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Abstract 
Metamorphic programming is an effective tool for creating efficient and elegant 

solutions to many programming problems, at least once you get over the shock of seeing 
code that violates many of the accepted rules of good programming. We have used 
metamorphosis for many years to solve problems in the logic-level simulation of VLSI 
circuits. These solutions have provided some spectacular gains in performance, inspiring 
us to look for metamorphic solutions to other problems. We have found metamorphic 
solutions to many problems including string searching, sorting, and depth first search, 
most of which provide performance gains over conventional coding. A few of these 
solutions are presented here. These programs violate the rules of good programming, but 
with a few minor compiler enhancements, our programming techniques become clean 
and well structured. 

1. Introduction 
“Metamorphic programming can make your code run five to sixty times faster, and is 

so simple that it will transform your programs into straight-line code. The only catch is, 
you will have to violate most of the rules of good programming, and you may have to 
invent one or two new algorithms.” 

Five years ago I would have laughed at this, but after writing and testing dozens of 
metamorphic programs, I believe! 

In metamorphic programming, objects to change their identity during program 
execution. Function definitions change and sometimes, although rarely, data items 
change type or become hidden. An object can change its behavior over time to adapt to 
differing conditions or respond to new needs. 

Metamorphosis is an efficient way to handle object states, particularly those states 
that affect the behavior of the object. Existing algorithms handle state information by 
using state variables which are decoded to produce the required behavior for a particular 
state. But this decoding represents a duplication of work! It recovers information that, at 
one time, was readily available. To illustrate, consider a binary semaphore S with two 
states, 1 and 0. The P and V operations do two distinctly different things depending on 
the state of S. In state 1 the P operation changes to state 0 and the V operation is ignored. 
In state 0, the P operation blocks the calling process while the V operation either 
unblocks a process or changes back to state 1. If we initialize the semaphore to state 1 
and perform the V operation, the state will change from 1 to 0. At the moment of change, 



the new behavior of the P and V functions is known. But in a typical implementation this 
knowledge is deliberately discarded. The state is encoded as a zero or a one, which must 
then be decoded by generic P and V functions to determine the correct behavior. It is 
more elegant and more efficient to have a separate set of P and V functions for each state. 
With such functions, it is no longer necessary to test the state, or even to record its value. 

Let’s assume that a semaphore has pointers to its P and V functions and that run-time 
binding is done using these pointers. The following code shows the new functions. (This 
isn’t exactly legal C++, but you get the idea.) 

 
P0() 
{ 
 P = &P1;
 V = &V1;
} 

P1() 
{ 
 Block Current Process; 
 Queue Current Process; 
} 

V0() 
{ 
 return 
} 

V1() 
{ 
 if (Process is queued) 
  Dequeue & Unblock
Process; 
 else  { 
  P = &P0; 
  V = &V0; 
  } 
} 

 
When we replace the P and V functions, we are changing the semaphore’s behavior 

and effectively changing its identity. In state 0 the semaphore is an object that does 
nothing. In state 1 it is an object that queues and dequeues processes. 

2. Metamorphosis and Polymorphism 
Although metamorphosis may seem strange, it similar to the polymorphic types used 

in conventional object oriented programming. Using polymorphism it is possible to 
process a heterogeneous set of objects without using type-codes or type-decoding[1,2]. 
Metamorphosis is the extension of polymorphism to dynamic codes. 

Metamorphosis can be implemented using mechanisms similar to those used to 
implement polymorphism. The key to polymorphism is, of course, the virtual function. 
(The term polymorphism can mean many different things, but here we use the term 
exclusively for types created using inheritance and virtual functions.) Unlike 
conventional functions, which are bound to their function calls at compile time, virtual 
functions are bound at run time. In the class definitions below, the pointer variable, 
MyPtr, can point to an object of type MyPoly or an object of type MyDerv. The 
executable code assigns a pointer of each type to MyPtr, and then calls MyFunc. Because 
MyFunc is bound at run-time, the two calls produce different results. The first call prints 
“Apple” while the second prints “Orange”. If the binding had been done at compile time, 
both function calls would print the word “Apple”. 

