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Classification of Cosmological Models in Einstein’s General Theory of Gravity

Te Ha, M.S.

Chairperson: Anzhong Wang, Ph.D.

In this thesis, I first review the fundamentals of Hot Big Bang cosmology, the

observational cosmology and the late accelerating universe. Then I systematically

study the evolution of the Friedmann-Robertson-Walker (FRW) universe with a

cosmological constant Λ and a perfect fluid that has the equation of state p = wρ, and

classify all the solutions into various cases, where p and ρ are the pressure and energy

density of the fluid, and w is a constant. In each case the main properties of the

evolution of the universe are studied in detail, including the periods of deceleration

or acceleration, and the existence of big bang, big crunch, and big rip singularities.

Finally, I mention some future work along the direction laid down in this thesis.
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CHAPTER ONE

Hot Big Bang Cosmology

Hot Big Bang Cosmology is one hypothesis for the origin of the universe: At

the very beginning, the universe was very small, the size almost less than a point

nucleus, and was known as the singularity. However, it had great heat energy,

and the heat overflowed the singularity from the extremely hot moment, so that

finally the explosion happened, which is called the Big Bang. This energy became

the fundamental particles, and later these particles formed the substances, energy,

space and time in the universe. So far the Big Bang model is one of the most

convincing theories about the origin of the universe. However, the Big Bang theory

is still lacking support from a large number of experiments, and we don’t know the

picture before the explosion.

In this chapter, some fundamental definitions and basic physical quantities

will be introduced. The Hot Big Bang Cosmology contains three basic principles .

Then we will summarize the main observational evidence to support this so-called

standard cosmological model. Afterwards, we shall introduce the Late Acceleration

of the Universe.

1.1 Relativistic Cosmology

In order to study the universe, we have to find a model to illustrate it. The

easiest way is to ignore all the details like the solar system, the Milky Way, the

local cluster of galaxy and so on. Then we will use a first-order ordinary differential

equation called Friedmann’s equation. The solutions of it are the Friedmann models

and can be consider as the standard solutions of relativistic cosmology. We use this

to be the basis of this part.
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Relativistic Cosmology is based on three assumptions: (1) Cosmological prin-

ciple; (2) Weyl’s postulate; and (3) Einstein’s general relativity. We will introduce

these three important principles in the following sections.

1.1.1 Cosmological Principle

Cosmology is based on the cosmological principle, and it is an assumption

about the large scale properties of the universe. We may illustrate it in this way:

All points in space ought to experience the same physical development, correlated in

time in such a way that all points at a certain distance from an observer appear to be

at the same stage of development [1]. Or in the more concise way: On large spatial

scales, the universe is homogeneous and isotropic. To study the cosmology, we have

to believe that the place which we occupy in the universe is in no way special.

This leads to the definitions of homogenous and isotropic. Homogeneity is the

statement that the universe looks the same at each point. We define that there is a

cosmic time t, and t is constant in each of the spacelike slices, so each slice has no

privileged points. Isotropy states that the universe looks the same in all directions.

If we keep using the slices we defined, we can easily see that a manifold which has

no privileged directions about a point is called isotropic and it should be spherically

symmetric about that point.

Before analyzing the evolution of the universe by the cosmological principle,

we have to introduce some physical terms.

We use the metric to determine distances and define the lengths of vectors.

In four dimensions of space-time, the infinitesimal interval between two neighboring

points xa and xa + dxa is defined by

ds2 = gµνdxµdxν , (1.1)

where µ, ν = 0, 1, 2, 3, and dx0 = dt. Eq.(1.1) is called line element, while gµν is

called the metric or the first fundamental form.
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In the Minkowski space-time, we denote the metric by ηµν , where

ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (1.2)

Now we can make the connection between gµν and ηµν . In special relativity, it is

obvious gµν = ηµν . But in the expanding universe, any two grid points move away

from each other by the scale factor a(t), i.e. if the physical distance between the two

points at some earlier time t is x, and the comoving distance today is x0, they are

related by the relation:

x = a(t)x0. (1.3)

From this idea, the metric of the Minkowski space-time should be changed to

gµν =




1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)




, (1.4)

which is called the Friedmann-Robertson-Walker(FRW) metric, where the three di-

mensional spatial space is flat.

Now we consider the properties of gµν [2]. First, we consider two three-

dimensional vectors
−→
A and

−→
B ; each of them has three component, Ai and Bi,

where i = 1, 2, 3. Then the dot product is

−→
A · −→B =

∑
AiBi ≡ AiBi. (1.5)

But in general relativity, each vector has four components, the fourth one is timelike.

We use 0 to stand for time while the indices 1,2,3 stand for the spatial parts. i.e.

Aµ = (A0, Ai), (1.6)
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where µ = 0, 1, 2, 3 and i = 1, 2, 3. Another main property of the four-dimensional

vector is the relation between upper and lower indices,

Aµ = gµνA
ν

Aµ = gµνAν . (1.7)

In this way, the four-momentum of a massless particle must vanish, i.e.

P 2 ≡ PµP
µ = gµνP

µP ν = 0. (1.8)

In addition, the metric can be used to raise and lower indices on tensors with an

arbitrary number of indices. i.e.

gµν = gµαgνβgαβ. (1.9)

Particularly when the α = ν, gµν = gµα, we find that

gνβgαβ = δν
α, (1.10)

where δν
α is the Kronecker delta, and when ν = α, δν

α = 1, when ν 6= α, δν
α = 0.

We define the Christoffel symbols of the first kind as

{ab, c} =
1

2
(∂bgac + ∂agbc − ∂cgab), (1.11)

and the Christoffel symbols of the second kind by

Γa
bc = gad{bc, d}. (1.12)

Then, we find

Γa
bc =

1

2
gad(∂bgdc + ∂cgdb − ∂dgbc). (1.13)

We can easily find that it is symmetric, i.e.

Γa
bc = Γa

cb. (1.14)
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Another important tensor is the Riemann tensor, which is defined as :

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed

Ra
bcd = gaeRebcd, (1.15)

The main properties of the Riemann tensor are:

Ra
bcd = −Ra

bdc

Ra
bcd + Ra

dbc + Ra
cdb = 0

Rabcd = −Rabdc = −Rbacd = Rcdab

Rabcd + Radbc + Racdb = 0. (1.16)

Then, the Ricci tensor is defined as:

Rab = Rc
acb = gcdRdacb, (1.17)

we can show that it is symmetric using Eq.(1.16). Based on this tensor, the Ricci

scalar R is defined as :

R = gabRab. (1.18)

Combining R and Rab, we can define a new tensor, the Einstein tensor :

Gab = Rab − 1

2
gabR, (1.19)

which satisfies the contracted Bianchi identities

∇bG
b

a ≡ 0. (1.20)

Up to now, we have introduced all the physical quantities to be used in this

thesis. In the following, we shall apply them to the FRW universe.

