ABSTRACT
A Methodology for Chemoselective Carbonyl Ylide Formation, Total Synthesis of (z)-
Aspergilline A, Cyclopiamide A and Speradine E and Progress Toward the Total
Synthesis of (x)-Isopalhinine A
Mina Cyril Nakhla, Ph.D.

Mentor: John L. Wood, Ph.D.

In 2001, the total synthesis of (x)-epoxysorbicillinol was completed by Wood and
coworkers. This work featured as the key step a Rh(ll) catalyzed carbonyl ylide formation
and subsequent dipolar cycloaddition of a diazomalonate to yield a highly functionalized
oxabicyclic intermediate. In efforts to render the synthesis enantioselective, a method for
chemoselective carbonyl ylide formation was devised; this culminated in the formal
enantioselective synthesis of (+)-epoxysorbicillinol in 2005. The methodology utilized in
this synthesis centered around electronic differentiation of the diazomalonate’s esters to
induce chemoselective carbonyl ylide formation. Having established a methodology for
chemoselective carbonyl ylide formation, the substrate scope was expanded and steric
differentiation of the diazomalonate’s esters explored.

Aspergilline A was isolated from Aspergillus versicolor in 2014 by Hu and Gao
and was shown to exhibit moderate biological activity against several human cancer cell
lines. The compound bears several intriguing structural features including a 6/5/6/5/5/5

fused ring system which contains an oxindole moiety and a substituted tetramic acid. In



synthesizing this compound our strategy relied upon two key steps. The first was a single
step conversion of a propargyl amine into to a pyrrolinone through the action of an
ammonium enolate and the second was a formal [3+2] dipolar cycloaddition between an
imidate and a cyclopropenone derived all carbon 1, 3 dipole. Ultimately this work resulted
in the sixteen step total synthesis of (z)-aspergilline A. Additionally, two other related
natural products cyclopiamide A and speradine E were synthesized by diverting
intermediates accessed during the aspergilline A synthesis.

In 2013, the Lycopodium alkaloid isopalhinine A was isolated from Palhinhaea
cernua by Zhao and coworkers. To date, the compound has not been shown to exhibit any
biological activity. Despite its lack of known biological activity, the compound does
possess a variety of synthetically challenging structural features, including a 5/6/6/6/7
fused ring system which contains an isotwistane and a cycloheptane hemiaminal. In
devising a synthetic strategy, we settled upon two key synthetic transformations; an allene
Nazarov cyclization to construct the central cyclopentanone core and a late stage titanium
mediated 6-exo-trig cyclization and subsequent deoxygenation to complete construction of

the isotwistane.
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CHAPTER ONE
Origins and Background of the Chemoselective Carbonyl Y lide Methodology
1.1 Total Synthesis of (£)-Epoxysorbicillinol and Formal Synthesis of (+)-
Epoxysorbicillinol
1.1.1 Racemic Synthesis — 2001
The Vertinoid polyketide epoxysorbicillinol (1.01, Scheme 1.3) was isolated in
1998 from Trichoderma longibrachiatum by Crews et al. and at the time no bioactivity
was reported.! The Wood group then became interested in targeting this molecule due to
its intriguing structural features. Eventually, Wood et al. were able to accomplish the
racemic total synthesis of epoxysorbicillinol (Schemes 1.1 and 1.3) in 2001 utilizing a key
rhodium-catalyzed carbonyl ylide formation and subsequent dipolar cycloaddition to
access a highly versatile oxabicyclic (1.08) intermediate.? The synthesis commenced from
commercially available diethyl methyl malonate 1.02; transesterification with 2-
(trimethylsilyl)ethanol in the presence of substoichiometric sodium hydride followed by

acylation with pyruvoy! chloride yielded acylated malonate 1.03. Subsequent

Nei ~_OH
1. sy 0 o0 o o
11 NaH (O auiv) RO OR 1. TsNHNH RO OR
e, . S
o 0N —— = 2
2. NaH, THF O, 2. Basic Al,03 [\
CH,COCOCI 0 ) Y
(71% Yleld)
1.02 1.03 overall 1.04
R _\Si/\k
VAN
0_0
o 0 ro & XY o0 OorR O
; T Al
RhZ(O:\C)4 (1mol%) | rO OR (8/ 1.07 o : OR
PhH 60 °C o )
Rh,L, 9 0 (73% yield) 0
1.05 1.06 1.08

Scheme 1.1. Racemic epoxysorbicillinol — key oxabicycle



treatment with tosyl hydrazide and elimination by action of basic alumina provided
diazomalonate 1.04 in an excellent 71% vyield overall! Exposure of 1.04 to catalytic
rhodium acetate in benzene at 60 °C in the presence of allyl propiolate 1.07 furnished the
desired oxabicyclic compound in 73% vyield as a single diastereomer. The origin of the
diastereoselectivity was surmised by rudimentary MM2 calculations and is depicted in

Scheme 1.2. The intermediate carbonyl ylide 1.10 present in this synthesis bears an a-face

methyl group and a p-face ester (Scheme 1.2). It is believed that the p-face ester directs

Scheme 1.2. Origin of diastereoselectivity

approach of the dipolarophile to the less sterically hindered face as shown in transition state
1.11. Dipolar cycloaddition then generates an oxabicyclic compound (1.12) in which the
bridging oxygen and remaining ester reside on the p-face of the molecule. Having accessed
the key oxabicyclic intermediate, it was eventually found that seven additional synthetic
transformations were needed to access the natural product (Scheme 1.3). De-allylation of
the allyl ester 1.08 by catalytic palladium tetrakis followed by Weinreb amide formation
and subsequent 1,2 addition of 3-pentenyllithium (1.13) selectively into the Weinreb amide
provided ketone 1.14 in 41% overall yield. The strategic use of 3-pentenyllithium (1.13)
rather than an organolithium reagent which bore the full unsaturation present in the sorbyl

side chain of the natural product is of note. The authors cited the need for selective



epoxidation in subsequent steps as well as the prevention of unwanted polymerization as
the reasons for utilizing 3-pentenyllithium (1.13). Acetal cleavage was then effected by
TFA and selective epoxidation of the enone induced by t-BuOOH giving epoxyketone

1.15. Finally, what remained was installation of

1.Pd(PPhg),, CsHy3N

2. HNMe(OMe)-HCI Q OR O @ o0

1. TFA(L5equiv)
oR EDCI : N £ OR A : OR
3. _~_a~Cli 2. +-BuOOH, DBU 0
_7goc M3 o] NS
(41% Yield) (62% Yield) HO ™
1.14 1.15
R :\Si/\%
N

0 OH _\\—\_/o oH
, : -
TFA (25 equiv) X DDQ (5 equiv) ;
—_— _—_— i
CHCly o PhMe, 60 °C o
(81% Yield) . O (30— 40% Yield) o

HO 3
HO *

(+/-) Epoxysorbicillinol
1.16 1.01

Scheme 1.3. Completion of racemic epoxysorbicillinol

the unsaturation present in the side chain and decarboalkoxylation of the remaining ester.
The sequence of events proved critical. Initial exposure to DDQ effected the desired
dehydrogenation in good yield but, subsequent exposure to TFA gave the natural product
in unacceptably poor yield. Simply reversing the order of events provided ()-
epoxysorbicillinol 1.01 in workable yields in thirteen steps from commercially available

materials.

1.1.2 Enantioselective Formal Synthesis — 2005
Having achieved the racemic synthesis of epoxysorbicillinol (1.01), a strategy was
devised to access the natural product as a single enantiomer. In considering the racemic

synthesis, it quickly became obvious that an enantioselective synthesis could be achieved



if a single enantiomer of the key oxabicyclic compound could be accessed. With the
established diastereoselectivity of the dipolar cycloaddition in mind, it became clear that
two additional constraints would need to be placed on the reaction to allow for the access
of a single enantiomer of the oxabicyclic compound.? In the racemic synthesis, both esters
of the diazomalonate precursor were equivalent, and thereby enantiotopic. The dipolar-
cycloaddition led to a mixture of enantiomers of the oxabicyclic compounds (1.21, 1.22)

due to the formed enantiomeric carbonyl ylide intermediates (1.19, 1.20, Scheme 1.4).

o

RO OR2  Rh(ll) cat. RO OR?
o 0] enantiomeric carbonyl yldies
N, Rh,L4
Rl =R? 1.18
o] R
RO 3 RO O
1.17 OR? \ .
9 o) Ry O
1.20 1.22

Scheme 1.4. Enantiomeric carbonyl ylides

Thus, the first constraint needed to be control of which ester participated in carbonyl ylide
formation, e.g. chemoselective carbonyl ylide formation. It was envisioned that this could
be achieved either through electronic or steric differentiation of the esters in malonate
(1.23, Schemel.5). Differentiating the esters results in the addition of a chiral center at the
diazomalonate’s (1.23) central carbon, and therefore generation of a racemic mixture of

carbonyl ylides. As such, the second constraint needed to be the setting of the stereocenter



present at the central carbon of the differentiated malonate prior to chemoselective

carbonyl ylide formation and subsequent dipolar cycloaddition. With these constraints

R® and R? being different
results in the addition of
a chiral center

— 1.25 -

Electronic or steric differentionation
of R and RZ may lead to selective
formation of a singular carbonyl ylide

ORZ  Rh(II) cat.
—>

Scheme 1.5. Chemoselective carbonyl ylide formation

in place, a single enantiomer of the oxabicyclic compound would be accessed and could be
elaborated to a single enantiomer of epoxysorbicillinol (1.54, Scheme 1.9). Prior to
focusing on the enantioselective synthesis of epoxysorbicillinol, Wood endeavored to
prove the concept by establishing a viable means of chemoselective carbonyl ylide
formation. In considering the options, the electronic differentiation of the malonate’s esters
appeared the most intriguing. To that end, electronically differentiated ethyl trifluoroethyl
diazomalonate (1.30, Scheme 1.6) was accessed from diethyl methyl malonate 1.02. As
illustrated, partial saponification with sodium hydroxide followed by Steglich esterification
with trifluoroethanol provided malonate 1.28. Acylation with pyruvoyl chloride,
condensation with tosyl hydrazide and subsequent exposure to base supplied dipolar

cycloaddition precursor 1.30. With access to this electronically differentiated
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Scheme 1.6. Electronic differentiation proof of concept

diazomalonate achieved, the compound was heated to 60 °C in the presence of allyl
propiolate 1.07 and rhodium acetate, furnishing the oxabicyclic compound 1.31 (as a
mixture of enantiomers). The obtained oxabicyclic compound 1.31 was generated through
the intermediacy of a carbonyl ylide formed selectively from the electron rich ethyl ester.
Having observed the viability of electronic differentiation for chemoselective carbonyl
ylide formation the stage was set for application toward the enantioselective synthesis of
epoxysorbicillinol (1.54).

The formal enantioselective synthesis of (+)-epoxysorbicillinol commenced from
commercially available dimethyl methyl malonate.* Deprotonation with sodium hydride
followed by quenching with t-butoxy chloromethyl ether gave ether 1.34 (Scheme 1.7).
Following precedent from Keese and coworkers °, pig liver esterase and sodium hydroxide

in a pH = 7 phosphate buffer provided half acid 1.35 in 96% e.e. With the enantioenriched



half acid in hand a route to the enantioenriched diazomalonate was established and the

synthesis continued. To this end, acid 1.35 was converted to the corresponding t-butyl

o_~ClI
O 0O ~ 1.36
133 o o/ 07 N o L
~ Ve —> —_—
0 o NaH, THF pH = 7.0 phosphate CH,Cl,,-10°C
(95% Yield) ‘é buffer, RT 0‘<— H,S0, (cat)
1.32 1.34 NaOH 1.35

(1 equiv, slow addition)
(95-99% Yield) 96% e.e. (99% Yield)

o o SI/\OH o o

No” e OJ< LiOH (1 equiv) MesSia ™o~ N OJ<
", —> —» “,
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O—<— (92% Yield) —<— (70% Yield) O—<—
1.37 1.38 1.39
(0]
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, i F
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—4> Megsl\/\o O/\< c
CF4CH,OH, RT F
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1.42

Scheme 1.7. Synthesis of enantioenriched malonate 1.42

ester (1.37) which, upon saponification of the methyl ester and Steglich esterification with
2-(trimethylsilyl)ethanol gave malonate 1.39. Exposure of 1.39 to neat formic acid
removed both t-butyl groups and resulted in esterification of the primary alcohol to furnish
formate 1.40. A second Steglich esterification in the presence of trifluoroethanol gave the
electronically differentiated malonate 1.41. Cleavage of the formate ester was achieved by
a 2M solution of NH4OH in trifluoroethanol to give primary alcohol 1.42. 1.42 was exposed
to Swern oxidation conditions to produce aldehyde 1.43 which, upon further treatment with
diazoethane provided ethyl ketone 1.44 (Scheme 1.8). Extensive exploration eventually

resulted in the discovery that heating of 1.44 with Bredereck’s
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Scheme 1.8. Synthesis of Enantioenriched Oxabicycle 1.47

reagent 1.45 [(t-butoxybis(dimethylamino)methane] at 60 °C followed by exposure to
mesyl azide provided the diazomalonate cyclization precursor 1.46.6 Treatment of 1.46
with rhodium acetate in the presence of allyl propiolate 1.07 in benzene at 60 °C furnished
enantioenriched oxabicyclic compound 1.47 in 81% yield. At this stage, once again only
seven synthetic steps were required to access (+)-epoxysorbicillinol. Due to lack of
material this final sequence was only performed in the racemic series (i.e., on 1.48, the
racemic version of oxabicycle 1.47, Scheme 1.9). Palladium (0) induced de-allylation
provided carboxylic acid 1.49 which was converted to the Weinreb amide. Selective 1,2-
addition of 3-pentenyllithium 1.13 was followed by acetal cleavage with 5% TFA in DCM
furnishing enone 1.52. Unfortunately, epoxidation under conditions developed in the
previous racemic synthesis with t-BuOOH failed to give the desired epoxide. Instead, it
was discovered that epoxidation could be effected by action of iodosobenzene upon enone
1.52 to provide epoxide 1.53 in 40% yield. Finally, decarboalkoxylation with methanolic

potassium carbonate and dehydrogenation by DDQ completed the formal synthesis of
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Scheme 1.9. Formal enantioselective epoxysorbicillinol synthesis

(+)-epoxysorbicillinol 1.54 with the oxabicyclic compound 1.47 as the final

enantioenriched compound accessed in the synthesis.

1.2 Conclusion
The total synthesis of (zx)-epoxysorbicillinol and formal the synthesis of
(+)-epoxysorbicillinol allowed for the development and establishment of a proof of
concept for chemoselective carbonyl ylide formation through electronically
differentiation of the malonate substrate’s esters. With this knowledge, this chemistry
would be expanded to a full methodology, exploring both substrate scope as well as
steric differentiation of the diazomalonate’s esters. The development and scope of the

methodology will be discussed in chapter two.
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CHAPTER TWO
Chemoselective Carbonyl Ylide Formation Through Electronic Differentiation of the
Esters of Diazomalonates Exploration of Steric Differentiation for Chemoselective
Carbonyl Ylide Formation.
2.1 Background
Rhodium(ll) induced carbonyl ylide formation and subsequent dipolar

cycloadditions have been established as highly valuable and versatile synthetic

methodologies for the synthesis of complex molecular targets (Figure 2.1).! Beginning

0 OH AcQ

7 Ph
=/ HO.C—~q
s HOZC O
E CO,H

HO
2.03

o— PH

2.01 202 O
Colchicine — Schmalz 2005  Polygalolide A — Hashimoto 2006 Zaragozic acid C — Hashimoto 2003

Figure 2.1. Complex molecular targets accessed through carbonyl ylide chemistry

with the seminal work of Bien et al.,? this chemistry has been extensively studied and was
quickly applied to the synthesis of natural product targets; most notably by the groups of
Padwa and Hashimoto. Interestingly, apart from our group’s exploration of chemoselective
carbonyl ylide formation no other reports of such a phenomenon have been disclosed.
Drawing upon the knowledge gained from our group’s syntheses of epoxysorbicillinol, we
set out to further explore substrates for their potential to undergo chemoselective carbonyl
ylide formation. Specifically, we aimed to explore the viability of steric differentiation,

while also expanding the scope of the previously described electronic differentiation.
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2.1.1 Substrate Synthesis

Following the synthetic route established in the epoxysorbicillinol synthesis we
accessed a variety of electronically and sterically differentiated diazomalonates (Scheme
2.1).2 In general, beginning with a known half acid 2.04, Steglich esterification with an
appropriate alcohol gave the electronically or sterically differentiated methyl malonates

2.05 which were acylated with pyruvoyl chloride and condensed with tosyl hydrazide. The

o 0 0O O
O o o o 1. NaH, THF, 0 to 55 °C )
1 DCC, R,0OH ) , CH3COCOCI, -78 °C RO OR? Al,O5 Lvl I basic ; > RIO OR?
RO OH pcm,RT = RO OR?2,  TsNHNH, Al,O5 Lvl 11 basic, DCM
THF, 55°C o 0
2.04 2.05 N, 206 N® 207
“NH 1
Ts N©
o] )< o o0 J\ o] >|\ o O J<
o 0" ¢k, “ o 0 o o) F.c” YN0 0" > cE 0 0
o o] o] o} o}
N® N® N® N®
g o o llo o
2.08 2.09 2.10 211 2.12

Scheme 2.1. Substrate synthesis

tosyl hydrazones (2.06) were then converted through exposure to basic alumina to the
requisite dipolar cycloaddition precursors 2.07. Ultimately, five different substrates were
accessed. The electronically differentiated ethyl trifluoroethyl diazomalonate 2.08, the
sterically differentiated ethyl t-butyl (2.09) and ethyl 2-propyl diazomalonates (2.10) and

the control substrates bis-trifluoroethyl (2.11) and bis-t-butyl diazomalonates (2.12).

2.1.2 Catalyst Screening and Optimization
Reaction optimization was briefly performed using the electronically differentiated
diazomalonate 2.08. The reaction conditions established in the epoxysorbicillinol

syntheses were used as a point reference for this methodology (Table 2.1). It was

12



discovered that prolonged reaction times of about 24 hours as well as five equivalents of
the dipolarophile reaction partner 2.13 resulted in consistently higher yields. A quick
survey of rhodium catalysts then led to the conclusion that relatively electron poor
complexes such as those bearing perfluorobutyrate or trifluoroacetate ligands would not
promote the desired transformation. Alternatively, relatively electron rich complexes with
acetate or octanoate ligands generated the desired oxabicyclic compound 2.14 inup to 71%
yield. Ultimately, rhodium acetate was chosen as the optimal catalyst due to ease of

purification. Simple filtration of the reaction mixture containing rhodium acetate

Table 2.1. Reaction optimization

0O O
P PN 0
© 0" Ch Rh(D Gmol%) -~
~ - O
0 + 00y PhH, 50 °C
N® H
“@ 5 equiv
2.08 2.13 2.14
Single regioisomer
>20:1dr
Entry Rh(I) Cat. Time Yield
1 Rh,(OAc), 12h 58%
2 Rh,(OAc), 24h 71%
3 [Rh[Oct], ], 24h 71%
4 [Rh[TFALL 24h 0%
5 [Rh(pfb),], 24h 0%

through celite® removed the catalyst; whereas the greater solubility of rhodium octanoate
in organic solvents led to its co-elution with the desired oxabicyclic compounds resulting
in the isolation of green oils. Optimal reaction conditions were thus defined as 5 mol % of

rhodium acetate in benzene at 50 °C with five equivalents of the dipolarophile for 24 hours.
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2.1.3 Dipolarophile Scope — Electronically Differentiated Malonate
With optimized reaction conditions in hand, a quick survey of reaction scope in
terms of dipolarophile reaction partner was performed (Scheme 2.2). As precedented, the

carbonyl ylides acted as type one dipoles.* Type one dipoles are nucleophilic having high

1
N Rh(OAC), (5 mol %) - R
\ , -

+ R PhH, 50 °C
R2 o
5 equiv >20:1dr
2.15 2.16

2.17 2.14 2.18

2.19
(81% Yield) (71% Yield) (32% Yield) (> 5% Yield)

Scheme 2.2. Dipolarophile scope expansion

lying HOMO’s which react with the LUMO of the dipolarophile. Due to this phenomenon,
relatively electron poor dipolarophiles, such as dimethyl acetylene dicarboxylate and
methyl propiolate, proved to be viable reaction partners, yielding the corresponding
oxabicyclic compounds (2.17, 2.14 Scheme 2.2) in good to excellent yields with complete
regiochemical control. As the dipolarophile became increasingly electron rich, and thereby
the energy of its LUMO raised, the yield gradually diminished. Thus, poor yield was
observed with methyl hexynoate (2.18) and trace yield with TMS acetylene (2.19).
Compound 2.17 was crystalline, allowing for confirmation of the structure through X-ray
crystallographic analysis. As depicted in Figure 2.2, the X-ray structure reaffirmed the

chemoselectivity of carbonyl ylide formation; showing that in fact the electron poor

14



Figure 2.2 X-ray structure of 2.17

trifluoroethyl ester had not participated in carbonyl ylide formation. Whether this apparent
lack of reactivity was due to the incapability of the trifluoroethyl ester to participate in
ylide formation or was simply due to preferential formation of the ylide from the more
electron rich ethyl ester was explored through a control experiment. To this end, bis-
trifluoroethyl diazomalonate 2.11 (Scheme 2.3) was subjected to the optimized reaction
conditions in the presence of dimethyl acetylene dicarboxylate 2.20 and was shown to be
a competent reaction partner, providing oxabicyclic compound 2.21 in modest yield. This
therefore suggested that in the case of ylide formation by diazomalonate 2.08, that the more

electron rich ethyl ester out competed the trifluoroethyl ester for ylide formation.

F.c” YN0 0" cF i
3 3N Rh,(OAC), (5 mol %)
" .o >
(o} + PhH, 50 °C
N® NG (58% Yield) -
\e 5 equiv

Scheme 2.3. Viability of trifluoroethyl ester in ylide formation
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2.1.4 Sterically Differentiated Malonates

To explore the viability of steric differentiation for chemoselective carbonyl ylide
formation ethyl t-butyl diazomalonate 2.09 was exposed to the reaction conditions in the
presence of dimethyl acetylene carboxylate 2.20. Surprisingly, this substrate failed to
engage the dipolarophile and furnished tetronic acids (2.22/2.23) instead of the expected

oxabicycle (Scheme 2.4). Preforming the same reaction with the bis-t-butyl substrate also

0
s 0
~o S Rh,(OAC), (5 mol %)
A > O
0] + © PhH, 50 °C 0
N@ o\ (29% Yield) 0 \

1l 5 equiv
N® a 2.3:1dr
trans : cis
2.09 2.20 222 223

0 O
ﬂ\ J< 0 0
0 0

~ Rh,(OAC), (5 mol %) 9
+ 9 X o > O
o] PhH, 50 °C o_é
N® O (58% Yield) 0
rl\ll@ 5 equiv 5:1dr

trans : cis

2.12 2.20 2.24 2.25

J< Rh,(OAC), (5 mol %)
> O
o) PhH, 50 °C 04%
(51% Yield) 0

f\'@ 5:1dr

trans : cis
212 224 225

Scheme 2.4. Tetronic acid formation

resulted in only tetronic acid products (2.24 and 2.25). As anticipated, removal of the
dipolarophile reaction partner did not inhibit the formation of the observed tetronic acids.
This reactivity was unprecedented for carbonyl ylides and is likely driven by the facile loss
of t-butyl cation (see mechanism Scheme 2.5), suggesting the generality of this

transformation in the presence of t-butyl esters. The structure of tetronic acid 2.25 was

16



confirmed by X-ray analysis. In addition to confirming this new reactivity, this
compound’s structure gives insight to the aforementioned (section 1.1.1) origin of
cycloaddition diastereoselectivity as the ester depicted in the crystal structure clearly
blocks one face of the tetronic acid and by analogy the intermediate carbonyl ylide involved

in these reactions.

>k o o
0 OR Rh,(OAC), (5 mol %) _
PhH, 50 °C o
o
®

2.26

N 230
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Scheme 2.5. Mechanistic proposal for tetronic acid formation

Though this unprecedented reactivity was intriguing, it did not reveal whether or
not steric differentiation was a viable method for chemoselective carbonyl ylide formation.
To explore this, ethyl 2-propyl diazomalonate 2.10 was exposed to the reaction conditions
(Scheme 2.6). Unfortunately, a 1:1 mixture of structural isomers was obtained, suggesting

that steric differentiation was ineffective for chemoselective carbonyl ylide formation.
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Scheme 2.6. Steric differentiation of diazomalonate

2.2 Conclusion
In conclusion the scope of chemoselective carbonyl ylide formation through
electronic differentiation of diazomalonates has been further explored. Additionally, steric
differentiation was found to be unsuitable for selective ylide generation. Interestingly,
these latter efforts revealed that carbonyl ylide forming reactions using t-butyl esters is an

efficient method for the synthesis of tetronic acids.?

2.3 Experimental

2.3.1 General

Unless otherwise stated, all reactions were performed in oven-dried glassware
under a nitrogen atmosphere, using reagents as received from the manufacturers. The
reactions were monitored by thin-layer chromatography (TLC) using Silicycle glass-
backed extra hard layer, 60 A plates (indicator F-254, 250 pM). Tetrahydrofuran,
dichloromethane and benzene were dried using a solvent purification system manufactured
by SG Water U.S.A., LLC. Manual flash chromatography was performed using the
indicated solvent systems with Silicycle SiliaFlash® P60 (230-400 mesh) silica gel as the
stationary phase. Flash Chromatography on a Teledyne RF+UV-Vis Ms Comp MPLC was

performed using the indicated solvent systems, and Teledyne RediSep® Rf normal phase
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disposable columns of the indicated size and at the indicated flow rate. *H and *C{*H}
NMR spectra were recorded on a Bruker Ascend™ 400 autosampler or Bruker Ascend™
600 autosampler. Chemical shifts (0) are reported in parts per million (ppm) relative to the
residual solvent resonance and coupling constants (J) are reported in hertz (Hz). IR spectra
were recorded on Bruker Platinum-ATR IR spectrometer using a diamond window and all
stretches are reported in cm. High Resolution mass spectra (HRMS) were obtained in the
Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap
Discovery spectrometer using +ESI and reported for the molecular ion (M+H* & M+Na*)
Single crystal X-ray diffraction data were collected on a Bruker Apex II-CCD detector
using Mo-Ka radiation (A = 0.71073 A). Crystals were selected under oil, mounted on
micromounts then immediately placed in a cold stream of N2. Structures were solved and

refined using SHELXTL.®

Preparation of Electronically Differentiated Malonate 2.34

o o o o
DCC, CF4CH,0H
/\ ) 3 2 >
OMOH DMAP,DCM > <~ >0 0" > CF,
(69% Yield)
233 234

Carboxylic acid 2.33 (6 g, 41.06 mmol) was added to a 250 mL round bottom flask
and dissolved in dry DCM (90 mL). Then trifluoroethanol (6.8 g, 68 mmol, 4.95 mL) and
DMAP (390 mg, 3.2 mmol) were added. Following this N,N’-dicyclohexylcarbodiimide
(11.397 g, 55.23 mmol) was added portion-wise to the reaction flask. The solution was left
to stir for 12 hours during which N,N’-dicyclohexylurea precipitated. The mixture was
filtered to remove N,N’-dicyclohexylurea and the filtrate extracted twice with 50 mL of 1

M HCI and twice more with 50 mL of saturated sodium bicarbonate. The organic layer was
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filtered again to remove any additional N, N’-dicyclohexylurea that precipitated during the
work-up. The organic layer was then dried over sodium sulfate and most of the solvent
removed under reduced pressure. The remaining organic layer was then cooled ina dry ice
acetone bath to facilitate N,N’-dicyclohexylurea precipitation and it was once again
filtered. The remainder of the solvent was removed under reduced pressure and the crude
product was purified by flash chromatography using silica gel and a gradient beginning at
3:97 ethyl acetate: hexanes and progressing to 1:9 ethyl acetate: hexanes. This yielded 6.5
g (69%) of 2.34 as a light clear oil. Rf= 0.33 (5% EtOAc/hexanes), KMnO4; *H NMR (400
MHz, Chloroform-d) 6 4.56 — 4.47 (m, 2H), 4.23 — 4.15 (m, 2H), 3.53 (q, J = 7.3 Hz, 1H),
1.45 (d, J = 7.3 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) &
169.25, 168.83, 122.85 (q, J = 277.3 Hz), 61.91, 60.91 (g, J = 36.7 Hz), 45.88, 14.02, 13.53.
+ESI-HRMS m/z: calc’d for (M+Na*) CsHi1F3OsNa* = 251.05071, found CsH1104FsNa*
=251.05025 FTIR (Neat): 2988, 2949, 1767, 1736, 1457, 1413, 1382, 1279, 1158, 1084.8,

1049, 1021, 975, 863, 839, 632, 558, 446.

Preparation of Tosyl Hydrazone 2.35

o o o O
1. NaH, THF, 0 to 55 °C ~
70 CF
A~ OJH)LO/\CFS CH,COCOCI , 78 c_ -0 0 3
2. TSNHNH, o
THF, 55 °C
2.34 (50%Yie|d) N 238
2 steps Ts

To around bottom flask was added malonate ester 2.34 (1.0 g, 4.38 mmol) and dry
THF (19 mL). The reaction solution was then cooled in an ice water bath and let stir for
ten minutes. Then sodium hydride (200 mg, 5 mmol) as a 60% dispersion in mineral oil

was added portion wise. After addition of the sodium hydride was complete the solution
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was allowed to stirred for five minutes and then heated to 55 °C (oil bath temperature) for
1 hour. After heating was complete the reaction mixture was allowed to cool to RT, then
cooled to —78 °C using a dry ice acetone bath and allowed to stir for ten minutes at —78 °C.
Following this pyruvoyl chloride (0.46 mL, 6.05 mmol) was added. Upon addition of the
acyl chloride the solution turned bright yellow and thickened. The reaction mixture was
allowed to stir for an additional twenty minutes at —78 °C and then slowly allowed to warm
up to RT over twenty minutes. It was then quenched with 5 mL 1M HCl and 30 mL diethyl
ether were added. The organic layer was washed twice with 25 mL water, and the aqueous
layers were combined and extracted with 25 mL diethyl ether. The organic layers were then
combined and washed twice with 25 mL brine and dried over 9:1 sodium and magnesium
sulfate mixture. The solvent was then evaporated under reduced pressure to give a clear
yellow oil that was re-dissolved in dry THF (19 mL). To this solution was added tosyl
hydrazide (0.819 g, 4.4 mmol) at RT. The solution was then heated for 15 hours at 55 °C
(oil bath temperature), cooled to room temperature and allowed to stir for an additional
hour. The solvent was evaporated under reduced pressure. Flash chromatography was
performed using an MPLC and a solvent gradient beginning at 0% ethyl acetate: hexanes
and progressing to 35% ethyl acetate: hexanes. A 40-gram column with the flow rate set at
25 mL/min was used. The reaction yielded 1.023 g (50%) of tosyl hydrazone 2.35. An
analytically pure sample was obtained by taking the purest fraction from the column and
used for characterization. Rr = 0.21 (35% EtOAc/hexanes), UV; *H NMR (400 MHz,
DMSO-d6) & 11.88 (brs, 1H), § 7.78 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 4.78 —
4.66 (M, 1H), 4.63 — 4.50 (m, 1H), 4.09 — 3.94 (m, 2H), 2.43 (s, 3H), 1.93 (s, 3H), 1.53 (5,

3H), 1.07 (t, J = 7.1 Hz, 3H). *C NMR (151 MHz, DMSO-d6) § 190.71, 166.74, 166.34,
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146.35, 144.27, 135.53, 129.77, 127.60, 123.13 (g, J = 277.3 Hz), 63.25, 61.73, 60.78 (q,
J = 35.4 Hz), 21.04, 19.80, 13.49, 10.88 +ESI-HRMS m/z: calc’d for (M+Na")
CisH21F3sN207SNa* = 489.09193, found CisH2107N2FsNaS*= 489.0917 FTIR (Neat):
3216, 2982 1766, 1740, 1697, 1599, 1450, 1411, 1352, 1285, 1255, 1168, 1114, 1087,
1036, 1020, 974, 886, 715, 661, 547, 461. *Note: For the synthesis of pyruvoyl chloride

see reference #6

Preparation of Diazomalonate 2.08

O O o) 0
N
o 07 “CFs AOs o g
DCM, RT

r ° o

’, N N@
HN 2.35 ) 2.08

N@

(52% Yield)
Ts

Tosyl hydrazone 2.35 (1.02 g, 2.19 mmol) was added to a 50 mL round bottom
flask and dissolved in dry DCM (22.5 mL). Then Al203(2.81 g, 27.5 mmol) Brockmann
LVL I were added, the flask was wrapped in foil and the reaction mixture was allowed to
stir for 18.5 hours. The mixture slowly became yellow in color. Following this an additional
2.81 g (27.5 mmol) of Al203 Brockmann LVL 11l were added and the mixture stirred for
an additional three hours after which the reaction mixture was poured directly into a fritted
filter filled with 41.7 g of Brockmann LVL Il Al203 and the compound was eluted using
DCM. Analytically pure material was obtained by silica gel flash chromatography using a
gradient beginning at 0% ethyl acetate: hexanes progressing to 10% ethyl acetate: hexanes.
This yielded 338.8 mg (52% yield) of the desired diazo compound 2.08 as a bright yellow
oil. Rr=0.24 (15% EtOAc/hexanes), UV; H NMR (400 MHz, Chloroform-d) & 4.62 (dq,

J=12.6, 8.3 Hz, 1H), 4.51 (dq, J = 12.6, 8.3 Hz, 1H), 4.27 (g, J = 7.1 Hz, 2H), 2.02 (s,
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3H), 1.74 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) 8 167.51,
166.71, 122.66 (q, J = 277.3 Hz), 65.02, 63.07, 61.58 (q, J = 37.1 Hz), 18.98, 13.87, 9.90.
+ESI-HRMS m/z: calc’d for (M+Na*) CiuiHisFsN20sNa* = 333.06743, found
Ci1Hi3FsN20sNa* = 333.06766 FTIR (Neat): 2986, 2949, 2077, 1736, 1621, 1449, 1411.9,
1380, 1331, 1284, 1247, 1164, 1105, 1018, 975, 862, 649.

Preparation of Oxabicyclic Compound 2.14

o 0
A~ ~ 0
o 0" Chs Rh,(OAC), (5 mol %)
~ >
o) + 0 PhH, 50 °C
N@ H
Ve

(71% Yield)

5 equiv
2.08 2.13 2.14

To an oven dried 1.5-dram vial was added a stir bar, diazomalonate 2.08 (50.9 mg,
0.164 mmol), dry benzene (1.5 mL) and methyl propiolate (0.075 mL, 0.843 mmol). The
reaction vial was then evacuated of air and backfilled with nitrogen three times. Rhodium
acetate dimer (3.5 mg, 5 mol %) was then added to the reaction vial and the vial purged
with a stream of nitrogen. The reaction mixture was stirred for 10 minutes at RT then
warmed to 50 °C in a preheated aluminum heating block for 24 hours. After 24 hours the
reaction mixture was filtered through Celite® to remove the rhodium catalyst and the
Celite® washed with benzene. The solvent was then evaporated under reduced pressure and
the crude reaction mixture purified by flash chromatography using 1:4 ethyl acetate:
hexanes yielding 43.6 mg (71% vyield) of the desired oxabicycle (2.14) as a clear viscous
oil*. The sample used for the characterization spectra was obtained by preparative TLC
using 0.5% ethyl acetate in toluene or from the purest fraction of the column. Rf= 0.2 (15%

EtOAc/hexanes), UV; 'H NMR (400 MHz, Chloroform-d) & 7.12 (s, 1H), 4.64 — 4.53 (m,
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1H), 4.50 — 4.39 (m, 1H), 3.96 — 3.87 (m, 1H), 3.82 (s, 3H), 3.75 — 3.65 (m, 1H), 1.64 (s,
3H), 1.37 (s, 3H), 1.26 (t, J = 7.0 Hz, 3H). 3C NMR (151 MHz, Chloroform-d) & 203.37,
167.05, 162.07, 147.66, 143.72, 122.78 (q, J = 277.4 Hz), 113.16, 86.35, 63.16, 61.05 (g,
J =37.0 Hz), 54.00, 52.47, 17.88, 15.12, 12.48 (d, J = 1.9 Hz). +ESI-HRMS m/z: calc’d
for (M+Na*) CisHi7F3sO7Na* = 389.08186, found CisHizFsO7Na* = 389.08215 FTIR
(Neat): 2988, 2944, 1776,1752, 1725, 1612, 1439, 1385, 1333, 1269, 1227, 1157, 1119,
1075, 1041, 1005, 974, 893, 760. *Note: this oxabicycle often co-eluted with a small
amount of a known reaction by-product formed by cyclotrimerization of the alkyne, yield

reported was corrected to take into account the minor impurity.

Preparation of Oxabicyclic Compound 2.17

O O
~o 0" cF 1
EEEN Rh,(OAc), (5 mol %)
© \\ (0] \o
0 + PhH, 50 °C o
®
N SN (81% Yield) -
NO 5 equiv
2.08 2.20

To an oven dried 1.5-dram vial was added a stir bar, diazomalonate 2.08 (50.8 mg,
0.164 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1 mL, 0.813
mmol). The reaction vial was then evacuated of air and backfilled with nitrogen three times.
Rhodium acetate dimer (3.5 mg, 5 mol %) was then added to the vial and the vial purged
with a stream of nitrogen. The reaction mixture was stirred for 10 minutes at RT then
warmed to 50 °C in a preheated aluminum heating block for 24 hours. After 24 hours the
reaction mixture was filtered through Celite® to remove the rhodium catalyst and the
Celite® washed with benzene. The solvent was then evaporated under reduced pressure and

the crude reaction mixture purified by flash chromatography using a gradient beginning at
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1:19 ethyl acetate: hexanes progressing to 3:22 ethyl acetate: hexanes yielding 56.3 mg
(80.9% vyield) of the desired oxabicycle 2.17 as a clear viscous oil which crystallizes under
vacuum.* An analytically pure sample and crystals for X-ray crystallographic analysis
were obtained by vapor diffusion using ethyl acetate as the solvent and hexanes as the
precipitant. Rf = 0.14 (15% EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) &
4.61 (dg, J = 12.6, 8.3 Hz, 1H), 4.42 (dq, J = 12.6, 8.3 Hz, 1H), 3.96 (dq, J = 9.6, 7.0 Hz,
1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.79 (dg, J = 9.4, 7.0 Hz, 1H), 1.69 (s, 3H), 1.45 (s, 3H),
1.25 (t, J = 7.0 Hz, 3H). 3C NMR (101 MHz, Chloroform-d) § 201.56, 166.65, 161.88,
161.83, 145.91, 145.32, 122.75 (q, J = 277.2 Hz), 112.92, 86.97, 63.67, 61.17 (g, J = 37.0
Hz), 53.99, 53.05, 53.04, 17.65, 15.13, 11.49. +ESI-HRMS m/z: calc’d for (M+Na*)
C17H19F309Na* = 447.08789, found Ci7Hi9F309Na* = 447.08765 FTIR (Neat): 2988,
2959, 1783, 1731, 1640, 1439, 1386, 1372, 1329, 1311, 1275, 1167, 1124, 1053, 1030,
1004, 978. *Note: crystallization for the viscous oil occurs if the solvent used was ethyl

acetate. Usually an oil emerges from other solvents.
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Preparation of Oxabicyclic Compound 2.18

(6] (@]
~o 0" > CF i
3N Rh,(OACc), (5 mol %)
RN >
o + PhH, 50 °C
N®
Ne

5 equiv (32% Yield)

2.08 2.36

To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.08 (50.1
mg, 0.161 mmol), dry benzene (1.5 mL) and methyl hexynoate (0.11 mL, 0.822 mmol).
The reaction vial was then evacuated of air and backfilled with nitrogen three times.
Rhodium acetate dimer (3.5 mg, 5 mol%) was then added to the vial and the vial purged
with a stream of nitrogen. The reaction mixture was stirred for 10 minutes at RT then
warmed to 50 °C in a preheated aluminum heating block for 24 hours. After 24 hours the
reaction mixture was filtered through Celite® to remove the rhodium catalyst and the
Celite® washed with benzene. The solvent was then evaporated under reduced pressure and
the crude reaction mixture purified by flash chromatography with toluene as the eluent.
This yielded 21 mg (32% vyield) of the desired oxabicycle 2.18 as a clear oil. Rf = 0.27
(15% EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) & 4.59 (dq, J = 12.6, 8.3
Hz, 1H), 4.42 (dq, J = 12.6, 8.3 Hz, 1H), 3.90 — 3.84 (m, 1H), 3.82 (s, 3H) 3.62 (dq, J =
9.4, 7.0 Hz, 1H), 2.73 (ddd, J = 12.7, 10.0, 6.5 Hz, 1H), 2.41 (ddd, J = 12.7, 9.7, 5.5 Hz,
1H), 1.61 (s, 3H), 1.53 — 1.42 (m, 1H), 1.38 (s, 3H), 1.36 — 1.28 (m, 1H), 1.23 (t, J= 7.0
Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H).13C NMR (151 MHz, Chloroform-d) & 204.69, 167.34,
163.48, 163.41, 134.97, 122.82 (q, J = 277.5 Hz), 112.37, 88.52, 62.56, 60.99 (g, J = 36.9
Hz), 54.59, 51.94, 28.62, 21.34, 18.00, 15.18, 14.44, 11.05. +ESI-HRMS m/z: calc’d for

(M+Na*) C1sH23F307Na* = 431.12936, found C1sH23FsO7Na* = 431.12906 FTIR (Neat):
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2968, 2941, 1775, 1753, 1717, 1632, 1448, 1438, 1411, 1384, 1371, 1329, 1285, 1238,

1167, 1137, 1121, 1039, 980.

Preparation of Bis-Trifluoroethyl Methyl Malonate 2.38

O 0 O O
NaH, Mel
F,.C7 Y0 0~ >CF > F.C OJ\Hko CF
3 3 0°CtoRT 3 s
2.37 (55% Yield) 2.38

To a flame dried round bottom flask was added malonate 2.37 (283 mg, 1.05 mmol)
and dry THF (10 mL). This solution was cooled to 0 °C using an ice bath and to this was
added NaH (50 mg,1.25 mmol) as a 60% dispersion in mineral oil. The solution was
allowed to stir at 0 °C for fifteen minutes and then methyl iodide (0.072 mL, 1.16 mmol)
was added dropwise over five minutes. The reaction was stirred for an additional fifteen
minutes at 0 °C and then the ice bath removed and the reaction allowed to warm up to room
temperature and stir overnight. The reaction was then quenched with 1 mL ammonium
chloride. Ethyl acetate was added and the reaction was washed with deionized water twice.
The water washes were extracted twice with ethyl acetate and the organic layers combined
and washed twice with brine. The organic layer was then dried over sodium sulfate and the
solvent removed under reduced pressure. The compound was then purified by flash
chromatography using 1:12 ethyl acetate: hexanes. This yielded 162.7 mg, (55% yield) of
2.38 as a clear oil. Rf = 0.23 (5% EtOAc/hexanes), KMnOs; *H NMR (400 MHz,
Chloroform-d) 6 4.58 — 4.48 (m, 4H), 3.67 (9, J = 7.3 Hz, 1H), 1.52 (d, J = 7.3 Hz, 3H) *C
NMR (151 MHz, Chloroform-d) § 122.70 (q, ] =277.2 Hz), 61.24 (q, J = 37.1 Hz), 45.42,

13.48. +ESI-HRMS m/z: calc’d for (M+Na*) CsHsFeOs4Na™ = 305.02245, found
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CsHsFsOsNa* = 305.02191 FTIR (Neat): 2982, 2954, 1756, 1458, 1413, 1277, 1157, 1087,

973, 916, 842, 652. *Note: For the synthesis of 2.37 see reference #7

Preparation of Tosyl Hydrazone 2.39

o O
0O o 1. NaH, THF, 0to 55 °C
- - CH,COCOCI , 78 °C F,c” Y0 0" >CFs
FsC™ 0 0" Cry 2 TsNHNH; o
THF, 55 °C |
N
N 239

2.38 (37% Yield)
2 steps

Ts

Malonate ester 2.38 (500 mg, 1.78 mmol) was dissolved in dry THF (11 mL). The
reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then
NaH (85 mg, 2.1 mmol) as a 60% dispersion in mineral oil were added portion wise. After
addition of the NaH was complete the solution was allowed to stirred for five minutes and
then heated to 55 °C (oil bath temperature) for one hour. After heating was complete the
reaction mixture was allowed to cool to RT, then cooled to —78 °C using a dry ice acetone
bath and allowed to stir for ten minutes at —78 °C. Following this pyruvoyl chloride (0.21
mL, 2.76 mmol) was added. Upon addition of the acyl chloride the solution turned bright
yellow and thickened. The reaction mixture was allowed to stir for an additional twenty
minutes at —78 °C and then slowly allowed to warm up to RT over twenty minutes. It was
then quenched with 3 mL 1M HCl and 12 mL diethyl ether were added. The organic layer
was washed twice with 12 mL water, and the aqueous layers were combined and extracted
with an additional 12 mL of diethyl ether. The organic layers were then combined and
washed twice with 20 mL of brine and dried over sodium and magnesium sulfate. The
solvent was then evaporated under reduced pressure to give a clear yellow oil which was

re-dissolved in dry THF (11 mL). To this solution was added tosyl hydrazide (0.331 g,1.78
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mmol) at RT. The reaction was then heated for 20 hours at 55 °C (oil bath temperature). It
was then allowed to cool to RT and the solvent evaporated under reduced pressure. Flash
chromatography was performed on the crude material using an MPLC and a gradient
beginning at 0% ethyl acetate: hexanes and progressing to 20% ethyl acetate: hexanes. A
12-gram column with a flow rate of 30 mL/min was used. This gave 343.4 mg (37%) of
2.39 as a clear glassy solid. An analytically pure sample was taken from a pure fraction of
the column and used for characterization. *H NMR (600 MHz, DMSO-d6) & 12.05 (br s,
1H), 7.78 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 4.76 — 4.67 (m, 2H), 4.67 — 4.57
(m, 2H), 2.43 (s, 3H), 1.93 (s, 3H), 1.55 (s, 3H). 13C NMR (101 MHz, DMSO-d6) 5 189.83,
165.57, 145.84, 144.32, 135.47, 129.76, 127.56, 122.95 (q, J = 277.1 Hz), 63.04, 61.06 (q,
J = 359 Hz), 2098, 19.71, 10.75. +ESI-HRMS m/z: calc’d for (M+Na")
Ci1sH1sFsN207SNa*= 543.06366, found CisHisFeN207SNa* = 543.06580 FTIR (Neat):
3214, 2923, 2855, 1776, 1758, 1699, 1599, 1452,1412, 1378, 1352, 1286, 1244, 1168

1118, 1087, 1037, 974, 899, 842, 816, 713, 547, 494.
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Preparation of Diazomalonate 2.11

0O 0 o o
o o >cF
FsC™ 7O 3 AlOs Fc”0 07 > CF,
o DCM, RT
I 0
HN’N 2.39

. (50% Yield) NCEEPST!
Ts ,'\']G)

Tosyl hydrazone 2.39 (0.247 g, 0.475 mmol) was added to a 75 mL pear shaped
flask and dissolved in dry DCM (4 mL). Then of Al203(0.52 g, 5.1 mmol) Brockmann
LVL | was added, the flask was wrapped in foil and the reaction mixture was allowed to
stir for 13 hours. The mixture slowly became yellow in color. Following this an additional
0.52 g (5.1 mmol) of Al203 Brockmann LVL Il were added and the mixture stirred for an
additional 6 hours. The mixture was then poured into a fritted filter filled with Brockmann
LVL 11 Al203 and the compound eluted using DCM. The material was purified by silica
gel flash chromatography using a 5% ethyl acetate: hexanes. This yielded 86.5 mg (50%
yield) of the desired diazo compound 2.11 as a bright yellow oil. *H NMR (400 MHz,
Chloroform-d) & 4.68 — 4.48 (m, 4H), 2.03 (s, 3H), 1.80 (s, 3H). *C NMR (101 MHz,
Chloroform-d) & 166.04, 122.51 (q, J = 277.3 Hz), 64.85, 61.87 (q, J = 37.4 Hz), 18.79,
9.80. +ESI-HRMS m/z: calc’d for (M+H*): CiiH11FeN20s*= 365.05722, found
C11H11FeéN20s5* = 365.05679 FTIR (Neat): 2080, 1756, 1626, 1452, 1412, 1285, 1240,

1169, 1111, 1025, 977, 652.
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Preparation of Oxabicyclic Compound 2.21

0O o0 st
F.c” YN0 0" >cF i
3 P N S Rh,(OAC), (5 mol %)
+ X__0 >

o) PhH, 50 °C
N® O (58% Yield)
e 5 equiv

211 220 221

To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.11 (59.4
mg, 0.162 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1 mL,
0.813 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen three
times and then rhodium acetate dimer (3.5 mg, 5 mol %) was added to the vial and the vial
purged with a stream of nitrogen. The reaction mixture was stirred for 10 minutes at RT
then warmed to 50 °C in a preheated aluminum heating block for 24 hours. After 24 hours
the reaction mixture was filtered through Celite® to remove the rhodium catalyst and the
Celite® washed with benzene. The solvent was then evaporated under reduced pressure and
the crude reaction mixture purified by flash chromatography using a gradient beginning at
5:95 ethyl acetate: hexanes progressing to 15:85 ethyl acetate: hexanes. This yielded 45.3
mg (58% vyield) of the product (2.21) as a clear viscous oil that quickly crystalizes. An
analytically pure sample and crystals for X-ray crystallographic analysis were obtain by
vapor diffusion using dichloromethane as the solvent and pentane as the precipitant. Rs =
0.16 (15% EtOAc/hexanes), UV; H NMR (400 MHz, Chloroform-d) & 4.57 (dq, J = 12.6,
8.2 Hz, 1H), 4.41 (dg, J = 12.6, 8.2 Hz, 1H), 4.33 — 4.17 (m, 2H), 3.87 (s, 3H), 3.86 (s, 3H),
1.72 (s, 3H), 1.48 (s, 3H).
13C NMR (101 MHz, Chloroform-d) & 199.78, 165.79, 161.40, 161.10, 146.52, 143.72,

122.88 (g, J = 277.0 Hz), 122.65 (q, J = 277.2 Hz), 111.86, 87.86, 63.96 (q, J = 36.7 Hz),
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61.51 (g, J = 37.1 Hz), 53.70, 53.32, 53.23, 17.46, 11.32. +ESI-HRMS m/z: calc’d for
(M+Na*) Ci7H1sFsONa*= 501.05962, found Ci7H1sFéONa* = 501.05957 FTIR (Neat):
2062, 1786, 1729, 1640, 1439, 1388, 1282, 1245, 1157, 1125, 1074, 1032, 1004, 978, 839,

802, 787, 712.
Preparation of Tosyl Hydrazone 2.41

(0] OJ<
0 0

0]

?
2. TsSNHNH, |N
THF, 55 °C .
(39% viel) HY, 241
2 steps

0O o J<

1. NaH, THF, 0to 55 °C

/\OMO CH,COCOCI , 78 °C
2.40

Malonate ester 2.40 (651 mg, 3.22 mmol) was dissolved in dry THF (13 mL). The
reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then
sodium hydride (151 mg, 3.77 mmol) as a 60% dispersion in mineral oil was added portion
wise. After addition of the sodium hydride was complete the solution was allowed to stir
for five minutes, warmed to RT and then heated to 55 °C (oil bath temperature) for one
hour. After heating was complete the reaction mixture was allowed to cool to RT, then it
was cooled to —78 °C using a dry ice acetone bath and allowed to stir for at —78 °C for ten
minutes. After which, pyruvoyl chloride (0.34 mL, 4.4 mmol) was added. Upon addition
of the acyl chloride the solution turned bright yellow and thickened. The reaction mixture
was allowed to stir for an additional twenty minutes at —78 °C and then slowly allowed to
warm up to RT over ten minutes. It was then quenched with 5 mL water and 25 mL diethyl
ether were added. The organic layer was washed twice with 5 mL water, and the aqueous

layers were combined and extracted with 25 mL diethyl ether. The organic layers were then
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combined and washed twice with 25 mL of brine and dried over sodium and magnesium
sulfate. The solvent was then evaporated to give a clear yellow oil which was re-dissolved
in dry THF (13 mL). To this solution was added tosyl hydrazide (605 mg, 3.26 mmol) at
RT. The reaction was then heated for 18 hours at 55 °C (oil bath temperature). The solution
was allowed to cool to room temperature and the solvent evaporated under reduced
pressure. Flash chromatography was performed on the crude material using an MPLC and
a gradient beginning at 0% ethyl acetate: hexanes and progressing to 20% ethyl acetate:
hexanes. A 24-gram column with a flow rate of 35 mL/min was used. This gave 547.8 mg
(39%) of the product (2.41) as a clear glassy solid. An analytically pure sample was taken
from a pure fraction of the column and used for characterization. R = 0.39 (35%
EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) & 8.09 (br's, 1H), 8 7.86 (d, J =
8.4 Hz, 2H), 7.35 (d, J = 7.9 Hz, 2H),4.17 — 4.04 (m, 2H), 2.43 (s, 3H), 1.92 (s, 3H), 1.57
(s, 3H), 1.35 (s, 9H), 1.15 (t, J = 7.1 Hz, 3H). 3C NMR (101 MHz, Chloroform-d) § 191.55,
168.40, 166.71, 146.94, 145.13, 134.60, 130.03, 128.70, 82.81, 64.56, 61.81, 27.84, 21.78,
20.21, 14.02, 9.71. +ESI-HRMS m/z: calc’d for (M+Na*) C20H28N207SNa*= 463.15149,
found C20H2sN207SNa* = 463.15161. FTIR (Neat): 3217, 2981, 1750, 1732, 1693, 1598,
1454, 1396, 1370, 1352, 1258, 1169, 1114, 1086, 1035, 884, 848, 816, 714, 662, 569, 548.

*Note: For the synthesis of 2.40 see reference #8
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Preparation of Diazomalonate 2.09

o O J< O O
AlLO )<
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DCM, RT
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| 63% Yield
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HN
Ts

241 2.09

Tosyl hydrazone 2.41 (1 g, 2.27 mmol) was added to a 75 mL pear shaped flask
and dissolved in dry DCM (4 mL). Then Al203(2.96 g, 29.0 mmol) Brockmann LVL | was
added, the flask was wrapped in foil and the reaction mixture was allowed to stir for 16
hours. The mixture slowly became yellow in color. Then an additional 3.09 g (30.3 mmol)
of Al20s Brockmann LVL Il were added and the mixture stirred for an additional hour.
The mixture was then poured into a fritted filter filled with Brockmann LVL Il Al2O3 and
eluted using DCM. The material was purified by silica gel flash chromatography using a
5% ethyl acetate: hexanes. This yielded 463 mg (63% yield) of desired diazo compound
2.09 as a bright yellow oil. *tH NMR (400 MHz, Chloroform-d) § 4.24 (qd, J= 7.1, 0.9 Hz,
2H), 2.01 (s, 3H), 1.65 (s, 3H), 1.47 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,
Chloroform-d) & 168.48, 167.04, 83.48, 65.98, 62.38, 27.83, 19.14, 14.06, 9.99. +ESI-
HRMS m/z: calc’d for (M+Na*) CisH20N20sNa*= 307.12699, found CisH20N20sNa*™ =
307.12674 FTIR (Neat): 2981, 2938, 2078, 1730, 1626, 1450, 1371, 1330, 1163, 1112,

1021, 845.
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Preparation of Tetronic acids 2.22, 2.23

(0] (0]
N0 OJ< Rh,(OACc), (5 mol %)
> 0
PhH, 50 °C
0] (57% Yield)
®

o \

’I\lle 2.3:1dr
N trans : cis
2.09 222 223

To an oven dried 1.5-dram vial was added a stir bar the diazomalonate 2.09 (46.3
mg, 0.163 mmol), and 1.5 mL of dry benzene. The reaction vial was then evacuated of air
and backfilled with nitrogen three times. Rhodium acetate dimer (3.5 mg, 5 mol %) was
then added to the reaction vial and the vial purged with a stream of nitrogen. The reaction
mixture was stirred for 10 minutes at RT then warmed to 50 °C in a preheated aluminum
heating block for 24 hours. After 24 hours the reaction mixture was filtered through Celite®
to remove the rhodium catalyst and the Celite® washed with benzene. The solvent was then
evaporated under reduced pressure and the crude reaction mixture purified by flash
chromatography using a gradient beginning at 0% ethyl acetate: hexanes and progressing
to 5% ethyl acetate: hexanes. This yielded 18.6 mg (57%) of tetronic acids 2.22 and 2.23
as a mix of diastereomers and as a clear oil. The Crude NMR showed that the reaction gave
what appears to be a mixture of diastereomers in a 2.3:1 ratio. The major isomer was the
trans isomer with respect to the methyl groups and was used for characterization. Full
characterization of the minor isomer was not possible due to difficulty of purification. A
crude proton NMR showing the mixture of diastereomers is included with the spectra R¢ =
0.1 (5% EtOAc/hexanes), KMnO4; 'H NMR (600 MHz, Chloroform-d) § 4.87 (q,J = 7.1
Hz, 1H), 4.29 — 4.19 (m, 2H), 1.64 (d, J = 7.0 Hz, 3H), 1.59 (s, 3H), 1.27 (t, J = 7.1 Hz,

3H). *C NMR (151 MHz, Chloroform-d) § 205.82, 170.95, 163.86, 81.52, 63.53, 55.60,
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17.32, 16.53, 13.98. +ESI-HRMS m/z: calc’d for (M+Na*) CoH120sNa*= 223.05824,
found CoH120sNa* = 223.05771 FTIR (Neat): 2990, 2942, 1807, 1760, 1450, 1378, 1330,

1261, 1219, 1126, 1099, 1079, 1014, 992.

Preparation of Tosyl Hydrazone 2.42

>]\OO OOJ<

0] )
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> 0
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2 steps

Malonate ester 2.42 (0.503 g, 2.18 mmol) was dissolved in dry THF (9 mL). The
reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then
sodium hydride (100 mg, 2.50 mmol) as a 60% dispersion in mineral oil was added portion
wise. After addition of the sodium hydride was complete the solution was allowed to warm
to room temperature and then heated to 55 °C (oil bath temperature) for 80 minutes. After
heating was complete the reaction mixture was allowed to cool to RT, then it was cooled
to —78 °C using a dry ice acetone bath and allowed to stir for ten minutes at —78 °C.
Following this pyruvoyl chloride (0.26 mL, 3.4 mmol) was added. Upon addition of the
acyl chloride the solution turned bright yellow and thickened. The reaction mixture was
allowed to stir for an additional twenty minutes at —78 °C and then slowly allowed to warm
up to room temperature and left to stir for 30 minutes. It was then quenched with 3 mL
water and 15 mL diethyl ether were added. The organic layer was washed twice with 3 mL
of water, and the aqueous layers were combined and extracted with 15 mL diethyl ether.

