
Metamorphosis, State Machines, and Object
Oriented Design

Peter M. Maurer
Department of Computer Science

Baylor University
P. O. Box 97356

Waco, TX 76798-7356

Abstract
Metamorphic programming is an effective tool for creating efficient and elegant

solutions to many programming problems, at least once you get over the shock of seeing
code that violates many of the accepted rules of good programming. We have used
metamorphosis for many years to solve problems in the logic-level simulation of VLSI
circuits. These solutions have provided some spectacular gains in performance, inspiring
us to look for metamorphic solutions to other problems. We have found metamorphic
solutions to many problems including string searching, sorting, and depth first search,
most of which provide performance gains over conventional coding. A few of these
solutions are presented here. These programs violate the rules of good programming, but
with a few minor compiler enhancements, our programming techniques become clean
and well structured.

1. Introduction
“Metamorphic programming can make your code run five to sixty times faster, and is

so simple that it will transform your programs into straight-line code. The only catch is,
you will have to violate most of the rules of good programming, and you may have to
invent one or two new algorithms.”

Five years ago I would have laughed at this, but after writing and testing dozens of
metamorphic programs, I believe!

In metamorphic programming, objects to change their identity during program
execution. Function definitions change and sometimes, although rarely, data items
change type or become hidden. An object can change its behavior over time to adapt to
differing conditions or respond to new needs.

Metamorphosis is an efficient way to handle object states, particularly those states
that affect the behavior of the object. Existing algorithms handle state information by
using state variables which are decoded to produce the required behavior for a particular
state. But this decoding represents a duplication of work! It recovers information that, at
one time, was readily available. To illustrate, consider a binary semaphore S with two
states, 1 and 0. The P and V operations do two distinctly different things depending on
the state of S. In state 1 the P operation changes to state 0 and the V operation is ignored.
In state 0, the P operation blocks the calling process while the V operation either
unblocks a process or changes back to state 1. If we initialize the semaphore to state 1
and perform the V operation, the state will change from 1 to 0. At the moment of change,

the new behavior of the P and V functions is known. But in a typical implementation this
knowledge is deliberately discarded. The state is encoded as a zero or a one, which must
then be decoded by generic P and V functions to determine the correct behavior. It is
more elegant and more efficient to have a separate set of P and V functions for each state.
With such functions, it is no longer necessary to test the state, or even to record its value.

Let’s assume that a semaphore has pointers to its P and V functions and that run-time
binding is done using these pointers. The following code shows the new functions. (This
isn’t exactly legal C++, but you get the idea.)

P0()
{
 P = &P1;
 V = &V1;
}

P1()
{
 Block Current Process;
 Queue Current Process;
}

V0()
{
 return
}

V1()
{
 if (Process is queued)
 Dequeue & Unblock
Process;
 else {
 P = &P0;
 V = &V0;
 }
}

When we replace the P and V functions, we are changing the semaphore’s behavior

and effectively changing its identity. In state 0 the semaphore is an object that does
nothing. In state 1 it is an object that queues and dequeues processes.

2. Metamorphosis and Polymorphism
Although metamorphosis may seem strange, it similar to the polymorphic types used

in conventional object oriented programming. Using polymorphism it is possible to
process a heterogeneous set of objects without using type-codes or type-decoding[1,2].
Metamorphosis is the extension of polymorphism to dynamic codes.

Metamorphosis can be implemented using mechanisms similar to those used to
implement polymorphism. The key to polymorphism is, of course, the virtual function.
(The term polymorphism can mean many different things, but here we use the term
exclusively for types created using inheritance and virtual functions.) Unlike
conventional functions, which are bound to their function calls at compile time, virtual
functions are bound at run time. In the class definitions below, the pointer variable,
MyPtr, can point to an object of type MyPoly or an object of type MyDerv. The
executable code assigns a pointer of each type to MyPtr, and then calls MyFunc. Because
MyFunc is bound at run-time, the two calls produce different results. The first call prints
“Apple” while the second prints “Orange”. If the binding had been done at compile time,
both function calls would print the word “Apple”.

class MyPoly
{
 MyPoly * Next;
 virtual void MyFunc()
 {
 cout<<"Apple";
 }
}

class MyDerv : public MyPoly
{
 virtual void MyFunc()
 {
 cout<<"Orange";
 }
}

MyPoly * MyPtr;
MyPoly * MyPtr;
MyPoly Obj1;
MyDerv Obj2;

MyPtr = &Obj1;
MyPtr->MyFunc();
MyPtr = &Obj2;
MyPtr->MyFunc();

Dynamic binding is often used to process a heterogeneous collection of objects, as in

the following code, which prints the type of each object in a list of objects.

