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On Rings with Distinguished Ideals and Their Modules
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Advisor: Manfred H. Dugas, Ph.D.

Let S be an integral domain, Rg an S algebra, and .# a family of left ideals of
R. Define Ends(R, %) = {¢ € Ends(R") : p(X) C X for all X € Z#}. In 1967,
H. Zassenhaus proved that if R is a ring such that R™ is free of finite rank, then there
is a left R module M such that R C M C QR and Endyz(M) = R. This motivates
the following definitions: Call Ry a Zassenhaus ring with module M if the conclusion
of Zassenhaus’ result holds for the ring R and module M. It is easy to see that if Ry
is a Zassenhaus ring then R has a family .# of left ideals such that Endz(R,.#) = R.
(If .# has this property, then call .# a Zassenhaus family (of left ideals) of the ring
R.) While the converse doesn’t hold in general, this dissertation examines examples
of rings R for which the converse does hold, i.e. R has a Zassenhaus family .% of left
ideals that can be used to construct a left R module M such that R C M C QR and
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CHAPTER ONE

Introduction

In [24], Hans Zassenhaus showed that for a ring R with a finite rank, free
additive group, there is a group G such that the rank of G is equal to the rank of R
and Endz(G) = R. From [1, page 2|, the rank of an abelian group G is the dimension
of the rational vector space Q ®z G. On the other hand, in [10], A. L. S. Corner
gave an example of a ring R with a torsion free, finite rank, free additive group, such
that there is a group G with rank G = 2(rank R) and End(G) = R but there is no
group of smaller rank with this property. These two results motivate the following
definition: A ring R with 1 € R and additive group R* torsion free is a Zassenhaus
ring if there is a left R-module g M so that R C M C QR and Endz(M) = R. In
this case, rank M = rank R. Henceforth, all rings R are assumed to have an identity
element 1r sometimes denoted as 1.

The notion of a Zassenhaus ring represents a generalization of a more recent
notion, that of an E-ring. A ring R with additive group R" is an E-ring if and
only if each endomorphism of R* is multiplication on the left by some element of
R, i.e. Endz(R) = R. E-rings play a noteworthy role in the theory of torsion-free
abelian groups of finite rank (tffr groups); see the survey [22] on E-rings and their
generalizations.

To show that a particular ring is a Zassenhaus ring, it is often useful to look
for a family of left ideals of the ring from which to construct the necessary mod-
ule. This construction method motivates the search for a family of ideals of R
such that maps leaving the constituent ideals invariant turn out to be merely mul-
tiplications by elements of R. To that end, let R be an algebra over a commu-
tative ring S. Let % be a family of left ideals of R and define Endg(R*,. %) =

{p € Endg(R"): p(X) C X for all X € #}. Call . a Zassenhaus family for R if
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Endg(R",.#) = R. In general, a Zassenhaus family for an S-algebra depends on S.
Note that R is an E-ring if and only if the empty set is a Zassenhaus family for the
Z-algebra R.

Chapter Two shows that every Zassenhaus ring has a Zassenhaus family. If R
is a Zassenhaus ring, one can construct the ideals for a Zassenhaus family for R from
the module that makes R a Zassenhaus ring.

Chapter Three exhibits several rings for which it is easy to construct concrete
Zassenhaus families. A Zassenhaus family can be constructed for each of the following:
Endg(F) where S is a commutative ring and F' is a free S-module, a matrix ring,
and a ring of polynomials in one indeterminate over an infinite field. This chapter
shows that if the divisible hull of a torsion free ring has a Zassenhaus family, then
from that family, one can construct a Zassenhaus family for the ring. Conversely, if a
ring has an additive group which is free of finite rank and the ring has a Zassenhaus
family, then a Zassenhaus family for the divisible hull of the ring can be constructed.
From these results, there is a Zassenhaus family for both polynomials with integer
coefficients and a ring first exhibited by A. L. S. Corner. Finally, a Zassenhaus family
for an incidence algebra over a field exists.

Chapter Four contains the construction of a Zassenhaus family over Z for an
arbitrary ring R of algebraic integers of a finite degree, Galois field extension of the
rationals. In this case, R" is a finitely generated free group. Hence, Zassenhaus’
original result combined with the results of Chapter Two is enough to show that R
has a Zassenhaus family. But this approach does not indicate the structure of the
ideals in this Zassenhaus family. The construction of a natural and concrete example
of a Zassenhaus family for R is exhibited.

Chapter Five proves that if R is in a large subclass of Dedekind domains then
there are some necessary and sufficient conditions for R to have a Zassenhaus family

over Z.



Chapter Six shows that some rings with Zassenhaus families are Zassenhaus
rings. This chapter contains a lemma that, in some cases, gives one a method to
construct a module M from ideals of a Zassenhaus family for a ring R such that
Endz(M) = R with rank M = rank R. This lemma is applied to the Zassenhaus
families from Chapter Four for polynomials with integer coefficients, Corner’s ring,
and rings of algebraic integers.

Chapter Seven gives an alternate, more elementary, proof of Zassenhaus’s orig-
inal result. The proof uses only linear algebra and some elementary number theory.

Chapter Eight exhibits for the ring R of n x n matrices with integer entries, the
construction of a module M with Endz(M) = R, rank M = rank R, and M ™ a Butler
group. Again, Zassenhaus’ original result guarantees the existence of a module M,
but tells us nothing about the structure of the module.

Chapter Nine proves that a certain subclass of PID’s are not Zassenhaus rings.
This result provides an example in Chapter Ten of a ring with a Zassenhaus family
that is not a Zassenhaus ring. Thus having a Zassenhaus family is not equivalent to
being a Zassenhaus ring. Many of the results in this dissertation have appeared in

6], [7], and [8].



CHAPTER TWO

Zassenhaus Rings have Zassenhaus Families

Denote by II the set of prime numbers of N. If p € Il and if GG is an additive
group then t,(G) denotes the set of all elements of G with order a power of p. For
neN, let Gp"] ={g € G:p"g =0}. That is, g € G[p"] if and only if the order of
g =p™ with m <n.

For a ring R, let R* denote the additive group of R. Unless otherwise noted,
identify R with the subring of Endz(R) in which each map is multiplication on the

left by some element of R. Where convenient, write R- or even just R for this subring.

Definition 2.1. A ring R with identity whose additive group R" is torsion free is called
a Zassenhaus ring if and only if there is a left R-module g M so that R C M C QR

and Endz(M) = R. The module M is called the Zassenhaus module for the ring R.

Definition 2.2. Suppose that R is a ring with identity that is also an algebra over a

(commutative) ring S. Let .%# be a family of some left ideals of R and define
Endg(R",.Z) = {¢ € Ends(R") : ¢(X) C X for all X € F}.

Then .% is called a Zassenhaus family for R if and only if Endg(R™, %) =R. If S =Z
then write Endz(R) and End(R*,.%) in place of Endz(R") and Endz(R*,.%).

Theorem 2.3. If R is a Zassenhaus ring then R has a Zassenhaus family over 7Z.

Proof: ~ Suppose that there is a left R-module gM so that R C M C QR
and Endz(M) = R. Note that M/R is torsion because QR/R is torsion. Let p be
a prime number and n € N. Define M, ,, by M,,/R = (t,(M/R))[p"]. So M,,/R
is the set of all elements a + R of M/R such that there is a positive integer m < n
with p™(a + R) = R. Alternatively, M,, is the largest subgroup of M for which

p"M,, € R. Define X,,,, = p"M,, C R.



To see that X, ,, is a left ideal of R, suppose that r € R and x € X,,,,. There is
an m € M,, such that x = p"m. Then p"(m + R) = R, and thus p"m € R. Hence
rp"m = p"rm € R and p"(rm + R) = R. Therefore rm € M,,. It follows that
re =ptrm € p"M,, = X, ..

Note that p"R C X,, € R. For, from the definitions, R C M,,. Hence
p"R C p"M,,, = X,,. It suffices to show that .#% = {X,,, : p € IILn € N} is a
Zassenhaus family for R. Suppose that ¢ € Endz(R) so that ¢(X,,) C X,,, for each
X,n € F. The map ¢ has a unique extension ¢ € Endg(QR): For ¢ € Q and a € R,
define ¥(qa) = qp(a). Elementary calculation shows that this map is well defined.
Under this definition, it is clear that 1|gr = ¢. Suppose that v € End(QR) such that
VIr = ¢. Let ga € QR. Then v(qa) = ¢v(a) = qp(a) = ¥(qa).

To see that ¢(M,,) € M,,, for all p € Il and n € N, notice that M, , in QR is

just (1/p")X,,, from the definition of X,,,. Then

V(Mpn) = ¥((1/p") Xpn)
= (1/pn)¢(Xp,n)
= (1/p")o(Xpn)

- (1/pn>Xp,n = Mp,n'

Since M = 3 Mpn, then (M) C M. It follows that ¢[y is an element of
End(M). But each of the elements of End(M) is just multiplication on the left by

some element of R. So ¢¥|p =p € R. O

The converse of Theorem Ten may be stated as a question: Does every ring
with a Zassenhaus family over Z have a Zassenhaus module? The answer to this
question is no. That is, the converse of Theorem 2.3 does not hold in general. In
Chapter Nine, results provide a whole class of counterexamples for the converse. In

Chapter Ten a specific counterexample from that class is exhibited.



CHAPTER THREE

Examples of Rings with Zassenhaus Families

Theorem 3.1. Let S be a ring and F' a free S-module. Then Endg(F'), the S-algebra

of S-linear endomorphisms of F', has a Zassenhaus family over S.

Proof: Let E = Endg(F'). Fix a basis B over S for F. Given x € F and b € B,
define ¢, and ¢, in E' by
x ifc=0b,

9006,17(0) =
0 otherwise

and p,(c) =z forall c€ B. Let Jy ={p,p: v € F}and J = {p, :x € F}.

For any finite subset I of B, define 07 = {¢ € E : ¢(I) = 0}. Then 0} is a
left ideal of E. The set {&: I C B, I finite} forms a basis of neighborhoods of the
0 map for the finite topology on E. It suffices to show that .# = {J} U{J, : b €
B}U{0;:1C B, I finite} is a Zassenhaus family for F.

Let ® € Endg(F) such that ®(X) C X for all X € .#. Then ® also leaves
invariant J and Jj for each b € B. For each = € F it follows that ®(¢,) = ¢a(s) for
some ((x) € F. Note that if x,y € F and ¢ € B, then (¢, +¢,)(c) = p.(c) +@,(c) =
T+ Y = Yriy(c) SO ¢ + @y = uyy. Then Qpuiy) = P(Pety) = B0z + ) =
D(pg) + P(py) = ©a2) + PBy) = PB@)+8(y)- Thus §: F — F preserves addition.

It will be seen that (3 is S-linear. For s € S, x € F, and ¢ € B, then ¢, (c) =
st = spz(c). Thus g = sp, for all z € F and for all s € S. Let s € S and = € F.
Then pspz) = sPpw) = sP(pz) = P(s¢s) = P(psz) = Pp(se) and so sf(x) = B(sw).
Therefore ¢ € F.

Let b € B. There is a 3, € FE similar to § above but related to the action of ®
on J, instead of J. If x € F then ®(p,5) = ©p,(2)p for some fy(x) € F. Note that if
x,y € F then (@up+ ©yp)(0) = 0ap(b) + pyp(b) = +y = @uryp(b), and if b # c € B
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then (Wm,b + @y,b)(C) = (P:B,b(c) + prb(c) =0= 902+y7b<c>' So Pzp + Pyb = Partyb-
Then vg,z1y)p = P(Vatyp) = PP+ 0yp) = P(Pap) + P(Pyp) = ©y(2)b T Poo()0 =

OBy (@) B (y),p- Thus B : F' — F preserves addition.