 



class MyPoly 
{ 
 MyPoly * Next; 
 virtual void MyFunc( ) 
 { 
  cout<<"Apple"; 
 } 
} 

class MyDerv : public MyPoly 
{ 
 virtual void MyFunc( ) 
 { 
  cout<<"Orange"; 
 } 
} 

MyPoly * MyPtr; 
MyPoly * MyPtr; 
MyPoly Obj1; 
MyDerv Obj2; 
 
MyPtr = &Obj1; 
MyPtr->MyFunc( ); 
MyPtr = &Obj2; 
MyPtr->MyFunc( ); 

 
Dynamic binding is often used to process a heterogeneous collection of objects, as in 

the following code, which prints the type of each object in a list of objects. 
 

Shape * Head; 
… 
float Total = 0.0; 
for (MyPoly * Temp = Head ; Temp != NULL ; Temp=Temp->Next) 
{ 
 Temp->MyFunc(); 
} 

 
In the days before polymorphism, a type-code would have been used to distinguish 

between MyPoly, and MyDerv. The loop would decode the type-code to determine the 
correct MyFunc function. Like a state-code, the type-code represents lost information. 
When MyPolys and MyDervs are created, the correct procedure for printing the message 
is well known. Polymorphic types allow the correct MyFunc function to be appended to 
an object when it is created. 

Both polymorphism and metamorphic programming allow us to replace explicit codes 
with subroutine addresses. Because these addresses give us specific behavior, they are 
significantly more useful than numeric codes. 

3. Metamorphosis and Simulation 
My students and I were first drawn to metamorphic programming because we wanted 

to find faster ways to simulate logic-level digital circuits. For a new VLSI circuit, a 
significant part of the development time is devoted to simulation, and the faster you can 
simulate a circuit, the more quickly you can bring it into the marketplace. The demand 
for speed is so overwhelming that it is worthwhile to explore “peculiar” types of 
programming if there is any chance that they will improve performance. We began 
exploring metamorphic techniques because we believed they would help us reduce 
simulation time, but we were amazed when we saw the final results. For most circuits we 
had a 7x increase in performance. The minimum improvement was 5x, and for one 
anomalous circuit we had an increase of 60x. We would have been happy with 50%. (See 
the sidebar for the experimental results.) 



The key to the increase in 
performance was not just metamorphic 
programming, but a collection of 
algorithms that were specifically 
designed for metamorphic 
programming. We have found that 
metamorphic programming improves 
the speed of many algorithms, but a 
direct translation into metamorphic 
code usually gives only a modest 
improvement. As in polymorphic 
programming, the strength of 
metamorphic programming lies in its 
ability to process a collection of 
heterogeneous objects. We have 
organized our algorithms to take 
advantage of this. 

Our first step is to translate a logic 
circuit into a collection of objects. (This 
is true for any simulation.) A circuit, 
such as that of Figure 1, is transformed 
into interconnected collection of gates 
and nets (as wires are called) with an 
object representing each. Net objects 
have a value element that maintains the 
state of the circuit. Except for flip-
flops, gates have no state and are treated as pure functions. Special scheduling techniques 
are used to simulate gate and net delays. 
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Figure 1. A Sample Circuit. 

During simulation, nets that change value are linked into a queue of pending changes. 
Objects are inserted into the tail of the queue, and are processed when they reach the head 
of the queue. Each object has one or more functions that change to reflect the state of the 
object. The simulator traverses the linked list and executes the current function for each 
object. 

The main innovation that led to our dramatic increases in performance was the 
modeling of both gates and nets as state machines. It is obvious that nets have states, 
because they must have a value of either zero or one. Surprisingly, gates also have states. 
Compare the two AND gates of Figure 1. If either input of G1 changes, nothing happens. 

Experimental Data 
The following table compares the speed of our 
metamorphic simulator to that of a conventional 
simulator. Several standard simulation benchmarks 
are used[9]. The column labeled EVCF (Event 
Driven, Conditional-Free) gives the times for our 
metamorphic simulator. The results are expressed 
in CPU seconds of execution time. The hardware 
was a SUN 300MHz single processor Ultra 
SPARC-II with 128MB of RAM. Fifty thousand 
random input vectors were used for each test. 
 

