[λi1(1− p1) + λi2p2]− Ei[λi2(1− p2) + λi1p1]} (2.3)

As demonstrated by Daniel Paulino, Soares, and Neuhaus (2003) and McInturff, John-

son, Cowling, and Gardner (2004), equation (2.3) is over-parameterized because of

the presence of misclassification parameters. In the Bayesian paradigm, informative

priors, validation data, or both are needed for valid estimation. Following Stamey et

al. (2008), independent Beta priors are used for p1 and p2. Specifically, we assume

that p1 ∼ Beta(a1, b1) and p2 ∼ Beta(a2, b2). If validation data are also available, we

assume they are random samples from two independent binomial distributions. For

example, n1 subjects known to have died from cancer are diagnosed with both a gold

standard and a fallible method, andm1 are mislabled by the fallible method. Similarly,
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in n2 deaths due to non-cancer diagnosed by the gold standard,m2 are misclassified to

the cancer group. Thus, we have m1 ∼ binomial(n1, p1) and m2 ∼ binomial(n2, p2).

Combining the validation data with Beta priors, Bayes theorem yields posterior dis-

tributions p1 ∼ Beta(m1 + a1, n1 −m1 + b1) and p2 ∼ Beta(m2 + a2, n2 −m2 + b2).

These are then used as prior distributions for the main study data. For the regression

coefficients, we assume a multivariate normal prior,

βg ∼ Np(bg,Bg), (2.4)

where bg is the vector of prior means for the regression coefficients βg and Bg is

the covariance matrix. A commonly used non-informative prior can be fashioned by

setting bg = (0, 0, · · · , 0)′ and

Bg =



σ2
1g 0 · · · 0

0 σ2
2g 0

...
... . . . ...

0 0 · · · σ2
kg


(2.5)

with large positive values for σ2
ig, i = 1, 2, ..., k and g = 1, 2. However, we find in some

examples that convergence of the Markov Chain Monte Carlo (MCMC) algorithm

used to obtain the needed posterior distributions is slow if the diagonal value Bg are

too large.

In order to estimate the parameters, a common approach for models with

misclassification is to augment the observed data with the unobserved misclassified

counts. Using a latent variable approach can ease the derivation of the the full con-

ditionals. We define Ui1 to be the counts mislabled as being from non-cancer and

Ui2 to be the counts incorrectly classified as being from the cancer group. Note that

Ui1 ≤ yi2 and Ui2 ≤ yi1.
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Augmenting equation (2.3) with the unobserved misclassified counts and mul-

tiplying by the prior densities, we obtain the joint posterior density

p(β1,β2, p1, p2,U1,U2|y1,y2,m1,m2)

∝
N∏
i=1

λyi1−Ui2+Ui1i1 exp{−Eiλi1}pUi11 (1− p1)yi1−Ui2pm1+a1−1
1 (1− p1)n1−m1+b1−1

× λyi2−Ui1+Ui2i2 exp{−Eiλi2}pUi22 (1− p2)yi2−Ui1pm2+a2−1
2 (1− p2)n2−m2+b2−1

× exp[
1

2
(β1 − b1)B−11 (β1 − b1)] exp[

1

2
(β2 − b2)B−12 (β2 − b2)]

× τ
1
2
N

φ exp

[
−1

2
τφ
∑∑

i 6=j

(φi − φj)2ωij

]
τ

1
2
N

η exp

[
−1

2
τη
∑∑

i 6=j

(ηi − ηj)2ωij

]
,

(2.6)

where vectors φ and η are independent spatial effects for λi1 and λi2. We assume φ

and η follow the Intrinsic Conditional Auto-regressive (ICAR) model centered at zero

by placing constraints:
∑N

i=1 φi = 0 and
∑N

i=1 ηi = 0.

The full conditionals are

(1)

p1|β1,β2, p2,U1,U2,y1,y2,m1 ∝ p
∑
Ui1+m1+a1−1

1 (1− p1)
∑

(yi1−Ui2)+n1−m1+b1−1

∼ Beta(
∑
Ui1 +m1 + a1,

∑
(yi1 − Ui2) + n1 −m1 + b1).

(2)

p2|β1,β2, p1,U1,U2,y1,y2,m2 ∝ p
∑
Ui2+m2+a2−1

2 (1− p2)
∑

(yi2−Ui1)+n2−m2+b2−1

∼ Beta(
∑
Ui2 +m2 + a2,

∑
(yi2 − Ui1) + n2 −m2 + b2).
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(3)

Ui1|others ∝λUi1i1 p
Ui1
1 λyi2−Ui1i2 (1− p2)yi2−Ui1

=(λi1p1)
Ui1 [λi2(1− p2)]yi2−Ui1

=[
λi1p1

λi1p1 + λi2(1− p2)
]Ui1 [

λi2(1− p2)
λi1p1 + λi2(1− p2)

]yi2−Ui1

× [λi1p1 + λi2(1− p2)]Ui1+yi2−Ui1

∝[
λi1p1

λi1p1 + λi2(1− p2)
]Ui1 [

λi2(1− p2)
λi1p1 + λi2(1− p2)

]yi2−Ui1

πUi1i1 (1− πi1)yi2−Ui1

∼ Bin (yi2, πi1), where πi1 = λi1p1
λi1p1+λi2(1−p2) .

(4)

Ui2|others ∝[
λi2p2

λi2p2 + λi1(1− p1)
]Ui2 [

λi1(1− p1)
λi2p2 + λi1(1− p1)

]yi1−Ui2

=πUi2i2 (1− πi2)yi1−Ui2

∼ Bin (yi1, πi2), where πi2 = λi2p2
λi2p2+λi1(1−p1) .

(5)

p(β1|others) ∝ exp[
1

2
(β1 − b1)B−11 (β1 − b1)]

N∏
i=1

λyi1−Ui2+Ui1i1 exp{−Eiλi1}

(6)

p(β2|others) ∝ exp[
1

2
(β2 − b2)B−12 (β2 − b2)]

N∏
i=1

λyi2−Ui1+Ui2i2 exp{−Eiλi2}
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(7)

φi|others ∝ exp

[
−1

2
τφ
∑
i 6=j

(φi − φj)2ωij

]

= exp

[
−1

2
τφ
∑
i 6=j

(φ2
i − 2φiφj + φ2

j)ωij

]

= exp

[
−1

2
τφ
∑
i 6=j

(φ2
i − 2φiφj + φ2

j)ωij

]

∝ exp

[
−1

2
τφ

(
kφ2

i − 2
∑
i 6=j

(ωijφjφi)

)]

= exp

[
−1

2
kτφ(φ2

i − 2
∑
i 6=j

(ωijφjφi)/ki)

]

∝ exp

[
−1

2
kiτφ(φi −

∑
i 6=j

(ωijφj)/ki)
2

]

∼ N
(
k−1i

∑
i 6=j(ωijφj), kiτφ

)
, where ki =

∑
j ωij.

(8)

ηi|others ∼ N

(
k−1i

∑
i 6=j

(ωijηj), kiτη

)

where ki =
∑

j ωij

We will use Stan (a probabilistic programming platform that does full Bayesian

inference using Hamiltonian Monte Carlo (HMC)) to simulate the bi-variate misclas-

sification model discussed here and fit the model for COVID-19 deaths versus deaths

due to other causes in Section 2.6. Stan can efficiently fit our model through 2000

iterations with 1000 warmups. As a comparison, the misclassification model ignoring

complex spatial structure required 500,000 iterations via Gibbs sampling (Stamey et

al., 2008).

2.3 Bivariate Count Data With Correlated Spatial Random Effects

In Section 2.2, two individual uni-variate CAR effects are added to each response

respectively. In other words, we assume φ and η are independent. However, it is more
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appropriate to assume that φ and η are correlated, since the two responses (here

cancer and non-cancer) may be correlated.

Let S′ = (S ′1, S
′
2, · · · , S ′n) where S is np× 1 with each Si being a p dimensional

vector. We consider a multivariate normal distribution for S of the form

p(S) = (2π)−np|B|1/2 exp

(
−1

2
STBS

)
(2.7)

where

B = (DW − αW )⊗Λ (2.8)

B is an np × np symmetric positive definite matrix, α is known as the propriety or

spatial smoothness parameter and is restricted to (0, 1), and Λ is a p×p positive defi-

nite matrix.B can be seen as the Kronecker product of two partial precision matrices:

one for spatial dependency (DW − αW ), and the other for the covariance across re-

sponses, given by Λ. This model is denoted as MCAR(α,Λ) (Gelfand & Vounatsou,

2003). The full Bayesian hierarchical model can be implemented by placing appropri-

ate priors on α (Beta distribution) and Λ (for instance, a Wishart(ρ,Λ0)). Carlin et

al. (2003) recommended a relatively vague Wishart(ρ = 2,Λ0 = Diag(25, 25)) prior

on Λ and a Beta(18, 2) on α.