It will be seen that [, is S-linear. If s € S, x € F, then ¢y, 5(b) = st = sp,4(b),
and if b # ¢ € B then g, 5(c) =0 = 5:0 = @, p(c). Thus g = s, forallz € F and
for all s € S. Then @yp,(2)p = 5¢8,@)b = SP(Pap) = P(590ap) = P(Pswp) = PB,(s2).b
and so sf(z) = By(sz). Therefore [, € E.

Let I be a finite subset of B. If x € F and ¢ € I then (v, — Y ,c; @ap)(c) =
©02(€) = @aelc) =2 —2 =0. S0 = D ey Pap € O for all z € F. Then ®(p, —
Y ver Pab) = PB) — 2oper Po@)p € O for all z € F. Note that the finite topology is
Hausdorft. It follows that the maps Zbe 1 9B, (x),p iIndexed over all finite I define a net
that converges to yg() in the finite topology. Hence, for ¢ € B, it must follow that
B(x) = ¢pa)(€) = Dpen Pau)(6) = Ppu@).e(c) = Be(z). Therefore 3(x) = By(x) for
all z € F and for all b € B.

If n € E, then n— %, ;, onms € Op for all finite subsets I of B. Note that

() = 2er P(Enwp) = @(0) = 2per Coonrs = P(0) = Xper Pponm) - Since  pre-
serves the Oy, it follows that ®(n) — >, @gonw)s € Or for all finite subsets I of
B. Hence, for all ¢ € B, it must be the case that ®(n)(c) = >_,c5 Pgonm)s(c) =
Pgon(e),c(€) = Bon(c). So ®(n) = B on. Therefore @ is multiplication on the left by

{8 € E and so % is a Zassenhaus family for £. [J

If F'is finitely generated over S, linear algebra can be used to find a Zassenhaus

family. Such an approach is taken for next result.

Proposition 3.2. Let S be a ring with identity, and let R = Mat,»,(S) = Endg(S™)
be the ring of n X n matrices over S. Then there is a Zassenhaus family % =
{Ji + 1 < i< n+1} of left ideals of the S-algebra R such that R = &} ,J; and

o1 N (B1<jri<ndi) = {0} for all1 < j < n.



Proof:  Define ¢;; € R be the matrix with 1 in the (¢, j) position and 0 ev-
erywhere else, €, = ¢;;, and J; = Re; = @1<a<nS€aqi- Note that J; is the collection
of matrices from R with nonzero entries possible only in the i-th column and zeros

everywhere else. Of course R = @7_,.J;. Define ¢ = 2?21

€;; a matrix with ones in
the i-th row and zeros everywhere else. Then set J,.; = Re™) in which is collected
the matrices where each row has the same value in every position, i.e. each row is con-
stant. So J, 11 = @, 9. If M € J,;1 and zero appears anywhere in the i-th row,
then the whole i-th row must be zero. Let 1 < j <n. Then J,,11N(P1<izj<nJi) = {0}
since the elements of @1<;x;<nJ; have only zero entries in the j-th column.

Suppose that r = (ro3) € R. Then re;; = (cag) Where cag = D) Tar(€ij)ks. But
(€ij)kp is zero unless k = i and § = j. Then c,; = 74, and for 8 # j, cop = 0. It
follows that re;; = > | Tai€aj-

To show that there is a Zassenhaus family, let ¢ € Endgs(R™) such that ¢(J;) C
Ji for all 1 < ¢ < n+ 1. Since the ¢;; form an S-basis of R, there are t;;,3 € S such
that p(gji) = D 1<qpen LitapEap. Since (J;) C J;, p(g;:) € Ji. The entries of ¢(g;:)

not in the i-th column are all zero. Thus t;; o3 = 0 for all 3 # 4. It follows that
o) = (Ses) = Detes
=1 j=1
j=1 \a=1

a=1 \j=1

n n n
«
= g™ =" ciatas
a=1

a=1 j=1
for some c¢;o, € S. Then t;;,; = cio for all 1 < j <n, 7, and a. Hence
o(ej;) = Z tjiaB€aB = Z Ljiai€ai = Z Ciaai-
1<a,6<n 1<a<n 1<a<n
Comparing the final expression in our string of equalities to the usual definition of

matrix multiplication, ¢ = (¢;4) € R. O



Proposition 3.3. The K-algebra K[z] of all polynomials in indeterminate x over an

infinite field K has a Zassenhaus family over K.

Proof: ~Enumerate distinct elements a; of K for all 0 < j € N. Then define
ap=0. Put # = {(a; +2™)K[z] : n € N, 5 > 0} for our candidate for a Zassenhaus
family.

Suppose that ¢ € Endg(K|[z]) with ¢(X) C X for each X € .% and ¢p(K) =
{0}. Then there are polynomials g, ; so that ¢(a; + 2™) = (a; + 2™)g,,; for all n and

j. But

pla; +2") = p(a;) + p(z")
=0+ (") = p(z")

n
=T Gn,o

for all n and j > 0. It follows that (a; + 2™)g,,; = 2" gn for all n and j > 0.

Note that ged(a; + 2™, 2™) = 1 for all j > 0. Then the polynomial a; + x™
divides g, for all 7 > 0. The only possibility is that g, o = 0 for all n. It follows
from the linearity of ¢ that ¢ = 0.

Suppose that ¢ € Endg(K][x]) so that ¢(X) C X for all X € .#. Consider
(a) =(a)—1(1)-a. Then p(K) = {0}. The preceding arguments show that ¢ = 0
and so 1 = ¢(1). Therefore .Z is a Zassenhaus family for the K-algebra K[z|. O

The next two propositions deal with restrictions and extensions. Let R be a
torsion free ring. Define the Q-algebra A = Q ®z R. Proposition 3.4 shows that if A
has a Zassenhaus family .# over Q, then the family of restrictions X N R of X € .#
to R is a Zassenhaus family over Z for R. Proposition 3.6 shows that if RT is a free
group that has finite rank, if R has an Zassenhaus family .#, and if each X € .7 is
pure in R, then the family of extensions Q ®z X of X € .# to Q®z R is a Zassenhaus

family for A.
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Proposition 3.4. Suppose that R is a torsion free ring with identity such that the Q-
algebra A = Q®zR has a Zassenhaus family F over Q. Then ' ={XNR: X € F}

is a Zassenhaus family over Z for the ring R.

Proof: Identify R with 1 ® R. Let X € % and x € X. Then x = ¢r for some
g€ Qandr € R. Since 7! = ¢ 1z € QR and X is an ideal of QR, r = ¢ 'z € X
and so r € X N R. Thus X C Q(X N R). The inclusion Q(X N R) C X holds since
QX NR) CQX = X. Therefore X = Q® (X NR).

Suppose that ¢ € Endz(R) so that (X N R) C X N R for all X € #. Note
that ¢ = idg®¢ € Endg(A) with ¥|g = ¢. Then ¥(X) = »(Q® (X N R)) =
QRe(XNR) CQ®X C X. Since Z is a Zassenhaus family for A, it follows that
) = a- for some a € A. But p(1) isin R and ¢(1) =¢(1®1) =a(l®1) = a. Hence

@ is just left multiplication by a € R. [

Recall the following definition from abelian group theory; e.g., see [1].

Definition 3.5. A subgroup H of a group G is pure in G if and only if H N nG = nH

for each integer n.

Proposition 3.6. Suppose that R is a ring such that R free of finite rank. If R has a
Zassenhaus family % over Z with the property that each X € % is pure in R, then
F' ={QX : X € F} is an Zassenhaus family over Q for the Q-algebra QR.

Proof: ~ Since R is free of finite rank, there are r; € R such that Rt =
MZ&---®r,Z for some n € N. Let ¥ € Endg(QR, .#'). Then ¥(r;) = > ") _, GixTr
for some ¢;, € Q. For 1 < i < n, denote by m,; the least common multiple of
the denominators of the g; , ranging over k. Then m;y(r;) = >0 _,(m;q;x)r, where
miqix € Z. So mp(r;) € R. Denote by m the product of the m;. For 1 <i < n,
map(r;) € R. Tt follows that my(R) = my(r)Z & - - - & mip(r,)Z C R.

Now mi(X) € R and my(X) C QX so that my(X) C QX N R. From purity,
one argues that QX N R = X. It is clear that X C QX N R. Let r € QX N R. Then
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one can assume that r is of the form (a/b)r’ for some a/b € Q and some 1’ € X.
So br = ar’. Since X is pure in R™, there is an € X such that bz = ar’. Hence
x = (a/b)r =r and r € X. Therefore QX N R = X and my(X) C X. Since .Z is a
Zassenhaus family for R, mi|gr =t € R. Since my is Q-linear, m is multiplication

by ¢ on all of QR. Thus ¢ = (1/m)t € QR. O

In the foregoing proposition, the hypothesis that R™ is free of finite rank cannot
be dropped. If this hypothesis is weakened to merely finite rank, one can only say
that ¥(R) C ¥(r)Q @ -+ @ ¢(r,)Q. In this case, an infinite number of x € ¥(R)
may require a distinct m, to achieve mg1(x) € R. There may be no least common

multiple m available so that my(R) C R.

Lemma 3.7. The ring Z[x] of integer polynomials has a Zassenhaus family F over Z

such that all members of F are direct summands of the additive group of Z[z].

Proof: Note that A = Q ®z Z[z] is a Q-algebra. Moreover, A is isomorphic to
Qlz], the Q-algebra of all polynomials in indeterminate x over the infinite field Q. By
Proposition 3.3, A has a Zassenhaus family. Proposition 3.4 provides the Zassenhaus
family for Z[z].

It remains to show that each member of this family is a direct summand of the

free abelian group (Z[z])".

A member X of the family for A from Proposition 3.3
has the form X = (¢ + 2™)Q[z] for some ¢ € Q. This member is used in Proposition
3.4 to provide the member Y = X N Z[z] of the family for Z[z].

It will be seen that Y = Z[z] N (¢ + 2™)Q[z] = (a + ba™)Z[x] where a and b
are the numerator and denominator of ¢ respectively. Note that if f(z) € Z[z| then
(a+bx™) f(z) = (q+a™)bf(z) € (g+2™)Q[z]. Hence (a+bx™)Z[x] C Z[x]N(q+x™)Qlz].
Let g(z) = (g-+2")f(z) € Z[z(q+=")Qla]. Then (g+2")f(z) = (a-+ba")(1/b)f ().
This means that the binomial a + bz" divides the polynomial g(z) in the ring Q[z].

Note that g(z) = ¢f(z) + 2" f(z) € Z[z]. If g(x) = S, gz’ and f(z) = S5, fir?,
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then ¢f () + 2" f(x) = 010 fla? where either f/ = qf; or fi = 0 for i < n. It follows
that qf; € Z for 0 < i < £. Then b divides each f; in Z and (1/b) f(x) € Z[z]. Thus
(a+bx™) divides g(z) in the ring Z[z]. Therefore (a + bz™)Z[zx] = Z[z] N (¢ + 2™)Qlx].

To see that Y is a direct summand of the free group of Z[x], note that for any
polynomial p(z) in Z[x], the Euclidean Algorithm guarantees that p(x) = r(z) + (a +

bx™)g(x) where r(z) and g(z) are unique in Z[z| but r(z) isnot in Y. O

Next, consider a ring that was introduced by A. L. S. Corner to obtain torsion

free abelian groups without indecomposable summands [12, page 145].