1.1.2 The Homogeneous and Isotropic FRW Universe

The metric given by Eq.(1.4) describes the flat FRW universe. This is a par-

ticular case in which the three-dimensional spatial space has a constant curvature.
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The most general three-dimensional spatial space with a constant curvature is char-

acterized by the line element,

dσ2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2), (1.21)

where k is a constant, which can be zero, positive, or negative. Without loss of gen-

erality, one can always set k = 0,±1. Then, embedding it into the four-dimensional

universe, it can be shown that the general metric in the FRW form,

ds2 = dt2 − a2(t)(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)). (1.22)

From the above expression, we can read off the metric gab, which can be written in

several equivalent forms:

gab =




1 0 0 0

0 − a2(t)
1−kr2 0 0

0 0 −a2(t)r2 0

0 0 0 −a2(t)r2 sin2 θ




, (1.23)

or

g00 = 1

g11 = − a2(t)

1− kr2

g22 = −a2(t)r2

g33 = −a2(t)r2 sin2 θ, (1.24)

from which we find

g00 = 1

g11 = −1− kr2

a2(t)

g22 = − 1

a2(t)r2

g33 = − 1

a2(t)r2 sin2 θ
. (1.25)
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Then, using the definition of Eq.(1.13), we find that the non-zero components of the

Christoffel symbols Γa
bc are given by

Γ0
11 = − aȧ

1− kr2

Γ0
22 = aȧr2

Γ0
33 = aȧr2 sin2 θ

Γ1
01 =

ȧ

a

Γ1
11 =

kr

1− kr2

Γ1
22 = (−1 + kr2)r

Γ1
33 = (−1 + kr2)r sin2 θ

Γ2
02 =

ȧ

a

Γ2
12 =

1

r

Γ2
33 = − sin θ cos θ

Γ3
03 =

ȧ

a

Γ3
13 =

1

r

Γ3
23 =

cos θ

sin θ
, (1.26)

where ȧ = da(t)/dt. Using the definition of the Riemann tensor Rabcd given by

Eq.(1.15), we find that its non-zero components are given by

R0101 =
aä

1− kr2

R0202 = aär2

R0303 = aär2 sin2 θ

R1212 =
r2a2(ȧ2 + k)

−1 + kr2

R1313 =
r2a2(ȧ2 + k) sin2 θ

−1 + kr2

R2323 = −a2r4(ȧ2 + k) sin2 θ, (1.27)
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where ä = d2a(t)/dt2. Similarly, it can be shown that Ra
bcd has the following non-

zero components

R0
101 =

aä

1− kr2

R0
202 = aär2

R0
303 = aär2 sin2 θ

R1
212 = r2(ȧ2 + k)

R1
313 = r2(ȧ2 + k) sin2 θ

R2
323 = r2(ȧ2 + k) sin2 θ, (1.28)

from which we find that the non-zero components of the Ricci tensor Rab are given

by

R00 = −3ä

a

R11 =
aä + 2ȧ2 + 2k

1− kr2

R22 = aär2 + 2ȧ2r2 + 2kr2

R33 = r2 sin2 θ(aä + 2ȧ2 + 2k), (1.29)

while from Eq.(1.18) we find the Ricci scalar is given by

R = −6(aä + ȧ2) + k

a2
. (1.30)

Finally, the non-zero components of the Einstein tensor read

G00 =
3(ȧ2 + k)

a2

G11 =
2aä + ȧ2 + k

−1 + kr2

G22 = −(2aär2 + ȧ2r2 + kr2)

G33 = −r2 sin2 θ(2aä + ȧ2 + k). (1.31)
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1.1.3 Weyl’s Postulate

In order to investigate the universe, in 1923 Hermann Weyl thought about the

apparent contradiction in applying a theory like General Relativity, that was set up

to be generally covariant, to one particular set of circumstances, that of describing

just one universe, our universe. In a universe that is expanding there seems to be a

preferred coordinate system, which is comoving with the background expansion flow.

Then, in the application of general relativity to a unique symmetrical system like

our universe, there must be underlying phenomenologically based postulates that

are formulated from local observations. Weyl reasoned that there was a privileged

class of observers that is comoving with the smeared out motion of the galaxies.

Then he proposed the so-called Weyl’s postulate:

The particles of the substratum lie in space-time on a congruence of timelike

geodesics diverging from a point in the finite or infinite past.

We can see that Weyl’s postulate stipulates that in a fluid cosmological model,

the world lines of the fluid particles, which act as the source of the gravitational field

and are often taken to model galaxies, should be hypersurfaces orthogonal to a family

of spatial hyperslices. This postulate says that there is only one geodesic passing

through each point of spacetime. Therefore, the matter at each point possesses

a unique velocity. We can easily see that the essence of Weyl’s postulate is the

substratum should be considered as a perfect fluid. Actually the galaxies do not

follow the postulated cosmological motion exactly, and there is random directional

motion of the galaxies, which is much smaller than the speed of light (one-thousandth

of the speed of light). In the global cosmological perspective, this velocity is smeared

out to be overall negligible and will be almost always nonrelativistic. From the

observation that the general motion of the universe is expanding, we can easily find

that Weyl’s postulate is seen to closely show the actual situation of the real universe

we live in.

9



Mathematically, Weyl’s postulate can be expressed as that the matter in our

universe can be described by a perfect fluid,

Tab = (ρ + p)uaub − pgab, (1.32)

where ρ and p denote, respectively, the energy density and pressure of the fluid,

and ua is its 4-velocity. In the co-moving frame, it is given by ua = δt
a. Since in

our universe there exist various matter fields such as non-relativistic matter, dark

matter, radiation, dark energy, and so on, ρ and p are the sum of these individual

fields

ρ =
∑

i

ρi, p =
∑

i

pi. (1.33)

For non-relativistic matter, including dark matter, we have pM = 0, while for

radiation we have pR = ρR/3. In general, p is a function of both ρ and T ,

p = p(ρ, T ), (1.34)

where T is the temperature of the universe. If we consider the case where T is a

constant, then the equation of state takes the form,

p = p(ρ). (1.35)

1.1.4 The Friedmann Equations

The relativistic cosmology is based on the Einstein theory of gravity, which

mathematically is expressed as

Gab = κTab + Λgab, (1.36)

where κ is a constant called the gravitational coupling constant, and in terms of the

Newtonian constant G and the speed of light given by

κ =
8πG

c4
.
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In this thesis, we use the relativistic units, so that c = 1, which leads to κ = 8πG.

Λ is called the cosmological constant, introduced first by Einstein in 1917 in order

to construct a static universe. Since

T00 = ρ,

Tij = pgij, (1.37)

inserting them, together with the expressions of Gab given by Eq.(1.31), into Eq.(1.36),

we find that in the present case there are only two independent equations, which

can be written as

H2 =
8πG

3
ρ− k

a2
+

Λ

3
, (1.38)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (1.39)

Combining Eqs.(1.38) and (1.39), we find that

ρ̇ + 3H(ρ + p) = 0, (1.40)

which represents the conservation law of the matter fields in the universe. Note that,

if we introduce ρΛ and pΛ via the relations,

ρΛ = −pΛ ≡ Λ

8πG
, (1.41)

the Friedmann equation (1.38) and the conservation law (1.39) can be written as

H2 =
8πG

3
ρtotal − k

a2
, (1.42)

ρ̇total + 3H (ρtotal + ptotal) = 0, (1.43)

where

ρtotal ≡ ρ + ρΛ, ptotal ≡ p + pΛ. (1.44)

It should be noted that Eq.(1.40) or (1.43) can be obtained directly from the

conservation law,

T b
a; b = 0. (1.45)
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1.2 Observational Cosmology

In this part, we will introduce the observational support to the relativistic

cosmology. Observational cosmology means one uses instruments like telescopes and

cosmic ray detectors to study the structure, evolution and origin of the universe.

There are three important pillars supporting the relativistic cosmology: (1) Ex-

panding universe; (2) Big Bang nucleosynthesis (BBN); and (3) Cosmic microwave

background (CMB). In the following we shall give a very brief introduction to each

of them.

1.2.1 Expanding Universe

The most important observational evidence is the expansion of the universe:

In 1929, Hubble observed that almost every galaxy in the universe appears to be

moving away from us. By using a plot of velocity versus estimated distance for a set

of many galaxies, the so-called Hubble diagram, Hubble found that they satisfy the

law [4]

~v = H0~r, (1.46)

where H0 is a constant, usually cased the Hubble’s constant, and ~v and ~r denote,

respectively, the recession velocity of a galaxy and its distance from us. The recession

velocity of an object was inferred from its redshift, which is basically the relativistic

Doppler effect applied to light waves. Because the galaxy has both absorption and

emission, if it is moving toward us, the light wave will get crowded, and the frequency

will be higher. This is known as blueshift. If it is receding, the light wave length is

stretched, and this is usually called the redshift. From the observation, we can see

that almost all the galaxies are receding from us, so the universe is expanding. The

redshift z is defined by,

z =
λobs − λem

λem

, (1.47)
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where λobs and λem are the observed and emitted wavelengths, respectively. If a

nearby object is receding at a speed v, then the redshift can be written as

z =
λobs − λem

λem

=

√
1 + v/c

1− v/c
− 1 ' v

c
. (1.48)

Since

~r = a(t)~x, (1.49)

we find that

1 + z =
λobs

λem

=
1

a
, (1.50)

where ~r is the real distance and ~x is the comoving distance. Note that in writing

the above expressions we assumed that the current radius of the universe is one, i.e.,

a0 = a(t0) = 1.