In this study, for simplicity, only two responses are considered. Suppose a com-

mon design matrix X ≡ [xi] is available for reponses y1 and y2, and we define

ST1 = (s11, s12, · · · , s1n) and ST2 = (s21, s22, · · · , s2n) as the spatial random effects

for each response. Following Carlin et al. (2003), the vector of joint spatial effects

after being re-arranged as side-by-side vectors of group effects, follow a 2 × n di-

mensional multivariate normal distribution centered at 0 with a precision matrix

B =

R′1R1Λ11 R′1R2Λ12

R′2R1Λ21 R′2R2Λ11

, i.e.

S1

S2

 ∼MVN


0

0

 ,

R′1R1Λ11 R′1R2Λ12

R′2R1Λ21 R′2R2Λ11


−1 (2.9)
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where R′kRk = D − αkW , k = 1, 2, i.e. Rk is the upper-triangular matrix of the

Cholesky decomposition of D − αkW . Matrix Λ =

Λ11 Λ12

Λ21 Λ22

 controls the non-

spatial correlation between the two variables for any unit i. The propriety of the

spatial structure can be easily met as long as the Cholesky decomposition exists and

Λ is posititive definite. A sufficient condition for the existense of the above Cholesky

decomposition is |α1| < 1 and |α2| < 1.

By replacing independent CAR effects Φ and η in equation (2.2) with S1 and S2,

we obtain a MCAR version of the misclassification model. Usually such a generalized

linear regression with spatial random effects (uni- or multi-variate) is called Spatial

Generalized Linear Mixed Models (SGLMM).

2.3.1 Sparse Areal Mixed Model for Multivariate Outcomes

SGLMM face two main challenges: spatial confounding as discussed in Section 1.3

and intensive computational burden. An approach proposed by Musgrove, Young,

Hughes, and Eberly (2019) addresses both of these challenges by extending the model

developed by Hughes and Haran (2013). The Multivariate Sparse Areal Mixed Model

(MSAMM) by Musgrove et al. (2019) employs the same orthogonal, multi-resolution

spatial basis described by Hughes and Haran (2013). We first recall the univariate

SAMM model

f(µ) = Xβ +Rn×rηr (2.10)

Model (2.10) can be extended to a multivariate version (MSAMM) as developed by

Musgrove et al. (2019). We assume the multiple outcomes observed at each areal unit

have a common design matrix, X. Specifically, for g ∈ 1, · · · , G we have outcomes

ygn×1, regression coefficients βg and spatial effects φg, then

f(µg) = Xβg + φg. (2.11)
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We then convert φ = [φ1, · · · , φG] into a vector φNG×1 and specify its density as

p(φ|Σ) ∝ exp{−1

2
φ′(Σ−1 ⊗Q)φ}, (2.12)

where Σ is a G × G co-variance matrix with the gth diagonal entry proportional to

the variance of the spatial effects corresponding to the gth outcome and the (g, g′) off-

diagonal entry proportional to the covariance between the gth and g′th spatial effects.

Similar to univariate SAMM, the construction of MSAMM is based on principal

component analysis of Moran’s I operator (1.22). Let R be a matrix whose columns

are the first r eigenvectors of Moran’s I operator, then the precision matrix can be

approximated by Qr = R′QR, and the MSAMM can be specified as

f(µg) = Xβg +Rηgr , (2.13)

where ηgr is a r × 1 vector, and if we set ∆ = (η1r
′
, · · · , ηGr

′
)′,

p(∆|Σ) ∝ exp{−1

2
∆′(Σ−1 ⊗Qr)∆}, (2.14)

where Σ is the G × G covariance matrix, and Qr is the reduced r × r precision

matrix. The Krockneckor product in (2.14) is computationally expensive when fitting

the model with either traditional MCMC or Hamiltonian Sampling (Stan). Musgrove

et al. (2019) showed computation can be eased considerably as follows. Let Cr be the

upper Cholesky triangle of Qr, and let Wr = C−1r such that WrW
′
r = Q−1

r . Then,

for Ψ = (ψ1
r
′
, · · · ,ψG

r
′
)′, each ψg

r is also r× 1, and if Ψ|Σ ∼N (0,Σ⊗ Ir), it can be

shown that (Ig ⊗Ws)Ψ and ∆ have the same distribution, with

E[(Ig ⊗Ws)Ψ] = (Ig ⊗Ws)E[Ψ] = 0,

Cov[(Ig ⊗Ws)Ψ] = (Ig ⊗Ws)(Σ⊗ Ir)(Ig ⊗Ws)
′ = Σ⊗Q−1r ,

then (2.13) can be written as

f(µg) = Xβg +RWrψ
g
r , g = 1, · · · , G (2.15)

where p(Ψ|Σ) = N(0,Σ⊗ Ir), and Ir is the r-dimensional identity matrix.
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2.3.2 Poisson Regression with Sparse Areal Mixed Model for Mis-classified Counts

The proposed full model for misclassified counts with independent SAMM or Joint

MSAMM can be expressed as

y1 ∼ Poisson(Eµ1)

y2 ∼ Poisson(Eµ2)

µ1 = λ1 ∗ (1− p1) + λ2 ∗ p2

µ2 = λ2 ∗ (1− p2) + λ1 ∗ p1

log(λ1) = Xβ1 +Rη1
r

log(λ2) = Xβ2 +Rη2
r .

For the regression coefficients, we assume independent normal priors,

βg ∼ N(0, 100I), g = 1, 2,

for the independent SAMM, the reduced spatial effects are assumed

ηgr ∼ N(0, τgR
′QR), g = 1, 2,

and a gamma(0.5, 0.0005) prior is assigned to the hyper-parameter τg.

For MSAMM, the regressions become

log(λ1) = Xβ1 +RWrψ
1
r

log(λ2) = Xβ2 +RWrψ
2
r ,

where Ψ = (ψ1′
r , ψ

2′
r )′ ∼ N(0,Σ⊗ Ir), and Σ =

Σ11 Σ12

Σ12 Σ22

 is the 2× 2 covariance

matrix between the two responses. Several appealing choices for the prior distribu-

tion of Σ exist. For example, Gelman and Hill (2006) suggest using a scaled inverse

Wishart prior for Σ, motivated primarily by its conjugacy to the multivariate likeli-

hood function and thus simplifies Gibbs sampling. The prior for the covariance matrix
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can be decomposed into a scale and a correlation matrix, and it can be implemented

in a more natural way. To be specific, in our bivariate case, we define

Σ =

σ1 0

0 σ2


r11 r12

r12 r22


σ1 0

0 σ2

 (2.16)

where σ1 and σ2 are the variance scaling parameters for each response and Ω =r11 r12

r12 r22

 is a correlation matrix, such that the following relations hold,

σ2
i = Σii

Ωi,j =
Σi,j

σiσj
, i = 1, 2, j = 1, 2.

For each standard deviation we assign a weakly informative half-Cauchy distribution

with a small scale parameter,

σi ∼ Cauchy(0, 2.5), σi > 0.

For the correlation matrix Ω, we assume an LKJ prior with shape parameter η ≥ 1

Ω ∼ LKJCorr(η)

The LKJ correlation distribution is defined by

LKJCorr(Σ|η) ∝ det(Σ)η−1

Alternative priors for Σ include hierarchical half-t prior distribution(Huang, Wand,

et al., 2013), and the covariance matrix separation strategy (Barnard, McCulloch, &

Meng, 2000). We fit the model via Hamilton Monte Carlo Sampling with the Stan

Language (Carpenter et al., 2017).