Circuit Conventional 
Event-Driven 

EVCF Speedup

C432  10.8  1.4  7.71 
C499  12.1  1.7  7.11 
C880  20.2  4.0  5.05 
C1355  43.2  5.6  7.71 
C1908  82.5  8.1  10.19 
C2670  89.3  13.6  6.57 
C3540  128.5  15.3  8.40 
C5315  252.9  27.5  9.20 
C6288  2549.5  42.1  60.56 
C7552  396.8  40.2  9.87 



However, if input C of G2 changes, output X1 changes, and the change propagates 
through gate G3 to output Q. Clearly G1 and G2 are in different states. We can consider 
the nets A and B to be state machines that transmit values to G1. In turn, we can consider 
G1 to be a state machine that that transmits values to X2. 

The states of X1 and X2 are important only because of the effect they have on the 
state of G3. An explicit 1/0 value is not required for these nets, and any convenient 
method for representing the state will do. It is necessary to maintain a 1/0 state code for 
nets A, B, C, D, and Q because we must examine inputs for changes, and because we 
must report output values to the user. 

Figure 2 shows the state machine for a net, and the data structure used to implement 
it. The input signal of the state machine is a change in value of the net. The output 
signals, I and D, are sent to the gate state machine. (For historical reasons, these signals 
are also known as Increment and Decrement.) The Proc element of the data structure 
points to the subroutine that will process the next change in the net. There is one 
subroutine for zero-to-one changes and another for one-to-zero changes. This pointer is 
the only state information that is maintained for the net. The Next and Previous elements 
are used for queuing, while the Gate element points to the gate that will receive the 
output signals from the net. 

 

Figure 2. A Net State Machine. 
The state machine for a two-input AND gate and its associated data structure are 

given in Figure 3. This machine receives I and D signals from two different net state 
machines. Since the two inputs are symmetric, it is not necessary to distinguish between 
them. It is necessary, however, to keep track of the number of inputs that are equal to 1. If 
both inputs are equal to 1, then the output is equal to 1, otherwise the output is equal to 0. 
The output changes when a transition is made between states 1 and 2. The Q output 
causes the output of the gate to be added to the end of the simulation queue. 

 

Figure 3. A Gate State Machine. 
Figure 3 shows the gate data structure. The Incr and Decr elements maintain the state 

of the machine. These elements point to the subroutines that handle the I and D inputs 
from the input machines. The input state machines “transmit” their inputs by calling one 
of these routines directly. The Qrtn element maintains the queuing state of the gate. The 
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queuing actions are dependent on the timing model, and are beyond the scope of this 
article. 

The code to support the net and gate state machines is surprisingly simple. That for 
the net state machine is given below. The two subroutines DProcessor and IProcessor, 
toggle back and forth between one another to maintain the state of the net. The only 
difference between the two is that IProcessor calls the Incr subroutine and DProcessor 
calls the Decr subroutine. We have replaced tail recursions with computed goto 
statements to improve performance. 

 
IProcessor: 
 Cev->Proc = &&DProcessor; 
 Cgt = Cev->Gate; 
 goto * Cgt->Incr; 

DProcessor: 
 Cev->Proc = &&IProcessor; 
 Cgt = Cev->Gate; 
 goto * Cgt->Decr; 

 
The code for the gate state machine given below is only slightly more complicated 

than the code for the net state machine. The Decr0 and Incr2 routines are never called. 
The other four routines change state by assigning new subroutine addresses to Incr and 
Decr. The two routines Incr1 and Decr2 call the queuing subroutine to queue the output 
net, while the routines Incr0 and Decr1 advance to the next queued net. As before, 
computed goto statements are used in place of subroutine calls. 

