
ABSTRACT

A Deep Convolutional Neural Network Approach for Biomedical Applications

Hanh Hong Nguyen, Ph.D.

Mentor: Keith Evan Schubert, Ph.D.

Deep learning is a subset of machine learning that uses multi layer neural networks

to perform desired tasks by using trained models. Neural networks are nonlinear mapping

systems whose structure and function are loosely modeled on the physical structure of the

nervous systems in humans and animals. In deep learning, convolutional neural networks

(CNNs) have been used to analyze visual tasks for more than 40 years. Since the mid-

2000s, they have revolutionized image processing and analysis. The goal of this dissertation

is designing a deep CNN approach for biomedical applications, including automation of the

process of colon polyps classification as well as single particle identification in radiation

therapy.
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CHAPTER ONE

Introduction

Machine learning is a subset of artificial intelligence. It uses statistics to enable

computers to learn from experience by developing computational algorithms or models

that can automatically infer hidden patterns from data. The goal of machine learning is to

optimize a performance purpose by using example data or past experience [1]. The model

may make a prediction in the future or gain knowledge from data, or both [1]. The core task

of machine learning is to make inference from a sample by applying the theory of statistics

in building mathematical models [1]. To achieve the desired purpose, in general, there is

training as the first step and once a model is learned, its representation and algorithmic

solution for inference needs to be efficient as well. In some cases the predictive accuracy

and the efficiency of the learning algorithm are equally important [1]. There are three

main types of machine learning, which are supervised learning, unsupervised learning,

and reinforcement learning. In supervised learning, the model is trained with a labeled

data set that contains the observations of an expert as well as the corresponding expected

output labels. The goal of these models is to generate an inferred function that maps the

feature vectors to the output labels. In unsupervised learning, the data set does not contain

information about the output labels. The goal of these models is to derive the relationship

between the observations and/or reveal the latent variables. In reinforcement learning, the

learning a sequence of actions leads to a long-term reward.

Deep learning is a subset of machine learning that uses multi-layer neural networks

to perform desired tasks by using trained models. Neural networks are nonlinear mapping

systems whose structure and function are loosely based on the idea of the nervous systems

in humans and animals.
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A neural network consists of a large number of processors linked by weighted

connections. The power of the system is from combining many processing units in a

network. These units transform inputs linearly from other nodes and generate output as

a single scalar by applying a nonlinear function [2]. The output is distributed to and

acts as an input to the next layer in the network. The weights and biases used in the

linear transformation are learned and updated through back propagation. Back propagation

adjusts the network weights so the network produces the desired output in response to

every input pattern in a predetermined set of training patterns [2]. The derivative chain

rule is applied to calculate the derivatives of the network training error with respect to the

weights. Thus the parameters are updated based on the gradients of the cost function in

relation to the previous layer.

Figure 1.1: A diagram of a neuron

A neuron is a single unit of neural network which is illustrated in figure 1.1. This

neuron is similar to neurons in the nervous system. The biological neurons consist of a

cell body which connects to dendrites and axon. The axon transports the neural signal to

other neuron at synapses which act as contact points [3]. In comparison to the biological

neuron, the neural network neuron consists of inputs and outputs as the axons, the weight

as synapses and the sum of the products of all input and associated weight as the dendrite.
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Neural network neuron is a building block of a layer in a network. A single neuron has input

xi and has an associated weight wi. A bias term is added to the summation
∑

xi ∗ wi in the

non-linear transfer function to transform the pre-activation level of the neuron to an output

y j [4]. The output y j is the input to a neuron in the next layer. Several activation functions

such as the rectifier function (rectified linear unit (ReLU)), the hyperbolic tangent function,

the sigmoid function and the softmax function are available, which differ with respect to

how they map a pre-activation level to an output value [4].

The primary purpose of this dissertation is to propose methods to apply deep CNNs

to various biomedical application. To accomplish that, various CNNs models were investigated

in three projects.

• Polyps classification

• Particle identification in radiation therapy

• Nitinol surgical wire

1.1 Contributions

In this dissertation, three ways are investigated to approach a biomedical application

goal by applying a deep convolutional neural network. In each case, a different challenge

was addressed and overcome. From a problem in which an simple, off the shelf pre-trained

network can solve with a small data set in the first project of nitinol wire, to the second

problem of lacking of intentional data in colonoscopy, and finally the problem of having

many data but not the specific data for the right training in radiation therapy.

1.2 Outline

Chapter Two reviews the concept of convolution neural networks and the current

state of the art of its application in the individual project. Chapter Three discusses about

the polyp project. Chapter Four introduces a novel artificial intelligent approach for single

particle identification in radiation therapy. Chapter Five presents the initial progress and
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achievement for the nitinol surgical wire. Chapter Six discusses the conclusion and the

future work.
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CHAPTER TWO

Convolutional Neural Networks

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the most popular types of deep

neural networks applied to analyze visual data [5]. A CNN consists of many layers which

includes a convolutional layer, a pooling layer, and a fully connected layer. Nearby pixels

in an image are correlated with one another both in areas that exhibit local smoothness

and areas consisting of structures such as edges of objects or textured regions. These

correlations typically manifest themselves in different parts of the same image. Accordingly,

instead of having a fully connected network where every pixel is processed by a different

weight, every location can be processed using the same set of weights to extract various

repeating patterns across the entire image. These sets of trainable weights, referred to as

kernels or filters, are applied to the image using a dot product or convolution and then

processed by a non linearity function. Each of these convolution layers can consist of

many such filters resulting in the extraction of multiple sets of patterns at each layer. These

convolution and pooling layers can be stacked to form a multi-layer network often ending

in one or more fully connected layers as shown in Figure 2.1. The same concept can be

applied in one-dimensional and three-dimensional (3D) to accommodate time series and

volumetric data, respectively. CNNs contain fewer trainable parameters than in a fully

connected neural network. They require less training time and fewer training data because

of the reduction in the interaction of each neuron. It also reduces the likelihood of the model

being over-fitted [6]. The architecture is specifically designed to take advantage of the

presence of local structures in images, they are a natural choice for imaging applications.

Over the years, tremendous progress has been made in image recognition with CNNs and
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the availability of large data sets. However training CNN from scratch requires large data

sets which are beyond what are available in most medical imaging situations [7].

Figure 2.1: A diagram of a convolutional neural network

2.1.1 Convolution Function

Convolution layer is the basis of CNNs. A convolutional layer transforms the input

by convolving it with a kernel and applying a nonlinearity to the output, known as a

feature map. To understand the convolution layer, the convolution operation is the basis

of that. Convolution operation can be explained as the operation that changes the shape

of an original function into something else. Convolution operation is an orderly procedure

where two sources of information are intertwined [8]. In mathematical terms, convolution

operation involves two functions f and g that derives the third function to express how the

shape of one is modified by the other. The convolution operation is expressed as following:

( f ∗ g)(x) :=
∫ ∞

−∞

f (τ)g(x − t)dt (2.1)

Before CNN, convolution has been used in pure and applied mathematics applications

such as numerical analysis, numerical linear algebra, and signal processing as well as

image processing. For example, convolution is typically used to blur and sharpen images in

image processing. Convolution is also used in design and implementation of finite impulse

response filters in signal processing.

6



Convolutional layers apply a convolution operation to the input, passing the result

to the next layer. The final output of the convolutional layer is a vector. Based on the type

of problem we need to solve and on the kind of features we are looking to learn, we can

use different kinds of convolutions.

A convolution operation converts all the pixels in its receptive field into a single

value. When a convolution operation is applied to an image, the image size mathematically

grows. For programming simplicity, the image size is defined to stay the same. Convolution

brings all the information in the field together into a single pixel. A convolution operation

is typically denoted with an asterisk.

Let’s walk through one example of 2D convolution with a stride of 1 to clarify the

definition of convolution, in which the result of the operation has the same size as the input

image. Given the input matrix I,

I =



0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0



(2.2)

with a 3 × 3 kernel or feature detector k,

k =


1 0 1

0 1 0

1 0 1

 (2.3)

The output of the convolution I ∗ k equals,
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I ∗ k =



0 2 2 3 1 1 0

1 1 4 3 4 1 1

0 1 2 4 3 3 0

0 1 2 3 4 1 1

1 1 3 3 1 1 0

1 3 3 1 1 0 0

0 2 1 1 0 0 0



(2.4)

The implementation of convolution in deep learning is desirable because of sparse

interactions, parameter sharing and equivariant representations [8]. Sparse interactions, or

as also known as sparse connectivity or sparse weights, happens when a kernel is smaller

than the input. In this case, fewer parameters needed to be stored which can reduce

the storage memory while improve the statistical efficiency by detecting smaller features.

Parameter sharing occurs when certain parameters are used by more than one function in

a CNN. Equivariant representations happens when the input changes, the output changes

in the same way [8]. The convolution operation is equivariant to the function, it does not

matter at which coordinates a feature occurs in the input matrix since it will still result in

the same output after the convolution operation has been applied [8].

2.1.2 Pooling

Pooling performs a statistical summary over a window of outputs. A pooling layer

aims to reduce the size of the feature map by taking the average or the maximum of small

regions in the input. It often follows each convolution layer to both reduce the dimension

and impose translation in-variance so that the network becomes immune to small shifts in

location of patterns in the input image. A max pooling with 2 × 2 window size where the

output is the maximum value within a window is often used in CNN.
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2.1.3 Fully Connected Layer

A fully connected layer is placed before the output (last) layer to tune the weights

and biases to create a stochastic likelihood representation of each class based on the activation

maps created by the previous layers.

2.2 Transfer Learning

To train a deep CNN from scratch typically requires huge data set, well beyond

what is available in most medical imaging settings. Therefore, transfer learning is one of

the most practical schemes to solve that problem. Transfer learning helps to address the

issue as the knowledge from pre-trained models to solve one task can be transferred to

accomplish another task.

Transfer learning helps to address the issue as the knowledge from pre-trained

models to solve one task can be transferred to accomplish another task. There are two

types of transfer learning: (i) extracting features from a well trained CNNs model over a

large data set of images then adding a new separate classifier on top of the learned feature

maps and (ii) fine tuning the last layers of a pre-trained CNNs model by training newly

added specialized classifier layers. In transfer learning, the neural network is trained on

regular images, from large databases of images. The initial layers of the resulting neural

networks can recognize general features like lines, corners, etc. In general, as you move

through the layers you move from basic features to more complex features by aggregating

the results of the earlier layers. The last layers of these networks are thus specialized to the

image sets they were trained on. We remove the last several layers and then train on our

image data set for the intended purpose. Since the low and middle level feature recognition

is already well tuned, the new final layers can be learned from a few thousand images.

In a supervised learning scenario, the labeled data set, or the ground truth data set,

is utilized for training a neural network. After training the neural network, the prediction

model can be applied to mixed radiation field data to identify protons from other particles,

for example.
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When a model that has been trained for a task is reused to as the beginning model

for a different task. A pre-trained network is loaded to use as a starting point of a new task.

The early layers are used to distinguish low level features: edges, colors, etc.. to replace the

last layers. The final layers of the network are tuned to distinguish features specific to your

data set. The network is then trained by importing the new images into the network The

network is tested by using a different set of images, test the accuracy. Results are utilized

by fine tuning the parameters of the final layer

2.2.1 VGG-16

VGG-16, developed by Simonyan and Zisserman of the Visual Geometry Group

from the University of Oxford, is one of the pre-trained CNNs models [9]. VGG achieved

good results in both image classification and localization at the 2014-ILSVRC (Imagenet)

competition. VGG-16 is made up of thirteen convolutional layers and three fully connected

layers. All convolutional and fully connected layers have a ReLU activation function

applied to their output except for the last layer which has a softmax activation function

applied to it. The smallest size of 3 × 3 filters are included in the model to help with

learning more complex features by increasing the depth of the network [2]. The main

limitation of VGG-16 is the number of 138 million parameters which can become a burden

to computation resources.

2.3 Generative Adversarial Network

A generative adversarial network (GAN) consists of a generator that produces new

data for training and a discriminator that determines the probability of whether the generated

candidates belong to the training samples or not [10].

Figure 2.2 shows an overview of a general GAN. The generator network produces

new data instances that try to mimic the data used in training, while the discriminator

network tries to determine the probability of whether the generated candidates belong to

the training samples or not. The two networks are trained jointly with back-propagation,
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with the generative network becoming better at generating more realistic samples and

the discriminator becoming better at detecting artificially generated samples. GANs have

recently demonstrated great potential in medical imaging applications such as image reconstruction

for compressed sensing in magnetic resonance imaging [10].

Model collapse, vanishing gradients, problem with counting and problem with

perspective are the major challenges of GAN. Model collapse happens when the generator

continually produces a similar image and discriminator unable to consider the difference

in the generated image. It prevents the generator from learning the whole image and just

focuses on a particular area. Vanishing gradients occurs when the gradient loss function

approaches zero. The discriminator does not give enough feedback to the generator, hence,

the generator cannot produce reliable sample. Problem with counting used to occur in early

GANs, in which the generator cannot produce the right amount of details on the sample

image. Problem with perspective happens when the generator cannot differentiate between

the front and back view in the original image.

2.4 Validation

Cross validation is a statistical method to evaluate the predictive validity of linear

regression equations used to forecast a performance criterion from scores on a battery of

tests [11]. It compares learning algorithms by dividing data into two segments: one used

to learn or train a model and the other used to validate the model. Testing was done using

a 10-fold cross validation. The image data was randomly split into 10 groups ensuring that

all images of a polyp stayed in the same group. Ten different neural networks were trained

by removing 1 of the 10 groups and training on the remaining 9 groups. The group that

was removed was then used for testing. This methodology allows a large training set for the

neural network, while still allowing all the data to be used for testing results by aggregating

the different systems.
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Figure 2.2: A diagram of a generative adversarial network

2.5 Confusion Matrix

Accuracy is the first and most common metric to evaluate the performance of

a classification task. Accuracy is the proportion of correct predictions among the total

number of predictions over the total population. However accuracy cannot show the detail

performance of one task because if only based on accuracy only, one model can consistently

or completely identify incorrectly one class and it is unnoticed because the overall performance

is good. Hence, there is a need for a metric that shows a relationship of other metrics in

an identification task. A confusion matrix is a table that is used to define and analyze the

performance of a classification task. The basic confusion matrix consists of four basics

numbers with a configuration as in Figure 2.3:
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(1) True positive (TP) is an outcome where the model correctly predicts the positive

class. It means that the identified cases in this class tested positive and truly

positive.

(2) True negative (TN) is an outcome where the model correctly predicts the negative

class. It means that the identified cases in this class tested negative and truly

negative.

(3) False positive (FP) happens when a positive result for a test is detected when it

should have been a negative result. It is a type I error.

(4) False negative (FN) happens when a negative result for a test is detected when it

should have been a positive result. It is a type II error.

Figure 2.3: A diagram of a general confusion matrix

As noted above, all the diagonal components denote the correct classified items.

The better classifier is the closer to zero the off diagonal components of confusion matrix

it has. The effectiveness of a classifier is measured through the values that generated in

the confusion matrix beside accuracy. An expanded confusion matrix also generates a

visualization of metrics like accuracy, sensitivity and specificity.

The following Figure 2.4 is the example of the full confusion matrix used in this

study. Beside the core TF, TN, FP, and FN, this matrix includes the accuracy, sensitivity,

negative predictive value, positive predictive value, miss rate, fall-out, positive likelihood
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ratio, negative likelihood ratio, false omisson rate, false discovery rate, and diagnostic odds

ratio.