1.2.2 Big Bang Nucleosynthesis (BBN)

The Big Bang nucleosynthesis (BBN) states that during the early universe

there were some light nuclei other than H-1 to have been produced. At the very

beginning the nucleosythesis took place only a few minutes after the Big Bang,

and soon some heavier isotope of hydrogen, such as deuterium (H-2 or D), helium

isotopes He-3 and He-4, and lithium isotopes Li-6 and Li-7, were formed.

The theory of BBN gives a detailed description of the production of the deu-

terium, He-3, He-4, Li-7, and the mixture of these elements. In order to test these

predictions, we have to reconstruct the primordial abundances, for example, observ-

ing objects very far away, and then find the conditions of the universe at a very early

time. In the standard picture of BBN, all the light element abundances depend on

the ratio of baryon to photon.

The precision observations of the cosmic microwave background radiation with

the Wilkinson Microwave Anisotropy Probe give the independent value for the

baryon to photon ratio [11]. From this observational value, we can see that for
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deuterium, helium-3 and helium-4, the agreement is very good; and for lithium-7,

both observation and prediction give the same order of magnitude. So, the BBN

extrapolates the contents and conditions of the present universe (14 billion years

old) back to the times of about one second, and the results agree extremely well

with observations carried out so far.

1.2.3 Cosmic Microwave Background(CMB)

Cosmic microwave background (CMB) radiation is a form of electromagnetic

radiation filing the whole universe uniformly [5]. With a radio telescope, it was

found that there is a faint background that is glowing almost exactly the same in

all directions, and is not associated with any star, galaxy or other kind of object

[6]. It glows very strongly in the microwave region of the spectrum. This phenom-

enon is discovered by Penzias and Wilson in 1964, and named as cosmic microwave

background radiation [5].

1.2.3.1 Properties of the microwave background radiation This radiation

bathes the Earth in all direction and is considered as the black-body radiation with

the temperature, T0 = 2.715 ± 0.001K. The total energy of the radiation is deter-

mined by

εrad ≡ ρradc
2 = αT 4. (1.51)

With the value of α ≡ π2k4
B/15~3c3 = 7.565× 10−16Jm−3K−4, we can easily get the

present energy density of the radiation,

εrad(t0) = 4.17× 10−14Jm−3. (1.52)

since the radiation obeys p = ρ/3, we find that the conservation law takes the form,

ρ̇ + 4
ȧ

a
ρ = 0, (1.53)

which has the solution,

ρ ∝ 1

a4
. (1.54)
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Then Eq.(1.51) implies that

T ∝ 1

a
. (1.55)

That is, the universe cools as it expands. From this relationship we can find its

black-body distribution,

ε(f)df =
8πh

c3

f 3df

exp(hf/kBT )− 1
, (1.56)

while the specific intensity of a gas of photons with a blackbody spectrum is

Iν =
4π~ν3/c2

exp(2π~ν/kBT )− 1
. (1.57)

Therefore, as the universe expands, the frequency f reduces as 1/a, but the black-

body form is preserved at a lower temperature Tfinal = Tinitial × ainitial/afinal. This

works for two reasons [7]: (1) The denominator is only a function of f/T and not f

and T separately, so the reduction of f can be absorbed by an equivalent reduction

in T ; and (2) the factor f 3 in the numerator scales as inverse volume, corresponding

to the evolution of the photon number density as the universe expands and cools,

and the photon distribution continues to correspond to a thermal distribution with

lower temperature.

1.2.3.2 Observations of microwave background radiation There are many ex-

periments trying to observe the cosmic microwave background after it was observed

the first time by Penzias and Wilson in 1964. These include ground, balloon and

space-based receivers. Because the most challenging problems of the experiments

are the receivers, telescope optics and the atmosphere, many improved microwave

amplifier technologies have been designed to do the background detection [8]. In

particular, COBE was the first which detected the temperature of the CMB and

showed it had a black body spectrum. DASI was the first experiment to obtain the

polarization signal from the CMB, while CBI made high-resolution detection and

first got the E-mode polarization spectrum.
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1.3 The Late Cosmic Acceleration of the Universe

In 1998, observations of Type Ia supernova [9, 10] suggested that the expansion

of the universe is speeding up. This suggests

ä > 0, (1.58)

where ä is the acceleration rate of the universe. Now from Eq.(1.39),

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
, (1.59)

and the relationship between p and ρ,

p = wρ, (1.60)

we can study the nature of the accelerating universe in some detail. Since when the

universe expands, the density of dark matter declines more quickly than the density

of dark energy, the dark energy dominates in the later times. For example, if the

volume of the universe doubles, then the density of dark matter will be halved but

that of the dark energy will not change very much. Actually, we can even consider

it as a constant. A particular case is the cosmological constant. As Eq.(1.58) shows,

if the dark energy dominates, we have

ä =

[
−4πG

3
(ρ + 3p) +

Λ

3

]
a > 0. (1.61)

Since a > 0, we find

−4πG

3
(ρ + 3p) +

Λ

3
> 0, (1.62)

which means,

ρ + 3p <
Λ

4πG
. (1.63)

Now we can discuss it in three different cases, Λ < 0, Λ = 0 and Λ > 0,

ρ + 3p





< Λ
4πG

, Λ < 0

< 0, Λ = 0

< Λ
4πG

, Λ > 0.

(1.64)
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Defining the new energy density and pressure as

ρ′ ≡ ρ +
Λ

8πG

p′ ≡ p− Λ

8πG

p′ = w′ρ′, (1.65)

we find that the acceleration equation can be re-written as

ä

a
= −4πG

3
(ρ′ + 3p′), (1.66)

or

ä

a
= −4πG

3
(1 + 3w′)ρ′. (1.67)

Because ä > 0, we find that

w′ < −1

3
, (1.68)

or

p− Λ
8πG

ρ + Λ
8πG

< −1

3
, (1.69)

which is the basic condition for the universe to be accelerating.
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CHAPTER TWO

Classification of Cosmological Models

In this chapter, we shall systematically study the evolution of the Friedmann-

Robertson-Walker (FRW) universe with a cosmological constant Λ and a perfect

fluid that has the equation of state p = wρ, where p and ρ denote, respectively,

the pressure and energy density of the fluid, and w is an arbitrary real constant.

Depending on the specific values of w, Λ and the curvature k of the 3-dimensional

spatial space of the universe, we classify all the solutions into various cases. In each

case the main properties of the evolution are studied in detail, including the periods

of deceleration and/or acceleration, and the existence of big bang, big crunch, and big

rip singularities. In some particular cases, the solutions reduce to those considered

in some standard textbooks, where by some typos may be corrected.