Shape * Head;
…
float Total = 0.0;
for (MyPoly * Temp = Head ; Temp != NULL ; Temp=Temp->Next)
{
 Temp->MyFunc();
}

In the days before polymorphism, a type-code would have been used to distinguish

between MyPoly, and MyDerv. The loop would decode the type-code to determine the
correct MyFunc function. Like a state-code, the type-code represents lost information.
When MyPolys and MyDervs are created, the correct procedure for printing the message
is well known. Polymorphic types allow the correct MyFunc function to be appended to
an object when it is created.

Both polymorphism and metamorphic programming allow us to replace explicit codes
with subroutine addresses. Because these addresses give us specific behavior, they are
significantly more useful than numeric codes.

3. Metamorphosis and Simulation
My students and I were first drawn to metamorphic programming because we wanted

to find faster ways to simulate logic-level digital circuits. For a new VLSI circuit, a
significant part of the development time is devoted to simulation, and the faster you can
simulate a circuit, the more quickly you can bring it into the marketplace. The demand
for speed is so overwhelming that it is worthwhile to explore “peculiar” types of
programming if there is any chance that they will improve performance. We began
exploring metamorphic techniques because we believed they would help us reduce
simulation time, but we were amazed when we saw the final results. For most circuits we
had a 7x increase in performance. The minimum improvement was 5x, and for one
anomalous circuit we had an increase of 60x. We would have been happy with 50%. (See
the sidebar for the experimental results.)

The key to the increase in
performance was not just metamorphic
programming, but a collection of
algorithms that were specifically
designed for metamorphic
programming. We have found that
metamorphic programming improves
the speed of many algorithms, but a
direct translation into metamorphic
code usually gives only a modest
improvement. As in polymorphic
programming, the strength of
metamorphic programming lies in its
ability to process a collection of
heterogeneous objects. We have
organized our algorithms to take
advantage of this.

Our first step is to translate a logic
circuit into a collection of objects. (This
is true for any simulation.) A circuit,
such as that of Figure 1, is transformed
into interconnected collection of gates
and nets (as wires are called) with an
object representing each. Net objects
have a value element that maintains the
state of the circuit. Except for flip-
flops, gates have no state and are treated as pure functions. Special scheduling techniques
are used to simulate gate and net delays.

A
B

C
D

X1

X2

Q

0

0

1

0

0

0

0

G1

G2

G3

Figure 1. A Sample Circuit.

During simulation, nets that change value are linked into a queue of pending changes.
Objects are inserted into the tail of the queue, and are processed when they reach the head
of the queue. Each object has one or more functions that change to reflect the state of the
object. The simulator traverses the linked list and executes the current function for each
object.

The main innovation that led to our dramatic increases in performance was the
modeling of both gates and nets as state machines. It is obvious that nets have states,
because they must have a value of either zero or one. Surprisingly, gates also have states.
Compare the two AND gates of Figure 1. If either input of G1 changes, nothing happens.

Experimental Data
The following table compares the speed of our
metamorphic simulator to that of a conventional
simulator. Several standard simulation benchmarks
are used[9]. The column labeled EVCF (Event
Driven, Conditional-Free) gives the times for our
metamorphic simulator. The results are expressed
in CPU seconds of execution time. The hardware
was a SUN 300MHz single processor Ultra
SPARC-II with 128MB of RAM. Fifty thousand
random input vectors were used for each test.