The organic layers were then combined, and washed with brine and dried over sodium and
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magnesium sulfate. The solvent was then evaporated under reduced pressure and dry THF
(9 mL) added. To the solution was added tosyl hydrazide (420 mg, 2.26 mmol) at RT and
the solution heated for 21.5 hours at 55 °C (oil bath temperature). It was then cooled to
room temperature and the solvent removed under reduced pressure. Flash chromatography
was performed on the crude material using an MPLC and a gradient beginning at 0% ethyl
acetate: hexanes and progressing to 20% ethyl acetate: hexanes. A 24-gram column with a
flow rate of 30 mL/min was used. This gave 585 mg (57% yield) of the product (2.43) as
a clear glassy solid and as mixture of E and Z isomers which were both carried on through
the reaction sequence. A sample containing only the desired compounds as a mixture of E
and Z isomers was taken from the purest fraction of the column and used for
characterization. *H NMR (400 MHz, Acetone-d6) & 10.11 (br s, 2H), 9.12 (broad s, 1H),
8 7.82 (d, J = 8.4 Hz,4H), 7.76 (d, ] = 8.3 Hz, 2H), 7.43 (d, J = 7.9 Hz, 4H), 7.38 (d, ] =
7.9 Hz, 2H), 2.43 (s, 6H), 2.41 (s, 3H), 1.98 (s, 6H), 1.94 (s, 3H), 1.49 (s, 6H), 1.43 (s, 3H),
1.42 (s, 18H), 1.39 (s, 36H). (Integration value of t-butyl groups of major isomer set to 36
protons.) 13C NMR (151 MHz, Chloroform-d) & 191.97, 168.71, 166.97, 153.53, 147.71,
145.20, 144.21, 135.36, 134.51, 130.07, 129.62, 128.66, 128.03, 82.55, 82.42, 65.74,
63.45, 27.88, 21.78, 21.72, 20.19, 19.47, 15.06, 9.95. +ESI-HRMS m/z: calc’d for
(M+Na*) C22H32N207SNa*= 491.18279, found C22H32N207SNa* = 491.18369 FTIR
(Neat): 3214, 2979, 2934, 1746, 1727, 1691, 1598, 1455, 1394, 1369, 1256, 1165.2, 1121,
1085, 1035, 910, 885, 846, 814, 713, 662, 547. *Note: For the synthesis of 2.42 see

reference #9
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Preparation of Diazomalonate 2.12
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Tosyl hydrazone 2.43 (700 mg E and Z mixture, 1.5 mmol) was added to a round
bottomed flask and dissolved in dry DCM (15 mL). Then Al203 (1.87 g, 18.3 mmol)
Brockmann LVL | was added, the flask was wrapped in foil and the reaction mixture was
allowed to stir for 14.5 hours. The mixture slowly became yellow in color. Then an
additional 1.87 g (18.3 mmol) of Al.O3 Brockmann LVL Ill were added and the reaction
mixture stirred for an additional 1.5 hours. The mixture was then poured into a fritted filter
filled with Brockmann LVL 111 Al203 and the compound eluted using DCM. The material
was purified by silica gel flash chromatography using 10% ethyl acetate in hexanes. This
yielded 213.1 mg (46% yield) of the desired diazo compound 2.12 as a bright yellow oil
which upon cooling in the fridge solidified to a bright yellow solid. *H NMR (400 MHz,
Chloroform-d) & 2.02 (s, 3H), 1.61 (s, 3H), 1.48 (s, 18H). 3C NMR (101 MHz,
Chloroform-d) 6 167.29, 83.17, 66.71, 27.91, 19.31, 10.05. +ESI-HRMS m/z: calc’d for
(M+Na*) CisH2sN20sNa*= 335.15829, found CisH24N20sNa* = 335.15793 FTIR (Neat):
2978, 2926, 2854, 2079, 1724, 1622, 1457, 1394, 1369, 1328, 1277, 1255, 1161, 1117,

1020, 939, 845, 799, 738, 571, 527, 468.

38



Preparation of Tetronic acids 2.24, 2.25
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To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.12 (47.7
mg, 0.153 mmol) and dry benzene (1.4 mL). The reaction vial was then evacuated of air
and backfilled with nitrogen three times. Rhodium acetate dimer (3.5 mg, 5 mol %) was
then added to the reaction mixture and the vial purged with a stream of nitrogen. The
reaction mixture was stirred for 10 minutes at RT then warmed to 50 °C in a preheated
aluminum heating block for 24 hours. After 24 hours the reaction mixture was filtered
through Celite® to remove the rhodium catalyst and the Celite® washed with benzene. The
solvent was then evaporated under reduced pressure and the crude reaction mixture purified
by flash chromatography using a gradient beginning at 0% ethyl acetate: hexanes and
progressing to 5% ethyl acetate: hexanes. This yielded 17.8 mg (51% yield) of the tetronic
acids 2.24 and 2.25 as a mixture of diastereomers and as a clear viscous oil that slowly
crystalizes. Crude NMR showed that the reaction appeared to give the mixture of
diastereomers in a 5:1 ratio. The major isomer was determined by X-ray crystallographic
analysis to be the trans isomer with respect to the methyl groups. An analytically pure
sample and crystals for X-ray crystallographic analysis of the major diastereomer were
obtained by vapor diffusion using dichloromethane as the solvent and pentane as the
precipitant. Due to difficulty of purification the minor diastereomer was not fully

characterized. A crude proton NMR showing the mixture of diastereomers is included with
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the spectra. Rf = 0.15 (5% EtOAc/hexanes), KMnOs;'H NMR (400 MHz, Chloroform-d)
$4.83 (q,J = 7.0 Hz, 1H), 1.63 (d, J = 7.0 Hz, 3H), 1.53 (s, 3H), 1.45 (s, 9H). 3C NMR
(101 MHz, Chloroform-d) 6 206.39, 171.40, 162.72, 85.15, 81.39, 56.49, 27.88, 17.28,
16.49. +ESI-HRMS m/z: calc’d for (M+Na*) CiiHisOsNa*= 251.08954, found
C11H160sNa*™ =251.08911 FTIR (Neat): 2983, 2941, 1806, 1759, 1478, 1451, 1396, 1372,

1260, 1234, 1154, 1124, 1098, 1077, 994.

Preparation of Malonate 2.33

O O
o~ EDCI, (CH3),CHOH J\
© OH DMAP, DCM N O)H)J\O
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2.44

Carboxylic acid 2.33 (1.1 g, 7.6 mmol) was added to a round bottom flask and

dissolved in dry DCM (18 mL). To this solution was added 2-propyl alcohol (1 mL 13.06
mmol), DMAP (77.6 mg, 0.64 mmol) and N-(3- Dimethylaminopropyl)-N'-
ethylcarbodiimide hydrochloride (1.65 g, 8.61 mmol). The solution was left to stir for 11.5
hours. The crude reaction mixture was washed three times with 35 mL 1M HCL and the
combined aqueous washes extracted once with 35 mL DCM. The combined organic layers
were then washed twice with 35 mL saturated sodium bicarbonate, once with 70 mL of
brine and dried over sodium sulfate. The solvent was then removed under reduced pressure.
This yielded 734.5 mg (51% vyield) of product 2.44 as a clear oil. No further purification
was performed. *H NMR (400 MHz, Chloroform-d) & 5.05 (hept, J = 6.3 Hz, 1H), 4.25 —
4.13 (m, 2H), 3.38 (g, J = 7.3 Hz, 1H), 1.40 (d, J = 7.3 Hz, 3H), 1.29 — 1.21 (m, 9H overlap
of a doublet and a triplet). *3C NMR (101 MHz, Chloroform-d) § 170.40, 169.86, 68.94,

61.41, 46.54, 21.70, 14.22, 13.62. +ESI-HRMS m/z: calc’d for (M+Na*) CoH160aNa* =
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211.09463, found CoH1604Na* = 211.09419 FTIR (Neat): 2983, 1748, 1728, 1456, 1376,

1321, 1219, 1163, 1094, 1036, 936, 902, 867, 828.

Preparation of Tosyl Hydrazone 2.45
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Malonate ester 2.44 (962 mg, 5.11 mmol) was added to a 50 mL round bottom flask
and dissolved in dry THF (21.5 mL). The reaction solution was then cooled in an ice water
bath and let stir for ten minutes. Then sodium hydride (240 mg, 6.0 mmol) as a 60%
dispersion in mineral oil was added portion wise. After addition of the sodium hydride was
complete the solution was allowed to stirred for five minutes, warmed to RT and then
heated to 55 °C (oil bath temperature) for 1.5 hours. After heating was complete the
reaction mixture was allowed to cool to RT, it was cooled to —78 °C using a dry ice acetone
bath and allowed to stir for ten minutes at —78 °C. After which pyruvoyl chloride (0.53 mL,
7.0 mmol) was added. Upon addition of the acyl chloride the solution turned bright yellow
and thickened. The reaction mixture was stirred for an additional twenty minutes at —78 °C
and then slowly allowed to warm up to RT over thirty minutes. It was then quenched with
water and 20 mL diethyl ether were added, and the organic layer then washed twice with
water. The aqueous layers were combined and extracted with diethyl ether. The organic
layers were then combined and washed twice with brine and dried over sodium and
magnesium sulfate. The solvent was then evaporated to give a clear yellow oil which was

re-dissolved in dry THF (21.5 mL). To this solution was added tosyl hydrazide (953 mg,
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5.2 mmol) at RT and the solution heated for 16 hours at 55 °C (oil bath temperature). It
was then allowed to cool to RT and the solvent evaporated under reduced pressure. Flash
chromatography was performed on the crude material using an MPLC and a gradient
beginning at 0% ethyl acetate: hexanes and progressing to 35% ethyl acetate: hexanes. A
24-gram column with a flow rate of 35 mL/min was used. This gave 1.66 g (76%) of
product 2.45 as a clear glassy solid. An analytically pure sample for characterization was
taken from purest fraction of the column. R = 0.32 (35% EtOAc/hexanes), UV;'H NMR
(400 MHz, Chloroform-d) & 8.02 (br s, 1H), & 7.87 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.0 Hz,
2H), 4.96 (p, J = 6.3 Hz, 1H), 4.20 — 4.05 (m, 2H), 2.44 (s, 3H), 1.91 (s, 3H), 1.61 (s, 3H),
1.19 — 1.07 (m, 9H doublet and triplet overlapping). 3C NMR (151 MHz, Chloroform-d)
0 191.31, 168.17, 167.42, 146.47, 145.13, 134.55, 129.99, 128.67, 69.68, 63.85, 62.01,
21.82, 21.49, 21.43, 20.16, 13.99, 9.59. +ESI-HRMS m/z: calc’d for (M+Na*)
C19H26N207SNa* = 449.13584, found Ci19H26N207SNa* = 449.13519 FTIR (Neat): 3205,
2983, 1751, 1731, 1693, 1598, 1452, 1375, 1265, 1170, 1101, 1035, 904, 816, 715, 662,

547.
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Preparation of Diazomalonate 2.10
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Tosyl hydrazone 2.45 (1.66 g, 3.88 mmol) was added to a pear shaped flask and
dissolved in of dry DCM (39 mL). Then Al203 (5.17 g, 50.7 mmol) Brockmann LVL |
were added, the flask was wrapped in foil and the reaction mixture was allowed to stir for
13.5 hours. The mixture slowly became yellow in color. Then an additional 5.17 g (50.7
mmol) of Al203 Brockmann LVL Il were added and the mixture stirred for an additional
three hours. The mixture was then poured onto a fritted filter filled with Brockmann LVL
11 Al203 and the compound eluted using DCM. The material was purified by silica gel
flash chromatography using 1:9 ethyl acetate: hexanes as the eluent. This yielded 698 mg
(67% yield) of the desired diazo compound 2.10 as a bright yellow oil. Rf = 0.24 (15%
EtOAc/hexanes), UV; 'H NMR (400 MHz, Chloroform-d) & 5.09 (septet, 1H), 4.25 (qd, J
= 7.1, 1.5 Hz, 2H), 2.02 (s, 3H), 1.68 (s, 3H), 1.32 — 1.22 (m, 9H doublet and triplet
overlapping). 3C NMR (101 MHz, Chloroform-d) 6 168.30, 167.65, 70.41, 65.29, 62.52,
21.55, 19.08, 14.05, 10.02. +ESI-HRMS m/z: calc’d for (M+Na*) Ci2H1sN20sNa* =
293.11134, found Ci12H1sN20sNa* = 293.11096 FTIR (Neat): 2984, 2940, 2075, 1726,

1620, 1449, 1376, 1326, 1252, 1226, 1182, 1096, 1017.

43



Preparation of Oxabicyclic Compounds 2.31, 2.32
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To an oven dried 1.5-dram vial was added a stir bar, the of diazomalonate 2.10
(44.1 mg, 0.163 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1mL
(0.81 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen three
times and then rhodium acetate dimer (3.5 mg, 5 mol %) was added to the reaction mixture
and the vial purged with a stream of nitrogen. The reaction mixture was stirred for ten
minutes at RT then warmed to 50 °C in a preheated aluminum heating block for 24 hours.
After 24 hours the reaction mixture was filtered through Celite® to remove the rhodium
catalyst and the Celite® washed with benzene. The solvent was then evaporated under
reduced pressure and the crude reaction mixture purified by flash chromatography using
an MPLC. A 4-gram column set to a flow rate of 18 mL/min with a gradient beginning at
0% ethyl acetate: hexanes and progressing to 5% ethyl acetate: hexanes was used. This
yielded 34.2 mg (54% yield) of oxabicyclic products 2.31, 2.32 as a 2:1 mixture of isomers.
The crude proton NMR showed a mixture of isomers in a 1:1 ratio. Rr = 0.19 (15%
EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) § 5.03 (p, J = 6.3 Hz, 1H), 4.27
— 4.18 (m, 5H), 4.17 — 4.09 (m, 2H), 4.00 — 3.93 (m, 1H), 3.84 (s, 7H), 3.83 (s, 4H), 3.82
(s, 3H), 3.81 (s, 7H), 1.69 (s, 6H), 1.68 (s, 3H), 1.41 (s, 6H), 1.39 (s, 3H), 1.27 — 1.19 (m,
33H). (Pentet proton of minor isomer set to an integration of 1.) 13C NMR (151 MHz,

Chloroform-d) ¢ 203.18, 202.84, 167.94, 167.43, 162.58, 162.08 (d, J = 3.7 Hz), 161.83,
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147.62, 145.85, 145.70, 144.43, 113.52, 113.12, 86.80, 86.66, 72.09, 69.61, 63.41, 61.82,
54.33, 53.93, 53.01, 52.98, 52.88, 23.95, 23.19, 21.69, 21.65, 17.90, 17.67, 15.37, 14.25,
11.80, 11.54. +ESI-HRMS m/z: calc’d for (M+Na*) CisH2409Na" = 407.13180, found
C1sH2409Na™ = 407.13235 FTIR (Neat): 2983, 2956, 1778, 1730, 1638, 1438, 1327, 1249,

1129, 1107, 1049, 1007.
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CHAPTER THREE

Total Syntheses of (£)-Aspergilline A, Cyclopiamide A and Speradine E

3.1 Isolation and Bioactivity of (+)-Aspergilline A, Cyclopiamide A, and Speradine E

3.1.1 The Cyclopiazonic Acid Family of Natural Products
Aspergilline A 3.01, cyclopiamide A 3.02 and speradine E 3.03 (Figure 3.1) are
considered to be cyclopiazonic acid-type natural products, specifically falling under the

cyclopiazonic acid oxindole sub class.! a-Cyclopiazonic acid (CPA 3.04) was isolated

O
0]
“““ tQo QO
.' “, H
3 OH o) Y 0 6]
R OH N
/N/\o /7 Yo / 0
Aspergilline A Cyclopiamide A Speradine E
3.01 3.02 3.03

Cyclopiazonic acid
3.04

Figure 3.1 CPA type natural products

from Penicillium cyclopium in 1968 by Holzapfel and was found to be cytotoxic through
its disruption of calcium ion flux in the cell.>® CPA has been observed in various foods
including cheeses, milk, meats and grains.* Despite its presence in various foods, poisoning

by CPA is rare and has not been explicitly identified in humans.®* Specifically, CPA is a
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reversible inhibitor of sarco/endoplasmic reticulum Ca?-ATPase. Disruption of this
membrane Ca?* pump causes an imbalance between cytosolic and endoplasmic reticulum
calcium ion concentrations. This calcium ion concentration is critical in controlling cell
differentiation, death and proliferation; its disruption eventually leads to cell death.!?
Interestingly, CPA is a selective inhibitor of Ca?*-ATPase showing no specific inhibition

of kidney or brain Na*/K*-ATPase or gastric H*/K*-ATPase.*

3.1.2 Aspergilline A - Isolation and Bioactivity

Aspergilline A (3.01) was isolated in 2014 from the Aspergillus versicolor by Hu
and Gao.® The Aspergillus versicolor fungus was cultivated on a potato dextrose agar for
seven days at room temperature. Agar plugs were placed into 250 mL Erlenmeyer flasks
containing 100 mL of potato dextrose broth and cultured for 5 days at room temperature.
Fermentation was then performed in 200 Fernback flasks; each contained 100 g of rice,120
mL of deionized water and which had been inoculated with 5 mL of the cultured broth.
After 45 days at room temperature the fermented substrate was extracted with methanol to
yield 5609 of crude material. After flash chromatography and HPLC purification this
yielded, 25.6 mg of Aspergilline A.

The aspergillines (3.01, 3.05 — 3.08 Figure 3.2) are considered highly oxygenated
derivatives of the natural product cyclopiazonic acid (3.04). Though the biogenic origin of
CPA is known,? that of the aspergillines has not been identified. The gene cluster for the
biosynthesis of CPA has been identified in Aspergillus flavus and Aspergillus oryzae and
the biogenic pathway elucidated. Feeding studies with radiolabeled substrates along with
degradation studies showed that CPA was constructed biosynthetically from a tryptophan,

a dimethylallyl diphosphate and two acetate units.®
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Figure 3.2 Aspergilline family

Aspergilline A, along with the other members of the family (Figure 3.2) were
shown to be cytotoxic against several human cancer cell lines in the low micromolar range
(Table 3.1). Specifically, the aspergillines possess moderate biological activity against

A549 lung

Table 3.1 ICso values (in uM) of the aspergillines

Compound A549 NB4 MCF7 PC3 SHSYSY

3.01 1.2 38 1.5 2.6 34
3.05 >10 7.2 4.5 2.6 54
3.06 2.8 1.2 3.6 2.8 1.5
3.07 1.5 2.2 29 4.2 3.6
3.08 2.8 4.7 6.5 >10 8.2

epithelial carcinoma, NB4 promyelocytic leukemia, MCF7 breast adenocarcinoma, PC3

prostate cancer and SHSY5Y neuroblastoma cancer cell lines. Aspergilline A is the most
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potent congener overall.®> At this current juncture no mechanism of action for the

aspergillines’ cytotoxicity has been elucidated.

3.1.3 Cyclopiamide A —Isolation

Cyclopiamide A (3.02, Figure 3.3) is a tetracyclic indole alkaloid which bears a
core structure similar to a core structural fragment present in aspergilline A (red highlight
3.01 Figure 3.3). Cyclopiamide A was isolated in 1990 by Holzapfel and coworkers from

Penicillium cyclopium.® The fungus was grown on crushed maize seeds and the culture

0
0
oy QUK
., H —
L "OH Y o) 0
OH N N
/ o /0

/ N/xo
Aspergilline A Cyclopiamide A Speradine E
3.01 3.02 3.03

Figure 3.3 Common tetracyclic core structure

media was dried and milled prior to being extracted with chloroform/methanol. The extract
was dissolved in HCI (aq) and washed with chloroform. After neutralization the aqueous
layer was extracted with chloroform and the extract present in the organic layer purified by
flash silica gel chromatography and sephadex to give cyclopiamide A (3.02, Figure 3.3).

To date, no notable bioactivity has been reported for this compound.

3.1.4 Speradine E —Isolation and Biological activity
Speradine E (3.03, Figure 3.3) is a tetracyclic indole alkaloid differing in structure
from cyclopiamide A 3.02 only by a pendant methyl B-keto ester on the free amide’s

nitrogen. Speradine E was isolated from the fungus Aspergillus oryzae by Chen and Zhang
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in 2014.7 The fungus was cultured in 1 L conical flasks containing a liquid medium of yeast
extract, mannitol, maltose, glucose, monosodium glutamate, mono basic potassium
hydrogen phosphate and magnesium sulfate heptahydrate in sea water. After 30 days the
culture broth was filtered through a cheese cloth and the filtrate extracted with ethyl acetate.
The filter cake was extracted with acetone and the solvent removed to give an aqueous
extract. The aqueous extract was then extracted with ethyl acetate and all ethyl acetate
extracts combined and the solvent removed. This gave a crude extract (42.3 g) which was
purified by silica gel chromatography, size exclusion chromatography (sephadex) and
semi-preparative HPLC to give 3.2 mg of speradine E (3.03); It was then found that
speradine E (3.03) exhibited weak cytotoxicity against HeLa cells with an ICso value of
200 pM.
3.2 Total Synthesis of Aspergilline A, Cyclopiamide A and Speradine E via a Unified
Strategy

3.2.1 A General Unified Approach

As depicted earlier in this chapter (Figure 3.3) aspergilline A (3.01), cyclopiamide
A (3.02) and speradine E (3.03) bear a similar tetracyclic core structure. During the course
of our work on the total synthesis of aspergilline A it became apparent that a unified
strategy could be developed for the synthesis of these three natural products. Considering
this, we devised a general retrosynthetic plan (Scheme 3.01) wherein both aspergilline A
(3.01) and speradine E (3.03) would be accessed from a common tetracyclic ester (3.09).
Tetracycle 3.09 would then be derived from a pyrrolinone compound (3.10) through an
intramolecular aldol reaction; Finally, we envisioned that the pyrrolinone would be

accessed in a few steps from a protected propargyl amine (3.12) and a bromoisatin (3.11).
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Scheme 3.01 Unified synthetic strategy

3.2.2 Aspergilline A: Evolution of Strategy and Total Synthesis

Other than our work on aspergilline A, no total synthesis or progress towards this
family of natural products has been reported. The closest congener to be prepared by total
synthesis is the simpler cyclopiazonic acid, which to date has been produced in both total
and formal syntheses several times.®2 Although aspergilline A possesses somewhat
interesting biological activity, our interest was piqued by its complex structural features
which include a daunting 6/5/6/5/5/5 fused ring system, a hydroxy tetramic acid moiety, a

hemi ketal, a hemi aminal and an oxindole moiety (Figure 3.4).
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Figure 3.4 Salient features of aspergilline A

During our synthetic studies of aspergilline A, a number of strategies were
explored, all of which diverted from a key tetracyclic amide 3.15 (Scheme 3.02). In the
initial retrosynthetic strategy, we envisioned accessing aspergilline A through a late stage
intramolecular aldol reaction and ketal formation from ene-diol 3.13 (Scheme 3.02). 3.13
could be accessed by oxidation of the alkene of acrylimide 3.14, which itself could be
derived from key tetracyclic amide 3.15 through acylation with acryloyl chloride. A
reduction and intramolecular aldol reaction of pyrrolinone 3.10 would construct amide
3.15. Pyrrolinone 3.10 would in turn be accessed from propargyl amine 3.16 by an
acylation/ 5-exo-dig cyclization /double bond migration sequence. Finally, we envisioned
that propargyl amine 3.16 would come about through a Sonogashira cross coupling of
bromoisatin 3.11 and propargyl amine 3.12. In the forward sense, we began with
commercially available bromoisatin 3.19. Methylation of 3.19 with methyl iodide gave
bromoisatin 3.11 (Scheme 3.03). The Sonogashira cross coupling was then explored. Initial
optimization was done with propargyl amine 3.17 (Table 3.2) but subsequently, due to the
predicted need of an amide protecting group, dimethoxybenzyl protected propargyl amine

3.20 was chosen for utilization in the synthesis. Although reaction conditions for these
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exact substrates were not known, similar Sonogashira cross coupling reactions utilizing
propargyl amine 3.17 were precedented.® On the basis of this literature, we chose our initial
reaction conditions to be 4 mol % of Pd(Cl)2(PPhs)z2, 8 mol % Cul, 8 mol % P(Cy)s, 1.2
equiv of Cs2COs, in a 2.75:1 mixture of Hiinig’s base: diglyme at 130 °C for two hours.
This resulted in a poor 12% vyield due to decomposition of the product under the reaction
conditions (Entry 1, Table 3.2). During the course of the optimization we discovered
several interesting facets to this reaction, the most interesting of which was that rapid
addition of several equivalents of the propargyl amine substrate 3.17 appeared to complex
the copper catalyst inducing apparent 1,2 addition of the alkyne into the isatin's ketone. A
solvent screen revealed toluene to be an effective solvent for this transformation.
Additionally, it was noted that a reduction in temperature led to less decomposition. After

further exploration, the optimum reaction conditions were chosen to be 4 mol % of
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Pd(PPhs)s4, 8 mol % Cul, 1.2 equiv of Cs2COs, 2 equiv of Hinig's in toluene at 70 °C with
slow addition of the propargyl amine reaction partner and a reaction time of three hours.

These conditions yielded a 95% yield of the desired cross coupling product 3.18. Applying

these conditions to the dimethoxybenzyl protected propargyl amine substrate gave cross

Table 3.2 Sonogashira cross coupling optimization

B )L NH NH
' Y31’ // ’
o Pd(cat) (4 mol %),Cul (8 mol %)
\ Conditions o o
/ 0 \
3.1 /318 ©
Catalyst Base Solvent Ligand Temperature Time Yield
Pd(CI),(PPh,), Cs,CO, 2.75:1 P(Cy), 130 °C 2h 12%
(1.2 equiv) DIPEA:diglyme (8 mol%)
Pd(CI),(PPh,), Cs,CO, 2.75:1 P(Cy), 105 °C 1h45min  43%
(1.2 equiv) DIPEA:diglyme (12 mol%)
Pd(PPhs,), Cs,CO, 2.75:1 - 105 °C 1h 30%
(1.2 equiv) DIPEA:diglyme
Pd(PPh,), Cs,CO, DMF - 70 °C 1h 31%
(1.2 equiv)
DIPEA (2 equiv)
Pd(PPh,), Cs,CO, MeCN - 70 °C 1h 58%
(1.2 equiv)
DIPEA (2 equiv)
Pd(PPh,), Cs,CO, Toluene - 70 °C 1h 32%
(1.2 equiv)
DIPEA (2 equiv)
Pd(PPh,), Cs,CO, Toluene - 70°C 3h 95%
(1.2 equiv)

DIPEA (2 equiv)

coupling product 3.21 in an acceptable 60 — 80 % vyield (Scheme 3.03). Carrying 3.21

forward we sought to apply work from Arcadi and Marinelli.*® Precedent from Arcadi and
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Marinelli had shown that acylation of aryl propargyl amines with a malonyl chloride and

subsequent exposure to cesium carbonate in DMSO gave pyrrolinones (3.23 Scheme 3.04)

)LN,DMB
& N3 OMEB
4

Pd(PPhs), (4 mol %) N
Br Br H
Cul (8 mol %) //
K,CO3, Mel Cs,COs3, i-Pr,NEt
0 — 0] —_—
DMF, 80 °C PhMe, 70 °C o
H,N 5 (98% Yield) N o (60 — 80% Yield) e
3.19 311 /321 0

Scheme 3.03 Methylation and Sonogashira cross coupling

in high yields, presumably through a 5-exo-dig cyclization and subsequent double bond
migration. In applying this chemistry, we exposed propargyl amine 3.21 to allyl malonyl

chloride 3.26 to give malonamide 3.27. Reaction of 3.27 with Cs2CQO3 in DMSO gave

pyrrolinone 3.28 but in poor yield (< 25%)

Z
Z Cs,CO3 (1.5 equiv)
° DMSO o
fo) o) (72% Yield)

Scheme 3.04 Pyrrolinone formation — Arcadi & Marinelli

(Scheme 3.05). All attempts to optimize this reaction failed to increase the yield. While

examining these reactions we were surprised to find that from the acylation reactions with
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malonyl chlorides small amounts of the pyrrolinone were formed directly! A survey of the
literature showed this to be an unprecedented transformation. Hoping to capitalize on this
observation we sought to optimize the initial acylation reaction to give the pyrrolinone
directly. To shed light on the reaction pathway a series of experiments were performed to
determine exactly how the pyrrolinone was forming. It was initially thought that the
intermediate malonamide 3.27 under the influence of excess Hiinig's may be deprotonated,
thereby inducing the 5-exo-dig cyclization and double bond migration. However,
performing the reaction employing excess Hiinig’s base only returned starting material.

Considering next the possibility of malonamide activation by ammonium salts present

,DMB
H 0] 3 26
Vi

052C03

o DMSO
(< 25% Yield)
N
/

3.21 DIPEA, DCM 3 27
~78°C R= =
(41% Yield) o
i i-Pr,NEt

0 0 DCM, -78 °C
1h
CI)J\/U\O/\/ i
3.26 321 N"OMB
/N O

(as a solution in DCM)
°C

(55% Yield)

Scheme 3.05 Unprecedented pyrrolinone formation

in the reaction, we exposed the malonamide 3.27 to Hunig's hydrochloride salt in the
presence of excess Hunig's base; this once again resulted in only returned starting material.

Re-exposing the malonamide 3.27 to the initial acylation reaction conditions also resulted
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in no product formation. With these results in mind we began considering the possibility
that a ketene was being generated in situ through the reaction of the tertiary amine and the
acyl chloride. Eventually, we discovered that premixing the malonyl chloride with excess
Hunig's base at —78 °C then slowly adding the propargyl amine substrate (3.21) afforded
up to 55% yield of the desired pyrrolinone 3.28 (Scheme 3.05). To further examine this

reaction, we performed React IR studies with methyl malonyl chloride (Figure 3.5).

(€]
T Pr,NE L @i
i-PryNEt o
)J\/u\ s —— N X O/ —
cl 0 DCM, —78 °C (as a solution in DCM)
1h _78°C
330

(@ 0© 0
N e

1671 cm™!

Intense ketene stretch
‘\ absent from 2050 — 2250 cm-!

\\ Ammonium enolate consumed
as substrate is added

I 1 1 I
1000 1500 2000 2500 cm?

Figure 3.5 React IR data indicating ammonium enolate

We were intrigued to observe that no ketene was forming in this reaction as the
characteristic intense stretch between 2050 — 2250 cm* was absent.*! In addition to this,

the lack of a stretch between 1790 — 1820 cm™ indicated that no acyl ammonium species
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was present in the reaction mixture!'2 This led us to conclude that the likely active species
generated under these reaction conditions was an ammonium enolate. IR stretches for
ammonium enolates are reported in the literature with stretches in the 1600 — 1750 cm*
range; enolates are also known to produce IR stretches between 1600 — 1700 cm?.13.14
These values correlate well to the observed IR-stretch 1671 cm™. What is peculiar is that
the reported ammonium enolates were observed to decompose upon warming above 160K
(-113.15 °C) while it appeared that our enolate species was stable at —78 °C for over an
hour. Upon addition of the propargyl amine substrate 3.21 to the React IR reaction vessel,
the stretch at 1671 cmquickly vanished suggesting consumption of the ammonium enolate
intermediate.

With a viable means of accessing the desired pyrrolinone substrates, we turned our
attention to preparing the key tetracyclic amide. Intramolecular aldol cyclization of
pyrrolinone 3.28 was induced by sodium hydride, to give tetracyclic allyl ester 3.32 as a
single diastereomer in low yield but with large amounts of recovered starting material

(Scheme 3.06). Hoping then to install the hydrogen atom at C9a we exposed allyl ester

NaH (0.6 equiv) N—DMB  pd(PPhy), (1.2 mol%) O N—-DMB

morpholine (4.9 equiv)'
THF, RT N
(25% Yield) / 0 (83% Yield) / o)

R =COAllyl
3.32 3.33

THF, 0to 55°C

Scheme 3.06 Aromatization of allyl ester

3.32 to catalytic palladium tetrakis. We were puzzled on observing the formation of a bright

yellow compound, which was later determined to be aromatized compound 3.33.
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Mechanistically, it appears that de-allylative decarboxylation occurred followed by
hydroxy group elimination. Though unexpected, we were excited by the potential of
quickly elaborating this intermediate to cyclopiamide A and speradine E. Prior to exploring
these latter possibilities we directed our efforts at avoiding aromatization and explored the
possibility of reducing the trisubstituted alkene prior to decarboxylation. Given that the
planned reduction would not be compatible with the allyl ester in 3.32 we prepared the
corresponding tetracyclic methyl ester (3.34) through an analogous sequence (Scheme

3.07). Unfortunately, reduction of the trisubstituted alkene in 3.34 failed under a variety

i. i-Pr,NEt
DCM, 78 °C

)I\/U\ ul
cl o~

i _
2 =
329 N-DMB
N
- O 3:1

0
(as a solution in DCM)

K,CO3 (0.3 equiv)
MeOH

(43% Yield)

(65% Yield)

Scheme 3.07 Tetracyclic methyl ester synthesis

of conditions, including both ionic reduction and hydrogen atom transfer conditions.
Application of Birch reduction conditions on a MOM protected variant (3.35) of tetracyclic
ester 3.34 surprisingly also lead to aromatized compound 3.33. This was later determined
to be due to in situ generated sodium amide, which presumably generates the illustrated
tetrahedral intermediate (3.36) en route to the aromatized compound (Scheme 3.08). Any
products other than 3.33 obtained from these Birch reductions reactions appeared to be the
result of over reduction of the initially formed aromatized compound 3.33. Attempts to use

ammonia-free conditions with lithium DBB in THF also lead to aromatization.
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Na® (4 equiv) OO N—-DMB
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Et,0, THF
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333
NaNH, _ OO N-DMB
EL,O, THF
NH; (/), — 78 to — 40 °C N o
/

Scheme 3.08 Sodium amide-induced aromatization of 3.35

In fact, attempts to reduce the methyl ester of 3.32 with NaBHz4 in the presence of calcium
chloride also lead to compound 3.33!

A promising lead for the reduction of highly sterically hindered alkenes was found
in an unusual dimethoxyanthracenium hexachloroantimonate radical cation (3.43), which
was colloquially named orange CRET by the authors. This radical cation in the presence
of borane dimethyl sulfide complex, was precedented to reduce hindered tetrasubstituted
alkenes such as biadamantylidene!*> Wishing to explore this chemistry, the radical cation
was synthesized according to a literature procedure; beginning from cyclopentadiene 3.37
and benzoquinone 3.38 a Diels-Alder reaction in cold ethanol gave dione 3.39 (Scheme
3.09).%6 The alkenes of 3.39 were then reduced via catalytic hydrogenation with palladium

on carbon. Bromine-induced aromatization was followed by methylation of the resultant
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Scheme 3.09 Literature preparation of orange CRET 3.40

hydroquinone with methyl iodide to give dimethyl ether 3.42. Subsequent exposure to
antimony pentachloride provided orange CRET 3.43. Reduction of the trisubstituted alkene
was once again attempted. In the event tetracycle 3.35 was exposed to a mixture of orange
CRET and borane dimethyl sulfide complex. The orange red color of the radical cation
bleached indicating reaction completion, but no desired product was obtained.
Unfortunately, numerous trials utilizing radical cation 3.43 were attempted but all gave

returned starting material or decomposition. More conventional catalytic hydrogenation

AV4

AN
BH3yDMS, DCM
-10°C

Scheme 3.10 Attempted alkene reduction by orange CERT
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conditions were also explored. Heterogeneous hydrogenation catalysts failed to provide the
desired product from 3.34 except in the case of palladium on carbon at 1150 PSI of Ho.
Reaction under the latter conditions for two days gave a 40% conversion of the starting
alkene 3.34 to the reduced product. This suggested that prolonged reaction times of up to
a week were needed for complete reduction at this pressure. Considering the need to
perform this reaction on decagram scale, prolonged high pressure hydrogenation appeared
impractical and dangerous.

We surmised that the difficulty in reducing the alkene of 3.34 and 3.35 was due to
the two adjacent quaternary centers. We therefore believed that reduction at the pyrrolinone
stage may proceed under milder conditions (Scheme 3.11). Indeed, exposing pyrrolinone

3.31 to Raney nickel at 420 PSI gave the reduced product 3.45. Unfortunately, it appeared

O 420PSI H,, Raney Ni DMP
MeOH,48h DCM
( 69% Yield )
o
over two steps
o)
331 — 345 —

K,CO3 (0.6 equiv)

MeOH
(< 16% Yield)

>20:1dr
3.47

Scheme 3.11 Accessing reduced tetracycle 3.46
in this reaction that the isatin's ketone was reduced to the alcohol prior to reduction of the

alkene. Thus, the crude pyrrolidone 3.45 was then exposed to DMP to give isatin 3.46.
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Treatment of 3.46 with methanolic potassium carbonate induced an intramolecular aldol
cyclization furnishing reduced tetracycle 3.47 in very low vyield. The relative
stereochemistry of 3.47 was confirmed by X-ray analysis. A screening of various bases and
solvents failed to increase the yield of the tetracyclic product (3.47). Persuaded that
competing retro-aldol reaction was the cause of our observed low yields, we turned to a
Mukaiyama aldol reaction in an effort to avoid anionic reaction intermediates (Scheme
3.12). Gratifyingly, silyl ketene acetal formation followed by exposure to titanium
tetrachloride gave reduced tetracyclic ester 3.49 in high yield! TMS group deprotection
under acidic conditions provided material which was spectroscopically identical to 3.47,

confirming the relative stereochemistry depicted. With the reduced tetracycle now in hand

TMS-OTf (1.6 equiv)
Et3N (2.5 equiv)

DCM, 0°Cto35°C

TiCl, (0.25 equiv) _
DCM,—78 °CtoRT

R= TMS (80-94% Yield)
3.49

Scheme 3.12 Mukaiyama aldol

we once again sought to remove the ester and install the methine at C4. Surprisingly,
Krapcho decarboxylation conditions vyielded the previously observed aromatized
compound 3.33 (Scheme 3.13). Given this result, we opted to leave decarboxylation at C4
until the latter end of the synthesis hoping that the methyl ester would act as a protecting

group, preventing deleterious aromatization.
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LiClI (5 equiv) . OO N-DMB
DMF, H,0 o

160 °C N o]
(80— 90% Yield) /

3.52 353

Scheme 3.13 Plausible mechanism for Krapcho induced aromatization

Having decided to delay decarboalkoxylation, we began setting the stage for
introducing the penultimate ring (Scheme 3.14). To this end, the DMB protecting group
in 3.49 was removed by exposure to DDQ. Acylation of the derived tetracyclic amide
intermediate (3.54) with acryloyl chloride provided requisite acrylimide 3.55 which was
found to smoothly undergo dihydroxylation with catalytic osmium tetroxide to furnish diol
3.56. Unfortunately attempts to further oxidize 3.56 to the ene diol failed under a variety
of conditions. In seeking an alternative for oxidation of 3.55 we became intrigued by a
ruthenium-based method reported by Plietker and were gratified to find these latter
conditions capable of converting 3.55 to acyloin 3.58 (via in situ generated ruthenium
tetroxide, Scheme 3.15).17 Unfortunately, numerous attempts to optimize this
transformation never resulted in yields beyond 15%. In addition to this, the acyloin product
was unstable, hydrolyzing back to amide 3.54 upon exposure to silica gel. Attempts to
effect the tautomerization to 3.57 and the subsequent cyclization cascade to access the

hexacyclic core under acidic conditions also resulted in hydrolysis back to the amide.
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TEMPO

RuCl; (2 mol %)
Oxone®™ (5 equiv)
1.8:12:12
H,0:MeCN:EtOAC

~10°Cto RT
(15% Yield)

Scheme 3.14 Attempted synthesis of key ene-diol intermediate

RuCl; 1 mol %

Oxone (5 equiv) OH
NaHCO; (2.5 equiv)
Ph 3 Ph
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Ph EtOAC/CH3CN/H,0 Ph
(6:6:1) o)
3.59 3.60
0
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0 5 0 o\é 0 +HSOG; O /O R
3.61 — U — O:R/u\ —_— >
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| @O/ «.,‘R ®0 TH/\ —HSO, R
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o l, 3.64 365 H 4, 3.66
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Scheme 3.15 Precedent and plausible mechanism adapted from Plietker

Observing that early incorporation of all the oxidation present in the tetramic acid moiety

leads to unstable intermediates, we revised the approach and, as illustrated in Scheme 3.16,
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targeted hemiaminal 3.67 (Scheme 3.16). Accessing aspergilline A via this latter route
would require the late stage decarboxylation, hemiacetal formation and oxidation of
pentacyclic intermediate 3.67. Pentacycle 3.67 was seen as accessible from tetracyclic
amide 3.15 by acylation with acryloyl chloride and subsequent cyclization by

intramolecular addition into the imide's carbonyl.

Decarboxylation

\ 5
N/\o {1 Oxidation | /07 3as
/ . 367 Acylation/1,2 addition Aldol

Cyclization reaction
301 Acylation

PG, /9 Sonogashira cross coupling
o |
— N p—

O 5-exo-dig Cyclization/
double bond migration

Br

311

Scheme 3.16 Retrosynthetic analysis Il

As illustrated in Scheme 3.17, implementation of this modified route began with
the conversion of acrylimide 3.55 to B-iodo compound 3.68 (Scheme 3.17).18 Cyclization
of 3.68 to the corresponding hemiaminal was then attempted under the influence of
samarium diiodide. Unfortunately, neither radical generating conditions nor samarium
mediated Barbier-type conditions gave the desired cyclization product.'® Exposure of 3.68

to samarium diiodide often resulted in a complex mixture of 10 — 15 different compounds.
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Exploring lithium halogen exchange chemistry, we generated what we initially believed to
be a desired pentacyclic intermediate 3.69. Upon further examination of 1D and 2D NMR
data we became suspicious of the assigned structure and sought confirmation via X-ray
analysis. Fortunately we were able to obtain crystals of suitable quality to provide a low
resolution structure. Surprisingly, this analysis showed that in fact cyclopropyl hemiaminal
3.70 had been produced. This unexpected result is likely the due to the confirmation of the
starting imide, wherein due to the adjacent gem dimethyl group, the exocyclic carbonyl is
rotated out of plane. An out of the plane rotation would deconjugate the carbonyl from the

nitrogen atom's lone pair and substantially enhance electrophilicity.

1, (1.2 equiv), ~Sies
H

CuO (0.5 equiv), HBF, (1 equiv)
DCM, 40 °C
(65% Yield)

-BuL.i (2.2 equiv)
AVA R

/\
Et,0
—98°Cto RT

t-BuLi (2.2 equiv)

Et,0

-98°Cto RT

(30% Yield)
&

3.68 yQ{ 8
00—‘—’?{\ e L \A/\b
3.70

<

Scheme 3.17 Unexpected cyclopropyl hemiaminal formation

Thwarted by unstable ene-diol intermediates and the unexpected formation of a
cyclopropyl hemiaminal, we again revised the synthetic strategy to obviated the need for

nucleophilic addition to the imide carbonyl (Scheme 3.18). As illustrated in Scheme 3.18,

68



in this third generation approach aspergilline A was again seen to arise via late stage
decarboxylation, hemiketal formation and oxidation; however, in this approach the end-
game would commence from pentacyclic intermediate 3.67, which would be accessed from
diene 3.71 via a Grubbs ring-closing metathesis reaction. In turn, imidoyl triflate 3.72
would be used to construct 3.71 through a vinylation reaction followed by acylation with
acryloyl chloride and subsequent reaction of an intermediate acyliminium with water. Once
again, the imidoyl triflate 3.72 would be accessed from key tetracyclic amide 3.15. In
essence, this strategy sought to construct the elusive five membered ring which had been
the downfall of previous strategies by building it from the amide carbonyl (3.15) around to

the nitrogen atom.

Decarboxylation Acylation

b

™ "OH

TOH N
N ' Oxidation s .
/ /\O Coa01 Grubbs ring closing
C cli:zation metathests Vinylation
y Agylation
PG, | O
O
O~ —
/ R /N OR o 5—e;€o—dig Cyclization/
372 Vo315 3.0 double bond migration
Aldol reaction /

Sonogashira cross coupling

_PG Br
N [ E
H %
— o + -PG
N
N é H
7%
312

3.11

Scheme 3.18 Retrosynthetic analysis 111
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In the forward sense, amide 3.54 was treated with triflic anhydride in the presence
of 2-fluoropyridine to provide imidoyl triflate 3.73 (Table 3.3).2° Stille cross coupling
conditions were then applied in hopes of inducing the desired vinylation reaction. As
outlined a number of reaction conditions failed to provide even a trace of the desired
product. In fact, it appeared that at temperatures above 60 °C triflate migration from oxygen
to nitrogen was occurring. Attempts to utilize a Sonogashira cross coupling or addition of

a vinyl organometallic reagent followed by triflate elimination also proved difficult.

Table 3.3 Screening of Stille cross coupling conditions

)
TH,0, F” ~N*

%SnBu3 (1.1 equiv)
L AV4 L
DCM, -78to 0 °C

. /\ N g
: Stille cross coupling
S-CF3 conditions
O

(70% Yield)
R=TMS
Catalyst Additive Solvent Ligand Temperature Yield of 3.62
Pd,(dba)s Cul (1.2 equiv) NMP AsPh; RTto 60 °C 0%
Pda(dba)s Cul (1.2 equiv) NMP Tris-(2-furyl)P RT to 60 °C 0%
Pd(t-BusP),  Cul 1.2 (equiv) NMP RT to 60 °C 0%
Pd(CysP). Cul (1.2 equiv) NMP RT to 60 °C 0%
Pdy(dba)s NMP AsPhs RTt0 85 °C 0%
Pd,(dba)s NMP Tris-(2-furyl)P RT to 85 °C 0%
Pd(t-BusP), NMP RTto85°C 0%
Pd(CysP)2 NMP RT to 85 °C 0%
Pd/C NMP RT to 140 °C 0%
Pd/C LiCl (3 equiv) NMP RT to 140 °C 0%
Pd/C LiF (2 equiv) NMP RT to 140 °C 0%
Pd(PPhs), LiCl (3 equiv) THF RT to 125 °C 0%
Pd(PPh3)s DMF RT to 120 °C 0%
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Concurrent with exploring the vinylation approach, we were also considering a
more efficient strategy wherein the penultimate ring would derive from a dipolar
cycloaddition of an intermediate imidate with an all-carbon 1,3 dipole, thus simultaneously
forming the two bonds required for the annulation. It is perhaps worth noting that from a
strategic perspective, the annulation of imidates is not a particularly obvious approach and
thus our redirecting the synthesis in this fashion is an example of how strategies often
evolve in unforeseen ways. In this particular case, it was clearly the preparation of imidoyl
triflate 3.73 that had us thinking along these lines. A survey of the literature quickly
revealed that all-carbon 1,3 dipoles were scarcely utilized and that the most practical
version of such a dipole was cyclopropenone and its derivatives (Scheme 3.19). Precedent
from Hemming disclosed that exposure of thioimidates (3.76) to cyclopropenone
derivatives (3.77) in acetonitrile furnished 5,5 fused ring systems which mapped well onto

our natural product and also bore desirable oxidation.?

0]

3.77
R R*s 0
S R30+ BF4- S R R
— | >
C\ﬁ (50— 95% Yield) G\./ (65 — 85% Yield) N R

3.75 3.76

3.78

Scheme 3.19 All-carbon 1,3-dipole — precedent from Hemming

Changing our retrosynthetic analysis again, we sought to construct aspergilline A
through the intermediacy of pentacycle 3.79 (Scheme 3.20) via late stage decarboxylation,
hemiketal formation and oxidation. We believed 3.79 could be derived from methyl

imidate 3.80 through a formal dipolar cycloaddition with parent cyclopropenone 3.84
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(Scheme 3.21). Finally, 3.80 would derive from tetracyclic amide 3.15 by exposure to a

hard methylating agent.

Decarboxylation

o p—
07T OH N
; i OH LN
N Oxidation O “ o_ !
0 379 3+2 Cycloaddition 3.80

Imidate formation
Acylation ) )
{ Sonogashira cross coupling

O~ p—
310 N
0 5-exo-dig Cyclization/

double bond migration 0
0
Br
0 _PG
— ( + //)<H
4 [0}
3.1 312

Scheme 3.20 Retrosynthetic analysis IV

Eager to apply this alluring methodology, we prepared parent cyclopropenone 3.84

according to known methods (Scheme 3.21).22 Transformation of amide 3.54 to methyl

o)
OH OH 00 NaNH, O. O Amberlyst15 ?
— " > el e
Il Cl  PTSA(cap E6,O, —40°C K THF A
PhH 80 °C &l
3.81 (97% Yield) 382 (70-85% Yield)  3.83 3.84

Scheme 3.21 Literature synthesis of cyclopropenone

imidate 3.85 was achieved by the portion wise addition of ~45 equivalents of methyl triflate
without the addition of base (Scheme 3.22). With both components of the dipolar

cycloaddition in hand, the stage was set for the cyclization. To this end, methyl imidate
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3.85 was dissolved in acetonitrile and warmed in the presence of 4.6 equivalents of

cyclopropenone 3.84. To our delight we found that this reaction smoothly produced

O 3.84
AM.G equiv) O
MeCN, 50 °C >

(89% Yield)

MeOTf
CH,Cl,,0°CtoRT
(77% Yield)

3.86

Scheme 3.22 [3+2] Dipolar-cycloaddition

the sought after pentacycle as an inconsequential (3:2 B:o, 3.86: 3.87) mixture of
diastereomers in 89% yield. The diastereomer bearing the p-face methoxy group was
confirmed by X-ray crystallographic analysis. A plausible mechanism for this reaction is

depicted in Scheme 3.23 and is an adaption of a mechanism put forth by Hemming.??

Scheme 3.23 Plausible mechanism of formal [3+2] dipolar-cycloaddition
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Initially seeking to elaborate the vinylogous amides of 3.86 and 3.87 directly to a
hydroxy tetramic acid (3.91) we applied the chemistry developed by Plietker, a variation

of which we had earlier utilized to synthesize acyloin 3.58 (Scheme 3.24) .2 We were

RuCl; (1 mol %)

Oxone®
X%
MeCN/H,0
32 B
B—3.86 391
o—3.87

Scheme 3.24 Attempted hydroxy tetramic acid synthesis

surprised to observe that instead of hydroxy tetramic acid formation, the reaction provided
the tetramic acid 3.97 as a single diastereomer; furthermore, the methoxy group was
replaced by a hydroxy group (Scheme 3.25). Consulting the literature, we were excited to
find that the direct transformation of a vinylogous amide to a tetramic acid was without
precedent! Exploring the reaction further it was discovered that ruthenium trichloride was
unnecessary for conversion of the vinylogous amide to tetramic acid 3.97; instead solely
Oxone® in acetonitrile/water solution was sufficient. Curiously, we also observed that a
1:1 mole ratio of sodium bicarbonate to Oxone® inhibited the reaction. Although this
reaction was not studied in detail, we propose here a plausible mechanism based on our
observations (Scheme 3.25). In the event, we speculate that initial acid induced
displacement of the methoxy group by water precedes protonation of the vinylogous amide
3.93 to give enol 3.94. Tautomerization and attack by peroxymonosulfate would furnish an

intermediate peroxymonosulfate ester (3.96) which, upon base promoted alpha-elimination
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of sulfate would deliver the observed tetramic acid (3.97). the possibility of further

functionalization of 3.97 remained. To this end, a- hydroxylation of tetramic acid

Scheme 3.25 Plausible mechanism for tetramic acid formation

3.97 was attempted with PIFA in DCM. Crude mass and NMR appeared to indicate that an
oxidation had occurred, but the obtained compound was viciously unstable, quickly
decomposing in the NMR tube prior to retrieval of the sample.?® Observing the instability
of the oxidized material we opted to forego the final oxidation until the end of the synthesis.
At this stage we also deduced that the tetramic acid (3.97) partially decomposed on silica
gel during purification; thus we carried the tetramic acid crude through to the next step. As
illustrated in Scheme 3.26, crude 3.97 was exposed to acidic desilylation conditions to
reveal the tertiary alcohol which promptly cyclized providing hexacyclic ester 3.98, a
crystalline solid which proved amenable to X-ray analysis (Scheme 3.26). It should be

noted that the tetramic acid formation and ketalization reactions were quite peculiar. To
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Q 3.84
A(4.6 equiv) .
MeCN, 50 °C
(89% Yield)

Oxone® (10 equiv)

MeCN/H,0
0°C

4 M HCI

THF T on

OH

NN
/ (0)
NaSePh, 18-C-6 R =CO,Me-3.98

THF l—_> R=CO,H -3.99
(Up to 78% Yield, 3 steps)

Scheme 3.26 Hexacycle formation

obtain reproducibly high yields of the tetramic acid, the water co-solvent/reactant had to
be added slowly by syringe pump while the reaction mixture was kept cold. Perplexingly,
crude NMR spectra of tetramic acid 3.97 revealed what often appeared to be a very
complex mixture of products. That complex mixture of products when exposed to acidic
conditions inexplicably funneled almost entirely to the single observed hexacyclic ester
3.98. With 3.98 in hand, all that remained for the completion of the total synthesis was
decarboxylation and appending of the final hydroxy group. Sodium phenyl selenide in the
presence of 18-crown-6 smoothly de-methylated the ester revealing the carboxylic acid
(3.99), which was obtained in up to 78% yield over three steps.?* Decarboxylation attempts
with the hydroxy groups unprotected proved fruitless. Protection of the hydroxy groups as
the cyclic carbonate was then effected by triphosgene to give 3.100 (Scheme 3.27).
lodinative decarboxylation followed by radical dehalogenation proceeded in 51% yield to

furnish decarboxylated product 3.102. Finally, all that remained to complete the synthesis
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Clj\ JL )<CI

0~ 0" “CI
(2.0 equiv) I, (2.3 equiv)
DMAP (cat), Et3N (8 equiv) PIDA (2.5 equiv)
DCM hv
(33% Yield) MeCN, 95 °C

AIBN (cat)
HSnBuj3 (6.6 equiv)

PhMe, 110°C
(51% Yield, 2 steps)

Scheme 3.27 Failed late stage hydroxylation

was carbonate deprotection and installation of the remaining hydroxy group.
Disappointingly, conventional enolate oxidation conditions utilizing Davis oxaziridine, m-
CPBA, DMDO, oxygen and triethyl phosphite or Rubottom-type oxidations failed to install
the final hydroxy group. Deprotonation followed by quenching with a deuterium source at
low temperature affirmed that 3.102 was not tolerant of strong bases such as LDA.
Unconventional conditions developed by the Maulide group utilizing triflic anhydride and
TEMPO to install a-oxidation were also explored (Scheme 3.28), but were found to be
ineffective.?> Unable to install the final hydroxy group at this stage we attempted to perform
the dipolar cycloaddition with deltic acid 3.105 in hopes of installing all the needed

oxidation at once (Scheme 3.29). Heating with deltic acid proved nugatory, resulting in

TEMPO (2.2 equiv) Q
O Tf,0 (1.1equiv) Ph
ph\/\)l\ MS 3 A D
N > o)
Q DCM, 0°Cto RT N
3.103 3.104

Scheme 3.28 Representative example of Maulide a-oxidation of amides
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reversion of the methyl imidate 3.85 to amide 3.54. With this result it appeared that no
obvious avenue forward was left except for the installation of the hydroxy group at the

tetramic acid stage.

3.85
R=TMS

Scheme 3.29 Attempted cycloaddition with deltic acid

Tetramic acid 3.97, now purified by silica gel chromatography, was exposed once
again to PIFA in DCM (Scheme 3.30). Previous experience with this reaction had revealed
that the hydroxy tetramic acid intermediate was highly susceptible to oxidation by
atmospheric oxygen. Due to this observation, upon completion of the PIFA oxidation a
solution of TFA:H20 (3:1v/v) was degassed via freeze-pump-thaw and added to the
reaction mixture followed by immediate warming to 55 °C. The acidic conditions once
again revealed the tertiary alcohol which immediately participated in hemiketal formation
to give hexacyclic ester 3.106 with all desired hydroxy groups present as a crystalline solid
amenable to X-ray analysis. Luckily, the cyclized material was not prone to decomposition
when exposed to atmospheric oxygen, which allowed us to proceed forward with the
completion of the synthesis. At this stage we employed the previously developed condition
and deesterified 3.106 with sodium phenyl selenide to give carboxylic acid 3.107.

Peracetylation of 3.107 with acetic anhydride and catalytic magnesium perchlorate
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O 384

A(4.6 equiv)

MeCN, 50 °C
(89% Yield)

Oxone® (1.2 equiv)

MeCN/H,0
(67% Yield)

PIFA (1.2 equiv), DCM
RT

then: 3:1 TFA/H,0O
50°C
(32% Yield)

3.106

NaSePh, 18-C-6|: R=CO,Me -3.106
THF R=CO,H -3.107

Scheme 3.30 Installation of the final hydroxy group

(Scheme 3.31) was followed by iodinative decarboxylation under Hunsdiecker-type

conditions to furnish iodide 3.108. Radical dehalogenation of crude

OH 1) MgCIO, (36 mol %), Ac,0
"“H 75°C _
2) HgO (1.1 equiv), I, (2 equiv)
hv, DCM, 115 °C

AIBN (cat)
3) Bu;SnH (1.6 equiv)
PhMe, 115°C
4) K,COs(35equiv)
MeOH
7% Yield over 5 steps

Aspergilline A

Scheme 3.31 Total synthesis of aspergilline A
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3.108 followed by exposure to methanolic potassium carbonate then delivered the natural

product aspergilline A 3.01 in 7% yield over the final five steps.2®

3.2.2 Total Synthesis of Cyclopiamide A and Speradine E

Having contended with aromatization early on during the aspergilline A synthesis,
we were eager to utilize this initially unwanted reactivity to our advantage. Thus, tetracycle
3.32, which had been synthesized through intramolecular aldol reaction of 3.28, was
exposed to catalytic palladium(0) to induce aromatization through a de-allylative

decarboxylation and subsequent hydroxide elimination (Scheme 3.32). The DMB group

NaH 0.6 equiv N=DMB  Pd(PPhs), (1.2 mol%) OO N-DMB
—_— > -
THF, 0to 55°C morpholine (4.9 equiv) O
THF, RT
(25% Yield) /Yo (83% Yield) /Y
R = COAllyl
3.32 3.33
i 3 109 i
CHCl4/H,0, 75 oc i 90 °C i {_{
(93% Yield) (54% Yield)
/ 03 02 / 0 3.03
Cyclopiamide A Speradine E

Scheme 3.32 Total synthesis of cyclopiamide A and speradine E

of 3.33 was then removed under the same conditions utilized in the aspergilline A synthesis
to give in 93% yield cyclopiamide A 3.02. To access speradine E a methyl -keto ester had
to be appended. Literature precedent revealed that such a transformation was not trivial.®
In fact, the acylation of cyclopiamide A had been attempted by the isolation chemists
without success. After attempting conventional acylation conditions with methyl malonyl

chloride, as well as more forceful deprotonation with LDA or t-BuLi and exposure to
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methyl malonyl chloride, we turned to acyl fluoride chemistry. Acyl fluorides are
precedented in the peptide coupling literature to be useful in preforming coupling reactions
in cases where the amine or carboxylic acid substrate may be sterically hindered.?’
Believing that the gem dimethyl group present in the substrate was hindering acylation we
exposed it to freshly prepared, neat methyl malonyl fluoride at 90 °C and were delighted

to find that the reaction provided speradine E 3.03 in 54% vyield.