2.1 Introduction to the FRW universe

Recent observations of supernova (SN) Ia reveal the striking discovery that our

universe has lately been in its accelerated expansion phase [12, 13]. Cross checks from

the cosmic microwave background radiation and large scale structure all confirm this

[14, 15, 16, 17, 18]. Such an expansion was predicted neither by the standard model

of particle physics nor by the standard model of cosmology, and the underlying

physics still remains a complete mystery [19, 20, 21, 41]. Since the precise nature

and origin of the acceleration have profound implications, understanding them is

one of the major challenges of modern cosmology. As the Dark Energy Task Force

(DETF) stated [23]: “Most experts believe that nothing short of a revolution in our

understanding of fundamental physics will be required to achieve a full understanding

of the cosmic acceleration.”
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Within the framework of General Relativity (GR), to account for such an ac-

celeration, it requires the introduction of either a tiny positive cosmological constant

or an exotic component of matter that has a very large negative pressure and inter-

acts with other components of matter weakly. This invisible component is usually

dubbed as dark energy. For a perfect fluid with the equation of state, w = p/ρ,

this implies w < −1/3, where p and ρ denote, respectively, the pressure and en-

ergy density of the fluid. On the other hand, a tiny positive cosmological constant

is well consistent with all observations carried out so far [24, 25]. However, when

we consider its physical origin, we run into other severe problems: (a) Its theo-

retical expectation values exceed observational limits by 120 orders of magnitude

[27, 28, 29, 30]. (b) Its corresponding energy density is comparable with that of

matter only recently. Otherwise, galaxies would have not been formed. Considering

the fact that the energy density of matter depends on time, one has to explain why

only now the two are in the same order. (c) Once the cosmological constant domi-

nates the evolution of the universe, it dominates forever. An eternally accelerating

universe seems inconsistent with string/M-Theory, because it is endowed with a cos-

mological event horizon that prevents the construction of a conventional S-matrix

describing particle interaction [31, 32, 33, 34]. Other problems with an asymptotical

de Sitter universe in the future were explored in [35].

In view of all the above, dramatically different models have been proposed,

including quintessence [36, 37, 38], DGP branes [39, 40, 41], and the f(R) models

[42, 43]. For details, see [19] and references therein. However, it is fair to say that

so far no convincing model has been constructed.

To introduce such a fascinating subject to students, it is always challenging

both physically and mathematically. In particular, for a given model, how does one

determine the evolution history of the universe without really solving the differential

equations? At most times one cannot solve these equations exactly, unless some
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numerical methods are used. In this chapter, by providing some concrete examples,

we shall show that this can be indeed done. Our method is very basic, and even

undergraduate students with some knowledge of classical mechanics can easily follow

it. As a matter of fact, the only knowledge required is the conservation law of total

energy of a classical particle with mass m moving under a potential V (x) [45],

1

2
mẋ2 + V (x) = E, (2.1)

where ẋ ≡ dx/dt and E is the total energy of the system, which is conserved without

external force. Then, taking the derivative of the above equation with respect to t,

we find that

ẍ = −dV (x)

dx
. (2.2)

Thus, once the potential V (x) is known in terms of x, one can immediately tell if

the particle is accelerating or decelerating, without integrating Eq.(2.1) explicitly.

In addition, once the potential V (x) is known, it is easy to determine the range of x

that the motion allows. Therefore, if the problem of the evolution of the universe can

be expressed in the above form, we can use the above methods of classical mechanics

to study its evolution, and classify all the possible models of the universe. Another

purpose of this chapter is to correct some typos appearing in some textbooks.

The rest of this chapter is organized as follows: In Sec. 2.2, we consider the

Friedmann equation coupled with a cosmological constant and a perfect fluid with

the equation of state p = wρ for any given curvature k. After writing it in the form of

Eq.(2.1), we study the potential V (x) case by case, and deduce the main properties

of each model of the universe. In Sec. 2.3, we present our main conclusions.

It should be noted that classification of a (non-relativistic) matter coupled with

a dark energy was considered recently in [46], and the corresponding Penrose dia-

grams were also presented. In this thesis, we shall use the notations and conventions

defined in [47].
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2.2 Classification of the FRW universe

The FRW universe is described by the metric [47],

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (2.3)

in the spherically symmetric coordinates xa = {t, r, θ, φ} , (a = 0, 1, 2, 3), where k

denotes the curvature of the three-dimensional spatial space of constant t, and can

be set k = 0,±1, without loss of generality. a(t) is the expansion factor of the

universe. It should be noted that Eq.(2.3) is invariant under the translation,

t′ = t− ts, (2.4)

where ts is a constant. In the following we shall use this gauge freedom to fix the

origin of the timelike coordinate t. The expansion factor a(t) of the universe is

determined through the Einstein field equations

Rab − 1

2
Rgab = κTab + Λgab, (2.5)

where κ[≡ 8πG/c4] is the Einstein coupling constant, Λ denotes the cosmological

constant, and Tab the energy-momentum tensor of the matter field(s) filled in the

universe. For a perfect fluid, we have

Tab = (ρ + p) uaub − pgab, (2.6)

where ua = δt
a denotes the four-velocity of the fluid. It can be shown [47] that

the Einstein field equations (2.5) for the metric (2.3) and energy-momentum tensor

(2.6), have only two independent components, which can be cast in the form,

H2 =
8πG

3
ρ +

1

3
Λ− k

a2
, (2.7)

ä

a
= −4πG

3
(ρ + 3p) +

1

3
Λ, (2.8)

where H ≡ ȧ/a. Note that in writing the above equation, we have chosen units such

that the speed of light is one. On the other hand, the conservation law of matter
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fields, ∇aTab = 0, yields

ρ̇ + 3H (ρ + p) = 0. (2.9)

It can be shown that this equation is not independent, and can be obtained from

Eqs.(2.7) and (2.8).

Note that we have three unknowns, a, ρ and p, but only two independent

equations. Thus, to close the system, we need to have one more equation. Usually,

this is given by the equation of state of the matter field. In this chapter, we shall

consider the case where

p = wρ, (2.10)

where w is an arbitrary real constant. Inserting Eq.(2.10) into Eq.(2.9), we find that

it allows to integrate once and gives,

ρ = ρ0

(a0

a

)3(1+w)

, (2.11)

where ρ0 and a0 are the integration constants. Since ρ0 represents the energy density

when a = a0, we shall assume that it is strictly positive ρ0 > 0. Without loss of

generality, we can always set a0 = 1. Then, it can be shown that the Friedmann

equation (2.7) can be cast in the form of Eq.(2.1) with m = 1, E = 0, x(t) = a(t),

i.e.,

1

2
ȧ2 + V (a) = 0, (2.12)

where

V (a) =
1

2
k − 1

6
Λa2 − C

a1+3w
, (2.13)

with

C ≡ 4πGρ0

3
> 0. (2.14)

When w = 0 the problem reduces to the one treated in [47]. To study the problem

further, we consider the cases k = 0,±1 separately.
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2.2.1 A. The k = 0 case

When k = 0, Eq.(2.13) reduces to

V (a) = −1

6
Λa2 − C

a1+3w
. (2.15)

It is found convenient to consider the cases where Λ > 0, Λ = 0 and Λ < 0 separately.

2.2.1.1 When Λ > 0 Eq.(2.15) can be written as

V (a) = −1

6
Λa2

(
1 +

C̃
a1+3w

)
, (2.16)

where C̃ ≡ 6C/|Λ| > 0. It is found that, depending on the value of w, the evolution

of the university can be significantly different. Thus, we shall further distinguish the

following sub-cases:

(i) w > −1

3
, (ii) w = −1

3
, (iii) − 1 < w < −1

3
,

(iv) w = −1, (v) w < −1. (2.17)

Case A.1.1) w > −1
3

: We find that V (a) is strictly negative, and V (a) → −∞
for both a = 0 and a →∞. It also has a maximum at a = am ≡ (3 (1 + 3w) C/Λ)1/(3(1+w)),

for which

ä =





< 0, a < am,

= 0, a = am,

> 0, a > am.

(2.18)

Fig. 2.1 schematically shows the potential. Therefore, in this case, the evo-

lution of the universe is dominated by matter in the early time and a(t) scales like

a(t) ∝ t2/[3(1+w)], for which ä < 0. As the universe expands to a = am, it reaches

the turning point, after which it starts to expand acceleratingly, i.e., ä(a > am) > 0.