Circuit Conventional
Event-Driven

EVCF Speedup

C432 10.8 1.4 7.71
C499 12.1 1.7 7.11
C880 20.2 4.0 5.05
C1355 43.2 5.6 7.71
C1908 82.5 8.1 10.19
C2670 89.3 13.6 6.57
C3540 128.5 15.3 8.40
C5315 252.9 27.5 9.20
C6288 2549.5 42.1 60.56
C7552 396.8 40.2 9.87

However, if input C of G2 changes, output X1 changes, and the change propagates
through gate G3 to output Q. Clearly G1 and G2 are in different states. We can consider
the nets A and B to be state machines that transmit values to G1. In turn, we can consider
G1 to be a state machine that that transmits values to X2.

The states of X1 and X2 are important only because of the effect they have on the
state of G3. An explicit 1/0 value is not required for these nets, and any convenient
method for representing the state will do. It is necessary to maintain a 1/0 state code for
nets A, B, C, D, and Q because we must examine inputs for changes, and because we
must report output values to the user.

Figure 2 shows the state machine for a net, and the data structure used to implement
it. The input signal of the state machine is a change in value of the net. The output
signals, I and D, are sent to the gate state machine. (For historical reasons, these signals
are also known as Increment and Decrement.) The Proc element of the data structure
points to the subroutine that will process the next change in the net. There is one
subroutine for zero-to-one changes and another for one-to-zero changes. This pointer is
the only state information that is maintained for the net. The Next and Previous elements
are used for queuing, while the Gate element points to the gate that will receive the
output signals from the net.

Figure 2. A Net State Machine.
The state machine for a two-input AND gate and its associated data structure are

given in Figure 3. This machine receives I and D signals from two different net state
machines. Since the two inputs are symmetric, it is not necessary to distinguish between
them. It is necessary, however, to keep track of the number of inputs that are equal to 1. If
both inputs are equal to 1, then the output is equal to 1, otherwise the output is equal to 0.
The output changes when a transition is made between states 1 and 2. The Q output
causes the output of the gate to be added to the end of the simulation queue.

Figure 3. A Gate State Machine.
Figure 3 shows the gate data structure. The Incr and Decr elements maintain the state

of the machine. These elements point to the subroutines that handle the I and D inputs
from the input machines. The input state machines “transmit” their inputs by calling one
of these routines directly. The Qrtn element maintains the queuing state of the gate. The

Next
Previous

Proc
Gate

0 1

Change/I

Change/D

0 1 2

I I/Q
ID

D D/Q

Incr
Decr
Qrtn

Prop. Data

queuing actions are dependent on the timing model, and are beyond the scope of this
article.

The code to support the net and gate state machines is surprisingly simple. That for
the net state machine is given below. The two subroutines DProcessor and IProcessor,
toggle back and forth between one another to maintain the state of the net. The only
difference between the two is that IProcessor calls the Incr subroutine and DProcessor
calls the Decr subroutine. We have replaced tail recursions with computed goto
statements to improve performance.

IProcessor:
 Cev->Proc = &&DProcessor;
 Cgt = Cev->Gate;
 goto * Cgt->Incr;

DProcessor:
 Cev->Proc = &&IProcessor;
 Cgt = Cev->Gate;
 goto * Cgt->Decr;

The code for the gate state machine given below is only slightly more complicated

than the code for the net state machine. The Decr0 and Incr2 routines are never called.
The other four routines change state by assigning new subroutine addresses to Incr and
Decr. The two routines Incr1 and Decr2 call the queuing subroutine to queue the output
net, while the routines Incr0 and Decr1 advance to the next queued net. As before,
computed goto statements are used in place of subroutine calls.

Incr0:
 Cgt->Incr = &&Incr1;
 Cgt->Decr = &&Decr1;
 Cev = Cev->Next;
 goto *Cev->Proc;

Decr0:
 Cev = Cev->Next;
 Goto *Cev->Proc;

Incr1:
 Cgt->Incr = &&Incr2;
 Cgt->Decr = &&Decr2;
 goto *Cgt->Queue;

Decr1:
 Cgt->Incr = &&Incr0;
 Cgt->Decr = &&Decr0;
 Cev = Cev->Next;
 Goto *Cev->Proc;

Incr2:
 Cev = Cev->Next;
 goto *Cev->Proc;

Decr2:
 Cgt->Incr = &&Incr1;
 Cgt->Decr = &&Decr1;
 Goto *Cgt->Queue;

The rest of the code for our simulator is similar to that given above. The subroutines

contain assignment statements, but no conditional statements and no loops. Computed
goto’s are used in place of subroutine calls. The code is a straight-line series of
assignments with a few labels and computed goto’s.