3.3 Conclusion

In conclusion the first total syntheses of aspergilline A, cyclopiamide A and
speradine E were accomplished in 16, 6 and 7 steps, respectively. The most notable features
of the aspergilline synthesis include: a direct conversion of a propargyl amine 3.21 to a
pyrrolinone 3.30, the first utilization in a total synthesis of a cyclopropenone all-carbon 1,3
dipole in a reaction with an imidate, and a novel conversion of a vinylogous amide directly
to a tetramic acid. The cyclopiamide A and speradine E total synthesis were marked by
the utilization of a de-allylative decarboxylation/elimination/aromatization sequence to
give the aromatic tetracyclic core structure. Finally, due to the reported bioactivity of these
compounds samples of cyclopiamide A 3.02, hexacyclic ester 3.98 and hexacyclic acid
3.99 were submitted for screening to the NIH national cancer institute. The compounds
were screened against 60 cancer cell lines and the data is detailed in appendix F. Overall
the compounds showed no strong inhibition of cancer cell growth at 0.01 mM. We
acknowledge the NIH National Cancer Institute for their work in screening these

compounds.
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3.4 Experimental

3.4.1 General

Unless otherwise stated, all reactions were performed in flame dried glassware
under a nitrogen atmosphere, using reagents as received from the manufacturers. The
reactions were monitored and analytical samples purified by normal phase thin-layer
chromatography (TLC) using Millipore glass-backed 60 A plates (indicator F-254, 250
M) or by using Sigma Aldrich glass-backed 60 A reverse phase C-18 fully end-capped
plates (fluorescent indicator, 250 uM). Tetrahydrofuran, dichloromethane, acetonitrile, and
toluene were dried using a solvent purification system manufactured by SG Water U.S.A.,
LLC. Manual flash chromatography was performed using the indicated solvent systems
with Silicycle SiliaFlash® P60 (230400 mesh) silica gel as the stationary phase. Flash
Chromatography on a Teledyne RF+UV-Vis Ms Comp MPLC was performed using the
indicated solvent systems, and Teledyne RediSep® Rf normal phase disposable columns of
the indicated size and at the indicated flow rate. *H and *C NMR spectra were recorded
on a Bruker Avance 111 300, a Bruker AscendTM 400 autosampler or a Bruker AscendTM
600 autosampler. Chemical shifts (8) are reported in parts per million (ppm) relative to the
residual solvent resonance and coupling constants (J) are reported in hertz (Hz). NMR peak
pattern abbreviations are as follows: s = singlet, d = doublet, dd = doublet of doublets, t =
triplet, at = apparent triplet, g = quartet, ABg = AB quartet, m = multiplet. NMR spectra
were calibrated relative to their respective residual NMR solvent peaks, CDCls = 7.26 ppm
(*H NMR)/ 77.16 ppm (33C NMR), DMSO = 2.50 ppm (:H NMR)/ 39.52 ppm (*3C NMR),
MeOD = 3.31 ppm (*H NMR) MeCN = 1.94 ppm (*H NMR)/118.26 ppm (**C NMR). IR

spectra were recorded on Bruker Platinum-ATR IR spectrometer using a diamond window
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and the stretches reported in cm™. High Resolution mass spectra (HRMS) were obtained
in the Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap
Discovery spectrometer using +ESI or —ESI and reported for the molecular ion ([M+H]* &
[M+Na]* or [M-H]" respectively) Single crystal X-ray diffraction data were collected on a
BrukerApex 11-CCD detector using Mo-Ka radiation (A = 0.71073 A). Crystals were
selected under oil, mounted on micromounts then placed in a cold stream of N2. Structures

were solved and refined using SHELXTL.?°

Preparation of Propargyl Acetate 3.111

o L
OH  Mgcloy,amolwy & © ©

3.110 0°CtoRT 3.111

\\<

A flame dried 500 mL round bottomed flask was charged with magnesium
perchlorate (1.63 g, 7.3 mmol, 0.01 equiv) and acetic anhydride (73.7 mL, 775 mmol, 1.04
equiv). The solution was cooled in an ice water bath and the propargyl alcohol 3.110 (72
mL, 743.0 mmol, 1 equiv) was added dropwise over forty minutes. The solution was then
allowed to stir in the ice bath for ten minutes and then warmed to room temperature.
Stirring was continued at room temperature for an additional one hour and ten minutes.
During this time the reaction color turned a light brown and the solution became cloudy.
To the reaction was added 500 mL Et20 and the reaction mixture washed twice with 500
mL of 0.1 M NaHCOs. The organic layer was dried over sodium sulfate and the solvent
removed by rotary evaporation. The compound was used as is for the next step without
further purification. This gave 86.6 grams (92.1% yield) of the propargyl acetate 3.111 as

a pale yellow oil.? tH NMR (400 MHz, Chloroform-d) & 2.53 (s, 1H), 2.03 (s, 3H), 1.68
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(s, 6H).23C NMR (101 MHz, Chloroform-d) & 169.6, 84.9, 72.3, 71.7, 29.0, 22.0. +ESI-
HRMS m/z: calc’d for [M+Na]® C7H1002Na* = 149.05785, found C7Hi002Na* =
149.05725 FTIR (Neat) 3289, 2991, 2942, 1741, 1469, 1432, 1366, 1233, 1197, 1132,
1046, 1015, 965, 940, 844 cm™L. *Notes: The reaction is strongly exothermic. The reaction
color varies, often darker yellow or brown is observed if the reaction warms too strongly
during the addition of the propargyl alcohol, but this does not significantly impact the

purity of the product which is obtained.

Preparation of Propargyl Amine 3.20

7

0
/k N cucl (5 mol %) )(
070 HzN THF, reflux >z N
o~ o~

3.111 3.112 3.20

To a flame dried 2L round bottomed flask was added the propargyl acetate 3.111
(50 g, 396.3 mmol, 1 equiv), dry THF (800 mL), cuprous chloride (1.96 g, 19.8 mmol, 0.05
equiv) and dimethoxy benzyl amine 3.112 (100 mL, 666 mmol, 1.68 equiv). The flask was
evacuated and back filled with nitrogen twice. A reflux condenser was attached, and the
system was evacuated and back filled with nitrogen an additional two times. The reaction
mixture was then heated to reflux for four hours and 30 minutes. The reaction flask was
then removed from the heat and allowed to cool for ten minutes. The reaction mixture was
then poured into a separatory funnel which contained 250 mL of 2M HCI. deionized water
and diethyl ether were added and the organic layer was extracted with the HCI solution.
The aqueous layer was removed and the organic layer extracted again with an additional

250 mL 2M HCI. The aqueous phases were combined and washed twice with diethyl ether.
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The combined aqueous phases were then neutralized with 600 mL 2M NaOH and then
extracted four times with diethyl ether. The organic layer was dried over magnesium sulfate
and the solvent removed by rotary evaporation. The residue was purified by flash column
chromatography using a gradient beginning at 0% ethyl acetate in hexanes and progressing
to 20% ethyl acetate in hexanes (all eluent solvents contained triethyl amine in a 100:1
ratio solvent: triethyl amine). The fractions containing the desired product were combined
and evaporated to give a light yellow crystalline solid which was then triturated with 50
mL of 10% diethyl ether in hexanes this yielded 58.1 grams (63.1% Yield) of dimethoxy
benzyl protected propargyl amine 3.20 as a white crystalline solid.®> Rf = 0.43 (40%
EtOAc/hexanes), UV;TH NMR (600 MHz, Chloroform-d) § 7.19 (d, J = 8.4 Hz, 1H), 6.44
—6.42 (m, 2H), 3.81 (s, 3H), 3.80 (s, 2H), 3.79 (s, 3H), 2.34 (s, 1H), 1.43 (5, 6H). 3C NMR
(101 MHz, Chloroform-d) 6 160.2, 158.7, 130.5, 121.3, 104.1, 98.7, 89.3, 69.8, 55.5, 55.5,
49.9, 43.8, 29.7. +ESI-HRMS m/z: calc’d for [M+H]" C14H20NO2" = 234.14940, found
C1aH20NO2* = 234.14874. FTIR (Neat) 3313, 3191, 2973, 2935, 2835, 1613, 1587, 1507,
1464, 1434, 1418, 1383, 1367, 1333, 1286, 1264, 1209, 1179, 1155, 1126, 1070, 1045,

1029, 920, 837, 798, 718 cm™™.
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Methyl Bromoisatin 3.11

Br Br

K2CO3, Mel
> (0]

DMF, 80 °C

3.19 3.1

To an oven dried 1 L round bottomed flask was added bromoisatin 3.19 (63 g, 279
mmol, 1 equiv), dry DMF (350 mL), potassium carbonate (57.8 g, 418 mmol, 1.5 equiv)
and then iodomethane (52 mL, 835 mmol, 3 equiv). The mixture was stirred for ten minutes
at room temperature and then warmed to 80 °C for five hours and ten minutes. The reaction
mixture was then allowed to cool to room temperature and a 10% solution of hexanes in
DCM was added. The reaction solution was poured into a separatory funnel and washed
with deionized water several times. The aqueous washes were combined and extracted with
DCM twice. The organic layers were then combined and washed three times with water
and once with half saturated brine solution. The organic layer was dried over sodium sulfate
and the solvent removed by rotary evaporation. The solid residue was then filtered through
a sintered glass filter funnel and washed several times with water. The bright orange solid
was held under high vacuum until all traces of DMF were removed to give 63 grams (94%
Yield) of the N-methylated bromo isatin 3.11 as a free flowing orange solid. Rf=0.55 (90%
EtOAc/hexanes), UV; 'H NMR (400 MHz, DMSO-ds) & 7.54 (t, J = 8.0 Hz, 1H), 7.28 (d,
J=8.2,1H), 7.13 (d J = 7.8, 1H), 3.13 (s, 3H).3C NMR (101 MHz, DMSO-ds) 5 180.8,
157.5, 153.2, 138.6, 127.2, 119.1, 116.1, 109.7, 26.1.+ESI-HRMS m/z: calc’d for

[M+Na]* CoHeBrNO2Na*™ = 261.94796, 263.94581 found CoHeBrNO2Na™ = 261.94733,
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263.94528 FTIR (Neat) 3077, 1741, 1729, 1596, 1580, 1481, 1453, 1349, 1303, 1287,

1208, 1164, 1116, 1039, 867, 782 cm™™.

Preparation of Propargyl Amine 3.18

//)é NH; 3 17

Br Pd(PPhs), (4 mol%) NH;
Cul (8 mol%) Vi
O CSZCOS, i‘PerEt
>
N PhMe 70 °C o
/
© N
o)
3.1 3.18

To a dry round bottomed flask was added bromo isatin 3.11 (250 mg,1.04 mmol),
tetrakis triphenyl phosphine palladium (48 mg, 0.042 mmol), Cul (16 mg,0.084 mmol),
cesium carbonate (408 mg,1.25 mmol), toluene (12.5 mL) and Hinig's base (375 uL, 2.20
mmol). Then propargyl amine 3.17 (150 uL,1.43 mmol) was added. After 40 minutes an
additional 50 pL of 3.17 (0.475 mmol) were added. After an additional hour 30 pL of 3.17
(0.285 mmol) were added the reaction was then poured into half saturated brine and the
reaction mixture extracted with diethyl ether until most of the color was removed from the
aqueous layer. The combined organic layer was then extracted twice with 1 M HCI and the
combined aqueous extracts were washed three times with diethyl ether. The aqueous
extract was then neutralized with solid sodium bicarbonate and extracted several times with
ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent
removed under reduced pressure to give 238 mg (94% Yield) of cross coupling product
3.18 as a red solid. Rf= 0.34 (20% MeOH/DCM), UV; *H NMR (400 MHz, Chloroform-

d)§7.50 (t, ] =7.9 Hz, 1H), 7.06 (d, ] = 7.9 Hz, 1H), 6.79 (d, ] = 7.9 Hz, 1H), 3.24 (s, 3H),
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1.54 (s, 6H). 13C NMR (101 MHz, Chloroform-d) & 181.3, 158.1, 151.4, 137.4, 127.3,
122.4, 117.5, 109.0, 106.4, 76.5, 46.2, 31.3, 26.4. +ESI-HRMS m/z: calc’d for [M+H]*
C14H15sN202" = 243.11335 found Ci4Hi1sN202" = 243.11296. FTIR (Neat) 3355, 2975
2932, 1734, 1588, 1490, 1456, 1360, 1305, 1277, 1201, 1165, 1066, 991, 871, 822, 789,

714,695 cm™.

Preparation of Propargyl Isatin 3.21

3.20

%N_DMB
7 H DMB
8 Pd(PPhs), (4 mol%) N
' H
Cul (8 mol%) //
C32CO3, i'PerEt
o
PhMe 70 °C
/N °
o N
3.1 /3210

A 2 L round bottom flask was charged with the bromo isatin S6 (20 g, 83.3 mmol,
1.0 equiv), tetrakis triphenyl phosphine palladium (3.852 g, 3.333 mmol, 0.036 equiv), Cul
(1.268 g, 6.66 mmol, 0.08 equiv), 20 g crushed and activated 4A MS, cesium carbonate
(32.56 ¢, 99.97 mmol, 1.19 equiv), and the propargyl amine 3.20 (29.155 g, 124 mmol,
1.49 equiv). The flask was evacuated and backfilled with nitrogen then dry toluene (950
mL) was added, followed by Hiinig's base (26 mL, 149 mmol, 1.78 equiv). The reaction
was then placed in a preheated 85 °C oil bath. Successive slow addition of additional
propargyl amine 3.20 was required for the reaction to proceed to completion without the
formation of side products. After 1 hour and 15 minutes 7.5 g (32.1 mmol, 0.39 equiv) of
propargyl amine 3.20 dissolved in 40 mL toluene was added by cannula. 40 minutes later

7.59 (32.1 mmol, 0.39 equiv) of the propargyl amine 3.20 dissolved in 40 mL toluene was
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added by cannula. 30 minutes later 7.5g (32 mmol, 0.39 equiv) of propargyl amine 3.20
dissolved in 40 mL toluene was added by cannula. 50 minutes later 10 g (43 mmol, 0.52
equiv) of propargyl amine 3.20 dissolved in 50 mL toluene added by cannula. 40 minutes
later 10 g (43 mmol, 0.52 equiv) of propargyl amine 3.20 dissolved in 50 mL toluene was
added by cannula. 30 minutes later 10 g (43 mmol, 0.52 equiv) of propargyl amine 3.20
dissolved in 50 mL toluene was added by cannula. 50 minutes later 10 g (43 mmol, 0.52
equiv) of propargyl amine 3.20 dissolved in 50 mL toluene was added by cannula. After
an additional 30 minutes the reaction was removed from the heat and allowed to cool for
30 minutes. A half saturated brine solution was added to a separatory funnel followed by
the reaction mixture. Ethyl acetate was added and the organic layer was washed twice with
half saturated brine (including what it was originally poured into) then extracted with 1.75
M HCI 2x (1000 mL total volume) followed by 200 mL 1 M HCI. The acidified aqueous
layer was then washed several times with diethyl ether. The aqueous layer was then
neutralized with solid NaHCOs. The neutralized aqueous layer was then extracted several
times with ethyl acetate followed by drying of the organic layer over sodium sulfate and
removal of the solvent by rotary evaporation. The reaction was purified by MPLC, it was
purified in two batches using a gradient beginning at 0% ethyl acetate in hexanes and
progressing to 70% ethyl acetate in hexanes both eluents contained ~ 1% triethyl amine.
This yielded 23.6 g (72% yield) of the coupled product 3.21 as a red orange solid. Also,
51.8 g of the propargyl amine 3.20 starting material were recovered. Rr = 0.4 (90%
EtOAc/hexanes), UV;'H NMR (400 MHz, Chloroform-d) & 7.50 (t, J = 7.9 Hz, 1H), 7.24
(d, J=8.9 Hz, 1H), 7.10 (dd, J = 7.9, 0.8 Hz, 1H), 6.80 (d, J = 7.9, 0.8 Hz, 1H), 6.47 — 6.39

(m, 2H), 3.94 (s, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.25 (s, 3H), 1.57 (s, 6H).13C NMR (101

89



MHz, Chloroform-d) & 181.1, 160.1, 158.8, 158.2, 151.4,137.2, 130.8, 127.8, 122.7, 121.5,
117.5,108.7, 104.7,104.1, 98.8, 78.5, 55.5, 55.5, 50.9, 44.0, 29.4, 26.4.+ESI-HRMS m/z:
calc’d for [M+Na]* C2sH24N204Na* = 415.16338, found C23H2aN20sNa* = 415.16306.
FTIR (Neat) 2970, 2935, 2838, 1736, 1588, 1508, 1456, 1418, 1360, 1305, 1289, 1207,

1157, 1127, 1065, 1038, 920, 833, 788, 695 cm™.

Preparation of Methyl Pyrrolinone 3.31

i i-Pr,NEt
DCM, -78 °C

)J\/u\ ul
cl o~

3.29

(asa solutgig)rg:in DCM) 331

To a flame dried 1 L round bottomed flask was added Hiinig’s base (36.6 mL, 210
mmol 7.5 equiv) and dry DCM (350 mL), the solution was then cooled to —78 °C in a dry
ice/acetone bath. To the Hiinig’s base solution was then dropwise added methyl malonyl
chloride 3.29 (10.4 mL, 97.2 mmol, 3.5 equiv) and the solution stirred for 1 hour. The
substrate 3.21 (11 g, 28 mmol, 1 equiv), which had been placed in a flame dried 500 mL
round bottomed flask and dissolved in dry DCM (130 mL) was then transferred by slow
addition through cannula to the flask containing the Hiinig’s base/acyl chloride solution.
After cannulation the reaction mixture was allowed to stir for an additional 40 minutes at
—78 °C and subsequently was quenched with 50 mL of 1M NaHCOs. The dry ice
acetone/bath was removed and the flask was allowed to warm slightly. The mixture was

then transferred to a separatory funnel and extracted several times with DCM. The organic
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layer was dried over sodium sulfate and solvent removed by rotary evaporation. The
residue was purified by MPLC using a 330-gram column with a flow rate of 200 mL/min.
A gradient from 0% ethyl acetate in hexanes to 90% ethyl acetate in hexanes was used. this
yielded 7.8 g (56.5% Yield) of pyrrolinone 3.31 as an orange foam. Rf = 0.34 (90%
EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) 6 7.45 (t,J = 7.9 Hz, 1H), 7.32
(d, J=8.2 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.44 — 6.37 (m, 2H),
4.57 (s, 2H), 4.50 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 3.24 (s, 3H), 1.10 (s, 6H).
13C NMR (151 MHz, Chloroform-d) & 184.1, 170.9, 165.8, 163.8, 160.3, 157.9, 157.6,
151.9, 139.6, 138.4, 131.0, 126.0, 124.5, 119.0, 115.1, 108.4, 104.7, 98.3, 65.9, 55.5, 55.5,
52.4, 35.8, 26.9, 26.4, 23.6. +ESI-HRMS m/z: calc’d for [M+Na]® Cz7H2sN207Na*" =
515.17942, found C27H2sN207Na* = 515.17914 FTIR (Neat) 2949, 2839, 1737, 1685,
1604, 1508, 1463, 1436, 1398, 1360, 1326, 1294, 1265, 1208, 1157,1110, 1056, 1035, 916,
896, 835, 788, 730, 646 cm™*. *Notes: Often evaporation from ethyl acetate gives an orange
viscous oil, dissolving this oil in DCM followed by rotary evaporation gives an orange
foam. The yield decreases on larger scales, up to 3 g scale the reaction gives 65% vyield.
Often the compound has trace impurities after column chromatography, this does not
appear to significantly impact the next steps. An analytically pure sample was obtained by

prep TLC using 75:25 ethyl acetate: hexanes.
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Preparation of Tetracyclic Methyl Ester 3.34

K,CO3 (0.3 equiv)
MeOH

3.31 3.34

Pyrrolinone 3.31 (764 mg, 1.55 mmol) was placed into a dry round bottom flasked
equipped with a stir bar. Dry methanol (13 mL) was added. The reaction flask was then
cooled in an ice water bath and potassium carbonate (64.4 mg, 0.047 mmol) was added.
The ice bath was then removed and the solution warmed to room temperature. Over ten
minutes the reaction color slowly darkened, changing from orange to emerald green. After
45 minutes of reaction time the flask was placed in a 50 °C oil bath and warmed for 35
minutes and then quenched with 8 mL of 0.5M ammonium chloride (enough ammonium
chloride is added until the orange color returns). Brine and DCM were added. The reaction
mixture was then extracted five times with DCM and the organic layer dried over sodium
sulfate. The solvent was removed under reduced pressure and the residue triturated with
~30% ethyl acetate: hexane mixture. This gave 330 mg (43% Yield) of tetracyclic ester
3.34 as an amorphous white to yellow solid; 300 mg of starting material were recovered
from the trituration solution. Rf= 0.25 (90% EtOAc/hexanes), UV; 'H NMR (400 MHz,
Chloroform-d) & 7.37 (d, J = 8.2 Hz, 1H), 7.25 (t, ] = 7.8 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H),
6.68 (d, J = 7.8 Hz, 1H), 6.56 (s, 1H), 6.44 — 6.38 (m, 2H), 4.71 (d, J = 15.7 Hz, 1H), 4.51
(d, J=15.8 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.55 (s, 3H), 3.23 (s, 3H), 1.47 (s, 3H), 1.35

(s, 3H). 3C NMR (101 MHz, Chloroform-d) & 175.5, 167.0, 166.3, 160.2, 157.5, 144.8,
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144.7,131.6, 131.2, 130.4, 123.6, 119.2, 118.8, 118.8, 108.3, 104.5, 98.3, 71.3, 64.1, 62.6,
55.5, 53.0, 36.4, 28.0, 26.7, 26.3. +ESI-HRMS m/z: calc’d for [M+Na]" C27H2sN207Na*
= 515.17942, found C27H2sN207Na* = 515.17883 FTIR (Neat) 3370, 2938, 2838, 1731,
1692, 1645, 1615, 1592, 1508, 1473, 1435, 1406, 1369, 129, 1264, 1238, 1207, 1155, 1127,

1035, 1022, 969, 966, 934, 901, 881, 833, 782, 730 cm™ ™.

Preparation of MOM Protected Tetracycle 3.35

MOM-CI, DIPEA
DMAP

DCM

3.34 335

To a dry round bottomed flask was added tetracycle 3.34 (150 mg, 0.304 mmol),
DMAP (9.1 mg, 0.074 mmol) and dry DCM (3 mL). The solution was then cooled in an
ice bath and Hinig's base (1 mL, 5.7 mmol) was added. To this mixture was added
dropwise MOM-CI (280 uL, 3.7 mmol) after 25 minutes the ice bath was removed. After
five hours and additional 1 mL of Hiinig's base (5.7 mmol) was added, the reaction cooled
in an ice bath and 280 uL of MOM-CI (3.7 mmol) added dropwise over several minutes,
then the reaction allowed to warm to room temperature. After nine hours, the reaction was
once again cooled in an ice bath and 0.5 mL Huinig's base (2.85 mmol) was added followed
by 280 uL of MOM-CI (3.7 mmol). The reaction was allowed to warm to room temperature
and the reaction monitored by TLC; upon TLC indicating completion, the reaction mixture
was worked up by adding to brine (to the brine had been added a few drops of sodium

bicarbonate) and extracting with DCM several times. The combined organic layers were
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dried over sodium sulfate and the solvent removed under reduced pressure. The residue
was purified by MPLC using a 12-gram column and a gradient which began at 0% ethyl
acetate in hexanes and progressed to 95% ethyl acetate in hexanes this yielded 116.1 mg
(72% Yield) of 3.35 as an orange glassy solid. Rf= 0.26 (90% EtOAc/hexanes), UV; H
NMR (400 MHz, Chloroform-d) § 7.42 (d, J = 8.4 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.73
(d, J = 7.6 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H), 6.47 (s, 1H), 6.41 (d, J = 2.4 Hz, 1H), 6.37
(dd, J = 8.4, 2.4 Hz, 1H), 4.66 — 4.48 (m, 4H), 3.83 (s, 3H), 3.77 (s, 3H), 3.53 (s, 3H), 3.26
(s, 3H), 3.22 (s, 3H), 1.39 (s, 6H). 13C NMR (151 MHz, Chloroform-d) & 173.4, 166.7,
165.5, 160.0, 157.3, 147.3, 145.6, 131.9, 130.3, 121.5, 119.3, 118.2, 118.1, 107.8, 104.4,
98.0, 93.0, 75.1, 63.6, 62.6, 56.6, 55.5, 55.4, 52.9, 36.2, 28.5, 26.7, 26.5. +ESI-HRMS
m/z: calc’d for [M+Na]* C29H32N20gNa * = 559.20564, found C29H32N20sNa * =
559.20514. FTIR (Neat): 2936, 2838, 2246, 1732, 1695, 1644, 1614, 1590, 1508, 1472,
1436, 1402, 1368, 1301, 1262, 1235, 1207, 1153, 1127, 1103, 1075, 1026, 985, 996, 913,

877, 855, 833, 782, 727, 645,571 cm ™!
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Preparation of Pyrrolidone 3.45

O 420PSI H,, Raney Ni
MeOH, 48h o

3.31 345

Into a parr bomb’s steel reaction vessel was added pyrrolinone 3.31 (20 g, 40.6
mmol, 1 equiv), methanol (175 mL) and several large spatulas full of Raney® nickel slurry.
The vessel was loaded into the parr bomb and was then subjected to 420 PSI H2 pressure
for 48 hours. The reaction was monitored by NMR and periodically extra Raney® nickel
was added until the reaction was complete as indicated by NMR. The solution was quickly
filtered through a glass fritted filter and the reaction vessel and glass filter washed several
times with methanol and acetone. This gave 17.2 g (85% Yield) of pyrrolidone 3.45 (white
to yellow solid) as an inconsequential mixture of diastereomers which was carried on to
the next step without further purification. *H NMR (400 MHz, Chloroform-d) & 7.25 —
7.16 (m, 3H), 6.88 — 6.82 (m, 1.5H), 6.70 — 6.61 (M, 1.5H), 6.47 — 6.35 (m, 3H), 5.15 (d, J
= 5.5 Hz, 0.4 H minor diastereomer), 5.11 (d, J = 6.2 Hz, 1H major diastereomer), 4.52 —
4.31 (m, 3H), 3.82 (s, 3H major diastereomer), 3.81 (s, 1.6 H minor diastereomer), 3.77 (s,
3H major diastereomer), 3.77 (s, 2H minor diastereomer), 3.48 (d, J=11.3 Hz, 1.4 H), 3.29
(s, 3H major diastereomer), 3.14 (s, 5H), 2.91 — 2.78 (m, 2H), 2.63 (at, J = 12.3 Hz, 1H),
1.34 (s, 3H major diastereomer), 1.24 (s, 1.6H minor diastereomer), 1.09 (s, 1.4 H minor
diastereomer), 1.07 (s, 3H major diastereomer).*C NMR (101 MHz, Chloroform-d) &

176.3, 176.3, 171.3, 170.8, 169.4, 169.1, 160.1, 157.5, 157.4, 144.3, 144.2, 137.5, 137.0,
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130.0, 130.0, 129.9, 129.8, 125.4, 125.3, 124.6, 119.0, 118.9, 107.0, 106.9, 104.5, 104.5,
98.4, 69.7, 69.6, 62.5, 62.3, 55.5, 55.4, 55.4, 53.6, 53.5, 52.4, 52.3, 49.5, 49.1, 36.8, 31.5,
31.1, 26.5, 25.8, 25.6, 21.3, 21.1.+ESI-HRMS m/z: calc’d for [M+Na]* C27H32N20O7Na* =
519.21072, found C27H32N207Na* = 519.21072 FTIR (Neat) 3368, 3054, 2950, 2839,
1707, 1682, 1608, 1590, 1507, 1467, 1435, 1407, 1368, 1294, 1263, 1207, 1157, 1128,
1116, 1030, 1007, 961, 935, 922, 863, 834, 782, 732, 701, 656 cm™*. *Notes: The reaction
frequently stalls, as such NMR monitoring of aliquots is critical. If the reaction stalls extra
Raney® nickel should be added until the reaction is complete as indicated by NMR. In total
an estimated 33.4 g of wet Raney nickel slurry was added over seven additions for the
described reaction. Under these reaction conditions the isatin’s ketone is reduced first. The
reaction time varies between 48 — 72 h. The ratio of diastereomers varies between reactions,

in the provided spectra it appears in the crude as ~ 2:1 mixture.

Preparation of Isatin 3.46

DMP
DCM

3.45 3.46

Two iterations of the same reaction were run simultaneously. The reactions were
combined for work up and purification. To a flame dried round bottom flask was added
pyrrolidone 3.45 (9.25 g, 18.6 mmol, 1 equiv) dry DCM (180 mL) and Dess-Martin

periodinane (15.8 g, 37.2 mmol, 2 equiv). The reaction mixture was stirred for four hours
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at room temperature and then both reactions were poured into a separatory funnel which
contained 110 mL of saturated sodium bicarbonate solution. The reactions were washed
with this solution. Half saturated brine was then used to wash the organic layer and the
combined aqueous layers re-extracted several times with DCM. The organic layers were
combined and dried over sodium sulfate and the solvent then removed by rotary
evaporation. The compound was purified by column chromatography MPLC using 330-
gram column with a flow rate of 200 mL/min. A gradient which began at 0% ethyl acetate
in hexanes and progressed to 80% ethyl acetate in hexanes was used for purification. This
gave 15.0 grams (81% Yield) of isatin 3.46 as an orange foam. Rsf = 0.19 (90%
EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) & 7.45 (t,J = 7.8 Hz, 1H), 7.15
(d, J=8.1Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.48 — 6.36 (m, 2H),
4.41 (ABg, J = 15.7 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.40 (s, 3H), 3.37 — 3.25 (m, 2H),
3.23 (s, 3H), 2.83 — 2.68 (m, 2H), 1.40 (s, 3H), 1.08 (s, 3H).:3C NMR (101 MHz,
Chloroform-d) 6 183.7, 170.4, 169.1, 160.1, 158.0, 157.5, 152.1, 141.9, 137.7, 129.9,
125.8, 118.8, 115.5, 108.4, 104.5, 98.4, 62.5, 55.5, 55.4, 53.3, 52.3, 49.4, 36.9, 31.1, 26.4,
25.5, 21.4. +ESI-HRMS m/z: calc’d for [M+Na]* C27H3zN207Na* = 517.19507, found
C27H30N207Na* = 517.19470 FTIR (Neat) 2970, 2946, 2839, 1734, 1686, 1606, 1508,
1462, 1436, 1407, 1359, 1301, 1263, 1208, 1161, 1128, 1063, 1032, 1007, 919, 839, 789,
728,697 cm. *Notes: The reaction solution turns orange upon addition of the Dess-Martin
periodinane. Upon rotary evaporation of the crude material, a white solid sometimes
precipitates. The precipitate is filtered away from the product before column

chromatography.
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Preparation of Reduced Tetracycle 3.47

K,COj3 (0.6 equiv)
MeOH o

3.46

Pyrrolidone 3.46 (29 mg, 0.059 mmol) was dissolved in dry methanol (0.5 mL)
and (2 mg, 0.014 mmol) of potassium carbonate were added. The reaction was stirred at
room temperature for 30 minutes then an additional 2 mg (0.014 mmol) of potassium
carbonate were added. After 45 minutes the reaction was quenched with 0.5 mL saturated
ammonium chloride and deionized water was added. The mixture was then extracted
several times with DCM and the solvent dried over sodium sulfate. The solvent was
removed under reduced pressure and the residue purified by preparative TLC using 95%
ethyl acetate: 5% hexanes as the eluent system. This gave 4.6 mg (16% Y ield) of the desired
tetracyclic material 3.47 (yellow - green film) and 7.6 mg of recovered starting material.
Rf=0.25 (90% EtOAc/hexanes), UV; *H NMR (400 MHz, Acetonitrile-d3) & 7.35 — 7.27
(m, 2H overlaps), 6.90 (d, J = 7.7 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.53 (d, J = 2.4 Hz,
1H), 6.48 (dd, J = 8.5, 2.4 Hz, 1H), 4.54 — 4.41 (m, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 3.49 (s,
3H), 3.13 (s, 3H), 2.93 — 2.79 (m, 2), 2.63 (dd, J = 11.6, 6.3 Hz, 1H), 1.26 (s, 3H), 1.17 (s,
3H). ¥C NMR (101 MHz, Chloroform-d) § 176.2, 171.9, 169.1, 160.2, 157.5, 143.7,
136.0, 131.0, 130.1, 126.0, 120.4, 118.9, 106.6, 104.6, 98.4, 73.1, 63.7, 61.7, 55.6, 55.5,
54.1, 53.0, 36.9, 28.8, 27.7, 26.6, 23.9. +ESI-HRMS m/z: calc’d for [M+Na]*

C27H30N207Na* = 517.19507, found C27Hs0N207Na* = 517.19452. FTIR (Neat) 3398,
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2952, 2839, 1731, 1681, 1614, 1591, 1508, 1456, 1437, 1414, 1372, 1298, 1262, 1208,

1157, 1127, 1081, 1033, 916, 834, 782, 730, 646 cm™.

Preparation of Reduced Tetracycle 3.49

TMS-OTf (1.6 equiv)
EtzN (2.5 equiv)
DCM, 0°Cto35°C

then
TiCl, (0.25 equiv)
DCM, -78 °C to RT

R=TMS
3.46 3.49

Three iterations of this reaction were run simultaneously and combined for work
up and purification. Pyrrolidone 3.46 (3.5 g, 7.07 mmol, 1 equiv) was dissolved in dry
DCM (70 mL) and triethyl amine was added (2.5 mL, 18 mmol, 2.5 equiv). The reaction
was placed in an ice bath and TMS-OTf (2.05 mL, 11.3 mmol, 1.6 equiv) was added slowly
over five minutes. Ten minutes later the reaction was removed from the ice bath and
warmed to RT then to 40 °C and stirred for two hours and five minutes. The reaction was
then allowed to cool to RT and the solvent was removed under reduced pressure by rotary
evaporation. The residue was placed under high vacuum and the reaction flask evacuated
and back filled with nitrogen. Dry DCM (60 mL) was added to the residue, following this
the solution was cooled to —78 °C in a dry ice/acetone bath for five minutes and 1M TiCls
in DCM (1.76 mL, 1.76 mmol, 0.25 equiv) was added and the reaction stirred for 50
minutes followed by warming to RT and stirring for an additional 30 minutes. The three
reactions were then poured into a separatory funnel which contained 300 mL of 0.05 M

NaHCOs. The organic layer was washed with the bicarbonate solution. The aqueous layer
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was then extracted several times with DCM and the combined organic layers dried over
sodium sulfate. The solvent was removed by rotary evaporation, upon evaporation or
sitting after concentration a white precipitate formed which was filtered prior to loading
the residue onto a column for chromatography. The residue was purified by MPLC using
a 220-gram column with a flow rate of 150 mL/min. A gradient which began at 0% ethyl
acetate in hexanes and progressed 70% ethyl acetate in hexanes was used for purification.
This gave 9.2 g (76% Yield) of tetracycle 3.49 as a light peach coloured foam. Rf= 0.1
(60% EtOAc/hexanes), UV; 1H NMR (400 MHz, DMSO-ds) & 7.28 (t, J = 7.7 Hz, 1H),
7.19 (d, J = 8.4 Hz, 1H), 6.84 (dd, J = 7.7, 5.1 Hz, 2H), 6.56 (d, J = 2.3 Hz, 1H), 6.43 (dd,
J=8.5, 2.3 Hz, 1H), 4.35 (s, 2H), 3.84 (s, 3H), 3.74 (s, 3H), 3.46 (s, 3H), 3.11 (s, 3H), 2.97
—2.73 (m, 3H), 1.30 (s, 3H), 1.16 (s, 3H), -0.19 (s, 9H). 3C NMR (101 MHz, Chloroform-
d) 8 174.6, 171.2, 167.5, 159.8, 157.2, 143.4, 135.4, 130.9, 130.8, 126.8, 120.2, 120.1,
105.9, 104.7, 98.0, 74.3, 66.0, 61.7, 55.5, 55.5, 52.9, 50.4, 36.4, 29.9, 26.7, 26.3, 24.2, 1.0.
+ESI-HRMS m/z: calc’d for [M+Na]* CsoH3sN207SiNa®™ = 589.23460, found
Cs3oH3sN207SiNa* = 589.23474. FTIR (Neat) 2954, 1736, 1688, 1612, 1590, 1508, 1477,
1437, 1410, 1372, 1332, 1298, 1252, 1207, 1156, 1113, 1072, 1040, 918, 867, 843, 781,
754, 729, 644 cm™. *Notes: During work up an emulsion forms. The yield for this reaction

ranges from 75 — 90%.
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Preparation of Secondary Amide 3.54

DDQ (3 equiv)

CHCI4/H,0, 75 °C

To a sealed tube was added tetracycle 3.49 (500 mg, 0.882 mmol, 1 equiv), CHCI3
(9 mL) and H20 (0.13 mL). Then 2,3-dichloro-5,6-dicyano-p-benzoquinone (300 mg, 1.32
mmol, 1.5 equiv) was added. the reaction vessel was then purged with nitrogen, the tube
sealed and placed in a pre-heated 75 °C oil bath. After 45 minutes the reaction vessel was
removed from the oil bath and allowed to cool for ten minutes. An additional 300 mg (1.32
mmol, 1.5 eq) of DDQ were added and the reaction vessel purged with nitrogen, sealed
and then placed in the 75 °C oil bath for an additional hour. After the hour the reaction
vessel was removed from the heat and allowed to cool for ten minutes. To the reaction was
then added DCM, and the solution poured into a separatory funnel. The organic layer was
washed several times with 0.1M NaHCO3 (280 mL total volume), The aqueous layers were
combined and re-extracted with DCM several times. The combined organic layers were
then dried over magnesium sulfate and the solvent removed by rotary evaporation. The
compound was purified by MPLC on a 24-gram column with a flow rate of 35 mL/min.
using a gradient which began at 0% ethyl acetate in hexanes and was stepped up to 1:1
ethyl acetate/hexanes then stepped up to pure ethyl acetate and then stepped up once more
to 10% methanol in ethyl acetate (the flow rate for the last step in the gradient was increased
to 50 mL/min). This gave 265.5 mg (72% Yield) of the secondary amide product 3.54 as

an orange foam. Rf=0.16 (90% EtOAc/hexanes), UV; *H NMR (400 MHz, DMSO-ds) &
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8.18 (s, 1H), 7.25 (t, J = 7.7 Hz, 1H), 6.82 (at, J = 7.2 Hz, 2H), 3.41 (s, 3H), 3.09 (s, 3H),
2.92-2.69 (m, 3H), 1.33 (s, 3H), 1.25 (s, 3H), -0.20 (s, 9H). 1*C NMR (151 MHz, DMSO-
ds) 6 173.7, 170.7, 167.1, 142.7, 135.2, 130.6, 125.9, 120.0, 105.9, 73.6, 66.5, 55.8, 52.3,
50.6, 31.7, 26.2, 26.0, 25.3, 0.7. +ESI-HRMS m/z: calc’d for [M+Na]" C21H2sN205SiNa*
=439.16652, found C21H2sN20sSiNa* = 439.16650 FTIR (Neat) 3210, 3061, 2956, 2898,
1731, 1702, 1637, 1611, 1478, 1434, 1388, 1370, 1333, 1299, 1205, 1236, 1197, 1154,
1115, 1082, 1054, 1017, 983, 961, 922, 869, 843, 806, 780, 752, 730, 697 cm™. *Notes:
The reaction time is critical for this reaction, prolonging the reaction time leads to
decomposition. DDQ impurities can often carry over even after several washes with 0.1 M
NaHCOs, washing once with half saturated NaHCO3s may be effective for removing
persistent DDQ impurities. During work up often an emulsion forms, if this is the case
using 10:1 0.1M NaHCOsa: brine helps to resolve this issue. The free amide 3.54 is not
stable on silica gel, especially in the presence of methanol, quick column purification is
essential for high yield. The compound may be obtained as an orange foam, a cream
colored solid or a brown amorphous solid depending on the amount of DDQ impurities
which were carried through the work up. Very slight DDQ impurities impart a significant

amount of colouration.
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Preparation of Acrylimide 3.55

0
C'J\" (4.5 equiv)

EtzN (5 equiv)
DMAP (0.1 equiv)
t

DCM

3.54
R=TMS

Amide 3.54 (139 mg, 0.33 mmol), DMAP (4.0 mg, 0.033 mmol) and EtsN (232 puL,
1.66 mmol) were dissolved in dry DCM (3.3 mL). Acryloyl chloride (122 uL,1.50 mmol)
was then added and the reaction allowed to stir for 1 hour and 15 minutes and then poured
into a separatory funnel which contained basified brine (a few drops of saturated sodium
bicarbonate had been added to it). The mixture was then extracted several times with DCM
and the organic layers combined. The organic layer was then washed with 0.5 M HCI (aq)
and the aqueous acid solution back extracted three times with DCM. The combined organic
layers were dried over sodium sulfate and the solvent removed under reduced pressure.
The residue was then purified by MPLC using a 4-gram column at a flow rate of 18 mL/min
with a gradient elution system which began at 0% ethyl acetate in hexanes and progressed
to 55% ethyl acetate in hexanes over nine minutes. The gradient was held at 55% for three
additional minutes. This gave 97 mg (62% Yield) of the desired product 3.55 as a waxy
white solid. Rf= 0.25 (40% EtOAc/hexanes), UV; 'H NMR (400 MHz, Chloroform-d) &
7.29 (t,J = 7.7 Hz, 1H), 7.20 (dd, J = 16.9, 10.4 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.68 (d,
J=7.7 Hz, 1H), 6.40 (dd, J = 16.9, 1.8 Hz, 1H), 5.76 (dd, J = 10.4, 1.8 Hz, 1H), 3.54 (s,
3H), 3.22 (s, 3H), 3.04 (dd, J = 13.2, 9.5 Hz, 1H), 2.92 — 2.74 (m, 2H), 1.74 (s, 3H), 1.65

(s, 3H), -0.12 (s, 9H). 3C NMR (151 MHz, Chloroform-d) 8 174.2, 170.1, 169.9, 168.0,
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143.3, 135.0, 131.7, 131.4, 129.2, 126.0, 120.5, 106.2, 74.3, 66.2, 63.9, 53.2, 50.3, 30.5,
26.7, 26.2, 22.7, 0.8. +ESI-HRMS m/z: calc’d for [M+Na]* C2sH30N206SiNa" =
493.17708, found C24H30N206SiNa* = 493.17679. FTIR (Neat) 2958, 1737, 1668, 1612,
1478, 1402, 1373,1309, 1252, 1219, 1178, 1153, 1112, 1080, 1041, 1022, 963, 925, 862,

844, 795, 781, 753, 703 cm ™.

Preparation of Acyloin 3.58

RuCl3 (2 mol %)
Oxone®(5 equiv)

1.8:12:12
H,0:MeCN:EtOAcC

-10°Cto RT
(15% Yield)

Acrylimide 3.55 (5 mg, 0.01 mmol) was added to a vial which contained a 1.8:12:12
solution of H20:MeCN:EtOAc (0.12 mL), and was cooled in an ice acetone bath. Then 0.1
M RuClz in H20 solution (1 uL, 0.0001 mmol) Oxone® (7.6 mg, 0.025 mmol), and sodium
bicarbonate (2.1 mg, 0.025 mmol) were added. After this was added an additional 7.5 mg
of Oxone® (0.024 mmol)and 1 pL of the 0.1 M RuClssolution (0.0001 mmol). The reaction
was allowed warm to room temperature and was stirred overnight. The reaction mixture
was then diluted with ethyl acetate and washed with half saturated brine. The aqueous layer
was back extracted with ethyl acetate and the combined organic layers were dried over
sodium sulfate and the solvent removed under reduced pressure. The residue was loaded
onto a TLC plate for prep TLC and was eluted with 75% ethyl acetate in hexanes to give
0.8 mg (15% vyield) of 3.58 as a white solid. Rf= 0.51 (90% EtOAc/hexanes), UV; H

NMR (600 MHz, Chloroform-d) & 7.32 (t, = 7.7 Hz, 1H), 6.87 (d, J = 7.7 Hz, 1H), 6.71
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(d, J=7.7 Hz, 1H), 4.59 — 4.43 (m, 2H), 3.57 (s, 3H), 3.21 (s, 3H), 3.08 (dd, J = 13.9, 10.1
Hz, 1H), 3.00 (dd, J = 10.1, 7.8 Hz, 1H), 2.83 (dd, J = 13.9, 7.8 Hz, 1H), 1.76 (s, 3H), 1.71
(s, 3H), -0.08 (s, 9H).13C NMR (151 MHz, Chloroform-d) & 197.4, 174.2, 172.1, 169.7,
168.9, 143.3, 134.7, 131.7, 125.4, 120.8, 106.6, 74.3, 66.3, 65.5, 63.5, 53.6, 51.4, 29.3,
26.7, 26.0, 22.4, 0.8. +ESI-HRMS m/z: calc’d for [M+Na]® CasH30N20sSiNa* =
525.16691, found C24H30N20sSiNa* = 525.16644. FTIR (Neat) 3449, 3339, 2957, 2927,
2854, 1736, 1696, 1638, 1612, 1478,1436, 1387, 1370, 1314, 1253, 1198, 1156, 1113,

1079, 1043, 1024, 960, 922, 866, 846, 816, 805, 782, 753, 740, 688, 637.

Preparation of Diol 3.56

050, (2.2 mol %) Y

NMO (1.9 equiv)

4:1 Acetone:H,0 OH
OH

Acrylimide 3.55 (152 mg, 0.322 mmol) and NMO (45.6 mg, 0.389 mmol) were
dissolved in 4:1 acetone: H20 solution (3.2 mL). Subsequently a 0.01 M solution of
osmium tetroxide (0.06 mmol) in t-butanol was added. After 14 h and 50 minutes to the
reaction was added 25 mg of NMO (0.21 mmol) and 100 pL of a 0.01 M solution of
osmium tetroxide in (0.01 mmol) in t-butanol was added. After 8 hours and 25 minutes the
reaction was quenched with 0.1M sodium bisulfite and extracted several times with ethyl
acetate and once with DCM. The organic layers were combined and dried over sodium
sulfate. The solvent was then removed under reduced pressure. The residue was purified

by MPLC on a 4-gram silica column using a gradient beginning at 0% ethyl acetate in
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hexanes and progressing to 75% ethyl acetate in hexanes at a flow rate of 18 mL/min. This
gave 123 mg (76% Yield) of the desired product 3.56 (compounds were characterized as a
1:0.68 mixture of diastereomers, the gem dimethyl resonance for the major diastereomer
was chosen to integrate to six protons) as a pale yellow foam which was used in the next
step as a mixture of diastereomers. Diastereomer 1 R¢= 0.33 (90% EtOAc/hexanes), UV;
diastereomer 2 Rs= 0.24 (90% EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d)
§7.33—-7.27 (m, 1.7H), 6.84 (d, J = 7.7 Hz, 1.7H), 6.69 (d, J = 7.7 Hz, 1.7H), 3.97 — 3.75
(m, 5H), 3.57 (s, 3H), 3.55 (s, 1.9H), 3.21 (s, 5H), 3.10 — 3.02 (m, 1.7H), 2.94 (dd, J = 9.9,
8.1 Hz, 1H), 2.87 (dd, J = 10.0, 7.9 Hz, 0.7H), 2.83 — 2.77 (m, 1.7H), 1.78 (s, 2H), 1.69 (d,
J=1.5Hz, 6H), 1.61 (s, 2H), -0.09 — -0.11 (m, 15H).3C NMR (151 MHz, Chloroform-
d) 8 176.2, 1759, 174.1, 174.0, 170.4, 170.2, 169.5, 169.5, 143.4, 143.3, 134.8,
134.7, 131.6, 125.8, 125.7, 120.6, 120.5, 106.3, 106.3, 74.4, 74.2, 73.6, 73.3, 66.2,
66.2, 65.0, 65.0, 64.3, 63.8, 53.3, 53.3, 50.5, 50.2, 30.6, 29.3, 26.7, 26.3, 25.6, 22.8,
22.5, 0.9, 0.8. +ESI-HRMS m/z: calc’d for [M+Na]* C24H32N20sSiNa* = 527.18256,
found C24H32N20sSiNa* = 527.18243. FTIR (Neat) 3492, 2956, 1737, 1706, 1637,
1613, 1478, 1371, 1304, 1252, 1211, 1154, 1111,1081, 1042, 1024, 962, 920, 865,

846, 780, 729, 646 cm™.
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Preparation of lodide 3.68

15 (1.2 equiv), ~Sie
H

/é CuO (0.5 equiv), HBF4 (1 equiv)'

DCM, —40 °C

To a dry vial was added CuO (17.2 mg, 0.0216 mmol) and 50% tetrafluoroboric
acid in diethyl ether (67 pL, 0.49 mmol) and dry DCM (2.2 mL); they were allowed to stir
for five minutes. Subsequently, the reaction vial was cooled in a dry ice/acetonitrile bath.
Then iodine (138 mg, 0.542 mmol), acrylimide 3.55 (215 mg, 0.457 mmol) and of triethyl
silane (284 uL, 1.78 mmol) were sequentially added. The reaction was allowed to stir for
3.5 h then DCM and water were added. The reaction solution was washed with the water.
The aqueous layer was back extracted with DCM and the organic layers combined and
dried over magnesium sulfate and the solvent removed under reduced pressure. The residue
was then purified by MPLC using a 12-gram silica gel column and a gradient which began
at 0% ethyl acetate in hexanes and progressed to 45% ethyl acetate in hexanes. A flow rate
of 30 mL/min was used. This gave 198 mg (73% Yield) of iodide 3.68 (viscous pale yellow
oil). Rf=0.25 (40% EtOAc/hexanes), UV; H NMR (600 MHz, Chloroform-d) § 7.29 (t,
J=7.7Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 3.68 (dt, J = 18.0, 6.4
Hz, 1H), 3.64 — 3.51 (m, 1H), 3.55 (s, 3H), 3.45 - 3.36 (m, 2H), 3.22 (s, 3H), 3.04 (dd, J =
14.0, 9.9 Hz, 1H), 2.87 (dd, J = 9.9, 8.0 Hz, 1H), 2.79 (dd, J = 13.9, 8.1 Hz, 1H), 1.74 (s,
3H), 1.65 (s, 3H), -0.09 (s, 9H). 13C NMR (101 MHz, Chloroform-d) § 174.1, 173.5, 169.9,
169.8, 143.3, 134.9, 131.4, 125.9, 120.5, 106.2, 74.3, 66.2, 64.4, 53.3, 50.1, 43.0, 30.2,

26.7, 26.0, 22.8, 0.9, -2.7. +ESI-HRMS m/z: calc’d for [M+Na]* C24H31IN206SiNa* =

107



621.08938, found C24H31IN206SiNa* = 621.08893 FTIR neat 2956, 1740, 1703, 1638,
1613, 1478, 1366, 1303, 1252, 1215, 1153, 1113, 1079, 1042,1022, 925, 867, 845, 780,

753,731 cm™L.

Preparation of Cyclopropyl Hemiaminal 3.70

t-BuL.i (2.2 equiv)

Et,0
98 °C to RT
R=TMS

lodide 3.68 (10.8 mg, 0.018 mmol) was dissolved in dry diethyl ether (0.35 mL)
and the reaction cooled in a methanol liquid nitrogen bath. Slowly was then added 1.65 M
solution of t-BuL.i (24 uL, 0.040 mmol). After 45 minutes the reaction was moved to a dry
ice acetone bath and allowed to stir for 25 minutes, then allowed to warm up to room
temperature. The reaction was quenched with 0.1 mL acetic acid after a total reaction time
of 1 h and 40 minutes. Deionized water was then added and the reaction mixture extracted
several times with DCM. The organic layers were combined and dried over sodium sulfate
and the solvent removed by rotary evaporation. The residue was purified by prep TLC
utilizing ethyl acetate as the eluent. This gave 2.6 mg (31% Yield) of the cyclopropyl
hemiaminal 3.70 as a yellow - orange film. R¢=0.21 (90% EtOAc/hexanes), UV; *H NMR
(600 MHz, Acetonitrile-ds) & 7.29 (t, J = 7.7 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 6.74 (d, J
= 7.7 Hz, 1H), 3.43 (s, 3H), 3.13 (s, 3H), 2.89 — 2.78 (m, 3H), 1.54 (s, 3H), 1.51 (s, 3H),
1.16 - 1.12 (m, 1H), 1.08 — 1.00 (m, 3H), -0.20 (s, 9H). 13C NMR (151 MHz, Acetonitrile-
ds) 6 175.5, 172.1, 169.3, 144.0, 136.7, 131.8, 127.2, 121.2, 106.8, 75.2, 66.0, 63.8, 62.5,

53.0, 51.1, 32.2, 26.8 (d, J = 3.9 Hz), 25.8, 15.1, 14.7, 0.7. +ESI-HRMS m/z: calc’d for
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[M+Na]* C24H32N206SiNa * = 495.19273, found C24H32N206SiNa * = 495.19235. FTIR
(Neat) 3427, 2955, 1735, 1638, 1612, 1478, 1372, 1298, 1251, 1198, 1153, 1112, 1078,

1042, 1021, 965, 926, 868, 845,781, 754 cm™L.

Preparation of Imidoyl Triflate 3.73

R=TMS

To a dry round bottomed flask was added amide 3.54 (180 mg, 0.432 mmol), dry
DCM (9.8 mL) and 2-fluoropyridine (54 uL, 0.063 mmol). The reaction flask was cooled
in a dry ice acetone bath and triflic anhydride (107 uL, 0.636 mmol) was added. After one
hour the reaction flask was transferred to a cooling bath containing 1:1 2-propanol: H20
and dry ice (~ —35 °C) and stirred for one hour and 15 minutes. The reaction was then
placed in an ice bath and 10 uL of additional triflic anhydride (0.059 mmol) were added
and after 10 minutes the reaction was allowed to warm to room temperatures and quenched
with 25:75:1 ethyl acetate: hexanes: triethyl amine. The material was then flushed through
a silica plug utilizing the same solvent system. This gave 166 mg (70% Yield) of 3.73 as a
white solid. *H NMR (400 MHz, Chloroform-d) § 7.29 (t,J=7.7 Hz, 1H), 6.83 (d, J = 7.7
Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 3.59 (s, 3H), 3.19 (s, 3H), 2.97 (dd, J = 13.0, 9.9 Hz,
1H), 2.83 — 2.64 (m, 2H), 1.46 (s, 3H), 1.40 (s, 3H), -0.10 (s, 9H). 3C NMR (151 MHz,
Chloroform-d) 6 174.5, 169.2, 155.0, 143.6, 135.7, 131.3, 125.7, 120.6, 119.5 (q, J = 320.1

Hz), 106.4, 73.5, 70.7, 70.2, 56.7, 53.2, 31.5, 27.1, 26.6, 25.8, 0.6. +ESI-HRMS m/z:

109



calc’d for [M+Na]* C22H27F3N207SSiNa * = 571.11580, found C22H27F3N207SSiNa * =
571.11505. FTIR (Neat) 2958, 2921, 2850, 1739, 1697, 1614, 1478, 1417, 1371, 1254,
1230, 1206, 1134, 1074, 1042, 1014, 959, 929, 901, 867, 847, 812, 797, 764, 611, 588

cm,

Preparation of Imidate 3.85

MeOTf
CH,Cl,,0°Cto RT

3.54
R=TMS

Into a flame dried round bottomed flask was added secondary amide 3.54 (900 mg,
2.16 mmol, 1 equiv) and dry DCM (22 mL). This solution was cooled in an ice bath then
methyl triflate (3.6 mL, 32 mmol, 14.7 equiv) was added over 15 min, the ice bath was
immediately removed and the reaction stirred for 30 minutes while warming to room
temperature. After the 30 minutes the reaction was cooled again in an ice bath an additional
2.7 mL (24 mmol, 11.1 equiv) of MeOTf were added over 17 minutes. The ice bath was
immediately removed and the reaction was allowed to warm to room temperature. After 30
minutes the reaction was cooled in an ice bath and additional 3.6 mL (32 mmol, 14.7 equiv)
of methyl triflate were added over 18 minutes the reaction was once again immediately
removed from the ice bath. The reaction was then stirred for 40 minutes then cooled in the
ice bath and 1 mL (8.8 mmol, 4.1 equiv) additional of methyl triflate was added and the ice
bath once again removed. Ten minutes later the reaction was once again cooled in an ice

bath and quenched with a mixture containing 20 mL DCM, 15 mL triethyl amine, and 10.5
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mL H20. Immediately following the quench was added 7 grams of silica gel and the
mixture stirred for one hour and 40 minutes. After the one hour and 40 minutes the mixture
was filtered through a pad of silica, and eluted with a 70:30:1 ethyl acetate: hexanes:
triethyl amine solution. The eluent solution was placed into a separatory funnel and washed
with 150 mL of a 10:1 deionized water: saturated sodium bicarbonate solution. The
aqueous layer was extracted with DCM then once more with ethyl acetate. The organic
layer was dried over sodium sulfate and the solvent removed by rotary evaporation. The
residue was purified by column chromatography using an MPLC with a 12-gram column
at a flow rate of 30 mL/min. A gradient which began at 0% ethyl acetate in hexanes and
progressed to 50% ethyl acetate in hexanes was used for purification (all solvents for
chromatography contained ~ 1% triethyl amine). This gave 702 mg (76% Yield) of imidate
3.85 as a crystalline white solid. Rf= 0.6 (50% EtOAc/hexanes), UV; *H NMR (600 MHz,
DMSO-ds) & 7.25 (t, J = 7.7 Hz, 1H), 6.82 (at, J = 7.8 Hz, 2H), 3.69 (s, 3H), 3.42 (s, 3H),
3.08 (s, 3H), 2.82 — 2.69 (m, 3H), 1.31 (s, 3H), 1.22 (s, 3H), -0.20 (s, 9H).13C NMR (151
MHz, Chloroform-d) 6 175.1, 171.0, 164.4, 143.2, 136.4, 130.6, 126.6, 120.3, 105.8, 73.9,
70.9, 67.8, 56.1, 56.0, 52.7, 32.5, 26.9, 26.8, 26.4, 0.8.+ESI-HRMS m/z: calc’d for
[M+Na]* C22H30N20sSiNa* = 453.18217, found C22H30N20sSiNa*= 453.18173. FTIR
(Neat) 2955, 1730, 1667, 1637, 1611, 1477, 1437, 1374, 1318, 1297, 1249, 1193, 1153,
1116, 1065, 1041, 1016, 983, 968, 943, 920, 900, 868, 842, 802, 775, 752, 731, 702, 647
cmt. Notes: Addition of all the methyl triflate over a single 45-minute period resulted in

significantly lower yields.
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Preparation of Pentacycle Diastereomeric Mixture 3.86 & 3.87

0 3.84

A(4.6 equiv)

MeCN, 50 °C

Three of these reactions were run simultaneously, then combined for work up and
purification. To a flame dried round bottomed flask was added imidate 3.85 (1.1 g, 2.27
mmol, 1 equiv), dry MeCN (25 mL) and cyclopropenone 3.84 (834 mg, 10.4 mmol, 4.58
equiv) as a 67.4% by weight mixture of cyclopropenone in neopentyl glycol (as determined
by quantitative NMR). The reaction flask was then purged with nitrogen and stirred for
five minutes at room temperature. The reaction was then placed in a pre-heated 50 °C oil
bath for five hours. After five hours 228 mg (2.84 mmol, 1.25 eq) additional
cyclopropenone (3.71) solution was added and the reaction heated at 50 °C for an additional
35 minutes. The reactions were combined and poured into a separatory funnel containing
deionized water. DCM was then added and the reaction mixture extracted several times
with DCM. The combined organic layers were dried over sodium sulfate and the solvent
then removed by rotary evaporation. The residue was purified by MPLC on an 80-gram
column using a flow rate of 60 mL/min and a gradient which began at 0% ethyl acetate in
hexanes and progressed to 85% ethyl acetate in hexanes (all solvents contained ~1%
triethyl amine). This gave 3.31 grams (89% Yield) of 3.86 & 3.87 as an inconsequential
mixture of diastereomers. The compound ranges in appearance from a white foam to a light

peach coloured foam. If glycol remained in the product mixture it was removed by
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dissolving the product in chloroform and washing several times with deionized water.
Slightly higher yield was observed on smaller scales for this reaction. Crystals for X-ray
analysis were grown by vapor diffusion, pentane into DCM solution of the compound. Rt
=0.27 (75% EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) & 7.96 (d, J = 3.9
Hz, 1H major diastereomer), 7.78 (d, J = 4.0 Hz, 0.70 H minor diastereomer), 7.21 (t, J =
7.7 Hz, 0.78 H minor diastereomer), 7.14 (t, J = 7.7 Hz, 1H major diastereomer), 6.80 (d,
J=7.7 Hz, 0.71 H minor diastereomer), 6.72 (d, J = 7.7 Hz, 1H major diastereomer), 6.53
(d, J =5.2 Hz, 1H major diastereomer), 6.51 (d, J = 5.2 Hz, 0.73 H minor diastereomer),
525 (d, J = 3.9 Hz, 0.73 H minor diastereomer), 5.02 (d, J = 3.9 Hz, 1H major
diastereomer), 3.93 (at, J = 9.4, 8.4 Hz, 0.81 H minor diastereomer), 3.45 (dd, J = 10.0, 8.2
Hz, 1H major diastereomer), 3.30 (s, 2H minor diastereomer), 3.25 (s, 3H major
diastereomer), 3.25 (s, 3H major diastereomer), 3.17 (s, 3H major diastereomer), 3.08 (s,
2H minor diastereomer), 3.07 (s, 2H minor diastereomer), 2.93 — 2.80 (m, 3H), 2.66 (dd, J
=14.0, 8.3 Hz, 1H), 1.59 (s, 3H major diastereomer), 1.53 (s, 3H major diastereomer), 1.51
(s, 2H minor diastereomer), 1.49 (s, 2H minor diastereomer), -0.12 (s, 9H major
diastereomer), -0.15 (s, 6H minor diastereomer). 3C NMR (151 MHz, Chloroform-d) &
200.4, 194.5, 173.9, 173.7, 170.9, 168.1, 164.3, 161.8, 141.9, 141.7, 137.1, 134.5, 131.6,
130.4, 128.6, 125.0, 120.9, 120.3, 105.4, 105.4, 102.2, 101.2, 99.9, 97.2, 76.1, 68.3, 67.2,
62.8, 60.9, 57.4, 54.3, 52.6, 52.6, 51.4, 50.2, 34.5, 27.1, 26.4, 26.4, 26.3, 26.3, 23.8, 23.3,
1.0. +ESI-HRMS m/z: calc’d for [M+Na]* CazsH32N206SiNa* = 507.19273, found
C21H2sN205SiNa* = 507.19275. FTIR (Neat) 2952, 2249, 1734, 1689, 1635, 1609, 1532,
1477,1434, 1399, 1373, 1329, 1298, 1247, 1135, 1117, 1081, 1056, 1042, 1015, 992, 951,

909, 872, 840, 800, 774, 752, 723, 644 cm™. *Notes: The cyclopropenone used for this
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procedure was obtained using the same method delineated in the references of Nakamura
et al.. with the exception that none of the intermediates were distilled, we found that the
material obtained at each step was adequately pure without purification. Additionally, the
cyclopropenone was also not distilled (as described by Breslow et al.) due to excessive
decomposition. Instead of distillation, the cyclopropenone/neopentyl glycol viscous oil
mixture obtained from the last step of Nakamura et al.’s procedures was placed in a —20 °C
freezer overnight. After standing in the freezer the neopentyl glycol crystallizes. Slight
warming then allows for decantation of a solution now enriched in cyclopropenone. The
percent by weight of cyclopropenone was then determined by quantitative NMR and the
stoichiometry for the reaction calculated accordingly. The excess neopentyl glycol often

caused an emulsion to form during work up of this reaction.

