
ABSTRACT

A Multi-level Analysis of the Spread of COVID-19

Bennet E. Hickok, M.S.Eco

Chairperson: James West, Ph.D.

This paper uses extensions of the traditional methods for evaluating panel data

to evaluate the effect of Non-Pharmaceutical Interventions (NPI) on the spread of

COVID-19. I utilize data from weather conditions, policy interventions, past out-

comes, and political landscapes at the county level. These components allow me to

navigate confounding issues with traditional models such as heterogeneity, endogene-

ity, and measurement error. The results of this model support the efficacy of policy

interventions. I also find that poor weather conditions contribute to the spread of the

disease, which indicates that the disease spreads less effectively outdoors. Finally, I

find that the share of GOP voters in the previous election is positively associated with

the spread of the disease. The ability to combine time variant and invariant compo-

nents with minimal assumption, makes this model a helpful foundation for further

research.
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CHAPTER ONE

Introduction

In 2019 a new kind of disease passed from bats to humans leading to a pan-

demic of proportions not seen since 1918. This disease was unique in its ability to

spread before symptoms emerged with some carriers spreading the disease without

ever showing symptoms. This feature meant that standard practices of quarantining

and contact tracing were less effective than they would typically be (7).

It also posed a unique challenge for epidemiologists who have spent centuries

perfecting precise models that could tell exactly how a disease would spread and what

interventions would be most effective. These models are remarkable in their simplicity

and accuracy but their validity is dependent on the promptness and accuracy of the

input data. With COVID-19, there were a number of unknowns that standard models

were not designed to account for. This has led to the unification of epidemiologists

and other social scientists in the fight against this disease (8).

Much of the literature that has been published around COVID-19 has come from

economists who are no strangers to uncertainty or unknowns. The most compelling

example of this interaction has been the body of work that has emerged around

the SIR-model. The canonical SIR-model splits the population into three buckets:

Susceptible, Infected, and Recovered. The Recovered are assumed to be impervious

to the disease which makes the main question how quickly the Infected group spreads

the disease to the Susceptible population. Different diseases have baseline rates of

contagion known as r0.

If r0 is less than 1, then infected individuals will recover more quickly than

others will be infected and the disease will die out on its own.
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If r0 is greater than 1, then the disease will spread if left unattended. At this

point, the goal of policy-makers would be to reduce the level of contagion at any given

time (rt) to a level below 1. This will occur naturally as the Susceptible individuals

get infected and move into the Recovered bucket. This phenomenon is what leads to

the bell-curve shape that people refer to when they discuss ways to “flatten the curve”.

Alternatively, it can be done by reducing human contact through stay-at-home orders,

reducing the probability of people getting sick if they are exposed by encouraging face

coverings, or mechanically removing people from the Susceptible bucket with vaccines.

In practice, this model quickly breaks down if you do not have a clear picture

of how many people are Susceptible, Infected, or Recovered. This is where economists

have focused much of their attention. There is a large body of work that has added

“exposed” or “asymptomatic” buckets to the canonical SIR model in hopes that these

SEIR or SAIR models will fit better to the data that are emerging. Others have used

Bayesian analysis and Monte Carlo sampling to account for the heterogeneity that

has been found when calibrating the SIR model to the data (2).

Another important issue that hinders the ability to make effective policy recom-

mendations is endogeneity. There are two possible endogenous processes that cloud

the identification of the effect of policy changes. The first is the impact of infection

rates on government policies because while policies can impact infection rates, they

are also made in response to infection rates. The second endogenous process is the

interplay between infection rates and activity. If there is a disease outbreak in my

community, it is reasonable to assume that I would stay home where

These endogenous processes would bias the effects of policies and community

efforts to limit exposure to the disease because locations with the greatest responses

are likely to be the locations most impacted by the disease. In fact, this can lead to the

uncomfortable scenario where the data show that aggressive policies are associated

with a greater number of COVID-19 cases. It can also yield the equally unsettling
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result that locations with greater levels of activity end up with fewer instances of

COVID-19 even though it would be logical to assume that in fact people are more

active because the disease is less pervasive in their community (6).

