ABSTRACT

Conjugate Hierarchical Models for Spatial Data:
An Application of an Optimal Selection Procedure

John Jacob McBride

Mentor: Thomas L. Bratcher, Ph.D.

The theory of generalized linear models provides a unifylagscof statistical
distributions that can be used to model both discrete camtinuous events. In this
dissertation we present a new conjugate hierarchicaldtayegeneralized linear model
that can be used to model counts of occurrences présence of spatial correlation. We
assume that the counts are taken from geographic regoassal units (zip codes,
counties, etc.) and that the conditional distributiofighese counts for each area are
distributed as Poisson having unknown rates or relagis. We incorporate the spatial
association of the counts throughnaighborhoodstructure which is based on the
arrangement of the areal units. Having defined the nergbbd structure we then
model this spatial association with conditionally autoregressivéCAR) model as
developed by Besag (1974). Once the spatial model has les#accwe adapt a subset
selection procedure created by Bratcher and Bhalla (1974¢léct she areal unit(s)

having the highest relative risks.
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CHAPTER ONE

Introduction

Statistical methods for spatial data have steadilpeghattention over the past
few years as a result of simulation-based computing guwes such as Markov Chain
Monte Carlo (MCMC) and technological advances in geograiitccmation systems
(GIS). These technological advances have motivatee somuthor comprehensive texts
which address the theoretical aspects and the computingiqaes associated with the
different applications of spatial models. See, fomepia, Banerjee, Carlin, and Gelfand
(2004), Lawson (2003), Cressie (1993). While many statisticéasinterested in
predicting orkriging unobservable quantities among some specified spatial do theirs o
such as statistical epidemiologists and public healibialf are interested in accurately
modeling not only the spread of infectious diseases bulisease risk of non-infectious
diseases and ultimately producing a disease map.

The concept of disease mapping dates back centuriesdarlgrexample by Dr.
John Snow (Snow (1854)) who mapped the addresses of chaienasvin relation to the
locations of water supplies. Snow used this particulsgagde map to identify putative
sources of disease outbreak. This is just one applicafi@ disease map used in public
health, Lawson (2004) and Waller and Gotway (2003) give arvieve of the wide
range of uses of disease maps used for studying theagpdocal distribution of disease.
However, the two typical uses are those used toatsesieed for geographical variation
in health resource allocation and those useful in rebeatudies pertaining to the

relationship between disease incidence/prevalence andnexpty variables. The first



case is intended to produce a map ‘clean’ of any randone.ndilis means the map

delineates elevated risk. The latter is sometimesdcadleological analysis’ and can be
regarded as spatial regression. In this analysis the feaus the relationship between
disease incidences and explanatory covariates, usuay aggregated spatial level, in
order to assess specific hypotheses. Of course, thesehbégpstare addressed visually
through some disease map. In this work we concentrasélynen modeling issues and

give only a brief discussion of the cartographic issuesipéng to the representation of
geographic information. However, for the reader who véighdnvestigate topics relating

to symbolic representation, display methods of intgnsir color scheme see Lawson
(2001) or Pickle and Hermann (1995).

To begin, we assume that our data arise from a ggbigreegion which can be
divided into smaller areas such as census tracts, cqumtgesncts, etc. and that we have
the available aggregate counts for these geograpbal units Thus, we have lost all
information at the individual level. Waller (2003) consgléhe trade-off between
statistical stability of risk estimates and geographicipi@t. The detection of locally
elevated risk requires geographically small units; howdkiese smaller regions result in
rate estimates based on smaller samples. In the tasam@ disease the rates computed
for these less populated units are most often unstable.

While there are numerous methods suggested in the literdtatreaddress the
previous dilemma, we focus mainly on methods which makeikerarchical Bayesian
models. Clayton and Kaldor (1987, 1989) were some of thetdinsicorporate Bayesian
modeling techniques in the area of ecological analysisher® include Clayton and

Bernardinelli, 1992; and Mollié 1996). Statisticians for thest part assume that the



aggregate counts for the areal units are distributed asdPowith unknown relative
risks. The usual method is to model the logarithm ofékeive risks with a hierarchical
generalized linear model consisting of both local andored) covariates as well as a
random effects term for each areal unit correspondingnistructured heterogeneity
(Lawson, 2003). To account for the spatial correlatgmmetimes calledtructured
heterogeneitfLawson, 2003), of the areal units many will include antautil random
effects term for each areal unit. It is usually assurtieat the collection of full
conditional distributions for the spatial componentsnasfa Marko random field (MRF).
A commonly used MRF model is the intrinsic Gaussianragt@ssion prior considered
by Besag (1974) and Besag, York, and Mollié (1991).

We take a much different approach in that we assignngugate prior to the
logarithm of the rates and model the prior means witheeafrghical generalized linear
spatial model. We have essentially taken the conjugatartiical generalized linear
model presented by Albert (1988) and added a spatial compolmedbing so, we have
gained the ability to directly quantify the overdispenswhich is usually present in areal
unit data. The reader will find a discussion of both fileguentist and the traditional
Bayesian methods used for spatial regression and diseapping in Chapter 4.
Furthermore, we apply our unique conjugate model to an origatal set constructed by
this author, the Waco Police Department, and the Cémt&teographic Applied Spatial
Research at Baylor University, wherein the ideas amteqas used in disease mapping
are transferred to mapping call rates of habitat buegarinstead of aggregate counts of

disease we consider aggregate counts of 911 calls cldsagidhabitat burglaries. In



addition, we also provide the reader with a procedursdtacting the beat(s) having the
highest relative crime risk.

Clearly the emphasis of this dissertation is theéene presented in Chapter 4;
however, the supplementary material useful for the nstaleding of Chapter 4 is
thoroughly developed in the preceding chapters. Chapter 2agivegerview of the first
theme of this dissertation, subset selection. We gn in-depth discussion of a subset
selection procedure useful in determining a ‘best’ paranagteng several populations.
We actually apply this selection procedure to home rumgittata in Chapter 3. In that
same chapter we present the second theme: conjugate eahigeneralized linear
models. Chapter 3 consists of a complete formulatibbhe conjugate hierarchical
generalized linear model proposed by Albert (1988), along witlkkad®ns of posteriors
and marginal distributions, as well a discussion of tamtionship between prior
distributions and the relative posterior sensitivity. @éaclude this chapter with an
example of a quadratic conjugate hierarchical generalizedrlim®del used to model

Sammy Sosa’s career home run hitting data.



CHAPTER TWO

An Optimal Selection Procedure

2.1 Introduction

A decision maker is often faced with the task of selgctamong several
processes or populations the one which will produce the gtededd or highest rate.
Similarly, one may wish to select the smallest yietdlowest rate. For example, an
experimenter might be interested in determining which pric@mlu¢echnique gives the
lowest percentage of defects; a crime analyst mighsider which reporting district has
the highest rate of violent crimes; a baseball fan wowgdire about the best home run
hitter of the 28 century. In any case a selection must be made wath than certain
information. There are of course various proceduresdtacting a subset to contain the
‘best’ parameter. In Section 2.2 we will give a brigéoview of several subset selection
procedures appearing the literature. Then in Section 2.3iNlveewew a Bayes solution
to the selection procedure with respect to a constastflmction. Finally, we will utilize
this Bayesian selection procedure in a simulation stumtly @ssess the probability of
correct selection and expected size in which the popofagenerating the samples are

Poisson.

2.2 Literature Review
The concept of subset selection began as early as 185@ paper describing a
statistic which arises in ranking and selection (Gupta, 195hanti Gupta had already

been working in the area of decision theory called irmpkefore he and Milton Sobel



developed the concept of subset selection. Togethse tnethors provide the literature
with a variety of classical mechanisms for subseecsigin of location and shape
parameters in both discrete and continuous distributidnsfact, Roger Berger (1980)
and Thomas Santner (1995), two of Gupta’s former studemesdiso contributed to the
area of subset selection. However, to our knowledgerdddratcher and Bhalla (1974)
there are no published works that contain a Bayesian tsgbleetion procedure. R.P.
Bland, who was working in the area of ranking and mutipbmparisons, had an
unpublished manuscript in which he gave a detailed desoriptia Bayes’ solution to
the selection problem that utilized a linear loss fumctiThis is not to be confused with
Bratcher and Bhalla (1974) who used a constant loss &umti derive their selection
procedure. You may find an example of their method im&ya Bratcher, and Young
(2004) who applied the selection procedure to Poisson satgsct to misclassification.
Currently there are still very few Bayesian subsd¢cs®ns procedures found in the
literature. For an alternative to Bratcher and Bha#e Gupta and Yang (1985), Deely
and Berger (1988), or Schulter, Deely, and Nicholson (1991 works by Deely are
unique in that the experimenter must predetermine theo$ittee subset. Furthermore,
Deely provides a different selection procedure based hen posterior predictive

distribution rather than the usual posterior distributge®e Schulter et al (1997).

2.3 Decision Theoretic
Bratcher and Bhalla (1974) derive a decision theoretic agprdo partitioningm

parameters into two sets. L@8t=(8,6,,...,.6,) be the parameter vector of interest, for

instance a collection of Poisson rates or binomial gutigns. There ar@™ -1 subsets

(excluding the null set) of the parameters which may be selected as the supeti@®. s



Each possible superior set corresponds to a compositetiohs generated from two
decision problems of the forrd, :g0S or d' :d0S°,i =1, 2, .... m.Bratcher and

Bhalla (1974) assume the following constant loss functions:

L'.(6) = 018 =bnar o L' (6) = &0 = i1 2
it #a,, 7 \oifgze,, T

where L, is the loss function for decisiodi and L is the loss function for decisioa .
Then the total loss incurred for selecting a subsetzefNsis given by

Ls(@)=(N-Dc,if 6,,0S
=Nc +c,, if 6,.,0S

where §,., =max{6, 6,... §,} andc, andc, are constants. We should note tbatis
greater tharc since it represents the loss of the more seriows ef not selecting),, .

In the selection process one does not negexhdc,but only the ratic=c,/cg. Clearly
the action of whether or not to includkin the subse should in some way depend on
the two losses that may result. From the Bayesideccriterion we will included in S

if the expected loss of inclusion is less than that exclusion that

is, E(Li+ )| g()s E(Li_ )] g() wherex represents the data or a vector of sufficient
statistics fod. Writing the expectations as a function Bf@ =6, | X) gives the
following

E(L, (8)X)= 0PI = 6,0 | X) +C, PH(E, # Oy | X)
=, [1-Pr@ =6, X

E(L.(8)1X)= 0P8 # 6, 1X)+ G, 0P(E =6, 1Y
:CZ Pr(a zemax |2() .



The decision to includé, in Scan now be rewritten as

Cl[l_ Pr(gl = gmax |2()] s CZDPI(gl = emax Iz<)
or

Pr(6 =6,, 1x)= ¥(c+ 1 (.1
It is clear from equation (2.1) that the decisiorptace @ in the superior set is not just
dependent on the sample information but also tinalpeconstant. In the next section

we investigate the relationship betweesample size, the probability of correct selection

and expected size.

2.4 Sample Size Determination Study
2.4.1 Preliminaries
Until now there have been no known sample sizerdehation studies used to
calculate the probability of correct selection axgected size given the assumption of a
constant loss function as in the decision theopsented by Bratcher et al (1974). For
this sample size determination study we considér ttve Poisson model but our method
can be easily transferred to the binomial or otliscrete models. Therefore, we assume

the datax,,..., x. for the i" population can be modeled as Poisson withXatdssuming

n is the common sample size, we may summarize thelsamformation with the

sufficient statistic = ZXJ . Thus, our decision criterion in Equation (2.1 e based
=1

on the posterior of given the totalg. In the absence of prior information it is
customary to assign independent non-informativergitio the Poisson rates. For the first

case we assumE()li)Dc, which leads to the posteriors being distributesl a



independen‘l;amma(ti + 1n). The assumption of a flat uniform prior reduces the

complexity of the computations used for calculating thebability of correct selection
and expected size since we can make use of functiolaldedn the statistical package
R. Alternatively, we could assume a hierarchical Poissiodel which would greatly
increase the computing time. Depending on how ‘inforreative prior structure, a third
stage hierarchy may provide “borrowing strength” acrosp#rameters and reduce the

posterior variability. For the second case we asstongigacy and assign independent

gamma(a ,6) to the Poisson rates. To complete the hierarchyage the following

distributions for the hyper priors:

a~exp(])
B ~gammg .001,.00.

The resulting posterior and full conditional distribuigo are analytically intractable
making the free statistical software WinBUGS an idealdidate to aid in calculating the
probability of correct selection and expected size. WIGB will use an adaptive
rejection sampling procedure to simulate values fronptsterior. Furthermore, we will
use the ‘R2WIinBUGS’ package created by Sturtz, Ligges, anchd@be(2004) to call

WinBUGS from R. The next subsection gives tables ab &g explanations that

summarize the results of our simulation study.

2.4.2 Results
Appendix A gives a complete annotated version of the canpptogram used to
generate the following tables; however, we will now pilevihe reader with a brief

outline of the steps used in the simulation.
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1. Using the triangle distribution with endpoings ) and modec generate sets of size
five and ten. Each of these sets will represent afdebisson rates. A large number of
these sets — typically greater than 10,000 - must be usdteftddonte Carlo simulation.

2. Sampling from Poisson distributions with the rateppronal to those from step one
generate the count totals.

3. For each population calculate the probability inclusion

criterionPIC =Pr(4 = A, It,... ). IfthePIC exceedsl/(c+1) we take actiord,

4. Calculate the percentage of times that the supeti@cseally contained . . This is
the probability of correct selection.
5. Calculate the relative frequency in which actdjris taken. This is the expected size.