Preparation of Tetramic Acid 3.97

Oxone® (1.2 equiv)
o
MeCN/H,0
0°C
R=TMS

To a round bottom flasked was added pentacycle 3.86 & 3.87 (300 mg, 0.62 mmol,
1 equiv) the flask was evacuated and back filled with nitrogen three times and dry MeCN
(15 mL) was added. The solution was cooled in an ice bath then Oxone® (209 mg, 0.679
mmol, 1.1 equiv) was added. The flask was then purged with nitrogen. To the reaction
mixture was then introduced water (11.2 mL) by syringe pump over one hour. The reaction

mixture was then allowed to stir for an additional four hours and twenty minutes then 10
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mg (0.033 mmol, 0.05 equiv) of additional Oxone® were added and the reaction stirred for
an additional 30 minutes. The reaction mixture was then poured into a separatory funnel
which contained deionized water. The aqueous layer was extracted several times with
DCM and then several times with ethyl acetate. The organic layers were combined and
dried over sodium sulfate. The solvent was removed by rotary evaporation and the residue
purified by MPLC on a 12-gram column using a flow rate of 30 mL/min. A gradient elution
which began at 0% ethyl acetate in hexanes and progressed to 75% ethyl acetate in hexanes
was used for purification. This gave 202 mg (67% Yield) of tetramic acid 3.97 as a single
diastereomer (beige solid). Rf = 0.21 (75% EtOAc/hexanes), UV; 'H NMR (400 MHz,
Chloroform-d) § 7.30 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H),
4.01 (d, J=21.1 Hz, 1H), 3.70 (dd, J = 9.7, 7.8 Hz, 1H), 3.30 (s, 3H), 3.12 (s, 3H), 3.10 —
2.99 (m, 2H), 2.94 (dd, J = 15.1, 9.6 Hz, 1H), 1.85 (s, 3H), 1.64 (s, 3H), -0.07 (s, 9H).:3C
NMR (151 MHz, Chloroform-d) 6 201.9, 175.1, 168.1, 167.1, 141.9, 138.4, 132.2, 124.1,
121.8, 106.1, 95.4, 75.6, 69.5, 63.3, 52.7, 52.1, 44.5, 34.0, 26.6, 26.2, 22.8, 0.9. +ESI-
HRMS m/z: calc’d for [M+Na]* C224H30N207SiNa*™ = 509.17200, found C24H30N207SiNa*
=509.17160. FTIR (Neat) 3460, 3423, 2953, 1778, 1721, 1702, 1686, 1605, 1475, 1437,
1389, 1367, 1307, 1253, 1190, 1155, 1129, 1112, 1088, 1029, 1014, 954, 870, 846, 778,
751, 736, 618, 598 cm™. *Note: an analytically pure sample was obtained by prep TLC
eluting twice: the first time with 65% ethyl acetate in hexanes and the second time with
75% ethyl acetate in hexanes. Despite the low solubility in various organic solvents,
methanol should not be used in any quantity to dissolve the compound in preparation for

loading it onto silica gel, this will lead to almost complete de-silylation and cyclization to
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form the lactol ring during chromatography. Crystals for X-ray analysis were grown by

slow evaporation of DCM/CDCIs solution of the compound.

Preparation of Hexacyclic Ester 3.98

Oxone® (10 equiv) 4 M HCI

— ’
MeCN/H,O THF ) V%,
0°C i~0"": OH
R=TMS N/\ OH
/ O 398
- - R = CO,Me

To around bottomed flask was added 1.24 grams of vinylogous amides 3.86 & 3.87
(2.6 mmol), Oxone® (76 mg, 24.7 mmol) and MeCN (64 mL). The reaction flask was
cooled in an ice bath and deionized water (39 mL) as added over 1h and 45 minutes using
a syringe pump. The reaction was stirred for an additional 3h and 40 minutes and then to
the reaction was added ethyl acetate with vigorous stirring. The solution was then allowed
to warm up and extracted several times with ethyl acetate and several times with DCM the
combined organic layers were then dried over sodium sulfate and the solvent removed by
rotary evaporation. The crude tetramic acid 3.97 was then dissolved in THF (38 mL) and
31 mL of 4 M HCI (aq) was added at room temperature. The flask was purged with N2 and
the solution was heated to 32 °C after 16 h and 25 minutes 9 mL of additional 4 M HCI
(ag) was added and the reaction warmed to 37 °C for 1.5 h. Brine and water were added
and the reaction mixture was extracted three times with ethyl acetate to give 859 mg (81%
Yield) of hexacyclic ester 3.98 which was used for the next step without further
purification. Rf=0.51 (90% EtOAc/hexanes), UV; 'H NMR (400 MHz, Chloroform-d) &

7.35 (t, J = 7.8 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.36 (s, 1H),
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6.21 (s, 1H), 3.53 (s, 3H), 3.20 (s, 3H), 2.97 (d, J = 17.6 Hz, 1H), 2.85 — 2.62 (m, 4H), 1.77
(s, 3H), 1.57 (s, 3H). 3C NMR (151 MHz, Chloroform-d) & 177.6, 172.7, 171.6, 143.0,
136.6, 132.2, 122.2, 122.2, 108.8, 107.1, 104.5, 85.4, 67.1, 63.9, 62.3, 53.2, 43.8, 30.3,
28.8, 26.9, 22.5. +ESI-HRMS m/z: calc’d for [M+Na]® C21H22N207Na * = 437.13247,
found C21H22N207Na * = 437.13247. FTIR (Neat) 3365, 2927, 1710, 1695, 1642, 1618,
1499, 1478, 1395, 1371, 1295, 1240,1180, 1154, 1136, 1090, 1044, 1022, 996, 886, 792,

730, 698, 675, 648, 617 cm ™.,

Preparation of Hexacyclic Acid 3.99

NaSePh, 18-C-6
THF

0”"% OH
OH

N/'\\

/ 0 3.99
R = CO,H

To a dry round bottomed flask was added sodium hydride (256 mg, 9.60 mmol,
degreased assuming 90%) and dry THF (20 mL). Then selenophenol (0.99 mL, 9.3 mmol)
was added followed shortly after by 18-C-6 (168 mg, 0.064 mmol) the solution was stirred
for 30 minutes then hexacyclic ester 3.98 (500 mg, 1.2 mmol) was added and the solution
stirred at room temperature for 1 hour and 40 minutes. The reaction was then quenched by
the addition of 8 mL of a 1:10 TFA:THF solution. To the acidic solution was then added
20% saturated sodium bicarbonate solution until the solution was basic. Brine was then
added and several chloroform washes used to remove excess selenophenol. An additional
wash with minimal DCM was performed then TFA was added to acidify the solution, once

acidic the solution was extracted several times with a 3:1 chloroform: isopropanol mixture.
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The combined organic layers were dried over sodium sulfate and the solvent removed by
rotary evaporation and residual isopropanol removed under a stream of nitrogen. The entire
work up process was repeated again on the crude residue which was after the second work
up procedure triturated several times with chloroform to give 350 mg (72% Yield) of
hexacyclic acid 3.99 (white amorphous solid). *H NMR (400 MHz, Methanol-ds) § 7.36
(t, J = 7.7 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.86 (d, J = 7.9 Hz, 1H), 3.18 (s, 3H), 2.94 —
2.85 (M, 2H), 2.71 — 2,51 (m, 3H), 1.71 (s, 3H), 1.61 (s, 3H). 3C NMR (151 MHz,
Deuterium Oxide) 6 178.8, 178.1, 174.6, 143.6, 137.2, 132.9, 123.1, 123.0, 108.5, 104.1,
87.0,68.1, 62.8, 61.8, 43.9, 29.3, 28.8, 27.2, 24.3, 21.8. (potassium carboxylate salt of the
acid, methanol as an internal standard 49.50 ppm). -ESI-HRMS m/z: calc’d for [M—H]~
C20H19N207~ = 399.11977, found C20H19N207~ = 399.1200. FTIR (Neat) 3360, 2903,
2531, 1737, 1688, 1644, 1617, 1479, 1414, 1391, 1370, 1289, 1269, 1188, 1172, 1131,

1044, 1018, 994, 887, 844, 802, 746, 724, 710, 692, 674, 659, 645 cm™.

Preparation of Cyclic Carbonate 3.100

o cl Cl O CICI
CI>|\OJLO)<CI
(2.0 equiv)

: 3 OH DCM

N/\ oH

/ 0] 3.99

R = CO,H
This reaction was run on the same scale twice and the two reactions combined for
purification. To a dry vial was added hexacyclic acid 3.99 (5 mg, 0.0125 mmol). The acid
was suspended in dry DCM (1 mL) and then triphosgene (6.6 mg, 0.022 mmol) was added,

followed EtsN (7 uL, 0.05 mmol). An additional 7 uL of EtsN (0.05 mmol) was added
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over 10 minutes. After 2.5 hours DMAP (0.6 mg, 0.0049 mmol) was added and the reaction
allowed to stir for an additional 4 hour and 5 minutes and the solvent was then evaporated.
The residue from the combined reactions was dissolved in DCM containing trace TFA and
loaded directly onto a reverse phase TLC plate for preparative TLC. The plate was eluted
with 40:60 MeCN: H20 solvent system which contained 0.25% formic acid. this gave 6.2
mg (58% Y ield) of cyclic carbonate 3.100 (white - light yellow amorphous solid). *H NMR
(600 MHz, Acetonitrile-ds) & 7.39 (t, J = 7.8 Hz, 1H), 6.96 (d, J = 7.7 Hz, 1H), 6.81 (d, J
=7.9 Hz, 1H), 3.20 (d, J = 18.5 Hz, 1H), 3.12 (dd, J = 18.4, 0.5 Hz, 1H), 3.08 (s, 3H), 2.94
(dd, J = 14.3, 5.5 Hz, 1H), 2.72 (dd, J = 12.1, 5.5 Hz, 1H), 2.44 — 2.35 (m, 1H), 1.65 (s,
3H), 1.61 (s, 3H). °C NMR (101 MHz, Acetonitrile-d3) § 174.6, 174.5, 169.6, 151.8,
145.2, 136.8, 133.4, 122.6, 122.2, 113.6, 112.2, 108.1, 89.7, 71.5, 65.2, 63.5, 44.6, 29.9,
28.3, 26.9, 21.9. -ESI-HRMS m/z: calc’d for [M—H] C21H17N20s™ = 425.09904, found
C21H17N20s™ = 425.09892. FTIR (Neat) 3435, 2925, 1825, 1725, 1644, 1615, 1477, 1398,
1369, 1296, 1264, 1187, 1137, 1107, 1092, 1064, 1008, 992, 969, 947, 885, 781, 755, 723,

679, 650, 604 cm ™.,
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Preparation of Heptacycle 3.102

I2 (2.3 equiv) AIBN (cat)
PIDA (2.5equiv) HSnBuj (6.6 equiv)
h - PhMe, 110°C
N/\\ MeCN, 95 °C
/ 03100 O
R=CO,H

Cyclic carbonate 3.100 (3.3 mg, 0.00774 mmol), PIDA (3 mg, 0.0093 mmol) and
iodine (2.3 mg, 0.0091 mmol) were dissolved in of MeCN (0.32 mL). The reaction mixture
was allowed to stir for five minutes then heated to 95 °C while being irradiated by two
tungsten lamps. after 2 hours the reaction was allowed to cool to room temperature and
PIDA (3 mg, 0.0093 mmol) and iodine (2.3 mg, 0.0091 mmol) were added and the reaction
stirred for five minutes and then heated to 95 °C while being irradiated with two tungsten
lamps for an additional 9 h and 50 minutes. the solvent was then evaporated and toluene
added and evaporated once then 0.2 mL of toluene was added, followed by tributyl tin
hydride (12 uL, 0.045 mmol) and catalytic AIBN. This reaction was heated to reflux for
15 minutes then cooled to room temperature and allowed to stir for an additional one hour
and 25 minutes the solvent was evaporated and the residue purified by preparative TLC
using an eluent system consisting of 40:60 ethyl acetate: hexanes. This gave 1.5 mg (51%
Yield) of compound 3.102 as a clear film. R = 0.2 (40% EtOAc/hexanes), UV; 'H NMR
(400 MHz, Acetonitrile-ds) & 7.36 (t, J = 7.8 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.80 (d, J
= 7.8 Hz, 1H), 3.59 (d, J = 8.3 Hz, 1H), 3.23 (d, J = 18.5 Hz, 1H), 3.13 (d, J = 18.1 Hz,
1H), 3.12 (s, 3H), 2.82 (dd, J = 14.1, 5.1 Hz, 1H), 2.48 — 2.40 (m, 1H), 2.33 — 2.23 (m,
1H), 1.67 (s, 3H), 1.45 (s, 3H). 3C NMR (101 MHz, Acetonitrile-d3) 5 175.1, 174.9, 152.4,

144.9, 138.3, 133.5, 122.5, 122.3, 115.3, 112.8, 108.1, 87.3, 72.7, 56.6, 52.4, 44.8, 29.5,
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27.4, 26.9, 20.6. +ESI-HRMS m/z: calc’d for [M+Na]* C20H1sN20sNa* = 405.10626,
found C20H1sN20sNa*® = 405.10608. FTIR (Neat) 2928, 1825, 1723, 1635, 1613, 1476,
1396, 1368, 1329, 1295, 1280, 1251, 1228, 1179, 1150, 1131, 1080, 1062, 1021, 993, 978,

963, 949, 908, 886, 843, 815, 797, 781, 759, 734, 707, 671, 643, 618 cm ™.

Preparation of Hexacyclic Alcohol 3.106

then: 3:1 TFA/H,0 y
50°C
N
/ /\o 3.106
R= COZME

Tetramic acid 3.97 (44 mg, 0.09 mmol, 1 equiv) was added to a flame dried vial
and the vial evacuated and back filled with nitrogen three times. The tetramic was then
dissolved in DCM (0.85 mL) and PIFA added (47 mg, 1.1 mmol, 1.2 equiv). A bleed needle
was placed through the septum and the vial was purged with nitrogen. The reaction was
then allowed to stir for one hour and twenty minutes at room temperature. A pump freeze
thawed 3:1 trifluoroacetic acid: H20 solution was then added and the solution immediately
placed into a 55 °C oil bath. After seventeen hours, the vial was removed from the oil bath
and solvent evaporated. The residue was purified by MPLC using a 4-gram column and a
gradient beginning at 0% ethyl acetate in hexanes and progressing to 85% ethyl acetate in
hexanes. This gave 10.3 mg (26 % Yield) of the hexacyclic alcohol 3.106 as a viscous oil.
Rf = 0.28 (85% EtOAc/hexanes), UV; H NMR (400 MHz, Chloroform-d) § 7.36 (t, J =
7.8 Hz, 1H), 6.96 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.67 (s, 1H), 6.21 (s, 1H),

4.05 (s, 1H), 3.53 (s, 3H), 3.22 (s, 3H), 2.83 (d, J = 8.4 Hz, 1H), 2.72 — 2.58 (m, 2H), 1.78
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(s, 3H), 1.61 (s, 3H).13C NMR (151 MHz, Chloroform-d) & 177.2, 172.4, 171.2, 143.2,
136.6, 132.4, 122.2, 121.7, 107.2, 106.1, 104.1, 85.6, 75.2, 67.1, 63.6, 62.2, 53.3, 30.1,
28.7, 26.9, 22.4. +ESI-HRMS m/z: calc’d for [M+Na]* C21H22N20sNa* = 453.12739,
found C21H22N20sNa* = 453.12704. FTIR (Neat) 3339, 2955, 2928, 2854, 1693, 1642,
1617, 1498, 1478, 1459, 1437, 1395, 1371, 1297, 1266, 1240, 1198, 1155, 1092, 1016,
994, 955, 891, 833, 784, 735, 705, 643 cm-**Notes: Stringent oxygen free conditions are
needed for this reaction sequence as the intermediates are highly prone to decomposition
in the presence of oxygen. After two hours of heating the vial was removed from the oil
bath, purged with argon, sealed and then placed again in the warm oil bath, this is due to
the tendency of trifluoroacetic acid to dissolve the septum and expose the reaction to air.
An analytically pure sample was obtained by preparative TLC. Two sequential preparative
TLCs were run, the first utilized 75:25 ethyl acetate: hexanes as the eluent and the second
70:30 ethyl acetate: hexanes. Crystals for X-ray analysis were grown by vapor diffusion,

hexanes into DCM (with trace methanol) solution of the compound.

1. NaSePh, 18-C-6, THF, 0 °C

Ho
2. Mg(ClQy), (36 mol %), Ac,0, 75 °
H >

0”"% "OH

0”3 OH

5 3. HgO, 15, hv, DCM, 90 - 115 °C E 5
3 H 3 H
N/\ 4. BusSnH, AIBN, Toluene, 115 °C — RT N/\
/ O 3.106 5. K,CO3, MeOH, RT / 0 3.0
R =CO,Me Aspergilline A

No purifications were performed other than work-ups or trituration until the final step.
Crude proton NMR spectra are provided for each intermediate.
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Preparation of Hexacyclic Acid 3.107

NaSePh, 18-C-6

. ""OH THF, 0 °C - _: ‘”‘OH
{ OH & OH
N N
/ /\\O 3.106 / /\\O 3.107
R =CO,Me R=CO,H

To a vial was added degreased NaH (6.3 mg, 0.26 mmol, 7.4 equiv), THF (0.43
mL), and benzeneselenol (28 pL, 0.26 mmol, 7.4 equiv). After the bubbling had subsided
18-Crown-6 (1.8 mg, 0.0068 mmol, 0.19 equiv) was added. The solution was stirred for
ten minutes and then cooled in an ice bath. To the sodium phenyl selenide solution was
added hexacyclic alcohol 3.106 (15.2 mg, 0.0353 mmol, 1 equiv) as a solution in THF (0.3
mL). After 25 minutes the reaction was quenched with 0.1 mL trifluoroacetic acid and the
solvent then evaporated under a stream of N2. The residue was dissolved in chloroform and
hexanes and extracted several times with 15% Sat. NaHCOs. The aqueous layer was then
washed several times with chloroform, and once with DCM and once more with ethyl ether.
To the aqueous layer was added trifluoroacetic acid till acidic and the aqueous layer was
washed with diethyl ether (the carboxylic acid is insoluble in diethyl ether, this washing is
to further remove impurities). The aqueous layer was then extracted several times with 3:1
CHCls: 2-propanol. The CHCIs/2-propanol layers were combined and dried over sodium
sulfate. The solvent was removed by rotary evaporation. The crude carboxylic acid 3.107
was carried on to the next step without further purification. Rf = 0.19 (100% EtOAc), UV,
IH NMR (300 MHz, Methanol-ds) § 7.37 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 6.87

(d, J = 7.8 Hz, 1H), 3.88 (s, 1H), 3.19 (s, 3H), 2.90 (dd, J = 13.5, 5.6 Hz, 1H), 2.71 (dd, J
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= 11.7, 5.6 Hz, 1H), 2.55 — 2.41 (m, 1H), 1.73 (s, 3H), 1.63 (s, 3H). -ESI-HRMS m/z:
calc’d for [M — H]" C20H19N20s™ = 415.11469, found C20H19N20s™ = 415.11490. *Notes:
The compound often contains residual 18-C-6 as an impurity. Partial removal of the
remaining 18-Crown-6 can be achieved by trituration with 10:1 DCM: methanol followed
by diethyl ether. Crude proton NMR spectra is provided for this intermediate. 15% Sat.
NaHCO3 means diluting 15 mL saturated sodium bicarbonate with deionized water to 100

mL of total solution volume.

Preparation of Hexacyclic Triacetate 3.113

MgCIO, (36 mol %), Ac,O
>
75°C

To the vial containing carboxylic acid 3.107 isolated from the previous step was
added 0.8 mL acetic anhydride and Mg(ClO4)2 (2 mg, 0.009 mmol, 0.26 equiv). The vial
was purged with argon, sealed and placed into a pre-heated 75 °C oil bath for four hours
and ten minutes. Then 10 mol % additional of Mg(ClOa)2 (0.8 mg, 0.0036 mmol, 0.1 equiv)
was added and the reaction vial purged with argon, sealed and heating at 75 °C was
continued. After an additional nine hours and fifteen minutes the reaction was cooled and
0.15 mL of deionized water was added the solution placed into the oil bath and the solvent
evaporated under a stream of nitrogen. The product was transferred to a vial for the
subsequent step by dissolving it in DCM. Evaporation of the transfer solvent gave 7.3 mg

of triacetate 3.113 as a green/brown oil which was carried through to the next step without
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further purification. *H NMR (400 MHz, Chloroform-d) § 7.32 (t, J = 7.8 Hz, 1H), 6.88
(d, J = 7.7 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 5.91 (s, 1H), 3.13 (s, 3H), 2.93 — 2.76 (m,
2H), 2.55 (at, J = 14.3 Hz, 1H), 2.17 (s, 3H), 2.10 (s, 3H), 1.95 (s, 3H), 1.72 (s, 3H), 1.65
(s, 3H). ESI-HRMS m/z: calc’d for [M — H] CasH2sN2011~ = 541.14638, found
Ca6H2sN2011" = 541.14642. *Notes: The stereocenter bearing the secondary acetate can
epimerize during this reaction or in the subsequent steps, but in the final deprotection it
reverts to the stereochemistry found in the natural product. Crude proton NMR spectra is
provided for this intermediate. The equivalents of reagents for this step are based on the
hexacyclic ester 3.106 starting material and not the crude mass of 3.107 obtained in the

demethylation step.

Preparation of Hexacyclic lodide 3.108

To the vial containing triacetate 3.113 (7.3 mg, 0.014 mmol, 1 equiv) was added
HgO (3.2 mg, 0.015 mmol, 1.1 equiv) and iodine (6.8 mg, 0.027 mmol, 2 equiv). Then dry
DCM (1.2 mL) was added and the vial purged with argon and sealed. The solution was
allowed to stir at RT for five minutes and then placed in a pre-heated 90 °C oil bath and
irradiated with a 300-watt tungsten lamp for one hour. The temperature of the oil bath rose
to 115 °C over the course of the reaction. The reaction was then allowed to cool, the solvent

evaporated and the residue held under high vacuum. The product was dissolved in toluene
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and transferred to another vial. Evaporation of the transfer solvent gave 8.2 mg of iodide
3.108 that was used for the next step without further purification. *H NMR (300 MHz,
Chloroform-d) & 7.36 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H),
5.93 (s, 1H), 3.29 — 3.17 (m, 1H), 3.17 (s, 3H), 2.70 — 2.49 (m, 2H), 2.29 (s, 3H), 2.18 (s,
3H), 2.11 (s, 3H), 1.79 (s, 3H), 1.64 (s, 3H). +ESI-HRMS m/z: calc’d for [M+Na]*
CasH2sN209INa* = 647.05024, found C2sH2sN20gINa* = 647.04956. *Notes: heating past
90 °C was due to the tungsten lamp. Crude proton NMR spectra is provided for this

intermediate.

Preparation of Reduced Hexacycle 3.114

AIBN (cat)
Bu3SnH (1.6 equiv)

PhMe, 115 °C

OAc

To the vial containing iodide 3.108 (8.2 mg, 0.013 mmol, 1 equiv) was added
toluene (0.95 mL), tributyltin hydride (5.8 pL, 0.022 mmol, 1.6 equiv) and AIBN (cat).
The vial was purged with argon, sealed and then placed in a pre-heated 115 °C oil bath for
twenty minutes. The reaction was then allowed to cool and stirred for an additional 90
minutes at RT. The solvent was removed under stream of nitrogen and the reaction mixture
partitioned between methanol and hexanes. The methanol layer was washed a total of four
times with hexanes. The methanol layer was evaporated and the residue triturated with
hexanes. This gave 5 mg of crude acetate 3.114 combined with a small amount of organotin

impurities. The crude mixture was carried forward without further purification *H NMR
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(600 MHz, Chloroform-d) 6 7.28 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.62 (d, J =
7.8 Hz, 1H), 5.94 (s, 1H), 3.43 (d, J = 7.8 Hz, 1H), 3.12 (s, 3H), 2.76 — 2.69 (m, 1H), 2.48
—2.37 (m, 2H), 2.19 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 1.71 (s, 3H), 1.47 (s, 3H). +ESI-
HRMS m/z: calc’d for [M+Na]" CasH26N20gNa* = 521.15360, found C2sH2sN209Na* =

521.15320. *Notes: Crude proton NMR spectra is provided for this intermediate.

Preparation of Aspergilline A 3.01

OAC  K,COs (3.5 equiv)
MeOH

«\

/ 3.01
Aspergilline A

0”"% OH
OH

To the vial containing acetate 3.114 (5 mg, 0.01 mmol, 1 equiv) was added
methanol (0.8 mL) and potassium carbonate (4.9 mg, 0.035 mmol, 3.5 equiv). The solution
was allowed to stir for two hours and then quenched with a slight excess of formic acid.
The solvent was removed and the residue purified by reverse phase prep TLC using
28:62:0.5 MeCN: H20: Formic acid this gave 0.9 mg of aspergilline A 3.01 as a white
solid. (7% yield over five steps). *H NMR (400 MHz, Pyridine-ds) § 7.33 (t, J = 7.7 Hz,
1H), 7.00 (d, J = 7.7 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 4.70 (s, 1H), 3.25 (d, J = 8.6 Hz,
1H), 2.97 (s, 3H), 2.68 (d, J = 8.8 Hz, 2H), 2.36 (g, J = 8.8 Hz, 1H), 1.91 (s, 3H), 1.71 (5,
3H). 13C NMR (101 MHz, Pyridine-ds) & 178.4, 174.5, 143.2, 138.2, 131.7, 122.9, 122.0,
107.2,107.2, 106.1, 82.9, 76.7, 67.8, 56.4, 54.8, 30.5, 28.0, 26.2, 21.8. +ESI-HRMS m/z:

calc’d for [M+Na]* Ci9H20N20eNa* = 395.12191, found Ci9H20N20sNa* = 395.12173.
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FTIR (Neat) 3340, 2928, 1695, 1638, 1615, 1476, 1370, 1294, 1257, 1195, 1157, 1123,

1103, 1066, 1037, 994, 957, 785, 767, 740, 693, 674 cm™,
Preparation of Allyl Malonyl Chloride 3.26
0
cl
O O \g)LCI 0O O

HOJJ\/U\O/\% > CIJJ\/U\O/\%
DMF (cat)
3.115 DCM, RT 3.26

The starting acid (3.115, 6.5 g, 45 mmol, 1.0 equiv) was dissolved in dry DCM (49
mL) and five drops of DMF were added.? Following this oxalyl chloride (4.2 mL, 49 mmol,
1.08 equiv) was added dropwise. The reaction was then allowed to stir for 1 hour and 30
minutes. The solvent was then removed by rotary evaporation. The crude acid chloride
3.26 was used without further purification. 'H NMR (600 MHz, Chloroform-d) & 5.92 (ddt,
J=17.1,10.4,5.9 Hz, 1H), 5.37 (dd, J = 17.2, 1.4 Hz, 1H), 5.30 (dd, J = 10.5, 1.2 Hz, 1H),

4.70 — 4.68 (m, 2H), 3.89 (s, 2H).*Note: a crude proton NMR spectrum is provided
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Preparation of Allyl Pyrrolinone 3.28

i. i-Pr,NEt
0 o) DCM, -78 °C

(as a solution in DCM)
78 °C

To a flame dried round bottomed flask was added Hiinig’s base (5 mL, 28.7 mmol
7.55 equiv) and dry DCM (48 mL), the solution was then cooled to —78 °C in a dry
ice/acetone bath. To the Hiinig’s base solution was then dropwise added allyl malonyl
chloride 3.26 (2.2 g, 13.5 mmol, 3.55 equiv and the solution stirred for 1 hour. The substrate
3.21 (1.5 g, 3.8 mmol, 1 equiv), which had been placed in a flame dried flask and dissolved
in dry DCM (17 mL) was then taken up into a syringe and added slowly over fifteen
minutes to the flask containing the Hiinig’s base/acyl chloride solution. After addition the
reaction mixture was allowed to stir for an additional 1 hour at —78 °C and subsequently
was quenched with 24 mL of saturated NaHCOsaqueous solution. The dry ice acetone/bath
was removed and the flask was allowed to warm slightly. The mixture was then transferred
to a separatory funnel which contained a half saturated brine solution and extracted several
times with DCM. The organic layer was dried over sodium sulfate and solvent removed by
rotary evaporation. The residue was purified by MPLC. A gradient from 0% ethyl acetate
in hexanes to 56% ethyl acetate in hexanes was used; this yielded 892 mg (45.0% Yield)
of pyrrolinone 3.28 as an orange foam. R¢ = 0.64 (100% EtOAc/hexanes), UV; *H NMR
(400 MHz, Chloroform-d) & 7.44 (t, J = 7.9 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 6.94 (d, J =

8.0 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.48 — 6.35 (m, 2H), 5.92 (ddt, J = 16.3, 10.9, 5.7
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Hz, 1H), 5.40 (dd, J = 17.3, 1.6 Hz, 1H), 5.23 (dd, J = 10.6, 1.4 Hz, 1H), 4.73 — 4.70 (m,
2H), 4.58 (s, 2H), 4.46 (s, 2H), 3.81 (s, 3H), 3.77 (5, 3H), 3.23 (s, 3H), 1.11 (s, 6H).13C
NMR (151 MHz, Chloroform-d) & 184.1, 170.3, 165.7, 162.9, 160.2, 157.9, 157.6, 151.9,
139.6, 138.4, 131.7, 131.0, 126.2, 124.5, 119.0, 119.0, 115.1, 108.3, 104.7, 98.2, 65.9, 65.9,
55.5, 55.5, 35.8, 27.0, 26.4, 23.6. +ESI-HRMS m/z: calc’d for [M+Na]* C2sH30N207Na*
= 541.19507, found CzoHaoN207Na* = 541.19501. FTIR (Neat) 2972, 2937, 2838, 1737,
1688, 1605, 1508, 1464, 1438, 1397, 1359, 1324, 1293, 1265,1208, 1157,1128,1106,1055,

1035,1012, 935, 896, 834 cm™!.

Preparation of Allyl Tetracycle 3.32

NaH 0.6 equiv

THF, 0to 55 °C

R = COAIlyl

3.32

To a flame-dried vial was added pyrrolinone starting material 3.28 (100 mg, 0.193
mmol, 1.0 equiv) and dry THF (0.65 mL). The solution was then cooled in an ice bath and
60% dispersion of sodium hydride in mineral oil was added (4.5 mg, 0.11 mmol, 0.58
equiv). The solution was stirred in the ice bath for an additional fifteen minutes and then
allowed to warm to room temperature. An additional 0.65 mL THF was added and the
solution warmed to 55 °C in an oil bath. As the solution warms the solution’s colour
darkens and progresses to a green color and finally to a deep blue color. After fifteen

minutes of heating at 55 °C the solution was quenched with 1 mL of 0.5 M NH4Cl and the
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reaction mixture extracted several times with DCM. The combined organic layers were
dried over sodium sulfate and the solvent removed by rotary evaporation. The residue was
purified by flash chromatography using a gradient which began at 50% ethyl acetate in
hexanes and progressed to 100% ethyl acetate (the 50% ethyl acetate solution was utilized
to elute the remaining starting material from the column and the following 100% ethyl
acetate was used to elute the product) This gave 25 mg (25% Yield) of the desired tetracycle
3.32 (white solid) along with 72.4 mg (72.4%) of recovered pyrrolinone 3.28, which could
be resubjected to the reaction conditions. Rf = 0.4 (100% EtOAc/hexanes), UV; 'H NMR
(400 MHz, Acetonitrile-ds) § 7.31 — 7.21 (m, 2H), 6.81 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 7.8
Hz, 1H), 6.71 (s, 1H), 6.53 (d, J = 2.4 Hz, 1H), 6.44 (dd, J = 8.5, 2.4 Hz, 1H), 5.65 (ddt, J
=16.4, 10.9, 5.6 Hz, 1H), 5.14 — 5.04 (m, 2H), 4.55 — 4.35 (m, 4H), 3.86 (s, 3H), 3.76 (5,
3H), 3.12 (s, 3H), 1.41 (s, 3H), 1.41 (s, 3H) (very closely overlapping singlets) .13C NMR
(151 MHz, Chloroform-d) & 175.5, 166.3, 166.2, 160.2, 157.5, 145.1, 144.8, 131.6, 131.3,
130.9, 130.5, 119.4, 119.2, 118.8, 118.8, 108.2, 104.6, 98.3, 71.2, 66.9, 64.1, 62.7, 55.5,
55.5, 36.5, 28.1, 26.7, 26.5. +ESI-HRMS m/z: calc’d for [M+Na]® C29H30N207Na*" =
541.19507, found C29H30N207Na* = 541.19464. FTIR (Neat) 3430, 2970, 2936, 1733,
1693, 1646, 1616, 1593, 1508, 1474, 1437, 1407, 1369, 1298, 1264, 1209, 1156, 1127,

1085, 1036, 987, 917, 833, 782, 746, 730, 646 cm™!.
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Preparation of Aromatized Compound 3.33

N=DMB  pd(PPhj), (1.2 mol%) OO N—-DMB
'

morpholine (4.9 equiv)
THF, RT N

R = CO,Allyl
332 333

To a flame-dried round bottomed flask was added tetracycle 3.32 (38.9 mg, 0.075
mmol, 1.0 equiv), dry THF (1.7 mL) and morpholine (32 pL, 0.37 mmol, 4.9 equiv).
Following this was added Pd(PPhs)s (1 mg, 0.00087 mmol, 0.012 equiv). The solution
quickly becomes deep yellow in color. The reaction mixture was allowed to stir for 2 hours
and fifteen minutes. Half saturated brine and DCM were then added and the aqueous layer
extracted with DCM several times, until all the yellow compound had been extracted into
the organic layers. The organic layers were combined and dried over sodium sulfate and
the solvent removed by rotary evaporation. The residue was purified by MPLC using a 2.5
g column with a flow rate of 25 mL/min. A gradient which began at 0% ethyl acetate in
hexanes and progressed to 90% ethyl acetate in hexanes was used for purification. This
gave 26.0 mg (83% Yield) of the title compound 3.33 as a yellow solid. Rf = 0.19 (100%
EtOAc/hexanes), UV;H NMR (600 MHz, Chloroform-d) § 7.93 (s, 1H), 7.54 — 7.50 (m,
2H), 7.48 (d, J = 8.5 Hz, 1H), 6.90 — 6.85 (m, 1H), 6.45 — 6.43 (m, 1H), 6.40 (dd, J = 8.5,
2.4 Hz, 1H), 4.82 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 3.47 (s, 3H), 1.49 (s, 6H). 3C NMR
(151 MHz, Chloroform-d) & 165.5, 164.9, 160.2, 157.6, 152.4, 141.7, 131.2, 130.7, 130.2,
129.2, 125.9, 123.7, 122.5, 120.1, 119.2, 104.6, 104.5, 98.3, 63.8, 55.6, 55.5, 35.8, 26.9,

26.6. +ESI-HRMS m/z: calc’d for [M+Na]* CazsH2aN204Na* = 439.16338, found
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Ca2sH2aN204Na™ = 439.16312. FTIR (Neat) 2971, 2936, 2836, 1708, 1636, 1615, 1589,
1506, 1463, 1388, 1293, 1265, 1208, 1180, 1157, 1128, 1044, 998, 968, 909, 834, 766,

729, 669 cm™L.

Preparation of Cyclopiamide A 3.02

OO N—-DMB DDQ OO NH
>
Y 0

CHCI4/H,0, 75 °C

/ 0 / 0

3.33 3.02
Cyclopiamide A

To a round bottomed flask was added starting material 3.33 (146.6 mg, 0.0352
mmol, 1.0 equiv), CHCI3(3.4 mL), H20 (0.05 mL), and DDQ (2,3-Dichloro-5,6-dicyano-
p-benzoquinone, 119.7 mg, 0.0527 mmol, 1.51 equiv). The flask was purged with nitrogen
and sealed. The flask was then placed in a preheated 75 °C oil bath for 55 minutes, the flask
was then removed from the heat, cooled for ten minutes and an additional 119.7 mg (0.0527
mmol, 1.51 equiv) of DDQ were added. The flask was once again purged with nitrogen,
sealed and replaced into the 75 °C oil bath for an additional 50 minutes. The flask was then
removed from the oil bath, allowed to cool and then DCM was added. The reaction solution
was poured into a separatory funnel and washed three times with aqueous half saturated
NaHCOs. To the aqueous layer was then added brine, and the aqueous layer was extracted
several times with DCM. All the organic layers were combined and dried over sodium
sulfate, the solvent was then removed by rotary evaporation. The residue was then purified
by MPLC using a 24-gram column with a flow rate of 35 mL/min. A gradient beginning at
0% ethyl acetate in hexanes and progressing to 100% ethyl acetate in hexanes was used to

purify the material. This gave 87.5 mg (93% Yield) of cyclopiamide A (3.02) as a yellow
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powder. R¢= 0.3 (10% MeOH/DCM), UV; 'H NMR (600 MHz, Chloroform-d) § 7.96 (s,
1H), 7.58 — 7.52 (m, 2H), 6.89 (dd, J = 4.9, 2.7 Hz, 1H), 6.32 (s, 1H br), 3.46 (s, 3H), 1.66
(s, 6H). 23C NMR (101 MHz, Chloroform-d) & 166.3, 165.4, 153.3, 141.7, 131.0, 130.6,
128.9, 125.8, 124.3, 122.8, 120.2, 104.7, 59.7, 28.9, 26.6. +ESI-HRMS m/z: calc’d for
[M+Na]* C16H14N202Na* = 289.09530, found C16H14N202Na* = 289.09531. FTIR (Neat)
3229, 2971, 2932, 1723, 1637, 1499, 1421, 1393, 1381, 1309, 1209, 1188, 1046, 1018,

986, 912, 761, 730, 689 cm ™.

Preparation of Methyl Malonyl Fluoride 3.109

— F
N-S-F
o 0 3 o 0
Jj\/u\ F > Jl\/u\
e > 7
HO © DCM, RT F ©
3.116 3.109

The starting acid (3.116, 3.8 g, 32 mmol, 1.0 equiv) was dissolved in dry DCM
(171 mL) and DAST (DiethylAminoSulfur Trifluoride, 5.11 mL, 38.5 mmol, 1.2 equiv)
was added dropwise over five minutes.® The solution was allowed to stir for 2 hours then
the DCM solution was poured into a separatory funnel and washed with 100 mL half
saturated brine. The aqueous layer was extracted several times with DCM and the
combined organic layers dried over Na2SO4. The solvent was removed by rotary
evaporation. This gave 3.5 g of crude acyl fluoride 3.109 which was used without further
purification. *H NMR (400 MHz, Chloroform-d) & 3.81 (s, 3H), 3.59 (d, J = 3.8 Hz, 2H).

*Note: a crude proton NMR spectrum is provided.
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Preparation of Speradine E 3.03

O O 0
3.109
NH FJJ\/U\O/ N (0]
: o
90 °C —
N 0 N O 6]
/ o / 0
3.02 3.03
Cyclopiamide A Speradine E

To a flame-dried vial was added cyclopiamide A (3.02) (9.1 mg, 0.034 mmol, 1.0
equiv) and methyl malonyl fluoride 3.107 (206.7 mg, 0.979 mmol, 28.8 equiv, the
compound was used crude after preparation, Q NMR showed that the solution used was
56.9% acyl fluoride by weight.) The reaction vial was purged with argon, sealed and placed
ina 90 °C oil bath for six hours and fifteen minutes. The vial was then allowed to cool and
an additional 105.0 mg (0.498 mmol, 14.6 equiv) of the acyl fluoride was added. The vial
was once again purged with argon, sealed and placed in a 90 °C oil bath. The reaction
mixture was heated in the oil bath for an additional thirteen hours and eight minutes. The
vial was then removed from the oil bath and allowed to cool. DCM was added and the
reaction solution transferred to a larger 20 mL vial. Saturated NaHCO3 was then added and
the solution stirred vigorously to quench the remaining acyl fluoride. The reaction mixture
was then extracted several times with DCM. Solid NaCl was then added to the aqueous
layer and the aqueous layer was again extracted once with DCM. The combined organic
layers were dried over sodium sulfate and the solvent removed by rotary evaporation. The
residue was then purified by prep TLC using 1:1 ethyl acetate: hexanes as the eluent. The
plate was eluted twice with this solvent system. The purified material was then triturated
twice with diethyl ether to give 6.7 mg (54% Yield) of speradine E (3.03) as an orange

powder. Rf=0.45 (90% EtOAc/hexanes), UV; 'H NMR (400 MHz, Chloroform-d) & 8.03
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(s, 1H), 7.63 — 7.53 (m, 2H), 6.90 (d, J = 5.9 Hz, 1H), 4.21 (s, 2H), 3.76 (s, 3H), 3.46 (s,
3H), 1.91 (s, 6H). 1*C NMR (101 MHz, Chloroform-d) 6 168.2, 167.2, 165.0, 164.9, 152.8,
141.8, 132.5, 131.7, 126.6, 125.8, 125.5, 123.3, 120.3, 105.1, 66.3, 52.5, 45.7, 27.0, 26.7.
+ESI-HRMS m/z: calc’d for [M+Na]® C20HisN20sNa* = 389.11134, found
C20H18N20sNa* = 389.11093. FTIR (Neat) 2951, 1737, 1698, 1636, 1500, 1436, 1391,
1373, 1323,1292, 1197, 1178, 1140, 1047, 1017, 886, 767, 730, 672 cm™. Note that the
neat acyl fluoride (3.109) utilized in this reaction is carried crude from its synthesis. The

impurities present in the acyl fluoride were not identified.
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CHAPTER FOUR

Synthetic Studies Toward (£)-Isopalhinine A

4.1 Isolation and Background

4.1.1 Isolation and Related Natural Products

Isopalhinine A 4.01 was isolated in 2013 by Zhao and coworkers from the nodding
club moss Palhinhaea cernua (Figure 4.01). This club moss is notable for its use in Chinese
herbal medicine as a treatment for rheumatism, scald and contusions.! In the isolation, 60
kg of dried and powdered Palhinhaea cernua was extracted three times with methanol and
the combined extracts partitioned between 1% HCI and ethyl acetate. The aqueous layer
was adjusted to pH 9 with sodium carbonate and then extracted with chloroform. The crude
alkaloidal extract was then purified by MPLC using MCI gel and then further purified
several times by silica gel chromatography eventually giving 3.0 mg of isopalhinine A

4.01.

(+)-isopalhinine A (4.01) (+)-fawcetidine (4.02) (+)-alopecuridine (4.03)
©)
o 0
&
(-)-palhinine A (4.04) (-)-lycojapodine A (4.05)

Figure 4.01 Fawcettimine-type alkaloids — adapted from Lei
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Isopalhinine 4.01 belongs to a large and structurally diverse class of natural
products, the lycopodium alkaloids. To date, more than 300 different lycopodium alkaloids
have been isolated!?> More specifically, isopalhinine A belongs to the fawcettimine sub-
class of lycopodium alkaloids; it is unique among the fawcettimines in that it bears a 1-
azabicyclo [4.3.1] decane moiety constructed through a N — C5 bond (red highlight, Figure
4.01).! Although many members of these natural product families possess bioactivity,

isopalhinine A itself has yet to be shown to possess any bioactivity.

4.1.2 Background — Previous Work

Despite its lack of known bioactivity, we were drawn to isopalhinine A due to its
synthetically challenging and complex architecture. Isopalhinine A boasts a 5/6/6/6/7 fused
ring system which bears a cycloheptane hemiaminal and four contiguous stereocenters, two
of which are adjacent quaternary centers. Isopalhinine A also features an isotwistane

moiety the cyclopentanone of which is highly substituted (Figure 4.02).

Cycloheptane
hemiaminal

Isotwistane.__

.. OH
Adjacent
quaternary
centers

Figure 4.02 Structural features of isopalhinine A

Though no total synthesis of this natural product has been reported, the

Rychnovsky group at Irvine has detailed a synthetic study toward isopalhinine A (Scheme
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4.01).2 In their work, the Rychnovsky group sought to first construct the isotwistane moiety

of the natural product through an intramolecular Diels-Alder reaction. Subsequently,

1. EtO
OTBS, TBSOTT (cat)
(quant)
9 2 TASE B OTES 1. DIBAL, THF. OTES
dr =101, (59% Yield) - (96% Yield) 2
3 NaHMDS, TESCI 2. DMP, 2,6-Lutidine
(92% Yield) EtO,C (74% Yield) o7
4.06 4.07 4.08
1. 2 Co,Me o]
MeOH (cat)

quinuclidine (cat) (77% Yield)

1 TMSOTf EtN

2. TBSOTT, Et3N, (93% Yield) ') 2. IBX: MPO
. HF'PY, THF, (82% Yield CO,Me DMSO CO,Me
8 (82% Yield) 2 (60% brsm) 2
OTBS OTBS
4.09 4.10
0
TMSCI, Et;N com
e
DMF, 90 °C 2
| OTBS
B ] (43% Yield) (36% Yield)
4.11 4.12 4.13

Scheme 4.01 Intramolecular Diels Alder approach to isotwistane — Rychnovsky

they planned to utilize this scaffolding to direct the completion of the natural product.
Beginning with cyclohexenone 4.06, they performed a Mukaiyama Michael reaction with
the silyl ketene acetal of ethyl acetate. Allylation with allyl bromide was then followed by
TES enol ether formation to give enol ether 4.07. Elaboration to aldehyde 4.08 was then
effected by DIBAL reduction of the ester to the alcohol and re-oxidation to the aldehyde.
Morita-Baylis-Hillman reaction with methyl acrylate, trapping of the secondary alcohol
with TBS-triflate and enol ether cleavage furnished cyclohexanone 4.09. Oxidation to the
enone was then followed by selective TMS enol ether formation and spontaneous

intramolecular Diels-Alder reaction providing a nearly 1:1 mixture the isotwistanes 4.12
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and 4.13, with concurrent construction of one of the quaternary centers. Despite having
made good progress in constructing two of the more challenging features present in the
natural product, work on isopalhinine A was discontinued due to the disclosure by Fan and

coworkers of a similar strategy towards the structurally related palhinine A 4.04 (Scheme

4.02).4
) TMSO.
()
TMSCI, Et;N 180°C
o >
OTBS DMF, 90 °C oTBS| P-xylenes OTBS
OBn OTBS OBn OTBS OTBS
BnO
4.14 - 4.15 - 4.16 417

(65% Yield over 2 steps)

Scheme 4.02 Fan's synthesis of the isotwistane core of palhinine A

4.2 Synthetic Studies Toward Isopalhinine A

Our synthetic strategy toward isopalhinine A differs from those of Rychnovsky and
Fan; as illustrated in Scheme 4.03 we envisioned late-stage construction of the isotwistane
through an intramolecular 6-exo-trig radical cyclization and deoxygenation sequence from
epoxy aldehyde 4.18. The medium-sized ring of 4.18 was envisioned to arise via reductive
amination or intramolecular Sn2- type reaction of hemiaminal 4.19 (Scheme 4.03).5 The
o-face epoxide in 4.19 would be installed through a directed epoxidation of trisubstituted
alkene 4.20. The central cyclopentanone, trisubstituted alkene, hemiaminal and quaternary
center present in 4.20 were seen as arising in a single transformation involving an allene
Nazarov cyclization/hemiaminal formation cascade reaction that would occur upon
addition of lithioallene 4.22 into Weinreb amide 4.21. The proposed allene would be

prepared in a few synthetic steps from propargyl alcohol 4.23 and a protected aziridine
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4.24. As for the Weinreb amide component, it was expected that 4.21 would derive from
carbonylative amination of vinyl halide or triflate 4.26; which in turn would be arise from
1,3-diketone 4.27 via Michael addition to methyl acrylate. Finally, diketone 4.27 is known
and has been previously prepared from trimethoxybenzoic acid through a Birch reduction

and acidic hydrolysis of the incipient methyl enol ethers.

6-exo-trig cyclization
followed by deoxygenation

4.19 Substrate directed

O  OH “ .
Isopalhinine A 4.01 Cyclization & epoxidation Rd b
Allene Nazarov ¢yclization

OR o)
o— . |
N’ Li<_O._0
| \ﬂ/ HO, R
+ | = N
0 L»‘\/\ NE R VAN
421 422 | 423 4.24
OR

Carbonylative amidation

OR O

U
I
I

a2 ;4 427 4.28
Michael addition

Scheme 4.03 Isopalhinine retrosynthesis

4.2.1 Accessing the Allene Component

We first wished to access the allene component of the key Nazarov cyclization.
Following precedent from Arens, we converted commercially available propargyl alcohol
4.23 to its MOM acetal and then isomerized the alkyne to an allene (4.30) through the
action of 50 mol % of potassium tert-butoxide.® Subjecting 4.30 to a-Lithiation and
quenching with trimethyl silyl chloride gave the TMS protected allene 4.31 in poor yield

(Scheme 4.04).” We then sought to append the nitrogen containing chain to the y-position
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LiBr (0.11 equiv)
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//

4.23

TMSCI (1.3 equiv)
n-BuLi (1.2 equiv) .

> YO\/O\
THF, -78 °C to RT _
(31% Vield) /T'\
4.31

Scheme 4.04 TMS protected allene synthesis

of the allene. As illustrated in Scheme 4.05, y-lithiation of 4.31 to 4.32 followed by addition

to a THF solution of tosyl aziridine (4.33) was found to deliver a ternary mixture of allenes

(4.34-4.36) Intriguingly, lithiation of 4.31 followed by quenching with a proton source

\/
—Si
_ — o]
Li TsHN _\O—
L Ts \s'/ \s/ 435
N o o _mBULi(OSequiv) | g OO~ | A4 N ’
~UN TR eeenmr Y \/
THF, —78 °C to RT Si 0— Si
_ =9 -
/?.\ I TsHN 0— =
4.32 4.34 o
4.31 - (33% Yield) TsHN _\0—
4.36
e (9% Yield)

Scheme 4.05 Appending of nitrogen containing chain to allene

gave only returned starting material, suggesting that the observed scrambling of the TMS
groups was occurring after addition to the aziridine and was perhaps promoted by the
insipient amide anion generated upon aziridine opening! Furthermore, on scaling up of this
reaction only di-TMS protected allene 4.34, was observed to any significant extent in the
reaction. Despite the low vyield of di-TMS allene 4.34 we were eager to explore the key

Nazarov cyclization. Thus, 4.34 was Cbz protected and the tosyl group reductively cleaved
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to give 4.38 in excellent yield (Scheme 4.06).8 The de-tosylated allene was carried forward

crude whereupon exposure to TBAF revealed allene reaction partner 4.39 (Scheme 4.06).

\ / \/ \ / \/
\/ \/ —Si ) Si— —Si Si—
S Si— NaH (1.1 equiv) /_): X Mg® (5.5 equiv) .
(e} DMF, RT TsN _\O MeOH, ))) HN _\o
) I e , —
TsHN - j)\ }/-—o (96% Yield) }—o
“ T ade O e
(1.5 equiv)
(85% Yield) 437 4.38
==,
TBAF @1equiv) o=\ _

THF,0°Cto RT

N
. o
(93% Yield) 4 \_@

4.39

Scheme 4.06 Synthesis of Cbz protected allene 4.39

4.2.2 Accessing the Weinreb Amide

With the allene component in hand we began exploring the synthesis of the Weinreb
amide. According to literature precedent, commercially available trimethoxybenzoic acid
was exposed to Birch reduction conditions providing bis-enol ether 4.41 which was carried
on crude (Scheme 4.07).° Reduction of carboxylic acid 4.41 was followed by benzylation
and acid-mediated hydrolysis, smoothly furnishing known 1,3-di-ketone 4.43 on small
scale.’® On scaling up, acid-mediated hydrolysis proceeded sluggishly, but could be

achieved in reasonable yield by prolonging the reaction time. Deprotonation of 4.43
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THF NaH (0.85 equiv)
2. 10% HClI DMF, 75 °C o ©
THF o 0 Sealed vial
(64% Yield over 443 4.45
two steps) o o

Scheme 4.07 Synthesis of 1,3-diketone 4.45

with sodium hydride followed by heating with methyl acrylate in DMF in a sealed tube
effected a Michael addition to give 4.45, which was also carried forward crude.
Subsequently, 4.45 was first converted to the corresponding enol triflate and then subjected
to DIBAL reduction of both the ester and remaining ketone moieties. Protection of the
incipient alcohols as their TBS ethers furnished 4.48, the first purified compound in the
four-step sequence, in 46% vyield overall (Scheme 4.08). With 4.48 in hand, the
carbonylative amination was attempted employing literature derived conditions (entry one
table 4.1) which, unfortunately, were found to only returned starting material.** A solvent
screen revealed that THF and MeCN gave partial conversion at 60 °C; toluene gave good
conversion but the isolated product was tentatively assigned to be the compound in which
N-O bond cleavage had occurred after carbonylative amination. DMF appeared to be the
optimum solvent for this reaction, giving full conversion at 105 °C within 2 hours. Analysis
of this reaction (Entry 5, Table 4.01) showed that desired product 4.50 along with

carboxylic acid 4.49 and an unknown decomposition product were obtained. Lowering the
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reaction temperature to 75 °C provided slow conversion to the desired product and a

significant amount of carboxylic acid 4.49. Temperatures above 90 °C caused formation

OBn OBn OBn
Tf,0 (1.6 equiv), py (2.1 equiv) DIBAL (3.2 equiv)
o o DCM, 78 t0 0 °C o oTf  THF-78t00°C  HO oTf
e} O 0] ? HO
I
4.45 4.46 4.47
OBn
2,6-lutidine (3.2 equiv)
TBSOT( (2.6 equiv)
DCM, 78t00°C B0 oTf
(46% Yield over
4 steps)
OTBS
4.48

Scheme 4.08 Accessing vinyl triflate 4.48

of the unknown decomposition product initially observed in entry 5. Thus, the temperature
for future reactions was adjusted to 85 °C. Azeotropically drying all components of the
reaction and the inclusion of molecular sieves surprisingly, did not reduce the formation of
carboxylic acid 4.49. Changing the base to Hiinig’s base and increasing the equivalents of
the MeNHOMe<HCI salt did finally circumvent formation of the carboxylic acid.
Attempting to lower the catalyst and ligand loading to 10 mol % gave lower yields (Entry
9, Table 4.1). With these factors in mind the optimum reaction conditions were chosen to
be 20 mol % of Pd(OAC)2, 20 mol % Xantphos, in DMF with 9 equivalents of Hiinig’s base

and 7 equivalents of MeNHOMe*HCI at 85 °C, which provided 4.50 in 92% yield.
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Table 4.1 Optimization of carbonylative amination

OBn OBn OBn
Pd(OAC),, XantPhos
Loading%
> +
Solvent 0 0]
TBSO oTf Temperatqre TBSO TBSO
Base (equiv) _ OH /N\O
MeNOMe-HCI (equiv) |
OTBS CO (g)
4.48 449 OTBS T80 4.50
Entry Solvent Temperature Loading % Base (equiv) MeNOMe HCI Result
1 THF 22 °C 8 Na,CO, (3) 1 (equiv) No Reaction
Partial conversion
2 THF 55 °C 20 Na,CO, (3) 1.5 (equiv)
to 4.50
Partial conversion
3 MeCN 55°C 20 Na,CO, (3) 1.5 (equiv)
to 4.50
N-O bond cleaved
4 Toluene 105 °C 20 Na,CO;, (3) 1.5 (equiv)
product
Complete
5 DMF 105 °C 20 Na,CO, (3) 1.5 (equiv) conversion with
decomposition
Mostly 4.49
6 DMF 75°C 20 Na,CO, (3) 2 (equiv)
formed
5% 4.49
7 DMF  75-90°C 20 Na,CO;, (3) 2 (equiv)
27% 4.50
8 DMF 85°C 20 Hiinig's Base (9) 7 (equiv) 92% 4.50
9 DMF 85°C 10 Hinig's Base (9) 7 (equiv) 80% 4.50
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4.2.3 Allene Nazarov Cyclization
To date, several total synthesis and methodologies utilizing a key allene Nazarov
cyclization step have been accomplished (Scheme 4.09). The most notable of these

accomplishments were put forth by the Tius group, both in the realm of total synthesis as

o— \
w O 0

o]
0 Li"&. OH o TFAA

N o
4.52 N\ 2,6-lutidine
—_—
| THF, 78 °C LT W e
TIPSO
4.51 Tipsd 453 4

OTES
OTES % o

N
1. PdIC, H, ¢ 4
EtOH SPh OTES + | \.» OTES
- N
2. LDA, TESCI ZnBr,, CH,Cl,

OTIPS -30°C OTIPS 0

4.55 4.57

...... N OH
o} o

madindoline A madindoline B
4.58 4.59

THF, -50 °C

Scheme 4.09 Allene Nazarov reaction in the total synthesis of the madindolines — Tius

well as method development.*2 Scheme 4.09 details an example of such a total synthesis
by Tius. In this work enone, 4.51 is exposed to lithioallene 4.52 and the resultant alcohol
exposed to trifluoroacetic anhydride. The derived doubly allylic trifluoroacetate proved
labile, ionizing and inducing a Nazarov cyclization to provide cyclopentenone 4.54. Exo-
methylene reduction followed by TES enol ether formation gave cyclopentadiene 4.55.
Reaction of 4.55 with the iminium generated from 4.53 gave diastereomers 4.56 and 4.57

which were elaborated in two steps to madinodoline A (4.58) and madindoline B (4.59)
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With the stage set for our system the key allene Nazarov cyclization was now
explored. Reaction optimization revealed that 3.5 equivalents of the lithioallene 4.60 were

needed to ensure complete conversion of the Weinreb amide 4.50 to divinyl ketone

O’
o R [ | ]
OB 0 : N
n 0 L, [ 7L | oen 0 (O
N/ N 4 \\JJ‘" ]
.5 equiv aH,PO,
| (3.5 equiv) 0 1M NaH,PO
> _Li X >
THF, 78 to 40 °C = RN :
OTBS |L“) or Si0,
R=Cbz OTBS
OTBS
OTBS
4.50 | 4.61 i

Scheme 4.10 Attempted allene Nazarov under mild conditions

intermediate 4.61 (Scheme 4.10). NMR analysis of crude 4.61 was not conclusive on the
formation of the divinyl ketone, although high resolution mass spec analysis of the crude
reaction mixture did show the desired mass to be present. Precedent suggested to us that
mild reaction conditions such as 1 M sodium phosphate (aq) or aging on silica gel would
induce the Nazarov cyclization of divinyl ketone 4.61.12 The reasoning behind the mildness
of these conditions as opposed to standard, harsher Nazarov cyclization conditions is the
lack of steric encumbrance about the allenyl carbon. Disappointingly, 1 M sodium
phosphate failed to induce the desired transformation; while aging on silica gel gave a
plethora of unidentified products, and none of the desired electrocyclization products. Due
to the complexity of both substrates 4.50 and 4.60, as well as the small supply of 4.60, we
opted to explore the viability of this Nazarov reaction using allene 4.30, which had served

as precursor to the more elaborate variant 4.60 (Scheme 4.11).
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Scheme 4.11 Model Nazarov cyclization

After some experimentation we were once again inspired by precedent from Tius
which showed that exposure of divinyl ketones to in-situ generated HCI (from acetyl
chloride) in trifluoroethanol and hexafluoroisopropanol could induce electrocyclization. In
our hands in-situ generated HCI gave a low yield of the Nazarov cyclization product along
with significant amounts of unidentifiable products.'* Hypothesizing that the acid used was
too strong, we utilized AcOH in instead. When divinyl ketone 4.62 was subjected to a
1:1:0.8 ratio of a TFE, HFIP and AcOH at 60 °C we observed formation of substantial
quantities of Nazarov products 4.63 and 4.64 as a 1:1 mixture of diastereomers. Extending
similar conditions to the actual system, we were delighted to find that 4.65 and 4.66 were
produced in reasonable yield, albeit in a nearly 1:1 mixture of diastereomers about the
quaternary center at C7a (Scheme 4.12). Compound 4.66 produced X-ray quality crystals
on slow crystallization from acetonitrile allowing us to confirm the structure and relative

stereochemistry (scheme 4.12)!