This paper will seek to enter into the discussion by evaluating the efficacy of

policy decisions, building on the body of literature mentioned above to resolve issues

of endogeneity, simultaneity and heterogeneity. Additionally, this paper addresses

some key data concerns with the existing body of work to corroborate findings where

possible and determine where further consideration is needed.

3



CHAPTER TWO

Methodology

I follow the empirical approaches that Karaivanov et. al. (2020) used in Canada 

with some important modifications that will be discussed in subsequent sections. In 

order to assess the impact of non-pharmaceutical interventions (NPI) on the preva-

lence of COVID-19, this paper leverages the following model:

Yit = β0 + β1Pit−l + β2Iit−l + β3Wit−l + β4Fi + εit

Where:

i =The specific county in the cross section.

t =The time designated in days.

l =The time lag, measured in days.

This equation models the relationship between the number of new COVID-19

(Yit) cases and the previous policy measures (Pit−l), the lagged number of new cases

(Yit−l), the weather conditions(Wit−l) and the fixed effects impacting the various cross-

sectional units (Fi).

In order to evaluate the number of new COVID-19 cases, I take the 7-day moving

average of the number of new cases per 100,000 people. This is a significant departure

from much of the early literature, which used the growth rate as the dependent

variable.

While the exponential growth rate is very helpful for fitting the data to existing

models and establishing counterfactuals for what could have been under different

scenarios, it has some serious limitations. Namely, it tends to fit epidemic models

very well early on when the spread is clearly exponential. However, as the spread of

the disease subsides, an exponential growth model does not fit the data well. That

4



is especially so with the pandemic at hand where re-openings have led to multiple

peaks and important deviations from the standard “curve” (4).

It is difficult to ensure that all cases are reported instantaneously and patterns

such as batch reporting on a certain day could give the appearance of time trends

that don’t exist. As a result, I use the 7-day moving average to smooth these outliers

and ensure that the true signals are clear.

Additionally, I follow the lead of Chernozhukov et. al. (2020) in using a 14

day lag when observing the determinants of the COVID-19 case rate. This accounts

for the time it takes to manifest symptoms (incubation period), the time it takes to

report symptoms once they are observed (reporting period) and any lag that may

exist between a change in a determinant and the implementation of that change (e.g.

a policy change could take a few days to take effect or information changes may not

percolate through the community instantaneously.)

I use a Hybrid model with robust standard errors. This allows me to conduct

the most granular analysis possible under the weakest assumptions available to us.

I maintain the unbiased estimates that I would expect under a Fixed Effects model,

while gaining additional insights into the impact that time-invariant factors have on

the dependent variables. In the appendix, I include similar analysis done

with pure Fixed Effects and Random Effects regressions as well as a Correlated

Random Effects model (Schunck 2013).
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CHAPTER THREE

Data and Variables

Cumulative Cases

Most studies that have been done on this topic have leveraged data from the 

New York Times or from Johns Hopkins to estimate the prevalence of COVID-19 

cases. I began our study using both data sources in parallel with the hope that the 

differences between the results would be immaterial.

This was the case when I reviewed the data at the county level or for the 

largest counties. However, for smaller counties, I saw strange phenomena, where, for 

example, Johns Hopkins was reporting thousands of cases for counties with less than a 

thousand residents. Typically, these were counties with large hospitals or universities. 

That raises the interesting question of how to account for a college student from 

Minnesota who contracts COVID-19 in Texas but is in Minnesota for much of the 

evaluation period due to the move to remote learning or other patients from undefined 

areas who are diagnosed and treated at a large regional hospital. Ultimately, the New 

York Times dataset was more closely correlated with the population data reported 

from other sources. Accordingly, I used these data alone, which led to the fewest 

outliers (12).

Policy

In order to study the impact of various policies and NPIs, I utilized the state-

level data from the Oxford COVID-19 Government Response Tracker(5). These data 

included daily indexes of the overall response that could then be decomposed into

• Containment Health (C)- Includes such items as school closings, workplace

closing, and stay-at-home orders.
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• Economic (E)- Includes stimulus, subsidies, and other economic policies to

help individuals and business.

• Health (H)- Evaluates the availability of hospital beds, tests, investment in

vaccines, and the use of face coverings.

These categories are then available as indices, which combine these elements in various

combinations1.