In this study the parameter specification for the giandistribution used to
simulate the Poisson rate is motivated by two exampld® first appears in Suissa and
Salmi (1989) whereby the physicians were interested in sisgethe best treatment —
placebo, radiotherapy, chemotherapy, or both - for Hodgkilisease. The second
appears in Kvam and Miller (2002) in which the experimentezse concerned with
selecting the largest pump failure rate. In Suissa €1989) the clinicians recorded the
number of observed leukaemias for patients that werengane of four different
treatments. Here the experimenter would be interesteltermining the sample size
required for selecting a subset of treatments givespexified probability of correct
selection. As for Kvam et al. (2002) the failure dats fwwam 10 pump systems in the
Farley-1 nuclear power plant. Tables 1-2 give both apptioms of the probability of
correct selection and expected size when only five popuit{leukemia treatments)

were studied whereas Tables 3-4 give the results for 10 popslgpumps). Table 1
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and Table 3 refer to the case of the uniform prior Baldle 2 and Table 4 refer to the

case of a hierarchical model.

Table 1. Uniform prior withm=5

Probability of Correct

Selection Expected Size
size \
penalty| ¢=4 ¢=567 C=9 ¢=115 €c=19| c=4 c¢=567 C=9 ¢=115 Cc=19
n=>5 0.778 0.8352 0.89 0.9095 0.9443 1.6883 1.9571 2.3028 2.4753 2.8234
n=10 0.844 0.8832 0.9227 0.9386 0.9603 1.588 1.7969 2.058 2.1927 2.461
n=15 | 0.8744 0.9076 0.9407 0.9531 0.9714 15291 1.7027 1.9293 2.0432 2.2702
n=20 | 0.8881 0.9176 0.9459 0.9568 0.9736 1.4768 1.6272 1.8261 1.9313 2.1321
n=25 | 0.9098 0.9346 0.9568 0.9659 0.9794 1.4533 15952 1.7659 1.8562 2.0274
n=30 | 0.9185 0.9436 0.9648 0.9721 0984 1.4122 1546 1.7021 1.7831 1.9512
n=45 | 0.9296 0.948 0.9656 0.974 0.9849 1.3582 1.4614 15932 1.6687 1.8086

Table 2. Hierarchical model witm=5

Probability of Correct

Selection Expected Size
size \
penalty| c=4 ¢=567 Cc=9 ¢=115 ¢c=19| ¢c=4 ¢=567 C=9 c¢=115 Cc=19

=5 0.7824 0.8358 0.8949 0.9176 0.9485 1.6973 1.9846 2.3474 2.5394 2.8926
n=10 | 0.8442 0.8861 0.9241 0.9402 0.9651 1.5981 1.8138 2.0926 2.2342 2.5169
n=15 | 0.8704 0.9063 0.9386 0.9505 0.9706 1.5357 1.7176 1.9496 2.0704 2.2935
n=20 | 0.8949 0.9255 0.9522 0.9625 0.9767 1.489 1.6492 1.8567 1.9539 2.16
n=25 | 0.9113 0.9337 0.9569 0.9675 0.9807 1.4534 15926 1.7752 1.8653 2.0417
n =30 0.918 0.9406 0.9643 0.9732 0.9%36 1.4333 1.5652 1.7357 1.8185 1.9835
n=45 | 0.9348 0.9522 0.9706 0.9779 0.9867 1.363 1.4645 1.5953 1.6614 1.7996
Table 3. Uniform prior withm=10
Probability of Correct

Selection Expected Size
size \
penalty =9 c¢=115 ¢=19 c¢=24 ¢=39 <=9 ¢c=115 €c=19 c¢c=24 =39
n=>5 0.7845 0.8206 0.8803 0.9001 0.9346 2.6971 3.0179 3.6945 3.9946 4.6161
n=10 | 0.8499 0.877 0.9206 0.9362 0.9p9 2.438 2.6829 3.1813 3.424 3.8802
n=15 | 0.8814 0.9042 0.9374 0.9515 0.9684 2.2744 24748 2.8842 3.0753 3.4641
n=20 [ 0.9051 0.9238 0.9511 0.9607 0.9753 2.157 2.3326 2.6882 2.8517 3.2048
n=25 | 09194 0.9351 0.9601 0.9684 0.97195 2.0774 2.2378 2.5608 2.7098 3.0024
n=30 | 0.9299 0.9454 0.9658 0.9727 0.9823 2.0189 2.1667 2.4539 25773 2.8475
n=45 | 09437 0.9544 0.9724 0.9795 0.9875 1.8521 1.9656 2.2066 2.3154 2.5321
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Table 4. Hierarchical model witm=10

Probability of Correct
Selection Expected Size

size \

penalty| ¢=9 c¢=115 ¢c=19 c¢c=24 c=39 c=9 ¢c=115 €c=19 c¢c=24 =39

n=>5 0.7907 0.8308 0.8914 0.9132 0.9437 2.7666 3.1183 3.8327 4.1597
n=10 | 0.8516 0.8786 0.9217 0.9365 0.9%71 2.4851 2.7364 3.2517 3.491
n=15 | 0.8829 0.9049 0.9415 0.9538 0.9708 2.2996 2.5098 2.9363 3.1343
n=20 | 0.9083 0.9255 0.9537 0.9647 0.9772 2.1863 2.3701 2.7332 2.9032
n=25 1] 0.9173 0.9322 0.9552 0.9645 0.9767 2.1049 2.2643 2.5935 2.7372
n=30 | 0.9297 0.9446 0.9665 0.9716 0.9817 2.0024 2.1494 2.4553 2.5946
n=45 | 0.9453 0.9565 0.9745 0.9803 O.9$73 1.8822 1.9974 2.2362 2.3397

4.8079
4.1205
3.5315
3.2411
3.0533
2.8641
2.5559

The hierarchical model did not noticeably out perform tiedel with a non-
informative prior; the purported “borrowing strength” nst prevalent, at least not in
these results. For that matter since computing tensggnificantly decreased when using
the non-informative prior it is suggested to the reader toouse the hierarchical
conjugate model to determine the sample. We now retutinetexample from Suissa

and Salmi (1989). If the loss for not selectirg),is four times the loss for
selectingg #8,._,, i.e.c=4, and the probability of correct selection is 85% them w

would require a sample size of approximately 10 and the segsze is 1.58. However,
if the penalty constant is increased to nine then weldveequire a sample of size five,

but our expected size is now 2.30.



CHAPTER THREE

Hierarchical Generalized Linear Models and Subset Sefectio

3.1 Introduction
Originally introduced by Nelder and Wedderburn (1972),géeeralized linear
model (GLM) provides an extension to ordinary regression a&malpy allowing the
response variable to be non-Gaussian. In the cladisiear model we typically specify

the error term as a Gaussian random variable wherelas adase of the generalized linear

model we model the responsés..., Y, directly and assume the meags...,y, satisfy
some specificp-dimensional functiog(z)=x" 3. Clearly the GLM provides a

unifying class of statistical models that generalizessatal linear models. Gelfand and
Ghosh (2000) comment the GLM “avoid having to select aesitrghsformation of the
data to achieve the possibly conflicting objectives ofrm@dity, linearity, and
homogeneity of variance.” Since their inception GiMave been used in a wide range
of applications including but not limited to analysis of nwaltegory data (Leonard and
Novick (1986)), dynamic or state space extensions of nonalotime series and
longitudinal data, discrete time survival data, and nonsSian spatial processes (Best,
Ickstadt, and Wolpert, 2000; or Banerjee, Carlin, and @Gel{2004)). Moreover, the
GLM is widely used in Poisson regression, which we providanasxample in the final
section of this chapter.

In the first three sections of this chapter we protieereader with key references
to the development of both the Bayesian and clas&its, as well as a comprehensive

overview of the mathematical components of both thgeBian and classical GLM. For

13
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the case of the Bayesian GLM as presented in Se8ihnwve discuss the types of prior
distributions that are typically used in the GLM. Qouing in the Bayesian framework,
Section 3.5 is devoted to a special type of Bayesian ®iith we will refer to as a
conjugate generalized linear moddtinally, in Section 3.6 we will construct several
Bayesian generalized linear models for home run hittedstiaen apply the previously
developed subset selection procedure to determine the wittethe highest home run

hitting rate.

3.2 Literature Review

Brad Carlin once said that “perhaps the single most itapbrcontribution of
statistics to the field of scientific inquiry is thermgeral linear model” (Carlin and Louis
(2000)). Perhaps this would explain the well-developedatitee pertaining to the GLM.
For an introductory exposition on the classical GLMreneder is referred to the texts by
McCullagh and Nelder (1989); Fahrmeir and Tutz (1991); and Muo€uand Searle
(2001). Whereas the above-mentioned texts provide an adezpligiction of estimation
and hypothesis testing procedures for various parametéhe iIGLM setting, the SAS
help file gives a detailed discussion on how to obtanous statistics and model
checking diagnostics for the GLM. As is the caseclaksical linear models, several
authors have extended the GLM to include for latent blasa(random effects) in which
case we have generalized linear mixed models (GLMM’sesiBw and Clayton (1993)
laid the framework for the concept of GLMMs while Zh&iaudenmayer, Caoull, and
Wand (2004) have even developed Bayesian generalized lineed models, which are
ultimately a special case of what are commonly reteto ashierarchical generalized

linear models For an introductory text that gives a developmenthef hierarchical
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generalized linear model the reader is referred to Gel@anlin, Stern, and Rubin
(2004). For an advanced discussion of the hierarchical deeerdinear model see

Mallick, Dey, and Ghosh (2000). Besides these textsetder will find a discussion of
the hierarchical generalized linear model in West (1985) aberA(1988). Both of

these examine some of the theoretical and computhtissaes pertaining to the
hierarchical generalized linear model, but for a furtherusision of the various proposed
priors and methods for their implementation see Ibradanmh Laud (1991), Dellaportas

and Smith (1993), and Ghosh, Natarajan, Stroud, and Ch9i88].

3.3 Classical Generalized Linear Models
The Generalized Linear Model (GLM) is characterized bgdlcomponents: the

random component associated with the response vaYjaldesystematic component

related to the explanatory variables used in the predighotion, and a link function that

specifies the function &(Y). In the formulation of a GLM it is tacitly assum#tht the
underlying sampling distribution of the response varialfleis a member of the
exponential family and that conditioned offi the responsé$ are independent.

Generally, a member of the exponential family has aitlefunction of the form
t(vi18.09)=exda™ (@) y B -0(g)]+ d y o)} . (3.1)
where thed are unknown, but the(g)>0 are known. The paramete andgin

(3.1) are commonly referred to as the canonical disgersion (scale) parameters
respectively. It has been shown (McCullagh and &leldl972)) that the mean and

variance of a random variable having density (arg)related to its canonical and shape
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parameters by =E(Y |4)=1B(§) andvar(Y |g)=18(g) ). These results can be

easily derived by making use of the fact that

E{élog f(Y, |6¢)} “o

o6
and
) 2
E{a log f (ZYi |ei)}+ E{cﬂog f(Y Ié.’)} “o
26 od

Important special cases of the exponential fanmbude the binomial distributions with

success probabilitiesr =exp(g) /[ 1+ ex{§)] .a(¢) = and the Poisson distributions

with ratest, =exp(4) and scale parameter(¢) =1

As mentioned, the two other components of the GLM the systematic

component and the link function. The systematimponent of a GLM relates a vector

(7,.....17,) to the explanatory variables through a linear modekt x be a known
px1vector of regression coefficients gfida vector of unknown regression parameters.
Then each component gf=(r,,....1,) isn, =%’ B, i=1...,n.

Finally, the link function is what ‘links’ the systatic component to the random
components through = g(,ui )Where g is a known monotonic differentiable funetidt
follows that the functiony links the mearE(Yi |6{) to the explanatory variables through
the formulag ()= X' B, i=1...,n.If g(u)=u , as in the case of ordinary regression

with normally distributed’, then we say g is the identity link apd= 1. Moreover, in

the case where the canonical parameter is equathéo systematic component
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i.e.d =g(u)=% B, we say thay is acanonicallink. Examples of their use are found
in Poisson Loglinear models and Binomial Logit modefdternatively, since the mean
is a function of the canonical parameter; re&{ly |§) = 6(8), some authors such as
Gelfand and Ghosh (2000) find it more convenient to gener@iig by expressing the
canonical parameters as some functiaf the inner product™ 3.

That is,

f(y18)=exqa’ (@) yH ¥ 5)- { { X5))]} € vo) . (3.2)

where h is a strictly increasing, and a sufficiently smodtnction. Now having
expressed the likelihood in terms of the covarigiese can find estimates of these
parameters and in turn estimate the means foricéetzels.

The classical estimation procedure for GLMs is mmaxn likelihood where the

dispersion parameterg are assumed known and the design maNix(><l,~--, xq) has

rankp. The likelihood function is

L(B) Dexp{éa‘l(q){yih( )IJﬁ)_ b( |( gﬁ))}} (3.3)

Taking the partial of equation (3.3) with respecthe vectop gives the score vector

208E8) S @)y ( o ¥ ) v #6) 2.4

and the Fisher information matrix is

| (ﬂ):—EBZ[ngTL} XTDV(B)A%(B) X, (3.5)
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where D:Diag(a‘l(q),~--,a‘l(qon)),v(ﬁ Dlaq ( I( X,B)) b( I(l X,B)))

and A(pB) = Dlag( (X' B). (% '8))

Typically the maximum likelihood estima,ﬁe Is found by using some iterative

procedure such as Newton-Raphson or Fisher Scoring and th@eodness-of-fit statistic

for the model (Nelder et al. (1972); Agresti (2002)) is computedthermore, Lehmann
(1998) gives regularity conditions for whighis asymptoticallyN (,3, n’ll’l(ﬁ)), which

in turn provides the basis for most test statistiod confidence intervals.

