ABSTRACT
Four Channel Bidirectional Motor Control on the MSP430
William J. Richards

Director: Mr. John Miller

This project explores the initial development of a four-channel bidirectional
motor control for the Texas Instruments MSP430F5529 Launchpad. Motor control is
one of the most common tasks for an embedded microcontroller to perform. Chip
manufacturers are keen to capture the hobbyist and do-it-yourself (DIY)
microcontroller market, to encourage development of commercial products in their
ecosystem. As a result, development boards have readily available modular
expansion boards for common tasks. A survey of popular hobbyist retailers revealed
that most available motor control expansion boards for hobbyist microcontroller
development boards are limited to control of four motors with single direction
control, or two motors with bidirectional control, and offer no position feedback.
The result of this project is a circuit and driver package that allows control of four
motorized linear potentiometers, including resistive position feedback, storage, and
recall, as well as an interrupt. The resulting package is intended to be released and
maintained by the open source community.

APPROVED BY DIRECTOR OF HONORS THESIS:

Mr. John Miller, Department of Electrical Engineering

APPROVED BY THE HONORS PROGRAM:

Dr. Andrew Wisely, Director

DATE:

FOUR CHANNEL BIDIRECTIONAL MOTOR CONTROL ON THE MSP430

A Thesis Submitted to the Faculty of
Baylor University
In Partial Fulfillment of the Requirements for the

Honors Program

By

William J. Richards

Waco, Texas

May 2015

TABLE OF CONTENTS

Chapter One: A Brief History of Audio Equipment
Chapter Two: Project Context
Chapter Three: Implementation
Chapter Four: Conclusions and Future Actions
Appendices

Appendix A: Pin Connections

Appendix B: Example Code, Fader Chase

Appendix C: Example Code, Position Recall

ii

13

14

15

16

22

CHAPTER ONE

History of Audio Equipment

The advent of electrical sound amplification and reproduction fundamentally
changed public performance. Since ancient time, musicians and orators relied on
the natural acoustics of the performance space to propagate sound in such a way
that their audience could hear it. In 1877, Thomas Edison was awarded the patent
for the carbon button microphone, which was the first practical electric microphone,
but it was not until 1911 that Edwin Pridham and Peter Jensen designed a speaker
which could practically amplify sound [1]. With the advent of the electronic
amplification and reproduction of sound, it was now possible to address crowds that
were beyond the constraints of human vocal ability. This technological
development resulted in the social developments of radio broadcast and public
address systems, which have had revolutionary impact on entertainment, news, and

political campaigning.

Origin of Mixing Systems
One technologically revolutionary result of the transition to electrical
amplification and recording is the practice of audio mixing. Audio mixing is the
adjustment of several audio signal inputs and summing them of to several audio
signal outputs. This stems from the ability to run several amplifying circuits in
parallel, at different gain levels. These signals can then be summed and sent as a
single output. Audio mixing was done entirely with analog circuits until the release

of the first digital console, the Neve Capricorn, in 1993 [2].

The Rise of Digital Mixers

In studio settings, digital mixing consoles were adopted as the fidelity of
digital systems improved, but in live settings the analog mixer remained dominant.
Even in the present day, most live production is done on an analog mixing system.
This is due, in part, to early digital systems having poor reliability and audio quality.
These flaws have long since been resolved, but the image remains. In fact, in terms
of sound quality, the opposite has become a problem. Digital systems are often
criticized for being too transparent, giving an audio characteristic dubbed “harsh” or
“sterile.” Another reason for the difference in adoption rate is that digital mixers
have, to date, retained the form factor of a conventional mixing console. In a studio
context, there is still a benefit to digital mixers. Studio consoles typically have a
large number of inputs and outputs, due to multi-track production methods. As a
result of the studio console format, analog studio consoles get increasingly complex
to construct and repair as they increase in channel count. Live mixing consoles, on
the other hand, take a large number of inputs but reduce them to a small number of
outputs. A small console, meant for small venues or traveling bands that provide
their own equipemtn, may have as few as three output channels. This format served
the needs of the production community well until the recent advent of in-ear

monitoring systems.

Monitoring Systems: An Overview

A monitoring system provides audio feedback to a performer (or group of
performers) so that they can hear, and adjust, their performance. This is especially
useful in groups where one performer or instrument is significantly quieter than
another or if an instrument is highly directional in sound. Prior to recent advances
in wireless technology, it was common practice to have only one or two monitor
channels, directed to speakers on stage (see Figure 1). Some large bands would
have more complex monitoring arrangements, but this would require either a
second sound technician to do the mixing for the monitors, or the technician to

perform both monitoring and live mixing from the main mixer.

Input

\e——
—

Input

Main
Speakers

Input
R
)

Input Mixer [

l[

Input
\—
r—

Monitor
Speakers

Input

Input

Input

Figure 1: A Traditional Mixing and Monitoring Setup

One of the challenges the traditional monitoring method faces is that the
ideal monitor mix is different for each performer or band member. The decreasing

3

expense of digital mixing technology has led to the current practice of personalized
monitoring, which takes a duplicate of the incoming audio signals as they enter the
mixer, digitizes them, and delivers them to a personal mixing station. The pinnacle
of personalized mixing delivers the mix to earphones worn by the performer, which
is called “in-ear monitoring.” However, this solution requires an auxiliary system to
the main mixing console, a number of cables running to the personal mixing
stations, and often an equal number of cables to return the mixed audio signal to a

wireless transmitter for the in-ear monitoring system (see Figure 2).