More information can be found in references [3-6].

4. But is this Good Code?
If nothing else, our simulation algorithm is peculiar-looking. What is more, we have

managed to violate most of the rules of good coding. We obviously don’t consider the
goto harmful, in fact it seems to be our most important tool. Not just gotos, but computed
gotos, the very worst kind! We also don’t seem believe that object definitions ought to be
static. Indeed, we seem to go to extraordinary lengths to violate this rule, even to the
extent of inserting assembly language into high-level programs. This is hardly the sort of
thing we would recommend in computer science 101.

We do, in fact, admit that our code leaves something to be desired. But it’s not our
fault! It’s the fault of our tools. We believe in metamorphic programming, but using
function pointers isn’t the way to do it. We ought to be able to restrict object
metamorphosis to a specified collection of definitions, each one of which is static. With
function pointers we could morph anything to practically anything else. This isn’t good,
but our tools won’t let us do anything else. (We could use the State pattern from the
gang-of-four patterns[7], but that isn’t necessarily elegant or efficient either.)

And what about all those gotos? We use them because our tools don’t give us any
way to specify cheap function calls. When we go from one subroutine to another, we
don’t need a new stack frame, we don’t need a new return address, we don’t need a new
set of parameters, and we don’t need any new local variables. We just need to get from
one place to another, and we don’t want to pay for a bunch of stuff we don’t need. We
could use tail recursion and ordinary function calls. Then we could cross our fingers and
hope that our optimizer will be able to undo all the damage, but this seems a little chancy.
It’s like leaving off the inline keyword, hoping the compiler will guess right about what
needs to be expanded in-line. (See [8] for a concurring opinion.)

No, we don’t need better code. We need better tools. But before we discuss better
tools, we need to look at a few more metamorphic algorithms. After all, no one is going
to create a new set of tools just for one algorithm.

5. Other Metamorphic Algorithms
We have implemented metamorphic solutions to many common computer science

problems, and are convinced that metamorphosis could be a powerful tool for many
different problems. Any algorithm that uses state-data is a candidate for metamorphic
programming. Algorithms, such as string matching and lexical analysis, which are
explicitly state based, are readily adaptable to metamorphic techniques. Graph algorithms
that maintain state data, such as shortest path and depth first search, are also good
candidates. Even straightforward algorithms like sorting are somewhat state-based, since
the behavior of the algorithm changes when the end of a list is encountered. We have
chosen two examples to illustrate metamorphic programming. These are insertion sort,
Quicksort. A number of other examples can be found on our website[9].

5.1. Insertion Sort
Our algorithm is based on the iterative algorithm given below. The objects to be

sorted are stored in a doubly linked list and sorting is done by calling the same function
for each object in the list. Each object has two functions, a forward routine and a
backward routine. The forward routine replaces the outer loop of the iterative algorithm,
while the backward routine replaces the inner loop.

for (long i=1 ; i<n ; i++)
{
 long x = L[i];
 for (long j=i-1 ; j>=0 && L[j]>x ;
j--)
 {
 L[j+1] = L[j];
 }
 L[j+1] = x;
}

The code for the forward and backward routines is given in below. Each object to be

sorted points to the Forward and Backward functions. During the forward traversal, each
object is removed from the list and reinserted into its proper position in the sorted portion
of the list. A backward traversal is used to locate the proper position for the removed
element. Once the removed element is reinserted, the forward traversal resumes.
Terminator objects pointing to the EOL and SOL routines are used at the ends of the list
to terminate traversals.