3.4 Bayesian Generalized Linear Models
In the Bayesian paradigm a model having likelihaddhe form (3.2) would
require a prior for the unknown regression pararset@&lbert (1988) in his conjugate
GLM assigns non-informative priors to the regressiod scale parameters. Gelfand and

Ghosh (2000) mention that a commonly used choiceffais the multivariate normal;
that is,6 ~ N (,BO,Z), where B, and X are known. Assuming a multivariate normal gor

and taking the product of the likelihood and pieads to a posterior of the form

n(B1y) D ex ga‘l(w)[yh XB)-{ H{ X) )] (B-8) ‘1(ﬁ—ﬁo)}. (3.7)

The normalizing constant for (3.7) would need tofdnend using numerical integration
thus making the posterior analytically intractablén fact, there is no closed form
expression for either the posterior mean or vaganelowever, we can use a numerical
integration technique such as importance sampbngptculate these numbers or we can
use a Markov Chain Monte Carlo (MCMC) method sushtl@e Metropolis-Hastings

algorithm or the Gibbs sampler to generate sanfpdes the posteriors. In the complete
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or partial absence of prior information the experimenteay choose to use a
noninformative prior, thus making the posterior distribatiproportional to the
likelihood. Under these circumstances any Bayesianysisalwill be similar to a
likelihood analysis. However, the use of uniform pricmuld result in an improper
posterior (see e.qg. Ibrahim and Laud (1991)).

To complete the hierarchy of the GLM one would need tagmasa prior
distribution for the unknown covariance matrix. Itnentioned in Gelfand and Ghosh

(2000) that one option is to use an inverse Wishart disimibufor the unknown

covariance matrix,, symbolicallyz ~ IW(\P,V). Specifically, the prior o>, would

have the functional formz(>) O exp{—%tr (HJ Z’l)}|2|_5v. Taking the product of the

likelihood (3.7) and the prior ff gives a posterior

.z 1Y) 0o S o () x1 ¥6)- { o 24)]}

v+l

><|Z|_7 exp{——tr{[(l[,’ ﬁo)(ﬁ—ﬁo)T + W}Z‘l}} . (3.

There is no closed expression for the normalizegnstant which makes (3.9)
analytically intractable. Any posterior analysidliwneed to be handled through
numerical integration. Gelfand and Smith (1990y¥enahown that Gibbs sampling
proves to be a useful technique for generating &sripom (3.9). To implement this

procedure one would require the full conditionalstdbutions, ie. 77{(3|24,y)

and7{|X,y). The full conditional forz can be easily derived by mere inspection of

(3.9); thatis,Z| B,y ~ W |W+(8-4)(8-5,) v+ ]) . However,7{(8| ¥, y) turns out

to be a nonstandard distribution and is known aiplyo a multiplicative constant where
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7(B1Z.y) O ex iz:;a‘l(w)[yh( XB)-H{ { X8))|-(8-5) Z‘l(ﬁ—ﬁo)}-

In this case we would need to use a procedure such pSvadaejective sampling to
assist the Gibbs sampler. The reader should be remindedhth canonical parameter
appearing in the hierarchy is a parametric function efuthknown regressors and is not
assigned a prior distribution. Albert (1988), on the ofend, takes a much different
approach to the Bayesian GLM by assigning independent coejygairs to the
canonical parameters and in turn models the prior meémsSection 3.5 we give an

overview of Albert’'s conjugate GLM.

3.5 Conjugate Generalized Linear Models

Again, suppose that conditioned @h the random variabléé are independent
belonging to the exponential density (3.1). Instead afeiiog the canonical parameters
as @ = h(xiT,B) first stage, Albert (1988) considers them independent vatijugate

density
n(81m.A)=exdA[mg - g)+ K mA)]} (3.10)

Assuming regularity conditions h0|@,=a—qjﬂ(6ﬁ Im,A)dg ZJa%lT(Q ImA) &,

or j(/lim -AB(8))7(§ 1 m,}) & =0. Thus the hyperparameter is the prior mean
of the sampling meam, ie., m=E[6(g)]= §u]. Retuning to (3.10), the
hyperparameterd, is a precision parameter that reflects the stremjtinformation
regarding the prior means) and k(m,A) is a normalizing constant. Albert (1989)

notes that asAd approaches infinity the prior density (3.10) beesntoncentrated
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aboutm . Now, to obtain the posterior distribution we take piheduct of the likelihood
(3.1) and the conjugate density (3.10), in which case the ewmalitdistributions ofg

given hyperparameterg and m are independent having posterior density

n(@ly.mA)=exq(A+o)[ m(Ye- o)+ K n{ Ya+p)} @11

where the posterior mean ¢f, is m(y)=(yg+m)/(¢+A)and y=(y,....,y,).
Furthermore, if we combine the likelihood (3.1) with thgor density (3.10) and

integrate over the rang® we obtain the marginal or unconditional densityytor

(3.12)

To make this model in fact a GLM we assume thatsit of prior meafsn} satisfy the
modelg(m) = X 3. Unlike Gelfand and Ghosh (2000) who use relatiugformative
priors for their Bayesian GLM, Albert (1988) corsid a noninfomative prior fo3
andA = foralli in the fornvz(A,8)0(1+4)” (4> 0), implying that 8 is uniform.

Christiansen and Morris (1997) and Albert (1989)gest that the advantage of such an
exponential mixture that contains a scale parametethe ability to handle extra

variability or overdispersion. We will explore tbhse of this model in the next section.

3.6 A Bayesian Analysis of Home Run Hitters
Unquestionably, three of the most prolific home hitters of the 2% century are

all-stars Mark McGuire, Sammy Sosa, and Barry Bonttsis worthwhile to compare
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these three hitters as they are similar in physieal, sige, and career span. In his paper,
“A Bayesian Analysis of a Poisson Random Effects MddelHome Run Hitters,”
Albert (1992) develops three models used in ranking the tmne Inates or “true” rates of
12 of the greatest home run hitter’'s pre-1992. Before welibe development of any
hierarchical generalized linear model suggested in the woikworth mentioning that
there exist several examples in the literature ofeBayn Poisson regression. In an
example taken from Lindley (1965), El-Sayyad (1973) used a Bay&iiM to model
the counts of triplets born in Norway between the yd&11 and 1940. The counts were

assumed to be distributed Poissaln) (with the usual loglinear link expressed in terms of
the interval of time at which the counts were recordedlog(4) =8, + Btime. A

Jeffreys’ prior was used for the unknown regressionrpaters. In another example
appearing in Gelman et al. (2004), the authors use a Heaaréoisson regression to

analyze police stops in New York City.

3.6.1 Poisson Sampling Model

We consider the number of home runs hit per seasonhwie will denote,, as
being distributed binomial with parameteys(the total number of at-bats for seaspn

andp being the probability of hitting a home run during a gilatgappearance. Sinpe

is small, we can approximate the distribution pby a Poisson distribution with
meart ), wherey is the player’s true home run rate over his caréfery. represents the
proportion of home runs hit i) at-bats for a particular player, then the sampling t\ensi

of y.is given by
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gty ( t y)tiyi

(ty)

If the observed proportiong,,..., Y, for each player are assumed independent, then the

f(yly)= ty =0,1,2,.. (3.13)

likelihood is given by
L(A]y)De"2by2H (3.14)

If yis assigned the Jaynes priur(,y) =y, then the resulting posterior is of the gamma

form with shape parameter= Ztiyi and scale parametgr= Zti . Bratcher and Stamey
(2000) mention that the Jaynes prior can be coresdéhe limiting form of a non-

informative proper conjugate gamma prior, ie- Gamme( O,§). The resulting posterior

mean and standard deviation Blg/|y]=> ty/> t, SD[ylﬂ;/Zty/z t,

respectively. Note that the posterior mean is jagb of career home runs to career at-

bats.

3.6.2 Poisson Conjugate Model
As was the case in Albert (1992) the Poisson maitbla noninformative prior is

not a good fit to the home run data pertaininghe these three batters. The model

assumes thﬁ[ y |y] = var[\/f y |y] = y; however when comparing the sample mean of

{} versus the sample variance{qﬁ yi} for each batter it is clear that the variability of

the home run data is much higher than predictethbyPoisson model. Table 5 gives a

summary.
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Table 5. Point Estimates for the Hitters

Career HRCareer ABHR/AB Mean Variance

McGuire 583 6187 0.09428.0938 0.5821
Bonds 703 9098 0.0772¥.0797 0.4016
Sosa 574 8021 0.071%60663 0.57

The column entitled ‘Mean’ gives the sample mea{rylc}f, whereas the column entitled

‘Variance’ gives the sample variance{g(t_iyi} . The reader will find that the variance

estimate is much higher than the rate estimatengjithe indication that there may be
overdispersion. Correcting for this overdispersionuse a mixture distribution having
an additional scale parameter as in Albert (1989). Intiaddive do not assume that the
rate parameter in Poisson is constant but allow #tes parameter to differ for each year.

Expressing (3.13) as an exponential of the log likelihoodawwe at a density of the

o

:exp{t-[y |09W—V]_ log(t y )}
=exp{ @[y, -b(4)]-c(y @)}

where the canonical parametefl is equal to logy,, the cumulant function

form (3.1).

isb(8)=exp(g), and the scale parametet, is According to (3.10) the prior distribution
for g is m(g|mA)O exp{)L (ms,? -é )} , relating this to the Poisson rate

givesy, |A,m~Gammgimj ). In this setting,m, the mean of the marginal
distribution, would represent a batter’s true rate dnds an additional season-specific

parameter, originally suggested by West (1985), that can rtioglelxtra variation in the
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data. The scale parameter is particularly importarit iasused to adjust for the aberrant
seasons and identify the seasons that are inconswgitbnthe main body of data. To
make this a hierarchical model we assign a uniform Higion to the prior mean and a
chi squared distribution (see e.g. West, 1985) to the scalenga The hierarchical

Poisson regression can be summarized as

Y, |y ~ Poisson ;1)
yImA ~gammg m A)
m~ Uniform(.01,.1§

A~ x*(p).
The reader will notice that the degrees of freedomherchi squared distribution are left
unspecified. As previously mentioned, the shape paramefsraring in the conjugate
prior is used to downweight the inconsistent home ruarsyghus making the degrees of
freedom potentially very influential. Table 6 gives ifdidgo the sensitivity of the

posterior analysis of the true ratewith respect to this scale parameter.

Table 6. Approximate Posterior Moments of the True Rate

Chi squared (10) Chi squared (30) @ilared (100)

Mean SD PIC Mean SD PIC Mean SD PIC

McGuirg 0.11430.016310.717160.099960.010950.880040.094690.00696 0.9757
Bonds| 0.09887.014480.223480.082930.008610.109480.077550.005370.02424
Sosa [ 0.0860D.01464 0.06060.070960.008770.0107$0.067610.005490.00064

It is evident from Table 6 that as the scale paramétacreases the posterior
standard deviations fan decrease and the differences between the probabititysion
criterions (the PICs) increase. This separation antbaditters’ rates is due in part to
the down weighting of the inconsistent years as sedheirposterior mean of Sammy

Sosa’s true rate. Sosa’s observed rate was found t07he(Table 5) but using the
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hierarchical model produces an estimate of .067. As foa¢heal selected subset, using
a penalty constant =2 we conclude that McGwire is the ‘best’ hitter; eaclbs&i
contains only McGwire. Restricting our attention to thedels with a larger scale
parameter gives a more robust selection procedure ashtiiee of a larger penalty
constant has little effect.

Although the hierarchical conjugate model is useful in magdelne rates of each
hitter it is generally believed that a player’s hittingligbincreases until about the middle
of his career, reaches a peak, and declines towardsdlod bis career. This idea is well

supported by the career of Sammy Sosa (see, Table 7).

Table 7. Sosa’s Career Total Home Runs and At-bats

At-bats Home runs Rate
(AB) (HR) (HR/AB)
183 4 0.021858
532 15 0.028195
316 10 0.031646
262 8 0.030534
598 33 0.055184
426 25 0.058685
564 36 0.06383
498 40 0.080321
642 36 0.056075
643 66 0.102644
625 63 0.1008
604 50 0.082781
577 64 0.110919
556 49 0.088129
517 40 0.077369

478 35 0.073222
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It appears as if his career rates can be described wjtladratic having vertex

around his 19 season. With this in mind, we provide an example of a meaéstic

model where the true rate for ti year satisfies a log-linear model.

3.6.3 Quadratic Linear Model
In the previous model we assumed that a player’s treevas constant; however,
in order to adequately represent a player’'s maturatiowilese a quadratic log-linear

model to represent the yearly rates. In our hierarchmaugate model we assume that
the true rate for thé"™ year can be expressedi@asm = 3, + B,i+ B,i°. The proposed

hierarchical model is similar to Albert (1992) in that agsign independent uniform
distributions to the regression coefficients, but natfhan assigning a noninformative

prior to the scale parameter we assign it a Chi squareiddi©on. In summary,

y, |y ~ Poissorf )

yilm.A ~gammd ™ .} )

A= x*(p)

log(m) = B, +iB,+i°B,

By, B, ~Uniform(-1,) andB, ~Uniform(- 6,F

We contrast this model with two other hierarchical msdal conjugate model
having no quadratic systematic component, and a hierardBidal with a quadratic
systematic component and the usual canonical link. if$teof the two alternatives is
identical to the conjugate model presented in the previou®seghereas the latter is
similar to both Albert’s (1992) quasilikelihood quadratic moded &elfand & Ghosh's

(2000) hierarchical GLM. The hierarchical GLM is as folkow
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y, | ¥ ~ Poissor{ )
log(y;) =B, +iB,+i* 3,
(8, 8., 5,) 0 MVN(0,100a)

Using WIinBUGS we compute the Deviance Information QatefDIC) for each
model and find the ‘better-fitting’ model to be the eagte hierarchical model with a
guadratic systematic component; however, the DIC isittemto the degrees of freedom
in the Chi squared distribution. The model with the secondllest DIC was the non-
conjugate hierarchical quadratic, which means that therbiecal conjugate model with
no quadratic systematic component has the highest DI@& abhity of the conjugate
hierarchical model to outperform the non-conjugate hiareat model is not surprising
since the former contains a scale parameter to dampeeffdes of the inconsistent
years. Furthermore, the magnitude of the scale paramiste reflects the strength of
one’s prior belief about the means. Now we will use ¢onjugate hierarchical quadratic

model to construct a subset to determine which year wessSbest’.