Input
—{ _ »| In Ear Monitor
Main
Input Speaker
peakers » In Ear Monitor
Input .
S » In Ear Monitor
)
Input .
p » In Ear Monitor
)
Input - _ .
» In Ear Monitor
ey
Input Monitor » In Ear Monitor
Mixer
Input »1 In Ear Monitor
Input »I In Ear Monitor

Figure 2: Conventional Mixing and Personal Monitoring System

CHAPTER TWO

Project Context

The Digital Monitoring Mixing System (DMMS) is a project started by Prof.
John Miller. As a volunteer sound technician at his church, Prof. Miller found
commercially available live mixing and monitoring solutions to be lacking in space
efficiency and scalability. In commercially available mixers, changing the number of
available channels required purchasing a new mixer that has the proper number of
channels. In-ear monitoring required the purchase of an auxiliary system, which
adds substantial amounts of cabling, as well as personal mixers for each of the

performers, which are expensive.

The DMMS sought to replace the traditional mixing console and wireless
monitoring systems with a system that consists of a mixing controller unit and
breakout boxes for audio input and output (see Figure 3), all of which are rack-
mountable for a tidy, compact system. The conventional mixing console surface is
replaced by an electronic interface based on touchscreen devices like smartphones
and tablets. This is excellent for in-ear monitor mixing, however, these devices
provide minimal haptic feedback, and are limited in channel accessibility and data
availability by their small screen size. To address this issue, a control surface was
under development that replicates the experience of operating a standard mixing
console. This console was intended to be modular, allowing addition or removal of

channels as the need and budget of the customer changes.

Audio Wireless
Out Monitors

i)

Group
Controller

Fader

~

Master
Controller) | Mixer DSP]
Master

[
(
¢

7'y \ DMMS Unit)

1

Fader

A 4

Fader Control

Surface

Fader

1
J

Fader

1 1+t 1T 1

Fader

Group

\Fader Controller L

Figure 3: Block Diagram of DMMS

Smartphone
/Tablet
(via WiFi) Audio In

This project originated as designing a module to control a group of faders, a
subsystem of this control surface. In commercial mixing designs, a fader controller
often controls only one fader, which is economically feasible when the unit is mass-
produced. The DMMS project, however, was under development with minimal

funding, so a group controller made sense for the console.

A New Direction: The Open Source Community

Over the course of this project, products have come to market that integrate
several features of the DMMS. The Mackie 1608 and Line6 StageScape M20d

introduced iPad based mixing control, though targeted at small bands who have to

do their own mixing, and the Mackie DL32R added the ability to control monitoring
from additional tablets or smartphones. Because the innovations of the DMMS
system were now present in commercial products, development of the DMMS
turned to developing technology that could be used by the do-it-yourself (DIY),
hobbyist or “maker” community. The DIY community develops technology on the
small scale to meet personalized needs, to develop better tools and equipment for
others in the community to use, or to prototype commercial products. Supporting
this community is important to the academic engineering community because many

engineers find the start of their career in such tinkering.

The DMMS Control Surface seemed to be the most promising subsystem to
focus on. Control surfaces are useful to many hobbyist areas, including audio
recording and editing, video editing, robotics, automation, and model railroads. It is
also promising that people with these hobbies tend to also belong to the DIY, open
source, or maker communities. However, the generalized concept of a fader
controller, a multichannel motor driver with feedback, is more useful to the DIY
community than a fully developed control surface. There are two-channel motor
drivers available, and feedback can be implemented, but no four-channel drivers
exist, even though the hardware capacity exists. This project addresses that need,
and develops a rudimentary multichannel DC motor control unit to be improved

upon by the open source community.

CHAPTER THREE

Implementation

This project is intended to provide a basis for a four-channel motor control
expansion board for common microcontroller development boards. This chapter
will summarize the concepts behind implementing this project, as well as describe

the process to duplicate the design produced in this project.

Important Concepts

Microprocessors and Microcontrollers

A microprocessor is a common example of an embedded computer.
Embedded computers are computers that are designed to perform a simple set of
tasks with high efficiency and reliability and to be inexpensive. A microcontroller is
a microprocessor bundled with common peripherals like timers, analog-to-digital

converters (ADCs), flash memory, communication, or pulse-width-modulation.

The most prevalent applications of microcontrollers are data collection and
process control. In general, microcontrollers do not have complex user interfaces,
like keyboards and monitors on a personal computer. Instead, microcontrollers
primarily use sensors and actuators. It is unlikely that a person using a commercial

implementation of a microcontroller will realize that they are using one.

Motor Control Overview

Motors are one of the three common actuators used by a microcontroller.
(The other two are linear actuators and solenoids.) Motor control is the
minimization of steady-state error in motors. Frequently this is done with
proportional-integral-derivative (PID) control and PWM of the voltage. This
implementation uses simplified PWM and does not use PID control, though PID
algorithm are intended to be developed after the release of this project to open

source.

PID Control Theory

PID control theory is a mathematical model that uses three terms in
determining the error correction to be used. These terms are a proportional term,

an integral term, and a derivative term, from which the theory gets its name.