2.4 Simulation

We carried out simulation studies to investigate the performance of our proposed

model. We will compare three different models: MIS-MSAMM (misclassification with
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bivariate sparse areal mixed model), MIS-SAMM (misclassification with two inde-

pendent univariate sparse areal mixed model), and MIS-RE(mis-classification with

just random normal error). The criteria for comparison is average bias, mean square

error and coverage probability of the 95% posterior credible intervals. We start with

simulating bi-variate count data based on 10 × 10 grids (sub-regions) as shown in

Figure 2.1.
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Figure 2.1: Sampling and fitting priors for skewness parameter

For each grid, we simulated two Poisson responses. For the regression coeffi-

cients, we select β1 = (−1, 1.8, 0.15)′, and β2 = (−0.6, 1.5, 0)′, respectively. Thus we

have two covariates, both of which have non-zero coefficients for the first group, while

only one covariate has a non-zero coefficient for the second group. Furthermore, we

assign moderate misclassification rate p1 = 0.4 of first-group mislabeled to second

group and fairly low misclassification p2 = 0.05 of second-group occurrences in the
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first group. The co-variance matrix is set as

Σ =

 4
√

32ρ
√

32ρ 8

 , (2.17)

where the correlation coefficient ρ = (0.0, 0.2, 0.4, 0.6, 0.8). For the MIS-RE model,

random normal errors without spatial dependency were introduced to account for ex-

tra variation in the generalized linear model such that we can make a fair comparison.

Table 2.1 and 2.2 compare MIS-MSAMM and MIS-SAMM models when ap-

plied to 100 simulated data sets consisting of misclassified and correlated bivariate

responses (correlation ρ varies from 0 to 0.8). Model performances are evaluated by

three measures: bias, the root of means square error, and coverage.

When the correlation between the two variables is minor or moderate (ρ=0 to

0.6), the performance of the two models is comparable. When the correlation is strong

(ρ = 0.8), MIS-MSAMM performs better than MIS-SAMM (in the sense of smaller

bias and RMSE), though the difference is small. Overall both models can recover

regression coefficients, misclassification rates, and correlation coefficients pretty well.

In the case of similar performance, we typically prefer parsimonious models. Table

2.3 compares MIS-MSAMM (full model) and three reduced models. It can be seen

that the full model outperforms the other three in all aspects (with smaller deviation

and RMSE; CI coverage comparable to nominal level). Ignoring misclassification and

spatial structure, the Naive model results in the largest bias and RMSE, and the

smallest coverage rate (all less than 10%). The spatial model corrects the inappropri-

ately small posterior variance and thus improves the coverage, but fails to reduce bias

and RMSE. The misclassification model significantly improves CI coverage (except

for the two intercepts), but the overall performance is still inferior to MIS-MSAMM.

In summary, the MIS-MSAMM model we proposed here is a flexible option when

both the spatial structure and misclassification is significant. In section 2.5 we will

apply the MIS-MSAMM model to a real data set.
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Table 2.1: Results for simulation study comparing the MIS-MSAMM to MIS-SAMM
fits. RMSE represents root mean square error. 100 datasets are simulated for small
to moderate correlation values (ρ = 0.0, 0.2, 0.4). Variances for two responses are set
to 4 and 8 respectively.

MSAMM SAMM
Para Truth Avg.Est Bias Rmse CP Avg.Est Bias Rmse CP
β0 -1.000 -0.981 0.019 0.223 0.970 -0.981 0.019 0.218 0.960
β1 1.800 1.798 -0.002 0.037 0.920 1.798 -0.002 0.036 0.940
β2 0.150 0.147 -0.003 0.040 0.970 0.147 -0.003 0.040 0.980
γ0 -0.600 -0.587 0.013 0.339 0.970 -0.588 0.012 0.338 0.960
γ1 1.500 1.498 -0.002 0.058 0.950 1.498 -0.002 0.058 0.940
γ2 0.000 -0.001 -0.001 0.061 0.960 -0.002 -0.002 0.061 0.990
σ2
1 4.000 4.198 0.198 0.964 0.980 3.983 -0.017 0.906 0.950
σ2
2 8.000 8.275 0.275 1.749 0.960 7.920 -0.080 1.677 0.950
ρ 0.0 0.019 0.019 0.160 0.930 - - - -
p1 0.4 0.401 0.001 0.005 0.92 0.401 0.001 0.005 0.95
p2 0.05 0.051 0.001 0.008 0.95 0.051 0.001 0.008 0.95
β0 1.0 -0.957 0.043 0.292 0.950 -1.024 -0.024 0.265 0.940
β1 1.8 1.794 -0.006 0.034 0.940 1.801 0.001 0.037 0.960
β2 0.15 0.146 -0.004 0.052 0.960 0.153 0.003 0.054 0.940
γ0 -0.6 -0.604 -0.004 0.380 0.950 0.583 0.017 0.352 0.940
γ1 1.5 1.507 0.007 0.055 0.930 0.153 0.003 0.054 0.940
γ2 0 -0.001 -0.001 0.074 0.950 -0.003 -0.003 0.073 0.950
σ2
1 4 4.098 0.098 0.916 0.950 3.856 -0.144 0.821 0.920
σ2
2 8 7.724 -0.276 1.959 0.930 7.313 1.063 11.244 0.940
ρ 0.2 0.180 -0.020 0.164 0.920 - - - -
p1 0.4 0.400 <0.001 0.005 0.95 0.402 0.002 0.024 0.950
p2 0.05 0.050 <0.001 0.007 0.95 0.049 -0.001 0.007 0.960
β0 -1.000 -1.006 -0.006 0.260 0.960 -1.000 0.000 0.264 0.960
β1 1.800 1.795 -0.005 0.036 0.910 1.795 -0.005 0.037 0.920
β2 0.150 0.149 -0.001 0.065 0.950 0.147 -0.003 0.067 0.950
γ0 -0.600 -0.594 0.006 0.392 0.990 -0.603 -0.003 0.418 0.980
γ1 1.500 1.501 0.001 0.052 0.950 1.501 0.001 0.054 0.950
γ2 0.000 -0.012 -0.012 0.088 0.970 -0.012 -0.012 0.092 0.970
σ2
1 4.000 3.960 -0.040 0.918 0.930 3.789 -0.211 0.924 0.920
σ2
2 8.000 8.125 0.125 1.893 0.960 7.847 -0.153 1.880 0.970
ρ 0.4 0.349 -0.051 0.151 0.920 - - - -
p1 0.4 0.400 <0.001 0.005 0.96 0.399 -0.001 0.005 0.930
p2 0.05 0.049 -0.001 0.007 0.94 0.049 -0.001 0.007 0.940
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Table 2.2: Results for simulation study comparing the MIS-MSAMM to MIS-SAMM
fits. RMSE represents root mean square error. 100 datasets are simulated for mod-
erately strong to strong correlation values (ρ = 0.6, 0.8). Variances for two responses
are set to 4 and 8 respectively.

MSAMM SAMM
Para Truth Avg.Est Bias Rmse CP Avg.Est Bias Rmse CP
β0 -1.000 -0.997 0.003 0.192 0.960 -1.004 -0.004 0.190 0.950
β1 1.800 1.798 -0.002 0.030 0.950 1.798 -0.002 0.030 0.940
β2 0.150 0.151 0.001 0.038 0.950 0.153 0.003 0.038 0.940
γ0 -0.600 -0.630 -0.030 0.312 0.940 -0.604 -0.004 0.315 0.950
γ1 1.500 1.499 -0.001 0.038 0.950 1.498 -0.002 0.037 0.950
γ2 0.000 0.007 0.007 0.062 0.920 0.003 0.003 0.061 0.950
σ2
1 4.000 4.105 0.105 0.914 0.960 3.992 -0.008 0.908 0.930
σ2
2 8.000 8.067 0.067 1.728 0.960 7.880 -0.120 1.740 0.950
ρ 0.600 0.577 -0.023 0.109 0.950 - - - -
p1 0.4 0.399 -0.001 0.003 0.970 0.398 -0.002 0.004 0.950
p2 0.05 0.049 -0.001 0.006 0.980 0.049 -0.001 0.006 0.960
β0 -1.000 -1.036 -0.036 0.257 0.970 -1.031 -0.031 0.265 0.990
β1 1.800 1.799 -0.001 0.030 0.920 1.798 -0.002 0.031 0.970
β2 0.150 0.159 0.009 0.061 0.990 0.159 0.009 0.062 0.980
γ0 -0.600 -0.659 -0.059 0.358 0.950 -0.684 -0.084 0.390 0.960
γ1 1.500 1.508 0.008 0.044 0.920 1.510 0.010 0.048 0.950
γ2 0.000 0.008 0.008 0.075 0.970 0.013 0.013 0.080 0.950
σ2
1 4.000 3.931 -0.069 0.879 0.960 3.894 -0.106 0.900 0.930
σ2
2 8.000 7.795 -0.205 1.738 0.950 7.764 -0.236 1.786 0.960
ρ 0.800 0.771 -0.029 0.072 0.920 - - - -
p1 0.4 0.400 <0.001 0.004 0.97 0.398 -0.002 0.004 0.940
p2 0.05 0.049 -0.001 0.005 0.99 0.048 -0.002 0.006 0.950
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Table 2.3: Results for simulation study comparing the MIS-BSAMM to Naive Poisson
regression fits, Spatial-only and MisOnly fits. RMSE represents root mean square
error. 100 datasets are simulated for moderately correlation (ρ = 0.6).