151



P |
o R o)
OBn 0 LA, //NxLi OBn o
O 460 N 0 1:1:08
ITI (385equiv) _Li HFIP:TFE:ACOH
THF, ~78 to 40 °C ”LDHj ~40t0 60 °C
0TBS R =Cbz 0TBS
oTBS oTBS
450 4.61
OBn OH
)
i \
NHCbz
NHCbz TBSO
0TBS

(67% Yield)
1:1 ratio

OBn OH

\ NHCbz

TBSO

OTBS
4.66

Scheme 4.12 Allene Nazarov cyclization on full system

Disappointingly, cyclization did not proceed fully to give the 6/5/6 system by
formation of the hemiaminal. Likely, this was due to the nitrogen atom being part of a
carbamate. Focusing our efforts on increasing reaction yield we explored a few acids of
varying strength for this cyclization. Exposing 4.50 to the reaction conditions while
replacing the acetic acid with pivalic acid gave 4.65 and 4.66 in good yield but generated
an unknown by product derived from the allene which co-eluted with the product. In the
case of acetic acid, yield of up to 67% was obtained with only trace quantities of the

unknown by-product. Increasing the acidity by utilizing chloroacetic acid resulted in a
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reduction in reaction time to two hours versus nine to twelve hours with acetic acid.
Additionally, the chloroacetic acid also partially cleaved the primary TBS ether. To avoid
a mixture of protected and de-protected products we simply exposed the reaction mixture
to 1 M HCI solution to give 4.67 and 4.68 in 39% combined yield over the two steps

(Scheme 4.13).
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(0] A
. N
Ll/'& // “Li OBn OBn
: OH
OBn o) 4.60 N PH
(3.5 equiv)

N7 THF, ~78 to 40 °C
I
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1:1:0.8

i
HFIP:TFE:Chloroacetic acid TBSO \L TBSO

oTBS 40 t0 60 °C

OTBS iii. 1MHCI OH OH
4.50 (39% Yield) 4.67 4.68

R =Cbz

Scheme 4.13 Allene Nazarov with chloroacetic acid

As mentioned earlier, allene Nazarov cyclizations are precedented to occur under
mild conditions due to the relative lack of steric encumbrance about the allenyl carbon. We
believe that in our system the tetra-substituted alkene component of the divinyl ketone
hinders the requisite co-planarity of the alkene and allene in 4.61 (Scheme 4.12) hence the
need for elevated temperatures. Furthermore, the chosen conditions appear to take
advantage of the hydrophobic effect, in essence, forcing a higher population of the co-
planer conformer.

Although with 4.50 the entire cascade sequence leading to the desired 6/5/6 ring
system was not observed the results provided important insight with regard to
stereochemical outcomes. In rationalizing the latter it is perhaps best to first discuss the

origin of the observed sole formation of the (Z)-geometrical isomer. Studies on such
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systems have indicated that the substitution on the terminal carbon of the allene often has
a controlling effect upon the torquoselectivity of the reaction.'® The larger substituent on
the terminal carbon of the allene generally causes rotation to proceed in the direction which
would prevent its clash with other portions of the molecule during the Nazarov cyclization.
In our case, since the nitrogen-containing chain preferentially rotates outwardly and away
from the cyclohexene portion of the molecule, this phenomenon results in products
possessing only Z-alkenes (Scheme 4.14). As for the diastereotopic face selectivity (or lack
thereof) that one might expect to govern the stereochemical relationship between the
quaternary carbon (C7a, numbered as in 4.66) and the carbon bearing the benzyl ether
containing chain (C5), a few factors need to be considered. First, the aforementioned
torquoselectivity, which controlled outward rotation of the chain on the allene, also directs
the direction of rotation of the alkene’s orbitals (Nazarov cyclizations proceed by

conrotation) and thus impacts not only the olefin geometry but also the resultant relative

OBn OH
S
> 0
\ NHCbz
TBSO
in each case outward rotation
OTBS  occurs to prevent steric clash giving the OTBS
4.69 Z-alkene. Consequently this controls the 4.71

direction of rotation of the alkene and the
stereochemistry between C5 and C7a

Y

Scheme 4.14 Stereochemical rational
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stereochemistry. Secondly, it is important to note that both the allene and Weinreb Amide
component in the reactions are racemic. Thus, the coupling of these compounds results in
two diastereomers of the divinyl ketone (4.69, 4.70) in a 1:1 ratio (Scheme 4.14). This then
leads to the two diastereomeric cyclization products (4.71, 4.72). To obtain solely the
desired diastereomer, a single enantiomer of the Weinreb amide and the matched
enantiomer of the allene would need to react. Fortunately, both diastereomers can serve as
viable synthetic intermediates since the requisite keto aldehydes derived from 4.65 and
4.66 (4.18 and 4.73, respectively) would converge to the same diastereomeric series by

simple epimerization of the aldehyde in 4.73 (Scheme 4.15).

OBn

4.74

Radical cyclization
deoxygenation
0]

OBn

O  OH
(£)-Isopalhinine A

4.18 4.01

Scheme 4.15 Convergence of 4.65 and 4.66 to (x)-Isopalhinine A

4.2.4 Future Work

Having established a means of accessing the core [5,6]-ring system with all the
carbons in the natural product installed, there are only a few transformations remaining to
complete the total synthesis. To this end, we envision the quaternary center generated in

the Nazarov cyclization as directing the stereochemical outcomes in the remainder of the

155



synthesis (Scheme 4.16). Thus, a selective revealing of the primary alcohol would allow
for a tris-homoallylic alcohol directed epoxidation of the trisubstituted alkene to furnish
the a-face epoxide 4.75.1 Tosylate installation followed by selective deprotection of the
Cbz group will construct the medium sized nitrogen-containing ring, as well as the
hemiaminal moiety (4.77).17 A one-pot deprotection would provide diol 4.78. Cyclization
precursor 4.18 will then be accessed by oxidation of the diol with Dess Martin periodinane.
Finally, a titanium (l11)-mediated radical epoxide opening, 6-exo-trig cyclization and
subsequent deoxygenation would provide isopalhinine A (Scheme 4.17). In regards to the
order of events just described, closing of the medium-sized ring prior to the final step
appears from computer modeling (MMZ2) to be critical; the closure of the medium-sized
ring forces the left side cyclohexanone into a boat like conformation placing the aldehyde

containing chain of 4.18 directly above the tertiary carbon of the epoxide.

VO(acac),
IMHCI (aq) t-BUOOH
"""""""" NHCbz NHCbz
OH OH
4.67 4.75

EtsSiH

4.77 4.78
0]
OH
N,
TiCls, PPhy /

'-.\I \

O  OH

(+)-Isopalhinine A

4.18 4.01

Scheme 4.16 Endgame strategy
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Arguably the most interesting portion of the endgame strategy is the final radical
cyclization/deoxygenation sequence of 4.18 to give the natural product. As shown in
Scheme 4.17 titanium mediated homolytic cleavage of the epoxide would generate tertiary
radical 4.80 as well install the requisite a-face alcohol. Radical 4.80 exists in some small
equilibrium with alkoxy radial 4.81. The alkoxy radical, in the presence of triphenyl
phosphine reacts to generate phosphorus radical 4.82. Loss of triphenyl phosphine then
gives secondary radical 4.83, which may abstract a hydrogen atom from the solvent to
generate the natural product. Although alkoxy radicals are known to be high energy
species, a process as just described is not unprecedented (Scheme 4.18). As shown by
Fernandez-Mateos and Kim, reactions proceeding through alkoxy radicals generated by
reaction of a tertiary radical and an aldehyde are viable and in the presence of triphenyl

phosphine may result in deoxygenation.*®

(x)-Isopalhinine A
4.01

Scheme 4.17 Proposed isotwistane synthesis
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Scheme 4.18 Precedent for radical cyclization deoxygenation sequence

Failing this, precedent does exist for the performing of a similar reaction sequence
from a tosyl hydrazone such as 4.91. This reaction would obviate the need to proceed

through a high energy alkoxy radical and will be driven by the loss of dinitrogen (Scheme

4.19).19

()-Isopalhinine A
4.01

Scheme 4.19 More favorable isotwistane synthesis driven by loss of dinitrogen
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Another facet of these reactions is that the construction of an isotwistanes [2.2.2]
bicycle in this manner is unprecedented. Previously, isotwistanes had been accessed
through two predominant methods; intramolecular Diels-Alder reactions, as shown by Fan

and Rychnovsky, and through enolate or enamine chemistry.?

4.2.5 Conclusion

In conclusion, versatile intermediates 4.65 and 4.66 have been accessed through the
application of an allene Nazarov cyclization in eight linear steps from known materials
through a convergent sequence. With all the carbons of the natural product in place, as well
as a key quaternary center established, only a few steps remain to be explored prior to
completion of the total synthesis. The most interesting step of which is the unprecedented
forging of the [2.2.2] bicycle of an isotwistane through a radical ring closure and

subsequent deoxygenation sequence.

4.3 Experimental

4.3.1 General

Unless otherwise stated, all reactions were performed in flame dried glassware
under a nitrogen atmosphere, using reagents as received from the manufacturers. The
reactions were monitored and analytical samples purified by normal phase thin-layer
chromatography (TLC) using Millipore glass-backed 60 A plates (indicator F-254, 250
M) or by using Sigma Aldrich glass-backed 60 A reverse phase C-18 fully end-capped
plates (fluorescent indicator, 250 uM). Tetrahydrofuran, dichloromethane, acetonitrile,
dimethylformaide and toluene were dried using a solvent purification system manufactured

by SG Water U.S.A., LLC. Manual flash chromatography was performed using the
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indicated solvent systems with Silicycle SiliaFlash® P60 (230—400 mesh) silica gel as the
stationary phase. Flash Chromatography on a Teledyne RF+UV-Vis Ms Comp MPLC was
performed using the indicated solvent systems, and Teledyne RediSep® Rf normal phase
disposable columns of the indicated size and at the indicated flow rate. *H and 3C NMR
spectra were recorded on a Bruker Avance 111 300, a Bruker AscendTM 400 autosampler
or a Bruker AscendTM 600 autosampler. Chemical shifts (8) are reported in parts per
million (ppm) relative to the residual solvent resonance and coupling constants (J) are
reported in hertz (Hz). NMR peak pattern abbreviations are as follows: s = singlet, d =
doublet, dd = doublet of doublets, t = triplet, at = apparent triplet, q = quartet, ABq = AB
quartet, m = multiplet. NMR spectra were calibrated relative to their respective residual
NMR solvent peaks, CDClz = 7.26 ppm (*H NMR)/ 77.16 ppm (**C NMR), DMSO = 2.50
ppm (*H NMR)/ 39.52 ppm (**C NMR), MeOD = 3.31 ppm (*H NMR) MeCN = 1.94 ppm
(*H NMR)/118.26 ppm (3*C NMR) CD2Cl>5.32 ppm (:H NMR)/ 53.84 ppm (33C NMR)
(CD3)2C0 2.05 ppm (*H NMR)/ 29.84 ppm (**C NMR of methyl carbon). IR spectra were
recorded on Bruker Platinum-ATR IR spectrometer using a diamond window, all stretches
are reported in cm. High Resolution mass spectra (HRMS) were obtained in the Baylor
University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap Discovery
spectrometer using +ESI or —ESI and reported for the molecular ion ([M+H]* & [M+Na]*
or [M-H] respectively). Single crystal X-ray diffraction data were collected on a
BrukerApex 11-CCD detector using Mo-Ko radiation (A = 0.71073 A). Crystals were
selected under oil, mounted on micromounts then immediately placed in a cold stream of

N2. Structures were solved and refined using SHELXTL.?°
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Preparation of Di-TMS Allene 4.34

Li

Ts \ / \ /

N o o nBuLi (105 equiv) \.YOVO\ N433 S P
ﬁ/ 7N CTHR-T8CoRT [ 4 S
/Ti\ | TsHN _\o—

4.31 4.32 4.34

To a dried round bottomed flask was added TMS protected allene 4.31 (4.1 g, 24
mmol) and dry THF (41mL). The solution was cooled to —78 °C in a dry ice acetone bath
and 2.5 M BuL.i was added slowly (9.0 mL, 22.5 mmol). After 1 hour, tosyl aziridine (4.69
g, 23.7 mmol) dissolved in dry THF (41 mL) was slowly added to the lithioallene solution
over 20 minutes. After allowing the reaction mixture to stir at —78 °C for 15 minutes, the
solution was warmed to RT and let stir for 1 hour. Concurrently, another solution of the
lithioallene was prepared in the same way as the first. After the solution which contained
the tosyl aziridine and lithioallene had stirred at RT for 1 hour it was quickly added to the
freshly prepared solution of lithioallene at —78 °C. The combined reaction solutions were
quickly warmed to RT and allowed to stir for three minutes then quenched with half
saturated brine and extracted with ethyl acetate. The combined organic layers were dried
over sodium sulfate and the solvent removed under reduced pressure. The residue was
purified by MPLC over 40 minutes using a gradient which began at 0% ethyl acetate in
hexanes and progressed to 20 % ethyl acetate in hexanes. All column solvents contained
1% triethyl amine. This gave 3.07 g (29.3% Yield) of Di-TMS allene 4.34 as a thick oil
which solidified to an off white solid in the —20 °C freezer. *Note, on smaller scale (less
than 2 g) this reaction also yields an inseparable mixture of the two possible mono protected

TMS allenes in useful quantities, these may be carried through the same sequence as the
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Bis-TMS protected allene to arrive at the same final allene product. Data for 4.34: Rs =
0.4 (20% EtOAc/hexanes), UV;H NMR (600 MHz, Chloroform-d) & 7.73 (d, J = 7.9 Hz,
2H), 7.27 (d, J = 8.2 Hz, 2H), 6.31 (dd, J = 8.5, 4.3 Hz, 1H), 4.91 (d, J = 6.3 Hz, 1H), 4.73
(d, J = 6.3 Hz, 1H), 3.47 (s, 3H), 3.26 — 3.18 (m, 1H), 3.14 — 3.05 (m, 1H), 2.40 (s, 3H),
2.15 — 2.01 (m, 2H), 0.10 — 0.03 (m, 9H), 0.00 — -0.05 (m, 9H).13C NMR (151 MHz,
Chloroform-d) & 198.1, 142.9, 138.7, 129.7, 126.9, 125.6, 108.2, 94.3, 55.8, 41.5, 30.9,
21.6, -1.7, -2.0. +ESI-HRMS m/z: calc’d for [M+Na]* C20H3sNO4SSi2Na* = 464.17230,
found C20H3sNO4SSi2Na* = 464.17181. FTIR (Neat) 3235, 2955, 2896, 1901, 1599, 1437,
1332, 1247, 1210, 1160, 1095, 1051, 967, 912, 840, 816, 752, 694, 663. Data for 4.35 and
4.36 (Mono silylated allenes): *H NMR (600 MHz, Chloroform-d) & 7.77 — 7.69 (m,
3.6H), 7.29 — 7.26 (m, 3H), 6.55 (t, J = 2.6 Hz, 0.7H), 6.15 (t, J = 6.1 Hz, 1H), 5.91 (dd, J
=8.0, 4.7 Hz, .7H), 5.40 (dd, J = 6.5, 5.1 Hz, 1H), 5.01 (d, J = 6.3 Hz, 1H), 4.84 (d, J=6.5
Hz, 0.8H), 4.75 (d, J = 6.4 Hz, 1H), 4.72 (d, J = 6.5 Hz, 0.8H), 3.48 (s, 1.6H), 3.47 (s, 3H),
3.26 — 3.18 (m, 1H), 3.16 — 3.11 (m, 1H), 3.11 — 3.06 (M, 2H), 2.41 (s, 5H), 2.24 — 2.13
(m, 2.5H), 2.13 - 2.06 (m, 1.5H), 0.09 (s, 9H), 0.01 (s, 4.7H). Major isomer TMS peak set
to 9 protons, ratio of major to minor is 1: 0.52. 13C NMR (151 MHz, Chloroform-d) §
197.2, 196.1, 143.0, 143.0, 138.4, 138.2, 129.7, 129.7, 128.9, 127.0, 127.0, 118.5, 115.4,
99.0,94.4,94.1,56.3,55.9,41.4,41.1,31.3, 30.5, 21.6, 21.6, -1.9, -2.2. +ESI-HRMS m/z:
calc’d for [M+Na]* Ci7H27NO4SSiNa* = 392.13278, found Ci7H27NO4SSiNa* =
392.13260. FTIR (Neat) 3252, 2956, 2897, 1599, 1495, 1434, 1379, 1330, 1306, 1290,

1249, 1217, 1160, 1095, 1040, 963, 842, 916, 756, 694, 663, 631.
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Preparation of Cbz Protected Allene 4.37

\ / \/
\ / \ / —Si Si—
—Si Si— NaH (L.1 equiv) :
0 DMERT . TN _\O—
THN _\o— | j])\ >/~—O
4.34 ©/\o cl 3 \_Q
(1.5 equiv) 437

Bis-TMS allene 4.34 (10 g, 23 mmol) was added to a dried round bottomed flask
and dissolved in dry DMF (200 mL). The solution was placed under high vacuum to
remove any trace solvent, water, or amine impurities and then the flask back filled with N2.
The reaction flask was cooled in an ice water bath and subsequently NaH as a 60%
dispersion in oil (1.13 g, 28.3 mmol) was added. The ice bath was removed and the solution
allowed to warm up to room temperature (22 °C) for 15 minutes. Benzyl chloroformate
(4.9 mL, 34 mmol) was added and the reaction allowed to stir for five hours at which point
an additional 0.5 mL of benzyl chloroformate (3.5 mmol) was added. After an additional
hour the reaction was quenched with basic half saturated brine (contained a small amount
of sodium bicarbonate solution) and extracted with ethyl acetate several times and once
with diethyl ether. The combined organic layers were dried over sodium sulfate and the
solvent removed under reduced pressure. The residue was then purified by MPLC using a
gradient which began at 0% ethyl acetate in hexanes and progressed to 20% ethyl acetate
in hexanes. This gave 10.77g (83% Yield) of the Cbz-protected allene 4.37 as a thick light
yellow oil. Rf = 0.45 (20% EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) &
7.73 (d, J = 8.4 Hz, 2H), 7.34 — 7.29 (m, 3H), 7.23 — 7.18 (m, 4H), 5.09 (s, 2H), 4.75 (s,
2H), 4.02 — 3.82 (m, 2H), 3.34 (s, 3H), 2.55 — 2.41 (m, 3H), 2.41 (s, 2H) (the overlapping

peaks integrate to 5H in the drawn spectrum), 0.13 (s, 9H), 0.10 (s, 9H).1*C NMR (101
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MHz, Chloroform-d) 6 200.4, 152.3, 144.5,136.8, 134.7,129.4, 128.7, 128.7, 128.5, 128.4,
124.7, 106.8, 94.8, 69.0, 55.4, 47.0, 31.0, 21.7, -1.6, -1.9. +ESI-HRMS m/z: calc’d for
[M+Na]* C2sH41NOeSSi2Na* 598.20908, found C2sH41NOsSSi2Na* = 598.20876. FTIR
(neat) 2956, 2897, 1902, 11731, 1597, 1496, 1454, 1386, 1359, 1323, 1270, 1248, 1207,

1186, 1168, 1138, 1088, 1051, 962, 841, 814, 753, 735, 697, 662, 630.

Preparation of Allene 4.38

\/ \/
—Si Si— —Sl Sl—
/_):.zéo MgP (5.5 equiv) /_): =<
TsN _\O MeOH, ))) HN
— e
o o
Y : @
4.37 4.38

Cbz-protected allene 4.37 (1.1g, 1.9 mmol) was placed in a round bottomed flask
and dissolved in dry methanol (19 mL), powdered magnesium (257 mg, 10.5 mmol) was
then added. To the flask was attached an argon balloon and the flask purged with argon.
The flask was then placed in a sonicator and sonicated for 30 minutes at room temperature.
To the reaction was then added ethyl acetate, hexanes, DCM, and water and the mixture
shaken in order to precipitate the magnesium salts. The solution was then filtered and the
filtrate washed with brine and dried over sodium sulfate. The solvent was removed under
reduced pressure giving 783 mg (97% Yield) of the desired allene 4.38 which was carried
forward without further purification. Rf = 0.45 (20% EtOAc/hexanes), UV; *H NMR (600
MHz, Chloroform-d) & 7.39 — 7.27 (m, 5H), 6.14 (s, 1H), 5.14 (d, J = 12.3 Hz, 1H), 5.06
(d, J = 12.4 Hz, 1H), 4.89 (d, J = 6.2 Hz, 1H), 4.71 (d, J = 6.2 Hz, 1H), 3.57 — 3.46 (m,

1H), 3.31 (s, 3H), 3.26 — 3.16 (M, 1H), 2.31 — 2.17 (M, 2H), 0.11 (s, 9H), 0.08 (s, 9H). 13C
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NMR (151 MHz, Chloroform-d) 6 198.6, 156.8, 137.2, 128.5, 128.0, 128.0, 125.1, 108.7,
94.3, 66.4, 55.3, 39.5, 314, -1.6, -1.9. +ESI-HRMS m/z: calc’d for [M+Na]*
C21H3sNO4SizNa* =444.20023, found C21H3sNO4Si2Na* = 444.20007. FTIR (Neat) 3335,
2955, 2897, 1900, 1722, 1529, 1455, 1403, 1365, 1320, 1246, 1152, 1099, 1051, 966, 917,

838, 751, 696, 629.

Preparation of Allene 4.39

\S'/ \S'/
—l |— — e—
T
/_)':={ TBAF (2.1 equiv) /—/_ 0—\
o) > HN 0—
N\ THF, 0 °C to RT
HN}/_ 0= (93% Vield) >/’_ O\_Q
0 : 0
O

4.38 4.39

Two reactions were run in parallel, one at 3.2 g scale and the other at 3.6 g scale,
the reactions were combined for purification. The written procedure describes the 3.6 g
scale reaction. Allene 4.38 (3.6 g, 8.5 mmol) was dissolved in dry THF (85 mL) then cooled
in an ice bath. To this solution was added 1 M TBAF in THF solution (15.1 mL, 15.1
mmol). After 20 minutes the ice bath was removed and the reaction allowed to stir until
TLC indicated reaction completion (1 — 2 hours). The reactions were then combined,
diluted with ethyl acetate and quenched with a 1:1:2 Brine: NH4Cl (sat.):H20 solution. The
quench was used to wash the organic layer and the aqueous layer was then back extracted
with minimal ethyl acetate. The organic layer was dried over sodium sulfate and the solvent
evaporated. This gave 4.0 g (89% Yield) of the deprotected allene 4.39 as a clear light
brown oil. *Note, if excess tetrabutylammonium salts remain in the product after the first

work up another work up may be performed to remove them. Rf = 0.22 (20%
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EtOAc/hexanes), UV;*H NMR (400 MHz, Chloroform-d) § 7.39 — 7.27 (m, 5H), 6.62 (dt,
J=5.4,2.5Hz, 1H), 5.81 (apparent g, J = 5.8 Hz, 1H), 5.65 (br s, 1H), 5.10 (apparent g, J
= 12.3 Hz, 2H), 4.90 (d, J = 6.4 Hz, 1H), 4.73 (d, J = 6.4 Hz, 1H), 3.49 — 3.24 (m, 5H),
2.40 — 2.20 (m, 2H). 13C NMR (151 MHz, Chloroform-d) & 194.07, 156.70, 136.94,
128.59, 128.11, 119.30, 104.28, 94.36, 66.61, 56.12, 39.09, 31.32. +ESI-HRMS m/z:
calc’d for [M+Na]* C1sH19NOsNa* = 300.12118, found C1sH19NOsNa* = 300.12085. FTIR
(Neat) 3336, 3033, 2951, 2828, 1959, 1719, 1707, 1530, 1454, 1431, 1397, 1365, 1334,

1297, 1244, 1217, 1154, 1094, 1039, 921, 847, 776, 751, 738, 698, 676, 642, 606.

Preparation of Vinyl Triflate 4.48

OBn

O 4 44
OBn \O (1.3 equiv)
NaH (0 85 equw) Tf,0 (1.6 equiv), py (2.1 equiv) o -
DMF, 75 °C DCM, 78 to 0 °C B
o o Sealed vial
4.43 4.45 4.46
) O (0]
| I
OBn
2,6-lutidine (3.2 equiv)
DIBAL (3.2 equiv) TBSOTT (2.6 equiv)
THF 7800°C DCM, 78 t00°C . 1850 oTf
(46% Yield over
4 steps)
OTBS
4.48

Diketone 4.43 (542 mg, 2.33 mmol) was placed in a dry sealed tube and dissolved
in dry DMF (7 mL) then sodium hydride as a 60% dispersion in oil (77 mg, 1.9 mmol) was
added. After 25 minutes, methyl acrylate (271 uL, 3.01 mmol) was added, the reaction
vessel purged with argon, placed in a 75 °C oil bath and the reaction vigorously stirred.

After 4 hours and 20 minutes the reaction was removed from the heating bath and allowed
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to cool. Once cooled the reaction solution was poured into 3:1:3 Brine: NH4Cl (sat.):H20
and extracted twice with ethyl acetate. The combined organic layers were washed again
with 3:1:3 Brine:NH4Cl (sat.):H20 and twice with brine. The organic layer was dried over
sodium sulfate and the solvent removed under reduced pressure. This gave 527 mg of crude
ester 4.45 which was carried forward without further purification. (vinyl triflate 4.46): The
crude ester 4.44 from the previous step was dissolved in dry DCM (7.2 mL) and cooled to
—78 °C inadry ice acetone bath. Dry pyridine (0.27 ml, 3.4 mmol) was then added followed
by the dropwise addition of Tf.O (0.43 mL, 2.6 mmol). After 30 minutes the solution was
allowed to warm to 0 °C (ice water bath) for 20 minutes and then quenched with 1 M HCI
(5 mL). The reaction mixture was extracted twice with ethyl acetate and the combined
organic layer washed with sodium bicarbonate which had been saturated with sodium
chloride. The organic layer was then dried over sodium sulfate and the solvent removed
under reduced pressure. This gave 733 mg of vinyl triflate 4.46 which was used without
further purification for the next step. (diol 4.47): The crude vinyl triflate 4.46 from the
previous step was dissolved in dry THF (16 mL) and cooled to —78 °C in a dry ice acetone
bath. Then 1 M DIBAL in hexanes (5.2 mL, 5.2 mmol) was added dropwise. twenty
minutes later the reaction was warmed to 0 °C (ice water bath) and allowed to stir for an
additional 30 minutes. Moistened sodium sulfate was then added to quench the remaining
DIBAL. The crude reaction mixture was then eluted through a silica plug using 400 mL of
7% methanol in DCM to remove residual aluminum salts. The solvent was then removed
under reduced pressure to give 565 mg of crude diol 4.47 as a single diastereomer which
was carried through without further purification. (vinyl triflate 4.48): Crude diol 4.47 from

the previous step was dissolved in dry DCM (6 mL) and 2,6 lutidine (496 uL, 4.26 mmol)
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was added. The solution was cooled to —78 °C in a dry ice acetone bath and TBS-OTf (796
uL, 3.47 mmol) was added dropwise. After 40 minutes the dry ice acetone bath was
removed and the reaction was allowed to stir for an additional 40 minutes. The reaction
was then quenched with methanol then NH4Cl (sat.). The reaction mixture was then
extracted several times with DCM and purified on a 12 gram MPLC column using a
gradient which began at 0% ethyl acetate in hexanes and progressed to and was held at
20% ethyl acetate in hexanes. This gave 700 mg (46% Yield over four steps, an average of
~82.5% vyield for each step) of vinyl triflate 4.48 as a colourless oil. *Notes, Crude NMR
spectra for each intermediate are provided. Data for 4.45: R¢=0.13 (30% EtOAc/hexanes),
UV;1H NMR (400 MHz, DMSO-ds) & 7.43 —7.18 (m, 5H), 4.47 (s, 2H), 3.55 (s, 3H), 3.36
(d, J=5.8 Hz, 2H), 2.44 — 2.32 (m, 4H), 2.30 — 2.15 (m, 5H). 3C NMR (101 MHz, DMSO-
ds) 6 173.10, 138.48, 128.23, 127.36, 127.29, 112.43, 72.69, 71.96, 51.10, 35.58 (br s),
33.03, 32.58, 17.66. +ESI-HRMS m/z: calc’d for [M+Na]* = CisH220sNa* 341.13649,
found = 341.13605. FTIR (Neat) 3086, 2924, 2855, 1733, 1577, 1496, 1436, 1384, 1269,
1240, 1168, 1097, 1066, 1027, 987, 931, 866, 830, 737, 698. Data for 4.46: Rt = 0.5 (30%
EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) 6 7.38 — 7.34 (m, 2H), 7.32 —
7.29 (m, 3H), 4.55 — 4.47 (m, 2H), 3.66 (s, 3H), 3.46 (dd, J = 9.4, 4.9 Hz, 1H), 3.42 (dd, J
= 9.4, 6.1 Hz, 1H), 2.81 — 2.76 (m, 2H), 2.67 — 2.63 (m, 2H), 2.58 (dd, J = 16.2, 4.1 Hz,
1H), 2.53 — 2.46 (m, 1H), 2.43 — 2.36 (m, 3H). 3C NMR (151 MHz, Chloroform-d) &
196.7, 172.6, 161.9, 137.9, 130.0, 128.6, 128.0, 127.8, 118.4 (g, J = 320.0 Hz), 73.4, 72.0,
51.9,40.1, 33.8, 32.2, 32.0, 19.6. +ESI-HRMS m/z: calc’d for [M+Na]* C19H21F307SNa*
= 473.08578, found C19H21F307SNa* = 473.08539. FTIR (Neat): 2953, 2858, 1738, 1688,

1664, 1604, 1496, 1419, 1366, 1244, 1216, 1173, 1138, 1115, 1031, 922, 808, 750, 700,
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609. Data for 4.47: Rr = 0.25 (50% EtOAc/hexanes), UV; 'H NMR (600 MHz,
Chloroform-d) & 7.38 — 7.28 (m, 5H), 4.52 (s, 2H), 4.36 (s, 1H), 3.69 — 3.60 (m, 2H), 3.45
(d, J = 5.5 Hz, 2H), 2.45 (dd, J = 16.1, 6.6 Hz, 2H), 2.41 — 2.35 (m, 1H), 2.30 — 2.21 (m,
1H), 2.22 — 2.10 (m, 2H), 1.81 — 1.70 (m, 2H), 1.54 — 1.43 (m, 1H). 3C NMR (151 MHz,
Chloroform-d) 6 144.8, 137.9, 132.9, 128.6, 128.0, 127.9, 118.4 (g, J = 319.5 Hz), 73.7,
73.5, 67.9, 624, 34.8, 32.6, 31.2, 30.2, 23.2. +ESI-HRMS m/z: calc’d for [M+Na]*
CisH23F306SNa* = 447.10651 found CisH23FsOsSNa* = 447.10611. FTIR (Neat) 3344,
2924, 2857, 1454, 1408, 1363, 1244, 1205, 1138, 1092, 1058, 1027, 962, 921, 851, 817,
738, 698, 607. Data for 4.48: Rt = 0.64 (20% EtOAc/hexanes), UV; *H NMR (400 MHz,
Chloroform-d) § 7.38 — 7.28 (m, 5H), 4.51 (s, 2H), 4.44 — 4.35 (m, 1H), 3.60 (t, J = 6.6 Hz,
2H), 3.39 (d, J = 6.3 Hz, 2H), 2.44 — 2.22 (m, 4H), 2.16 — 1.98 (m, 2H), 1.75 — 1.55 (m,
2H), 0.89 (s, 18H) (two very close singlets integrating to 9H each), 0.10 (s, 6H) (two very
close singlets integrating to 3H each), 0.04 (s, 6H). *C NMR (151 MHz, Chloroform-d) &
144.1, 138.4, 133.8, 128.6, 127.8, 127.7, 118.5 (g, J = 319.5 Hz), 73.6, 73.2, 68.6, 63.3,
35.6, 33.0, 31.3, 31.0, 26.1, 26.0, 23.1, 18.5, 18.1, -3.7, -4.7, -5.2, -5.2. +ESI-HRMS m/z:
calc’d for [M+Na]* CszoHs1F306SSi2Na* = 675.27947 found CazoHs1F3OsSSizNa* =
675.27881. FTIR (Neat) 2953, 2930, 2857, 1472, 1412, 1361, 1246, 1207, 1141, 1097

1006, 976, 921, 880, 834, 812, 774, 736, 697, 667, 628, 606.
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Preparation of Weinreb Amide 4.50

OBn OBn
Pd(OAcC),, XantPhos
(20 mol %)
DIPEA (9 equiv)
MeNOMe-HCI (7 equiv)

TBSO OTf DMF. 85 °C > TBSO

CO(g) PN

OTBS TBSO
4.48 4.50

To a dry vial was added vinyl triflate 4.48 (85 mg, 0.13 mmol), palladium acetate
(5.8 mg, 0.026 mmol). Xantphos (15 mg, 0.026 mmol), Hunig's base (200 pL, 1.15 mmol)
and Weinreb amine hydrochloride salt (89 mg, 0.91 mmol). The vial was evacuated and
backfilled with CO (g). DMF (1.3 mL) was then added and the solution spared with CO
(9). The reaction vial was warmed to 85 °C for 1 hour and 20 minutes and then allowed to
cool. The reaction solution was diluted with diethyl ether and passed through a plug of
silica, eluting with diethyl ether and ethyl acetate. The filtrate was then washed twice with
half saturated brine and the aqueous washes back extracted with a diethyl ether/hexane
mixture. The combined organic layers were dried over sodium sulfate and the solvent
removed under reduced pressure. The residue was then purified by silica gel
chromatography using 1:1 diethyl ether: hexane as the eluent. This gave 71 mg (92% Yield)
of the Weinreb amide 4.50 as a clear oil. *Notes, elution of the crude reaction mixture
quickly through a silica plug is critical as the crude reaction mixture begins to decompose
after removal of the CO atmosphere/ exposure to oxygen. The ethyl ether hexane mixture
used for back extraction is to prevent extraction of the DMF from the aqueous layer while
still extracting the product, usually a 1:1 ethyl ether: hexane mixture is used). The yield of

this reaction varies significantly on scale up. Usually larger scale reactions yield ~ 70%. Rt
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= 0.3 (20% EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) & 7.36 — 7.30 (m,
4H), 7.29 — 7.26 (m, 1H), 4.50 (s, 2H), 4.32 (br s, 1H), 3.76 (br s, 1H) (this is part of a
methyl group present on the oxygen of the Weinreb amide it is distributed over a large
area), 3.57 (t, J = 6.6 Hz, 4H) (this overlaps with the rest of the oxygens methyl group
signal, this signal sharpens at 50 °C, a spectrum for this is provided), 3.43 — 3.31 (m, 2H),
3.20 (s, 3H), 2.36 — 2.25 (m, 1H), 2.23 (br d, J = 15.7 Hz, 1H), 2.05 (br s, 3H), 2.00 — 1.90
(m, 1H), 1.72 — 1.64 (m, 1H), 1.64 — 1.54 (m, 1H), 1.38 (apparent g, J = 11.1 Hz, 1H), 0.88
(s, 18H), (two very close singlets integrating to 9H each), 0.09 (s, 6H), 0.02 (s, 6H) (This
is data for a mixture of rotamers at room temperature). 3C NMR (151 MHz, Chloroform-
d) 6 172.5, 138.6, 138.0, 129.7, 128.5, 127.7, 74.5, 73.1, 68.1, 63.7, 61.6, 36.3, 33.0, 32.3,
31.6, 30.3, 27.2, 26.1, 26.0, 18.5, 18.1, -3.5, -4.7, -5.2. (This is data for a mixture of
rotamers at room temperature, several of the carbons are broad and take a large number of
scans to become visible). +ESI-HRMS m/z: calc’d for [M+Na]* C32Hs7NOsSizNa* =
614.36730, found Cs2Hs7NOsSi2Na = 614.36658. FTIR (Neat) 2953, 2928, 2887, 2856,
1715, 1650, 1471, 1462, 1407, 1361, 1253, 1205, 1177, 1091, 1005, 974, 939, 835, 774,

736, 698, 665.
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Preparation of Bicycle 4.63 and 4.64 (model)

Li/g. 4.52 OBn OBn OH

OH

N
_o (3.5 equiv)
THF, —78 to —40 °C

>

ii. 1:1:0.8

OTBS HFIP:TFE:AcOH TBSO *
—40to 60 °C
OTBS OTBS

450 OTBS 4.63 4.64

TBSO

To allene 4.30 (19 mg, 0.19 mmol) dissolved in dry THF (0.5 mL) and cooled to —
78 °C was added 2.5 M BulL.i in hexanes (76 uL, 0.19 mmol) and the reaction allowed to
proceed for 1 hour. To this solution was added a solution of Weinreb amide 4.50 (32 mg,
0.054 mmol) in dry THF (0.9 mL). After 30 minutes the reaction was warmed to —40 °C in
an acetonitrile dry ice bath and allowed to stir at this temperature for 1 hour. To the reaction
solution was added a solution of 0.6:0.6:0.5 HFIP:TFE:AcOH (v/v/v) and the reaction
allowed to stir for 10 minutes at —40 °C. The reaction solution was then warmed to 60 °C
in an oil bath for six hours. The solution was allowed to cool and the solvent was
evaporated. The residue was purified by preparative TLC using 20% ethyl acetate in
hexanes. This gave two diastereomers who's relative stereochemistry was not determined
directly but tentatively by analogy to the actual system. Diastereomer 1 (4.63): 10.4 mg
isolated (32.6% Yield) as a clear oil. Diastereomer 2 (4.64): 9.1 mg isolated (28.5% Yield)
as a clear oil which solidifies at —20 °C. This is a total 61% Yield. Data for diastereomer
1 (4.63): Rf=0.47 (20% EtOAc/hexanes), UV; *H NMR (400 MHz, Chloroform-d) & 7.38
—7.28 (m, 4H), 7.30 — 7.23 (m, 1H), 6.04 (s, 1H), 5.81 ( br s, 1H), 5.18 (s, 1H), 4.48 (ABq,

Adae = 0.06, 2H ), 3.95 (s, 1H), 3.61 — 3.44 (m, 3H), 3.35 (dd, J = 9.3, 3.9 Hz, 1H), 3.15
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(d, J = 13.6 Hz, 1H), 2.39 — 2.26 (m, 1H), 2.21 — 2.10 (m, 2H), 2.06 — 1.92 (m, 1H), 1.69
—1.55 (m, 2H), 1.21 — 1.11 (m, 2H), 0.88 (s, 9H), 0.70 (s, 9H), 0.01 (s, 6H), -0.07 (s, 3H),
-0.11 (s, 3H).13C NMR (151 MHz, Chloroform-d) & 190.0, 151.3, 145.2, 140.1, 138.7,
128.4, 128.0, 127.6, 114.2, 74.7, 74.7, 73.5, 62.9, 50.9, 34.8, 31.7, 29.0, 27.1, 26.1, 26.0,
23.4, 184, 178, -3.5, -52, -5.2, -5.8. +ESI-HRMS m/z: calc’d for [M+Na]*
Cs3Hs405Si2Na™ = 609.34075, found CssHs4OsSizNa* = 609.34027. FTIR (Neat) 3304,
2951, 2928, 2894, 2856, 1687, 1631, 1471, 1461, 1400, 1341, 1362, 1341, 1252, 1195,
1095, 1055, 1005, 958, 937, 904, 832, 773, 735, 697, 663. Data for diastereomer 2 (4.64):
Rf = 0.42 (20% EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) § 7.37 — 7.31
(m, 4H), 7.31 — 7.27 (m, 1H), 6.10 (d, J = 1.3 Hz, 1H), 5.63 (d, J = 1.4 Hz, 1H), 4.53 (s,
2H), 3.53 (t, 2H), 3.45 (dd, J = 11.3, 4.3 Hz, 1H), 3.41 (dd, J = 5.7, 1.5 Hz, 2H), 2.90 (dd,
J=13.1, 2.4 Hz, 1H), 2.05 — 1.93 (m, 1H), 1.87 — 1.78 (m, 3H), 1.78 — 1.70 (m, 1H), 1.60
(apparent g, J =13.1 Hz, 1H), 1.14 - 1.06 (m, 2H), 0.91 (s, 9H), 0.87 (s, 9H), 0.04 (s, 3H),
0.01 (s, 6H), -0.04 (s, 3H).1*C NMR (151 MHz, Chloroform-d) & 189.8, 148.9, 146.1,
1445, 138.5, 128.5, 127.7,127.6,117.8, 77.1, 74.5, 73.2, 63.3, 50.0, 37.3, 34.6, 26.6, 26.1,
26.1, 25.0, 23.9, 18.4, 18.2, -3.6, -4.2, -5.1, -5.2. +ESI-HRMS m/z: calc’d for [M+Na]*
Cs3Hs405Si2Na™ = 609.34075 found CssHs4OsSizNa™ = 609.34015. FTIR (Neat) 3301,
2953, 2929, 2886, 2856, 1686, 1627, 1472, 1462, 1362, 1255, 1103, 1006, 940, 908, 836,

775, 736, 697.
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Preparation of Bicycle 4.65 and 4.66

i o-
oJ R
. N
Ll’§. /’ “Li OBn OH OBn OH
OBn 0 4.60 W
_0 (3.5 equiv)
lrl ~ THF, ~78 to —40 °C ©
" " > : \ NHCbz
ii. .1.1.0..8 H TBSO
OTBS HFIP:TFE:AcOH
~40to 60 °C
- oTBS oTBS
OTBS R=Cbz
4.50 4.65 4.66
(67% Yield)
1:1 ratio

To allene 4.39 (40 mg, 0.14 mmol) dissolved in dry THF (0.65 mL) and cooled to
—78 °C was added 2.5 M BuL.i in hexanes (118 pL, 0.295 mmol) and the reaction allowed
to proceed for 1 hour. To this solution was added a dry ice acetone bath cooled solution of
Weinreb amide 4.50 (25 mg, 0.042 mmol) in dry THF (0.4 mL). After 25 minutes the
reaction was warmed to —40 °C in an acetonitrile dry ice bath and allowed to stir at this
temperature for 1 hour. The reaction solution was then transferred by cannula to a
0.6:0.6:0.5 HFIP:TFE:AcOH (v/v/v) solution which was also at —40 °C and stirred for 10
minutes. The reaction solution was then warmed to 60 °C in an oil bath for nine hours. The
reaction was allowed to cool, diluted with ethyl acetate and washed several times with a
saturated sodium bicarbonate solution. The organic layer was dried over sodium sulfate
and the solvent evaporated under reduced pressure. The residue was purified by MPLC
using a gradient which began at 0% ethyl acetate in hexanes progressed to 20% ethyl
acetate in hexanes. This gave 10.7 mg of diastereomer 4.65 (clear oil) and 10.8 mg of
diastereomer 4.66 (clear oil which crystalizes on standing concentrated in acetonitrile, total
67% Yield). Data for 4.65: R = 0.25 (20% EtOAc/hexanes), UV; *H NMR (600 MHz,

Acetone-de) & 7.39 — 7.28 (m, 10H), 6.37 (s, 1H), 5.89 (dd, J = 9.1, 5.6 Hz, 1H), 5.08 (d, J
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=12.6 Hz, 1H), 5.02 (d, J = 12.6 Hz, 1H), 4.50 (apparent g, 2H), 3.99 (s, 1H), 3.61 — 3.37
(m, 6H), 3.34 — 3.23 (m, 2H), 3.09 (d, J = 13.4 Hz, 1H), 2.56 — 2.51 (m, 1H), 2.28 — 2.16
(m, 3H), 1.68 (d, J = 14.5 Hz, 1H), 1.59 (td, J = 12.6, 4.7 Hz, 1H), 1.26 — 1.17 (m, 1H),
1.16 — 1.07 (m, 1H), 0.89 (s, 9H), 0.71 (s, 9H), 0.03 (s, 3H), 0.03 (s, 3H) (two closely
overlapping singlets integrating to a total of 6H), -0.03 (s, 3H), -0.06 (s, 3H).2*C NMR
(151 MHz, Chloroform-d) 6 191.2, 156.5, 151.3, 138.8, 138.2, 137.3, 136.7, 132.4, 128.6,
128.5,128.2, 128.2, 127.9, 127.6, 74.8, 74.8, 73.5, 66.7, 62.8, 50.8, 40.7, 34.6, 31.7, 29.0,
28.1, 26.9, 26.1, 25.9, 23.3, 18.4, 17.7, -3.4, -5.1, -5.2, -5.7. +ESI-HRMS m/z: calc’d for
[M+Na]* CasHesNO7Si2Na* = 786.41973, found CasHesNO7Si2Na*™ = 786.41840. FTIR
(Neat) 3327, 2949, 2928, 2881 ,2856, 1688, 1629, 1531, 1498, 1470, 1455, 1401, 1364,
1332, 1252, 1215, 1144, 1128, 1093, 1054, 1030, 1006, 938, 910, 856, 835, 773, 736, 698,
674. Data for 4.66: Rr= 0.21 (20% EtOAc/hexanes), UV; 'H NMR (600 MHz, Acetone-
ds) 5 7.81 (s, 1H), 7.39 — 7.26 (m, 10H), 6.36 — 6.27 (M, 2H), 5.05 (ABq, Adas = 0.03, 2H),
4.54 (s, 2H), 3.62 — 3.52 (m, 3H), 3.46 (d, J = 5.7 Hz, 2H), 3.39 — 3.31 (m, 1H), 3.32 - 3.27
(m, 2H), 2.88 (ddd, J = 12.8, 4.1, 1.7 Hz, 1H), 2.76 — 2.68 (m, 1H), 2.02 — 1.96 (m, 1H),
1.95 — 1.80 (m, 3H), 1.78 — 1.72 (m, 1H), 1.63 (apparent g, J = 12.1 Hz, 1H), 1.19 — 1.02
(m, 2H), 0.95 (s, 9H), 0.88 (s, 9H), 0.09 (s, 3H), 0.04 — 0.01 (m, 9H). 3C NMR (151 MHz,
Acetone-ds) 6 191.0, 157.0, 150.9, 141.2, 140.0, 139.9, 138.5, 136.6, 129.2, 129.1, 128.6,
128.5, 128.2, 128.2, 78.4, 75.3, 73.4, 66.4, 63.8, 50.0, 41.4, 38.2, 35.6, 28.7, 27.2, 26.5,
26.4, 25.3, 24.7, 18.8, 18.6, -3.6, -4.1, -5.1, -5.1. +ESI-HRMS m/z: calc’d for [M+Na]*
Ca3HesNO7SizNa* = 786.41973, found CasHesNO7SizNa* = 786.41895. FTIR (Neat) 3303,
2952, 2928, 2885, 2855, 1725, 1698, 1628, 1518, 1498, 1471, 1462, 1400, 1360, 1302,

1252, 1101, 1068, 1028, 1006, 982, 939, 911, 879, 836, 813, 775, 735, 697, 669, 614.
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Preparation of Bicycle 4.67 and 4.68

i o—
S
. N
LI, “Li OBn 0Bn OH
OBn 0 460 o' OH
o (3.5 equiv)
NN THF, —78 to —40 °C 0 4 0
I > \ \
i 1 H NHCbz NHCbz
1. ) ,1'1'0'8 o TBSO TBSO
OTBS HFIP:TFE:Chloroacetic acid
—40 to 60 °C
ii. 1M HCl OH OH
450 OTBS 4.67 4.68
R =Chz

To allene 4.39 (40 mg, 0.14 mmol) dissolved in dry THF (0.65 mL) and cooled to
—78 °C was added 2.5 M BuL.i in hexanes (118 uL, 0.295 mmol) and the reaction allowed
to proceed for 1 hour. To this solution was added a dry ice acetone bath cooled solution of
Weinreb amide 4.50 (25 mg, 0.042 mmol) in dry THF (0.4 mL). After 30 minutes the
reaction was warmed to —40 °C in an acetonitrile dry ice bath and allowed to stir at this
temperature for 1 hour. The reaction solution was then transferred by cannula to a solution
of HFIP:TFE:chloroacetic acid (0.6 mL:0.6 mL:825 mg) which was also at —-40 °C and
stirred for 10 minutes. The reaction solution was then warmed to 60 °C in an oil bath for 1
hour and 50 minutes. The reaction was allowed to cool and 1 M HCI (1.5 mL) was added.
After 30 minutes the reaction solution was diluted with ethyl acetate and washed several
times with a saturated sodium bicarbonate solution and brine. The organic layer was dried
over sodium sulfate and the solvent evaporated under reduced pressure. The residue was
purified by MPLC using a gradient which began at 0% ethyl acetate in hexanes progressed
to 100% ethyl acetate. This gave 13.9 mg of 4.67 and 4.68 as a mixture of diastereomers
which was purified again by prep TLC using 1:1 ethyl acetate: hexanes to give and 4.2 mg

of diastereomer 4.67 and 6.4 mg of diastereomer 4.68 (clear oils, 39% Yield total). *Notes:
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chloroacetic acid used in this reaction refers to mono-chloroacetic acid. Data for 4.67: Rt
=0.21 (50% EtOAc/hexanes), UV; *H NMR (600 MHz, Chloroform-d) & 7.38 — 7.27 (m,
10H), 5.83 (dd, J = 10.4, 5.7 Hz, 1H), 5.05 (ABq, ASas = 0.05, 2H), 4.47 (ABq, Adas =
0.05, 2H), 3.87 (s, 1H), & 3.76 — 3.65 (m, 1H), 3.58 — 3.53 (m, 1H), 3.47 (t, J = 9.8 Hz,
2H), 3.38 — 3.31 (m, 3H), 3.15 (dd, J = Hz, 1H), 2.32 — 2.19 (m, 2H), 2.16 — 2.06 (M, 2H),
1.83 (td, J = 12.7, 5.3 Hz, 1H), 1.75 (t, J = 12.2 Hz, 1H), 1.62 (d, J = 15.2 Hz, 2H), 1.10 —
1.00 (m, 1H), 1.00 — 0.90 (m, 1H), 0.69 (s, 9H), -0.07 (s, 3H), -0.14 (s, 3H). 13C NMR (151
MHz, Chloroform-d) 6 191.4, 157.0, 151.4,138.7,138.2,137.2, 136.5, 132.8, 128.7, 128.5,
128.2, 128.0, 127.9, 127.6, 74.8, 74.6, 73.5, 66.7, 62.4, 50.9, 40.8, 34.6, 31.8, 28.7, 28.0,
26.9, 25.9, 234, 17.7, -3.5, -5.7. +ESI-HRMS m/z: calc’d for [M+Na]* C37Hs:NO7SiNa*
= 672.33325, found C37Hs1NO7SiNa* = 672.33228. FTIR (Neat) 3327, 2949, 2928, 2881,
2856, 1688, 1629, 1531, 1498, 1470, 1455, 1401, 1364, 1332, 1252, 1215, 1144, 1128,
1093, 1054, 1030, 1006, 938, 910, 856, 835, 773, 736, 698. Data for 4.68: Rt = 0.39 (50%
EtOAc/hexanes), UV; 'H NMR (600 MHz, Methylene Chloride-d2) & 7.38 — 7.26 (m,
10H), 6.32 (dd, J = 10.0, 6.2 Hz, 1H), 5.89 (br d, J = 7.6 Hz, 1H), 5.22 (s, 1H), 5.03 (ABq,
Adags = 0.03, 2H), 4.51 (s, 2H), 3.54 — 3.46 (m, 2H), 3.47 — 3.30 (m, 7H), 2.84 (dd, 1H),
2.52 — 2.43 (m, 1H), 2.07 — 1.96 (m, 1H), 1.83 — 1.66 (m, 4H), 1.58 (g, J = 13.1 Hz, 1H),
1.12 — 0.96 (m, 2H), 0.92 (s, 9H), 0.05 (s, 3H), -0.03 (s, 3H). °C NMR (151 MHz,
Methylene Chloride-dz2) & 189.3, 155.2, 147.6, 139.7, 137.5, 137.4, 135.9, 135.5, 127.1,
127.0, 126.6, 126.4, 126.1, 76.0, 73.1, 71.6, 65.0, 61.3, 48.3, 39.3, 36.1, 33.3, 26.5, 25.1,
24.4, 235, 22.1, 16.6, -5.5, -6.0. +ESI-HRMS m/z: calc’d for [M+Na]* Cs7Hs1NO7SiNa*

=672.33325, found C37Hs1NO7SiNa* = 672.33270. FTIR (Neat) 3308, 3065, 3032, 2929,
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2855, 1692, 1627, 1525, 1498, 1455, 1399, 1361, 1251, 1100, 1067, 1028, 1006, 938, 909,

879, 836, 775, 736, 697, 670, 611.
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APPENDIX A

An Enediyne Route Towards Aspergilline A
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A.1 Accessing a Macrocyclic Allene
In an initial attempt to synthesis a tetracylic intermediate A.04 towards the total
synthesis of aspergilline A we had envisioned a gold catalyzed or iodine mediated
cyclization of an enyne or a diyne (Scheme A.01).! In this work we accessed compound

3.18 through a Sonogashira cross coupling and advanced it to A.06 by 1,2 - addition of

Scheme A.01 Gold mediated tetracycle formation

lithium acetylide A.05. Having accessed A.06 we exposed the compound to iodine in DCM
and were surprised to find that the desired cyclization product was not obtained. Instead
macrocyclic allene A.07 was produced in 24% Yield. Mechanistically, this may have
occurred through initial activation of an alkyne by iodine and subsequent addition of the
amine nitrogen into the alkene to generate iodoallene A.07 (Scheme A.02).

NH 4/—/_/
F 2 le— J a0s

THF
o 2. TBSOTF, EtzN o

Scheme A.02 lodoallene synthesis
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Exposure of allene A.07 to HCI in diethyl ether provided the crystalline hydrochloride salt

A.08 which allowed for structural confirmation by X-Ray analysis (Figure A.1).

Figure A.1 X-ray structure of Allene A.08

Suffice it to say that various structurally similar substrates were explored (Scheme
A.03) under various cyclization conditions but none produced the desired tetracylic

products.