The proportional term of a PID model asserts that correction should be
proportional to the error, so a large error will result in a larger corrective reaction.
In the context of motorized linear faders, this means that the farther the fader is
from its desired position, the faster the motor will turn, and as it approaches the
desired position, the motor will slow down. This term is the most prominent term
in a PID model, and in many cases, is the only term required to get satisfactory

results.

The integral term of a PID model acts as an accumulator, prioritizing small

errors over time and forcing the error to zero. The integral term introduces

overshoot into the system, introducing a tradeoff. While integral terms increase
system response time, the characteristic of overshoot is often undesirable, so the

integral term should be kept as small as effectively eliminates steady-state error.

The derivative term of a PID model adds prediction to the PID model,
counteracting the overshoot introduced by the integral term and promoting a
shorter settling time. For situations where precision and stability are important,

like fader automation, the derivative term will be strong.

Pulse-Width-Modulation

Pulse-width-modulation (PWM) is a common method for digital devices to
emulate analog voltage outputs. PWM uses a pulse of high voltage, followed by a
pulse of low voltage, to output an average value equivalent to the desired analog
voltage. Because of the frequency that digital devices operate at and the inherent
capacitance and inductance of high power components like motors, this averaging
method works well for high power applications. If the pulsing does impact device
performance, steps can be taken to mitigate this (e.g. a capacitor can be added to

smooth the voltage transition.)

Development and Expansion Boards

Microprocessor manufacturers originally produced development boards
(sometimes called evaluation boards) for potential customers to develop proof of
concepts or prototype designs. In 2005, the Interaction Design Institute Ivera
released a low-cost development board called Arduino for their students. This
board proved extremely popular with the DIY community, and as a result, Texas

10

Instruments and Atmel (whose processor the Arduino is based on) designed low
cost development boards, in an effort to encourage familiarity of the newly
discovered community of innovators with their products. The development board
chosen for this project is one of these, the Texas Instruments MSP430F5529

Launchpad.

Implementation of Motor Control on MSP430

The MSP430F5529 Launchpad was chosen because of its affordability and
low power consumption. A similar concept could be implemented on an Arduino
development board. All components in this project were mounted to a solderless
breadboard except for the faders, which were mounted to a surface, and wires were

run to the breadboard.

This motor controller used a pair of TI SN754410 ICs to drive the fader
motors. The SN754410 is a standard Quadruple Half-H Driver chip, a common
device for enabling a microcontroller to control a DC motor. A Half-H Driver takes
an input of logic-level voltage (typically 3.3V or 5V) and connects or disconnects a
higher voltage to provide power to loads that are too large for a microcontroller to
directly power. A typical application circuit is displayed in Figure 4. For this project,
he inversion gates on the inputs to the chip were implemented in software and the
motor coils ¢1 and ¢2 were on two separate motors, instead of on one motor, as

illustrated.

11

3V 12V

10kQ < 18 8 | SN754410
Vooil Yecz

Contral A >__. - 2 el 5 3 S

1

ot

10 11

| EN
9 T2
= }

GND
'4,5,12,13

q

s

A

Mator
Contral B ———

.
on
]
=

Figure 4: Typical Application Circuit for SN754410 [3]

The Tables in Appendix A give pin connections for all components. Beside
the connections with the SN754410 and the faders, the MSP430 only needs to be

connected to a common ground with the other ICs and faders.

Two example programs (available in appendices B and C) were written that
demonstrate the functions of the circuit. These programs were compiled using Code
Composer Studio 6, and were successfully implemented on the system. The first
program demonstrates the ability to respond to input. The second program
demonstrates an ability to restore saved positions. For this project simple PWM is
used to control motor speed, and the electrical resistance of the fader is used to

provide position feedback.

12

CHAPTER FOUR

Conclusions and Future Actions

This project demonstrated that a four channel motor controller is viable
using a low-cost microcontroller and provides documentation for others to
implement the design for themselves.

Challenges

One of the primary challenges of implementation is the PWM for controlling
motor drive. The delay functions provided with the microcontroller required a
constant integer input, forcing the pulse width to be of a fixed ratio. While this was
adequate for a simple proof of concept, for better motor control a variable PWM is
needed. This issue can be addressed using the MSP430’s Timer_A module, but was
not demonstrated due to time constraints.

Future of the Four Channel Motor Control Circuit

The future of this project is a release to the open source community for
further development. This release will include refined schematics of the circuit used
in this project, PCB design files that conform to the MSP430 Booster Pack and the
Arduino Shield format. The release will also include a polished version of the
example programs included in this project, adding variable PWM for motor speed
control, PID, as well as drivers offering simple fader control. These drivers and
examples will be available in C and in Energia/Arduino sketch format. This enables
the DIY community easy access to both the hardware design and easy software

implementation.