The universe is asymptotically de Sitter, a(t) ∝ e
√

Λ/3t.
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0
V(a)

a

− C

am

w > −1/3

w  =  −1/3

w   <  −1/3

Figure 2.1: The potential given by Eq.(2.16) for k = 0 and Λ > 0.

Case A.1.2) w = −1
3
: In this case, we find

V (a) = −1

6
Λa2 − C

=





−C, a = 0,

−∞, a →∞,

ä = −dV (a)

da
=

1

3
Λa ≥ 0. (2.19)

The middle line of Fig. 2.1 is the potential for this case. Thus, in this case the

universe is always accelerating except for the initial moment a = 0. On the other

hand, from Eq.(2.11) we find that ρ ∝ a−2 → ∞ as a → 0, that is, a big bang

singularity still occurs at a = 0.

Case A.1.3) −1 < w < −1
3
: In this case, we find that the potential is that

given by Fig. 2.1, and

ä = −dV (a)

da
=

1

3
Λa + (3|w| − 1) Ca3|w|−2 ≥ 0, (2.20)
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where the equality holds only at a = 0 for w = −2/3. Thus, in this case the universe

is always accelerating. Note that in the present case a = 0 still represents a big

bang singularity, as can be seen from Eq.(2.11). It is also interesting to note that

at a = 0 we have ȧ = ä = 0, except for w = −2/3. Thus, when w 6= −2/3 the

point a = 0 is a stationary point. However, it is not stable, and any perturbations

will make the universe to expand. When w = −2/3 we have ȧ(a = 0) = 0 and

ä(a = 0) = (3|w| − 1) C > 0. Therefore, in the latter case a = 0 is not stationary,

and the positive force will lead the universe automatically expand.

Case A.1.4) w = −1: In this case, the matter acts as a vacuum energy, and

the potential is given by

V (a) = −1

6
Λeffa

2, (2.21)

where Λeff ≡ Λ + 6C. Therefore, in this case the universe is de Sitter, and

a(t) = e
√

Λeff /3(t−t0). (2.22)

Recall that the de Sitter space is free of any kind spacetime singularities at a = 0 as

well as at a = ∞ [47].

Case A.1.5) w < −1: In this case, the behavior of the potential V (a) and a(t)

are similar to the case −1 < w < −1/3, except for the fact that now ρ ∝ a3(|w|−1)

is not singular at a = 0, although it is at a = ∞, which is usually called a big

rip singularity. At a = 0 we have ȧ = ä = 0, that is, in this case this point also

represents a unstable stationary point.

Finally, we note that for all the cases with k = 0 the corresponding Friedmann

equation can be integrated explicitly, and the correspond solutions are given by

a(t) =

{(
6C
Λ

)1/2

sinh

[
(1 + w)

√
3Λ

4
(t− ts)

]} 2
3(1+w)

, (2.23)

for w 6= −1, where ts is given by

ts = t0 − 1

1 + w

√
4

3Λ
sinh−1

(√
Λ

6C

)
, (2.24)
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so that a(t = t0) = 1. For w > −1, without loss of generality, we can always

use the gauge freedom of Eq.(2.4) to set ts = 0, so that the big bang singularity

occurs at t = 0. This will be the case in the rest of this chapter. When w = −1,

the solution is that of de Sitter, given by Eq.(2.22), which is free of any kind of

spacetime singularities, and the solution is valid for any t, that is, t ∈ (−∞,∞).

For the cases where w < −1, we shall not do such a translation, so that the big rip

singularity happens exactly at t = ts. Note that when w < −1, from Eq.(2.23) we

find that the solution is valid only when t ∈ (−∞, ts), for which we have

a(t) =

{√
6C
Λ

sinh

[√
3Λ

4
(|w| − 1) (ts − t)

]}− 2
3(|w|−1)

=





∞, t = ts,

1, t = t0,

0, t = −∞,

(w < −1) (2.25)

Since now we have ρ ∝ a3(|w|−1) we find that the spacetime is indeed not singular at

a(t = −∞) = 0, but singular at a(t = ts) = ∞.

In Fig. 2.2 we summarize the main properties of the solutions for k = 0 and

Λ > 0 with different w.

Figure 2.2: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 0 and Λ > 0. The spacetime has a big bang singularity at t = 0 for w > −1. It is
de Sitter for w = −1, which is free of any kind of spacetime singularities. When w < −1,
a big rip singularity occurs at t = ts, at which we have a (ts) = ∞ = ρ (ts).
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2.2.1.2 When Λ = 0 In this case, we have

V (a) = − C
a1+3w

≤ 0,

ä = −(3w + 1)
C

a2+3w

=





< 0, w > −1/3,

= 0, w = −1/3,

> 0, w < −1/3.

(2.26)

Fig. 2.3 shows the potential V (a). Similar to the last case, now we can also integrate

the Friedmann equation (2.7) to obtain the explicit solutions of a(t) and ρ(t),

a(t) =





[
3(1 + w)

√
C
2
(t− ts)

] 2
3(1+w)

, w 6= −1,

e
√

2C(t−t0), w = −1,

ρ(t) =





ρ̃0

(t−ts)2
, w 6= −1,

ρ0, w = −1,

, (2.27)

where ρ̃0 ≡ 2ρ0/[9(1 + w)2C], and

ts = t0 − 1

1 + w

√
2

9C . (2.28)

When w < −1, Eq.(2.27) shows that in order to keep a(t) real and positive

we must require t ∈ (−∞, ts). As t → −∞, both a(t) and ρ(t) vanish, while when

t → ts all of them become unbounded, that is, a big rip singularity is developed

there.

In Fig. 2.4 we summarize the main properties of the solutions for k = 0 and

Λ = 0 with different values of w.

2.2.1.3 When Λ < 0 In this case, we have

V (a) =
1

6
|Λ| a2 − C

a1+3w
, (2.29)

27



0
V(a)

a

w > − 1/3

w  <  − 1/3
a  >  0
..

a   <
   0

..

a  < 0..a  >  0

..

w   =   − 1/3

Figure 2.3: The potential given by Eq.(2.16) for k = 0 and Λ = 0.

Figure 2.4: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 0 and Λ = 0. There is a big bang singularity at a = 0 for all the cases with
w > −1. The spacetime is de Sitter for w = −1. When w < −1, a big rip singularity is
developed at t = ts, at which we have a (ts) = ρ (ts) = ∞.
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which has been shown in Fig. 2.5 for various values of w. It can also be shown that

the corresponding expansion factor and the energy density are given, respectively,

by

a(t) =

{√
6C
|Λ| sin

[√
3|Λ|
4

(1 + w) (t− ts)

]} 2
3(1+w)

,

ρ(t) =
ρ̃0

sin2

(√
3|Λ|
4

(1 + w) (t− ts)

) , (2.30)

for w 6= −1, and

a(t) = e
√

Λeff /3(t−t0),

ρ(t) = ρ0, (2.31)

for w = −1, where Λeff = |Λ| − 6C > 0, but now with

ts ≡ t0 −
√

4/(3|Λ|)
1 + w

sin−1

(√
|Λ|
6C

)
,

ρ̃0 ≡ |Λ|ρ0

6C . (2.32)

As we did in the previous cases, using the gauge freedom (2.4) we shall set

ts = 0 for w < −1, while keeping it as it is for w ≤ −1.

Case A.3.1) w > −1
3
: In this case, as shown in Fig. 2.5, we have V (a > am) >

0, so the motion of a > am is forbidden. If the universe starts to expand from the

big bang where a = 0, when it expands to its maximal radius am it will start to

collapse until a big crunch singularity is developed at t = 2tm, as shown in Figs. 2.5

and 2.6, where am = a (tm), and is given by

am =

(
6C
|Λ|

) 1
3(1+w)

. (2.33)

During the whole process, the universe is always decelerating,

ä = −dV (a)

da
< 0, (2.34)
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Figure 2.5: The potential given by Eq.(2.29) for k = 0 and Λ < 0.

as can be seen from Fig. 2.5.

