
  

 
 
 
 
 
 
 
 

ABSTRACT 
 

Conjugate Hierarchical Models for Spatial Data:   
An Application of an Optimal Selection Procedure 

 
John Jacob McBride 

 
Mentor:  Thomas L. Bratcher, Ph.D. 

 
 

 The theory of generalized linear models provides a unifying class of statistical 

distributions that can be used to model both discrete and continuous events.  In this 

dissertation we present a new conjugate hierarchical Bayesian generalized linear model 

that can be used to model counts of occurrences in the presence of spatial correlation. We 

assume that the counts are taken from geographic regions or areal units (zip codes, 

counties, etc.) and that the conditional distributions of these counts for each area are 

distributed as Poisson having unknown rates or relative risks.  We incorporate the spatial 

association of the counts through a neighborhood structure which is based on the 

arrangement of the areal units.  Having defined the neighborhood structure we then 

model this spatial association with a conditionally autoregressive (CAR) model as 

developed by Besag (1974).  Once the spatial model has been created we adapt a subset 

selection procedure created by Bratcher and Bhalla (1974) to select the areal unit(s) 

having the highest relative risks. 
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CHAPTER ONE 
 

Introduction 
 
 

 Statistical methods for spatial data have steadily gained attention over the past 

few years as a result of simulation-based computing procedures such as Markov Chain 

Monte Carlo (MCMC) and technological advances in geographic information systems 

(GIS).  These technological advances have motivated some to author comprehensive texts 

which address the theoretical aspects and the computing techniques associated with the 

different applications of spatial models.  See, for example, Banerjee, Carlin, and Gelfand 

(2004), Lawson (2003), Cressie (1993).  While many statisticians are interested in 

predicting or kriging unobservable quantities among some specified spatial domain others 

such as statistical epidemiologists and public health officials are interested in accurately 

modeling not only the spread of infectious diseases but the disease risk of non-infectious 

diseases and ultimately producing a disease map.   

The concept of disease mapping dates back centuries to an early example by Dr. 

John Snow (Snow (1854)) who mapped the addresses of cholera victims in relation to the 

locations of water supplies.  Snow used this particular disease map to identify putative 

sources of disease outbreak. This is just one application of a disease map used in public 

health, Lawson (2004) and Waller and Gotway (2003) give an overview of the wide 

range of uses of disease maps used for studying the geographical distribution of disease. 

However, the two typical uses are those used to assess the need for geographical variation 

in health resource allocation and those useful in research studies pertaining to the 

relationship between disease incidence/prevalence and explanatory variables.  The first
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case is intended to produce a map ‘clean’ of any random noise. This means the map 

delineates elevated risk. The latter is sometimes called ‘ecological analysis’ and can be 

regarded as spatial regression.  In this analysis the focus is on the relationship between 

disease incidences and explanatory covariates, usually at an aggregated spatial level, in 

order to assess specific hypotheses. Of course, these hypotheses are addressed visually 

through some disease map. In this work we concentrate mostly on modeling issues and 

give only a brief discussion of the cartographic issues pertaining to the representation of 

geographic information. However, for the reader who wishes to investigate topics relating 

to symbolic representation, display methods of intensity, or color scheme see Lawson 

(2001) or Pickle and Hermann (1995).   

To begin, we assume that our data arise from a geographic region which can be 

divided into smaller areas such as census tracts, counties, precincts, etc. and that we have 

the available aggregate counts for these geographic areal units.  Thus, we have lost all 

information at the individual level. Waller (2003) considers the trade-off between 

statistical stability of risk estimates and geographic precision.  The detection of locally 

elevated risk requires geographically small units; however, these smaller regions result in 

rate estimates based on smaller samples.  In the case of a rare disease the rates computed 

for these less populated units are most often unstable.   

While there are numerous methods suggested in the literature that address the 

previous dilemma, we focus mainly on methods which make use of hierarchical Bayesian 

models. Clayton and Kaldor (1987, 1989) were some of the first to incorporate Bayesian 

modeling techniques in the area of ecological analysis.  Others include Clayton and 

Bernardinelli, 1992; and Mollié 1996).   Statisticians for the most part assume that the 
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aggregate counts for the areal units are distributed as Poisson with unknown relative 

risks.  The usual method is to model the logarithm of the relative risks with a hierarchical 

generalized linear model consisting of both local and regional covariates as well as a 

random effects term for each areal unit corresponding to unstructured heterogeneity 

(Lawson, 2003).  To account for the spatial correlation, sometimes called structured 

heterogeneity (Lawson, 2003), of the areal units many will include an additional random 

effects term for each areal unit.  It is usually assumed that the collection of full 

conditional distributions for the spatial components defines a Marko random field (MRF).  

A commonly used MRF model is the intrinsic Gaussian autoregression prior considered 

by Besag (1974) and Besag, York, and Mollié (1991). 

We take a much different approach in that we assign a conjugate prior to the 

logarithm of the rates and model the prior means with a hierarchical generalized linear 

spatial model.  We have essentially taken the conjugate hierarchical generalized linear 

model presented by Albert (1988) and added a spatial component.  In doing so, we have 

gained the ability to directly quantify the overdispersion which is usually present in areal 

unit data.  The reader will find a discussion of both the frequentist and the traditional 

Bayesian methods used for spatial regression and disease mapping in Chapter 4.  

Furthermore, we apply our unique conjugate model to an original data set constructed by 

this author, the Waco Police Department, and the Center for Geographic Applied Spatial 

Research at Baylor University, wherein the ideas and concepts used in disease mapping 

are transferred to mapping call rates of habitat burglaries.  Instead of aggregate counts of 

disease we consider aggregate counts of 911 calls classified as habitat burglaries. In 
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addition, we also provide the reader with a procedure for selecting the beat(s) having the 

highest relative crime risk. 

 Clearly the emphasis of this dissertation is the material presented in Chapter 4; 

however, the supplementary material useful for the understanding of Chapter 4 is 

thoroughly developed in the preceding chapters.  Chapter 2 gives an overview of the first 

theme of this dissertation, subset selection.  We give an in-depth discussion of a subset 

selection procedure useful in determining a ‘best’ parameter among several populations.  

We actually apply this selection procedure to home run hitting data in Chapter 3. In that 

same chapter we present the second theme: conjugate hierarchical generalized linear 

models.  Chapter 3 consists of a complete formulation of the conjugate hierarchical 

generalized linear model proposed by Albert (1988), along with derivations of posteriors 

and marginal distributions, as well a discussion of the relationship between prior 

distributions and the relative posterior sensitivity.  We conclude this chapter with an 

example of a quadratic conjugate hierarchical generalized linear model used to model 

Sammy Sosa’s career home run hitting data.   

 
 

 
 
 
 
 
 
 
 
 
 
 



 

5 

 
CHAPTER TWO 

 
An Optimal Selection Procedure 

 
 

2.1 Introduction 

A decision maker is often faced with the task of selecting among several 

processes or populations the one which will produce the greatest yield or highest rate.   

Similarly, one may wish to select the smallest yield or lowest rate.  For example, an 

experimenter might be interested in determining which production technique gives the 

lowest percentage of defects; a crime analyst might consider which reporting district has 

the highest rate of violent crimes; a baseball fan would inquire about the best home run 

hitter of the 20th century.  In any case a selection must be made with less than certain 

information. There are of course various procedures for selecting a subset to contain the 

‘best’ parameter. In Section 2.2 we will give a brief overview of several subset selection 

procedures appearing the literature. Then in Section 2.3 we will review a Bayes solution 

to the selection procedure with respect to a constant loss function.  Finally, we will utilize 

this Bayesian selection procedure in a simulation study and assess the probability of 

correct selection and expected size in which the populations generating the samples are 

Poisson.  

 
2.2 Literature Review 

 The concept of subset selection began as early as 1957 with a paper describing a 

statistic which arises in ranking and selection (Gupta, 1957).  Shanti Gupta had already 

been working in the area of decision theory called ranking before he and Milton Sobel 



6 

 

developed the concept of subset selection.  Together these authors provide the literature 

with a variety of classical mechanisms for subset selection of location and shape 

parameters in both discrete and continuous distributions.  In fact, Roger Berger (1980) 

and Thomas Santner (1995), two of Gupta’s former students have also contributed to the 

area of subset selection.  However, to our knowledge before Bratcher and Bhalla (1974) 

there are no published works that contain a Bayesian subset selection procedure.  R.P. 

Bland, who was working in the area of ranking and multiple comparisons, had an 

unpublished manuscript in which he gave a detailed description of a Bayes’ solution to 

the selection problem that utilized a linear loss function. This is not to be confused with 

Bratcher and Bhalla (1974) who used a constant loss function to derive their selection 

procedure.  You may find an example of their method in Stamey, Bratcher, and Young 

(2004) who applied the selection procedure to Poisson rates subject to misclassification. 

Currently there are still very few Bayesian subset selections procedures found in the 

literature.  For an alternative to Bratcher and Bhalla see Gupta and Yang (1985), Deely 

and Berger (1988), or Schulter, Deely, and Nicholson (1997).  The works by Deely are 

unique in that the experimenter must predetermine the size of the subset.  Furthermore, 

Deely provides a different selection procedure based on the posterior predictive 

distribution rather than the usual posterior distribution; see Schulter et al (1997).  

 
2.3 Decision Theoretic 

 
Bratcher and Bhalla (1974) derive a decision theoretic approach to partitioning m 

parameters into two sets.  Let 1 2( , ,..., )mθ θ θ=θ  be the parameter vector of interest, for 

instance a collection of Poisson rates or binomial proportions. There are 2 1m −  subsets 

(excluding the null set) of the m parameters which may be selected as the superior set, S.  
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Each possible superior set corresponds to a composite of actions generated from m two 

decision problems of the form :i
id Sθ+ ∈  or :i C

id Sθ− ∈ , i = 1, 2, .... , m. Bratcher and 

Bhalla (1974) assume the following constant loss functions: 

max

1 max

0 if
( )

if
ii

i

L
c

θ θ
θ

θ θ+

=
=  ≠

 and  2 max

max

if
( )

0 if 
ii

i

c
L

θ θ
θ

θ θ−

=
=  ≠

 i = 1, 2, .... , m,  

where +
iL is the loss function for decision id+  and iL−  is the loss function for decision id− . 

Then the total loss incurred for selecting a subset of size N is given by 
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where { }max 1 2max , , , mθ θ θ θ= …  and 21  and cc  are constants.  We should note that 2c  is 

greater than 1c since it represents the loss of the more serious error of not selectingmaxθ .  

In the selection process one does not need 21  and cc but only the ratio 2 1c c c= .  Clearly 

the action of whether or not to include iθ in the subset S should in some way depend on 

the two losses that may result.  From the Bayes decision criterion we will include iθ in S 

if the expected loss of inclusion is less than that of exclusion that 

is, ( ) ( )xLExLE ii |)(|)( θθ −+ ≤  wherex  represents the data or a vector of sufficient 

statistics forθ .  Writing the expectations as a function of )|Pr( max xi θθ = gives the 

following 

( )
[ ]xc
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The decision to include iθ  in S can now be rewritten as  

 

( ) ( )1 max 2 max1 Pr | Pr |i ic x c xθ θ θ θ− = ≤ ⋅ =    

or  
 

( ) ( )maxPr | 1 1 .i x cθ θ= ≥ +                                                (2.1) 

It is clear from equation (2.1) that the decision to place iθ in the superior set is not just 

dependent on the sample information but also the penalty constant c.  In the next section 

we investigate the relationship between c, sample size, the probability of correct selection 

and expected size. 

 
2.4 Sample Size Determination Study 

2.4.1 Preliminaries 

 Until now there have been no known sample size determination studies used to 

calculate the probability of correct selection and expected size given the assumption of a 

constant loss function as in the decision theoretic presented by Bratcher et al (1974). For 

this sample size determination study we consider only the Poisson model but our method 

can be easily transferred to the binomial or other discrete models. Therefore, we assume 

the data 1, ,i inx x… for the thi population can be modeled as Poisson with rateiλ . Assuming 

n is the common sample size, we may summarize the sample information with the 

sufficient statistics
1

n

i ij
j

t x
=

=∑ .  Thus, our decision criterion in Equation (2.1) will be based 

on the posterior ofiλ given the totalsit .  In the absence of prior information it is 

customary to assign independent non-informative priors to the Poisson rates.  For the first 

case we assume( )i cπ λ ∝ , which leads to the posteriors being distributed as 
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independent ( )gamma 1,it n+ .  The assumption of a flat uniform prior reduces the 

complexity of the computations used for calculating the probability of correct selection 

and expected size since we can make use of functions available in the statistical package 

R.  Alternatively, we could assume a hierarchical Poisson model which would greatly 

increase the computing time.  Depending on how ‘informative’ the prior structure, a third 

stage hierarchy may provide “borrowing strength” across the parameters and reduce the 

posterior variability.  For the second case we assume conjugacy and assign independent 

( )gamma ,α β  to the Poisson rates.  To complete the hierarchy we add the following 

distributions for the hyper priors: 

( )~ exp 1α  

( )~ gamma .001,.001β  

The resulting posterior and full conditional distributions are analytically intractable 

making the free statistical software WinBUGS an ideal candidate to aid in calculating the 

probability of correct selection and expected size.  WinBUGS will use an adaptive 

rejection sampling procedure to simulate values from the posterior.  Furthermore, we will 

use the ‘R2WinBUGS’ package created by Sturtz, Ligges, and Gelman (2004) to call 

WinBUGS from R.  The next subsection gives tables as well as explanations that 

summarize the results of our simulation study. 

 
2.4.2 Results 
 
Appendix A gives a complete annotated version of the computer program used to 

generate the following tables; however, we will now provide the reader with a brief 

outline of the steps used in the simulation. 
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1. Using the triangle distribution with endpoints (a, b) and mode c generate sets of size 

five and ten.  Each of these sets will represent a set of Poisson rates.  A large number of 

these sets – typically greater than 10,000 - must be used for the Monte Carlo simulation. 

2. Sampling from Poisson distributions with the rates proportional to those from step one 

generate the count totals.   

3. For each population calculate the probability inclusion 

criterion ( )max 1Pr | , ,i mPIC t tλ λ≡ = … .  If the PIC exceeds ( )1 1c + we take action id+  

4. Calculate the percentage of times that the superior set actually containedmaxλ .  This is 

the probability of correct selection. 

5. Calculate the relative frequency in which action id+ is taken.  This is the expected size. 

In this study the parameter specification for the triangle distribution used to 

simulate the Poisson rate is motivated by two examples.  The first appears in Suissa and 

Salmi (1989) whereby the physicians were interested in assessing the best treatment – 

placebo, radiotherapy, chemotherapy, or both - for Hodgkin’s disease.  The second 

appears in Kvam and Miller (2002) in which the experimenters were concerned with 

selecting the largest pump failure rate.  In Suissa et al. (1989) the clinicians recorded the 

number of observed leukaemias for patients that were given one of four different 

treatments.  Here the experimenter would be interested in determining the sample size 

required for selecting a subset of treatments given a specified probability of correct 

selection.  As for Kvam et al. (2002) the failure data was from 10 pump systems in the 

Farley-1 nuclear power plant.  Tables 1-2 give both approximations of the probability of 

correct selection and expected size when only five populations (leukemia treatments) 

were studied whereas Tables 3-4 give the results for 10 populations (pumps).  Table 1 



11 

 

and Table 3 refer to the case of the uniform prior and Table 2 and Table 4 refer to the 

case of a hierarchical model.  