Figure 2.4: A diagram of a full confusion matrix

Sensitivity is the proportion of positively classified cases among the total number

of positive cases. It is the rate of genuine positive predictions or the the ability to designate

an individual with disease as positive. A highly sensitive model is mostly to rule out the

negative tests, which means that there are few false negative results, and thus fewer cases

of disease are missed. Therefore, a sensitive model is when negative rules out the disease,

or SNOUT.

Specificity is the proportion of negatively classified cases among the total number

of negative cases. The specificity of a test is the ability to designate an individual who does

not have a disease as negative. A highly specific model can rule out the negative tests with

high confidence. Specific model is when positive rules in the disease, or SPIN.

Positive predictive value (PPV) or precision is the probability that subjects with a

positive screening test truly have the disease. It tracks the performance of positive example
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classification. It is calculated by the number of true positive are divided by the number of

condition positive (sum of false positive and true positive).

Negative predictive value (NPV) is the probability that subjects with a negative

screening test truly do not have the disease. It is calculated by the number of true negative

are divided by the number of condition negative (sum of false negative and true negative).

2.6 Uncertainty

Uncertainty can be defined as “not knowing for sure” as its literal meaning. The

predictive uncertainty (PU) is the variance of the predictive probability. The predictive

uncertainty is the sum of the aleatoric uncertainty (AU) and epistemic uncertainty (EU)

[12].

PU = EU + AU (2.5)

Epistemic uncertainty derives its name from the Greek word “επιστηµη” (episteme)

which can be roughly translated as ”knowledge”. Epistemic uncertainty is calculated from

the lack of knowledge of information regarding the phenomena that dictate how a system

should behave, ultimately affecting the outcome of an event [13]. Epistemic uncertainty

accounts for the ambiguity of the model’s parameters, it can be reduced with more diverse

training data. Epistemic uncertainty is modeled by placing a prior distribution over the

network’s weights. The epistemic uncertainty is the variability of the input data [14]. It is

captured by placing a distribution over the network’s weights and averaging all parameters

[15].

Epistemic uncertainty can be calculated as the probability distribution over model

parameters [16]. Bayesian neural network (BNN), which combines neural network with

Bayesian inference, has been introduced to quantify epistemic uncertainty [17, 18, 19]. Let

Dtr = X,Y = (xi, yi)N
i = 1 be the training data set with inputs xi ∈ RD. yi ∈ 1, ...,C is a

corresponding classes where C represents the number of classes. The aim is to optimize
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the parameters of function y = f w(x) that can produce the desired output. The soft-max

likelihood is usually used for classification problems. It is expressed as,

p(y = c|x,w) =
exp( f w

c (x))∑′
c exp( f ′wc (x))

(2.6)

and the Gaussian likelihood can be assumed as,

p(w|X,Y) = N(y, f w(x), τ−1I) (2.7)

in which τ is the model precision.

The posterior p(x|X,Y) is computed as

p(y = c|x,w) =
p(Y |X,w)p(w)

p(Y |X)
(2.8)

The predictive distribution of the output yo that labeled the input xo is expressed as,

p(yo|xo, X,Y) =
∫

p(yo|xo,w)p(x|X,Y)dw (2.9)

Aleatoric uncertainty derives its name from the Latin phrase “Ālea iacta est” which

is translated as “the dice is cast”. Therefore aleatoric uncertainty captures the inherent

randomness in the observed data (input) and is irreducible. Aleatoric uncertainty is modeled

by placing a distribution over the network’s output. It is is calculated by adjusting the loss

functions of the network. It captures the noise inherent in the observations [13].

Aleatoric uncertainty is modeled by placing a distribution over the output of the

model [20]. For example, in regression the outputs might be modeled as corrupted with

Gaussian random noise. In non-Bayesian neural networks, the observation noise parameter

is fixed as part of the model’s weight decay, and ignored. When the observation noise

parameter is dependent on data, it can be learned as the minimization objective [21],
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LNN(θ) =
1
N

i=1∑
N

1
σ(xi)2 ||yi f (xi)2|| +

1
2

logσ(xi)2 (2.10)
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CHAPTER THREE

Automatic Classification of Colon Polyps

Approximately 15 million colonoscopies were undertaken in the USA in 2012

[22]. Two thirds of those colonoscopies performed in the United States are for were

undertaken for diagnostic purposes. In these colonoscopies, the histologic assessment of

diminutive polyps is essential to determine the type of polyps, hyperplastic or adenomatous

as well as the surveillance interval. The pathology contributes a large fraction of the

cost. If adenomatous polyps can be correctly distinguished from hyperplastic polyps,

then they could be resected and discarded without pathologic confirmation (“diagnose and

discard” strategy), whereas hyperplastic polyps could be left in situ (“diagnose and leave”

strategy), significantly reducing the pathology costs of screening. In addition to that, the

cost of equipment, the post-polypectomy complications, and the communication for the

colonoscopy surveillance interval to the patient will also be reduced.

The American Society of Gastrointestinal Endoscopy established performance benchmarks

that would allow the adoption of a diagnostic technology into practice [23]:

(1) For rectosigmoid polyps to be left in place, the technology should have a 90%

negative predictive value (NPV) for adenomatous histology when used with high

confidence.

(2) For polyps to be resected and discarded without pathologic assessment, the diagnostic

technology should agree at least 90% of the time with the standard approach

(which is based on the histologic assessment of all identified polyps) in the assignment

of the post-polypectomy surveillance interval.

Colorectal cancer remains the second leading cause of cancer death for both women

and men with more than 130,000 newly diagnosed cases and 50,000 deaths each year in
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the United States alone. Millions of screening colonoscopies are performed in the US

each year, in which the pathology costs are the majority of the total screening costs.

Diminutives polyps, which are ≤ 5 mm in size, form 80 percentage of all found polyps.

There are two types of polyps, adenomatous (progress to cancer) and hyperplastics (no

cancer risk). Currently all polyps are diagnosed by the pathologist and removed by the

gastroenterologist. Hence, it is an expensive procedure to get histology assessment for all

polyps. If endoscopy is able to accurately distinguish between the two types of diminutive

polyps, only adenomatous polyps will be removed. That can reduce the pathology costs of

screening significantly.

For colonoscopy, the doctor uses a longer, thin, flexible, and light tube inserted

through your colon to check for polyps or cancer inside those areas. During the test, the

doctor can find and remove most polyps and some cancers. Colonoscopy also is used as

a follow-up test if anything unusual is found during one of the other screening tests. It is

recommend to have a colonoscopy every ten years (for people who do not have an increased

risk of colorectal cancer). However if one is in high risk group, the surveillance test can be

as often as every two years.

The majority of colorectal polyps found at screening colonoscopy are diminutive (5

mm or less). Diminutive polyps are either hyperplastic (non-adenomatous) polyps with a

zero risk of progression to cancer or adenomatous polyps that only rarely harbor advanced

histological features or cancer. Nonetheless, based on current guidelines, endoscopists are

obliged to remove all diminutive polyps and submit them for histopathology. The costs

of resection and pathologic examination of diminutive polyps add substantially to the total

cost of colonoscopy in the United States, where an estimated 15 million screening and

surveillance procedures are performed annually. Reliable endoscopic diagnosis would:

(1) obviate resection of hyperplastic polyps

(2) enable resection of adenomatous polyps without the need for histologic evaluation
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This approach, which would decrease costs without affecting the rates of adenoma

detection and or the surveillance recommendations, has been endorsed by the American

Society of Gastrointestinal Endoscopy. Several studies have assessed computer assisted

diagnosis of polyp images. In this study, we hypothesized that the automated analysis

of multiple images of diminutive polyps obtained under white light imaging (WLI) and

narrow band imaging (NBI) would have a high sensitivity in the diagnosis of adenomatous

histology.

White light imaging (WLI) is the dominant diagnostic modality in clinical capsule

endoscopy[24]. WLI limits diagnosis to the mucosal surface of the gut owing to the limited

penetration depth of optical wavelengths beyond the tissue surface.

Narrow Band Imaging (NBI) is an optical imaging technology that enhances the

visibility of vessels and other tissue on the mucosal surface [25]. Scopes with NBI capability

illuminate the tissue with light that is strongly absorbed by hemoglobin. NBI has been

widely studied to develop the real-time, endoscopic diagnosis of polyps. Scopes with NBI

capability illuminate the tissue with light composed of two specific wavelengths (415 nm

and 540 nm in the Olympus scopes) that are strongly absorbed by hemoglobin [26].

Figure 3.1: Adenoma polyp image in white light (left) and NBI (right) mode

Currently, when a patient has colon polyps, it is not treated until it enters stages 3

or 4. A camera is put up into the colon and the doctor can move it around to see if there are
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any irregular protrusions in the surface. However, early stages of colon cancer are harder

to find with a camera because they do not break the surface. Also, it is hard to determine

at earlier stages if they are going to be cancerous or not. There are certain needs for the

computer aid for early diagnosis.

Table 3.1: Summary of polyp size and its description

Diameter Description

Stage 0 – No polyps. Only involves the mucosa, but nothing

past the muscularis mucosa

Stage 1 ≤ 6 mm Polyp has grown through muscularis mucosa and and

extends into submusoca

Stage 2 6 - 9 mm Grown through submucosa and exends through

muscularis propria

Stage 3 9 - 10 mm Grown through muscularis propria and into outmost

layers of colon, but not through them

Stage 4 ≥ 10 mm Grown through serosa into the outermost lining of

intestines

3.1 Methodology

Figure 3.2 presents the whole study flow. There were 719 approached patients.

Among them, there were 598 consented and eligible patients. There were 346 patients with

recorded polyps with in those eligible and consented patients. The database has 514 polyps.

The study consists of two main parts: clinical images gathering and deep learning

predicting.

(1) Clinical images gathering happens at the Baylor University Medical Center (BUMC)

at Dallas and surrounding clinics. Each case consists of:
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Figure 3.2: Study Flow of the Study

• patient demographics (age, gender, race, and ethnicity) and family history of

colorectal cancer

• WL and NB images of the diminutive polyp

• endoscopic data (colonoscopy indication, polyp size and location, and endoscopist’s

optical diagnosis)

• pathological diagnosis

(2) Deep learning predicting is done at Baylor University in Waco. The anonymous

clinical data and images are transferred via ProofPoint Secure.
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• Data prepossessing

• CNNs consist of many layers which includes convolutional layer, pooling

layer and fully connected layer. Testing was done using a 10-fold cross

validation. The image data was randomly split into 10 groups ensuring that

all images of a polyp stayed in the same group.

* Polyp detection

* Polyp size estimation

* Polyp histology prediction

Figure 3.3: Overview of the training flow in polyp project

3.2 Clinical Data Collection

A collaboration of endoscopists at Baylor University Medical Center at Dallas

(BUMC) and Baylor Scott and White (BSW)-Temple and electrical computer engineers at

Baylor University (BU) was formed to work on this project. Eligible subjects were adults

(age 18 or older) who underwent a screening or surveillance colonoscopy at BUMC and at

BSW-Temple. The research assistants screened the endoscopic schedule and approached

eligible individuals. Individuals who consented to the study were assigned a unique identifying

number. For each subject, we recorded the procedure indication (screening or surveillance),

age, gender, race, and ethnicity.

We used a video processor (EVIS EXERA III) and colonoscope (CF-HQ190L/I,

PCF-H190L/I) manufactured by Olympus (Olympus America, Center Valley, PA). The

23



video processor has a dual focus that enables with HQ endoscopes. It allows the user

to switch between two focus settings with the push of a button. ”Near mode” features

ground-breaking resolving power for close mucosal observation and “far mode” delivers

normal observation. EVIS EXERA III endoscopes feature an advanced level of resolving

power compared to previous generations. NBI in these endoscopes offers up to twice the

viewable distance in the lumen compared to previous generations. A range of signal output

options are available to suit the monitor attached to the CV-190. This enables achieving the

optimal image for the installed infrastructure. 16:9 and 16:10 format is available for HD

monitors.

The endoscopists were asked to image at least one polyp for the purposes of the

study. Imaging of any additional polyp was at the discretion of the endoscopist, who had

to consider potential procedure delays due to image acquisition. The endoscopists were

asked to obtain focused, close-up images of polyps 5 mm or less, from different angles,

while minimizing reflections, mucus and fecal debris. Per the initial protocol, we acquired

at least 3 still images under WLI and 3 still images under NBI. Images were captured using

the MediCap USB300 High Definition Medical Video Recorder (MediCapture, Plymouth

Meeting, PA). The endoscopist determined the location of each polyp, estimated its size

by using a forceps for reference and captured an image of the polyp and the adjacent

forceps. Aiming to potentially improve the diagnostic characteristics of our technology,

we subsequently revised the protocol to obtain 5 still images under WLI setting and 5 still

images under NBI setting.
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Figure 3.4: Pocket guide of Polyp Study
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Figure 3.4 is a pocket guide of polyp study that was designed and gave to the

prospective patients as well as any participating physician in the study. The study procedure

was explained above with the contact information of the principle investigator of this

project at BSW-Dallas. There are examples of forceps and snares used in the study. There

are two biopsy devices commonly used in the procedure. A forceps is a device used to

either biopsy or completely remove small polyps. A snare is a device with a wire loop,

which can be wrapped around the base of a polyp. In this study, a picture of a polyp that

next to a forceps or snare was taken to be a preference picture of the polyp estimated size.

Due to the nature of taking images in various clinics, Boston Scientific and Cook Medical

are two brands of forceps used to estimate the size of polyps. Within each brand, there are

regular and jumbo forceps, as well of a snare.

3.3 Result

A database of clinical polyps in WLI and NBI modes was built for the purpose of

this study. The images in that database were used to investigate the method of predicting

polyp histology with CNNs. The accuracy, sensitivity, and specificity results are greater

than 97%. Most importantly the technique has a 95.48% negative predictive value, exceeding

the 90% value set by ASGE. The 95% confidence intervals were calculated. If a series of

samples are drawn and the mean of each calculated, 95% of the means would be expected to

fall within the range of two standard errors above and two below the mean of these means.

This common mean would be expected to lie very close to the mean of the population.

So the standard error of a mean provides a statement of probability about the difference

between the mean of the population and the mean of the sample.

The probability of having the disease (positive), given the results of a classification,

is called the predictive value of the test. Positive predictive value is the probability that

a polyp with a positive (adenoma) histology result actually is adenomatous. Negative

predictive value is the probability that a polyp with a negative (hyperplastic) histology

result is truly free of disease.
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3.3.1 The Whole Data Set

Figure 3.2 shows the overall result of the classification of polyps in the whole data

set, in WLI mode only and in NBI mode only. In this table, ALL represents the results

of the first test in which images both light modes were used in training and testing. WLI

column shows the result of the second test in which only images in WLI mode were used

in training and testing. NBI column gives the results of the third test in which only images

in NBI mode were used in training and test. These tests were performed to show how good

the model is when using all images that collected versus each individual imaging mode. It

is also used to justified the protocol of the study - to use images from both image modes

instead of just NBI.

Table 3.2: GI result all

The accuracy of the model for all polyps in the ratio of the correct predictions to

the total number of polyps in the data set. The overall accuracy is 96.16%. The accuracy

of WLI setting and NBI setting are 94.14% and 95.15% respectively. The different in
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the results is about 1%, and the overall using both image modes got the best accuracy

result. The accuracy shows that using both WL and NB images improve the result of the

classification. In the not ideal situation in which only one mode of lightning is present,

the model is still good enough to classify the type of polyps. However the overall result

improved when both modes were used. This is predictable and expected when the protocol

was designed. This proved that the approach is in the right direction.