Case A.3.2) w = −1
3

: In this case, we find

V (a) =
1

6
|Λ| a2 − C =





−C, a = 0,

∞, a →∞,

ä = −dV (a)

da
= −1

3
|Λ|a ≤ 0. (2.35)

Therefore, similar to the last case, the universe expands from the big bang singularity

at a = 0 until its maximal radius am, given by Eq.(2.33) with w = −1/3, and then

starts to collapse until a big crunch singularity is formed at t = 2tm.

Case A.3.3) −1 < w < −1
3

: In this case, from Fig. 2.5 we can see that

V (a = 0) = 0 = V (am), and the motion is also restricted to a ≤ am. However, there

is a fundamental difference between this case and the last two cases: The potential

V (a) has a minimum at a = amin, at which we have dV (amin) /da = 0. The universe

is initially accelerating. But, when it expands to a = amin, it starts to decelerate

until a = am, at which its expanding velocity becomes zero, and afterwards it will
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start to collapse, until a big crunch singularity is developed at a = 0, as shown in

Fig. 2.6.

Case A.3.4) w = −1 : In this case, we have

V (a) = −1

6
|Λ| a2

(
6C
|Λ| − 1

)
. (2.36)

Therefore, now there is a solution only when Λeff > 0, for which the universe is de

Sitter, and

a(t) = e
√

Λeff /3(t−t0), (2.37)

where Λeff ≡ |Λ| − 6C.

Case A.3.5) w < −1 : In this case, there is a minimum amin for which

V (a < amin) ≥ 0. Therefore, in contrast to the previous case, now the motion of the

universe is restricted to a ≥ amin. The universe starts to expand from a = amin until

a (ts) = ∞ within a finite time, whereby a big rip singularity is formed, as shown in

Fig. 2.6.

Figure 2.6: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 0 and Λ < 0. The spacetime is singular at a = 0 for all the cases with w > −1, (a
big bang singularity). It is de Sitter for w = −1. When w < −1, a big rip singularity is
developed at t = ts, at which we have a (ts) = ρ (ts) = ∞.

2.2.2 B. The k = 1 case

In this case, the potential given by Eq.(2.13) can be written as

V (a) =
1

2
− 1

6
Λa2


1 +

(
C̃
a

)3(1+w)

 , (2.38)
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where C̃ ≡ (12C/Λ)3(1+w). Following the case of k = 0, we also distinguish the three

cases, Λ > 0, Λ = 0 and Λ < 0.

2.2.2.1 When Λ > 0 It is convenient to further divide it into the five sub-cases

defined as in Eq.(2.17).

Case B.1.1) w > −1
3

: In this case, it can be shown that for any given w and

ρ0 there always exists a critical value Λc and radius am that satisfy the conditions,

V (am, w, ρ0, Λc) = 0, V ′ (am, w, ρ0, Λc) = 0, (2.39)

where a prime denotes the ordinary differentiation with respect to a. It can be shown

that the solutions of the above conditions are

am = [3 (1 + w) C]
1

1+3w ,

Λc =

(
1 + 3w

1 + w

)
[3 (1 + w) C]−

2
1+3w . (2.40)

As will be shown below, the solutions with Λ > Λc have quite different properties

from the ones with Λ < Λc. Therefore, in the following we shall further distinguish

the three different cases, Λ > Λc, Λ = Λc and Λ < Λc.

Case B.1.1.1) w > −1
3
, Λ > Λc : In this case, the potential V (a) is always

negative for any given a, as shown in Fig. 2.7. Therefore, the corresponding solutions

have no turning point. If the universe initially starts to expand from a big bang

singularity at a = 0, it will expand forever, as shown by Fig. 2.8. However, the

potential has a maximum at a = am, for which we have

ä =





< 0, a < am,

= 0, a = am,

> 0, a > am,

(2.41)

that is, the universe is initially decelerating. Once it expands to a = am, it starts to

expand acceleratingly.
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Figure 2.7: The potential given by Eq.(2.38) for k = 1, w > −1
3 and Λ > 0, where

Λc = Λc (w, ρ0).

Case B.1.1.2) w > −1
3
, Λ = Λc : In this case, there exists a static point am, at

which we have V (am) = V ′ (am) = 0, as one can see from Fig. 2.7. Therefore, if the

universe starts to expand from the big bang at a = 0, it will expand until a = am.

The universe is decelerating during this period. Since at the point a = am, we have

ȧ = 0 = ä, the universe will become static once it reaches this point. However, it

is not stable, and with small perturbations, the universe will either collapse until

a singularity is developed at a = 0 or expand forever with ä > 0. If the universe

initially at a = ai > am, from Fig. 2.7 we can see that it will expand forever. Since

V ′(a) is always negative, so the universe in this region is always accelerating.

Case B.1.1.3) w > −1
3
, 0 < Λ < Λc : In this case, V (a) = 0 has two real

and positive roots, a1 and a2, as shown in Fig. 2.7. Without loss of generality, we

assume that a2 > a1. Since V (a) > 0 for a ∈ (a1, a2), the motion is forbidden in this

region. Similar to the last case, depending on the initial conditions, the universe

can have quite different evolutions. In particular, if it starts to expand from the big
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bang singularity at a = 0, it will expand until a = a1, at which we have ȧ = 0 and

ä < 0. Since ä < 0 at this point, the universe will start to collapse afterwards, until

a big crunch singularity is developed at a = 0. If the universe starts to expand at

ai ≥ a2, it will expand forever. In the latter case, the universe is always accelerating,

as can be seen from Fig. 2.7.

Figure 2.8: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 1, w > −1

3 and Λ > 0, where Λc is given by Eq.(2.40). A big bang singularity
occurs at a = 0 in all cases with Λ ≥ Λc. In the first sub-case of 0 < Λ < Λc, both big
bang and big crunch singularities occur, while in the second sub-case the spacetime is free
of any kind of spacetime singularities.

Case B.1.2) w = −1
3

: In this case, we have

V (a) =
1

2
(1− C)− 1

6
Λa2. (2.42)

Thus, depending on the value of C (ρ0), the motion of the universe will be different. In

particular, when C (ρ0) < 1/2, there exists a minimal amin, for which V (a < amin) >

0, that is, the motion in the region 0 < a < amin is forbidden, as shown in Fig. 2.9.

When C (ρ0) ≥ 1/2, the universe can start to expand from the big bang singularity at

a = 0. In all the cases we have V ′(a) < 0, so that the universe is always accelerating

[cf. Fig. 2.10].

Case B.1.3) −1 < w < −1
3

: In this case, we find that V ′(a) is strictly

negative for any a ≥ 0 with V (0) = 1/2. Therefore, similar to the case w = −1/3

and C < 1/2, there exists a minimal amin, for which V (a < amin) > 0, and the

motion in the region 0 < a < amin is forbidden, as shown in Fig. 2.9. Thus, in
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Figure 2.9: The potential given by Eq.(2.42) for k = 1, w ≤ −1
3 and Λ > 0.

the present case the universe starts to expand from a radius ai ≥ amin until a = ∞
without turning point. Again, because now V ′(a) < 0 for any a ≥ amin, the universe

is always accelerating. However, there is no any kind of singularities to be developed,

either big bang, big crunch, or big rip, as shown by Fig. 2.10.

Case B.1.4) w = −1 : In this case, the potential is a simple parabola,

V (a) =
1

2
− 1

6
(Λ + 6C) a2, (2.43)

schematically shown by the top curve in Fig. 2.9. As a result, the motion is similar

to the last case, except for the fact that now ρ = ρ0.

Case B.1.5) w < −1 : In this case, we also have V ′(a) < 0 and there exists a

finite radius, amin, such that when a < amin we have V (a) > 0, and when a ≥ amin

we have V (a) ≤ 0. The only difference is that in the present case there is a big rip

singularity that happens at a = ∞, as now we have ρ ∝ a3(|w|−1), as shown in Fig.

