
ABSTRACT

Selected Topics in High-Dimensional Statistical Learning

John A. Ramey II, Ph.D.

Chairperson: Dean M. Young, Ph.D.

Advances in microarray technology have equipped researchers to measure gene

expression levels simultaneously from thousands of genes, yielding increasingly large

and complex data sets. However, due to the cost and time required to obtain individ-

ual observations, the sample sizes of the resulting data sets are often much smaller

than the number of gene expressions measured. Hence, due to the curse of dimen-

sionality [Bellman, 1961], the analysis of these data sets with classic multivariate

statistical methods is challenging and, at times, impossible. Consequently, numer-

ous supervised and unsupervised learning methods have been proposed to improve

upon classic methods.

In Chapter 2 we formulate a clustering stability evaluation method based on

decision-theoretic principles to assess the quality of clusters proposed by a clustering

algorithm used to identify subtypes of cancer for diagnosis. We demonstrate that

our proposed clustering-evaluation method is better suited to comparing clustering

algorithms and to providing superior interpretability compared to the figure of merit

(FOM ) method from Yeung, Haynor, and Ruzzo [2001] and the cluster stability

evaluation method from Hennig [2007] using three artificial data sets and a well-

known microarray data set from Khan et al. [2001].



In Chapter 3 we investigate model selection of the regularized discriminant

analysis (RDA) classifier proposed by Friedman [1989]. Using four small-sample,

high-dimensional data sets, we compare the classification performance of RDA mod-

els selected with five conditional error-rate estimators to models selected with the

leave-one-out (LOO) error-rate estimator, which has been recommended for RDA

model selection by Friedman [1989]. We recommend the 10-fold cross-validation

(CV ) estimator and the bootstrap CV estimator from Fu, Carroll, and Wang [2005]

for model selection with the RDA classifier.

In Chapters 4 and 5 we consider the diagonal linear discriminant analysis

(DLDA) classifier, the shrinkage-based DLDA (SDLDA) classifier from Pang, Tong,

and Zhao [2009], and the shrinkage-mean-based DLDA (SmDLDA) classifier from

Tong, Chen, and Zhao [2012]. We propose four alternative classifiers and demon-

strate that they are often superior to the diagonal classifiers using six well-known

microarray data sets because they preserve off-diagonal classificatory information by

nearly simultaneously diagonalizing the sample covariance matrix of each class.
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CHAPTER ONE

Introduction

Advances in microarray technology have equipped researchers to measure gene

expression levels simultaneously from thousands of genes, yielding increasingly large

and complex data sets. The diagnosis of such diseases as cancer has become heav-

ily reliant on gene expression microarray data sets. However, due to the cost and

time required to obtain individual observations, the sample sizes of the resulting

data sets are often much smaller than the number of gene expressions measured.

Hence, due to the curse of dimensionality [Bellman, 1961], the analysis of these data

sets with classic multivariate analysis methods is challenging and, at times, impos-

sible because the methods require that a large number of parameters be estimated.

Furthermore, for small-sample, high-dimensional data sets, the statistics utilized

with classic multivariate analysis methods often exhibit large variability and are

frequently incalculable without a regularization or dimension-reduction technique.

Therefore, numerous alternative supervised and unsupervised learning methods have

been proposed to improve upon classic methods and ultimately to automate the dis-

ease diagnostics.

In Chapter 2 we discuss the evaluation of clustering algorithms that are of-

ten used to identify subtypes of cancer for diagnosis. As an initial exploratory

step, one often employs unsupervised learning techniques, in particular clustering

methods, to provide indirect evidence of functional relationships among genes. Ad-

ditionally, the application of clustering algorithms facilitates insightful discovery,

such as uncovering prognostic subclasses or tumor subtypes of cancer [McLachlan,

Do, and Ambroise, 2004]. Consequently, the identification of useful and accurate

group structures is essential. However, the numerous clustering algorithms available
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to the researcher are not immune to discovering coincidental relationships among

genes. Thus, the assessment of a clustering algorithm performed on a given data

set is essential to reinforce the validity of the proposed clusters and to provide rea-

sonable doubt regarding anomalous clusters. Here, we present a clustering stability

evaluation method based on decision-theoretic principles from Fisher and Van Ness

[1971] to assess the quality of the discovered clusters and to identify fallacious clus-

ters. Using three artificial data configurations and the well-known microarray data

set from Khan et al. [2001], we demonstrate that our proposed clustering-evaluation

method is better suited to comparing clustering algorithms and to providing su-

perior interpretability compared to the well-known figure of merit (FOM ) method

from Yeung, Haynor, and Ruzzo [2001]. Also, we show that our method yields sim-

ilar results to the cluster stability evaluation method from Hennig [2007] but with

reduced variability because we avoid the ad hoc cluster matching that is employed

with Hennig’s method to overcome the label switching problem.

In Chapter 3 we consider the regularized discriminant analysis (RDA) classi-

fier, proposed by Friedman [1989], that is a widely used supervised-learning method

with two tuning parameters that are typically selected by the minimization of an

empirical loss function, such as a conditional error rate estimator, over a grid of

possible parameter values. Friedman [1989] has suggested that the leave-one-out

(LOO) cross-validation (CV ) error-rate estimator be employed for model selection

with the RDA classifier. We remark that the LOO estimator is well known to have

large variance and to yield ties among multiple candidate RDA models. Here, we

consider five alternative error-rate estimators and compare them with the LOO es-

timator in the model selection process for the RDA classifier using four well-known,

small-sample, high-dimensional microarray data sets. We find that the .632 error

rate estimator from Efron and Tibshirani [1994] and the .632+ estimator from Efron

and Tibshirani [1997] yield models that degrade the classification performance of the

2



RDA classifier. We recommend the 10-fold CV estimator or the bootstrap CV esti-

mator from Fu, Carroll, and Wang [2005] for model selection with the RDA classifier

and have developed the R package regdiscrim, which implements the RDA classi-

fier. Additionally, we have developed the R package errorest, which implements

the competing conditional error-rate estimators.

In Chapters 4 and 5 we consider a family of naive diagonal classifiers for small-

sample, high-dimensional microarray data, such as the diagonal linear discriminant

analysis (DLDA) classifier, popularized by Dudoit, Fridlyand, and Speed [2002] and

rigorously studied by Bickel and Levina [2004]. Although the DLDA classifier has

been shown to have excellent classification performance, both in theory and in prac-

tice, the classifier omits relevant pairwise correlations and, thus, classificatory in-

formation present in the off-diagonal elements of the sample covariance matrices of

each group.

In Chapter 4 we consider the case where a data set consists of two classes

(populations) and propose two alternative classifiers that are often superior to the

DLDA classifier and its competing variants because our proposed classifiers pre-

serve off-diagonal classificatory information by simultaneously diagonalizing the sam-

ple covariance matrix of each class. Using four well-known microarray data sets,

we demonstrate that our proposed classifiers can yield superior classification per-

formance compared to the DLDA classifier, the shrinkage-based DLDA (SDLDA)

classifier from Pang, Tong, and Zhao [2009], and the shrinkage-mean-based DLDA

(SmDLDA) classifier from Tong, Chen, and Zhao [2012]. Furthermore, in the deriva-

tion of our proposed SimDiag classifier, we provide a direct generalization of a result

from Fukunaga [1990] to simultaneously diagonalize two positive-semidefinite real

symmetric matrices in a feature subspace.

In Chapter 5 we consider the case where a data set is generated from three or

more classes. We propose a classifier that utilizes a whitening transform [Duda, Hart,

3



and Stork, 2001] to diagonalize a pooled sample covariance matrix estimator to im-

prove the diagonal covariance matrix assumption. We also employ two simultaneous

diagonalization algorithms from Asfari [2006] and Souloumiac [2009] to nearly simul-

taneously diagonalize the sample covariance matrices from each class to improve the

naive diagonal assumption prior to applying the DLDA classifier. In short, we first

reduce the naiveté of the diagonal covariance matrix assumption before employing

the DLDA classifier to improve its classification performance. Using two well-known

microarray data sets, we demonstrate that our proposed classifiers yield improved

classification performance compared to the DLDA classifier, the SDLDA classifier,

and the SmDLDA classifier. We have developed the R package diagdiscrim, which

contains an implementation of the classifiers that we have proposed in Chapters 4

and 5 as well as the competing diagonal classifiers.

We remark that the evaluation of statistical and machine learning methods is

of particular interest to researchers at the Pacific Northwest National Laboratory

(PNNL) in Richland, Washington. Researchers at PNNL are especially interested

in the evaluation of semi-supervised and unsupervised learning methods, including

clustering algorithms, for high-dimensional data sets, where no gold standard or

classification labels are present. We have worked jointly with PNNL researchers to

develop our clustering stability evaluation statistic proposed in Chapter 2 that can be

deployed using the open-source statistical computing environment R and the powerful

PNNL Institutional Computing (PIC) platform. Furthermore, we conducted all

simulations reported in this dissertation using the PIC platform.
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CHAPTER TWO

Cluster Stability Evaluation of Gene Expression Data via Cluster Omission

2.1 Introduction

The advent of genomics technology, in particular microarray experiments, has

yielded extremely large and complex data sets. As an initial exploratory step of

microarray data, unsupervised learning techniques, such as clustering algorithms,

are frequently used to identify apparent groups of functional gene relationships. Ad-

ditionally, the application of clustering algorithms facilitates insightful discovery,

such as uncovering prognostic subclasses or tumor subtypes of cancer [McLachlan,

Do, and Ambroise, 2004]. Consequently, the identification of useful and accurate

group structures is essential. Numerous clustering algorithms have been proposed in

the literature of many disciplines, including machine learning, knowledge discovery,

image processing, and bioinformatics. Thus, a researcher has a vast and perhaps

overwhelming collection of methods from which to choose when exploring a microar-

ray data set. Clustering algorithms may potentially find nonexistent relationships

in microarray data, thereby impeding research progress. Furthermore, two distinct

clustering algorithms might suggest opposing structures in the data. Thus, the as-

sessment of discovered clusters is imperative and is as important as the discovered

clusters themselves [Yeung et al., 2001]. Typical approaches to assessing cluster

quality include the use of prior biological knowledge, visual inspection, and biologi-

cal experimentation, but early in a research investigation these assessments may be

limited or ambiguous.

Over the last decade, a number of clustering assessment methods have been

proposed in the bioinformatics literature. These methods are classified into one of

three categories: internal validity, external validity, and stability [Handl, Knowles,

5



and Kell, 2005]. Internal validity measures evaluate intrinsic information in the data,

such as compactness, connectedness, and separation. External validity measures

utilize a gold standard data set that is compared to the determined clusters. Finally,

stability validation methods measure the consistency and variability of a clustering

algorithm when applied to a given microarray data set.

Stability validation methods effectively consider the original clustering on the

unperturbed data as the baseline ground truth to which similarity comparisons are

made with clusterings on resampled data, providing a reasonable assessment of the

original clustering as ground truth. Hence, we can often view stability validation

methods as approximate external validation methods. If the similarity scores on

proposed clusters are far from optimal, then we can usually infer that the proposed

clustering is poor. As discussed by Hennig [2007] and Handl et al. [2005], cluster

stability alone does not indicate good clustering, but when paired with other clus-

tering assessment methods, stability validation methods can provide useful insight

about the proposed clusters.

The present clustering literature lacks a solid theoretical foundation for many

of the proposed clustering evaluation criteria. Many of these methods, whether inter-

nal validity, external validity, or stability, are a function of the data, the determined

clusters, and, if applicable, an external validation set [Handl et al., 2005]. However,

the sampling distribution or even an estimated standard error is seldom provided

for these statistics. Consider, for example, the FOM statistic from Yeung et al.

[2001], who have used an approach that resembles the jackknife method [Efron and

Tibshirani, 1994] to assess the predictive power of a clustering algorithm. Although

Yeung et al. [2001] have provided the expectation of the FOM statistic under mild

assumptions, they have not provided the sampling distribution for the FOM statistic

or even an approximate sampling distribution. Additionally, the FOM statistic lacks

interpretability and results in a relative score, so that the observed FOM statistics

6



for two distinct clustering algorithms can be compared only for a given data set to

determine a relative best clustering; researchers have no method to determine if the

minimum observed score actually indicates a trustworthy clustering. Also, without

a sampling distribution, researchers have no scale by which they can determine if

two observed FOM scores are statistically or practically different.

Despite the lack of statistical foundation that we often see in the cluster-

ing validation literature, some researchers have attempted to formulate a statistical

distribution for some clustering evaluation statistics [Dudoit and Fridlyand, 2003,

Datta and Datta, 2006, Hennig, 2007]. To our knowledge, the majority of assess-

ment methods that provide a sampling distribution do so via a resampling approach.

Bootstrapping, which is often used when a statistic’s sampling distribution is com-

plex or unknown, is a useful tool to approximate the sampling distribution of a

statistic with only the original data in hand [Efron, 1979].

We propose a clustering stability method based on a subset of the decision-

theoretic admissibility conditions proposed by Fisher and Van Ness [1971], who have

provided guidelines for a reasonable clustering algorithm. Their guidelines have es-

tablished a systematic foundation that is often lacking in the evaluation of clustering

algorithms. Specifically, based on the cluster omission admissibility condition from

Fisher and Van Ness [1971], we propose the ClustOmit cluster stability statistic

and approximate its sampling distribution statistic using a stratified, nonparametric

bootstrapping method. Furthermore, we use the apparent variability in the sampling

distribution as a diagnostic tool for further evaluation of the proposed clusters.

We compare our proposed ClustOmit statistic with the FOM statistic from

Yeung et al. [2001] and a clustering stability method from Hennig [2007]. With

the ClustOmit statistic, we utilize the Jaccard similarity coefficient [Jaccard, 1912]

to provide a clear interpretation of the cluster assessment that is lacking from the

FOM statistic. Furthermore, we demonstrate that our proposed clustering stability

7



method is better suited to comparing clustering algorithms than the FOM statistic

because the Jaccard similarity coefficient provides an absolute scale by which we

can indicate if a proposed clustering is reasonable as well as compare two distinct

clustering algorithms.

The cluster stability method from Hennig [2007] also utilizes the Jaccard simi-

larity coefficient with a bootstrapping scheme comparable to the ClustOmit method.

After obtaining a clustering of the original data, Hennig’s method computes the

maximum of the Jaccard similarity coefficients between a given cluster from the

original clustering and the clusters obtained from a bootstrapped data set. For sev-

eral bootstrapped data sets, the mean maximum Jaccard coefficient is computed for

each of the original clusters. In this manner, Hennig has attempted to overcome

the well-known label-switching problem [Yao, 2012, Jakobsson and Rosenberg, 2007,

Stephens, 2000, Richardson and Green, 1997], where clusters are arbitrarily labeled

across bootstrap replicates, to determine the average stability of individual clus-

ters. We argue that this ad hoc cluster matching adds additional variability to the

bootstrapped Jaccard coefficient. We show that our proposed ClustOmit statistic

yields similar results to Hennig’s method but with reduced variability because the

ClustOmit statistic does not employ cluster matching.

We have organized the remainder of our paper as follows. In Section 2 we

present necessary notation and preliminaries to facilitate our proposed method. In

Section 3 we discuss the admissibility conditions from Fisher and Van Ness [1971],

and in Section 4 we present our proposed cluster stability method. We compare our

proposed method with the competing validation methods from Yeung et al. [2001]

and Hennig [2007] on three simulated data models and a microarray data set from

Khan et al. [2001] in Section 5. Finally, we conclude with a brief discussion in Section

6.
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2.2 Preliminaries

Suppose we have n observations, and let xi = (xi1, xi2, . . . , xip)
′ ∈ Rp×1

be the ith observation with p gene expression levels for i = 1, . . . , n. Let L =

{x1,x2, . . . ,xn} denote the learning (training) data set. We assume the pair (xi, yi)

is a realization from a mixture distribution of M populations (classes), where yi ∈

M = {1, 2, . . . ,M} denotes the true, unique population membership of observation

xi. In practice, we do not know the true population membership of each observation

in L; additionally, the number of populations M is typically unknown. Hence, we

must not only determine the membership of each xi ∈ L, but we must also estimate

M . See Jain [2010] for more information concerning the estimation of M .

In this work, we consider clustering algorithms that first require the specifi-

cation of a fixed number of clusters K and then determine the cluster membership

of each xi ∈ L. Formally, we define a clustering procedure P : L → K, where

K = {1, . . . , K} denotes the candidate clustering labels. Let Ck = {xi ∈ L|P(xi) =

k, k ∈ K} denote the kth cluster such that ∪Kk=1Ck = L and Ck ∩ Ck′ = ∅ for all

k 6= k′, i.e., the clusters comprise mutually exclusive and exhaustive sets in L. Let

L\k = {xi ∈ L|xi /∈ Ck} be the set of observations from L that remain after the kth

cluster is omitted. Also, let C = {P(x1),P(x2), . . . ,P(xn)} denote the sequence of

clustering labels assigned by the clustering algorithm P , and let C\k be the sequence

of clustering labels with the kth cluster omitted.

Following Tibshirani and Walther [2005], we say that xi and xj are comembers

of the cluster Ck if xi ∈ Ck and xj ∈ Ck. Suppose U = {PU(x1), . . . ,PU(xn)}

and V = {PV (x1), . . . ,PV (xn)} are two partitions of L such that PU : L → KU ,

PV : L → KV with KU = {1, . . . , KU}, KV = {1, . . . , KV }, and KU and KV are

not necessarily equal. For 1 ≤ i, j ≤ n, we write the comemberships of xi and

xj as Uij = I[PU(xi) = PU(xj)] and Vij = I[PV (xi) = PV (xj)] to indicate if

the observations xi and xj are clustered together in U and V , respectively, where

9



I[z] = 1 if the Boolean statement z is true, and 0 otherwise. We remark that other

authors, such as Monti, Tamayo, Mesirov, and Golub [2003], refer to comembership

as connectivity, while Jackson, Somers, and Harvey [1989] use the term co-occurrence.

