
 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Ambiguity Function Magnitude Inversion and  

Applications of Morphological Dilation in POCS 

 

Albert R. Yu, Ph.D. 

 

Mentor: Robert J. Marks II, Ph.D. 

 

 

 This dissertation examines morphological dilation for applications in Projection 

onto Convex Sets (POCS) as well as the inversion of ambiguity function magnitude.  In 

general, POCS solvers are Least-Squares (LS) algorithms which minimize the 𝐿2-norm of 

a proposed solution.  However, there are situations where other error metrics can be 

advantageous.  One such metric is the weighted minimized-maximum error, or minimax 

which minimizes the 𝐿∞-norm.  Multiple methods for evaluating the weighted, minimax 

error are investigated, and this dissertation will introduce a modified alternating 

projections algorithm utilizing morphological dilation on convex sets to solve for the 

minimax.  This is shown to have notable improvements over standard POCS solvers for 

selective signal synthesis applications, including Fresnel diffraction synthesis, Computed 

Tomography (CT) and associative memory image reconstruction.  When multiple, 

conflicting objective functions are present, minimax solvers can be demonstrated to be an 

unbiased solver among multiple conflicting constraints, avoiding the Least-Squares 

tendency to shift a solution towards the centroid. 



 

 

In addition, the ambiguity function magnitude inversion is shown to be possible 

and a regularized method for quickly inverting a given function to a valid family of 

source signals is detailed.  The ambiguity function is a fundamental aspect of radar signal 

processing that is frequently described as non-invertible from its magnitude as the 

transform is not one-to-one.  In the past, an inversion to constant phase shift is possible 

with the full magnitude and phase of the function, but the phase information is frequently 

stripped as extraneous for analysis.  Unfortunately this practice prevents a clear inversion.  

However, this paper demonstrates that inversion to a valid spawning signal is possible, 

and outlines a regularized method for achieving the desired magnitude response.  This 

will give radar designers direct control over crafting ambiguity functions with mission-

critical characteristics. 
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CHAPTER ONE 

 

Introduction 

 

 

Motivation 

 

 This dissertation investigates novel inversion techniques and applies them in a 

variety of engineering applications.   There are two prongs to this research: investigating 

a modified Projection onto Convex Set (POCS)-based algorithm utilizing morphological 

dilation used for minimizing the maximum or minimax error, and developing a 

regularized method for ambiguity function magnitude inversion for applications in radar 

signal processing.  Dilated POCS is compared to standard POCS implementations which 

achieve a minimized 𝐿2-norm or Least-Squares result.  

 The advent of fuzzy logic led to a new notion of fuzzy POCS as an alternative to 

Least-Squares minimization.  In classic POCS, constraints are either met or failed with 

explicit values of true or false.  Fuzzy logic attempts to quantify vagueness with a partial 

truth, and has led Zadeh to introduce fuzzy set theory [1].  A set or constraint can be 

repeatedly enlarged or fuzzified until previously non-intersecting sets all touch.  The 

minimum enlargement of each set required in order for the greedy limit cycle to 

disappear and all sets to touch is the ideal solution.  The key issue is how to fuzzify a set.  

One method is to fuzzify via morphological dilation.  In morphological image processing, 

dilation is a technique of expanding shapes by the form of a dilation kernel.  For example, 

if a certain image structure is known to contain holes, dilation can be used to expand the 

structure to fill in all holes before being eroded back to the original size. The size and 
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shape of the kernel must be considered, as kernels that are too large risk subsuming all 

fine details.  Mathematically, this is frequently accomplished via Minkowski addition [2] 

between the constraint and chosen kernel.  

 The applications investigated include Computed Tomographic (CT) image 

reconstruction, Fresnel diffraction synthesis, associative memory, and ambiguity function 

magnitude inversion.  In CT imaging, an x-ray scanner irradiates a target object from 

multiple viewing angles and measures the time delay of received signals.  These 

measurements are collated to form the target’s sinogram.  The task of image 

reconstruction is to invert the sinogram into an image of the original target.  This problem 

is typically framed as a matrix inversion, but is impractical do perform directly due to the 

large size of images.  As a result, POCS techniques such as Simultaneous Algebraic 

Reconstruction Technique (SART) [3] and its variants are used instead, as these 

algorithms can be highly parallelizable.  This leads to a Least-Squares reconstruction that 

minimizes the sum of square errors to the given sinogram.  However, this may not always 

be the best metric for reconstruction.  In this inversion, each sinogram pixel is ray traced 

through the original image in order to identify a path matrix.  The Least-Squares solution 

reduces the collective squared error among all paths in reconstruction, which can lead to 

loss of details when only a few select angles image certain details.  A minimax approach 

can in certain scenarios address this issue and lead to an improved result. 

 Fresnel diffraction synthesis is another application where a typical projection-

based approach may lead to a Least-Square result that is inferior to the minimax result.  

In diffraction synthesis, the goal is to design an aperture for transmission of a signal that 

will achieve the desired image intensities downrange from the source.  This is 
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accomplished by propagating the aperture to each downrange plane and specifying a 

desired target pupil, then projecting back via the Method of Angular Spectrum [2].  

However, the tendency of Least-Square methods to bias the solution towards similar 

constraints leads to underrepresented, conflicting image constraints to be deemphasized.  

Minimax methods can address this issue by ensuring equal representation among the 

given pupil constraints. 

 The problem of associative memory is one of template matching with incomplete 

information.  POCS can be used in this area to construct an image from a given snippet 

and a library of known images.  The given signal segments can vary in size and 

similarity, leading to a conflict with the library.  Minimax POCS can reveal an alternative 

solution to the common Least-Squares approach and emphasize different features in the 

synthesis process. 

 The ambiguity function (AF) used in radar signal processing is frequently 

described as non-invertible when given only its magnitude as the transform is not one-to-

one. Inversion to a constant phase shift is possible given both the magnitude and phase, 

but in practice the AF is expressed in terms of its magnitude only, removing valuable 

phase information and impeding recovery. Thus, radar signal designers often use iterative 

methods to formulate signals with desirable properties by inspection. Using a modified 

Gerchberg-Saxton algorithm, we examine several transformations affecting phase 

recovery and develop a regularized inversion algorithm of the AF magnitude to valid 

spawning signals. 
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Outline 

 

Chapter Two is a Literature Review over convex sets and signals, projection 

techniques, morphological dilation and the minimax.   It will describe the relationship 

between dilated sets and the minimized-maximum weighted error, and continue into 

various algorithms for calculating the minimax solution.  Chapter Three will investigate 

the application of dilated POCS to Computed Tomography (CT) image reconstruction 

and Fresnel diffraction synthesis, and how the minimax algorithm can improve results 

under certain noise effects.  Chapter Four will investigate dilated projections to the topic 

of associative memory.  Chapter Five will examine the inversion of ambiguity function 

magnitude inversion, and Chapter Six will conclude the dissertation and summarize the 

issues with dilated POCS for minimax optimization. 
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CHAPTER TWO 

 

Background 

  

Convex Sets 

 

Geometric Convex Sets 

 

A set 𝑋 is convex if and only if for all vectors 𝑥⃗0, 𝑥⃗1 ∈ 𝑋, we have 

𝑥⃗ = 𝜆𝑥⃗0 + (1 − 𝜆)𝑥⃗1 ∈ 𝑋  (2.1) 

for 0 ≤ 𝜆 ≤ 1.  All points along the line formed between 𝑥⃗0 and 𝑥⃗1 is also within 𝑋.  A 

point outside the set would violate convexity.  Some geometric examples are shown in 

Figure 2.1.  Convex sets ensure that the weighted averages of solutions in the set will stay 

within the set.  If a set isn’t convex, then taking a weighted average of solutions may lead 

to a point that is no longer valid.  At its boundaries, a convex set that includes its limit 

points is called a closed convex set. 

 

 

Convex                                              Non-convex 

Figure 2.1.  This figure shows geometric examples of convex and non-convex sets. For a 

convex set, any weighted average of two points will produce a point that is still inside the 

set. This is not the case for non-convex sets, where averaging points may produce an 

invalid solution. 
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Convex Projection 

 

 Projecting onto a convex set 𝑆 involves finding a unique point on 𝑆 that is closest 

to a given position.  Starting at point 𝑥⃗, let the vector 𝑠 point from 𝑥⃗ to the set 𝐶.  The 

projection of 𝑥⃗ onto 𝐶 is the vector 𝑠 that minimizes its distance.  That distance is usually 

the Euclidean distance or 𝐿2-norm and is unique.  This is depicted in Figure 2.2.   

 

 

Figure 2.2.  A projection of a point 𝑥⃗⃗⃗ onto a convex set 𝐶. The projection yields a unique 

vector 𝑠⃗⃗⃗ that minimizes the distance from 𝑥⃗⃗⃗ to set 𝐶. 

 

 

If 𝑥⃗ is already within 𝐶, then that minimum distance is zero, 𝑠 = 0 and the point does not 

move and the projection does nothing.  Projection results in a fixed point that depends on 

initialization.  The projection operation is idempotent: any further projections will not 

change the outcome.  This is described by 

𝑃𝐶(𝑥⃗) = 𝑃𝐶(𝑃𝐶(𝑥⃗)).  (2.2) 

 

Minkowski Addition 

 

 Convex sets can be added together through Minkowski addition.  The definition 

of Minkowski addition is given as follows: for the sets 𝑋 and 𝑌, 

𝑍 = 𝑋⊕ 𝑌 = {𝑧 | 𝑧 = 𝑥⃗ + 𝑦⃗ ∀ 𝑥⃗ ∈ 𝑋, 𝑦⃗ ∈ 𝑌}.  (2.3) 

When both 𝑋 and 𝑌 are convex then this procedure results in a new set 𝑍 that is also 

convex.  This can be shown from (2.1) and (2.3), where the given sets 𝑋 and 𝑌 are 
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convex.  Then for any two points 𝑧0 and 𝑧1 in 𝑍 such that 𝑧0 = 𝑥⃗0 + 𝑦⃗0 and 𝑧1 = 𝑥⃗1 + 𝑦⃗1 

where 𝑥⃗0, 𝑥⃗1 ∈ 𝑋 and 𝑦⃗0, 𝑦⃗1 ∈ 𝑌, then for 0 ≤ 𝜆 ≤ 1 the sum 

𝑧 = 𝜆𝑧0 + (1 − 𝜆)𝑧1 = 𝜆(𝑥⃗0 + 𝑦⃗0) + (1 − 𝜆)(𝑥⃗1 + 𝑦⃗1) ∈ 𝑋 ⊕ 𝑌  (2.4) 

Where 𝑧 ∈ 𝑍 satisfies (2.1).  This operation is also commutative.  Minkowski addition is 

frequently used in morphological image processing where it is known as dilation; so 

named for enlarging a given binary mask by the desired dilation kernel.  This technique is 

frequently paired with erosion, or the Minkowski difference, in a procedure known as 

closing, which is an idempotent operation used to fill in gaps in a binary mask.  

 

Convex Signals 

 

 While a geometric interpretation of convexity gives an intuitive grasp of convex 

sets and projections, this concept can be extended to include many different types of 

signals.  The following convex constraints: bounded energy, fixed area, identical middles, 

and duration-limited signals, are described in detail in [2] and will be used as the 

projection operators for the various applications described later in Chapters Three, Four 

and Five. 

 

Bounded Energy 

 

The set of signals with bounded energy includes any signal 𝑥(𝑡) such that  

𝑆 = { 𝑥(𝑡) | ‖𝑥(𝑡)‖ ≤ 𝑟 } 

for some constant 𝑟 such that the square of the 𝐿2-norm is less than 𝑟. This set forms a 

hypersphere of radius 𝑟 and is called a Ball.  A projection of any signal 𝑦(𝑡) onto 𝑆 is 

given by 
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𝑃𝑆(𝑦(𝑡)) = { 

𝑦(𝑡) , ‖𝑦(𝑡)‖ ≤ 𝑟
   
𝑟𝑦(𝑡)

‖𝑦(𝑡)‖
, ‖𝑦(𝑡)‖ > 𝑟.

 

Thus, any value of 𝑦(𝑡) exceeding 𝑟 in magnitude has its magnitude lowered to 𝑟 and 

may be referred to as projecting onto the norm ball.  This projection will be used in 

Chapter Three in the application of diffraction synthesis in order to ensure that the energy 

through the aperture is bounded to a specified value. 

 

Constant or Fixed Area 

 

The set of signals with constant area includes any signal 𝑥(𝑡) such that, over a 

fixed interval [𝑎, 𝑏] 

𝑆 = { 𝑥(𝑡) | ∫ 𝑥(𝑡)𝑑𝑡

𝑏

𝑎

= 𝑐} 

for some constant area 𝑐.  A projection of any signal 𝑦(𝑡) onto 𝑆 is given by 

𝑃𝑆(𝑦(𝑡)) =

{
 
 

 
 

 
𝑦(𝑡) +

1

𝑏 − 𝑎
(𝑐 − ∫𝑦(𝑡)𝑑𝑡

𝑏

𝑎

) , 𝑎 ≤ 𝑡 ≤ 𝑏

   
𝑦(𝑡) , else.