Table 8. Probability Inclusion Criterions for Sammy &d®ars 1998-2001

Year PIC
1998 0.0168
1999 0.21602
2000 0.35475
2001 0.41917

Comparing these PIC's to the criterion consti#ift+1) when c=3we have a

subset containing the years 2000 and 2001. Recall that Sosaivetbfiome run was
highest in 2001 but he hit his most home runs in 1998. Onaretn for the PIC

being so low in 1998 is that in the previous year his homehitting rate was only 5%
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and the large value of 66 is assumed to be a result giisgnvariability. If we increase
the penalty constant to= 4then we would include 1999. In that year he hit at the same

rate as in the previous year when he hit his most hange r



CHAPTER FOUR

Disease Mapping Basics

4.1 Introduction

Cartography the science of map-making, dates back over 5000 years dlge to
ancient Egyptian and Mesopotamian civilizations. Thaseient civilizations used
detailed sketches of their land for displaying human agtiviccording to Walter (2000)
there are two main areas of cartograpgneralandthematic The intent of general
cartography is to provide maps of several geographic phenoifeega a globe).
Thematic cartography aims to create maps that disgpayial patterns and or spatial
relationships between certain phenomena. Thematiography, began somewhere
around the early 19century with the first maps being case event mapgiisptayed the
locations of crime, weather related events, and eviiyinéectious diseases. The maps
displaying the locations of cases of infectious diseasm® eventually coinedisease
maps

The disease maps of the ™ @entury were mostly used for displaying the
geographic distribution and spatial patterns of infectidigsases (e.g. yellow fever in
New York or cholera in London). Dr. John Snow (1855) usgot mapgcase event
maps) to reveal how cholera was spread through contedimater sources in London.
Generally, the purpose of these spot maps is to reveaitlastgring of a disease, unlike
the disease maps created in the latter part of tfleed®tury that are more etiological in
purpose and contained information regarding chronic non infectiseases like cancer.

Haviland (1875) is considered to be one of the early prsnafedisease maps for cancer

30



31

and heart disease. Using the census data for London ates Waviland was able to
account for population exposure. He incorporated this populaxposure by calculating
adjusted regional rates of these chronic disease®sdence he was trying to assess the
geographic distribution of what would later be called ‘dserisk’ which is the focus of
most of today’s disease atlases. We will revisitdbacept of adjusted rates in a later
section with a presentation of two standard methots;nal and external.

In Sections 4.2 and 4.3 of this chapter we will give aergew of the types of
graphical representations used in disease mapping, provideaither with a summary of
classical and non-parametric techniques used in assesdin@gma furnish the reader
with an extensive background of the current Bayesian rdsthsed in disease mapping.
Continuing on in Section 4.4 we will compare and contsaste of the current Bayesian
spatial models appearing in the literature with a newsaasonjugate spatial models via
an example pertaining to the elevated risk of lip cant&cottish counties. Finally, in
Section 4.5 we will extend many of the basic conceptdisgase mapping to assess
elevated crime rates. Our crime data set consistewfts of habitat burglary 911 calls
in the Waco community for the year 2000. We will constauenodel using covariates
obtained from the United States Census Bureau and usmaolkel in conjunction with
the previously presented subset selection procedure to agsebgegion has the highest

rate of habitat burglaries.

4.2 Disease Mapping Basics
Succinctly, the goal of any map is to communicate datsotme audience.
However, the choices of what types of maps and whjpbst of data to use merit great

attention. The reason being is that we use these toagse insight to the geographic
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variations of disease risks and to detect not only apatistering or non-random trends,
but also putative sources of disease risk. Ultimatedyctibice of what map to use will
be determined by the availability of data. In the negtisn we will briefly review some

of the common types of disease maps and their purpdsmsa thorough treatment we

recommend Waller & Gotway (2004).

4.2.1 Types of Disease Maps

Typically disease maps are regional in that the aocgeesponding to the study
population can be partitioned into finitely many smatiegions usually referred to as
countiesor sometimesreal units The major distinction of disease maps followsrfro
whether or not we have the exact locations of thetsvelf the exact locations or points
are known, as in case-event data, we simply plolotegions using some type of symbol.
The default symbol for most software packages is adfitlet. In such situations, the
point map is often referred to as a dot map. Clearketineaps would be used to monitor
the spread of infectious diseases and can also be usefigntifying potential point
sources of disease outbreaks. As mentioned earliedobn Snow used a point map at
the local street level to identify the putative sowsteholera. Because these maps fail to
take into account population density they can be quite acislg. After all, larger
regions tend to more populated. To rectify this problenmymapidemiologists use a
graduated color map.

Suppose that the attribute values to be mapped are ratiolue but rather
summaries associated with the actual areal units;ighissually the result of medical
record confidentiality. Moreover these summaries aften the aggregate counts of

disease occurrence for each region. There areadawaps used to accommodate this
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type of data. One of which is the classed symbol map. thisr map a symbol
corresponding to a class or collection of attributiies is plotted in the center of each
region. A slight variation of this map is the graduasgchbol map where the same
symbol (usually a circle) varies with the attributéueaor class of attribute values. It is
common for the class sizes associated with the atitritvalues to be dissimilar in
magnitude making it necessary to use a proportional symapl In which case, the size
of the symbol plotted for each is proportional to mmegnitude of the class in which that
region’s attribute values falls into. These symbolpsalthough useful in some
situations can be useless when the study area comtglethora of regions; especially
when the regions are very different in size and arg spatially related. By spatially
related we mean regions that are closer tend to havarsattribute values. In these
situations as well as others most would find color toabeetter method of visual
discernment than symbols. With that in mind it issmoprise that choropleth maps are
the most common type of map used for the display of dedal
In general a choropleth map uses different color and rpat@mbinations to

depict different values of the attribute variable cepending to each region. There are
both classed and un-classed choropleth maps. The clakseopleth maps assign to
each region a possibly non-unique color correspondingnie of finitely many non-
overlapping intervals that are associated with a sattobute values. Alternatively, for
the unclassed choropleth maps each region is assignaduge color among a continuum
and no two regions share precisely the same coloe fdllowing figure is a classed
choropleth map of standard morbidity ratios for the $&lottp cancer data appearing in

Clayton and Kaldor (1987).
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Figurel. Choropleth map of the Scottish lip cancer. @ gives the standard
morbidity ratios SMR = observed /expected) for the 56 counties of Scotland giting
years 1975-1980. The darker shade of blue indicates a highemeidgte. Note the
higher incidence rate among the northern coastlines higther incidence is attributable
to the higher percentage of agriculture workers, namgefman.

Like most maps these choropleth maps certainly have ¢héics; Tukey once
offered the advice, “Pray’ (Tukey 1988, p.116). In fact manytogaaphers and
epidemiologist find choropleth maps relatively crude.rti®aarly because when you
represent a region with only one color you may faitapture the changing disease risk,
especially when the disease varies continuously overesp&ut there is a trade off
between statistical stability of disease risk estamaand geographic resolution. We
address these in Section 4.2.3.

For illustrative purposes (Figure 1) we chose to map dtendardized

morbidity/mortality ratios (SMR). This ratio of olysed to expected purportedly
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assesses the geographic distribution of disease risk matimg) regions with elevated
risks. In the next section we present the reader aliénnative quantities used in disease

mapping that are also useful in assessing disease risk.

4.2.2 Disease Risk

Waller and Gotway (2004) define teuhisease riskas the probability of a person
contracting the disease within a specified time periddey go on to say that “disease
risk is a dynamic, unobservable quantity that can beifraddoy characteristics such as
age, gender, occupation, and diet” (Walter and Gotway 2004, pi#se characteristics
are called risk factors. The identification of risktés is a central role in statistical
epidemiology and is briefly addressed in Section 4.3 butnéw we focus on what
guantities to actually map. Having defined risk in terms obability we are motivated
to use statistical methods in the construction of chetbpimaps. That being said,
primitive choropleth maps were often maps displaying coani$ proportions. As
mentioned earlier a common belief is that larger unegions tend to be more densely
populated, therefore counts fail to capture the notionelefvated risk. Instead
epidemiologists began to map rates and proportionsaust be noted that the term rate
used in the epidemiological nomenclature refers to tie edthe number of occurrences
of a particular event (e.g. incidence of disease ortafity) per unit time; whereas, a
statistical rate is the usual ratio of the numbeo@furrences to the number of people at
risk. Of course one might be interested in otherrpatars besides average disease risk.
For example, one could be interested in comparingiske between individuals with and
without a certain exposure to a disease or even diffepgosure levels. Theselative

risks are typically measured with risk ratios or risk difieces. Incidentally, the
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statistical techniques used to estimate relative askssimilar to those used to estimate
disease risk. We now proceed to one of the earliethads used to estimate disease
risk.

Assume that for each areal unitl,...,nwe have an associated count of the
number of occurrences of a particular event denoted &y well as the total number of

people at rislN,. We could assume the data follows a binomial prolvploiodel, that is

ind.

assum& | p ~ Bin( N, p) where p represents the probability of contracting the

disease in areia It is common knowledge that most non-infectioisedses affect people
of certain ages and genders disproportionately.ortter to make rates from different
areal units comparable we would need to removeetfexts of known risk factors by
adjusting the rates accordingly. A very simple, steaightforward way to correct for a
known risk factor is to stratify. We could divideach areal unit into stratums

] =1,...,J so that we havenx Jtotal units. We denote the associated diseasefarsk

areai and stratum as p; so that our data is now of the form

ind.
Y 1R ~Bin(N.p). (4.1)
The classical estimation procedure for estimatimgp;'s is maximum likelihood with
the estimators taking on the fofin=Y / N . This estimation procedure works well in

the limiting case but for a rare disease the datesually too sparse to get stable estimates

of thep, 's. This leads to the proportionality assumption

(4.2)



37

so that the effect of being in area a product of each of the strata-speci@terence
odds p, /(1— P )and the commondds ratio8 , for that area. The advantage of such an

assumption (4.2) is that we have reduced the numlentities to estimate per area from

Jto 1. However, Wakefield, Best, and Waller (20@@ntion that the proportionality

assumption is strong and must be checked. Theymeend plotting|E)ij /(1— qu )versus

P, /(1— f)j) for each areato assess this proportionality.

A variety of parameters may be estimated in theiial model (Wakefield,
Best, and Waller, 2000). For example, the refexemctlds may be estimated
simultaneously with the common odds ratios (e.@qyth 1996). Alternatively we can
fix the reference odds via a reference set (extstaadardization) or use the overall odds

for the study region (internal standardizationattis,

b, 2

(1—6,-) Z(NJ _Yi).

Now that thep, are treated as known quantities, the MLEs of thieroon odds ratios
6 may be estimated via the logistic regression model

logit p; =logdg +y, 4.3)
where they, = Iog{ P, / (1— o )} are known offsets. In model (4.3) thig are treated as

known quantities thus (4.3) does not recognizeutiertainty iny;, which according to

Wakefield, Best, and Waller (2000) this may be abfam if these quantities are not
estimated from extensive data. In ecological regjos and hypothesis generation studies

we may wish to assume a GLM on the log of the comowads ratio i.e.
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logg =X."B+a, (4.4)
where S is a kx1vector of regression coefficients. Breslow and DESB{, Chapter 4)
caution using internal standardization with known offs@giquation (4.3)) since the
priori estimation of y; may remove some of the effect of the exposyreFor example,
individuals of a certain race may tend to live in aregl large values oX. .