Definition 3.8. A semigroup is a set that is closed under an associative binary opera-

tion. In general, a semigroup need not be closed with respect to inverses of elements.

Definition 3.9. Suppose that R is a ring and A is a semigroup. Then the semigroup
ring RA = @qeaRa is the set of all finite sums ), 7a;, with each r; € R and each
a; € A. Define addition term-wise, in the usual manner for direct sums. Define ring

multiplication for a =}, rja; and b=}, s;b; in RS as ab =3, :(ris;)(aib;).

Definition 3.10. Let A = {7y : 0 < v € Q}. Define a semigroup structure on A by

setting aff = max{a, B} for all a, 8 € A.

Lemma 3.11. Let R = SA be the semigroup ring of A over a commutative ring S.
Then F = {Rvy :~v € AYU{R(1—7~) : v € A} is a Zassenhaus family for the S-algebra

R. Moreover, each member of % is a direct summand of the S-module R*.

Proof: Let ¢ € Endg(R) such that ¢(S) = {0} where ¢ leaves each member
of .# invariant. There is a column-finite A x A-matrix M = [s, 5la.gea With entries
in S such that p(a) = 5., B for all a € A.

For o, € A, [ divides « if and only if @« > 3. Since Ry = @ <qeaSo is
invariant under ¢ for all v € A, s, = 0 for all 0 < 8 < 7. In particular, sgo = 0 for

all g € A.
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If 3,7 € A such that 3 > v, then § — 3y =3 — 3 = 0. For v € A, expand

R(1 — ~) in terms of direct summands:

R(1—7)=(B—pv:0€N)g
:<ﬁ_730§5<7>s

= Bo<p<yS(B — ).

These ideals are invariant under ¢ for all 0 < v € A. It follows that
p(l=7)=p(=7) =Y —Bsay= Y (B—ts,
B2y 0<B<y

for some t5, € S. Equating coefficients for the terms of the two sums yields —s., , =
> o<y loy and tg, = 0 for 0 < 3 < 7. Taken together, these results for the
coefficients imply that s, = 0 for all ¥ > 0 as well as sg, = 0 for all 3 > ~. Thus
M is the zero matrix and ¢ = 0.

Suppose that 1) € Endg(R) such that the members of .# are invariant under
1. Define p(z) = ¢(x) — (1) - x for each x € R. Then ¢(S) = 0. By the preceding
argument, ¢ = 0 so that ¢ (z) = (1) -z for each x € R. Therefore .¥ is a Zassenhaus
family for R.

Let v € A. Then v = max{vy,v} = v -+. Thus 7 is an idempotent of the
commutative ring R. By [14, Lemma 14.8], R=Ry® R(1 —~). O

Definition 3.12. [21, Definition 1.1.7] A partially ordered set X is locally finite if and

only if for any a,b € X the interval [a,b] = {z € X : a < 2z < b} is finite.

Definition 3.13. [21, Definition 1.2.1] Let X be a partially ordered set and R a com-

mutative ring with identity. Define elements of the incidence algebra:

I(X,R)={f: X xX—>R: f(x,y) =0if z £ y}
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Define operations for f,g € I(X,R); r € R; and a,b,x € X:

(f +9)(a,b) = f(a,b) + g(a,b)

(f-9)(a,b) = Z fla,z) - g(z,b)

a<z<b

(rf)(a,b) = - f(a,b)

Theorem 3.14. Let K be a field and X a finite partially ordered set. Then the incidence

K-algebra R = I(X, K) has a Zassenhaus family over K.

Proof: Denote by = the partial order on X. Without loss, one can label the
elements of X as {1,2,...,n}. By [21, Lemma 1.2.5], the labels can be applied such
that if a,b € X with b = a then b > a. By applying an isomorphism from [21,
Proposition 1.2.7] and then a transpose, one may take R = @,>0=p>1/K eqp With eys
the n x n matrix with the identity of K in the (a, 3) position and zeros everywhere
else.

Proceed by induction on n. If n = 1 then R is K itself. In this case, let
¢ € Endg(K). Forr € K, o(r) = rp(l). So ¢ is just multiplication on the right by
©(1) € K. The empty set serves as a Zassenhaus family since the algebra and ring
coincide.

Suppose that for partially ordered sets Y of cardinality less than n, I(Y, K) has
a Zassenhaus family. This time, take the candidate for a Zassenhaus family for R
to be the collection of all left ideals of R. Let ¢ € Endg(R) so that ¢(1) = 0 and
@(J) C J for every left ideal J of R. Note that for j € X, Re;; = @orjKeqj. S0 Rejj
is the collection of matrices in R with entries in the j-th column and zeros everywhere
else. Define S = @7_,Rejj. Then R = Rey; © S. Since R is lower triangular, the 1
row of any element of S has only zero entries. So S is isomorphic to the collection
of lower triangular n — 1 x n — 1 matrices. Using the transpose and [21, Proposition

1.2.7], S is isomorphic to I(X*, K') where X* = X —{1}. Since Re;y; and S are direct
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summands of R, they are left ideals of R. Then ¢(Re;) C Req; and ¢(S) C S. Then
© = ¢|g is a K-linear endomorphism of S.

Let J be a left ideal of S. If r is a matrix of J then define r* to be the matrix
resulting from attaching a row of all zeros as the 1 row and a column of all zeros in
the 1 column. Define J* ={r*:re€ J} CR. Let r € Rand t € J. Then r = ry; + s*
for some r; € Rey; and s € S. So rt* = (ry + s*)t* = rit + s*t*. Simple matrix
multiplication is enough to show that s*t* = (st)*. Since r; has nonzero entries only
in the first column and the first row of ¢ is zero, r1t* = 0. Since J is a left ideal of S,
st € J and (st)* € J*. Thus rt* € J*. Therefore J* is a left ideal of R.

Since J* is a left ideal of R, o(J*) C J*. But J* N Rey;; = 0. So J* C S if one
views S in the strictest sense as a direct summand of R. Then it has been shown
that @(J) C J. Therefore ¢ leaves invariant any left ideal of S. By the induction
hypothesis, S has a Zassenhaus family, so ¢ is multiplication on the left by (1g) € S.
Recall that $(1s) = 0. Hence ¢ = 0. Note that 1g = > ", e; and 1g = eq; + 1g.
It was assumed that p(1g) = 0. It follows that ¢(e;1) = 0. For n > 4,j > 2, since
p=0ande; €95, ¢(e;) =0.

Fix n > k > 2 such that £ = 2 and k£ = 1. Define J, = R(ex1 + exr). Let
r = (ry) € R. Then reg is the matrix whose 1 column is the k-th column of
r, but zeros everywhere else. Also, reg, is the matrix with the same k-th column
as r, but zeros everywhere else. Hence J, = R(eg; + exr) = PariK(€a1 B €ak)-
By definition, Ji is a left ideal of R. Then ¢(J;) C Jr. Note that & > 2 and
a = k implies that « > 2. In this case, p(eqr) = 0 for all k& = 2 and o = k.
Hence ¢(Jy) = Gari K (p(€a1) © 0(ear) = BarkKp(€a1). Since SarrpKp(ear) = Ren
is a left ideal of R, @asrK@(ea1) € Reyp. It follows that ¢(J;) € Rey;. Thus
o(Jx) € Jp N Reyy = {0}. Since ex + epr € Ji and ex, € S, 0 = p(ex + exr) =
olerr) + plexr) = @(er1). Therefore p(eg;) = 0 for each k > 2 such that &k = 1. So

©(Re11) = 0. Thus ¢ is zero on all of R.
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Let ¢ € Endg(R") and define p(r) = ¢(r) — ¢ (1g) - r. Then ¢(1g) = 0 and
the foregoing argument shows that ¢ is multiplication on the left by (1) € R.
Therefore the collection of left ideals of R contains a Zassenhaus family for R. By

induction, R = I(X, K) has a Zassenhaus family whenever X is finite. (J



CHAPTER FOUR

Rings of Algebraic Integers with Zassenhaus Families

Rings of algebraic integers provide more examples of rings with Zassenhaus

families over Z. For the following discussion, fix some notation.

Notation 4.1. Suppose that S is the ring of algebraic integers of a Galois field extension
F over Q with degree n. Denote by G = {g1, 92, ..., gn} the finite Galois group for F’

over Q, and set g; = idp.
Recall some basic definitions from [15, Chapter 1, Section 6].

Definition 4.2. A prime ideal P of S lies above a prime number p if and only if

PNZ=pZ.

Definition 4.3. The ramification index of a prime ideal P of S over the prime number

p € 7 is the power of P that appears in the prime factorization of pS.

Definition 4.4. A prime ideal P of S is ramified over a rational prime p € Z if either
the ramification index of P is greater than one or if the field S/P is not separable

over Z/pZ.

Definition 4.5. A prime number p € Z is ramified in S if and only if pS is divisible

by some ramified prime ideal of S.

Definition 4.6. Suppose that a prime ideal P of S lies over a prime number p. The

relative degree of P over p is the dimension of S/P over Z/pZ.
Lemma 4.7. If SG = {3, 5:gi : s; € S}, then Q®SG = Q®End(ST) = Endg(F').

Proof: Field automorphisms map roots to conjugate roots. Then each element

of G maps S back into S. So SG C End(S™).

17
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Taking an argument from [4, Lemma 2.2.7], it will be seen that F' has a basis
contained in S. Since F' as an extension over Q has finite degree n, there is a basis
{1, 29,...,2,} for F. Since F' is a finite Galois extension, each of the x; are algebraic
over Q. Let 1 < i < n. For x;, there is an m; € N and there are z(i,k) € Q for
0 < k < m; such that z(i, my)a" +2z(i,m — 1)z 4. ..+ 2(i, )x;+2(7,0) = 0. One
can assume that the z(i, k) are in Z (multiply the equation by a common denominator
if necessary). Allow us to supress the ¢ for now to write z; for z(i, k) and m for m,.

Then

27N a™ 4 22 2z 20) = 0

i

melgm=l 4 22w 202 =0

m,.m
Em T +Zm—1zm %

(2mZi)™ + Zme1(Zm@)™ L+ 21272 (2 T) + 202" = 0.

Since, as has just shown, z,,x; is the root of a monic polynomial with coefficients in
Z, zmx; € S. Define the set Y = {y1,99,...,yn} € S where y; = 2(i,m;)z;. Since
the x; are linearly independent, so must be the y;. Thus Y forms a basis for F. It
follows that Y forms a basis for S. This shows that F'*/S* is torsion. The fact that
for each f € F' there is a number ¢ € N so that /f € S is used in the future. Note
that Q@ F=Q® S.

By the preceding argument ST is free abelian of rank n. Hence End(S7) is
isomorphic to Mat, x,(Z). Then End(ST) is a rank n? free abelian group and must
have a basis with n? elements. By [13, Lemma V.7.5], G is a linearly independent
collection of maps in End(S™). It is easy to see that {yg; : 1 < i,j+1 < n}is
linearly independent in End(S™) and has cardinality n®. Therefore this set is a basis
for both End(S™) and SG so SG = End(S™).

From [19, Lemma 2.4], End(FT) = FG where FG = {>" | figi: fi € F'}.
Suppose that f = > | fig; € FG. Then the f; are elements of F. There is an

m; € N so that m;f; € S. Let m = lem;m;. Then mf; € S for each i. It follows
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that mf € SG. Therefore Q ® FG = Q ® SG. At this point, it has been shown that
Q®SG =Q®End(ST) = End(F).