The sensitivity and the specificity are above 93% for all three cases. The sensitivity

is important because it shows that NPV are 95.48%, 92.44%, and 94.14% for the overall

data set, WLI setting only and NBI setting only. The WLI only set performed the worst out

of the three sets.

Figure 3.5 is the confusion matrix of the overall data set. The number of FN and FP

polyps in the overall data set is 19 while it is 29 and 24 in WLI and NBI only modes as in

figure 3.7 and figure 3.6 respectively. Within those 29 and 24 polyps are the same 18 (out

of 19) polyps from the whole data set.

From the metrics in the confusion matrices, it shows that if the model has accessed

to both WL and NB images, it performed better and gave more accurate classification. Even

though the 1% increment seems small, it is in the best interest of the physicians to archive

the most accurate result in diagnostics, with the highest degree of confidence.
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Figure 3.5: GI confusion matrix for all polyps
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Figure 3.6: GI confusion matrix for all polyps in NBI only
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Figure 3.7: GI confusion matrix for all polyps in WL only
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3.3.2 Gender

In this section, the result of classifying polyps in male versus female participants

will be presented. From statistics, the chance of male population who has colon cancer

is higher than the female population [27]. However, there are more female patients who

agreed to participate into the study than male patients. This section will show that by

comparing the result of polyps in male versus polyps in female in this study, it will determine

what type of data should be gathered to strengthen the methodology.

Figure 3.8 and Figure 3.9 demonstrate the confusion matrices of the overall data set

(using both imaging modes) for male and female patients. There were 340 total patients in

which there were 208 female and 132 male. 299 polyps were collected from female patients

and 196 polyps were collected from male patients. The accuracy for the population of male

only is 95.91% while it is 96.32% for female only. The difference between the results is less

than 0.5%, which is small enough to say that the gender of patient is not the deciding factor

for the result. It is expected but showed in the number. The result from male only polyps

has higher sensitivity at 97.43% when from female only polyps has 95.59%. NPV in male

only polyps is at 96.10% while from female only polyps is at 95.10%. Male only polyps

results perform better in the sensitivity and NPV while is about 0.5% less accurate than

the female only results. 0.5% is small but considering the male only polyps total number

is 34% (or 97 polyps) less than the female only population, if there are more polyps from

male population, the result is believed to be improved and increased in accuracy.
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Figure 3.8: GI confusion matrix for all polyps in Male only
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Figure 3.9: GI confusion matrix for all polyps in Female only
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To further investigate in this matter, testing and training using specific gender polyps

were demonstrated. Figure 3.10 and Figure 3.11 demonstrate the confusion matrices of the

results when only images from one gender were used in training and testing. The numbers

show that the results has lower accuracy, sensitivity and NPV than when training and testing

used the whole data set.

Figure 3.10: GI confusion matrix for all polyps in Male only, training and testing using
Male only polpys
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Figure 3.11: GI confusion matrix for all polyps in Female only, training and testing using
Female only polpys

3.3.3 Ethnicity

In this section, the result of classifying polyps in different race and ethnicity will

be presented. From statistics, in the United States, the population has the higher chance of

colon rectal cancer is African American. African Americans are about 20% more likely to

get colorectal cancer and about 40% more likely to die from it than most other groups[28].

From the race breakdown, there are 340 total patients, in which there were 243 Caucasian,

87 African American, 6 Asian, and 4 declined to answer. This section will show that by

comparing the result of individual race in this study, it will determine what type of data

should be gathered to strengthen the methodology. It will answer the question if there is

a need to target and collect more polyps from once specific race versus collecting every

possible polyps.
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Only the results from Caucasian and African American are presented here due to

the limited number of other races which are less than 6 patients for each other race, and less

than 10 polyps collected in those population. It is important to acknowledge that it would

be ideal if there is the equal amount of polyps in each group. Since that is not the case,

investigating each individual case which presentable results is the next best thing.

Figure 3.12 and Figure 3.13 demonstrate the confusion matrices of the overall

data set (using both imaging modes) for Caucasian and African American patients. 329

polyps were collected from Caucasian patients and 106 polyps were collected from African

American patients. The accuracy for the population of Caucasian patients only is 95.44%

while it is 93.51% for African American only. The difference between the results is about

1.6%. The result from Caucasian patients only polyps has higher sensitivity at 94.49%

when from African American only polyps has 92.31%. NPV in Caucasian patients only

polyps is at 97.23% while from African American only polyps is at 95.59%. Caucasian

patients only polyps results perform better in accuracy and the sensitivity than the African

American only results. 1.6% seems to be small but considering the Caucasian patients

only polyps total number is 68% (or 223 polyps) higher than the African American only

population, if there are more polyps from African American only population, the performance

can be improved.
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Figure 3.12: GI confusion matrix for all polyps in Caucasian patients only
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Figure 3.13: GI confusion matrix for all polyps in African American patients only
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3.3.4 Location

In this section, the results from different part of the colon are presented. The large

intestine includes the cecum, appendix, entire colon, rectum, and anal canal. The colon

is the longest segment of the large intestine. The colon extends from the cecum up the

right side of the abdomen, across to the left side, down the left side and finally loops at

the sigmoid colon to join the rectum. The colon parts between the cecum and sigmoid

colon are the ascending colon), transverse colon, and descending colon. The colon absorbs

the remaining fluids and salts, lubricates and stores waste products until those waste are

ready to be out of the body. The ascending and transverse colon are where most absorption

occurs. The liquid material received from the small intestine is dehydrated to form a fecal

mass [29].

The small intestine absorbed nutrients. The large intestine absorbed water. They are

composed of different tissues. The inner wall of the colon consists of a mucous membrane

that absorbs the fluids and secretes mucus to lubricate the waste materials. The deeper

muscle layer is composed of circular and longitudinal muscles. Circular muscles produce

the mild churning and mixing motions of the intestine, while the longitudinal ones create

the strong massive muscle contractions that actually move the waste [30]. Since they are

composed of different types of tissues at different section of the colon for different purpose,

the process to differentiate those tissues in the classification task is interesting to investigate.

The way that polyps were collected in the protocol is that when a clean polyps

was seen (by the physician), its location and estimated size (relative to adjacent forceps)

were recorded. Then a WL and NB image were taken at one angle, then repeated another

four times. To not disturb the procedure, a maximum of 5 polyps per patient were taken

starting with the ascending colon to the transverse colon. As a result the location of the

polyps were different in different patients resulting in regional tissue difference. Recent

studies [31] have shown regional difference in cancer propensities and lethalities between

men and women. Testing polyp recognition in each area of the colon is thus essential.
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The difference is from the different patients or the different location of polyps which have

different structures/tissues - regional difference. The breakdown in details of the results can

be used to investigated.

Proximal to the sigmoid colon is the parts of the colon above or before the sigmoid

colon. It includes cecum, ileocecal valve, ascending colon, hepatic flexure, transverse

colon, splenic flexure, and descending colon. Figure 3.14 shows the classified result for

the polyps in proximal to the sigmoid colon. There are 339 polyps in this set and both

of WL and NB images were used for each polyp. The accuracy for this set of polyps is

96.76%.

Rectosigmoid colon includes sigmoid colon and rectum. Figure 3.15 shows the

classified result for the polyps in rectosigmoid colon. There are 156 polyps in this set

and both of WL and NB images were used for each polyp. The accuracy for this set of

polyps is 94.87%. For the rectosigmoid polyps if there are 197 (72 adenomatous and 125

non-adenomatous) polyps added to the database to the current 162 rectosigmoid polyps (of

which 36 adenomatous and 126 non-adenomatous), the PPV will improve from 86.84%

(95% CI 76.09% - 97.59%) to 90.83% (95% CI 85.41% - 96.24%). The sensitivity 95% CI

will also be smaller, from 95% CI 82.64% - 100.00% to 95% CI 86.45% - 96.88%.
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Figure 3.14: GI confusion matrix for Proximal to the sigmoid colon polyps
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Figure 3.15: GI confusion matrix for Rectosigmoid colon polyps
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3.3.5 Size Breakdown

Figure 3.3 shows the overall result of the classification of polyps in size - range from

1-2mm, 2-3mm, 3-4mm, and 4-5mm or the whole data set, in WLI and NBI settings. In

this table, each size range result is shown with the corresponding 95% confidence interval.

These tests were performed to show how good the model is when classifying different size

of polyps. The size here is estimated and recorded by the physician during the procedure.

This section of the result is essential because polyp size is a critical bio-marker that

correlates with its risk of malignancy and guides for clinical management. According to

the adenoma-carcinoma theory, adenomatous polyps are the precursors of most colorectal

cancers [32]. Cancerous polyps tend to grow slowly. It is estimated that the polyp dwell

time, the time needed for a small adenoma to transform into a cancer, may be on average

10 years [32]. Therefore, if the sign of cancer is detected when the polyp is as small as

possible, the better it will be to find out and suggest appropriate treatment or surveillance

steps.

Figure 3.3 shows the overall result of the classification of polyps that broken down

into size. The accuracy of the model for polyps in size 1mm to 2 mm is 97.92%. The

accuracy of model for polyps in size 2 mm to 3 mm is 96.189%. The accuracy of model for

polyps in size 3mm to 4mm is 92.41%. The accuracy of model for polyps in size 4mm to

5mm is 96.23%. The accuracy shows that all accuracy is above 92%. The sensitivity and

the specificity are above 95% for all four cases. NPV are 98.04%, 97.65%, 92.31%, and

91.38% for the size 1 mm to 2 mm, 2 mm to 3 mm, 3 mm to 4 mm, and 4 mm to 5 mm.

Figure 3.16 shows the confusion matrix result of the classification of polyps that

are 1 mm to 2 mm in size. There are 96 polyps in this set. The accuracy of the model for

polyps in size 1mm to 2 mm is 97.92%. The sensitivity is 97.78% while the specificity is

98.04%. NPV is 98.04%.

Figure 3.17 shows the confusion matrix result of the classification of polyps that

are 2 mm to 3 mm in size. There are 161 polyps in this set. The accuracy of the model for
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Table 3.3: GI result size

these polyps is 96.89%. The sensitivity is 97.33% while the specificity is 96.51%. NPV is

97.65%.

Figure 3.18 shows the confusion matrix result of the classification of polyps that

are 3 mm to 4 mm in size. There are 79 polyps in this set. The accuracy of the model

for polyps in this set is 92.41%. The sensitivity is 96.08% while the specificity is 85.71%.

NPV is 92.31%. This polyps set had the worst performance among all size group. It is

noticed that there is an imbalance in the data set, only 51 polyps in the positive set and 28

polyps in the negative set. In this size range, even though there are only 6 missed classified

cases, it affected the overall results a lot.

Figure 3.19 shows the confusion matrix result of the classification of polyps that

are 4 mm to 5 mm in size. There are 159 polyps in this set. The accuracy of the model for

these polyps is 96.23%. The sensitivity is 95.24% while the specificity is 98.15%. NPV is

91.38%.
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Figure 3.16: GI confusion matrix for 1 mm to 2 mm in diameter polyps
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Figure 3.17: GI confusion matrix for 2 mm to 3 mm in diameter colon polyps
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Figure 3.18: GI confusion matrix for 3 mm to 4 mm in diameter colon polyps
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Figure 3.19: GI confusion matrix for 4 mm to 5 mm in diameter colon polyps
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3.3.6 Age Group

In this section, the result for different age group is presented. According in a

recent study in 2021, the American Cancer Society’s newest guidelines recommend that

colorectal cancer screenings begin at age 45 for average risk patients because colorectal

cancer cases are on the rise among young and middle-age people. According to the National

Cancer Institute website in 2022, deaths of people under age 55 increased 1% per year

from 2008 to 2017, even though overall colorectal cancer rates have dropped. The age

for colonoscoy screening should be lower for high risk patients who are either in these

following catergories:

• A strong family history of colorectal cancer or certain types of polyps

• A personal history of colorectal cancer or certain types of polyps

• A personal history of inflammatory bowel disease (ulcerative colitis or Crohn’s

disease)

• A family history of a hereditary syndrome such as familial adenomatous polyposis

(FAP) or Lynch syndrome

• A history of radiation to the abdomen (belly) or pelvis to treat a prior cancer

It is easier to have other indications for high risk patients to alert/decide for early

screening. That leaves the question to ask, how early should ones who are high risk to take

a screening colonoscopy. Would it be great to have a study for any indications or similarity

of younger patients who come into screening earlier, and concludes any indications for age

in CLC screening. This section will address those concern and is the pioneering first step.

Within the 340 participants in this study, there are only 6 patients who are under

40 years of age. The rest of 334 participants are over 40 years of age. Obviously there are

more older age patients in this study, however, if there is any trend in the classification and

detection that can be helpful to do DNA profiling to further the study.
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Figure 3.20 shows the overall result of the classification of polyps that broken down

into size. The accuracy of the model for polyps in patients who are under 40 years old is

97.54%.

Figure 3.20: GI confusion matrix for polyps in patients who are over 40 years old
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CHAPTER FOUR

Particle Identification in Radiation Therapy

Particle beams like protons and heavier ions offer improved dose distributions compared

with photon (also called x-ray) beams. Proton and ion beams are commonly used worldwide

for radiation therapy to treat cancer worldwide, offering advantageous dose distribution

and increased relative biological effectiveness (RBE) compared to photons. The RBE is

assumed to vary with linear energy transfer (LET) of particles, currently only the constant

RBE is taken into account in treatment planning due to a lack of tools for its experimental

validation.

Deep CNNs have come to dominate image recognition and identification tasks due

to its ability to discover structures even in high dimensional data [33] and thus are the

natural choice for particle identification on Timepix detectors. In particular, the VGG-16

network [34] was selected, since it addressed the problem of network depth in CNN by

simultaneously increasing the number of convolutional layers and reducing their size to

a 3 × 3 convolutional filter with stride 1. The VGG-16 network thus reduced parameters

and still effectively performed larger convolution filters resulting in an elegant and very

accurate convolutional network for recognition, classification, and localization [35].

4.1 Data Collection

Extensive measurements were performed in a gantry treatment room of Krakow

proton therapy facility with pencil beams of various energies. A compact Timepix MiniPIX

detector was protected by a waterproof cover and mounted inside a water phantom as shown

in Figure 4.1 allowing accurate positioning with respect to the beam.

The first measurements were performed in air with beam nominal energies of 70 MeV,

100 MeV, 150 MeV and 200 MeV. Measurements were performed for detector set at various
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angular positions for incident angle β equal to 30◦, 45◦, 60◦ and 75◦. After that, the water

phantom was filled and measurements were performed for proton beam of nominal energy

of 150 MeV without the range shifter, as well as of energy 171.66 MeV with range shifter.

Both combinations of the nominal energy and RS usage exhibit the same Bragg peak range

in water of 156.6 mm.