Admittedly the structure of this binomial model (4.1)-(4digtseemingly elegant

and readily analyzable in several statistical packdgesi suffers from one major flaw:
its inability to adequately handle overdisperion in diata (i.e.var(Yij ) >N R (1— p).
This overdispersion may have both spatstuctured heterogenejtyand non-spatial

(unstructured heterogenejtgomponents and may arise from unmeasured ridorfac

Also, compared to other potential models the biradfoirmulation is not computationally

convenient since the aggregation of counts ovestra&ums Y =Z,- Y ) is not hardly
recognizable. There are alternatives to the binbmbdel. Recall from Chapter 3 and
Albert (1992) that in the case whep is small (rare disease) we may approximate the
binomial distribution (4.1) by the Poisson disttibnY; ~ Poissmﬁ N x 9). Typically

we assume that the disease risk associated wighi @med stratuny is proportional the
disease risk over stratym Specifically,

P =4xn, (4.5)
where 8 corresponds to the relative risk of disease ia avéth respect to the reference

ratep; in each stratum. Wakefield, Best, and Waller (0point out that a great
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advantage of the Poisson approximation is that, wherbicach with the proportionality

assumption (4.5), we may collapse over strata to obtain

Y, ~ Poissol{ E x4 ), &5
whereY, =3 Y andE =) N, g is theexpected numbenf cases in arelwith strata-

specific reference ratep,. Banerjee, Carlin, and Gelfand (2004, Chapter 5) reféreto

use of reference rates in the calculation of the eggenumber of cases asternal
standardization Alternatively, if no set reference rates areilatée Banerjee, Carlin,

and Gelfand (2004) recommend computing the expected numbesex bg using an

overall rate computed from the data, Ee.= NT= N (Z_) They refer to this process

Vi
ZiNi
asinternal standardization It is easily shown that the standard maximum likedih

estimate of the relative risf, under the Poisson assumptions of is the
SMR,é =Y,/E . Clayton and Kaldor (1987) give a very technical disiars of why
taken together{éi,i =1,... ,n} are not necessarily the best estimate¢@)f. However,

for a thorough but non-technical discussion of the drakdb#o using SMR as a measure
of relative risk we refer the reader to Lawson (2003pcHa or Waller and Gotway
(2004, chap. 4). We give a few of those drawbacks. Thé¢ atersning consequence of
using SMRS is that zero SMRs do not distinguish variatiaime expected counts. Also
we point out that SMRs being ratio-based estimatagsnatoriously unstable since the
variability in the estimated rates depends on populatba siConsequently, the rates
corresponding to larger areal units will be bettemestted than the rates corresponding to

the smaller areal units, and this may obscure spatitdrpat Similarly, rates based on
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small populations tend to be artificially elevated daehe relatively small computed
expected count appearing in the denominator. These inflated do not necessarily
reflect an increase in relative risk but a lack of d¥faller and Gotway (2004) refer to
this as thesmall number problem There have been several methods proposed to
overcome the small number problem. One solution to ridl syumber problem is to
aggregate the counts of smaller regions; however, we fesolution and give up
geographic information. Another solution is to use a Gafve map, one that
compares each rate or in the case of a probability thag-value associated with each
rate to a common measure (see e.g., Choynawski, 1958allyFwe could use a
technique similar to both scatter plot smoothing found gnegsion and weighted moving

average methods used in time series caljedial smoothing

4.2.3 Spatial Smoothing

There are an abundance of spatial smoothers appeatimg literature. Although
some are relatively informal or nonparametric whitbeos are just the antithesis, they
share the same goal: produce more stable risk estithateshe usual MLEs or SMRs.
According to Waller and Gotway (2004, p.87), “the basic idea ‘borrow’ information
from neighboring regions to produce a better (i.e. nstable and ‘less noisy’ estimate)
of the risk associated with each region and thus sepan#t the ‘signal’ (i.e. spatial
pattern) from the noise.” The nonparametric smoottengniques can be categorized as
either interpolation methods or kernel regression. Hewe “when substantive
hypotheses and/or greater amounts of prior informatiomzagable” (Lawson, Browne,
and Rodeiro 2003, p.6), it may be appropriate to employ a naadeld approach to

estimating local relative risks. We will discuss thee of a model based procedure for
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spatial smoothing later in this section, but for now westder a nonparametric approach
called thdocally weighted average procedure

As its name suggests the locally weighted average procesun&ders the
observed counts of theeighboringregions to estimate local relative risks. Borrayin

notation from Waller and Gotway (2004, chap. 4) the inaatisk estimate for the™

area takes on the general fafm z,-Wij r /zl_wj . In the preceding statementcan be

either the SMR or percentage of occurre(ry;e! Nj) of the j™ neighbor of areawhile

the weights take on the form

1ifi andj share the same bounda
ij {

0 otherwise
In matrix form {Wij} constitute aspatial proximity matrixor adjacency matrix Rather

than using a common boundary as a neighborhooeériont we could have used the
distance as measured by some metric (Euclideancadx absolute value) between the

centroids of each area. That is,

W ={ g
where d, represents the distance between the centroid af aed the centroid of arga
The latter approach to smoothing is often callezk @imoothing. The locally weighted
average procedure presented requires no distrifalt@ssumptions for the data. If we

are willing to assume some sort of parametric idhistion then we may use a type of

nonparametric regression procedure that utilizeseteveights.

If Y,,...Y,are data collected from the probability distributid (y,|g), then

Brillinger (1990) provides a general method foridag estimators by maximizing a
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weighted log likelihood function. That is, a set ofireators for {§}is found by
maximizing

L(O)=2,w f(y16). (4.6)
If the data are normally distributed with unknowmans & or distributed as Poisson

with unknown ratesd then the estimates found from maximizing (4.6) takethe same

form as the locally weighted averages, disregartlegactual weights. This speaks to
the theoretical cohesion that is gained by usirg dhove estimation procedure. As
hinted above, what is dissimilar about the two sthing procedures is the specification
of the weights. In this semi-parametric procedueeuse a kernel function in conjunction
with the spatial locations of the centroids to imidhe calculation of the weights. Thus

we define the weights to be
Vvij = kern[ﬁj ,
b

where the kernel functiokern(), is a bivariate probability density function thist

symmetric about the origin and integrates to 1 ekerdomain. The parametercalled
thebandwith controls the amount of smoothing.

We conclude this subsection with a somewhat theatgustification for the use
of Bayesian methodology in disease mapping. Alse, mention that the current
literature is saturated with applications of Bagasimethods in public health data.
Andrew Lawson (Lawson, 2001; Lawson, Biggeri, BdlgniLesaffre, Viel, Bertollini,
2003) and Elliot, Wakefield, Best, and Briggs (2P@&re some of the first to publish

texts consisting of a compilation of articles tlaaticulate the advantages of Bayesian
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models in disease maps while Lawson and Gotway (2004) sdlowdd with a self-
contained introductory text.

We begin our motivation by assuming the dat§d are distributed as Poisson
with meand=E,§ , where the unknown parametérrepresents the risk of disease for the
i"™ area. It should be noted that the concept of comditimdependence implies that any
spatial correlation observed in the data is a funatfcthe unknown risk§ .

Our development is similar to Marshall (1991) but we ugeeted cases instead

of population size to construct our estimates of redatisk. We define the prior mean

2

and variance o] to be E[§] =m, andvar(§)=0;. If r, =Y,/E then the expected rate
is equivalent to the prior mean, thatEs{ri |6{] =@ and the prior variance is proportional
to the expected disease incidence/prevalenceyaiér |6)=§ /E. Thus the prior
mean and prior variance of the ratesre E [r]=m, andvar (r)=0; +m, /E.

According to Marshall (1991) the best linear Bayes estmaf & derived from

minimizing expected total squared-error loss is
§=Cr+(1-G)m,. (4.7)
The constartt in Equation 4.7, which is called tistarinkage factaris the ratio of prior

variance to the data varianceGy= ajl/(ag +m, / E) . When the data is sparse, Ee.is

negligible andC, — 0. If the prior variance is diminutive, the Bayessimator converges
to the prior mean. Alternatively, in the absenégror information or when the prior
variance for the relative risks is considerable shenkage factor approaches one, i.e.

C - land the Bayes estimator shrinks towards the obdeate.
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Before the advent of WinBUGS most investigators would haken arempirical
Bayes(EB) approach like that of Clayton and Kaldor (1987) whive prior mean and
variance of the relative risks are estimated from diata and substituted back in the
likelihood in order to derive the posterior distributiohtbe risks. To avoid over-
specification Marshall (1991) assumed a global prior medrglbal prior variance and
used method of moments to find estimates for these ptemmeCaution is warranted
because the prior variance estimate could be negateunt data often has excess
variability not accounted for by the Poisson model. &¥eount for this overdispersion
by defining an additional structure for tregional relative risksThis in turn requires a
prior structure for the mean and variance of the regioeative risks. Clayton and
Kaldor (1987) used various procedures like maximum likelihoochason and the EM
algorithm to estimate these hyperparameters. The ina&stigould of course assign
hyperpriors to these hyperparameters, consequently takiagudly-Bayesian approach.
The reader will find that the additional structure compgsthe Bayesian framework
offers a richer framework for modeling covariate eeahd spatial correlation. Due its
dominance in the literature we save discussion of the Bayesian approach used in

estimating relative risks  and disease mapping for  the apteh.



CHAPTER FIVE

Hierarchical Bayesian Models for Disease Mapping

5.1 Introduction
Our discussion of hierarchical Bayesian modeling proceduwed in disease

mapping begins by assuming that the aggregate count for esdhuait is distributed as

Poisson with unknown relative rigk, that isY; |§ ~ PoissoffE4). At this point it is

customary to either specify a joint distribution fiwetrelative risks, similarly a joint
distribution on some function of the relative risekswe can assume that the relative risks
satisfy some generalized linear model consisting of Wis#d and random effects.
Clayton and Kaldor (1987) were the first to specify atjaistribution of the relative
risks. They used empirical Bayes (EB) to estimatentiperparameters from the marginal
distributions of the aggregate counts. There are a nuofbgossibilities for the joint
distribution. Tsutakawa, 1985 assumed a multivariate nodistribution for the logits
of disease risk. Clayton and Kaldor (1987) pioneered thefusenjugacy. The use of
the conjugate gamma distribution for the relative riglssilts in the data being distributed
as negative binomial. This model provides straightforvestimates of the shape and
scale parameters. Despite the simplicity of usingrgugate prior, Clayton and Kaldor
(1987) preferred a multivariate log-normal distribution fog telative risks. The reason
being is that the latter has the ability to incorposgtatial correlation. In fact, they even
modeled the log relative risks with theonditional autoregressiv§CAR) model
originally suggested by Besag (1974). Wakefield, Best, W#&H600) note the

empirical Bayes methods suffer from a number of &tioins. In particular, the estimate

45
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of relative risk fail to reflect the uncertainty aseded with the various hyperparameters.
Consequently, these estimates are over-precise. Tduklvprompt Besag, York, and
Mollié (1991) to later extend these CAR models to a fBlyesian setting using Markov

chain Monte Carlo algorithms.

5.2 Second Stage Hierarchical Generalized LinearModels for Disease Mapping

We begin with the fully Bayesian approach to spatiabatimng presented in

seminal papers by Besag, York, and Mollié (1991) and latert@iagnd Bernardinelli
(1992). Intending to model the extra-variability usually présin areal unit data the
authors utilized a second stage model incorporating botirkmovariates and random
effects. Rather than explicitly assigning a distributio the log relative risks, Besag et
al. (1991) assumed that the log relative risks satisfi@drarchical Bayesian generalized

linear spatial model. Considering the first stage model the data,

Y, | ~ Poissof E4 ) where § is the unknown relative risk for thié areal unit we have

shown in Section 3.2 of Chapter 3 that the canonical lokthe Poisson model
islog(g). Since the relative risks must be positive it seeessonable to use this
canonical link in the formulation of the hierarchical gatieed linear spatial model. In
the works of Besag et al. (1995), Mollié (1996), WakefieldstBand Waller (2003) as

well as numerous others (for a list of referencessesh, Natarajan, Waller, and Kim,

1999) the log relative risks are modeled as the sum of awdom components and the
inner product of akx1 vector of explanatory variableX' with a kx1 vector or
regression coefficienf®. Symbolically we have

log(§)=XB+U, +V, (5.1)
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where the sum of the last two terms is often refetoeas aconvolution Gaussian prior
(Mollié, 1996). The last component in (5.1) is used to maa®l unstructured
heterogeneity among the log-relative risks. In ordembdel the similarity of these
contributions to log relative risks we usually assign athangeable Gaussian prior of

the formv ~ MVN(O,UVZI). Most investigators (Waller and Gotway 2004, 124

Banerjee, Carlin, and Gelfand 2004, p. 164) wikigis a somewhat vague inverse

gamma hyperprior for the variance. Likewise, if @press the distribution &f in terms
of precision (i.e. the reciproca,lzl/av2 ) we assign a gamma distribution. As for the
other random component, we cannot overemphasize the importance of its prior
specification.

There are two common approaches to modeling theialipa structured
contribution to the log-relative risks . We mayesiby the joint distribution otJ :{Ui} :
or we can assume that the set of full conditionalistriéutions
U;|U; =u;,j#iji=1.. N define a Markov random field (MRF). Besag (1974)
reconciles the two approaches by exploitBigpok’s Lemma(1964); however, it was
Geman and Geman (1984) that provide the next @risiep that allows us to use a Gibbs
sampler to generate from the joint posterior Wfuniquely determined by the full
conditionals. Wakefield, Best, and Waller (2000,140-114) parallel the two approaches

for the case wheb is multivariate normal and we have a Gaussian MRF.

Suppose that the joint distribution of the randmmatial components is

multivariate normal with zero mean vector and cirare structurg” Y, where is an

N x N correlation matrix. We use the familiar notatibr MVN(ON Nop Z). If we let
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Q=X"and defineQ; to be the(i, j) entry of the matrixQ then using properties of the

multivariate normal (e.g. Searle, Casella, and McChlld991) we can derive the set of
full conditional distributions

N

Ui|Uj=uj,j¢i~N[ V\(jq,auij, (5.2)

=
Wherew; =0, w, =-Q /Q ,andD, =Q . Besag (1974) refers to the specification in
(5.2) as arautonormal modellt is interesting to note that if we sef =1/(N-1)then
conditional mean in (5.2) is an average of thei# j. Wakefield, Best, and Waller
(2000) show that the two approaches are related througalétienshipQ = D™ (1 -W)

whereD is a diagonal matrix with diagonal elemebis Clearly, once the elements of

the correlation matriX_ have been specified, as in the joint formulation, thestigator
can produce the elements of the weight matwk and the diagonal matriD.
Alternatively, if the investigator specifiad andD then the correlation matrix fdJy can
be easily obtained from elementary matrix computatidhss worth mentioning that
“convenient” choices o¥W andD can lead to a joint model that is not well definedegith
becauseQ is singular or). is not symmetric (see e.g. Banerjee, Carlin, anda@dlf
2004, pp.79-81). This has lead some to use the joint formmlati point-referenced
model of the random componemdsnstead of the conditional model approach.