 

Thus, the values of 𝑦(𝑡) within [𝑎, 𝑏] are uniformly raised or lowered by a constant 

amount such that the new area is equal to 𝑐.  In Chapter Three, the diffraction synthesis 

pupil will use this projection as a convex alternative to a non-convex Gerchberg-Saxton 

methodology [4].  The purpose of this projection in this application is to add intensity and 

prevent a degeneracy condition in the reconstructed signal and ensure the pupil acquires 

the desired shape. 
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Identical Middles 

 

The set of signals with identical middles includes any signal 𝑥(𝑡) such that, over a 

fixed interval [𝑎, 𝑏] 

𝑆 = { 𝑥(𝑡) | 𝑥(𝑡) = 𝑐(𝑡) ∀ 𝑡 ∈ [𝑎, 𝑏] } 

for some fixed 𝑐(𝑡).  Thus, 𝑐(𝑡) forms the identical middle for all 𝑡 ∈ [𝑎, 𝑏], and 𝑥(𝑡) is 

allowed to be anything else outside this interval.  A projection of any signal 𝑦(𝑡) onto 𝑆 

is given by 

𝑃𝑆(𝑦(𝑡)) = { 
𝑐(𝑡) , 𝑎 ≤ 𝑡 ≤ 𝑏
   
𝑦(𝑡) , else.

 

Thus, the values of 𝑦(𝑡) within [𝑎, 𝑏] are set to the identical middle 𝑐(𝑡). The signal can 

take on any value outside this middle.  This projection will be used in Chapter Four for 

associative memory to impose the multiple conflicting signal segments onto the 

synthesized image. 

 

Duration-Limited 

 

The set of signals that have finite support includes any signal 𝑥(𝑡) such that, over 

a fixed interval [𝑎, 𝑏] 

𝑆 = { 𝑥(𝑡) | 𝑥(𝑡) = 0 ∀ 𝑡 ∉ [𝑎, 𝑏] }. 

A projection of any signal 𝑦(𝑡) onto 𝑆 is given by 

𝑃𝑆(𝑦(𝑡)) = { 
𝑦(𝑡) , 𝑎 ≤ 𝑡 ≤ 𝑏
   
0 , else.

 

Any nonzero value of 𝑦(𝑡) for a given 𝑡 outside [𝑎, 𝑏] is set to zero.  Chapter Five will 

implement an adaptive window based on this concept for ambiguity function magnitude 

inversion. 
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Projection onto Convex Sets 

 

Projection onto Convex Sets (POCS) is a popular, longstanding class of 

algorithms for Least-Squares or 𝐿2-norm minimization.  The concept was introduced by 

John von Neumann in 1933 as the Method of Alternating Projections (MAP) [5], and has 

since been rediscovered many times by [6] and [7].  A randomly initialized point will 

reach a fixed point solution along the intersection of convex sets via repeated, sequential 

projections upon each set.  However, this method assumes that such an intersection 

exists.  If no intersection exists, then alternating projections will result in a greedy limit 

cycle that is dependent on initialization and has no unique solution.  POCS and its 

variants have been applied to a variety of fields including signal recovery [8], artificial 

neural networks [9], [10], [11], medical imaging [11], [12], and time-frequency analysis 

[13], [14].  These were popularized by Kaczmarz [15], Gordon, Bender and Herman [16], 

Youla and Webb [12], Sezan and Stark [11] for applications in medical imaging and 

restoration.  In many of these situations, one is given a set of convex constraint 

parameters to be met.  A solution that satisfies all constraints corresponds to common 

point along the intersection of all sets.  Alternating projections is a simple yet effective 

method at locating such common points. 

 

Alternating Projections 

 

This process will approach a fixed point for intersecting sets, which is highly 

dependent on initialization, as shown in Figure 2.3.  However, this is not the case if the 

sets do not intersect.  In the case of non-intersecting sets, alternating projections will 

reach a greedy limit cycle, as depicted in Figure 2.4. 
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Figure 2.3.  An illustration of the convergence achieved via alternating projections. 

Projecting onto two, intersecting sets from a random initialization, POCS will converge 

onto a fixed point on the intersection of the sets that highly depends on initialization. 

 

 
Figure 2.4.  Alternating projections of 𝑥⃗ onto 𝐶0 and 𝐶1 does not lead to a common point, 

as both sets do not intersect. Instead, a limit cycle results that corresponds to the 

minimum distance between the two sets. 

 

Unfortunately when there are three or more non-intersecting sets, alternating 

projections converges to a greedy limit cycle that has no clear usefulness that is highly 

dependent on the order of projections, as shown in Figure 2.5.  In this example, 

alternating from 𝐶0 → 𝐶1 → 𝐶2 produces a clearly different limit cycle than the reverse 

process of 𝐶2 → 𝐶1 → 𝐶0.  While the two-set example in Figure 2.4 represented the 

closest distance between 𝐶0 and 𝐶1, here there is no such useful property. 
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Figure 2.5. When there are three or more non-intersecting sets, alternating projections can 

converge to different limit cycles depending on the order of projections. Unlike the two 

set case, where the limit cycle represents the closest distance between the sets, the limit 

cycle for three or more sets has no known useful properties. 

 

 One way to attempt to resolve this issue is to introduce a relaxation term 𝜆 such 

that 0 < 𝜆 ≤ 1.  This term is multiplied to the projected step, thereby truncating each 

iteration’s step size.  Relaxation, seen in Figure 2.6, can achieve significantly improved 

results in the rate or quality of convergence.  

 

 

Figure 2.6. A relaxed alternating projection results where each projected step is scaled 

down by 0.5. This results in smaller step sizes, but in certain situations can improve 

convergence by ensuring the projections follow the “inside track” toward the fixed point. 

 

It can also reduce the size of the final limit cycle, as seen in Figure 2.7.  However, unless 

an optimal relaxation size is used, a limit cycle may still exist for nonintersecting sets.  
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One way to deal with this is to have the relaxation term 𝜆 get smaller with iteration, but 

this must be chosen carefully to prevent the step size from becoming too small before the 

algorithm has had a chance to converge.  Overall, a unique, least-squares solution that 

minimizes the sum of squared distances to each set is preferred, which leads to the 

implementation of simultaneous projections. 

 

 

Figure 2.7.  Here, a 𝜆 = 0.5 relaxation results in a significantly smaller limit cycle 

despite utilizing the same projection sequence. In some implementations, 𝜆 is reduced 

with iteration, resulting in the step size approaching zero. This can lead to the limit cycle 

approaching a least-squares solution between the given convex sets. 

 

Simultaneous Projections 

 

To counteract the multiple possible limit cycles reach with alternating projections, 

a unique, Least-Squares solution is preferred. Consider the following implementation of 

simultaneous projections [2], 

𝑃(𝑥⃗) =∑𝑤𝑖𝑃𝑖(𝑥⃗)

𝑖∈𝐶

  (2.5) 

where  

∑𝑤𝑖
𝑖∈𝐶

= 1. 
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When 𝑤𝑛 are all equal value, (2.5) becomes the equation for a centroid, or arithmetic 

mean.  The total error of a point 𝑥⃗ is given by 

𝐷(𝑥⃗) =∑𝑤𝑖‖𝑥⃗ − 𝑃𝑖(𝑥⃗)‖
2

𝑖∈𝐶

  (2.6) 

Thus the goal is to minimize the total error, yielding a Least-Squares solution.   

Solving via simultaneous projections yields a Least-Squares centroid and is thus 

dominated by the center-of-mass of the constraint sets.  Consequently, this prioritizes 

solutions near a higher density of constraint sets, diminishing the influence of constraints 

that are relative outliers.  This is frequently resolved by varying the weights in order to 

explore all convex combinations, relying on the domain expertise of the operator in 

assigning more importance to one constraint over another.  Figure 2.8 depicts a 

simultaneous projection onto multiple convex sets.  The update step can be significantly 

lower than that of alternating projections as any update step is averaged over all other 

projection steps.  As a result, hybrid methods are often employed instead to speed up 

convergence.     

 

 
 

Figure 2.8.  In simultaneous or averaged projections, a given point is simultaneously 

projected onto multiple constraint sets, and the sum of projections is used to update the 

position of the solution. 

 

 



15 

 

Minimax 

 

The error in (2.6) is expressed in terms of the 𝐿2-norm squared, yielding a Least-

Squares solution.  Other norms may be used.  When the 𝐿1-norm is used the minimized 

function becomes the sum of absolute values, also known as Least-Absolute Deviations 

(LAD).  When the 𝐿∞-norm is used, the resulting optimization is known as the minimax 

and is used to minimize the maximum error.  A geometric example using points is shown 

in Figure 2.9, demonstrating the differences between the Least-Squares solution, 

minimax, and maximin. 

 

 
    (a)  Given Points        (b)  Least-Squares            (c)  Minimax                (d)  Maximin 

Figure 2.9.  Four convex sets are given as points in (a).  The Least-Squares solution (b) is 

centroid of the four points, equivalent to the arithmetic mean.  Minimax (c) locates the 

center of the Smallest Enclosing Ball (SEB) that minimizes the maximum distance to any 

point.  Maximin (d) is not equivalent to the minimax, and locates the center of Voronoi 

partitions. 

 

The maximin is also shown to demonstrate how it differs from the minimax.  Figure 2.10 

demonstrates how adding more constraints in the form of three more points will shift the 

centroid and thus Least-Squares solution.  The minimax and maximin are unaffected by 

these additional constraints as they are within the maximum errors.  Thus, the minimax 

solution is sensitive only to outlying constraints that push the boundaries of the space 
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occupied by convex combinations of the constraints and will be robust against minor 

variations of already satisfied restrictions.  In contrast, Least-Squares solutions will 

always shift with a changing center-of-mass, which may not be desired.   

 

 

    (a)  Given Points        (b)  Least-Squares            (c)  Minimax                (d)  Maximin 

Figure 2.10.  Multiple convex sets are given as points in (a).  The Least-Squares (b), 

minimax (c) and maximin (d) solutions are shown.  The addition of three points onto 

Figure 2.9 results in a shift in the centroid and thus Least-Squares solution, while the 

minimax and maximin are unaffected.   

 

For a geometric minimax consisting of 𝑚 constraints in 𝑛 dimensions, the minimax is 

defined by its boundary points which can be anywhere from one to the minimum of 𝑚 

and 𝑛 + 1.  Certain algorithms, such as Welzl’s minidisk, recursively search through 

smaller subsets of boundary points in order to locate the SEB. 

 

Smallest Enclosing Ball Solvers 

 

 The minimax is used in a variety of fields.  One of the original applications of the 

minimax was in the 1-center problem [17], or smallest enclosing circle.  This is depicted 

in Figure 2.11.  The goal is to locate on a map an optimal position that would minimize 

the maximum distance to a given list of targets.  The 2-center or higher variants involves 

placing two or more optimal centers such that the maximum distance to any center is 
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minimized, and so on.  At higher dimensions, the smallest enclosing circle becomes the 

Smallest Enclosing Ball, or SEB.  Let 𝑃 be the set of 𝑚 points in 𝑛-dimensional space 

that needs to be enclosed with the smallest possible ball.  The following algorithms have 

been developed to solve for the Smallest Enclosing Ball. 

 

 

Figure 2.11.  The 1-center problem is an application of minimax towards the smallest 

enclosing circle.  The goal of this problem is to find the location of a shopping center that 

minimizes the maximum distance to any local residence. 

 

 

Ritter’s Bounding Sphere 

 

Ritter’s Bounding Sphere [17] is a simple approximation for the SEB at low 

dimensions.  It is an iterative algorithm that takes an initial guess 𝑥⃗0 performs the 

following actions: 

1. Find 𝑢⃗⃗ ∈ 𝑃 that is maximum distance from 𝑥⃗𝑘. 

2. Find 𝑣⃗ ∈ 𝑃 that is maximum distance from 𝑢⃗⃗. 

3. Set 𝑥⃗𝑘+1 =
1

2
 (𝑢⃗⃗ + 𝑣⃗). 

4. Set 𝑘 = 𝑘 + 1 and repeat from 1. 

Distances computations in 𝑛-dimensions need to be performed 𝑚 times for each point in 

the set 𝑃, giving the algorithm a time complexity of 𝑂(𝑚𝑛).  Thus, this algorithm is a 

comparatively efficient method for approximating the minimax.  The algorithm identifies 
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the farthest pair of points in 𝑃.  However, there is no guarantee that these two points 

define the boundary of the smallest enclosing ball.  As a result, the algorithm performs 

poorly at higher dimensions.  Nevertheless, the algorithm is popular for 2D and 3D 

applications for fast approximation due to its simplicity. 

 

Welzl’s Algorithm 

 

Welzl’s algorithm [18] is based on Seidel’s “prune and search” algorithm [19], 

introduced a recursive algorithm for finding the SEB known as minidisk.  It begins by 

randomly drawing 𝑛 + 1 points in 𝑃 to form the boundary set 𝑅, from which the 

circumcenter is computed.  Subsets of 𝑅 recursively tested to find the minimum number 

of points needed to define the circumcenter from these points.  From here, the remaining 

points in 𝑃 are tested against this boundary and the smallest enclosing ball is grown until 

all points are satisfied.  Up to 𝑛 + 1 points define the boundary, and thus (𝑛 + 1)! 

recursive 𝑛 + 1 computations are needed to explore each combination.  This is performed 

over 𝑚 points, giving the method a time complexity of 𝑂(𝑚(𝑛 + 1)(𝑛 + 1)!).  