 
Table 1. Uniform prior with 5m=  

  
Probability of Correct 

Selection   Expected Size   
size \ 
penalty c = 4 c = 5.67 c = 9 c = 11.5 c = 19 c = 4 c = 5.67 c = 9 c = 11.5 c = 19 
n = 5 0.778 0.8352 0.89 0.9095 0.9443 1.6883 1.9571 2.3028 2.4753 2.8234 
n = 10 0.844 0.8832 0.9227 0.9386 0.9603 1.588 1.7969 2.058 2.1927 2.461 
n = 15 0.8744 0.9076 0.9407 0.9531 0.9714 1.5291 1.7027 1.9293 2.0432 2.2702 
n = 20 0.8881 0.9176 0.9459 0.9568 0.9736 1.4768 1.6272 1.8261 1.9313 2.1321 
n = 25 0.9098 0.9346 0.9568 0.9659 0.9794 1.4533 1.5952 1.7659 1.8562 2.0274 
n = 30 0.9185 0.9436 0.9648 0.9721 0.984 1.4122 1.546 1.7021 1.7831 1.9512 
n = 45 0.9296 0.948 0.9656 0.974 0.9849 1.3582 1.4614 1.5932 1.6687 1.8086 
 

Table 2. Hierarchical model with 5m=  

  
Probability of Correct 

Selection   Expected Size   
size \ 
penalty c = 4 c = 5.67 c = 9 c = 11.5 c = 19 c = 4 c = 5.67 c = 9 c = 11.5 c = 19 
n = 5 0.7824 0.8358 0.8949 0.9176 0.9485 1.6973 1.9846 2.3474 2.5394 2.8926 
n = 10 0.8442 0.8861 0.9241 0.9402 0.9651 1.5981 1.8138 2.0926 2.2342 2.5169 
n = 15 0.8704 0.9063 0.9386 0.9505 0.9706 1.5357 1.7176 1.9496 2.0704 2.2935 
n = 20 0.8949 0.9255 0.9522 0.9625 0.9767 1.489 1.6492 1.8567 1.9539 2.16 
n = 25 0.9113 0.9337 0.9569 0.9675 0.9807 1.4534 1.5926 1.7752 1.8653 2.0417 
n = 30 0.918 0.9406 0.9643 0.9732 0.9836 1.4333 1.5652 1.7357 1.8185 1.9835 
n = 45 0.9348 0.9522 0.9706 0.9779 0.9867 1.363 1.4645 1.5953 1.6614 1.7996 

 

Table 3. Uniform prior with 10m=  

  
Probability of Correct 

Selection   Expected Size   
size \ 
penalty c = 9 c = 11.5 c = 19 c = 24 c = 39 c = 9 c = 11.5 c = 19 c = 24 c = 39 
n = 5 0.7845 0.8206 0.8803 0.9001 0.9346 2.6971 3.0179 3.6945 3.9946 4.6161 
n = 10 0.8499 0.877 0.9206 0.9362 0.959 2.438 2.6829 3.1813 3.424 3.8802 
n = 15 0.8814 0.9042 0.9374 0.9515 0.9684 2.2744 2.4748 2.8842 3.0753 3.4641 
n = 20 0.9051 0.9238 0.9511 0.9607 0.9753 2.157 2.3326 2.6882 2.8517 3.2048 
n = 25 0.9194 0.9351 0.9601 0.9684 0.9795 2.0774 2.2378 2.5608 2.7098 3.0024 
n = 30 0.9299 0.9454 0.9658 0.9727 0.9823 2.0189 2.1667 2.4539 2.5773 2.8475 
n = 45 0.9437 0.9544 0.9724 0.9795 0.9875 1.8521 1.9656 2.2066 2.3154 2.5321 
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Table 4. Hierarchical model with 10m=  

  
Probability of Correct 

Selection   Expected Size   
size \ 
penalty c = 9 c = 11.5 c = 19 c = 24 c = 39 c = 9 c = 11.5 c = 19 c = 24 c = 39 
n = 5 0.7907 0.8308 0.8914 0.9132 0.9437 2.7666 3.1183 3.8327 4.1597 4.8079 
n = 10 0.8516 0.8786 0.9217 0.9365 0.9571 2.4851 2.7364 3.2517 3.491 4.1205 
n = 15 0.8829 0.9049 0.9415 0.9538 0.9708 2.2996 2.5098 2.9363 3.1343 3.5315 
n = 20 0.9083 0.9255 0.9537 0.9647 0.9772 2.1863 2.3701 2.7332 2.9032 3.2411 
n = 25 0.9173 0.9322 0.9552 0.9645 0.9767 2.1049 2.2643 2.5935 2.7372 3.0533 
n = 30 0.9297 0.9446 0.9665 0.9716 0.9817 2.0024 2.1494 2.4553 2.5946 2.8641 
n = 45 0.9453 0.9565 0.9745 0.9803 0.9873 1.8822 1.9974 2.2362 2.3397 2.5559 

 
 
 The hierarchical model did not noticeably out perform the model with a non-

informative prior; the purported “borrowing strength” is not prevalent, at least not in 

these results.  For that matter since computing time is significantly decreased when using 

the non-informative prior it is suggested to the reader not to use the hierarchical 

conjugate model to determine the sample.  We now return to the example from Suissa 

and Salmi (1989). If the loss for not selecting maxθ is four times the loss for 

selecting maxiθ θ≠ , i.e. 4c = , and the probability of correct selection is 85% then we 

would require a sample size of approximately 10 and the expected size is 1.58.  However, 

if the penalty constant is increased to nine then we would require a sample of size five, 

but our expected size is now 2.30.  
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CHAPTER THREE 
 

Hierarchical Generalized Linear Models and Subset Selection 
 
 

3.1 Introduction 
 

Originally introduced by Nelder and Wedderburn (1972), the generalized linear 

model (GLM) provides an extension to ordinary regression analysis by allowing the 

response variable to be non-Gaussian. In the classical linear model we typically specify 

the error term as a Gaussian random variable whereas in the case of the generalized linear 

model we model the responses 1, , nY Y…  directly and assume the means 1, , nµ µ…   satisfy 

some specific p-dimensional function ( ) T
ig xµ β= .  Clearly the GLM provides a 

unifying class of statistical models that generalizes classical linear models. Gelfand and 

Ghosh (2000) comment the GLM “avoid having to select a single transformation of the 

data to achieve the possibly conflicting objectives of normality, linearity, and 

homogeneity of variance.”    Since their inception GLM’s have been used in a wide range 

of applications including but not limited to analysis of multicategory data (Leonard and 

Novick (1986)), dynamic or state space extensions of non-normal time series and 

longitudinal data, discrete time survival data, and non-Gaussian spatial processes (Best, 

Ickstadt, and Wolpert, 2000; or Banerjee, Carlin, and Gelfand (2004)).  Moreover, the 

GLM is widely used in Poisson regression, which we provide as an example in the final 

section of this chapter. 

In the first three sections of this chapter we provide the reader with key references 

to the development of both the Bayesian and classical GLM, as well as a comprehensive 

overview of the mathematical components of both the Bayesian and classical GLM.  For 
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the case of the Bayesian GLM as presented in Section 3.4, we discuss the types of prior 

distributions that are typically used in the GLM. Continuing in the Bayesian framework, 

Section 3.5 is devoted to a special type of Bayesian GLM which we will refer to as a 

conjugate generalized linear model. Finally, in Section 3.6 we will construct several 

Bayesian generalized linear models for home run hitters and then apply the previously 

developed subset selection procedure to determine the hitter with the highest home run 

hitting rate. 

 
3.2 Literature Review 

 
Brad Carlin once said that “perhaps the single most important contribution of 

statistics to the field of scientific inquiry is the general linear model” (Carlin and Louis 

(2000)). Perhaps this would explain the well-developed literature pertaining to the GLM.  

For an introductory exposition on the classical GLM the reader is referred to the texts by 

McCullagh and Nelder (1989); Fahrmeir and Tutz (1991); and McCulloch and Searle 

(2001).  Whereas the above-mentioned texts provide an adequate collection of estimation 

and hypothesis testing procedures for various parameters in the GLM setting, the SAS 

help file gives a detailed discussion on how to obtain various statistics and model 

checking diagnostics for the GLM.  As is the case of classical linear models, several 

authors have extended the GLM to include for latent variables (random effects) in which 

case we have generalized linear mixed models (GLMM’s).  Breslow and Clayton (1993) 

laid the framework for the concept of GLMMs while Zhao, Staudenmayer, Caoull, and 

Wand (2004) have even developed Bayesian generalized linear mixed models, which are 

ultimately a special case of what are commonly referred to as hierarchical generalized 

linear models.  For an introductory text that gives a development of the hierarchical 
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generalized linear model the reader is referred to Gelman, Carlin, Stern, and Rubin 

(2004).  For an advanced discussion of the hierarchical generalized linear model see 

Mallick, Dey, and Ghosh (2000).  Besides these texts the reader will find a discussion of 

the hierarchical generalized linear model in West (1985) and Albert (1988).  Both of 

these examine some of the  theoretical and computational issues pertaining to the 

hierarchical generalized linear model, but for a further discussion of the various proposed 

priors and methods for their implementation see Ibrahim and Laud (1991), Dellaportas 

and Smith (1993), and Ghosh, Natarajan, Stroud, and Carlin (1998).   

 
3.3 Classical Generalized Linear Models 

The Generalized Linear Model (GLM) is characterized by three components: the 

random component associated with the response variableiY , a systematic component 

related to the explanatory variables used in the predictor function, and a link function that 

specifies the function of( )E Y . In the formulation of a GLM it is tacitly assumed that the 

underlying sampling distribution of the response variable iY  is a member of the 

exponential family and that conditioned on iθ  the responsesiY  are independent. 

Generally, a member of the exponential family has a density function of the form 

( ) ( ) ( ) ( ){ }1| , exp , ,i i i i i i i if y a y b c yθ φ φ θ θ φ−  = ⋅ − +                              (3.1) 

 
where the iθ  are unknown, but the ( ) 0ia φ >  are known. The parameters  and i iθ φ in 

(3.1) are commonly referred to as the canonical and dispersion (scale) parameters 

respectively. It has been shown (McCullagh and Nelder (1972)) that the mean and 

variance of a random variable having density (3.1) are related to its canonical and shape 
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parameters by ( ) ( )|i i i iE Y bµ θ θ′= =  and ( ) ( ) ( )|i i i iVar Y b aθ θ φ′′= .  These results can be 

easily derived by making use of the fact that  

( )log |
0i i

i

f Y
E

δ θ
δθ

 
= 

 
 

and  

( ) ( ) 22

2

log | log |
0i i i i

i i

f Y f Y
E E

θ δ θ
θ δθ

 ∂  
+ =   ∂   

 

Important special cases of the exponential family include the binomial distributions with 

success probabilities ( ) ( ) ( )exp / 1 exp ,  1i i i iaπ θ θ φ= + =    and the Poisson distributions 

with rates ( )expi iλ θ=  and scale parameter ( ) 1ia φ =  

As mentioned, the two other components of the GLM are the systematic 

component and the link function.  The systematic component of a GLM relates a vector 

( )1, , nη η… to the explanatory variables through a linear model.  Let ix  be a known 

1p× vector of regression coefficients andβ  a vector of unknown regression parameters. 

Then each component of ( )1, , nη η η= …  is , 1, , .T
i ix i nη β= = …  

Finally, the link function is what ‘links’ the systematic component to the random 

components through ( )i igη µ= where g is a known monotonic differentiable function. It 

follows that the function g links the mean, ( )|i iE Y θ  to the explanatory variables through 

the formula ( ) , 1, , .T
i ig x i nµ β= = …  If ( )g µ µ=  , as in the case of ordinary regression 

with normally distributediY , then we say g is the identity link andi iη µ= .  Moreover, in 

the case where the canonical parameter is equal to the systematic component 
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i.e. ( ) T
i i ig xθ µ β= = , we say that g is a canonical link.  Examples of their use are found 

in Poisson Loglinear models and Binomial Logit models.  Alternatively, since the mean 

is a function of the canonical parameter; recall,( ) ( )|i i iE Y bθ θ′= , some authors such as 

Gelfand and Ghosh (2000) find it more convenient to generalize (3.1) by expressing the 

canonical parameters as some function h of the inner productT
ix β .   

That is,  

( ) ( ) ( ) ( )( ){ } ( )1| exp ,T T
i i i i i i i if y a y h x b h x c yθ φ β β φ−  = −

 
 ,                     (3.2) 

where h is a strictly increasing, and a sufficiently smooth function.  Now having 

expressed the likelihood in terms of the covariates β we can find estimates of these 

parameters and in turn estimate the means for certain levels. 

 The classical estimation procedure for GLMs is maximum likelihood where the 

dispersion parameters iφ  are assumed known and the design matrix ( )1, , NX x x= ⋯  has 

rank p.  The likelihood function is 

( ) ( ) ( ) ( )( ){ }1

1

exp
n

T T
i i i i

i

L a y h x b h xβ φ β β−

=

 ∝ − 
 
∑ .                       (3.3) 

Taking the partial of equation (3.3) with respect to the vector β gives the score vector 

( ) ( ) ( )( ){ } ( )1

1

log
,

n
T T

i i i i i
i

L
a y b h x h x x

β
φ β β

β
−

=

∂
′ ′=

∂ ∑                     (3.4) 

and the Fisher information matrix is 

( ) ( ) ( )
2

2log
,T

T

L
I E X DV Xβ β β

β β
 ∂= − = ∆ ∂ ∂ 

                             (3.5) 
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where  ( ) ( )( ) ( ) ( )( ) ( )( )( )1 1
1 1, , , , , ,T T

n nD Diag a a V Diag b h x b h xφ φ β β β− − ′′ ′′= =⋯ ⋯  

and ( ) ( ) ( )( )1 , , .T T
nDiag h x h xβ β β∆ = ⋯  

Typically the maximum likelihood estimatêβ  is found by using some iterative 

procedure such as Newton-Raphson or Fisher Scoring and then a goodness-of-fit statistic 

for the model (Nelder et al. (1972); Agresti (2002)) is computed. Furthermore, Lehmann 

(1998) gives regularity conditions for whichβ̂  is asymptotically ( )( )1 1,N n Iβ β− − , which 

in turn provides the basis for most test statistics and confidence intervals. 

 
3.4 Bayesian Generalized Linear Models 

In the Bayesian paradigm a model having likelihood of the form (3.2) would 

require a prior for the unknown regression parameters. Albert (1988) in his conjugate 

GLM assigns non-informative priors to the regression and scale parameters.  Gelfand and 

Ghosh (2000) mention that a commonly used choice for β  is the multivariate normal; 

that is, ( )0~ ,Nβ β Σ , where 0β and ∑ are known.  Assuming a multivariate normal forβ  

and taking the product of the likelihood and prior leads to a posterior of the form 

( ) ( ) ( ) ( )( ) ( ) ( )1 1
0 0

1

1
| exp .