Full Naive
Para Truth Avg.Est Bias Rmse CP Avg.Est Bias Rmse CP
β0 -1 -0.997 0.003 0.192 0.960 -0.636 0.364 1.448 0.020
β1 1.8 1.798 -0.002 0.030 0.950 1.829 0.029 0.237 0.070
β2 0.15 0.151 0.001 0.038 0.950 0.143 -0.007 0.131 0.060
γ0 -0.6 -0.630 -0.030 0.312 0.940 0.316 0.916 1.435 0.030
γ1 1.5 1.499 -0.001 0.038 0.950 1.707 0.207 0.286 0.020
γ2 0 0.007 0.007 0.062 0.920 0.080 0.080 0.143 0.030
σ2
1 4 4.105 0.105 0.914 0.960 - - - -
σ2
2 8 8.067 0.067 1.728 0.960 - - - -
ρ 0.6 0.577 -0.023 0.109 0.950 - - - -
p1 0.4 0.399 0.001 0.003 0.970 - - - -
p2 0.05 0.049 -0.001 0.006 0.980 - - - -

Spatial Mis
β0 -1 -1.126 -0.126 0.347 0.340 -1.104 -0.104 1.236 0.620
β1 1.8 1.786 -0.014 0.056 0.460 1.786 -0.014 0.145 0.930
β2 0.15 0.134 -0.016 0.039 0.450 0.151 0.001 0.096 0.970
γ0 -0.6 -0.070 0.530 0.853 0.150 -0.831 -0.231 0.241 0.720
γ1 1.5 1.674 0.174 0.198 0.030 1.528 0.028 0.284 0.940
γ2 0 0.084 0.084 0.111 0.110 -0.024 -0.024 0.162 0.960
σ2
1 4 3.402 -0.598 0.822 0.080 - - - -
σ2
2 8 5.173 -3.077 3.221 0.090 - - - -
ρ 0.6 0.360 0.240 0.192 0.000 - - - -
p1 0.4 - - - - 0.412 0.012 0.077 0.800
p2 0.05 - - - - 0.061 0.011 0.077 0.930
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2.5 Application

As an example, we consider 2020 US state-level deaths associated with COVID-

19 (group 1) and deaths due to other causes (group 2) by Oct 31. The sensitivity and

specificity of COVID tests are both less than 1 and cause of death is often misclassified

for many other types of deaths. According to the global Moran’s I statistic (Moran’s

I = 0.33, p = 0.0001 for COVID-19 deaths per 10K population, and I = 0.187,

p = 0.02 for other deaths), the state-level mortality of COVID-19 or other cause in

the USA both had positive auto-correlations or clustered patterns, which also can be

easily seen from Figure 2.2. The predicted number of deaths due to COVID-19 for

some states is of particular medical interest. It can be computed from the posterior

predictive distribution and easily implemented in Stan.

(a) Covid-19 deaths per 10K. (b) Other deaths per 10K.

Figure 2.2: States-level mortality distribution across US.

Five models will be applied to the data for comparison,

M1: Naive Poisson Regression

M2: Samm without misclassification

M3: Samm with misclassification

M4: Msamm without misclassification

M5: Msamm with misclassification
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2.5.1 Covariates and Priors

Two covariates will be used: "Obesity" and "Drug_death". "Smoking" is an-

other covariate of interest, but we found "Smoking" is highly correlated with "Obe-

sity" (0.77 correlation), therefore we ignore "Smoking" first. Although we believed the

misclassification rate p2 is less than p1, in other words, the probability that deaths

due to COVID-19 are misassigned to other causes is greater than the possibility of

misassigning other deaths to COVID-19, we still place the same moderately infor-

mative prior beta(10, 40) on p1 and p2. The beta(10, 40) allows for a wide range of

misclassification probabilities since it has a 95 percent prior interval of (0.10, 0.32).

For the regression parameters, we assign normal(0, 10) as priors.

2.5.2 Results

Figure 2.3 presents the point estimates and 90% CIs of coefficients fitted by five

models. Compared with the other four spatial models (M2-M5), the CIs of the regres-

sion coefficient given by naive Poisson (M1) is inappropriately short. The regression

coefficient estimates given by models M2-M4 are slightly different, but the CI lengths

are almost the same. M2 and M4 are closer as both ignore misclassification, while M3

and M5 are more similar as both incorporate the misclassification. The estimates of

the misclassification probability p1 obtained by M3 and M5 are almost the same, but

as for the estimation of p2, the CI length given by M5 is more than 4 times wider

than that given by M3, although both support p1 to be greater than p2. Here we

prefer using M3 because the results of M5 indicate that the correlation between the

two counts is insignificant.
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Figure 2.3: Point estimates and 90% CIs of coefficients fitted by five models."beta2"
and "gamma2" correspond to "Obesity", "beta6" and "gamma6" correspond to
"Drug_death".

Table 2.4 presents partial fitting results of the five models. Taking into account

the misclassification, "obesity" is statistically relevant to COVID-19 death, while

"drug_death" is significantly related to the incidence of other deaths (classified as

common pneumonia or influenza). The model estimates that approximately 20.1%

(90% CI: 0.183-0.212) of COVID-19 deaths were incorrectly classified as other causes,

while approximately 8.9% (90% CI: 0.069-0.099) of other deaths were incorrectly

attributed to COVID-19. We believe that a reasonable explanation could be that due

to the limited early detection capabilities, some patients who died of COVID-19 were

not confirmed by nucleic acid tests, while other deaths were not misclassified as much

is also due to the insufficient nucleic acid testing of COVID-9. Of course, the nucleic
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acid test is not 100% accurate. In short, p2 less than p1 is in line with our perceptions

and expectations.

Table 2.4: Partial fitting results of M1-5.

paras mean 5% 95% Model
β2 0.005 0.001 0.009 M1
β2 -0.033 -0.286 0.217 M2
β2 -0.045 -0.297 0.219 M3
β2 -0.038 -0.287 0.202 M4
β2 -0.054 -0.307 0.205 M5
β6 0.029 0.025 0.033 M1
β6 0.214 -0.027 0.459 M2
β6 0.288 0.044 0.534 M3
β6 0.248 0.006 0.493 M4
β6 0.281 0.029 0.530 M5
γ2 0.116 0.111 0.120 M1
γ2 0.115 -0.099 0.332 M2
γ2 0.290 0.046 0.529 M3
γ2 0.113 -0.153 0.390 M4
γ2 0.289 0.028 0.547 M5
γ6 -0.001 -0.006 0.005 M1
γ6 0.036 -0.170 0.248 M2
γ6 -0.081 -0.326 0.177 M3
γ6 0.029 -0.233 0.280 M4
γ6 -0.082 -0.340 0.158 M5
p1 0.201 0.183 0.212 M3
p1 0.202 0.187 0.213 M5
p2 0.089 0.069 0.099 M3
p2 0.092 0.030 0.149 M5
ρ -0.008 -0.859 0.874 M4
ρ -0.144 -0.938 0.866 M5

2.6 Conclusion

In this chapter, we investigate a hierarchical Bayesian model for correcting

misclassification between two count responses. In addition to misclassification, the

areal spatial correlation and the possible correlation between the two responses are

also studied. The proposed model is an extension of Stamey et al. We avoid the

complex multivariate CAR model, instead, we adopt SAMM or MSAMM, leading to
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significant improvement of fitting efficiency and computation speed. The other main

advantages of the proposed model include flexibility and scalability; no requirement

of a gold standard; insensitivity to the increase of N .

Simulation shows that the performance of MSAMM is equivalent to that of

SAMM, especially when the correlation between the two responses is minor or mod-

erate. In other words, in most cases, using SAMM is good enough. Thus we suggest

one use MSAMM to fit the data first in practical applications. Once the posterior

correlation is statistically insignificant, one can turn to SAMM to get more accurate

results.