Unfortunately even modest increases to 𝑛 will make the Welzl algorithm untenable, so 

this method is kept to lower dimensions. 

 

Badoiu-Clarkson 

 

 The minimum enclosing ball can be found via the Badoiu and Clarkson algorithm 

[20], which is a relatively simple procedure involving three primary steps. A simplified 

version is provided by Martinetz, Mamlouk and Mota [21] as follows. 

1. Initialize with a guess of the balls center 𝑥⃗0 at step 𝑘 = 0, using any point in the 

set 𝑃. 
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2. For each step 𝑘, find 𝑢⃗⃗𝑘 to be the farthest point in 𝑃 from the current center 𝑥⃗𝑘 

argmax 
𝑢⃗⃗⃗∈𝑃

‖𝑢⃗⃗𝑘 − 𝑥⃗𝑘‖. 

3. Update the center location via 

𝑥⃗𝑘+1 = 𝑥⃗𝑘 +
1

𝑘 + 1
(𝑢⃗⃗𝑘 − 𝑥⃗𝑘). 

Note that while 𝑥⃗0 is canceled in the first iterative step, it is still needed in choosing the 

first, farthest point 𝑢⃗⃗𝑘.  The remaining terms can be shown to sum to 

𝑥⃗𝑘+1 =
1

𝑘 + 1 
(𝑢⃗⃗0 + 𝑢⃗⃗1 +⋯+ 𝑢⃗⃗𝑘). 

Each additional iteration tugs on the point of the center guess in the direction of the 

current, farthest point.  Thus, 𝑥⃗𝑘 becomes some convex combination of all points 𝑝⃗ in the 

set 𝑃, or  

𝑥⃗𝑘 = 𝜆0𝑝⃗0 + 𝜆1𝑝⃗1 +⋯+ 𝜆𝑚−1𝑝⃗𝑚−1 

where 𝜆0 + 𝜆1 +⋯+ 𝜆𝑚−1 = 1.  Each point in the set 𝑃 nudges the center in accordance 

to how many times it is the farthest away point, achieving an equilibrium as 𝑘 → ∞.  The 

accuracy of this algorithm depends on the iteration 𝑖 to increase the resolution on the 

convex combination coefficients 𝜆.  The run time of the algorithm is inversely 

proportional to the error.  The algorithm has a time complexity of 𝑂 (
𝑚𝑛

𝜖
) to lower the 

relative error of the final estimated bounding radius to below 𝜖. 

 

Fischer’s SEB 

 

Fischer’s SEB is a two-step, shrink and move process that gradually encloses a 

ball around all points in the set [22].  A random point 𝑥⃗0 in 𝑃 is chosen as an initial 

starting center, and the ball radius 𝑟 is computed from the farthest away point in 𝑃.  This 
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results in an over-dilated ball.  Once initialized, the shrink and move process begins.  For 

shrinking, the radius 𝑟 is lowered until one or more points touch the surface of the ball.  

The points touching the boundary are kept for the move step.  To move the center 𝑥⃗, 

Fischer takes advantage of a property of the minimax.  Given all points constituting the 

boundary, the minimax solution must lie on a line normal to the circumcenter or minimax 

of that boundary.  Any point on said line will be equally distant to each point on the 

boundary, and thus a line search is needed to place the new center.  Figure 2.12 depicts 

the process of finding the next search direction.  The new ball is then shrunk, and a new 

line search is performed on the line normal to the new circumcenter.  However, since the 

circumcenter is difficult to compute, the affine projection onto the boundary is used 

instead. 

 

Figure 2.12.  An illustration of Fischer’s move step: for a given point 𝑥⃗𝑘, the farthest 

away points 𝑝⃗𝑖, 𝑝⃗𝑗, and 𝑝⃗𝑘 form the boundary of the current smallest enclosing ball.  The 

point 𝑛⃗⃗ is a projection of 𝑥⃗𝑘 onto the affine space defined by 𝑝⃗𝑖, 𝑝⃗𝑗, and 𝑝⃗𝑘.  A line search 

between 𝑥⃗𝑘 and 𝑛⃗⃗ is performed to compute the next center for SEB. 
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Linear Programming 

 

Linear Programming (LP) [23], [24], [25], is a special case of convex 

optimization where the objective function and convex constraints are linear.  Linear 

Programs take the form 

minimize 
𝑥⃗

: 𝑐  𝑇𝑥⃗   
     

subject to : 𝐴𝑥⃗ ≤ 𝑏⃗⃗,

  𝑥⃗ ≥ 0⃗⃗.

 

Here, 𝐴 ∈ ℝ𝑚×𝑛 while 𝑐, 𝑥⃗ ∈ ℝ𝑛 and 𝑏⃗⃗ ∈ ℝ𝑚.  This form is called the primal problem.  

The objective function 𝑐  𝑇𝑥⃗ indicates a direction of increasing cost over the space defined 

by 𝑥⃗ ≥ 0⃗⃗.  The gradient of an objective function is depicted in Figure 2.13, while Figure 

2.14 depicts the effects of bounding constraints on the feasible search space. 

 
Figure 2.13.  A 2D depiction of the objective function, indicating an up and downhill 

direction for maximization or minimization.   

 

Uphill 

Downhill 
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Figure 2.14.  Boundary conditions indicate feasible half-spaces, the intersection of which 

forms the feasible solution space.  For Linear Programs a feasible minimum will be found 

along a boundary of the feasible space.  Conceptually, a marble rolling downhill will 

reach a minimum along the boundary. 

 

However, this minimization can also be expressed as maximization. 

maximize 
𝑦⃗⃗

: 𝑏⃗⃗ 𝑇𝑦⃗   

     
subject to : 𝐴𝑇𝑦⃗ + 𝑠 = 𝑐,

  𝑠 ≥ 0⃗⃗.

 

This second form is called the dual problem, and the newly introduced term 𝑠 is called 

the dual slack.  These two forms are Lagrangian duals and can be related by the 

inequality 

𝑐  𝑇𝑥⃗ ≥ 𝑏⃗⃗ 𝑇𝑦⃗. 

This is known as the duality gap, and is often used as a condition for optimization in 

Interior Point (IP) methods.  The duality gap becomes equality at the optimal solution, 

since 
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𝑐  𝑇𝑥⃗ − 𝑏⃗⃗ 𝑇𝑦⃗ = (𝐴𝑇𝑦⃗ + 𝑠)𝑇𝑥⃗ − (𝐴𝑥⃗)𝑇𝑦⃗
   
 = 𝑠  𝑇𝑥⃗ + (𝐴𝑇𝑦⃗)𝑇𝑥⃗ − (𝐴𝑥⃗)𝑇𝑦⃗
   
 = 𝑠  𝑇𝑥⃗
   

 ≥ 0⃗⃗.

 

Equality occurs at the optimal 𝑥⃗ and 𝑦⃗.  This gives rise to the Karush-Kuhn-Tucker 

(KKT) conditions [23], [25], [24] for optimality, which are: 

1. Dual feasibility 𝐴𝑥⃗ = 𝑏⃗⃗   
       
2. Primal feasibility 𝐴𝑇𝑦⃗ + 𝑠 = 𝑐   
       
3. Complementary slackness 𝑥𝑖𝑠𝑖 = 0 , 𝑖 = 1,… , 𝑛
       

4. Domain 𝑥⃗, 𝑠 ≥ 0⃗⃗.   

 

 

While POCS may be used to solve certain Linear Programs, alternate methods are 

preferred in practice.  Two popular types of Linear Programming solvers are the simplex 

method and Interior-Point (IP) methods.  Simplex methods [26] maintain the first three 

KKT conditions and iteratively solve for the fourth, while Interior Point methods 

maintain the feasibility and domain and iteratively solves for the complementary 

slackness condition. 

 

Simplex Methods 

 

 Dantzig’s simplex method [26] revolves around setting each constraint defining a 

half-space. At higher dimensions, this can lead to slow convergence as the algorithm 

skirts the surface of the solution space.  The Simplex algorithm is diagramed in Figures 

2.15 to 2.18.  The key aspects of the Simplex method are 
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 The Origin:  The origin is a convenient starting point, and the cumulative 

displacement of the starting position indicates the final minimized objective 

function value. 

 Slack variables:  A slack variable indicates a constraints displacement from the 

origin.  The larger the negative value the farther removed from the origin, 

whereas if it is positive the origin is already included and satisfied.  

 Entry Points:  Regarding slack variables, the more negative the slack variable, the 

farther removed from the origin.  Ideally, all variables include or just touch the 

origin.  Thus, picking the farthest away constraint is a good entry point into the 

iterative process. 

 Pivot Points:  The pivot point checks an entry points sensitivity to the objective 

function (by comparing ratios), indicating the direction of pivot.  The element 

with the smallest ratio is chosen as the pivot point to encourage the minimum. 

 

 

Figure 2.15.  (Left) the given constraints form a fence around a feasible solution space.  

(Right) the objective function is shown as the black solid line.  Increasing the value 𝒄 

shifts the objective function out.  We want to find the point right when the objective 

function just touches the feasible space.  But this is easier said than done. 

 

The constraints 

define a feasible 

solution space 
Increasing 𝑐 

moves the 

objective line 

outward 
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Figure 2.16.  (Left) select a fence that is far away from the origin.  Here, the one in bold 

is selected as the entry point.  (Right) next pick a pivot point that is closest to the origin.  

This can be found via ratio of slopes. 

 

 

Figure 2.17.  (Left) the result of pivoting is the feasible set flush against the axis.  (Right) 

there are still fences that don’t include the origin, so the process repeats. 

 

Pick a fence that has 

to move backwards 

toward the origin 

This whole procedure 

skews the feasible set 

and pushes the fence 

flush against the axis. 

Pick the pivot closest 

to the objective line, 

or the smaller ratio 

The objective line 

has also skewed. 

The process repeats, 

picking the next fence 

that doesn’t include 

the origin (the only 

one now) and choosing 

a pivot. 
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Figure 2.18.  (Left) the result of pivoting the second fence.  (Right) the overall change in 

position of the fence tells us where the minimum was in the original plot. 

 

 

Interior-Point Methods 

 

 Interior-point methods converge on the optimal solution from within the convex 

hull.  This can lead to slower convergence for low dimensional problems, but can be 

significantly faster at higher dimensions.  Many Interior-Point methods have been 

developed to compete with simplex methods. 

 

Dikin’s Affine Scaling Method 

 

Dikin’s algorithm [27] has been rediscovered many times and is also known as 

the affine scaling method.  Consider an update step of 𝑓𝑘. 

𝑓𝑘+1 = 𝑓𝑘 + 𝑎∆𝑓𝑘
   

𝐺𝑓𝑘+1 = 𝐺𝑓𝑘 + 𝑎𝐺∆𝑓𝑘
 = 𝑔⃗

  (2.7) 

where 𝑎 is an arbitrary step size modifier greater than zero.  At steady-state, 

𝑎𝐺∆𝑓𝑘 = 0⃗⃗. 

The pivot fence is 

now flush against 

the axis as well. 

The net effect is the minimum was 

transformed onto the origin. 
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Which indicates that ∆𝑓𝑘 is in the nullspace of 𝐺.  A projection 𝑃 of a vector onto the 

nullspace of 𝐺 is given by 

𝑃 = 𝐼 − 𝐺𝑇(𝐺𝐺𝑇)−1𝐺.  (2.7) 

Identifying the direction of steepest descent  

∆𝑓𝑘 = −𝑃𝑐 

because 

𝑐  𝑇𝑓𝑘+1 = 𝑐  𝑇𝑓𝑘 + 𝑎𝑐
 𝑇∆𝑓𝑘

 = 𝑐  𝑇𝑓𝑘 − 𝑎𝑐
 𝑇𝑃𝑐

𝑐  𝑇𝑓𝑘+1 < 𝑐  𝑇𝑓𝑘

 

since 𝑎 > 0 and 𝑐  𝑇𝑃𝑐 > 0.  In addition, 𝑎 must be chosen such that 𝑓𝑘 − 𝑎𝑃𝑐 ≥ 0⃗⃗ since 

𝑓 ≥ 0⃗⃗.   

 

Primal-Dual Newton-Step Methods 

 

Primal-Dual Newton-Step barrier methods [23], [28], [29]  maintain the KKT 

conditions.  A logarithmic barrier function is applied to the primal 

minimize 
𝑥⃗

: 𝑐  𝑇𝑥⃗ − 𝜏∑log(𝑥𝑗)

𝑗     

subject to : 𝐴𝑥⃗ = 𝑏⃗⃗,

  𝑥⃗ ≥ 0⃗⃗.

 

Similarly, the dual becomes 

maximize 
𝑦⃗⃗

: 𝑏⃗⃗ 𝑇𝑦⃗ + 𝜏∑log(𝑠𝑗)

𝑗     
subject to : 𝐴𝑇𝑦⃗ + 𝑠 = 𝑐,

  𝑠 ≥ 0⃗⃗.

 

Taking the KKT conditions yields 
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𝐴𝑇𝑦⃗ + 𝑠 − 𝑐 = 0⃗⃗
   

𝐴𝑥⃗ − 𝑏⃗⃗ = 0⃗⃗
   

𝑥⃗ ∘ 𝑠 = 𝜏1⃗⃗.

