
ABSTRACT

Tyro: A First Step Towards Automatically Generating Parallel Programs From
Sequential Programs

Arun Sanjel, M.S.

Mentor: Gregory D. Speegle, Ph.D.

Currently, MapReduce is used as the standard for automatic parallelization

of programs. However, MapReduce restricts programs to a simple framework with

limited parallelism but still requires the user to understand parallelism within the

framework. In this thesis, we present Tyro, a new tool that automatically translates

a sequential Python program into a parallel PySpark program. Tyro identifies po-

tential code fragments where parallelism can be done and translates them. It uses

Abstract Syntax Trees (AST) for fragment detection and gradual program synthesis

to convert the Python operations into PySpark operations. Tyro also verifies the

generated code against given user test cases. We evaluated Tyro by automatically

converting different real world sequential Python programs into PySpark programs.

The resulting PySpark programs perform up to 9x faster (on 9 parallel machines)

compared to the original. The promising result of Tyro against these benchmarks

shows how Tyro can utilize gradual synthesis and operation translation to go beyond

MapReduce with automatic parallelization.

Tyro: A First Step Towards Automatically Generating Parallel Programs From
Sequential Programs

by

Arun Sanjel, B.S.

A Thesis

Approved by the Department of Computer Science

Erich Baker, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

Gregory D. Speegle, Ph.D., Chairperson

Pablo Rivas, Ph.D.

Enrique Blair, Ph.D.

Accepted by the Graduate School

December 2020

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c© 2020 by Arun Sanjel

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

DEDICATION xi

1 Introduction . 1

2 Background . 4

2.1 Program Synthesis . 4

2.2 Similar Tools . 5

2.2.1 Casper . 5

2.2.2 Parsl . 7

2.2.3 Emma . 9

2.3 AST . 9

3 Methodology . 11

3.1 Overview . 11

3.2 Program Analyzer . 13

3.2.1 AST Parser . 14

3.2.2 Static Code Analysis . 15

3.2.3 Meta-information . 16

3.3 Feature Extractor . 18

3.3.1 Loop Extractor . 19

iv

3.3.2 Operation Extractor . 21

3.3.3 Operation Converter . 23

3.4 Component Transformer . 25

3.4.1 Map Transformer . 27

3.4.2 Reduce Transformer . 28

3.4.3 Filter Transformer . 30

3.4.4 UDFs Transformer . 33

3.4.5 Join Transformer . 34

3.5 Code Generator . 36

3.5.1 Static Code Generation . 36

3.5.2 Dynamic Code Generation . 37

3.6 Verifier . 38

4 Results and Analysis . 42

4.1 Evaluation . 42

4.1.1 Test Suites . 42

4.2 Aggregate Functions . 43

4.3 Multidimensional Dataset . 46

4.4 User Defined Function . 47

4.5 Speed Up . 49

5 Future Work and Conclusion . 52

5.1 Future Work . 52

5.1.1 Increased Loop Detection . 52

5.1.2 Complex Data Types and File Handling 52

5.1.3 Optimized Nested Loop Handling 53

v

5.1.4 Extending The Search Space 53

5.1.5 Verification . 53

5.1.6 Beyond MapReduce . 54

5.1.7 Partitionable Functions . 54

5.2 Conclusion . 55

APPENDIX 57

A Additional Results . 58

A.1 Count . 58

A.2 Min . 59

A.3 Join with no operation . 60

A.4 Join with Operations . 61

BIBLIOGRAPHY . 62

vi

LIST OF FIGURES

2.1 Casper Translation . 6

3.1 Tyro’s System Architecture . 11

3.2 Tyro Translation . 14

3.3 AST conversion of a Python function 15

3.4 Meta-Information Structure . 17

3.5 Meta-Information Example . 18

3.6 Loop Extractor Structure . 20

3.7 AST structure of a filter operation 22

3.8 Temporary structure of Filter List . 23

3.9 Complete Filter List after Operation Extraction inside a filter operation 23

3.10 Operation List . 24

3.11 Filter structure after operation conversion 24

3.12 Different operation conversion in Tyro 25

3.13 Map in PySpark . 28

3.14 Reduce in PySpark . 29

3.15 Filter in PySpark . 31

3.16 Filter Conversion Example . 32

3.17 Filter Transformation in Tyro . 32

3.18 Example of user defined function (UDF) in PySpark 33

3.19 Transformation in Tyro . 34

3.20 Simple Join Operation Conversion by Tyro 35

3.21 Example of Tyro’ Static Code Generation 37

vii

3.22 Example of Dynamic Code Generation in Tyro 38

3.23 Input Test Cases . 39

3.24 Failed Verification . 40

3.25 Successful verification . 40

4.1 Input Python program to find maximum 43

4.2 Generated PySpark code with Map Operation by Tyro 44

4.3 Generated PySpark code for Maximum Number by Tyro 44

4.4 Python program to find the average of number from a list 45

4.5 Generated PySpark Average . 46

4.6 kNN Algorithm in Python . 47

4.7 Generated PySpark KNN Code . 48

4.8 Python program to find average using UDF 48

4.9 Final Generated PySpark Code in Reduce Stage 49

viii

LIST OF TABLES

3.1 Map Conversion . 28

3.2 Reduce Conversion . 30

3.3 Pattern matching for aggregate functions 30

3.4 Concatenated filter operations after Filter Transformation in the grad-
ual synthesis of Tyro . 33

3.5 Global synthesis counter and its stages 41

4.1 Summary of Tyro’s Translation . 50

4.2 Speed up comparison of generated programs 51

ix

ACKNOWLEDGMENTS

Through my Master program at Baylor, many people played important roles.

I would like to express my sincere gratitude and appreciation to them. My advisor Dr.

Gregory D. Speegle, is the most important person who helped me shape this research

idea. He is very helpful, patient and tolerant of many mistakes I have made. He

sets a high standard for all of the work with great enthusiasm for research. I greatly

appreciate everything he has done for me. I would also like to thank other committee

members, Dr. Pablo Rivas and Dr. Enrique Blair for their perspective on my work

which helped me improve the work presented in this thesis. I am also extremely

thankful to the Department of Computer Science at Baylor University for providing

me with the opportunity to conduct this research. At last, I want to thank my family

and friends who have provided invaluable support not just for research but everyday

life. Without them the path to this thesis would have been quite difficult. Being far

from home was tough but with constant love and motivation from my parents, my

sister and friends in Nepal have made the journey less painful. I thank you all for the

great encouragement and support.

x

To my parents and my late grandmother

xi

CHAPTER ONE

Introduction

Parallelism has been a long pursued goal in the world of programming (Boyer

and Moore 1984)(Gilles 1974). This programming paradigm has dynamically grown

in the field of computer science with the rapid development of modern computer

hardware (Ksiazek, Marszalek, Capizzi, Napoli, Po lapl, and Woźniak 2018). Paral-

lel computation is considered as high-end computation and involves breaking up of

problems into smaller parts and solving them concurrently (Culler, Singh, and Gupta

1999). In the present context, the need to analyze huge amounts of data has led

to modern architectures that support parallelism along with high level programming

abstraction to take advantage of the underlying architecture (Nayak, Wang, Ioanni-

dis, Weinsberg, Taft, and Shi 2015). So, parallel programming can result in huge

performance gains compared to sequential programming (Ahmad and Cheung 2018;

Fedyukovich, Ahmad, and Bodik 2017).

Popular parallel frameworks like MapReduce (Dean and Ghemawat 2004),

Apache Flink (Katsifodimos and Schelter 2016), Spark (Zaharia et al. 2010), Hadoop

(Shvachko, Kuang, Radia, and Chansler 2010), and Hive (Thusoo et al. 2009) are used

in developing data-intensive applications and have varied and highly efficient imple-

mentations. However, generally, parallel programming is quite complex and difficult

to learn (McKenney 2017). The complex problem of developing correct and efficient

parallel programs can only be managed if the user has a deep and proper understand-

ing of the paradigm. Modern parallel frameworks have made parallel programming a

bit less painful to use(da Silva Morais 2015; Dobre and Xhafa 2014; Akil, Zhou, and

Röhm 2017); however, to leverage these frameworks, the programmer still has to be

very familiar with their APIs and the parallelism is limited by the framework..

1

An alternative approach is to generate a parallel program from a sequential

one. Although such conversion of sequential programs into parallel paradigms is

not easy or even always possible, as a developer must first understand the existing

code and then rewrite the same functionality using various APIs calls. This requires

familiarity with the frameworks and the API calls, which is made more challenging

by the limited documentations of the constantly evolving frameworks (Nasehi, Sillito,

Maurer, and Burns 2012). The whole process of rewriting the code into a parallel

frameworks requires a lot of time and expertise.

Using computers to provide rare expertise is highly valuable. A compiler-based

tool can convert sequential programs into parallel programs. The compiler must know

where the parallellism is possible and convert the existing code into new parallel code

that can be executed in the target framework.

Tyro is a new tool for translating a sequential Python program into a semanti-

cally equivalent PySpark (Nandi 2015) program. Tyro uses techniques from classical

compiler like pattern matching rules (Pierre-Etienne, Ringeissen, and Vittek 2003)

where compilers apply rules that match different input code patterns. With pattern

matching, Tyro can translate code fragment, into the target framework. As far as

we are aware, there is no such tool that converts a sequential Python program to a

PySpark program. However, there exists compilers for translating Java programs into

the MapReduce paradigm (Ahmad and Cheung 2018).

Tyro identifies parallelizable code segments and then converts each code pat-

tern into equivalent PySpark operations. For this translation to work, we start by

exploring the existing program. Using the Python AST package, we search for key

code fragments that can be translated to the parallel framework. Tyro utilize the

Gradual Synthesis for Static Parallelization (GRASSP) (Fedyukovich, Ahmad, and

Bodik 2017) approach to convert the selected fragment from the existing code. The

key idea behind GRASSP is to gradually grow the translation process i.e move from

2

simple conversions to complex conversions on subsequent iteration. It is a staging

solution where each stage adds a layer of complexity to the solution.