2.10.
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Figure 2.10: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 1, w ≤ −1

3 and Λ > 0. A big bang singularity occurs only in the case w = −1/3
and C ≥ 1/2. In the case w < −1, a big rip singularity occurs at a = ∞.
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

2.2.2.2 When Λ = 0 In this case, we find that

V (a) =
1

2
− C

a1+3w
. (2.44)

Fig. 2.11 shows the potential for various values of w, from which we can see that

when w > −1/3, the motion of the universe is restricted to a ≤ am, where am is

the solution of V (a) = 0. The universe starts to expand at the big bang singularity

a = 0 until the turning point a = am. Afterwards, it will start to collapse until a

big crunch singularity is developed at a = 0, as shown in Fig. 2.12.

When w = −1/3, there is motion only for C > 1/2, for which the universe

expands linearly from a big bang singularity at a = 0 with ä = 0.

When −1 ≤ w < −1/3, the motion is possible only for a > amin, as shown in

Figs. 2.11 and 2.12. The universe starts to expand from the initial point ai ≥ amin

with ä > 0. No turning point exists, so the universe will expand forever. During

the whole process, the matter density remains finite, so no singularity exists in this

case.

When w < −1, it can be shown that the motion for a < amin is also forbidden.

As a result, no big bang singularity exists in the present case. But, a big rip singu-

larity will be developed as a →∞, as shown by Fig. 2.12. In the whole process, we
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Figure 2.11: The potential given by Eq.(2.44) for k = 1 and Λ = 0.

have ä > 0.

2.2.2.3 When Λ < 0 In this case, we have

V (a) =
1

2
+

1

6
|Λ| a2 − C

a1+3w
, (2.45)

which has the properties as shown by Fig. 2.13. In particular, when w > −1/3,

we find that the universe starts to expand from a big bang singularity at a = 0

until a maximal radius am where V (am) = 0. Afterwards, the universe starts to

collapse, and finally a big crunch is developed at t = 2tm where tm is determined

by am = a (tm). In the whole process, the universe is decelerating, as shown by Fig.

2.14.

When w = −1/3, the potential is non-negative for C ≤ 1/2, so the motion is

forbidden. When C > 1/2 we have V (a) < 0 for a < am, where am is the root of

V (a) = 0, as shown in Fig. 2.13. Thus, the motion now is possible in the region

a < am, for which the universe starts to expand from a big bang singularity at
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Figure 2.12: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 1 and Λ = 0. There are both big bang and big crunch singularities in the case
w > −1/3, while only a big bang singularity occurs in the case w = −1/3. There is no
singularity in the cases with −1 ≤ w < −1/3. A big rip singularity occurs at a = ∞ for
w < −1.

a = 0. Once it reaches its maximum at am, it starts to collapse until a big crunch is

developed at t = 2tm.

When −1 < w < −1/3, similar to the last case, the potential is negative only

for a < am, as shown in Fig. 2.13. In particular, a big bang (crunch) singularity

happens at t = 0 (t = 2tm). The difference is that now there exists a time tmax so

that for 0 < t < tmax or 2tm − tmax < t < 2tm the universe is accelerating, while

during the time tm− tmax < t < 2tm− tmax it is decelerating, where tmax is the root

V ′ (tmax) = 0.

When w = −1, the potential is non-positive only for C > |Λ|/6 and a ≥ amin,

where amin is the root of V (a) = 0, as shown in Fig. 2.13. Therefore, in this case

the universe starts to expand always at an initial radius ai ≥ amin. The universe

will expand forever with ä > 0. However, the spacetime is not singular even when

a = ∞.

When w < −1, the potential is non-positive only for a ≥ amin, where again

amin is the root of V (a) = 0, as shown in Fig. 2.13. The evolution of the universe

in this case is similar to the last one, except for that now a big rip singularity will

be developed at a = ∞.
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Figure 2.13: The potential given by Eq.(2.45) for k = 1 and Λ = 0: (a) for w > −1/3; (b)
for w = −1/3 and C > 1/2; (c) for −1 < w < −1/3; (d) for w = −1 and C > |Λ|/6; and
(e) for w < −1.

Figure 2.14: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = 1 and Λ < 0. There are both big bang and big crunch singularities in the case with
w > −1, while only a big bang singularity occurs in the case w = −1, and no singularities
for the case w = −1, while there is a big rip singularity at a = ∞ for w < −1.
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2.2.3 C. The k = −1 case

When k = −1, the potential is given by

V (a) = −1

2
− 1

6
Λa2 − C

a1+3w
. (2.46)

To study the motion of the universe in this case, it is also convenient to distinguish

the three cases Λ > 0, Λ = 0 and Λ < 0, and in each case there are five sub-cases

with different choices of w.

2.2.3.1 When Λ > 0 In this case, we find that V (a) → −∞ as a →∞, and

V (a) =





−1/2, w < −1/3,

−(1/2 + C), w = −1/3,

−∞, w > −1/3,

(2.47)

when a → 0, as shown by Fig. 2.15. Thus, when w < −1/3, the potential has

a maximum at am where V (am) = 0. The universe starts to expand from a big

bang at a = 0. Initially, it is decelerating, ä < 0. However, when it expands to

am, it turns to expand at an accelerating rate, ä > 0, as shown in Fig. 2.16. When

−1 < w ≤ −1/3, the universe expands from a big bang at a = 0 until a = ∞, and

there is no turning point. It expands with ä > 0 in the whole process. The case of

w = −1 is similar to the case of −1 < w ≤ −1/3, except that the spacetime is not

singular either at a = 0 or at a = ∞, as shown in Fig.2.16. When w < −1, one can

see that the universe starts to expand from a = 0 with ä > 0 for any given a. There

is no big bang singular at a = 0, but there is a big rip singularity at a = ∞.
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Figure 2.15: The potential given by Eq.(2.46) for k = −1 and Λ > 0.
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Figure 2.16: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = −1 and Λ > 0. There are a big bang singularity for w > −1, no singularity for
w = −1, and a big rip singularity at a = ∞ for w < −1.
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2.2.3.2 When Λ = 0 In this case, we have

V (a) = −1

2
− C

a1+3w
< 0,

ä = −(3w + 1)C
a2+3w

=





< 0, w > −1/3,

0, w = −1/3,

> 0, w < −1/3,

(2.48)

when a ∈ [0,∞), as shown by Fig. 2.17. We also have

ρ(a) ==





∞, w > −1/3,

ρ0, w = −1/3,

0, w < −1/3,

(2.49)

as a → 0, and

ρ(a) ==





0, w > −1/3,

ρ0, w = −1/3,

∞, w < −1/3,

(2.50)

as a →∞. Fig. 2.18 shows the motion of the universe for each given w.

2.2.3.3 When Λ < 0 In this case, we have

V (a) = −1

2
+

1

6
|Λ|a2 − C

a1+3w
. (2.51)

Depending on the vales Λ, C and w, the potential will have quite different properties.

In the following we shall study all of them case by case.

Case C.3.1) w > −1/3 : In this case, the potential is shown schematically in

Fig. 2.19, from which we can see that it is non-positive only for a ≤ am, where am

is the positive root of V (a) = 0. Clearly, in this case there is a big bang singularity

at a = 0, from which the universe starts to expand until a = am. Afterwards, it will
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Figure 2.17: The potential given by Eq.(2.48) for k = −1 and Λ = 0.

Figure 2.18: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = −1 and Λ = 0. There are a big bang singularity for w > −1, no singularity for
w = −1, and a big rip singularity at a = ∞ for w < −1.
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collapse so that finally a big crunch singularity is developed at t = 2tm, at which we

have a (2tm) = 0, as shown by Fig. 2.20.

Case C.3.2) w = −1/3 : The potential in this case is similar to the last case,

except for the fact that now V (0) = −1/2 − C, as shown in Fig. 2.19. The motion

of the universe is qualitatively the same as that in the last case, as shown by Fig.