One cannot always determine a best clustering algorithm when multiple clus-

tering algorithms have been applied to the same data set. Instead, one can employ

a similarity measure that yields an agreement level between the resulting clusters

from two clusterings of L. We use the Jaccard similarity coefficient, J ∈ [0, 1], to

measure the similarity between the two clusterings U and V . We write J as

J =

∑
i<j

UijVij∑
i<j

(Uij + Vij − UijVij)
, (2.1)

which is the proportion of observation pairs in L that have been clustered together

in both U and V such that each pair has been clustered together in at least one of

the two partitions. Often (2.1) is written as J = |U∩V|
|U∪V| to emphasize the overlap of

the partitions U and V . We define J = 0 for |U ∪ V| = 0 (i.e., each of U and V

consists of singleton clusters).

Values of J near zero suggest that little agreement exists between the two

partitions, whereas values near one suggest strong agreement. Furthermore, as dis-

cussed by Fligner, Verducci, and Blower [2002], the Jaccard coefficient can be viewed

as a proportion from a binomial model, thereby providing a natural probabilistic in-

terpretation of the similarity between clusterings. We utilize the Jaccard similarity

coefficient because it is widely known and is easy to interpret, but other similarity

measures, such as the (adjusted) Rand index or the Minkowski score, can be used in

our proposed cluster evaluation method. We refer the reader to Handl et al. [2005]

for a concise discussion of other similarity measures and their applications to clus-

tering evaluation. Also, see Hennig [2007] for more details regarding the Jaccard

similarity coefficient.
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To assess clustering stability, we are specifically interested in the case where U

is a clustering of L and V is a clustering of a resampled data set from L. Following

Hennig [2008] and Hennig [2010], we consider a stable clustering to have a Jaccard

value of at least 0.75, with values above 0.85 suggesting a highly stable clustering.

Furthermore, we consider values between 0.6 and 0.75 to suggest structure within

the data but with inexact and unreliable cluster membership. Jaccard similarity

values less than 0.6 suggest that the original clustering is untrustworthy.

2.2.1 The Competing Clustering-Evaluation Methods.

We compare our proposed ClustOmit statistic that is discussed in Section 2.4

with two widely-known clustering-evaluation methods: the FOM method from Ye-

ung et al. [2001] and the cluster stability method from Hennig [2007]. The FOM

method resembles the jackknife and leave-one-out (LOO) cross-validation methods.

Rather than omitting each observation in sequence as with LOO cross-validation,

the FOM method aggregates the average distance of each observation to its clus-

ter centroid (typically, the cluster mean) after removing a single gene expression

level across all samples. The reported FOM score is the average of the aggregated

distances corresponding to each gene expression level being removed. Yeung et al.

[2001] have discussed that the FOM statistic can be used only for relative compar-

isons of clustering algorithms on the same data set for a specified value of K. The

lack of interpretation and relative scale of the FOM statistic is a drawback in prac-

tice because one can determine only a relative best clustering on a given data set

for considered clustering algorithms. Moreover, no scale has been provided by which

one can determine if two FOM scores are statistically or practically different, nor

can one determine if an observed FOM estimate alone suggests that the clustering

is adequate.
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Hennig [2007] has proposed a bootstrapping method to evaluate the perfor-

mance of clustering algorithms with the assumption that a small change in the data

should yield a similar clustering. For each bootstrap replicate, the specified similar-

ity measure between a specified cluster from the original clustering and each of the

bootstrapped clusters is computed, and the maximum similarity value is recorded.

Although the ad hoc recording of the maximum similarity measure is intuitive and

can be effective, this approach adds an additional source of variability to the Jac-

card similarity statistic. We refer to the method from Hennig [2007] as the Hennig

method. Our proposed method, discussed in Section 2.4, avoids the ad hoc selec-

tion of similarity scores and, therefore, exhibits lower variability, thereby providing

a more accurate and reliable assessment of clustering stability.

2.3 Clustering Admissibility Conditions

Fisher and Van Ness [1971] have provided nine admissibility conditions based

on decision-theoretic principles that restrict algorithms to admissible decision rules

for clustering algorithms. These criteria yield a set of properties that any reasonable

clustering algorithm should satisfy and, more importantly, provide guidelines with

which one can determine if a clustering method gives unreasonable results. Fisher

and Van Ness’ work has established a necessary foundation for the assessment of

clustering methods applied to microarray data so that investigators do not base

future research on unreasonable clusters that may arise from a particular clustering

algorithm. However, Fisher and Van Ness [1971] did not provide statistical methods

to assess each of their proposed admissibility conditions but instead provided an

initial set of principles for assessing clustering algorithms.

In Section 2.4 we discuss our proposed statistical method that extends a por-

tion of Fisher and Van Ness’ work to a practical setting. To our knowledge, we are

the first to do so. We focus specifically on the cluster omission admissibility condi-
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tion to evaluate the stability of cluster boundaries and to provide reasonable doubt

towards any set of anomalous clusters. We define the cluster omission admissibility

condition as follows: when a clustering procedure is applied to L resulting in clusters

C1, . . . , CK , then, for each k, if the same procedure is applied to L\k, the same K−1

clusters C1, . . . , Ck−1, Ck+1, . . . , CK should result.

The assessment of cluster omission admissibility and other admissibility crite-

ria from Fisher and Van Ness [1971] are clearly suited to a bootstrapping approach

because several of these criteria suggest that clusterings should be robust to the

addition or omission of clusters or observations.

2.4 Cluster Omission Stability Method

We present our clustering-evaluation method based on the cluster omission

admissibility condition provided by Fisher and Van Ness [1971] to assess the K clus-

ters determined by a specified clustering algorithm, P , using B bootstrap replica-

tions. We refer to our proposed method as the cluster omission (ClustOmit) stability

method and provide our method here:

(1) Fix the number of clusters, K.

(2) Apply the clustering method P to L to obtain the clusters, C1, . . . , CK , and

the corresponding set of cluster labels C.

(3) For k = 1, . . . , K:

(a) Construct the set, L\k = L \ Ck, and the corresponding set of cluster

labels C\k.

(4) For b = 1, . . . , B:

(a) For k = 1, . . . , K:

(i) Draw a bootstrap sample L(b)
\k from the original data set L\k.
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(ii) Apply the clustering method P to the bootstrap sample L(b)
\k to

obtain K − 1 clusters and denote the corresponding cluster labels

as C(b)\k .

(iii) Compute the Jaccard similarity, J (b)
\k = J (C\k, C(b)\k ).

(b) Compute the average Jaccard similarity, J b =
∑K

k=1wkJ
(b)
\k ,

where wk = |Ck|/n denotes the proportion of observations assigned to cluster Ck,

and |A| denotes the cardinality of the set, A. The above algorithm generates a

sequence J b (b = 1, . . . , B) that is an approximate sampling distribution for the

average Jaccard similarity between the original clustering C and the clustering C\k

after each of the k (k = 1, . . . , K) clusters are sequentially removed.

To draw the bth (b = 1, . . . , B) bootstrap sample in step 4.a.i of our algo-

rithm, we draw a sample with replacement from L\k to obtain the set of observa-

tions {x(b)
1 ,x

(b)
2 , . . . ,x

(b)
s }, where s is the number of observations in L\k. We employ

a stratified sampling scheme to ensure that Ck′ maintains the same number of obser-

vations for each bootstrap replication (k′ = 1, . . . , k − 1, k + 1, . . . , K). We remark

that the application of clustering to repeated observations is related to the point

proportion admissible condition from Fisher and Van Ness [1971] and, therefore,

deserves further attention in a future study.

A key strength of the ClustOmit method is that we can examine the stability

of individual clusters along with the overall clustering. In particular, for each k =

1, . . . , K, in step 4.a.iii of the ClustOmit method, we can retain the Jaccard score

for the kth cluster. As we will see in Section 2.5, we can utilize the bootstrapped

Jaccard scores for each cluster to identify individual unstable clusters.

We restrict our method to K ≥ 3 because the omission of K = 1 cluster omits

each xi ∈ L. Also, for K = 2, the Jaccard coefficient yields one for each bootstrap

replicate because only one cluster remains after the omission of the second cluster.
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2.5 Data Sets and Results

We compared the performance of the ClustOmit , the FOM, and the Hennig

methods on three simulated data models and the well-known microarray data set

from Khan et al. [2001]. In our study we used the implementation of the FOM

statistic in the clValid R package [Brock, Datta, Datta, and Pihur, 2008] and

the implementation of the Hennig method with the clusterboot function from

the fpc package. We used version 2.15.0 of the open source statistical software

R for the simulations presented in this section and used the R package ggplot2

[Wickham, 2009] to create our summary plots. For the K-means algorithm, we used

the kmeans function in R with the method proposed by Hartigan and Wong [1979] and

20 random starts. Also, we applied the mclust function and its default arguments

from the Mclust package [Fraley and Raftery, 2006] for the MBC algorithm [Fraley

and Raftery, 2002], and we utilized the diana function available in the cluster

package with a Euclidean dissimilarity matrix. Each of the R packages that we used

is available on CRAN.

2.5.1 Simulated Data Sets

For our simulation study, we generated nm (m = 1, . . . ,M) observations from

population Πm so that the Euclidean distance between each of the population cen-

troids and the origin was equal and was scaled by ∆ ≥ 0. We constructed the M

populations such that for ∆ = 0, we had the configuration Π1 = Π2 = . . . = ΠM .

That is, for ∆ = 0 we had M identical populations, and the obtained clusters from

each clustering algorithm for K > 1 were in error. Additionally, for small values of

∆, the separation among the populations was negligible. The consideration of small

values of ∆ is imperative to reflect that real data often lack separation. However,

for K = M and for sufficiently large ∆, we expected each clustering algorithm to

correctly cluster the generated observations.
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For our simulated data sets, we assessed the efficacy of each clustering-evaluation

method with three different data-generation models, where each model consisted of

M = 5 populations drawn from a family of probability distributions with ∆ =

0.0, 0.5, . . . , 2.5, 3.0. For a specified value of ∆, we generated 1000 data sets and

applied the three clustering algorithms to each data set with K = 4, 5, and 6 to

examine the correct and incorrect specification of the number of clusters. Then, for

each clustering algorithm, we computed the three clustering evaluation scores for

each value of K. Specifically, for each clustering algorithm, we constructed an ap-

proximate sampling distribution for our ClustOmit statistic with B = 100 and stored

the average Jaccard similarity value as discussed in Section 2.4. Similarly, for com-

parative purposes, we computed the Hennig scores for each cluster with B = 100

bootstrap replications and stored a weighted average of the stability scores with

weights equaling the proportion of observations in each cluster. Then, we averaged

the 1000 computed values for each clustering-evaluation method. We remark that

the aggregation of the observed values of the Hennig method across each cluster was

not Hennig’s original intent.

2.5.1.1 Model I – Multivariate Uniform. Let x = (X1, . . . , Xp)
′ be a multi-

variate uniformly distributed random vector such that Xj ∼ U(aj, bj) is an inde-

pendently distributed uniform random variable with aj < bj for j = 1, . . . , p. We

generated nm = 25 observations from each population, where

Π1 = U(−1/2, 1/2)× U(∆− 1/2,∆ + 1/2)× U(−1/2, 1/2)× U(−1/2, 1/2),

Π2 = U(∆− 1/2,∆ + 1/2)× U(−1/2, 1/2)× U(−1/2, 1/2)× U(−1/2, 1/2),

Π3 = U(−1/2, 1/2)× U(−∆− 1/2,−∆ + 1/2)× U(−1/2, 1/2)× U(−1/2, 1/2),

Π4 = U(−1/2, 1/2)× U(−1/2, 1/2)× U(−∆− 1/2,−∆ + 1/2)× U(−1/2, 1/2),

Π5 = U(−1/2, 1/2)× U(−1/2, 1/2)× U(−1/2, 1/2)× U(∆− 1/2,∆ + 1/2).
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Here, the support of each population Πm (m = 1, . . . ,M) is a unit hypercube, and

for ∆ ≥ 1, the populations are mutually exclusive.

2.5.1.2 Model II – Multivariate Normal. We generated nm = 25 observations

from the p-dimensional multivariate normal distribution Np(µm,Σm), where µm ∈

Rp×1 is the population mean vector and Σm ∈ Rp×p is the positive-definite covariance

matrix for population m = 1, . . . ,M . Here, we considered M = 5 populations with

p = 50 features, where the sample sizes for each population were half the number of

features.

To define the mth population mean vector, let em ∈ Rp×1 be the mth standard

basis vector such that the mth element of em is one and the remaining elements are

zero (m = 1, . . . ,M). Then, we defined the mth population mean vector as

µm = ∆

p/M∑
j=1

e(p/M)(m−1)+j.

Effectively, we translated the first mean in the first 10 dimensions, the second mean

in the second 10 dimensions, and so on.

Also, we considered equal intraclass covariance (correlation) matrices such

that Σm = σ2(1 − ρm)Jp + ρmIp, where −(p − 1)−1 < ρm < 1, Ip is the p × p

identity matrix, and Jp denotes the p × p matrix of ones. We chose ρm = 0.9 for

m = 1, . . . ,M to examine the effect of highly correlated, ellipsoidal data because

Handl et al. [2005] have demonstrated the difficulty that some clustering algorithms,

including the K-means algorithm, have with this type of data. For simplicity, we let

σ2 = 1.

2.5.1.3 Model III – Multivariate Student’s t. We utilized M = 5 multivariate

Student’s t populations to explore the impact of heavy tails on clustering algo-

rithms, which tend to result in singleton or small anomalous clusters – a common

issue in clustering microarray data. Let x ∼ Tp(µm,Σm, cm) denote the multivariate
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Student’s t distribution, where µm ∈ Rp×1 is the mth population location vector,

Σm ∈ Rp×p is the positive-definite covariance matrix, and cm is the degrees of free-

dom for the mth population (m = 1, . . . ,M). For small values of cm, the tails are

heavier, and, therefore, the average number of outlying observations is increased.

For m = 1, . . . ,M , we generated observations with µm = ∆(em + e2m) to

translate the location vector in two dimensions, and we used a common covariance

matrix Σm ≡ Ip for all populations. Also, we generated more observations from

the populations that have heavier tails to increase the expected number of outlying

observations. For m = 1, . . . , 3, we set nm = 25 and cm = 10, and for m = 4, 5, we

chose nm = 50 and cm = 3.

2.5.1.4 Simulation Results. In Figures 2.1, 2.2, and 2.3, we display the aver-

age FOM, Hennig, and ClustOmit statistics, respectively, as a function of ∆ for each

data-generating model for K = 4, 5, and 6. For the Uniform data model, the aver-

age FOM statistics appeared to increase as ∆ increased and were nearly the same

for each clustering algorithm. For K = 5 and 1.0 ≤ ∆ ≤ 3.0, the Diana algorithm

exhibited the least average predictive power, but we could conclude only that the

Diana algorithm was outperformed by the K-means and MBC algorithms. Applying

the Hennig and ClustOmit methods for the true value of K = 5, we can conclude

that the K-means and MBC algorithms became highly stable for 1.0 ≤ ∆ ≤ 3.0,

while the Diana algorithm did not become highly stable until 1.5 ≤ ∆ ≤ 3.0.

The average FOM statistics were nearly the same for all considered values of

K and ∆ for the Normal model. Applying the Hennig and ClustOmit clustering-

evaluation methods, we determined that the K-means algorithm was the most stable

for the true number of clusters K = 5. As with the Uniform data model, for

1 ≤ ∆ ≤ 2, we can claim only that the MBC algorithm was outperformed by the

other two clustering algorithms with respect to the FOM statistic, whereas utilizing
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the Hennig and the ClustOmit methods, we concluded that the MBC algorithm

yielded unstable clusterings.

For the Student’s t data, we were specifically interested in the impact of out-

lying observations on the three clustering algorithms considered here. Applying the

Hennig and ClustOmit clustering-evaluation methods, we determined that the Di-

ana algorithm incorrectly yet consistently identified the outliers as clusters, but,

as expected, the K-means and MBC increased in stability as ∆ increased. Hence,

using the Hennig and ClustOmit clustering-evaluation methods, we concluded that

the Diana algorithm should be avoided for data sets where outliers are suspected.

We were unable to gain much insight into the behavior of the FOM statistic

in part because Yeung et al. [2001] have suggested that the FOM statistic can be

considered only for a fixed K. We add that the predictive power of the FOM statistic

cannot be examined as a function of population separation because the FOM score

apparently increases as the population separation increases. Finally, for the three

data-generating models, we conclude that the Hennig and ClustOmit methods yield

similar results with better interpretability than the FOM statistic provides.

2.5.2 A Microarray Data Set – Khan et al. [2001]

We consider the small, round blue cell tumor (SRBCT) gene expression data

set provided by Khan et al. [2001]. The SRBCT cancers include four distinct di-

agnostic categories: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin

lymphoma (NHL), and the Ewing family of tumors (EWS). The data set consists of

63 observations that were obtained from cDNA microarrays containing 6567 genes.

Furthermore, the 63 observations include 12 NB observations, 20 RMS observations,

8 NHL observations, and 23 EWS observations. From the R package pamr, we ob-

tained a filtered SRBCT data set that has been reduced to 2308 genes. We further

filtered the data set to 250 genes using the variable selection method from Dudoit,
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Fridlyand, and Speed [2002] to reduce the amount of computation involved in our

bootstrap simulations.

Because the FOM statistic results in a single value without reference to a sam-

pling distribution, we approximated the sampling distribution of the FOM statistic

via nonparametric bootstrapping [Efron and Tibshirani, 1994] by randomly sam-

pling with replacement from the data set to obtain 500 bootstrapped data sets. We

then applied the FOM method to each of the data sets for the considered values

of K. Additionally, we applied the Hennig and ClustOmit methods to the filtered

data set with B = 500. We assumed the true number of populations to be M = 4

and compared the efficacy of the FOM, Hennig, and ClustOmit clustering-evaluation

methods for K = 3, . . . , 6.

2.5.2.1 Microarray Data Results. In Figure 2.4 we display boxplots of the

bootstrapped FOM scores for each value of K considered here. The differences

between the FOM statistics of the clustering algorithms for each value of K appeared

statistically insignificant because the variability of the FOM statistics applied to each

clustering algorithm was too large to indicate a best clustering algorithm. Without

any interpretability of the FOM statistic and with the large observed variability, we

were unable to obtain any conclusive results from the FOM statistic.