Once the code generation is complete, we verify that the existing and gen-

erated codes are semantically equivalent. In general, to determine if two functions

are operationally equivalent is undecidable (Boyer and Moore 1984). However, Tyro

simplifies the verification process by using the testing feature of software engineering

(Dasso 2006; Jiang and Su 2009). Tyro tests generated parallel program (fragments)

using multiple test cases provided by the user and subsequently compares the results.

The verification process is successful if the parallel program passes all of the test

cases. If any of the test cases fails, the whole verification fails, and Tyro moves to

the next stage of the gradual synthesis.

Tyro is implemented in Python and performs experiments on different se-

quential programs. For each sequential program, operation translation and gradual

synthesis is evaluated by translating various sequential fragments of the program into

the parallel framework. Eventually, the approach of operation translation can be used

in creating compilers that can go beyond MapReduce for parallelization.

The remainder of this thesis is structured as follows: Chapter 2 gives some

necessary background and reviews the related work. Chapter 3 presents the overall

system architecture with explanation of each component. Chapter 4 confirms the

results of Tyro and discussion about them. Chapter 5 summarizes and discusses

ideas for future work.

3

CHAPTER TWO

Background

2.1 Program Synthesis

Program synthesis is the process of producing an executable program from a

given specification (Manna and Waldinger 1980). The algorithmic synthesis produces

the program automatically, without intervention from an expert. A program itself

can be a program specification, so synthesis is typically concerned with the trans-

formation of the program. Tyro uses algorithmic program synthesis. In the paper

(Bodik and Jobstmann 2013), the authors talk about various type of program synthe-

sis; however they focus on a reactive synthesis which aims to automatically construct

a reactive system from the formal specification. Along with synthesis, the authors

also talk about formal verification. After proper program synthesis, a formal verifi-

cation (Keller 1976) is required to check the correctness of the program. Developers

usually rely on simulation to check if the constructed system meets their intent. In

Tyro, the formal verification is done using the given test cases along with the input

Python code. Program synthesis can also be a good method to transform a program

using methods like enumeration, deductive searching, and constraint solving (Gul-

wani, Polozov, Singh, et al. 2017) into different forms like converting application

logic (Java) into SQL queries (Cheung, Solar-Lezama, and Madden 2012). Likewise

program synthesis is a good tool for debugging and can be used as a basis for manual

transformation.

GRASSP (Fedyukovich, Ahmad, and Bodik 2017) is a program synthesizer

in which a program is partitioned into a sequence of segments, and each segment is

processed separately. The partial output for the segments are merged into the final

program. It has been implemented in an SMT-based programming language Rossette

4

(Torlak and Bodik 2013) and evaluates looping programs in C++. A GRASSP so-

lution was able improve the performance by factor of five relative to the serial code

on an 8 thread machine. The concept of gradual synthesis is used in this project. In

general, gradual synthesis is a process of finding the optimal solution for a function f

from a list of solutions, starting from simple and gradually increasing in complexity.

Tyro also uses a similar concept of gradual synthesis, where it starts from the

simplest parallel operations (Map like expressions) and gradually increases to other

operations until it finds the solution. Currently, Tyro works on six different search

spaces but the future work looks to extend these spaces (Section 5.1.4).

2.2 Similar Tools

2.2.1 Casper

Casper (Ahmad and Cheung 2018) is a new tool that automatically trans-

lates sequential Java code into the MapReduce paradigm. The authors of the paper

discuss how Casper identifies potential code fragments and translates them. It has

two major steps for this whole process: Program Synthesis where it searches for a

program summary of each code fragment and Code Generation which generates exe-

cutable code from the program summary. Comparing Casper’s generated code with

the original code, the generated code performed up to 30x faster on an AWS cluster

of 10 instances.

Program synthesis is a key component of Casper, and it searches for MapRe-

duce programs which it can rewrite to match a given input sequential code. Casper

uses program synthesis to reduce the search space. During this process, Ahmand

and Cheung designed their own high-level intermediate language (IR) that lets them

describe their program summaries. The IR is designed in such a way that it is easy

to transform the IR into various programming language. Figures 2.1 shows snippet

of IR language with input sequential code.

5

(a) Input: Sequential Java Program

(b) Output: Apache Spark Program

Figure 2.1. Translation of a sequential Java codes into Apache Spark codes (Ahmad
and Cheung 2018)

Casper has three major components in its system architecture: a Program

Analyzer, a Summary Generator, a Code Generator. Program Analyzer consists of a

Java parser, a code fragment identifier,a static code analyzer, and verification condi-

tions. Next, the summary generator uses all the information provided by the program

analyzer to synthesize and verify the program summary. To speed the search, it uses

various techniques such as defining search spaces and incremental grammars with its

search algorithms. It enumerates program summaries within the search space and

6

verifies it against the verification condition. A verified summary denotes that a effec-

tive translation is found. The code generator translates the selected summary into

executable spark codes. Figure 2.1a shows an input sequential Java program with its

generated summary. The summary generated here is the intermediate language (IR)

designed by the authors.

Tyro shares major aspects with Casper. The initial static code analysis of

Casper is similar to code analysis of Tyro. Both tool use ASTs for code analysis. The

IR of a parsed code is good for code generations. However, Tyro doesn’t use IR or any

intermediate languages. Rather than focusing on IR languages, Tyro focuses on oper-

ation translation by using meta-information (Section 3.2). The meta-information is a

data structure which acts as a central repository to each component of Tyro. It holds

all the information of the input program which includes storing all of the functions in

the program for each operation where parallelism is possible. The Intermediate Rep-

resentation of Casper is used for generating summaries where as the meta-information

is used by each component from analysis to code generation in Tyro. The operation

translation will eventually lead us to our goal of going beyond MapReduce. Casper

uses double verification with Sketch (Solar-Lezama 2008) and Dafny (Leino 2010),

while Tyro uses unit testing where the test cases are provided by the user.

The whole process of translating Java code into MapReduce code is quite slow

in Casper as its needs to search for correct summaries. With our method of operation

translation, the whole process of generating summaries can be skipped making the

conversion of parallel code much faster, although currently more limited.

2.2.2 Parsl

Another tool in the realm of parallel programming in Python is Parsl (Babuji

et al. 2019). It is a parallel scripting library that supports the development and exe-

cution of asynchronous and implicitly parallel data-oriented workflows. The authors

7

have developed a new architecture where selected Python functions and external ap-

plications are connected by shared input/output data objects. Parsl is designed to

work on both traditional and new analysis models. The Parsl architecture consists of

Parsl scripts, a data flow kernel, and executors. Parsl scripts are decomposed into a

simple dependency graph by the data flow kernel (DFK). The DFK also manages the

Parsl Apps on a variety of sites. Parsl scripts are comprised of standard python code

with an added number of “apps“. The authors explained these “apps“ as annotated

Python functions. Executors are provided by the developer as specifications.

Parsl supports various executioner providers like AWS, Azure, and so on. With

the help of the dependency graph, Parsl executes its workflow. The tasks are enqueued

in these graphs and a queue is maintained for execution. With the selected executors,

Parsl executes these tasks. The authors state that it is an easy to use model and

can easily be integrated into existing environments. It includes various features like

automated elasticity, multi-site execution, fault tolerance, automated direct and wide

data management.

Parsl is developed for workflow management rather than converting sequential

code. Considering the major trend of using high level languages for programming and

the growing need of parallel computing, Parsl combined these two trends to create a

workflow management tool i.e, it allows parallelism to be expressed using decorators in

existing Python code. Workflow management and easy integration are good features

of Parsl. However, Tyro has a completely different view than Parsl. Parsl provides

various infrastructure and architecture in executing a parallel programs with extra

information. This again reverts back to the problem of learning new frameworks

and APIs. The user has to know about decorators, executors and other features to

leverage Parsl. Tyro seeks to avoid this learning curve. Tyro focuses on converting

sequential programs into PySpark programs without any additional information apart

from tests which should exists for the sequential program anyway. The test cases

8

are also written in Python so the user doesn’t have to know any other languages.

Eventually, frameworks like Parsl might serve as the target for Tyro

2.2.3 Emma

In search of going beyond MapReduce, we found Emma (Alexandrov, Kat-

sifodimos, Krastev, and Markl 2016) - a language deeply embedded in Scala, that

provides implicit parallelism through declarative data flows. The authors talk about

MapReduce as a good fit to work on generalized processing and aggregation of a single

collection of a complex object. However, when expressing more complex programs,

MapReduce reveals many limitations that hinder the programmer’s productivity. A

well know example is Join in a MapReduce framework like Hadoop. Emma provides

parallelism transparency, advance optimizations with declarative data flows and a

transparent execution engine. Emma uses an intermediate language representations

to represent various operations. Instead of using an AST, Emma uses monad com-

prehension which is a layered intermediate representation where dataflow expressions

found in the original AST are converted into a declarative, calculus like representa-

tion.

However, in the end, Emma is another novel language designed to have better

performance utilizing the existing data-parallel execution engines, while Tyro con-

verts a sequential program to a parallel program whenever possible. Likewise Tyro

simply uses the AST to convert such operations instead of using complex monad

comprehensions.

2.3 AST

The syntax tree of any program is a data structure which shows how different

segments of the program are to be viewed as a grammar. The process of converting

programs into a syntax tree is called parsing. The exact form of these trees are not

convenient, so a modified form of syntax tree is used called Abstract Syntax Trees

9

(Grune, Van Reeuwijk, Bal, Jacobs, and Langendoen 2012). The Abstract Syntax

Trees are used as intermediary representation in many of the compilers (Grosch and

Emmelmann 1990; Sarcar and Cheon 2010; Nystrom, Clarkson, and Myers 2003). A

compiler generally parses the different source files of a program and then generates

an AST. Once the AST is produced from the source code, various static analysis

can be performed. Traditionally, most types of static analysis depends on visitor

pattern style traversals (Palsberg and Jay 1998) where separate methods are created

to handle each type of node in the AST (Aho, Lamb, Sethi, and Ullman 2007). Tyro

extensively uses the AST for translation. Specifically, Tyro uses the Python AST

standard library (Van Rossum and Drake 2009) to parse and manipulate the syntax

tree and its nodes.