Figure 4.1: Experimental setup

4.1.1 Timepix Detector

Timepix is extensively used in radiation research[36]. Timepix detectors consist

of a semiconductor layer (sensitive volume of the detector) bumb-bonded to the highly-

integrated ASIC readout chip. The detectors provide a high-granularity array pf closely

packed pixels with independent signal readout electronics per pixel. The hybrid architecture

allows to apply various materials and thicknesses of the semiconductor. Thickness of the

semiconductor layer is usually within the range of 100 to 2000 µm. The Timepix chip is an

array of 256 × 256 pixels with individual readout electronics per pixel[37]. Each pixel has

size of 55 × 55 µm, which gives a sensor sensitive area of 1.96 cm2. Clusters are produced

by different particles in mixed radiation field of proton pencil beam in water. Low-LET,

narrow, curly tracks are typical for electrons, high-LET, wide, straight tracks for energetic

heavy charged particles such as protons, while low-LET, straight tracks are characteristic

for photons. In the right side of Figure 4.1 an example of overlapping clusters is shown.

Timepix is calibrated so that the signal is proportional to the energy deposited in each pixel
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and the response of all pixels is unified. Signal acquisition time in the entire matrix of

pixels has to be adjusted by the operator of the detector for each measurement (usually

from 1 to 200 ms). The readout of the signal is performed separately in each pixel and the

deadtime depends on the generation of Timepix.

In this project, a Timepix detector was used with a 300 µm silicon sensor operated

and readout with integrated electronics MiniPIX TPX [38]. The detector has small and

compact dimensions of 77 mm × 21 mm × 10 mm and it has a weight of 25 g). This

detector requires a single USB 2.0 connector for integrated power, control and readout.

The detector operates at room temperature without need of active cooling and with a water-

proof seal can be immersed in water. The Timepix chip in frame mode and pixel-level

configuration in energy mode [37]. The detector was energy calibrated per pixel [39].

The camera is controlled and readout by the cross-platform software PIXET (Advacam,

Prague) which provides online visualization of data acquisition and high data rate (up to 45

frames per second and readout deadtime 22 ms). The signal is generated when the ionizing

particle traverses the sensitive volume of the detector producing an electric charge, which

is collected in nearby pixels readout. The signal collected in the adjacent pixels forms

a cluster. The morphology of the produced cluster of pixels (the trace of the particle) is

characteristic for the type, incident angle and the energy of the ionizing particle that induced

the signal. Knowing the energy deposition in the cluster and analyzing its morphology it is

possible to recognize the type of the particle and to compute its LET.

4.1.2 LETs Computation

The LET of protons is computed by traversing the Timepix sensor the same way

for experimental and simulation data as the ratio of energy imparted by the particle in the

sensor, ϵ, and the track length, l, of the particle in the sensor:

LET =
ϵ

l
. (4.1)
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The track length was computed assuming that the particle does not stop in the sensor

volume based on the cluster length in the sensor plane and sensor thickness as follows:

l =
√

l2D
2 + d2 , (4.2)

where l2D is the length of the cluster derived from the cluster morphology and d is the

thickness of the silicon sensor .

Most often conversion of LET in silicon to water or tissue is carried out using a

constant conversion factor [40, 41, 42, 43]. A fitted function proposed by [44] is applied to

cover a wide range of energies and is considered to be a more accurate approach.

Dose-averaged LET, LETD, in radiobiological models applies only to primary and

secondary protons, therefore, protons were separated from other secondary particles. This

allowed to compute LETD only for protons using the following formula [45]:

LETD =

∑
i

(
εi
li

)
εi∑

i εi
, (4.3)

where i is the particle index.

LET measurement uncertainty was propagated taking into account the energy deposition,

sensor thickness and particle incident angle uncertainties. Energy deposition uncertainty

was computed based on the fit to experimental data. Sensor thickness uncertainty estimated

by the manufacturer is± 10 µm and the angle uncertainty estimated based on MC simulations

is 2◦. The uncertainty of LET conversion from silicon to water is not provided [44].

4.2 Methodology

Particles were identified using a deep convolutional neural network. The network

was trained using transfer learning, with initial training from the pre-trained Keras VGG16

model [34], and subsequent training using a homogeneous data set of proton, electron, and

photon clusters.
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The labeled data set was provided by Advacam and composed of 2,899,816 clusters

for protons, 853,717 clusters for electrons, and 3,143,149 clusters for photons (X rays,

gamma rays). Data were collected in well-defined radiation fields provided by radionuclide

sources and particle accelerator beams of light and heavy charged particles: 4-25 MeV

electrons from the MT-25 Microtron accelerator at the Nuclear Physics Institute (NPI),

Czech Academy of Sciences (CAS), Rez near Prague, 8-35 MeV protons from the U-

120M cyclotron of the NPI-CAS Rez, 70-200 MeV protons from the CCB cyclotron at IFJ

PAN Krakow. X rays and low-energy gamma rays were measured using 241Am source at

Advacam. Gamma rays were measured also using 60Co and 137Cs radionuclide irradiators at

the Czech Metrology Institute (CMI) Prague. Description of these calibration measurements

and of the data acquired with a similar Timepix detector with a 300 µm silicon sensor are

given elsewhere [46, 47, 48, 49].

Data was appropriately filtered to remove overlapping clusters, clusters produced

by secondary particles or at the sensor edge, as well as detector artifacts. Pre-processing

of calibration data follows five steps. At first, per pixel energy calibration happened to

make the conversion of time-over-threshold into energy in keV. Clusterisation is grouping

of pixels to sets/clusters belonging to individual particle tracks based on coordinate/spatial

vicinity. Cluster analysis is to calculate the morphological and spectral features of clusters.

Pile-up filtering applied to filter the pile-up based on morphological features and on additional

per pixel energy conditions. Lastly, the additional filtering happened to remove the secondary

particles, clusters at sensor edge, and detector artifacts (noisy pixels, not fully discharged

pixels etc.) with conditions on cluster features.

The pre-trained VGG16 model was chosen because it is a deep network that achieved

good results in both image classification and localization [35] - promising for blob like

structure [50]. Since there were more than 3 times as many protons as electrons in the data

set, a generative adversarial network (GAN) was used to augment the electron clusters [51,

52]. To avoid mode collapse in GAN training, instance noise was used [53].
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Figure 4.2: Overview of the AI PID flow

There are many proposed GAN framework in medical image research such as

Deep Convolutional Generative Adversarial Networks (DCGAN), Laplacian Generative

Adversarial Networks (LAPGAN), pix2pix, Cycle-GAN, UNIT, CatGAN, BigGAN, InfoGAN,

VAEGAN, StyleGAN and more. In this work, a DCGAN [54] framework was adapted with

electron cluster data set to address the class imbalance problem in the training data set as

DCGAN was proven to be effective in generating total electron content maps [55] and it is

more stable to train[54] than the original GAN.

The DCGAN network parameters are optimized by the equation,

min
G

max
D

V(G,D) = E
§∼ρdata(§)

[log(D(x))] + E
‡∼ρz(‡)

[log(1 − D(G(x)))] (4.4)

in which D and G are the discriminator and generator functions respectively. x is

the sample from the data distribution, P, z is a random variable following the distribution

PZ, and E is the expectation operator.

The CNN was trained for 100 epochs toward convergence. The data of electron

clusters created by DCGAN was used for training only. The data set was randomly divided

into training and testing using 10-fold cross validation [56]. Accuracy and uncertainty

were assessed using confusion matrices [57]. After the trained model was established, the
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mixed radiation field data set was used as the input in order to identify protons from other

particles.

4.3 Results

4.3.1 Homogeneous Data Set

The result for homogeneous data set is presented in this section. The metrics to

determine the quality of the model is the same as in Chapter 4. Accuracy, precision,

sensitivity, and specificity were used to evaluate performance of the model [57]. The

accuracy is the ratio of the correct predictions to the particles in the homogeneous data

set [57]. The accuracy achieved for proton recognition is 95.36% as shown in Figure 4.3.

This is a good for a model because it gives high confidence. The resulting neural networks

have sensitivity of 92.97% and specificity of 97.10%. The NPV in this result is at 95.01%.

For the performance of the model in mixed radiation field data set, LET spectra

were computed and compared with MC simulation to show the accuracy as the mixed field

data set was not labeled, hence the ground truth was an unknown.
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Figure 4.3: The confusion matrix for particle identification for homogeneous data set

4.3.2 Mixed Radiation Field Data Set

LET spectra measured in air with silicon sensor for therapeutic proton pencil beams

for different incident angles of protons, namely 30◦, 45◦, 60◦ and 75◦ were compared. A

good agreement of the LET spectra for various angles for all the considered beam energies

was shown. For the lowest measured beam energy of 70 MeV an 8% shift of the peak

(the most probable value) relative to the spectrum measured in 45◦ (considered the best) is

observed for the largest angle of 75◦. A percent of protons hitting the sensor at the angle of

75◦ or larger for all mixed field data measured by us is lower than 2%.

LET spectra verification in water was measured and compared for the proton beam

nominal energies of 150 MeV and 171.66 MeV with range shifter at the depth of 149 mm in

the beam axis. As for 171.66 MeV proton beam with application of range shifter the beam

range should be the same as for 150 MeV proton beam, the LET spectra in the considered
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points should be matching. Measured LET spectra produced by protons overlap within

uncertainty ranges.

Figure 4.4: LET spectra measured (light line) and simulated (dark line) for 150 MeV proton
pencil beam in water along lateral beam profiles at the depth of BP which is 156.6 mm.
Measurements and simulations were performed at distances from the beam axis of at
30 mm, 45 mm and 60 mm for the profile at a depth of 156.6 mm (BP).

LET spectra along beam profiles in water are shown in figure 4.5, figure 4.6, figure

4.8, and figure 4.7. The relative number of protons decreases with distance from the beam

axis as the height of the graph get smaller. Positions of the peak obtained in measurements

and in simulations are overall in good agreement for small distances, although a shift occurs

in case of farther points. The relative number of protons does not change significantly with

depth, which reflects in the change in height of the graph, but is several orders of magnitude

smaller at a distance of 37 mm with respect to measurements in the beam axis. Positions of

the peak obtained in measurements and in simulations are overall in good agreement, but

discrepancies can be observed in the plateau region.

Figure 4.5 presents measured and simulated LET spectra for points along lateral

profiles of 150 MeV proton beam in water at the depths of 78.3 mm and distances from the

beam axis of 30 mm, 60 mm and 90 mm for the profile. For measurements performed at a
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depth of 78.3 mm LETD values are 2.5 keV/µm, 2.8 keV/µm and 2.8 keV/µm at distances

from the beam axis of 30 mm, 60 mm and 90 mm respectively. The corresponding MC

simulations LETD values are 2.3 keV/µm, 2.7 keV/µm and 3.1 keV/µm. The result shows

relatively good agreement between the measurements and MC simulation since the largest

relative difference between measurements and MC simulations of 12%.
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Figure 4.5: LET spectra measured (light line) and simulated (dark line) for 150 MeV proton
pencil beam in water along lateral beam profiles at the depth of BP which is 156.6 mm.
Measurements and simulations were performed at distances from the beam axis of at
30 mm, 45 mm and 60 mm for the profile at a depth of 156.6 mm (BP).

Figure 4.6 presents measured and simulated LET spectra for points along lateral

profiles of 150 MeV proton beam in water at the depths of 156.6 mm which is BP depth,

and 30 mm, 45 mm and 60 mm for the profile. For measurements performed at a depth of

156.6 mm LETD values are 9.1 keV/µm, 5.5 keV/µm and 6.0 keV/µm at distances from the
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beam axis of 30 mm, 45 mm and 60 mm respectively. The corresponding MC simulations

LETD values are 5.0 keV/µm, 5.3 keV/µm and 3.9 keV/µm. The large discrepancies at a

level of 50-80% can be a result of long tails in the high LET range for measurements which

are not present in MC simulation results.
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Figure 4.6: LET spectra measured (light line) and simulated (dark line) for 150 MeV proton
pencil beam in water along lateral beam profiles at the depth of 78.3 mm. Measurements
and simulations were performed at distances from the beam axis of 30 mm, 60 mm and
90 mm for the profile at a depth of 78.3 mm.

Figure 4.7 presents measured and simulated LET spectra for points along longitudinal

profiles of 150 MeV proton beam in water in the beam axis. The results are presented for

measurements and simulations at depths in water of 30 mm, 120 mm and 156.6 mm and

161 mm for this profile. For measurements performed in the beam axis, LETD values

are 1.1 keV/µm, 1.3 keV/µm, 4.0 keV/µm and 5.1 keV/µm at depths in water of 30 mm,
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120 mm, 156.6 mm and 161 mm respectively. The corresponding MC simulations LETD

values are 1.2 keV/µm, 1.2 keV/µm, 4.3 keV/µm and 5.2 keV/µm. The largest relative

difference for these measurements is at a level of 6%. The result shows the strong agreement

between the LET spectra from particle identification model and the MC simulation.
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Figure 4.7: LET spectra measured (light line) and simulated (dark line) for 150 MeV proton
pencil beam in water along longitudinal beam profiles in the beam axis . Measurements
were performed at the depths of 30 mm, 120 mm, 156.6 mm (BP) and 161 mm.
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Figure 4.8 presents measured and simulated LET spectra for points along longitudinal

profiles of 150 MeV proton beam at a distance of 37 mm from the beam axis. The results

are presented for measurements and simulations at depths in water of 30 mm, 120 mm

and 156.6 mm and 161 mm for this profile. The measured LETD values are 3.0 keV/µm,

2.7 keV/µm, 5.3 keV/µm and 6.5 keV/µm at depths in water of 30 mm, 120 mm, 156.6 mm

and 161 mm respectively. The corresponding MC simulations LETD values are 2.5 keV/µm,

2.4 keV/µm, 5.3 keV/µm and 5.5 keV/µm. This result can be looked at as the three part, the

smallest relative difference is 0% at the depth of 156.6 mm. The largest relative difference

for LETD measurements is 20% at the depth of 30 mm.

The grey band in each graph is the uncertainty of the model. The uncertainty is the

variance of the predictive probability[58]. The uncertainty is related to the identification of

the particle. The uncertainty is not just the value of the strongest weight, but it is related

to the variance of the predicted outcomes. To determine the variance of the predicted

outcomes, the variance for the second to last layer was calculated and converted into

percentage.

For the majority of the proton LET spectra in water, a lower number of protons

was measured than was predicted by MC simulations at the low-end of the spectra. This

is likely the error in particle recognition model, as there is a limited amount of proton data

in this low energy range, and proton morphology in low range energy can look similar to

electron in some cases. This could be improved by providing more training data specially

for electrons and low-LET protons.
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Figure 4.8: LET spectra measured (light line) and simulated (dark line) for 150 MeV proton
pencil beam in water along longitudinal beam profiles out of the beam at a distance of
37 mm. Measurements were performed at the depths of 30 mm, 120 mm, 156.6 mm (BP)
and 161 mm.
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CHAPTER FIVE

Nitinol Wire

This chapter is based upon works published in the Society of Photo-Optical Instrumentation

Engineers (SPIE) as part of L. J. Olafsen, B. Jones, L. Sparks, H. H. Nguyen, A. Tanner,

K. E. Schubert, J. S. Olafsen, S. Dayawansa, E. Fonkem, J. H. Huang, “Current-controlled

Nitinol Wire for Improved Arterial Navigation,” SPIE Proceedings Vol. 10868: Advanced

Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVII (2019) and in

IEEE journal, part of D. R. DeVries, L. J. Olafsen, J. S. Olafsen, H. H. Nguyen, K. E.

Schubert, S. Dayawansa, and J. H. Huang, “Ultrasound Localization of Nitinol Wire of

Sub-Wavelength Dimension,” IEEE Open Journal of Engineering in Medicine and Biology

3, 18–24 (2022).

Nitinol is a shape memory alloy of nickel and titanium, with a long record of bio

compatibility, particularly when an oxide and/or another passivating layer is applied [59].