2.20.

Case C.3.3) −1 < w < −1/3 : In this case the potential has a minimum at

a = amin, as shown in Fig. 2.19, for which we find that ä < 0 for a < amin, and

ä > 0 for a > amin, as shown by Fig. 2.20.

0

V(a)

a

−1/2−C

w > −1/3

w = −1/3

−1
<w

<−
1/

3

am

Figure 2.19: The potential given by Eq.(2.51) for k = −1, Λ < 0 and w > −1.

Case C.3.4) w = −1: In this case, depending on the ratio 6C/|Λ|, there are

three distinguished sub-cases. When 6C/|Λ| < 1, the potential is non-positive only

when a ≤ am where am ≡ [3/(|Λ| − 6C)]1/2, as shown by Fig. 2.21. Then, the

universe starts to expand from a = 0 until a = am. Afterwards, it will start to

collapse until a = 0 again. But in the whole process, no spacetime singularity is
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Figure 2.20: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = −1, Λ < 0 and w > −1. There are both big bang and big crunch singularities for
all the cases with w > −1.

developed. So, the universe is oscillating between a = 0 and a = am, as shown in

Fig. 2.22.

When 6C/|Λ| = 1, we find that V (a) = −1/2, and the universe expands

linearly starting from a = 0. There is no turning point, and no spacetime singularity,

as shown by Figs. 2.21 and 2.22.

When 6C/|Λ| > 1, we find that V (a) < −1/2 for any given a. Then, starting

from a = 0, the universe expands always acceleratingly (ä > 0) until a = ∞, as

shown by Figs. 2.21 and 2.22. No spacetime singularity is developed during the

whole process.

Case C.3.5) w < −1: In this case, it can be shown that for any given ρ0 there

always exists a critical value Λc so that V (a) = 0 has two root positive roots when

|Λ| > |Λc|; one positive root when |Λ| = |Λc|; and no positive root when |Λ| < |Λc|,
as shown by Fig.2.19, where Λc is the solution of the equations V (am, Λc) = 0, and

V ′ (am, Λc) = 0. It can be shown that it is given by,

Λc =

(
3|w| − 1

|w| − 1

)
[3 (|w| − 1) C]

2
3|w|−1 . (2.52)

Case C.3.5.1) |Λ| > |Λc|: In this case, the potential is positive in the region

a1 < a < a2, where a1 and a2 are the two positive roots of V (a) = 0 with a2 > a1.

Therefore, the motion of the universe now is restricted to the regions 0 ≤ a ≤ a1
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Figure 2.21: The potential given by Eq.(2.51) for k = −1, Λ < 0 and w = −1.
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Figure 2.22: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = −1, Λ < 0 and w = −1. The spacetime is not singular in any of these cases.
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Figure 2.23: The potential given by Eq.(2.51) for k = −1, w < −1 and Λ < 0, where Λc

is given by Eq.(2.52), where (a) is for |Λ| > |Λc|; (b) is for |Λ| = |Λc|; and (c) is for
|Λ| < |Λc|.

and a ≥ a2, depending on its initial condition. If the universe starts to expand at

a = 0, it will expand until its maximal radius a = a1, and then collapse until a = 0.

In the whole process, we have ä < 0. Since at a = 0 the spacetime is not singular, so

the universe will start to expand again. This process will be repeating endlessly, as

shown in Fig. 2.24. However, if it starts to expand at a radius ai ≥ a2, the universe

will expand forever and never stops, as now ä > 0 for any given a ≥ a2. A big rip

singularity will be finally developed at a = ∞, since now we have ρ →∞, as a →∞.

Case C.3.5.2) |Λ| = |Λc|: In this case, there exists a static point am, at

which we have V (am) = V ′ (am) = 0, as one can see from Fig. 2.23, where

am = [3 (|w| − 1) C]−1/(3|w|−1). Therefore, if the universe starts to expand from

a = 0, it will expand until a = am with ä < 0. Since at the point a = am, we

have ȧ = 0 = ä, the universe will become static at this point. However, it is not

stable, and with small perturbations, the universe will either collapse until a = 0 or

47



expand forever with ä > 0. It should be noted that the spacetime is not singular

at a = 0. So, if it collapses, it will start to expand again when the point a = 0 is

reached. If the universe initially at a = ai > am, from Fig. 2.23 we can see that it

will expand forever. Since V ′(a) is always negative, so the universe in this case is

always accelerating. A big rip singularity will be also finally developed at a = ∞.

Case C.3.5.3) |Λ| < |Λc|: In this case, the potential V (a) is always negative for

any given a, as shown in Fig. 2.23. Therefore, the corresponding solutions have no

turning point. If the universe initially starts to expand from a = 0, it will expand

forever. However, the potential has a maximum at a = am, for which we have

ä =





< 0, a < am,

= 0, a = am,

> 0, a > am,

(2.53)

that is, the universe is initially decelerating. Once it expands to a = am, it starts to

expand at an accelerating rate. Similar to the last two cases, a big rip singularity

will also develop at a = ∞.

Figure 2.24: The expansion factor a(t), the acceleration ä(t), and the energy density ρ(t)
for k = −1, w < −1 and Λ < 0, where Λc is given by Eq.(2.52). There are big rip
singularities in all the cases, except for the first sub-cases of |Λ| > |Λc| and |Λ| = |Λc|.
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CHAPTER THREE

Summary and Future work

In this thesis, we have systematically studied the solutions of the Friedmann-

Robertson-Walker (FRW) universe with a cosmological constant and a perfect fluid

that has the equation of state p = wρ, where p and ρ denote, respectively, the

pressure and energy density of the fluid, and w is an arbitrary real constant. Writing

the motion of the universe in the form,

1

2
ȧ2 + V (a, k, ρ0, w, Λ) = 0. (3.1)

We have been able to classify all the solutions according to the different values of

k, ρ0, w and Λ, by simply using the knowledge of one-dimensional motion in classical

mechanics [45], where k[= 0,±1] denote the curvature of the FRW space, ρ0 the

energy density of the matter field when a = 1, and Λ the cosmological constant.

All these solutions are classified and presented in Figs. 2.2, 2.4, 2.6, 2.8, 2.10, 2.12,

2.14, 2.16, 2.18, 2.20, 2.22, and 2.24. Some particular cases were already discussed

in various standard textbooks, whereby some typos may be corrected.

The method used in this thesis is simply the conservation law of kinetic and

potential energies in classical mechanics, which can be easily followed to do the

analysis and applied to the studies of other cosmological models of the universe. In

particular, it can be applied to any model in which the motion of the universe can be

cast in the form of Eq.(3.1) [19], including brane worlds in string/M theory [48, 49]

and asymmetric branes [50, 51, 52, 53].

To see this clearly, in the following we briefly review the f(R) and DGP models.

f(R) model : f(R) gravity is a kind of modified gravity theory. It is an alterna-

tive to Einstein’s general relativity and can explain the accelerated expansion of the
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universe without dark energy. In f(R) gravity the action of the theory is given by

S[g] =

∫
1

2κ
f(R)

√−gd4x, (3.2)

where f(R) is a function of the Ricci curvature. Then, it can be shown that the

generalized Friedmann equations can be cast in the form,

3FH2 = ρm + ρrad +
1

2
(FR− f)− 3HḞ

−2FḢ = ρm +
4

3
ρrad + F̈ −HḞ , (3.3)

where F (R) = ∂f(R)
∂R

.

DGP model : DGP model is a model proposed by Dvali, Gabadadze and

Porrati[54]. The corresponding Friedmann equations are given by

H2 − σ

rc

√
H2 +

K

a2
=

µ2

3
Σρi − K

a2

ρ̇ + 3H(ρ + p) = 0. (3.4)

Clearly, in both theories, we can write the problems in the form of Eq.(3.1).

Once this is done, one can simply follow what we have done in this thesis to study

their cosmology.
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