10

CHAPTER THREE

Methodology

3.1 Overview

The whole process of generating parallel programs from sequential programs

involves multiple stages. Figure 3.1 illustrates the overall design of Tyro. Tyro

has five major components: a Program Analyzer, a Feature Extractor, a Component

Transformer, a Code Generator, and a Verifier.

Figure 3.1. Tyro’s System Architecture

11

As with other systems (Ahmad and Cheung 2018; Dean and Ghemawat 2004),

Tyro works on a sequential program that iterates over large data sets. Clearly, such

programs are the prime candidates for obvious parallelism, such as the Map function in

MapReduce and the creation of RDDs in PySpark. Tyro takes a Python program with

loops that sequentially iterate over data and translates those loops into a semantically

equivalent PySpark program.

Figure 3.2a is an example of a sequential program that iterates over a list of

numbers and generates the sum of the numbers. Tyro accepts this code as input and

parses the source code into an Abstract Syntax Tree (AST) via the Program Analyzer

(Section 3.2). With help of the AST module provided by Python, the Program

Analyzer extracts all of the information on the program. The output of the Program

Analyzer is a JSON like structure called Meta-information. The meta-information is

key for all of the stages of Tyro, as it stores all of the nodes along with additional

information of the node. It acts as a central repository in which each component

access the required data.

The meta-information is passed to the Feature Extractor, where all the func-

tions, loops, and operation inside the loop nodes are extracted. The goal of Tyro at

this stage is to identify possible parallelism. Once the code fragments are detected,

they are passed to the Component Transformer as updated meta-information. The

updated meta-information already has all the extracted AST nodes and their infor-

mation. The Component Transformer module uses meta-information to translate

Python operations and loops into PySpark operations. These translated operations

are stored in a list along with their input data sets. Gradual program synthesis

that generally starts from Map operation occurs in this stage. The synthesis stage is

represented by a global variable.

12

According to the synthesis stage, the Component Transformer translates the

identified Python operation to its respective PySpark Operation. After the transla-

tion of all of the identified operations, the Component Transformer sends the meta-

information and the translated operations list to the Code Generator. The Code

Generator glues everything together by replacing the identified loops with the trans-

lated operations. It also adds basic PySpark commands to initialize the execution

environment. Once the code generation is complete, the generated code must be

verified by the Verifier.

The Verifier module verifies the generated code with the test cases provided

as input as shown on Line 9-26 in Figure 3.2a. In this case, the verification fails in

the Map stage of the program synthesis. If the verification fails, the global variable is

increased and Tyro starts again from the Component Transformer. As the synthesis

stage increases, Tyro repeats the same process as explained above. In this stage, Tyro

uses pattern matching to use the builtin features of PySpark.

For example, on Line 7 in Figure 3.2b, Tyro matches the reduce operation to

a builtin function called sum(). After generated the new code, the Verifier verifies

the generated program. If the verification process is successful, Tyro outputs the

generated code. For the input program in Figure 3.2a, the output is shown in figure

3.2b.

3.2 Program Analyzer

In order to begin the translation process, some information about the input

program is needed. So for this process, Tyro uses the Program Analyzer. The Pro-

gram Analyzer has two major tasks: (1) Parsing the source code into an AST, and

(2) Generate meta-information about the input program. The first task is done by

the AST parser and the second is done by the Static Code Analysis.

13

(a) Tyro’s Input: Sequential Python Program (b) Tyro’s Output: PySpark Program

Figure 3.2. Translation of a sequential Python program into a PySpark program by
Tyro

3.2.1 AST Parser

Tyro uses the standard Python library called Python AST(Van Rossum and

Drake 2009) for parsing the input program into ASTs. The Python AST module is a

standard library provided by Python for parsing Python programs into trees based on

the Python abstract syntax grammar. The abstract syntax itself might change with

each Python release; this module helps to find out programmatically what the current

grammar looks like. For every version change or update in the Python language, the

AST of that program also changes. Developers usually add/remove features or even

change the structure of the syntax tree. So, this library enables parsing the ASTs

without worrying about the version changes. In Figure 3.3, a simple visualization

of the function sum array shown in Figure 3.2a is converted into a AST using the

14

Python AST library provided by Python. This syntax tree is passed to the Static

Code Analysis for further processing.

3.2.2 Static Code Analysis

The syntax tree parsed by the AST Parser is traversed using functions within

the tree with help of the same Python AST library. The parsed AST is now ana-

lyzed to gather information about the input program. With the walk feature of the

AST library, the Static Code Analysis generates all of the information of the various

functions, and input parameters. The information generated at this stage is stored

in a JSON like structure called meta-information (Section 3.2.3). Figure 3.4 shows

the basic structure of the meta-information with all its substructure. In the Static

Figure 3.3. Conversion of a Python function into Abstract Syntax Tree (AST)

15

Code Analysis, Tyro only accesses information like the filename, the lines of code, the

imports, and the datasets. The parameter filename which is the filename of the input

program is used when generating the output and is a piece of additional information

not available in the parsed syntax tree. The Python file read operation provides the

filename for Tyro. Further, it also stores all the functions found in the input program

using the Python AST library. In Figure 3.3, we can see that the root body[0] consists

of an AST instance of FunctionDef. The Static Code Analysis traverses over all of

the nodes provided by the AST parser and checks for instances of FunctionDef. With

each detection, Tyro adds the AST node of the function and its function name to the

substructure function information in the meta-information.

Tyro only scans for function nodes since Python is more of a functional pro-

gramming language. Tyro assumes that each function has an independent task to

complete. More complex function interaction is a future work (Section 5.1).

3.2.3 Meta-information

The meta-information structure has four different substructure: Program In-

formation, Function Information, Loop Information, and Operation Information. Fig-

ure 3.4 shows meta-information and its substructure.

The Program Information stores all of the program information like Filename,

line of codes, data sets, and imports used in the original program. All of the functions

present in the program are stored as an array of function information. The substruc-

ture Function Information stores the initial and the final line numbers, the parameters

of the function, and so on. The AST node of the function itself is stored in the func-

tion information because if the nodes are not stored, Tyro has to repeatedly search

the whole tree every time for the information. The function information also stores

the information of all loop fragments present in the function. The Loop Information

substructure stores all of the information regarding a loop including the AST node for

that loop as well. It holds flags for a filter, a User Defined Functions (UDFs) called

16

Figure 3.4. Meta-information structure used in Tyro

in the loop, and if the loop is nested. These components are later used in the gradual

program synthesis by the Component Transformer. Loop Information also stores all

of the operations inside that loop fragments as an array of Operation Information.

The operation information stores the information about operations along with the

filter index if applicable. It stores the transformed operation of the extracted AST

node.

The meta-information in Tyro is a Python class, however for simplicity the

structure is expressed in JSON as shown in Figure 3.4. For example, the meta-

information of the input program in Figure 3.2a is represented in Figure 3.5 after

completion of all required stages by Tyro. The extraction and conversion of the

meta-information is discussed further in Section 3.3 and Section 3.4.

17

Figure 3.5. Meta-information after the completion of all steps in Tyro

3.3 Feature Extractor

The extraction process is a crucial phase of Tyro. Here, operations that can

be translated are extracted and passed on to the next stage. Since Tyro is con-

verting sequential operations into PySpark operations, it must figure out where and

how these conversions can be done. It again uses the Python AST library and the

meta-information to extract the required operations, loops, and function bodies and

converts them to PySpark operations, if required.

The Feature Extractor has three major components: a Loop Extractor (Section

3.3.1), an Operation Extractor (Section 3.3.2), and an Operation Converter (Section

3.3.3). Each component modifies the meta-information to include more accurate

representations.

18

First, the Loop Extractor iterates over the list of the AST functions nodes

in the meta-information. These functions nodes are already stored in the meta-

information by the Static Code Analysis (Section 3.2.2). The Loop Extractor scans

each function node using the walk feature of AST. Each loop fragment detected in

each function updates the substructure loop information in the meta-information.

The Operation Extractor then iterates through each loop node in the meta-

information and captures all of the operations present inside these loop fragments.

The captured operation fragments/nodes are passed to the Operation Converter.

Finally, the Operation Converter converts all of the arithmetic and logical op-

erations previously extracted to an intermediate form so that conversion from Python

Operation to PySpark Operation becomes easy. All of the components of the extrac-

tion stage use the Python AST library to walk over the different extracted AST

nodes.

3.3.1 Loop Extractor

Each function’s AST node has already been stored in the meta-information by

the Program Analyzer. The Loop Extractor searches for loop fragments within each

function’s AST node stored in the meta-information. With the help of the Python

AST library, it processes each node recursively. From the documentation of Python

AST, there is no guarantee about the order of the node. But it guarantees that it

will scan through every node present in the tree (Van Rossum and Drake 2009).

First, the Loop Extractor analyzes each loop body for static information like

line numbers and the input data set of the loop body. The line numbers help us to

replace the loop body with a new PySpark operation in the Code Generator phase.

Likewise, flags like filter checks, UDFs checks, and nested loop are set in this stage.

These flags denote whether the loop fragment has control statements, user-defined

function calls, or a nested loop within the loop body.

19

The filter flag is set to true if the loop body has instances of some control

structure like ast.If. If there is another user-defined function call within the loop

fragment then the UDF flag is set to true. If the loop body has another instance of a

for loop then Tyro assumes it as a nested loop and sets the nested loop flag. Currently,

Tyro only scans instances of ast.For (for loop fragments). Other loop instances such

as ast.While are future work discussed in Section 5.1.1.

The Loop Extractor only updates the Loop Information of the meta-information.

Figure 3.6 is the updated substructure (Loop Information) of the meta-information

for input program in Figure 3.2a . The flags has filter, has udf, has nested have been

set false as they do not pass the flag checks of the Loop Extractor. The filter condi-

tion in the substructure is empty because it will be processed late by the Operation

Extractor (Section 3.3.2) to extract all of the filter condition if there exists. Likewise,

the operation list is also empty in this stage because the Operation Extractor will

extract operations after the loop extraction is complete.