13

APPENDICES

14

APPENDIX A

Pin Connection Tables

Table A.1: Fader Pin Connections

Fader 1 Fader 2 Fader 3 Fader 4
Pin 1 Ve (3.3V) Ve (3.3V) Vce (3.3V) Ve (3.3V)
Pin 1’ Not Connected | Not Connected | Not Connected | Not Connected
Pin 2 ADCO ADC1 ADC2 ADC3
Pin 2’ Not Connected | Not Connected | Not Connected | Not Connected
Pin 3 Ground Ground Ground Ground
Pin 3’ Not Connected | Not Connected | NotConnected | Not Connected
PinT Not Connected | Not Connected | NotConnected | Not Connected
Motor Pos Driver 1.1Y Driver 1.3Y Driver 2.1Y Driver 2.3Y
Motor Ned | Driver 1.2Y Driver 1.4Y Driver 2.2Y Driver 2.4Y
Table A.2: SN754410 Pin Connections
Pin Driver 1 Driver 2
Vcecl 5V 5V
Vec2 12V 12V
EN12 Pin 3.7 Pin 2.3
EN34 Pin 8.2 Pin 8.1
1A Pin 2.5 Pin 1.3
1Y Motor 1 Positive Motor 3 Positive
2A Pin 2.4 Pin 1.2
2Y Motor 1 Negative Motor 3 Negative
3A Pin 1.5 Pin 4.3
3Y Motor 2 Positive Motor 4 Positive
4A Pin 1.4 Pin 4.0
4Y Motor 2 Negative Motor 4 Negative

15

#tinclude
/*

*

unit.

Fader
Fader
Fader
Fader
Fader

Driver
Driver
Driver
Driver
Driver
Driver
Driver
Driver

Driver
Driver
Driver
Driver
Driver
Driver

¥ X X X X X X X X X K X X X ¥ ¥ X ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

*
~

"driverlib.h"

Fader *.1

*.3

A wWwN PR

* *RP R RRPRPPR

NNNMNNNODN

NNMNDNDN

Recall Demonstration
By William Richards
24 April 2015

- Ground
- ADCO
- ADC1
- ADC2
- ADC3

.EN12
.EN34 - Pin
LA -
2A -
.3A -
J4A -
.Vccl
.Vcc2

.EN12
.EN34
1A -
2A -

JAA -

- Pin

Pin 2.
Pin 2.
Pin 1.
Pin 1.
- (5Vv)

- (12v)

- Pin

O W N WON

H U A UTOO W

APPENDIX B

Example Code, Fader Chase

Description: This code demonstrates the ability of the Motor Control Circuit
to recall saved positions of faders, for initialization of a fader control

This code is based on a MSP430F5529 Launchpad with four faders attached:
- Vcc (3.3V)

w

// results stores the values retrieved from ADC12_A

uintl6_t results [5] = {0,90,0,0,0};

// faderRes provides discrete segments of fader travel. Resolution finer than
// 128 positions introduces motor jitter due to lack of PID control

intl6_t faderRes
// Indicates status of driver chip enable, to prevent excessive GPIO writing
bool FlIsPaused
bool F2IsPaused
bool F3IsPaused

= Oxfff/128;

false;
false;
false;

16

bool F4IsPaused = false;

bool D2IsPaused = false;

// Approximate ADC12_A value for a fader at the top of its track
int1l6_t maxFaderVal = OXEEQ;

// These values are the stores positions on a scale of 128.

intl6_t storedPosl = 0;
intl6_t storedPos2 = 30;
intl6_t storedPos3 = 60;
intl6_t storedPos4 = 90;

int main(void) {
WDT_A_hold(WDT_A_BASE);

// Setup Driver 1: Enable outputs, and set all low

GPIO_setAsOutputPin(GPIO_PORT_P3,GPIO_PIN7); // D1.EN12
GPIO_setOutputLowOnPin(GPIO_PORT_P3,GPIO_PIN7);
GPIO_setAsOutputPin(GPIO_PORT_P8,GPIO_PIN2); // D1.EN34
GPIO setOutputLowOnPin(GPIO_PORT_P8,GPIO_PIN2);
GPIO_setAsOutputPin(GPIO_PORT_P2,GPIO_PIN5); // D1.1A
GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PINS);
GPIO_setAsOutputPin(GPIO_PORT_P2,GPIO_PIN4); // D1.2A
GPIO setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN4);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO PINS); // D1.3A
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN5);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO_PIN4); // D1.4A

GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN4);

// Setup Driver 2: Enable outputs, and set all low

GPIO_setAsOutputPin(GPIO PORT_P2,GPIO PIN3); // D2.EN12
GPIO_setOutputLowOnPin(GPIO _PORT_P2,GPIO PIN3);
GPIO_setAsOutputPin(GPIO_PORT_P8,GPIO PIN1); // D2.EN34
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO _PIN1);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO_PIN3); // D2.1A
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN3);

GPIO setAsOutputPin(GPIO_PORT_P1,GPIO PIN2); // D2.2A
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO _PIN2);
GPIO_setAsOutputPin(GPIO_PORT_P4,GPIO_PIN®); // D2.3A
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN®O);
GPIO_setAsOutputPin(GPIO_PORT P4,GPIO_PIN3); // D2.4A

GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3);

// Setup ADC Input Pins
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6,
GPIO_PINO + GPIO_PIN1 + GPIO_PIN2 +
GPIO_PIN3

)5

//Initialize the ADC12_A Module

ADC12_A init(ADC12_A BASE,
ADC12_A SAMPLEHOLDSOURCE_SC,
ADC12_A CLOCKSOURCE_ADC120SC,
ADC12_A CLOCKDIVIDER 1);

ADC12_A_enable(ADC12_A_BASE);

17

ADC12_A_setupSamplingTimer(ADC12_A_BASE,
ADC12_A_CYCLEHOLD_16_CYCLES,
ADC12_A CYCLEHOLD_4_CYCLES,
ADC12_A_MULTIPLESAMPLESENABLE);