Information

The information variable in our model is the lagged outcome variable. I include

this to account for autocorrelation wherein having more cases in a given period is

likely to result in a larger number of cases in subsequent periods. This inclusion

allows me to account for elements of the growth curve without explicitly including

growth rates in the model.

Weather Conditions

I determined the weather conditions by evaluating the amount that the average

temperature on a given day deviated from a midpoint of 70 degrees. I gathered these

data

from the National Oceanic and Atmospheric Administration (9). I considered

this variance in absolute terms under the assumption that people would stay inside if

it was either too cold or too hot. I then took the square root of that absolute deviation.

The intuition here is that the incremental effect of an additional degree will decrease

as you get further from the midpoint. Some people might view 60 degrees as too cold

and another group might draw the line at 55 degrees. But, once you get down to

freezing, 5 more degrees would have less of an impact on a person’s propensity to go

outside.
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Fixed Effects

In my analysis, I have used the election results from the 2020 election to de-

termine whether a county voted primarily democrat or republican (3). For my main

analysis, I have used the raw percentages although I have included additional anal-

ysis in Appendix E with the results bucketed into a categorical variable. It is well

established that other factors such as race and income are related to the spread of the

disease but it is less clear whether those factors impact the effectiveness of various

interventions.

However, there is evidence that Fox News viewership has some association with

non-compliance to COVID-19 policies and as such would be an important factor in

the efficacy of those policies (11). In their analysis, Simonov et al. find that due to

changes in methodology, there is a tradeoff between promptness and completeness in

the data. Thus, I use election results directly to proximate their analysis with similar

results.

Summary statistics for the variables described in this section can be found in

the following table.
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Table 3.1. Summary Statistics

(1)
mean

VARIABLES (sd)

NewCaseRate 16.98
(25.42)

GrowthRate 0.0146
(0.0906)

GrowthOfGrowthRate -0.000823
(0.0749)

DurationWeightedNewCases 0.151
(0.290)

weather 3.155
(1.410)

GovernmentResponseIndex 49.44
(9.670)

ContainmentHealthIndex 50.60
(9.226)

EconomicSupportIndex 41.89
(23.22)

StringencyIndex 52.05
(14.03)

per_gop 61.66
(15.80)

Observations 509,184
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CHAPTER FOUR

Results

My study finds that Non-Pharmaceutical Interventions are effective in reducing

the spread of COVID-19. Even when controlling for endogeneity that may arise from

governments and communities responding to previous levels of contagion, I found

that higher levels of stringency around economic policy, healthcare infrastructure,

and stay at home orders, all reduce the number of new COVID-19 cases. Additionally,

the weather conditions have an important impact on the spread of COVID-19, with

extreme temperatures leading to a larger number of new cases. Finally, the percentage

of voters who voted republican in the 2020 elections in a given county had a positive

association with the spread of COVID-19 in that county.

During the period from March 2020 to December 2020, the average US County

saw a baseline number of 18 new COVID-19 cases per day for every 100,000 people.

Although pandemics rarely follow a linear path due to their compounding nature, the

series of openings, closings, and re-openings that took place in the US gave a path

that better approximates a linear trend than I would typically expect.

As measured by the OxCGRT Government Response Index, a 10% increase in

stringency would lead to 4 fewer cases per 100,000. Based on this, registering 100%

on the policy index could lead to 20 more people recovering each day than becoming

sick. Disaggregating the stringency index into its component can help give an idea of

which policies are having the greatest impact.

From table 4.1, I see that the government response index (which includes ele-

ments from each category) has the greatest impact. Implementing economic support

policies alone is approximately 31% as effective. With all else being equal, a county
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Table 4.1. Comparison of Policies

(1) (2) (3) (4)
VARIABLES NewCaseRate NewCaseRate NewCaseRate NewCaseRate

L14.dNewCaseRate 0.933*** 0.937*** 0.951*** 0.894***
(0.00155) (0.00155) (0.00155) (0.00158)

L14.dweather 1.378*** 1.395*** 1.278*** 1.844***
(0.0244) (0.0244) (0.0246) (0.0244)