Figure 3.6. Updated Loop Information substructure of the meta-information after
Loop Extractor with all flags

20

3.3.2 Operation Extractor

After the Loop extractor is complete, Tyro moves to a lower level detail opera-

tions extraction where operations such as arithmetic operations and logical operations

within a loop fragments are processed. The Operation Extractor has two phases: a

Arithmetic Operation Extraction, and a Logical Operation Extraction. The Logical

Operation Extraction executes only if the Loop Information in the meta-information

has the filter flag set to true.

3.3.2.1 Logical operation extraction . If the meta-information states that

there are logical operations within a loop body, then the logical extraction process is

triggered. The nodes in the Loop Information substructure are searched for instances

of ast.If, ast.elif, ast.else and appends AST nodes to the filter list. The filter list is a

temporary structure that stores all of the filter operations before it gets converted by

the Operation Converter (Section 3.3.3). These nodes are still stored in the structure

of ast.Node as shown in Figure 3.7. For example, a simple Python code with if

statements have the following AST structure as shown in Figure 3.7.

Furthermore, if any arithmetic operation is present inside the logical operation,

it appends the filter index that denotes which operations are inside the block of the

filter operation. In Figure 3.7, the filter module has two branches: test and body.

The Logical Operation Extraction after detecting the ast.If instance extracts the

node and appends into a temporary structure called Filter List. Figure 3.8 is the

updated structure after the logical operation extraction is complete for the node

shown in Figure 3.7. The variable FilterOperations in the structure is empty at the

moment because the Arithmetic Operation Extraction extracts all of the arithmetic

operations to the next step.

3.3.2.2 Arithmetic operation extraction. Tyro discovers the operation per-

formed inside the loop fragments. If the filter flag in the meta-information is true then

21

(a) Filter Operation in Python (b) Converted Abstract Syntax Tree of operation on (a)

Figure 3.7. AST structure of a filter operation

the extraction process begins by processing the filter list passed by the logical oper-

ation extraction. Figure 3.8 on Line 2 shows all of the filter operation nodes stored.

The arithmetic operation extraction processes each node present in the filter list and

searches for instances such as ast.Assign, ast.AugAssign, ast.BinOp, ast.UnaryOp. Af-

ter each such instance is found, the arithmetic extractor appends the filter operation

with its filter index as shown in Figure 3.9.

After the extraction of arithmetic operations from the filter node, the arith-

metic operation extraction processes the node apart from filter nodes. In this next

step, the Arithmetic Extractor processes the remaining nodes in the Loop Informa-

tion substructure. The operation list updates with similar instances found by the

Arithmetic Extractor. The operation list is another temporary structure that stores

all operation nodes in a loop fragment. Figure 3.10 shows a temporary structure that

stores all the remaining arithmetic operations in the loop fragments. The operation

list and filter list are passed to the Operation Converter (Section 3.3.3) to convert

these complex node structures into an intermediate representation.

22

Figure 3.8. Temporary structure of Filter List

Figure 3.9. Complete Filter List after Operation Extraction inside a filter operation

3.3.3 Operation Converter

After the extraction of all of the logical and arithmetic operations, Tyro con-

verts these complex nodes into an intermediate form using Operation Converter. It

starts the conversion by converting each operations from the FilterList shown in Fig-

ure 3.9. While AST nodes can be very complex, Tyro only requires a few pieces

of information from the node itself. To filter data from the given dataset, we only

require left, ops, and comparator as shown in Figure 3.3. The ops in the node is

stored as an instance of the Python AST like ast.EQ is ”==”. These ops instances

are converted into their logical forms such as <,>,<=, and so on. Figure 3.11 shows

the result of the filter conversion of the AST node shown in Figure 3.7. The ’0’ in

Line 9 of the Figure 3.11 is the filter index number. The index number is later used

to identify the correct operation inside its body. The filter flags hasElse and hasElif

is later used by Code Generator and Component Transformer discussed in Section

3.5 and Section 3.4 respectively.

The operation converter has another task to convert the arithmetic operations

to an intermediate representation such that complex AST nodes are easier to process.

23

Figure 3.10. Temporary structure operation list after extracting all arithmetic node
in a loop fragment

The intermediate representation converts an AST node structure shown in Figure 3.7

into a binary operation like a = a + 1.

In Figure 3.3, the body node has the arithmetic operation that needs to be

converted into an intermediate representation. The binary structure of the operation

should of the form target = left ’op’ right where op denotes the operator. Also, in

Figure 3.7b, we can see the instance of the body is ast.AugAssign a unary opera-

tion. The unary operation is converted by simply making the ’left’ operation as the

target and the value as ’right’ as shown in Figure 3.12. The meta-information gets

updated with the intermediate form. Again, the Python AST library helps in all

these conversions.

Figure 3.11. Filter structure after operation conversion

24

(a) Unary Operation (b) Binary Operation (c) Complex Binary Operation

Figure 3.12. Different operation conversion in Tyro

Figure 3.12c shows the nested structure of complex operations that are created

by recursively parsing the AST. Once the operation conversion process is complete,

the meta-information is updated with converted operations and passed forward to the

Component Transformer stage.

3.4 Component Transformer

Once the feature extractor phase is complete, the component transformer

phase begins. In this phase, gradual synthesis modifies the results. Initially, the

components are transformed into Map operations, but if the result fails the Veri-

fier, the synthesis stage increases. Tyro then moves to more complex operations like

Reduce. Currently, Tyro works only on lists of numbers i.e on large-scale arrays of

numbers. More complex data types and file handling is discussed as future work in

Section 5.1.2.

Tyro has already converted the extracted operation into an intermediate form.

These converted or intermediate structures are stored in the meta-information. Tyro

utilizes gradual synthesis for transforming these Python operations to PySpark opera-

tions. The different stages in Tyro’s gradual synthesis are: Map Transformer (Section

3.4.1), Reduce Transformer (Section 3.4.2), Filter Transformer (Section 3.4.3), User

Defined Function (UDF) Transformer (Section 3.4.4) and Join Transformer (Section

3.4.5). Tyro generally begins with the Transformer phase from Map Transformer.

25

However, if its nested loop or UDF flag is true, then the transformation stars with

the Join transformer or the UDF transformer. The Map transformer converts the ex-

tracted operation into a Map operation of PySpark. The Code Generator then uses

the transformed operations which generate the PySpark codes. After that, the verifier

uses unit tests provided by the user. If the verification is successful, the synthesis is

complete. However, if the verification fails, the gradual synthesis moves into another

stage by increasing the global synthesis variable.

Currently, our domain of sequential program analysis is covered by these

stages. These stages can also be interrelated with each other as the Reduce trans-

former stage can use the Filter Transformer to get all the filter components of the

current loop fragments. Similarly, a UDF Transformer can use Map or Reduce Trans-

former to convert an operation into Map or Reduce operation in PySpark. Before

explaining Tyro’s Component Transformer, let us look at PySpark operations. There

are two types of PySpark operations: Transformations and Actions.

The transformation is a function that produces new RDDs from the exist-

ing RDDs. RDD stands for Resilient Distributed Dataset and it is a fundamental

structure of PySpark. An RDD is an immutable collection of objects. Actions are

PySpark functions that return a value to the driver program after running a com-

putation on the dataset. For example, a map is a transformation that passes each

dataset element through a function and returns a new RDD representing the results.

On the other hand, a reduce is an action that aggregates all of the elements of the

RDD using some function and returns the final result to the driver program. There

are more than 80 different PySpark operations. Currently, Tyro supports the map,

filter, reduce, join, and zip operations of PySpark. Furthermore, Tyro utilizes built-

in function like Sum(), Count(), Min(), Max(). These built-in functions are also the

action operations of PySpark so they generate a value rather than an RDD.

26

3.4.1 Map Transformer

In this step, an operation is converted into a Map operation in PySpark. A

map in PySpark is a transformation that returns a new RDD by applying a function

to each element of the current RDD. Figure 3.13 shows a simple PySpark map where

an input RDD at Line 1 is transformed using a map function as Line 2 and the

output is a new RDD shown at Line 5. For simplicity, we have shown the output in

a list, however, we need to used another Action operation called collect to actually

convert an RDD to an list.

The meta-information makes this transformation easy as Tyro can wrap the

converted operation with a lambda function passed to the map operation. For ex-

ample, a converted operation like a = a + 1 is wrapped with a lambda function as

lambda a: a+1. Likewise, the lambda function is then wrapped by a map operation

as map(lambda a: a+1). In this way, a converted operation is transformed into the

Map operation of PySpark. However, if there are two or more operations in the loop

fragment, then each operation is converted into a separate map operation in PySpark.

The conversion process is the same for each operation. If there is a function call in

the input program, a for example function called test() is present inside the loop

fragment. It is then the map operation changes to (map(test)) to leverage PySpark

optimization. Figure 3.18 shows the efficient use of a UDF call in PySpark.

Map Transformer adds each transformed map operation to a list called the

Mapper List. The Code Generator later uses this mapper list as discussed in Section

3.5. If the filter flag in the meta-information is true then the Filter transformation

(Section 3.4.3) converts Python operation into filter operation. Table 3.1 below shows

some map transformations. In the third transformation, the result is produced by the

Reducer Transformer after it creates a map. The Map lambda function in the third

transformation uses the dimension of each row in the list to determine the lambda

value.

27

Figure 3.13. PySpark Map operation where an RDD is transformed to another RDD
with a lambda function (sc is the SparkContext)

Table 3.1. Map Operation Transformation in Tyro

Python Operation PySpark Operation
n1 = n1 + 2 map(lambda n1: n1+2)
total *= 10 map(lambda x: x*10)

sumall = sumall + (n[0] + n[1]) map(lambda x:(x[0],x[1]))

3.4.2 Reduce Transformer

After the failed verification of the Map Transformer, the global synthesis

counter is increased by 1 which means the gradual synthesis moves to the Reduce

Transformer. The Reduce Transformer converts operations to the reduce operation

of PySpark. A reduce is a PySpark action that aggregates a data set (RDD) element

using a function. The function can be a lambda function or a named function. Figure

3.14 shows a reduce operation in PySpark. We can see that reduce returns values

instead of an RDD. At Line 3, a reduced operation of PySpark calls for another func-

tion. The optimization of PySpark helps in calling a reducer without a map function.