2

n
TT T

i i i i
i

y a y h x b h xπ β φ β β β β β β− −

=

  ∝ − − − ∑ −   
∑   (3.7) 

The normalizing constant for (3.7) would need to be found using numerical integration 

thus making the posterior analytically intractable.  In fact, there is no closed form 

expression for either the posterior mean or variance.  However, we can use a numerical 

integration technique such as importance sampling to calculate these numbers or we can 

use a Markov Chain Monte Carlo (MCMC) method such as the Metropolis-Hastings 

algorithm or the Gibbs sampler to generate samples from the posteriors. In the complete 
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or partial absence of prior information the experimenter may choose to use a 

noninformative prior, thus making the posterior distribution proportional to the 

likelihood. Under these circumstances any Bayesian analysis will be similar to a 

likelihood analysis. However, the use of uniform priors could result in an improper 

posterior (see e.g. Ibrahim and Laud (1991)).   

To complete the hierarchy of the GLM one would need to assign a prior 

distribution for the unknown covariance matrix. It is mentioned in Gelfand and Ghosh 

(2000) that one option is to use an inverse Wishart distribution for the unknown 

covariance matrix∑ , symbolically ( )~ ,IW νΣ Ψ .  Specifically, the prior on ∑  would 

have the functional form, ( ) ( ) 1
211

exp
2

tr
νπ −− 

∑ ∝ − Ψ∑ ∑ 
 

.  Taking the product of the 

likelihood (3.7) and the prior for∑  gives a posterior 

( ) ( ) ( ) ( )( )

( )( ){ }

1

1

1
12

0 0

, | exp

1
   exp .              (3.9)

2

n
T T

i i i i
i

T

y a y h x b h x

tr
ν

π β φ β β

β β β β

−

=

+− −

  ∑ ∝ −   

  × ∑ − − − + Ψ ∑   

∑
 

 There is no closed expression for the normalizing constant which makes (3.9) 

analytically intractable.  Any posterior analysis will need to be handled through 

numerical integration.  Gelfand and Smith (1990) have shown that Gibbs sampling 

proves to be a useful technique for generating samples from (3.9).  To implement this 

procedure one would require the full conditional distributions, i.e. ( )y,| βπ ∑  

and ( )y,|∑βπ .  The full conditional for Σ  can be easily derived by mere inspection of 

(3.9); that is, ( )( )( )0 0| , ~ , 1y IWβ β β β β ν′Σ Ψ + − − + .  However, ( )y,|∑βπ  turns out 

to be a nonstandard distribution and is known only up to a multiplicative constant where 
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( ) ( ) ( ) ( )( ) ( ) ( )1 1
0 0

1

| , exp
n

T T
i i i i

i

y a y h x b h xπ β φ β β β β β β− −

=

 ′ ∑ ∝ − − − Σ −   
∑ . 

  In this case we would need to use a procedure such as adaptive rejective sampling to 

assist the Gibbs sampler. The reader should be reminded that the canonical parameter 

appearing in the hierarchy is a parametric function of the unknown regressors and is not 

assigned a prior distribution. Albert (1988), on the other hand, takes a much different 

approach to the Bayesian GLM by assigning independent conjugate priors to the 

canonical parameters and in turn models the prior means.  In Section 3.5 we give an 

overview of Albert’s conjugate GLM. 

 

3.5 Conjugate Generalized Linear Models 

Again, suppose that conditioned on iθ  the random variablesiY  are independent 

belonging to the exponential density (3.1).  Instead of modeling the canonical parameters 

as ( )βθ T
ii xh=  first stage, Albert (1988) considers them independent with conjugate 

density 

( ) ( ) ( ){ }| , exp , .i i i i i i i i im m b k mπ θ λ λ θ θ λ = − +                          (3.10) 

 

Assuming regularity conditions hold, ( ) ( )0 | , | ,
i ii i i i i i i im d m dθ θπ θ λ θ π θ λ θ∂ ∂

∂ ∂= =∫ ∫  , 

 
 

or ( )( ) ( )| , 0i i i i i i i im b m dλ λ θ π θ λ θ′− =∫ .  Thus the hyperparameterim  is the prior mean 

of the sampling meaniµ , i.e., ( ) [ ]i i im E b Eθ µ′= =   . Returning to (3.10), the 

hyperparameter iλ  is a precision parameter that reflects the strength of information 

regarding the prior means im  and ( ),i ik m λ  is a normalizing constant.  Albert (1989) 

notes that as iλ  approaches infinity the prior density (3.10) becomes concentrated 
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about im . Now, to obtain the posterior distribution we take the product of the likelihood 

(3.1) and the conjugate density (3.10), in which case the conditional distributions of iθ  

given hyperparameters iλ and im  are independent having posterior density 

( ) ( ) ( ) ( ) ( )( ){ }| , , exp , ,i i i i i i i i i i i iy m m y b k m yπ θ λ λ φ θ θ λ φ = + − + +        (3.11) 

where the posterior mean of iµ  is ( ) ( ) ( )/i i i i i i im y y mφ λ φ λ= + + and ( )1, , ny y y= … .  

Furthermore, if we combine the likelihood (3.1) with the prior density (3.10) and 

integrate over the range Θ we obtain the marginal or unconditional density foriy : 

( ) ( ) ( )

( ) ( )
( )( )

                           | , | | ,

, ,
.                                                      (3.12)                                 

,

i i i i i i i i i

i i i i

i i i i

f y m f y m d

c y k m

k m y

λ θ π θ λ θ

φ λ
λ φ

Θ

=

=
+

∫

 

 To make this model in fact a GLM we assume that the set of prior means{ }im satisfy the 

model ( ) T
i ig m x β= .  Unlike Gelfand and Ghosh (2000) who use relatively informative 

priors for their Bayesian GLM, Albert (1988) considers a noninfomative prior for β  

and  for all i iλ λ=  in the form ( ) ( ) ( )2
, 1 0π λ β λ λ−∝ + > , implying that β  is uniform.  

Christiansen and Morris (1997) and Albert (1989) suggest that the advantage of such an 

exponential mixture that contains a scale parameter is the ability to handle extra 

variability or overdispersion.  We will explore the use of this model in the next section. 

 
3.6 A Bayesian Analysis of Home Run Hitters 

Unquestionably, three of the most prolific home run hitters of the 21st century are 

all-stars Mark McGuire, Sammy Sosa, and Barry Bonds.  It is worthwhile to compare 
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these three hitters as they are similar in physical size, age, and career span.  In his paper, 

“A Bayesian Analysis of a Poisson Random Effects Model for Home Run Hitters,” 

Albert (1992) develops three models used in ranking the true home rates or “true” rates of 

12 of the greatest home run hitter’s pre-1992.  Before we begin the development of any 

hierarchical generalized linear model suggested in the work, it is worth mentioning that 

there exist several examples in the literature of Bayesian Poisson regression.  In an 

example taken from Lindley (1965), El-Sayyad (1973) used a Bayesian GLM to model 

the counts of triplets born in Norway between the years 1911 and 1940.  The counts were 

assumed to be distributed Poisson (iλ ) with the usual loglinear link expressed in terms of 

the interval of time at which the counts were recorded, i.e. ( ) 1log i o itimeλ β β= + .  A 

Jeffreys’ prior was used for the unknown regression parameters.  In another example 

appearing in Gelman et al. (2004), the authors use a hierarchical Poisson regression to 

analyze police stops in New York City. 

 
3.6.1 Poisson Sampling Model 

 We consider the number of home runs hit per season, which we will denoteiz , as 

being distributed binomial with parameters it  (the total number of at-bats for season i) 

and p being the probability of hitting a home run during a give plate appearance.  Since p 

is small, we can approximate the distribution of iz by a Poisson distribution with 

mean it γ , where γ  is the player’s true home run rate over his career.  If iy  represents the 

proportion of home runs hit in it at-bats for a particular player, then the sampling density 

of iy is given by 
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( ) ( )
( )

| , 0,1,2,
!

i ii
t yt

i
i i i

i i

e t
f y t y

t y

γ γ
γ

−

= = …                              (3.13) 

If the observed proportions 1, , Ny y…  for each player are assumed independent, then the 

likelihood is given by 

( )| i i it t y
L y e

γλ γ− ∑ ∑∝                                           (3.14) 

If γ is assigned the Jaynes prior,( ) 1π γ γ −= , then the resulting posterior is of the gamma 

form with shape parameter i it yα =∑ and scale parameter itϕ =∑ . Bratcher and Stamey 

(2000) mention that the Jaynes prior can be considered the limiting form of a non-

informative proper conjugate gamma prior, i.e. ( )~ Gamma 0,0γ . The resulting posterior 

mean and standard deviation are[ ]| i i iE y t y tγ =∑ ∑ , [ ]| ,i i iSD y t y tγ = ∑ ∑  

respectively.  Note that the posterior mean is just ratio of career home runs to career at-

bats.   

 
3.6.2 Poisson Conjugate Model 

 As was the case in Albert (1992) the Poisson model with a noninformative prior is 

not a good fit to the home run data pertaining to the these three batters.  The model 

assumes that[ ]| |i i iE y var t yγ γ γ = =  ; however when comparing the sample mean of 

{ }iy versus the sample variance of { }i it y for each batter it is clear that the variability of 

the home run data is much higher than predicted by the Poisson model.  Table 5 gives a 

summary. 
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Table 5. Point Estimates for the Hitters 

  Career HR Career AB HR/AB Mean Variance 
McGuire 583 6187 0.09423 0.0938 0.5821 
Bonds 703 9098 0.07727 0.0797 0.4016 
Sosa 574 8021 0.07156 0.0663 0.57 

 

The column entitled ‘Mean’ gives the sample mean of{ }iy , whereas the column entitled 

‘Variance’ gives the sample variance of{ }i it y .  The reader will find that the variance 

estimate is much higher than the rate estimate, giving the indication that there may be 

overdispersion.   Correcting for this overdispersion we use a mixture distribution having 

an additional scale parameter as in Albert (1989). In addition we do not assume that the 

rate parameter in Poisson is constant but allow this rate parameter to differ for each year. 

Expressing (3.13) as an exponential of the log likelihood we arrive at a density of the 

form (3.1). 

( ) ( )
( )

[ ] ( ){ }
( ) ( ){ }

| exp log
!

exp log log !

exp , ,

i ii
t yt

i i
i i

i i

i i i i i i i

i i i i i i

e t
f y

t y

t y t t y

y b c y

γ γ
γ

γ γ

φ θ θ φ

−   =    
   

= − −

= ⋅ − −  

 

where the canonical parameter iθ  is equal to log iγ , the cumulant function 

is ( ) ( )expi ib θ θ= , and the scale parameter isit .  According to (3.10) the prior distribution 

for iθ  is ( ) ( ){ }| , exp i
i i i im m eθπ θ λ λ θ∝ − , relating this to the Poisson rate 

gives ( )| , ~ Gamma ,i i i im mγ λ λ λ .  In this setting, m, the mean of the marginal 

distribution, would represent a batter’s true rate and iλ  is an additional season-specific 

parameter, originally suggested by West (1985), that can model the extra variation in the 
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data. The scale parameter is particularly important as it is used to adjust for the aberrant 

seasons and identify the seasons that are inconsistent with the main body of data. To 

make this a hierarchical model we assign a uniform distribution to the prior mean and a 

chi squared distribution (see e.g. West, 1985) to the scale parameter. The hierarchical 

Poisson regression can be summarized as  

( )
( )

( )
( )2

| ~

| , ~ ,

~ .01,.15

~ .

i i i i

i i i

i

y Poisson t

m gamma m

m Uniform

p

γ γ
γ λ λ λ

λ χ

 

The reader will notice that the degrees of freedom for the chi squared distribution are left 

unspecified. As previously mentioned, the shape parameter appearing in the conjugate 

prior is used to downweight the inconsistent home run years thus making the degrees of 

freedom potentially very influential.  Table 6 gives insight to the sensitivity of the 

posterior analysis of the true rate m with respect to this scale parameter.  

 
Table 6. Approximate Posterior Moments of the True Rate 

 
         Chi squared (10)         Chi squared (30)         Chi squared (100) 
  Mean SD PIC Mean SD PIC Mean SD PIC 
McGuire 0.1143 0.01631 0.71716 0.09996 0.01095 0.88004 0.09469 0.00696 0.9757 
Bonds 0.09887 0.01448 0.22348 0.08293 0.00861 0.10948 0.07755 0.00537 0.02424 
Sosa 0.08607 0.01464 0.0606 0.07096 0.00877 0.01076 0.06761 0.00549 0.00064 

 
 
 It is evident from Table 6 that as the scale parameter λ increases the posterior 

standard deviations for m decrease and the differences between the probability inclusion 

criterions (the PICs) increase.  This separation among the hitters’ rates is due in part to 

the down weighting of the inconsistent years as seen in the posterior mean of Sammy 

Sosa’s true rate.  Sosa’s observed rate was found to be .071 (Table 5) but using the 
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hierarchical model produces an estimate of .067.  As for the actual selected subset, using 

a penalty constant 2c =  we conclude that McGwire is the ‘best’ hitter; each subset 

contains only McGwire.  Restricting our attention to the models with a larger scale 

parameter gives a more robust selection procedure as the choice of a larger penalty 

constant has little effect.  

Although the hierarchical conjugate model is useful in modeling the rates of each 

hitter it is generally believed that a player’s hitting ability increases until about the middle 

of his career, reaches a peak, and declines towards the end of his career.  This idea is well 

supported by the career of Sammy Sosa (see, Table 7).  

 
Table 7. Sosa’s Career Total Home Runs and At-bats  

At-bats  Home runs Rate 
(AB) (HR) (HR/AB) 
183 4 0.021858 
532 15 0.028195 
316 10 0.031646 
262 8 0.030534 
598 33 0.055184 
426 25 0.058685 
564 36 0.06383 
498 40 0.080321 
642 36 0.056075 
643 66 0.102644 
625 63 0.1008 
604 50 0.082781 
577 64 0.110919 
556 49 0.088129 
517 40 0.077369 
478 35 0.073222 
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It appears as if his career rates can be described with a quadratic having vertex 

around his 10th season. With this in mind, we provide an example of a more realistic 

model where the true rate for the thi  year satisfies a log-linear model. 