Forward:
 This = Current;
 Current = Current->Next;
 BackPtr = This->Prev;
 // unlink;
 This->Next->Prev = This->Prev;
 This->Prev->Next = This->Next;
 goto * BackPtr->BackwardRtn;

Backward:
 if (This->Value < BackPtr->Value)
 {
 BackPtr = BackPtr->Prev;
 goto * BackPtr->BackwardRtn;
 }
 else
 {
 This->Next = BackPtr->Next;
 This->Prev = BackPtr;
 BackPtr->Next->Prev = This;
 BackPtr->Next = This;
 goto * Current->ForwardRtn;
 }

EOL:
 return

SOL:
 This->Next = BackPtr->Next;
 This->Prev = BackPtr;
 BackPtr->Next->Prev = This;
 BackPtr->Next = This;
 goto * Current->ForwardRtn;

This example illustrates one of the most important benefits of metamorphic

programming: the elimination of “Are we there yet?” programming. The iterative
insertion sort algorithm is like a child on a long trip who continually asks “Are we there
yet?” The outer loop executes the same test “i<n” over and over, searching for the end of
the list. In object oriented programming, objects should “know” when they are at the end
of the list. Repetitive testing shouldn’t be required. Admittedly we’ve cheated a bit by
using terminator objects, but the algorithm can easily be rewritten to eliminate them. We
invite the interested reader to give it a try.

5.2. Quicksort
Metamorphic programming does not

require linked lists; arrays will work just
as well. In our Quicksort algorithm the
objects to be sorted are stored in an array.
When a list is split, two new sub-lists are
created. The algorithm continues
iteratively with one list and pushes the
other onto a stack. If the current list
contains fewer than two elements, the
stack is popped. The popping continues
until a list with two or more elements is
found or until the stack becomes empty.
When the stack becomes empty the
algorithm terminates.

A list is split by calling the Process
function of each object. Each object has
two data items, a value and a pointer to a
processing routine. The last element in
the list points to the LastTest subroutine.
All other objects point to the Test
subroutine. Because lists are divided into
smaller and smaller sub-lists, it is
necessary to morph the last object in each
list into a list terminator.

Stack processing is also done
metamorphically. Each stack element is
an object that contains the list boundaries
and a pointer to a processing routine. The
last stack element is a terminator whose
processing routine terminates the sort
algorithm. The code for the Test and
LastTest routines is given below.

Information and Conditional
Branches

Array and list processing loops like “for

(i=0 ; i<n ; i++)” are not just annoying, they
are bad mathematically. A conditional test
provides information to a program. If p is
the probability that “i<n” is true, then the
information provided by the test is

)1(
1lg)1(1lg

p
p

p
pI t −

−+= . This formula

achieves its maximum value, 1, when p=.5.
(That is, when true and false are equally
likely.) For an array of ten elements there
will be nine true results and one false result
making p=.9. In this case,

469.010lg1.
9

10lg9. =⋅+⋅=tI . If there are

one thousand elements, then

0114.01000lg001.
999

1000lg999. =⋅+⋅=tI .

The point is that the program is doing much
work to obtain little information. Compare
the array termination test with the key-
comparison test in Quicksort, “This->Value
< Pivot->Value”. The probability of this
condition being true is .5 (a fact that we
have verified experimentally), thus the test
yields the maximum amount of information.
(The information provided by the insertion
sort key test, “This->Value < BackPtr-
>Value,” goes to zero as n goes to infinity,
suggesting that the algorithm is not using its
comparisons effectively.)

Test:
 if (This->Value < Pivot->Value)
 {
 Split++;
 Swap(This->Value,
 Split->Value);
 }
 This++;
 goto * This->Process;

LastTest:
 if (This->Value < Pivot->Value)
 {
 Split++;
 Swap(This->value,
 Split->Value);
 }
 Swap(Pivot->Value,
 Split->Value);
 // Demorph last element
 This->Process = &&Test;
 // push first sublist
 List->First = First;
 List->Last = Split-1;
 List->Process = &&NewList;
 List++;
 // iterate through 2nd sublist
 First = Split+1;
 goto NewList;

The NewList routine, which sets up a new list and pops the stack, is given below.