The Reduce transformation is similar to Map transformation in that Tyro wraps the

converted operation into the reduce syntax. However, there are few more details in a

reduce operation. Reduce Transformation uses a new variable called an accumulator

in the reduce stage. An accumulator is a shared variable that has a commutative and

associative operation applied to it. For example, you can use an accumulator for a

Sum or Count. So to convert an operation in reduction, Tyro adds an accumulator.

For example, in Figure 3.12c, the operation total+ = alt/5 is already converted into

an intermediate representation that is then converted into a lambda operation where

28

Figure 3.14. Reduce operation in PySpark where sum of the values of the RDD is
returned back to driver program (sc is the SparkContext)

Tyro introduces the accumulator. Tyro now identifies that the variable total is the

accumulator in this case. Tyro transforms the structure in the following way (lambda

total, alt : total + (alt/5)). This lambda function is then wrapped by reduce syntax

as reduce (lambda (total, alt : total + (alt/5))). The key difference in the Map and

Reduce transformation is the accumulator is not used in the Map stage. Similar to

the map operation, the reduce operation can also call a function. The process of

converting multiple operations within a loop fragment into a separate operation is

similar to Map transformation. Table 3.2 shows a few reduce transformation for

given Python operations.

If the dataset is a multidimensional list, we need to call the Map transformation

to provide a map operation for the list. In Table 3.1 the 3rd transformation shows the

map operation returned by the Map Transformation. The returned map operation is

concatenated with reduce operation and this concatenated operation is added in the

Reduce list. The Reduce List is similar to the Mapper list that holds transformed

operations. The reduce list is passed to Code Generator (Section 3.5).

Likewise, the Reduce Transformer uses the filter flag to determine the Filter

Transformer (Section 3.4.3). If the flag is true, the transformation moves to the

Filter Transformer and repeats the process of Code Generator and Verifier (Section

3.6). Tyro can also use some of the builtin functions of PySpark by calling aggregate

function like Sum(), Count(), and Max(). In PySpark, the aggregate function is a

29

Table 3.2. Reduce Transformation in Tyro

Python Operation PySpark Operation
for n in numbers:

sum = sum + n reduce(lambda ac, n: ac+n)
return sum

c *= 10 reduce(lambda ac, n: ac * 10)

reduce operations as well. These functions return values for a given RDD to the

driver program. So the Reduce Transformer does one extra step of converting a

reduce operation to the aggregate function. It is done by pattern matching in a

compiler. If the current operation matches with a collection of predefined objects

shown in Table 3.3, then the reduce operation replaces the operation with a builtin

PySpark function. For example, if the lambda function adds 1 to a variable per

element the reduce operation will match with Count and replaces it by the Count

PySpark operation. These aggregate functions are an additional feature of PySpark

which Tyro is leveraging.

3.4.3 Filter Transformer

The filter flags in the meta-information triggers the filter transformer which

does not work by itself and is called via the Map or the Reduce transformer. The

goal of this transformation is to convert the filter structure in the meta-information

and convert them to the filter operation of PySpark.

A filter in PySpark is another transformation operations as it results in another

RDD after executing a function for each element in the current loop. A new RDD

Table 3.3. Conversion of the matched reduce operation into aggregate functions by
Tyro using pattern matching

Transformed Operations Matched Operation
reduce(lambda ac, n: ac + n) sum()
reduce(lambda ac, n: ac + 1) count()
filter(lambda n: n <min).reduce(lambda n : n) min()
filter(lambda n: n >max).reduce(lambda n : n) max()

30

is returned containing the elements, which satisfy the function inside the filter. Note

that though the filter transformation is not involved directly in the gradual synthesis,

it is an important step within the other transformations. All of the filter criteria is

in the meta-information.

The filter transformer has three different sub phases that converts the filter

structure into a filter operation in PySpark: if transformation, elif transformation,

and else transformation. To show how this transformation is done, we will look at

the example code in Figure 3.16a. Figure 3.16b shows the converted structure. The

structure has already been added to the meta-information.

The if transformation works on the first condition of the filter condition as

shown in Line 6 in Figure 3.16b. The first condition is denoted by the index 0 in

the filter condition. The transformation algorithm is similar to the map and reduce

transformation. For example, the first condition is transformed by adding the lambda

function to the condition i.e (lambda a: a > 500). The lambda function is wrapped

with filter syntax. The elif transformation executes if there is more than one condition

in the filter condition and also if the hasElif flag is set to true as shown in Figure

3.16b. The transformation algorithm is same as if transformation.

However, the else transformation is very different from if and elif transforma-

tions. In this case, the filter conditions are not present for else statement (See line

8 Figure 3.16a). Tyro generates a filter by negating all of the know conditions and

Figure 3.15. Filter in PySpark

31

(a) Input Filter Code Fragment (b) Converted Filter Structure

Figure 3.16. Conversion of if/else statements (a) to filter structure (b) in Tyro

creating a conjunct from them. For example, the else transformation of 3.16a would

be (lambda a: not(a > 500) and not (a == 3) and not (a < 2)).

Figure 3.17 shows the final result from filter transformations of the input code

shown in Figure 3.16a. Tyro converts each filter condition from the meta-information

to a lambda function then wraps it with filter operation as discussed above.

The Filter Transformation can also be executed after Map and Reduce Trans-

formations. Both of these transformations are executed if the filter flag in the meta-

information is set True. The Map or Reduce Transformer executes the Filter Trans-

former when the filter operations are converted to a PySpark filter operation applied

to an already converted map or reduce operation. The new operation is then trans-

ferred to Code Generation and further to the Verifier. Table 3.4 shows examples of

filter operations with map/reduce operations.

Figure 3.17. Filter Transformation in Tyro

32

Table 3.4. Concatenated filter operations after Filter Transformation in the gradual
synthesis of Tyro

Python Operations PySpark Opertation
if total == 123:

total *= 10
filter(lambda x: x==123).map(lambda x: x*10)

if h <= 2:
total = total + (alt/5)

filter (lambda h: h<=2).reduce(lambda total, alt: total + (alt/5))

if n >2:
c += 1

filter(lambda n: n >2).count()

3.4.4 UDFs Transformer

User-defined functions are a key feature in PySpark. UDFs allow programmers

to go beyond the builtin function available and process data in different ways. In this

way, the programmer can utilize the benefits of parallel computing. For this stage, the

UDF flag is set to true and the synthesis process starts from the UDF transformation

instead of the Map transformer. The UDF flags are only set if there is another

function call inside the loop fragments. Starting from the UDF Transformer stage

does not mean Tyro does not execute the Map or the Reduce Transformers, it just

starts with UDFs Transformer to make sure the Map and the Reducer Transformers

converts their operation as a user-defined function call. The gradual synthesis is the

same as explained above in the Map and the Reduce Transformer. From Figure 3.18,

we can see that PySpark handles UDF similar to how lambdas are handled in Python

or Java.

Figure 3.18. Example of user defined function (UDF) in PySpark

33

Using this key feature of PySpark, Tyro generates a function call from the

map or reduce stages according to the synthesis. However, for the reduce function, an

additional parameter like the accumulator variable might be needed for the function

to still work. The whole process inside the UDFs transformation starts from the Map

transformation and proceeds to further stages. If the verification stage is successful,

the synthesis is complete. However, if the verification fails, Tyro moves to the reduce

transformation without any changes and repeat the same process. Again, if it fails,

we move to change the function parameters i.e adding the accumulator which is done

using the global synthesis counter. Figure 3.19b shows UDF transformation in Tyro

after successful verification (discussed in Section 3.6).

3.4.5 Join Transformer

Tyro uses the Join transformer to utilize the join feature of PySpark. For

this process in the synthesis, Tyro has a few assumptions about the input program.

Tyro assumes that operations are only inside the inner loop. The operations inside

the outer loop are not currently handled. Also, as assumed by the join operation in

PySpark, Tyro assumes that the join key is the first field in each row. Further work

to relax such assumption in this stage is discussed in Section 5.1.3.

(a) Input Python Code with UDF (b) Converted UDF

Figure 3.19. Transformation in Tyro

34

Similar to the UDFs transformation, the Join transformer also has a flag in

the meta-information. So, Tyro starts from this stage if the nested loop flag is true

regardless of other flags including the UDF flag. However, the transformation is a

bit different. First, Tyro checks if there are operations other than assignment or

appending of data inside the loop. Assignment and appending of data indicates there

are no instances of ast.BinOP and ast.AugAssign. If there is none, we simply use the

join operation of PySpark to join two RDDs. In PySpark, join returns a RDD with

a pair of elements with the matching keys and all the values from both rows. Figure

3.20 shows how the nested loop is joined together. The initial two lines of the output

are generated by the Static Code Generation (Section 3.5.1) phase where it converts

the input dataset into a RDD.

Once the join has been identified, other operations can be handled as before

starting with the UDF Transformer (Section 3.4.4) if the UDF flag is set to true and if

the flag is false, then it starts with the Map Transformer and continuing with gradual

synthesis. The process is similar as described in Section 3.4.1 and Section 3.4.2 except

the input data set is the RDD created after the join.

for i in data 1 :
for j in data 2 :

i f i [0] == j [0] :
data 3 . append ((i [0] , i [1] , j [1])) # key , t u p l ey

data 1 RDD = sc . p a r a l l e l i z e (data 1)
data 2 RDD = sc . p a r a l l e l i z e (data 2)
data 1 RDD combine =data 1 RDD . j o i n (data 2 RDD)

Figure 3.20. Simple Join Operation Conversion by Tyro

35

3.5 Code Generator

After all of the operations are transformed from Python into PySpark, Tyro

needs to generate a PySpark program. The Code Generator has two different phases:

Static Code Generation and Dynamic Code Generation. Tyro starts the code genera-

tion phase with the original Python program. In addition to the original program, the

code generation uses two pieces of information (a) the updated meta-information and

(b) the transformed operations list. Combing these three inputs, the code generator

generates a PySpark code version of a given Python program.