//Configure Memory Buffers

ADC12_A configureMemoryParam param@ = {0};
param@.memoryBufferControlIndex = ADC12_A MEMORY_O;
paramd.inputSourceSelect = ADC12_A INPUT_AQ;
param@.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC;
param@.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
param@.endOfSequence = ADC12_A NOTENDOFSEQUENCE;
ADC12_A_configureMemory(ADC12_A BASE,¶md);

ADC12_A_configureMemoryParam paraml = {0};
paraml.memoryBufferControlIndex = ADC12_A MEMORY_1;
paraml.inputSourceSelect = ADC12_A_INPUT_A1l;
paraml.positiveRefVoltageSourceSelect = ADC12_A VREFPOS_AVCC;
paraml.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
paraml.endOfSequence = ADC12_A NOTENDOFSEQUENCE;

ADC12_A configureMemory(ADC12_A BASE,¶ml);

ADC12_A_configureMemoryParam param2 = {0};
param2.memoryBufferControlIndex = ADC12_A_MEMORY_2;
param2.inputSourceSelect = ADC12_A_INPUT_A2;
param2.positiveRefVoltageSourceSelect = ADC12_A VREFPOS_AVCC;
param2.negativeRefVoltageSourceSelect = ADC12_A VREFNEG_AVSS;
param2.endOfSequence = ADC12_A NOTENDOFSEQUENCE;
ADC12_A_configureMemory(ADC12_A_BASE,¶m2);

ADC12_A_configureMemoryParam param3 = {0};
param3.memoryBufferControlIndex = ADC12_A_ MEMORY_3;
param3.inputSourceSelect = ADC12_A INPUT_A3;
param3.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC;
param3.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
param3.endOfSequence = ADC12_A ENDOFSEQUENCE;
ADC12_A_configureMemory(ADC12_A BASE,¶m3);

//Enable memory buffer 3 interrupt
ADC12_A clearInterrupt(ADC12_A BASE,

ADC12IE3);
ADC12_A_enableInterrupt(ADC12_A BASE,
ADC12IE3);
// Program loop
while(1)
{

//Start first sampling and conversion cycle

ADC12_A_startConversion(ADC12_A BASE,
ADC12_A_MEMORY_O,
ADC12_ A SEQOFCHANNELS);

// Wait for conversion to complete

//Enter LPM4, Enable interrupts
__bis SR _register(LPM4_bits + GIE);

18

//For debugger
__no_operation();

// If Fader 1 is too high, move it down
if(((intl16_t)((maxFaderVal/128*storedPosl)-results[@])>faderRes)){
F1IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT P2,GPIO_PIN4); // D1.4A
GPIO_setOutputHighOnPin(GPIO PORT P3,GPIO PIN7); // D1.EN34
GPIO_setOutputHighOnPin(GPIO_PORT P2,GPIO PIN5); // D1.3A

} else if(((int16_t)(results[@]-maxFaderVal/128*storedPosl)>faderRes)) {
// Fader 1 too low, move up.
FlIsPaused = false;
GPIO setOutputLowOnPin(GPIO_PORT _P2,GPIO PIN5); // D1.3A
GPIO_setOutputHighOnPin(GPIO_PORT_P3,GPIO_PIN7); // D1.EN34
GPIO_setOutputHighOnPin(GPIO_PORT_P2,GPIO_PIN4); // D1.4A

} else if (FlIsPaused == false){
// If Fader 1 is where it belongs, stop motor
GPIO_setOutputLowOnPin(GPIO_PORT_P3,GPIO_PIN7);
GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN4);
GPIO_setOutputLowOnPin(GPIO_PORT P2,GPIO PIN5);
FlIsPaused = true;

}

// If Fader 2 is too high, move it down

if(((intl6_t)((maxFaderVal/128*storedPos2)-results[1])>faderRes)){
F2IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN5); // D1.3A
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN2); // D1.EN34
GPIO_setOutputHighOnPin(GPIO _PORT_P1,GPIO PIN4); // D1.4A

} else if(((int16_t)(results[1]-maxFaderVal/128*storedPos2)>faderRes)) {
// Fader 2 too high, move up.
F2IsPaused = false;
GPIO_setOutputLowOnPin(GPIO PORT_P1,GPIO PIN4); // D1.4A
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN2); // D1.EN34
GPIO_setOutputHighOnPin(GPIO_PORT P1,GPIO PIN5); // D1.3A

} else if (F2IsPaused == false){
// If Fader 1 is where it belongs, stop motor
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO_PIN2);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN4);
GPIO setOutputLowOnPin(GPIO PORT P1,GPIO PIN5);

F2IsPaused = true;

}

// If Fader 3 is too high, move it down
if(((intl6_t)((maxFaderVal/128*storedPos3)-results[2])>faderRes)){
F3IsPaused = false;
GPIO setOutputLowOnPin(GPIO_PORT P1,GPIO PIN3); // D1.3A
GPIO_setOutputHighOnPin(GPIO_ PORT_P2,GPIO PIN3); // D1.EN34
GPIO_setOutputHighOnPin(GPIO_PORT_P1,GPIO_PIN2); // D1.4A

19

} else if(((int16_t)(results[2]-maxFaderVal/128*storedPos3)>faderRes)) {
// Fader 3 too low, move up.
F3IsPaused = false;
GPIO_setOutputLowOnPin(GPIO PORT P1,GPIO PIN2); // D1.4A
GPIO_setOutputHighOnPin(GPIO PORT_P2,GPIO PIN3); // D1.EN34
GPIO_setOutputHighOnPin(GPIO_PORT_P1,GPIO_PIN3); // D1.3A