 

To compute a Newton step, the gradient must be formed form the above conditions.  This 

can be found via the Jacobian, 

𝐽 = [
0 𝐴𝑇 𝐼
𝐴 0 0
𝑆 0 𝑋

] 

which yields the Newton step 

[
0 𝐴𝑇 𝐼
𝐴 0 0
𝑆 0 𝑋

] [
∆𝑥⃗
∆𝑦⃗

∆𝑠

] = − [

𝐴𝑇𝑦⃗ + 𝑠 − 𝑐

𝐴𝑥⃗ − 𝑏⃗⃗

𝑥⃗ ∘ 𝑠 − 𝜏1⃗⃗

] 

Solving for ∆𝑥⃗, ∆𝑦⃗ and ∆𝑠 gives the update 

[

𝑥⃗𝑘+1
𝑦⃗𝑘+1
𝑠𝑘+1

] = [

𝑥⃗𝑘
𝑦⃗𝑘
𝑠𝑘

] + 𝑎𝑘 [

∆𝑥⃗𝑘
∆𝑦⃗𝑘
∆𝑠𝑘

] 

where 𝑎𝑘 is an step-size modifier greater than zero such that the conditions on 𝑥⃗, 𝑠 > 0 

are maintained.  Each iteration, 𝜏 is shrunk by a chosen 0 < 𝛿 < 1 such that 

𝜏𝑘+1 = 𝛿𝜏𝑘 

in order to tighten the 3
rd

 KKT condition with each iteration. 

 

Linear Programming Minimax 

 

The problem of minimized maximum can be extended to matrix inversion and 

thus Linear Programming.  The goal is to resolve 𝑏⃗⃗ = 𝐴𝑥⃗, where 𝑥⃗ ∈ ℝ𝑛, 𝑏⃗⃗ ∈ ℝ𝑚, and 

𝐴 ∈ ℝ𝑚×𝑛.  Direct inversion becomes computationally impractical for large values of 𝑚 

and 𝑛, requiring alternative methods of evaluation.  Many problems, including 
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tomographic image reconstruction, require these techniques.  Minimax error involving 

matrices can be reformulated as a Linear Programming problem and efficiently solved.  

The goal is to find 𝑥⃗ in order to minimize the norm of the residual 

minimize   ‖𝑎⃗𝑖
𝑇𝑥⃗ − 𝑏𝑖‖𝑝 

When 𝑝 = 2, this yields the standard, Least-Squares approach, minimizing the sum of 

squares of the residual.  Setting 𝑝 = 1 gives the Least Absolute Deviation approach, 

minimizing the sum of absolute values.  For minimax 𝑝 = ∞ such that  

minimize   max
𝑖
|𝑤𝑖(𝑎⃗𝑖

𝑇𝑥⃗ − 𝑏𝑖)| 

This can be reformulated as 

minimize  𝛿
  

subject to  𝛿 ≥ 𝑤𝑖(𝑎⃗𝑖
𝑇𝑥⃗ − 𝑏𝑖) ≥ −𝛿,

 𝑥⃗ ≥ 0⃗⃗

 

and this is resolved by substituting 𝑥⃗′ = [𝑥⃗
𝛿
] and minimizing the last element in vector 𝑥⃗′.  

Let 𝑢⃗⃗ be the inverse of vector of weights resulting from dividing both sides of the 

constraints by 𝑤𝑖, or where 

𝑢𝑖𝑤𝑖 = 1. 

Here the values of 𝑢𝑖 indicate how a given constraint scales with the minimized 

maximum error, and is inversely proportional to 𝑤𝑖.  Thus, the more important a 

constraint, the slower it dilates.  When 𝑤𝑖 = 0, the constraint is trivial and 𝑢𝑖 → ∞ and 

does not need to be considered.  This can also be extended to situations where constraints 

must be strictly followed.  If a certain constraint 𝑖 exists that must have no error in it, then 

the rate of dilation 𝑢𝑖 = 0 and a projection onto this constraint is directly onto the set.  

This can be useful for situations where no compromise can be made. 
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minimize  𝛿
  

subject to  𝛿𝑢𝑖 ≥ 𝑎⃗𝑖
𝑇𝑥⃗ − 𝑏𝑖 ≥ −𝛿𝑢𝑖 ,

 𝑥⃗ ≥ 0⃗⃗.

 

The constraints can be rewritten in standard form as 

[  𝐴 −𝑢⃗⃗
−𝐴 −𝑢⃗⃗

  ] [  𝑥⃗
𝛿
  ] ≤ [ 𝑏⃗⃗

−𝑏⃗⃗
  ]  (2.7) 

and the objective function to minimize can be written as 

[  0⃗⃗𝑛
1
  ]
 𝑇

[  𝑥⃗
𝛿
  ]. 

where 0⃗⃗𝑛 is a column vectors of zeros of length 𝑛.  The inequality in (2.7) is often 

rewritten as an equality condition by augmenting 𝑥⃗ with slack variables.  Define 𝑟 ≥ 0 to 

be a length 𝑚 column vector.  Then (2.7) can be rewritten as 

minimize  [  
0⃗⃗𝑛

0⃗⃗𝑚
1

  ]

 𝑇

[  
𝑥⃗
𝑟
𝛿

  ]

  

subject to  [  
𝐴 −𝐼𝑚 −𝑢⃗⃗

−𝐴 −𝐼𝑚 −𝑢⃗⃗
  ] [  

𝑥⃗
𝑟
𝛿

  ] = [ 𝑏⃗⃗

−𝑏⃗⃗
  ] ,

 [  
𝑥⃗
𝑟
𝛿

  ] ≥ 0⃗⃗.

  (2.8) 

where 𝐼𝑚 is an identity matrix of size 𝑚 ×𝑚.  The Linear Program can be written as 

minimize  𝑐  𝑇𝑓
  

subject to  𝐺𝑓 = 𝑔⃗,

 𝑓 ≥ 0⃗⃗

  (2.9) 

where 

𝑐 = [  
0⃗⃗𝑛

0⃗⃗𝑚
1

  ] , 𝐺 = [  
𝐴 −𝐼𝑚 −𝑢⃗⃗

−𝐴 −𝐼𝑚 −𝑢⃗⃗
  ] , 𝑓 = [  

𝑥⃗
𝑟
𝛿

  ] , 𝑔⃗ = [ 𝑏⃗⃗

−𝑏⃗⃗
  ]. 
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Thus the given components are 𝐺, 𝑔⃗ and 𝑐 form a Linear Program where the goal is to 

find 𝑓.   
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CHAPTER THREE 

 

Morphological Dilation for Applications in POCS 

 

This chapter is an unpublished manuscript by:  A. R. Yu, K. E. Schubert and R. J. Marks 

II, “Morphological Dilation for Applications in POCS.” 

 

 

Introduction 

 

This manuscript investigates modifications to POCS in order to minimize the 

maximum error through morphological dilation.  The work is inspired and mentored by 

Dr. Robert J. Marks II who posed the various applications of dilated POCS and guided 

the research process.  Dr. Keith E. Schubert also provided valuable insight into the 

various implementations of Computed Tomographic (CT) reconstruction techniques used 

in medical imaging.  This work presents the theory of the minimax solution through 

morphological dilation and the potential advantages of this technique over current Least-

Squares algorithms.  These advantages are demonstrated through applications of 

morphological dilation to CT image reconstruction and Fresnel diffraction synthesis.   

 Projection onto Convex Sets is a popular method for Least-Squares or 𝐿2-norm 

minimization.  It is based on the Method of Alternating Projections (MAP) introduced by 

John von Neumann in 1933 [5].  Initially, alternating projections requires a nonempty 

intersection of convex constraints in order to arrive at a fixed point solution; otherwise a 

greedy limit cycle is reached [2].  A diverse assortment of POCS techniques were 

developed to address this issue, including the addition of relaxation terms and averaged 

or simultaneous projections in order to resolve the limit cycle and achieve a Least-

Squares solution when a unique solution does not exist.  These POCS algorithms are 
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applied to a variety of fields including signal recovery [8], artificial neural networks [9], 

[10], [30], medical imaging [11], [31], [12], and time-frequency analysis [13], [14]. 

 The goal in many restoration and synthesis problems is to discover any image or 

signal that expresses a predefined set of desired qualities.  These characteristics are 

frequently presented as a set of convex constraints and can take many forms, including 

signals with bounded energy, time-duration limited, band-limited signals, or signals with 

fixed area [2].  A solution that satisfies all the constraints occurs within the intersection of 

these convex sets.  However, when these constraints do not intersect then no common 

solution exists and alternating projections will fail to converge.   A Least-Squares 

approach is typically implemented to resolve this issue with the goal to minimize the 

weighted Total Variation, 

min 
𝑥⃗∈𝑆

 ∑𝑤𝑖‖𝑥⃗ − 𝑃𝑖(𝑥⃗)‖
2

𝑖∈𝐶

 

where 𝑤𝑖 are weights on the set of convex constraints 𝐶 such that 

∑𝑤𝑖 = 1

𝑖∈𝐶

 

and 𝑃𝑖 is the projection operator for the 𝑖th convex constraint and 𝑆 is the search space for 

𝑥⃗.  For POCS the weighted 𝐿2-norm is used and corresponds to a centroid.  However, 

there are situational benefits to other norms.  In Least-Absolute Deviations (LAD), the 

𝐿1-norm is used and is known to be a robust alternative that is less susceptible to outliers 

and optimal for certain error types [32].  When the 𝐿∞-norm is used, the minimization 

becomes 

min 
𝑥⃗∈𝑆

 max 
𝑖∈𝐶

 (𝑤𝑖‖𝑥⃗ − 𝑃𝑖(𝑥⃗)‖) 

and the resulting optimization is called the weighted minimax. 
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 The minimax problem has been thoroughly investigated extensively for many 

disparate applications and has many specialized solvers.  A classic example of minimax 

explores the 1-center problem [33] in order to locate an optimal construction placement 

for a shopping center that minimizes the maximum distance to all local residences on a 

map.  An analogous problem in computational geometry is known as the Smallest 

Enclosing Ball (SEB) problem and expands the 1-center problem to higher dimensional 

balls with applications in computer graphics and robotics [34].  Minimax can also be 

applied to matrix inversion, where it is typically framed as a Linear Program (LP).  In 

statistical decision theory the minimax is explored to minimize the maximum cost or 

worst-case scenario.  Each application has developed various ad hoc solvers for 

computing the minimax.  For SEB, popular solvers include Welzl’s miniball [18], 

Gartner, Fischer and Zurcher’s algorithms [22], [35], and the Badoiu-Clarckson 

algorithm [20].  Particle Swarm Optimization has also been used for the 1-center problem 

[36].  Both Interior-Point and simplex methods can be used for minimax matrix 

inversion. 

 This paper explores a generalized POCS-based solver that utilizes morphological 

dilation in order to achieve the weighted minimax solution.  The impetus for utilizing 

POCS is in accommodating the variety of potential convex signal processing constraints 

that may not have a direct, consistent correspondence as performing a projection can 

involve a different operator for each constraint.  For example, the set of band-limited 

signals is projected upon via low-pass filtering at the required cut-off frequency, while 

the set of bounded signals is projected upon via truncation.  In addition, morphological 

dilation with specialized convex kernels can situationally improve POCS reconstructions.  
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We present a POCS-based method for computing the minimax and demonstrate its 

practical impact through applications in Fresnel diffraction synthesis and Computed 

Tomography (CT) image reconstruction and contrast the minimax to current POCS 

techniques and their corresponding Least-Squares results. 

 

Least-Squares versus Minimax 

 

Alternating projections onto convex sets is best visualized geometrically as in 

Figure 3.1.  Given two intersecting sets, any randomly initialized point will converge to a 

fixed point within the intersection via repeated, alternating projections.  When sets do not 

intersect then no common solution exists and the alternating projections approach a 

greedy limit cycle as seen in Figure 3.2.  Limit cycles depend on the initialization and 

order of projections.  To resolve this situation and arrive at a distinct solution, a Least-

Squares algorithm is typically implemented to find the centroid within these constraints. 

 

 

Figure 3.1.  An illustration of the convergence of alternating projections.  POCS will 

converge onto a point on the intersection of convex constraint sets from any random 

initialization. 
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Figure 3.2.  An illustration of various greedy limit cycles in alternating projections for 

non-intersecting convex sets.  Limit cycles may not be unique.  Here, projecting 𝐶0 →
𝐶1 → 𝐶2 yields a different limit cycle to 𝐶2 → 𝐶1 → 𝐶0.  A Least-Squares approach is 

often used to resolve this issue and produce a unique result. 

 

Least-Squares algorithms minimize the 𝐿2-norm, or the sum of squares.  Consider 

the simultaneous projection onto all convex sets [2], [11], 

𝑃(𝑥⃗) =∑𝑤𝑖𝑃𝑖(𝑥⃗)

𝑖∈𝐶

. 

When 𝑤𝑖 are all equal, this corresponds to the equation for a centroid, or arithmetic mean, 

and the solution corresponds to the Least-Squares minimization  

𝐷∞ =∑𝑤𝑖‖𝑥⃗∞ − 𝑃𝑖(𝑥⃗∞)‖
2

𝑖∈𝐶

. 