We apply the misclassification model with spatial structures to the cumulative

number of deaths due to COVID-19 and other causes (pneumonia or flu) reported in

each state of the U.S. as of the end of October 2020. Our result shows that about

20% of COVID-19 deaths were misclassified to other causes, and about 8.9% of other

deaths were misattributed to COVID-19. We believe it is mainly due to insufficient

testing capabilities for COVID-19, especially in the early stages of the pandemic.

Some symptoms of COVID-19 are very similar to pneumonia or influenza, which

also increases the probability of misclassification between the two groups. It is worth

noting that the estimation of the regression coefficient of the covariate should not be

over-interpreted as there might exist other confounding variables that have not been

considered.
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CHAPTER THREE

Bayesian Sample Size Determination for Skew Normal Data

3.1 Introduction

The selection of appropriate sample size is one of the most important parts of

an experimental design, particularly for clinical trials where resources are limited.

Considerable attention has been paid to sample size determination for comparing the

means of two samples from normal distributions. Examples can be found in many

texts (Kempthorne (1952) and Rosner (2015)). However, less effort has been given to

the problem of computing sample size for the case of comparing two sample means of

skew-normal populations.

Incorrectly assuming the data follows a normal distribution can have a consid-

erable impact on the probabilities of Type I and Type II errors, and thus lead to a

biased inference. Commonly used statistical techniques, such as the t-test, ANOVA,

and linear regression, assume normality of errors. Thanks to the central limit theorem,

moderate violations of the normality assumption may only have a minimal impact

on the bias and efficiency of coefficient estimates, in particular, when the violation is

moderate and the sample size is sufficiently large.

In cases where the impact of the normality violation is not negligible, robust

techniques, such as non-parametric methods, are often applied. However, robust meth-

ods suffer from lower statistical power. Another commonly used alternative is to per-

form nonlinear transformations before the analysis. Examples of such types of trans-

formations include arc-sine, logarithm, square root, and Box-Cox (of which, logarith-

mic and root transformation are special cases). However, many studies have shown

that transformations can be problematic (Martin & Williams, 2017): non-linear trans-

formations can meaningfully change the inference results; on the transformed scale,
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the inference might be reversed; on the original scale, the estimates are biased; in

addition, interpretation of the regression coefficients can be meaningfully altered and

not intuitive.

The assumption of normality mainly serves two purposes: one is for theoretical

derivation and simplification, and the other is to facilitate computation. However, the

rapid increase in computing power has enabled us to fit more complicated models,

thus the convenience brought by the normality assumption has become less important.

Quite often, estimators for parameters in complicated models may have no closed-

form and need to rely on computer approximation such as Markov chain Monte Carlo

(MCMC).

The skew-normal (SN) distribution proposed by Azzalini (1985) has been thought

of as a good alternative to non-parametric methods or transformations when data are

asymmetric. The SN allows for either positive or negative moderate skewness through

a third parameter, the shape parameter, with the normal family as a special case of

the SN when the shape parameter equals 0. Some examples of using the skew-normal

include an application to a strength-stress model in reliability analysis (Gupta &

Brown, 2001), modeling HIV-RNA in blood and in seminal plasma (Ghosh, Branco,

& Chakraborty, 2007), an application to IQ scores and heights of Australian ath-

letes (Hasanalipour & Sharafi, 2012), and an application to a cork stopper’s process

production (Figueiredo & Gomes, 2013).

In this chapter, we investigate the Bayesian sample size determination for

skewed normal data. The Bayesian approach we apply is modeled after Wang and

Gelfand (2002) and Brutti et al (2008). The simulation-based algorithm seeks to find

the optimal sample size required to obtain a pre-specified power for a hypothesis test

for the mean difference in a Bayesian context. The chapter is organized as follows. In

Section 2, we overview important aspects of the skew-normal distribution. In Section

3 we discuss sample size determination from the Bayesian perspective. In Section 4
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we give an example of the simulation-based scheme. We provide concluding comments

in Section 5.

3.2 Skew Normal Distribution

We first overview properties of the skew normal (SN) distribution. This family

of distributions has a shape parameter that defines the direction of the asymmetry of

the distribution, also called the skewness parameter. The skew normal distribution is

a three-parameter continuous probability distribution family with probability density

function (PDF)

f(y; ξ, ω, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

[
α

(
y − ξ
ω

)]
, ξ ∈ R, ω > 0.

where ξ, ω, and α denote the location, scale, and shape parameters, respectively.

φ(y) is the pdf of the standard normal and Φ(y) is the cumulative density function

(CDF) of the standard normal distribution. We denote a random variable that has

a skew normal distribution as Y ∼ SN(ξ, ω, α). A positive value of α indicates right

skewness, and a negative α corresponds to left skewness. Moreover, it can be verified

that the normal distribution is recovered when α = 0.

The mean and variance of the SN are

E(Y ) = ξ + ωγ

√
2

π

V ar(Y ) = ω2

(
1− 2γ2

π

)
,

where γ = α√
1+α2 .

The skew normal distribution allows for either positive or negative skewness by

introducing a skew (sometimes referred to as the shape) parameter α, which makes it

flexible and useful in modelling real data sets that potentially violate the normality

assumption. Lack of normality is often addressed through transformations, for exam-

ple, the logarithm or square root transformations. The SN is a reasonable alternative

for the normal distribution in the sense that it generalizes the normal distribution.
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However, a practical problem with usage of the SN in applications is the possibility

that the maximum likelihood estimator of the parameter which regulates skewness di-

verges (Azzalini & Arellano-Valle, 2012). The difficulty is due to the following (Bayes

& Branco, 2007):

• The maximum likelihood estimator for α can be infinite,

• The Fisher information matrix is singular when α = 0,

• The profile-likelihood function for α has a stationary point at α = 0 , inde-

pendent from the observed sample.

The second problem above can be addressed with a reparameterization first proposed

by Azzalini (1985), while the first and third problems are more serious and arise in-

trinsically from the likelihood shape. The main approach suggested to fix this problem

is using a weight function to calibrate the likelihood, for example, see (Sartori, 2003).

A more natural way to calibrate the likelihood is with the Bayesian approach which

incorporates a prior distribution in place of the weight functions. Liseo and Loperfido

(2006) demonstrated that the unbounded Jeffreys prior for the skewness parameter

is proper but not a convenient expression (Azzalini, 1985), and thus is difficult to

use directly. To make use of the Jeffrey’s prior in modern MCMC software such as

JAGS or Stan, an explicit expression for the prior distribution is needed. Bayes and

Branco (2007) have shown that the Jeffreys’ prior can be well approximated by a Stu-

dent’s t distribution t(0, π2/4; 1/2). This guarantees the finiteness of the shape (skew)

parameter estimator resulting from the mode of the posterior distribution (Azzalini

& Genton, 2008). Bayes and Branco (2007) also investigated using a uniform prior

bounded between [−1, 1] for γ = α√
1+α2 which leads to a student’s t(0, 1/2; 2) for α

through variable transformation. Figure 3.1 presents the density plot of the two priors

for shape parameter mentioned above, it can be seen that the approximate Jeffreys’

piror is less informative than the prior induced from a uniform prior for γ. As for
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prior specification to the location (ξ) and scale (ω) parameters, we discuss in more

detail in Section 3.4.

Figure 3.1: Prior density function for α.

3.3 Sample Size Determination

In clinical trials, sample size determination (SSD) plays an important role in

the trade-off between budget and statistical power. According to a study published

in JAMA Internal Medicine, clinical trials cost a median of $41,117 per patient and

$3,562 per patient visit (Moore, Zhang, Anderson, & Alexander, 2018), thus sample

size optimization is essential to controlling costs. On the other hand, an insufficient

sample size might lead to the failure of discovering a true effect, that is, the study

might be underpowered. Prior to computational advancements allowing more use of

Bayesian methods, frequentist approaches were most commonly used for sample size

determination. For many standard models, frequentist SSD is straightforward and

easy to use as quite often closed-form formulae are available under certain assump-

tions and/or asymptotic approximations. As a simple example of frequentist SSD we

consider the case of testing the difference between two sample means δ = µ1−µ2. We
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would like to test H0 : δ = δ1 against Ha : δ > δ1. In a clinical trial, δ1 would typically

represent the clinical relevance that the researcher would consider important. For a

balanced design under the normality assumption, the sample size needed for each

group is determined by the following formula,

n = 2(Zα + Zβ)2σ2/δ21, (3.1)

where α and β are the significance level and 1 - power specified by the researchers;

Zα is the critical value of the standard normal distribution at α, and Zβ is the critical

value at β; σ2 is the population variance (the two populations are assumed to have

equal variance). There are some obvious limitations based on approaches like 3.1. First

of all, one needs a point estimate of σ prior to the design. Though it is possible to

estimate nuisance parameters from similar studies or by doing a small pilot study, the

uncertainty of σ2 is often not accounted for. Second, the normality and equal variance

assumptions are often violated in real world data. Third, it is difficult to incorporate

prior information and/or expert opinion into the design. In contrast, Bayesian SSD

approaches provide a way to remedy these limitations, for example, the uncertainty

of σ2 can be incorporated into the process through an appropriate prior distribution.