Any Q-linear endomorphism of F'* is also Z-linear. Hence Endg(F*) C End(F™).
Let ¢ € End(Ft), ¢ € Q, and z € F. Say g has numerator a and denominator b.
By definition F is an extension of Q so that b™'xz € F. Then ¢(qz) = ap(b~'z) =
qp(bb~'z) = gqp(z). Hence End(FT) = Endg(F). Finally, Q®SG = QREnd(S™) =
Endg(F*). O

Theorem 4.8. S has a Zassenhaus family # = {L; : i < w} of prime ideals such that
each L; lies above a prime number p; and (i — p;) is a one-to-one correspondence
of the ideals in % to the set of all prime numbers p such that some ideal of F lies

over p.

Proof:  First construct .#. Note that F' = Q[n] for some 7 with minimial
polynomial mp(z) € Z[z] of degree n. Denote by P the set P of rational primes p € Z
such that mp(x) (mod p) has a root. From [9, Proposition on page 298], the set PP is
infinite.

By [15, Theorem 1.7.3], the prime numbers that ramify in S are the prime
numbers p such that pZ contains the discriminant ideal I [15, Section 7] of S over Z.
I = pZ for some p € Z. Then pZ C pZ means that p divides . Only a finite number
of rational primes divide p. Exclude these primes from P. Then P is still infinite, and
p is not ramified for each p € P.

Let p € P and mp(z) = mp(z) (mod p). Let mp(x) = g1(x)*™ - - gi(x)* for
some distinct irreducible polynomials g;(z) over Z/pZ. By Kummer’s Theorem [15,
Theorem 1.7.4], pS = Q7' Q5 - - - Q¢ for some distinct prime ideals @); of S such that
the relative degree of (); is the degree of g;. Since p is not ramified, each a; = 1. Then
pS = @Q1Q32--- Q. Since p € P, there is a root a of mp(z) in Z/pZ. It follows that

gr(x) = (z — a) for some 1 < k < t. So Qy has relative degree 1. By [15, Theorem
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1.6.8], the prime ideals Q1, Qs,. .., Q; lying above p each have the same ramification
index e and relative degree f such that eft = n. In this case, e = 1. Since )} has
relative degree 1, f = 1. Thus t = n and pS factors into n distinct prime ideals.

Also by Kummer’s Theorem, G transitively permutes the n prime ideals. Since
G has order n, only idp fixes all of the Q; lying over p. Let P = {p; : © < w}.
Let i < w and let & = (i mod n) + 1. Pick a single prime ideal @; lying above
p; such that g, (Q;) # @Q;. Define a candidate .# for a Zassenhaus family for S as

={Q; i <w}.

Let {ai,as,...,a,} be an integral basis of S. By Lemma 4.7, Q ® SG = Q ®
End(S*) = Endg(F™"). Define an n x n-matrix A over S by A = (g;(a;))1<ij<n-
Then det(A) # 0 since det(A) is a linear combination of basis elements for the
linear transformations of S*. Then there is a matrix A~! with entries in F. It
follows that A™! € Endg(F*). From Lemma 4.7, Endg(F") = Q ® End(S™) so
A™' € Q® End(ST). Tt follows that there is a number ma € N such that maA~! €
End(ST) = Mat,«,(S). That is, maA~! has entries in S.

Let ¢ € End(S™) such that p(P) C P for all P € .#. Lemma 4.7 promises
some m € N such that me = >  s;9; € SG. Borrowing a technique from [19,
Lemma 2.5]:

Let f = mep. Then f(P) C P for all P € .#. Observe that

(f(al)a : (Z Szgz al Z Szgz Qp, )

= (81, S92,y .0y Sn)A

Let x € P for some P € % . Then

n

(f(xal)v 7f($an)) = <Z zgz xal ;Z zgz Tan )

=1
(Z Szgz gz al Zszgz gz Qn >

= ($191(x), ..., Spgn(x))A € P X P X ... X P.
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Recall that maA~! is a matrix with entries in S. Thus

(f(zar), ..., f(wa,))maA™" = ma(s191(2), ..., $ngn())

e PxPx..xP

It follows that mas;g;(P) C P for all 1 < i < n. If p divides ma then exclude p from
P. Since only a finite number of primes divide ma, P is still infinite.

Suppose that p € P with P € % the corresponding prime ideal lying over p.
Note that pS C P so that S/P is a torsion p-group. Also, mas;g;(P) C P. From
ged(p, ma) = 1 it follows that s;g;(P) C P.

Let 2 < i < n. For k = (tmodn)+ 1, pp € P with corresponding P =
P, € % such that g;(P) # P. Recall that P has relative degree 1 over p. Then
S/ P is isomorphic to Z/pZ a field and so P is a maximal ideal of S. It follows that
S = gi(P)+ P and 1 = g;(a) + b for some elements a and b of P. This implies that
s; = s;gi(a) + s;b € P+ P = P. Then s; € P for all P € .Z. It follows that s; is not
a unit.

If s; # 0, then s;S' is a nontrivial, proper ideal of S such that s;5 C Py for all
P, € # such that k = (i mod n) + 1. Since P is infinite, there are infinitely many
such P,. Then s;S factors into an infinite number of distinct prime ideals of S. This
is a contradiction.

From this contradiction, one can conclude that s; = 0 for 2 < i < n. Thus
f=me = s1idp. Then ¢(1) = s;/m € F. But ¢(1) € S so s;/m € S. Therefore ¢

is multiplication on the left by an element in S. [J

A direct application of the preceding theorem leads to the following corollary.

Corollary 4.9. Let S be the ring of algebraic integers of the quadratic number field
F =Q[v/m|. Then S has a Zassenhaus family of prime ideals all lying over distinct

prImes.
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Let F', S, and m be as in the preceding corollary. One can actually construct the
Zassenhaus family for S using the techniques developed in the proof of the preceding
theorem. Let G = {idp, 0} be the Galois group of F.

First, suppose that m > 0. By Dirichlet’s Arithmetic Progression Theorem [18,
Theorem 6.21], the set I' = {p € I : p = 1 mod4m} is infinite. Note that each of 4
and m is a divisor of 4m. From [16, page 19], p = 1mod4 and p = 1 modm for all
p € I. Since 12 = 1modm, each p € I is a quadratic residue mod m. By Gauss’s
Quadratic Reciprocity Theorem [16, Proposition 11.2.5] and [16, Proposition 11.2.3],
it follows that m is a quadratic residue mod p for all p € T.

Now suppose that m < 0. Since p = 1 mod 4m, then (p—1)/2 is an even integer.
The [16, Proposition I1.2.3] implies that -1 is a quadratic residue mod p.

Then any m € Z is a quadratic residue modp for all p € I'. Define I'" the set
of all primes p € I' such that p is not ramified in S. By the second paragraph of
the proof of 4.8, T" is cofinite in ' and has infinite cardinality. Also by the second
paragraph of the proof of Theorem 4.8, pS = P,(), with distinct prime ideals P, and
Q, of S. Since G operates transitively on the set {P,,Q,}, o(P,) = Q, for all p € T".
The family # = {P,:p € F/} now has the properties required to apply the proof of
Theorem 4.8. Note that by [15, Theorem 1.9.2], S = Z[d] where

vm ifd=2,3 mod 4,
d:

%ﬁ ifd=1 mod 4.



CHAPTER FIVE

Some Dedekind Domains have Zassenhaus Families

Lemma 5.1. [19, Lemma 2.5] Let R be an integral domain such that R™ is torsion free
and let D be the field of fractions of R. Let A be a finite set of ring automorphisms
of R, let s, € R for each o € A, and let f =3 _\ 5,0 € Endz(R). If X is an ideal
of R such that f(X) C X, then there is a nonzero sy € R such that sy only depends

on A and sps,0(X) C X for each o € A.

Proof: Let A be an ordinal such that {a, : ¥ < A} a maximal Z-independent
set in Rt. Equivalently, {a, : ¥ < A} is maximal such that ®,ya,Z C D and
R/(®,<ra,Z) is torsion. Note that each o0 € A extends uniquely to an automorphism
of D. Abusing notation, call that map o as well. Enumerate A as A = {o; : 1 <1i <
n}. For each 1 <i < n define an element A; € R, the cartesian product of \ many
copies of R, by A; = (0i(ay))v<x.

Define the n x A matrix over R by

Ay
A,

A,

To see that the rows of A are independent over D, assume that there are x; € D such

that 0 =", x;[(0i(ay))v<r]. Summing the terms of each sequence,

<Z xioi) (a,) =0 for each v < A
i=1

Let r € R. From earlier comments, there is a natural number m, such that m,r

is a linear combination of a finite number of the a,. It follows that

23
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Since R" is torsion-free and m, is nonzero,

0= (Z :L‘iO'i> (r)

It follows that Y. , z;0; is the zero map on R. The proof of Lemma 7.5 in [Hunger-
ford, page 291] can easily be modified to show that automorphisms of R are linearly
independent over D from which one can conclude that x; = 0 for 1 < i < n. Therefore
the rows of A are independent. Thus one can perform elementary row operations over
D on A that, after finitely many steps, yield the “row reduced echelon form” of A.
Since the rows of A are linearly independent over D, there is some n x n matrix M
over D such that MA has n “pivot columns”. Thus, a permutation of the ordinals
less than A can be performed such that, after this adjustment of the enumeration of
{a, : v < A}, then MA = [I,,:¥] where I, is the n x n identity matrix. This means
that A = [A:Ay] and MA = [MA;:MAy] = [I,)¥] and so M = A is invertible.
Since Ay has entries in R, M has entries in D. The matrix M has a finite number of
entries so there is a nonzero s, € R such that sy M has entries in R.

Note that (f(a,)),<x = Q27— sj0j(a))van = (51,82, ., 8,)A. Let v € X.
Then

(f(wa,))yer = (Z 5505 (zay))ver

J=1
n

= (Z 8;0; (x)dj(ay))u<>\

j=1
= (5101(x), ..., $n0n(z))A € XM
where X denotes the Cartesian product of n copies of X. Let
AT
0

denote the A x n matrix with the n x n block A]' above a block whose entries are

all zero. Then

(s101(x), ..., 8,00 (2)A = (s101(2), ..., Spon(x))[A1:A5] € x™
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So

(s101(2), ..., 8,00 (7)) [A1]Ag] e xm

which is equivalent to
(s101(2), ..., snop(x)) I, € XWATL
It follows that
sa(s101(x), ..., spon(x)) 1, € X(")SAAI1 cxXm,

Therefore sys,0(X) C X for each o0 € A. [

Theorem 5.2. Let R be a Dedekind domain such that R™ is torsion free, P the set
of all prime ideals of R, and D the field of fractions of R. Moreover, let Kp be the
kernel of the natural map Aut(R) — Sp where Sp is the group of permutations of P,
and assume that End(R") C D[Aut(R)]. Then R has a Zassenhaus family of ideals
if and only if Kp = {idg}.

Proof: ~ Assume that ¢ € Kp and 0 # idg. This means that o(P) = P for
all P € P and since R is Dedekind, o(X) = X for all ideals X of R. If 0 € R-
then 0 = o(1)- = 1- = idg, a contradiction. This shows that R & {¢ € Endz(R) :
VX < R(p(X) € X)} and R has no Zassenhaus family of ideals.