Nitinol wires have been used widely as stents because the alloy can be programmed to

expand at human body temperatures and solidly fix to blood vessel walls [59, 60].Ultrasound

is a safe (non-ionizing), low-cost, portable, and widely available imaging modality that

uses high frequency sound waves typically in the 1–10 MHz range. Lower frequencies

(1–3 MHz) are used for deeper structures such as the liver or heart, and higher frequencies

(5–10 MHz) are used for imaging near the skin [61]. To enhance vascular navigation

using surgical guide wires and reduce the use of ionizing radiation, a method for ultrasonic

localization of wires with diameters less than the wavelength of ultrasound in the phantom

custom made with gelatin was studied. The data taken from that was used to train and test

two CNNs to localize the wire.

66



5.1 Current Control of Nitinol Wire

This section is based on the first conference paper that was published in 2018.

Nitinol wire is used with a programmed heat activation above body temperature, and

thus guidance can be externally controlled using resistive heating. We present results

of current-controlled steering of nitinol wire, including the programming, control, and

material response to varying current levels and pulse durations [62]. Nitinol wires of 100

µm and 150 µm in diameters were activated then the angle test were performed to study the

wire bending angle respect to varying currents in air and liquid.

To train the wire, the following steps were performed:

(1) Straighten the wire and place it on the hotplate at around 1000°F. Leave the wire

for a few minutes.

(2) Using the soldering iron (heated to 850°F) pull on the middle of the wire so that it

bends around the soldering iron tip

(3) Hold the soldering iron on the wire for a few minutes then remove the soldering

iron

(4) Place the rounded end of the wire on the hot plate and place the tweezers about 1

inch from the point

(5) Bend the wire over the tweezers and hold that position for a few minutes

(6) Remove the wire from the hotplate and quench

The air testing was based on the training method above with slightly modification

in the setup that the wire and the protractor were tapped onto flat surface to minimize

movement and change in the experiment. In a shallow Pyrex dish, deionization (DI) water

was filled to a depth of 5mm. The activated nitinol wire then was placed in the water near

the surface. The wire was bend by applying a current for 45 seconds. The resulting angle

was measured by a fixed protractor. The wire was allowed to return to the neutral position.
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The process then was performed twice more. A setup with a fixed protractor on a flat

surface was used to improve the consistency of a measuring procedure.

The water testing showed that it took longer with a higher current level to bend

in water. The wire is thin, and the surrounding water cools the wire; hence more current

required to heat the wire up. Water caused the cooling effect. The initial test was done

in the extreme case that the different between temp of water and temp of transition was

50°C while in a clinical setting the difference of temperature would be only 5°C, therefore

less current is required. A human blood vessel is much smaller and contains much less

liquid than the Pyrex bath. The most challenging task was keeping the wire from touching

itself and creating a short circuit. The protractor was not fixed in the water test because

the distortion in the Pyrex was hard to read. Due to the necessary change in measurement

style, the water testing is prone to error more than the air testing.

The result of bend angle versus injection current in air shown in Figure 5.1 and

Figure 5.2 for 100 µm diameter wire and 150 µm diameter wire respectively. The current

range required to achieve complete bending to the programmed shape (right angle) range

for 100 µm diameter wire is from 70 mA to 150 mA for 100 µm diameter wire. The current

range required to achieve complete bending to the programmed shape (right angle) range

is from 225 mA to 300 mA for 150 µm diameter wire. The thinner wire requires less

current for activation (bending). The trends for both diameters were notable. The amount

of current required to activate the wire was proportional to the cross-sectional area of the

wire.
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Figure 5.1: Angle test of 100 µm diameter wire in the air

Figure 5.2: Angle test of 150 µm diameter wire in the air
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The result of bend angle versus injection current in water shown in Figure 5.3 and

Figure 5.4 for 100 µm diameter wire and 150 µm diameter wire respectively. The current

range required to achieve complete bending to the programmed shape (right angle) range

for 100 µm diameter wire is from 100 mA to 170 mA for 100 µm diameter wire. The

current range required to achieve complete bending to the programmed shape (right angle)

range is from 250 mA to 327 mA for 150 µm diameter wire. The consistency of the trends

for both diameters was notable in water as well.

The preliminary test of nitinol wire and current is important to apply for future

studies. The angle testing in air and water for 100 µm and 150 µm diameter wires shows

that current levels are higher in water than in air to achieve the same bending angle.

Lower current is desirable in arteries to minimize heating. Smaller wire diameters also are

desirable as they support reduced minimum bend radii and thus allow for tighter control

at turns and branches in the arteries. They also require lower currents and could provide

access to smaller arteries.

Figure 5.3: Angle test of 100 µm diameter wire in the water
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Figure 5.4: Angle test of 150 µm diameter wire in the water

5.2 Ultrasound Localization of Nitinol Wire

This section comes from the journal paper that was published in IEEE Open Journal

of Engineering in Medicine and Biology 3 in 2021 and three patent submissions. In

this project, gelatin phantoms were constructed in Dr. Linda Olafsen’s lab by Daniella

R. DeVries. Gelatin was chosen as material because it is excellent at mimicking tissue

for ultrasound imaging [63, 64]. A rectangular slab phantom was created with different

diameter tunnels through the center lengthwise to mimic vessels. The ultrasound probe

was held midway along the phantom at position C0 as in Figure 5.5. The wire tip was

advanced incrementally to each grid position with ultrasound images taken at position C0

to show progress of the wire through the phantom. Images were collected for four tunnel

diameters (1/4 inch, 3/8 inch, 1/2 inch, 5/8 inch) and six wire diameters (50 µm, 75 µm,

100 µm, 125 µm, 150 µm, and 250 µm).

For the neural network analysis, a fine tuning VGG-16 model is executed to classify

the ultrasound images with and without the nitinol wire in the feed through tubes of the

gelatin phantom. We want to compare the original image versus
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Figure 5.5: 75 µm wire in 1/4 inch diameter tunnel imaged at 7.5 MHz

Due to this, we constructed two data sets for the model. The first data set of

187 images (102 with wire and 85 without wire) is the original set of ultrasound images,

including all six wire diameters and the three ultrasound frequencies. The second data set

of 170 images (102 with wire and 68 without wire) is the set of images taking the difference

between the regular image and the image at the L2 position.

Each data set is split into a training set and a validation set.

After importing the VGG-16 model, the three fully connected layers are discarded.

Then the new specialized CNNs are trained using the gelatin phantom data sets. These

specialized CNNs are small 3-layer with 3 by 3 kernels of numbers 32, 32, and 64. A

regular sigmoid function is used to classify the images into two classes of with and without

wire. The newly trained specialized CNN then is fed the features from the frozen VGG-16

model and the pre-trained weights are loaded into the model.

5.2.1 Results

The accuracy of the method is the ratio of the correct predictions to the total number

of images in the data set. The overall accuracy achieved in each of the data sets is 95.19%

and 96.47%. The resulting neural networks have sensitivity, specificity, positive predictive
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value, and negative predictive value greater than 92%. The results from the difference

image analysis are improved relative to the regular images, with respect to higher accuracy

and narrower confidence intervals for accuracy, sensitivity, and positive predictive value.

Table 5.1 shows the overall result of CNN training with corresponding 95% Confidence

Intervals.

Figure 5.6: 50 µm wire in 1/4 inch diameter tunnel imaged at 7.5 MHz

Images are shown in Figure 5.6 at 7.5 MHz frequency as a 50 µm wire in 1/4 inch

diameter tubing was advanced from position L2 to position U2. The ultrasound probe was

fixed at position C0. Images were taken when the tip of the wire was at each of the labeled

positions. The ultrasound localization technique to a wire of even smaller diameter.

A summary of results from the VGG-16 CNN model is showed as a confusion

matrix in Figure 5.7 for both raw images and difference images relative to the image at

position L2. In each matrix, the percentage is reported in each quadrant. True positive is

shown in the upper left quadrant, with false positive in the upper right, false negative in

the lower left, and true negative in the lower right. In seven cases, the CNN model applied

to raw images yielded false negative results. The images corresponding to those cases are

shown in Figure 5.8. Below each image are the imaging frequency, wire diameter, and wire
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Table 5.1: Overall result of CNN on Ultrasound images

tip position for the raw image. There were five false negatives for the CNN analysis of

difference images. The corresponding raw images are shown in all five cases in Figure 5.9.

No false negatives occurred for 10 MHz images.

Figure 5.7: Confusion matrices obtained from raw images (a) and difference images (b)
relative to the image at position L2
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Figure 5.8: Ultrasound images for the false negative cases of the regular image CNN
analysis.
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Figure 5.9: Ultrasound images for the false negative cases of the difference image CNN
analysis.
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CHAPTER SIX

Conclusion

In this dissertation, a deep CNN approach for biomedical application were presented

and investigated in three distinct biomedical research areas. As a result, the publications

are as following,

• 4 journals, one accepted, one submitted, two in preparation

• 3 patents pending

• 1 conference paper

• 3 clinical conference presentations

• 4 poster presentations

6.1 Automatic Classification of Colon Polyps

The first part of this dissertation, a polyp database in WLI and NBI was built by an

IRB approved procedure. The images in that database were used to investigate the method

of predicting polyp histology with CNNs. In the study, the automated analysis of multiple

images of diminutive polyps obtained under both WLI and NBI has a high sensitivity in the

diagnosis of adenomatous histology. The overall accuracy, sensitivity, and specificity of the

model are greater than 97%. Additional it has 95.48% NPV, exceeding the 90% value set

by ASGE. According to the clinical standard, this technology can and should be implement

in clinical setting now. This technology can be applied to clinical clinics in remote areas

all around the world.

Future work can add more polyps to the database, especially rectosigmoid and

ascending polyps. A real time system can be built and tested in a clinical setting. Optimization

of the performance for faster processing time should also be investigated.
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6.2 Particle Identification in Radiation Therapy

In the second part of this work, a wide range of proton LET values in mixed

radiation fields causes different complexity of DNA damage. Any LET-based variable

RBE model requires accurate simulation and measurement methods for validation and

quality assurance. An elegant and accessible approach to compare the agreement between

measured and simulated LET spectra and dose-averaged LET of protons was introduced

and investigated. The CNN for identification of particles, i.e., identify charged particles

from other photons and electrons registered with Timepix detector was presented. This is

an important application of AI for nuclear physics data analysis with direct implications for

routine proton radiotherapy quality assurance and quality checks. CNN, particularly deep

CNN, has come to dominate image recognition and identification tasks due to its ability to

discover structures even in high dimensional data [33], and thus are the natural choice for

particle identification on Timepix detectors.

The challenges overcame in this work include the class imbalance problem and the

lack of feedback from the mixed radiation field identification in training the model. The

class imbalance problem happens when the distribution of classes in the training data set

is unequally distributed. The class imbalance problem negatively affects the CNN [65]. In

this work, the number of electron clusters in the training data set is significantly less than

the other two particles. This problem was addressed by using DCGAN to generate more

electron clusters in training the CNN model.

However, another challenge of the training data set is that the beam nominal energy

range is different for each type of particle in the training data set and the mixed radiation

field. The training data was solely homogeneous; hence the mixed radiation field data was

only used for testing. It should have been accounted for in the training part at the time of

building the CNN model. The lack of feedback from the mixed radiation field identification

also challenges the improvement of the method.
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For future development, if more training data can be supplied to balance the set,

it will help to address the imbalance problem. In addition, the non-visual data parameters

should be included into the main network as the input to improve the identification. Since

the current study is a supervised study, investigating a fusion of supervised and semi-

unsupervised methods can improve and strengthen the current model’s performance while

still taking advantage of the learned features from the labeled data set. Heavy ions such as

Helium and Carbon should be also included in the training process.

6.3 Nitinol Wire

In this dissertation’s last part, a static estimation was investigated for the shaped

alloy nitinol wire before moving to localize it in ultrasound. The result showed that a

shaped alloy has the potential as a new active wire material in clinical medical applications.

As the result of this work, an ultrasound instead of an invasive x-ray can be used to detect

the location of the wire in a gelatin phantom as a proof of concept. This work has shown

the CNN model can localize the wire. A CNN with transfer learning was applied to the

original set of images and the difference set of images. It yielded a good result for the

original image set and the difference image set showed even more potential with higher

and more accurate results.

In the future study for the static estimation, the next step is to test how well the wire

will bend in the tube with and without water. The tube is much like to human blood vessel.

Human blood flows differently to water. It is also more viscous and slightly denser than

water. Finding a solution with blood-like properties to test with the wire is also the next

step. The next direction is to test the CNN model with another imaging modality, such as

infrared can be examined with the same gelatin model.
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APPENDIX

Testing codes

1 Transfer Learning with VGG-16

i m p o r t numpy as np

i m p o r t k e r a s

from k e r a s i m p o r t o p t i m i z e r s

from m a t p l o t l i b i m p o r t p y p l o t a s p l t

from numpy . random i m p o r t s eed

from t e n s o r f l o w i m p o r t s e t r a n d o m s e e d

from k e r a s . p r e p r o c e s s i n g . image i m p o r t I m a g e d a t a g e n e r a t o r

from k e r a s . models i m p o r t S e q u e n t i a l

from k e r a s . l a y e r s i m p o r t Dropout , F l a t t e n , Dense

from k e r a s i m p o r t a p p l i c a t i o n s

i m p o r t os

from f u t u i m p o r t w i t h s t a t e m e n t

im width , i m h e i g h t = 254 , 254 ;

# t r a i n & v a l i d a t i o n d i r

t r a i n d i r = ’ d a t a p o l y p s / t r a i n ’

v a l i d a t i o n d i r = ’ d a t a p o l y p s / v a l i d a t i o n ’

mode lFo lde r = ’ VGG models ’
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n b t r a i n s a m p l e s = 441

n b v a l i d a t i o n s a m p l e s = 49

epochs = 100

b a t c h s i z e = 64

# t r a i n i n g r e s u l t s u s i n g pre − t r a i n e d VGG16

f e a t u r e s t r a i n p a t h = ’ . / VGG models /

t r a n s f e r V G G 1 6 f e a t u r e s t r a i n . npy ’

# v a l i d a t i o n r e s u l t s f o r p o l y p s d a t a s e t u s i n g pre − t r a i n e d

VGG1

f e a t u r e s v a l i d a t i o n p a t h = ’ . / VGG models /

t r a n s f e r V G G 1 6 f e a t u r e s v a l i d a t i o n . npy ’

t o p m o d e l w e i g h t s p a t h = ’ . / VGG models /

t r a n s f e r V G G 1 6 f c m o d e l . h5 ’

# c a l c u l a t e t h e o u t p u t s o f VGG model f o r t r a i n i n g and

v a l i d a t i o n

d e f s a v e V G G f e a t u r e s ( b a t c h s i z e ) :

# i n p u t : b a t c h s i z e

# o u t p u t : number o f t h e examples f o r t h e saved o u t p u t s (

i t c o u l d be d i f f e r e n t from t h e o r i g i n a l d a t a s e t ! )

d a t a g e n = I m a g e d a t a g e n e r a t o r ( r e s c a l e =1 . / 255)
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# B u i l d t h e VGG16 ne twork w i t h o u t t h e t o p l a y e r

model = a p p l i c a t i o n s . VGG16( i n c l u d e t o p=F a l s e , w e i g h t s = ’

imagene t ’ )