Consider the simple 2D example of non-intersecting convex sets consisting of 

three distinct points (black dots) shown in Figure 3.3.  The bottom left is the origin and 

the other two dots are on the axes one unit away.  For an arbitrary point 𝑥⃗ = (𝑥0, 𝑥1), the 

weighted sum of distances is 

𝐷 =∑𝑤𝑖‖𝑥⃗∞ − 𝑃𝑖(𝑥⃗∞)‖
2

𝑖∈𝐶

= 𝑥0
2 + 𝑥1

2 + 𝑤0(1 − 2𝑥0) + 𝑤1(1 − 2𝑥1). 
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Then 

𝜕𝐷

𝜕𝑥0
= 2𝑥0 − 2𝑤0 

and 

𝜕𝐷

𝜕𝑥1
= 2𝑥1 − 2𝑤1. 

Setting these to zero gives  

𝑥⃗∞ = (𝑤0, 𝑤1). 

For equal weights, 

(𝑤0, 𝑤1, 𝑤2) = (
1

3
,
1

3
,
1

3
) 

we reach the steady-state solution shown in Figure 3.3.  Solving via Least-Squares yields 

a centroid dominated by the center-of-mass of the constraints.  Consequently, this 

prioritizes solutions near a higher density of constraint sets, diminishing the influence of 

constraints that are relative outliers.  This is frequently resolved by varying the weights, 

relying on the domain expertise of the operator in assigning more importance to one 

target over another. 

 An alternative approach is to minimize the 𝐿∞-norm.  This process results in a 

solution with the minimized maximum error among all the given constraints and is thus 

independent of the centroid of the solution set.  This distinction can be seen through the 

example in Figure 3.4.  Note that while the Least-Squares approach corresponds to a 

centroid, the minimax approach is not the equidistant solution (or circumcenter) as non-

max errors falling within the convex hull of constraint sets are effectively ignored.  As 

the smallest envelope, the minimax solution is even more sensitive to outlying error that 

Least-Squares. 
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Figure 3.3.  In this geometric example, the Least-Squares solution approaches the 

centroid, an arithmetic mean (left).  Adding more constraints (right) will shift the solution 

towards the densest region and may not be ideal for the situation at hand. 

 

 

 
 

Figure 3.4.  The minimax solution (left) will locate a position that has a minimized 

maximum weighted projected distance to any constraint.  Additional constraints within 

this max distance will not shift the solution.  When all constraints are equally weighted, 

this geometric example is the Smallest Enclosing Ball problem (right). 

 

 

Solving for Weighted Minimax via POCS 

 

 Many small-scale, low-dimensional algorithms exist to solve or approximate the 

SEB.  Ritter’s Bounding Sphere [17] is a simple and popular low-dimensional algorithm 

that can quickly come to an approximation of SEB by identifying the midpoint of the two 

points farthest away from each other, but this is rarely exact and is not suited for higher 

dimensions.  Welzl’s Miniball [18] takes a randomized approach to identify the minimum 

points to form the smallest convex hull, but this also has issues with large-scale 
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implementation.  Fischer’s SEB [22] uses a two-step, shrink and move approach that can 

achieve exact solutions to SEB and performs well for large problems.  The Badoiu-

Clarkson [20] achieves asymptotic error bounds and is simple to implement.  In each 

case, the minimax is the minimized maximum 𝐿2 error corresponding to a smallest ball.  

A generalized projection algorithm allows changes to the kernel to explore beyond the 

SEB paradigm. 

 We use morphological dilation with specific kernels to alternating projections to 

determine the minimax solution.  Dilation in morphological image processing involves 

Minkowski addition [2].  A set 𝑋 is dilated with a kernel 𝑌 when 

𝑋 ⊕ 𝑌 = { 𝑧  |  𝑧 = 𝑥⃗ + 𝑦⃗  ∀  𝑥⃗ ∈ 𝑋, 𝑦⃗ ∈ 𝑌 }. 

This operation is commutative and conserves convexity.  A geometric example is shown 

in Figure 3.5.  Morphological dilation with a hypersphere has the effect of minimizing the 

maximum distance to any given constraint set.  This dilation hypersphere is a ball, 

defined by 

𝐵(𝑐, 𝑟) = { 𝑥⃗ ∈ 𝑆  |  ‖𝑥⃗ − 𝑐‖2 ≤ 𝑟 } 

where 𝑐 is the ball’s center and 𝑟 is its radius.  However, the dilation kernel does not have 

to be restricted to a ball.  Any convex kernel convolved with a convex constraint will still 

yield a convex set.  As such, a different kernel may be situationally advantageous.  

Projection onto non-ball kernels can be performed by dilating the constraint sets directly.  

The smallest enclosing ball in Figure 3.4 is equivalent to dilating each constraint set as in 

Figure 3.6.  Dilating the constraints allows for a variety of kernels to apply.  Both ball 

and box dilation kernels are demonstrated in the following example applications.  

Dilating the convex constraints can be accomplished in two ways. 
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Figure 3.5.  A geometric example of dilation and its commutative property, with the 

center of each kernel at the ×. 

 

1. Project with a truncated step as consistent with dilation with a ball kernel.  This is 

a SEB approach for which there exist many efficient algorithms. 

2. Project onto convex constraints that have been dilated with a desired kernel.  This 

approach allows for varying types of dilation kernels to be applied. 

POCS can be modified to apply to both methodologies.  Note that constraints that 

are unevenly weighted have corresponding rates of dilation, as shown in Figure 3.7.  

Many points will have solutions easily satisfied, corresponding to an over-dilation, as in 

point 𝐵 in Figure 3.8, effectively removing these points from further consideration.  In 

alternating projections, the 𝑖th projected step 𝑠𝑖 is given by 

𝑠𝑖 = 𝑤𝑖(𝑃𝑖(𝑥⃗) − 𝑥⃗). 

For dilated projections, this projected step is truncated by the dilated size of the kernel.  

For SEB situations this truncation corresponds to the radius of the hypersphere 𝑟.  The 

ideal radius 𝑟 can be found through binary search.  For a given 𝑥⃗, the updated, dilated 

projected step 𝑠𝑖,𝑟 is given by 

𝑠𝑖,𝑟 = {  
(1 −

𝑤𝑖𝑟

‖𝑠𝑖‖
) 𝑠𝑖 , ‖𝑠𝑖‖ ≥ 𝑟

  0 , otherwise.
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Figure 3.6.  In this example, three convex sets (black dots) are dilated to progressively 

larger disks until all sets initially touch.  This dilated solution (red dot) corresponds to 

solving the SEB problem. 

 

 

 

Figure 3.7.  Changing the relative rates of dilation changes the weight or relative 

importance of each set.  Smaller dilation corresponds to stricter constraints. 
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Figure 3.8.  A degenerate case where the dilated solution (red dot) is not the 

circumcenter.  The point 𝐵 is within the SEB and becomes a satisfied constraint.  In this 

situation only 𝐴 and 𝐶 determinet he solution’s location. 

 

This process is depicted for a ball kernel geometrically in Figure 3.9.  If another kernel is 

used, then the truncation value 𝑟 will depend on the constraint set and orientation and 

thus encouraging dilation of the constraint sets instead. 

 The simplest method for identifying 𝑟 is through binary search.  Alternating 

projections is performed to convergence, tracking the length of the limit cycle.  If the 

dilation is too small, all the constraints do not intersect and the limit cycle will be 

nonzero as in Figure 3.2, necessitating an increase to 𝑟.  If the limit cycle converges to 

near zero, the dilated sets overlap and 𝑟 is decreased.  Alternatively to binary search, the 

remaining length of the limit cycle can be used to approximate the necessary increases to 

𝑟, acting as a “drawstring” in order to identify the minimax solution.  However we found 

that binary search outperformed these methods at larger scales. 

 The truncation term shares similarities to the relaxation parameter in standard 

POCS to improve convergence.  However, the dilated solution is a profoundly different 

result as no action is taken if the current solution already satisfies the given dilated 

objective.  This overcomes the Least-Squares inclination towards the center-of-mass.  
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Furthermore, the size of the kernel applied to each constraint set is an inverse reflection 

on the weight or relative importance of that set.  In general, the larger the kernel applied, 

the larger the resulting convolved constraint set, and thus the less strict the requirement to 

satisfy that particular constraint as depicted in Figure 3.7. 

 

 

Figure 3.9.  The unweighted rectangular constraint 𝑋 is dilated by a disk 𝑌 to give the 

dilated constraint 𝑋 ⊕ 𝑌.  In the situation where 𝑌 is a ball, a projection onto the dilated 

set 𝑃𝑋⊕𝑌(𝑥⃗) is the projection onto 𝑃𝑋(𝑥⃗) minus 𝑟 from 𝑥⃗.  Since 𝑌 is a ball 𝐵(0⃗⃗, 𝑟), then 

‖𝑟‖ = 𝑟 or the radius of 𝑌. 

 

Diffraction Synthesis 

 

Background 

 

 Diffraction synthesis can be solved through an alternating projections approach 

that produces a Least-Squares solution.  The goal of diffraction synthesis is to design an 

aperture that will produce the desired images at given target planes, as shown in Figure 

3.10.  Each target plane represents a constraint set, and each image plane can be 

calculated from the method of angular spectrum.  This allows for modeling both the 

forward and reverse propagation of the aperture plane.  We model a Helium-Neon laser at 

6328Å, over a 1cm × 1cm aperture. 
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 In practice, diffraction synthesis is typically resolved using a Gerchberg-Saxton 

algorithm [4] or its variants.  Gerchberg-Saxton is a phase recovery algorithm used to 

recover the phase information of the magnitude-only image.  Here, the algorithm iterates 

between the source and target planes, imposing the desired image intensities while 

keeping the phase.  While Gerchberg-Saxton algorithms will typically produce good 

results, the imposition of fixed magnitudes in not convex.  The resulting images will be 

complex valued.  To maintain the viability of POCS, we impose an approximate convex 

constraint of fixed real area, leading to degraded synthesis performance.  The convex set 

𝑆 corresponding to the set of signals with constant real area is expressed by  

𝑆 = {   𝑥⃗   |   ∑ℜ(𝑥𝑖) = 𝜌

𝑖∈𝐶

   } 

where 𝑥⃗ is a complex vectorized image, 𝐶 is the interval in question and 𝜌 is the fixed 

area.  A projection onto this set is given by 

(𝑃𝑆(𝑥⃗))𝑖 = {  

𝑥𝑖 , 𝑖 ∉ 𝐶

  𝑥𝑖 −
1

𝑁
(𝜌𝑥 − 𝜌) , 𝑖 ∈ 𝐶

 

where 

𝜌𝑥 =∑ℜ(𝑥𝑖)

𝑖∈𝐶

 

and 

𝑁 =∑1

𝑖∈𝐶

. 

 The convex constraint sets implemented include bounded energy for the aperture 

and fixed real area for the pupils.  For the aperture, signal intensity is projected down to 

the norm ball.  This constraint is not strict, but a soft bound intended to counteract pupil 
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planes adding energy into the signal.  For each pupil, the shapes enclosed must have fixed 

real area.  The sum of the real part of signals within the pupil must reach a fixed sum.  

This serves to prevent the degeneracy where all signals become zero.  Projecting onto 

fixed real area involves adjusting the real part of each pixel value to achieve the desired 

sum simultaneously.  Projecting onto the norm ball involves capping the magnitude of 

each pixel. 

 

Method of Angular Spectrum 

 

 Signal propagation can be modeled through multiple methods.  A general, 

computationally expensive method is through the Rayleigh-Sommerfeld diffraction, 

given by   

𝐸(𝑥, 𝑦, 𝑧) = ∬
𝑧𝑒−𝑗𝑘𝑟

2𝜋𝑟2
(𝑗𝑘 +

1

𝑟
)𝐸(𝑢, 𝑣, 0)𝑑𝑢 𝑑𝑣

 

𝑢,𝑣

 

where 𝑟 = √(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2 + 𝑧2 and the wave number 𝑘 = 2𝜋 𝜆⁄ , where 𝜆 is the 

wavelength of the aperture signal.  A key issue here is the computation of 𝑟 in the 

integral, which is prohibitively expensive for all but the simplest of examples.  This leads 

to the Fresnel approximation,  

𝐸(𝑥, 𝑦, 𝑧) =
𝑒−𝑗𝑘𝑧𝑗𝑘

2𝜋𝑧
∬𝑒−

𝑗𝑘
2𝑧
((𝑥−𝑢)2+(𝑦−𝑣)2)𝐸(𝑢, 𝑣, 0)𝑑𝑢 𝑑𝑣

 

𝑢,𝑣

 

The approximation is made for 𝑧 ≫ 𝑥, 𝑦 where 𝑧 approaches 𝑟.  The key benefit of this 

formulation is allowing the inversion to occur through the 2D Fourier Transform of the 

source plane 𝐸(𝑢, 𝑣, 0) and a propagating function.  In addition, the signal can be 

propagated backwards through 𝑧 through an inverse propagating function.  Thus the 

method of Angular Spectrum can be summarized as 



46 

 

1. Sample over the complex values of a cross-sectional area of the aperture plane in 

a grid pattern. 