 
3.6.3 Quadratic Linear Model 

 In the previous model we assumed that a player’s true rate was constant; however, 

in order to adequately represent a player’s maturation we will use a quadratic log-linear 

model to represent the yearly rates.  In our hierarchical conjugate model we assume that 

the true rate for the thi  year can be expressed as 2
0 1 2log im i iβ β β= + + .  The proposed 

hierarchical model is similar to Albert (1992) in that we assign independent uniform 

distributions to the regression coefficients, but rather than assigning a noninformative 

prior to the scale parameter we assign it a Chi squared distribution.  In summary,  

( )
( )

( )
( )

( ) ( )

2

2
0 1 2

0 1 2

| ~

| , ~ ,

~

log

, ~ 1,1  and ~ 6,6

i i i i

i i i i i i

i

i

y Poisson t

m gamma m

p

m i i

Uniform Uniform

γ γ
γ λ λ λ
λ χ

β β β
β β β

= + +

− −

 

 We contrast this model with two other hierarchical models: a conjugate model 

having no quadratic systematic component, and a hierarchical GLM with a quadratic 

systematic component and the usual canonical link.  The first of the two alternatives is 

identical to the conjugate model presented in the previous section whereas the latter is 

similar to both Albert’s (1992) quasilikelihood quadratic model and Gelfand & Ghosh’s 

(2000) hierarchical GLM.  The hierarchical GLM is as follows: 
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( )

( ) ( )

2
0 1 2

0 1 2

| ~

log

, , 0,1000 I

i i i i

i
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i i
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γ γ

γ β β β
π β β β

= + +

∝ ⋅

 

Using WinBUGS we compute the Deviance Information Criterion (DIC) for each 

model and find the ‘better-fitting’ model to be the conjugate hierarchical model with a 

quadratic systematic component; however, the DIC is sensitive to the degrees of freedom 

in the Chi squared distribution.  The model with the second smallest DIC was the non-

conjugate hierarchical quadratic, which means that the hierarchical conjugate model with 

no quadratic systematic component has the highest DIC.  The ability of the conjugate 

hierarchical model to outperform the non-conjugate hierarchical model is not surprising 

since the former contains a scale parameter to dampen the effects of the inconsistent 

years.  Furthermore, the magnitude of the scale parameter also reflects the strength of 

one’s prior belief about the means. Now we will use the conjugate hierarchical quadratic 

model to construct a subset to determine which year was Sosa’s ‘best’. 

 
Table 8. Probability Inclusion Criterions for Sammy Sosa Years 1998-2001 

Year PIC 
1998 0.0168 
1999 0.21602 
2000 0.35475 
2001 0.41917 

 
  

Comparing these PIC’s to the criterion constant ( )1 1c +  when 3c = we have a 

subset containing the years 2000 and 2001. Recall that Sosa’s observed home run was 

highest in 2001 but he hit his most home runs in 1998.  One explanation for the PIC 

being so low in 1998 is that in the previous year his home run hitting rate was only 5% 
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and the large value of 66 is assumed to be a result of sampling variability.  If we increase 

the penalty constant to 4c = then we would include 1999.  In that year he hit at the same 

rate as in the previous year when he hit his most home runs. 

 

 

 

 
 

 
 
 



 

30 

 
 

CHAPTER FOUR 
 

Disease Mapping Basics 
 
 

4.1 Introduction 
 

Cartography, the science of map-making, dates back over 5000 years ago to the 

ancient Egyptian and Mesopotamian civilizations.  These ancient civilizations used 

detailed sketches of their land for displaying human activity.  According to Walter (2000) 

there are two main areas of cartography: general and thematic.  The intent of general 

cartography is to provide maps of several geographic phenomena (e.g. a globe).  

Thematic cartography aims to create maps that display spatial patterns and or spatial 

relationships between certain phenomena.   Thematic cartography, began somewhere 

around the early 19th century with the first maps being case event maps that displayed the 

locations of crime, weather related events, and eventually infectious diseases.  The maps 

displaying the locations of cases of infectious diseases were eventually coined disease 

maps.    

The disease maps of the 19th century were mostly used for displaying the 

geographic distribution and spatial patterns of infectious diseases (e.g. yellow fever in 

New York or cholera in London).  Dr. John Snow (1855) used spot maps (case event 

maps) to reveal how cholera was spread through contaminated water sources in London.  

Generally, the purpose of these spot maps is to reveal any clustering of a disease, unlike 

the disease maps created in the latter part of the 19th century that are more etiological in 

purpose and contained information regarding chronic non infectious diseases like cancer. 

Haviland (1875) is considered to be one of the early pioneers of disease maps for cancer 
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and heart disease.  Using the census data for London and Wales Haviland was able to 

account for population exposure. He incorporated this population exposure by calculating 

adjusted regional rates of these chronic diseases.  In essence he was trying to assess the 

geographic distribution of what would later be called ‘disease risk’ which is the focus of 

most of today’s disease atlases.  We will revisit the concept of adjusted rates in a later 

section with a presentation of two standard methods, internal and external. 

In Sections 4.2 and 4.3 of this chapter we will give an overview of the types of 

graphical representations used in disease mapping, provide the reader with a summary of 

classical and non-parametric techniques used in assessing risk, and furnish the reader 

with an extensive background of the current Bayesian methods used in disease mapping.  

Continuing on in Section 4.4 we will compare and contrast some of the current Bayesian 

spatial models appearing in the literature with a new class of conjugate spatial models via 

an example pertaining to the elevated risk of lip cancer in Scottish counties.  Finally, in 

Section 4.5 we will extend many of the basic concepts of disease mapping to assess 

elevated crime rates.  Our crime data set consists of counts of habitat burglary 911 calls 

in the Waco community for the year 2000.  We will construct a model using covariates 

obtained from the United States Census Bureau and use that model in conjunction with 

the previously presented subset selection procedure to assess which region has the highest 

rate of habitat burglaries. 

 
4.2 Disease Mapping Basics 

 
Succinctly, the goal of any map is to communicate data to some audience.  

However, the choices of what types of maps and which types of data to use merit great 

attention.  The reason being is that we use these maps to give insight to the geographic 
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variations of disease risks and to detect not only spatial clustering or non-random trends, 

but also putative sources of disease risk.  Ultimately the choice of what map to use will 

be determined by the availability of data.  In the next section we will briefly review some 

of the common types of disease maps and their purposes.  For a thorough treatment we 

recommend Waller & Gotway (2004). 

 
4.2.1 Types of Disease Maps 

 
Typically disease maps are regional in that the area corresponding to the study 

population can be partitioned into finitely many smaller regions usually referred to as 

counties or sometimes areal units.  The major distinction of disease maps follows from 

whether or not we have the exact locations of the events.  If the exact locations or points 

are known, as in case-event data, we simply plot the locations using some type of symbol.   

The default symbol for most software packages is a filled dot. In such situations, the 

point map is often referred to as a dot map.  Clearly these maps would be used to monitor 

the spread of infectious diseases and can also be useful in identifying potential point 

sources of disease outbreaks.  As mentioned earlier, Dr. John Snow used a point map at 

the local street level to identify the putative source of cholera. Because these maps fail to 

take into account population density they can be quite misleading.  After all, larger 

regions tend to more populated. To rectify this problem many epidemiologists use a 

graduated color map. 

 Suppose that the attribute values to be mapped are not locations but rather 

summaries associated with the actual areal units; this is usually the result of medical 

record confidentiality.  Moreover these summaries are often the aggregate counts of 

disease occurrence for each region.  There are several maps used to accommodate this 
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type of data. One of which is the classed symbol map. For this map a symbol 

corresponding to a class or collection of attribute values is plotted in the center of each 

region.  A slight variation of this map is the graduated symbol map where the same 

symbol (usually a circle) varies with the attribute value or class of attribute values.  It is 

common for the class sizes associated with the attribute values to be dissimilar in 

magnitude making it necessary to use a proportional symbol map.  In which case, the size 

of the symbol plotted for each is proportional to the magnitude of the class in which that 

region’s attribute values falls into.  These symbol maps although useful in some 

situations can be useless when the study area contains a plethora of regions; especially 

when the regions are very different in size and are very spatially related.  By spatially 

related we mean regions that are closer tend to have similar attribute values.  In these 

situations as well as others most would find color to be a better method of visual 

discernment than symbols.   With that in mind it is no surprise that choropleth maps are 

the most common type of map used for the display of areal data. 

In general a choropleth map uses different color and pattern combinations to 

depict different values of the attribute variable corresponding to each region.  There are 

both classed and un-classed choropleth maps.  The classed choropleth maps assign to 

each region a possibly non-unique color corresponding to one of finitely many non-

overlapping intervals that are associated with a set of attribute values.  Alternatively, for 

the unclassed choropleth maps each region is assigned a unique color among a continuum 

and no two regions share precisely the same color.  The following figure is a classed 

choropleth map of standard morbidity ratios for the Scottish lip cancer data appearing in 

Clayton and Kaldor (1987).   
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Figure1. Choropleth map of the Scottish lip cancer.  The map gives the standard 
morbidity ratios (SMR = observed /expected) for the 56 counties of Scotland during the 
years 1975-1980.  The darker shade of blue indicates a higher incidence rate. Note the 
higher incidence rate among the northern coastline.  The higher incidence is attributable 
to the higher percentage of agriculture workers, namely fisherman.  
 
  

Like most maps these choropleth maps certainly have their critics; Tukey once 

offered the advice, “Pray” (Tukey 1988, p.116). In fact many cartographers and 

epidemiologist find choropleth maps relatively crude.  Particularly because when you 

represent a region with only one color you may fail to capture the changing disease risk, 

especially when the disease varies continuously over space.  But there is a trade off 

between statistical stability of disease risk estimates and geographic resolution.  We 

address these in Section 4.2.3. 

 For illustrative purposes (Figure 1) we chose to map the standardized 

morbidity/mortality ratios (SMR).  This ratio of observed to expected purportedly 
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assesses the geographic distribution of disease risk by indicating regions with elevated 

risks.  In the next section we present the reader with alternative quantities used in disease 

mapping that are also useful in assessing disease risk. 

 
4.2.2 Disease Risk 
 

Waller and Gotway (2004) define term disease risk as the probability of a person 

contracting the disease within a specified time period.  They go on to say that “disease 

risk is a dynamic, unobservable quantity that can be modified by characteristics such as 

age, gender, occupation, and diet” (Walter and Gotway 2004, p.9).  These characteristics 

are called risk factors.  The identification of risk factors is a central role in statistical 

epidemiology and is briefly addressed in Section 4.3 but for now we focus on what 

quantities to actually map.  Having defined risk in terms of probability we are motivated 

to use statistical methods in the construction of choropleth maps.  That being said, 

primitive choropleth maps were often maps displaying counts and proportions.  As 

mentioned earlier a common belief is that larger urban regions tend to be more densely 

populated, therefore counts fail to capture the notion of elevated risk.  Instead 

epidemiologists began to map rates and proportions.  It must be noted that the term rate 

used in the epidemiological nomenclature refers to the ratio of the number of occurrences 

of a particular event (e.g. incidence of disease or mortality) per unit time; whereas, a 

statistical rate is the usual ratio of the number of occurrences to the number of people at 

risk.  Of course one might be interested in other parameters besides average disease risk.  

For example, one could be interested in comparing the risks between individuals with and 

without a certain exposure to a disease or even different exposure levels.  These relative 

risks are typically measured with risk ratios or risk differences.  Incidentally, the 
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statistical techniques used to estimate relative risks are similar to those used to estimate 

disease risk.  We now proceed to one of the earliest methods used to estimate disease 

risk. 

Assume that for each areal unit 1, ,i n= … we have an associated count of the 

number of occurrences of a particular event denoted by iY as well as the total number of 

people at risk iN .  We could assume the data follows a binomial probability model, that is 

assume ( )
.

| ~ ,
ind

i i i iY p Bin N p  where ip  represents the probability of contracting the 

disease in area i. It is common knowledge that most non-infectious diseases affect people 

of certain ages and genders disproportionately.  In order to make rates from different 

areal units comparable we would need to remove the effects of known risk factors by 

adjusting the rates accordingly.  A very simple, yet straightforward way to correct for a 

known risk factor is to stratify.  We could divide each areal unit into stratums 

1, ,j J= … so that we have n J× total units.  We denote the associated disease risk for 

area i and stratum j as ijp  so that our data is now of the form  

( ).

| ~ ,
ind

ij ij ij ijY p Bin N p .                                        (4.1) 

The classical estimation procedure for estimating the 'ijp s is maximum likelihood with 

the estimators taking on the form̂ /ij ij ijp Y N= .  This estimation procedure works well in 

the limiting case but for a rare disease the data is usually too sparse to get stable estimates 

of the 'ijp s.  This leads to the proportionality assumption  

( ) ( )1 1
ij j

i

ij j

p p

p p
θ= ×

− −
,                                            (4.2) 
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so that the effect of being in area i is a product of each of the strata-specific reference 

odds ( )/ 1j jp p− and the common odds ratio, iθ , for that area.  The advantage of such an 

assumption (4.2) is that we have reduced the number quantities to estimate per area from 

J to 1.  However, Wakefield, Best, and Waller (2000) mention that the proportionality 

assumption is strong and must be checked.  They recommend plotting ( )ˆ ˆ/ 1ij ijp p− versus 

( )ˆ ˆ/ 1j jp p−  for each area i to assess this proportionality. 

 A variety of parameters may be estimated in the binomial model (Wakefield, 

Best, and Waller, 2000).  For example, the reference odds may be estimated 

simultaneously with the common odds ratios (e.g. Clayton 1996). Alternatively we can 

fix the reference odds via a reference set (external standardization) or use the overall odds 

for the study region (internal standardization), that is,  

( ) ( )
ˆ

ˆ1

ij
j i

j ij ij
i

Y
p

p N Y
=

− −

∑

∑
. 

Now that thê jp are treated as known quantities, the MLEs of the common odds ratios 

iθ may be estimated via the logistic regression model  

ˆlogit logij i jp θ γ= + ,                                                 (4.3) 

where the ( ){ }ˆ ˆ ˆlog / 1j j jp pγ = − are known offsets.  In model (4.3) the ˆ jp  are treated as 

known quantities thus (4.3) does not recognize the uncertainty in jγ , which according to 

Wakefield, Best, and Waller (2000) this may be a problem if these quantities are not 

estimated from extensive data.  In ecological regression and hypothesis generation studies 

we may wish to assume a GLM on the log of the common odds ratio i.e.  
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log T
i iXθ β α= + ,                                                  (4.4) 

where β  is a 1k× vector of regression coefficients.  Breslow and Day (1987, Chapter 4) 

caution using internal standardization with known offsets (Equation (4.3)) since the a 

priori estimation of  jγ  may remove some of the effect of the exposureiX .  For example, 

individuals of a certain race may tend to live in areas with large values of iX . 

 Admittedly the structure of this binomial model (4.1)-(4.4) is seemingly elegant 

and readily analyzable in several statistical packages, but it suffers from one major flaw: 

its inability to adequately handle overdisperion in the data (i.e. ( ) ( )var 1ij ij ij ijY N p p> − .  

This overdispersion may have both spatial (structured heterogeneity) and non-spatial 

(unstructured heterogeneity) components and may arise from unmeasured risk factors.  