The spatial components in (5.1) model extra-Poissoaldity in the log-relative
risks that varies “locally”; that is, areal units iloge proximity will tend to have similar
risks. The spatial dependencies among these risks may deletiahrough the off-

diagonal terms of the correlation matk. For example, we can assume that the spatial



49

dependence between two areal units is a function of thehydistanced. , between the

ij 1
population-averaged centroids of areasdj. The underlying stochastic process is said
to be isotropic since the covariogram (covariance function) betweealaunits is a

function of the length ¢;) of the vector that separates any two units. Raftey a

Banfield (1991) suggest a one-parameter exponential funchian dan be used to
calculate the elements @f . Diggle, Tawn, and Moyeed (1998) discuss using a two-
parameter family called the Matérn class (Matérn, 19868) tises a modified Bessel
function for calculating the correlations.

Banerjee, Carlin, and Gelfand (2004, p.162) remark that while gossible joint
models forU may seem sensible, they turn out to be very diffitu fit even in the
isotropic case, due to the number of matrix inversioequired. Furthermore,
intercentroidal distance may be appropriate when thed angts are of roughly equal size.
However, it may make little sense, especially whenidgakith very irregular spatial
units. As a result, it is customary in most hierardracelyses of areal unit data to adopt
a conditional formulation ot that makes use of the same adjacency matrix presented
with the locally weighted average spatial smoothek aSection 4.2.3. In fact, from a

spatial perspective we would think that the full conditioshatribution for U, should
only depend upon the neighbors of its associated aredJsing the notationd, to

represent the adopted neighborhood structure (e.g., theetimg w;, =1or O depending
of whether andj are adjacent or not), we specify the full conditiaatributions for the
random componentd; such thatﬂ(ui lu,i# j) = ﬂ(q lu ,j0a ) By this notation we

mean that the full conditional fod,is identical to the conditional distribution &f;is
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conditioned only on the values of its neighbors. therautonormal model in (5.2) this
would suggest that the conditional meanlyf is a linear combination of the spatial
components of the neighboring areal units. Moreovercaremake the conditional mean
a truly weighted average by using the weights of the prelyiakefined adjacency matrix.

That is, if we define the weights ws=1 if areai is adjacent to areg and

w; =0otherwise (by convention; =0, for alli) then the conditional distributions will

be of the forn; |U; =u,,i#j~N 2 —L 1. It is convenient to make the
Zv‘ﬁ 7,
N
conditional variance proportional to the numbeneighbors by settinD, = ZV\(J and

j#

to use the precisiar) =1/o?. The following is referred to as antrinsic Gaussian

autorgressivestructure
. . Z""u‘”j
U U, =u,,i#j~N|F———|. (5.3)

We give (5.3) the notatiorCAR(T,) .

It has been shown (Besag, 1974) that the set mditonal distributions in (5.3)
uniquely defines a corresponding multivariate ndrnjaint distribution; i.e.
letQ = D’l(l —WD) where elemen(i,j) of W is 3/( number of neighbo}: and D is
previously defined. However, Waller (2002) statiest the choice of weights in (5.3)

leads to a singular precision matrix. To see thige that thé™ row of | “W" sums to
zero. ThusQ has rankn-1 and is not invertible. Ultimately this means ttiz¢ spatial

similarity implied by the conditional distributior®es not translate directly into a model
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of spatial correlation. It is also worth mentiontingt the priors defined by (5.3) are

improper since they only define contrasts between pdild;s; however, through the

inclusion of the data the posteriors will be proper (Basergarlin, and Gelfand 2004).
This fact, along with the ability to use the Gibbs sampise what compels most

investigators to simply ignore the improper nature ef @AR model. Also, to allow

N
identifiability of an intercept inX." 3, one adds the constraiE u, =0. This constraint
i=1

is easily imposed by recentering each sampled wedtabout its own mean following
each Gibbs iteration. Besag and Kooperberg (1988ssie (1993, pp.407-408, 410-
423), and Banerjee, Carlin, and Gelfand (2004,1683-165) provide detailed discussion
of conditional autoregressive structures.

To make (5.1) a legitimate hierarchical Bayesianegalized linear spatial model
we need to assign a third-stage prior to the pogtiparameter, and complete the
hierarchy of the CAR model (5.3). In addition, weoaneed to assign a prior distribution
to the vector of unknown regression coefficiens in most hierarchical generalized
linear models we assign an arbitrarily vague pfiomproper uniform or normal with
large variance) to the regression coefficientsweleer, we cannot simply follow suit and
assign an arbitrarily vague prior to the precisjperameter; after all, the precison
parameter controls the amount of extra-variabiditipcated to the spatial component.
Ghosh, Natarajan, Waller, and Kim (1999) discusdrictions on parameters for these
hyperpriors to ensure proper posteriors. Howevenpee important concern than proper

posteriors is a ‘fair’ assignment @f to avoid overemphasis on the role of the global or

local risks. A question that is complicated by tl&ditional nature of, .
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We do not attempt to address the concern of prior suttabilt instead propose a
new model that makes use of conjugacy. A conjugate hiecatdpatial model will help
remove the influencg has in controlling spatial similarity by introducing aspirsion
parameter. Furthermore, by including a dispersion paranetted to the relative risks
we may be able to better quantify the extra-variabiptgsent in areal unit data.
Ultimately we would be able to assess the regiond aiinormal risk. This is done

through analysis of the scale parameter.

5.3 Conjugate Hierarchical Generalized Linear Models for Disease Mapping
In this section we extend the conjugate approach to thartikcal generalized
linear model given by Albert (1988) to allow for the spat@irelation consistent in the
areal unit data used in disease mapping. Just as befoassuee that the aggregate
count associated with each areal unit is distributelogsson with expected cage and

local relative risk@ . It is easily shown that the Poisson distributioa imember of the

exponential family. Rewriting the Poisson likelihood ngsithe natural logarithm

function gives

=exp(y; log§ - E4 +y logk - logy }
:exp{yi mm—b(ﬂm)—c( y,l,:_)} ,

where the canonical parametef’ is equal tdogd, the cumulant function

isb(é’im): E€. According to Albert (1988) the conjugate prior for thenanical
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parameter (log relative risk) /Ts(éﬁm A ) O exp{)\ (mé’m— Eém)}, which means that

the relative risks are distributed @&$A,m ~Gammgim E1). A gamma
parameterized in this way implies tigty] = E,{ § Y]} = m, but more importantly
implies that the prior mean is inversely proporéibto the expected number of cases, i.e.
E[Hi] =m/E. In lieu of this parameterization it makes moease to parameterize the

gamma in such a way that the first two prior moraeare independent of the expected
number of cases. Furthermore, the parameters cshmulspecified in a manner that

facilitates the use of a GLM to model the marginalative risks. One proposed

parameterization given by Clayton and Kaldor (19&7hGamma(/]im A ) the other
due to Christiansen and Morris (1997), isGammdA A/m).  For each

parameterization the mean is equalrtp but the variances differ slightly. The first

parameterization has a variance that is propottiinehe prior mean, whereas the latter
has a variance that is a quadratic function ofgher mean. Because of convergence
reasons we choose to align our work with that afistiansen and Morris (1997). Recall

that the scale parametgrhelps measure the extra-variability in the Poissatel by
making the variance of the relative risk inversetgportional tol . Thus larger values
of A will shrink the corresponding relative risk towaitss prior meanm . As in Albert

(1988) and Clayton and Kaldor (1987) we may incoapm® fixed effects through a log

linear model on the prior mean; that is,

logm = X5, (5.4)
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where X is a kx1 vector of explanatory variables gfids a kx1 vector of regression

coefficients. Equation (5.4) is strikingly similar t.1) except that we have now placed
the GLM on the local prior means and not the relatisks themselves. Clearly, (5.4)
does not directly account for any spatial correlationt thay exist among the relative
risks. We may correct for the spatial correlatioradging the the spatial random effects

U, to the GLM giving

logm = X'B+V+ U, 1)
where U, is assigned a CAR prior. There is good reason lbeveethat the scale

parameter included in the gamma prior accounts for muttredieterogeneity among the
risks; however, it does not preclude the use of an addltlatent variable. We now turn

our attention to an example that highlights the st of (5.5) and (5.1).

5.4 Example: Scottish Lip Cancer Data

We motivate a comparison of the Poisson log-relatisie model (5.1) and the
conjugate Poisson gamma model (5.4) by using a data set tyigioastructed by
Clayton and Kaldor (1987). The data consisted of obsemédempected counts of lip
cancer registered in the 56 Scottish counties during the ¥8&i5-1981. As previously
mentioned the authors made various distributional gssons for the local relative risks
and then used EB methods for their posterior calcukti®anerjee, Carlin, and Gelfand
(2004, p.167) later analyzed the data using a hierarchical ¢jeedrinear spatial model
of the form (5.1), which also employed a CAR model tog spatial random effects.
Recall that Figure 1 back in Chapter 4 displays the agieth map for the crude

estimates of relative risk. One county level covantehe percentage of the population
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engaged in agricultural, fishing or forestry (AFF) is &lale thus making (5.1)

equivalent to
logg = 4, + X 10" +V +U (5.6)
whereV, is assigned an exchangeable normal prior with meanareto. is assigned the

usual CAR model (5.3). The regression coefficients if)(&re given diffuse normal
priors and the two precision parameters relating taahdom components are assigned
gamma distributions. The shape and scale parametdisgefgpatial precision parameter
are .01 whereas the shape and scale parameters for ¢ctsoprparameter relating to the
unstructured heterogeneity are .001. These priors came Besn et al. (1985) and
Bernardo, Berger, Dawid and Smith (1999). The hierarchy regpituation (5.6) can
be summarized as

Y, |8 ~ Poissof{EQ)

By B =N (0.1.c6™)

v Iz, ~N(0z,)

U, |7, ~CAR(,)

T, ~ Gamma( 1.7 ,1.5‘3)
T, ~ Gamma( 1.6* ,1.5‘1)

Similarly, (5.5) can be rewritten as
logm = S, + B, % 107 +Y + Y (5.7)
where V. is assigned an exchangeable Gaussian priorltaislassigned the usual CAR

model (5.3). The regression coefficients in (5.7) arergdifuse normal priors and the

precision parameter relating to the random comporéntis assigned a gamma

distribution. The shape and scale parameters for thmmgadistribution are both .01.
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The hierarchy regarding the conjugate hierarchical model gnaion 5.7 can be

summarized as

Y, |8 ~ PoissofiEQ)
g1m.A ~Gamm4 ] /m)
/]i ~)(2(,0)

iid =
By, ~N(0,1.CE°)
iid
V|7, ~N(07,)
Ui |Tu ~CAR(TU)
r,~Gammd 1.6° 167
r,~Gammd 1.€" 187"
Model fitting is carried out using MCMC simulation methoosplemented in the
WinBUGS software. Because the models used in a mappingxtomiay exhibit high
correlations between model parameters, necessaagling to highly autocorrelated
samples, we use separate chains with different ingilales for each model. Specifically,

75,000 values collected from three different chains (exwduthe 4000 burn-in values)

are used in the calculations of the relative risk pastelstributiond |y,. We check the

convergence by examining the line graphs provided in WinBUG3&ble 9 displays
estimates of the posterior means for the local k&atsk of each county under the three
competing models. The column entitléd is the second-stage hierarchical model
suggested by Banerjee, Carlin, and Gelfand (2004), while tke temaining columns
entitled I, Il and Il refer to the conjugate hierarchical model increasing in degrée
freedom. The data given in Table 9 are for the 56 cesiatiranged in descending order

of incidence as measured by SMRs, which vary betweed 64h There is a noticeable
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Table 9. Lip Cancer Incidence In Scotland by countyRSMnd Bayesian Estimates of Relative Risk

County Observedxpected | Il 1] [\ SMR

1 9 14 496.4  479.2  475.7 4747 642.8571
2 39 8.7 432 432.7 433.6 4344 448.2759
3 11 3 334.2 333.1 330.8 332.2 366.6667
4 9 25 300.8 291.2 289.9  289.7 360

5 15 4.3 322.2 3211 3216 320.9 348.8372
6 8 2.4 3781  386.3 384 383.6 333.3333
7 26 8.1 299.5 2956 296.3 2955 320.9877
8 7 2.3 280.2  281.1 281.4  281.8 304.3478
9 6 2 228.7 221.3 221.2  220.7 300
10 20 6.6 2946 2924 2929  292.2 303.0303
11 13 4.4 275.3  280.5 279 280.9 295.4546
12 5 1.8 315.2 3295 326.7 3319 277.7778
13 3 11 255.2 263.3 263.1  263.3 272.7273
14 8 3.3 2116 201.7 2017 199.9 242.4242
15 17 7.8 190.4 181.7 181 180.6 217.9487
16 9 4.6 207.7 208.2 208.3 208.8 195.6522
17 2 11 200.2 204.8 2074 206.1 181.8182
18 7 4.2 125.9 118.5 117.2 117.4 166.6667
19 9 5.5 179.4 1911 193.4 194.4 163.6364
20 7 4.4 137.8 136.8 137.1 137.4 159.0909
21 16 10.5 144.7 139.9 139.3 139.1 152.381
22 31 22.7 144 145.3 145.5 145.4 136.5639
23 11 8.8 121.1 118.4 118.4  118.2 125
24 7 5.6 95.64 85.75 84.34 83.73 125
25 19 15.5 117.2 117.7 117.9 118.4 122.5807
26 15 12.5 106.5 102.4 101.3 101.2 120
27 7 6 98.05 9458 93.85 93.31 116.6667
28 10 9 104.6 103.7 104.2 103.8 111.1111
29 16 14.4 118.1 120.7 121.2 121.9 111.1111
30 11 10.2 98.04 91 89.47  89.09 107.8431
31 5 4.8 88.86 85.35 84.89 84.69 104.1667
32 3 2.9 139.4 1433 143.4 143.1 103.4483
33 7 7 98.73 96.46  96.18  95.98 100