2. Take the 2D Fourier transform, decomposing the signal into its angular 

components. 

3. Apply the propagating function to distance 𝑧 and take the inverse Fourier 

Transform. 

This method can be repeated for forward and backward propagations. 

 

Synthesis Results 

 

 A comparison of Least-Squares and dilated projections are shown in Figures 3.11 

and 3.12.  In this example, the bat image is desired within 0.025m to 0.075m from the 

aperture, while a man image should appear in the distance at 1.0m.  Standard POCS will 

result in the weighted average of these constraints, producing the Least-Squares solution 

seen in Figure 3.11 where the centroid is near the bat pupils.  The result is higher 

projected distance to the man image.  Heavily weighting the far image would be required 

to lower its error.  In contrast, the dilated solution shown in Figure 3.12 treats each 

constraint equally and approaches a solution with the minimized maximum error.  Details 

in the bat images are sacrificed for a clearer picture of the man.  This demonstrates a 

potential weakness to Least-Squares methods, as satisfying one bat pupil in the near-field 

region will likely satisfy the others, thereby making the other, similar constraints 

redundant.  The centroid nature of Least-Squares depicted in Figure 3.3 results in these 

constraints being overemphasized, pulling emphasis away from the farther-field man 

image.  The minimax solution weights all the constraints equally without operator 

foreknowledge in order to find a solution balanced between constraint sets and enhances 
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details in the underrepresented final man image.  Since the bat image has three times the 

representation of the man image, the Least-Squares solution has a third the maximum 

Mean-Squared Error (MSE) in reconstruction of 0.011 to 0.033.  With the minimax 

approach, the maximum MSE is suppressed to 0.014.  Distortion caused by projecting 

onto convex pupils of fixed area instead of non-convex fixed magnitude leads to non-

uniform images of varying intensities.  An alternative convex constraint is presented in 

Figure 3.13. 

 

 

Figure 3.10.  The diffraction synthesis problem involves designing an aperture at 𝑧0 that 

will give the desired diffraction pattern or image at fixed propagation distances in the 

near to far-field.  The 𝑥 and 𝑦-coordinates refer to the aperture or image plane and 𝑧 

represents the propagated distance.  The pupil at 𝑧1 should appear like a bat and like a 

man at 𝑧2. 

 

 

Figure 3.11.  Normalized images of the simultaneous POCS approach results in the 

Least-Squares solution to the diffraction synthesis problem. A bat image is required for 

the near-field and a man in the far field.  Due to repeated, strict reinforcement of the bat 

image in the near-field, the resulting solution deemphasizes the far-field pupil. 
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Figure 3.12.  Normalized images of the dilated approach minimizes the maximum error 

all constraints, improving the far-field image of a man at the expense of the closer bat 

images. 

 

In a communications situation it may be advantageous to broadcast a signal 

around an obstacle.  Here, the image of a watertower is introduced at 0.3m as an obstacle 

to avoid.  The resulting synthesized signals under Least-Squares and minimax POCS are 

shown in Figures 3.14 and 3.15.  The propagated signal must avoid an obstacle at 0.3m, 

in the form of a watertower silhouette.  In this case, the additional constraint projects all 

values within the watertower image to zero, ensuring no energy passes through it.  In the 

dilated case, this corresponds to allowing no dilation of the obstacle constraint: the 

solution must lie within that convex set.  Similar to the previous example, the bear image 

has twice the representation of the hand image.  Thus, the Least-Squares solution favors 

the bear with an MSE of 0.004 to the hand with an MSE of 0.009.  For minimax, the max 

MSE is suppressed to 0.005. 

 

 

Figure 3.13.  This problem involves an obstacle placed in the path of a desired target 

pupil.  The synthesized aperture should avoid the obstacle and form the image behind it. 
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Figure 3.14.  The normalized Least-Squares approach synthesizes an aperture to avoid the 

watertower at 0.3m. The hand image is sacrificed for improved performance on the two 

bear images. 

 

 

 
 

Figure 3.15.  The normalized dilated approach avoids the watertower and improves the 

far-field hand pattern at the expense of the near-field bear images. The errors are 

distributed evenly between pupils as the algorithm is not given a reason to weigh one 

constraint more than another. 

 

 

Computed Tomography 

 

Background 

 

 We apply dilated kernels to the issue of medical imaging via Computed 

Tomography (CT) reconstruction.  Here, a target object is imaged at various angles 

resulting in projection slices corresponding to the time-delay of the scan passing through 

the imaged body from specific viewpoints.  These projections from various angles form 

the object’s profile or sinogram as shown in Figure 3.16, where the target object used is a 

100 × 100 image of the modified Shepp-Logan phantom.  A beam path matrix is used to 

model this interaction.  Thus, the problem of medical image reconstruction from a 

sinogram is synonymous with matrix inversion.  However, the problem becomes large-

scale with increasing pixel resolution, necessitating efficient, parallelizable inversion 
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techniques.  POCS-based solutions such as Algebraic Reconstruction Technique (ART) 

[16], [2], Simultaneous Iterative Reconstruction Technique (SIRT) and Simultaneous 

Algebraic Reconstruction Technique (SART) [3] are based on alternating and averaged 

projections.  Alternatively, Filtered Back-Projection (FBP) can also yield good results by 

back-projecting the sinogram under a ramp filter.  Due to issues with noise and streak 

artifacts, FBP is generally replaced with iterative methods in practice.  Nevertheless, FBP 

is a fast, non-iterative process that can be used to initialize a POCS inversion. 

 

 

Figure 3.16.  A 100 × 100 modified Shepp-Logan phantom and its corresponding 

sinogram, sampled at 180 one-degree angles.  The Shepp-Logan phantom is a popular 

test image for image construction representing the features of the human brain and skull.  

Here, the phantom used is a normalized greyscale image within [0,1]. 

 

 For an 𝑚 × 𝑛 path matrix, 𝑛 corresponds directly with the number of pixels in the 

image, while 𝑚 is the product of the length of projection bins and the number of angles 

tested.  For the simple 100 × 100 phantom in Figure 3.16 using 180 one-degree slices 

into 1-pixel wide bins results in a sparse matrix with dimensions 26100 × 10000.  In the 

following examples SART is used to form the Least-Squares solution while alternating 
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projections onto dilated sets is used for the minimax solution.  Image recovery error is 

measured with respect to the given sinogram and the reconstructed image’s sinogram, not 

the reconstructed image itself.   

 

Box-Dilated Sinogram 

 

 This CT example demonstrates how box-dilation is situationally advantageous to 

ball kernels.  Rather than truncate the projected step, the sinogram constraint may be 

dilated instead.  The vectorized sinogram can be dilated horizontally for lateral 

movement of the imaged object, or vertically for noise.  An exclusively vertical dilation 

of the sinogram is the classic minimax error problem.  A slice of this noisy sinogram for 

the Shepp-Logan phantom reconstruction is seen in Figure 3.17.  This box-dilation can be 

reshaped to emphasize noise or lateral movement by removing slack in the other 

dimension. 

 

CT Reconstruction Results 

 

 The results of the dilated algorithm are compared with a Least-Squares technique 

and FBP.  The recovered images and sinograms are displayed in Figures 3.18 and 3.19.  

Figure 3.18 demonstrates the slight advantage of dilated kernels for zero-mean Gaussian 

noise.  The Least-Square algorithm minimizes the MSE of the reconstructed image’s 

sinogram to the observed sinogram, reducing the FBP MSE from 1.6175 to 0.8465, but 

this does not translate to coherent recovered images.  Projecting onto the dilated sets 

yielded advantageous results, despite a significantly higher MSE of 1.5338.  Figure 3.19 

introduces lateral shifts in addition to zero-mean uniform noise to the sinograms, 

resulting in the application of box kernels for dilation.  For the Shepp-Logan phantom, 
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the Least-Squares approach improves the FBP MSE from 3.2632 to 2.4062.  The dilated 

approach raises the MSE to 3.0848 but result produced a grainy image with sharp edges 

and suppressed streak artifacts. 

 

 

Figure 3.17.  The 0° slice of the sinogram, dilated with a box corresponding to lateral 

vibration and signal noise. The noise dilation changes with each iteration as the solver 

ascertains the noise level while maximum lateral movement is constrained. Rather than 

project onto the given (red) sinogram itself, the current iteration of the reconstructed 

image is projected to within the boundaries of the dilated slice instead. 

 

 

Conclusion 

 

 Dilated projections can enhance the outcome of POCS in situations where 

multiple, non-intersecting convex constraint sets are dictated.  Instead of converging to a 

Least-Square error, dilated projections can achieve minimax weighted error solutions that 

can have applications in diffraction synthesis and tomographic image reconstruction.  

Dilation subsumes convex constraints that are easily satisfied, removing their grander 

impact on the solution and avoiding a centroid bias.  Subsumed constraints can be 

skipped, improving the speed of the algorithm with iteration.  Further improvement in 
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algorithmic performance is needed to identify the ideal kernel beyond binary search.  Ad 

hoc minimax solvers will outperform the dilated projections for specific applications, but 

dilated POCS has an advantage in versatility among diverse convex constraints. 

 

 

(a) Original (Unknown) and Noisy Sinogram (Given) 

 

 

(b) Dilated Recovery Image and Sinogram 
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(c) Least-Squares Recovery Image and Sinogram 

 

 

 

(d) Filtered Back-Projection Image and Sinogram 

 

Figure 3.18.  The Shepp-Logan phantom sinogram (a) is corrupted by Gaussian random 

noise in with 𝜎 = 1.0 and is used to reconstruct an image using (b) dilation, (c) Least-

Squares algorithms, and (d) filtered back-projection. The Least-Squares sinogram is the 

closest 𝐿2-norm to the given noisy sinogram, but the dilated result has the cleanest edges 

and features. 
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(a) Original (Unknown) and Noisy Sinogram (Given) 

 

 

(b) Dilated Recovery Image and Sinogram 
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(c) Least-Squares Recovery Image and Sinogram 

 

 

 

(d) Filtered Back-Projection Image and Sinogram 

 

Figure 3.19.  The Shepp-Logan phantom sinogram (a) is corrupted by uniform random 

noise in [-1, 1] and uniform random lateral motion in [-2, 2] pixels.  Reconstructions are 

made using (b) dilation, (c) Least-Squares algorithms, and (d) filtered back-projection. 

The Least-Squares sinogram has the lowest MSE, but the dilated result’s image has the 

cleanest features. Streak artifacts from the target’s motion are seen in the Least-Squares 

and FBP reconstruction. 
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CHAPTER FOUR 

 

Associative Memory 

 

 

Introduction 

 

 POCS may be applied to associative memories [2].  The goal of associative 

memory is to determine if and where a given signal segment matches a signal in a library 

of templates.  For example, a partial or cropped snapshot of a person may be compared to 

a prepared library of suspects in order to identify the target.  Given a library of vectors 

𝑎⃗0, 𝑎⃗1, … and a vector segment 𝑏⃗⃗ associated with the library, the goal is to identify the 

library vector that is closest to matching 𝑏⃗⃗. 

( 𝑏⃗⃗ )  ( 𝑎⃗0 𝑎⃗1 𝑎⃗2 𝑎⃗3 )

↓     ↓   
−   3 3 1 5  
1   1 2 1 1  
2   2 4 2 3  
1   3 1 1 2  
−   1 1 4 4  
3   4 1 2 1  
2   1 3 2 5  
−   5 2 5 4 .

 

In this example, the dashes represent the unknown segments of 𝑏⃗⃗, and 𝑎⃗2 is the closest 

match.  The error metric is often implemented through a Least-Squares approach in order 

to minimize the squared difference between the given signal segment 𝑏⃗⃗ and each vector 

in the library.  This can be expressed as 

𝐷(𝑎⃗𝑗) =∑|𝑏⃗⃗𝑖 − (𝑎⃗𝑗)𝑖|
2

𝑖∈𝐶

  (4.1) 

where 𝐶 is the known indices of 𝑏⃗⃗.  The optimization becomes 
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argmin 
𝑗

𝐷(𝑎⃗𝑗).  (4.2) 

This is a Least-Squares optimization that can be determined through POCS.  However, 

dilated POCS can also be performed in order to arrive at a minimax solution.   

 

POCS Implementation 

 

 POCS can be used to perform associative memory in order to arrive at a Least-

Squares solution.  One way of implementing POCS is to project onto the affine space 

defined by the library set.  For a library 𝐴 composed of 𝑛 images, 

𝐴 = [𝑎⃗0 𝑎⃗1 ⋯ 𝑎⃗𝑛−1] 

where 𝑎⃗𝑖 is a column vector formed by vectorized images in the library.  The update on a 

reconstruction 𝑥⃗𝑘 is given by 

𝑥⃗𝑘+1 = 𝑥⃗𝑘 + 𝑎∆𝑥⃗𝑘.  (4.3) 

At steady state, the update step equals zero.  For the library set, the update contribution is 

a projection onto the library set 𝐴, or 

𝑃 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 .  (4.4) 

Since 𝐴 is constructed via a library of vectorized images, the size of 𝐴 can make the 

computation of 𝑃 prohibitively expensive.  One possibility to resolve this is to invert via 

QR decomposition.  Alternatively, (4.4) can be split into  

𝑃 = 𝐴𝐴+  (4.5) 

where 𝐴+ is the Moore-Penrose pseudoinverse of 𝐴, and can also be computed via POCS 

algorithms.  The projection onto an image segment 𝑏⃗⃗ can be performed via projection 

onto identical middles, as described previously in the Identical Middles section of 

Convex Signals in Chapter Two.   
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Image Library 

 

 An image library of 64 scientists, mathematicians and engineers is used.  Each 

portrait is a 300 × 240 pixels in size, and vectorized to form a 72000 × 64 library 

matrix 𝐴.  At these dimensions, the projection in (4.5) will be performed via POCS. 