Bayesian SSD can be thought of as a type of pre-posterior analysis (Wang,

Gelfand, et al., 2002). For most problems of moderate complexity, Bayesian SSD is

based on computationally demanding simulations, where synthetic data are drawn

from a hypothetical distribution based on parameters generated from a design prior

distribution. Consequently, the design prior is required to be proper, informative,

and capable of capturing the experimenter’s knowledge and uncertainty about the

parameter of interest. We assume vector θ contains the parameters of the proposed

model, and the quantity of interest is the difference between the two sample means,

δ. We assume that δ is truly greater than δ1. Under this assumption, we expect that

by drawing a synthetic data set of the minimal size of nmin, we can demonstrate

the expected value of some posterior probability measure meets a specified criterion.
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When the synthetic data set is generated based on the design prior distribution in

each run of the simulation, a second, often relatively diffuse prior distribution will be

applied to obtain the posterior distribution (or MCMC samples) for θ and δ. In other

words, usually two sets of prior distributions are needed : a sampling (design) prior

πD(θ) for data generation and a fitting (analysis) prior πA(θ) for model fitting. πD(θ)

reflects the designers’ beliefs or expectations about the experiment, and therefore

is used for sampling synthetic data; πA(θ) is often required to be relatively non-

informative. The analysis prior πA(θ) is also the one that we expect to use for model

fitting once the real trial data is obtained.

Let Θ denote the parameter space for θ, assume that the design under con-

sideration will generate independent and identically distributed (iid) observations

X = {x1, · · · , xn} from density f(x|δ,θ), where n is the sample size and let S be the

sample space ofX. The prior predictive distribution ofX is the marginal distribution

of the data averaged over the design prior, πD(θ), as follows,

mπD(X) =

∫
Θ

f(X|θ) · πD(θ)dθ, (3.2)

and the posterior distribution of θ given X and the analysis prior, πA(θ), is

f(θ|X) ∝ f(X|θ)πA(θ), (3.3)

where f(X|θ) is the likelihood of X. Following Brutti, De Santis, and Gubbiotti

(2008), without loss of generality, the design will be considered successful if the pos-

terior probability that δ > δ1 is larger than a predefined threshold γ

PπA(δ > δ1|X) > γ, γ ∈ (0, 1), (3.4)

where PπA(·|X) is some posterior probability measure. Different SSD criteria can be

defined based on formula 3.4. Here, we focus on the Predictive Probability Criterion

(PPC). The PPC is based on the predictive probability of obtaining a successful
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experiment

pn = PmπD [Sn] =

∫
Sn

PπA(δ > δ1) ·mπD(X)dX, (3.5)

where Sn denotes those values of the sample space of X that lead to rejection of the

hypothesis when the sample size is n. We are seeking the smallest sample size n such

that pn exceeds a threshold, say 1−βp. In other words, we wish to design a study with

the smallest size nmin such that the posterior probability that Pr(δ > δ1|X) > 1−α

on average is at least 1− βp, i.e,

E [I{Pr(δ > δ1|X) > 1− α}] = 1− βp, (3.6)

where I{·} = 1 if the posterior probability exceeds 1 − α, and 0 otherwise. α is

comparable to the significance level of frequentist approaches, and generally selected

to be 0.1, 0.05, or 0.01. 1− βp is equivalent to the statistical power, and typically set

to 0.8, 0.85, or 0.9 (Beavers & Stamey, 2012). For complex models, the average power

in equation (3.6) is computed through computationally intense simulation often with

MCMC sampling to approximate the posterior distribution.

One important advantage that the Bayesian approach has over frequentist meth-

ods for sample size determination is flexibility. Recall that equation (3.1) holds under

the normality assumption which is often violated in practice. In Bayesian SSD, the

normality assumption is easily relaxed. Here we will adopt the skewed normal dis-

tribution to demonstrate the advantage of Bayesian SSD over frequentist approaches

when applied to a scenario of comparing the means for two populations where the

two underlying populations are potentiallhy skewed.

Suppose we are seeking to find the minimal sample size required for a clinical

trial when the desired difference between the means of the treatment group and

the control group is δ. If evidence from similar studies or pilot studies show that

the data distribution is obviously asymmetric, or there are a moderate number of

outliers, the frequentist approaches mentioned earlier can be biased. Here, we relax
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the assumptions of normality and homoscedasticity. Specifically, we assume that the

two populations follow skewed normal distributions and allow for different variances.

Suppose y1 and y2 are sampled from SN(ξ1, ω1, α1) and SN(ξ2, ω2, α2), respec-

tively, with equal sample size n1 = n2 = n. For simplicity, we assume α1 = α2, and

ξ2 = ξ1 + δ, where δ > 0. The assumption on the α’s can be relaxed. The quantity of

interest is

µ2 − µ1 = ξ1 + δ + ω2γ

√
2

π
− (ξ1 + ω1γ

√
2

π
)

= δ + (ω2 − ω1)γ

√
2

π

We see from above that under this scenario it is difficult to calculate the minimal sam-

ple size with a closed form. The Bayesian SSD approach we propose here is simulation

based.

The Bayesian SSD approach based on the PPC will compute the average power

for each sample size for a set of design priors specified by the researchers. The mean

power is approximated for each sample size by averaging over B repetitions. In the

following sequence, the subscript j ∈ {1, · · · , B} represents the jth repetition for each

sample size ni. The following steps are repeated,

Simulate ξ1j, ωj, and αj from their respective design priors;
Generate synthetic data yj1 and yj2 with size n1 = n2 = n, from
SN(ξ1j, ωj, αj) and SN(ξ1j + δ1, ωj, αj), respectively;

Obtain the posterior probability that δj = ξ1j − ξ2j > δ1;
Repeat steps 1-3 B times for each sample size n, storing Pr(δj > δ1|yj1,yj2);
Compute the mean power by averaging the binary outcome of whether the
posterior probability Pr(δj > δ1|yj1,yj2) > 1− α as below
p(n) = 1

B

∑B
j=1 I{Pr(δj > δ1|yj1,yj2) > 1− α};

Repeat steps 1-5 for the series of sample size and plot p(n) by n;
Algorithm 1: Predictive probability criterion.

3.4 A Simulation Study

When a condition such as atherosclerotic disease of the arteries occurs in the

lower extremeties, walking impairment often results. (Nicolaï, Teijink, Prins, et al.,
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2010) detail a multicenter randomized trial to determine if exercise therapy versus

exercise therapy with feedback differed in terms of walking distance. Walking distance

for patients with this sort of condition tends to result in right skewed data. So, we

use this scenario as a motivation for our sample size determination procedure.

In Nicolaï et al. (2010), the number of meters walked was typically between 200

meters and 600 meters. We use this data to determine the parameters of our design

priors, πD(θ), for the model parameters θj = (ξ1j, ωjαj). Specifically, we assign each

component of πD(θ) as

ξD ∼ N(0, 1),

ωD ∼ Gamma(2, rate = 1),

αD ∼ N(3, 1).

Next yj1 and yj2 are sampled from two SN distributions given θj and δ. Figure 3.2

shows the histograms of a single set of yj1 and yj2 for δ = 0.25. Under the assumption

of normality, equation 3.1 yields the sample size needed for 95% confidence level and

80% power to be approximately 164 for each group.
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Figure 3.2: Histograms of a single set of yj1 and yj2 for δ = 0.25

To investigate the approach in more detail, five values of δ are considered

(0.15, 0.20, 0.25, 0.30, 0.35). For each data set, the posterior probability of δ > 0 is

recorded. The repetition j is labeled as a success, or 1, if that probability is at least

1 − α, and a failure, or 0, otherwise. Relatively diffuse priors are used for the data

analysis. Specifically, the analysis priors are as follows,

ξA ∼ N(0, 10),

ωA ∼ N(0, 10),

αA ∼ t(0, π2/4; 1/2),

δA ∼ N(0, 10).