In Figures 2.5 and 2.6, we present boxplots of the B = 500 values obtained

with the Hennig and ClustOmit statistics, respectively, for the Khan data set. With

respect to these two clustering-evaluation methods for the correct number of clusters

K = 4, we concluded that the K-means and MBC algorithms consistently were

highly stable, while the Diana algorithm was more variable and less stable. Although

the average values of the Hennig and ClustOmit methods were approximately equal

for K = 4, 5, and 6, the ClustOmit statistic exhibited less variability than the

Hennig statistic.
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Examining the average Hennig scores for the K = 4 individual clusters pro-

posed by the Diana algorithm in Figure 2.7, we noticed that Clusters 1 and 2 were

unstable. Furthermore, Clusters 3 and 4 appeared stable for the majority of the

B = 500 bootstrap replications, but both clusters exhibited instances of instabil-

ity when the data were resampled. In Figure 2.8 we observed that the ClustOmit

method yielded similar results. With respect to the ClustOmit method, Clusters 1

and 2 often appeared stable, while Clusters 3 and 4 were frequently unstable. We

emphasize that the two stable clusters were unstable at times with respect to both

the Hennig and ClustOmit clustering-evaluation methods and remark that these two

clusters should be examined more closely. Additionally, for the individual cluster

stabilities, notice that the Hennig scores had larger variability than the ClustOmit

scores.

2.6 Discussion

Clustering is an important part of class discovery and the initial exploratory

data analysis of microarray data, and numerous clustering algorithms are avail-

able to aid the researcher in finding groups for future investigation. However, the

application of different clustering algorithms to a data set can yield different and

contradictory results that can hinder research progress. Thus, we must assess the

proposed clusterings of the candidate clustering algorithms to promote the deter-

mination of valid and reasonable clusterings. Several clustering-evaluation methods

have recently been proposed in the literature to assess clustering algorithms for a

given data set, but many of these methods result in an obscure efficacy score with

no reference to a sampling distribution or to a magnitude scale. Thus, one often

has difficulty in differentiating among the scores of several clustering algorithms and

cluster sizes under consideration.
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In this paper, we have formulated a clustering stability assessment statistic

that is similar to the method of Hennig [2007] and is based on the decision theo-

retic admissibility criteria from Fisher and Van Ness [1971]. Specifically, we have

developed a method to evaluate Fisher and Van Ness’ cluster omission admissibil-

ity criterion for a clustering of gene expression data. We have utilized a stratified,

nonparametric bootstrapping approach to approximate the sampling distribution of

our proposed ClustOmit statistic. Our proposed method provides a helpful visual

aid for clustering evaluation and is useful for determining the relative stability of a

clustering algorithm applied to microarray data.

We have compared our proposed ClustOmit statistic with the FOM statistic

from Yeung et al. [2001] and the cluster stability statistic from Hennig [2007] using

three simulated data models and a microarray data set from Khan et al. [2001].

We have found that the FOM statistic is difficult to use because it yields values

that lack interpretability. Furthermore, as noted by Yeung et al. [2001], we are

unable to compare the FOM scores for different values of K and, hence, cannot

utilize the FOM statistic as indirect or direct evidence that a given value of K is

reasonable. Furthermore, the FOM statistic tends to increase as the separation

among population increases, so that the FOM statistic cannot directly evaluate

clustering algorithms as a function of population separation.

We have found that the method from Hennig [2007] often works well and

agrees with ground truth, provided the ground truth is known. We have also deter-

mined that the ClustOmit statistic often yields similar results to those of the Hennig

method. However, the ClustOmit method can avoid the ad hoc selection of the max-

imum Jaccard similarity coefficient that the Hennig method employs. Furthermore,

with the microarray data set from Khan et al. [2001], our proposed method exhib-

ited less variability than the aggregated Hennig method. Although we do not advise

the direct estimation of K with either the Hennig or ClustOmit methods, we have
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seen that both methods can corroborate the true value of K and, therefore, provide

evidence for the estimation of K. Hence, our proposed ClustOmit statistic is useful

in practice when paired with methods such as the Gap statistic from Tibshirani,

Walther, and Hastie [2001], to estimate K.

As with most clustering-evaluation methods, our ClustOmit statistic is not

intended to declare a best clustering algorithm on any specific data set, as is typically

performed in a supervised learning study, but rather to present reasonable doubt

towards misleading clustering results. The ClustOmit method allows researchers to

reduce the set of candidate clusters from various clustering algorithms on a given data

set to a manageable set for additional research. Furthermore, we have demonstrated

that our proposed ClustOmit statistic can be effectively used to identify anomalous

clusters.
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Figure 2.1: The average FOM statistic for the three competing clustering algorithms
applied to the three data models as a function of the population separation ∆.
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Figure 2.2: The average Hennig statistic for the three competing clustering algorithms
applied to the three data models as a function of the population separation ∆.
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Figure 2.3: The average ClustOmit statistic for the three competing clustering algorithms
applied to the three data models as a function of the population separation ∆.
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Figure 2.4: Box plots of the FOM statistic for 500 bootstrap replications of the Khan data
set for K = 3, . . . , 6.
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Figure 2.5: Box plots of the Hennig statistic obtained from the Khan data set for B = 500.
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Figure 2.6: Box plots of the ClustOmit statistic obtained from the Khan data set for
B = 500.
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Figure 2.7: Density plots of the Hennig statistic applied to the Khan data set for the Diana
algorithm for K = 4 and B = 500.
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Diana algorithm for K = 4 and B = 500.
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CHAPTER THREE

On Model Selection with Regularized Discriminant Analysis

3.1 Introduction

Friedman [1989] has proposed the RDA classifier as an alternative to the

well-known linear discriminant analysis (LDA) and quadratic discriminant analy-

sis (QDA) classifiers by incorporating a biased covariance matrix estimator that has

been shown to improve classification performance. The RDA classifier incorporates

two tuning parameters that are typically estimated when we minimize an empirical

loss function, such as a conditional error-rate estimator. Cross-validation is typically

employed by default to estimate the training error rate in the selection of tuning pa-

rameters with supervised classification models (hereafter, classifiers). Friedman has

suggested that the LOO error rate estimator be used for model selection with the

RDA classifier. However, the LOO estimator is well-known to exhibit large variance

[Izenman, 2008] and can yield ill-advised model selections because multiple tun-

ing parameter pairs can yield the minimum LOO error-rate estimate [Aeberhard,

Coomans, and Vel, 1993].

Currently, our choice of conditional error-rate estimator for model selection

with the RDA classifier is unclear. We consider five alternative conditional error-

rate estimators to the LOO estimator to improve the RDA model selection. For

a thorough listing of additional proposed parametric and nonparametric error-rate

estimators, we recommend Schiavo and Hand [2000], Hand [1997], Molinaro, Simon,

and Pfeiffer [2005], Toussaint [1974], and Wehberg and Schumacher [2004].

Additionally, other empirical loss functions have been considered for model

selection for the RDA classifier. For instance, Aeberhard et al. [1993] have claimed

that their appreciation function yields improved model selection in terms of classifi-
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cation performance for the RDA classifier because their proposed function does not

rely on error counting. Instead, Aeberhard et al. utilize estimators of the a poste-

riori probabilities of class membership to provide a smooth empirical loss function.

However, we do not consider such functions in this paper. Instead, we consider only

conditional error-rate estimators for RDA model selection.

Using four small-sample, high-dimensional microarray data sets, we compare

the RDA model selection with the LOO estimator, the 10-fold CV estimator, the

632 and 632+ estimators, the bootstrap estimator considered by Jain, Dubes, and

Chen [1987] and Efron and Tibshirani [1994], and the BCV estimator from Fu et al.

[2005]. Based on our Monte Carlo simulations, we prefer the 10-fold CV estimator

for RDA model selection. Although its classification performance is comparable

to the model selection with the LOO, bootstrap, and BCV estimators, we remark

that the 10-fold CV estimator is less computationally demanding. Furthermore, we

comment that the bootstrap and BCV estimators yield the smallest model selection

variability among the considered error-rate estimators, but these two estimators

require substantially more computation than the competing error-rate estimators.

Thus, if classification performance is our main goal, we recommend the 10-fold CV

estimator. However, if we also desire small variability in model selection and if the

additional computation is warranted, we recommend the BCV estimator for RDA

model selection in the small-sample, high-dimensional setting.

We have organized the remainder of the paper as follows. In Section 2 we

review the RDA classifier from Friedman [1989]. In Section 3 we describe the model

selection techniques for the RDA classifier and then discuss error-rate estimators

that we examine in Section 4. In Section 5 we briefly describe four small-sample,

high-dimensional microarray data sets, our Monte Carlo simulation design, and the

simulation results. We then briefly discuss the results in Section 6.
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3.2 Regularized Discriminant Analysis

In discriminant analysis, also known as supervised learning, we wish to cor-

rectly assign an unlabeled p-dimensional observation vector x to one of K unique,

known classes (or populations) by constructing a classifier from n training observa-

tions that can accurately predict the class membership of x. Let T = {x1,x2, . . . ,xn}

denote a training data set, and let xi = (xi1, xi2, . . . , xip) ∈ Rp×1 be the ith observa-

tion (i = 1, . . . , n), where Rm×n denotes the matrix space of all m× n matrices over

the real field R. We assume that (xi, yi) is a realization from a mixture distribution

p(x) =
∑K

k=1 p(x|ωk)p(ωk), where p(x|ωk) is the probability density function (PDF)

of the kth class, p(ωk) is prior probability of class membership of the kth class, and

yi ∈ K = {ω1, . . . , ωK} denotes the true, unique membership of sample xi.

If we assume that the K distributions are multivariate normal with known

parameters, the optimal Bayesian classifier with respect to a 0 − 1 loss function is

the well-known QDA classifier. We say that the kth class consists of p-dimensional

multivariate normal vectors with the PDF

p(x|µk,Σk) = (2π)−p/2|Σk|−1/2 exp

{
−1

2
(x− µk)′Σ−1k (x− µk)

}
, (3.1)

where µk ∈ Rp×1 and Σk ∈ R>
p×p are the known mean vector and covariance matrix,

respectively, for class ωk, where R>
m×m denotes the cone of real n×n positive definite

matrices.

In practice, we estimate the unknown parameters with their maximum likeli-

hood estimators (MLEs). With the MLEs for µk and Σk, we assign an unlabeled

observation x to class ωk using the following decision rule:

D(x) = arg min
k

(x− x̄k)′Σ̂−1k (x− x̄k)′ + ln |Σ̂k| − 2 lnP (ωk), (3.2)

where x̄k and Σ̂k denote the MLEs for µk and Σk, respectively.
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If we assume that the covariance matrix parameters are equal for each class

(i.e., Σk ≡ Σ) in (3.1), then (3.2) simplifies to the LDA classifier,

D(x) = arg min
k

(x− x̄k)′Σ̂−1pool(x− x̄k)
′ − 2 lnP (ωk), (3.3)

where Σ̂pool is the pooled sample covariance matrix MLE with

Σ̂pool =
1

n

K∑
k=1

nkΣ̂k. (3.4)

To estimate the covariance matrices well, we require a large number of obser-

vations relative to the dimension p. Recall that the spectral decomposition of Σ̂−1k

is given by

Σ̂−1k =

p∑
j=1

vjv
′
j/ej,

where ej is the jth largest eigenvalue of Σ̂k and vj is the associated eigenvector

[Harville, 2008]. We remark that the smallest eigenvalues and the directions associ-

ated with their eigenvectors highly influence the estimator of Σ−1k . The eigenvalues

of Σ̂−1k are well known to be biased such that the smallest eigenvalues are under-

estimated [Seber, 2004] and that this bias increases as the training-sample size n

decreases relative to the feature dimensionality p. Consequently, Σ̂−1k used in (3.2)

is highly variable for small values of n/p. Moreover, for p > n, (3.2) is incalculable

because Σ̂−1k does not exist. Thus, although more feature information is available

to discriminate among the K classes as p increases, classification accuracy decreases

unless one obtains enough training-sample observations to reliably estimate the in-

creased number of parameters.

Several regularization methods, such as Guo, Hastie, and Tibshirani [2007],

Mkhadri [1995], and Xu, Brock, and Parrish [2009], have been proposed in the

literature to stabilize the eigenvalues of the sample covariance matrices used in (3.2).

A typical regularized sample covariance matrix resembles the ridge estimator

Σ̂k(γ) = Σ̂k + γIp, (3.5)
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where Ip ∈ Rp×p is the identity matrix and γ is a positive scalar that must be esti-

mated with training data. This technique effectively shrinks the sample covariance

matrix Σ̂k towards Ip and increases the eigenvalues of Σ̂k away from zero.

Friedman [1989] has extended the shrinkage technique by first computing a

weighted average of the sample covariance matrix Σ̂k for class ωk and the pooled

sample covariance matrix Σ̂pool to estimate the covariance matrix for class ωk with

Σ̂k(λ), where

nk(λ) = (1− λ)nk + λn,

Sk = nkΣ̂k,

S =
K∑
k=1

Sk,

Sk(λ) = (1− λ)Sk + λS,

Σ̂k(λ) = Sk(λ)/nk(λ) (3.6)

with λ ∈ [0, 1]. We can interpret (3.6) as a covariance matrix estimator for class

ωk that borrows from (5.3) to better estimate Σk. Notice that for λ = 0, (3.6)

corresponds to the covariance matrix estimator used in (3.2). Also, notice that for

λ = 1, (3.6) corresponds to the covariance matrix estimator used in (5.4), in which

we implicitly assume that Σ1 = . . . = ΣK .

Friedman [1989] has also used the regularization parameter γ to shrink the

eigenvalues of (3.6) towards the p-dimensional identity matrix in order to stabilize

the inverse of (3.6), resulting in the biased covariance matrix estimator

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
tr{Σ̂k(λ)}

p
Ip, (3.7)

for class ωk where tr{·} is the trace operation and γ ∈ [0, 1]. Notice that for γ = 0

we have a scalar times the identity matrix Ip, which corresponds to a modified

Euclidean classifier [Marco, Young, and Turner, 1987].
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Finally, if we substitute (3.7) in place of Σ̂k in (3.2), we obtain the RDA

classifier

Dk(x) = arg min
k

(x− x̄k)′Σ̂k(λ, γ)−1(x− x̄k)′ + ln |Σ̂k(λ, γ)| − 2 lnP (ωk), (3.8)

In summary, the pooling parameter λ controls the amount that we borrow from

Σ̂pool, and the shrinkage parameter γ determines the amount of applied shrinkage.

3.3 Model Selection for the RDA Classifier

A main disadvantage of the RDA classifier discussed in the literature is model

selection because no closed-form estimators for λ and γ are available. Friedman

[1989] has suggested that a training error-rate estimator be computed for each pa-

rameter pair in a grid of candidate values of (λ, γ). We construct the model selec-

tion grid as the Cartesian product of λ = (λ1, λ2, . . . , λG)′ and γ = (γ1, γ2, . . . , γG)′,

where γi, λi ∈ [0, 1] for i = 1, 2, . . . , G. We select the pair (λ̂, γ̂) that minimizes the

considered training error-rate estimator.

The grid model selection method is computationally intensive because we must

estimate the training error rate for each candidate pair (λ, γ). However, this pro-

cedure is an embarrassingly parallel computational situation for which modern par-

allel programming techniques are readily available to reduce the length of the com-

putational runtime [Foster, 1995]. Rather than employing parallel computation,

Friedman [1989] has derived a “down-dating” method that alleviates much of the

computational burden when one is computing the LOO error-rate estimator for

each parameter pair in the RDA model grid. This characteristic suggests traversing

through different values of γ for a fixed value of λ because the down-dated formula

is independent of γ.

Because we must calculate the training error rate for each grid pair, Ye and

Wang [2006] view this process as prohibitive for a large number of candidate param-

eter values. Hence, we must consider the precision of the grid to find an estimator

37



that results in small error rate. Arguably we should use a large grid size and consider

a large number of values for (λ, γ) for model selection. However, by increasing the

grid precision, we will considerably increase the amount of computation.

3.4 Conditional Error-Rate Estimators

In this section, we discuss various conditional error rate estimators that we

will compare for model selection with the RDA classifier. First, we provide some

necessary notation to discuss the conditional error-rate estimators in detail. We

borrow extensively from the notation of Hastie, Tibshirani, and Friedman [2008].

Let f be a decision function that maps an unlabeled observation x ∈ Rp×1 to

its predicted class label, y ∈ K. We say that the pair (x, y) is sampled from F , the

joint distribution of the data. From a training data set, T , we train an estimator f̂

of the decision function f to obtain a sample-based classifier. The RDA classifier in

(3.8) is an estimator for the QDA decision rule in (3.2).

We require a loss function L{y, f(x)} for penalizing classification errors. Fol-

lowing the typical approach in supervised classification studies, we consider the 0−1

loss function L{y, f(x)} = I[f(x) = y], where I[z] is 1 if the Boolean statement z

is true and 0, otherwise. Next, we define the conditional (test) error rate (CER) of

the classifier, f , as

CER = Ex0,y0 [L{y0, f(x0)}|T ], (3.9)

where the pair (x0, y0) is a test observation sampled from F , and Ez denotes the

expectation with respect to the distribution of the random vector z ∈ Rp×1. We

remark that for (3.9), the training data set T is fixed. By averaging over all training

data sets, we obtain the expected error rate (EER) as

EER = ETEx0,y0 [L{y0, f(x0)}|T ]

= ET [CER]. (3.10)
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The majority of error-rate estimators estimate (3.10) by partitioning the data into

training and test data sets. However, these estimators are often used to estimate

(3.9).

Some classifiers, such as the RDA classifier, are indexed by the tuning pa-

rameters θ. Thus, we write the trained classifier as f̂(x,θ). We then estimate θ

by selecting θ̂, which yields the minimum estimate of (3.9). For brevity, we write

f̂(x) = f̂(x, θ̂) in our discussion of error rate estimators below.

3.4.1 The Apparent Error Rate (AER) Estimator

The AER estimator is perhaps one of the simplest conditional error-rate es-

timators because it is the proportion of misclassified observations with the usage

of the original data set as both the training and test data set. We write the AER

estimator as

err =
n∑
i=1

L(yi, f̂(xi)). (3.11)

The AER estimator is overly optimistic because the classifier is first adapted to the

training data and then predictions are performed with the same data set. Hence,

(3.11) generally estimates (3.9) with a downward bias. Although we do not consider

(3.11) in our simulation studies, we emphasize it here because a subset of the CER

estimators we consider here functionally depend on it.