Now assume that Kp = {idg}. It follows that for any idg # o € Aut(R), there
is some P € P such that o(P) = @ € P but Q@ # P. Let {#, : n < w} be an
increasing, unbounded sequence of natural numbers. Define X, ,, = PQ% . Then for
0 # s,

59(X, ) = 5Q(Q)% C PQ*

only if sQ C Q.
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Assume that there is a k such that sQ C Q%. Since sRQ C sQ, the factoriza-
tion of sR into prime ideals must contain a factor Q% such that o > (3, — 1. Since
{Bn : n < w} increases without bound, there is an index m such that 3,, > «. Then
sQ Z @QPm. It has been shown that for any 0 # s € R, there is an index m such that
$0(Xom) € Xom.

Suppose that ¢ € End(R") such that ¢(X,,) C X, for each 0 € Aut(R) and
each n € N. Since p(R) C R, it follows that sp = Zle s;o; for some s,s; € R and
some o; € Aut(R).

Let 1 <7 < k. By the preceding lemma, s;,0;(X,.) C X,,, for each o € Aut(R)
and each n € N. In particular, s;0;(X,,,) C X, for each n € N. By the construc-
tion of the X, ,,, it must be the case that o; = i¢dg for all i. Therefore sy =t where
t =>;s. Then ¢ is the multiplication by s™'¢ € D. But s™'t = (1) € R and it
follows that ¢ € R. This shows that .# = {X,,, : 0 € Aut(R),n € N} is a Zassenhaus

family of R. [J



CHAPTER SIX

From Zassenhaus Families to Zassenhaus Rings

For particular rings with Zassenhaus families, Lemma 6.8 below allows us to con-
struct modules from the Zassenhaus families to satisfy the definition of a Zassenhaus
ring. That is, various partial converses for Theorem 2.3 follow from this lemma. Re-
call the following definitions from abelian group theory; see, for example, [1]. Abelian
groups in this section are presumed torsion free unless noted otherwise. From Defi-
nition 3.5, a subgroup H of a group G is pure in G if and only if H NnG = nH for

each integer n.

Definition 6.1. Suppose that H is a subgroup of a torsion free abelian group G. Then
the purification of H in Gis H, ={g € G:3In € Z(ng € H)}.

Lemma 6.2. H, is pure in G.

Proof: Let n € Z and g € G such that ng € H,. Then there is an m € Z so
that (mn)g = m(ng) € H. Hence g € H, and ng € nH,. So H, "\nG = nH, for any

n € Z. Therefore H, is pure in G. [J

Definition 6.3. Suppose that G is an abelian group and that p is a prime number.
Define a function hS : G — N U {oo} as follows. If there is an n € N so that g is
divisible by p™ but not p* for k > n, then set hg(g) = n. Otherwise, set hf(g) = 0.
The value hf(g) is called the p-height of g in G. For each g € GG, the height sequence

(hS(9))pery can be considered.

Definition 6.4. For a given height sequence v = (h$(g))pery define the type of a in
G, denoted type(a), to be the collection of all height sequences (3 for elements of G
such that g differs from « at only a finite number of entries by only a finite amount.
If g € G then the type of g is just the type of its height sequence.

27
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A brief inspection will confirm that, in an abelian group, types are equivalence
classes. That is, the property of belonging to a type is transitive, reflexive, and

symmetric within the context of elements and the group operation of an abelian

group.

Definition 6.5. A group G is homogenous if and only if all nonzero elements have the

same type.

Let z € Z. Then z is divisible by only a finite number of primes, and each
prime divisor divides z only up to a finite power. If « is the height sequence for z in
Z, « differs from 0 = (0),enr at only a finite number of entries by, at most, a finite
amount. Thus « € type(0) (equivalently, g is of type 0). Therefore, Z is homogenous
of type 0.

If @« = (a,) and B = (b,) are height sequences, then say o < 3 if and only if
a, < b, for all p € II. It is easy to show that this is a partial order (see [1, Section
1]). This partial order induces a partial order for the types. For types 7y and 7, say

To < 7 if and only if there are height sequences oy € 79 and oy € 7 so that ay < «a;.
Definition 6.6. For a type 7, set G(7) = {g € G : type(g) > 7}.

Lemma 6.7. If A is any abelian group, a € A, and n,m € N such that gcd(m,n) =1

and ma € nA. Then a € nA.

Proof: There is a b € A so that ma = nb. There are integers r and s so that

1 =rn+ sm. Then m = (1 —rn)/s. Using our new identity for m,

(1 —rn)a=snb
a—rna = snb

a = n(ra+ sb) € nA.
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Lemma 6.8. Suppose that G is a torsion free abelian group that is homogeneous of
type 0. Suppose further that there is a family {V; : 1 € I} of at most countably many

pure subgroups of G such that
(1) G =3, Vi, and
(2) each G/V; is homogeneous of type 0.

Let {P; : i € I} be a family of disjoint infinite sets of primes, and set R; =
(p~' :p e P) CQ. Denote by 7; the type of R; for all i € I. Define M =Y, ; R;V;.
Then M (7;) = (V;)«. That is, the purification of V; in M is just M(1;).

Proof: Lemma 6.7 shows that if A is any abelian group and n,m € N such
that ged(m,n) = 1, then ma € nA for some a € A implies a € nA.

To see that M/G is torsion, let a € M. Then a = Zipi_lvi for some p; € P,
and v; € V;. A finite number of the terms in the summation are nonzero so there
is a finite least common multiple ¢ for the p;. For each 7 € I, Kpi_lvi € V;. Thus
la =3, tp;'v; € 3, V; = G. Therefore M/G is torsion.

Let i € I and v € V. If p € P, then v = p(1/p)v and (1/p)v € M. Thus
h(v) > h)'(1/p). If p & P; then any element of R; is only finitely divisible by p
and the same goes for v. Then, by the construction of M, type(v) > type(r;). Thus
Vi C€ M(7;).

To see that M(7;) is pure in M, let k € Z and a € M such that ka € M(7;).
For each p € II, h)! (ka) < hZ(k) + hl!(a). Since hZ(k) is nonzero for at most finitely
many p € I, type(a) = type(ka) > 7;. Thus a € M(7;) and ka € kM (7;). It follows
that M(7;) is pure in M.

Since M (;) is pure in M and V; C M(7;), it is clear that (V;), € M(7;). To
show that M(7;) C (V;)., let s € M(7;). Since M /G is torsion, there is some m € N

such that &' =ms € GN M (7).
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The set P, = {p € P,: s’ € pM,s" & pG,ged(p, m) = 1} is cofinite in P;. For,
if p ¢ P, then one or more of s’ & pM, s' € pG, and ged(p,m) # 1 holds. So the
complement of P/ is the union of Cy = {p € P, : s € pM}, O, = {p € P, : s’ € pG},
and Cy = {p € P, : ged(p,m) # 1}. It suffices to show that each of these sets is finite.

If s ¢ pM, then s’ is not divisible by p in M. But s’ € M(7;) so the height
sequence for ¢’ in M has at most finitely many entries such that the entry is less than
the corresponding entry for 7;. Recall that 7; is the type of R; which is generated
by the inverses of the primes of P;. Let 77" denote the p-th entry for 7;. Then 77 is
not zero for p € P;. It follows that s’ is not divisible by p for at most finitely many
p € P;. Therefore C) is finite.

Note that s’ € G and G is homogenous of type 0. Then the height sequence for
s' in G has entries that differ from 0 in at most finitely many places. It follows that
s’ is divisible by at most finitely many p € P; in G. Thus s’ € pG for at most finitely
many p € P;. Therefore (' is finite.

Since m is divisible by at most a finite number of primes, ged(p, m) # 1 for
a finite number of p € II. Since P; is infinite, ged(p,m) # 1 for a finite number of
p € P;. Thus (5 is finite. Then PZ-' is cofinal in P;.

Let II; be the set of all square-free natural numbers whose prime factors are
contained in P;. Let p € P,. By the definition of P;, thereis an x € M so that pr = s’
From the construction of M, it follows that z =}, ;vj for some v; € V; and ¢; € II;.
Let ¢ = H#i g;. Since pxr = s' = Zj %vj one can rewrite the summation so that no

j
term has p in the denominator. One can assume that ged(p,q) = 1. Now

qw—qz—vj—Z—vj—g+—v

q
with v; = qu} and ¢ a linear combination of the v; with j # i. Note that g € G. This
implies that ¢s’ = pgxr = pg + ng. Then pv; € ¢;GNV; = q;V; since V; is pure in G.
4q;

Either p divides ¢; or not.
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Assume p does not divide ¢;. Since pv} € ¢;V, then v, € ¢;V; and v, = g;v! for
some v} € V;. Thus ¢s’ = p(g +v}). Since p € P, and ged(p, ¢) = 1, the element s’ is
in pG. This contradicts the definition of P .

Thus one can assume that ¢; = pt for some t € N. Since ¢; is square-free,
ged(p, t) = 1. It follows that gts’ = ptg+ z—tvg = ptg+v,. Then qt(s'+V;) € p(G/Vj).
Since both ¢ and t are relatively prime to ;9, ged(p, gt) = 1. It follows that
s' +V; € p(G/V;) for all p € P/. This shows that type(s' + V;) > 7; > 0. But G/V;
is homogeneous of type 0. The only possibility is that s’ + V; = V;, and thus s’ € V;.

Since ms = s € V;, s € (V;),. O

Theorem 6.9. Suppose that R is a ring such that R/pR has no nonzero nilpotent
elements for any prime p, QR has a Zassenhaus family F' = {QV; : i € I}, and the
Vi are ideals of R such that Rt and {V; : i € I} satisfy Lemma 6.8. Then R is a

Zassenhaus ring.

Proof: Let R; C Q be as described in Lemma 6.8. Set M = Ziel R;V; C QR.
For i € I, Lemma 6.8 shows that M(7;) = (V})..

Let ¢ € Endz(M) such that (1) = 0. Let a € M(7;) and p € IL If h)!(a) = n,
then a = p"z for some z € M with z not divisible by p. In this case, p(a) = p"p(z).
If hi‘,/[ (a) = oo, then p(a) must be divisible by any power of p as well. It follows that
the type of (a) is greater than or equal to the type of a. Hence ¢ maps M (7;) into
itself. Then

(Vi) € ((Vi)s) € e(M (7)) € M(7:) = (Vi)s

the purification of V; in M. Let g € (V;)*. Then there is an n € N so that ng € V;.
Hence g = (1/n)(ng) € QV;. Therefore p(V;) C QV;.

Since R € M C QR, QM = QR. From [1, Section 0], there is a unique
extension ¢ € Endg(QM) = Endg(QR) of ¢. Then ¢(QV;) = Qy(V;) C QV;. Since
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F' is a Zassenhaus family, ¥ is multiplication on the left by g for some r € R and
some ¢ € N. Recall that (1) = ¢(1) =0. So ¢ = ¢ = 0.

Let v € Endz(M) and i € I. Then y(M(7;)) € M(7) = (V;). = QV, N M
and so v(QV;) € QV;. Then ~ leaves invariant the member ideals of .# . Hence
v is multiplication on the left by some element of QR. Since m = (1) € M,
(v —m-)(1) = 0. By the preceding paragraph, (v — m-) is the zero map. Thus 7 is
multiplication on the left by m.

To conclude that R is a Zassenhaus ring, it suffices to show that m € R. To
this end, let  + R € M/R. From Lemma 6.8, z = >\  (1/g;)v; where each v; € V;
and ¢; is a product of distinct primes raised only to the first power from P;. Recall
that the P; are mutually disjoint. Hence ¢ = lem; ¢; is a product of distinct primes
raised only to the first power. Then gz € R. It follows that the order ¢ = o(x + R)
and is square free. Also, x = (3.7, a;v;)/q for appropriate a; € N. Notice that the

numerator is in R.