Also, compared to other potential models the binomial formulation is not computationally 

convenient since the aggregation of counts over the stratums ( i ijj
Y Y=∑ ) is not hardly 

recognizable.  There are alternatives to the binomial model. Recall from Chapter 3 and 

Albert (1992) that in the case where ijp  is small (rare disease) we may approximate the 

binomial distribution (4.1) by the Poisson distribution ( )~ Poissonij ij ijY N p× .  Typically 

we assume that the disease risk associated with area i and stratum j is proportional the 

disease risk over stratum j.  Specifically, 

ij i jp pθ= × ,                                                      (4.5) 

where iθ  corresponds to the relative risk of disease in area i with respect to the reference 

rate jp  in each stratum.  Wakefield, Best, and Waller (2000) point out that a great 
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advantage of the Poisson approximation is that, when combined with the proportionality 

assumption (4.5), we may collapse over strata to obtain  

( )~ Poissoni i iY E θ× ,                                                (4.6) 

where i ijj
Y Y=∑ and i ij jj

E N p=∑ is the expected number of cases in area i with strata-

specific reference rates jp .  Banerjee, Carlin, and Gelfand (2004, Chapter 5) refer to the 

use of reference rates in the calculation of the expected number of cases as external 

standardization.  Alternatively, if no set reference rates are available Banerjee, Carlin, 

and Gelfand (2004) recommend computing the expected number of cases by using an 

overall rate computed from the data, i.e. ( )ii

ii

y

i i i N
E N r N ∑= ≡

∑
.  They refer to this process 

as internal standardization.  It is easily shown that the standard maximum likelihood 

estimate of the relative risk,iθ  under the Poisson assumptions on iY  is the 

SMR, î i iY Eθ = .  Clayton and Kaldor (1987) give a very technical discussion of why 

taken together, { }ˆ , 1, ,i i nθ = … are not necessarily the best estimates of { }iθ .  However, 

for a thorough but non-technical discussion of the drawbacks to using SMR as a measure 

of relative risk we refer the reader to Lawson (2003, chap. 1) or Waller and Gotway 

(2004, chap. 4). We give a few of those drawbacks.  The most alarming consequence of 

using SMRS is that zero SMRs do not distinguish variation in the expected counts. Also 

we point out that SMRs being ratio-based estimators are notoriously unstable since the 

variability in the estimated rates depends on population size.  Consequently, the rates 

corresponding to larger areal units will be better estimated than the rates corresponding to 

the smaller areal units, and this may obscure spatial patterns.  Similarly, rates based on 
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small populations tend to be artificially elevated due to the relatively small computed 

expected count appearing in the denominator.  These inflated rates do not necessarily 

reflect an increase in relative risk but a lack of data. Waller and Gotway (2004) refer to 

this as the small number problem.  There have been several methods proposed to 

overcome the small number problem.  One solution to the small number problem is to 

aggregate the counts of smaller regions; however, we lose resolution and give up 

geographic information.  Another solution is to use a comparative map, one that 

compares each rate or in the case of a probability map, the p-value associated with each 

rate to a common measure (see e.g., Choynawski, 1959).  Finally we could use a 

technique similar to both scatter plot smoothing found in regression and weighted moving 

average methods used in time series called spatial smoothing.  

 
4.2.3 Spatial Smoothing 

There are an abundance of spatial smoothers appearing in the literature.  Although 

some are relatively informal or nonparametric while others are just the antithesis, they 

share the same goal:  produce more stable risk estimates than the usual MLEs or SMRs.  

According to Waller and Gotway (2004, p.87), “the basic idea is to ‘borrow’ information 

from neighboring regions to produce a better (i.e. more stable and ‘less noisy’ estimate) 

of the risk associated with each region and thus separate out the ‘signal’ (i.e. spatial 

pattern) from the noise.”   The nonparametric smoothing techniques can be categorized as 

either interpolation methods or kernel regression.  However, “when substantive 

hypotheses and/or greater amounts of prior information are available” (Lawson, Browne, 

and Rodeiro 2003, p.6), it may be appropriate to employ a model-based approach to 

estimating local relative risks.  We will discuss the use of a model based procedure for 
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spatial smoothing later in this section, but for now we consider a nonparametric approach 

called the locally weighted average procedure. 

As its name suggests the locally weighted average procedure considers the 

observed counts of the neighboring regions to estimate local relative risks.  Borrowing 

notation from Waller and Gotway (2004, chap. 4) the relative risk estimate for the thi  

area takes on the general formi ij j ijj j
r w r w=∑ ∑ɶ .  In the preceding statement jr  can be 

either the SMR or percentage of occurrence( )/j jy N  of the thj  neighbor of area i while 

the weights take on the form 

1 if  and  share the same boundary

0 otherwise
 {

i j

ijw = . 

In matrix form { }ijw constitute a spatial proximity matrix or adjacency matrix. Rather 

than using a common boundary as a neighborhood criterion we could have used the 

distance as measured by some metric (Euclidean, taxi cab, absolute value) between the 

centroids of each area.  That is, 

1 if 

0 otherwise
 { ijd

ijw
ε<

= , 

where ijd represents the distance between the centroid of area i and the centroid of area j.  

The latter approach to smoothing is often called disk smoothing. The locally weighted 

average procedure presented requires no distributional assumptions for the data.  If we 

are willing to assume some sort of parametric distribution then we may use a type of 

nonparametric regression procedure that utilizes kernel weights. 

 If 1, nY Y… are data collected from the probability distributions ( )|i if y θ , then 

Brillinger (1990) provides a general method for deriving estimators by maximizing a 
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weighted log likelihood function.  That is, a set of estimators for { }iθ is found by 

maximizing 

( ) ( )|ij j jj
L w f yθ θ=∑ .                                          (4.6) 

If the data are normally distributed with unknown means iθ  or distributed as Poisson 

with unknown rates iθ then the estimates found from maximizing (4.6) take on the same 

form as the locally weighted averages, disregarding the actual weights.   This speaks to 

the theoretical cohesion that is gained by using the above estimation procedure.  As 

hinted above, what is dissimilar about the two smoothing procedures is the specification 

of the weights.  In this semi-parametric procedure we use a kernel function in conjunction 

with the spatial locations of the centroids to aid in the calculation of the weights.  Thus 

we define the weights to be  

kern i j
ij

s s
w

b

− 
=  

 
, 

where the kernel function,kern( )⋅ , is a bivariate probability density function that is 

symmetric about the origin and integrates to 1 over the domain.  The parameter b, called 

the bandwith, controls the amount of smoothing. 

 We conclude this subsection with a somewhat theoretical justification for the use 

of Bayesian methodology in disease mapping.  Also, we mention that the current 

literature is saturated with applications of Bayesian methods in public health data.  

Andrew Lawson (Lawson, 2001; Lawson, Biggeri, Böhning, Lesaffre, Viel, Bertollini, 

2003) and Elliot, Wakefield, Best, and Briggs (2001) were some of the first to publish 

texts consisting of a compilation of articles that articulate the advantages of Bayesian 
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models in disease maps while Lawson and Gotway (2004) soon followed with a self-

contained introductory text.   

We begin our motivation by assuming the data |i iY θ are distributed as Poisson 

with means i iEθ , where the unknown parameter iθ represents the risk of disease for the 

thi  area. It should be noted that the concept of conditional independence implies that any 

spatial correlation observed in the data is a function of the unknown risksiθ .   

Our development is similar to Marshall (1991) but we use expected cases instead 

of population size to construct our estimates of relative risk.  We define the prior mean 

and variance of iθ to be [ ]
iiE mθθ =  and ( ) 2

iiVar θθ σ= .  If i i ir Y E≡ then the expected rate 

is equivalent to the prior mean, that is [ ]|i i iE r θ θ=  and the prior variance is proportional 

to the expected disease incidence/prevalence, i.e.( )| /i i i iVar r Eθ θ= .  Thus the prior 

mean and prior variance of the rates ir are [ ]
ir iE r mθ= and ( ) 2

i ir i iVar r m Eθ θσ= + .  

According to Marshall (1991) the best linear Bayes estimator of iθ derived from 

minimizing expected total squared-error loss is  

( )ˆ 1 .
ii i i iC r C mθθ = + −                                         (4.7) 

The constant iC in Equation 4.7, which is called the shrinkage factor, is the ratio of prior 

variance to the data variance or ( )2 2

i i ii iC m Eθ θ θσ σ= + . When the data is sparse, i.e.iE  is 

negligible and 0iC → .  If the prior variance is diminutive, the Bayes estimator converges 

to the prior mean.  Alternatively, in the absence of prior information or when the prior 

variance for the relative risks is considerable the shrinkage factor approaches one, i.e. 

1iC → and the Bayes estimator shrinks towards the observed rate. 
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 Before the advent of WinBUGS most investigators would have taken an empirical 

Bayes (EB) approach like that of Clayton and Kaldor (1987) where the prior mean and 

variance of the relative risks are estimated from the data and substituted back in the 

likelihood in order to derive the posterior distribution of the risks.  To avoid over-

specification Marshall (1991) assumed a global prior mean and global prior variance and 

used method of moments to find estimates for these parameters.  Caution is warranted 

because the prior variance estimate could be negative.  Count data often has excess 

variability not accounted for by the Poisson model.  We account for this overdispersion 

by defining an additional structure for the regional relative risks. This in turn requires a 

prior structure for the mean and variance of the regional relative risks. Clayton and 

Kaldor (1987) used various procedures like maximum likelihood estimation and the EM 

algorithm to estimate these hyperparameters.  The investigator could of course assign 

hyperpriors to these hyperparameters, consequently taking on a fully-Bayesian approach. 

The reader will find that the additional structure comprising the Bayesian framework 

offers a richer framework for modeling covariate effects and spatial correlation. Due its 

dominance in the literature we save discussion of the fully Bayesian approach used in 

estimating relative risks and disease mapping for the chapter. 
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CHAPTER FIVE 

Hierarchical Bayesian Models for Disease Mapping 
 
 

5.1 Introduction 
 

 Our discussion of hierarchical Bayesian modeling procedures used in disease 

mapping begins by assuming that the aggregate count for each areal unit is distributed as 

Poisson with unknown relative riskiθ , that is ( )| ~ Poissoni i i iY Eθ θ .  At this point it is 

customary to either specify a joint distribution for the relative risks, similarly a joint 

distribution on some function of the relative risks, or we can assume that the relative risks 

satisfy some generalized linear model consisting of both fixed and random effects.  

Clayton and Kaldor (1987) were the first to specify a joint distribution of the relative 

risks. They used empirical Bayes (EB) to estimate the hyperparameters from the marginal 

distributions of the aggregate counts.  There are a number of possibilities for the joint 

distribution.  Tsutakawa, 1985 assumed a multivariate normal distribution for the logits 

of disease risk.  Clayton and Kaldor (1987) pioneered the use of conjugacy.    The use of 

the conjugate gamma distribution for the relative risks results in the data being distributed 

as negative binomial.  This model provides straightforward estimates of the shape and 

scale parameters. Despite the simplicity of using a conjugate prior, Clayton and Kaldor 

(1987) preferred a multivariate log-normal distribution for the relative risks.  The reason 

being is that the latter has the ability to incorporate spatial correlation.  In fact, they even 

modeled the log relative risks with the conditional autoregressive (CAR) model 

originally suggested by Besag (1974).    Wakefield, Best, Waller (2000) note the 

empirical Bayes methods suffer from a number of limitations.  In particular, the estimate
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 of relative risk fail to reflect the uncertainty associated with the various hyperparameters. 

Consequently, these estimates are over-precise.  This would prompt Besag, York, and 

Mollié (1991) to later extend these CAR models to a fully Bayesian setting using Markov 

chain Monte Carlo algorithms. 

 
5.2 Second Stage Hierarchical Generalized LinearModels for Disease Mapping 

We begin with the fully Bayesian approach to spatial smoothing presented in 

seminal papers by Besag, York, and Mollié (1991) and later Clayton and Bernardinelli 

(1992). Intending to model the extra-variability usually present in areal unit data the 

authors utilized a second stage model incorporating both known covariates and random 

effects.  Rather than explicitly assigning a distribution to the log relative risks, Besag et 

al. (1991) assumed that the log relative risks satisfied a hierarchical Bayesian generalized 

linear spatial model.  Considering the first stage model on the data, 

( )| ~ Poissoni i i iY Eθ θ where iθ  is the unknown relative risk for the thi areal unit we have 

shown in Section 3.2 of Chapter 3 that the canonical link for the Poisson model 

is ( )log iθ .  Since the relative risks must be positive it seems reasonable to use this 

canonical link in the formulation of the hierarchical generalized linear spatial model. In 

the works of Besag et al. (1995), Mollié (1996), Wakefield, Best, and Waller (2003) as 

well as numerous others (for a list of references see Ghosh, Natarajan, Waller, and Kim, 

1999) the log relative risks are modeled as the sum of two random components and the 

inner product of a 1k×  vector of explanatory variables T
iX  with a 1k×  vector or 

regression coefficientsβ .  Symbolically we have 

( )log ,T
i i i iX U Vθ β= + +                                        (5.1) 
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where the sum of the last two terms is often referred to as a convolution Gaussian prior 

(Mollié, 1996).  The last component in (5.1) is used to model any unstructured 

heterogeneity among the log-relative risks.  In order to model the similarity of these 

contributions to log relative risks we usually assign an exchangeable Gaussian prior of 

the form ( )2~ 0, vV MVN Iσ .   Most investigators (Waller and Gotway 2004, p 412; 

Banerjee, Carlin, and Gelfand 2004, p. 164) will assign a somewhat vague inverse 

gamma hyperprior for the variance. Likewise, if we express the distribution of V in terms 

of precision (i.e. the reciprocal 21v vτ σ=  ) we assign a gamma distribution.  As for the 

other random component iU we cannot overemphasize the importance of its prior 

specification.   

There are two common approaches to modeling the spatially structured 

contribution to the log-relative risks .  We may specify the joint distribution of { }iU U= , 

or we can assume that the set of full conditional distributions 

| , , 1, ,i j jU U u j i i N= ≠ = … define a Markov random field (MRF). Besag (1974) 

reconciles the two approaches by exploiting Brook’s Lemma (1964); however, it was 

Geman and Geman (1984) that provide the next critical step that allows us to use a Gibbs 

sampler to generate from the joint posterior of U uniquely determined by the full 

conditionals. Wakefield, Best, and Waller (2000, pp.110-114) parallel the two approaches 

for the case when U is multivariate normal and we have a Gaussian MRF. 

 Suppose that the joint distribution of the random spatial components is 

multivariate normal with zero mean vector and covariance structure 2
uσ ∑ , where ∑ is an 

N N× correlation matrix.  We use the familiar notation ( )2~ 0 ,N uU MVN σ ∑ .  If we let 
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1Q −= ∑  and define ijQ  to be the ( ),i j  entry of the matrix Q then using properties of the 

multivariate normal (e.g. Searle, Casella, and McCulloch, 1991) we can derive the set of 

full conditional distributions 

2

1

| , ~ , ,
N

i j j ij j u ii
j

U U u j i N w u Dσ
=

 
= ≠  

 
∑                                   (5.2) 

Where 0iiw = , ij ij iiw Q Q= − , and 1
ii iiD Q −= .  Besag (1974) refers to the specification in 

(5.2) as an autonormal model. It is interesting to note that if we set ( )1 1ijw N= − then 

conditional mean in (5.2) is an average of the ,ju i j≠ . Wakefield, Best, and Waller 

(2000) show that the two approaches are related through the relationship ( )1Q D I W−= −  

where D is a diagonal matrix with diagonal elementsiiD .  Clearly, once the elements of 

the correlation matrix ∑ have been specified, as in the joint formulation, the investigator 

can produce the elements of the weight matrix W and the diagonal matrix D. 