CIAu(PPh3) (2 mol %)
AgSbFs (2 mol %)

DCM

CIAu(PPh3) (10 mol %)
AgSbFg (10 mol %)

N
N

DCM, H,0 (20 equiv)

Scheme A.03 Representative examples of attempts to generate a tetracyclic substrate

A.1 Conclusion

In retrospect, the lack of co-planarity of the pi systems in these substrates precluded the
possibility of cyclization. Rather than produce planer substrates, which would lack needed

oxidation at C3 of what would be an oxindole, we opted to redesign the route.
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APPENDIX B

Spectral Data for Chapter Two
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Figure B.09. FTIR Spectrum (neat) of diazomalonate 2.08
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Figure B.16. *H NMR (400 MHz, CDCIs) of oxabicycle 2.18
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Figure B.21. FTIR Spectrum (neat) of malonate 2.38
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Figure B.24. FTIR Spectrum (neat) of tosyl hydrazone 2.39
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Figure B.27. FTIR Spectrum (neat) of diazomalonate 2.11
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Figure B.30. FTIR Spectrum of oxabicycle 2.21
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Figure B.33. FTIR Spectrum (neat) of tosyl hydrazone 2.41
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Figure B.40. FTIR Spectrum (neat) of tetronic acid 2.22
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Figure B.43. FTIR Spectrum (neat) of tosyl hydrazone 2.43
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Figure B.46. FTIR Spectrum (neat) of diazomalonate 2.12
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Figure B.54. 'H NMR (400 MHz, CDCls) of tosyl hydrazone 2.45
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Figure B.56. FTIR Spectrum (neat) of tosyl hydrazone 2.45
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Figure B.60. *H NMR (600 MHz, CDCls) of oxabicycles 2.31 & 2.32
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Figure C.21. FTIR Spectrum (neat) of tetracycle 3.34
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Figure C.24. FTIR Spectrum (neat) of MOM tetracycle 3.35
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Figure C.26. 3C NMR (101 MHz, CDCls) of pyrrolidone 3.45



88°0l¥
5| 'Ear
OF 6t
BEOLS
08'9EG
[TAA=
55219
By LED
£1'958
85004
WZes
LE°28L
20°peR
02258
85126
B85 PEG
v0° 196
99°9001
£6'6201
95°GLLL
AN
L6°95}1
549021
LE'EICL
8. 'EGCL
¥ '8BEL
56°90r1
L SERL
58'09r|
Sb L051
09'6est
518051
0E'E891
EL2041

— E'GE8E
— GL0S6E
— SZ'rS0E

— Z0'BIEE

413] 06 19 08 g/
[04] @ouUB)IWUSUEL |

275

500

1000

1500

2000

2500

3000

3500

Wavenumber cm-1

Figure C.27. FTIR Spectrum (neat) of pyrrolidone 3.45
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Figure C.30. FTIR Spectrum (neat) of pyrrolidone 3.46
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Figure C.33. FTIR Spectrum (neat) of tetracycle 3.47
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Figure C.39. FTIR Spectrum (neat) of amide 3.54
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Figure C.42. FTIR Spectrum (neat) of imide 3.55
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Figure C.43. 'H NMR (600 MHz, CDCls) of acyloin 3.58
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Figure C.45. FTIR Spectrum (neat) of acyloin 3.58



3200
-3000
:'2800
:'2600
2400
-2200
2000
-1800
1600
1400
-1200
1000
-800
600
-400
-200
-0
--200

Ee0st

LS

| @M‘_JLJ“ULM_, JLL
iy It
REER b

/s
5
(32

]

5.5

2}
RR

s = T

TMS

R

294

0.0 -0.5

0.5

1.0

3.0 25 2.0 1.5

3:5

4.0

5.0 4.5
f1 (ppm)

9.0 85 80 75 70 65 60
Figure C.46. 'H NMR (600 MHz, CDCls) of diols 3.56

9.5

2.0



1200
1100
1000
I-900
800
700
I-600

-500

400

300

-200

100

-0

80

60

£'90T
£'90T >

SeeT
90er &z
LSCT
85T
9TET—
el —

EEPT
4348 >

T™MS

R

295

-10

200 190 180 170 160 150 140 130 120 110f }OO 3 90 80 70 60 50 40 30 20 10
1 (ppm

210

Figure C.47. BC NMR (151 MHz, CDCls) of diols 3.56
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Figure C.48. FTIR Spectrum (neat) of diols 3.56
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Figure C.51. FTIR Spectrum (neat) of iodide 3.68
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Figure D.01. *H NMR (600 MHz, CDClIs) of allene 4.34
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APPENDIX E

X-ray Crystallography Data
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E.1. Crystal Structure Analysis of Oxabicyclic Compound 2.17

Figure E.01. ORTEP drawing of oxabicyclic compound 2.17
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Table E.O1 Crystal data and structure refinement for oxabicyclic compound 2.17

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

JLW16_0m

Ci7 His F3 Og
421.30

150(2) K
0.71073 A
Monoaclinic
P2:/c
a=13.9325(8) A
b = 8.4366(5) A
¢ =16.9502(9) A
1990.4(2) A3

4

1.406 Mg/m?
0.131 mm-!

868

0.529 x 0.416 x 0.412 mm3
2.406 to 27.164°.

a=90°.
B=92.536(2)°.
y=90°.

-17<=h<=17, -10<=k<=10, -21<=I<=21

50096

4409 [R(int) = 0.0426]
100.0 %

None

Full-matrix least-squares on F2
4409/0/259

2.050

R1=0.0681, wR2 = 0.2411
R1=0.0814, wR2 = 0.2531
n/a

1.232 and -0.852 e.A3
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Table E.O2. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
JLW16_0m. U(eq) is defined as one third of the trace of the orthogonalized Ul tensor.

Atom X y z U(eq)
0(4) 6342(2) 7736(5) 8462(2) 18(1)
C(10) 5787(3) 8586(6) 9026(3) 25(1)
C(11) 4842(4) 9037(6) 8591(3) 84(1)
0(14) 6248(4) 7390(7) 8339(3) 20(1)
C(100) 5570(6) 8177(10) 8849(4) 31(2)
C(111) 5589(10) 9898(16) 8794(7) 100(5)
F(1) 9524(1) 12002(2) 7538(1) 55(1)
F(2) 10077(1) 10196(2) 8328(1) 65(1)
F(3) 8710(2) 11281(2) 8521(1) 70(1)
0(1) 7752(2) 2256(2) 9946(1) 46(1)
0(2) 8515(1) 8284(2) 7953(1) 26(1)
0(3) 7724(1) 7171(2) 6912(1) 32(1)
0O(5) 7594(1) 7434(2) 9330(1) 23(1)
0O(6) 9270(1) 4950(2) 8659(1) 28(1)
o(7) 7488(2) 3639(2) 11035(1) 40(1)
0(19) 5192(1) 4653(3) 8608(1) 38(1)
C@) 7961(3) 847(4) 10430(2) 68(1)
C(2) 7537(2) 3549(3) 10338(1) 22(1)
C(3) 7388(2) 4903(3) 9781(1) 22(1)
C(4) 6635(2) 5232(3) 9300(1) 24(1)
C(5) 6956(2) 6616(3) 8777(1) 23(1)
C(6) 7679(2) 5895(3) 8186(1) 21(1)
C() 7962(2) 7168(3) 7604(1) 22(1)
C(8) 8787(2) 9549(3) 7447(1) 29(1)
C(9) 9275(2) 10747(3) 7966(2) 38(1)
C(12) 8162(2) 6107(2) 9596(1) 20(1)
C(13) 8513(2) 5544(2) 8787(1) 20(1)
C(14) 5744(2) 4279(3) 9238(1) 27(1)
C(15) 4289(2) 3805(4) 8501(2) 43(1)
C(16) 8920(2) 6539(3) 10219(1) 29(1)
c@amn 7342(2) 4426(3) 7734(1) 29(1)
0(9) 5547(1) 3304(2) 9716(1) 45(1)
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Table E.03. Bond lengths [A] for oxabicycle 2.17

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
0(4)-C(5) 1.367(4) C(3)-C(4) 1.329(3)
0(4)-C(10) 1.447(5) C(3)-C(12) 1.524(3)
C(10)-C(11) 1.529(7) C(4)-C(14) 1.480(3)
0(14)-C(5) 1.374(5) C(4)-C(5) 1.543(3)
0(14)-C(100) 1.467(8) C(5)-C(6) 1.574(3)
C(100)-C(111) 1.455(16) C(6)-C(7) 1.521(3)
F(1)-C(9) 1.339(3) C(6)-C(17) 1.520(3)
F(2)-C(9) 1.335(3) C(6)-C(13) 1.541(3)
F(3)-C(9) 1.332(3) C(8)-C(9) 1.485(4)
0(1)-C(2) 1.319(3) C(8)-H(15) 0.9900
0(1)-C(1) 1.466(3) C(8)-H(16) 0.9900
0(2)-C(7) 1.337(3) C(12)-C(16) 1.505(3)
0(2)-C(8) 1.430(3) C(12)-C(13) 1.551(3)
0(3)-C(7) 1.207(3) C(14)-0(9) 1.195(3)
0(5)-C(12) 1.432(2) C(15)-H(7) 0.9800
0(5)-C(5) 1.439(3) C(15)-H(8) 0.9800
0(6)-C(13) 1.196(3) C(15)-H(6) 0.9800
0(7)-C(2) 1.188(3) C(16)-H(11) 0.9800
0(19)-C(14) 1.327(3) C(16)-H(10) 0.9800
0(19)-C(15) 1.452(3) C(16)-H(9) 0.9800
C(1)-H@) 0.9800 C(17)-H(12) 0.9800
C(1)-H(4) 0.9800 C(17)-H(13) 0.9800
C(1)-H(1) 0.9800 C(17)-H(14) 0.9800
C(2)-C(3) 1.491(3)

408



Table E.04. Bond angles [°] for oxabicycle 2.17

Atom-Atom-Atom Bond angles [°] Atom-Atom-Atom Bond angles [°]

C(5)-0(4)-C(10) 115.3(3) 0(2)-C(8)-H(16) 110.5
O(4)-C(10)-C(11) 106.2(4) C(9)-C(8)-H(16) 110.5
C(5)-0(14)-C(100) 111.2(4) H(15)-C(8)-H(16) 108.7

C(111)-C(100)-O(14) 113.6(7) F(3)-C(9)-F(1) 106.9(2)

C(2)-0(1)-C(1) 115.6(2) F(3)-C(9)-F(2) 107.6(2)
C(7)-0(2)-C(8) 115.08(17) F(1)-C(9)-F(2) 107.0(2)
C(12)-0(5)-C(5) 98.45(15) F(3)-C(9)-C(8) 112.3(2)
C(14)-0(19)-C(15) 116.8(2) F(1)-C(9)-C(8) 109.9(2)
0(1)-C(1)-H(3) 109.5 F(2)-C(9)-C(8) 112.7(2)
O(1)-C(1)-H(4) 109.5 0(5)-C(12)-C(16) 113.11(18)
H(3)-C(1)-H(4) 109.5 0(5)-C(12)-C(3) 101.50(17)
O(1)-C(1)-H(1) 109.4 C(16)-C(12)-C(3) 119.85(18)
H(3)-C(1)-H(1) 109.5 0(5)-C(12)-C(13) 98.79(15)
H(4)-C(1)-H(1) 109.5 C(16)-C(12)-C(13) 117.10(18)
0(7)-C(2)-0(1) 125.3(2) C(3)-C(12)-C(13) 103.42(17)
0(7)-C(2)-C(3) 124.6(2) 0(6)-C(13)-C(6) 127.29(19)
0(1)-C(2)-C(3) 110.04(18) 0(6)-C(13)-C(12) 127.2(2)
C(4)-C(3)-C(2) 129.3(2) C(6)-C(13)-C(12) 105.51(17)
C(4)-C(3)-C(12) 106.30(19) 0(9)-C(14)-0(19) 124.6(2)
C(2)-C(3)-C(12) 124.11(19) 0(9)-C(14)-C(4) 122.9(2)
C(3)-C(4)-C(14) 124.5(2) 0(19)-C(14)-C(4) 112.44(18)
C(3)-C(4)-C(5) 105.66(19) 0(19)-C(15)-H(7) 109.5
C(14)-C(4)-C(5) 129.37(19) 0(19)-C(15)-H(8) 109.5
0(4)-C(5)-0(5) 106.3(2) H(7)-C(15)-H(8) 109.5
0(14)-C(5)-0(5) 122.1(3) 0(19)-C(15)-H(6) 109.5
O(4)-C(5)-C(6) 115.1(2) H(7)-C(15)-H(6) 109.5
0(14)-C(5)-C(6) 107.7(3) H(8)-C(15)-H(6) 109.5
0(5)-C(5)-C(6) 101.89(16) C(12)-C(16)-H(11) 109.5
O(4)-C(5)-C(4) 123.7(2) C(12)-C(16)-H(10) 109.5
0(14)-C(5)-C(4) 116.8(3) H(11)-C(16)-H(10) 109.5
0(5)-C(5)-C(4) 100.09(16) C(12)-C(16)-H(9) 109.5
C(6)-C(5)-C(4) 106.43(17) H(11)-C(16)-H(9) 109.5
C(7)-C(6)-C(17) 109.44(17) H(10)-C(16)-H(9) 109.5
C(7)-C(6)-C(13) 110.74(17) C(6)-C(17)-H(12) 109.5
C(17)-C(6)-C(13) 112.57(18) C(6)-C(17)-H(13) 109.5
C(7)-C(6)-C(5) 109.36(18) H(12)-C(17)-H(13) 109.5
C(17)-C(6)-C(5) 116.33(18) C(6)-C(17)-H(14) 109.5
C(13)-C(6)-C(5) 97.93(16) H(12)-C(17)-H(14) 109.5
0(3)-C(7)-0(2) 123.8(2) H(13)-C(17)-H(14) 109.5
0(3)-C(7)-C(6) 124.3(2)
0(2)-C(7)-C(6) 111.87(17)
0(2)-C(8)-C(9) 106.24(19)
0(2)-C(8)-H(15) 1105
C(9)-C(8)-H(15) 1105
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E.2. Crystal Structure Analysis of Tetronic acid 2.25

Figure E.02. ORTEP drawing of tetronic acid 2.25
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Table E.05 Crystal data and structure refinement for tetronic acid 2.25

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

JLW14 Om
C11H170s
229.24
150(2) K
0.71073 A
Monoaclinic
P2./n
a=6.4697(6) A o=90°.

b=11.6627(11) A B=93.278(3)°.

c=16.0124(14) A y=90°.
1206.23(19) A3

4

1.262 Mg/m3

0.099 mm-?

492

0.130 x 0.080 x 0.050 mm3

2.162 t0 27.169°.

-8<=h<=8, -14<=k<=14, -20<=1<=20
36886

2675 [R(int) = 0.0923]

100.0 %

None

Full-matrix least-squares on F2
2675/0/150

1.077

R1=0.0781, wR2 = 0.1815

R1 = 0.1459, wR2 = 0.2165

n/a

0.722 and -0.242 e A3
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Table E.06. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
JLW14. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
o(1) 1112(3) 6781(2) 8516(1) 36(1)
o) -1734(5) 7533(3) 7854(2) 71(1)
0(3) -1772(4) 6317(2) 10139(2) 63(1)
0(4) 2105(4) 8418(2) 10156(2) 50(1)
0(5) 1292(4) 9620(2) 9130(2) 62(1)
c(1) 2957(6) 6462(4) 10545(3) 62(1)
C(2) 1325(5) 7408(3) 10534(2) 45(1)
c@) -631(5) 7087(3) 10016(2) 44(1)
C() -929(5) 7961(3) 9308(2) 32(1)
C(5) -607(5) 7397(3) 8463(2) 37(1)
C(6) 1833(5) 6110(3) 7796(2) 35(1)
0 3713(6) 5487(4) 8180(3) 67(1)
Cc(8) 2419(9) 6924(4) 7133(3) 85(2)
C(9) -2986(5) 8586(3) 9313(2) 49(1)
C(10) 903(5) 8764(3) 9501(2)41(1) C(11)
235(7) 5240(4) 7530(3) 75(1)
Table E.07. Bond lengths [A] for tetronic acid 2.25
Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
0(1)-C(5) 1.322(4) C(4)-C(5) 1.529(4)
0(1)-C(6) 1.491(4) C(6)-C(8) 1.489(5)
0(2)-C(5) 1.194(4) C(6)-C(11) 1.493(5)
0(3)-C(3) 1.186(4) C(6)-C(7) 1.516(5)
0(4)-C(10) 1.332(4) C(7)-H(14) 0.9800
0(4)-C(2) 1.429(4) C(7)-H(15) 0.9800
0(5)-C(10) 1.197(4) C(7)-HER) 0.9800
C(1)-C(2) 1.527(5) C(8)-H(3) 0.9800
C(1)-H(9) 0.9800 C(8)-H(16) 0.9800
C(1)-H(®) 0.9800 C(8)-H(17) 0.9800
C(1)-H(1) 0.9800 C(9)-H(6) 0.9800
C(2)-C(3) 1.519(5) C(9)-H(4) 0.9800
C(2)-H(10) 1.0000 C(9)-H(5) 0.9800
C(3)-C(4) 1.529(5) C(11)-H(13) 0.9800
C(4)-C(9) 1.517(5) C(11)-H(11) 0.9800
C(4)-C(10) 1.528(5) C(11)-H(12) 0.9800
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Table E.08. Bond angles [°] for tetronic acid 2.25

Atom-Atom-Atom Bond angles [°] Atom-Atom-Atom Bond angles [°]

C(5)-0(1)-C(6) 122.3(2) 0(1)-C(6)-C(7) 102.5(2)
C(10)-0(4)-C(2) 112.2(3) C(11)-C(6)-C(7) 108.5(3)
C(2)-C(1)-H(9) 109.5 C(6)-C(7)-H(14) 109.5
C(2)-C(1)-H(8) 109.4 C(6)-C(7)-H(15) 109.5
H(9)-C(1)-H(8) 109.5 H(14)-C(7)-H(15) 109.5
C(2)-C(1)-H(1) 109.5 C(6)-C(7)-H(2) 109.5
H(9)-C(1)-H(1) 109.5 H(14)-C(7)-H(2) 109.5
H(8)-C(1)-H(1) 109.5 H(15)-C(7)-H(2) 109.5
0(4)-C(2)-C(3) 106.0(3) C(6)-C(8)-H(3) 109.4
0(4)-C(2)-C(1) 109.9(3) C(6)-C(8)-H(16) 109.4
C(3)-C(2)-C(1) 112.5(3) H(3)-C(8)-H(16) 109.5
0(4)-C(2)-H(10) 109.5 C(6)-C(8)-H(17) 109.5
C(3)-C(2)-H(10) 109.5 H(3)-C(8)-H(17) 109.5
C(1)-C(2)-H(10) 109.5 H(16)-C(8)-H(17) 109.5
0(3)-C(3)-C(2) 127.1(4) C(4)-C(9)-H(6) 109.5
0(3)-C(3)-C(4) 125.1(4) C(4)-C(9)-H(4) 109.5
C(2)-C(3)-C(4) 107.8(3) H(6)-C(9)-H(4) 109.5
C(9)-C(4)-C(3) 112.9(3) C(4)-C(9)-H(5) 109.5
C(9)-C(4)-C(10) 112.0(3) H(6)-C(9)-H(5) 109.5
C(3)-C(4)-C(10) 101.2(3) H(4)-C(9)-H(5) 109.5
C(9)-C(4)-C(5) 112.0(3) 0(5)-C(10)-O(4) 121.0(3)
C(3)-C(4)-C(5) 110.6(3) 0(5)-C(10)-C(4) 126.4(3)
C(10)-C(4)-C(5) 107.4(2) 0(4)-C(10)-C(4) 112.6(3)
0(2)-C(5)-0(1) 126.6(3) C(6)-C(11)-H(13) 109.5
0(2)-C(5)-C(4) 123.9(3) C(6)-C(11)-H(11) 109.5
0(1)-C(5)-C(4) 109.5(3) H(13)-C(11)-H(11) 109.5
C(8)-C(6)-0(1) 108.7(3) C(6)-C(11)-H(12) 109.4
C(8)-C(6)-C(11) 115.5(4) H(13)-C(11)-H(12) 109.5
0(1)-C(6)-C(11) 109.6(3) H(11)-C(11)-H(12) 109.5
C(8)-C(6)-C(7) 111.3(4)
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E.3. Crystal Structure Analysis of Tetracycle 3.47

Figure E.03. ORTEP drawing of tetracycle 3.47
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Table E.09 Crystal data and structure refinement for tetracycle 3.47

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

jlw42_0m
Ca7H30N207
49453
150(2) K
0.71073 A
Triclinic

P-1

a=11.1070(9) A a= 95.683(2)°.
b = 11.6528(10) A B= 109.541(2)°.
c=11.9191(10) A y=117.298(2)°.

1231.82(18) A3

2

1.333 Mg/m3

0.097 mm-?

524

0.233 x 0.117 x 0.074 mm3
2.347 t0 29.600°.

-15<=h<=15, -16<=k<=16, -16<=I<=16

37675

6891 [R(int) = 0.1145]

99.9 %

Semi-empirical from equivalents
0.703 and 0.693

Full-matrix least-squares on F2
6891/0/ 334

1.067

R1=0.0661, wR2 = 0.1146
R1 =0.1496, wR2 = 0.1432
n/a

0.299 and -0.257 e. A3
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Table E.10. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
jlw42_0m. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
0(1) 9416(2) 9798(1) 8434(1) 24(1)
0(2) 7558(2) 8454(2) 10080(1) 24(1)
0@3) 9120(2) 7226(2) 9232(1) 31(1)
0(4) 6408(2) 6207(2) 6535(1) 34(1)
0O(5) 6476(2) 7897(2) 5764(1) 32(1)
O(6) 8877(2) 12246(2) 3273(1) 32(1)
o(7) 8327(2) 13699(2) 6839(2) 35(1)
N(1) 7700(2) 10456(2) 7938(2) 21(1)
N(2) 6856(2) 5436(2) 8959(2) 32(1)
Cc@) 8141(2) 9574(2) 8147(2) 19(1)
C(2) 6775(2) 8176(2) 7852(2) 20(2)
C(3) 5449(2) 8443(2) 7568(2) 24(1)
C4) 6175(2) 10004(2) 7818(2) 27(1)
C(5) 5339(3) 10324(3) 6723(3) 44(1)
C(6) 6315(3) 10741(3) 9040(2) 42(1)
C(7) 6938(2) 7498(2) 8899(2) 21(1)
C(8) 7810(3) 6742(2) 9019(2) 25(1)
C(©9) 5398(3) 5168(2) 8649(2) 31(1)
C(10) 5408(2) 6352(2) 8613(2) 25(1)
C(11) 4136(2) 6413(2) 8223(2) 30(1)
C(12) 2776(3) 5204(3) 7890(2) 42(1)
C(13) 2773(3) 4023(3) 7973(2) 49(1)
C(14) 4062(3) 3965(2) 8341(2) 42(1)
C(15) 4406(2) 7795(2) 8208(2) 31(2)
C(16) 6529(2) 7289(2) 6659(2) 22(1)
Cc@17) 6303(3) 7172(2) 4599(2) 38(1)
C(18) 7291(4) 4441(3) 9097(3) 47(1)
C(19) 8719(2) 11811(2) 7934(2) 26(1)
C(20) 8701(2) 11873(2) 6664(2) 23(1)
C(21) 8925(2) 11006(2) 5993(2) 25(1)
C(22) 8990(2) 11077(2) 4858(2) 25(1)
C(23) 8839(2) 12062(2) 4379(2) 24(1)
C(24) 8611(2) 12956(2) 5024(2) 24(1)
C(25) 8540(2) 12855(2) 6152(2) 24(1)
C(26) 9254(3) 11452(3) 2624(2) 37(2) C(27)
8156(3) 14710(3) 6350(3) 44(1)
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Table E.11. Bond lengths [A] for tetracycle 3.47

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
0(1)-C(2) 1.229(2) C(9)-C(14) 1.388(3)
0(2)-C(7) 1.426(2) C(10)-C(11) 1.370(3)
0(2)-H(2) 0.89(3) C(11)-C(12) 1.400(3)
0(3)-C(8) 1.214Q3) C(11)-C(15) 1.500(3)
0(4)-C(16) 1.194(2) C(12)-C(13) 1.388(4)
0(5)-C(16) 1.337(3) C(12)-H(12) 0.9500
0(5)-C(17) 1.456(2) C(13)-C(14) 1.385(4)
0(6)-C(23) 1.367(3) C(13)-H(13) 0.9500
0(6)-C(26) 1.434(3) C(14)-H(14) 0.9500
0(7)-C(25) 1.370(2) C(15)-H(15A) 0.9900
o(7)-C(27) 1.426(3) C(15)-H(15B) 0.9900
N(1)-C(1) 1.338(3) C(17)-H(17A) 0.9800
N(1)-C(19) 1.463(3) C(17)-H(17B) 0.9800
N(1)-C(4) 1.473(3) C(17)-H(17C) 0.9800
N(2)-C(8) 1.375(3) C(18)-H(18A) 0.9800
N(2)-C(9) 1.403(3) C(18)-H(18B) 0.9800
N(2)-C(18) 1.450(3) C(18)-H(18C) 0.9800
C(1)-C(2) 1.530(3) C(19)-C(20) 1.516(3)
C(2)-C(16) 1.534(3) C(19)-H(19A) 0.9900
C(2)-C(7) 1.546(3) C(19)-H(19B) 0.9900
C(2)-C(3) 1.578(3) C(20)-C(21) 1.389(3)
C(3)-C(15) 1.547(3) C(20)-C(25) 1.402(3)
C(3)-C(4) 1.561(3) C(21)-C(22) 1.387(3)
C(3)-H(3) 1.0000 C(21)-H(21) 0.9500
C(4)-C(5) 1.519(3) C(22)-C(23) 1.383(3)
C(4)-C(6) 1.537(3) C(22)-H(22) 0.9500
C(5)-H(5A) 0.9800 C(23)-C(24) 1.398(3)
C(5)-H(5B) 0.9800 C(24)-C(25) 1.386(3)
C(5)-H(5C) 0.9800 C(24)-H(24) 0.9500
C(6)-H(6A) 0.9800 C(26)-H(26A) 0.9800
C(6)-H(6B) 0.9800 C(26)-H(26B) 0.9800
C(6)-H(6C) 0.9800 C(26)-H(26C) 0.9800
C(7)-C(10) 1.493(3) C(27)-H(27A) 0.9800

C(7)-C(8) 1.565(3) C(27)-H(27B) 0.9800
C(9)-C(10) 1.380(3) C(27)-H(27C) 0.9800
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Table E.12. Bond angles [°] for tetracycle 3.47

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

C(1)-0(2)-H(2)
C(16)-0(5)-C(17)
C(23)-0(6)-C(26)
C(25)-0(7)-C(27)
C(1)-N(1)-C(19)
C(1)-N(1)-C(4)
C(19)-N(1)-C(4)
C(8)-N(2)-C(9)
C(8)-N(2)-C(18)
C(9)-N(2)-C(18)
O(1)-C(1)-N(1)
O(1)-C(1)-C(2)
N(1)-C(1)-C(2)
C(1)-C(2)-C(16)
C(1)-C(2)-C(7)
C(16)-C(2)-C(7)
C(1)-C(2)-C(3)
C(16)-C(2)-C(3)
C(1)-C(2)-C(3)
C(15)-C(3)-C(4)
C(15)-C(3)-C(2)
C(4)-C(3)-C(2)
C(15)-C(3)-H(3)
C(4)-C(3)-H(3)
C(2)-C(3)-H(3)
N(1)-C(4)-C(5)
N(1)-C(4)-C(6)
C(5)-C(4)-C(6)
N(1)-C(4)-C(3)
C(5)-C(4)-C(3)
C(6)-C(4)-C(3)
C(4)-C(5)-H(5A)
C(4)-C(5)-H(5B)
H(5A)-C(5)-H(5B)
C(4)-C(5)-H(5C)
H(5A)-C(5)-H(5C)
H(5B)-C(5)-H(5C)
C(4)-C(6)-H(6A)
C(4)-C(6)-H(6B)
H(6A)-C(6)-H(6B)
C(4)-C(6)-H(6C)
H(6A)-C(6)-H(6C)
H(6B)-C(6)-H(6C)
0(2)-C(7)-C(10)
0(2)-C(7)-C(2)
C(10)-C(7)-C(2)
0(2)-C(7)-C(8)
C(10)-C(7)-C(8)
C(2)-C(7)-C(8)
0(3)-C(8)-N(2)
O(3)-C(8)-C(7)
N(2)-C(8)-C(7)

110.2(16)
115.77(17)
117.59(17)
117.62(17)
121.52(17)
115.26(17)
123.03(17)
111.49(19)

123.5(2)

124.8(2)
126.32(19)
123.96(18)
109.49(17)
106.24(16)
114.66(16)
109.83(17)
103.77(16)
109.79(16)
112.21(16)
115.56(17)
115.88(18)
106.03(16)

106.2

106.2

106.2
110.47(18)
108.04(18)

110.3(2)
102.84(15)
110.94(19)
114.02(19)

109.5
1095
1095
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
110.47(16)
110.12(16)
107.32(16)
108.60(16)
100.57(17)
119.23(16)

125.2(2)

127.2(2)
107.39(18)

C(14)-C(13)-H(13)
C(12)-C(13)-H(13)
C(13)-C(14)-C(9)
C(13)-C(14)-H(14)
C(9)-C(14)-H(14)
C(11)-C(15)-C(3)
C(11)-C(15)-H(15A)
C(3)-C(15)-H(15A)
C(11)-C(15)-H(15B)
C(3)-C(15)-H(15B)
H(15A)-C(15)-H(15B)
0(4)-C(16)-0(5)
0(4)-C(16)-C(2)
0(5)-C(16)-C(2)
0(5)-C(17)-H(17A)
0(5)-C(17)-H(17B)
H(17A)-C(17)-H(17B)
0(5)-C(17)-H(17C)
H(17A)-C(17)-H(17C)
H(17B)-C(17)-H(17C)
N(2)-C(18)-H(18A)
N(2)-C(18)-H(18B)
H(18A)-C(18)-H(18B)
N(2)-C(18)-H(18C)
H(18A)-C(18)-H(18C)
H(18B)-C(18)-H(18C)
N(1)-C(19)-C(20)
N(1)-C(19)-H(19A)
C(20)-C(19)-H(19A)
N(1)-C(19)-H(19B)
C(20)-C(19)-H(19B)
H(19A)-C(19)-H(19B)
C(21)-C(20)-C(25)
C(21)-C(20)-C(19)
C(25)-C(20)-C(19)
C(22)-C(21)-C(20)
C(22)-C(21)-H(21)
C(20)-C(21)-H(21)
C(23)-C(22)-C(21)
C(23)-C(22)-H(22)
C(21)-C(22)-H(22)
0(6)-C(23)-C(22)
0(6)-C(23)-C(24)
C(22)-C(23)-C(24)
C(25)-C(24)-C(23)
C(25)-C(24)-H(24)
C(23)-C(24)-H(24)
0(7)-C(25)-C(24)
0(7)-C(25)-C(20)
C(24)-C(25)-C(20)
0(6)-C(26)-H(26A)
0(6)-C(26)-H(26B)
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1185
1185
116.7(3)
121.6
121.6
110.80(18)
109.5
109.5
109.5
109.5
108.1
123.98(19)
125.28(19)
110.74(17)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
113.55(16)
108.9
108.9
108.9
108.9
107.7
117.30(19)
121.15(19)
121.46(18)
122.8(2)
118.6
118.6
118.65(19)
120.7
120.7
124.85(18)
114.77(19)
120.37(19)
119.7(2)
120.1
120.1
123.0(2)
115.88(18)
121.12(18)
109.5
109.5



C(10)-C(9)-C(14) 120.2(2) H(26A)-C(26)-H(26B) 109.5
C(10)-C(9)-N(2) 108.70(19) 0(6)-C(26)-H(26C) 109.5
C(14)-C(9)-N(2) 131.0(2) H(26A)-C(26)-H(26C) 1095
C(11)-C(10)-C(9) 123.5(2) H(26B)-C(26)-H(26C) 1095
C(11)-C(10)-C(7) 124.9(2) 0(7)-C(27)-H(27A) 109.5
C(9)-C(10)-C(7) 111.28(19) 0(7)-C(27)-H(27B) 109.5
C(10)-C(11)-C(12) 117.0(2) H(27A)-C(27)-H(27B) 109.5
C(10)-C(11)-C(15) 114.31(19) 0(7)-C(27)-H(27C) 109.5
C(12)-C(11)-C(15) 128.7(2) H(27A)-C(27)-H(27C) 109.5
C(13)-C(12)-C(11) 119.5(2) H(27B)-C(27)-H(27C) 109.5
C(13)-C(12)-H(12) 120.3
C(11)-C(12)-H(12) 120.3
C(14)-C(13)-C(12) 123.1(2)
Table E.13. [A and °]
D-H..A d(D-H) d(H...A) d(D..A) <(DHA)
0(2)-H(2)...0(1)#1 0.89(3) 1.91(3) 2.758(2) 158(2)

Symmetry transformations used to generate equivalent atoms:

#1 -X+2,-y+2,-z+2
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E.4. Crystal Structure Analysis of Cyclopropyl Hemiaminal 3.70

Figure E.04. ORTEP drawing of cyclopropyl hemiaminal 3.70
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Table E.14 Crystal data and structure refinement cyclopropyl hemiaminal 3.70

Identification code JLWS5

Empirical formula C24H32N206Si

Formula weight 472.60

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i/n

Unit cell dimensions a=15.6077(9) A o=90°.
b =9.8812(6) A B=101.265(2)°.
¢ =16.1346(10) A y=90°.

Volume 2440.4(3) A3

z 4

Density (calculated) 1.286 Mg/m3

Absorption coefficient 0.138 mm-!

F(000) 1008

Crystal size 0.141 x 0.055 x 0.029 mm3

Theta range for data collection 2.430 t0 25.712°.

Index ranges -16<=h<=19, -11<=k<=12, -19<=I<=16

Reflections collected 9329

Independent reflections 4491 [R(int) = 0.1055]

Completeness to theta = 25.242° 97.5%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.829 and 0.816

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4491/0/ 308

Goodness-of-fit on F? 1.009

Final R indices [I>2sigma(l)] R1=0.0718, wR2 = 0.1292

R indices (all data) R1=0.1535, wR2 = 0.1574

Extinction coefficient n/a

Largest diff. peak and hole 0.330 and -0.341 e. A3
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Table E.15. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
JLWS55. U(eq) is defined as one third of the trace of the orthogonalized Ul tensor.

Atom X y z U(eq)
Si(1) 8226(1) 6192(1) 175(1) 28(1)
0(1) 8805(2) 10634(2) -511(2) 24(1)
0(2) 6438(2) 10510(3) -1594(2) 33(1)
0(3) 6912(2) 12206(2) -701(2) 25(1)
0(4) 8073(2) 8473(2) -1803(2) 27(1)
0O(5) 9904(2) 10007(3) 1485(2) 36(1)
0O(6) 8018(1) 7833(2) 13(2) 22(1)
N(1) 8511(2) 10829(3) 824(2) 18(1)
N(2) 6734(2) 7467(3) -1859(2) 22(1)
C@) 7375(2) 10002(3) -250(2) 19(1)
C(2 7345(2) 8521(3) -563(2) 20(1)
C(3) 6443(2) 8000(4) -573(2) 22(1)
C(4) 5961(2) 8242(4) 30(3) 28(1)
C(5) 6421(2) 8986(4) 809(2) 30(1)
C(6) 7023(2) 10137(4) 591(2) 22(1)
C() 7831(2) 10456(4) 1307(2) 20(1)
C(8) 8320(2) 10514(3) -10(2) 17(2)
C(9) 7449(2) 8211(3) -1487(2) 20(1)
C(10) 6113(2) 7383(4) -1344(2) 23(1)
C(11) 5276(2) 6873(4) -1504(3) 34(1)
c(12) 4794(3) 7045(4) -875(3) 42(1)
C(13) 5103(2) 7741(4) -126(3) 37(1)
C(14) 6857(2) 10914(4) -926(2) 21(1)
C(15) 6402(2) 13150(4) -1297(3) 33(1)
C(16) 7604(3) 11646(4) 1829(2) 30(1)
Cc(@7) 8158(2) 9295(4) 1909(2) 29(1)
C(18) 6605(3) 6958(4) -2722(2) 33(1)
C(19) 9399(2) 11145(4) 1200(2) 24(1)
C(20) 9823(3) 12289(4) 844(3) 34(1)
C(21) 9598(3) 12422(4) 1704(3) 43(1)
C(22) 7353(3) 5361(4) 628(3) 43(1)
C(23) 8340(3) 5308(4) -812(3) 37(1) C(24)
9269(3) 6196(4) 959(3) 44(1)
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Table E.16. Bond lengths [A] for cyclopropyl hemiaminal 3.70

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
Si(1)-0(6) 1.665(2) C(10)-C(11) 1.376(5)
Si(1)-C(23) 1.855(4) C(11)-C(12) 1.387(6)
Si(1)-C(24) 1.856(4) C(11)-H(11) 0.9500
Si(1)-C(22) 1.858(4) C(12)-C(13) 1.393(6)
0(1)-C(8) 1.217(4) C(12)-H(12) 0.9500
0(2)-C(14) 1.214(4) C(13)-H(13) 0.9500
0(3)-C(14) 1.325(4) C(15)-H(15A) 0.9800
0(3)-C(15) 1.459(4) C(15)-H(15B) 0.9800
0(4)-C(9) 1.213(4) C(15)-H(15C) 0.9800
0(5)-C(19) 1.399(4) C(16)-H(16A) 0.9800
0(5)-H(5) 0.82(5) C(16)-H(16B) 0.9800
0(6)-C(2) 1.431(4) C(16)-H(16C) 0.9800
N(1)-C(8) 1.356(4) C(17)-H(17A) 0.9800
N(1)-C(19) 1.435(4) C(17)-H(17B) 0.9800
N(1)-C(7) 1.481(5) C(17)-H(17C) 0.9800
N(2)-C(9) 1.373(4) C(18)-H(18A) 0.9800
N(2)-C(10) 1.398(5) C(18)-H(18B) 0.9800
N(2)-C(18) 1.457(5) C(18)-H(18C) 0.9800
C(1)-C(14) 1.520(5) C(19)-C(20) 1.482(5)
C(1)-C(8) 1.536(5) C(19)-C(21) 1.501(5)
C(1)-C(2) 1.546(5) C(20)-C(21) 1.504(6)
C(1)-C(6) 1.565(5) C(20)-H(20A) 0.9900
C(2)-C(3) 1.495(5) C(20)-H(20B) 0.9900
C(2)-C(9) 1.560(5) C(21)-H(21A) 0.9900
C(3)-C(4) 1.362(5) C(21)-H(21B) 0.9900
C(3)-C(10) 1.391(5) C(22)-H(22A) 0.9800
C(4)-C(13) 1.403(5) C(22)-H(22B) 0.9800
C(4)-C(5) 1.511(5) C(22)-H(22C) 0.9800
C(5)-C(6) 1.559(5) C(23)-H(23A) 0.9800
C(5)-H(5A) 0.9900 C(23)-H(23B) 0.9800
C(5)-H(5B) 0.9900 C(23)-H(23C) 0.9800
C(6)-C(7) 1.567(5) C(24)-H(24A) 0.9800
C(6)-H(6) 1.0000 C(24)-H(24B) 0.9800
C(7)-C(17) 1.525(5) C(24)-H(24C) 0.9800
C(7)-C(16) 1.528(5)
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Table E.17. Bond angles [°] for cyclopropyl hemiaminal 3.70

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

0(6)-Si(1)-C(23)
0(6)-Si(1)-C(24)
C(23)-Si(1)-C(24)
0(6)-Si(1)-C(22)
C(23)-Si(1)-C(22)
C(24)-Si(1)-C(22)
C(14)-0(3)-C(15)
C(19)-0(5)-H(5)
C(2)-0(6)-Si(1)
C(8)-N(1)-C(19)
C(8)-N(1)-C(7)
C(19)-N(1)-C(7)
C(9)-N(2)-C(10)
C(9)-N(2)-C(18)
C(10)-N(2)-C(18)
C(14)-C(1)-C(8)
C(14)-C(1)-C(2)
C(8)-C(1)-C(2)
C(14)-C(1)-C(6)
C(8)-C(1)-C(6)
C(2)-C(1)-C(6)
0(6)-C(2)-C(3)
0(6)-C(2)-C(1)
C(3)-C(2)-C(1)
0(6)-C(2)-C(9)
C(3)-C(2)-C(9)
C(1)-C(2)-C(9)
C(4)-C(3)-C(10)
C(4)-C(3)-C(2)
C(10)-C(3)-C(2)
C(3)-C(4)-C(13)
C(3)-C(4)-C(5)
C(13)-C(4)-C(5)
C(4)-C(5)-C(6)
C(4)-C(5)-H(5A)
C(6)-C(5)-H(5A)
C(4)-C(5)-H(5B)
C(6)-C(5)-H(5B)
H(5A)-C(5)-H(5B)
C(5)-C(6)-C(1)
C(5)-C(6)-C(7)
C(1)-C(6)-C(7)
C(5)-C(6)-H(6)
C(1)-C(6)-H(6)
C(7)-C(6)-H(6)
N(1)-C(7)-C(17)
N(1)-C(7)-C(16)
C(17)-C(7)-C(16)
N(1)-C(7)-C(6)
C(17)-C(7)-C(6)
C(16)-C(7)-C(6)
O(1)-C(8)-N(1)

111.85(16)
102.86(16)
111.6(2)
110.94(17)
109.3(2)
110.3(2)
115.9(3)
106(3)
131.3(2)
118.5(3)
115.1(3)
124.3(3)
111.7(3)
123.5(3)
124.5(3)
109.5(3)
110.4(3)
111.1(3)
110.2(3)
103.6(3)
111.8(3)
114.4(3)
105.4(3)
107.3(3)
109.1(3)
101.3(3)
119.7(3)
123.8(3)
125.6(3)
110.1(3)
116.8(4)
116.2(3)
127.0(4)
112.1(3)
109.2
109.2
109.2
109.2
107.9
117.5(3)
114.4(3)
106.8(3)
105.7
105.7
105.7
109.8(3)
111.5(3)
108.2(3)
102.5(3)
116.1(3)
108.7(3)
126.3(3)

C(12)-C(13)-H(13)
C(4)-C(13)-H(13)
0(2)-C(14)-0(3)
0(2)-C(14)-C(1)
0(3)-C(14)-C(1)
0(3)-C(15)-H(15A)
0(3)-C(15)-H(15B)
H(15A)-C(15)-H(15B)
0(3)-C(15)-H(15C)
H(15A)-C(15)-H(15C)
H(15B)-C(15)-H(15C)
C(7)-C(16)-H(16A)
C(7)-C(16)-H(16B)
H(16A)-C(16)-H(16B)
C(7)-C(16)-H(16C)
H(16A)-C(16)-H(16C)
H(16B)-C(16)-H(16C)
C(7)-C(17)-H(17A)
C(7)-C(17)-H(17B)
H(17A)-C(17)-H(17B)
C(7)-C(17)-H(17C)
H(17A)-C(17)-H(17C)
H(17B)-C(17)-H(17C)
N(2)-C(18)-H(18A)
N(2)-C(18)-H(18B)
H(18A)-C(18)-H(18B)
N(2)-C(18)-H(18C)
H(18A)-C(18)-H(18C)
H(18B)-C(18)-H(18C)
0(5)-C(19)-N(1)
0(5)-C(19)-C(20)
N(1)-C(19)-C(20)
0(5)-C(19)-C(21)
N(1)-C(19)-C(21)
C(20)-C(19)-C(21)
C(19)-C(20)-C(21)
C(19)-C(20)-H(20A)
C(21)-C(20)-H(20A)
C(19)-C(20)-H(20B)
C(21)-C(20)-H(20B)
H(20A)-C(20)-H(20B)
C(19)-C(21)-C(20)
C(19)-C(21)-H(21A)
C(20)-C(21)-H(21A)
C(19)-C(21)-H(21B)
C(20)-C(21)-H(21B)
H(21A)-C(21)-H(21B)
Si(1)-C(22)-H(22A)
Si(1)-C(22)-H(22B)
H(22A)-C(22)-H(22B)
Si(1)-C(22)-H(22C)
H(22A)-C(22)-H(22C)
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120.4
120.4
123.7(3)
124.1(3)
112.2(3)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
113.6(3)
118.4(3)
118.0(3)
117.0(3)
119.5(3)
60.5(3)
60.3(3)
117.7
117.7
117.7
117.7
114.9

59.1(3)
117.9
117.9
117.9
117.9
115.0
109.5
109.5
109.5
109.5
109.5



0O(1)-C(8)-C(1) 123.9(3) H(22B)-C(22)-H(22C) 109.5
N(1)-C(8)-C(1) 109.8(3) Si(1)-C(23)-H(23A) 109.5
0(4)-C(9)-N(2) 125.5(3) Si(1)-C(23)-H(23B) 109.5
0(4)-C(9)-C(2) 127.0(3) H(23A)-C(23)-H(23B) 109.5
N(2)-C(9)-C(2) 107.2(3) Si(1)-C(23)-H(23C) 109.5
C(11)-C(10)-C(3) 120.1(4) H(23A)-C(23)-H(23C) 109.5
C(11)-C(10)-N(2) 130.7(4) H(23B)-C(23)-H(23C) 109.5
C(3)-C(10)-N(2) 109.1(3) Si(1)-C(24)-H(24A) 109.5
C(10)-C(11)-C(12) 116.6(4) Si(1)-C(24)-H(24B) 109.5
C(10)-C(11)-H(11) 121.7 H(24A)-C(24)-H(24B) 109.5
C(12)-C(11)-H(11) 121.7 Si(1)-C(24)-H(24C) 109.5
C(11)-C(12)-C(13) 123.3(4) H(24A)-C(24)-H(24C) 109.5
C(11)-C(12)-H(12) 118.3 H(24B)-C(24)-H(24C) 109.5
C(13)-C(12)-H(12) 118.3
C(12)-C(13)-C(4) 119.1(4)
Table E.18. [A and °]
D-H..A d(D-H) d(H...A) d(D...A) <(DHA)
0(5)-H(5)...0(1)#1 0.82(5) 2.05(5) 2.858(4) 168(4)
C(15)-H(15A)...0(4)#2 0.98 2.37 3.340(5) 168.2
C(17)-H(17A)...0(6) 0.98 2.57 3.352(5) 136.7
C(17)-H(17C)...0(5) 0.98 2.50 3.021(5) 113.0
C(20)-H(20B)...O(4)#1 0.99 2.62 3.429(5) 138.7
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E.5. Crystal Structure Analysis of Imidoyl Triflate 3.73

Figure E.05. ORTEP drawing of imidoyl triflate 3.73
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Table E.19 Crystal data and structure refinement imidoy! triflate 3.73

Identification code jlwbs6

Empirical formula C22H27F3N20OSSi

Formula weight 548.60

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i/c

Unit cell dimensions a=10.6980(4) A o= 90°.
b = 15.2272(6) A B=105.5150(14)°.
c=16.6580(7) A y=90°.

Volume 2614.72(18) A3

z 4

Density (calculated) 1.394 Mg/m3

Absorption coefficient 0.235 mm-!

F(000) 1144

Crystal size 0.196 x 0.124 x 0.081 mm3

Theta range for data collection 2.386 t0 28.324°.

Index ranges -14<=h<=14, -20<=k<=20, -22<=I<=22

Reflections collected 62465

Independent reflections 6506 [R(int) = 0.0520]

Completeness to theta = 25.242° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.946 and 0.921

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6506/ 0/ 332

Goodness-of-fit on F? 1.027

Final R indices [I>2sigma(l)] R1=0.0396, wR2 = 0.0910

R indices (all data) R1 =0.0587, wR2 = 0.0990

Extinction coefficient n/a

Largest diff. peak and hole 0.399 and -0.355 e. A3
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Table E.20. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
jlws6. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
S(1) 741(1) 9177(1) 2241(1) 23(1)
Si(2) 3614(1) 6224(1) 2050(1) 27(1)
F(1) 1842(1) 10691(1) 2660(1) 56(1)
F(2) 2818(1) 9632(1) 3414(1) 41(1)
F(3) 1005(1) 10095(1) 3561(1) 65(1)
0(1) 4691(1) 8690(1) 2550(1) 24(1)
0(2) 4451(1) 9469(1) 729(1) 25(1)
0@3) 2378(1) 9839(1) 136(1) 25(1)
O(4) 3133(1) 7195(1) 1605(1) 21(1)
0O(5) 1836(1) 9052(1) 1777(2) 23(1)
0O(6) 577(1) 8400(1) 2666(1) 41(1)
o(7) -331(1) 9647(1) 1755(1) 37(1)
N(1) 494(1) 8268(1) 679(1) 24(1)
N(2) 6054(1) 8035(1) 1865(1) 19(1)
Cc@) 2742(1) 8417(1) 699(1) 16(1)
C(2) 1588(1) 8557(1) 1040(1) 19(1)
C@3) 595(2) 7795(1) -84(1) 26(1)
C) 2027(1) 7946(1) -146(1) 20(1)
C(5) 2698(2) 7127(1) -398(1) 24(1)
C(6) 4148(2) 7147(1) -64(1) 20(1)
C() 4612(1) 7467(1) 728(1) 17(2)
C(8) 3806(1) 7829(1) 1254(1) 16(1)
C(©9) 4864(1) 8271(1) 1972(1) 17(1)
C(10) 5920(1) 7581(1) 1113(1) 18(1)
C(11) 6846(2) 7291(1) 730(1) 24(1)
C(12) 6381(2) 6917(1) -62(1) 28(1)
C(13) 5068(2) 6856(1) -468(1) 26(1)
C(14) 3316(1) 9295(1) 530(1) 18(1)
C(15) 2800(2) 10682(1) -106(1) 27(1)
C(16) -362(2) 8214(2) -833(1) 43(1)
Cc@a7n 228(2) 6840(1) 19(2) 41(1)
C(18) 7277(2) 8272(1) 2439(1) 30(1)
C(19) 1687(2) 9950(1) 3016(1) 32(1)
C(20) 3587(2) 5381(1) 1248(1) 49(1)
C(21) 5250(2) 6276(2) 2779(1) 55(1) C(22)
2388(3) 6011(2) 2624(2) 71(2)
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Table E.21. Bond lengths [A] for imidoyl triflate 3.73

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
S(1)-0(7) 1.4093(13) N(2)-C(10) 1.4027(19)
S(1)-0(6) 1.4136(14) N(2)-C(18) 1.4449(19)
S(1)-0(5) 1.5779(11) C(1)-C(2) 1.506(2)
S(1)-C(19) 1.8371(18) C(1)-C(14) 1.529(2)
Si(2)-0(4) 1.6725(11) C(1)-C(8) 1.545(2)

Si(2)-C(21) 1.846(2) C(1)-C(4) 1.583(2)
Si(2)-C(20) 1.847(2) C(3)-C(16) 1.526(2)
Si(2)-C(22) 1.847(2) C(3)-C(17) 1.528(3)
F(1)-C(19) 1.305(2) C3)-C(4) 1.580(2)
F(2)-C(19) 1.307(2) C(4)-C(5) 1.551(2)
F(3)-C(19) 1.327(2) C(5)-C(6) 1.501(2)
0(1)-C(9) 1.2105(18) C(6)-C(7) 1.370(2)
0(2)-C(14) 1.1996(18) C(6)-C(13) 1.404(2)
0(3)-C(14) 1.3304(18) C(7)-C(10) 1.385(2)
0(3)-C(15) 1.4533(19) C(7)-C(8) 1.491(2)
0(4)-C(8) 1.4197(17) C(8)-C(9) 1.561(2)
0(5)-C(2) 1.4042(18) C(10)-C(11) 1.386(2)
N(1)-C(2) 1.245(2) C(11)-C(12) 1.401(2)
N(1)-C(3) 1.490(2) C(12)-C(13) 1.389(2)
N(2)-C(9) 1.3798(19)
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Table E.22. Bond angles [°] for imidoy! triflate 3.73

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

O(7)-S(1)-0(6)
O(7)-S(1)-0(5)
0(6)-S(1)-0(5)
0(7)-S(1)-C(19)
0(6)-S(1)-C(19)
0(5)-S(1)-C(19)
0(4)-Si(2)-C(21)
0(4)-Si(2)-C(20)
C(21)-Si(2)-C(20)
0(4)-Si(2)-C(22)
C(21)-Si(2)-C(22)
C(20)-Si(2)-C(22)
C(14)-0(3)-C(15)
C(8)-0(4)-Si(2)
C(2)-0(5)-S(1)
C(2)-N(1)-C(3)
C(9)-N(2)-C(10)
C(9)-N(2)-C(18)
C(10)-N(2)-C(18)
C(2)-C(1)-C(14)
C(2)-C(1)-C(8)
C(14)-C(1)-C(8)
C(2)-C(1)-C(4)
C(14)-C(1)-C(4)
C(8)-C(1)-C(4)
N(1)-C(2)-O(5)
N(1)-C(2)-C(1)
0(5)-C(2)-C(1)
N(1)-C(3)-C(16)
N(1)-C(3)-C(17)
C(16)-C(3)-C(17)
N(1)-C(3)-C(4)
C(16)-C(3)-C(4)
C(17)-C(3)-C(4)
C(5)-C(4)-C(3)

121.44(9)
112.09(7)
110.63(8)
106.81(8)
107.68(8)
94.56(7)
112.31(8)
110.45(8)
109.55(12)
101.99(10)
110.28(13)
112.12(13)
115.97(12)
130.82(9)
120.07(9)
108.03(13)
111.47(12)
123.58(13)
124.87(13)
110.83(12)
113.76(12)
110.44(11)
98.63(11)
110.77(12)
111.92(12)
123.10(14)
121.84(14)
115.05(12)
108.05(14)
106.58(15)
110.67(16)
106.18(12)
109.62(15)
115.37(14)

115.31(13)

C(5)-C(4)-C(1)
C(3)-C(4)-C(1)
C(6)-C(5)-C(4)
C(7)-C(6)-C(13)
C(7)-C(6)-C(5)
C(13)-C(6)-C(5)
C(6)-C(7)-C(10)
C(6)-C(7)-C(8)
C(10)-C(7)-C(8)
0(4)-C(8)-C(7)
O(4)-C(8)-C(1)
C(7)-C(8)-C(1)
0(4)-C(8)-C(9)
C(7)-C(8)-C(9)
C(1)-C(8)-C(9)
O(1)-C(9)-N(2)
O(1)-C(9)-C(8)
N(2)-C(9)-C(8)
C(7)-C(10)-C(11)
C(7)-C(10)-N(2)
C(11)-C(10)-N(2)
C(10)-C(11)-C(12)
C(13)-C(12)-C(11)
C(12)-C(13)-C(6)
0(2)-C(14)-0(3)
0(2)-C(14)-C(1)
0(3)-C(14)-C(1)
F(1)-C(19)-F(2)
F(1)-C(19)-F(3)
F(2)-C(19)-F(3)
F(1)-C(19)-S(1)
F(2)-C(19)-S(1)
F(3)-C(19)-S(1)

117.13(12)
104.70(12)
113.01(13)
116.96(14)
115.86(13)
127.16(14)
123.55(13)
125.48(13)
110.64(13)
115.25(12)
105.48(11)
108.17(11)
108.80(11)
101.21(11)
118.37(12)
125.64(13)
127.08(13)
107.09(12)
120.24(14)
108.96(12)
130.75(14)
116.49(14)
122.96(15)
119.51(15)
124.97(14)
124.64(13)
110.39(12)
109.76(16)
109.07(16)
108.51(15)
110.40(12)
112.32(13)
106.66(13)

430



E.6. Crystal Structure Analysis of Vinylogous Amide 3.86

Figure E.06. ORTEP drawing of vinylogous amide 3.86
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Table E.23 Crystal data and structure refinement vinylogous amide 3.86

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

jlw60
Ca2s5H32N206Si
484.61

150(2) K
0.71073 A
Triclinic

P-1
a=10.2475(3) A
b = 15.4739(5) A
¢ = 15.5849(5) A
2452.15(13) A3
4

1.313 Mg/m3
0.139 mm-!

1032

0.197 x 0.121 x 0.108 mm3
2.261t0 26.427°.

o= 90.3290(10)°.
B= 96.8740(10)°.
v= 91.8260(10)°.