[\

One can write m = > with s € R and q =o(m+R). Then p(m) =m-m =
q

M. Let p be a prime divisor of ¢ and ¢ = pq’. Since ¢ is square free, gcd(p, ')

So (¢)

S

[ S

1.
5?2 82 52
2_2 = — € M. Thuso (—2 + R) divides p? and is square-free. It must be the
q 8210 2 p32
case that p— = — € R. Then p— = s* € pR. It follows that (s 4+ pR)* =0 € R/pR
p p p
since R/pR has no nonzero nilpotent elements.
It has been shown that s> = 0(mod p). Thus p divides s*>. This can only be the
case when p divides s. Then s € pR. Since ¢ = o(m + R), the element m = s cannot
q
be reduced. But p is a divisor of both ¢ and s. Hence ¢ must not have any prime

divisors, i.e. ¢ = 1. Therefore ¢ is multiplication on the left by s € R. [J

The next two corollaries apply Theorem 6.9 to obtain examples of Zassenhaus
Modules constructed from Zassenhaus families. Note that in the next corollary, the

ring Z[z] is considered. This ring does not have finite rank.
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Corollary 6.10. The ring Z[z] of polynomials with integer coefficients is a Zassenhaus

Ting.

Proof: Let R = Z[z]. For each prime p, if p does not divide 0 # g(z) € Z[z]
then p does not divide (g(z))" for n € N. Hence R/pR has no nonzero nilpo-
tent elements. By Proposition 3.3, # = {QV; : i € I} is a Zassenhaus fam-
ily of the Q-algebra QR. Lemma 3.7 shows that R has a countable Zassenhaus
family .# = {V; : i@ € I} such that each V; is a direct summand of RT. That
R = ZieIV} is clear by inspection. Let R; C Q be as described in Lemma 6.8.
Set M =) .., R;V; C QR. It is easy to see that R is homogenous of type 0. Let
i € I. From [11], direct summands of abelian groups are pure. By Lemma 3.7, each
element of our Zassenhaus family for Z[x] is pure in the additive group of Z[x]. Each
element of the Zassenhaus family of Lemma 3.7 is pure in the additive group of Z[x].
Since the additive group of Z[z| is a direct sum of copies of Z, Z[x] is homogenous
of type 0. Then for each element Y of the Zassenhaus family for Z[z| from Lemma
3.7, (Z[z])/Y is homogeneous of type 0. So Lemma 6.8 applies. The assertion follows
from Theorem 6.9. [J

Corollary 6.11. Let R = SA the ring defined in Lemma 3.11 with the additional
hypotheses that S is homogenous of type 0, ST is free of finite rank, and S/pS has

no nonzero nilpotent elements for any prime p. In this case, R is a Zassenhaus ring.

Proof: ~ The Zassenhaus family of Lemma 3.11 is countable. The family
F = {V; 1 i € I} can be enumerated with a countable index set I. From the
definition, R = @,cAvS. To apply Lemma 6.8, one needs to know that R is homoge-
nous of type 0. This property follows directly from the fact that S is homogenous of
type 0 and R is the direct sum of copies of S. By Lemma 3.11, R is the sum of all the

V; and each V; is a direct summand of R. It follows that each V; is pure in R and R/V;
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is isomorphic to a direct summand of R. Since direct summands of R are homogenous
of type 0, R/V; is homogenous of type 0. By Proposition 3.6, % = {QV;:i € I} is a
Zassenhaus family of the Q-algebra QR. The hypotheses of Lemma 6.8 are satisfied.

The assertion follows from Theorem 6.9. [

The next result helps show that rings of algebraic integers are Zassenhaus rings.

Proposition 6.12. Suppose that S is a ring with identity such that ST is a free abelian
group of finite rank. Suppose that F = {P; : i < w} is a Zassenhaus family of right
ideals of S. Suppose further that for each i < w, there is a (unique) number p; such
that p;S is properly contained in P; and the ring S; = P;/p;S has the property that
x € S; with x* = 0 implies v = 0.

Then there is a right S module M such that S C M C QS and
Endz(M™) = S. Moreover, p(t,(M/S)) =0 for all prime numbers p.

Proof: Define M = >._ p;'P, C QS. Let ¢ € Endz(M*). Note that

i<w Pi
ST is finitely generated, say by {si,S2,...,8,}, and M/S is torsion. Then for each
s; there is a k; such that k;p(s;) € S. Define k& = lem;k;. Let s € S. Then
$ = 2181+ 2282+ . .+ 2,8, for some z; € Z. So ¢(s) = z1p(s1)+220(82)+. . . +2,0(5n)-
It follows that kp(s) € S. Therefore kyp|s = 1 € Endz(ST).

Note that t, (M/S) = (p;'F)/S. Let i < w and p;'s € p;'P. Then
pikp(p;ts) + 8 = kp(s) + S = S. Hence ko(p;'s) + S € t,,(M/S). So kp(p; ' P;) C
p; ' P;. Therefore 1(P;) = pko(p; *P;) C P for all i < w.

Since . is a Zassenhaus family, ¢ = s- € S- and ¢ = % € Endy(M™). Note

that p(1) = % € M. From the construction of M, there is a finite subset I of w,
bi

s
there is a v € S, and there are b; € P; — p;S so that 7= Yol ; + u.

7

1y
Fix j € I and define ¢ = [] p;. Then q% ] + w for some w € S. But

iel—{j} p;
the denominator p; stops us short of the desired conclusion. So it can only be said
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b. b2 b,
that qi € Endz(M™). Then -~ - = q_2] + 2% ¢ M. All elements in M/S have
k p; Ppj bj pPj
ab; ab; ab;
square-free orders. But pfF € S. So the order of F +.S must be p;. Thus p_ es.
J J J

Then ¢(b; + p;S)* = 0 € S;. Recall that ged(q, p;) = 1. By our hypothesis, b; € p;S
which contradicts the choice of b;. Thus I is empty and so ¢ = % €S- as desired.
OJ

Corollary 6.13. Let S be the ring of algebraic integers of either a quadratic number
field or some Galois field extension field F' over Q of finite degree. Then there is an
S C M C QS such that Endz(M™) = S.

Proof: By Corollary 4.9 and Theorem 4.8, there is a Zassenhaus family .# =
{P; : i < w} of right ideals of S. Since the (i — p;) relation is injective, for each
1 < w, there is a unique number p; such that p;S is properly contained in P;.

Fix i < w, and let z € S; such that 22 = 0. By Proposition 6.12, it suffices to
show that x = 0. Since = € S;, x = ¢+ p;S for some g € P,. By hypothesis, ¢* € p;S.
Let p;S = Q1Q2--- P;---Qr where k € N and each @; is a prime ideal of S. Then
> € Q, for each 1 < i < k, and ¢ € P,. Since these ideals are prime, g € Q; for each

1<i<k,and g€ P,. Thusqe Q1Q2---FP;---Qr = p;S. It follows that x = 0. O



CHAPTER SEVEN

An Alternate Proof of Zassenhaus’s Result

Zassenhaus’s result from [24] is relevant to the topic of Zassenhaus rings, as one
might expect. This chapter presents an alternate proof of this result that uses some

ideas of Butler’s from [9]. First, here are a few lemmas to help in the alternate proof.

Lemma 7.1. Let R be a torsion free ring with identity. Let # = {L; : i < N} be a
countable family of left ideals of R such that L; = Rb; where b; € R is not a zero
divisor. Suppose that, for each © < N, there is a prime number p;, a nonzero natural
number ~y;, and an integer ¢; such that p/'0;R C L;, p; and 0; are relatively prime,
and (i — p;) is injective. Define M = R+ Y .. p; "Li € QR. Ify € M and
y- € Endz(M), then y € R.

Proof: Note that t,,(M/R) = (p; "L; + R)/R. Furthermore, t,(M/R) = 0 for
primes p not among the p;. It follows that M/R is torsion. Let y + R be an element
of M/R. Then y = % for some v € R and some product £ of finitely many of the
pi- Choose k to be the order of y + R in M/R. Since R is closed under addition, it
suffices to prove the result for the case in which k = p; for some i < w.

Note that (gp;%L,-+R) JRCt,(M/R) = (p~%L;+R)/R. Then p; "*YoL, C
p; "Li+R. Multipllying this last relation through by p;*d;, p; *0;vL; C §;L;+p) 6; R C
L; + L; = L;. Then vd;L; C p;L;. Since p; and ¢; are relatively prime, vL; C p;L;.
Since L; = Rb;, there is some r € R such that vb; = p;rb;. Since b; is not a zero

divisor in R, v = p;r. Therefore y =r € R. [

The proof of the following lemma uses some linear algebra. Basic definitions can
be found in [13, Chapter VII]. Recall from [13, Page 356] the notion of an invariant

subgroup of a free abelian group with respect to one of the group’s endomorphisms.

36
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Suppose that F' is a free abelian group and ¢ € Endz(F). Let p € Z[z]. Note that
p(p) € Endy(F). For a € F, define a- p = poy(a). In this manner, ¢ induces a Z[z]
module structure on F. Using these definitions, let e € F' and define W = eZ[r]. By

the obvious argument, it is easy to see that W is 7 invariant.

Lemma 7.2. Let F' be a free abelian group of finite rank, let 0 # e € F, and let
7 € Endy(F). Define W = eZ[r] as the T invariant subgroup of F generated by e,
and denote by W, the purification of W in F. Then there is (a least) k € N so that
EW, CW.

Let ¢ € 7 such that ¢ is not an eigenvalue of T, and let « € N. If ae € F(c—7)

then det(c — 7|w) divides ka.

Proof:  Let x.(xz) = det(x — 7) be the characteristic polynomial of 7. Then
X-(z) € Z[x] and is monic [13, Page 366], i.e. x.(z) leading coefficient 1. Using [13,
Theorem VII.4.1], one can say something about the structure of W. The minimal
polynomial m,(x) of 7 is in Z[z] and divides x,. Thus m, is also monic. Let f(x) =
oo airt € Z[z] be the minimal poynomial of 7|y. By the definition of m,, m, o
Tlw = 0. Then f divides m,. Hence f is monic and a,, = 1. Then Z[r|w] is a ring
extension of degree m over Z. It follows that Z[r|w] = &7 ' Z(7|w)'. Since e € W,
W = ol ler'Z.

An easy consequence of [13, Theorem I1.1.6] is that F'//W, is finitely generated.
By [11, Corollary 28.3] since W, is pure in F' and F/W, is finitely generated, W, is a
direct summand of F'. Then F' = W, & C where C' is just the complement of W, in
F. An elementary argument suffices to show that QF = QW & QC.

Since ¢ is not an eigenvalue of 7, there is no nonzero a € F so that 7(a) = ca.
That is, there is no nonzero a € F such that (¢ — 7)(a) = 0. Hence ker(c — 1) = 0.

Equivalently, 0 is not an eigenvalue of ¢ — 7. By [13, VIL5.4], the roots of the

characteristic polynomial x._, for ¢ — 7 are precisely the eigenvalues for ¢ — 7. Then

Xe—1 (0) # 0.
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Since ¢ — 7 is a zero of x._,, c—7 is a root of a monic polynomial over Z. Then
there is a minimal polynomial m._.(z) = Z?:o bja? for ¢ — 7. Then m._.(x) divides
Xe—r- Hence 0 is not a root for m._,(x) and so m. (0) = by # 0. The following

calculations allow us to say something useful about (¢ — 7)7'.