L14.dGovernmentResponseIndex -0.392***
(0.00474)

per_gop 0.0521*** 0.0523*** 0.0493*** 0.0524***
(0.00451) (0.00444) (0.00460) (0.00425)

mNewCaseRate 1.178*** 1.188*** 1.166*** 1.188***
(0.00850) (0.00864) (0.00768) (0.00827)

mweather 1.320*** 1.325*** 1.559*** 1.305***
(0.162) (0.161) (0.163) (0.155)

mGovernmentResponseIndex 0.0178*
(0.0106)

L14.ContainmentHealthIndex -0.369***
(0.00477)

mContainmentHealthIndex 0.413***
(0.0123)

L14.dEconomicSupportIndex -0.129***
(0.00228)

mEconomicSupportIndex -0.0140***
(0.00388)

L14.dStringencyIndex -0.337***
(0.00273)

mStringencyIndex 0.0377***
(0.00867)

Constant -7.021*** -8.563*** -5.789*** -8.211***
(0.864) (0.897) (0.645) (0.796)

Observations 290,367 290,367 291,029 290,363
Number of fips 2,762 2,762 2,762 2,762
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

that implements economic support policies alone would see 6 new COVID-19 cases

per day.

Another factor associated with the number of new cases is the political makeup

of a county. Based on this model, an average county that leans aggressively republican
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would be expected to have 21 new cases per day while a similar county leaning

democratic would have 16 new cases per day. It is likely that the mechanism for this

association is the messaging and subsequent policy compliance within each party.

I included weather to help better understand the impact of activity. Having more

pleasant weather does not mean that people will be less active-in fact our auxiliary

regression shows that it makes them more active. However, when the conditions are

amenable, people are more likely to spend time outdoors where COVID-19 spreads

less effectively. This is consistent with what I see in the data with an expected baseline

number of 19 new cases following a 70-degree day and 32 new cases following a day

with extreme temperatures. The full table of results can be found in table 4.2.
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Table 4.2. Summary of Results

(1)
VARIABLES NewCaseRate

L14.dNewCaseRate 0.933***
(0.00155)

L14.dweather 1.378***
(0.0244)

L14.dGovernmentResponseIndex -0.392***
(0.00474)

per_gop 0.0521***
(0.00451)

mNewCaseRate 1.178***
(0.00850)

mweather 1.320***
(0.162)

mGovernmentResponseIndex 0.0178*
(0.0106)

Constant -7.021***
(0.864)

Observations 290,367
Number of fips 2,762
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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CHAPTER FIVE

Discussion

Only needed for traditional dissertation format. The main contribution of this

paper is not in the novelty of the results but in the integrity of the data. Many of my

findings corroborate the consensus that has emerged in the literature thus far but the

methodologies depart in some important ways. These departures make this model a

potential baseline for future research.

The first departure was the use of the Hybrid Random effects model. This model

allows me to estimate the impact of both level 1 and level 2 variables without the

bias that can emerge with a traditional Random Effects models if the underlying

assumptions are not met(10). This is true of both Hybrid models and Correlated

Random Effects models and in fact I get similar results under both models. However,

Hybrid models perform better when random slopes are introduced. Although random

slopes are not included in this paper, our initial investigation shows that the effects

of various treatments could vary significantly across panels making this a very helpful

feature for further research.

Another important departure is the omission of the Behavior component in the

model. Most papers that have come before this one have used the Google Mobility

data to estimate the behavioral changes throughout the Pandemic(Goo). This had

the distinct advantage of breaking activity down into categories such as Retail, Work,

Groceries, and Parks. However, there were some important gaps in the data present

as shown in table 5.1.

In addition to the magnitude of these omissions, the type of omission is also

concerning. Google intentionally omitted samples under a certain number to protect

the identities of individuals within those samples. Moreover, they only have access

14



Table 5.1. Summary of Missing Mobility Data

Variable Missing Total Percent Missing

Retail 225,640 612,060 36.87
Grocery 267,084 612,060 43.64
Parks 474,356 612,060 77.50
Transit 382,159 612,060 62.44

Workplaces 14,776 612,060 2.41
Residential 282,890 612,060 46.22

to users of Android devices. Given the difference in price points between Android,

Apple, and other devices, any factors that impact the price elasticity for the demand

of phones (such as income, age, or occupation) could further bias the sample. Based on

this, it is unlikely that these records are Missing Completely At Random (MCAR) or

even Missing At Random (MAR) which subverts any meaningful attempt to impute

the missing records. This also means that any regression based on the truncated

sample is less reliable.