Partial comparisons of πD(θ) and πA(θ) are shown in Figure 3.3 and Figure 3.4.
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Figure 3.3: Sampling (design) and fitting (analysis) priors for ω1 and ω2.

Figure 3.4: Sampling (design) and fitting (analysis) priors for α.

Typically, the grid search over increasing sample sizes would be performed until

the sample size nmin is found so that for all sample sizes larger than or equal to nmin

the PPC criterion in equation (3.6) is fulfilled. Normally 200 or more repetitions are

needed for each n such that the expectation on the left side of equation (3.6) is suffi-

ciently precise. Here, we show a set of Bayesian statistical powers against sample size

and find the appropriate sample through interpolation. Specifically, once we obtain

average powers for each sample size from, for example, 50 to 1500 (step by 50), an

imputation method will be adapted to fit a smoothing power curve. The power curve

is expected to monotonically increase and asymptotically approximate to a horizontal

line at 1.0, thus we would fit the power curve with an asymptotic regression model

which describes a limited growth for a quantity (powers here) against its predictor,

which is the sample size n. The particular parameterization for the asymptotic re-
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gression model that we use is

Y = Asym+ (R0 − Asym) ∗ exp [−exp(lrc) ∗ x]

where Asym is the asymptotic limit of Y as x goes to infinity, R0 is the mean estimate

of Y at x = 0, and lrc represents the natural logarithm of the rate constant.

The R function "SSasymp( )" in the "stats" package will be used to fit the

above formula and then the "geom_smooth( )" function from the R package "gg-

plot" is used to plot the resulting output, given the argument method = nls, where

"nls" represents non-linear smoothing. Simulation results (scatters) and correspond-

ing smoothed curves are presented in Figure 3.5. As an example, for a δ of 0.15, then

at least n = 800 observations from each group is required to obtain 80% power. An-

other property as shown in 3.5 is that as δ increases, the power curve moves up as a

whole, which is as expected.

Figure 3.5: Bayesian powers vs N by δ, α = 0.05

3.5 Conclusion

Sample size determination is a key step in many studies, such as costly human

clinical trials. When the primary endpoint of the study is a continuous variable, the

normal approximation is usually used to calculate the required sample size. However,

if the normal distribution assumption is severely violated, such kind of approximation
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may underestimate the required sample size, resulting in a low-power design. Data

transformation is an option, but as discussed in many works of literature, data trans-

formation also could be problematic, for example, data transformation can not cope

with negative skewness (left-skewed). The Bayesian sample size determination (SSD)

based on the skew-normal distribution discussed in this chapter is a good alternative.

The approach does not require normality assumption nor data transformation and

allows for left skewness. In addition, the two groups of responses are allowed to have

different skewness. Moreover, Bayesian SSD is able to incorporate prior information

if applicable, thereby reducing the required sample size. The main shortcoming of

Bayesian SSD is that it is based on intensive simulation, and using grid search to

determine the sample size is relatively time-consuming and requires more computing

resources. Our simulation experiments show that the cost of Bayesian SSD is com-

pletely affordable. In our example, an ordinary 8-core PC was used and all calculations

were completed in 4 days with parallel computing. If more cores are available, the

simulation can be completed in a short time. Therefore, we believe that the compu-

tational burden is negligible compared to the benefits of this approach.
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APPENDIX A

Stan Codes for Chapter I

A.1 Code for BYM2 Model

functions{
real icar_normal_lpdf(vector phi , int N, int[] node1 , int[]

node2) {
return -0.5 * dot_self(phi[node1] - phi[node2])
+ normal_lpdf(sum(phi) | 0 ,0.001 * N);

}
}
data {

int <lower=0> N;
int <lower=0> N_edges;
int <lower=1, upper=N> node1[N_edges ]; // node1[i], node2[i]
int <lower=1, upper=N> node2[N_edges ]; // node1[i] < node2[i]
int <lower=0> y[N];
vector <lower=0>[N] E; // exposure
int <lower=1> K;// number of covariates
matrix[N,K] x;// design matrix
real <lower=0> scaling_factor;//

}
transformed data{

vector[N] logE=log(E);
}
parameters {

real beta0;
vector[K] betas;
real logit_rho;// proportion of spatial effects
vector[N] phi; // spatial effects
vector[N] theta; // heterogeneous rand effects
real <lower=0> sigma; // overall standard deviation

}
transformed parameters{

real <lower=0,upper=1> rho=inv_logit(logit_rho);
vector[N] convolved_re = sqrt(1 - rho) * theta + sqrt(rho /

scaling_factor) * phi;
}
model {

// likelihood
y ~ poisson_log(logE + beta0 + x*betas + convolved_re*sigma);
// priors
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beta0 ~ normal (0,10);
betas ~ normal (0,10);
logit_rho ~ normal (0,1);
sigma ~ normal (0,1);
theta ~ normal (0,1);
phi ~ icar_normal(N, node1 , node2);

}

generated quantities{
vector[N] eta = logE + beta0 +x*betas + convolved_re*sigma;
vector[N] mu = exp(eta);
int y_rep[N];
if(max(eta) >20){

for(n in 1:N) y_rep[n] = -1;
}else{

for(n in 1:N) y_rep[n] = poisson_log_rng(eta[n]);
}

}

A.2 Code for Full Model via BYM2

functions{
real icar_normal_lpdf(vector phi , int N, int[] node1 , int[]

node2) {
return -0.5 * dot_self(phi[node1] - phi[node2])
+ normal_lpdf(sum(phi) | 0 ,0.001 * N);

}
}
data {

int <lower=0> N;
int <lower=0> N_edges;
int <lower=1, upper=N> node1[N_edges ];
int <lower=1, upper=N> node2[N_edges ];
int <lower=0> z[N];// Observed counts
vector <lower=0>[N] E;// exposure
int <lower=1> K;
matrix[N,K] X;// design matrix for counts
int <lower=1> J;
matrix[N,J] W;// design matrix for reporting rate
real <lower=0> scaling_factor;

}
transformed data{

vector[N] logE=log(E);
}
parameters {

// coefficients for Poisson
real beta0;
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vector[K] betas;
// coefficients for Logistic
real gamma0;
vector[J] gammas;

real logit_rho;
vector[N] phi;// spatial random effects
vector[N] theta; // unstructured random effects
real <lower=0> sigma;

}
transformed parameters{

real <lower=0,upper=1> p0;// reporting rate when W take average
real <lower=0,upper=1> rho = inv_logit(logit_rho);
vector[N] convolved_re;
convolved_re = sqrt(1-rho)*theta + sqrt(rho/scaling_factor)*

phi;
vector <lower=0,upper=1>[N] p;
vector <lower=0>[N] lambda;
vector <lower=0>[N] mu;
lambda = exp(logE + beta0 + x*betas + convolved_re*sigma);
p0 = inv_logit(gamma0);
p = inv_logit(gamma0 + w*gammas);
mu = lambda .* p;

}
model {

// likelihood
z ~ poisson(mu);
target += gamma0 -2*log(1+exp(gamma0));
// priors
p0 ~ beta (2.42 ,35.25);//will induce prior on gamma0
gammas ~ normal (0,10);
beta0 ~ normal (0,10);
betas ~ normal (0,10);
logit_rho ~ normal (0,1);
sigma ~ normal (0,1);
theta ~ normal (0,1);
phi ~ icar_normal(N, node1 , node2);

}

generated quantities{
vector[N] eta = logE + beta0 +x*betas + convolved_re*sigma;
vector[N] lambda_rep = exp(eta);
vector[N] p_rep = inv_logit(gamma0 + w*gammas);
int y_rep[N];
int z_rep[N];
if(max(eta) >20){

for ( n in 1:N) {
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y_rep[n] = -1;
z_rep[n] = -1;

}
}else{

for ( n in 1:N) {
y_rep[n] = poisson_log_rng(eta[n]);
z_rep[n] = poisson_rng(lambda_rep[n]*p_rep[n]);

}
}

}
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APPENDIX B

Stan Codes for Chapter II

B.1 Stan Code for Misclassification Only

data {
int <lower=0> N; // number of areas;
int <lower=0> y1[N]; // response1
int <lower=0> y2[N]; // response2
int <lower=1> K; // number of covariates
matrix[N,K] X; // design matrix
vector <lower=0>[N] E; // exposure