3.4.2 The M-fold Cross-validation (MCV) Estimator

A reasonable attempt to overcome the downward bias of (3.11) is to partition

the original training data into M mutually exclusive and exhaustive sets, also known

as folds, that have approximately the same number of observations. Then, for m =

1, . . . ,M , we classify the observations in the mth fold by training a classifier on the

remaining M−1 folds. We then calculate the proportion of misclassified observations

across the M folds to obtain the MCV estimator of (3.9).
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Next, we define the MCV estimator more precisely. Similar to Hastie et al.

[2008], we define the indexing function κ : {1, . . . , n} → {ω1, . . . , ωK} to randomly

assign the ith observation to the mth fold. Let f̂−m(x) be the trained classifier on

the observations the mth fold omitted from the data. Then, we write the MCV

estimator as

Êrr
(CV )

=
1

n

n∑
i=1

L(yi, f̂
−κ(i)(xi)). (3.12)

In the literature, we have seen that typical choices of M are 5, 10, and n. We note

that the case M = n corresponds to the LOO estimator. In this case, we have

κ(i) = i, so that the classifier is trained on every observation except xi. The LOO

estimator is well known to be an approximately unbiased estimator for the EER

but can exhibit a large variance because of the similarity of the M = n training

sets [Hastie et al., 2008]. For other choices of M , we can significantly reduce the

variance of the MCV estimator, although we have a trade-off of adding bias to the

estimator. Despite the common choices for M that we have seen in the literature,

we argue that a best value for M is difficult to identify because the choice depends

on the classifier, the training sample size, and the distributions from which each

population is realized. We consider M = 10 in our simulation studies because it is

commonly used in the literature and is relatively quick to compute.

3.4.3 The Bootstrap Estimator

Rather than partitioning the data set as with the MCV estimator, many

estimators utilize the bootstrapping paradigm first to sample with replacement from

the data set and then to classify the unsampled training observations. Here, we

consider one of the simplest bootstrapping error-rate estimators, which has been

considered by Jain et al. [1987] and Efron and Tibshirani [1994]. Let f̂ ∗b(xi) be our

40



classification of xi (i = 1, . . . , n) for the bth bootstrap sample with b = 1, . . . , B.

Then, we define

Êrrboot =
1

B

1

n

B∑
b=1

n∑
i=1

L(yi, f̂
∗b(xi)). (3.13)

to be the bootstrap error rate estimator. Notice that the training and test data

sets overlap. Hence, (3.13) is a downward-biased estimator of the EER that can be

used to estimate the CER. To overcome the downward bias, Efron and Tibshirani

[1997] have proposed the leave-one-out bootstrap (LOO-Boot) error-rate estimator.

Contrary to (3.13), the LOO-Boot error rate estimator uses only the observations

that are not sampled with replacement in a bootstrap sample as the test observations.

Let

C−i ≡ {b ∈ {1, . . . , B} | xi /∈ Z∗b}.

We write the LOO-Boot estimator as

Êrr
(LOO−Boot)

=
1

n

n∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi)). (3.14)

For small values of B, |C−i| = 0 may hold for at least one i = 1, . . . , n. For example,

consider the case B = 1. Then, approximately 36.8% of the observations are not

sampled. Hence, |C−i| = 0 for each i such that xi /∈ Z∗1. Therefore, we must choose

a sufficiently large B.

3.4.4 The .632 Estimator

Although (3.14) corrects for the over-optimism of (3.13), it is susceptible to a

biased estimation of EER similar to the MCV estimator because a subset of the

training data set might not be fully representative of the data-generating popula-

tions. However, as the sample size of the data increases, the training data can be

considered more representative of the underlying populations, and therefore, the bias

of (3.13) is typically smaller.
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For each bootstrap sample, we have that the average number of distinct ob-

servations is approximately 0.632n because

Pr(xi ∈ Z∗b) = 1−
(

1− 1

n

)n
≈ 0.632. (3.15)

For a fixed value of b = 1, . . . , B, we note that the Pr(xi ∈ Z∗b) rapidly approaches

0.632 as n increases. For instance, if we consider the values of n = 10, 20, and

30, then we have that the probabilities that an observation is any one bootstrap

sample are approximately 0.651, 0.642, and 0.638, respectively. From (3.15), we can

conclude that the estimation bias of (3.14) is similar to two-fold cross-validation

because we can expect approximately half of the original training observations to be

sampled in each bootstrap sample. Hence, (3.14) is likely to yield upward bias. To

correct for the bias, Efron and Tibshirani [1994] have proposed the .632 estimator

Êrr
(.632)

= 0.368 · err + 0.632 · Êrr
(LOO−Boot)

, (3.16)

which is a weighted average of (3.11) and (3.14). Intuitively, we see that (3.16)

corrects for the upward bias of (3.14) by including the downward bias of (3.11). We

note that the coefficients in (3.16) sum to unity and have been chosen corresponding

to (3.15).

3.4.5 The .632+ Estimator

While (3.16) has been shown to estimate the EER well when the specified

classifier does not overfit the training data, it is often biased when the trained

classifier overfits the training data. Efron and Tibshirani [1997] have proposed the

.632+ estimator, which is intended to correct the bias of (3.16) in cases of overfitting.

Efron and Tibshirani have defined the no-information error rate, η, as the error rate
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if the feature vectors and the class labels are independent. Efron and Tibshirani

have estimated η by

η̂ =
1

n2

n∑
i=1

n∑
i′=1

L(yi, f̂(xi′)), (3.17)

which evaluates the classifier at all possible combinations of the class labels yi and

the feature vectors xi′ (1 ≤ i, i′ ≤ n). Alternatively, we have the equivalent and

more intuitive expression

η̂ =
K∑
k=1

p̂k(1− q̂k),

where p̂k is the observed proportion of observations that are members of class ωk and

q̂k is the proportion of observations that are classified into class ωk (k = 1, . . . , K).

The computed value for η̂ is invariant to the ordering of the classes.

Next, Efron and Tibshirani have defined the relative overfitting rate as

R̂ =
Êrr

(LOO−Boot)
− err

η̂ − err
, (3.18)

which is defined on [0, 1]. If R̂ = 0, which implies that Êrr
(LOO−Boot)

= err, then

we say that overfitting has occurred. Similarly, if R̂ = 1, then we have that the

Êrr
(LOO−Boot)

= err, which again suggests that the classifier has overfit the data.

Efron and Tibshirani [1997] have defined the .632+ estimator as

Êrr
(.632+)

= (1− ŵ) · err + ŵ · Êrr
(LOO−Boot)

, (3.19)

where the weight ŵ = .632

1−.368R̂
∈ [0.632, 1]. Hence, the values of (3.19) range from

Êrr
(.632)

when ŵ = .632 to Êrr
(LOO−Boot)

when ŵ = 1. Similar to (3.16), (3.19) yields

a compromise between (3.14) and (3.11), but (3.19) is intended also to account for

possible overfitting.

3.4.6 The Bootstrap Cross-Validation (BCV) Estimator

Fu et al. [2005] have discussed that (3.12) can exhibit large variability and poor

estimation of the EER for small sample sizes. Fu et al. have reasoned that, due to
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the small sample size, the data are not adequately representative of the underlying

distribution, F , so that the distance between the partitioned training and test data

sets is often large. Fu et al. have proposed the BCV error-rate estimator to improve

(3.12) by combining (3.12) and (3.13) under the bagging framework [Breiman, 1996].

Formally, we write the BCV estimator as

Êrr
(BCV )

=
1

B

B∑
i=1

1

n

n∑
i=1

L(y∗i , f̂
−κb(i)(x∗i )). (3.20)

To compute (3.20), one randomly draws B bootstrap samples from D and then

computes (3.12) on the bth sample for b = 1, . . . , B. Fu et al. [2005] have argued

that (3.20) estimates EER well because the held-out fold of the bth bootstrap sample

is reasonably close to the M − 1 remaining folds upon which the classifier is trained.

They have also argued that (3.20) is superior to (3.14) because the latter estimator

counts only errors from test data sets that have no overlap with training data sets.

Moreover, the authors have argued that (3.20) estimates the EER better than (3.16)

and (3.19) because the latter two estimators heavily weight (3.14).

Fu et al. have recommended that B be between 50 and 200 and have required

that at least three distinct observations be present in each class of the bootstrapped

held-out folds. Because (3.20) is computationally burdensome if any of n, M , or B

is large, we choose M = 10 and B = 100 in our simulation study below.

3.5 Monte Carlo Simulation Design and Results

Our goal in this paper is to compare the model selection of the RDA classifier

using the conditional error-rate estimators described in Section 4 with small-sample,

high-dimensional data sets. We compare the model selection methods in two ways.

First, we wish to identify the error-rate estimators that yield the smallest variability

in terms of the selected models for data generated from the same joint distribution F .

Ideally, an error-rate estimator will consistently result in the same model. Second,

we compare the classification performance of the models selected using each error
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rate estimator. We desire to know if one of the error-rate estimators described in

Section 4 yields the best model in terms of the average classification performance.

To study our two stated goals, we consider four well-known, small-sample,

high-dimensional microarray data sets. We repeat the following procedure 250 times.

First, we randomly partition the given data set D into a training data set, T , and

a validation (test) data set, V , such that D = T ∪ V and T ∩ V = ∅. We partition

D so that T contains four-fifths of the observations, while V contains the remaining

one-fifth of the observations. We preserve the proportions of each class as observed

in D. We also reduce the dimension of the observations before applying the RDA

classifier because the log-determinant in (3.8) is numerically unstable and is often

incalculable when shrinkage is applied. We apply the variable selection method from

Dudoit, Fridlyand, and Speed [2002] to D before randomly partitioning D to reduce

the data from p features to q = 50 features. We are aware of the classification

error rate bias that can be induced [Ambroise and McLachlan, 2002], but following

Fu et al. [2005], we do not consider the bias here because our focus is not on gene

selection.

Next, we train the RDA classifier, f̂ , using the observations in T . For each

candidate model, using a parameter grid with G = 11, we compute each of the con-

sidered error-rate estimators and select the model that yields the minimum CER.

As discussed by Zhou and Mao [2006], an error rate estimator can yield multiple

models with the minimum CER (i.e., ties are present), in which case we randomly

choose the model from multipe best models. We then calculate CER as the propor-

tion of observations in V that we misclassify with the trained classifier f̂(x). For

each error-rate estimator, we report the selected model θ̂ along with EER.

Here, we briefly describe four microarray data sets analyzed in our Monte

Carlo simulations.
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3.5.1 Alon Data Set

Alon et al. [1999] have examined the gene expression profiles measured with

an Affymetrix oligonucleotide array for n1 = 40 tumor and n2 = 22 normal colon

tissues for 6,500 human genes. Following Alon et al. [1999], we restrict the data set

to the 2,000 genes with the highest minimal intensity across the samples.

3.5.2 Chiaretti Data Set

Chiaretti et al. [2004] have presented a data set that contains the gene expres-

sion levels for 128 individuals with acute lymphoblastic leukemia (ALL). As in Xu

et al. [2009], we consider the n1 = 42 observations labeled NEG and the n2 = 37

observations labeled BCR/ABL. For each of the n = 79 observations that have been

obtained from Affymetrix human 95Av2 arrays, the robust multichip average (RMA)

normalization method has been applied to all 12,625 gene expression levels.

3.5.3 Golub Data Set

Golub et al. [1999] have examined the gene expression levels for n1 = 47

patients with acute lymphoblastic leukemia (ALL) and n2 = 25 patients with acute

myeloid leukemia (AML). Bone marrow samples from each patient were assayed

using Affymetrix Hgu6800 chips. We use the merged version of the data set that is

available in the golubEsets package on Bioconductor.

3.5.4 Singh Data Set

Singh et al. [2002] have presented a data set that consists of 235 radical prosta-

tectomy specimens from surgery patients between 1995 and 1997, and oligonucleotide

microarrays containing probes for approximately 12,600 genes and expressed se-

quence tags were used. We consider 102 of the radical prostatectomy specimens

that the authors reported as high-quality to obtain a data set consisting of n1 = 52

prostate tumor samples and n2 = 50 non-tumor prostate samples.
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3.5.5 Simulation Results

For the microarray data sets, we computed EERs for the selected RDA models

with respect to each of the six error-rate estimators described in Section 4. In Table

3.1 we summarized the EER estimates (i.e., the average of the CER estimates) along

with approximate standard errors for each model selection method. In Figures 1-4,

we plot heatmaps of the 250 RDA models that were selected with respect to each of

the considered error-rate estimators for the four microarray data sets. Furthermore,

in Figures 5-8, we plot average training error rates for each of the six error-rate

estimators for each RDA models considered.

In Table 3.1 we see that the models selected with the LOO, 10-fold CV, boot-

strap, and BCV estimators yielded similar EER estimates and estimated standard

errors. The models selected with the .632 and .632+ estimators yielded much larger

EER estimates with increased estimated standard errors. For instance, with the Alon

data set, the difference in classification performance of the RDA classifier between

the RDA model selection with the .632 estimator and the 10-fold CV estimator was

0.235; notice the larger estimated standard error for the .632 estimator compared to

the 10-fold CV estimator.

With the Golub data set, the RDA models selected with the .632 and .632+

estimators were similar. These models yielded EER estimates that were 0.148 larger

than the models selected with the LOO and 10-fold CV estimators. Once again, the

estimated standard errors of the EER estimates were larger for the .632 and .632+

error rate estimators than with the LOO and 10-fold CV estimators.

The Chiaretti data set was the only case where each of the model selection

methods yielded similar EER estimates. However, the estimated standard errors

of the EER estimates obtained for the models selected using the .632 and .632+

estimators are larger here than the estimated standard errors of the competing error-

rate estimators.
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Recall that our goal was to identify the error-rate estimators that yielded

small variability in the selected RDA models. Consider the selected models for the

Chiaretti data set in Figure 3.2. We can see that the models selected using the

bootstrap and BCV error-rate estimators were concentrated about the parameters

λ̂ = 0.2 and γ̂ = 0.4. Hence, although the training data sets are different for each of

the 250 Monte Carlo iterations, we can be confident in our selected RDA model when

employing it with the Chiaretti data set. We contrast this instance with the models

selected with the .632+ estimator. Although we can see some concentration about

the RDA model corresponding to λ̂ = 0.2 and γ̂ = 0.4, the .632+ estimator exhibited

large variability in the selected RDA models. Moreover, using the .632+ estimator,

we often selected λ̂ = 0 and γ̂ = 0, which correspond to the QDA classifier, but in

other instances we selected λ̂ = 1 and γ̂ = 0, which correspond to the LDA classifier.

We argue that this inconsistency in classifier model selection using the .632 and

.632+ estimators is problematic in practice. For the above example, we ask, “Should

we employ the LDA classifier, the QDA classifier, or the RDA model corresponding

to λ = 0.2 and γ = 0.4?” If we were to employ the .632+ estimator for model

selection with the RDA classifier in practice, our selection would be unclear, due to

the large variability. Contrarily, if we were to use the bootstrap or BCV estimators

instead, we could be much more confident due to the smaller variability in Figure

3.2. Hence, for the Chiaretti data set, we prefer the bootstrap and BCV estimators,

especially because they yielded EER estimates that were comparable to the LOO

and 10-fold CV estimates.

Here, we examine the poor classification performance of the models selected

with the .632 and .632+ estimators for the Golub data set. First, in Figure 3.3 we

notice that the LOO, 10-fold CV, bootstrap, and BCV estimators resulted primarily

in models with γ̂ = 0.1, which yielded excellent classification performance. Contrar-

ily, we see that the .632 and .632+ estimators resulted in chosen models with either
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γ̂ = 0.0 or γ̂ = 0.1 with the latter being selected more frequently, yielding larger

EER estimates and standard errors. In Figure 3.7, we gain additional insight about

the computed .632 and .632+ training error-rate estimates for the Golub data set.

Notice that the models for γ̂ ≥ 0.2 yielded relatively large training error estimates

for each error-rate estimator and were not selected. Also, notice that the subset of

models that have the smallest training error-rate estimates using the LOO, 10-fold

CV, bootstrap, and BCV estimators yielded regions that were distinctly different

from those of other possible models.

Next, we consider the average training error grids for the Alon data set in

Figure 3.5. We can see that the average of the training error rates corresponding

to the .632 and .632+ estimators were similar for the candidate models. However,

notice that the LOO and 10-fold CV estimators yielded smaller regions with lower

training error rates. Hence, the LOO and 10-fold CV estimators resulted in models

from these smaller regions. The average training error rates with respect to the

.632 and .632+ estimators were similar for all considered models. That is, the

difference in the training error rates among the possible models with respect to the

.632 and .632+ estimators was small. Thus, the chosen models were not immediately

obvious, which, in the case of the Alon data set, yielded larger CER estimates with

greater variability. In other words, we have evidence that the small difference in the

.632 estimates for these RDA models yielded larger EER estimates and estimated

standard errors.

However, the impact on classification performance was not as pronounced for

the Chiaretti data set. In Figure 3.6 we see that the difference in training error-rate

estimates among the possible models was small for the .632 and .632+ estimators,

and the resulting EER estimates differed only slightly from the EER estimates ob-

tained from the models with competing error-rate estimators.
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3.6 Discussion

We have considered the model selection of the RDA classifier from Fried-

man [1989] using six well-known error-rate estimators with four small-sample, high-

dimensional microarray data sets. Friedman has proposed the estimation of the

RDA classifier’s two tuning parameters by minimizing the LOO error-rate estima-

tor. With its large variability, the LOO estimator frequently yields multiple models

that attain the observed minimum LOO estimate. For this reason, we investigated

other choices of error-rate estimators that are known to have reduced variability to

identify a better model selection method for the RDA classifier that overcomes the

issue of ties. We expected the models selected with the .632 and .632+ estimators

to have relatively good classification performance because several empirical studies,

such as the ones from Glele Kakäı and Palm [2009], Wehberg and Schumacher [2004],

and Fitzmaurice, Krzanowski, and Hand [1991], have demonstrated the superior es-

timation of these estimators. However, we determined that these two estimators

yielded large model selection variability because the differences in error-rate esti-

mates were small for large subsets of these models. Moreover, the models selected

with the .632 and .632+ estimators resulted in degraded classification performance

relative to the other error-rate estimators.