3.5.1 Static Code Generation

PySpark programs need a specific environment to execute. This requires load-

ing the PySpark modules and initializing a SparkContext. A SparkContext represents

the connection to a Spark cluster and can be used to create RDDs and broadcast vari-

ables on that cluster. Figure 3.21 is the generated code after static code generation of

the input code shown in Figure 3.19a. The generator adds the commands at Line 1,

where it imports the PySpark libraries. Likewise, at Line 8 it starts the SparkCon-

text using ps.SparkContext(). Once a SparkContext is initialized a flag is set so that

it is not initialized again. For each function, Tyro generates a single SparkContext.

Each SparkContext initialized in the function is stopped in the same function by the

Dynamic Code Generation (Section 3.5.2). This is done for making the unit testing

execute properly. Also, in this phase, all of the input datasets are converted into

RDDs. Currently, Tyro works only with a list of numbers so it is straightforward to

convert all of the input datasets for each block as RDDs created by the SparkContext

(Line 9 in Figure 3.21). After the addition of each line in the Static Code Generation,

the line numbers in the meta-information is also increased by 1.

36

Figure 3.21. Static Code Generation in Tyro for input program in Figure 3.19a

3.5.2 Dynamic Code Generation

After static code generation is complete, the Dynamic Code Generation (DCG)

uses the meta-information and converted operations list to generate PySpark code.

The DCG edits the file generated by the static code generation. The meta-information

provides the updated line numbers where each loop fragment is present. With that

information, DCG replaces the loop fragments with converted operations. The oper-

ation list given by the Component Transformer will have operations according to the

synthesis stage. For example, it be a might map operation if the synthesis stage is

Map Transformation or an aggergate function from the Reduce Transformation. If

the synthesis stage is UDF with the addition of an accumulator, then the changed

function is also received as a parameter for DCG. The functions replace the existing

UDF. An example of such a conversion is discussed in Section 4.4. This phase is called

the Dynamic Code Generation because the work of this phase changes according to

the synthesis stage. At the end of the function and before the return statement, DCG

stops the SparkContext by adding sc.stop(). If Tyro does not add this step, the con-

nection won’t close and multiple test cases in the same program cannot be executed

for the same function. Figure 3.22 shows the results after dynamic code generation

37

Figure 3.22. Generated PySpark code by the DCG for code in Figure 3.21

for the code in Figure 3.21. Here, the loop fragments on line 10,11 in Figure 3.21 is

replaced by the PySpark operation reduce calling a UDF. Note that Figure 3.22 is

generated after the first synthesis step of Map Transformer fails. The failed synthesis

is discussed in Section 3.6.

3.6 Verifier

In this step, Tyro decides whether a generated PySpark program is equivalent

to an input Python program or not. In general, program equivalence is undecidable, so

Tyro uses the concept of unit testing (IEEE 1990) from software engineering. A unit

test is a level of software testing where individual units/components of a software are

tested. The purpose is to validate that each unit of the program performs as designed.

For the input program, the user needs to provide the unit tests. Tyro assumes that

the input program passes the tests provided. These unit test cases are executed by

Tyro to check whether the generated code is equivalent or not. The test cases are

embedded in the input sequential program as shown in Figure 3.23.

With the help of a Python package called pytest-spark, Tyro can test the gener-

ated program without any modification. Since Tyro starts and ends its SparkContext

within each function the problem of multiple connections does not affect the testing.

38

Figure 3.23. Test cases provided by the user for the input program in Figure 3.19a

Also, Tyro does not need to worry about importing any libraries while testing because

the pytest can be executed by the subprocess module available in Python. The pytest

module checks for functions with an assertion statement in it.

To successfully verify the generated program, all the unit tests should pass.

For this process, Tyro uses another Python module called subprocess. This module

allows Tyro to execute a shell or a windows command from a Python program. Fur-

ther, the subprocess also checks different output pipelines like standard output and

standard error. For successful verification, the standard error pipeline returned by

the subprocess module should be empty. For Figure 3.19a, the first transformation

stage after the UDF is a map stage. However, the map verification fails against the

given test case in Figure 3.23 which can be seen in Figure 3.24.

Two test cases fail for the generated code. After the map stage, the output

generated is a list of numbers where the test cases require a value. Thus, the assertion

in these cases fails. However, one of the test cases is checking if the result is not equal

to the expected so the test case “test wrong” passes the verification. The gradual

synthesis proceeds to another stage by increasing the global synthesis counter by one.

This starts the next stage of the gradual synthesis. After repeating the whole process

39

Figure 3.24. Failed Verification

in the next stage, the code in Figure 3.19b passes the verification as shown in Figure

3.25.

Figure 3.25. Successful verification

Table 3.5 shows all the stages used by Tyro. Note that the nested loop is

not represented in the synthesis counter because Tyro uses a nested loop only if the

nested loop flag is set to true. The gradual synthesis does not use this step in any

other step. Note that if all synthesis stages fails, Tyro cannot convert the program.

40

Table 3.5. Global synthesis counter with their respective stages used by Tyro

Global Counter Synthesis Stage
1 Map
2 Reduce with no operation change
3 Reduce with added accumulator
4 UDF with Map
5 UDF with Reduce without accumulator
6 UDF with Reduce with accumulator

Each global synthesis counter represents a separate synthesis process. Tyro

uses the global counter to determine its synthesis stage and work accordingly. The

dynamic code generator also works according to the synthesis stage.

41

CHAPTER FOUR

Results and Analysis

In this chapter, we present a comprehensive analysis of Tyro by evaluating

its ability to handle the different diverse workloads, finding an efficient translation of

code fragments, and performance gain compared to their sequential implementations.

4.1 Evaluation

Tyro was evaluated by translating several different sequential Python pro-

grams. Tyro translated 13 different Python programs from 4 different test suites. For

all of our translation experiments, we executed Tyro on a Windows 10 Machine with

Intel Core i5 1.8 GHz CPU, 8 GBs of RAM and 256 GB of SSD storage with the

latest stable version of all frameworks used i.e Spark, Hadoop and Python.

4.1.1 Test Suites

To evaluate Tyro, I created four different test suites that cover different do-

mains.

• Aggregate Functions is a test suite that includes the common aggregate SQL

functions SUM(), COUNT(), AVG(), MIN(), MAX(). The test suites have

five different files with each file performing a single SQL aggregation function.

• Nested Operations consists of two different programs. The first program is

a simple join operation between two different datasets, while the second is a

simple join with further manipulation of the results.

• Multidimensional Dataset consists of three different programs which evaluate

the translation of multidimensional data in Tyro. The test suite consists of

k-Nearest Neighbors (kNN), a simple arithmetic operation and a conditional

operation.

42

• User Defined Functions is a test suite consisting of three different user defined

functions: Conditional Sum, Conditional Count and User Defined Average.

This test suite is used to evaluate the UDF stage of Tyro.

4.2 Aggregate Functions

The aggregate functions suite verifies that Tyro can go beyond simple Map

and Reduce operations and utilize the other operations of PySpark. Figure 4.1 is an

example of an input program, in this case MAX().The input function iterates over

sequential data on Lines 3 - 4. Tyro starts with the Map Transformer which also

Figure 4.1. Python program to find the maximum number from a list (Line 1 -6)
with its test cases (Line 9 - 20)

triggers the Filter Transformer since there is a if statement in the loop. The initial

program synthesis from Tyro generates a program with PySpark Map and Filter

operation as shown in Figure 4.2. The program doesn’t pass the verification process,

so Tyro starts over with the Reduce transformation in the gradual synthesis.

43

Figure 4.2. Generated PySpark code with Map Operation by Tyro

In the reduce transformation, the pattern of operation matched with one of

the built in the function MAX(). Instead of using the reduce operation, Tyro uses

this built in function. The code in Figure 4.3 is successfully verified. Note that Tyro

identifies the loop fragments and the dataset and converts it to PySpark code that

can be executed in a parallel environment.

The next experiment performed in Tyro was calculating the average from a

list of numbers. Figure 4.4 is the input program for Tyro. The translation process

Figure 4.3. Generated PySpark code for Maximum Number by Tyro

44

is similar to the Max function but Tyro identifies 2 operations inside the loop - sum

and count. Similar to the Max() operation, the Map transformation for average also

fails and moves to the Reduce transformation. Figure 4.5 shows the output code after

successful verification.

However, after manual inspection of the generated code, we can deduce a few

key points. Tyro converts the same input dataset into two separate RDDs rather

using the initial RDD for both sum and count. In the Figure 4.5 on Line 7 and Line

9, Tyro is repeating the same conversion instead of using the already converted RDD.

This optimization is future work for this project discussed in Section 5.1.

Another key deduction from this experiment, Tyro did not use the builtin

function called mean. During pattern matching, Tyro doesn’t replace one operation

for two different python operations. Instead of going for mean, Tyro matched with

count and sum as each individual operation. The optimization of such operations

would be an improvement as Tyro can detect two operations working as a single

unit operation. However, both programs: average with sum and count operation

and average with mean operation when tested with a synthetic dataset of size 8

GB did not have a significant performance difference. This means optimization of

such two operation into single operation would be a plus point but may not have a

performance gain. Extending search space to detect such operation is the future work

of Tyro (Section 5.1.4).

Figure 4.4. Python program to find the average of number from a list

45

Figure 4.5. Generated PySpark code of the Python program in Figure 4.4

4.3 Multidimensional Dataset

This test suite was used to see if Tyro can handle multi dimensional data. The

kNN (k-Nearest Neighbour) algorithm is a simple, easy-to-implement supervised ma-

chine learning algorithm that can be used to solve both classification and regression

problems. The kNN algorithm can benefit hugely from executing in a parallel envi-

ronment (Maillo, Ramı́rez, Triguero, and Herrera 2017; Anchalia and Roy 2014). The

kNN was successfully translated by Tyro. Figure 4.6 is kNN algorithm implemented

in Python without classification or regression.