34 8 8.5 86.75 79.63 7856  77.77 94.11765
35 11 12.3 85.66 84.78 84.44  84.44 89.43089
36 9 10.1 77.9 75.5 75.05 75.5 89.10891
37 11 12.7 88.31 87.6 87.53 87.69 86.61417
38 8 9.4 68.98 62.06 60.96 60.41 85.10638
39 6 7.2 98.23 98.88 99.68 99.12 83.33333
40 4 5.3 61.94 5764 56.99 56.66 75.4717
41 10 18.8 5424  53.18 52.84 53.06 53.19149
42 8 15.8 66.68 7254 7283 73.34 50.63291
43 2 4.3 89.43 9357 9341 93.17 46.51163
44 6 14.6 45.72  46.09 4583  46.17 41.09589
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Table 9 continued

45 19 50.7 41.1 42.7 43 43.15 37.47535
46 3 8.2 54.5 57.21 57.48 57.54 36.58537
47 2 5.6 47.16 46.89 46.37 46.55 35.71429

48 9.3 42.87 43.33 42.81 4294 32.25807
49 28 88.7 33.85 3493 3511 35.27 31.56708

w

50 6 19.6 4476 50.67 51.44 51.66 30.61225
51 1 3.4 49.08 48.48 47.81 47.68 29.41177
52 1 3.6 46.01 45.05 44.8 44.37 27.77778
53 1 5.7 39.45 39.89 39.9 39.72 17.54386
54 1 7 3796 40.33 39.79 40.15 14.28571
55 0 4.2 64.1 81.88 83.37 83.99 0

56 0 1.8 71.56 7556 75.47 75.95 0

decrease in variability for the Bayesian relative eskimates as compared to the crude
SMRs. The risk estimates computed using the non-conjugatedh&al model range
from 35 to about 475; using the conjugate model with 5 degreeseaxfoim associated
with the chi-squared prior the estimates range from 3®6y using the conjugate model
with 25 degrees of freedom the estimates range frono 359; and using the conjugate
model with 50 degrees of freedom the estimates range 3®ro 475. In general,
modelslil andlV provide similar estimates of relative risk, especiallyen the expected
count is small for a county adjacent to other low-aoskinties. For example, the relative
risks for county 24, which is adjacent to counties 27, 3048147, 48, 55, and 56 (all of
which are considered to be low-risk) are very simiangreas the relative risk estimate
computed using moddl (conjugate with smaller degrees of freedom for the scale
parameter) is much closer to the crude SMR. We cahutrthis to the degree of belief
that we have in our GLM. As mentioned back in Chaptitie3cale parameter appearing
in the conjugate gamma distribution controls the amotifditth one places in the GLM.
Since the mean of a chi-squared distribution is idelnticés degrees of freedom, larger

degrees of freedom translate to a greater beliefarGibM. Consequently, the posterior
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estimates corresponding to these unstable areas arekskowards a localized
neighborhood prior mean. Further examples of this oenaer are prevalent in counties
30, 33, 36, and 38. Also, the reader will find that in mosesavhen the observed count
is less than the expected number of cases the relagikveestimates computed using
modell are closest to the SMRs. It turns out that thisoisthe case when the observed
count exceeds the expected number.

It is clear from Table 9 that the conjugate model sffeiway to quantify one’s
own prior belief regarding the amount of overdispergiogsent in the areal units. By
increasing the associated degrees of freedom of the higreffpr the dispersion
parameter we essentially place more belief in the BpedLM; thus relying on the
CAR model to capture the spatial correlation among tieghboring areas.
Alternatively, when the belief in the GLM is miniithe relative risk estimates provided
by the conjugate hierarchical model are very similar togisted average of the crude
SMRs corresponding to the surrounding areas. Of cpthiese results are completely
derived from this dataset. Ultimately we would want tdark on a simulation study like
that appearing in Kafadar (1994) where she compared the Eibadseof Clayton and

Kaldor (1987) with several other non-parametric spatialgthes.

5.5 Example: Waco Crime Data
In this final section we will illustrate how the preusly discussed disease
mapping technigues can be applied to mapping relative crirke. rigVe will use an
original data set constructed by the authors and the Was@as Police Department. The
data set consists of aggregate counts of 911 calls pertainhapitat burglaries collected

during the year 2000 for each police beat. To clarifyeat s a unit of area very similar
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to a census track. Since the United States Census Bemngaays a different system of
units (e.g. tracks, blocks, etc.), we will use a GIS saftwpackage called ArcGIS to
configure the two different units of measure with regardetessas covariate information.
That is, we will determine which of the census blocksrespond to what beats and
aggregate the appropriate covariate information. Thisegsois known adissolving In
addition to the census covariate information, we ledse recorded the number of houses
in each beat which will be used to calculate the numbexpected calls per beat via

internal standardization (see Banerjee, Carlin, agifa@d 2004, p.161). Figure 2 is a

I:'l:z) 15- 20
.(4) 20- 25

—_—,

0.3km

Figure 2. Choropleth Map of the Unsmoothed Call Rate¥&aco in the Year 2000

choropleth map displaying the raw unsmoothed call ratekdbitat burglaries in Waco

during the year 2000. Note the high concentration in theraepart of the community.
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The model that we will use is nearly identical to tmjugate hierarchical model
presented in Section 5.4 e.g. Equation (5.7). That is,saen@e that the prior mean for
each beat satisfies the following generalized lineaiapabdel

logm =43, +B,X 100" +YV+ U . (5.8)
We use the same previously defined hierarchical structure
Y, |8 ~ Poissof{EQ)
By B =N (0.1.c6™)

iid

V|7, ~N(07,)

U, |7, ~CAR(,)

T, ~ Gamma( 1.7 ,1.5‘3)
T, ~ Gamma( 1.6* ,1.5‘1)

where E = N T, frefers to the number of 911 calls for habitat burglarigshpditat in

the Waco community andN; is the number of habitats in beat The covariateX; in

Equation (5.8) is the number of African Americans tleside in beat during the year
2000 as recorded by the U.S. Census Bureau. Using WinBUGE&stimgate the relative
call rate for each police beat. A technical aside: ¢cbavergence of the posterior
distributions of the crime rates was relatively quicknpared to those of the Scottish Lip
Cancer. In fact, the length of the Markov chain requicgcconvergence was only one
third the size. Furthermore, the correlation betweemp$ss from the posterior
distribution was insignificant after only 15,000 values. Tésults are summarized in

Table 10.
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Table 10. Bayesian and Classical Estimates of RelRi@tes for Buglary Calls

Num.of Bayes Bayes
Beat Observefxpected Houses SMR  df=10 df=50

1 57 41 1245 138.8 137.1 137.4
2 48 28 836 174.1 170.5 169.9
3 55 58 1751 95.3 97.44  97.33
4 50 71 2161 70.2 7145 71.21
5 57 25 766 225.7 2222 2225
6 95 33 1004 286.9 2829 283
7 83 35 1052 239.3 2344 234.3
8 117 43 1308 271.2 2679 267.8
9 71 35 1068 201.6 197.2 197.2
10 16 64 1983 24.8 28.69 28.72
11 10 4 133 227.8 203 206
12 19 20 596 96.7 99.68  100.8
13 38 78 2356 48.9 52.07 52.61
14 92 78 2373 1176 1171 1174
15 15 28 854 53.3 5498 55.13
16 47 41 1245 1145 113.1 113
17 64 42 1268 153 151 151.6
18 53 21 642 250.4 2416 241.7
19 64 67 2018 96.2 96.34  95.95
20 42 36 1081 117.8 1147 1144
21 52 74 2241 70.4 71.56 71.78
22 73 54 1630 135.8 1349 134.8
23 100 98 2960 102.4 102.8 102.8
24 71 86 2597 82.9 83.14  83.15
25 67 79 2753 84.4 74.02 74.21
26 47 39 1173 1215 1174 117
27 16 63 1908 25.5 29.33  29.77
28 26 43 1308 60.3 59.82  59.58
29 22 89 2698 24.7 26.88 26.76
30 33 116 3509 28.5 30.07 29.99

The last two columns in Table 10 are the means for teeepor distributions of
the rates as computed from the conjugate hierarchical Baygsatial model. The reader

will  notice that for the beats experiencing a signiiica call rate
(i.e.,observedl expected ), the Bayesian rate estimatgi[6| y]) are generally smaller

than the MLEs. Again, this is attributable to &uat weighted average mechanism



63

employed by the Bayesian model. For example, beat d hina@xpected count of fours
calls however experienced 10. The corresponding MLE Herrate is 2.27 but the
Bayesian estimates are only 2.03 and 2.06. Figure 3 is aptétbr map of the smoothed
rates using a conjugate hierarchical spatial model with 50 egfdreedom on the scale

parameter.

I:I @< 0.0
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Figure 3. Choropleth Map of Smoothed Habitat Burglary 911 Rtks

The beats having the white dots in the center will be uséhe application of the
subset selection procedure presented in Chapter Two. §tadim the most southern
beat and moving clockwise they are seven, eight, nineastkfive respectively. Beat

nine has the lowest estimated call rate whereas leggité and six have the highest

estimated call rate. The calculatd®dC =Pr(8 =8, |Vs....Ys) for the 5 beats are

displayed in Table 11.
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Table 11. Probability Inclusion Criterions for the FiveaBs

Beat PIC
5 0.031
6 0.611
7 0.049
8 0.306
9 0.002

Based on this table the two PICs that exceed 1/5 ararglxeight, thus our
selected subset would consist of the rates corresporalimgse two beats. In fact a loss
penalty of c=33would be required to include beat five. The PICs wereutated via

Monte Carlo integration.



CHAPTER SIX

Conclusion

The hierarchical conjugate model presented throughout this pmonkides an
alternative to the customary generalized linear moAslseen it may be used in a variety
of settings including statistical epidemiology and diseaapping. Matter of fact, it may
be used in nearly any situation where one has overdepeount data. The hierarchical
conjugate model provides the same flexibility as the starBiaydsian GLM; however, it
allows for extra-variability sometimes present in codata. The addition of a scale
parameter used for this extra-variability comes at ttperse of computing time and
convergence. Convergence for risk mapping can be rakherbut this is also the case
for the standard Bayesian GLM found in the literatureerefore, the presented model is
recommended at this point in time. That is, until angadee simulation can be
conducted to compare the conjugate hierarchical generalized bpadal model to
several other spatial smoothers found in the literat@ece the efficacy of this model is
established we would like to extend this model to the aréar@tasting or prediction.

At the beginning of this work the author had this situatiomind. We envisage
a situation where data has been observed at severalesoanin general areal units but
for some reason has not been observed at other regiBashaps sampling was too
difficult or in fact too dangerous. With the partialanhation collected we would
ultimately like to predict the current state at thaeebserved regions, whether it be the
actual number of cases or the disease risk.  Thi®o& commonly referred to in the

time series arena asstate space modelM/e believe that concept of this model provides

65
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a natural extension to the spatial arena. The mdj@relnce of course lies in the type of
autocorrelation. It is customary to assume thatatm®correlation among the random
variables is a function of time. We could assumeftiatregions are correlated over time
but we would also assume correlation as a functionstdirnce.

The concept of spatial prediction is not new. I facs referred to akriging in

the literature. The interest lies in extendikigging to lattice data. You see it is

customary to assume that the spatial domain is continoeeis]®>. This assumption

along with a few others, namely isotropy, allow foniae correlation structure for the
domain. Obviously, this is not the case for diseasppmg. In disease mapping we
often use a nearest neighbors approach. Recall thagit€h5 discusses this in great
detail. Thus, it can be said that future work would somehmake use of the conjugate

hierarchical model for prediction in the disease mappetigng.
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APPENDIX A

Computer Programs for Chapter 2

A.1.1 Outline for computer programs used in simulation in Chapter 2

The following gives a detailed outline of the computexgpam used in the
simulation in chapter 2.

Part | — Generating the Poisson counts

1. Generate 40,000<m matrix consisting 10,000 values from a Uniform(0,1). Call

this matrixu. The valuem refers to the number of parameters whereas 100@e
number of simulation iterations.

2. Create another 10,080 matrix in which the entries are found by settitgp t

corresponding entries af equal to the inverse cdf of a triangle distribatibaving
endpoints (.2, 4) with mode 2 and solving. Each now represents a set Poisson rates.

3. Order each row from greatest to least so thgest Poisson rate for each row is
located in the first column. This will be helpful calculating the probability of correct
selection. This matrix will be callddmmat

4. Using the matrix of Poisson rates generate aixr@tcount totals and call this matrix
countmat Each row ofcountmatwill represent a sample of total counts havingsat
proportional to those from the corresponding roaafmat

Part Il — Calculating the Probability of Correcte&ion and Expected Size
Case 1: Independent uniform priors

1. When the number of parameters is small (at fipste can use standard functions
inside R, namelylgammapgamma andintegrate to calculate th@robability inclusion

criterion =Pr(A =A,. It;... t,) wheret,...t  represent the counts for some row in

countmat For the case whem>5 use Monte Carlo integration to calculate the
probability inclusion criterions. It should be edtthat no loops are required to calculate
these probabilities but instead make use of thplyafunction, which takes as arguments
an array of values, a margin (in this case we afyfunction over the rows), and an
internal or user-defined function.

2. Create a matrix callgatincludemaxin which each entry for some row will represent
the probability inclusion criterions for the compesiding superior set. Recall that each
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row in rlambdarepresents a set of parameters, thus each rowgrincludemaxshould
sum to one.

3. Since the first element of each rowlambdawas the maximum of the parameter set,
the first entry of each row iprincludemaxwill represent the probability inclusion
criterion for the largest parameter in the correspgdambdarow.

4. The probability of correct selection is the peragatof times that the probability
inclusion criterions in the first column oprincludemax exceeded thecriterion

constant c+1 wherec> m-1. Similarly, the expected size is the relative fretpyeof

all the probabilities irprincludemaxthat exceed the criterion constant.