As discussed by Fu et al. [2005], the BCV error-rate estimator yields smaller

variability than estimators based on the LOO − Boot estimator, including the .632

and .632+ estimators, for small sample sizes. In our study, we also conclude that

the BCV estimator outperforms the .632 and .632+ estimator for model selection

with the RDA classifier. However, we did not anticipate that the LOO, 10-fold

CV, and bootstrap error-rate estimators would yield relatively good classification

performance. Of these latter four estimators, we prefer the 10-fold CV estimator for

RDA model selection because it is the simplest and fastest to compute; furthermore,

we have found that the 10-fold CV estimator is easier to explain to collaborators and
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clients, in practice, than the resampling-based estimators. On the other hand, the

10-fold CV estimator resulted in larger variability in model selection than the BCV

and bootstrap error-rate estimators. However, if we also desire small variability

in model selection and if the additional computation is warranted, we recommend

the BCV estimator for RDA model selection in the small-sample, high-dimensional

setting.

Although our empirical comparison of error-rate estimators has been restricted

to the model selection of the RDA classifier, we welcome similar studies for other

classifiers, such as the support vector machine classifiers with both polynomial and

radial basis functions.

Table 3.1: The estimated ÊER for the selected RDA models obtained from each error-rate
estimator with approximate standard errors in parentheses.

Estimators Alon Chiaretti Golub Singh
1 LOO 0.142 (0.022) 0.055 (0.014) 0.027 (0.010) 0.075 (0.017)
2 CV10 0.146 (0.022) 0.054 (0.014) 0.027 (0.010) 0.069 (0.016)
3 BOOT 0.160 (0.023) 0.048 (0.013) 0.053 (0.014) 0.066 (0.016)
4 632 0.381 (0.031) 0.072 (0.016) 0.175 (0.024) 0.104 (0.019)
5 632+ 0.207 (0.026) 0.069 (0.016) 0.175 (0.024) 0.091 (0.018)
6 BCV 0.157 (0.023) 0.047 (0.013) 0.044 (0.013) 0.066 (0.016)
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Figure 3.1: Heat maps of the number of times an RDA model is selected with respect to
the competing error-rate estimators for the Alon data set.

52



LOO CV10 BOOT

632 632+ BCV

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
λ

γ

cuts

[0,1)

[1,2)

[2,5)

[5,10)

[10,15)

[15,25)

[25,50)

Figure 3.2: Heat maps of the number of times an RDA model is selected with respect to
the competing error-rate estimators for the Chiaretti data set.
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Figure 3.3: Heat maps of the number of times an RDA model is selected with respect to
the competing error-rate estimators for the Golub data set.
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Figure 3.4: Heat maps of the number of times an RDA model is selected with respect to
the competing error-rate estimators for the Singh data set.
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Figure 3.5: Heat maps of the average training error rate of the RDA models with respect
to the competing error-rate estimators for the Alon data set.
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Figure 3.6: Heat maps of the average training error rate of the RDA models with respect
to the competing error-rate estimators for the Chiaretti data set.
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Figure 3.7: Heat maps of the average training error rate of the RDA models with respect
to the competing error-rate estimators for the Golub data set.
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Figure 3.8: Heat maps of the average training error rate of the RDA models with respect
to the competing error-rate estimators for the Singh data set.
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CHAPTER FOUR

SimDiag: An Alternative to Diagonal Discriminant Analysis

4.1 Introduction

Pang et al. [2009] have claimed that classification of patients into known classes

is one of the most important statistical problems in cancer genomics. The task is im-

portant yet arduous because high-throughput microarrays yield gene expression data

sets with p gene expression levels and N observations, where typically p� N . Mod-

ern gene expression data sets often have between 10,000 and 50,000 probes or probe

sets obtained from a relatively small number of patients (e.g., 25-50 patients per

group). Furthermore, the classification performance of standard supervised learn-

ing methods, such as the LDA classifier, degrades due to the curse of dimensionality

[Bellman, 1961]. As a result, many researchers emphasize simple, parsimonious mod-

els to avoid the estimation of a large number of parameters relative to the training

sample size N . In fact, seemingly naive models can often perform well due to their

simplicity. For example, with a naive assumption that features are uncorrelated

within each class, Dudoit et al. [2002] have used a modification of the LDA classifier

where the off-diagonal elements of the class covariance matrices are assumed to be

zero. We refer to this supervised learning method as the DLDA classifier.

Dudoit et al. [2002], Pang et al. [2009], and Tong et al. [2012] have shown

that the DLDA classifier performs well with high-dimensional gene expression data.

Furthermore, Bickel and Levina [2004] have shown that the DLDA classifier is asymp-

totically superior to the LDA classifier for two multivariate normal populations with

equal covariance matrices. Also, Pang et al. [2009] have proposed the SDLDA clas-

sifier and have shown that it can outperform the DLDA, support vector machines,

and k-nearest neighbors classifiers in many small-sample, high-dimensional situa-
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tions. Moreover, Tong et al. [2012] have asserted that their proposed SmDLDA

classifier is superior to the DLDA classifier in terms of classification performance

because of an improved mean estimator for high-dimensional data.

Although the DLDA classifier and its variants can perform well when p� N ,

we contend that classificatory information is present in the off-diagonal elements of

the covariance matrices, which, if preserved, can yield gains in classification per-

formance with the DLDA classifier. In this paper, we aim to preserve much of the

classificatory information present in the covariances between gene expressions while

taking advantage of the reduction in the number of estimated model parameters and

the computational efficiency of the DLDA classifier. We propose two alternative clas-

sifiers that can yield superior classification performance to the DLDA classifier and

its variants from Pang et al. [2009] and Tong et al. [2012]. Specifically, prior to

applying the DLDA classifier, we simultaneously diagonalize the sample covariance

matrices from two classes by constructing a linear projection matrix that transforms

the feature space so that gene expressions are uncorrelated within each class. Thus,

we propose the SimDiag and Pool-Diag classifiers, which first reduce the naiveté

of the diagonal covariance matrix assumption prior to employing the DLDA classi-

fier and, hence, can improve the classification performance of the DLDA classifier.

Our new classifiers can substantially reduce the number of parameters to incorpo-

rate within the constructed classifiers, thereby greatly reducing the variance of the

estimated classifiers. Moreover, we demonstrate that the improved assumption of

diagonal covariance matrices often yields gains in classification performance com-

pared to the improved variance estimators employed with the SDLDA classifier and

the improved mean estimators applied with the SmDLDA classifier.

We have organized the remainder of the paper as follows. In Section 2, we

present and discuss the supervised classification problem and the DLDA, SDLDA,

and SmDLDA classifiers. In Section 3, we discuss simultaneous diagonalization of co-
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variance matrices and our proposed SimDiag and Pool-Diag classifiers. We compare

the classification performance of our proposed classifiers with the DLDA, SDLDA,

and SmDLDA classifiers with four microarray data sets in Section 4. Finally, we

conclude with a brief discussion in Section 5.

4.2 Discriminant Analysis

In discriminant analysis, also known as supervised learning, we attempt to

classify an unlabeled p-dimensional observation x = (x1, . . . , xp)
′ into one of K

known groups or classes, where we assume that x belongs to class k with a priori

probability πk for k = 1, 2, . . . , K with
∑K

k=1 πk = 1. We assume that the a priori

probabilities πk are equal for k = 1, . . . , K. Let Rm×n, R>
m×m, and R≥m×m denote

the matrix space of all m × n matrices over the real field R, the cone of m × m

positive definite real matrices, and the cone of m × m positive semidefinite real

matrices, respectively. Also, let A′, A−, and A+ denote the transpose, generalized

inverse, and Moore-Penrose pseudoinverse of the matrix A ∈ Rm×n, respectively.

Let A+/2 = (A+)1/2, and let C(A) denote the column space of A. We say that A is

idempotent if and only if A2 = A. We denote the squared-Frobenius norm of A by

||A||2F = tr{A′A}, where tr{·} is the matrix trace operation. Let B⊕D and B ◦D

denote the direct sum [Lütkepohl, 1996, Chapter 1] and the element-wise Hadamard

product of B,D ∈ Rr×r, respectively [Harville, 2008]. We denote by Ip the p × p

identity matrix. Additionally, we assume that we have drawn nk independently and

identically distributed (IID) random vectors from the kth class

xk,1 . . . ,xk,nk

IID∼ Np(µk,Σk),

where xk,i ∈ Rp×1 is the ith sample of gene expressions from class k and Np(µk,Σk)

denotes the p-dimensional multivariate normal distribution with mean vector µk ∈

Rp×1 and covariance matrix Σk ∈ R>
p×p. We construct a supervised classifier from

the N = n1 + n2 + . . . + nK training observations to predict the class membership
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of x. Typically, with gene expression data, the groups are the diseases or disease

subtypes under consideration. In particular, we focus on the K = 2 case, where

typically one class is a diseased group while the other class is a control group.

We estimate the unknown parameters µk and Σk with their maximum likeli-

hood estimators (MLEs), µ̂k = (µ̂k1, . . . , µ̂kp)
′ and Σ̂k, respectively, where

µ̂k = n−1k

nk∑
i=1

xk,i (4.1)

and

Σ̂k = n−1k

nk∑
i=1

(xk,i − µ̂k)(xk,i − µ̂k)′. (4.2)

We further assume that Σk = Σ ∈ R>
p×p, k = 1, 2. The pooled sample covariance

matrix

Σ̂ =
1

N

K∑
k=1

nkΣ̂k (4.3)

is the MLE of Σ. The sample LDA classifier is defined as follows: assign an unlabeled

observation x to class k using

D̂(x) = arg min
k∈{1,2}

(x− µ̂k)′Σ̂−1(x− µ̂k). (4.4)

4.2.1 Diagonal Linear Discriminant Analysis

For p > n, the pooled sample covariance matrix estimator in (5.3) is singular,

and, hence, (5.4) is ill-posed and incalculable. Often, one employs some combination

of variable selection, dimension reduction, and covariance matrix regularization to

ensure that (5.3) is positive definite [Ramey and Young, 2011]. By assuming that

Σ is a diagonal matrix, we have another effective approach for stabilizing (5.4). In

particular, we assume that the gene expressions within class k are uncorrelated and,

therefore, that Σk = Σk ◦Ip = diag(σ2
k1, σ

2
k2, . . . , σ

2
kp), k = 1, 2, where σ2

kj is the true

marginal variance of the jth gene expression of the kth class for j = 1, . . . , p. Thus,
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we estimate Σk with Σ̂k◦Ip = diag(σ̂2
k1, σ̂

2
k2, . . . , σ̂

2
kp), where the MLE of σ2

kj is σ̂2
kj =

n−1k
∑nk

i=1(xij − xkj)2. If we further assume that Σk ≡ Σ, then we estimate Σ with

the diagonal pooled sample covariance matrix Σ̂ ◦ Ip = diag(σ̂2
1, σ̂

2
2, . . . , σ̂

2
p), where

σ̂2
j = N−1

∑K
k=1 nkσ̂

2
kj. Hence, with the diagonal covariance matrix assumption,

(5.4) reduces to the DLDA classifier

D̂DLDA(x) = arg min
k∈{1,2}

(x− µ̂k)′
(
Σ̂ ◦ Ip

)−1
(x− µ̂k). (4.5)

Our assumption of equal, diagonal covariance matrices reduces the number of co-

variance parameters to estimate from Kp(p+ 1)/2 to p. Furthermore, the inverse of

Σ̂ exists and (4.5) is easily and quickly calculated as a dot product.

4.2.2 Shrinkage-based Diagonal Linear Discriminant Analysis

To improve the estimation of the diagonal covariance matrices for p >> N ,

Pang et al. [2009] have proposed the SDLDA classifier, based on a family of shrinkage-

based estimators from Tong and Wang [2007]. Following Pang et al. [2009], we write

the shrinkage-based estimator for σ2t
j as

σ̃2t
j (α) =

{
hν,p(t)σ̂

2t
pool

}α {
hν,1(t)σ̂

2t
j

}1−α
, (4.6)

where t ∈ R, α ∈ [0, 1], ν = N − K, σ̂2t
pool =

∏p
j=1

(
σ̂2
j

)t/p
is a pooled variance

estimator,

hν,p(t) = (ν/2)t
(

Γ (ν/2)

Γ (ν/2 + t/2)

)p
, (4.7)

and Γ(·) is the gamma function.

The term (5.7) is a bias-correction term such that hν,1(t)σ̂
2t
j is an unbiased

estimator for σ2t
j , and hν,p(t)σ̂

2t
pool is an unbiased estimator for σ2t when σ2

j ≡ σ2.

The shrinkage parameter α controls the amount of shrinkage from the individual

variance estimator toward the bias-corrected pooled estimator. Tong and Wang

[2007] have shown that for fixed p, ν, and t > −ν/2, there exists a unique optimal
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α with respect to the risk function RStein(σ2t, σ̃2t) corresponding to the Stein loss

function LStein(σ2, σ̃2) = σ̃2/σ2 − ln(σ̃2/σ2) − 1, where σ2t = (σ2t
1 , . . . , σ

2t
p )′ and

σ̃2t = (σ̃2t
1 , . . . , σ̃

2t
p )′. For brevity we do not include the Stein risk function but note

that it is implicitly a function of α.

To estimate α, Pang et al. [2009] have proposed that α∗ be chosen from a grid

of candidate parameters such that

α∗ = arg min
α∈[0,1]

RStein(σ2t, σ̃2t). (4.8)

Even for large p, the empirical minimization of the Stein risk function requires little

computation time. Using (5.8) and t = −1, Pang et al. [2009] have estimated

(Σ ◦ Ip)−1 with

Σ̂−1(α∗) = diag(σ̃−21 (α∗), . . . , σ̃−2p (α∗)). (4.9)

Pang et al. [2009] have substituted (4.9) for (Σ ◦ Ip)−1 into (4.5) to obtain the

SDLDA classifier

D̂SDLDA(x) = arg min
k∈{1,2}

(x− µ̂k)′Σ̂−1(α∗)(x− µ̂k).

In our Monte Carlo simulations in Section 4.4, we estimate α using a grid of 21

equidistant candidate values between 0 and 1, inclusively.

4.2.3 The DLDA Classifier with Improved Mean Estimation

While Pang et al. [2009] have sought to improve the DLDA classifier with

improved estimators of the marginal variances, Tong et al. [2012] have argued that

the MLE for µk, k = 1, 2, is unreliable within the DLDA classifier for p � N .

Instead, Tong et al. [2012] have considered improved mean estimators with optimal

shrinkage parameters under quadratic loss as p → ∞. Tong et al. have discussed

that James-Stein mean estimators of the form

µ̂
(JS)
k =

(
1− (p− 2)/nk

||µ̂k||2Σ̂

)
µ̂k,
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where ||z||2A = z′A−1z for z ∈ Rp×1 and A ∈ R>
p×p, cannot be used when p > N

because Σ̂ is singular. Hence, Tong et al. [2012] have considered a similar fam-

ily of estimators where Σ = Σ ◦ Ip. Under the equal diagonal covariance matrix

assumption, Tong et al. have proposed the mean estimator

µ̂k(r̂k) =

(
1− r̂k
||µ̂k||2Σ̂◦Ip

)
µ̂k, (4.10)

where r̂k = (nk − 1)(p − 2)/{nk(nk − 3)} is a shrinkage estimator optimized under

quadratic loss with Σ = Σ ◦ Ip as p → ∞. Substituting (5.9) for µ̂k in (4.5), we

have the SmDLDA classifier function

D̂SmDLDA(x) = arg min
k∈{1,2}

{x− µ̂k(r̂k)}′
(
Σ̂ ◦ Ip

)−1
{x− µ̂k(r̂k)}. (4.11)

4.3 Simultaneous Diagonalization of Two Covariance Matrices

As we have discussed, the DLDA, SDLDA, and SmDLDA classifiers have been

developed for small-sample, high-dimensional microarray data sets with the naive

assumption of diagonal covariance matrices. However, we contend that if we can

preserve classificatory information present in the off-diagonal elements of the co-

variance matrices prior to applying the DLDA classifier, then we can improve its

classification performance. In particular, we desire to determine a linear transfor-

mation Qx ∼ Nq(Qµk,QΣkQ
′ ◦ Iq) for k = 1, 2, where Q ∈ Rq×p (q ≤ p). Rather

than restricting the covariance matrices of the original populations to be diagonal,

we desire that the covariance matrices of the transformed populations are diagonal.

Hence, we wish to determine a Q ∈ Rq×p that improves our goal of diagonal co-

variance matrices. We say that the set of matrices {Σk|k = 1, 2} is simultaneously

diagonalizable if QΣkQ
′ = QΣkQ

′ ◦ Iq, k = 1, 2, and that Q is a simultaneous

diagonalizer. From Anderson [2003] and Fukunaga [1990], we have the following

well-known result:

66



Result 1. Let A1 ∈ R>
p×p and A2 ∈ R≥p×p be symmetric matrices. Then, there exists

Q ∈ Rp×p such that QA1Q
′ = Λ and QA2Q

′ = Ip, where Λ ∈ Rp×p is a diagonal

matrix.

In particular, Anderson [2003] has provided a solution forQ using the Cholesky

decomposition. Fukunaga [1990] has shown that Q = Φ simultaneously diagonalizes

A1 and A2, where Λ is the matrix of the eigenvalues of A−11 A2 and the columns

of Φ are the corresponding eigenvectors of A−11 A2. Also, one can obtain a solution

for Q from the generalized eigenvalue problem, A1x = λA2x [Golub and van Loan,

1996].

With high-dimensional microarray data we do not satisfy the necessary con-

ditions in the above result because we typically have p > N , which implies that the

covariance matrix estimators for each class are singular. That is, with microarray

data, we have that rank(Σ̂k) < p, k = 1, 2, whereas the above result requires that

at least one of the two sample covariance matrices has full rank. Hence, we can

apply neither the result from Anderson [2003] nor the result from Fukunaga [1990].

Instead, we require a generalization of the above result to simultaneously diagonalize

two positive semidefinite matrices. From Harville [2008] we require three lemmas to

generalize the above result and give them here without proof.

Lemma 1 (Harville, 2008, Chapter 5). Let A ∈ Rr×m. Then, ||A||2F = 0 if and only

if A = 0, a matrix of zeroes.

Lemma 2 (Harville, 2008, Chapter 10). Let A ∈ Rr×m with rank(A) = m and

B ∈ Rm×s. Then, we have that A−ABB− is idempotent.