 
Incr0: 
 Cgt->Incr = &&Incr1; 
 Cgt->Decr = &&Decr1; 
 Cev = Cev->Next; 
 goto *Cev->Proc;  

Decr0: 
 Cev = Cev->Next; 
 Goto *Cev->Proc; 

Incr1:  
 Cgt->Incr = &&Incr2; 
 Cgt->Decr = &&Decr2; 
 goto *Cgt->Queue; 

Decr1:  
 Cgt->Incr = &&Incr0; 
 Cgt->Decr = &&Decr0; 
 Cev = Cev->Next; 
 Goto *Cev->Proc; 

Incr2: 
 Cev = Cev->Next; 
 goto *Cev->Proc; 

Decr2:  
 Cgt->Incr = &&Incr1; 
 Cgt->Decr = &&Decr1; 
 Goto *Cgt->Queue; 

 
The rest of the code for our simulator is similar to that given above. The subroutines 

contain assignment statements, but no conditional statements and no loops. Computed 
goto’s are used in place of subroutine calls. The code is a straight-line series of 
assignments with a few labels and computed goto’s. 

More information can be found in references [3-6]. 

4. But is this Good Code? 
If nothing else, our simulation algorithm is peculiar-looking. What is more, we have 

managed to violate most of the rules of good coding. We obviously don’t consider the 
goto harmful, in fact it seems to be our most important tool. Not just gotos, but computed 
gotos, the very worst kind! We also don’t seem believe that object definitions ought to be 
static. Indeed, we seem to go to extraordinary lengths to violate this rule, even to the 
extent of inserting assembly language into high-level programs. This is hardly the sort of 
thing we would recommend in computer science 101. 



We do, in fact, admit that our code leaves something to be desired. But it’s not our 
fault! It’s the fault of our tools. We believe in metamorphic programming, but using 
function pointers isn’t the way to do it. We ought to be able to restrict object 
metamorphosis to a specified collection of definitions, each one of which is static. With 
function pointers we could morph anything to practically anything else. This isn’t good, 
but our tools won’t let us do anything else. (We could use the State pattern from the 
gang-of-four patterns[7], but that isn’t necessarily elegant or efficient either.) 

And what about all those gotos? We use them because our tools don’t give us any 
way to specify cheap function calls. When we go from one subroutine to another, we 
don’t need a new stack frame, we don’t need a new return address, we don’t need a new 
set of parameters, and we don’t need any new local variables. We just need to get from 
one place to another, and we don’t want to pay for a bunch of stuff we don’t need. We 
could use tail recursion and ordinary function calls. Then we could cross our fingers and 
hope that our optimizer will be able to undo all the damage, but this seems a little chancy. 
It’s like leaving off the inline keyword, hoping the compiler will guess right about what 
needs to be expanded in-line. (See [8] for a concurring opinion.) 

No, we don’t need better code. We need better tools. But before we discuss better 
tools, we need to look at a few more metamorphic algorithms. After all, no one is going 
to create a new set of tools just for one algorithm. 

5. Other Metamorphic Algorithms 
We have implemented metamorphic solutions to many common computer science 

problems, and are convinced that metamorphosis could be a powerful tool for many 
different problems. Any algorithm that uses state-data is a candidate for metamorphic 
programming. Algorithms, such as string matching and lexical analysis, which are 
explicitly state based, are readily adaptable to metamorphic techniques. Graph algorithms 
that maintain state data, such as shortest path and depth first search, are also good 
candidates. Even straightforward algorithms like sorting are somewhat state-based, since 
the behavior of the algorithm changes when the end of a list is encountered. We have 
chosen two examples to illustrate metamorphic programming. These are insertion sort, 
Quicksort. A number of other examples can be found on our website[9]. 

5.1. Insertion Sort 
Our algorithm is based on the iterative algorithm given below. The objects to be 

sorted are stored in a doubly linked list and sorting is done by calling the same function 
for each object in the list. Each object has two functions, a forward routine and a 
backward routine. The forward routine replaces the outer loop of the iterative algorithm, 
while the backward routine replaces the inner loop. 