} else if (F3IsPaused == false){
GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO PIN3);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN2);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN3);

F3IsPaused = true;

}

// If Fader 4 is too high, move it down
if(((intl6_t)((maxFaderVal/128*storedPos4)-results[3])>faderRes)){
F3IsPaused = false;
GPIO_setOutputLowOnPin(GPIO PORT_P4,GPIO PIN3); // D2.3A
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN1); // D2.EN34
GPIO_setOutputHighOnPin(GPIO_PORT_P4,GPIO_PIN®@); // D2.4A

} else if(((int16_t)(results[3]-maxFaderVal/128*storedPos4)>faderRes)) {
// Fader 4 too low, move up.
F3IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO PINO); // D2.4A
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN1); // D2.EN34
GPIO setOutputHighOnPin(GPIO_PORT_P4,GPIO PIN3); // D2.3A

} else if (F3IsPaused == false){
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO PIN1);
GPIO_ setOutputLowOnPin(GPIO_PORT_P4,GPIO _PIN®);
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3);

F3IsPaused = true;

}

// Wait for motion to happen, then pause to check current status
_delay_cycles(1500);

// Fader 1
GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO PIN4);
GPIO_setOutputLowOnPin(GPIO_PORT P2,GPIO PIN5);
// Fader 2
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN4);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN5);
// Fader 3
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO PIN2);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN3);
// Fader 4
GPIO_setOutputLowOnPin(GPIO_PORT P4,GPIO PIN®);
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3);
_delay cycles(4000);

20

return (0);

}

// ADC interrupt handler - reads ADC results, stores them in array "results

#if defined(__TI_COMPILER_VERSION_) || defined(__IAR SYSTEMS ICC_)
#pragma vector=ADC12_VECTOR

__interrupt
#elif defined(__GNUC_)

__attribute_ ((interrupt(ADC12_VECTOR)))

void ADC12ISR(void)

switch(__even_in_range(ADC12IV,34))

#endif
{
{
}
¥

case
case
case
case
case
case
case

case
case
case
case
case
case
case
case
case
case
case
defa

0: break; //Vector ©: No interrupt
2: break; //Vector 2: ADC overflow
4: break; //Vector 4: ADC timing overflow
6: break; //Vector 6: ADC12IFGO
8: break; //Vector 8: ADC12IFG1
10: break; //Vector 10: ADC12IFG2
12: //Vector 12: ADC12IFG3
//Move results, IFG is cleared
results[0] =

ADC12_A_getResults(ADC12_A BASE,
ADC12_A_MEMORY_0);
//Move results, IFG is cleared
results[1] =
ADC12_A getResults(ADC12_A BASE,
ADC12_A_MEMORY_1);
//Move results, IFG is cleared
results[2] =
ADC12_A_getResults(ADC12_A BASE,
ADC12_A_MEMORY_2);
//Move results, IFG is cleared
results[3] =
ADC12_A_getResults(ADC12_A_BASE,
ADC12_A_MEMORY_3);
//Exit active CPU, SET BREAKPOINT HERE
__bic_SR_register_on_exit(LPM4_bits);

14: break; //Vector 14: ADC12IFG4

16: break; //Vector 16: ADC12IFG5

18: break; //Vector 18: ADC12IFG6

20: break; //Vector 20: ADC12IFG7

22: break; //Vector 22: ADC12IFGS8

24: break; //Vector 24: ADC12IFG9

26: break; //Vector 26: ADC12IFG10
28: break; //Vector 28: ADC12IFG1l1
30: break; //Vector 30: ADC12IFG12
32: break; //Vector 32: ADC12IFG13
34: break; //Vector 34: ADC12IFG14
ult: break;

21

APPENDIX C

Example Code, Recall

#tinclude "driverlib.h"

/*

Double Channel Chase Demonstration
By William Richards

24 April 2015

Description: This code demonstrates the ability of the Motor Control Circuit
to read and write to multiple channels at once. When loaded into a MSP430
and the accompanying circuit, adjusting the first and third channels will
cause the microcontroller to move the second and fourth faders to mimic the
position of the respective odd numbered fader.

This code is based on a MSP430F5529 Launchpad with four faders attached:
Fader *.1 - Vcc (3.3V)
Fader *.3 - Ground

Fader 1.2 - ADCO

Fader 2.2 - ADC1

Fader 3.2 - ADC2

Fader 4.2 - ADC3

Driver 1.EN12 - Pin 3.7
Driver 1.EN34 - Pin 8.2
Driver 1.1A - Pin 2.5
Driver 1.2A - Pin 2.4
Driver 1.3A - Pin 1.5
Driver 1.4A - Pin 1.4
Driver *.Vccl - (5V)
Driver *.Vcc2 - (12V)
Driver 2.EN12 - Pin 2.3
Driver 2.EN34 - Pin 8.1
Driver 2.1A - Pin 1.3
Driver 2.2A - Pin 1.2
Driver 2.3A - Pin 4.3
Driver 2.4A - Pin 4.0

¥ X K K X X X XK K X X X K K X X X K K X X X X X X X X ¥ X X X ¥ ¥ ¥

*
~

// results stores the values retrieved from ADC12_A

uintl6_t results [5] = {90,0,0,0,0};