Lemma 3 (Harville, 2008, Chapter 10). Let A ∈ Rm×m be idempotent with rank(A) =

m. Then, A = Im.

Here, we provide an additional lemma that we will use in the proof of our main

result.
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Lemma 4. Let U1,U2 ∈ Rp×q with rank(Uk) = q and U ′kUk = Iq for k = 1, 2. Then,

U1U
′
1U2U

′
2 = Iq ⊕ 0p−q and U ′1U2U

′
2U1 = Iq.

Proof. First, notice that rank(U1U
′
1U2U

′
2) = q. Hence, applying Lemma 2 with

A = U ′1 and B = U2, we see that U1U
′
1U2U

′
2 is idempotent. Therefore, by Lemma

3, U1U
′
1U2U

′
2 = Iq ⊕ 0p−q. Next, we have

||U ′1U2U
′
2U1 − Iq||2F = tr{U1U

′
1U2U

′
2U1U

′
1U2U

′
2 − 2U1U

′
1U2U

′
2}+ tr{Iq}

= q − tr{Iq ⊕ 0p−q}

= 0.

Hence, by Lemma 1 we have thatU ′1U2U
′
2U1−Iq = 0, which implies thatU ′1U2U

′
2U1 =

Iq.

Now, we prove our main result by utilizing Lemmas 1–4.

Theorem 1. Let Ak ∈ R≥p×p be symmetric with rank(Ak) = qk for k = 1, 2. Without

loss of generality, we assume 1 ≤ q2 ≤ q1 ≤ p. Then, there exists Q(q) ∈ Rq×p such

that

Q(q)A1Q
(q)′ = Λ(q)

Q(q)A2Q
(q)′ = Iq∗ ⊕ 0q−q∗ ,

where q∗ = min{q, q2}.

Proof. First, we consider the spectral decomposition of Ak = UkΛkU
′
k for k = 1, 2,

where Λk = diag(λk1, . . . , λkp) is the diagonal matrix of eigenvalues of Ak with

corresponding eigenvectors as the columns of Uk such that λk1 ≥ . . . ≥ λkqk > 0 and

λkqk+1 = . . . = λkp = 0. For 1 ≤ q ≤ p, let Λ
(q)
2 ∈ Rq×q be the diagonal matrix of the

q largest eigenvalues of A2 such that the corresponding eigenvectors are the columns

of U
(q)
2 ∈ Rp×q, and notice that Λ2 = Λ

(q)
2 ⊕ Ip−q. Then, let Q

(q)
2 =

{
Λ

(q)
2

}+/2

U
(q)′

2 .

Because Q
(q)
2 A2Q

(q)′

2 = Iq∗ ⊕ 0q−q∗ , Q
(q)
2 resembles a whitening transform of A2
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[Duda, Hart, and Stork, 2001]. Now, let Q
(q)
1 = U

(q)′

1 U
(q)
2 , which implies that

Q
(q)
1 Q

(q)′

1 = Iq by Lemma 4. Choosing Q(q) = Q
(q)
1 Q

(q)
2 =

{
Λ

(q)
2

}+/2

U
(q)′

1 U
(q)
2 U

(q)′

2 ,

we have that

Q(q)A1Q
(q)′ =

{
Λ

(q)
2

}+/2

U
(q)′

1 U
(q)
2 U

(q)′

2 U
(q)
1 Λ1U

(q)′

1 U
(q)
2 U

(q)′

2 U
(q)
1

{
Λ

(q)
2

}+/2

=
{

Λ
(q)
2

}+/2

Λ
(q)
1

{
Λ

(q)
2

}+/2

=
{

Λ
(q)
2

}+

Λ
(q)
1

and

Q(q)A2Q
(q)′ =

{
Λ

(q)
2

}+/2

U
(q)′

1 U
(q)
2 U

(q)′

2 U
(q)
2 Λ2U

(q)′

2 U
(q)
2 U

(q)′

2 U
(q)
1

{
Λ

(q)
2

}+/2

= Iq∗ ⊕ 0q−q∗ .

Therefore, Q(q) simultaneously diagonalizes A1 and A2 in a q-dimensional subspace.

From Theorem 1, we can transform two sample covariance matrices so that

the classificatory information contained in the off-diagonal elements is preserved in

the first q∗ transformed features of each class. Specifically, the variances of the

first q∗ features contain the classificatory information, while the remaining p − q∗

transformed features have zero variance. Additionally, in the following corollary, we

show that for q = q2, our main result generalizes directly the result from Fukunaga

[1990] for the case of K = 2 positive-semidefinite sample covariance matrices.

Corollary 1. Let Ak ∈ R≥p×p be symmetric with rank(Ak) = qk for k = 1, 2. Without

loss of generality, we assume 1 ≤ q2 ≤ q1 ≤ p. Then, there exists Q ∈ Rq2×p such

that

QA1Q
′ = Λ

QA2Q
′ = Iq2 ⊕ 0p−q2 ,

where Λ = Λ+
2 Λ1 is the diagonal matrix of eigenvalues of A+

2A1.
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Proof. In the above theorem, set q = q2 and Q = Q(q). Hence, we have that

QA1Q
′ = Λ and QA2Q

′ = Iq2 ⊕ 0p−q2 . Next, we show that the diagonal matrix

Λ+
2 Λ1 consists of the eigenvalues of A+

2A1. Writing A+
2A1 = U2Λ

+
2U

′
2U1Λ1U

′
1, we

write the eigenvalue formulation of A+
2A1 as U2Λ

+
2U

′
2U1Λ1U

′
1x = λx, where λ is

an eigenvalue of A+
2A1 and x is the orthonormal eigenvector corresponding to λ.

Hence, we have that U ′2U1Λ
+
2 Λ1U

′
1x = λU ′2x. Now, because x ∈ C(A+

2A1), we

have x ∈ C(A+
2 ), which implies that x ∈ C(U2). Thus, there exists z ∈ Rp×1 such

that x = U2z, which implies that U ′2U1Λ
+
2 Λ1U

′
1U2z = λΛ+

2 Λ1z = λz by Lemma

4. Therefore, λ is an eigenvalue of Λ+
2 Λ1, which implies that the diagonal entries of

Λ+
2 Λ1 consist of the eigenvalues of A+

2A1.

4.3.1 The SimDiag Classifier

Here, we describe our proposed SimDiag classifier. By generalizing the results

from Anderson [2003] and Fukunaga [1990], we can simultaneously diagonalize two

singular sample covariance matrices with Q = U ′1U2U
′
2Λ

+/2
2 . Thus, by choosing

Ak = Σ̂k for k = 1, 2 in Theorem 1, we have that the assumption of diagonal

covariance matrices is more reasonable and no longer as naive. Therefore, we can

discard the off-diagonal elements of the transformed covariance matrices. We select

the value of qk as the number of nonzero eigenvalues of Σ̂k for k = 1, 2; if the features

in the kth class are linearly independent, we have that qk = nk−1. After employing

the simultaneous diagonalizer Q, we transform (5.1) to obtain µ̂SDK = Qµ̂k for

k = 1, 2. Therefore, we write our proposed SimDiag classifier as

D̂SimDiag
k (x) = arg min

k∈{1,2}
(Qx− µ̂SDk )′

(
QΣ̂kQ

′
)−1

(Qx− µ̂SDk ).

4.3.2 The Pool-Diag Classifier

For Σk = Σ, k = 1, 2, consider the spectral decomposition of Σ = UΛU ′,

where Λ = diag(λ1, . . . , λp) ∈ Rp×p is the matrix of eigenvalues of Σ and U ∈ Rp×p

is the matrix of the corresponding eigenvectors of Σ, where λ1 ≥ . . . ≥ λp > 0 and
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U ′U = Ip. Thus, the whitening transform B = Λ−1/2U ′ = U ′Λ−1/2 diagonalizes Σ

such that BΣB′ = Ip = BΣB′ ◦ Ip [Duda, Hart, and Stork, 2001].

As discussed in Section 5.2, Σ̂−1 does not exist for p > N because rank(Σ̂) =

q < p, where Σ̂ is given in (5.2). Let Σ̂ = ÛΛ̂Û ′ be the spectral decomposition of Σ̂,

where Λ̂ = diag(λ̂1, . . . , λ̂p) ∈ Rp×p is the matrix of eigenvalues of Σ̂ and Û ∈ Rp×p

is the matrix of the corresponding eigenvectors of Σ̂, where Û ′Û = Ip. Recall that

λ̂1 ≥ . . . ≥ λ̂q > 0 and λ̂q+1 = . . . = λ̂p = 0. We partition Û = [Ûq, Ûp−q], where

the columns of Ûq ∈ Rp×q correspond to the q nonzero eigenvalues of Σ̂, and the

columns of Ûp−q ∈ Rp×(p−q) correspond to the latter p− q eigenvalues. Furthermore,

recall that Σ̂+ = ÛΛ̂+Û ′, where Λ̂+ = diag(λ̂1, . . . , λ̂p) and

λ̂j =


1/λ̂j, λ̂j > 0

0, λ̂j = 0

for j = 1, . . . , p. Now, writing QPD = Û ′qΛ̂
+/2, we have that QPD is a simultaneous

diagonalizer in a q-dimensional feature subspace so that QPDΣ̂Q′PD = Iq. Thus, by

transforming the feature vectors from the K = 2 classes with QPD, we improve the

equal diagonal covariance matrix assumption. We denote the linearly transformed

MLE of µk, k = 1, 2, by µ̂PDk = QPDµ̂K ∈ Rq×1. Our proposed Pool-Diag classifier

is

D̂PD(x) = arg min
k∈{1,2}

(QPDx− µ̂PDk )′(QPDx− µ̂PDk ).

4.4 Monte Carlo Simulations

We contrasted the classification performance of our proposed SimDiag and

Pool-Diag classifiers with the DLDA, SDLDA, and SmDLDA classifiers using four

well-known microarray data sets, each consisting of K = 2 classes. To compute

an error rate for classifier comparison, we followed a similar approach to that of

Pang et al. [2009], Ramey and Young [2011], and Dudoit et al. [2002]. We randomly
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partitioned a microarray data set into a training data set, where the kth class con-

tained nk observations, k = 1, 2, and a test data set comprised of the remaining

observations. Then, we applied the variable selection approach from Dudoit et al.

[2002] to the training data set to obtain the set of q′ genes that exhibited the largest

ratio of their between-group to within-group sums of squares and reduced the test

data set to the same q′ genes. We then constructed the competing classifiers from

the training data set and calculated the proportion of incorrectly classified test ob-

servations to obtain an estimate for the conditional error rate. We calculated the

conditional error rate estimates for 1000 random partitions of a microarray data set

and estimated the expected error rate. We used version 2.15 of the open source

statistical software R for all simulations in this paper. Also, we used the R package

ggplot2 from Wickham [2009] to create the summary graphics. We remark that our

Monte Carlo simulation procedure avoids the selection bias discussed in Ambroise

and McLachlan [2002]. Here, we describe the four microarray data sets:

4.4.1 Alon Data Set

Alon et al. [1999] have examined the gene expression profiles measured with

an Affymetrix oligonucleotide array for 40 tumor and 22 normal colon tissues for

6,500 human genes. We follow Alon et al. [1999] and restrict the data set to the

2,000 genes with the highest minimal intensity across the samples.

4.4.2 Chiaretti Data Set

Chiaretti et al. [2004] have presented a data set that contains the gene expres-

sion levels for 128 individuals with acute lymphoblastic leukemia (ALL). Following

Xu, Brock, and Parrish [2009], we consider the n1 = 42 observations labeled NEG

and the n2 = 37 observations labeled BCR/ABL, which have been obtained from

Affymetrix human 95Av2 arrays. The robust multichip average (RMA) normaliza-

tion method has been applied to all 12,625 gene expression levels.
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4.4.3 Golub Data Set

Golub et al. [1999] have examined the gene expression levels for 47 patients

with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia

(AML). Bone marrow samples from each patient were assayed using Affymetrix

Hgu6800 chips. We used the merged version of the data set from the golubEsets

package on Bioconductor.

4.4.4 Singh Data Set

Singh et al. [2002] have presented a data set that consists of 235 radical prosta-

tectomy specimens from surgery patients between 1995 and 1997. Oligonucleotide

microarrays containing probes for approximately 12,600 genes and expressed se-

quence tags were used. We consider 102 of the radical prostatectomy specimens that

the authors reported as high-quality to obtain a data set consisting of 52 prostate

tumor samples and 50 prostate non-tumor samples.

4.4.5 Simulation Results

In Figures 4.1 and 4.2 we display the estimated unconditional error rates of the

competing classifiers for nk = 10 and nk = 20, k = 1, 2, respectively, as a function of

q′ to demonstrate the classifier performance as the dimension of the data increases.

Similar to Pang et al. [2009] and Dudoit et al. [2002], we examined the classification

performance of the competing classifiers for q′ = 50, 100, . . . , 250.

For the Alon data set, the SimDiag and Pool-Diag classifiers outperformed

the competing classifiers for all values of nk and q′ considered. The improved mean

and variance estimators employed with the SDLDA and SmDLDA classifiers, re-

spectively, did not improve the classification performance of the DLDA classifier, so

that the DLDA, SDLDA, and SmDLDA classifiers yielded similar estimated uncon-

ditional error rates. However, the simultaneous diagonalization employed with the

SimDiag classifier yielded large improvements to the DLDA classifier, resulting in
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estimated unconditional error rates up to 0.15 less than those of the DLDA, SDLDA,

and SmDLDA classifiers.

For the Chiaretti data set, the Pool-Diag classifier yielded superior classifi-

cation performance compared to the competing classifiers for nk = 10, k = 1, 2.

For nk = 20, the SimDiag and Pool-Diag classifiers yielded similar estimated un-

conditional error rates and outperformed the competing diagonal classifiers. The

DLDA and SmDLDA classifiers once again yielded similar estimated unconditional

error rates. Although the SDLDA classifier attained superior classification perfor-

mance compared to the DLDA and SmDLDA classifiers for nk = 10, k = 1, 2, the

shrinkage estimators employed with the SDLDA classifier degraded the classification

performance of the DLDA classifier for nk = 20.

The DLDA, SDLDA, and SmDLDA classifiers again yielded similar results for

the Golub data set. These three classifiers exhibited slightly better classification

performances than the SimDiag and Pool-Diag classifiers for small values of q′.

However, as q′ increased, the Pool-Diag classifier yielded estimated unconditional

error rates that were superior to the competing classifiers for nk = 10 and comparable

to the competing classifiers for nk = 20.

For the Singh data set, the SimDiag and Pool-Diag classifiers yielded simi-

lar estimated unconditional error rates for q′ ≥ 100. Moreover, the simultaneous

diagonalization of the sample covariance matrices employed with the SimDiag and

Pool-Diag classifiers yielded classification performance superior to that of the DLDA,

SDLDA, and SmDLDA classifiers.

4.5 Discussion

We have considered a family of diagonal linear classifiers that have been shown

to attain excellent classification performance for small-sample, high-dimensional mi-

croarray data. In particular, we have examined the DLDA classifier popularized by
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Figure 4.1: Estimated unconditional error rates as a function of the number of variable
selected q′ for nk = 10, k = 1, 2.
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Figure 4.2: Estimated unconditional error rates as a function of the number of variable
selected q′ for nk = 20, k = 1, 2.
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Dudoit et al. [2002], the SDLDA classifier from Pang et al. [2009], and the SmDLDA

classifier from Tong et al. [2012]. Although these classifiers have been shown to per-

form well in other classification studies, we have argued that the preservation of clas-

sificatory information present in the off-diagonal elements can improve classification

accuracy. Thus, we have proposed two classifiers that simultaneously diagonalize

the sample covariance matrices of each class with a common linear transformation

prior to employing the DLDA classifier.

We have demonstrated that our proposed SimDiag and Pool-Diag can yield im-

proved classification performance over the three competing classifiers. Moreover, we

have shown that improving the diagonal assumption of the DLDA classifier can yield

superior classification performance compared to the improved variance estimation of

the SDLDA classifier and the improved mean estimation of the SmDLDA classifier.

We have also found that the classification performance of the SmDLDA classifier

seldom differs from that of the DLDA classifier. Thus, the improved mean estimator

of the SmDLDA classifier does not yield a better classifier than the DLDA classifier

for the data sets considered here. Furthermore, the SDLDA classifier yielded sim-

ilar estimated unconditional error rates to the DLDA and SmDLDA classifiers for

the Alon, Chiaretti, and Singh data sets. For the Chiaretti data set, the SDLDA

classifier yielded superior classification performance to the DLDA and SmDLDA clas-

sifiers for small training sample sizes. However, for the same data set, the DLDA and

SmDLDA classifiers had classification performance superior to the SDLDA classifier

for the larger training sample sizes considered.
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CHAPTER FIVE

Discriminant Analysis with Simultaneous Diagonalization of Covariance Matrices

5.1 Introduction

Pang et al. [2009] have claimed that classification of patients into known classes

is one of the most important statistical problems in cancer genomics. The task is im-

portant yet arduous because high-throughput microarrays yield gene expression data

sets with p gene expression levels and N observations, where typically p� N . Mod-

ern gene expression data sets often have between 10,000 and 50,000 probes or probe

sets obtained from a relatively small number of patients (e.g., 25-50 patients per

group). Furthermore, the classification performance of standard supervised learn-

ing methods, such as the LDA classifier, degrades due to the curse of dimensionality

[Bellman, 1961]. As a result, many researchers emphasize simple, parsimonious mod-

els to avoid the estimation of a large number of parameters relative to the training

sample size, N . In fact, seemingly naive models can often perform well due to their

simplicity. For example, with a naive assumption that features are uncorrelated

within each class, Dudoit et al. [2002] have used a modification of the LDA classifier

where the off-diagonal elements of the class covariance matrices are assumed to be

zero. We refer to this supervised learning method as the DLDA classifier.

Dudoit et al. [2002], Pang et al. [2009], and Tong et al. [2012] have shown

that the DLDA classifier performs well with high-dimensional gene expression data.