}

transformed data{
vector[N] logE=log(E);

}

parameters {
vector[N] theta1; // unstructured random effect 1
vector[N] theta2; // unstructured random effect 2
real <lower=0> epsilon1;//hyper parameter for theta1
real <lower=0> epsilon2;//hyper parameter for theta2

real <lower=0,upper=1> p1;// Misclassified rate 1
real <lower=0,upper =0.2> p2;// Misclassified rate 2
vector[K] betas; // coefficients for y1
vector[K] gammas; // coefficients for y2

}

// parameters transformation
transformed parameters{

vector <lower=0>[N] mu1; // Poisson rate 1 with
misclassification

vector <lower=0>[N] mu2; // Poisson rate 2 with
misclassification

vector <lower=0>[N] l1; //True Poisson rate 1
vector <lower=0>[N] l2; //True Poisson rate 2

l1 = exp(X*betas + logE + theta1);
l2 = exp(X*gammas + logE + theta2);

mu2 = l1*p1 + l2*(1-p2);
mu1 = l1*(1-p1) + l2*p2;
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}

model {
// likelihood
y1 ~ poisson(mu1);
y2 ~ poisson(mu2);
// priors
theta1 ~ normal(0,epsilon1);
theta2 ~ normal(0,epsilon2);
epsilon1~normal (0,1);
epsilon2~normal (0,1);
// priors for coefficients and mis -rates
betas ~ normal (0,1);
gammas ~ normal (0,1);
p1 ~ beta (10 ,30);
p2 ~ beta (10 ,30);

}

B.2 Stan Code for MSAMM Only

functions {
matrix kronecker_prod(matrix A, matrix B) {

matrix[rows(A) * rows(B), cols(A) * cols(B)] C;
int m;
int n;
int p;
int q;
m = rows(A);
n = cols(A);
p = rows(B);
q = cols(B);
for (r in 1:m) {

for (s in 1:n) {
for (v in 1:p) {

for (w in 1:q){
C[p*(r-1)+v,q*(s-1)+w] = A[r,s]*B[v,w];
}

}

}
}
return C;

}
}
data {

int <lower=0> N;
int <lower=1> q;
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int <lower=0> y1[N];
int <lower=0> y2[N];
int <lower=1> K;
matrix[N,K] X;
matrix[N,q] M;
matrix[q,q] Ls;
matrix[q,q] I
vector <lower=0>[N] E;

}

transformed data{
vector[N] logE=log(E);

}

parameters {
vector[N] theta1;
vector[N] theta2;
real <lower=0> epsilon1;
real <lower=0> epsilon2;
corr_matrix [2] Omega;// correlation matrix between diseases
vector[K] betas; // coefficient vector for y1
vector[K] gammas; // coefficient vector for y2
vector [2*q] phi; // joint spatial effects
vector <lower =0>[2]ksi;// scaled vector for standard deviations

}

// parameters transformation
transformed parameters{

cov_matrix [2] LAM;// covariance matrix between y1 and y2
cov_matrix [2*q] Sigma; // covariance matrix for phi
//vector <lower=0>[N] mu1; //rate 1
//vector <lower=0>[N] mu2; //rate 2
vector <lower=0>[N] l1; //True rate 1
vector <lower=0>[N] l2; //True rate 2

l1 = exp(X*betas + M*Ls1*phi[1:q] + logE + theta1);
l2 = exp(X*gammas + M*Ls1*phi [(1+q):(2*q)] + logE + theta2);
LAM = quad_form_diag(Omega , ksi);
Sigma = kronecker_prod(LAM , I2);

}

model {
// likelihood
y1 ~ poisson(l1);
y2 ~ poisson(l2);
//prior for joint spatial effect

phi~ multi_normal(rep_vector (0,2*q), Sigma);
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theta1 ~ normal(0,epsilon1);
theta2 ~ normal(0,epsilon2);
epsilon1~normal (0,1);
epsilon2~normal (0,1);
// priors for coefficients
betas ~ normal (0,1);
gammas ~ normal (0,1);
//prior for scaled vector of sd
ksi ~ normal(0, 2.5);
//prior for correlation matrix
Omega ~ lkj_corr (1);

}

generated quantities{
vector[N] l1_rep;
vector[N] l2_rep;
int y1_rep[N];
int y2_rep[N];
l1_rep = exp(X*betas + M*Ls1*phi [1:q] + logE + theta1);
l2_rep = exp(X*gammas + M*Ls1*phi [(1+q):(2*q)] + logE +

theta2);
for (i in 1:N){

if(log(l1_rep[i]) >20) l1_rep[i] = 9999999;
if(log(l2_rep[i]) >20) l2_rep[i] = 9999999;

}
y1_rep=poisson_rng(l1_rep);
y2_rep=poisson_rng(l2_rep);

}

B.3 Stan Code for Full Model

data {
int <lower=0> N; // num of areas;
int <lower=1> q; // dimension for spatial effects after

reduction.
int <lower=0> y1[N]; // response1
int <lower=0> y2[N]; // response2
int <lower=1> K; // number of covariates
matrix[N,K] X; // design matrix
matrix[N,q] M; // eigenvector matrix
matrix[q,q] Ls;// transformation matrix
matrix[q,q] I; // q by q identity matrix

vector <lower=0>[N] E; // exposure
}

transformed data{
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vector[N] logE=log(E);
}

parameters {
real <lower=0,upper =0.4> p1;//mis -rate 1
real <lower=0,upper =0.2> p2;//mis -rate 2
corr_matrix [2] Omega;// correlation matrix between y1 and y2
vector[K] betas; // coefficients for y1
vector[K] gammas; // coefficients for y2
vector [2*q] phi; // joint spatial effects
vector[N] theta1;// unstructured RE 1
vector[N] theta2;// unstructured RE 2
real <lower=0> epsilon1; //hyper -para 1
real <lower=0> epsilon2; //hyper -para 2
vector <lower =0>[2] ksi;// scaled vector for standard

deviations
}

// parameters transformation
transformed parameters{

cov_matrix [2] LAM;// covariance matrix between y1 and y2
cov_matrix [2*q] Sigma; // covariance matrix for phi
vector <lower=0>[N] mu1; //rate 1
vector <lower=0>[N] mu2; //rate 2
vector <lower=0>[N] l1; //True rate 1
vector <lower=0>[N] l2; //True rate 2

l1 = exp(X*betas + M*Ls1*phi[1:q] + logE + theta1);
l2 = exp(X*gammas + M*Ls1*phi [(1+q):(2*q)] + logE + theta2);

mu2 = l1*p1 + l2*(1-p2);
mu1 = l1*(1-p1) + l2*p2;

LAM = quad_form_diag(Omega , ksi);
Sigma = kronecker_prod(LAM , I2);

}

model {
// likelihood
y1 ~ poisson(mu1);
y2 ~ poisson(mu2);
//prior for joint spatial effect
phi~ multi_normal(rep_vector (0,2*q), Sigma);
theta1 ~ normal(0,epsilon1);
theta2 ~ normal(0,epsilon2);
epsilon1 ~ normal (0,1);
epsilon2 ~ normal (0,1);
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// priors for coefficients
betas ~ normal (0,1);
gammas ~ normal (0,1);
// Priors for mis -rates
p1 ~ beta (10 ,40);
p2 ~ beta (10 ,40);
//prior for scaled vector of sd
ksi ~ normal(0, 2.5);
//prior for correlation matrix
Omega ~ lkj_corr (1);

}

generated quantities{
vector[N] l1_rep;
vector[N] l2_rep;
vector[N] mu1_rep;
vector[N] mu2_rep;
int y1_rep[N];
int y2_rep[N];
l1_rep = exp(X*betas + M*Ls1*phi [1:q] + logE + theta1);
l2_rep = exp(X*gammas + M*Ls1*phi [(1+q):(2*q)] + logE +

theta2);
for (i in 1:N){

if(log(l1_rep[i]) >20) l1_rep[i] = 9999999;
if(log(l2_rep[i]) >20) l2_rep[i] = 9999999;

}
mu2_rep = l1_rep*p1 + l2_rep *(1-p2);
mu1_rep = l1_rep *(1-p1) + l2_rep*p2;
y1_rep=poisson_rng(mu1_rep);
y2_rep=poisson_rng(mu2_rep);

}
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