-12<=h<=12, -19<=k<=19, -19<=I<=19

38788
10074 [R(int) = 0.0364]
99.9 %

Semi-empirical from equivalents

0.933 and 0.922

Full-matrix least-squares on F2
10074 /0/629

1.041

R1 =0.0465, wR2 = 0.1127
R1 =0.0645, wR2 = 0.1219
n/a

0.433 and -0.299 e. A3
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Table E.24. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
jlw60. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
Si(1) 10639(1) 6526(1) 3921(1) 26(1)
Si(2) 8194(1) 8320(1) 8709(1) 22(1)
o) 6189(1) 5876(1) 726(1) 31(1)
0(2) 7017(2) 7189(1) 1127(1) 32(1)
o) 9599(1) 6197(1) 3000(1) 30(1)
0(4) 7908(2) 7790(1) 3082(1) 34(1)
0(5) 4854(2) 6535(1) 2408(1) 42(1)
o(6) 7161(2) 5826(1) 3429(1) 32(1)
o(7) 3495(1) 8550(1) 6858(1) 25(1)
0(8) 3799(1) 9077(1) 5566(1) 31(1)
0(9) 6591(1) 7223(1) 6809(1) 22(1)
0(10) 7382(1) 8660(1) 7797(1) 20(1)
o(11) 5092(1) 7653(1) 8391(1) 23(1)
0(12) 3877(1) 6893(1) 6011(1) 33(1)
N(L) 9360(2) 8056(1) 2094(1) 20(1)
N(2) 6718(2) 4652(1) 2426(1) 26(1)
NQ3) 6801(2) 7915(1) 5453(1) 20(1)
N(4) 4589(2) 9065(1) 8582(1) 22(1)
c() 4567(2) 5002(1) 2117(1) 33(1)
c) 5257(2) 5808(1) 2339(1) 31(1)
cP) 6747(2) 5585(1) 2566(1) 26(1)
c() 7778(2) 5945(1) 1966(1) 23(1)
cE) 8902(2) 6579(1) 2356(1) 23(1)
c(6) 9802(2) 6702(1) 1683(1) 26(1)
c() 10085(2) 7573(1) 1563(1) 28(1)
c@®) 10972(2) 7820(2) 1003(1) 37(1)
c() 11523(2) 7161(2) 571(2) 42(1)
C(10) 5199(2) 6273(2) 135(2) 42(1)
c(11) 6984(2) 6422(1) 1227(1) 24(1)
C(12) 9730(3) 6449(2) 4876(2) 47(1)
C(13) 11295(2) 7651(1) 3842(2) 38(1)
C(14) 11987(2) 5761(2) 3969(2) 49(1)
C(15) 8588(2) 7530(1) 2556(1) 26(1)
C(16) 9388(2) 8990(1) 2165(2) 38(1)
c(17) 11214(2) 6285(2) 677(2) 38(1)
c(18) 10317(2) 6049(1) 1250(1) 30(1)
c(19) 9878(2) 5152(1) 1493(1) 32(1)
C(20) 8394(2) 5098(1) 1611(1) 25(1)
c(21) 7957(2) 4332(1) 2169(1) 27(1)
c(22) 5461(2) 4373(1) 2146(1) 30(1)
c(23) 6432(3) 5399(1) 4037(1) 38(1)
C(24) 8875(2) 4151(1) 2987(2) 37(1)
C(25) 7730(2) 3504(1) 1638(2) 34(1)
C(26) 4916(2) 11370(1) 7904(1) 32(1)
C(27) 5758(2) 11241(1) 7284(1) 29(1)
C(28) 6194(2) 10413(1) 7133(1) 22(1)
C(29) 7074(2) 10135(1) 6481(1) 23(1)
C(30) 6530(2) 9296(1) 6010(1) 18(1)
c(31) 5708(2) 8646(1) 6532(1) 17(1)
c(32) 5976(2) 7732(1) 6147(1) 18(1)
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C(33)
C(34)
C(35)
C(36)
C(37)
C(38)
C(39)
C(40)
C(41)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)
C(49)
C(50)

4749(2)
4965(2)
2098(2)
4241(2)
7010(2)
7539(2)
5761(2)
6041(2)
9898(2)
8217(2)
7574(2)
5162(2)
3734(2)
4899(2)
4460(2)
7847(2)
8825(2)
6111(2)

7226(1)
7223(1)
8578(2)
8803(1)
6415(1)
8754(1)
9757(1)
8823(1)
8737(2)
7123(1)
8784(2)
8405(1)
8931(1)
9878(1)
10692(1)
9151(1)
8591(1)
7658(1)

5643(1)
4756(1)
6613(2)
6256(1)
6511(1)
5592(1)
7633(1)
7531(1)
8655(2)
8772(2)
9677(1)
8187(1)
9246(1)
8236(1)
8391(1)
4743(1)
6158(1)
4680(1)

24(1)
29(1)
37(1)
20(1)
28(1)
21(1)
18(1)
17(1)
41(1)
38(1)
37(1)
19(1)
33(1)
22(1)
28(1)
30(1)
28(1)
25(1)
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Table E.25. Bond lengths [A] for vinylogous amide 3.86

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]

Si(D-0(3) 1.6436(14) C(18)-C(19) 1.509(3)
Si(1)-C(14) 1.843(2) C(19)-C(20) 1.553(3)
Si(1)-C(12) 1.850(2) C(19)-H(17) 0.9900
Si(1)-C(13) 1.855(2) C(19)-H(18) 0.9900
Si(2)-0(10) 1.6567(13) C(20)-C(21) 1.560(3)
Si(2)-C(41) 1.854(2) C(20)-H(19) 1.0000
Si(2)-C(43) 1.855(2) C(21)-C(25) 1.518(3)
Si(2)-C(42) 1.856(2) C(21)-C(24) 1.525(3)
0(1)-C(11) 1.335(2) C(22)-H(23) 0.9500
0(1)-C(10) 1.441(3) C(23)-H(21) 0.9800
0(2)-C(11) 1.198(2) C(23)-H(20) 0.9800

0(3)-C(5) 1.417(2) C(23)-H(22) 0.9800
0(4)-C(15) 1.213(2) C(24)-H(24) 0.9800

0(5)-C(2) 1.219(3) C(24)-H(25) 0.9800

0(6)-C(3) 1.406(2) C(24)-H(26) 0.9800
0(6)-C(23) 1.427(2) C(25)-H(29) 0.9800
0(7)-C(36) 1.332(2) C(25)-H(27) 0.9800
0(7)-C(35) 1.438(2) C(25)-H(28) 0.9800
0(8)-C(36) 1.202(2) C(26)-C(27) 1.388(3)
0(9)-C(32) 1.403(2) C(26)-C(47) 1.401(3)
0(9)-C(37) 1.427(2) C(26)-H(33) 0.9500
0(10)-C(40) 1.419(2) C(27)-C(28) 1.398(3)
0(11)-C(44) 1.210(2) C(27)-H(51) 0.9500
0(12)-C(33) 1.221(2) C(28)-C(39) 1.377(3)
N(1)-C(15) 1.380(3) C(28)-C(29) 1.505(3)

N(1)-C(7) 1.404(3) C(29)-C(30) 1.543(3)
N(1)-C(16) 1.449(3) C(29)-H(54) 0.9900
N(2)-C(22) 1.366(3) C(29)-H(53) 0.9900

N(2)-C(3) 1.457(2) C(30)-C(38) 1.552(3)
N(2)-C(21) 1.476(3) C(30)-C(31) 1.581(2)
N(3)-C(50) 1.372(2) C(30)-H(55) 1.0000
N(3)-C(32) 1.474(2) C(31)-C(36) 1.540(3)
N(3)-C(38) 1.483(2) C(31)-C(40) 1.574(2)
N(4)-C(44) 1.373(2) C(31)-C(32) 1.577(2)
N(4)-C(46) 1.413(2) C(32)-C(33) 1.582(3)
N(4)-C(45) 1.446(2) C(33)-C(34) 1.426(3)
C(1)-C(22) 1.355(3) C(34)-C(50) 1.353(3)

C(1)-C(2) 1.433(3) C(34)-H(34) 0.9500

C(1)-H(1) 0.9500 C(35)-H(63) 0.9800

C(2)-C(3) 1.575(3) C(35)-H(35) 0.9800

C(3)-C(4) 1.583(3) C(35)-H(64) 0.9800
C(4)-C(11) 1.536(3) C(37)-H(38) 0.9800

C(4)-C(5) 1.553(3) C(37)-H(37) 0.9800
C(4)-C(20) 1.596(3) C(37)-H(36) 0.9800

C(5)-C(6) 1.487(3) C(38)-C(49) 1.525(3)
C(5)-C(15) 1.555(3) C(38)-C(48) 1.525(3)
C(6)-C(18) 1.366(3) C(39)-C(46) 1.381(3)

C(6)-C(7) 1.387(3) C(39)-C(40) 1.494(2)

C(7)-C(8) 1.381(3) C(40)-C(44) 1.571(2)

C(8)-C(9) 1.389(3) C(41)-H(39) 0.9800
C(8)-H(30) 0.9500 C(41)-H(41) 0.9800
C(9)-C(17) 1.398(3) C(41)-H(40) 0.9800
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C(9)-H(2)
C(10)-H(32)
C(10)-H(3)
C(10)-H(31)
C(12)-H(®6)
C(12)-H(5)
C(12)-H(4)
C(13)-H(9)
C(13)-H(7)
C(13)-H(8)
C(14)-H(10)
C(14)-H(12)
C(14)-H(11)
C(16)-H(13)
C(16)-H(14)
C(16)-H(15)
C(17)-C(18)
C(17)-H(16)

0.9500
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800

1.399(3)
0.9500

C(42)-H(43)
C(42)-H(44)
C(42)-H(42)
C(43)-H(46)
C(43)-H(45)
C(43)-H(47)
C(45)-H(49)
C(45)-H(48)
C(45)-H(50)
C(46)-C(47)
C(47)-H(52)
C(48)-H(56)
C(48)-H(57)
C(48)-H(58)
C(49)-H(59)
C(49)-H(60)
C(49)-H(61)
C(50)-H(62)

0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800

1.379(3)
0.9500
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9500

Table E.26. Bond angles [°] for vinylogous amide 3.86

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

0(3)-Si(1)-C(14)
0(3)-Si(1)-C(12)
C(14)-Si(1)-C(12)
0(3)-Si(1)-C(13)
C(14)-Si(1)-C(13)
C(12)-Si(1)-C(13)
0(10)-Si(2)-C(41)
O(10)-Si(2)-C(43)
C(41)-Si(2)-C(43)
0(10)-Si(2)-C(42)
C(41)-Si(2)-C(42)
C(43)-Si(2)-C(42)
C(11)-O(1)-C(10)
C(5)-0(3)-Si(1)
C(3)-0(6)-C(23)
C(36)-0(7)-C(35)
C(32)-0(9)-C(37)
C(40)-0(10)-Si(2)
C(15)-N(1)-C(7)
C(15)-N(1)-C(16)
C(7)-N(1)-C(16)
C(22)-N(2)-C(3)
C(22)-N(2)-C(21)
C(3)-N(2)-C(21)
C(50)-N(3)-C(32)
C(50)-N(3)-C(38)
C(32)-N(3)-C(38)
C(44)-N(4)-C(46)
C(44)-N(4)-C(45)
C(46)-N(4)-C(45)
C(22)-C(1)-C(2)
C(22)-C(1)-H(1)

104.65(10)
106.17(10)
112.29(13)
114.65(9)
110.14(12)
108.91(12)
103.39(9)
112.27(9)
109.16(12)
112.65(9)
108.35(12)
110.66(11)
115.52(16)
136.69(12)
113.60(16)
115.60(15)
113.53(14)
133.73(11)
111.77(16)
122.68(18)
125.55(17)
109.32(17)
128.23(17)
113.31(15)
108.46(15)
123.96(15)
111.87(14)
111.73(15)
123.48(16)
124.75(16)
108.2(2)
125.9
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0(6)-C(23)-H(22)
H(21)-C(23)-H(22)
H(20)-C(23)-H(22)
C(21)-C(24)-H(24)
C(21)-C(24)-H(25)
H(24)-C(24)-H(25)
C(21)-C(24)-H(26)
H(24)-C(24)-H(26)
H(25)-C(24)-H(26)
C(21)-C(25)-H(29)
C(21)-C(25)-H(27)
H(29)-C(25)-H(27)
C(21)-C(25)-H(28)
H(29)-C(25)-H(28)
H(27)-C(25)-H(28)
C(27)-C(26)-C(47)
C(27)-C(26)-H(33)
C(47)-C(26)-H(33)
C(26)-C(27)-C(28)
C(26)-C(27)-H(51)
C(28)-C(27)-H(51)
C(39)-C(28)-C(27)
C(39)-C(28)-C(29)
C(27)-C(28)-C(29)
C(28)-C(29)-C(30)
C(28)-C(29)-H(54)
C(30)-C(29)-H(54)
C(28)-C(29)-H(53)
C(30)-C(29)-H(53)
H(54)-C(29)-H(53)
C(29)-C(30)-C(38)
C(29)-C(30)-C(31)

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
122.28(19)
118.9
118.9
120.22(18)
119.9
119.9
116.68(18)
114.93(16)
128.38(17)
111.01(15)
109.4
109.4
109.4
109.4
108.0
116.25(15)
117.04(15)



C(2)-C(1)-H(1)
0(5)-C(2)-C(1)
0(5)-C(2)-C(3)
C(1)-C(2)-C(3)
0(6)-C(3)-N(2)
0(6)-C(3)-C(2)
N(2)-C(3)-C(2)
0(6)-C(3)-C(4)
N(2)-C(3)-C(4)
C(2)-C(3)-C(4)
C(11)-C(4)-C(5)
C(11)-C(4)-C(3)
C(5)-C(4)-C(3)
C(11)-C(4)-C(20)
C(5)-C(4)-C(20)
C(3)-C(4)-C(20)
0(3)-C(5)-C(6)
0(3)-C(5)-C(4)
C(6)-C(5)-C(4)
0(3)-C(5)-C(15)
C(6)-C(5)-C(15)
C(4)-C(5)-C(15)
C(18)-C(6)-C(7)
C(18)-C(6)-C(5)
C(7)-C(6)-C(5)
C(8)-C(7)-C(6)
C(8)-C(7)-N(1)
C(6)-C(7)-N(1)
C(7)-C(8)-C(9)
C(7)-C(8)-H(30)
C(9)-C(8)-H(30)
C(8)-C(9)-C(17)
C(8)-C(9)-H(2)
C(17)-C(9)-H(2)
O(1)-C(10)-H(32)
0(1)-C(10)-H(3)
H(32)-C(10)-H(3)
O(1)-C(10)-H(31)
H(32)-C(10)-H(31)
H(3)-C(10)-H(31)
0(2)-C(11)-0(1)
0(2)-C(11)-C(4)
0(1)-C(11)-C(4)
Si(1)-C(12)-H(6)
Si(1)-C(12)-H(5)
H(6)-C(12)-H(5)
Si(1)-C(12)-H(4)
H(6)-C(12)-H(4)
H(5)-C(12)-H(4)
Si(1)-C(13)-H(9)
Si(1)-C(13)-H(7)
H(9)-C(13)-H(7)
Si(1)-C(13)-H(8)
H(9)-C(13)-H(8)
H(7)-C(13)-H(8)
Si(1)-C(14)-H(10)

125.9
130.9(2)
122.96(19)
106.03(17)
112.93(15)
108.94(16)
102.31(16)
109.60(16)
104.19(15)
118.70(16)
106.89(15)
106.25(15)
119.14(16)
110.68(15)
109.52(16)
104.26(15)
108.91(16)
109.20(15)
106.57(15)
110.62(15)
101.20(15)
119.60(16)
123.93(19)
124.89(18)
111.17(18)
120.0(2)
131.76(19)
108.26(17)
116.7(2)
121.7
121.7
123.3(2)
118.4
118.4
109.5
109.5
109.5
1095
1095
1095
123.54(18)
125.07(18)
111.31(16)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
1095
109.5
1095
1095
1095
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C(38)-C(30)-C(31)
C(29)-C(30)-H(55)
C(38)-C(30)-H(55)
C(31)-C(30)-H(55)
C(36)-C(31)-C(40)
C(36)-C(31)-C(32)
C(40)-C(31)-C(32)
C(36)-C(31)-C(30)
C(40)-C(31)-C(30)
C(32)-C(31)-C(30)
0(9)-C(32)-N(3)
0(9)-C(32)-C(31)
N(3)-C(32)-C(31)
0(9)-C(32)-C(33)
N(3)-C(32)-C(33)
C(31)-C(32)-C(33)
0(12)-C(33)-C(34)
0(12)-C(33)-C(32)
C(34)-C(33)-C(32)
C(50)-C(34)-C(33)
C(50)-C(34)-H(34)
C(33)-C(34)-H(34)
O(7)-C(35)-H(63)
0(7)-C(35)-H(35)
H(63)-C(35)-H(35)
0(7)-C(35)-H(64)
H(63)-C(35)-H(64)
H(35)-C(35)-H(64)
0(8)-C(36)-0(7)
0(8)-C(36)-C(31)
0(7)-C(36)-C(31)
0(9)-C(37)-H(38)
0(9)-C(37)-H(37)
H(38)-C(37)-H(37)
0(9)-C(37)-H(36)
H(38)-C(37)-H(36)
H(37)-C(37)-H(36)
N(3)-C(38)-C(49)
N(3)-C(38)-C(48)
C(49)-C(38)-C(48)
N(3)-C(38)-C(30)
C(49)-C(38)-C(30)
C(48)-C(38)-C(30)
C(28)-C(39)-C(46)
C(28)-C(39)-C(40)
C(46)-C(39)-C(40)
0(10)-C(40)-C(39)
0(10)-C(40)-C(44)
C(39)-C(40)-C(44)
0(10)-C(40)-C(31)
C(39)-C(40)-C(31)
C(44)-C(40)-C(31)
Si(2)-C(41)-H(39)
Si(2)-C(41)-H(41)
H(39)-C(41)-H(41)
Si(2)-C(41)-H(40)

106.90(14)
105.1
105.1
105.1

109.47(14)

105.90(14)

119.59(14)

107.48(14)

110.00(14)

103.70(14)

113.37(14)

109.03(14)

105.08(13)

110.73(14)

102.10(14)

116.38(14)

131.37(19)

122.49(17)

106.05(16)

108.71(18)
125.6
125.6
109.5
109.5
109.5
109.5
109.5
109.5

123.19(17)

124.75(17)

111.95(15)
109.5
109.5
109.5
109.5
109.5
109.5

107.80(15)

111.86(15)

109.09(16)

100.82(14)

116.04(16)

111.00(15)

123.35(17)

124.84(17)

111.51(16)

111.40(14)

109.65(13)

100.69(14)

110.04(14)

103.93(14)

120.47(14)
109.5
109.5
109.5
109.5



Si(1)-C(14)-H(12)
H(10)-C(14)-H(12)
Si(1)-C(14)-H(11)
H(10)-C(14)-H(11)
H(12)-C(14)-H(11)
0O(4)-C(15)-N(1)
0O(4)-C(15)-C(5)
N(1)-C(15)-C(5)
N(1)-C(16)-H(13)
N(1)-C(16)-H(14)
H(13)-C(16)-H(14)
N(1)-C(16)-H(15)
H(13)-C(16)-H(15)
H(14)-C(16)-H(15)
C(9)-C(17)-C(18)
C(9)-C(17)-H(16)
C(18)-C(17)-H(16)
C(6)-C(18)-C(17)
C(6)-C(18)-C(19)
C(17)-C(18)-C(19)
C(18)-C(19)-C(20)
C(18)-C(19)-H(17)
C(20)-C(19)-H(17)
C(18)-C(19)-H(18)
C(20)-C(19)-H(18)
H(17)-C(19)-H(18)
C(19)-C(20)-C(21)
C(19)-C(20)-C(4)
C(21)-C(20)-C(4)
C(19)-C(20)-H(19)
C(21)-C(20)-H(19)
C(4)-C(20)-H(19)
N(2)-C(21)-C(25)
N(2)-C(21)-C(24)
C(25)-C(21)-C(24)
N(2)-C(21)-C(20)
C(25)-C(21)-C(20)
C(24)-C(21)-C(20)
C(1)-C(22)-N(2)
C(1)-C(22)-H(23)
N(2)-C(22)-H(23)
0(6)-C(23)-H(21)
0O(6)-C(23)-H(20)
H(21)-C(23)-H(20)

109.5
109.5
109.5
109.5
109.5

124.39(18)

127.92(17)

107.28(17)
109.5
1095
1095
1095
1095
1095

119.0(2)
1205
1205

117.0(2)

114.53(18)

128.4(2)

112.07(17)
109.2
109.2
109.2
109.2
107.9

115.69(17)

117.03(16)

106.38(15)
105.6
105.6
105.6

111.72(17)

108.19(17)

108.72(17)

101.07(15)

111.26(17)

115.70(17)

114.01(19)
123.0
123.0
1095
109.5
109.5

H(39)-C(41)-H(40)
H(41)-C(41)-H(40)
Si(2)-C(42)-H(43)
Si(2)-C(42)-H(44)
H(43)-C(42)-H(44)
Si(2)-C(42)-H(42)
H(43)-C(42)-H(42)
H(44)-C(42)-H(42)
Si(2)-C(43)-H(46)
Si(2)-C(43)-H(45)
H(46)-C(43)-H(45)
Si(2)-C(43)-H(47)
H(46)-C(43)-H(47)
H(45)-C(43)-H(47)
O(11)-C(44)-N(4)
O(11)-C(44)-C(40)
N(4)-C(44)-C(40)
N(4)-C(45)-H(49)
N(4)-C(45)-H(48)
H(49)-C(45)-H(48)
N(4)-C(45)-H(50)
H(49)-C(45)-H(50)
H(48)-C(45)-H(50)
C(47)-C(46)-C(39)
C(47)-C(46)-N(4)
C(39)-C(46)-N(4)
C(46)-C(47)-C(26)
C(46)-C(47)-H(52)
C(26)-C(47)-H(52)
C(38)-C(48)-H(56)
C(38)-C(48)-H(57)
H(56)-C(48)-H(57)
C(38)-C(48)-H(58)
H(56)-C(48)-H(58)
H(57)-C(48)-H(58)
C(38)-C(49)-H(59)
C(38)-C(49)-H(60)
H(59)-C(49)-H(60)
C(38)-C(49)-H(61)
H(59)-C(49)-H(61)
H(60)-C(49)-H(61)
C(34)-C(50)-N(3)
C(34)-C(50)-H(62)
N(3)-C(50)-H(62)

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

124.48(17)

127.59(16)

107.50(15)
109.5
109.5
109.5
109.5
109.5
109.5

120.50(18)

131.03(18)

108.43(16)

116.91(19)
1215
121.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

114.21(17)
122.9
122.9
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E.7. Crystal Structure Analysis of Tetramic acid 3.97
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Figure E.07. ORTEP drawing of tetramic acid 3.97
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Table E.27 Crystal data and structure refinement tetramic acid 3.97

Identification code jiw6l

Empirical formula C24H30N208Si

Formula weight 502.59

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2,

Unit cell dimensions a=10.9474(6) A a=90°.
b =10.1261(6) A B=90.925(2)°.
c=11.0142(5) A ¥ =90°.

Volume 1220.81(11) A3

Z 2

Density (calculated) 1.367 Mg/m3

Absorption coefficient 0.148 mm-!

F(000) 532

Crystal size 0.077 x 0.076 x 0.019 mm3

Theta range for data collection 2.645 t0 26.024°.

Index ranges -13<=h<=13, -10<=k<=12, -13<=I<=12

Reflections collected 12704

Independent reflections 4476 [R(int) = 0.0534]

Completeness to theta = 25.242° 99.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.951 and 0.943

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4476 /11326

Goodness-of-fit on F? 1.034

Final R indices [I>2sigma(l)] R1=0.0467, wR2 =0.1013

R indices (all data) R1=0.0622, wR2 = 0.1079

Absolute structure parameter -0.01(9)

Extinction coefficient n/a

Largest diff. peak and hole 0.361 and -0.496 e. A3
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Table E.28. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
jlwé1l. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
Si(1) 5735(1) 7477(1) 8550(1) 22(1)
o) 6732(3) 9699(3) 5077(3) 38(1)
0(2) 10512(2) 8703(3) 6872(2) 25(1)
0(3) 9876(3) 6847(3) 5075(2) 20(2)
0(4) 9082(2) 7801(3) 9105(2) 22(1)
O(5) 6923(2) 7220(3) 7629(2) 17(2)
0O(6) 10404(2) 5645(3) 7559(2) 21(1)
o(7) 9731(3) 4081(3) 6284(3) 28(1)
N(1) 7894(3) 7807(3) 5249(3) 16(1)
N(2) 8724(3) 5654(4) 9692(3) 20(1)
C(1) 7588(4) 9080(4) 5516(4) 23(1)
C(2) 8495(4) 9608(4) 6452(4) 25(1)
C@®3) 9470(4) 8570(4) 6532(3) 20(1)
C(4) 8983(3) 7330(4) 5875(3) 16(1)
C(5) 8536(3) 6093(4) 6554(3) 16(1)
C(6) 7604(3) 5489(4) 5587(3) 18(1)
C() 7128(3) 6687(4) 4779(4) 22(1)
C(8) 5760(3) 6987(5) 4882(4) 26(1)
C(9) 7424(4) 6419(5) 3455(4) 28(1)
C(10) 9609(3) 5137(4) 6761(4) 18(1)
C(11) 11420(4) 4804(5) 7899(4) 32(1)
C(12) 7881(3) 6281(4) 7792(3) 16(1)
C(13) 7522(3) 4904(4) 8123(4) 19(1)
C(14) 6994(3) 4011(4) 7336(4) 20(1)
C(15) 6613(4) 4562(4) 6114(4) 24(1)
C(16) 8673(3) 6707(4) 8909(3) 18(1)
Cc@7) 8076(3) 4552(4) 9220(4) 20(1)
C(18) 8015(4) 3263(4) 9629(4) 25(1)
C(19) 7408(4) 2360(5) 8871(4) 29(1)
C(20) 6917(4) 2704(5) 7737(4) 28(1)
C(21) 9398(4) 5656(5) 10834(4) 29(1)
C(22) 4585(4) 6137(5) 8389(5) 44(1)
C(23) 6223(4) 7574(6) 10173(4) 39(1)
C(24) 5101(5) 9079(5) 8031(5) 40(1)
0(8) 7213(4) 12319(7) 3941(5) 97(2)
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Table E.29. Bond lengths [A] for tetramic acid 3.97

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
Si(1)-0(5) 1.682(3) C(8)-H(8B) 0.9800
Si(1)-C(24) 1.852(5) C(8)-H(8C) 0.9800
Si(1)-C(22) 1.857(5) C(9)-H(9A) 0.9800
Si(1)-C(23) 1.860(4) C(9)-H(9B) 0.9800
0(1)-C(1) 1.221(5) C(9)-H(9C) 0.9800
0(2)-C(3) 1.203(5) C(11)-H(11A) 0.9800
0(3)-C(4) 1.414(4) C(11)-H(11B) 0.9800
0(3)-H(3) 0.74(6) C(11)-H(11C) 0.9800
0(4)-C(16) 1.213(5) C(12)-C(13) 1.496(6)
0(5)-C(12) 1.424(5) C(12)-C(16) 1.555(5)
0(6)-C(10) 1.331(5) C(13)-C(14) 1.374(6)
0(6)-C(11) 1.446(5) C(13)-C(17) 1.389(6)
0(7)-C(10) 1.200(5) C(14)-C(20) 1.398(6)
N(1)-C(1) 1.365(5) C(14)-C(15) 1.510(6)
N(1)-C(4) 1.450(5) C(15)-H(15A) 0.9900
N(1)-C(7) 1.498(5) C(15)-H(15B) 0.9900
N(2)-C(16) 1.372(5) C(17)-C(18) 1.382(6)
N(2)-C(17) 1.417(5) C(18)-C(19) 1.399(6)
N(2)-C(21) 1.447(5) C(18)-H(18A) 0.9500
C(1)-C(2) 1.517(6) C(19)-C(20) 1.396(6)
C(2)-C(3) 1.500(6) C(19)-H(19A) 0.9500
C(2)-H(2A) 0.9900 C(20)-H(20A) 0.9500
C(2)-H(2B) 0.9900 C(21)-H(21A) 0.9800
C(3)-C(4) 1.540(6) C(21)-H(21B) 0.9800
C(4)-C(5) 1.543(6) C(21)-H(21C) 0.9800
C(5)-C(10) 1.536(5) C(22)-H(22A) 0.9800
C(5)-C(12) 1.562(5) C(22)-H(22B) 0.9800
C(5)-C(6) 1.586(5) C(22)-H(22C) 0.9800
C(6)-C(15) 1.554(6) C(23)-H(23A) 0.9800
C(6)-C(7) 1.588(6) C(23)-H(23B) 0.9800
C(6)-H(6A) 1.0000 C(23)-H(23C) 0.9800
C(7)-C(9) 1.523(5) C(24)-H(24A) 0.9800
C(7)-C(8) 1.533(5) C(24)-H(24B) 0.9800
C(8)-H(8A) 0.9800 C(24)-H(24C) 0.9800
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Table E.30. Bond angles [°] for tetramic acid 3.97

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

0(5)-Si(1)-C(24)
0(5)-Si(1)-C(22)
C(24)-Si(1)-C(22)
0(5)-Si(1)-C(23)
C(24)-Si(1)-C(23)
C(22)-Si(1)-C(23)
C(4)-0(3)-HE)
C(12)-0(5)-Si(1)
C(10)-0(6)-C(11)
C(1)-N(1)-C(4)
C(1)-N(1)-C(7)
C(4)-N(1)-C(7)
C(16)-N(2)-C(17)
C(16)-N(2)-C(21)
C(17)-N(2)-C(21)
O(1)-C(1)-N(1)
O(1)-C(1)-C(2)
N(1)-C(1)-C(2)
C(3)-C(2)-C(1)
C(3)-C(2)-H(2A)
C(1)-C(2)-H(2A)
C(3)-C(2)-H(2B)
C(1)-C(2)-H(2B)
H(2A)-C(2)-H(2B)
0(2)-C(3)-C(2)
0(2)-C(3)-C(4)
C(2)-C(3)-C(4)
0O(3)-C(4)-N(1)
0O(3)-C(4)-C(3)
N(1)-C(4)-C(3)
O(3)-C(4)-C(5)
N(1)-C(4)-C(5)
C(3)-C(4)-C(5)
C(10)-C(5)-C(4)
C(10)-C(5)-C(12)
C(4)-C(5)-C(12)
C(10)-C(5)-C(6)
C(4)-C(5)-C(6)
C(12)-C(5)-C(6)
C(15)-C(6)-C(5)
C(15)-C(6)-C(7)
C(5)-C(6)-C(7)
C(15)-C(6)-H(6A)
C(5)-C(6)-H(6A)
C(7)-C(6)-H(6A)
N(1)-C(7)-C(9)
N(1)-C(7)-C(8)
C(9)-C(7)-C(8)
N(1)-C(7)-C(6)
C(9)-C(7)-C(6)
C(8)-C(7)-C(6)
C(7)-C(8)-H(8A)

103.84(19)
111.0(2)
111.1(3)

112.03(16)
110.5(3)
108.3(3)

101(4)
127.0(2)
115.8(3)
114.5(3)
130.7(3)
111.3(3)
111.5(3)
124.1(4)
124.4(3)
126.1(4)
125.3(4)
108.6(4)
104.5(4)

1108

110.8

110.8

110.8

108.9
127.6(4)
123.9(4)
107.6(3)
113.0(3)
109.7(3)
103.2(3)
104.4(3)
103.7(3)
123.0(3)
109.6(3)
108.0(3)
118.5(3)
109.8(3)
101.1(3)
109.5(3)
115.3(3)
116.5(3)
106.5(3)

105.9
105.9
105.9
109.8(3)
111.5(3)
109.2(3)
102.0(3)
109.1(3)
115.0(3)
109.5

0(6)-C(10)-C(5)
0(6)-C(11)-H(11A)
0(6)-C(11)-H(11B)
H(11A)-C(11)-H(11B)
0(6)-C(11)-H(11C)
H(11A)-C(11)-H(11C)
H(11B)-C(11)-H(11C)
0(5)-C(12)-C(13)
0(5)-C(12)-C(16)
C(13)-C(12)-C(16)
0(5)-C(12)-C(5)
C(13)-C(12)-C(5)
C(16)-C(12)-C(5)
C(14)-C(13)-C(17)
C(14)-C(13)-C(12)
C(17)-C(13)-C(12)
C(13)-C(14)-C(20)
C(13)-C(14)-C(15)
C(20)-C(14)-C(15)
C(14)-C(15)-C(6)
C(14)-C(15)-H(15A)
C(6)-C(15)-H(15A)
C(14)-C(15)-H(15B)
C(6)-C(15)-H(15B)
H(15A)-C(15)-H(15B)
0(4)-C(16)-N(2)
0(4)-C(16)-C(12)
N(2)-C(16)-C(12)
C(18)-C(17)-C(13)
C(18)-C(17)-N(2)
C(13)-C(17)-N(2)
C(17)-C(18)-C(19)
C(17)-C(18)-H(18A)
C(19)-C(18)-H(18A)
C(20)-C(19)-C(18)
C(20)-C(19)-H(19A)
C(18)-C(19)-H(19A)
C(19)-C(20)-C(14)
C(19)-C(20)-H(20A)
C(14)-C(20)-H(20A)
N(2)-C(21)-H(21A)
N(2)-C(21)-H(21B)
H(21A)-C(21)-H(21B)
N(2)-C(21)-H(21C)
H(21A)-C(21)-H(21C)
H(21B)-C(21)-H(21C)
Si(1)-C(22)-H(22A)
Si(1)-C(22)-H(22B)
H(22A)-C(22)-H(22B)
Si(1)-C(22)-H(22C)
H(22A)-C(22)-H(22C)
H(22B)-C(22)-H(22C)
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110.1(3)
109.5
109.5
109.5
109.5
109.5
109.5

117.2(3)

108.4(3)

102.2(3)

108.6(3)

103.0(3)

117.8(3)

123.6(4)

124.7(4)

109.8(3)

116.8(4)

115.3(4)

127.9(4)

111.8(3)
109.3
109.3
109.3
109.3
107.9

125.9(4)

126.4(4)

107.4(3)

120.2(4)

130.6(4)

109.0(3)

116.6(4)
121.7
121.7

122.8(4)
118.6
118.6

119.6(4)
120.2
120.2
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5



C(7)-C(8)-H(8B) 109.5 Si(1)-C(23)-H(23A) 109.5

H(8A)-C(8)-H(8B) 109.5 Si(1)-C(23)-H(23B) 109.5
C(7)-C(8)-H(8C) 109.5 H(23A)-C(23)-H(23B) 109.5
H(8A)-C(8)-H(8C) 109.5 Si(1)-C(23)-H(23C) 109.5
H(8B)-C(8)-H(8C) 109.5 H(23A)-C(23)-H(23C) 109.5
C(7)-C(9)-H(9A) 109.5 H(23B)-C(23)-H(23C) 109.5
C(7)-C(9)-H(9B) 109.5 Si(1)-C(24)-H(24A) 109.5
H(9A)-C(9)-H(9B) 109.5 Si(1)-C(24)-H(24B) 109.5
C(7)-C(9)-H(9C) 109.5 H(24A)-C(24)-H(24B) 109.5
H(9A)-C(9)-H(9C) 109.5 Si(1)-C(24)-H(24C) 109.5
H(9B)-C(9)-H(9C) 109.5 H(24A)-C(24)-H(24C) 109.5
0(7)-C(10)-0(6) 123.9(4) H(24B)-C(24)-H(24C) 109.5
0(7)-C(10)-C(5) 126.0(4)

Table E.31. [A and °]

D-H..A d(D-H) d(H...A) d(D...A) <(DHA)

0(3)-H(3)...0(7)#1 0.74(6) 2.02(6) 2.750(4) 174(5)

Symmetry transformations used to generate equivalent atoms:
#1 -x+2,y+1/2,-z+1
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E.8. Crystal Structure Analysis of Hexacyclic Ester 3.98

Figure E.08. ORTEP drawing of hexacyclic ester 3.98
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Table E.32 Crystal data and structure refinement hexacyclic ester 3.98

Identification code JLW66_2

Empirical formula C21H22N207

Formula weight 414.40

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i/c

Unit cell dimensions a=12.4620(6) A o= 90°.
b =8.1989(4) A B=93.8768(17)°.
c=18.0499(9) A ¥ =90°.

Volume 1840.02(16) A3

z 4

Density (calculated) 1.496 Mg/m3

Absorption coefficient 0.113 mm-!

F(000) 872

Crystal size 0.200 x 0.172 x 0.051 mm3

Theta range for data collection 2.702 to 26.440°.

Index ranges -15<=h<=15, -10<=k<=10, -22<=I<=22

Reflections collected 46758

Independent reflections 3789 [R(int) = 0.0426]

Completeness to theta = 25.242° 99.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.967 and 0.951

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3789/01/291

Goodness-of-fit on F? 1.022

Final R indices [I>2sigma(l)] R1=0.0374, wR2 = 0.0958

R indices (all data) R1 =0.0445, wR2 = 0.1008

Extinction coefficient n/a

Largest diff. peak and hole 0.361 and -0.327 e. A3
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Table E.33. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
JLW66. U(eq) is defined as one third of the trace of the orthogonalized Uil tensor.

Atom X y y4 U(eq)
0(1) 7839(1) -50(1) 1305(1) 16(1)
0(2) 7853(1) -223(1) 2(1) 21(1)
0(3) 9632(1) 1377(1) 534(1) 21(1)
0(4) 6579(1) 2612(1) -38(1) 25(1)
0O(5) 4570(1) -809(1) 1112(1) 27(1)
N(1) 5666(1) 1398(1) 931(1) 17(2)
N(2) 10147(1) 1982(2) 1745(1) 19(1)
C@) 7853(1) 1960(2) 2837(1) 19(1)
C(2) 8267(1) 2390(2) 3549(1) 26(1)
C@3) 9367(1) 2638(2) 3680(1) 28(1)
C) 10088(1) 2508(2) 3124(1) 24(1)
C(5) 9656(1) 2071(2) 2427(1) 18(1)
C(6) 8570(1) 1750(2) 2302(1) 16(1)
C(7) 6694(1) 1848(2) 2558(1) 20(1)
C(8) 6510(1) 2970(2) 1872(1) 18(1)
C(9) 7334(1) 2737(2) 1252(1) 15(1)
C(11) 8276(1) 1537(2) 1496(1) 15(1)
C(12) 9415(1) 1665(2) 1172(1) 17(2)
C(13) 11306(1) 2024(2) 1684(1) 27(1)
C(14) 6699(1) 1755(2) 628(1) 15(1)
C(15) 7235(1) 45(2) 597(1) 16(1)
C(16) 6310(1) -1154(2) 594(1) 21(1)
c@17) 5408(1) -214(2) 913(1) 19(1)
C(18) 5383(1) 2700(2) 1457(1) 20(1)
C(19) 5003(1) 4224(2) 1024(1) 26(1)
C(20) 4509(1) 2184(2) 1962(1) 28(1)
C(10) 7729(1) 4397(2) 996(1) 17(1)
0O(6) 7470(2) 5684(2) 1261(1) 31(1)
o(7) 8375(2) 4264(2) 446(1) 21(1)
C(21) 8575(1) 5746(2) 46(1) 31(1)
C(10A) 7729(1) 4397(2) 996(1) 17(2)
O(6A) 7872(19) 5440(20) 1352(10) 31(1)
O(7A) 7975(17) 4272(17) 275(10) 21(1)
C(21A) 8575(1) 5746(2) 46(1) 31(1)
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Table E.34. Bond lengths [A] for hexacyclic ester 3.98

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
0(1)-C(15) 1.4410(15) C(8)-C(9) 1.5809(18)
0(1)-C(11) 1.4431(16) C(8)-H(8) 1.0000
0(2)-C(15) 1.3795(16) C(9)-C(10) 1.5297(19)
0(2)-H(2A) 0.90(2) C(9)-C(14) 1.5570(18)
0(3)-C(12) 1.2232(17) C(9)-C(11) 1.5712(18)
0(4)-C(14) 1.3908(16) C(11)-C(12) 1.5748(18)
O(4)-H(4A) 1.12(3) C(13)-H(13A) 0.9800
0(5)-C(17) 1.2283(18) C(13)-H(13B) 0.9800
N(1)-C(17) 1.3594(19) C(13)-H(13C) 0.9800
N(1)-C(14) 1.4621(17) C(14)-C(15) 1.5561(18)
N(1)-C(18) 1.4875(18) C(15)-C(16) 1.5148(19)
N(2)-C(12) 1.3579(18) C(16)-C(17) 1.509(2)

N(2)-C(5) 1.4123(18) C(16)-H(16A) 0.9900
N(2)-C(13) 1.4563(18) C(16)-H(16B) 0.9900
C(1)-C(6) 1.3712(19) C(18)-C(20) 1.527(2)
c(1)-c(2) 1.396(2) C(18)-C(19) 1.533(2)
C(1)-C(7) 1.4999(19) C(19)-H(19A) 0.9800
C(2)-C(3) 1.391(2) C(19)-H(19B) 0.9800
C(2)-HQ) 0.9500 C(19)-H(19C) 0.9800
C(3)-C(4) 1.397(2) C(20)-H(20A) 0.9800
C(3)-H(3) 0.9500 C(20)-H(20B) 0.9800
C(4)-C(5) 1.381(2) C(20)-H(20C) 0.9800
C(4)-H(4) 0.9500 C(10)-0(6) 1.212(2)
C(5)-C(6) 1.3831(19) C(10)-0(7) 1.3234(19)
C(6)-C(11) 1.4850(18) 0(7)-C(21) 1.444(2)
C(7)-C(8) 1.5474(19) C(21)-H(21A) 0.9800
C(7)-H(7A) 0.9900 C(21)-H(21B) 0.9800
C(7)-H(7B) 0.9900 C(21)-H(21C) 0.9800
C(8)-C(18) 1.5613(19)
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Table E.35. Bond angles [°] for hexacyclic ester 3.98

Atom-Atom-Atom Bond angles [°] Atom-Atom-Atom Bond angles [°]

C(15)-0(1)-C(11) 109.27(10) N(2)-C(13)-H(13B) 109.5
C(15)-0(2)-H(2A) 107.5(14) H(13A)-C(13)-H(13B) 109.5
C(14)-0(4)-H(4A) 109.6(14) N(2)-C(13)-H(13C) 109.5
C(17)-N(1)-C(14) 113.49(11) H(13A)-C(13)-H(13C) 109.5
C(17)-N(1)-C(18) 130.30(12) H(13B)-C(13)-H(13C) 109.5
C(14)-N(1)-C(18) 110.33(11) 0(4)-C(14)-N(1) 112.22(11)
C(12)-N(2)-C(5) 111.47(11) 0(4)-C(14)-C(15) 116.45(11)
C(12)-N(2)-C(13) 124.41(12) N(1)-C(14)-C(15) 102.94(10)
C(5)-N(2)-C(13) 123.72(12) 0(4)-C(14)-C(9) 112.57(11)
C(6)-C(1)-C(2) 117.55(13) N(1)-C(14)-C(9) 104.52(10)
C(6)-C(1)-C(7) 114.41(12) C(15)-C(14)-C(9) 107.06(10)
C(2)-C(1)-C(7) 127.77(13) 0(2)-C(15)-0(1) 113.34(11)
C(3)-C(2)-C(1) 119.54(14) 0(2)-C(15)-C(16) 110.99(11)
C(3)-C(2)-H(2) 120.2 O(1)-C(15)-C(16) 108.68(11)
C(1)-C(2)-H() 120.2 0(2)-C(15)-C(14) 115.80(11)
C(2)-C(3)-C(4) 122.72(13) 0(1)-C(15)-C(14) 102.47(10)
C(2)-C(3)-H(3) 118.6 C(16)-C(15)-C(14) 104.84(11)
C(4)-C(3)-H(3) 118.6 C(17)-C(16)-C(15) 104.68(11)
C(5)-C(4)-C(3) 116.42(13) C(17)-C(16)-H(16A) 110.8
C(5)-C(4)-H(4) 121.8 C(15)-C(16)-H(16A) 110.8
C(3)-C(4)-H(4) 121.8 C(17)-C(16)-H(16B) 110.8
C(4)-C(5)-C(6) 121.00(13) C(15)-C(16)-H(16B) 110.8
C(4)-C(5)-N(2) 129.93(13) H(16A)-C(16)-H(16B) 108.9
C(6)-C(5)-N(2) 108.92(12) 0(5)-C(17)-N(1) 125.69(14)
C(1)-C(6)-C(5) 122.57(13) 0(5)-C(17)-C(16) 125.35(13)
C(1)-C(6)-C(11) 125.16(12) N(1)-C(17)-C(16) 108.95(12)
C(5)-C(6)-C(11) 110.88(12) N(1)-C(18)-C(20) 113.07(12)
C(1)-C(7)-C(8) 108.68(11) N(1)-C(18)-C(19) 109.71(12)
C(1)-C(7)-H(7A) 110.0 C(20)-C(18)-C(19) 108.81(12)
C(8)-C(7)-H(7A) 110.0 N(1)-C(18)-C(8) 99.45(10)
C(1)-C(7)-H(7B) 110.0 C(20)-C(18)-C(8) 114.08(12)
C(8)-C(7)-H(7B) 110.0 C(19)-C(18)-C(8) 111.46(12)
H(7A)-C(7)-H(7B) 108.3 C(18)-C(19)-H(19A) 109.5
C(7)-C(8)-C(18) 112.28(11) C(18)-C(19)-H(19B) 109.5
C(7)-C(8)-C(9) 115.17(11) H(19A)-C(19)-H(19B) 109.5
C(18)-C(8)-C(9) 104.49(11) C(18)-C(19)-H(19C) 109.5
C(7)-C(8)-H(8) 108.2 H(19A)-C(19)-H(19C) 109.5
C(18)-C(8)-H(8) 108.2 H(19B)-C(19)-H(19C) 109.5
C(9)-C(8)-H(8) 108.2 C(18)-C(20)-H(20A) 109.5
C(10)-C(9)-C(14) 113.51(11) C(18)-C(20)-H(20B) 109.5
C(10)-C(9)-C(11) 113.10(11) H(20A)-C(20)-H(20B) 109.5
C(14)-C(9)-C(11) 102.31(10) C(18)-C(20)-H(20C) 109.5
C(10)-C(9)-C(8) 110.13(11) H(20A)-C(20)-H(20C) 109.5
C(14)-C(9)-C(8) 104.57(10) H(20B)-C(20)-H(20C) 109.5
C(11)-C(9)-C(8) 112.73(10) 0(6)-C(10)-0(7) 124.03(14)
0(1)-C(11)-C(6) 113.86(11) 0(6)-C(10)-C(9) 123.74(14)
0(1)-C(11)-C(9) 103.56(10) 0(7)-C(10)-C(9) 112.23(12)
C(6)-C(11)-C(9) 109.32(11) C(10)-0(7)-C(21) 116.09(14)
0(1)-C(11)-C(12) 107.83(10) 0(7)-C(21)-H(21A) 109.5
C(6)-C(11)-C(12) 100.81(10) 0(7)-C(21)-H(21B) 109.5
C(9)-C(11)-C(12) 121.90(11) H(21A)-C(21)-H(21B) 109.5
0(3)-C(12)-N(2) 125.01(12) 0(7)-C(21)-H(21C) 109.5
0(3)-C(12)-C(11) 126.86(12) H(21A)-C(21)-H(21C) 109.5
N(2)-C(12)-C(11) 107.77(11) H(21B)-C(21)-H(21C) 109.5
N(2)-C(13)-H(13A) 109.5
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Table E.36. [A and °]

D-H..A d(D-H) d(H...A) d(D..A) <(DHA)
0(2)-H(2A)...0(3) 0.90(2) 1.82(2) 2.6972(15) 163(2)
O(4)-H(4A)...0(G)#1 1.12(3) 1.64(3) 2.7605(15) 177(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z
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E.9. Crystal Structure Analysis of Hexacyclic Ester 3.106

Figure E.09. ORTEP drawing of hexacyclic ester 3.106
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Table E.37 Crystal data and structure refinement hexacyclic ester 3.106

Identification code jlw70

Empirical formula C21H22N208

Formula weight 430.40

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i/n

Unit cell dimensions a=10.4970(13) A o=90°.
b=14.738(2) A B=97.466(4)°.
c = 25.566(4) A y = 90°.

Volume 3921.7(9) A3

z 8

Density (calculated) 1.458 Mg/m3

Absorption coefficient 0.113 mm-!

F(000) 1808

Crystal size 0.207 x 0.109 x 0.049 mm3

Theta range for data collection 2.396 t0 25.743°.

Index ranges -12<=h<=12, -17<=k<=18, -31<=I<=31

Reflections collected 114236

Independent reflections 7476 [R(int) = 0.0687]

Completeness to theta = 25.242° 99.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.944 and 0.927

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7476 /5/594

Goodness-of-fit on F? 1.021

Final R indices [I>2sigma(l)] R1=0.0607, wR2 = 0.1587

R indices (all data) R1=0.0823, wR2=0.1753

Extinction coefficient n/a

Largest diff. peak and hole 1.025 and -0.454 e.A-3

452



Table E.24. (x104) and Equivalent Isotropic Displacement Parameters (Azx 103) for
jlw70. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

Atom X y z U(eq)
o(D) 6677(2) 267002) 2637(1) 44(1)
o) 9184(3) 3514(2) 3146(1) 58(1)
o) 11178(2) 2450(2) 2023(1) 34(1)
0(4) 10007(2) 1190(1) 3465(1) 36(1)
0(5) 9935(2) 1922(1) 2152(1) 26(1)
0(6) 12511(2) 1062(2) 2523(1) 38(1)
o(7) 10620(2) -484(1) 3238(1) 39(1)
0(8) 10624(2) -832(1) 2386(1) 31(1)
N() 8083(2) 1488(2) 2897(1) 25(1)
N(2) 11978(2) 618(2) 1656(1) 30(1)
cq) 7753(3) 2360(2) 2742(1) 29(1)
c@) 8982(3) 2002(2) 2721(1) 30(1)
c) 9990(2) 2170(2) 2697(1) 26(1)
C(4) 9451(2) 1310(2) 2043(1) 24(1)
cE) 9576(2) 511(2) 2554(1) 22(1)
c(6) 8142(2) 207(2) 2360(1) 24(1)
c() 7355(3) 636(2) 2774(1) 27(1)
c@®) 7433(3) 50(2) 3272(1) 35(1)
C(9) 5931(3) 785(2) 2570(1) 37(1)
C(10) 10237(2) 970(2) 2113(1) 23(1)
c() 11719(3) 880(2) 2140(1) 28(1)
c(12) 10833(3) 400(2) 1323(1) 27(1)
c(13) 10661(3) 112) 836(1) 33(1)
C(14) 9398(3) -236(2) 639(1) 35(1)
C(15) 8368(3) 97(2) 918(1) 32(1)
C(16) 8570(3) 325(2) 1410(1) 25(1)
c(17) 9797(2) 597(2) 1584(1) 23(1)
c(18) 7617(2) 499(2) 1789(1) 27(1)
C(19) 13268(3) 513(3) 1511(1) 44(1)
C(20) 10338(2) 313(2) 2774(1) 25(1)
c(1) 11283(3) -1681(2) 2532(1) 41(1)
0(9) 4817(2) 8902(1) -646(1) 37(1)
0(10) 5328(2) 9267(2) 537(1) 41(1)
0(11) 3646(2) 8356(2) 1051(1) 37(1)
0(12) 4840(2) 6947(2) 573(1) 51(1)
0(13) 2113(2) 8394(1) 203(1) 25(1)
0(14) 1577(2) 7344(2) 1249(1) 47(1)
N(3) 4222(2) 7617(2) -218(1) 26(1)
N(4) -358(3) 7442(2) 716(1) 46(1)
C(22) 4450(2) 8515(2) -265(1) 28(1)
c(23) 4174(2) 9000(2) 240(1) 28(1)
C(24) 3429(3) 8284(2) 507(1) 27(1)
C(25) 3794(3) 7370(2) 280(1) 28(1)
C(26) 2501(3) 6854(2) 112(1) 30(1)
c(27) 2420(3) 6760(2) 511(1) 28(1)
C(28) 3829(3) 6911(2) -624(1) 20(1)
C(29) 3967(3) 7224(2) -1183(1) 33(1)
C(30) 4654(3) 6060(2) -501(1) 38(1)
C(31) 1479(3) 7525(2) 276(1) 27(1)
c(32) 935(3) 7404(2) 813(1) 36(1)
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C(33)
C(34)
C(35)
C(36)
C(37)
C(38)
C(39)
C(40)
C(41)
0(15)
0(16)
C(42)
C(41A)
O(15A)
O(16A)
C(42A)

-793(3)

-2002(3)
-2089(3)
-1023(3)

210(3)
274(3)
1484(3)

-1210(4)

2392(3)
3270(3)
1196(3)
940(6)
2392(3)
1958(9)
2110(10)
1740(20)

7496(2)
7473(3)
7461(3)
7439(2)
7470(2)
7532(2)
7427(2)
7439(3)
5937(2)
5519(2)
5725(2)
4902(4)
5937(2)
5242(6)
5856(7)

5063(12)

168(1)
-108(2)
-656(2)
-924(1)
-635(1)
-100(1)
-836(1)
1126(2)

371(1)

616(1)

384(2)

672(3)

371(1)

29(4)

815(4)

1098(9)

41(1)
57(1)
56(1)
44(1)
31(1)
31(1)
29(1)
65(1)
38(1)
44(1)
60(1)
80(2)
38(1)
44(1)
60(1)
80(2)
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Table E.38. Bond lengths [A] for hexacyclic ester 3.106

Atom-Atom Bond lengths [A] Atom-Atom Bond lengths [A]
O(1)-C(1) 1.216(3) 0(10)-C(23) 1.399(3)
0(2)-C(2) 1.408(3) O(10)-H(10A) 0.8400

0(2)-H(2A) 0.88(5) 0(11)-C(24) 1.385(3)
0(3)-C(3) 1.372(3) 0(11)-H(11A) 0.83(4)
0(3)-H(3A) 0.86(4) 0(12)-C(25) 1.394(3)
0(4)-C(4) 1.397(3) 0(12)-H(12A) 0.98(6)
O(4)-H(4A) 0.8400 0(13)-C(24) 1.427(3)
0(5)-C(3) 1.435(3) 0(13)-C(31) 1.441(3)
0(5)-C(10) 1.445(3) 0(14)-C(32) 1.228(4)
0(6)-C(11) 1.228(3) N(3)-C(22) 1.353(4)
0(7)-C(20) 1.210(3) N(3)-C(25) 1.451(3)
0(8)-C(20) 1.319(3) N(3)-C(28) 1.489(3)
0(8)-C(21) 1.455(3) N(4)-C(32) 1.350(4)
N(1)-C(1) 1.376(3) N(4)-C(33) 1.418(4)
N(1)-C(4) 1.450(3) N(4)-C(40) 1.463(4)
N(1)-C(7) 1.482(3) C(22)-C(23) 1.537(4)
N(2)-C(11) 1.357(4) C(23)-C(24) 1.525(4)
N(2)-C(12) 1.416(4) C(23)-H(23A) 1.0000
N(2)-C(19) 1.458(4) C(24)-C(25) 1.536(4)
C(1)-C(2) 1.523(4) C(25)-C(26) 1.566(4)
C(2)-C(3) 1.518(4) C(26)-C(41) 1.516(4)
C(2)-H(2B) 1.0000 C(26)-C(31) 1.557(4)
C(3)-C(4) 1.553(4) C(26)-C(27) 1.590(4)
C(4)-C(5) 1.558(3) C(27)-C(39) 1.552(4)
C(5)-C(20) 1.522(3) C(27)-C(28) 1.559(4)
C(5)-C(10) 1.553(3) C(27)-HQ27A) 1.0000
C(5)-C(6) 1.587(3) C(28)-C(29) 1.526(4)
C(6)-C(18) 1.552(3) C(28)-C(30) 1.534(4)
C(6)-C(7) 1.561(4) C(29)-H(29A) 0.9800
C(6)-H(6A) 1.0000 C(29)-H(29B) 0.9800
C(7)-C(8) 1.532(4) C(29)-H(29C) 0.9800
C(7)-C(9) 1.534(4) C(30)-H(30A) 0.9800
C(8)-H(8A) 0.9800 C(30)-H(30B) 0.9800
C(8)-H(8B) 0.9800 C(30)-H(30C) 0.9800
C(8)-H(8C) 0.9800 C(31)-C(38) 1.486(4)
C(9)-H(9A) 0.9800 C(31)-C(32) 1.566(4)
C(9)-H(9B) 0.9800 C(33)-C(34) 1.369(5)
C(9)-H(9C) 0.9800 C(33)-C(38) 1.388(4)
C(10)-C(17) 1.477(3) C(34)-C(35) 1.393(6)
C(10)-C(11) 1.553(4) C(34)-H(34A) 0.9500
C(12)-C(13) 1.375(4) C(35)-C(36) 1.386(5)
C(12)-C(17) 1.380(4) C(35)-H(35A) 0.9500
C(13)-C(14) 1.395(4) C(36)-C(37) 1.404(4)
C(13)-H(13A) 0.9500 C(36)-H(36A) 0.9500
C(14)-C(15) 1.386(4) C(37)-C(38) 1.363(4)
C(14)-H(14A) 0.9500 C(37)-C(39) 1.495(4)
C(15)-C(16) 1.395(4) C(39)-H(39A) 0.9900
C(15)-H(15A) 0.9500 C(39)-H(39B) 0.9900
C(16)-C(17) 1.366(4) C(40)-H(40A) 0.9800
C(16)-C(18) 1.503(4) C(40)-H(40B) 0.9800
C(18)-H(18A) 0.9900 C(40)-H(40C) 0.9800
C(18)-H(18B) 0.9900 C(41)-0(15) 1.213(4)
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C(19)-H(19A)
C(19)-H(19B)
C(19)-H(19C)
C(21)-H(21A)
C(21)-H(21B)
C(21)-H(21C)
0(9)-C(22)

0.9800
0.9800
0.9800
0.9800
0.9800
0.9800

1.233(3)

C(41)-0(16)
0(16)-C(42)
C(42)-H(42A)
C(42)-H(42B)
C(42)-H(42C)
O(16A)-C(42A)
C(42A)-H(42D)
C(42A)-H(42E)
C(42A)-H(42F)

1.298(4)
1.461(5)
0.9800
0.9800
0.9800
1.453(14)
0.9800
0.9800
0.9800

Table E.39. Bond angles [°] for hexacyclic ester 3.106

Atom-Atom-Atom

Bond angles [°]

Atom-Atom-Atom

Bond angles [°]

C(2)-0(2)-H(2A)
C(3)-0(3)-H(3A)
C(4)-0(4)-H(4A)
C(3)-0(5)-C(10)
C(20)-0(8)-C(21)
C(1)-N(1)-C(4)
C(1)-N(L)-C(7)
C(4)-N(L)-C(7)
C(11)-N(2)-C(12)
C(11)-N(2)-C(19)
C(12)-N(2)-C(19)
O(1)-C(1)-N(1)
0O(1)-C(1)-C(2)
N(1)-C(1)-C(2)
0(2)-C(2)-C(3)
0(2)-C(2)-C(1)
C(3)-C(2)-C(1)
0(2)-C(2)-H(2B)
C(3)-C(2)-H(2B)
C(1)-C(2)-H(2B)
0(3)-C(3)-0(5)
0(3)-C(3)-C(2)
0(5)-C(3)-C(2)
0(3)-C(3)-C(4)
0(5)-C(3)-C(4)
C(2)-C(3)-C(4)
0O(4)-C(4)-N(1)
0(4)-C(4)-C(3)
N(1)-C(4)-C(3)
0(4)-C(4)-C(5)
N(1)-C(4)-C(5)
C(3)-C(4)-C(5)
C(20)-C(5)-C(10)
C(20)-C(5)-C(4)
C(10)-C(5)-C(4)
C(20)-C(5)-C(6)
C(10)-C(5)-C(6)
C(4)-C(5)-C(6)
C(18)-C(6)-C(7)
C(18)-C(6)-C(5)
C(7)-C(6)-C(5)

109(3)
104(2)
109.5
109.42(19)
116.8(2)
113.7(2)
128.8(2)
110.0(2)
111.0(2)
124.4(2)
124.5(2)
127.3(3)
124.2(3)
108.5(2)
116.8(2)
110.6(2)
103.1(2)
108.7
108.7
108.7
114.1(2)
111.3(2)
106.3(2)
116.2(2)
102.38(19)
105.7(2)
112.7(2)
111.2(2)
103.3(2)
117.0(2)
104.5(2)
107.0(2)
110.7(2)
116.8(2)
102.5(2)
108.8(2)
113.07(19)
104.97(19)
111.8(2)
114.9(2)
103.7(2)
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C(33)-N(4)-C(40)
0(9)-C(22)-N(3)
0(9)-C(22)-C(23)
N(3)-C(22)-C(23)
0(10)-C(23)-C(24)
0(10)-C(23)-C(22)
C(24)-C(23)-C(22)

0(10)-C(23)-H(23A)
C(24)-C(23)-H(23A)
C(22)-C(23)-H(23A)

0(11)-C(24)-0(13)
0(11)-C(24)-C(23)
0(13)-C(24)-C(23)
0(11)-C(24)-C(25)
0(13)-C(24)-C(25)
C(23)-C(24)-C(25)
0(12)-C(25)-N(3)
0(12)-C(25)-C(24)
N(3)-C(25)-C(24)
0(12)-C(25)-C(26)
N(3)-C(25)-C(26)
C(24)-C(25)-C(26)
C(41)-C(26)-C(31)
C(41)-C(26)-C(25)
C(31)-C(26)-C(25)
C(41)-C(26)-C(27)
C(31)-C(26)-C(27)
C(25)-C(26)-C(27)
C(39)-C(27)-C(28)
C(39)-C(27)-C(26)
C(28)-C(27)-C(26)

C(39)-C(27)-H(27A)
C(28)-C(27)-H(27A)
C(26)-C(27)-H(27A)

N(3)-C(28)-C(29)
N(3)-C(28)-C(30)
C(29)-C(28)-C(30)
N(3)-C(28)-C(27)
C(29)-C(28)-C(27)
C(30)-C(28)-C(27)

C(28)-C(29)-H(29A)

124.1(3)
126.8(3)
124.2(3)
109.0(2)
114.2(2)
110.0(2)
102.6(2)
109.9
109.9
109.9
113.6(2)
111.6(2)
106.2(2)
115.5(2)
103.4(2)
105.7(2)
105.8(2)
114.0(2)
103.4(2)
121.7(2)
103.7(2)
106.3(2)
110.8(2)
115.1(2)
102.7(2)
111.3(2)
112.1(2)
104.4(2)
111.1(2)
115.4(2)
104.1(2)
108.7
108.7
108.7
112.8(2)
109.3(2)
108.7(2)
99.0(2)
115.1(2)
111.7(2)
109.5



C(18)-C(6)-H(6A)
C(7)-C(6)-H(6A)
C(5)-C(6)-H(6A)

N(1)-C(7)-C(8)
N(1)-C(7)-C(9)
C(8)-C(7)-C(9)
N(1)-C(7)-C(6)
C(8)-C(7)-C(6)
C(9)-C(7)-C(6)
C(7)-C(8)-H(8A)
C(7)-C(8)-H(8B)
H(8A)-C(8)-H(8B)
C(7)-C(8)-H(8C)
H(8A)-C(8)-H(8C)
H(8B)-C(8)-H(8C)
C(7)-C(9)-H(9A)
C(7)-C(9)-H(9B)
H(9A)-C(9)-H(9B)
C(7)-C(9)-H(9C)
H(9A)-C(9)-H(9C)
H(9B)-C(9)-H(9C)
0(5)-C(10)-C(17)
0(5)-C(10)-C(5)
C(17)-C(10)-C(5)
0(5)-C(10)-C(11)
C(17)-C(10)-C(11)
C(5)-C(10)-C(11)
0(6)-C(11)-N(2)
0(6)-C(11)-C(10)
N(2)-C(11)-C(10)
C(13)-C(12)-C(17)
C(13)-C(12)-N(2)
C(17)-C(12)-N(2)
C(12)-C(13)-C(14)
C(12)-C(13)-H(13A)
C(14)-C(13)-H(13A)
C(15)-C(14)-C(13)
C(15)-C(14)-H(14A)
C(13)-C(14)-H(14A)
C(14)-C(15)-C(16)