Furthermore, Bickel and Levina [2004] have shown that the DLDA classifier is asymp-

totically superior to the LDA classifier for two multivariate normal populations with

equal covariance matrices. Also, Pang et al. [2009] have proposed the SDLDA classi-

fier and have shown that it can outperform the DLDA, support vector machines, and

a k-nearest neighbors classifiers in many small-sample, high-dimensional situations.
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Moreover, Tong et al. [2012] have asserted that their proposed SmDLDA classifier

is superior to the DLDA classifier in terms of classification performance because of

an improved mean estimator for high-dimensional data.

Although the DLDA classifier and its variants can perform well when p� N ,

we contend classificatory information is present in the off-diagonal elements of the

covariance matrices, which if preserved, can yield gains in classification performance

with the DLDA classifier. In this paper, we aim to preserve much of the classifica-

tory information present in the covariances between genes expressions while taking

advantage of the reduction in the number of estimated model parameters and the

computational efficiency of the DLDA classifier. We propose alternative classifiers

that can yield superior classification performance to the DLDA classifier and its vari-

ants from Pang et al. [2009] and Tong et al. [2012]. Specifically, prior to applying

the DLDA classifier, we nearly diagonalize the sample covariance matrices of each

class by constructing a linear projection matrix that transforms the feature space so

that gene expression levels are nearly uncorrelated within each class.

Our proposed approach is motivated by the independent components analysis

and blind source separation literatures, where a large number of methods have been

proposed to construct a linear transformation that nearly simultaneously diagonal-

izes a set of K square matrices. We propose a classifier that utilizes a whitening

transform [Duda, Hart, and Stork, 2001] to diagonalize a pooled sample covariance

matrix estimator to improve the diagonal covariance matrix assumption. We also em-

ploy two simultaneous diagonalization algorithms from Asfari [2006] and Souloumiac

[2009] to simultaneously diagonalize the sample covariance matrices from each class

to improve the naive diagonal assumption prior to applying the DLDA classifier.

In short, we first reduce the naiveté of the diagonal covariance matrix assumption

before employing the DLDA classifier to improve its classification performance.
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We have organized the remainder of the paper as follows. In Section 2, we

present and discuss the details of the DLDA classifier as well as the methods from

Pang et al. [2009] and Tong et al. [2012]. In Section 3, we discuss the simultaneous

diagonalization of covariance matrices and our proposed methods. We then compare

the classification performance of our proposed methods with the DLDA, SDLDA,

and SmDLDA classifiers with two well-known microarray data sets in Section 4 and

conclude with some brief comments in Section 5.

5.2 Discriminant Analysis

In discriminant analysis, also known as supervised learning, we attempt to

classify an unlabeled p-dimensional observation x = (x1, . . . , xp)
′ into one of K

known groups or classes, where we assume that x belongs to class k with a priori

probability πk for k = 1, 2, . . . , K, with
∑K

k=1 πk = 1. We assume that the a priori

probabilities πk are equal for k = 1, . . . , K. Let Rm×n and R>
p×p denote the matrix

space of all m×n matrices over the real field R, the cone of p×p positive definite real

matrices, respectively. Also, let A′ and A+ denote the transpose and the Moore-

Penrose pseudoinverse of the matrix A ∈ Rm×n, respectively. We denote by B ◦D

the element-wise Hadamard product ofB,D ∈ Rm×m [Harville, 2008]. Additionally,

we assume that we have drawn nk independently and identically distributed random

vectors from the kth class

xk,1 . . . ,xk,nk

IID∼ Np(µk,Σk),

where Np(µk,Σk) denotes the p-dimensional multivariate normal distribution with

mean vector µk ∈ Rp×1 and covariance matrix Σk ∈ R>
p×p. Specifically, we say

that xk,i is the p-dimensional collection of gene expressions for the ith sample from

class k. We construct a supervised classifier (hereafter, classifier) from the N =

n1 + n2 + . . . + nK training observations to predict the class membership of x.

Typically, with gene expression data, the groups are the diseases or disease subtypes
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under consideration. We estimate the unknown parameters µk and Σk with their

maximum likelihood estimators (MLEs), µ̂k = (µ̂k1, . . . , µ̂kp)
′ and Σ̂k, respectively,

where

µ̂k = n−1k

nk∑
i=1

xk,i (5.1)

and

Σ̂k = n−1k

nk∑
i=1

(xk,i − µ̂k)(xk,i − µ̂k)′. (5.2)

We further assume that Σk = Σ ∈ R>
p×p (k = 1, . . . , K). The pooled sample covari-

ance matrix

Σ̂ =
1

N

K∑
k=1

nkΣ̂k (5.3)

is the MLE of Σ. The sample LDA classifier is defined as follows: assign an unlabeled

observation x to class k using

D̂(x) = arg min
k

(x− µ̂k)′Σ̂−1(x− µ̂k), (5.4)

5.2.1 Diagonal Linear Discriminant Analysis

For p > n, the pooled sample covariance matrix estimator in (5.3) is sin-

gular, and, hence, equation (5.4) is ill-posed and incalculable. Often, we employ

some combination of variable selection, dimension reduction, and covariance matrix

regularization to ensure that (5.3) is positive definite [Ramey and Young, 2011].

By assuming that Σ is a diagonal matrix, we have another effective approach for

stabilizing (5.4). In particular, we assume that the gene expressions within class

k are uncorrelated and, therefore, that the off-diagonal elements of Σk are zero,

k = 1, . . . , K. That is, we assume that Σk = diag(σ2
k1, σ

2
k2, . . . , σ

2
kp), where σ2

kj is

the true marginal variance of the jth gene expression (j = 1, . . . , p) of the kth class,

and, thus, Σ̂k = diag(σ̂2
k1, σ̂

2
k2, . . . , σ̂

2
kp). Returning to our assumption of equal co-

variance matrices, we have that the diagonal pooled sample covariance matrix is
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Σ̂ = diag(σ̂2
1, σ̂

2
2, . . . , σ̂

2
p), where σ̂2

j = N−1
∑K

k=1 nkσ̂
2
kj. Hence, with the diagonal

covariance matrix assumption, (5.4) reduces to the DLDA classifier

D̂DLDA(x) =

p∑
j=1

(xj − µ̂kj)2/σ̂2
j . (5.5)

Our assumption of equal, diagonal covariance matrices reduces the number of co-

variance parameters to estimate from Kp(p+ 1)/2 to p. Furthermore, the inverse of

Σ̂ exists and (5.5) is easily and quickly calculated as a dot product.

5.2.2 Shrinkage-based Diagonal Linear Discriminant Analysis

To improve the estimation of the diagonal covariance matrices for p� N , Pang

et al. [2009] have proposed the SDLDA classifier based on a family of shrinkage-based

estimators from Tong and Wang [2007]. Pang et al. [2009] have demonstrated that

their proposed classifier is superior to a support vector machine classifier and a

k-nearest neighbors classifier in terms of classification performance on several small-

sample simulated and real microarray data sets. Following Pang et al. [2009], we

write the shrinkage-based estimator for σ2t
j as

σ̃2t
j (α) =

{
hν,p(t)σ̂

2t
pool

}α {
hν,1(t)σ̂

2t
j

}1−α
, (5.6)

where t ∈ R, α ∈ [0, 1], ν = N − K, σ̂2t
pool =

∏p
j=1

(
σ̂2
j

)t/p
is a pooled variance

estimator,

hν,p(t) = (ν/2)t
(

Γ (ν/2)

Γ (ν/2 + t/2)

)p
, (5.7)

and Γ(·) is the gamma function.

The term (5.7) is a bias-correction term such that hν,1(t)σ̂
2t
j is an unbiased

estimator for σ2t
j , and hν,p(t)σ̂

2t
pool is an unbiased estimator for σ2t when σ2

j = σ2,

j = 1, . . . p. The shrinkage parameter α controls the amount of shrinkage from the

individual variance estimator toward the bias-corrected pooled estimator. Tong and

Wang [2007] have shown that for fixed p, ν, and t > −ν/2, there exists a unique
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optimal α with respect to the risk function RStein(σ2t, σ̃2t) corresponding to the Stein

loss function LStein(σ2, σ̃2) = σ̃2/σ2 − ln(σ̃2/σ2)− 1, where σ2t = (σ2t
1 , . . . , σ

2t
p )′ and

σ̃2t = (σ̃2t
1 , . . . , σ̃

2t
p )′. For brevity, we do not include the Stein risk function but note

that it is an implicit function of α.

To estimate α, Pang et al. [2009] have proposed that α∗ be chosen from a grid

of candidate parameters such that

α∗ = arg min
α∈[0,1]

RStein(σ2t, σ̃2t). (5.8)

Even for large p, the empirical minimization of the Stein risk function requires little

computation time. Using (5.8) with t = −1, Pang et al. [2009] have substituted

(5.6) for σ̂−2j into (5.5) to obtain the SDLDA classifier

D̂SDLDA(x) = arg min
k

p∑
j=1

(xj − µ̂kj)2σ̃−2j (α∗).

In our simulations in Section 5.4, we estimate α using a grid of 21 equidistant

candidate values between 0 and 1, inclusively.

5.2.3 The DLDA Classifier with Improved Mean Estimation

While Pang et al. [2009] have sought to improve the DLDA classifier with

improved estimators of the marginal variances, Tong et al. [2012] have argued that

the MLEs for µk, k = 1, . . . , K, are unreliable within the DLDA classifier for p �

N . Instead, Tong et al. [2012] have considered improved mean estimators with a

shrinkage parameter optimized under quadratic loss as p → ∞. Specifically, Tong

et al. [2012] have remarked that James-Stein mean estimators of the form

µ̂
(JS)
k =

(
1− (p− 2)/nk

||µ̂k||2Σ̂

)
µ̂k,

where ||z||2A = z′A−1z for z ∈ Rp×1 and A ∈ R>
p×p, cannot be used when p > N

because Σ̂ is singular. Hence, Tong et al. [2012] have utilized a similar family of
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estimators, where Σ is assumed to be diagonal and positive definite. Under this

assumption, Tong et al. [2012] have proposed the estimator

µ̂k(r̂k) =

(
1− r̂k
||µ̂k||2Σ̂◦Ip

)
µ̂k, (5.9)

where r̂k = (nk − 1)(p − 2)/{nk(nk − 3)} is a shrinkage estimator optimized under

a quadratic loss function with Σ = Σ ◦ Ip as p → ∞. Substituting (5.9) for µ̂k in

(5.5), we have the SmDLDA classifier

D̂SmDLDA(x) = {x− µ̂k(r̂k)}′
(
Σ̂ ◦ Ip

)−1
{x− µ̂k(r̂k)}. (5.10)

5.3 Nearly Diagonal Discriminant Analysis

As we have discussed, the DLDA, SDLDA, and SmDLDA classifiers have been

developed for small-sample, high-dimensional microarray data sets with the naive

assumption of diagonal covariance matrices. However, we contend that if we can pre-

serve classificatory information present in the off-diagonal elements of the covariance

matrices before applying the DLDA classifier, then we can improve its classification

performance. Thus, we remark that a reasonable approach is to apply a common

linear transformation to each population such that the off-diagonal elements of the

resulting covariance matrices are nearly zero. We argue that this approach preserves

classificatory information in the off-diagonal elements of the covariance matrices.

More precisely, let B ∈ Rq×p, and notice that Bx ∼ Nq(Bµk,BΣkB
′ ◦ Iq) for all

k = 1, . . . , K. Rather than restricting the covariance matrices of the original pop-

ulations to be diagonal, we desire that the covariance matrices of the transformed

populations are diagonal. Hence, we wish to determine a B ∈ Rq×p that improves

our goal of diagonal covariance matrices.

We say that the matrix B nearly decorrelates the kth class if, for a given

ε > 0, ||BΣkB
′ −BΣkB

′ ◦ Iq|| < ε for k = 1, . . . K, where || · || is a specified matrix

norm. Intuitively, our proposed method should preserve the classificatory informa-

tion in the off-diagonal elements if ||Σk −Σk ◦ Ip|| > ||BΣkB
′ −BΣkB

′ ◦ Iq|| for
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k = 1, . . . , K. In the special case that BΣkB
′ = BΣkB

′ ◦ Iq, k = 1, . . . , K, we

say that the set of matrices {Σk|k = 1, . . . , K} is simultaneously diagonalizable and

that B is a simultaneous diagonalizer.

Harville [2008] and Anderson [2003] have discussed approaches to simultane-

ously diagonalize K = 2 square matrices under the assumption that at least one of

the matrices is positive definite. Contrarily, we consider the general case of K ≥ 2.

Harville [2008] has stated that a necessary condition for the simultaneous diagonal-

ization of K square matrices is pairwise commutativity, i.e., ΣkΣk′ = Σk′Σk for all

1 ≤ k, k′ ≤ K. Furthermore, Harville [2008] has stated that pairwise commutativ-

ity is a sufficient condition for simultaneous diagonalization where B is orthogonal.

Rather than requiring pairwise commutativity, our approach to select B is moti-

vated by the independent components analysis and blind source separation litera-

tures, where a large number of algorithms, often based on a Jacobi diagonalization

method, have been proposed to generate a sequence of candidate simultaneous diag-

onalizers that successively yield a nearer simultaneous diagonalization of K square

matrices.

In this paper, we propose three new classifiers. The first classifier is based

on our proposed Pool-Diag simultaneous diagonalization method, and the two ad-

ditional classifiers are based on the near simultaneous diagonalization algorithms of

Souloumiac [2009] and Asfari [2006]. Because these latter two simultaneous diago-

nalization algorithms require a large number of computations for large p, we reduce

the p-dimensional feature space to a q-dimensional subspace using the dimension

reduction method of Young et al. [1987] prior to applying the simultaneous diag-

onalization algorithms. Below, we describe our proposed Pool-Diag classifier, the

dimension reduction method from Young et al. [1987], and our proposed Asfari and

Souloumiac classifiers.
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5.3.1 The Pool-Diag Classifier

For Σk = Σ, k = 1, . . . , K ≥ 2, consider the spectral decomposition of Σ =

UΛU ′, where Λ = diag(λ1, . . . , λp) ∈ Rp×p is the matrix of eigenvalues of Σ and

U ∈ Rp×p is the matrix of the corresponding eigenvectors of Σ, where λ1 ≥ . . . ≥

λp > 0 and U ′U = Ip. Thus, the whitening transform B = Λ−1/2U ′ = U ′Λ−1/2

diagonalizes Σ such that BΣB′ = Ip = BΣB′ ◦ Ip [Duda, Hart, and Stork, 2001].

As discussed in Section 5.2, Σ̂−1 does not exist for p > N because rank(Σ̂) =

q < p, where Σ̂ is given in (5.2). Let Σ̂ = ÛΛ̂Û ′ be the spectral decomposition of Σ̂,

where Λ̂ = diag(λ̂1, . . . , λ̂p) ∈ Rp×p is the matrix of eigenvalues of Σ̂ and Û ∈ Rp×p

is the matrix of the corresponding eigenvectors of Σ̂, where Û ′Û = Ip. Recall that

λ̂1 ≥ . . . ≥ λ̂q > 0 and λ̂q+1 = . . . = λ̂p = 0. We partition Û = [Ûq, Ûp−q], where

the columns of Ûq ∈ Rp×q correspond to the q nonzero eigenvalues of Σ̂, and the

columns of Ûp−q ∈ Rp×(p−q) correspond to the latter p− q eigenvalues. Furthermore,

recall that Σ̂+ = ÛΛ̂+Û ′, where Λ̂+ = diag(λ̂1, . . . , λ̂p) and

λ̂j =


1/λ̂j, λ̂j > 0

0, λ̂j = 0

for j = 1, . . . , p. Now, writing BPD = Û ′qΛ̂
+/2, we have that BPD is a whitening,

simultaneous diagonalizer in a q-dimensional feature subspace so that BPDΣ̂B′PD =

Iq. Thus, by transforming the feature vectors from the K classes with BPD, we

improve the diagonal, equal covariance matrix assumption. We denote the linearly

transformed MLE of µk by µ̂PDk = BPDµ̂K ∈ Rq×1, we have our proposed Pool-Diag

classifier

D̂PD(x) = arg min
k

(BPDx− µ̂PDk )′(BPDx− µ̂PDk ).

5.3.2 The M-Method for Low-Dimensional Projection

To reduce the runtime of the simultaneous diagonalization algorithms, our goal

is to reduce the p-dimensional feature space to a q-dimensional subspace via a linear
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transformation, U ′q ∈ Rq×p. We obtain the matrix U ′q with the M -method from

Young et al. [1987].

Let M ∈ Rp×(K−1)(p+1) be defined as

M = [µ2 − µ1|µ3 − µ1| . . . |µK − µ1|Σ2 −Σ1|Σ3 −Σ1| . . . |ΣK −Σ1], (5.11)

with rank(M ) = m < p. We assume that Σk 6= Σ1 for at least one value of k, where

2 ≤ k ≤ K. Next, using the full-rank decomposition of M [Harville, 2008], we write

M = FmGm, where Fm ∈ Rp×m and Gm ∈ Rm×(K−1)(p+1). Young et al. [1987] have

shown that the Bayes rule based on F+
mx ∈ Rm×1 attains the same Bayes error rate

as the Bayes rule based on x. Moreover, Young et al. [1987] have shown that m

is the minimum reduced dimension for which the Bayes error rate is not increased

for the Bayes rule based on F+
mx. However, we often wish to find a value smaller

than m such that most of the classificatory information is preserved. Young et al.

[1987] have proposed that one utilize the matrix Mq ∈ Rp×(K−1)(p+1), which best

approximates M with respect to the Frobenius norm. That is, let Mq = UqΛqV
′
q

be the singular value decomposition of Mq, where Uq ∈ Rp×p, Λq ∈ Rp×p is the

diagonal matrix of singular values of Mq, and Vq ∈ R(K−1)(p+1)×p, such that the

columns of each of Uq and Vq are orthonormal. Young et al. [1987] have shown

C(U ′q) = C(F+
q ), where C(A) denotes the column space of A ∈ Rm×n. Hence, for

q < m, we lose only a small amount of classificatory information with the Bayes rule

based on the dimension-reduced data U ′qx.

In practice we estimate the unknown Mq with its MLE, M̂q, by substituting

µ̂k given in (5.1) for µk and Σ̂k given in (5.2) for Σk in (5.11) for k = 1, . . . , K.