= (e= )by Y ~bile— 1)
(=7 = (mer(0)7 Y0 —byle = )7

In short, (c—7)~! € (m._.(0))"*Z[c—7]. Since c is just a constant integer, Z[c— 7] C
Z[7]. Then (¢ — 1)~ ! € (me_,(0))"*Z[7].

Suppose that ae € F(c — 7). Then (ae)(c —7)7! € me_(0)"'W.NF =W,
since W, is pure in F. It follows that ae € W, (¢ — 7). Thus there is a k € N so that

kae € W(c—7) = (@2, em'Z) (c — 7). Define the m x m matrix C(f) = (ui)1<ij<m

where
1 ifi=74+1,1<j;<m-1
Uiy = —a;—, ifj=m
0 otherwise
Graphically, ) )
0 0 0 —ap
1 0 —aq
cif)=10 1 0 —ay
0 -+ 0 1 —ap

The matrix C(f) is called the companion matrix of the monic polynomial f(z). Define
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B = clpxm — C(f). Then

& 0 0 ag
1 e e @

B = 0 -1 ¢ Qo
O --- 0 =1 c+a,

Suppose kae = (37 er'z;) (¢ — 7). Then

m—1

kae = e Z(czﬂi — 27

=0

m—1 m
=€ CZ;T — Zi—1T

i=0 i=1
m—1
= (czo — Zma T+ Z(czi — zi_l)f’)
i=1
Equating coefficients of powers of 7 yields czg = ka, 2z,,_1 =0, and cz; — z;_1 = 0 for
1<i<m-—1. Let

20

Elementary computations show that

Cczp + ApZm—1

—20t ¢z + a12m-1 ko
—z1 4 czo + a9z, — 0
B _ 1 2 2 1 _ (7.1)
—2Zm-3 + czZp—2 + Am—22m—1 0

—Zm—2 + Zm-1(C + A1)

and xo(y)(z) = det(xl,, —C(f)) = f(x). Then x¢(s)(c) = det(B) = f(c). Recall from

elementary linear algebra (see for example [13, Pages 352 and 353]) that B has a clas-

sical adjoint (or adjugate) adj(B) which is a matrix with the property that adj(B)B =
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det(B)I. Multiplying (1) from the left by adj(B), then det(B)z,,_1 = cimka where
C1m 18 the (1,m)-cofactor of the matrix B, just the (1, m) entry of adj(B). By [13,
Page 352], ¢y, is (—1)™! times the determinant of the matrix obtained by deleting
the first row and m-th column from B. But this matrix is upper triangular with only
—1 on the main diagonal. Thus the determinant for this matrix is a product of the
—1 entries. So ¢i, = (—1)™T(=1)™ = (=1)*"*! = —1. Then det(B)z,,_1 = —ka.

Therefore f(c) = det(B) divides ka. O

With the aid of the above lemmas, an alternate proof to Zassenhaus’s result

can be given.

Theorem 7.3. (Zassenhaus Theorem [24]) Let R be a ring with identity such that
R* is free abelian of finite rank. Then there is a left R module M such that R C
M C QR and Endz(M) = R. That is, every additive endomorphism of M is merely
multiplication on the left by some element of R. Moreover t,(M/R) is bounded for

all primes p.

Proof: Define ¥ = {o € Endz(R) : 0 # o and o(1) = 0}. Since R" is free
and of finite rank, 3 is countable and can be enumerated as {o; : i < w}. Note that
3} is the collection of additive endomorphisms of R each of which cannot possibly be
multiplication by some element of R. For each i < w, since at least o (1) is not zero,
there is some 7; € R and some nonzero e; € R, such that o;(—7;) = e;.

Let 2 < w. Using the notation from Lemma 7.2, suppose that ¢; € Z such that ¢;
is not an eigenvalue of 7;. Then there is no 4 € R so that 7;- u = ¢; . In other words,
there is no u € R so that 0 = (¢; — 7;) - . Then ¢; — 7; has a trivial kernel and must
be invertible. The image of ¢; — 7; may be a proper subgroup of R™. However, the
inverse of ¢; — 7; has a unique extension to QR. Thus this extension can be identified
with the inverse, a member of End(QR™). By Lemma 7.2, there is some k; such that

if ae; € R(c; — 7;), then det(c; — 7lw) = fi(c;) divides ak;.
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There are infinitely many primes ¢ such that f;(x) modgq has a root in Z/qZ.
This is a well known result in number theory, an elementary proof of which is con-
tained in [9, proposition on page 298|. Hence, for each i € N, one can pick such a
prime p; where p; is not in {p; : 0 < j < i — 1} and p; does not divide k;.

Fix i € N and set ¢ = p;. Note that if an integer ¢ has the form ¢¥) = ¢+tq for
some t € Z then, mod ¢, ¢ is a root of f;(x). Thus the set {c € Z : f;(c) = 0mod q}
is infinite. Since R has finite rank, 7; has only finitely many eigenvalues. Therefore
¢; can be chosen such that ¢; is not an eigenvalue of 7; and f;(¢;) = O0modq. Then
fi(c;) = det(c; — 1ilw) = ¢"0; for some nonzero v; € N and some integer ¢; that ¢
does not divide.

Since ¢; —7; € R, the associated linear transformation is just a diagonal matrix.
It is easy to see that the classical adjoint of this linear transformation must also be
a diagonal matrix. It follows that there is some p € R such that p(c; — 7;) = ¢79;.
Thus ¢"6;R C R(c; — 7;). Note that ¢ divides f;(c;) = det(¢; — 7|w) but ¢ does not
divide &;k;. Recall that if §,e; = d;0(—7;) € R(¢; — 7;), then det(¢; — 7ilw) = fi(¢)
divides d;k;. Therefore 6;0;(c; — 1;) = d;0:,(—7;) & R(c; — ;).

Set L; = R(¢; — 7;), and switch back to p; in place of ¢. Define M = R +
YicoP; "Li € QR. Let ¢ € Endz(M). Since R" is finitely generated and M /R is
torsion, there is some m € N such that my(R) C R. In particular, me(1) € R. Let
o =mp — (mp(l))- € Endz(R). Note that o(1) = 0.

Assume that 0 # 0. Then ¢ € ¥ and 0 = o; for some ¢ < w. Thus
d;oi(c; — 7;) & L;. Note that o; induces an endomorphism of M/R. It follows that
oi(p; "L;) C p; "L; + R. Hence §;04(L;) C 6,L; + p)'6;R C L; + L; = L;. This
contradicts d;0;(c; — 7;) € L;. Thus o; = 0 and so ¢ = ¢(1)- € Endz(M). Recall that
¢(1) € M. By Lemma 7.1, (1) € R. O



CHAPTER EIGHT

Integer Matrix Rings are Zassenhaus Rings

This chapter shows that the ring Mat,,«,(Z) of n x n integer matrices, where

n > 2, is a Zassenhaus ring.

Definition 8.1. [23, Example 2.3.3] For a prime number p, let Z(p™) = Z[1/p]/Z be

the divisible p-group.

Definition 8.2. [2, Chapter 3] A finite rank torsion free group G is completely decom-

posable if and only if G = @] A; where n € N and each A4; is rank 1.

Definition 8.3. [2, Chapter 3] A finite rank torsion free group G is Butler group if and

only if GG is a pure subgroup of some completely decomposable group.

Definition 8.4. [11, Section 7| Let p be a prime number. The p-adic topology for a
group A is the topology generated by defining the collection of neighborhoods of zero
as {p*A : k € N}.

Proposition 8.5. Let R = Mat,«,(Z) be the ring of n X n integer matrices where
n>2. Forl <1< n, let p; be distinct prime numbers. There is an R-module M
such that M /R ~ @I Z(p°) and M is a Zassenhaus module for R. Moreover, M is

a torsion free finite rank Butler group.

Proof: Let # = {J; : 1 <i < n+1} be the Zassenhaus family from Proposition
3.2. Define M = Y7 JiZ[1/p;]. By construction, M is a sum of finitely many rank
1 subgroups so that M is a Butler group. To see that M/R ~ @ Z(p°), note that
M = @' JZ[1/p;]. Define o : M/R — @' Z(p°) as follows. If a + R € M/R
then a = Y. Jia; for some a; € Z[1/p;]. Set o(a + R) = S\ (a; + Z). If
a+ R,0+ R € M/R are equal where § = Z"H J;b;, then a; — b; € Z. In this case,
o(f+ R) = o(a+ R). Thus o is well defined. If o € kero, then the a; are each in
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Z. 1t follows that ¢ is monic; it is clearly epic. So ¢ is an isomorphism showing that
M/R ~ &5 Z(py°).

Let a + R € M/R and pla € R for some ¢ and some nonzero n € N. Then
a =r/p} for some r € R. In this case, the entries of the matrix a are in Z[1/p;]. Since
the denominators of these entries must each be divisible by a power of p;, a must be
an element of J;Z[1/p;|. Thus t,,(M/R) = (J;/Z[1/p;] + R)/R.

Let ¢ € End(M). Note that R" is finitely generated and M/R is torsion.
Then there is some m € N such that ¢ = my € End(M) with ¢(R) C R. Let
x € J; for some 1 <7 < n+ 1. Then p')(p;, "x) € R. Since x may have summands
divisible by pF, ¥ (p; "z) € p; "R+ R. Since v is an endomorphism on M, ¢ (p; "z) €
Mn(p;,"R+ R) = p;"J; + R. Therefore ¢)(x) € J; + p!'R for all n € N. Then
(J;) € NMgen(Ji + pP'R) for all 1 < i < n+ 1. To show that ¢(J;) C J; for all
1 <i < n+ 1 some elementary topology is applied.

Suppose that the matrix a € NpenpPR. Then each of the entries of a has
pi-height oo. But the entries of a are integers and so must have finite p; height.
Thus {0} = NgenptR. Therefore a convergent sequence in the p;-adic topology of R
converges to a unique limit.

Let a € R be a limit point of J;. Then there is a sequence (ax)ren converging
to a such that each a; € J; . Foreach k € N, a —a; € pr. Let C' be the complement
of J; in R. Then a = b+ ¢ for some b € J; and some ¢ € C. Fix 0 < k € N for the
moment. Then b+ ¢ = a;, + pfr for some r € R. Then ¢ = ay — b+ pF. There are
Ve J;and ¢ € C so that r =V + ¢. Hence ¢ = aj, — b+ pF(V + /). Since ¢ € C,
c = pfc/. Thus c has infinite p; height. Then ¢ = 0 and a = b. This shows that a € J;.
Therefore J; is closed in the p;-adic topology.

Suppose that a € Ngen(J; + pFR). Note that J; is not disjoint from pfR for
each £ € N. Then a is a limit point of J;. Since J; is closed, a € J;. Thus J; =

Nren(Ji + pFR) for all 1 <4 <n+ 1. Finally (J;) C J; for all 1 <i <n + 1.



44

Since .# is a Zassenhaus family, ¢ = r- for some r € R. Thus ¢ = T €
m
-
End(M). Without loss, assume that — is reduced. That is, r ¢ pR for any prime p
m
dividing m.

To ultimately derive a contradiction, assume that m = p; for some 1 < j < n+1.
From the definition of M, r € J;. If 1 < j <n, pick 1 < j # k <n. Label the entries
of r as r = (r;;); disregarding the 7;, where ¢ # j since these entries are zero. Then

r
TEjl = 22:1 Taj€ak € Ji. There is some (3 such that rg; ¢ p; R as otherwise — would
m
TES
not be reduced. It follows that ¢(c;x) = —I% ¢ M. Note that the numerator is in .J;
bj
but the denominator is different from pj,. Thus ¢(e;,) ¢ M which is a contradiction.