 



for (long i=1 ; i<n ; i++) 
{ 
 long x = L[i]; 
 for (long j=i-1 ; j>=0 && L[j]>x ; 
j--) 
 { 
  L[j+1] = L[j]; 
 } 
 L[j+1] = x; 
} 

 
The code for the forward and backward routines is given in below. Each object to be 

sorted points to the Forward and Backward functions. During the forward traversal, each 
object is removed from the list and reinserted into its proper position in the sorted portion 
of the list. A backward traversal is used to locate the proper position for the removed 
element. Once the removed element is reinserted, the forward traversal resumes. 
Terminator objects pointing to the EOL and SOL routines are used at the ends of the list 
to terminate traversals. 

 
Forward: 
 This = Current; 
 Current = Current->Next; 
 BackPtr = This->Prev; 
 // unlink; 
 This->Next->Prev = This->Prev; 
 This->Prev->Next = This->Next; 
 goto * BackPtr->BackwardRtn; 

Backward: 
 if (This->Value < BackPtr->Value) 
 { 
  BackPtr = BackPtr->Prev; 
  goto * BackPtr->BackwardRtn; 
 } 
 else 
 { 
  This->Next = BackPtr->Next; 
  This->Prev = BackPtr; 
  BackPtr->Next->Prev = This; 
  BackPtr->Next = This; 
  goto * Current->ForwardRtn; 
 } 

EOL: 
 return  

SOL: 
 This->Next = BackPtr->Next; 
 This->Prev = BackPtr; 
 BackPtr->Next->Prev = This; 
 BackPtr->Next = This; 
 goto * Current->ForwardRtn; 

 
This example illustrates one of the most important benefits of metamorphic 

programming: the elimination of “Are we there yet?” programming. The iterative 
insertion sort algorithm is like a child on a long trip who continually asks “Are we there 
yet?” The outer loop executes the same test “i<n” over and over, searching for the end of 
the list. In object oriented programming, objects should “know” when they are at the end 
of the list. Repetitive testing shouldn’t be required. Admittedly we’ve cheated a bit by 
using terminator objects, but the algorithm can easily be rewritten to eliminate them. We 
invite the interested reader to give it a try. 

 
 
 
 



5.2. Quicksort 
Metamorphic programming does not 

require linked lists; arrays will work just 
as well. In our Quicksort algorithm the 
objects to be sorted are stored in an array. 
When a list is split, two new sub-lists are 
created. The algorithm continues 
iteratively with one list and pushes the 
other onto a stack. If the current list 
contains fewer than two elements, the 
stack is popped. The popping continues 
until a list with two or more elements is 
found or until the stack becomes empty. 
When the stack becomes empty the 
algorithm terminates. 

A list is split by calling the Process 
function of each object. Each object has 
two data items, a value and a pointer to a 
processing routine. The last element in 
the list points to the LastTest subroutine. 
All other objects point to the Test 
subroutine. Because lists are divided into 
smaller and smaller sub-lists, it is 
necessary to morph the last object in each 
list into a list terminator. 

Stack processing is also done 
metamorphically. Each stack element is 
an object that contains the list boundaries 
and a pointer to a processing routine. The 
last stack element is a terminator whose 
processing routine terminates the sort 
algorithm. The code for the Test and 
LastTest routines is given below. 

Information and Conditional 
Branches 

 
Array and list processing loops like “for 

(i=0 ; i<n ; i++)” are not just annoying, they 
are bad mathematically. A conditional test 
provides information to a program. If p is 
the probability that “i<n” is true, then the 
information provided by the test is 

)1(
1lg)1(1lg

p
p

p
pI t −

−+= . This formula 

achieves its maximum value, 1, when p=.5.
(That is, when true and false are equally 
likely.) For an array of ten elements there 
will be nine true results and one false result 
making p=.9. In this case,

469.010lg1.
9

10lg9. =⋅+⋅=tI . If there are 

one thousand elements, then 

0114.01000lg001.
999

1000lg999. =⋅+⋅=tI . 

The point is that the program is doing much
work to obtain little information. Compare 
the array termination test with the key-
comparison test in Quicksort, “This->Value 
< Pivot->Value”. The probability of this 
condition being true is .5 (a fact that we 
have verified experimentally), thus the test 
yields the maximum amount of information. 
(The information provided by the insertion
sort key test, “This->Value < BackPtr-
>Value,” goes to zero as n goes to infinity, 
suggesting that the algorithm is not using its 
comparisons effectively.) 