Furthermore, for k = 1, . . . , K, we denote the dimension-reduced sample covariance

matrix by

Σ̂
(q)
k = U ′qΣ̂kUq, (5.12)
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where Σ̂k is given in (5.2). We choose q to be the 95th percentile of the singular

values of the matrix M̂q analogous to a typical approach employed with principal

component analysis [Izenman, 2008]. Similarly, we have

µ̂
(q)
k = U ′qµ̂k, (5.13)

which is the linearly transformed MLE for µk. For additional insight into the M -

method, see Young et al. [1987] and McLachlan [1992].

5.3.3 The Asfari Classifier

Asfari [2006] has presented a nonorthogonal extension to the joint approximate

diagonalization eigenmatrices (JADE ) algorithm of Cardoso and Souloumiac [1996].

The Asfari [2006] algorithm, known as the LUJ1D algorithm, is based on the LU and

QR matrix decompositions [Harville, 2008] and solves a least-squares optimization

problem with the objective function

L(B) =
K∑
k=1

||BAkB
′ −BAkB

′ ◦ Ip||2F , (5.14)

where ||A||2F denotes the squared-Frobenius norm of A ∈ Rq×q. We remark that

(5.14) is the sum of the squared off-diagonal elements of BAkB
′ for k = 1, . . . , K.

We write the solution to (5.14) as BA ∈ Rq×q.

As we have discussed above, we apply the Asfari simultaneous diagonalization

algorithm to the dimension-reduced data after employing the M -method of Young

et al. [1987]. That is, substituting (5.12) for Ak (k = 1, . . . , K) in (5.14), we obtain

the near simultaneous diagonalizer BA. After employing the near simultaneous

diagonalizer BA, we transform (5.13) to obtain µ̂Ak = BAµ̂
(q)
k for k = 1, . . . , K.

Therefore, we write our proposed Asfari classifier as

D̂Asfari(x) = arg min
k

(BAU
′
qx− µ̂Ak )′

(
BAΣ̂

(q)
k B

′
A

)−1
(BAU

′
qx− µ̂Ak ).
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5.3.4 The Jedi Classifier

Souloumiac [2009] has developed the Jacobi-like J-Di algorithm that also ex-

tends the JADE algorithm to a nonorthogonal simultaneous diagonalizer by it-

eratively constructing successive Givens and hyperbolic rotations. Following the

jointDiag R package, we refer to the J-Di algorithm as the Jedi method. For

brevity we do not include the objective function or the Jedi algorithm but instead

refer the reader to its derivation and discussion by Souloumiac [2009].

Similar to the Asfari classifier, the Jedi simultaneous diagonalization algo-

rithm can be applied to (5.12) to obtain the near simultaneous diagonalizer BJ . We

transform (5.13) to obtain µ̂Jk = BJµ̂
(q)
k for k = 1, . . . , K. Therefore, we write our

proposed Jedi classifier as

D̂Jedi(x) = arg min
k

(BJU
′
qx− µ̂Jk )′

(
BJΣ̂

(q)
k B

′
J

)−1
(BJU

′
qx− µ̂Jk ).

5.4 Monte Carlo Simulations

We contrasted the classification performance of our proposed Pool-Diag, Jedi,

and Asfari classifiers with the DLDA, SDLDA, and SmDLDA classifiers using the

two well-known microarray data sets from Golub et al. [1999] and Yeoh et al. [2002].

First, we applied the variable selection approach from Dudoit et al. [2002] to the

data set to obtain the set of q genes that exhibited the largest ratio of their between-

group to within-group sums of squares. To compute an error rate for classifier

comparison, we followed a similar approach to that of Dudoit et al. [2002] and

randomly partitioned a data set into a training data set, consisting of four-fifths

of the observations, and a test data set comprised of the remaining one-fifth of

the observations. We stratified our random partition across each class to preserve

the training sample sizes. For each of the random partitions, we calculated the

proportion of incorrectly classified test observations to obtain an estimate for the

conditional error rate. We calculated the conditional error rate estimates for 500
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random partitions of the data and estimated the expected error rate. We used

version 2.15 of the open source statistical software R for all simulations in this paper.

5.4.1 Golub Leukemia Data Set

Golub et al. [1999] have examined the gene expression levels for 47 patients

with acute lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia

(AML). Bone marrow samples from each patient were assayed using Affymetrix

Hgu6800 chips. We remark that ALL results from both T-cell lymphocytes and

B-cell lymphocytes. Of the 47 ALL samples, 9 are T-lineage ALL samples, and the

other 38 are B-lineage ALL samples. We used the merged version of the data set

that is available in the golubEsets package on Bioconductor.

5.4.2 St. Jude Leukemia Data Set

Yeoh et al. [2002] have obtained the diagnostic bone marrow samples from

248 pediatric ALL patients who were determined to have one and only one of the

six known pediatric ALL prognostic subtypes, which include T-cell lineage ALL (T-

ALL), E2A-PBX1, TEL-AML1, MLL rearrangements, BCR-ABL, and hyperdiploid

karyotypes with more than 50 chromosomes (HK50). The 248 patients included 43 T-

ALL, 27 E2A-PBX1, 79 TEL-AML1, 15 BCR-ABL, 20 MLL, and 64 HK50 patients.

We obtained the St. Jude data set from the stjudem package on Bioconductor.

Because the data set contains data from other patients as well as a baseline set of

subjects who are determined to have no form of acute leukemia, we reduced the St.

Jude data set to include only the six ALL subtypes.

5.4.3 Simulation Results

In Table 5.1 and 5.2 we see the estimated unconditional error rates of the

considered classifiers for the Golub and St. Jude data sets, respectively. For the

Golub data set, the DLDA, SDLDA, and SmDLDA classifiers each yielded the same

90



estimated unconditional error rate for the specified values of q. Effectively, the

variance shrinkage of the SDLDA classifier and the alternative mean estimator of

the SmDLDA classifier did not improve the classification performance of the DLDA

classifier. In this case, the Pool-Diag classifier did not improve the classification

performance of the DLDA classifier. However, by improving the diagonal covariance

matrix assumption, the Asfari and Jedi classifiers had superior average classification

performance over the DLDA classifier. Moreover, the Jedi classifier yielded the

largest improvement to the DLDA classifier and resulted in the minimum observed

average conditional error rate.

For the St. Jude data set, the DLDA and SmDLDA classifiers resulted in

the same average conditional error rate. Also, the SDLDA classifier resulted in

much larger average conditional error rates, especially for the larger values of q.

Although the Jedi classifier did not perform as well in terms of classification, the

Asfari classifier was evidently comparable to the DLDA and SDLDA classifiers. The

Pool-Diag classifier achieved the minimal average conditional error rate. Hence, we

improved the diagonal covariance matrix assumption of the DLDA classifier, and,

thus, improved classification performance.

5.5 Conclusion

We have considered a family of diagonal linear classifiers that have been shown

to have excellent classification performance for small-sample, high-dimensional mi-

croarray data. In particular, we have examined the DLDA classifier popularized by

Dudoit et al. [2002], the SDLDA classifier from Pang et al. [2009], and the SmDLDA

classifier from Tong et al. [2012]. Although these classifiers have been shown to

perform well in other classification studies, we have argued that the preservation

of classificatory information present in the off-diagonal elements can improve clas-

sification accuracy. Thus, we have proposed three approaches that simultaneously
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diagonalize or nearly diagonalize the sample covariance matrices of each class and

have demonstrated that our new diagonal classifiers can yield improved classification

performance over a variety of recently proposed diagonal classifiers.

Rather than employing an alternative mean or variance estimator with the

DLDA classifier, we have demonstrated that a better approach is to improve the

diagonal assumption of the DLDA classifier. Specifically, we have shown that simul-

taneously diagonalizing the Golub data set before employing the DLDA classifier

produced better classification performance than the DLDA, SDLDA, and SmDLDA

classifiers. Furthermore, we have shown that by simply diagonalizing the pooled sam-

ple covariance matrix, we achieved better classification accuracy than the DLDA,

SDLDA, and SmDLDA classifiers did.

Additionally, we have found that the SDLDA classifier can yield extremely

large error rates. After further investigation, we have determined that the pooled

variance estimator utilized in the SDLDA classifier can yield near-zero variance esti-

mates that can cause numerical instabilities when test observations are classified. In

this case the SDLDA classifier will often classify each test observation into a single

class, resulting in an unreasonably large error rate, as we have observed with the St.

Jude data set. Also, in our preliminary studies, we found that the alternative mean

estimator of the SmDLDA classifier often resulted in better estimation of the popu-

lation mean than the MLE did. However, we have also found that the classification

performance of the SmDLDA classifier seldom differs from that of the DLDA classi-

fier. Thus, the improved mean estimator of the SmDLDA classifier does not appear

to yield a better classifier than the DLDA classifier for the data sets considered here.
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Table 5.1: Estimated unconditional error rates with approximate standard errors in paren-
theses for the considered classifiers with the Golub data set.

Classifier q=50 q=100 q=250 q=500
1 DLDA 0.037 (0.008) 0.047 (0.009) 0.051 (0.010) 0.033 (0.008)
2 SmDLDA 0.037 (0.008) 0.047 (0.009) 0.051 (0.010) 0.033 (0.008)
3 SDLDA 0.037 (0.008) 0.047 (0.009) 0.051 (0.010) 0.033 (0.008)
4 Pool-Diag 0.048 (0.010) 0.052 (0.010) 0.052 (0.010) 0.044 (0.009)
5 Jedi 0.025 (0.007) 0.044 (0.009) 0.031 (0.008) 0.052 (0.010)
6 Asfari 0.031 (0.008) 0.041 (0.009) 0.048 (0.010) 0.043 (0.009)

Table 5.2: Estimated unconditional error rates with approximate standard errors in paren-
theses for the considered classifiers with the St. Jude data set.

Classifier q=50 q=100 q=250 q=500
1 DLDA 0.062 (0.011) 0.040 (0.009) 0.032 (0.008) 0.024 (0.007)
2 SmDLDA 0.062 (0.011) 0.040 (0.009) 0.032 (0.008) 0.024 (0.007)
3 SDLDA 0.659 (0.021) 0.587 (0.022) 0.941 (0.011) 0.941 (0.011)
4 Pool-Diag 0.056 (0.010) 0.027 (0.007) 0.015 (0.005) 0.016 (0.006)
5 Jedi 0.182 (0.017) 0.123 (0.015) 0.142 (0.016) 0.151 (0.016)
6 Asfari 0.075 (0.012) 0.043 (0.009) 0.040 (0.009) 0.030 (0.008)
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Glele Kakäı, R. L. and Palm, R. (2009), “Empirical comparison of error-rate esti-
mators in logistic discriminant analysis,” Journal of Statistical Computation and
Simulation, 79, 111–120.

95



Golub, G. H. and van Loan, C. F. (1996), Matrix Computations, The Johns Hopkins
University Press, 3rd ed.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov,
J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D.,
and Lander, E. S. (1999), “Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring.” Science, 286, 531–537.

Guo, Y., Hastie, T., and Tibshirani, R. (2007), “Regularized linear discriminant
analysis and its application in microarrays,” Biostatistics, 8, 86–100.

Hand, D. J. (1997), Construction and Assessment of Classification Rules, Chichester,
West Sussex, England: Wiley Series in Probability and Statistics.

Handl, J., Knowles, J., and Kell, D. B. (2005), “Computational cluster validation in
post-genomic data analysis,” Bioinformatics, 21, 3201–3212.

Hartigan, J. A. and Wong, M. A. (1979), “Algorithm AS 136: A K-Means Clus-
tering Algorithm,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28, 100–108.

Harville, D. A. (2008), Matrix Algebra From a Statistician’s Perspective, New York:
Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2008), The Elements of Statistical
Learning, Data Mining, Inference, and Prediction, New York, NY: Springer New
York, 2nd ed.

Hennig, C. (2007), “Cluster-wise assessment of cluster stability,” Computational
Statistics and Data Analysis, 52, 258–271.

— (2008), “Dissolution point and isolation robustness: robustness criteria for general
cluster analysis methods,” Journal of Multivariate Analysis, 99, 1154–1176.

— (2010), fpc: Flexible Procedures for Clustering.

Izenman, A. J. (2008), Modern Multivariate Statistical Techniques, Springer Texts
in Statistics, New York: Springer.

Jaccard, P. (1912), “The distribution of the flora in the alpine zone.” New Phytolo-
gist, 11, 37–50.

Jackson, D., Somers, K., and Harvey, H. (1989), “Similarity coefficients: measures
of co-occurrence and association or simply measures of occurrence?” American
Naturalist, 436–453.

Jain, A. (2010), “Data clustering: 50 years beyond K-means,” Pattern Recognition
Letters, 31, 651–666.

96



Jain, A. K., Dubes, R. C., and Chen, C.-C. (1987), “Bootstrap Techniques for Error
Estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
628–633.

Jakobsson, M. and Rosenberg, N. A. (2007), “CLUMPP: a cluster matching and per-
mutation program for dealing with label switching and multimodality in analysis
of population structure.” Bioinformatics, 23, 1801–1806.

Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., and Meltzer, P. S.
(2001), “Classification and diagnostic prediction of cancers using gene expres-
sion profiling and artificial neural networks.” Nature Medicine, 7, 673–679.

Lütkepohl, H. (1996), Handbook of Matrices, Chichester, West Sussex, England:
John Wiley and Sons Ltd.

Marco, V. R., Young, D. M., and Turner, D. W. (1987), “The Euclidean distance
classifier: an alternative to the linear discriminant function,” Communications
in Statistics - Simulation and Computation, 16, 485–505.

McLachlan, G. J. (1992), Discriminant Analysis and Statistical Pattern Recognition,
Wiley Series in Probability and Mathematical Statistics: Applied Probability and
Statistics, New York: John Wiley and Sons Inc.

McLachlan, G. J., Do, K.-A., and Ambroise, C. (2004), Analyzing Microarray Gene
Expression Data, Hoboken, N.J.: Wiley-Interscience.

Mkhadri, A. (1995), “Shrinkage parameter for the modified linear discriminant anal-
ysis,” Pattern Recognition Letters, 16, 267–275.

Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005), “Prediction error estimation:
a comparison of resampling methods.” Bioinformatics, 21, 3301–3307.

Monti, S., Tamayo, P., Mesirov, J., and Golub, T. (2003), “Consensus clustering: a
resampling-based method for class discovery and visualization of gene expression
microarray data,” Machine Learning, 52, 91–118.

Pang, H., Tong, T., and Zhao, H. (2009), “Shrinkage-based Diagonal Discriminant
Analysis and Its Applications in High-Dimensional Data,” Biometrics, 65, 1021–
1029.

Ramey, J. A. and Young, P. D. (2011), “A comparison of regularization methods
applied to the linear discriminant function with high-dimensional microarray
data,” Journal of Statistical Computation and Simulation, 1–16.

Richardson, S. and Green, P. J. (1997), “On Bayesian analysis of mixtures with an
unknown number of components,” Journal of the Royal Statistical Society. Series
B (Methodological), 59, 731–792.

97



Schiavo, R. A. and Hand, D. J. (2000), “Ten More Years of Error Rate Research,”
International Statistical Review, 68, 295–310.

Seber, G. A. F. (2004), Multivariate Observations, Wiley Series in Probability and
Statistics, Wiley-Interscience.

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P.,
Renshaw, A. A., D’Amico, A. V., Richie, J. P., Lander, E. S., Loda, M., Kantoff,
P. W., Golub, T. R., and Sellers, W. R. (2002), “Gene expression correlates of
clinical prostate cancer behavior,” Cancer Cell, 1, 203–209.

Souloumiac, A. (2009), “Nonorthogonal joint diagonalization by combining Givens
and hyperbolic rotations,” IEEE Transactions on Signal Processing, 57, 2222–
2231.

Stephens, M. (2000), “Dealing with label switching in mixture models,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 62, 795–809.

Tibshirani, R. and Walther, G. (2005), “Cluster validation by prediction strength,”
Journal of Computational and Graphical Statistics, 14, 511–528.

Tibshirani, R., Walther, G., and Hastie, T. (2001), “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63, 411–423.

Tong, T., Chen, L., and Zhao, H. (2012), “Improved mean estimation and its appli-
cation to diagonal discriminant analysis,” Bioinformatics, 28, 531–537.

Tong, T. and Wang, Y. (2007), “Optimal shrinkage estimation of variances with
applications to microarray data analysis,” Journal of the American Statistical
Association, 102, 113–122.

Toussaint, G. T. (1974), “Bibliography on estimation of misclassification,” IEEE
Transactions on Information Theory, IT-20, 472–479.

Wehberg, S. and Schumacher, M. (2004), “A comparison of nonparametric error rate
estimation methods in classification problems,” Biometrical Journal, 46, 35–47.

Wickham, H. (2009), ggplot2, Elegant Graphics for Data Analysis, New York:
Springer, 2nd ed.

Xu, P., Brock, G. N., and Parrish, R. S. (2009), “Modified linear discriminant anal-
ysis approaches for classification of high-dimensional microarray data,” Compu-
tational Statistics and Data Analysis, 53, 1674–1687.

Yao, W. (2012), “Model based labeling for mixture models,” Statistics and Comput-
ing, 22, 337–347.

98



Ye, J. and Wang, T. (2006), “Regularized Discriminant Analysis for High Dimen-
sional, Low Sample Size Data,” in The 12th ACM SIGKDD International Con-
ference, New York, New York, USA: ACM Press, p. 454.

Yeoh, E.-J., Ross, M. E., Shurtleff, S. A., Williams, W. K., Patel, D., Mahfouz, R.,
Behm, F. G., Raimondi, S. C., Relling, M. V., Patel, A., Cheng, C., Campana,
D., Wilkins, D., Zhou, X., Li, J., Liu, H., Pui, C.-H., Evans, W. E., Naeve,
C., Wong, L., and Downing, J. R. (2002), “Classification, subtype discovery,
and prediction of outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling.” Cancer Cell, 1, 133–143.

Yeung, K. Y., Haynor, D. R., and Ruzzo, W. L. (2001), “Validating clustering for
gene expression data,” Bioinformatics, 17, 309–318.

Young, D. M., Marco, V. R., and Odell, P. L. (1987), “Quadratic discrimination:
some results on optimal low-dimensional representation,” Journal of Statistical
Planning and Inference, 17, 307–319.

Zhou, X. and Mao, K. Z. (2006), “The ties problem resulting from counting-based
error estimators and its impact on gene selection algorithms.” Bioinformatics,
22, 2507–2515.

99