Alternatively, if the investigator specifies W and D then the correlation matrix for U can 

be easily obtained from elementary matrix computations. It is worth mentioning that 

“convenient” choices of W and D can lead to a joint model that is not well defined either 

because Q is singular or ∑  is not symmetric (see e.g. Banerjee, Carlin, and Gelfand 

2004, pp.79-81).  This has lead some to use the joint formulation or point-referenced 

model of the random components U instead of the conditional model approach.   

The spatial components in (5.1) model extra-Poisson variability in the log-relative 

risks that varies “locally”; that is, areal units in close proximity will tend to have similar 

risks.  The spatial dependencies among these risks may be modeled through the off-

diagonal terms of the correlation matrix ∑ .  For example, we can assume that the spatial 
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dependence between two areal units is a function of only the distance, ijd , between the 

population-averaged centroids of areas i and j. The underlying stochastic process is said 

to be isotropic since the covariogram (covariance function) between areal units is a 

function of the length (ijd ) of the vector that separates any two units.  Raftery and 

Banfield (1991) suggest a one-parameter exponential function that can be used to 

calculate the elements of ∑ . Diggle, Tawn, and Moyeed (1998) discuss using a two-

parameter family called the Matérn class (Matérn, 1986) that uses a modified Bessel 

function for calculating the correlations.   

Banerjee, Carlin, and Gelfand (2004, p.162) remark that while such possible joint 

models for U may seem sensible, they turn out to be very difficult to fit even in the 

isotropic case, due to the number of matrix inversions required.  Furthermore, 

intercentroidal distance may be appropriate when the areal units are of roughly equal size. 

However, it may make little sense, especially when dealing with very irregular spatial 

units.  As a result, it is customary in most hierarchical analyses of areal unit data to adopt 

a conditional formulation of U that makes use of the same adjacency matrix presented 

with the locally weighted average spatial smoother back in Section 4.2.3.  In fact, from a 

spatial perspective we would think that the full conditional distribution for iU  should 

only depend upon the neighbors of its associated area, i.  Using the notation i∂ to 

represent the adopted neighborhood structure (e.g., the one setting 1ijw = or 0 depending 

of whether i and j are adjacent or not), we specify the full conditional distributions for the 

random components iU  such that ( ) ( )| , | ,i j i j iu u i j u u jπ π≠ = ∈∂ .  By this notation we 

mean that the full conditional for iU is identical to the conditional distribution of iU is 
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conditioned only on the values of its neighbors.  For the autonormal model in (5.2) this 

would suggest that the conditional mean of iU  is a linear combination of the spatial 

components of the neighboring areal units. Moreover, we can make the conditional mean 

a truly weighted average by using the weights of the previously defined adjacency matrix.  

That is, if we define the weights as 1ijw =  if area i is adjacent to area j, and 

0ijw = otherwise (by convention 0iiw = , for all i) then the conditional distributions will 

be of the form | , ~ ,

N

ij j
j i

N

ij
j i

w u
ii

i j j
w u

D
U U u i j N

τ
≠

≠

 ∑
 = ≠
  ∑
 

.  It is convenient to make the 

conditional variance proportional to the number of neighbors by setting 1
N

ii ij
j i

D w
≠

= ∑ and 

to use the precision 21u uτ σ= .  The following is referred to as an intrinsic Gaussian 

autorgressive structure  

1| , ~ , .

N

ij j
j i

N N

ij u ij
j i j i

w u

i j j
w w

U U u i j N
τ

≠

≠ ≠

 ∑
 = ≠
  ∑ ∑
 

                                 (5.3) 

We give (5.3) the notation  ( )uCARτ . 

 It has been shown (Besag, 1974) that the set of conditional distributions in (5.3) 

uniquely defines a corresponding multivariate normal joint distribution; i.e. 

let ( )1Q D I W− ∗= −  where element ( ),i j  of W∗  is ( )1 number of neighbors and D is 

previously defined.  However, Waller (2002) states that the choice of weights in (5.3) 

leads to a singular precision matrix.  To see this, note that the thi row of I W∗−  sums to 

zero.  Thus, Q has rank 1n−  and is not invertible.  Ultimately this means that the spatial 

similarity implied by the conditional distributions does not translate directly into a model 
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of spatial correlation.    It is also worth mentioning that the priors defined by (5.3) are 

improper since they only define contrasts between pairs of iU s; however, through the 

inclusion of the data the posteriors will be proper (Banerjee, Carlin, and Gelfand 2004).  

This fact, along with the ability to use the Gibbs sampler, is what compels most 

investigators to simply ignore the improper nature of the CAR model. Also, to allow 

identifiability of an intercept in T
iX β , one adds the constraint 

1

0
N

i
i

u
=

=∑ .  This constraint 

is easily imposed by recentering each sampled vector U about its own mean following 

each Gibbs iteration. Besag and Kooperberg (1995), Cressie (1993, pp.407-408, 410-

423), and Banerjee, Carlin, and Gelfand (2004, pp. 163-165) provide detailed discussion 

of conditional autoregressive structures. 

 To make (5.1) a legitimate hierarchical Bayesian generalized linear spatial model 

we need to assign a third-stage prior to the precision parameter, and complete the 

hierarchy of the CAR model (5.3). In addition, we also need to assign a prior distribution 

to the vector of unknown regression coefficients.  As in most hierarchical generalized 

linear models we assign an arbitrarily vague prior (improper uniform or normal with 

large variance) to the regression coefficients.  However, we cannot simply follow suit and 

assign an arbitrarily vague prior to the precision parameter; after all, the precison 

parameter controls the amount of extra-variability allocated to the spatial component. 

Ghosh, Natarajan, Waller, and Kim (1999) discuss restrictions on parameters for these 

hyperpriors to ensure proper posteriors. However, a more important concern than proper 

posteriors is a ‘fair’ assignment of uτ to avoid overemphasis on the role of the global or 

local risks. A question that is complicated by the conditional nature of uτ .   
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We do not attempt to address the concern of prior suitability but instead propose a 

new model that makes use of conjugacy.  A conjugate hierarchical spatial model will help 

remove the influenceuτ has in controlling spatial similarity by introducing a dispersion 

parameter. Furthermore, by including a dispersion parameter related to the relative risks 

we may be able to better quantify the extra-variability present in areal unit data.  

Ultimately we would be able to assess the regions with abnormal risk.  This is done 

through analysis of the scale parameter. 

 
5.3 Conjugate Hierarchical Generalized Linear Models for Disease Mapping 

 In this section we extend the conjugate approach to the hierarchical generalized 

linear model given by Albert (1988) to allow for the spatial correlation consistent in the 

areal unit data used in disease mapping.  Just as before we assume that the aggregate 

count associated with each areal unit is distributed as Poisson with expected case iE  and 

local relative risk iθ . It is easily shown that the Poisson distribution is a member of the 

exponential family.  Rewriting the Poisson likelihood using the natural logarithm 

function gives  

( ) ( )
( )

{ }
( ) ( ){ }

| exp log
!

exp log log log !

exp , ,

ii i
yE

i i
i i

i

i i i i i i i

i i i i i

e E
f y

y

y E y E y

y b c y E

θ θ
θ

θ θ

θ θ

−

∗ ∗

   =    
   

= − + −

= ⋅ − −

 

where the canonical parameter iθ ∗  is equal tolog iθ , the cumulant function 

is ( ) i

i ib E eθθ ∗ = .  According to Albert (1988) the conjugate prior for the canonical 
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parameter (log relative risk) is( ) ( ){ }| , exp i
i i i i i i im m E eθπ θ λ λ θ

∗∗ ∗∝ − , which means that 

the relative risks are distributed as ( )| , ~ Gamma ,i i i i i i im m Eθ λ λ λ . A gamma 

parameterized in this way implies that[ ] [ ]{ }|
ii i i iE Y E E Y mθ θ= = , but more importantly 

implies that the prior mean is inversely proportional to the expected number of cases, i.e. 

[ ]i i iE m Eθ = .  In lieu of this parameterization it makes more sense to parameterize the 

gamma in such a way that the first two prior moments are independent of the expected 

number of cases.  Furthermore, the parameters should be specified in a manner that 

facilitates the use of a GLM to model the marginal relative risks. One proposed 

parameterization given by Clayton and Kaldor (1987) is a ( )Gamma ,i i imλ λ , the other 

due to Christiansen and Morris (1997), is a ( )Gamma ,i i imλ λ .  For each 

parameterization the mean is equal to im  but the variances differ slightly.  The first 

parameterization has a variance that is proportional to the prior mean, whereas the latter 

has a variance that is a quadratic function of the prior mean.  Because of convergence 

reasons we choose to align our work with that of Christiansen and Morris (1997). Recall 

that the scale parameteriλ  helps measure the extra-variability in the Poisson model by 

making the variance of the relative risk inversely proportional to iλ  .  Thus larger values 

of iλ will shrink the corresponding relative risk towards its prior mean im .  As in Albert 

(1988) and Clayton and Kaldor (1987) we may incorporate fixed effects through a log 

linear model on the prior mean; that is, 

log ,T
i im X β=                                                     (5.4) 
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where T
iX is a 1k×  vector of explanatory variables andβ  is a 1k×  vector of regression 

coefficients.  Equation (5.4) is strikingly similar to (5.1) except that we have now placed 

the GLM on the local prior means and not the relative risks themselves.  Clearly, (5.4) 

does not directly account for any spatial correlation that may exist among the relative 

risks.  We may correct for the spatial correlation by adding the the spatial random effects 

iU to the GLM giving 

log ,T
i i i im X V Uβ= + +                                                  (5.5) 

where iU is assigned a CAR prior.    There is good reason to believe that the scale 

parameter included in the gamma prior accounts for much of the heterogeneity among the 

risks; however, it does not preclude the use of an additional latent variable.  We now turn 

our attention to an example that highlights the similarities of (5.5) and (5.1). 

 
5.4 Example: Scottish Lip Cancer Data 

 We motivate a comparison of the Poisson log-relative risk model (5.1) and the 

conjugate Poisson gamma model (5.4) by using a data set originally constructed by 

Clayton and Kaldor (1987).  The data consisted of observed and expected counts of lip 

cancer registered in the 56 Scottish counties during the years 1975-1981.  As previously 

mentioned the authors made various distributional assumptions for the local relative risks 

and then used EB methods for their posterior calculations.  Banerjee, Carlin, and Gelfand 

(2004, p.167) later analyzed the data using a hierarchical generalized linear spatial model 

of the form (5.1), which also employed a CAR model for the spatial random effects. 

Recall that Figure 1 back in Chapter 4 displays the choropleth map for the crude 

estimates of relative risk. One county level covariateiX , the percentage of the population 
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engaged in agricultural, fishing or forestry (AFF) is available thus making (5.1) 

equivalent to  

1
0 1log 10i i i iX V Uθ β β −= + ⋅ + +                                            (5.6) 

where iV  is assigned an exchangeable normal prior with mean zero and iU is assigned the 

usual CAR model (5.3).  The regression coefficients in (5.6) are given diffuse normal 

priors and the two precision parameters relating to the random components are assigned 

gamma distributions.  The shape and scale parameters for the spatial precision parameter 

are .01 whereas the shape and scale parameters for the precision parameter relating to the 

unstructured heterogeneity are .001. These priors came from Best et al. (1985) and 

Bernardo, Berger, Dawid and Smith (1999). The hierarchy regarding Equation (5.6) can 

be summarized as 

( )
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0 1
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1 1
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y E
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τ τ

τ

τ

−

− −

− −

 

Similarly, (5.5) can be rewritten as  

1
0 1log 10i i i i im X V Uβ β −= + ⋅ + +                                          (5.7) 

where iV is assigned an exchangeable Gaussian prior and iU is assigned the usual CAR 

model (5.3).  The regression coefficients in (5.7) are given diffuse normal priors and the 

precision parameter relating to the random component iU  is assigned a gamma 

distribution.  The shape and scale parameters for the gamma distribution are both .01. 
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The hierarchy regarding the conjugate hierarchical model in Equation 5.7 can be 

summarized as 

( )
( )

( )

( )
( )

( )
( )
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−
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Model fitting is carried out using MCMC simulation methods implemented in the 

WinBUGS software. Because the models used in a mapping context may exhibit high 

correlations between model parameters, necessarily leading to highly autocorrelated 

samples, we use separate chains with different initial values for each model. Specifically, 

75,000 values collected from three different chains (excluding the 4000 burn-in values) 

are used in the calculations of the relative risk posterior distribution |i iyθ .  We check the 

convergence by examining the line graphs provided in WinBUGS.  Table 9 displays 

estimates of the posterior means for the local relative risk of each county under the three 

competing models.  The column entitled IV is the second-stage hierarchical model 

suggested by Banerjee, Carlin, and Gelfand (2004), while the three remaining columns 

entitled I, II and III  refer to the conjugate hierarchical model increasing in degrees of 

freedom.   The data given in Table 9 are for the 56 counties arranged in descending order 

of incidence as measured by SMRs, which vary between 0 and 642.  There is a noticeable  
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Table 9. Lip Cancer Incidence In Scotland by county: SMRs and Bayesian Estimates of Relative Risk 
 

County Observed Expected I II III IV SMR 
1 9 1.4 496.4 479.2 475.7 474.7 642.8571 
2 39 8.7 432 432.7 433.6 434.4 448.2759 
3 11 3 334.2 333.1 330.8 332.2 366.6667 
4 9 2.5 300.8 291.2 289.9 289.7 360 
5 15 4.3 322.2 321.1 321.6 320.9 348.8372 
6 8 2.4 378.1 386.3 384 383.6 333.3333 
7 26 8.1 299.5 295.6 296.3 295.5 320.9877 

8 7 2.3 280.2 281.1 281.4 281.8 304.3478 

9 6 2 228.7 221.3 221.2 220.7 300 
10 20 6.6 294.6 292.4 292.9 292.2 303.0303 
11 13 4.4 275.3 280.5 279 280.9 295.4546 
12 5 1.8 315.2 329.5 326.7 331.9 277.7778 
13 3 1.1 255.2 263.3 263.1 263.3 272.7273 
14 8 3.3 211.6 201.7 201.7 199.9 242.4242 
15 17 7.8 190.4 181.7 181 180.6 217.9487 
16 9 4.6 207.7 208.2 208.3 208.8 195.6522 
17 2 1.1 200.2 204.8 207.4 206.1 181.8182 
18 7 4.2 125.9 118.5 117.2 117.4 166.6667 
19 9 5.5 179.4 191.1 193.4 194.4 163.6364 
20 7 4.4 137.8 136.8 137.1 137.4 159.0909 
21 16 10.5 144.7 139.9 139.3 139.1 152.381 
22 31 22.7 144 145.3 145.5 145.4 136.5639 
23 11 8.8 121.1 118.4 118.4 118.2 125 
24 7 5.6 95.64 85.75 84.34 83.73 125 
25 19 15.5 117.2 117.7 117.9 118.4 122.5807 
26 15 12.5 106.5 102.4 101.3 101.2 120 
27 7 6 98.05 94.58 93.85 93.31 116.6667 
28 10 9 104.6 103.7 104.2 103.8 111.1111 
29 16 14.4 118.1 120.7 121.2 121.9 111.1111 
30 11 10.2 98.04 91 89.47 89.09 107.8431 
31 5 4.8 88.86 85.35 84.89 84.69 104.1667 
32 3 2.9 139.4 143.3 143.4 143.1 103.4483 
33 7 7 98.73 96.46 96.18 95.98 100 
34 8 8.5 86.75 79.63 78.56 77.77 94.11765 
35 11 12.3 85.66 84.78 84.44 84.44 89.43089 
36 9 10.1 77.9 75.5 75.05 75.5 89.10891 
37 11 12.7 88.31 87.6 87.53 87.69 86.61417 
38 8 9.4 68.98 62.06 60.96 60.41 85.10638 
39 6 7.2 98.23 98.88 99.68 99.12 83.33333 
40 4 5.3 61.94 57.64 56.99 56.66 75.4717 
41 10 18.8 54.24 53.18 52.84 53.06 53.19149 
42 8 15.8 66.68 72.54 72.83 73.34 50.63291 
43 2 4.3 89.43 93.57 93.41 93.17 46.51163 
44 6 14.6 45.72 46.09 45.83 46.17 41.09589 
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Table 9 continued. 
 