# g e n e r a t e t r a i n i n g d a t a from t r a i n f o l d e r

# g e n e r a t o r = d a t a g e n . f l o w f r o m d i r e c t o r y (

g e n e r a t o r = d a t a g e n . f l o w f r o m d i r e c t o r y (

t r a i n d a t a d i r ,

t a r g e t s i z e =( im width , i m h e i g h t ) ,

b a t c h s i z e=b a t c h s i z e ,

c l a s s m o d e=None ,

s h u f f l e=F a l s e )

# c a l c u l a t e t h e o u t p u t o f bot tom VGG16 u s i n g t r a i n i n g

d a t a

b o t t l e n e c k f e a t u r e s t r a i n = model . p r e d i c t g e n e r a t o r (

g e n e r a t o r , n b t r a i n s a m p l e s / / b a t c h s i z e )

# save t h e t r a i n i n g o u t p u t s

np . s ave ( V G G f e a t u r e s t r a i n p a t h , V G G f e a t u r e s t r a i n )

# g e n e r a t e v a l i d a t i o n d a t a from t r a i n f o l d e r

g e n e r a t o r = d a t a g e n . f l o w f r o m d i r e c t o r y (

v a l i d a t i o n d a t a d i r ,

t a r g e t s i z e =( im width , i m h e i g h t ) ,

b a t c h s i z e=b a t c h s i z e ,

c l a s s m o d e=None ,
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s h u f f l e=F a l s e )

# c a l c u l a t e t h e o u t p u t o f VGG16 u s i n g v a l i d a t i o n d a t a

V G G f e a t u r e s v a l i d a t i o n = model . p r e d i c t i o n i c t g e n e r a t o r (

g e n e r a t o r , n b v a l i d a t i o n s a m p l e s / / b a t c h s i z e )

# save t h e v a l i d a t i o n o u t p u t s

np . s ave ( V G G f e a t u r e s v a l i d a t i o n p a t h ,

V G G f e a t u r e s v a l i d a t i o n )

r e t u r n ( V G G f e a t u r e s t r a i n . shape [ 0 ] ,

V G G f e a t u r e s v a l i d a t i o n . shape [ 0 ] )

# t r a i n t h e t o p FC model from t h e pre − t r a i n e d bot tom VGG16

d e f t r a i n t o p m o d e l ( epochs , b a t c h s i z e , o p t i m i z e r , d r o p r a t e

) :

# l o a d t r a i n i n g o u t p u t s from t h e pre − t r a i n e d bot tom

VGG16

t r a i n d a t a = np . l o a d ( V G G f e a t u r e s t r a i n p a t h )

t r a i n l a b e l s = np . a r r a y ( [ 0 ] * ( n b t r a i n s a m p l e s / / 2) +

[ 1 ] * ( n b t r a i n s a m p l e s / / 2) )

# l o a d t r a i n i n g o u t p u t s from t h e pre − t r a i n e d bot tom

VGG16

v a l i d a t i o n d a t a = np . l o a d ( V G G f e a t u r e s v a l i d a t i o n p a t h

)
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v a l i d a t i o n l a b e l s = np . a r r a y ( [ 0 ] * (

n b v a l i d a t i o n s a m p l e s / / 2) + [ 1 ] * (

n b v a l i d a t i o n s a m p l e s / / 2) )

# o u t p u t s from t h e bot tom VGG16 + a FC l a y e r

model = S e q u e n t i a l ( )

model . add ( F l a t t e n ( i n p u t s h a p e= t r a i n d a t a . shape [ 1 : ] ) )

model . add ( Dense ( 2 5 6 , a c t i v a t i o n = ’ r e l u ’ ) )

model . add ( Dropout ( d r o p r a t e ) )

model . add ( Dense ( 1 , a c t i v a t i o n = ’ s igmoid ’ ) )

model . f i t ( t r a i n d a t a , t r a i n l a b e l s ,

epochs=epochs ,

b a t c h s i z e=b a t c h s i z e ,

v a l i d a t i o n d a t a =( v a l i d a t i o n d a t a ,

v a l i d a t i o n l a b e l s ) ,

v e r b o s e = 0 ,

c a l l b a c k s= c a l l b a c k s )

# save t h e f i n a l model

model . s a v e w e i g h t s ( t o p m o d e l w e i g h t s p a t h )

2 Preliminary Testing Code

i m p o r t pandas as pd

i m p o r t numpy as np

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t g lob
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d e f r e a d d a t a ( p a r t i c l e c l a s s , p a t h ) :

’ ’ ’

C l a s s e s :

1 − p r o t o n

2 − e l e c t r o n

3 − pho ton

’ ’ ’

e l i s t p a t h N a m e s = g lob . g lob ( p a t h )

c o l n a m e s = [ ’ CMLateral Px ’ , ’ CMVert ica l Px ’ , ’ S ize Px ’ ,

’ Energy keV ’ , ’ Time Min ns ’ , ’ EnergyMax keV ’ , ’

PolarAng Rad ’ , ’ L2D Px ’ , ’W2D Px ’ , ’ WStd Perp Px ’ , ’

WStd Along PX ’ , ’ Roundness ’ , ’ L i n e a r i t y ’ , ’

NBordIn Div ’ , ’ Th ickness ’ , ’ Th ines s ’ , ’ Cur lyThin ’ ]

d a t a = [ ]

f o r e l i s t p a t h N a m e i n e l i s t p a t h N a m e s :

d a t a S i n g l e=pd . r e a d c s v ( e l i s t p a t h N a m e , sep = ’\ t ’ ,

i n d e x c o l=F a l s e , s k i p r o w s =1 , names = c o l n a m e s )

d a t a . append ( d a t a S i n g l e )

d a t a=pd . c o n c a t ( d a t a )

d a t a [ ’ C las s ’ ] = p a r t i c l e c l a s s
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d a t a . d rop ( [ ’ CMLateral Px ’ , ’ CMVert ica l Px ’ , ’ Time Min ns

’ , ’ PolarAng Rad ’ ] , a x i s =1 , i n p l a c e=True )

r e t u r n d a t a

d a t a p r o t o n = r e a d d a t a ( 1 , ’ / home / p i d / P r o t o n s /* MeV * /* deg /E

* ’ )

d a t a e l e c t r o n = r e a d d a t a ( 2 , ’ / home / p i d / E l e c t r o n s /*MeV/* deg /

E* ’ )

d a t a p h o t o n = r e a d d a t a ( 3 , ’ / home / p i d / * /E* ’ )

d a t a a l l = pd . c o n c a t ( [ d a t a p r o t o n , d a t a e l e c t r o n ,

d a t a p h o t o n ] )

from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r

s c a l e r = S t a n d a r d S c a l e r ( )

d a t a f e a t u r e s = d a t a a l l . d rop ( ’ Class ’ , a x i s =1) # f e a t u r e s

s c a l e r . f i t ( d a t a f e a t u r e s )

d a t a s c a l e d f e a t = s c a l e r . t r a n s f o r m ( d a t a f e a t u r e s )

d a t a s c a l e d f e a t = pd . DataFrame ( d a t a s c a l e d f e a t , columns =

d a t a f e a t u r e s . columns ) # s t a n d a r d i z e d f e a t u r e s

from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t

X = d a t a s c a l e d f e a t

y = d a t a a l l [ ’ C las s ’ ]
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X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e =0 .3 , r a n d o m s t a t e =42) # t r a n / t e s t d a t a

from s k l e a r n . n e u r a l n e t w o r k i m p o r t M L P C l a s s i f i e r

mlp = M L P C l a s s i f i e r ( )

mlp . f i t ( X t r a i n , y t r a i n )

p r e d i c t i o n = mlp . p r e d i c t ( X t e s t )

from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x ,

c l a s s i f i c a t i o n r e p o r t

p r i n t ( c o n f u s i o n m a t r i x ( y t e s t , p r e d i c t i o n ) )

p r i n t ( c l a s s i f i c a t i o n r e p o r t ( y t e s t , p r e d i c t i o n ) )

# mixed f i e l d

d e f r e a d d a t a m i x e d ( p a t h ) :

c o l n a m e s = [ ’ CMLateral Px ’ , ’ CMVert ica l Px ’ , ’ S ize Px ’ ,

’ Energy keV ’ , ’ Time Min ns ’ , ’ EnergyMax keV ’ , ’

PolarAng Rad ’ , ’ L2D Px ’ , ’W2D Px ’ , ’ WStd Perp Px ’ , ’

WStd Along PX ’ , ’ Roundness ’ , ’ L i n e a r i t y ’ , ’

NBordIn Div ’ , ’ Th ickness ’ , ’ Th ines s ’ , ’ Cur lyThin ’ ]

d a t a=pd . r e a d c s v ( pa th , sep = ’\ t ’ , i n d e x c o l=F a l s e ,

s k i p r o w s =1 , names = c o l n a m e s )

d a t a . d rop ( [ ’ CMLateral Px ’ , ’ CMVert ica l Px ’ , ’ Time Min ns

’ , ’ PolarAng Rad ’ ] , a x i s =1 , i n p l a c e=True )
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r e t u r n d a t a

mixed = r e a d d a t a m i x e d ( ’ / home / s h a r e d / TimePix /meas /

p i x e t A n a l y s e d D a t a / p i d c a l i b d a t a f r o m b o x /Mixed /15 0

MeV 156 . 6mm 45mm / E L i s t . t x t ’ )

m i x e d s c a l e d = s c a l e r . t r a n s f o r m ( mixed )

m i x e d s c a l e d = pd . DataFrame ( m i x e d s c a l e d , columns =

d a t a f e a t u r e s . columns )

mixed p red = mlp . p r e d i c t ( m i x e d s c a l e d )

d e f g e t H i s t ( da t a , b i n s=np . a r a n g e ( 0 , 5 + 0 . 0 1 , 0 . 0 1 ) ) :

i f n o t i s i n s t a n c e ( da t a , pd . DataFrame ) :

d a t a = pd . DataFrame ( d a t a )

h i s t = l i s t ( np . h i s t o g r a m ( d a t a . i l o c [ : , 0 ] , b i n s=b i n s ) )

h i s t [ 1 ] = h i s t [ 1 ] [ : − 1 ] + np . d i f f ( b i n s ) / 2

r e t u r n [ h i s t [ 1 ] , h i s t [ 0 ] ]

b i n s=np . l o g s p a c e ( 0 , 5 , 2 0 0 )

h i s t = g e t H i s t ( mixed . Energy keV , b i n s=b i n s )

p l t . f i g u r e ( f i g s i z e = (8 , 5 ) )

p l t . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] , ’k− ’ )

89



p l t . x s c a l e ( ’ log ’ )

h i s t = g e t H i s t ( mixed [ mixed . Type==1] . Energy keV , b i n s=b i n s )

p l t . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] , ’ r − ’ , l a b e l = ’ P r o t o n s ’ )

h i s t = g e t H i s t ( mixed [ mixed . Type==2] . Energy keV , b i n s=b i n s )

p l t . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] , ’b− ’ , l a b e l = ’ E l e c t r o n s ’ )

h i s t = g e t H i s t ( mixed [ mixed . Type==3] . Energy keV , b i n s=b i n s )

p l t . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] , ’g− ’ , l a b e l = ’ Photons ’ )

p l t . l e g e n d ( )

p l t . x l a b e l ( ’ Energy [ $keV$ ] ’ )

p l t . y l a b e l ( ’ Counts [ $−$ ] ’ )

p l t . g r i d ( )

p l t . show ( )

3 Particle Identification Analysis

i m p o r t numbers , glob , os , r e

i m p o r t numpy as np

i m p o r t pandas as pd

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

from s c i p y i m p o r t ndimage

from m a t p l o t l i b . c o l o r s i m p o r t LogNorm

i m p o r t a n a l y s e D o s e as ad

i m p o r t k e r a s

from k e r a s i m p o r t o p t i m i z e r s
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from m a t p l o t l i b i m p o r t p y p l o t a s p l t

from numpy . random i m p o r t s eed

from t e n s o r f l o w i m p o r t s e t r a n d o m s e e d

from k e r a s . p r e p r o c e s s i n g . image i m p o r t I m a g e d a t a g e n e r a t o r

from k e r a s . models i m p o r t S e q u e n t i a l

from k e r a s . l a y e r s i m p o r t Dropout , F l a t t e n , Dense

from k e r a s i m p o r t a p p l i c a t i o n s

i m p o r t os

d e f g e t m e a s i n f o ( p a t h s ) :

P a r a m e t e r s :

p a t h s ( s t r i n g / l i s t o f s t r i n g s )

’ ’ ’

f o r p a t h i n p a t h s :

p a t h=os . p a t h . a b s p a t h ( p a t h )

f i l e N a m e s . append ( p a t h )

match= r e . s e a r c h ( ’ E ( [ \ d ]+ ) D ( [ \ d . ]+ ) C ( [\+ − ] [\ d . ]+ ) I

( [\+ − ] [\ d . ]+ ) ( [ \ d ]+ ) ms ’ , p a t h )

i f match :

energy MeV . append ( f l o a t ( match . group ( 1 ) ) )

depth mm . append ( f l o a t ( match . group ( 2 ) ) )

c r o s s l i n e m m . append ( f l o a t ( match . group ( 3 ) ) )

in l ine mm . append ( f l o a t ( match . group ( 4 ) ) )

91



a c q t i m e m s . append ( i n t ( match . group ( 5 ) ) )

# r e t u r n s a d i c t i o n a r y wi th a b s o l u t e p a t h s and

measurements d e t a i l s

r e t u r n { ’ pa th ’ : f i l e N a m e s [ 0 ] i f l e n ( f i l e N a m s )==1 e l s e

f i l eNames ,

’ energy MeV ’ : energy MeV [ 0 ] i f l e n ( energy MeV )==1

e l s e energy MeV ,

’ depth mm ’ : depth mm [ 0 ] i f l e n ( depth mm )==1 e l s e

depth mm ,

’ c ros s l i ne mm ’ : c r o s s l i n e m m [ 0 ] i f l e n (

c r o s s l i n e m m )==1 e l s e c ros s l i ne mm ,

’ in l ine mm ’ : in l ine mm [ 0 ] i f l e n ( in l ine mm )==1

e l s e in l ine mm ,

’ acq t ime ms ’ : a c q t i m e m s [ 0 ] i f l e n ( a c q t i m e m s )

==1 e l s e a c q t i m e m s }

d e f r e a d c l u s t e r s e l i s t ( p a t h s ,

s e n s o r s i z e m m = np . a r r a y ( [ 1 4 . 0 8 ,

1 4 . 0 8 , 0 . 3 ] ) ,

s e n s o r s i z e p x = np . a r r a y ( [ 2 5 6 , 256 ,

1 ] ) ,

f i l t e r s = True ) :

P a r a m e t e r s :
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p a t h s ( s t r o r l i s t )

s e n s o r s i z e m m ( a r r a y )

s e n s o r s i z e p x ( a r r a y )

’ ’ ’

# computes d e t e c t o r p a r a m e t e r s

p i x e l s i z e u m = ( s e n s o r s i z e m m [ 0 ] / s e n s o r s i z e p x [ 0 ] ) *1

e3

s e n s o r t h i c k u m = s e n s o r s i z e m m [ 2 ] * 1 e3

d a t a = [ ]

# r e a d s raw c l u s t e r l i s t s and computes c l u s t e r

p a r a m e t e r s

f o r p a t h i n p a t h s :

d a t a s i n g l e=pd . r e a d c s v (

pa th , sep = ’ ; ’ ,

s k i p r o w s =2 ,

names = [ ’ De t ec t o r ID ’ , ’ EventID ’ , ’x mm ’ , ’y mm

’ , ’ Edep keV ’ , ’ t n s ’ , ’ F lags ’ , ’ S i ze px ’ , ’

Height keV ’ ,

’ BorderP ixCount ’ , ’ Roundness ’ , ’

Ang le rad ’ , ’ L i n e a r i t y ’ , ’ Length px

’ , ’ Width px ’ ] )
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d i c t i o n a r y = { t : i f o r i , t i n enumera t e ( np . s o r t (

d a t a s i n g l e . t n s . un iqu e ( ) ) ) }

d a t a s i n g l e [ ’ f rame no ’ ] = d a t a s i n g l e [ ’ t n s ’ ] . a p p l y (

lambda x : d i c t i o n a r y [ x ] )

d a t a s i n g l e [ ’ CenterX mm ’]= − ( d a t a s i n g l e . x mm−

s e n s o r s i z e m m [ 0 ] / 2 )

d a t a s i n g l e [ ’ CenterY mm ’ ]= ( d a t a s i n g l e . y mm−

s e n s o r s i z e m m [ 1 ] / 2 )

d a t a s i n g l e [ ’ Length um ’ ] = d a t a s i n g l e . Leng th px *

p i x e l s i z e u m

d a t a s i n g l e [ ’ Length3D um ’ ] = np . s q r t ( d a t a s i n g l e .