 

 

Figure 4.1.  A base library of 64 portraits of various scientists, mathematicians and 

engineers serving as images for associative memory. 
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 The Least-Squares difference between each image is shown in Figure 4.2.  This 

matrix indicates which portraits are most similar and dissimilar.  For example, the images 

of Marks, Garner, and Schubert are fairly similar as opposed to Liebniz, Moivre and 

Pascal.  Table 4.1 depicts the top ten similar and dissimilar portraits as characterized by 

the equation in (4.1).  The key dissimilarity is the periwigs worn. 

 
Figure 4.2.  A 64 × 64 matrix indicating the Least-Squares distance between each image.  

The minimums indicate portraits that are near or similar to each other, while larger values 

indicate a greater deviation between images.   

 

Table 4.1. Top 10 similar and different portraits. 

 
Source Top 10 Similar Top 10 Dissimilar 

Marks Garner, Planck, Pythagoras, von 

Neumann, Laplace, Rutherford, 

Pareto, Markov, Venn, Kalman 

Liebniz, Pascal, Euclid, L’Hopital, 

Moivre, Poisson, Taylor, Bessel, 

Radon, Ampere 

Schubert Koziol, Rutherford, Venn, Markov, 

Kalman, Garner, Allman, von 

Neumann, Lebesgue, Maxwell 

Liebniz, Pascal, Moivre, L’Hopital, 

Fermat, Euclid, Newton, Radon, Euler, 

Taylor 

Koziol Schubert, Kalman, Rutherford, 

Markov, Venn, von Neumann, 

Ampere, Garner, Lebesgue, Allman 

Liebniz, Pascal, Moivre, Fermat, Euler, 

Euclid, L’Hopital, Newton, Al 

Khwarizmi, Radon 

Blair Godel, Hilbert, Einstein, Riemann, 

Maxwell, Lebesgue, Rutherford, 

Kepler, Cantor, Markov 

Liebniz, Pascal, L’Hopital, Fourier, 

Radon, Moivre, Descartes, Euclid, 

Taylor, Newton 

Garner Marks, Laplace, Pythagoras, von 

Neumann, Ramanujan, Rutherford, 

Allman, Kalman, Schubert, Markov 

Liebniz, Pascal, Euclid, Moivre, 

L’Hopital, Poisson, Fermat, Bessel, 

Taylor, Napier 
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Image Synthesis 

 

 Both Least-Squares and minimax POCS algorithms will perform associative 

memory.  The differences between these two methodologies appear when conflicting 

seeding image segments are used.  Figure 4.3 shows the reconstruction that occurs when 

five different seeds are used: Mark’s hair, and Liebniz’s periwig, Garner’s right eye, 

Taylor’s left eye, and Koziol’s mouth.  The synthesized images are very similar with 

subtle differences in the eyes and expressions.  In particular, Least-Squares produced an 

image with eye placements close to the seeded images, while minimax introduces a new 

eye from the library that is a closer match to the other.  

   

             

(a)  Conflicting Seeds  (b)  Minimax  (c)  Least-Squares  

 

Figure 4.3.  (a) Five conflicting sections consisting of Marks, Liebniz, Garner, Taylor, 

and Koziol.  (b) A minimax and (c) Least-Squares synthesis.   

 

 The effect of the centroid on the Least-Squares solution is also apparent in the 

synthesized images.  Figure 4.4 is composed of one section of Bessel’s hair, and four of 

Mark’s face.  The minimax solution produces a gradual transition from face to hair, while 

the Least-Squares solution is biased towards the face, resulting in clear transition between 

constraint sets.  A plot of errors with iteration is shown in Figure 4.5. 
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(a)  Conflicting Seeds  (b)  Minimax  (c)  Least-Squares  

 

Figure 4.4.  (a) Five conflicting sections, one of Bessel and four of Marks.  (b) A 

minimax and (c) Least-Squares synthesis.   

 

   

 (a)  Minimax  (b)  Least-Squares  

 

Figure 4.5.  A plot of errors with iteration for (a) minimax and (b) Least-Squares.  Both 

algorithms converge near 1000 iterations. 

 

Summary 

 

 Minimax POCS can be applied as an alternative to Least-Squares methods for 

synthesizing images from a template library using conflicting seeds.  Here, the convex 

sets chosen were the affine space defined by the library and the identical middles defined 

by the seed images and reiterating the advantages of a general projection algorithm for 

including the variety of potential convex constraints.  The minimax solution exhibits 
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deference to the centroid, which can be useful when addressing images libraries with 

varying levels of similarity.  The resulting synthesized images tend to exhibit a greater 

degree of blending, leading to a more cohesive reconstruction.   
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CHAPTER FIVE 

 

Ambiguity Function Magnitude Inversion 

 

This chapter is an unpublished manuscript by:  A. R. Yu, C. Baylis, and R. J. Marks II, 

“Regularized Phase Recovery for Ambiguity Function Magnitude Inversion.” 

 

 

Introduction 

 

 This manuscript investigates a regularized methodology for inverting the 

ambiguity function magnitude into valid spawning signals.  The work is mentored by Dr. 

Robert J. Marks II who posed the use of Gerchberg-Saxton methods for phase recovery.  

Dr. Charles Baylis and Dr. Marks developed the ambiguity function inversion with full 

phase information, and Albert Yu developed and implemented the magnitude-only 

inversion.   

The ambiguity function (AF) [37], [38], [39], [40], [41], [42], [43], [44]  results 

when a matched filter is used to simultaneously determine the range and Doppler of a 

transmitted radar signal and is vital in identifying a target’s position and velocity. Ideally, 

a chosen radar signal will yield an AF with a magnitude that is strictly an unambiguous 

Dirac point mass, but there are no signals that yield such an AF. Thus a tradeoff exists 

between precisely determining a target’s range and Doppler. Furthermore, no unique 

inverse exists for mapping an AF back to an originating signal when only the AF 

magnitude is known, as the transform is not one-to-one. Acquiring the desired AF 

properties is frequently described as requiring the prior knowledge and expertise of the 

radar designer [45] who must choose a potential signal and check the AF response for the 

necessary characteristics. This has led to the area of AF synthesis [46], [47] where a 
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designer iteratively adjusts a source signal to give a desired AF response by inspection. 

However, these methods do not necessarily result in inversions, but signals that yield an 

AF within the given constraints.  

Full inversion to a family of potential spawning signals is possible when both 

magnitude and phase of the AF are known [37], [39]. The phase information of the AF is 

critical for such inversions. We present a methodology for inverting the Woodward AF 

magnitude to a valid source signal using a modified version of the Gerchberg-Saxton 

algorithm for phase recovery [4], [2]. The magnitude-phase AF inversion algorithm 

outlined in [48] is refined with a regularized window to account for the simplified 

inversion and reduce cumulative phase effects of random initializations in reconstruction, 

removing the apparent high-frequency components and drastically improving 

convergence. This procedure will give a radar operator direct control over the 

specification of the desired AF. 

 

The Woodward Ambiguity Function 

 

The ambiguity function examines the correlation between a source template signal 

and Doppler shifted received signals. The Woodward ambiguity function [44] of a 

potentially complex baseband signal 𝑠(𝑡) is given by 

𝜒(𝜏, 𝑢) = ∫ 𝑠(𝑡)𝑠∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑢𝑡𝑑𝑡

∞

−∞

  (5.1) 

where 𝜏 is the propagation delay and 𝑢 is the relative Doppler shift between the target 

and receiver. We adopt the shorthand notation of (5.1) by 

𝑠(𝑡) ⇒ 𝜒(𝜏, 𝑢)  (5.2) 
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Other definitions similar to (5.1) exist that result in the same AF magnitude [39]. 

Motivated by the notation in (5.2), the inverse of the AF is 

𝜒(𝜏, 𝑢) ⇐ 𝑠(𝑡).  (5.3) 

We now show the inverse in (5.3) is unique to within a constant phase. 

 

Full Inversion with Known Phase 

 

Given both phase and magnitude, the ambiguity function can be inverted to a 

spawning signal. We generalize the inversion given by Eustice et al. [39]. The full 

ambiguity function can be expressed in terms of the source signal 𝑠(𝑡) via the inverse 

Fourier Transform of (5.1), 

𝑠(𝑡)𝑠∗(𝑡 − 𝜏) = ∫ 𝜒(𝜏, 𝑢)𝑒𝑗2𝜋𝑢𝑡𝑑𝑢

∞

−∞

.  (5.4) 

Choose a specific fixed time 𝑡 = 𝜉 where the signal 𝑠(𝑡) is nonzero. This requires some 

foreknowledge on the part of the radar signal designer. Our inversion algorithm, 

presented later, will automatically account for this value. Setting 𝜏 = 0 yields 

|𝑠(𝜉)|2 = 𝑠(𝜉)𝑠∗(𝜉) = ∫ 𝜒(0, 𝑢)𝑒𝑗2𝜋𝑢𝜉𝑑𝑢

∞

−∞

.  (5.5) 

The phase component of 𝑠(𝜉) is unknown, but the magnitude is given by 

|𝑠(𝜉)| = ( ∫ 𝜒(0, 𝑢)𝑒𝑗2𝜋𝑢𝜉𝑑𝑢

∞

−∞

)

1
2

.  (5.6) 

This reveals the magnitude of 𝑠(𝑡) at the specific time 𝑡 = 𝜉. In polar form 𝑠(𝜉) =

|𝑠(𝜉)|𝑒𝑗∠𝑠(𝜉) so (5.4) can be written as 
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𝑠∗(𝜉 − 𝜏) =
𝑒−𝑗∠𝑠(𝜉)

|𝑠(𝜉)|
∫ 𝜒(𝜏, 𝑢)𝑒𝑗2𝜋𝑢𝑡𝑑𝑢

∞

−∞

  (5.7) 

where |𝑠(𝜉)| is the signel value scalar given in (5.6) and ∠𝑠(𝜉) is the phase.  This 

constant ∠𝑠(𝜉) is not important since the corresponding ambiguity function is 

independent of its value.  This can be seen from the definition of the ambiguity function 

in (5.1) where the 𝑒𝑗∠𝑠(𝜉) term in 𝑠(𝑡) is canceled by the 𝑒−𝑗∠𝑠(𝜉)  term in 𝑠∗(𝑡 − 𝜏).  The 

constants |𝑠(𝜉)|𝑒𝑗𝜙 with 𝜙, an arbitrary real phase, results in the same ambiguity 

function as when using the single complex number 𝑠(𝜉). 

The inversion result in (5.7) shows the function 𝑠∗(−𝜏) centered at 𝜉.  The value 

of 𝜉 must be chosen such that |𝑠(𝜉)| ≠ 0.  Conjugating (5.7) with 𝑡 = 𝜉 − 𝜏 gives the 

final expression for 𝑠(𝑡) 

𝑠(𝑡) =
𝑒𝑗𝜙

|𝑠(𝜉)|
∫ 𝜒∗(𝜉 − 𝑡, 𝑢)𝑒−𝑗2𝜋𝑢𝜉𝑑𝑢

∞

−∞

 

or, using (5.6) and the notation in (5.3) 

𝜒(𝜏, 𝑢) ⇐ 𝑠(𝑡) =
𝑒𝑗𝜙 ∫ 𝜒∗(𝜉 − 𝑡, 𝑢)𝑒−𝑗2𝜋𝑢𝜉𝑑𝑢

∞

−∞

(∫ 𝜒(0, 𝑢)𝑒𝑗2𝜋𝑢𝜉𝑑𝑢
∞

−∞
)
1
2

.  (5.8) 

 

Transformations that Preserve Magnitude 

 

The inversion in (5.8) requires both the phase and the magnitude of the ambiguity 

function.  In practice, the phase is discarded as only the magnitude of the ambiguity 

function is needed to assess the trade-off between simultaneous measurement of range 

and Doppler.  Inversion when only the magnitude is known is a more difficult problem, 

as many signals can yield the same AF magnitude.  Using the notation in (5.2) we can 

show for example that: 
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 The magnitude of the AF if a shifted signal is the same as the AF of signal 

unshifted. 

𝑠(𝑡 − 𝑡0) ⇒ 𝜒(𝜏, 𝑢)𝑒−𝑗2𝜋𝑢𝑡0 .  (5.9) 

 Likewise, any signal with a linear change in phase will yield the same ambiguity 

function magnitude. 

𝑠(𝑡)𝑒𝑗(𝑘𝑡−𝜙) ⇒ 𝜒(𝜏, 𝑢)𝑒−𝑗𝑘𝜏.  (5.10) 

An advantage for real signals is that this linear change along 𝑢 = 0 of the 

ambiguity function corresponds directly to 𝑒−𝑗𝑘𝜏, and can easily be approximated 

and removed. 