Test: 
 if (This->Value < Pivot->Value) 
 { 
  Split++; 
  Swap(This->Value, 
   Split->Value); 
 } 
 This++; 
 goto * This->Process; 

LastTest: 
 if (This->Value < Pivot->Value) 
 { 
  Split++; 
  Swap(This->value, 
   Split->Value); 
 } 
 Swap(Pivot->Value, 
  Split->Value); 
 // Demorph last element 
 This->Process = &&Test; 
 // push first sublist 
 List->First = First; 
 List->Last = Split-1; 
 List->Process = &&NewList; 
 List++; 
 // iterate through 2nd sublist 
 First = Split+1; 
 goto NewList; 

 
The NewList routine, which sets up a new list and pops the stack, is given below. 
 

NewList: 
 if (Last <= First) 
 { // Pop List 
  List--; 
  First = List->First; 
  Last = List->Last; 
  goto * List->Process; 
 } 
 // Set up list and process 
 Split = First; 
 Pivot = First; 
 This = First+1; 
 Last->Process = &&LastTest; 
 goto * This->Process; 

6. Better Tools 
If metamorphic programming is ever to become a serious alternative to iterative 

programming, we need to eliminate warts from our metamorphic programs. We need real 
metamorphic objects, not just objects that are programmed that way. We need objects 
that are declared to be metamorphic, with clearly specified rules that are checked by the 
compiler. This is not really a new idea because almost anything you can think of has been 
implemented in some language somewhere, and metamorphosis is no exception. But in 
our research we cannot afford to fool around with arcane or experimental languages. We 
are attempting to build simulation tools that will be used to verify the next generation of 
VLSI circuits, and we need to concentrate on mainstream languages like Java, C++, and 
Visual Basic. The same is true for anyone who wants to use metamorphic programming 
in a mainstream application. Fortunately, the changes required to support metamorphosis 
are relatively minor. 

To show the simplicity of metamorphic language features, it is necessary to look at 
the low-level implementation of an object. Suppose we have three classes, A, B, and C. A 
is the base type from which B and C are derived. Classes B and C do not define any new 
data items. Class A has a number of virtual functions that are overridden in classes B and 
C. Other than the overrides, classes B and C define no new functions. The compiler 



creates an object called a vtable for each class. The vtable contains a pointer to each 
virtual function defined by the class, or inherited by the class. Each object of the class 
contains a pointer to the vtable. 

Because of the restrictions we have placed on classes B and C, All four objects have 
the same data items, and all three vtables have the same layout. It is possible to morph 
objects between types A, B, and C by replacing the vtable pointer. Because this replaces 
all virtual functions, we call this complete metamorphosis. Complete metamorphosis is 
quite trivial to implement. Syntactically, we could use a statement such as the following. 
(We are using verbose statements for clarity. We expect that compiler designers would 
choose something more elegant.) This statement could be implemented with one or two 
assembly language instructions, and could be easily verified. Few, if any changes would 
be needed in class definition syntax. 

 
Morph Object1 [from A] to B; 

 
We could go one step further with complete metamorphosis and permit the classes A, 

B, and C to define different sets of data items. In this case, it would be necessary to 
formally declare A, B, and C as mutually morphable classes, since any object of type A 
would need to contain all data items declared by B and C, even though these items would 
not be accessible to A’s functions. 

Complete metamorphosis is easy, but it’s not always feasible. This is especially true 
when we combine several state machines together into a single object. Suppose we have 
five state machines embedded in a single object, with five states for each machine. To 
model the object using complete metamorphosis, it would be necessary to define 3125 
different classes to capture all state combinations. To simplify the construction of such 
objects, we propose a more dynamic technique called partial metamorphosis. Partial 
metamorphosis allows individual members of the vtable to be replaced, but requires each 
object to have its own personal copy of the vtable. (The affected portion of the vtable 
could be integrated into the object itself, eliminating the double indirection.) 