Length um **2 + ( s e n s o r t h i c k u m ) **2)

d a t a s i n g l e = d a t a s i n g l e [ d a t a s i n g l e [ ’ Length3D um ’ ]

> 0]

d a t a s i n g l e [ ’ Width um ’ ] = d a t a s i n g l e . Width px *

p i x e l s i z e u m

d a t a s i n g l e [ ’ Be ta deg ’ ] = np . d e g r e e s ( np . a r c t a n (

d a t a s i n g l e . Length um / ( s e n s o r s i z e m m [ 2 ] * 1 e3 ) ) )

d a t a s i n g l e [ ’ LET keVum ’ ] = d a t a s i n g l e . Edep keV /

d a t a s i n g l e . Length3D um

d a t a s i n g l e = d a t a s i n g l e [ d a t a s i n g l e [ ’ LET keVum ’ ] >

0]

94



d a t a s i n g l e [ ’ LETAq keVum ’ ] = 1 0 * * ( ( −0 . 2 9 0 2 ) + 1 .025

* ( np . log10 ( d a t a s i n g l e . LET keVum ) ) ) # Benton , E .

R , 2010

d a t a s i n g l e [ ’ EperPx keV ’ ] = d a t a s i n g l e [ ’ Edep keV ’ ]

/ d a t a s i n g l e [ ’ S i ze px ’ ]

i f l e n ( d a t a ) ==1:

d a t a=d a t a [ 0 ]

e l s e :

d a t a=pd . c o n c a t ( d a t a )

r e t u r n d a t a

d e f r e c o g n i z e c l u s t e r s ( c l u s t e r s e l i s t ,

’ ’ ’

P a r m e t e r s :

c l u s t e r s e l i s t ( DataFrame )

d i s p l a y i n f o ( boo l )

’ ’ ’

c l u s t e r s e l i s t [ ’ Edep px ’ ] = c l u s t e r s e l i s t [ ’ Edep keV ’ ] /

c l u s t e r s e l i s t [ ’ S i ze px ’ ]
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EpxCut Ph = 35

RoundCut Ph = 0 . 4 5

EpxCut Pr = 35

S i z e C u t P r = 7

S i z e C u t E l = 2

EpxCut El = 35

H e i g h t C u t E l = 100

c l u s t e r s e l i s t . l o c [ ( c l u s t e r s e l i s t [ ’ Roundness ’ ] >0 . 7 5 ) &

( c l u s t e r s e l i s t [ ’ S i ze px ’] > S i z e C u t E l ) & (

c l u s t e r s e l i s t [ ’ S i ze px ’ ] <8) & ( c l u s t e r s e l i s t [ ’

Edep px ’] < EpxCut El ) & ( c l u s t e r s e l i s t [ ’ Height keV ’] <

H e i g h t C u t E l ) , ’ Type 3 ’ ] = 1

c l u s t e r s e l i s t . l o c [ ( c l u s t e r s e l i s t [ ’ S i ze px ’] > S i z e C u t E l

) & ( c l u s t e r s e l i s t [ ’ Edep px ’] < EpxCut El ) & (

c l u s t e r s e l i s t [ ’ Height keV ’] < H e i g h t C u t E l ) , ’ Type 3 ’ ]

= 1

f o r x , i d x i n enumera t e ( c l u s t e r s e l i s t ) :

c l u s t e r s e l i s t [ i d x ] = c l u s t e r s e l i s t [ i d x ] . f i l l n a ( 0 )

c l u s t e r s e l i s t [ ’ rec sum ’ ] = c l u s t e r s e l i s t [ ’ Type 1 ’ ] +

c l u s t e r s e l i s t [ ’ Type 2 ’ ] + c l u s t e r s e l i s t [ ’ Type 3 ’ ]
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c l u s t e r s e l i s t . l o c [ ( c l u s t e r s e l i s t [ ’ Type 1 ’ ] == 1) &

( c l u s t e r s e l i s t [ ’ Type ’ ] = ’ photon ’

c l u s t e r s e l i s t . l o c [ ( c l u s t e r s e l i s t [ ’ Type 2 ’ ] == 1) &

( c l u s t e r s e l i s t [ ’ Type ’ ] = ’ p ro ton ’

c l u s t e r s e l i s t . l o c [ ( c l u s t e r s e l i s t [ ’ Type 3 ’ ] == 1) &

( c l u s t e r s e l i s t [ ’ Type ’ ] = ’ e l e c t r o n ’

d e f g e t h i s t o g r a m ( da ta ,

b i n s=np . a r a n g e ( 0 , 5 + 0 . 0 1 , 0 . 0 1 ) ,

k ind= ’mean ’ ) :

’ ’ ’

P a r a m e t e r s :

d a t a ( i t e r a b l e o b j e c t )

b i n s ( a r r a y )

k ind ( s t r ) : ’ sum ’ , ’ mean ’ , ’ s t d ’ , ’ median ’ , ’ min ’ o r

’max ’

’ ’ ’

# c o n v e r t t o DataFrame

i f n o t i s i n s t a n c e ( da t a , pd . DataFrame ) :

d a t a = pd . DataFrame ( d a t a )

# c r e a t e s a h i s t o g r a m f o r one s e t o f d a t a

i f d a t a . shape [ 1 ] == 1 :
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h i s t = l i s t ( np . h i s t o g r a m ( d a t a . i l o c [ : , 0 ] , b i n s=b i n s )

)

# c r e a t e s h i s t o g r a m i f two s e t s o f d a t a a r e p r o v i d e d

d e f c u t f r a m e ( c l u s t e r s e l i s t ,

f rame size mm ,

s e n s o r s i z e m m = np . a r r a y ( [ 1 4 . 0 8 , 1 4 . 0 8 , 0 . 3 ] )

) :

’ ’ ’

P a r a m e t e r s :

c l u s t e r s e l i s t ( DataFrame )

f rame s ize mm ( number )

s e n s o r s i z e m m ( a r r a y )

’ ’ ’

r e t u r n c l u s t e r s e l i s t [ ˜ ( ( c l u s t e r s e l i s t . CenterX mm<(−

s e n s o r s i z e m m [ 0 ] /2+ f r ame s ize mm ) ) | ( c l u s t e r s e l i s t

. CenterX mm >( s e n s o r s i z e m m [ 0 ] /2 − f r ame s ize mm ) ) | (

c l u s t e r s e l i s t . CenterY mm<(− s e n s o r s i z e m m [ 1 ] /2+

f r ame s ize mm ) ) | ( c l u s t e r s e l i s t . CenterY mm >(

s e n s o r s i z e m m [ 1 ] /2 − f r ame s ize mm ) ) ) ]

d e f p l o t e d e p m a p s ( c l u s t e r s e l i s t p a t h ,
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c l u s t e r s l o g a l l p a t h ,

f r a m e r a n g e = [ 0 , 1 0 0 ] ,

s e n s o r s i z e m m =14 .08 ,

s e n s o r s i z e p x =256 ,

cond pos mm =0 .1 ,

f i g s i z e = [ 2 0 , 8 ] ,

s h o w f i g u r e=True ,

s a v e f i g u r e=F a l s e ,

o u t p u t f i l e p a t h = ’EdepMap . pdf ’ , ) :

c l u s t e r s e l i s t = r e a d c l u s t e r s e l i s t ( c l u s t e r s e l i s t p a t h

)

r e c o g n i z e c l u s t e r s ( c l u s t e r s e l i s t , d i s p l a y i n f o=F a l s e )

i f c l u s t e r s e l i s t . i s n u l l ( ) . v a l u e s . any ( ) :

c l u s t e r s e l i s t . f i l l n a ( v a l u e = ’None ’ , i n p l a c e=True )

e l s e :

p a s s

i m g s p r o t o n = [ ]

i m g s p h o t o n = [ ]

i m g s e l e c t r o n = [ ]

c l u s t e r d a t a = [ ]

p i x e l s i z e m m=s e n s o r s i z e m m / s e n s o r s i z e p x

a n a l y s e d c l u s t e r s =0
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m a t c h e d c l u s t e r s=0

match dup=0

match non=0

wi th open ( c l u s t e r s l o g a l l p a t h ) a s fp :

f o r cn t , l i n e i n enumera t e ( fp ) :

# r e a d f rame number

i f r e . f i n d a l l ( r ’ ˆ Frame ’ , l i n e ) :

f r ame no= i n t ( r e . f i n d a l l ( r ’ ˆ Frame ( \ d+) ’ ,

l i n e ) [ 0 ] )

c o n t i n u e

i f f rame no < f r a m e r a n g e [ 0 ] :

c o n t i n u e

i f f rame no >= f r a m e r a n g e [ 1 ] :

b r e a k

i f l i n e == ’\n ’ :

c o n t i n u e

d a t a l i n e= r e . f i n d a l l ( r ’ \ [ ( \ d+) , ( \ d+) , ( \ d+ .\ d+) ,\

d+\ ] ’ , l i n e . r e p l a c e ( ’ ’ , ’ ’ ) )

d a t a l i n e=np . a r r a y ( d a t a l i n e ) . a s t y p e ( ’ f l o a t ’ )

a n a l y s e d c l u s t e r s+=1

# c r e a t e img f o r a s i n g l e c l u s t e r

img=np . z e r o s ( [ s e n s o r s i z e p x , s e n s o r s i z e p x ] )

img [ d a t a l i n e [ : , 0 ] . a s t y p e ( i n t ) , d a t a l i n e [ : , 1 ] .

a s t y p e ( i n t ) ]= d a t a l i n e [ : , 2 ]
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# c a l c u l a t e morphology

mass cent re mm=np . a r r a y ( ndimage . measurements .

c e n t e r o f m a s s ( img ) ) * p i x e l s i z e m m

# g e n e r a t e c l u s t e r d a t a

s i n g l e c l u s t e r i n f o=pd . DataFrame ( { ’ x mm ’ :

mass cent re mm [ 0 ] , ’y mm ’ : mass cent re mm [ 1 ] ,

’ Edep keV ’ : [ d a t a l i n e

[ : , 2 ] . sum ( ) ] ,

’ S i ze px ’ : [ d a t a l i n e

[ : , 2 ] . shape [ 0 ] ] ,

’ Height keV ’ : [

d a t a l i n e [ : , 2 ] . max

( ) ] ,

’ f rame no ’ : [ f r ame no

] } )
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c l u s t e r s e l i s t r o w= c l u s t e r s e l i s t . l o c [ (

c l u s t e r s e l i s t . x mm>=( mass cen t re mm [0] −

cond pos mm ) ) & ( c l u s t e r s e l i s t . x mm<=(

mass cen t re mm [0]+ cond pos mm ) ) & (

c l u s t e r s e l i s t . y mm>=( mass cen t re mm [1] −

cond pos mm ) ) & ( c l u s t e r s e l i s t . y mm<=(

mass cen t re mm [1]+ cond pos mm ) ) & (

c l u s t e r s e l i s t . S i z e p x== d a t a l i n e [ : , 2 ] . shape

[ 0 ] ) & ( c l u s t e r s e l i s t . f r ame no==( f r ame no +1)

) ]

i f c l u s t e r s e l i s t r o w . shape [ 0 ] >1 :

match dup+=1

# p r i n t ( ’ d u p i c a t e ( c l u s t e r s e l i s t r o w shape :

{ : d } , f r ame no : { : d } ) ’ . f o r m a t ( c l u s t e r s e l i s t r o w . shape

[ 0 ] , f r ame no ) )

c o n t i n u e

i f c l u s t e r s e l i s t r o w . shape [0 ]==0 :

match non+=1

# p r i n t ( ’ empty ( c l u s t e r s e l i s t r o w shape : { : d

} , f r ame no : { : d } ) ’ . f o r m a t ( c l u s t e r s e l i s t r o w . shape [ 0 ] ,

f r ame no ) )

c o n t i n u e

m a t c h e d c l u s t e r s+=1

# c o n t i n u e when no t y p e i n e l i s t
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i f c l u s t e r s e l i s t r o w . Type . v a l u e s [0]== ’ None ’ :

c o n t i n u e

# a s s i g n t o g ro up s o f t y p e s

i f c l u s t e r s e l i s t r o w . Type . v a l u e s [0]== ’ p ro ton

’ :

i m g s p r o t o n . append ( img )

e l i f c l u s t e r s e l i s t r o w . Type . v a l u e s [0]== ’ photon

’ :

i m g s p h o t o n . append ( img )

e l i f c l u s t e r s e l i s t r o w . Type . v a l u e s [0]== ’

e l e c t r o n ’ :

i m g s e l e c t r o n . append ( img )

s i n g l e c l u s t e r i n f o= s i n g l e c l u s t e r i n f o . j o i n (

c l u s t e r s e l i s t r o w . r e s e t i n d e x ( ) , l s u f f i x = ’

c l u ’ )

c l u s t e r d a t a . append ( s i n g l e c l u s t e r i n f o )

c l u s t e r d a t a=pd . c o n c a t ( c l u s t e r d a t a ) . r e s e t i n d e x ( ) . d rop (

columns= ’ index ’ )

gs = g r i d s p e c . Gr idSpec ( 4 , 1 )

f i g = p l t . f i g u r e ( f i g s i z e = (15 , 10) )

nom energy mev = 150
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d i r e c t i o n = ’ Deep ’ # beam p r o f i l e d i r e c t i o n ( i t i s on ly f o r

our c o n v e n i e n c e when we a n a l y z e t h e beam p r o f i l e s )

depth mm = [ 3 0 , 120 , 157 , 161]

d i s t ance mm = 37

r a n g e s h i f t e r = F a l s e # beam r a n g e m o d u l a t o r

s e n s o r t h i c k u m = 300

i = 0

i 1 = 1

ax = f i g . a d d s u b p l o t ( gs [ i ] )

# b i n s=np . l i n s p a c e ( 0 . 1 , 1 0 , 1 0 0 ) # f o r x− a x i s a s l i n e a r

s c a l e

b i n s=np . l o g s p a c e ( −2 ,2 ,200) # f o r x− a x i s a s l o g s c a l e

# p l t . f i g u r e ( d p i =1200)

### Sim . ###

# sim − norm . f a c t o r

p r im no =3500000000 # t h e number o f p r i m a r y p r o t o n s ( from

t h e s p r e a d s h e e t )

norm sim=1E8 / pr im no # norm . f a c t o r f o r sim . d a t a

# sim − p l o t p r o t o n s

h i s t = g e t h i s t o g r a m ( s i m d a t a [ s i m d a t a . P a r t i c l e N a m e==’

p ro ton ’ ] . LETAq keVum , b i n s=b i n s )
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ax . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] * norm sim , c o l o r = ’ t a b : cyan ’ ,

d r a w s t y l e =” d e f a u l t ” , l a b e l = ’SIM\ t $ p ˆ+$ ( { : . 2 f }%) ’ .

f o r m a t ( ( s i m d a t a [ ’ P a r t i c l eN am e ’]== ’ p ro ton ’ ) . sum ( ) /

s i m d a t a . shape [ 0 ] * 1 0 0 ) )

### AI ###

# AI − norm . f a c t o r

AIno rm pro ton no= s i m d a t a [ s i m d a t a . P a r t i c l e N a m e==’ p ro ton

’ ] . shape [ 0 ] * norm sim # n o r m a l i z e d number o f pr im .

p r o t o n s

AInorm tpx=AInorm pro ton no / A I t p x d a t a [ A I t p x d a t a . Type

==’ p ro ton ’ ] . shape [ 0 ] # norm . f a c t o r f o r measurement

d a t a

# AI − p l o t p r o t o n s

h i s t = g e t h i s t o g r a m ( A I t p x d a t a [ A I t p x d a t a . Type==’ p ro ton

’ ] . LETAq keVum , b i n s=b i n s )

ax . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] * AInorm tpx , c o l o r = ’ t a b : b lue ’ ,

d r a w s t y l e =” d e f a u l t ” )

h i s t u n c e r = g e t h i s t o g r a m ( t p x d a t a [ t p x d a t a . Type==’

p ro ton ’ ] . LETAq keVum UNCER , b i n s=b i n s )
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ax . f i l l b e t w e e n ( h i s t [ 0 ] , h i s t [ 1 ] * AInorm tpx+ t p x d a t a .