45 19 50.7 41.1 42.7 43 43.15 37.47535 
46 3 8.2 54.5 57.21 57.48 57.54 36.58537 
47 2 5.6 47.16 46.89 46.37 46.55 35.71429 
48 3 9.3 42.87 43.33 42.81 42.94 32.25807 
49 28 88.7 33.85 34.93 35.11 35.27 31.56708 
50 6 19.6 44.76 50.67 51.44 51.66 30.61225 
51 1 3.4 49.08 48.48 47.81 47.68 29.41177 
52 1 3.6 46.01 45.05 44.8 44.37 27.77778 
53 1 5.7 39.45 39.89 39.9 39.72 17.54386 
54 1 7 37.96 40.33 39.79 40.15 14.28571 
55 0 4.2 64.1 81.88 83.37 83.99 0 
56 0 1.8 71.56 75.56 75.47 75.95 0 

 
 
decrease in variability for the Bayesian relative risk estimates as compared to the crude 

SMRs.  The risk estimates computed using the non-conjugate hierarchical model range 

from 35 to about 475; using the conjugate model with 5 degrees of freedom associated 

with the chi-squared prior the estimates range from 33 to 496; using the conjugate model 

with 25 degrees of freedom the estimates range from 35 to 479; and using the conjugate 

model with 50 degrees of freedom the estimates range from 35 to 475.  In general, 

models III  and IV provide similar estimates of relative risk, especially when the expected 

count is small for a county adjacent to other low-risk counties.  For example, the relative 

risks for county 24, which is adjacent to counties 27, 30, 31, 44, 47, 48, 55, and 56 (all of 

which are considered to be low-risk) are very similar; whereas the relative risk estimate 

computed using model I (conjugate with smaller degrees of freedom for the scale 

parameter) is much closer to the crude SMR.  We can attribute this to the degree of belief 

that we have in our GLM.  As mentioned back in Chapter 3 the scale parameter appearing 

in the conjugate gamma distribution controls the amount of faith one places in the GLM.  

Since the mean of a chi-squared distribution is identical to its degrees of freedom, larger 

degrees of freedom translate to a greater belief in the GLM.  Consequently, the posterior 
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estimates corresponding to these unstable areas are shrunk towards a localized 

neighborhood prior mean.  Further examples of this occurrence are prevalent in counties 

30, 33, 36, and 38.  Also, the reader will find that in most cases when the observed count 

is less than the expected number of cases the relative risk estimates computed using 

model I are closest to the SMRs.  It turns out that this is not the case when the observed 

count exceeds the expected number.   

 It is clear from Table 9 that the conjugate model offers a way to quantify one’s 

own prior belief regarding the amount of overdispersion present in the areal units.  By 

increasing the associated degrees of freedom of the hyperprior for the dispersion 

parameter we essentially place more belief in the specified GLM; thus relying on the 

CAR model to capture the spatial correlation among the neighboring areas.  

Alternatively, when the belief in the GLM is minimal the relative risk estimates provided 

by the conjugate hierarchical model are very similar to weighted average of the crude 

SMRs corresponding to the surrounding areas.  Of course, these results are completely 

derived from this dataset. Ultimately we would want to embark on a simulation study like 

that appearing in Kafadar (1994) where she compared the EB methods of Clayton and 

Kaldor (1987) with several other non-parametric spatial smoothers. 

 
5.5 Example: Waco Crime Data 

 In this final section we will illustrate how the previously discussed disease 

mapping techniques can be applied to mapping relative crime risks.  We will use an 

original data set constructed by the authors and the Waco, Texas Police Department.  The 

data set consists of aggregate counts of 911 calls pertaining to habitat burglaries collected 

during the year 2000 for each police beat.  To clarify, a beat is a unit of area very similar 
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to a census track. Since the United States Census Bureau employs a different system of 

units (e.g. tracks, blocks, etc.), we will use a GIS software package called ArcGIS to 

configure the two different units of measure with regard to census covariate information. 

That is, we will determine which of the census blocks correspond to what beats and 

aggregate the appropriate covariate information.  This process is known as dissolving.   In 

addition to the census covariate information, we have also recorded the number of houses 

in each beat which will be used to calculate the number of expected calls per beat via 

internal standardization (see Banerjee, Carlin, and Gelfand 2004, p.161).  Figure 2 is a  

 

 
 

Figure 2. Choropleth Map of the Unsmoothed Call Rates for Waco in the Year 2000 

 
choropleth map displaying the raw unsmoothed call rates for habitat burglaries in Waco 

during the year 2000.  Note the high concentration in the central part of the community.   
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The model that we will use is nearly identical to the conjugate hierarchical model 

presented in Section 5.4 e.g. Equation (5.7).  That is, we assume that the prior mean for 

each beat satisfies the following generalized linear spatial model 

1
0 1log 100 .i i i i im X V Uβ β −= + ⋅ + +                                      (5.8) 

We use the same previously defined hierarchical structure 
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where i iE N r= ɶ , rɶ refers to the number of 911 calls for habitat burglaries per habitat in 

the Waco community and iN is the number of habitats in beat i .  The covariate iX  in 

Equation (5.8) is the number of African Americans that reside in beat i during the year 

2000 as recorded by the U.S. Census Bureau. Using WinBUGS, we estimate the relative 

call rate for each police beat.  A technical aside: the convergence of the posterior 

distributions of the crime rates was relatively quick compared to those of the Scottish Lip 

Cancer.  In fact, the length of the Markov chain required for convergence was only one 

third the size. Furthermore, the correlation between samples from the posterior 

distribution was insignificant after only 15,000 values. The results are summarized in 

Table 10. 
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Table 10. Bayesian and Classical Estimates of Relative Rates for Buglary Calls 

Beat Observed Expected 
Num.of 
Houses SMR 

Bayes 
df=10 

Bayes 
df=50 

1 57 41 1245 138.8 137.1 137.4 
2 48 28 836 174.1 170.5 169.9 
3 55 58 1751 95.3 97.44 97.33 
4 50 71 2161 70.2 71.45 71.21 
5 57 25 766 225.7 222.2 222.5 
6 95 33 1004 286.9 282.9 283 
7 83 35 1052 239.3 234.4 234.3 
8 117 43 1308 271.2 267.9 267.8 
9 71 35 1068 201.6 197.2 197.2 
10 16 64 1983 24.8 28.69 28.72 
11 10 4 133 227.8 203 206 
12 19 20 596 96.7 99.68 100.8 
13 38 78 2356 48.9 52.07 52.61 
14 92 78 2373 117.6 117.1 117.4 
15 15 28 854 53.3 54.98 55.13 
16 47 41 1245 114.5 113.1 113 
17 64 42 1268 153 151 151.6 
18 53 21 642 250.4 241.6 241.7 
19 64 67 2018 96.2 96.34 95.95 
20 42 36 1081 117.8 114.7 114.4 
21 52 74 2241 70.4 71.56 71.78 
22 73 54 1630 135.8 134.9 134.8 
23 100 98 2960 102.4 102.8 102.8 
24 71 86 2597 82.9 83.14 83.15 
25 67 79 2753 84.4 74.02 74.21 
26 47 39 1173 121.5 117.4 117 
27 16 63 1908 25.5 29.33 29.77 
28 26 43 1308 60.3 59.82 59.58 
29 22 89 2698 24.7 26.88 26.76 
30 33 116 3509 28.5 30.07 29.99 

 
 

The last two columns in Table 10 are the means for the posterior distributions of 

the rates as computed from the conjugate hierarchical Bayesian spatial model. The reader 

will notice that for the beats experiencing a significant call rate 

(i.e.,observed expected 1> ), the Bayesian rate estimates [ ]( )|E yθ are generally smaller 

than the MLEs.  Again, this is attributable to spatially weighted average mechanism 
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employed by the Bayesian model.  For example, beat 11 had an expected count of fours 

calls however experienced 10.  The corresponding MLE for the rate is 2.27 but the 

Bayesian estimates are only 2.03 and 2.06.  Figure 3 is a choropleth map of the smoothed 

rates using a conjugate hierarchical spatial model with 50 degrees of freedom on the scale 

parameter. 

 

 
 

Figure 3.  Choropleth Map of Smoothed Habitat Burglary 911 Call Rates  
 
 

The beats having the white dots in the center will be used in the application of the 

subset selection procedure presented in Chapter Two. Starting from the most southern 

beat and moving clockwise they are seven, eight, nine, six, and five respectively.  Beat 

nine has the lowest estimated call rate whereas beats eight and six have the highest 

estimated call rate.  The calculated ( )max 5 9Pr | , ,iPIC y yθ θ≡ = … for the 5 beats are 

displayed in Table 11.   
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Table 11. Probability Inclusion Criterions for the Five Beats 

Beat  PIC 
5 0.031 
6 0.611 
7 0.049 
8 0.306 
9 0.002 

 
 

Based on this table the two PICs that exceed 1/5 are six and eight, thus our 

selected subset would consist of the rates corresponding to those two beats. In fact a loss 

penalty of 33c = would be required to include beat five. The PICs were calculated via 

Monte Carlo integration.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

65 

 
 

CHAPTER SIX 
 

Conclusion 
 
 
 The hierarchical conjugate model presented throughout this work provides an 

alternative to the customary generalized linear model.  As seen it may be used in a variety 

of settings including statistical epidemiology and disease mapping.  Matter of fact, it may 

be used in nearly any situation where one has overdispersed count data.  The hierarchical 

conjugate model provides the same flexibility as the standard Bayesian GLM; however, it 

allows for extra-variability sometimes present in count data.  The addition of a scale 

parameter used for this extra-variability comes at the expense of computing time and 

convergence.  Convergence for risk mapping can be rather slow but this is also the case 

for the standard Bayesian GLM found in the literature.  Therefore, the presented model is 

recommended at this point in time.  That is, until an adequate simulation can be 

conducted to compare the conjugate hierarchical generalized linear spatial model to 

several other spatial smoothers found in the literature.  Once the efficacy of this model is 

established we would like to extend this model to the area of forecasting or prediction. 

 At the beginning of this work the author had this situation in mind.  We envisage 

a situation where data has been observed at several counties or in general areal units but 

for some reason has not been observed at other regions.  Perhaps sampling was too 

difficult or in fact too dangerous.  With the partial information collected we would 

ultimately like to predict the current state at these unobserved regions, whether it be the 

actual number of cases or the disease risk.    This is most commonly referred to in the 

time series arena as a state space model.  We believe that concept of this model provides 
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a natural extension to the spatial arena.  The major difference of course lies in the type of 

autocorrelation.  It is customary to assume that the autocorrelation among the random 

variables is a function of time.  We could assume that the regions are correlated over time 

but we would also assume correlation as a function of distance.   

 The concept of spatial prediction is not new.  In fact it is referred to as kriging in 

the literature.  The interest lies in extending kriging to lattice data.  You see it is 

customary to assume that the spatial domain is continuous over 2ℜ .  This assumption 

along with a few others, namely isotropy, allow for a nice correlation structure for the 

domain.  Obviously, this is not the case for disease mapping.  In disease mapping we 

often use a nearest neighbors approach.  Recall that Chapter 5 discusses this in great 

detail.  Thus, it can be said that future work would somehow make use of the conjugate 

hierarchical model for prediction in the disease mapping setting.   
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APPENDIX A 
 

Computer Programs for Chapter 2 
 

 
A.1.1 Outline for computer programs used in simulation in Chapter 2 
 
 The following gives a detailed outline of the computer program used in the 
simulation in chapter 2.  
 
Part I – Generating the Poisson counts 
 
1. Generate a 10,000 m×  matrix consisting 10,000*m values from a Uniform(0,1).  Call 
this matrix u.  The value m refers to the number of parameters whereas 10,000 is the 
number of simulation iterations. 
 
2. Create another 10,000m×  matrix in which the entries are found by setting the 
corresponding entries of u equal to the inverse cdf of a triangle distribution having 
endpoints (.2, 4) with mode 2 and solving.  Each row now represents a set Poisson rates. 
 
3. Order each row from greatest to least so that largest Poisson rate for each row is 
located in the first column.  This will be helpful in calculating the probability of correct 
selection. This matrix will be called lammat. 
 
4. Using the matrix of Poisson rates generate a matrix of count totals and call this matrix 
countmat. Each row of countmat will represent a sample of total counts having rates 
proportional to those from the corresponding row of lammat.  
 
Part II – Calculating the Probability of Correct Selection and Expected Size 
 
Case 1:  Independent uniform priors 
 
1. When the number of parameters is small (at most 5) we can use standard functions 
inside R, namely dgamma, pgamma, and integrate, to calculate the probability inclusion 
criterion ( )max 1Pr | , ,i mt tλ λ≡ = …  where 1, mt t…  represent the counts for some row in 

countmat.  For the case when 5m>  use Monte Carlo integration to calculate the 
probability inclusion criterions.  It should be noted that no loops are required to calculate 
these probabilities but instead make use of the ‘apply’ function, which takes as arguments 
an array of values, a margin (in this case we apply the function over the rows), and an 
internal or user-defined function.   
 
2.   Create a matrix called princludemax in which each entry for some row will represent 
the probability inclusion criterions for the corresponding superior set. Recall that each 
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row in rlambda represents a set of m parameters, thus each row of princludemax should 
sum to one.   
 
3.  Since the first element of each row in rlambda was the maximum of the parameter set, 
the first entry of each row in princludemax will represent the probability inclusion 
criterion for the largest parameter in the corresponding rlambda row. 
 
4.  The probability of correct selection is the percentage of times that the probability 
inclusion criterions in the first column of princludemax exceeded the criterion 

constant1 1c+ , where 1c m≥ − .  Similarly, the expected size is the relative frequency of 

all the probabilities in princludemax that exceed the criterion constant. 
 