Partial metamorphosis can be faked using function pointers, but there are problems 
with this approach. The only tool that the compiler has for determining the correctness of 
an assignment to a function pointer is the function type. This can lead to difficult-to-
diagnose program errors if an incorrect value is assigned to a pointer variable. We need 
an alternative technique that restricts the list of functions that can participate in a 
metamorphosis operation. 

In the code below, we define a function ABC, which has no body of its own, but will 
act as a dynamic reference to either A, B, or C. It is necessary for the function headers of 
ABC, A, B, and C to be identical. Even though the function header of D is identical to 
that of ABC, ABC is not permitted to refer to D. We can enhance the morph statement 
for partial metamorphosis, as shown below. In this case the operands of the statement are 
functions instead of objects and classes. 

 
morph ExampleObject.ABC to ExampleObject.A; 

 



class CExample 
{ 
public: 
 void ABC(void) one of A, B, C; 
private: 
 void A (void) 
 { 
  … 
 } 
 void B (void) 
 { 
  … 
 } 
 void C (void) 
 { 
  … 
 } 
 void D (void) 
 { 
  … 
 } 
}; 

7. Metamorphic Functions 
Even though we’ve committed the worst of all sins by using computed goto’s, we 

insist that a slight change in compiler technology could transform this into clean well-
structured code. We were forced into using goto’s because we need cheap function calls 
that share the same parameters, local variables, and return address. Even though each 
routine is a segment of a larger function, we usually don’t think of them this way. It is 
easier to program if we consider the code segments to be functions, and the goto’s to be 
function calls. Because the stack frame is shared between these “functions,” it is 
convenient to think of the “function call” as replacing the body of the current function. 
Thus, we tend to think of a code segment as a metamorphic function that can be 
dynamically transformed into some other function. 

The concept is similar to the concept of multi-threading. Threads are cheap processes 
that share the same address space and other resources, metamorphic functions are cheap 
function calls that share stack frames. We believe that metamorphic functions should be 
organized into mutually morphable groups. When a function calls another function from 
its own group, no new stack frame will be created. When it calls a function in a different 
group, a new stack frame and return address will be created. The declaration should be 
similar to the C++ inline declaration, except that a group name will be used to identify 
the group to which the function belongs. This syntax is illustrated in below, using the 
keyword segment. We also use the keyword primary to identify functions that can be 
called from outside their group. Although most of our applications clearly distinguish 
between the primary entry point of a function and its internal segments, we are not 
convinced that this would be a useful distinction in a more general context. A single 
keyword may suffice for all metamorphic functions. 

 



class MyObj 
{ 
public: 
 MyObj *Next; 
 primary Exam1 void ProcessList(void) 
 { 
  ProcessObject(); 
 } 
 segment Exam1 virtual void ProcessObject(void) = 0; 
}; 
 
class OtherObj1 : public MyObj 
{ 
public: 
 segment Exam1 virtual void ProcessObject(void) 
 { 
  // process object here 
  if (Next != NULL) 
  { 
   Next->ProcessObject(); 
  } 
 } 
}; 
 
MyObj * Head; 

 
In the preceding code, we assume that there are several different classes derived from 

MyObj, and that each of them overrides the function ProcessObject. The variable Head is 
assumed to be the head of a list of objects. To process this list, we use the single function 
call given below. No loop is required. It is possible to avoid testing the Next variable for 
NULL by using a trailer object whose sole function is to terminate a linked list of objects, 
or by using a different function for the last object in the list. 

 
Head->ProcessList(); 

8. Conclusion 
We have found metamorphic programming to be an effective tool in our search for 

more efficient algorithms, particularly in the area of logic simulation. We have created 
metamorphic solutions for many different problems, far too many to describe here. We 
have found that virtually all of these implementations have given us some increase in 
performance, although seldom to the degree that we have observed in logic simulation. 
On the other hand, we are just scratching the surface of metamorphic programming. 
There are many variant solutions to the problems we have discussed here, some of which 
may be significantly more efficient than the solutions we have found. Much more work is 
needed to discover the most efficient and effective metamorphic techniques for various 
different problems. The most important problem is the lack of metamorphic constructs in 
mainstream high-level languages. It is our hope that such features will be provided in the 
future, and that metamorphic programming will become an important tool in the future. 
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