Putting all this aside, there are some important issues with the inclusion of

behavior itself. If I am to believe that policy makers respond to signals based on the

severity of the pandemic at any given time, it would stand to reason that the general

population would respond to those same signals. Thus, a model that includes the

lagged severity of the Pandemic, the Policy response, and the behavioral response;

would effectively be capturing the same portion of the variance in the data with three

separate variables. This would undermine the validity of all of those estimates.

Moreover, not all activity is the same. Walking your dog around the block will

not put you in contact with as many people as would going to a dog park. Similarly

attending an outdoor event where you practice social distancing would not be as risky

as packing into a crowded arena or other building. Thus, even the more granular

categories that

15



Google provides do not capture all the relevant information needed to determine

the impact of behavior.

I sidestep these issues entirely by replacing the behavioral component with a

measure of the weather conditions. This is effectively an instrument for the type of

activity under the assumption that you are more likely to choose an outdoor event

over the crowded arena when weather conditions are more pleasant. Additionally,

it prevents the redundancy mentioned above that you would get by accounting for

endogeneity multiple times.

The variants included in this section are beyond the scope of this paper. How-

ever, I mention them because I think they highlight the importance of this model as

a foundation for further research. By identifying a model that is flexible and robust

under the weakest possible assumptions, and then combining that with complete and

timely data sources, this paper serves as a helpful starting point for answering any

number of questions around how to properly respond to a pandemic.
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CHAPTER SIX

Conclusion

COVID-19 has had an indelible effect on the world. It spread across every

continent, changing the way people work, trade, and interact with each other. Unlike

diseases that have come before, COVID-19 is contagious before any symptoms emerge

and it manifests in dramatically different ways for different hosts. The unknowns

inherent to COVID-19 have challenged traditional models for tracking and preventing

the spread of the disease. In the face of these variables, economists have brought a

unique perspective to the spread of the disease.

In this paper, I have built on extensions of traditional panel data methodologies

to incorporate time variant and invariant factors in an analysis of the spread of

COVID-19. This has allowed me to explore sources of endogeneity and heterogeneity

under the weakest possible assumptions. I have also sought to choose data sources

for this model that address possible sources of error. I have sidestepped the use of

mobility data in order to ensure full coverage of our data. Additionally, I have chosen

to use data from the New York Times to address irregularities found in other sources.

The results of this model corroborate much of the work that has been done

on the subject to this point. I find that COVID-19 spreads most aggressively under

poor weather conditions, which indicates that the disease spreads most effectively

indoors. I also find, that policy interventions are effective across the board. Economic

support has a marginal impact on its own but has a much stronger impact when

combined with other interventions. Meanwhile, lock-downs and quarantines have a

substantial impact on their own but these too are more effective when combined with

other policies. While each of the policies are effective individually, the interventions

are most effective when implemented in tandem.
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In addition to validating other research that is coming out on this topic, this

paper creates a solid foundation for further research. The combination of weak as-

sumptions and robust data sources allows for several variations and extensions to

understand the nuances of the spread of COVID-19. It is likely that COVID-19 will

not be the last pandemic this world will see so the more we can learn the better.
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APPENDIX A

Alternative Dependent Variables

Table A.1. Alternative Dependent Variables
(1) (2) (3) (4)

VARIABLES New Case Rate Growth Rate Growth of Growth Rate Duration Weighted New Cases

L14.dNewCaseRate 0.933***
(0.00155)

L14.dweather 1.378*** 0.000825*** -0.000147 0.0240***
(0.0244) (0.000160) (0.000120) (0.000346)

L14.dGovernmentResponseIndex -0.392*** -0.00126*** 5.15e-05** -0.00387***
(0.00474) (3.15e-05) (2.37e-05) (6.68e-05)

per_gop 0.0521*** 4.65e-05 2.04e-06 -0.000247
(0.00451) (3.93e-05) (1.22e-05) (0.000246)

mNewCaseRate 1.178***
(0.00850)

mweather 1.320*** 0.000469 0.00107** 0.0221**
(0.162) (0.00139) (0.000447) (0.00864)

mGovernmentResponseIndex 0.0178* 0.000203** -5.00e-06 -0.000886*
(0.0106) (8.23e-05) (2.57e-05) (0.000524)