 A signal’s transposition gives 

𝑠(−𝑡) ⇒ 𝜒(𝜏, −𝑢). 

If 𝑠(𝑡) is real, a signal transposition also gives the same ambiguity function 

magnitude, because 

𝜒(𝜏, −𝑢) = 𝜒∗(𝜏, 𝑢).  (5.11) 

An inversion of the AF magnitude is not unique. Therefore we will settle for any 

well-behaved function that produces the desired AF magnitude. Our proposed method for 

recovering a valid spawning signal to achieve a desired AF magnitude is based on a 

modified version of the Gerchberg-Saxton algorithm for phase recovery. 

 

Gerchberg-Saxton Algorithm 

 

The Gerchberg-Saxton Algorithm [8], [9], [14] is an iterative algorithm for image 

phase recovery originally used in optics for finding phase given the image intensities on 

two planes separated by the act of diffraction. The Fourier Transform and its inverse are 
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used as the propagation function into the far-field plane.  The Fourier transform of 𝑟(𝑡) is 

𝑅(𝑢) 

𝑟(𝑡) → 𝑅(𝑢) = ∫ 𝑟(𝑡)𝑒−𝑗2𝜋𝑢𝑡𝑑𝑡

∞

−∞

  (5.12) 

and the inverse Fourier Transform of 𝑄(𝑢) is 𝑞(𝑡) 

𝑄(𝑢) → 𝑞(𝑡) = ∫ 𝑄(𝑢)𝑒𝑗2𝜋𝑢𝑡𝑑𝑢

∞

−∞

.  (5.13) 

The Gerchberg-Saxton Algorithm seeks to recover a signal 𝑟(𝑡) = |𝑠(𝑡)|𝑒𝑗∠𝑟(𝑡) 

and therefore 𝑅(𝑢) = |𝑆(𝑢)|𝑒𝑗∠𝑅(𝑢) given only the magnitudes |𝑠(𝑡)| and |𝑆(𝑢)|. The 

algorithm is summarized in Figure 5.1. A signal is iteratively Fourier transformed and 

inverse transformed and, in each domain, the changing phase is kept and the known 

magnitudes |𝑠(𝑡)| and |𝑆(𝑢)| are imposed. Although the algorithm has not been proven 

to converge, implementations are often successful. 

 

 

Figure 5.1.  An illustration of the Gerchberg-Saxton algorithm.  The algorithm initializes 

𝑟0(𝑡) with the given magnitude |𝑠(𝑡)| and a random phase ∠𝑞0. 
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Magnitude-Only Inversion 

 

Consider a target ambiguity function magnitude 𝜒(𝜏, 𝑢). The goal is to find any 

signal 𝑟(𝑡) such that 

𝑟(𝑡) ⇒ 𝜒𝑟(𝜏, 𝑢) = |𝜒(𝜏, 𝑢)|𝑒
𝑗∠𝜒𝑟(𝜏,𝑢). 

The AF magnitude of 𝑟(𝑡) will also match under any translation and linear phase shift, 

and may also include reflections in time if 𝑟(𝑡) is purely real. Thus, a given AF 

magnitude can correspond to a signal arbitrarily translated in time. However, by choosing 

a value for𝜉, the inversion is limited to the general proximity around it. The length of this 

proximity can be derived from the given AF magnitude itself by examining its non-zero 

elements in 𝑡, as demonstrated in Figure 5.2. As a result, the inversion only needs to 

examine the reconstruction about 𝜉 within this bandwidth, as shown in Figure 5.3. 

 

 

Figure 5.2.  The given AF magnitude can be used to estimate the time length 𝑇 samples 

of a spawning signal.  In this example, a summation along 𝑢 of the AF magnitude reveals 

a nonzero bandwidth window of 2𝑇 − 1 samples.  The original signal must be 𝑇 samples 

in total length. 
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Figure 5.3.  By fixing 𝜉 = 0 in the inversion, a length 𝑇 sample signal is pinned in 

translation and limited to the 2𝑇 − 1 sample region centered about the origin. With the 

random initial phase, the reconstruction can occur anywhere within this window each 

iteration. 

 

 

 
 

Figure 5.4.  A magnitude plot of the reconstructed signal at an early iteration.  The given 

AF is that of a rectangle pulse. The location of the recovered signal shifts with each 

iteration of the inversion. 

 

 

Simplifying the Inversion 

 

 In lieu of (5.8) we have 

𝑟(𝑡) =
𝑒𝑗(𝑘𝑡−𝜙) ∫ 𝜒∗(𝜉 − 𝑡, 𝑢)𝑒−𝑗2𝜋𝑢𝜉𝑑𝑢

∞

−∞

(∫ 𝜒(0, 𝑢)𝑒𝑗2𝜋𝑢𝜉𝑑𝑢
∞

−∞
)
1
2

.  (5.14) 

where 𝑟(𝜉) is chosen to be nonzero. When 𝑟(𝜉) is close to zero, the inversion will 

become ill-conditioned. By setting 𝜉 = 0 and letting the algorithm invert the signal 

around this point, we have the simplified inversion 
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𝑟(𝑡) =
𝑒𝑗(𝑘𝑡−𝜙) ∫ 𝜒∗(−𝑡, 𝑢)𝑑𝑢

∞

−∞

(∫ 𝜒(0, 𝑢)𝑑𝑢
∞

−∞
)
1
2

.  (5.15) 

As shown in Figure 5.3, fixing 𝜉 = 0 limits the effect of translation on the reconstruction 

of a 𝑇 sample source signal to [−𝑇, 𝑇]. 

 

Regularized Window 

 

The reconstruction can be further refined by determining the length of the original 

signal 𝑇from the given AF magnitude and incorporating it into each of its iterations.  This 

window does not have to be exact, and should allow some leeway in the recovery 

process.  The estimation from Figure 5.2 should include an additional buffer for the AF 

that tapers in magnitude at the edges.  The chief advantage of this is in addressing 

discontinuities in the spawning signal, such as ramp or rectangle functions.  

The algorithm is presented in Figure 5.5.  This regularized, adaptive window 

truncates 𝑟(𝑡) to be of length 𝑇 by setting values outside the window to 0.  Aligning this 

window is the main issue.  Let 

𝑤𝛿(𝑟(𝑡)) = {  
𝑟(𝑡) , 𝛿 ≤ 𝑡 ≤ 𝛿 + 𝑇
   
0 , else.

 

then we evaluate  

argmin   
𝛿

‖𝜒(𝜏, 0) − 𝑤𝛿(𝑟(𝑡)) ⋆ 𝑤𝛿(𝑟(𝑡))‖ 

where ⋆ is the cross-correlation. 
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Figure 5.5.  An illustration of the modified phase-recovery algorithm for AF magnitude 

inversion.  Here, 𝜒𝑟,0 is initialized with random phase.  Unlike the standard Gerchberg-

Saxton algorithm, only one intensity |𝜒𝑠| is given. 

 

 

 

Figure 5.6.  A log-log plot of the running RMS errors of multiple random initializations 

for both windowed (red solid line) and non-windowed (blue dotted lines) attempts at 

inverting the AF of a linear chirp pulse. Convergence is slow for discontinuous functions, 

but windowing can drastically improve performance. 

 

 

Addressing Linear Phase 

 

The linear phase component 𝑒𝑗(𝑘𝑡+𝜙) of this inversion will have considerable 

influence on the recovered signal, as any constant linear phase shift will yield the same 
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AF magnitude.  An inversion from magnitude only using a randomly initialized phase 

will have some phase component associated with this linear-time rotation.  Left 

unchecked, this value can grow dramatically with each iteration, leading to the 

appearance of highly oscillatory components in the resulting signal.  While this effect is 

inconsequential to the resulting AF magnitude, the high oscillation of the restoration still 

needs to be avoided for clarity.  If 𝑟(𝑡) ⇒ 𝜒𝑟(𝜏, 𝑢) then 𝑟(𝑡)𝑒𝑗(𝑘𝑡+𝜙) will have the same 

AF magnitude.  To prevent this from affecting the recovery with mounting iterations, this 

influence can be assessed and removed.  A simple solution is to set the phase difference 

of two sequential points in 𝑟(𝑡) to 0.  The inversion will unravel the phase of the rest of 

the signal about these components. 

 

Signal Synthesis Examples 

 

Recovering Magnitude with Regularized Windowing 

 

The performance of the adaptive window is shown in Figure 5.6.  For certain 

noncontinuous functions such as a rectangle or ramp function, the discontinuity of the 

signal’s magnitude hinders convergence.  By adaptively windowing the recovered 

function, there is a notable increase in the rate of convergence of the reconstruction.  This 

is demonstrated in Figure 5.7.  The floating window drastically improves convergence in 

these situations by enforcing strict limits inherent in the given AF magnitude on the 

length of the signal under inversion.  Not all signals benefit from this windowing.  

Continuous functions such as the Gaussian pulse shown in Figure 5.8 experience no 

benefit from this procedure. 
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(a)  Ambiguity Function of a Linear Chirp 

 

 

          

                       (b)  Magnitude Plot                                           (c)  Phase Plot 

Figure 5.7.  The AF magnitude (a) of a chirp function.  As this signal is discontinuous, 

the inversion struggles in replicating the magnitude in (b) and convergence is slowed. 

The phase is accurately recovered in (c). 

 

 

Recovering Phase 

 

Figures 5.7, 5.8, and 5.9 demonstrate the algorithm’s ability to recover nonlinear 

phase information in the spawning signal, such as for chirps. The random linear phase 

component obfuscates the true phase behavior of the signal but can be subsequently 

addressed. Figure 5.9 demonstrates this process with a spawning signal that has a rapidly 
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deviating and irregular phase component. The uncorrected phase (c) appears as a high-

frequency component until it is unwrapped in (d). From here, the first difference in the 

signal’s unwrapped phase can be used to estimate the coefficients for the linear 

component 𝑒𝑗(𝑘𝑡+𝜙). This can then be subtracted from the result, yielding a much clearer 

phase plot (e). Since the linear component changes each iteration, the final removal of the 

linear phase component can be performed just once, post convergence. 

 

Conclusion 

 

The lack of a unique inverse to the magnitude-only AF does not preclude 

inversion.  Partial inversions can be made to discover valuable insight into the nature of a 

source signal for a given AF magnitude.  Indeed, the modified Gerchberg-Saxton 

algorithm presented can successfully recover a valid spawning signal.  Translations, 

linear phase rotations, and potentially even reflection are all transformations of the result 

to a family of congruent spawning signals.  If further time resolution is required, the AF 

magnitude in this regard can be reshaped, at the expense of Doppler resolution, and vice 

versa.  The inversion does not require a valid AF to be given, as the random initialization 

itself demonstrates.  In this case, the iterated result will be a valid AF with many aspects 

of the desired AF incorporated into the signal.  Overall, this inversion process may aid 

radar designers in molding their desired AF response by giving them a direct link to the 

family of source signal solutions. 
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(a)  Ambiguity Function of a Gaussian Chirp 

 

 

          

                       (b)  Magnitude Plot                                           (c)  Phase Plot 

Figure 5.8.  The given AF magnitude in (a) is inverted and compared to the original 

spawning signal 𝑠(𝑡). The magnitude plot (b) shows the reconstruction 𝑟(𝑡) centered 

about the fixed 𝜉 = 0.  In (c), the algorithm is able to recover the phase of the chirp 

where the signal has nonzero magnitude. 
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(a)  AF of Real Part of a Gaussian Chirp 

 

(b)  Magnitude Plot 

  

(c)  Uncorrected Phase Plot 

 

 

(d)  Unwrapped Phase with Linear Phase 

Estimation 

  
(e)  Removed Linear Phase (f)  Corrected Phase Component 

 

 

Figure 5.9.  The given AF magnitude (a) is the real part of a Gaussian chirp 𝑠(𝑡).  The 

inversion 𝑟(𝑡) shows the correct magnitude plot (b) but an obscure phase component (c). 

Unwrapping the phase reveals a large linear component (d), which when corrected (e) 

yields a matching final phase (f).
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CHAPTER SIX 

 

Conclusion 

 

 

 This dissertation explored a variety of inversion applications and modifications to 

standard POCS methods for computing the minimax.  Morphological dilation is revealed 

to be a robust methodology for computing the minimax.  The minimax results were 

contrasted with established Least-Squares algorithms to demonstrate the situational 

improvements possible from this methodology.  A chief beneficial property of the 

minimax is its ability to avoid unintended preference for centroid solutions.  Applications 

where multiple convex constraints are presented without regard for similarity between 

objectives can be surmounted by the minimax.  By determining the algorithm though a 

modified POCS, the solver is generalized to include a wider variety of error metrics and 

convex constraints, expanding the scope and capability of minimax.  This is shown to be 

useful in a variety of traditionally POCS applications, including Computed Tomographic 

image reconstruction, Fresnel signal synthesis and associative memory template 

matching.  In addition, a regularized method for inverting an ambiguity function 

magnitude was developed and its ability to recover and process phase information is 

demonstrated.  The minimax POCS may still be enhanced through improved methods 

beyond binary search for determining the correct dilation value.  Higher dimensions still 

pose a significant roadblock for computing the minimax.  These advancements need to be 

achieved to establish dilated POCS as a valid methodology for minimax. 
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