 
Case II:  Three Stage Hierarchy 
 
The code for computing the probability of correct selection in the case of a hierarchical 
model only differs to the uniform case in the first step.  The reader will use a package 
called ‘R2WinBUGS’ to generate samples from the posteriors.  See Sturtz, Ligges, and 
Gelman (2004) for a discussion on how to call WinBUGS from R.  The following steps 
provide an outline for constructing princludemax as in the previous case 
 
1. Install and load the package “R2WinBUGS” in R and create a directory in your 
machine to store a text file consisting of the BUGS model statement.  The initial values 
will be supplied to WinBUGS via an R list.  Of course the data values are the actual rows 
of the matrix countmat. 
 
2.  Define a function in R called winbug that will take as an argument a row from the 
matrix countmat and specify the objects to be used in the internal function bugs.  The 
function bugs requires a data object, a list of initial values, a vector of parameters for the 
inference, the number of chains,  the number of iterations,  the location of the model file.  
However, storing the various parameter estimates and the burnin specification are 
optional. A sample bugs specification could appear as 
bugs(data,inits,model.file=””,parameters,n.chains., n.iter,bugs.directory=””) 
 
3.  Recall that all iterations in the simulation process produce a set of exactly m total 
counts.  For one iteration, to calculate the probability inclusion criterions for the m 
parameters we sample 9,000 posterior values from each of the m posteriors using three 
chains of length 4000 (1000 burn in values) and construct a matrix lam.sim.  The 
probability inclusion criterion for one of the m candidates, say k, is found by calculating 
the relative frequency in which thethk  column was a maximum.  These values will form 
the rows of the matrix princludemax. 
 
 
 
 
 



70 

 

A.2.2 Code used for the simulation study presented in Chapter 2 
 

The following code was used to calculate the probability of correct selection and 
expected size for the case when the number of populations was five and a flat uniform 
prior was assumed.  

 
 (a,b) is the interval and c is the mode.  n refers to the sample size and m is the number of 
populations 
inposlambda<-function(a,b,c,n,m){  
 assign("Global.res",a,b,env=.GlobalEnv) 
 assign("Global.res",c,n,env=.GlobalEnv) 
 assign("Global.res",m,env=.GlobalEnv) 
 #####This code generates parameters from a triangle distribution with mode=c 
 u<-matrix(runif(10000*m),ncol=m) 
 u<-t(apply(u,1,sort)) 
 u<-t(apply(u,1,rev)) 
 rlambda<-function(x){ 
  pmode<-(c-a)/(b-a) 

ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)*(c-b)*(b-a)+(c-
b)^2))} 

 lammat<-rlambda(u) 
 countmat<-matrix(rpois(10000*m,n*lammat),ncol=m) 
 posmax<-function(x){return(which(x==max(x),arr.ind=TRUE))} 
  psone<-function(y){ 
  assign("Global.res",y,env=.GlobalEnv) 

funone<-
function(x){return(pgamma(x,y[2]+1,n)*pgamma(x,y[3]+1,n)*dga
mma(x,y[1]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))} 

   integrate(funone,0,Inf)$value} 
  pstwo<-function(y){ 
  assign("Global.res",y,env=.GlobalEnv) 

funtwo<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[3]+1,n)*dga
mma(x,y[2]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))} 

   integrate(funtwo,0,Inf,stop.on.error = FALSE)$value} 
  psthree<-function(y){ 
  assign("Global.res",y,env=.GlobalEnv) 

funthree<-
function(x){return(pgamma(x,y[2]+1,n)*pgamma(x,y[1]+1,n)*dga
mma(x,y[3]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))} 

   integrate(funthree,0,Inf,stop.on.error = FALSE)$value} 
  psfour<-function(y){ 
  assign("Global.res",y,env=.GlobalEnv) 

funfour<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[2]+1,n)*pga
mma(x,y[3]+1,n)*dgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))} 
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   integrate(funfour,0,Inf,stop.on.error = FALSE)$value}   
  psfive<-function(y){ 
  assign("Global.res",y,env=.GlobalEnv) 

funfive<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[2]+1,n)*pga
mma(x,y[3]+1,n)*pgamma(x,y[4]+1,n)*dgamma(x,y[5]+1,n))} 

   integrate(funfive,0,Inf,stop.on.error = FALSE)$value}  
   
princludemax<-apply(countmat,1,psone) 
prcs<-c(rep(0,4)) 
for (i in 1:4) prcs[i]<-length(princludemax[princludemax>(1/(i+4))])/10000 
princludetwo<-apply(countmat,1,pstwo) 
princludethree<-apply(countmat,1,psthree) 
princludefour<-apply(countmat,1,psfour)  
princludefive<-apply(countmat,1,psfive)  
set<-c(princludemax,princludetwo,princludethree,princludefour,princludefive) 
expectedsize<-rep(0,4) 
for (i in 1:4) expectedsize[i]<-length(set[set>(1/(i+4))])/10000 
return(cat("Uniform Prior","Sample size =",n,"# Parameters =",m,"PrCS 
=",prcs,"Expected Size =",expectedsize)) 
} 
 

The following code is used to calculate the probability of correct selection and 
expected size when the number of parameters exceeds five. 
 
simposlambda<-function(a,b,c,n,m){  
 assign("Global.res",a,b,env=.GlobalEnv) 
 assign("Global.res",c,n,env=.GlobalEnv) 
 assign("Global.res",m,env=.GlobalEnv) 
 #####This code generates parameters from a triangle distribution with mode=c 
 u<-matrix(runif(10000*m),ncol=m) 
 u<-t(apply(u,1,sort)) 
 u<-t(apply(u,1,rev)) 
 rlambda<-function(x){ 
  pmode<-(c-a)/(b-a) 

ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)*(c-b)*(b-a)+(c-
b)^2))} 

 lammat<-rlambda(u)   
 countmat<-matrix(rpois(10000*m,n*lammat),ncol=m) 
 posmax<-function(x){return(which(x==max(x),arr.ind=TRUE))} 
  generate<-function(x){  
  posample<-rgamma(m*25000,x+1,n) 
  y<-matrix(posample,ncol=m,byrow=T) 
  test<-unlist(c(apply(y,1,posmax),1:m)) 
  postprobtab<-(table(test)-1)/25000 
  postprob<-rep(0,m) 



72 

 

  for (i in 1:m) postprob[i]<-postprobtab[[i]] 
  return(postprob)} 
set<-apply(countmat,1,generate) 
set<-t(set) 
princludemax<-set[,1] 
prcs<-rep(0,4) 
for (i in 1:4) prcs[i]<-length(princludemax[princludemax>(1/(i+(m-1)))])/10000 
expectedsize<-rep(0,4) 
for (i in 1:4) expectedsize[i]<-length(set[set>(1/(i+(m-1)))])/10000 
return(cat("Uniform prior","Sample size =",n,"# Parameters =",m,"PrCS 
=",prcs,"Expected Size =",expectedsize)) 
} 
 The following code was used to calculate the probability of correct selection and 
expected size for the hierarchical model. 
 
#####(a,b) is the interval and c is the mode.  n refers to the sample size and m is the 
number of populations 
hiposlambda<-function(a,b,c,n,m){  
 assign("Global.res",a,b,env=.GlobalEnv) 
 assign("Global.res",c,n,env=.GlobalEnv) 
 #####This code generates parameters from a triangle distribution with mode=c 
 u<-matrix(runif(10000*m),ncol=m) 
 u<-t(apply(u,1,sort)) 
 u<-t(apply(u,1,rev))  #ensures that the largest parameter is in the first column 
 #####Inverse CDF of Triangle Distribution 
 rlambda<-function(x){ 
  pmode<-(c-a)/(b-a) 

ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)*(c-b)*(b-a)+(c-
b)^2))} 

 lammat<-rlambda(u) 
 ####Generates counts from the Poisson having means 'lammat' 
 countmat<-cbind(matrix(rpois(10000*m,n*lammat),ncol=m),1:10000) 
 posmax<-function(x){return(which(x==max(x),arr.ind=TRUE))} 
 
####This code calls WinBUGS to compute posterior samples from hierarchical 
models############## 
#####The WinBUGS model specification "simulation.txt" is stored in the folder 
"c:/John/WinBUGS"##### 
#####The simulated values are saved to matrix, 'counts.sim'.  We are only interested in 
parameter 'mu' ### 
 
winbug<-function(x){ 
 z<-x[c(1:m)] 
  data <- list ("n", "z","m") 
 inits1 <- list(lambda=rep(1,m),alpha=1,beta=1) 
  inits2 <- list(lambda=rep(1,m),alpha=1,beta=1) 
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 inits3 <- list(lambda=rep(1,m),alpha=1,beta=1) 
 inits<-list(inits1,inits2,inits3) 
 parameters <- c("mu") 

 counts.sim<- bugs (data, inits, parameters, 
"c:/John/R2WinBUGS/simulation.txt", n.chains=3, 
n.iter=4000,n.burnin=1000,DIC=F,bin=3000)$sims.matrix[,c(1:m)] 

 test<-unlist(c(apply(counts.sim,1,posmax),1:m)) 
 postprobtab<-(table(test)-1)/9000 
 postprob<-rep(0,m) 
 for (i in 1:m) postprob[i]<-postprobtab[[i]] 
 #print(c(postprob,x[m+1])) 
 return(postprob)} 
 
set<-apply(countmat,1,winbug) 
set<-t(set) 
princludemax<-set[,1] 
prcs<-rep(0,4) 
 #####This loop caculates pr. of correct selection for different c=4,5,6,7 
 for (i in 1:4) prcs[i]<-length(princludemax[princludemax>(1/(i+(m-1)))])/10000 

expectedsize<-rep(0,4) 
 for (i in 1:4) expectedsize[i]<-length(set[set>(1/(i+(m-1)))])/10000 

return(cat("Hierarchical Model","Sample size=",n,"# Parameters=",m,"PrCS 
=",prcs,"Expected Size=",expectedsize)) 

} 
 
 The following WinBUGS model specification should be stored in a file located in 
the current working directory in R. 
 
model 
{ 
 for( i in 1 : m )  
   { 
 z[i]~ dpois(mu[i]) 
 mu[i] <- lambda[i]*n 
 lambda[i]~dgamma(alpha, beta) 
 }    
alpha~dexp(1) 
beta~dgamma(.001, .001) 
} 
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APPENDIX B 
 

Instructions for Importing Adjacency Matrices and Maps into WinBUGS 
 
 

*These instructions were taken from the personal page of Ms. Yue Cui, graduate student 
at University of Minnesota.  See http://www.biostat.umn.edu/~yuecui/convert.r 
1. Create a .cgm file from Arcview  

• Open your Arcview shape file in Arcview, for example, a.shp  
• Click "Export" in File menu  
• Choose from List Files of Type "CGM Clear Text" and save .cgm file(e.g.  

a.cgm). This .cgm file is a text file and can be opened with any word processor 
like Notepad.   Save this in the current R work directory. 

 
2.  Convert the .cgm file into a .txt file in Splus format readible by WINBUGS  

• Copy and paste the following text.  This script creates a function in R called 
‘convert’ which creates a .txt file containing polygon boundaries 
 
convert<-function(cgmfile) 
  { 
#outfile <- "test.txt" 
 outfile<-paste(cgmfile,".txt",sep="") 
      
#This one works 
#fortest<-scan("test.cgm",what=list(name=""),sep="\n") 
 fortest<-scan(paste(cgmfile,".cgm",sep=""),what=list(name=""),sep="\n") 
 
fortest<-fortest$name 
fortest<-fortest[grep("VIS",fortest)] 
fortest<-as.matrix(fortest) 
 
totpolyn<-length(fortest[grep("POLYGON_SET",fortest)]) 
 
polyn<-0 
count<-0; 
indicator<-0; 
#First tried rep(0,1000), but there is a polygon with 167 rows, so we get 
#167*3*2=1002 coordinates in one polygon. Error occurs with NA output 
coord<-rep(0,5000) 
 
write(paste("map:",totpolyn,"\n"),outfile) 
for (i in 1:totpolyn) { 
    write(paste( i, paste("grid",i,sep="")),outfile,append=T) 
  } 
 
 
for (i in 1:length(fortest)){ 
  for(j in (1:nchar(fortest[i]))){ 
      letter<-substring(fortest[i],j,j) 
      #At first try to use AsciiToInt,stupid 
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      #if (AsciiToInt(letter)<=AsciiToInt("9")& 
      #    AsciiToInt(letter)>=AsciiToInt("0")) 
      if(letter<="9"&letter>="0"){  
                         if (indicator==0) {count<-count+1; 
                                            indicator<- 1 
                                         } 
                            coord[count]<-coord[count]*10+ 
                                 type.convert(letter) 
                                 } 
      #add the following else if statement because if and only when 
      #a POLYGON_SET is encounted, polyn is increased by 1 
      else if (letter=="P"){ polyn<-polyn+1;indicator<-0} 
 
      #a CLOSEVIS is encounted, output the coordinates set, this is 
      #done independently with increase of polyn since a POLYGON_SET may 
      #consist of several small polygons 
      else if(letter=="C"){ 
        coordmat<-cbind(rep(paste("grid",polyn,sep=""),count/2), 
                        coord[2*(1:(count/2))-1], 
                        coord[2*(1:(count/2))]) 
         
        if (polyn == 1) { write("",outfile,append=T)} 
        else            { write(c(NA,NA,NA),outfile,append=T)} 
        write(t(coordmat),outfile,append=T,ncol=3) 
        #polyn<-polyn+1 
        #the above statement is not right because 2 CLOSEVIS may lie in one 
        #same polygon, but we output a polygon coordinates set whenever a 
        #CLOSEVIS is encountered, although it may have the same label, 
        #denoted by "grid&polyn" with previous or next coordinate sets. 
             
        count<-0 
        indicator<-0 
        coord<-rep(0,5000) 
        #if(grep("\r",substring(fortest[i],j+1,nchar(fortest[i])))) 
        #break 
       } 
 
      else        indicator<-0 
   }       
} 
write("END",outfile,append=T) 
} 
 

• Under the command line, type in convert("filename"), then ‘filename.txt’ will be  
   generated and saved in the working directory. Here "filename" doesn't have  
   .cgm in it. e.g, when you have a.cgm in folder, you should submit convert("a")  
   instead of convert("a.cgm")  
 
3. Read .txt file into WinBUGS  
 

• Open .txt file in WINBUGS using open in File menu, remember to choose  
  Text[.txt] or Text[Dos encoding][.txt] from File of type option. Now WinBUGS  
   will pull up a text editing window showing the .txt file.  
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• Click Map menu and choose Import Splus, if the .txt file is in correct Splus  
format, then a Save as window will come out, and you can now save it as a .map  
file ready for mapping, e.g. ‘a.map’. If the .txt has an error in it, WinINBUGS 
will  beep.  

• Now close WinBUGS and restart it.  
Click map in WinBUGS window and choose Adjacency Tool, in the pop-out 
window, choose the .map you just created from the dropdown list of maps, click 
on adj map and an Adjacency Map window will come out showing the map same 
as the one you exported out of Arcview. Now you can click adj matrix icon in 
‘Adjacency  Tool’ to get an adjacency matrix for this map. 
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