L14.dGrowthRate 0.0130***
(0.00207)

mGrowthRate 0.953***
(0.0592)

L14.dGrowthOfGrowthRate 0.141***
(0.00218)

mGrowthOfGrowthRate 1.057***
(0.0341)

L14.dDurationWeightedNewCases 0.260***
(0.00151)

mDurationWeightedNewCases 0.850***
(0.0117)

Constant -7.021*** -0.0145** -0.00391* 0.00575
(0.864) (0.00709) (0.00221) (0.0440)

Observations 290,367 258,398 230,049 290,367
Number of fips 2,762 2,742 2,727 2,762
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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APPENDIX B

Regression Model Comparison

Table B.1. Comparison of Regression Models
(1) (2) (3) (4)

VARIABLES Hybrid Correlated Random Effects Random Effects Fixed Effects

L14.dNewCaseRate 0.933***
(0.00155)

L14.dweather 1.378***
(0.0244)

L14.dGovernmentResponseIndex -0.392***
(0.00474)

per_gop 0.0521*** 0.0521*** 0.0278***
(0.00451) (0.00451) (0.00580)

mNewCaseRate 1.178*** 0.245***
(0.00850) (0.00862)

mweather 1.320*** -0.0584
(0.162) (0.164)

mGovernmentResponseIndex 0.0178* 0.410***
(0.0106) (0.0116)

L14.NewCaseRate 0.933*** 0.939*** 0.937***
(0.00155) (0.00153) (0.00155)

L14.weather 1.378*** 1.371*** 1.371***
(0.0244) (0.0241) (0.0243)

L14.GovernmentResponseIndex -0.392*** -0.358*** -0.390***
(0.00474) (0.00445) (0.00472)

Constant -7.021*** -7.021*** 16.98*** 20.24***
(0.864) (0.864) (0.460) (0.247)

Observations 290,367 290,367 292,596 292,596
R2 0.603
Number of fips 2,762 2,762 2,763 2,763
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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APPENDIX C

Auxiliary Regression of Policy and Behavior

(1)
VARIABLES activity

StringencyIndex 0.000112***
weather 0.00751***
Constant 0.192***

(0.000166)
Observations 598,287
Number of fips 2,797
R2 0.150
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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APPENDIX D

Distributed Lags

Table D.1. Comparison of Distributed Lags

(1)
VARIABLES NewCaseRate

L14.NewCaseRate 0.729***
(0.00371)

L7.weather 2.235***
(0.0787)

L14.weather 0.0780
(0.0833)

L21.weather 0.154**
(0.0634)

L28.weather 1.181***
(0.0853)

L7.GovernmentResponseIndex 0.0568*
(0.0309)

L14.GovernmentResponseIndex -0.407***
(0.0431)

L21.GovernmentResponseIndex -0.0759*
(0.0435)

L28.GovernmentResponseIndex -0.0164
(0.0291)

Constant 18.40***
(0.739)

Observations 40,878
Number of fips 2,736
R2 0.661
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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APPENDIX E

Bucketed Regressions

Table E.1. Table of Regressions on Stratified Data

(1) (2) (3) (4) (5) (6)
VARIABLES Democratic Moderate Republican Low Income Middle Income High Income

L14.NewCaseRate 0.815*** 0.938*** 0.933*** 1.024*** 0.846*** 0.831***
(0.00546) (0.00224) (0.00231) (0.00235) (0.00276) (0.00291)

L14.weather 1.238*** 1.319*** 1.549*** 1.093*** 1.429*** 1.253***
(0.0737) (0.0330) (0.0383) (0.0385) (0.0413) (0.0446)

L14.GovernmentResponseIndex -0.0923*** -0.327*** -0.549*** -0.394*** -0.292*** -0.402***
(0.0102) (0.00626) (0.00824) (0.00752) (0.00752) (0.00844)

Constant 5.692*** 17.01*** 27.54*** 20.01*** 16.14*** 22.93***
(0.620) (0.339) (0.408) (0.396) (0.409) (0.442)

Observations 20,033 126,999 145,564 100,227 89,547 98,811
R2 0.543 0.617 0.601 0.693 0.547 0.506
Number of fips 167 1,093 1,503 930 785 981
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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