NewList:
 if (Last <= First)
 { // Pop List
 List--;
 First = List->First;
 Last = List->Last;
 goto * List->Process;
 }
 // Set up list and process
 Split = First;
 Pivot = First;
 This = First+1;
 Last->Process = &&LastTest;
 goto * This->Process;

6. Better Tools
If metamorphic programming is ever to become a serious alternative to iterative

programming, we need to eliminate warts from our metamorphic programs. We need real
metamorphic objects, not just objects that are programmed that way. We need objects
that are declared to be metamorphic, with clearly specified rules that are checked by the
compiler. This is not really a new idea because almost anything you can think of has been
implemented in some language somewhere, and metamorphosis is no exception. But in
our research we cannot afford to fool around with arcane or experimental languages. We
are attempting to build simulation tools that will be used to verify the next generation of
VLSI circuits, and we need to concentrate on mainstream languages like Java, C++, and
Visual Basic. The same is true for anyone who wants to use metamorphic programming
in a mainstream application. Fortunately, the changes required to support metamorphosis
are relatively minor.

To show the simplicity of metamorphic language features, it is necessary to look at
the low-level implementation of an object. Suppose we have three classes, A, B, and C. A
is the base type from which B and C are derived. Classes B and C do not define any new
data items. Class A has a number of virtual functions that are overridden in classes B and
C. Other than the overrides, classes B and C define no new functions. The compiler

creates an object called a vtable for each class. The vtable contains a pointer to each
virtual function defined by the class, or inherited by the class. Each object of the class
contains a pointer to the vtable.

Because of the restrictions we have placed on classes B and C, All four objects have
the same data items, and all three vtables have the same layout. It is possible to morph
objects between types A, B, and C by replacing the vtable pointer. Because this replaces
all virtual functions, we call this complete metamorphosis. Complete metamorphosis is
quite trivial to implement. Syntactically, we could use a statement such as the following.
(We are using verbose statements for clarity. We expect that compiler designers would
choose something more elegant.) This statement could be implemented with one or two
assembly language instructions, and could be easily verified. Few, if any changes would
be needed in class definition syntax.

Morph Object1 [from A] to B;

We could go one step further with complete metamorphosis and permit the classes A,

B, and C to define different sets of data items. In this case, it would be necessary to
formally declare A, B, and C as mutually morphable classes, since any object of type A
would need to contain all data items declared by B and C, even though these items would
not be accessible to A’s functions.

Complete metamorphosis is easy, but it’s not always feasible. This is especially true
when we combine several state machines together into a single object. Suppose we have
five state machines embedded in a single object, with five states for each machine. To
model the object using complete metamorphosis, it would be necessary to define 3125
different classes to capture all state combinations. To simplify the construction of such
objects, we propose a more dynamic technique called partial metamorphosis. Partial
metamorphosis allows individual members of the vtable to be replaced, but requires each
object to have its own personal copy of the vtable. (The affected portion of the vtable
could be integrated into the object itself, eliminating the double indirection.)

Partial metamorphosis can be faked using function pointers, but there are problems
with this approach. The only tool that the compiler has for determining the correctness of
an assignment to a function pointer is the function type. This can lead to difficult-to-
diagnose program errors if an incorrect value is assigned to a pointer variable. We need
an alternative technique that restricts the list of functions that can participate in a
metamorphosis operation.

In the code below, we define a function ABC, which has no body of its own, but will
act as a dynamic reference to either A, B, or C. It is necessary for the function headers of
ABC, A, B, and C to be identical. Even though the function header of D is identical to
that of ABC, ABC is not permitted to refer to D. We can enhance the morph statement
for partial metamorphosis, as shown below. In this case the operands of the statement are
functions instead of objects and classes.

morph ExampleObject.ABC to ExampleObject.A;

class CExample
{
public:
 void ABC(void) one of A, B, C;
private:
 void A (void)
 {
 …
 }
 void B (void)
 {
 …
 }
 void C (void)
 {
 …
 }
 void D (void)
 {
 …
 }
};

7. Metamorphic Functions
Even though we’ve committed the worst of all sins by using computed goto’s, we

insist that a slight change in compiler technology could transform this into clean well-
structured code. We were forced into using goto’s because we need cheap function calls
that share the same parameters, local variables, and return address. Even though each
routine is a segment of a larger function, we usually don’t think of them this way. It is
easier to program if we consider the code segments to be functions, and the goto’s to be
function calls. Because the stack frame is shared between these “functions,” it is
convenient to think of the “function call” as replacing the body of the current function.
Thus, we tend to think of a code segment as a metamorphic function that can be
dynamically transformed into some other function.