Figure 4.7 shows the translated code from Tyro.The kNN dataset in Figure

4.6 is a multidimensional dataset. The input program is using a user defined function

to calculate the distance. The experiment shows that Tyro can handle both multi-

dimensional data and user defined functions. The parsed AST results in only one

loop fragment to parallelize. Tyro starts with the UDF transformation and moves

to the Map transformation. After successful verification in the Map transformation,

the synthesis stops. Figure 4.7 is the output generated by Tyro. Again, after manual

inspection of the generated code, the function sort on Line 17 in Figure 4.6 can also

be translated into PySpark operation. It can be transformed into PySpark operation

46

Figure 4.6. kNN Algorithm implemented in Python

sortByKey(). Currently, such builtin Python functions are not translated by Tyro

which is discussed in Section 5.1.1.

4.4 User Defined Function

In general, translating User Defined functions is the goal of program synthesis.

In the Section 4.3, we have already shown a successful translation of UDF by Tyro.

The input kNN program uses a user defined function euclidean distance to calculate

distance between data points.

47

Figure 4.7. Generated PySpark KNN Code

Figure 4.8 is a complex arithmetic operation and UDF as an example input for

Tyro. This program is actually finding the average of a list of numbers. Unfortunately,

this translation by Tyro was unsuccessful.

Figure 4.8. Python program to find average using UDF

48

Figure 4.9. Final Generated PySpark Code in Reduce Stage

In the Figure 4.9 on Line 3 Tyro converts the complex arithmetic operation

and adds the accumulator. The accumulator is only updated by the driver program

as the value in the function doesn’t gives the correct answer, resulting in a wrong

result. This makes the program fail the verification process. Presently, Tyro can only

use operation translation so it does not recognize the function is only calculating the

average. The search space for program synthesis must be modified in order to give

correct result in this case. Extending the search space for equivalent programs is

future work discussed in Section 5.1.4.

Table 4.1 provides a quick summary of the Tyro’s translations along with the

number of loop fragments in the input. The optimization column denotes whether or

not the future work intends to improve the result. The optimization might be using

builtin functions, detecting more loop fragments or better operation translation.

4.5 Speed Up

For testing performance between the sequential and the parallel programs, I

conducted experiments on an AWS cluster of 9 m5a.xlarge instances (1 master node,

8 core nodes), where each node contains an Intel Xeon 2.5 Ghz processor with 4

vCPUs, 16GB of memory, and 64 GB of SSD storage.

49

Table 4.1. Summary of Tyro’s Translation

Test Suite Program Name # of Loop Fragments Optimization Required?

Aggregate Function

Sum 1 No
Count 1 No

Min and Max 2 No
Average 1 Yes

Nested Loop
Join - No Operations 2 No

Join - With Operation 2 No

Multidimensional
KNN 2 (one only translated) Yes

Sum of all 1 No

User Defined Function
Conditional Sum 1 No

Conditional Count 1 No
User Defined Average 1 (Not translated) Yes

Creating parallel programs from sequential ones is only valuable if the per-

formance of parallel programs is significantly better. The translated PySpark code

along with the original Python were executed on a synthetic dataset of 8 GB. These

datasets were divided into 8 different files (1 GB each). The file was divided in 8

parts because the sequential program couldn’t handle such huge file at once in the

master node. For PySpark, the files were stored in Hadoop File System (HDFS) with

replication factor 3. For Python, the files were stored in the master node .

Currently, Tyro does not support files so both the sequential and the generated

PySpark programs were modified in order to handle files. In the case of sequential

program, a function was added that converts the file into list of numbers and passed to

the test function. The time required to convert these files to list were not recorded.

Using the Python’s Time library, only the time required for the test function was

recorded.

On the other hand, a function that converts files into a RDD was added into

the generated parallel program. The RDD was then collected as list and passed over to

the testing function. Again, the time was not recorded for these additional changes.

In order make the environment and hardware configuration similar, the sequential

program was executed in the master node of the cluster.

50

Overall, the PySpark implementation generated by Tyro had a mean speed

up of 6.2X compare to their sequential counterparts. Table 4.2 shows the mean and

max speedup observed for different test suites. These results shows that Tyro can

effectively improve the performance of these sequential programs by retargeting the

critical code fragments for executing in a disturbed environment in this case PySpark.

Table 4.2. Translated Code Fragments and their mean and max speedups compared
to the sequential implementations

Translated Codes Mean Speedup Max Speedup
Sum 8.5x 9x

Count 7.4x 7.8x
Max 5.7x 6x
Min 5.7x 6x

Average 4.6x 5
Conditional Sum 6.1x 6.7x

Conditional Count 5.9x 6.3x

51

CHAPTER FIVE

Future Work and Conclusion

5.1 Future Work

Tyro as the name suggests, is just a beginning in the exploration of automatic

parallel programming. While successfully translating different Python programs to

PySpark programs, there are limitations in Tyro that provide opportunities for im-

provement.

5.1.1 Increased Loop Detection

Currently, Tyro only detects For loops. It is a straight forward process to

parallelize all kind of loops. Additionally, Tyro needs to check for the builtin functions

like sort or sum, which are loops in disguise. These builtin functions can be translated

by creating a catalog where all of them are stored. Other Python modules can also

be added to this catalog using annotation or configuration files.

5.1.2 Complex Data Types and File Handling

Tyro presently handles a list of numbers as an input datasets. However, it can

be extended to handle complex data types and files. In order to handle files, Tyro

can use the method textFile in PySpark which converts a file into RDDs instead of

using the method parallelize. Handling other data types is straight forward if the

input datasets is uniform i.e the input dataset has one data type.

However, if the data types are non-uniform, Tyro must be able to use the

additional feature of PySpark like DataFrames. DataFrames is a distributed collec-

tions in PySpark that acts like a SQL table. It can be manipulated using the various

domain-specific-language (DSL) functions. The program synthesis must be changed

in order to handle such functions, so further research is required.

52

5.1.3 Optimized Nested Loop Handling

Tyro can handle nested loop but with a lot of assumptions. The assumption

of no operations inside outer loop can be omitted if Tyro treats each loop separately

i.e., the outer loop is handled like a regular loop and the inner loop is handled as a

nested loop. This modification will be able to handle any operation inside the outer

loop of a nested loop.

Another assumption is that Tyro only checks for nested loops of size two.

However, if we can expand the search space to go deeper in the nested loop, Tyro can

search for multi level nested loops and handle them as explained above. The search

space of Tyro is extended in this way.

5.1.4 Extending The Search Space

Instead of using a few PySpark operations, Tyro can extend its search space

by adding multiple operations such FlatMap, GroupBy, and so on. Another addition

that Tyro can make is checking for aggregate functions without any program synthesis

i.e., test all the aggregate functions before starting any stage in the gradual synthesis.

Such additions will make the search space larger than the present one. Likewise, the

failed test discussed in Section 4.4 would have a successful translation after extending

the search space.

5.1.5 Verification

Tyro uses the unit testing as a verification tool. The unit tests currently are

sufficient for verification. However, Tyro can extend its verification process by using

verifiers like Sketch (Solar-Lezama 2008) and Dafny (Leino 2010). These verifiers do

not required test cases but rather a program specification. The specification can be

generated using the input program.

53

5.1.6 Beyond MapReduce

Tyro currently translates Python operations into PySpark operations which

are still a based on MapReduce. However, Tyro can go beyond this framework by

exploring different parallel frameworks like Parsl and Dask. These architectures allow

different features compared to existing MapReduce frameworks. For example, Dask

allows parallel computations on single machines by leveraging their multi-core CPUs

and streaming data efficiently between the cores. Not only that, it efficiently transfers

to a distributed cluster with ease. However, writing Dask programs is challenging

because it has its own data structures, interfaces and dataframes which are complex to

understand and implement. Thus, generating Dask programs from sequential program

would allow greater parallelism.

5.1.7 Partitionable Functions

After running different experiments, not all functions can be execute in parallel

environment. The functions like sum and count can easily work in sequential and

parallel world. Non-determinism is what makes a function unfit to translate to parallel

programs. A non-determinism might be working on a shared mutable variable, which

might return invalid or incorrect results.

Tyro can be applied to specific functions, called partitionable in (Sanjel and

Speegle 2020). Let f(X, Y) = Z be an iterating function over X, such that each

x ∈ X is distinguishable, Y be a dictionary of parameters appropriate to f and let Z

be a set of data items such that each z ∈ Z is distinguishable. Two distinguishable

elements may have the same value, for example, two integers with the value 7, but are

distinguished via an external mechanism, such as the location in a file or the index

of an array.

Let X̂ be a partition of X, meaning that every x̂ ∈ X̂ is a subset of X, is non-

empty and pair-wise disjoint with every other element in X̂. Furthermore,
⋃

x̂ = X.

If x̂ is in the domain of f , then f(x̂, Y) = z. Assuming all partitions are in the

54

domain of f, denote the result of applying f to each element in the partition X̂ as

f(X̂, Y) =
⋃

z = Ẑ.

A function f(X, Y) is partitionable if there exists a function g such that

g(f(X̂, Y), Y) = g(Ẑ, Y) ≡ f(X, Y).

We further define two different partitionable function called Identity Parti-

tionable (IP) and Self Partitionable (SP).

• IP Functions are the class of partitionable functions applied in the map

phase of map-reduce programs. In general, a function is an IP function if the

state is the same whenever data item x is processed

• SP Functions are the class of partitionable functions in which f and g are

the same function. For example, some functions related to relational database

operations are known to be SP functions. Consider the aggregate operators

SUM, MIN and MAX. For each of these functions, f serves the role of g,

so f(f(X̂, Y), Y) = f(Ẑ, Y) ≡ f(X, Y). While Tyro currently handles for-

loops implementing these aggregates, if a function can be discovered to be

self-partitionable, then Tyro could generate either a map or reduce operation

for that function.