Case Il: Three Stage Hierarchy

The code for computing the probability of correct sedecin the case of a hierarchical
model only differs to the uniform case in the firstpstelThe reader will use a package
called ‘R2WIinBUGS’ to generate samples from the paster See Sturtz, Ligges, and
Gelman (2004) for a discussion on how to call WinBUGS flRRmThe following steps
provide an outline for constructimincludemaas in the previous case

1. Install and load the package “R2WIinBUGS” in R and creatdirectory in your
machine to store a text file consisting of the BUGS rhetigement. The initial values
will be supplied to WinBUGS via an R list. Of course tlaga values are the actual rows
of the matrixcountmat

2. Define a function in R calledinbug that will take as an argument a row from the
matrix countmatand specify the objects to be used in the internal fum&iugs The
functionbugsrequires a data object, a list of initial values, etaeof parameters for the
inference, the number of chains, the number of iarat the location of the model file.
However, storing the various parameter estimates aadbtlinin specification are
optional. A sample  bugs specification could appear as
bugs(data,inits,model.file="",parameters,n.chains., n.iter,bugs.directiy

3. Recall that all iterations in the simulation prsx@roduce a set of exactly total
counts. For one iteration, to calculate the probabihigiusion criterions for them
parameters we sample 9,000 posterior values from eadte af posteriors using three
chains of length 4000 (1000 burn in values) and construct axmatn.sim The
probability inclusion criterion for one of thla candidates, saly is found by calculating
the relative frequency in which tk8 column was a maximum. These values will form
the rows of the matrigrincludemax
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A.2.2 Code used for the simulation study presented in Chapter 2

The following code was used to calculate the probabifigoorect selection and
expected size for the case when the number of popudatias five and a flat uniform
prior was assumed.

(a,b) is the interval and c is the mode. n refeithé sample size and m is the number of
populations
inposlambda<-function(a,b,c,n,m){
assign("Global.res",a,b,env=.GlobalEnv)
assign("Global.res",c,n,env=.GlobalEnv)
assign("Global.res",m,env=.GlobalEnv)
#####THis code generates parameters from a triangle distniluth mode=c
u<-matrix(runif(10000*m),ncol=m)
u<-t(apply(u,1,sort))
u<-t(apply(u,1,rev))
rlambda<-function(x){
pmode<-(c-a)/(b-a)
ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)c{b-a)+(c-
b)"2))}
lammat<-rlambda(u)
countmat<-matrix(rpois(10000*m,n*lammat),ncol=m)
posmax<-function(x){return(which(x==max(x),arr.ind=TEY}
psone<-function(y){
assign("Global.res",y,env=.GlobalEnv)
funone<-
function(x){return(pgamma(x,y[2]+1,n)*pgamma(x,y[3]+1,n)*dga
mma(x,y[1]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))}
integrate(funone,0,Inf)$value}
pstwo<-function(y){
assign("Global.res",y,env=.GlobalEnv)
funtwo<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[3]+1,n)*dga
mma(x,y[2]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))}
integrate(funtwo,0,Inf,stop.on.error = FALSE)$value}
psthree<-function(y){
assign("Global.res",y,env=.GlobalEnv)
funthree<-
function(x){return(pgamma(x,y[2]+1,n)*pgamma(x,y[1]+1,n)*dga
mma(x,y[3]+1,n)*pgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))}
integrate(funthree,0,Inf,stop.on.error = FALSE)$value}
psfour<-function(y){
assign("Global.res",y,env=.GlobalEnv)
funfour<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[2]+1,n)*pga
mma(x,y[3]+1,n)*dgamma(x,y[4]+1,n)*pgamma(x,y[5]+1,n))}
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integrate(funfour,0,Inf,stop.on.error = FALSE)$value}
psfive<-function(y){
assign("Global.res",y,env=.GlobalEnv)
funfive<-
function(x){return(pgamma(x,y[1]+1,n)*pgamma(x,y[2]+1,n)*pga
mma(x,y[3]+1,n)*pgamma(x,y[4]+1,n)*dgamma(x,y[5]+1,n))}
integrate(funfive,0,Inf,stop.on.error = FALSE)$value}

princludemax<-apply(countmat,1,psone)

prcs<-c(rep(0,4))

for (i in 1:4) prcs[i]<-length(princludemax|princludemax>({4))])/10000
princludetwo<-apply(countmat,1,pstwo)
princludethree<-apply(countmat,1,psthree)
princludefour<-apply(countmat,1,psfour)
princludefive<-apply(countmat,1,psfive)
set<-c(princludemax,princludetwo,princludethree,princludefouncudefive)
expectedsize<-rep(0,4)

for (i in 1:4) expectedsize[i]<-length(set[set>(1/(i+#3P000
return(cat("Uniform Prior","Sample size =",n,"# Paetars =",m,"PrCS
=",prcs,"Expected Size =",expectedsize))

}

The following code is used to calculate the probabilitgafect selection and
expected size when the number of parameters exceeds five.

simposlambda<-function(a,b,c,n,m){

assign("Global.res",a,b,env=.GlobalEnv)

assign("Global.res",c,n,env=.GlobalEnv)

assign("Global.res",m,env=.GlobalEnv)

#####This code generates parameters from a triangle distniluth mode=c

u<-matrix(runif(10000*m),ncol=m)

u<-t(apply(u,1,sort))

u<-t(apply(u,1,rev))

rlambda<-function(x){
pmode<-(c-a)/(b-a)
ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)t{b-a)+(c-
b)"2))}

lammat<-rlambda(u)

countmat<-matrix(rpois(10000*m,n*lammat),ncol=m)

posmax<-function(x){return(which(x==max(x),arr.ind=TEY}
generate<-function(x){
posample<-rgamma(m*25000,x+1,n)
y<-matrix(posample,ncol=m,byrow=T)
test<-unlist(c(apply(y,1,posmax),1:m))
postprobtab<-(table(test)-1)/25000
postprob<-rep(0,m)



72

for (i in 1:m) postprobl[i]<-postprobtabl][i]]
return(postprob)}
set<-apply(countmat,1,generate)
set<-t(set)
princludemax<-set[,1]
prcs<-rep(0,4)
for (i in 1:4) prcs[i]<-length(princludemax|princludemax>{{fn-1)))])/20000
expectedsize<-rep(0,4)
for (iin 1:4) expectedsize[i]l<-length(set[set>(1/(i+{))}])/10000
return(cat("Uniform prior","Sample size =",n,"# Parders =",m,"PrCS
=",prcs,"Expected Size =",expectedsize))

}
The following code was used to calculate the probabifigoorect selection and
expected size for the hierarchical model.

#####(a,b) is the interval and c is the mode. n refeisetgsample size and m is the
number of populations
hiposlambda<-function(a,b,c,n,m){
assign("Global.res",a,b,env=.GlobalEnv)
assign("Global.res",c,n,env=.GlobalEnv)
#####This code generates parameters from a triangle distniluth mode=c
u<-matrix(runif(10000*m),ncol=m)
u<-t(apply(u,1,sort))
u<-t(apply(u,1,rev)) #ensures that the largest paranseiethe first column
#H####Inverse CDF of Triangle Distribution
rlambda<-function(x){
pmode<-(c-a)/(b-a)
ifelse(x<pmode,a+sqrt((c-a)*(b-a)*x),b-sqrt((x-pmode)tc{b-a)+(c-
b)"2))}
lammat<-rlambda(u)
####Generates counts from the Poisson having means 'lammat’
countmat<-cbind(matrix(rpois(10000*m,n*lammat),ncol=m),1:10000)
posmax<-function(x){return(which(x==max(x),arr.ind=TEY}

####This code calls WInBUGS to compute posterior samples liilerarchical
MmodelsHHHHHHHHHHHHHET

#####The WinBUGS model specification "simulation.txt" @red in the folder
"c:/John/WIinBUGS"#####

#####The simulated values are saved to matrix, ‘counts\imare only interested in
parameter 'mu’ ###

winbug<-function(x){
z<-X[c(1:m)]
data <- list ("n", "z","m")
inits1 <- list(lambda=rep(1,m),alpha=1,beta=1)
inits2 <- list(lambda=rep(1,m),alpha=1,beta=1)
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inits3 <- list(lambda=rep(1,m),alpha=1,beta=1)
inits<-list(inits1,inits2,inits3)

parameters <- ¢("mu")

counts.sim<- bugs (data, inits, parameters,
"c:/John/R2WInBUGS/simulation.txt", n.chains=3,
n.iter=4000,n.burnin=1000,DIC=F,bin=3000)$sims.matrix[,c(1:m)]
test<-unlist(c(apply(counts.sim,1,posmax),1:m))
postprobtab<-(table(test)-1)/9000
postprob<-rep(0,m)

for (i in 1:m) postprobl[i]<-postprobtabl[i]]
#print(c(postprob,x[m+1]))

return(postprob)}

set<-apply(countmat,1,winbug)

set<-t(set)

princludemax<-set[,1]

prcs<-rep(0,4)
###A#TIS loop caculates pr. of correct selection for diffec=4,5,6,7
for (i in 1:4) prcs[i]<-length(princludemax|princludemax{*(m-1)))])/10000
expectedsize<-rep(0,4)
for (i in 1:4) expectedsize[i]l<-length(set[set>(1/(i+{r)))])/210000
return(cat("Hierarchical Model","Sample size=",n,"#&aeters=",m,"PrCS
=",prcs,"Expected Size=",expectedsize))

The following WinBUGS model specification should be sflarea file located in
the current working directory in R.

model
{
for(iin1:m)
{
z[i]~ dpois(muli])
mu[i] <- lambda[i]*n
lambda[il~dgamma(alpha, beta)
}
alpha~dexp(1)
beta~dgamma(.001, .001)
}
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APPENDIX B

Instructions for Importing Adjacency Matrices and Mage WinBUGS

*These instructions were taken from the personal pagesofe Cui, graduate student
at University of Minnesota. See http://www.biostat.urda/eyuecui/convert.r
1. Create a .cgm file from Arcview

Open your Arcview shape file in Arcview, for examplesh.

Click "Export" in File menu

Choose from List Files of Type "CGM Clear Text" aade .cgm file(e.g.

a.cgm). This .cgm file is a text file and can be opew&h any word processor
like Notepad. Save this in the current R work directory.

2. Convert the .cgm file into a .txt file in Splusrfwat readible by WINBUGS

Copy and paste the following text. This script creatdgnation in R called
‘convert’ which creates a .txt file containing polygoruhdaries

convert<-function(cgmfile)

#outfile <- "test.txt"

fortest<-fortest$name
fortest<-fortest[grep("VIS",fortest)]
fortest<-as.matrix(fortest)

totpolyn<-length(fortest[grep("POLY GON_SET",fortest)])

polyn<-0

count<-0;

indicator<-0;

#First tried rep(0,1000), but there is a polygon with 167 reasve get
#167*3*2=1002 coordinates in one polygon. Error occurs with NA output
coord<-rep(0,5000)

write(paste("map:",totpolyn,™\n"),outfile)
for (i in 1:totpolyn) {
write(paste( i, paste("grid",i,sep="")),outfile,apdei)
}

for (i in 1:length(fortest)){
for(j in (1:nchar(fortest(i]))){
letter<-substring(fortest[i],j,j)
#At first try to use AsciiTolnt,stupid
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#if (AsciiTolnt(letter)<=AsciiTolnt("9")&
# AsciiToInt(letter)>=AsciiTolnt("0"))
if(letter<="9"&letter>="0"){
if (indicator==0) {count<-couit
indicaterl

coord[count]<-coord[count]¥10
type.convert(le}ter

#add the following else if statement because ifaartglwhen
#a POLYGON_SET is encounted, polyn is increased by

#a CLOSEVIS is encounted, output the coordinatethéis
#done independently with increase of polyn since laYl8®N_SET may
#consist of several small polygons
else if(letter=="C")}{
coordmat<-cbind(rep(paste("grid",polyn,sep=""0yueR?),
coord[2*(1:(count/2))-1],
coord[2*(1:(count/2))])

if (polyn == 1) { write("",outfile,append=T)}

else { write(c(NA,NA,NA),outfileappend=T)}
write(t(coordmat),outfile,append=T,ncol=3)

#polyn<-polyn+1

#the above statement is not right because 2 EMEBmay lie in one
#same polygon, but we output a polygon coordirsgieshenever a
#CLOSEVIS is encountered, although it may hagesttme label,
#denoted by "grid&polyn"” with previous or next conedée sets.

count<-0

indicator<-0

coord<-rep(0,5000)
#if(grep("\r",substring(fortest[i],j+1,nchar(test[i]))))
#break

}

else indicator<-0

}

}
write("END",outfile,append=T)
}

* Under the command line, type in convert("filename"gntHilename.txt’ will be
generated and saved in the working directory. Herendiine" doesn't have
.cgm in it. e.g, when you have a.cgm in folder, gbauld submit convert("a")
instead of convert("a.cgm")

3. Read .txt file into WinBUGS

* Open .txt file in WINBUGS using open in File menu, rerbemto choose
Text[.txt] or Text[Dos encoding][.txt] from File aype option. Now WinBUGS
will pull up a text editing window showing the .txt file
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Click Map menu and choose Import Splus, if the .txt Slenicorrect Splus
format, then a Save as window will come out, and youncamsave it as a .map
file ready for mapping, e.g. ‘a.map’. If the .txt hasaror in it, WinINBUGS
will beep.

Now close WinBUGS and restart it.

Click map in WinBUGS window and choose Adjacency Toolthe pop-out
window, choose the .map you just created from the dropdistvaf maps, click
on adj map and an Adjacency Map window will come out shgwhe map same
as the one you exported out of Arcview. Now you carkdlidj matrix icon in
‘Adjacency Tool to get an adjacency matrix for thiapm
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