C(14)-C(15)-H(15A)
C(16)-C(15)-H(15A)

C(17)-C(16)-C(15)
C(17)-C(16)-C(18)
C(15)-C(16)-C(18)
C(16)-C(17)-C(12)
C(16)-C(17)-C(10)
C(12)-C(17)-C(10)
C(16)-C(18)-C(6)

C(16)-C(18)-H(18A)

C(6)-C(18)-H(18A)

C(16)-C(18)-H(18B)

C(6)-C(18)-H(18B)

H(18A)-C(18)-H(18B)

N(2)-C(19)-H(19A)
N(2)-C(19)-H(19B)

108.7
108.7
108.7

109.4(2)
113.8(2)
108.0(2)
100.6(2)
111.0(2)
113.9(2)
1095
1095
1095
1095
1095
109.5
109.5
109.5
109.5
109.5
109.5
109.5
112.3(2)
104.51(19)
112.7(2)
107.9(2)
101.6(2)
118.0(2)
126.4(3)
126.0(2)
107.6(2)
120.8(3)
130.3(3)
108.7(2)
116.0(3)
122.0
122.0
123.2(3)
118.4
118.4
119.5(3)
120.2
120.2
116.8(3)
114.7(2)
128.5(2)
123.3(2)
125.2(2)
110.4(2)
111.9(2)
109.2
109.2
109.2
109.2
107.9
1095
1095

C(28)-C(29)-H(29B)
H(29A)-C(29)-H(29B)
C(28)-C(29)-H(29C)
H(29A)-C(29)-H(29C)
H(29B)-C(29)-H(29C)
C(28)-C(30)-H(30A)
C(28)-C(30)-H(30B)
H(30A)-C(30)-H(30B)
C(28)-C(30)-H(30C)
H(30A)-C(30)-H(30C)
H(30B)-C(30)-H(30C)
0(13)-C(31)-C(38)
0(13)-C(31)-C(26)
C(38)-C(31)-C(26)
0(13)-C(31)-C(32)
C(38)-C(31)-C(32)
C(26)-C(31)-C(32)
0(14)-C(32)-N(4)
0(14)-C(32)-C(31)
N(4)-C(32)-C(31)
C(34)-C(33)-C(38)
C(34)-C(33)-N(4)
C(38)-C(33)-N(4)
C(33)-C(34)-C(35)
C(33)-C(34)-H(34A)
C(35)-C(34)-H(34A)
C(36)-C(35)-C(34)
C(36)-C(35)-H(35A)
C(34)-C(35)-H(35A)
C(35)-C(36)-C(37)
C(35)-C(36)-H(36A)
C(37)-C(36)-H(36A)
C(38)-C(37)-C(36)
C(38)-C(37)-C(39)

C(36)-C(37)-C(39)
C(37)-C(38)-C(33)
C(37)-C(38)-C(31)
C(33)-C(38)-C(31)
C(37)-C(39)-C(27)

C(37)-C(39)-H(39A)
C(27)-C(39)-H(39A)
C(37)-C(39)-H(39B)
C(27)-C(39)-H(39B)
H(39A)-C(39)-H(39B)
N(4)-C(40)-H(40A)
N(4)-C(40)-H(40B)
H(40A)-C(40)-H(40B)
N(4)-C(40)-H(40C)
H(40A)-C(40)-H(40C)
H(40B)-C(40)-H(40C)
O(15)-C(41)-O(16)
O(15)-C(41)-C(26)
0(16)-C(41)-C(26)
C(41)-O(16)-C(42)
0(16)-C(42)-H(42A)
0(16)-C(42)-H(42B)

457

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

111.4(2)

104.0(2)

112.9(2)

107.0(2)

101.1(2)

120.4(2)

126.2(3)

125.9(3)

107.8(3)

120.1(3)

131.6(3)

108.2(3)

116.9(3)
1215
1215

123.1(3)
1185
1185

119.2(3)
120.4
120.4

116.8(3)

114.7(2)

128.5(3)

123.7(3)

125.1(3)

110.7(3)

112.1(2)
109.2
109.2
109.2
109.2
107.9
109.5
109.5
109.5
109.5
109.5
109.5

122.4(3)

125.7(3)

110.7(3)

117.1(3)
109.5
1095



H(19A)-C(19)-H(19B) 1095 H(42A)-C(42)-H(42B) 109.5

N(2)-C(19)-H(19C) 109.5 0(16)-C(42)-H(42C) 109.5
H(19A)-C(19)-H(19C) 109.5 H(42A)-C(42)-H(42C) 109.5
H(19B)-C(19)-H(19C) 109.5 H(42B)-C(42)-H(42C) 109.5

0(7)-C(20)-0(8) 124.5(2) O(16A)-C(42A)-H(42D) 109.5
0(7)-C(20)-C(5) 125.4(2) O(16A)-C(42A)-H(42E) 109.5
0(8)-C(20)-C(5) 110.1(2) H(42D)-C(42A)-H(42E) 109.5

0(8)-C(21)-H(21A) 109.5 O(16A)-C(42A)-H(42F) 109.5

0(8)-C(21)-H(21B) 109.5 H(42D)-C(42A)-H(42F) 109.5
H(21A)-C(21)-H(21B) 109.5 H(42E)-C(42A)-H(42F) 109.5

0(8)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C) 109.5
H(21B)-C(21)-H(21C) 1095
C(23)-0(10)-H(10A) 1095
C(24)-O(11)-H(11A) 103(2)

C(25)-0(12)-H(12A) 93(3)

C(24)-0(13)-C(31) 109.37(19)

C(22)-N(3)-C(25) 113.7(2)

C(22)-N(3)-C(28) 131.2(2)

C(25)-N(3)-C(28) 110.2(2)

C(32)-N(4)-C(33) 111.8(3)

C(32)-N(4)-C(40) 124.1(3)

Table E.40. [A and °]

D-H..A d(D-H) d(H...A) d(D...A) <(DHA)
0(2)-H(2A)...0(11)#1 0.88(5) 2.06(5) 2.871(3) 152(4)
0(3)-H(3A)...0(6) 0.86(4) 1.95(4) 2.761(3) 156(3)
0(10)-H(10A)...0(9)#2 0.84 1.88 2.720(3) 175.2

0(11)-H(11A)...0(14) 0.83(4) 1.94(4) 2.736(3) 162(3)
0(12)-H(12A)...0(4)#3 0.98(6) 2.03(6) 2.686(3) 122(4)

Symmetry transformations used to generate equivalent atoms:
#1 -x+3/2,y-1/2,-2+112  #2 -x+1,-y+2,-z #3 -x+3/2,y+1/2,-z+1/2
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E.10. Crystal Structure of Bicycle 4.66

Figure E.10. Ball and stick model of 4.66

X-ray data for this compound was poor, resolving only up to ~ 1 A. The data though, was

sufficient to allow for elucidation of the connectivity and relative stereochemistry.
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E.11. Crystal Structure of Allene A.08

Figure E.11. ORTEP drawing of Allene A.08

460



APPENDIX F

Biological Screening Data

461 Screening results obtained through the NIH
and NCI developmental therapeutics program



F.01. Screening Data for Hexacyclic Ester 3.98

Developmental Therapeutics Program | nsc: p-so2s08/1 | Conc: 1.00E-5Molar | Test Date: Dec 04,2017
One Dose Mean Graph Experiment ID: 17120507 Report Date: Aug 13, 2018
Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent
Leukemia
CCRF-CEM 97.00
HL-60(TB) 129.36
K-562 165.59
RPMI-8226 97.13
Non-Small Cell Lung Cancer
AB49/ATCC 97.19
EKVX 104.16
HOP-62 90.68
HOP-92 117.67
NCI-H226 113.17
NCI-H23 106.70
NCI-H322M 98.35
NCI-H460 107.62
NCI-H522 85.79
Colon Cancer
HCC-2998 92.86
HCT-116 97.63
HCT-15 105.69
HT29 105.14
KM12 107.87 =
SW-620 102.96
CNS Cancer
SF-268 107.91 =
SF-295 104.19
SF-539 103.73
SNB-19 95.47 —
SNB-75 79.54 [r—
U251 98.70 =
Melanoma
MALME-3M 96.32
M14 103.59
MDA-MB-435 103.12
SK-MEL-2 88.49
SK-MEL-28 74.86
SK-MEL-5 114.00
UACC-257 100.10
UACC-62 95.71
Ovarian Cancer
IGROV1 120.26 —
OVCAR-3 118.06 —
OVCAR-4 103.15
OVCAR-5 103.85
OVCAR-8 97.17 -
NCI/ADR-RES 101.25 o
SK-OV-3 101.34 d
Renal Cancer
786-0 100.44
A498 111.70
ACHN 92.10
CAKI-1 101.84
RXF 393 117.64
SN12C 104.11
TK-10 103.94
UO-31 88.83
Prostate Cancer
PC-3 101.80
DU-145 104.70
Breast Cancer
MCF7 104.29
MDA-MB-231/ATCC 121.09
HS 578T 103.67
BT-549 95.21
MDA-MB-468 111.86
Mean 103.57
Delta 28.71 [—
Range 90.73
150 100 50 0 -50 -100 -150

Figure F.01. Biological screening results for hexacyclic ester 3.97

462 Screening results obtained through the NIH
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F.02. Screening Data for Hexacyclic Acid 3.99

Developmental Therapeutics Program | nsc: p-so2509/1 | Conc: 1.00E-5Molar | Test Date: Dec 04,2017
One Dose Mean Graph Experiment ID: 17120507 Report Date: Aug 13, 2018
Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent
Leukemia
CCRF-CEM 96.33 -
HL-60(TB) 98.32 o
K-562 98.06 -
RPMI-8226 93.44 -
Non-Small Cell Lung Cancer
AB49/ATCC 94.94 -
EKVX 103.72
HOP-62 94.70 -
HOP-92 100.43 d
NCI-H226 105.79 -
NCI-H23 102.88
NCI-H322M 99.07 o
NCI-H460 107.50 -
NCI-H522 87.05 f—
Colon Cancer
HCC-2998 98.88 .
HCT-116 97.82 -
HCT-15 103.26
HT29 91.96 f—
KM12 103.42
SW-620 109.34 -
CNS Cancer
SF-268 99.75 3
SF-295 103.30
SF-539 100.80
SNB-19 103.90
SNB-75 86.08 [—
U251 104.64 i
Melanoma
MALME-3M 125.29
M14 100.76
MDA-MB-435 101.77
SK-MEL-2 105.31
SK-MEL-28 115.57
SK-MEL-5 107.29
UACC-257 97.46
UACC-62 104.93
Ovarian Cancer
IGROV1 111.35 -
OVCAR-3 109.89 -
OVCAR-4 110.22 -
OVCAR-5 91.84 p—
OVCAR-8 97.56 -
NCI/ADR-RES 102.04
SK-OV-3 105.22 L
Renal Cancer
786-0 100.22
A498 103.26
ACHN 101.68
CAKI-1 96.88
RXF 393 127.99
SN12C 101.42
TK-10 95.45
UO-31 89.61
Prostate Cancer
PC-3 102.89
DU-145 94.94
Breast Cancer
MCF7 99.05
MDA-MB-231/ATCC 117.17
HS 578T 105.73
BT-549 104.90
MDA-MB-468 110.52
Mean 102.25
Delta 16.17 —
Range 41.91 —
150 100 50 0 -50 -100 -150

Figure F.02. Biological screening results for hexacyclic acid 3.98
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F.03. Screening Data for Cyclopiamide A 3.02
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Figure F.03. Biological screening results for cyclopiamide A 3.02
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COMPOUND NOTEBOOK CROSS REFERENCE

725V S MCN_1_249
2 T MCN_1_253 & MCN_2_028
70 OO MCN_2_029
72 S MCN_2_034
72 OO MCN_2_009
72 T OO MCN_2_031
725 OO MCN_1_268
230 oveeere e e ettt et e MCN_2_016
725 OO MCN_2_017
720X MCN_2_018
v OO MCN_2_020
70T MCN_2_021
720 3 MCN_2_032
7 S MCN_2_022
72 3O MCN_2_023
72 Y MCN_2_030
72 O MCN_2_036
7 1SS MCN_2_037
728 1 OO MCN_2_038
7 =7 3 MCN_2_039
K OO MCN_2_105
0 OO MCN_4_040
N OO MCN_4_043
T OO MCN_2_048
0 O MCN_4_053
i<} OO MCN_4_055
i< OO MCN_2_136
< T MCN_2_143
13O MCN_4_057
T3 MCN_4_058
0 SO MCN_3_014
3D, oot e ettt e MCN_4_059
<Y BT MCN_4_060
1T MCN_3_057
LT OO MCN_3_059
LT TS MCN_3_065
c-7: OO MCN_3_081
OO MCN_3_089
< YOO MCN_4_004
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I T MCN_4_025

T SO MCN_4 023 & MCN_5_062
< 2SO MCN_5_073
LT TS O MCN_4_026
< TS MCN_4_034
BuL00. ..o eeveeer e eeees et et e MCN_4_052
1035 MCN_4_056
10 250 MCN_5_075
1< OO MCN_5_096
10 SO MCN_5_097
S MCN_5_098
< OO MCN_5_099
T MCN_2_119
0 OO MCN_5_118
<73 MCN_5_119
c i< TS MCN_5_120
0720 MCN_5_123
10 ST MCN_5_131
0 < TS MCN_5_133
<Y S MCN_6_029
£.35 & 387 ovveeoeeeeeeeee e e eeee e s e e et MCN_5_261
<Y JST OO MCN_6_035
SO MCN_6_036
B30, oveeeeeeeeeeeeee e e e et MCN_6_038
BB e e e et e MCN_6_010
3 MCN_6_013
SO MCN_6_020
T OO MCN_6_029
Y MCN_5_255
X R Y MCN_5_283
L85 & A.BB.....ooereevveeeeeeeeeeseeeeeseeses e e MCN_6_047
Y AT MCN_6_050
T OO MCN_6_049

467



BIBLIOGRAPHY

Sperry, S.; Samuels, G. J.; Crews, P. J. Org. Chem. 1998, 63, 10011.

Wood, J. L.; Thompson, B.D.; Yusuff, N.; Pflum, D. A.; Matthaus, M. S. P. J. Am.
Chem. Soc. 2001, 123, 2097.

Lee, C.-W. The Formal Asymmetric Synthesis of (+)-Epoxysorbicillinol. Ph.D. Thesis,
Yale University, New Haven, CT, 2005.

Keese, R.; Luyten, M.; Muller, S.; Herzog, B. Helv. Chim. Acta. 1987, 70, 1250.

Bredereck, H.; Simchem, G.; Rebsdat, S.; Kantlehner, W.; Horn, P.; Wahl, R.; Hoffman,
H.; Grieshaben, P. Chem. Ber. 1968, 101, 41.

Padwa, A.; Curtis, E. A.; Sandanayaka, V. P. J. Org. Chem. 1997, 62, 1317.

Padwa, A.; Brodney, M. A.; Marino, J. P., Jr.; Sheehan, S. M. J. Org. Chem. 1997, 62, 78.
Padwa, A.; Chinn, R. L.; Zhi, L. Tetrahedron Lett. 1989, 30, 1491.

Padwa, A.; Price, A. T. J. Org. Chem. 1995, 60, 6258.

Dauben, W. G.; Dinges, J.; Smith, T. C. J. Org. Chem. 1993, 58, 7635.

Koyama, H.; Ball, R. G.; Berger, G. D. Tetrahedron Lett. 1994, 35, 9185.

Hodgson, D. M.; Bailey, J. M.; Harrison, T. Tetrahedron Lett. 1996, 37, 4623.

Kataoka, O.; Kitagaki, S.; Watanabe, N.; Kobayashi, J.; Nakamura, S.; Shiro, M.;
Hashimoto, S. Tetrahedron Lett. 1998, 39, 2371.

Nakamura, S.; Hirata, Y.; Kurosaki, T.; Anada, M.; Kataoka, O.; Kitagaki, S.; Hashimoto,
S. Angew. Chem., Int. Ed. 2003, 42, 5351.

Hirata, Y.; Nakamura, S.; Watanabe, N.; Kataoka, O.; Kurosaki, T.; Anada, M.; Kitagaki,
S.; Shiro, M.; Hashimoto Chem. - Eur. J. 2006, 12, 8898.

Marino, J. P., Jr.; Osterhout, M. H.; Padwa, A. J. Org. Chem. 1995, 60, 2704.

Graening, T.; Friedrichsen, W.; Lex, J.; Schmalz, H. G. Angew. Chem., Int. Ed. 2002, 41,
1524,

468



Graening, T.; Bette, V.; Neudorfl, J.; Lex, J.; Schmalz, H. G. Org. Lett. 2005, 7, 4317.

Wood, J. L.; Thompson, B. D.; Yusuff, N.; Pflum, D. A.; Matthdus, M. S. P. J. Am. Chem.
Soc. 2001, 123, 2097.

Nakamura, S.; Sugano, Y.; Kikuchi, F.; Hashimoto, S. Angew. Chem., Int. Ed. 2006, 45,
6532.

Gillon, A.; Ovadia, D.; Kapon, M.; Bien, S. Tetrahedron 1982, 38, 1477.
Nakhla, M. C.; Lee C.-W.; Wood, J. L. Org. Lett. 2015, 17, 5760.

Geittner, J.; Huisgen, R.; Tetrahedron Lett. 1977, 18, 881. R. Sustmann Tetrahedron Lett.
1971, 12, 2717.

Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. Flemming, J.; Dolphin, D.
Tetrahedron Lett. 2002, 43, 7281.

Sheldric, G., M. A short history of SHELX. Acta. Cryst. 2008, A64, 112
Ottenheijm, H. C. J.; Tijhuis, M.W. Org. Synth. 1983, 61, 1.

Mozhaev, V. V.; Budde, C. L.; Rich, J. O.; Usyatinsky, A. Y.; Michels, P. C.; Khmelnitsky,
Y.L.; Clark, D. S.; Dordick, J. S. Tetrahedron 1998, 54, 3971.

Shelkov, R.; Nahmany, M.; and Melman, A. J. Org. Chem. 2002, 67, 8975.

Qabaja G.; Wilent J.E.; Benavides A. R.; Bullard G. E.; Petersen K. S. Org. Lett. 2013,
15, 1266.

Uka V.; Moore, G. G.; Arroyo-Manzanares N.; Nebija, D.; Saeger, S. D.; Mavungu, J. D.
D. Toxins 2017, 9, 35.

Holzapfel, C. W. Tetrahedron 1968, 24, 2101.
Chang, P-K; Ehrlich, K. C.; Fujii. I. Toxins 2009, 1, 74.
Burdock G. A.; Flamm, W. G. International journal of toxicology 2000, 19, 195.

Zhou, M.; Miao, M. —M.; Du, G.; Li, X. -N.; Shang, S. -Z.; Zhao, W.; Liu, Z. —H.; Yang,
G.-Y.; Che, C.-T.; Hu, Q. —F.; Gao, X. —M. Org. Lett. 2014, 16, 5016.

Holzapfel, C. W.; Bredenkamp, M. W.; Snyman, R. M.; Boeyensa, J.C.A.; Allen, C.C.
Phytochemistry 1990, 29, 639.

Hu, X.; Xia, Q.-W.; Zhao, Y.-Y.; Zheng Q.-H.; Liu, Q.-Y.; Chen, L.; Zhang, Q.-Q.
Heterocycles 2014, 89, 1662.

469



Muratake, H.; Natsume, M. Heterocycles 1985, 23, 1111.
Griffiths-Jones, C. M.; Knight, D. W. Tetrahedron 2011, 67, 8515.
Kozikowski, A. P.; Greco, M. N.; Springer, J. P. J. Am. Chem. Soc. 1984, 106, 6873.

Beyer, W. R. C.; Woithe, K.; Liike, B.; Schindler, M.; Antonicek, H.; Scherkenbeck, J.
Tetrahedron 2011, 67, 3062.

Beyer, W. R. C. Synthese des Indolalkaloids o-Cyclopiazonic Acid. Dr.rer.nat.,
BerischenUniversitat, Wuppertal, Germany,July1981.

Zhurakovskyi, O.; Turkmen, Y. E.; Loffler, L. E.; Moorthie, V. A.; Chen, C. C.; Shaw, M.
A.; Crimmin, M. R.; Ferrara, M.; Ahmad, M.; Ostovar, M.; Matlock, J. V.;
Aggarwal, V. K. Angew. Chem. Int. Ed. 2018, 57, 1346.

Revesz, L.;Blum, L.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.;
Manning, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2004, 14, 3601.

Arcadi, A.; Marinelli, F.; Rossi, L.; Verdecchia, M. Synthesis 2006, 2006, 2019.
Tidwell, T. T. Ketenes I, 2" ed.; John Wiley & Sons: Hoboken, 2006

Cook, D. Can. J. Chem. 1962, 40, 2362.

Visser, P.; Zuhse, R.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 12598.
Bender, M. L.; Figueras, J. J. Am. Chem. Soc. 1953, 75, 6304.

Rathore, R.; Weigand, U.; Kochi J. K. J. Org. Chem. 1996, 61, 5246.

Rathore, R.; Kochi J. K. J. Org. Chem. 1995, 60, 4399.

B. Plietker Eur. J. Org. Chem. 2005, 1919.

Campos, P. J.; Garcia, B.; Rodriguez, M. A. Tetrahedron Lett. 2002, 43, 6111.
Ha, D.-C.; Yun, C.-S.; Lee, Y J. Org. Chem. 2000, 65, 621.

Bechara, W.S.; Pelletier. G; Charette, A. B. Nature Chem. 2012, 4, 228.

O’Gorman, P. A.; Chen, T.; Cross, H. E.; Naeem, S.; Pitard, A.; Qamar, M. I.; Hemming,
K. Tetrahedron Lett. 2008, 49, 6316.

Isaka, M.; Ejiri, S.; Nakamura, E. Tetrahedron 1992, 48, 2045.

470



Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2012, 14,
2210.

Liotta, D.; Sunay, U.; Santiesteban, H.; Markiewicz,W. J. Org. Chem. 1981, 46, 2605.
de la Torre, A.; Kaiser, D.; Maulide, N. N.; J. Am. Chem. Soc. 2017, 139, 6578.
Nakhla, M. C.; Wood, J. L. J. Am. Chem. Soc. 2017, 139, 18504

Due-Hansen, M. E.; Pandey, S. K.; Christiansen, E.; Andersen, R.; Hansen, S. V. F,;
Ulven, T. Org. Biomol. Chem. 2016, 14, 430.

Nakhla, M. C.; Weeks, K. N.; Villalobos, M. N.; Wood, J. L.; Tetrahedron, 2018. 74, 5085.
Sheldrick, G. M. Acta. Cryst. 2008, A64, 112.

Dong, L.-B.; Gao, X.; Liu, F.; He, J.; Wu, X.-D.; Li, Y.; Zhao, Q.-S. Org. Lett. 2013,
15, 3570.

Li, H.; Lei, X. Chem. Rec. 2018, 18, 543.
Sizemore, N.; Rychnovsky, S. D. Org. Lett. 2014, 16, 688.

Wang, F.—X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.—L.; Zhang, G.-B.; Yu, K.-Y.; Zhang,
X.~Z.; An, X.—T.; Cao, Y.-X.; Fan, C.—A. J. Am. Chem. Soc. 2017, 139, 4282.

Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew. Chem. Int. Ed. 2011,
50, 8025.

Hoff, S.; Brandsma, L.; Arens, F. J. Recueil. 1968, 87, 916.

Tius, M. A.; Zho, X.—M. Tetrahedron Lett. 1989, 30, 4629. b) Takeda, K.; Nakajima, A.;
Takeda, M.; Yoshii, E. Org. Synth. 1999, 76, 199.

Nyasse, B.; Grehn, L.; Ragnarsson, U. Chem. Commun. 1997, 1017.
Kuehne, M. E.; Lambert. B. F. J. Am. Chem. Soc. 1959, 81, 4278.

Masaguer, C. F.; Ravifia, E.; Fontenla, J. A.; Brea, J.; Tristan, H.; Loza, M. 1. Eur. J.
Med. Chem. 2000, 35, 83.

Takacs, A.; Petz, A.; Kollar, L. Tetrahedron 2010, 66, 4479-4483.
Tius, M. A.; Wan, L. Org. Lett., 2007, 9, 647.

Forest, J.; Bee, C.; Cordaro, F.; Tius, M. A. Org. Lett. 2003, 5, 4069.

471



a) Santos, D. B.; Banaag, A. R.; Tius M. A. Org. Lett. 2006, 8, 2579. b) Banaag, A. R,;
Tius, M. A. J. Org. Chem. 2008, 73, 8133.

Morgan, T. D. R.; LeBlanc, L. M.; Ardagh, G. H.; Boyd. R. J.; Burnell, D. J. J. Org.
Chem. 2015, 80, 1042.

Koji, N.; Haruhisa, S. Chem. Lett. 1988, 17, 1847-1848.
Coleman, R. S.; Shah, J. A. Synthesis 1999, 1399.

a) A. Fernandez-Mateos, A.; Martin de la Nava, E.; Coca, G. P.; Silvo, A. R.; Gonzélez,
R. R. Org. Lett. 1999, 1, 607-609. b) Kim, S.; Oh, D. H.; Synlett 1998, 525-527.

Kim, S.; Cho, J. R.; Synlett 1992, 629-630.

Niwa, H.; Wakamatsu, K.; Hida, T.; Niiyama, K.; Kigoshi, H.; Yamada, M.; Nagase, H.;
Suzuki, M.; Yamada, K J. Am. Chem. Soc. 1984, 106, 4547.

Srikrishna, A.; Ravi, G.; Subbaiah, D. R. C. V. Synlett 2009, 32.
Srikrishna, A.; Reddy, T. J. J. Chem. Soc., Perkin Trans. 1997, 3293.
Srikrishna, A.; Hemamalini, P.; Sharma, V. R.; J. Org. Chem. 1993, 58, 2509.

Sanjuan, A.M., Martinez, A., Garcia-Garcia, P., Fernandez-Rodriguez, M.A. and Sanz, R.
Beilstein J. Org. Chem. 2013, 9, 2242-2249.

472



ABOUT THE AUTHOR

Mina Cyril Nakhla was born in Adelaide, Australia, on May 26™ 1990 to Jacqueline
Girgis and Fady Nakhla. After spending 2.5 years in Australia, Mina moved to Montreal
in the province of Quebec in Canada and in 1994 moved to Toronto, Ontario. Mina attended
Mississauga Christian Academy from kindergarten to the 4™ grade (ages 5 —9). At the age
of eight he obtained his first chemistry set and began to be infinitely enamoured with
science. Despite the chemistry sets coming with detailed instructions, Mina did completely
ignore essentially all instructions provided and decided to set up experiments of his own
design. This attitude, which has been a staple of the author’s personality throughout his
life, has always led to many interesting discoveries ... and even more trouble. In late 1999,
Fady decided to relocate his family to Austin, Texas. Mina initially attended Wells Branch
elementary school in Pflugerville, Texas (4th grade) but quickly relocated to Hilltop
Christian Academy until the end of the 9™ grade (skipping the 8™ grade). Mina then
attended Vista Ridge high school (2004-2007). All through this time his interest in science
did not diminish; due to this he attended St. Edward’s university and majored in
biochemistry, with a pre-med track (2007-2011). Quickly after beginning to study organic
chemistry in his sophomore year, he realized that he did not wish to attend medical school
but would rather continue studying organic chemistry. His first formal introduction to
chemistry research was begun in his sophomore year under the direction of Eammon Healy.
Dr. Healy’s research focused on in-silico design and modeling of inhibitors and their
binding modes into protein’s active sites. Specifically, Mina designed inhibitors for the

mycobacterium tuberculosis bacterium’s enol acyl protein reductase. Though Dr. Healy's

473



students did not generally synthesize the inhibitors, Mina convinced him to allow for the
synthesis of some of the more potent ones. Despite all of the research and studies, Mina
found his desire to explore and experiment unsatisfied and as such constructed a home
laboratory, fully equipped with all the needed glassware, fume hoods, vacuum pumps and
even a double manifold. In this lab, much discovery and mischief ensued, ultimately
solidifying Mina’s desire to attend graduate school. At the beginning of his senior year of
undergrad Mina begun applying to graduate programs and was in the winter accepted to
The Ohio State University. After graduating with a bachelor's degree in May of 2011, Mina
began graduate research at The Ohio State University in the summer prior to his first year.
His research during the summer of 2011 was performed under the direction of Craig
Forsyth and focused on the synthesis of a ribose based inhibitor. In the middle of his first
year of graduate school he joined the Badji¢ group. The Badji¢ group focuses on the design
of molecular baskets for the encapsulation of various guests, particularly organophosphate
nerve agent surrogates. While working under the direction of Jovica Badji¢, Mina, with a
bit of guidance from Dr. Bao-Yu Wang, designed and synthesized a molecular claw
cavitand which was functionalized on its interior surface. At the end of his second year,
due to poor judgement and a large portion of misdirected passion towards chemistry Mina
left Ohio State University and soon began work at a Samsung processor fabrication facility
in Austin, Texas. After a year away from academia Mina entered Baylor University, being
drawn in by the elegant work of John L. Wood. With reinvigorated passion Mina begun
research in the Wood group. Over the next four years he was able to complete a
methodology involving chemoselective carbonyl ylide formation and the total synthesis of

(x)-aspergilline A, cyclopiamide A and speradine E. Finally, he also began synthetic

474



studies toward Isopalhinine A. In Mina’s fourth year he passed the final project onto then
first year student Collin Mondrick in preparation of his upcoming move to Harvard for
post-doctoral research under Yoshito Kishi. The post-doctoral position under professor
Kishi was not a planned moved, instead it was a twist in life initiated by the surprising call
of professor Kishi to professor John Wood in search of a post doc. With a post-doctoral
position lined up the author defended at the end of September 2018 looking forward to the

move to Boston and Harvard in the following November.

475



	ABSTRACT
	Mina Cyril Nakhla, Ph.D.
	Mentor: John L. Wood, Ph.D.
	Copyright © 2018 by Mina C. Nakhla
	All rights reserved
	LIST OF FIGURES
	LIST OF SCHEMES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ACKNOWLEDGMENTS
	CHAPTER ONE
	Origins and Background of the Chemoselective Carbonyl Ylide Methodology
	1.1 Total Synthesis of (±)-Epoxysorbicillinol and Formal Synthesis of (+)-Epoxysorbicillinol
	1.1.1 Racemic Synthesis – 2001



	The Vertinoid polyketide epoxysorbicillinol (1.01, Scheme 1.3) was isolated in 1998 from Trichoderma longibrachiatum by Crews et al. and at the time no bioactivity was reported.1 The Wood group then became interested in targeting this molecule due to...
	Scheme 1.1. Racemic epoxysorbicillinol – key oxabicycle
	treatment with tosyl hydrazide and elimination by action of basic alumina provided diazomalonate 1.04 in an excellent 71% yield overall! Exposure of 1.04 to catalytic rhodium acetate in benzene at 60  C in the presence of allyl propiolate 1.07 furnish...
	Scheme 1.2. The intermediate carbonyl ylide 1.10 present in this synthesis bears an -face methyl group and a -face ester (Scheme 1.2). It is believed that the -face ester directs
	Scheme 1.2. Origin of diastereoselectivity

	approach of the dipolarophile to the less sterically hindered face as shown in transition state 1.11. Dipolar cycloaddition then generates an oxabicyclic compound (1.12) in which the bridging oxygen and remaining ester reside on the -face of the mole...
	Scheme 1.3. Completion of racemic epoxysorbicillinol

	the unsaturation present in the side chain and decarboalkoxylation of the remaining ester. The sequence of events proved critical. Initial exposure to DDQ effected the desired dehydrogenation in good yield but, subsequent exposure to TFA gave the natu...
	1.1.2 Enantioselective Formal Synthesis – 2005
	Scheme 1.4. Enantiomeric carbonyl ylides
	Scheme 1.5. Chemoselective carbonyl ylide formation
	Scheme 1.6. Electronic differentiation proof of concept


	diazomalonate achieved, the compound was heated to 60  C in the presence of allyl propiolate 1.07 and rhodium acetate, furnishing the oxabicyclic compound 1.31 (as a mixture of enantiomers). The obtained oxabicyclic compound 1.31 was generated through...
	The formal enantioselective synthesis of (+)-epoxysorbicillinol commenced from commercially available dimethyl methyl malonate.4 Deprotonation with sodium hydride followed by quenching with t-butoxy chloromethyl ether gave ether 1.34 (Scheme 1.7).   ...
	Scheme 1.7. Synthesis of enantioenriched malonate 1.42

	ester (1.37) which, upon saponification of the methyl ester and Steglich esterification with 2-(trimethylsilyl)ethanol gave malonate 1.39. Exposure of 1.39 to neat formic acid removed both t-butyl groups and resulted in esterification of the primary ...
	Scheme 1.8. Synthesis of Enantioenriched Oxabicycle 1.47

	reagent 1.45 [(t-butoxybis(dimethylamino)methane] at 60  C followed by exposure to mesyl azide provided the diazomalonate cyclization precursor 1.46.6 Treatment of 1.46 with rhodium acetate in the presence of allyl propiolate 1.07 in benzene at 60  C ...
	Scheme 1.9. Formal enantioselective epoxysorbicillinol synthesis

	(+)-epoxysorbicillinol 1.54 with the oxabicyclic compound 1.47 as the final enantioenriched compound accessed in the synthesis.
	1.2 Conclusion

	The total synthesis of (±)-epoxysorbicillinol and formal the synthesis of (+)-epoxysorbicillinol allowed for the development and establishment of a proof of concept for chemoselective carbonyl ylide formation through electronically differentiation of ...
	1.3 References and Notes

	CHAPTER TWO
	Chemoselective Carbonyl Ylide Formation Through Electronic Differentiation of the Esters of Diazomalonates Exploration of Steric Differentiation for Chemoselective Carbonyl Ylide Formation.
	2.1 Background


	Rhodium(II) induced carbonyl ylide formation and subsequent dipolar cycloadditions have been established as highly valuable and versatile synthetic methodologies for the synthesis of complex molecular targets (Figure 2.1).1 Beginning
	Figure 2.1. Complex molecular targets accessed through carbonyl ylide chemistry

	with the seminal work of Bien et al.,2 this chemistry has been extensively studied and was quickly applied to the synthesis of natural product targets; most notably by the groups of Padwa and Hashimoto. Interestingly, apart from our group’s exploratio...
	2.1.1 Substrate Synthesis

	Following the synthetic route established in the epoxysorbicillinol synthesis we accessed a variety of electronically and sterically differentiated diazomalonates (Scheme 2.1).3 In general, beginning with a known half acid 2.04, Steglich esterificati...
	Scheme 2.1. Substrate synthesis

	tosyl hydrazones (2.06) were then converted through exposure to basic alumina to the requisite dipolar cycloaddition precursors 2.07. Ultimately, five different substrates were accessed. The electronically differentiated ethyl trifluoroethyl diazomalo...
	2.1.2 Catalyst Screening and Optimization

	Reaction optimization was briefly performed using the electronically differentiated diazomalonate 2.08. The reaction conditions established in the epoxysorbicillinol syntheses were used as a point reference for this methodology (Table 2.1). It was dis...
	Table 2.1. Reaction optimization

	through celite( removed the catalyst; whereas the greater solubility of rhodium octanoate in organic solvents led to its co-elution with the desired oxabicyclic compounds resulting in the isolation of green oils. Optimal reaction conditions were thus ...
	2.1.3 Dipolarophile Scope – Electronically Differentiated Malonate

	With optimized reaction conditions in hand, a quick survey of reaction scope in terms of dipolarophile reaction partner was performed (Scheme 2.2). As precedented, the carbonyl ylides acted as type one dipoles.4   Type one dipoles are nucleophilic hav...
	Scheme 2.2. Dipolarophile scope expansion

	lying HOMO’s which react with the LUMO of the dipolarophile. Due to this phenomenon, relatively electron poor dipolarophiles, such as dimethyl acetylene dicarboxylate and methyl propiolate, proved to be viable reaction partners, yielding the correspon...
	Figure 2.2 X-ray structure of 2.17

	trifluoroethyl ester had not participated in carbonyl ylide formation. Whether this apparent lack of reactivity was due to the incapability of the trifluoroethyl ester to participate in ylide formation or was simply due to preferential formation of th...
	Scheme 2.3. Viability of trifluoroethyl ester in ylide formation
	2.1.4 Sterically Differentiated Malonates

	To explore the viability of steric differentiation for chemoselective carbonyl ylide formation ethyl t-butyl diazomalonate 2.09 was exposed to the reaction conditions in the presence of dimethyl acetylene carboxylate 2.20. Surprisingly, this substrat...
	Scheme 2.4. Tetronic acid formation

	resulted in only tetronic acid products (2.24 and 2.25).  As anticipated, removal of the dipolarophile reaction partner did not inhibit the formation of the observed tetronic acids. This reactivity was unprecedented for carbonyl ylides and is likely d...
	Scheme 2.5. Mechanistic proposal for tetronic acid formation

	Though this unprecedented reactivity was intriguing, it did not reveal whether or not steric differentiation was a viable method for chemoselective carbonyl ylide formation. To explore this, ethyl 2-propyl diazomalonate 2.10 was exposed to the reacti...
	Scheme 2.6. Steric differentiation of diazomalonate
	2.2 Conclusion

	In conclusion the scope of chemoselective carbonyl ylide formation through electronic differentiation of diazomalonates has been further explored. Additionally, steric differentiation was found to be unsuitable for selective ylide generation.  Intere...
	2.3 Experimental

	2.3.1 General
	Unless otherwise stated, all reactions were performed in oven-dried glassware under a nitrogen atmosphere, using reagents as received from the manufacturers. The reactions were monitored by thin-layer chromatography (TLC) using Silicycle glass-backed ...
	Preparation of Electronically Differentiated Malonate 2.34
	Carboxylic acid 2.33 (6 g, 41.06 mmol) was added to a 250 mL round bottom flask and dissolved in dry DCM (90 mL). Then trifluoroethanol (6.8 g, 68 mmol, 4.95 mL) and DMAP (390 mg, 3.2 mmol) were added. Following this N,N’-dicyclohexylcarbodiimide (11....
	Preparation of Tosyl Hydrazone 2.35
	To a round bottom flask was added malonate ester 2.34 (1.0 g, 4.38 mmol) and dry THF (19 mL). The reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then sodium hydride (200 mg, 5 mmol) as a 60% dispersion in mineral...
	Preparation of Diazomalonate 2.08
	Tosyl hydrazone 2.35 (1.02 g, 2.19 mmol) was added to a 50 mL round bottom flask and dissolved in dry DCM (22.5 mL). Then Al2O3 (2.81 g, 27.5 mmol) Brockmann LVL I were added, the flask was wrapped in foil and the reaction mixture was allowed to stir...
	Preparation of Oxabicyclic Compound 2.14
	To an oven dried 1.5-dram vial was added a stir bar, diazomalonate 2.08 (50.9 mg, 0.164 mmol), dry benzene (1.5 mL) and methyl propiolate (0.075 mL, 0.843 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen three times. Rho...
	Preparation of Oxabicyclic Compound 2.17
	To an oven dried 1.5-dram vial was added a stir bar, diazomalonate 2.08 (50.8 mg, 0.164 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1 mL, 0.813 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen thre...
	Preparation of Oxabicyclic Compound 2.18
	To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.08 (50.1 mg, 0.161 mmol), dry benzene (1.5 mL) and methyl hexynoate (0.11 mL, 0.822 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen three times. R...
	Preparation of Bis-Trifluoroethyl Methyl Malonate 2.38
	To a flame dried round bottom flask was added malonate 2.37 (283 mg, 1.05 mmol) and dry THF (10 mL). This solution was cooled to 0  C using an ice bath and to this was added NaH (50 mg,1.25 mmol) as a 60% dispersion in mineral oil. The solution was al...
	Preparation of Tosyl Hydrazone 2.39
	Malonate ester 2.38 (500 mg, 1.78 mmol) was dissolved in dry THF (11 mL). The reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then NaH (85 mg, 2.1 mmol) as a 60% dispersion in mineral oil were added portion wise. A...
	Preparation of Diazomalonate 2.11
	Tosyl hydrazone 2.39 (0.247 g, 0.475 mmol) was added to a 75 mL pear shaped flask and dissolved in dry DCM (4 mL). Then of Al2O3 (0.52 g, 5.1 mmol) Brockmann LVL I was added, the flask was wrapped in foil and the reaction mixture was allowed to stir f...
	Preparation of Oxabicyclic Compound 2.21
	To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.11 (59.4 mg, 0.162 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1 mL, 0.813 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen...
	13C NMR (101 MHz, Chloroform-d) δ 199.78, 165.79, 161.40, 161.10, 146.52, 143.72, 122.88 (q, J = 277.0 Hz), 122.65 (q, J = 277.2 Hz), 111.86, 87.86, 63.96 (q, J = 36.7 Hz), 61.51 (q, J = 37.1 Hz), 53.70, 53.32, 53.23, 17.46, 11.32. +ESI-HRMS m/z: calc...
	Preparation of Tosyl Hydrazone 2.41
	Malonate ester 2.40 (651 mg, 3.22 mmol) was dissolved in dry THF (13 mL). The reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then sodium hydride (151 mg, 3.77 mmol) as a 60% dispersion in mineral oil was added po...
	Preparation of Diazomalonate 2.09
	Tosyl hydrazone 2.41 (1 g, 2.27 mmol) was added to a 75 mL pear shaped flask and dissolved in dry DCM (4 mL). Then Al2O3 (2.96 g, 29.0 mmol) Brockmann LVL I was added, the flask was wrapped in foil and the reaction mixture was allowed to stir for 16 h...
	Preparation of Tetronic acids 2.22, 2.23
	To an oven dried 1.5-dram vial was added a stir bar the diazomalonate 2.09 (46.3 mg, 0.163 mmol), and 1.5 mL of dry benzene. The reaction vial was then evacuated of air and backfilled with nitrogen three times. Rhodium acetate dimer (3.5 mg, 5 mol %) ...
	Preparation of Tosyl Hydrazone 2.42
	Malonate ester 2.42 (0.503 g, 2.18 mmol) was dissolved in dry THF (9 mL). The reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then sodium hydride (100 mg, 2.50 mmol) as a 60% dispersion in mineral oil was added por...
	Preparation of Diazomalonate 2.12
	Tosyl hydrazone 2.43 (700 mg E and Z mixture, 1.5 mmol) was added to a round bottomed flask and dissolved in dry DCM (15 mL). Then Al2O3 (1.87 g, 18.3 mmol) Brockmann LVL I was added, the flask was wrapped in foil and the reaction mixture was allowed ...
	Preparation of Tetronic acids 2.24, 2.25
	To an oven dried 1.5-dram vial was added a stir bar, the diazomalonate 2.12 (47.7 mg, 0.153 mmol) and dry benzene (1.4 mL). The reaction vial was then evacuated of air and backfilled with nitrogen three times. Rhodium acetate dimer (3.5 mg, 5 mol %) w...
	Preparation of Malonate 2.33
	Carboxylic acid 2.33 (1.1 g, 7.6 mmol) was added to a round bottom flask and dissolved in dry DCM (18 mL). To this solution was added 2-propyl alcohol (1 mL 13.06 mmol), DMAP (77.6 mg, 0.64 mmol) and N-(3- Dimethylaminopropyl)-N′-ethylcarbodiimide hyd...
	Preparation of Tosyl Hydrazone 2.45
	Malonate ester 2.44 (962 mg, 5.11 mmol) was added to a 50 mL round bottom flask and dissolved in dry THF (21.5 mL). The reaction solution was then cooled in an ice water bath and let stir for ten minutes. Then sodium hydride (240 mg, 6.0 mmol) as a 60...
	Preparation of Diazomalonate 2.10
	Tosyl hydrazone 2.45 (1.66 g, 3.88 mmol) was added to a pear shaped flask and dissolved in of dry DCM (39 mL). Then Al2O3 (5.17 g, 50.7 mmol) Brockmann LVL I were added, the flask was wrapped in foil and the reaction mixture was allowed to stir for 1...
	Preparation of Oxabicyclic Compounds 2.31, 2.32
	To an oven dried 1.5-dram vial was added a stir bar, the of diazomalonate 2.10 (44.1 mg, 0.163 mmol), dry benzene (1.5 mL) and dimethyl acetylenedicarboxylate (0.1mL (0.81 mmol). The reaction vial was then evacuated of air and backfilled with nitrogen...
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	CHAPTER THREE
	Total Syntheses of (±)-Aspergilline A, Cyclopiamide A and Speradine E
	3.1 Isolation and Bioactivity of (±)-Aspergilline A, Cyclopiamide A, and Speradine E
	3.1.1 The Cyclopiazonic Acid Family of Natural Products



	Aspergilline A 3.01, cyclopiamide A 3.02 and speradine E 3.03 (Figure 3.1) are considered to be cyclopiazonic acid-type natural products, specifically falling under the cyclopiazonic acid oxindole sub class.1 -Cyclopiazonic acid (CPA 3.04) was isola...
	Figure 3.1 CPA type natural products

	from Penicillium cyclopium in 1968 by Holzapfel and was found to be cytotoxic through its disruption of calcium ion flux in the cell.2,3 CPA has been observed in various foods including cheeses, milk, meats and grains.1 Despite its presence in various...
	3.1.2 Aspergilline A - Isolation and Bioactivity

	Aspergilline A (3.01) was isolated in 2014 from the Aspergillus versicolor by Hu and Gao.5 The Aspergillus versicolor fungus was cultivated on a potato dextrose agar for seven days at room temperature. Agar plugs were placed into 250 mL Erlenmeyer fl...
	The aspergillines (3.01, 3.05 – 3.08 Figure 3.2) are considered highly oxygenated derivatives of the natural product cyclopiazonic acid (3.04). Though the biogenic origin of CPA is known,2 that of the aspergillines has not been identified. The gene c...
	Figure 3.2 Aspergilline family

	Aspergilline A, along with the other members of the family (Figure 3.2) were shown to be cytotoxic against several human cancer cell lines in the low micromolar range (Table 3.1). Specifically, the aspergillines possess moderate biological activity a...
	Table 3.1 IC50 values (in M) of the aspergillines

	epithelial carcinoma, NB4 promyelocytic leukemia, MCF7 breast adenocarcinoma, PC3 prostate cancer and SHSY5Y neuroblastoma cancer cell lines. Aspergilline A is the most potent congener overall.5 At this current juncture no mechanism of action for the ...
	3.1.3 Cyclopiamide A –Isolation

	Cyclopiamide A (3.02, Figure 3.3) is a tetracyclic indole alkaloid which bears a core structure similar to a core structural fragment present in aspergilline A (red highlight 3.01 Figure 3.3). Cyclopiamide A was isolated in 1990 by Holzapfel and cowo...
	Figure 3.3 Common tetracyclic core structure

	media was dried and milled prior to being extracted with chloroform/methanol. The extract was dissolved in HCl (aq) and washed with chloroform. After neutralization the aqueous layer was extracted with chloroform and the extract present in the organic...
	3.1.4 Speradine E –Isolation and Biological activity

	Speradine E (3.03, Figure 3.3) is a tetracyclic indole alkaloid differing in structure from cyclopiamide A 3.02 only by a pendant methyl -keto ester on the free amide’s nitrogen. Speradine E was isolated from the fungus Aspergillus oryzae by Chen an...
	3.2 Total Synthesis of Aspergilline A, Cyclopiamide A and Speradine E via a Unified Strategy
	3.2.1 A General Unified Approach


	As depicted earlier in this chapter (Figure 3.3) aspergilline A (3.01), cyclopiamide A (3.02) and speradine E (3.03) bear a similar tetracyclic core structure. During the course of our work on the total synthesis of aspergilline A it became apparent ...
	Scheme 3.01 Unified synthetic strategy
	3.2.2 Aspergilline A: Evolution of Strategy and Total Synthesis

	Other than our work on aspergilline A, no total synthesis or progress towards this family of natural products has been reported. The closest congener to be prepared by total synthesis is the simpler cyclopiazonic acid, which to date has been produced...
	Figure 3.4 Salient features of aspergilline A

	During our synthetic studies of aspergilline A, a number of strategies were explored, all of which diverted from a key tetracyclic amide 3.15 (Scheme 3.02). In the initial retrosynthetic strategy, we envisioned accessing aspergilline A through a late...
	Scheme 3.02 Retrosynt hetic analysis I

	exact substrates were not known, similar Sonogashira cross coupling reactions utilizing propargyl amine 3.17 were precedented.9 On the basis of this literature, we chose our initial reaction conditions to be 4 mol % of Pd(Cl)2(PPh3)2, 8 mol % CuI, 8 m...
	Table 3.2 Sonogashira cross coupling optimization

	coupling product 3.21 in an acceptable 60 – 80 % yield (Scheme 3.03). Carrying 3.21 forward we sought to apply work from Arcadi and Marinelli.10 Precedent from Arcadi and Marinelli had shown that acylation of aryl propargyl amines with a malonyl chlor...
	Scheme 3.03 Methylation and Sonogashira cross coupling

	in high yields, presumably through a 5-exo-dig cyclization and subsequent double bond migration. In applying this chemistry, we exposed propargyl amine 3.21 to allyl malonyl chloride 3.26 to give malonamide 3.27. Reaction of 3.27 with Cs2CO3 in DMSO g...
	Scheme 3.04 Pyrrolinone formation – Arcadi & Marinelli

	(Scheme 3.05). All attempts to optimize this reaction failed to increase the yield. While examining these reactions we were surprised to find that from the acylation reactions with malonyl chlorides small amounts of the pyrrolinone were formed direct...
	Scheme 3.05 Unprecedented pyrrolinone formation

	in the reaction, we exposed the malonamide 3.27 to Hünig's hydrochloride salt in the presence of excess Hünig's base; this once again resulted in only returned starting material. Re-exposing the malonamide 3.27 to the initial acylation reaction condit...
	Figure 3.5 React IR data indicating ammonium enolate

	We were intrigued to observe that no ketene was forming in this reaction as the characteristic intense stretch between 2050 – 2250 cm-1 was absent.11 In addition to this, the lack of a stretch between 1790 – 1820 cm-1 indicated that no acyl ammonium s...
	With a viable means of accessing the desired pyrrolinone substrates, we turned our attention to preparing the key tetracyclic amide. Intramolecular aldol cyclization of pyrrolinone 3.28 was induced by sodium hydride, to give tetracyclic allyl ester 3...
	Scheme 3.06 Aromatization of allyl ester

	3.32 to catalytic palladium tetrakis. We were puzzled on observing the formation of a bright yellow compound, which was later determined to be aromatized compound 3.33. Mechanistically, it appears that de-allylative decarboxylation occurred followed b...
	Scheme 3.07 Tetracyclic methyl ester synthesis
	of conditions, including both ionic reduction and hydrogen atom transfer conditions. Application of Birch reduction conditions on a MOM protected variant (3.35) of tetracyclic ester 3.34 surprisingly also lead to aromatized compound 3.33. This was lat...
	Scheme 3.08 Sodium amide-induced aromatization of 3.35

	In fact, attempts to reduce the methyl ester of 3.32 with NaBH4 in the presence of calcium chloride also lead to compound 3.33!
	A promising lead for the reduction of highly sterically hindered alkenes was found in an unusual dimethoxyanthracenium hexachloroantimonate radical cation (3.43), which was colloquially named orange CRET by the authors. This radical cation in the pre...
	Scheme 3.09 Literature preparation of orange CRET 3.40

	hydroquinone with methyl iodide to give dimethyl ether 3.42. Subsequent exposure to antimony pentachloride provided orange CRET 3.43. Reduction of the trisubstituted alkene was once again attempted. In the event tetracycle 3.35 was exposed to a mixtur...
	Scheme 3.10 Attempted alkene reduction by orange CERT
	conditions were also explored. Heterogeneous hydrogenation catalysts failed to provide the desired product from 3.34 except in the case of palladium on carbon at 1150 PSI of H2.  Reaction under the latter conditions for two days gave a 40% conversion ...
	We surmised that the difficulty in reducing the alkene of 3.34 and 3.35 was due to the two adjacent quaternary centers. We therefore believed that reduction at the pyrrolinone stage may proceed under milder conditions (Scheme 3.11). Indeed, exposing ...
	Scheme 3.11 Accessing reduced tetracy cle 3.46
	in this reaction that the isatin's ketone was reduced to the alcohol prior to reduction of the alkene. Thus, the crude pyrrolidone 3.45 was then exposed to DMP to give isatin 3.46. Treatment of 3.46 with methanolic potassium carbonate induced an intra...
	Scheme 3.12 Mukaiyama aldol

	we once again sought to remove the ester and install the methine at C4. Surprisingly, Krapcho decarboxylation conditions yielded the previously observed aromatized compound 3.33 (Scheme 3.13).  Given this result, we opted to leave decarboxylation at C...
	Scheme 3.13 Plausible mechanism for Krapcho induced aromatization

	Having decided to delay decarboalkoxylation, we began setting the stage for introducing the penultimate ring (Scheme 3.14).  To this end, the DMB protecting group in 3.49 was removed by exposure to DDQ. Acylation of the derived tetracyclic amide inte...
	to the ene diol failed under a variety of conditions. In seeking an alternative for oxidation of 3.55 we became intrigued by a ruthenium-based method reported by Plietker and were gratified to find these latter conditions capable of converting 3.55 to...
	Scheme 3.14 Attempted synthesis of key ene-diol intermediate
	Scheme 3.15 Precedent and plausible mechanism adapted from Plietker

	Observing that early incorporation of all the oxidation present in the tetramic acid moiety leads to unstable intermediates, we revised the approach
	and, as illustrated in Scheme 3.16, targeted hemiaminal 3.67 (Scheme 3.16). Accessing aspergilline A via this latter route would require the late stage decarboxylation, hemiacetal formation and oxidation of pentacyclic intermediate 3.67. Pentacycle 3....
	Scheme 3.16 Retrosynthetic analysis II

	As illustrated in Scheme 3.17, implementation of this modified route began with the conversion of acrylimide 3.55 to -iodo compound 3.68 (Scheme 3.17).18 Cyclization of 3.68 to the corresponding hemiaminal was then attempted under the influence of s...
	Scheme 3.17 Unexpected cyclopropyl hemiaminal formation

	Thwarted by unstable ene-diol intermediates and the unexpected formation of a cyclopropyl hemiaminal, we again revised the synthetic strategy to obviated the need for nucleophilic addition to the imide carbonyl (Scheme 3.18). As illustrated in Scheme...
	Scheme 3.18 Retrosynthetic analysis III
	In the forward sense, amide 3.54 was treated with triflic anhydride in the presence of 2-fluoropyridine to provide imidoyl triflate 3.73 (Table 3.3).20 Stille cross coupling conditions were then applied in hopes of inducing the desired vinylation rea...
	Table 3.3 Screening of Stille cross coupling conditions

	Concurrent with exploring the vinylation approach, we were also considering a more efficient strategy wherein the penultimate ring would derive from a dipolar cycloaddition of an intermediate imidate with an all-carbon 1,3 dipole, thus simultaneously...
	Scheme 3.19 All-carbon 1,3-dipole – precedent from Hemming

	Changing our retrosynthetic analysis again, we sought to construct aspergilline A through the intermediacy of pentacycle 3.79 (Scheme 3.20) via late stage decarboxylation, hemiketal formation and oxidation. We believed 3.79 could be derived from meth...
	Scheme 3.20 Retrosynthetic analysis IV

	Eager to apply this alluring methodology, we prepared parent cyclopropenone 3.84 according to known methods  (Scheme 3.21).22 Transformation of amide 3.54 to methyl
	Scheme 3.21 Literature synthesis of cyclopropenone

	imidate 3.85 was achieved by the portion wise addition of ~45 equivalents of methyl triflate without the addition of base (Scheme 3.22). With both components of the dipolar cycloaddition in hand, the stage was set for the cyclization. To this end, met...
	Scheme 3.22 [3+2] Dipolar-cycloaddition

	the sought after pentacycle as an inconsequential (3:2  3.86: 3.87mixture of diastereomers in 89% yield. The diastereomer bearing the -face methoxy group was confirmed by X-ray crystallographic analysis. A plausible mechanism for this reaction ...
	Scheme 3.23 Plausible mechanism of formal [3+2] dipolar-cycloaddition

	Initially seeking to elaborate the vinylogous amides of 3.86 and 3.87 directly to a hydroxy tetramic acid (3.91) we applied the chemistry developed by Plietker, a variation of which we had earlier utilized to synthesize acyloin 3.58 (Scheme 3.24) .19...
	Scheme 3.24 Attempted hydroxy tetramic acid synthesis

	surprised to observe that instead of hydroxy tetramic acid formation, the reaction provided the tetramic acid 3.97 as a single diastereomer; furthermore, the methoxy group was replaced by a hydroxy group (Scheme 3.25).  Consulting the literature, we w...
	Scheme 3.25 Plausible mechanism for  tetramic acid formation

	3.97 was attempted with PIFA in DCM. Crude mass and NMR appeared to indicate that an oxidation had occurred, but the obtained compound was viciously unstable, quickly decomposing in the NMR tube prior to retrieval of the sample.23 Observing the instab...
	Scheme 3.26 Hexacycle formation

	obtain reproducibly high yields of the tetramic acid, the water co-solvent/reactant had to be added slowly by syringe pump while the reaction mixture was kept cold. Perplexingly, crude NMR spectra of tetramic acid 3.97 revealed what often appeared to ...
	Scheme 3.27 Failed late stage hydroxylation

	was carbonate deprotection and installation of the remaining hydroxy group. Disappointingly, conventional enolate oxidation conditions utilizing Davis oxaziridine, m-CPBA, DMDO, oxygen and triethyl phosphite or Rubottom-type oxidations failed to insta...
	the dipolar cycloaddition with deltic acid 3.105 in hopes of installing all the needed oxidation at once (Scheme 3.29). Heating with deltic acid proved nugator y, resulting in
	Scheme 3.28 Representative example of Maulide -oxidation of amides

	reversion of the methyl imidate 3.85 to amide 3.54. With this result it appeared that no obvious avenue forward was left except for the installation of the hydroxy group at the tetramic acid stage.
	Scheme 3.29 Attempted cycloaddition with deltic acid

	Tetramic acid 3.97, now purified by silica g el chromatography, was exposed once again to PIFA i n DCM (Scheme 3.30). Previous experience with this reaction had revealed that the hydroxy tetramic acid intermediate was highly susceptible to oxidation ...
	Scheme 3.30 Installation of the final hydroxy group

	(Scheme 3.31) was followed by iodinative decarboxylation under Hunsdiecker-type conditions to furnish iodide 3.108. Radical dehalogenation of crude
	Scheme 3.31 Total synthesis of aspergilline A

	3.108 followed by exposure to methanolic potassium carbonate then delivered the natural product aspergilline A 3.01 in 7% yield over the final five steps.26
	3.2.2 Total Synthesis of Cyclopiamide A and Speradine E

	Having contended with aromatization early on during the aspergilline A synthesis, we were eager to utilize this initially unwanted reactivity to our advantage. Thus, tetracycle 3.32, which had been synthesized through intramolecular aldol reaction of...
	Scheme 3.32  Total synthesis of cyclopiamide A and speradine E

	of 3.33 was then removed under the same conditions utilized in the aspergilline A synthesis to give in 93% yield cyclopiamide A 3.02. To access speradine E a methyl -keto ester had to be appended. Literature precedent revealed that such a transformat...
	3.3 Conclusion

	In conclusion the first total syntheses of aspergilline A, cyclopiamide A and speradine E were accomplished in 16, 6 and 7 steps, respectively. The most notable features of the aspergilline synthesis include: a direct conversion of a propargyl amine ...
	3.4 Experimental
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