5.2 Conclusion

Tyro is a new compiler that identifies and converts sequential Python code

fragments into PySpark code. With the help of pattern matching, gradual synthesis

and operation translation, Tyro generates parallel code equivalent to the original

sequential program. Tyro parses the sequential input program into an AST, then

extracts operations from the tree and finally translates the extracted operation into

a PySpark operation. Tyro uses gradual synthesis to grow the solution space. At

each stage of gradual synthesis, a unit test is performed with the given test cases.

Tyro uses a verifier that executes these test cases against the generated code. If all

tests pass, then the verification is completed and the current generated code is sent

55

as an output. After five expansions of the solution space, if Tyro cannot generate

equivalent code, then it exits.

Tyro’s operation translation is evaluated by running the experiments as shown

in Table 4.1. Specifically, we determined whether: a) Tyro can detect loop fragments

and b) convert these detected loop fragment into PySpark operations. From the test

suites and different test cases, Tyro was able to translate 13 of 15 loop fragments.

Out of 13 translations, 3 of them were map operations, 10 of them were reduce

operations. The two fragments that Tyro couldn’t translate was because: 1) Tyro

could not detect a fragment where parallelization was possible and 2) the accumulator

in PySpark cannot be manipulated by a worker node which made the generated

program to produce incorrect result.The generated PySpark code preforms up to 9x

faster compared to the original sequential programs in a 9 node cluster.

56

APPENDIX

57

APPENDIX A

Additional Results

A.1 Count

(a) Input Sequential Code

(b) Output PySpark Code

Figure A.1. Tyro’s translation for Aggregate Function Count

58

A.2 Min

(a) Input Sequential Code

(b) Output PySpark Code

Figure A.2. Tyro’s translation for Aggregate Function Min

59

A.3 Join with no operation

(a) Input Sequential Code

(b) Output PySpark Code

Figure A.3. Tyro’s translation for Join with no operation

60

A.4 Join with Operations

(a) Input Sequential Code

(b) Output PySpark Code

Figure A.4. Tyro’s translation for Join with operation inside the loop body

61

BIBLIOGRAPHY

Ahmad, M. B. S. and A. Cheung (2018). Automatically leveraging mapreduce
frameworks for data-intensive applications. SIGMOD ’18, New York, NY, USA,
pp. 1205–1220. Association for Computing Machinery.

Aho, A. V., M. S. Lamb, R. Sethi, and J. D. Ullman (2007). Compilers, principles,
techniques, tools. Pearson Addison Wesley.

Akil, B., Y. Zhou, and U. Röhm (2017). On the usability of hadoop mapreduce,
apache spark apache flink for data science. In 2017 IEEE International Con-
ference on Big Data (Big Data), pp. 303–310.

Alexandrov, A., A. Katsifodimos, G. Krastev, and V. Markl (2016, June). Implicit
parallelism through deep language embedding. SIGMOD Rec. 45 (1), 51–58.

Anchalia, P. P. and K. Roy (2014). The k-nearest neighbor algorithm using mapre-
duce paradigm. In 2014 5th International Conference on Intelligent Systems,
Modelling and Simulation, pp. 513–518.

Babuji, Y., A. Woodard, Z. Li, D. S. Katz, B. Clifford, I. Foster, M. Wilde,
and K. Chard (2019). Scalable parallel programming in python with parsl.
In Proceedings of the Practice and Experience in Advanced Research Comput-
ing on Rise of the Machines (Learning), PEARC ’19, pp. 22:1–22:8. ACM.
babuji19scalable.pdf.

Bodik, R. and B. Jobstmann (2013, October). Algorithmic program synthesis:
Introduction. Int. J. Softw. Tools Technol. Transf. 15 (5–6), 397–411.

Boyer, R. S. and J. S. Moore (1984). A mechanical proof of the unsolvability of
the halting problem. Journal of the ACM (JACM) 31 (3), 441–458.

Cheung, A., A. Solar-Lezama, and S. Madden (2012). Inferring sql queries using
program synthesis. arXiv preprint arXiv:1208.2013 .

Culler, D., J. P. Singh, and A. Gupta (1999). Parallel computer architecture: a
hardware/software approach. Gulf Professional Publishing.

da Silva Morais, T. (2015). Survey on frameworks for distributed computing:
Hadoop, spark and storm. In Proceedings of the 10th Doctoral Symposium in
Informatics Engineering-DSIE, Volume 15.

Dasso, A. (2006). Verification, validation and testing in software engineering. IGI
Global.

62

Dean, J. and S. Ghemawat (2004). Mapreduce: Simplified data processing on
large clusters. In OSDI’04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, pp. 137–150.

Dobre, C. and F. Xhafa (2014). Parallel programming paradigms and frameworks
in big data era. International Journal of Parallel Programming 42 (5), 710–738.

Fedyukovich, G., M. B. S. Ahmad, and R. Bodik (2017, June). Gradual synthesis
for static parallelization of single-pass array-processing programs. SIGPLAN
Not. 52 (6), 572–585.

Gilles, K. (1974). The semantics of a simple language for parallel programming.
Information processing 74, 471–475.

Grosch, J. and H. Emmelmann (1990). A tool box for compiler construction. In
International Workshop on Compiler Construction, pp. 106–116. Springer.

Grune, D., K. Van Reeuwijk, H. E. Bal, C. J. Jacobs, and K. Langendoen (2012).
Modern compiler design. Springer Science & Business Media.

Gulwani, S., O. Polozov, R. Singh, et al. (2017). Program synthesis. Foundations
and Trends R© in Programming Languages 4 (1-2), 1–119.

IEEE (1990). IEEE standard glossary of software engineering terminology. IEEE
Std 610.12-1990 , 1–84.

Jiang, L. and Z. Su (2009). Automatic mining of functionally equivalent code
fragments via random testing. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, New York, NY, USA,
pp. 81–92. Association for Computing Machinery.

Katsifodimos, A. and S. Schelter (2016). Apache flink: Stream analytics at
scale. In 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), pp. 193–193.

Keller, R. M. (1976, July). Formal verification of parallel programs. Commun.
ACM 19 (7), 371–384.

Ksiazek, K., Z. Marszalek, G. Capizzi, C. Napoli, D. Po lapl, and M. Woźniak
(2018). The impact of parallel programming on faster image filtering. In 2018
Federated Conference on Computer Science and Information Systems (FedC-
SIS), pp. 545–550.

Leino, K. R. M. (2010). Dafny: An automatic program verifier for functional
correctness. In International Conference on Logic for Programming Artificial
Intelligence and Reasoning, pp. 348–370. Springer.

Maillo, J., S. Ramı́rez, I. Triguero, and F. Herrera (2017). knn-is: An iterative
spark-based design of the k-nearest neighbors classifier for big data. Knowledge-
Based Systems 117, 3–15.

63

Manna, Z. and R. Waldinger (1980, January). A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst. 2 (1), 90–121.

McKenney, P. E. (2017). Is parallel programming hard, and, if so, what can you
do about it? (v2017.01.02a).

Nandi, A. (2015). Spark for Python Developers. Packt Publishing.

Nasehi, S. M., J. Sillito, F. Maurer, and C. Burns (2012). What makes a good code
example?: A study of programming q a in stackoverflow. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pp. 25–34.

Nayak, K., X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi (2015).
Graphsc: Parallel secure computation made easy. In 2015 IEEE Symposium on
Security and Privacy, pp. 377–394.

Nystrom, N., M. R. Clarkson, and A. C. Myers (2003). Polyglot: An extensible
compiler framework for java. In International Conference on Compiler Con-
struction, pp. 138–152. Springer.

Palsberg, J. and C. B. Jay (1998). The essence of the visitor pattern. In Proceed-
ings. The Twenty-Second Annual International Computer Software and Appli-
cations Conference (Compsac ’98) (Cat. No.98CB 36241), pp. 9–15.

Pierre-Etienne, M., C. Ringeissen, and M. Vittek (2003). A pattern matching com-
piler for multiple target languages. In G. Hedin (Ed.), Compiler Construction,
Berlin, Heidelberg, pp. 61–76. Springer Berlin Heidelberg.

Sanjel, A. and G. Speegle (2020). Tyro: A system for automatically parallelizing
partitionable functions. In preparation.

Sarcar, A. and Y. Cheon (2010). A new eclipse-based jml compiler built using ast
merging. In 2010 Second World Congress on Software Engineering, Volume 2,
pp. 287–292.

Shvachko, K., H. Kuang, S. Radia, and R. Chansler (2010). The hadoop dis-
tributed file system. In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pp. 1–10. IEEE.

Solar-Lezama, A. (2008). Program synthesis by sketching. University of California,
Berkeley.

Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy (2009). Hive: a warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment 2 (2), 1626–1629.

Torlak, E. and R. Bodik (2013). Growing solver-aided languages with rosette. In
Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, New
York, NY, USA, pp. 135–152. Association for Computing Machinery.

64

Van Rossum, G. and F. L. Drake (2009). Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. (2010).
Spark: Cluster computing with working sets. HotCloud 10 (10-10), 95.

65

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	DEDICATION
	CONTENT
	Introduction
	Background
	Program Synthesis
	Similar Tools
	Casper
	Parsl
	Emma

	AST

	Methodology
	Overview
	Program Analyzer
	AST Parser
	Static Code Analysis
	Meta-information

	Feature Extractor
	Loop Extractor
	Operation Extractor
	Operation Converter

	Component Transformer
	Map Transformer
	Reduce Transformer
	Filter Transformer
	UDFs Transformer
	Join Transformer

	Code Generator
	Static Code Generation
	Dynamic Code Generation

	Verifier

	Results and Analysis
	Evaluation
	Test Suites

	Aggregate Functions
	Multidimensional Dataset
	User Defined Function
	Speed Up

	Future Work and Conclusion
	Future Work
	Increased Loop Detection
	Complex Data Types and File Handling
	Optimized Nested Loop Handling
	Extending The Search Space
	Verification
	Beyond MapReduce
	Partitionable Functions

	Conclusion

	APPENDIX
	Additional Results
	Count
	Min
	Join with no operation
	Join with Operations

	BIBLIOGRAPHY