// faderRes provides discrete segments of fader travel. Resolution finer than
// 128 positions introduces motor jitter due to lack of PID control

intl6_t faderRes = oxfff/128;

// Indicates status of driver chip enable, to prevent excessive GPIO writing
bool DlIsPaused = false;

22

bool D2IsPaused = false;
int main(void) {
WDT_A_hold(WDT_A BASE);

// Setup Driver 1: Enable outputs, and set all low

GPIO_setAsOutputPin(GPIO_PORT_P3,GPIO_PIN7); // D1.EN12
GPIO_setOutputLowOnPin(GPIO_PORT_P3,GPIO_PIN7);
GPIO_setAsOutputPin(GPIO_PORT_P8,GPIO_PIN2); // D1.EN34
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO_PIN2);
GPIO_setAsOutputPin(GPIO_PORT_P2,GPIO_PIN5); // D1.1A
GPIO setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN5);
GPIO_setAsOutputPin(GPIO_PORT_P2,GPIO_PIN4); // D1.2A
GPIO_setOutputLowOnPin(GPIO_PORT_P2,GPIO_PIN4);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO_PIN5); // D1.3A
GPIO setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN5);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO_PIN4); // D1.4A

GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN4);

// Setup Driver 2: Enable outputs, and set all low

GPIO_setAsOutputPin(GPIO_PORT_P2,GPIO_PIN3); // D2.EN12
GPIO setOutputLowOnPin(GPIO_PORT_P2,GPIO PIN3);
GPIO_setAsOutputPin(GPIO_PORT_P8,GPIO_PIN1); // D2.EN34
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO_PIN1);

GPIO setAsOutputPin(GPIO_PORT_P1,GPIO PIN3); // D2.1A
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN3);
GPIO_setAsOutputPin(GPIO_PORT_P1,GPIO_PIN2); // D2.2A
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN2);
GPIO_setAsOutputPin(GPIO_PORT_P4,GPIO_PIN®); // D2.3A
GPIO setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN®);

GPIO setAsOutputPin(GPIO_PORT_P4,GPIO _PIN3); // D2.4A

GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3);

// Setup ADC Input Pins
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6,
GPIO_PINO + GPIO_PIN1 + GPIO_PIN2 +
GPIO_PIN3);

//Initialize the ADC12_A Module

ADC12_A_init(ADC12_A_BASE,
ADC12_A_SAMPLEHOLDSOURCE_SC,
ADC12_A_CLOCKSOURCE_ADC120SC,
ADC12_A_CLOCKDIVIDER_1);

ADC12_A_enable(ADC12_A_BASE);

ADC12_A_setupSamplingTimer(ADC12_A_ BASE,
ADC12_A_CYCLEHOLD_16_CYCLES,
ADC12_A_CYCLEHOLD_4_CYCLES,
ADC12_A_MULTIPLESAMPLESENABLE);

//Configure Memory Buffers

ADC12_A_configureMemoryParam param@ = {0};
param@.memoryBufferControlIndex = ADC12_A_MEMORY_O;

23

paramd.inputSourceSelect = ADC12_A INPUT_AQ;
param@.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC;
param@.negativeRefVoltageSourceSelect = ADC12_A VREFNEG_AVSS;
paramd.endOfSequence = ADC12_ A NOTENDOFSEQUENCE;

ADC12_A configureMemory(ADC12_ A BASE,¶md);

ADC12_A_configureMemoryParam paraml = {0};
paraml.memoryBufferControlIndex = ADC12_A MEMORY_1;
paraml.inputSourceSelect = ADC12_A_INPUT_A1;
paraml.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC;
paraml.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
paraml.endOfSequence = ADC12_A NOTENDOFSEQUENCE;
ADC12_A_configureMemory (ADC12_A_ BASE,¶ml);

ADC12_A_configureMemoryParam param2 = {0};
param2.memoryBufferControlIndex = ADC12_A_MEMORY_2;
param2.inputSourceSelect = ADC12_A_INPUT_A2;
param2.positiveRefVoltageSourceSelect = ADC12_A VREFPOS_AVCC;
param2.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
param2.endOfSequence = ADC12_A NOTENDOFSEQUENCE;
ADC12_A_configureMemory (ADC12_A_ BASE,¶m2);

ADC12_A_configureMemoryParam param3 = {0};
param3.memoryBufferControlIndex = ADC12_A_MEMORY_3;
param3.inputSourceSelect = ADC12_A_INPUT_A3;
param3.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC;
param3.negativeRefVoltageSourceSelect = ADC12_A VREFNEG_AVSS;
param3.endOfSequence = ADC12_A ENDOFSEQUENCE;
ADC12_A_configureMemory(ADC12_A_ BASE,¶m3);

//Enable memory buffer 3 interrupt
ADC12 A clearInterrupt(ADC12_A BASE,

ADC12IE3);
ADC12_A_enableInterrupt(ADC12_A BASE,
ADC12IE3);
// Program loop
while(1)
{

//Start first sampling and conversion cycle

ADC12_A startConversion(ADC12_A BASE,
ADC12_A_MEMORY_0,
ADC12_A_SEQOFCHANNELS);

// Wait for conversion to complete
//Enter LPM4, Enable interrupts
__bis_SR_register(LPM4_bits + GIE);

//For debugger
__no_operation();

// Test fader levels, and initiate motor correction if needed
if(((intl6_t)(results[@]-results[1])>faderRes)){

// Fader 2 > Fader 1, move down

D1IsPaused = false;

24

GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO_PIN5); // D1.

GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN2); // D1

GPIO_setOutputHighOnPin(GPIO_PORT_P1,GPIO_PIN4); // D1.

} else if(((int16_t)(results[1]-results[@])>faderRes)) {
// Fader 2 < Fader 1, move up.
D1IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT P1,GPIO_PIN4); //
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN2); //
GPIO_setOutputHighOnPin(GPIO_PORT_P1,GPIO_PIN5); //

} else if (D1lIsPaused == false){
// Fader 2 = Fader 1, stop motor
GPIO_setOutputLowOnPin(GPIO_PORT_P8,GPIO_PIN2); //
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO PIN4); //
GPIO setOutputLowOnPin(GPIO_PORT P1,GPIO PIN5); //
// Set pause, so this does not execute constantly
D1lIsPaused = true;

}

if(((intl6_t)(results[2]-results[3])>faderRes)){
// Fader 4 > Fader 3, move down
D2IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3); //
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN1); //
GPIO_setOutputHighOnPin(GPIO_PORT_P4,GPIO_PIN@); //

} else if(((int16_t)(results[3]-results[2])>faderRes)) {
// Fader 4 < Fader 3, move up.
D2IsPaused = false;
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN®); //
GPIO_setOutputHighOnPin(GPIO_PORT_P8,GPIO_PIN1); //
GPIO_setOutputHighOnPin(GPIO_PORT_P4,GPIO_PIN3); //

} else if (D2IsPaused == false){
// Fader 4 = Fader 3 stop motor
GPIO setOutputLowOnPin(GPIO_PORT_P8,GPIO PIN1); //
GPIO setOutputLowOnPin(GPIO_PORT P4,GPIO _PINO); //
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3); //
// Set pause, so this does not execute constantly
D2IsPaused = true;

}

// Simple PWM: 3:8 ratio.

_delay_cycles(1500);
GPIO_setOutputLowOnPin(GPIO_PORT_P1,GPIO PIN4); // D1.4A
GPIO_setOutputlLowOnPin(GPIO_PORT_P1,GPIO PIN5); // D1.3A
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN®@); // D2.4A
GPIO_setOutputLowOnPin(GPIO_PORT_P4,GPIO_PIN3); // D2.3A
_delay cycles(4000);

}

return (0);

25

D1.
D1.

D1

D1.
D1.
D1.

D2.

D2

D2.

D2.
D2.
D2.

3A
.EN34
4A

4A
EN34
.3A

EN34
4A
3A

3A
.EN34
4A

JAA
.EN34
.3A

EN34
4A
3A

// ADC interrupt handler - reads ADC results, stores them in array "results
#if defined(__TI_COMPILER_VERSION) || defined(__IAR_SYSTEMS ICC_)

#pragma vector=ADC12_VECTOR
__interrupt

#elif defined(_GNUC_)
__attribute__ ((interrupt(ADC12_VECTOR)))
#endif

void ADC12ISR(void)

{

switch(__even_in_range(ADC12IV,34))
{

case 0: break; //Vector
case 2: break; //Vector
case 4: break; //Vector
case 6: break; //Vector
case 8: break; //Vector
case 10: break; //Vector 10:
case 12: //Vector 12:

//Move results, IFG is cleared

results[0] =

ADC12_A_getResults(ADC12_A_BASE,

o pPANO

No interrupt
ADC overflow
ADC timing overflow

ADC12IFGO
ADC12IFG1
ADC12IFG2
ADC12IFG3

ADC12_A_MEMORY_@);

//Move results, IFG is cleared

results[1] =

ADC12_A_getResults(ADC12_A BASE,

ADC12_A_MEMORY_1);

//Move results, IFG is cleared

results[2] =

ADC12_A_getResults(ADC12_A_BASE,

ADC12_A_MEMORY_2);

//Move results, IFG is cleared

results[3] =

ADC12_A_getResults(ADC12_A_BASE,

ADC12_A_MEMORY_3);
//Exit active CPU, SET BREAKPOINT HERE
__bic_SR_register_on_exit(LPM4 bits);

case 14: break; //Vector
case 16: break; //Vector
case 18: break; //Vector
case 20: break; //Vector
case 22: break; //Vector
case 24: break; //Vector
case 26: break; //Vector
case 28: break; //Vector
case 30: break; //Vector
case 32: break; //Vector
case 34: break; //Vector

default: break;

14:
16:
18:
20:
22:
24:
26:
28:
30:
32:
34:

ADC12IFG4
ADC12IFG5
ADC12IFG6
ADC12IFG7
ADC12IFG8
ADC12IFG9S
ADC12IFG10
ADC12IFG11
ADC12IFG12
ADC12IFG13
ADC12IFG14

26

BIBLIOGRAPHY

[1] R.]. Burgess, The History of Music Production, 1st ed. New York, NY, USA: OUP, 2014, p.
30

[2] AMS Neve. Capricorn. Available: http://ams-neve.com/products/legac
-products/capricorn. Accessed April, 29, 2015.

[3] Texas Instruments, “SN754410 Quadruple Half-H Driver,” Rep. no. SN754410,
Datasheet., 2015. Accessed on Apr. 29 2015.

27