The concept is similar to the concept of multi-threading. Threads are cheap processes
that share the same address space and other resources, metamorphic functions are cheap
function calls that share stack frames. We believe that metamorphic functions should be
organized into mutually morphable groups. When a function calls another function from
its own group, no new stack frame will be created. When it calls a function in a different
group, a new stack frame and return address will be created. The declaration should be
similar to the C++ inline declaration, except that a group name will be used to identify
the group to which the function belongs. This syntax is illustrated in below, using the
keyword segment. We also use the keyword primary to identify functions that can be
called from outside their group. Although most of our applications clearly distinguish
between the primary entry point of a function and its internal segments, we are not
convinced that this would be a useful distinction in a more general context. A single
keyword may suffice for all metamorphic functions.

class MyObj
{
public:
 MyObj *Next;
 primary Exam1 void ProcessList(void)
 {
 ProcessObject();
 }
 segment Exam1 virtual void ProcessObject(void) = 0;
};

class OtherObj1 : public MyObj
{
public:
 segment Exam1 virtual void ProcessObject(void)
 {
 // process object here
 if (Next != NULL)
 {
 Next->ProcessObject();
 }
 }
};

MyObj * Head;

In the preceding code, we assume that there are several different classes derived from

MyObj, and that each of them overrides the function ProcessObject. The variable Head is
assumed to be the head of a list of objects. To process this list, we use the single function
call given below. No loop is required. It is possible to avoid testing the Next variable for
NULL by using a trailer object whose sole function is to terminate a linked list of objects,
or by using a different function for the last object in the list.

Head->ProcessList();

8. Conclusion
We have found metamorphic programming to be an effective tool in our search for

more efficient algorithms, particularly in the area of logic simulation. We have created
metamorphic solutions for many different problems, far too many to describe here. We
have found that virtually all of these implementations have given us some increase in
performance, although seldom to the degree that we have observed in logic simulation.
On the other hand, we are just scratching the surface of metamorphic programming.
There are many variant solutions to the problems we have discussed here, some of which
may be significantly more efficient than the solutions we have found. Much more work is
needed to discover the most efficient and effective metamorphic techniques for various
different problems. The most important problem is the lack of metamorphic constructs in
mainstream high-level languages. It is our hope that such features will be provided in the
future, and that metamorphic programming will become an important tool in the future.

9. Acknowledgement
The author would like to thank Professor Greg Speegle for his many helpful

comments during the preparation of this paper.

10. References
1. Cardelli, L, and Wegner, P. “On Understanding Types, Data Abstraction, and

Polymorphism,” ACM Computing Surveys, Vol. 17 No. 4, Dec 1985, pp. 471-522.
2. Abadi, M. and Cardelli, L., "A Theory of Objects," Springer, Heidelberg, 1996.
3. Maurer, P, “The Shadow Algorithm: A Scheduling Technique for both Compiled and

Interpreted Simulation ,” IEEE Transactions on Computer Aided Design, vol 12, No.
9, Sept. 1993, pp.1411-1413.

4. Maurer, P, “The Inversion Algorithm for Digital Simulation” IEEE Transactions on
Computer Aided Design, July 1997, pp. 762-769.

5. Maurer, P, “Event Driven Simulation Without Loops or Conditionals,” ICCAD 2000,
Nov. 2000, pp. 23-26.

6. Lewis, D., “A Hierarchical Compiled Code Event-Driven Logic Simulator,” IEEE
Transactions on Computer Aided Design, Vol. 10, No. 6, June 1991, pp.726-737.

7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Design Patterns: Elements of
Reusable Object-Oriented Software” Addison Wesley, New York, 1995.

8. Steele, G. L. Jr. “Debunking the ‘expensive procedure call’ myth, or procedure call
implementations considered harmful, or lambda, the ultimate GOTO,” ACM
Conference Proceedings, pp. 153-162, 1977.

9. Brglez, Pownall, Hum, “Accelerated ATPG and Fault Grading via Testability
Analysis,” ISCAS-85, pp. 695-698.

10. Maurer, P. “The Metamorphic Programming Website: Examples,”
http://cs.ecs.baylor.edu/~maurer/Metamorphic.