LETAq keVum UNCER [ i ] , h i s t [ 1 ] * AInorm tpx− t p x d a t a .

LETAq keVum UNCER [ i ] , c o l o r = ’ dimgray ’ )

ax . f i l l b e t w e e n ( h i s t [ 0 ] , h i s t [1] − A I t p x d a t a [ A I t p x d a t a .

Type==’ p ro ton ’ ] . U n c e r t a i t y , h i s t [1 ]+ A I t p x d a t a [

A I t p x d a t a . Type==’ p ro ton ’ ] . U n c e r t a i t y , c o l o r = ’ grey ’ ,

a l p h a =0 . 3 )

i = i+1

ax . s e t y s c a l e ( ’ log ’ ) # s e t y− a x i s a s l o g s c a l e

ax . s e t x s c a l e ( ’ log ’ ) # s e t x− a x i s a s l o g s c a l e

ax . s e t y l i m ( [ 1 e0 , 1 e4 ] ) # s e t y− a x i s r a n g e

ax . s e t x l i m ( [ 1 e−1 ,2 e1 ] ) # s e t x− a x i s range , s h o u l d

c o r r e s p o n d t o b i n n i n g

p l t . g r i d ( True , which=” bo th ” , l i n e s t y l e = ’−− ’ , a l p h a =0 . 4 )

f i g . t e x t ( 0 . 5 , 0 . 0 4 , ’LET i n w a t e r [ $keV / \mu m$] ’ , ha= ’ c e n t e r

’ , va= ’ c e n t e r ’ , f o n t s i z e =12)

f i g . t e x t ( 0 . 0 6 , 0 . 5 , ’ Counts norm . t o 10$ ˆ8 $ p r o t o n s [ − ] ’ , ha

= ’ c e n t e r ’ , va= ’ c e n t e r ’ , r o t a t i o n = ’ v e r t i c a l ’ , f o n t s i z e =12)

f i g . s a v e f i g ( ’ r e s u l t . pdf ’ , d p i =700)

p l t . show ( )

4 Particle Identification Analysis Spectra Results
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i m p o r t numpy as np

i m p o r t pandas as pd

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t g lob as g lob

from s k l e a r n . n e i g h b o r s i m p o r t K e r n e l D e n s i t y

i m p o r t m a t p l o t l i b . g r i d s p e c as g r i d s p e c

# m a t p l o t l i b i n l i n e

# s u b p l o t

gs = g r i d s p e c . Gr idSpec ( 4 , 1 )

f i g = p l t . f i g u r e ( f i g s i z e = (10 , 10) )

d e f k e r n e l a p p r o x ( b ins , mu , sigma , p o i n t s =1000) :

g a u s s = np . random . normal (mu , sigma , p o i n t s )

k e r n e l , b i n e d g e = np . h i s t o g r a m ( gauss , b i n s = b i n s )

r e t u r n [ b inedge , k e r n e l / p o i n t s ]

d e f g e t k e r n e l h i s t o g r a m ( da t a , b in s , n s d =3) :

i f n o t i s i n s t a n c e ( da t a , pd . DataFrame ) :

d a t a = pd . DataFrame ( d a t a )

h i s t u=np . z e r o s ( l e n ( b i n s ) −1)

h i s t l =np . z e r o s ( l e n ( b i n s ) −1)

h i s t m=np . z e r o s ( l e n ( b i n s ) −1)

f o r i i n d a t a . i t e r t u p l e s ( i n d e x=F a l s e ) :

mu= i [ d a t a . columns . g e t l o c ( ’ LETAq keVum ’ ) ]

s igma= i [ d a t a . columns . g e t l o c ( ’ LETAq keVum UNCER ’ ) ] / 3

# assume t h i s d i s t a n c e c o v e r s 3 sd r a n g e
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binedge , k e r n e l=k e r n e l a p p r o x ( b ins , mu , s igma )

s i g s=np . s q r t ( i [ d a t a . columns . g e t l o c ( ’ U n c e r t a i n t y ’ )

] / 1 0 0 )

h i s t u= h i s t u+k e r n e l *(1+ n s d * s i g s )

h i s t l = h i s t l +k e r n e l *(1− n s d * s i g s )

h i s t m=h i s t m+k e r n e l

b i n c e n = b i n e d g e [ : −1 ] + np . d i f f ( b i n s ) / 2

r e t u r n [ b incen , h i s t u , h i s t l , h i s t m ]

d e f g e t h i s t o g r a m ( da ta , b i n s=np . a r a n g e ( 0 , 5 + 0 . 0 1 , 0 . 0 1 ) ) :

i f n o t i s i n s t a n c e ( da t a , pd . DataFrame ) :

d a t a = pd . DataFrame ( d a t a )

h i s t = l i s t ( np . h i s t o g r a m ( d a t a . i l o c [ : , 0 ] , b i n s = b i n s ) )

h i s t [ 1 ] = h i s t [ 1 ] [ : − 1 ] + np . d i f f ( b i n s ) / 2

r e t u r n [ h i s t [ 1 ] , h i s t [ 0 ] ]

# params

nom energy mev = 150

d i r e c t i o n = ’ Deep ’ # beam p r o f i l e d i r e c t i o n ( i t i s on ly f o r

our c o n v e n i e n c e when we a n a l y z e t h e beam p r o f i l e s )

depth mm = [ 3 0 , 120 , 157 , 161]
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d i s t ance mm = 37

r a n g e s h i f t e r = F a l s e # beam r a n g e m o d u l a t o r

s e n s o r t h i c k u m = 300

i = 0

i 1 = 1

f o r d e p t h i n depth mm :

# r e a d meas . d a t a

# p r i n t ( g lob . g lob ( ’ . / t p x d a t a /E { : d } D { : 0 6 . 2 f } C * { : 0 6 . 2 f }

I * . csv ’ . f o r m a t ( nom energy mev , depth mm [ 0 ] ,

d i s t ance mm ) ) [ 0 ] )

t p x d a t a=pd . r e a d c s v ( g lob . g lob ( ’ . / t p x d a t a /E { : d } D { : 0 6 . 2

f } C * { : 0 6 . 2 f } I * . csv ’ . f o r m a t ( nom energy mev , depth mm

[ 0 ] , d i s t ance mm ) ) [ 0 ] )

# r e a d sim . d a t a

s i m d a t a=pd . r e a d c s v ( g lob . g lob ( ’ . / s i m d a t a /E { : d } D { : 0 6 . 2

f } C * { : 0 6 . 2 f } I +0 0 0 . 0 0 . csv ’ . f o r m a t ( nom energy mev ,

depth mm [ 0 ] , d i s t ance mm ) ) [ 0 ] )

# r e a d AI d a t a

A I t p x d a t a=pd . r e a d c s v ( ’ . / a i d a t a /AITPX { : d }MeV Deep

{ : 0 6 . 2 f }mm { : 0 6 . 2 f }mm. csv ’ . f o r m a t ( nom energy mev ,

depth mm [ 0 ] , d i s t ance mm ) )

# MC sim . − LET i n w a t e r
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s i m d a t a = s i m d a t a [ s i m d a t a [ ’ Edep keV ’ ] >0]

s i m d a t a [ ’ LETAq keVum ’ ] = 1 0 * * ( ( −0 . 2 9 0 2 ) + 1 .025 * ( np .

log10 ( s i m d a t a . LET keVum ) ) ) # Benton , E . R , 2010

ax = f i g . a d d s u b p l o t ( gs [ i ] )

b i n s=np . l o g s p a c e ( −2 ,2 ,200) # f o r x− a x i s a s l o g s c a l e

### Sim . ###

# sim − norm . f a c t o r

p r im no =3500000000 # t h e number o f p r i m a r y p r o t o n s ( from

t h e s p r e a d s h e e t )

norm sim=1E8 / pr im no # norm . f a c t o r f o r sim . d a t a

# sim − p l o t p r o t o n s

h i s t = g e t h i s t o g r a m ( s i m d a t a [ s i m d a t a . P a r t i c l e N a m e==’

p ro ton ’ ] . LETAq keVum , b i n s=b i n s )

ax . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] * norm sim , c o l o r = ’ t a b : cyan ’ ,

d r a w s t y l e =” d e f a u l t ” , l a b e l = ’ S i m u l a t i o n s ’ )

### AI ###

# AI − norm . f a c t o r

AIno rm pro ton no= s i m d a t a [ s i m d a t a . P a r t i c l e N a m e==’ p ro ton

’ ] . shape [ 0 ] * norm sim # n o r m a l i z e d number o f pr im .

p r o t o n s
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AInorm tpx=AInorm pro ton no / A I t p x d a t a [ A I t p x d a t a . Type

==’ p ro ton ’ ] . shape [ 0 ] # norm . f a c t o r f o r measurement

d a t a

# AI − p l o t p r o t o n s

h i s t = g e t h i s t o g r a m ( A I t p x d a t a [ A I t p x d a t a . Type==’ p ro ton

’ ] . LETAq keVum , b i n s=b i n s )

ax . p l o t ( h i s t [ 0 ] , h i s t [ 1 ] * AInorm tpx , c o l o r = ’ t a b : b lue ’ ,

d r a w s t y l e =” d e f a u l t ” , l a b e l = ’ Measurement ’ )

# t p x d a t a A I= t p x d a t a . j o i n ( A I t p x d a t a . U n c e r t a i n t y )

t p x d a t a A I=A I t p x d a t a . j o i n ( t p x d a t a . LETAq keVum UNCER )

b incen , h i s t u n c e r u , h i s t u n c e r l , h i s t u n c e r m =

g e t k e r n e l h i s t o g r a m ( t p x d a t a A I [ t p x d a t a A I . Type==’

p ro ton ’ ] , b in s , 3 )

# ax . p l o t ( b incen , h i s t u n c e r m * AInorm tpx , c o l o r = ’ t a b :

red ’ , l i n e w i d t h =0 .5 , d r a w s t y l e =” d e f a u l t ” , l a b e l = ’

Measurement U n c e r t a i n ’ )

ax . f i l l b e t w e e n ( b incen , h i s t u n c e r l * AInorm tpx ,

h i s t u n c e r u * AInorm tpx , c o l o r = ’ grey ’ , a l p h a =0 . 3 )

############

i = i+1

ax . s e t y s c a l e ( ’ log ’ ) # s e t y− a x i s a s l o g s c a l e
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ax . s e t x s c a l e ( ’ log ’ ) # s e t x− a x i s a s l o g s c a l e

ax . s e t y l i m ( [ 1 e0 , 1 e4 ] ) # s e t y− a x i s r a n g e

ax . s e t x l i m ( [ 3 e −1 ,1 .5 e1 ] ) # s e t x− a x i s range , s h o u l d

c o r r e s p o n d t o b i n n i n g

p l t . g r i d ( True , which=” bo th ” , l i n e s t y l e = ’−− ’ , a l p h a =0 . 4 )

ax . s e t y l a b e l ( ’ Counts norm . t o \n 10$ ˆ8 $ p r o t o n s [ − ] ’ )

ax . s e t x l a b e l ( ’LET i n w a t e r [ $keV / \mu m$ ] ’ )

# f i g . s u p y l a b e l ( ’ Counts norm . t o 10$ ˆ8 $ p r o t o n s [ − ] ’ )

# f i g . s u p x l a b e l ( ’LET i n w a t e r [ $keV / \mu m$ ] ’ )

# f i g . s a v e f i g ( ’ long 37mm . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )

112



BIBLIOGRAPHY

[1] E. Alpaydın, Introduction to Machine Learning. MIT.

[2] R. D. Reed and R. J. Marks, Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. MIT Press, 1999.

[3] B. Vandeginste, D. Massart, L. Buydens, S. De Jong, P. Lewi, and J. Smeyers-
Verbeke, “Chapter 44 - artificial neural networks,” in Handbook of Chemometrics
and Qualimetrics: Part B, ser. Data Handling in Science and Technology,
B. Vandeginste, D. Massart, L. Buydens, S. De Jong, P. Lewi, and J. Smeyers-
Verbeke, Eds. Elsevier, 1998, vol. 20, pp. 649–699. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0922348798800543

[4] S. Vieira, W. Pinaya, and A. Mechelli, “Using deep learning to investigate the
neuroimaging correlates of psychiatric and neurological disorders: Methods and
applications,” Neuroscience Biobehavioral Reviews, vol. 74, 01 2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84 –
90, 2012.

[6] M. Xiao, Y. Wu, G. Zuo, S. Fan, H. Yu, Z. Shaikh, and Z. Wen, “Addressing
overfitting problem in deep learning-based solutions for next generation data-
driven networks,” Wireless Communications and Mobile Computing, vol. 2021,
pp. 1–10, 08 2021.

[7] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medical
image classification for disease diagnosis,” Journal of Big Data, vol. 6, no. 1, pp.
1–18, 2019.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[11] M. W. Browne, “Cross-validation methods,” Journal of Mathematical Psychology,
vol. 44, no. 1, pp. 108–132, 2000. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0022249699912798

113



[12] S. C. Hora, “Aleatory and epistemic uncertainty in probability elicitation with an
example from hazardous waste management,” Reliability Engineering System
Safety, vol. 54, no. 2, pp. 217–223, 1996, treatment of Aleatory and Epistemic
Uncertainty. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0951832096000774

[13] E. Zio and N. Pedroni, Uncertainty characterization in risk analysis for decision-
making practice. FonCSI, 2012.
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