,

If j=n+1thenr =73 "_ ra(d 3 €ap) where r, € R. Since - is reduced

there is some 1 < ¢ < n such that r, € R —p,.1R. Then re; € J, and rey, =
TEik

> Tafak € Jr — Ppp1R. Similar to the previous case, ¢(e;x) = 5 ¢ M, a
n+1

contradiction.
Having exhausted the cases for which m = p; for some 1 < j < n 41, it follows
that m = 1 and ¢ is multiplication on the left by » € R. Therefore M provide the

module necessary to declare R a Zassenhaus ring. [



CHAPTER NINE

Some PIDs are not Zassenhaus Rings
For the next theorem, a slight variation of [5, Corollary 10.18] is needed.

Lemma 9.1. If R is a Noetherian integral domain and {b,R : n € N} is an infinite

strictly descending chain of principal ideals of R, then N,b, R = {0}.

Proof: 1t b, = 0 for all n then there is nothing to show. Suppose that the b,, are
nonzero. Since b, R C b, R, it follows that b,.1 = b,s,. Let 0 # = € NpbxR. Since
0 # z € b,R, there is a 0 # y,, € R such that x = b,y,. Then b,y, = by 1Yni1 =
by SnYni1- Since the chain is strictly descending, 0 # b,. Then b,(y, — Sp¥ynt1) = 0
implies that y,, = s,yn11. It follows that y,, € y,.1 R and so y, R C y,+1R. Since R
is Noetherian, there is a k such that y, R = yx.+R for all ¢ € N. Then y,. = yr115n
and Y41 = ygry for some rp € R. Hence yx(1 — sxrx) = 0 and so s, ry are units in
R. Since by 1 = bsg and s is a unit, then by R = by, 1 R contradicting the hypothesis

that {b,R : n € N} is a strictly descending chain. Therefore, x = 0. O

Lemma 9.2. Suppose R is a PID such that R" is torsion free, the set I1 of prime ideals
of R is finite, and R has a nontrivial ring automorphism. The set P = {p prime :

pR # R} is finite but nonempty.

Proof:  Identify each o € Aut(R) with its unique extension o € Endgy(QR).
Let p € Z be a prime number such that pR # R. Then p is not a unit. Then the
ideal (p) generated by p is contained in some maximal ideal P. Maximal ideals are
prime so that P € II.

If ¢ is a prime number distinct from p, then ¢ € P. To see this, assume that

q € P. Since q and p are prime numbers, they are relatively prime. So there are
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integers o and (3 such that 1 = ap + (¢. Since P is a ring, 1 = ap + fq € P. But
then P = R. Therefore, there is at most one prime number contained in each P € II.
It follows that there are only finitely many prime numbers p such that pR # R.

Define P = {p prime : pR # R}. By the preceding arguments, the cardinality
of P is less than or equal to the cardinality of II. Therefore PP is finite. Let P = {p; :
1<i<d).

Let p € P. Then pR # R implies that p"R # p" ' Rforn € N. So {p"R : n € N}
is a strictly descending sequence of principle ideals. From the preceding lemma,
N,p" R = 0.

Note that for every prime number ¢ ¢ P, the ideal gR = R. Then ¢"R = R by
a trivial inductive argument. If 0 £ r € R, it has been shown that the p height of r
is at most finite for p € P and the ¢ height of r is infinite for prime numbers ¢ ¢ P.
Therefore, the type of an element 7 in R is (a)p prime Where a,, € N for the finite
number of primes p € P and a;, = oo for p ¢ P. Therefore R* is homogenous of type

Tp Where

0 ifpelP
e(p) =
oo otherwise

If P =0 then pR = R for all primes p. Thus R* is divisible and R* = ¢,Q,
a vector space over Q. Then QR = R. In this case, End(R) is the ring of linear
transformations of a vector space over Q. Hence if the rank of R is k, End(R) is the
ring of k X kK matrices with entries in Q.

Suppose that R has a Zassenhaus module M. Since QR = R, then M = R.
Suppose further that R = End(M). Then R = End(R) is the ring of endomorphisms
of a Q vector space and thus not commutative for k > 1. This shows that K = 1
and R = Q. But Q has no nontrivial automorphisms which contradicts one of our

hypotheses about R. Therefore P # (). O
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Lemma 9.3. Suppose R is a PID such that R" is torsion free, the set 11 of prime ideals
of R is finite, and R has a nontrivial ring automorphism. If R has a Zassenhaus

module M then there is a family of submodules {M,,, : p € P,n € N} such that

and for p € P and n € N, each submodule M, ,, has the following properties
(1) R C Mpn;
(2) My © Mppia;
(3) p"Mpn C R;
(4) pMpni1 € M,; and
(5) MypieNp~ "R C M,,, for allt € N.

Proof:  Define P = {p prime : pR # R}. By Lemma 9.2, P is finite but
nonempty. Let p € P. Note that since R is a PID, R is a Dedekind domain. Since
pR # R, pR is a proper ideal of the Dedekind domain R and has a unique factorization
into powers of the prime ideals of R. For p € P, it follows that the principle ideal
pR =[], P for some a,,; € N.

To see that M/R is a P group, let m + R € M/R. Then m = (a/b)r for some
a/b € Q and for some r € R. For any prime ¢ ¢ P, r is ¢ divisible. Thus one can
assume that b is a product of powers of primes from P. Since P is finite, ( = dep P
is an integer. Then ((a/b)r € R so that (- (m+ R) = R in M/R.

Define M, ,, as the submodule of M such that M,, /R = (M/R)[p"]. That is,
M, ., is the set of all m € M such that p"m € R. Set M,, = R. It follows that the

structure of M can be given in terms of the newly defined submodules:
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As for the properties of each M, ,:
(1) follows directly from the definition of M, ,,.
(2) Since p"M,,, C R, then p"*'M,,, C R. By definition M,, C M, 1.
(3) follows directly from the definition of M,,,.
(4) Note that p"*™' M, ,,.1 = p"(pM,ns1) C R. By definition pM,,,, 1 C M, .
(5) Let t € N and m € My, Np "R. Since m € M, 1, m € M. Since
mep "R, m+ R e (M/R)[p*]. Then m+ R € M,,/R. Som+ R =m'+ R for

some m' € M,,,. Then m —m’ € R C M,,,. Thus m € M,,,. O

Lemma 9.4. Recalling the notation and hypotheses of Lemma 9.3: For p € P define

(i)
Xpn =D"M,,,. Then each X, ,, = Hle P for some prime ideals P; of R and some

integer exponents el(f,z@. Furthermore

(') p"R C X, .

(2) pXpn € Xpnt1-

(3) Xpni1 € Xpn.

(4') Xppt NP'R C p*X,,, fort € N.
(5) p'Xpn C Xpnit fort,n € N.

(0) Xpnit NP'R=p'X,, fort,n €N.

Proof: Set X,y = R. From the definition of M, ,, one can conclude that X, ,, is
an ideal of R. Since R is a Dedekind domain, each X, ,, has a unique factorization into
powers of the prime ideals of R. Let this factorization be given by X, , = Hle Pieg’)".
5 -0
()

2)

Define e, =
By (1), it follows that R C M, ,,. Then p"R C p"M, 11 = Xp .
By

(2)a po,n = pn+1Mp,n g pn+1Mp,n+1 - Xp,n—l—l'
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(3) Xpni1 =" Mypi1 = P (pMppni1) C p" My = X by (4).

(4) Xpnst NP'R = p" (M pse Np™"R) C p" ™M, € X0 by (5).

(5") For t = 1, the statement is just (2'). Suppose the claim holds for a ¢ € N.
Then p™ X, ,, = p(p'X, ) C pX,nyt by the induction hypothesis. By (2), pX,nit C
Xpnts1-

(6) If t,n € N, then X, ,+s Np'R = p'X, . To see this, note that (4') and the

last claim imply that X, .+t Np'R C p'X,,, € Xpnite NP'R for all t,n e N. O

Lemma 9.5. Recall from Lemma 9.3: pR = Hle P, For the exponents eﬁ% defined

in Lemma 9.4 the following properties hold:
(i) e > 0.
(i1) na,; > eg)n.
(iii) egn + ap; > el .
(iv) €1 > epn.
(v) If p = p; then max{egzwt,tap,j} =)+ tay; fort e N.
(vi) If p = p; then either ez(f;zﬁt = eg;)n +ta,; or eg;)n =0 forteN.

Proof: (i) follows directly from the definition.
(ii) Let P; be the unique prime ideal of R that lies over p = p;. By (1),

i kp € 10 i e(i) 3
P = (pR)" = p"R C X, = [ P{*". Then P“»* C P"™. So nay; > e\)
j=1

p,m-

kp ) _ kp O
(iii) By (2), [[ P = [ P™ P = pRX,, C pXpn C X
=1 ]

pn+l —
=1
kp (@) ) (4)
Ep,n+1 ep,/ntap,i Ep,n+1 (2) (2)
1P . Then P, CP . Hence epn +ap; > €514
=1

WA ko ) @) 0
(iv) By (3", ] P:p’”H = Xpnt1 € Xpn = [1 Piepm. Then P;p,nﬂ C Piepm-
' i=1
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(v) Let t,n € N. By (4'), Xpn1t Np'R C p'X,,,,. Let by = max{el’),, ta,,}.
From the factorization into prime ideals of X, ,4; and p’R, Pibi C X, Np'R. From (4')
and the factorization of p'X,,,,, it follows that b; > e, + ta,;. By (iii), e, + ap; >
el(f;)n +1- By a trivial inductive argument, 61(;1;21 + ta,; > e](;;)n 4 for t € N. Clearly,
eg% +tap; > ta,;. Then eg;)n + ta,; > b;. Therefore b, = 61(;1;21 +tap,;.

(vi) Note that from (v) it follows that e,(f,% + ta,,; is either eg)n 4 or ta,;. If

tap; = 6;(21 + tay,;, then e;(,’;n =0. O

Lemma 9.6. Suppose R is a PID such that R is torsion free, the set I of prime ideals
of R is finite, and R has a nontrivial ring automorphism o. If R is a Zassenhaus

ring, then there are distinct prime ideals P and Q) of R such that o(P) = Q.

Proof:  Recall definitions and notations from Lemmas 9.2, 9.3, 9.4, and 9.5.
Assume that id # o € Aut(R) such that o(P) = P for each P € II. Since o is an
automorphism, o(pR) = po(R) = pR.

From the above lemmas, if p € P then the principle ideal pR = Hle P for

some a,; € N. Also

and X, = p"M,,, = [[-, Pf’(’i’)n for p e P and n € N.

Then o(X,,,) = [1-, o(P) b = e, Pfg’)" = X,,. Note that ol : R — R
has a unique extension to 0 : QR — QR. So 0(X,,) = 0(p"M,,) = p"oc(M,,,) is
a well-defined statement. It follows that p"o(M,,) = p"M,, C R. By definition,
o(M,.) C M,,. Therefore

o(M)=>"|Jo,n) > | My =M.
pEP neN pEP neN

Soo: M — M and 0 € End(M). Suppose that there is an r € R so that

o(x) =r-z for each € R. Then o(1) = r. Since o is a ring automorphism, o(1) = 1.
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Therefore r = 1 and o = idg. This contradicts the hypothesis that idr # o. There-
fore o cannot be multiplication by an element of R. Finally by our choice of M, R

cannot be a Zassenhaus ring. [

Theorem 9.7. Suppose R is a PID such that R is torsion free, the set II of prime
tdeals of R is finite, and R has a nontrivial ring automorphism. Then R s not a

Zassenhaus ring.

Proof:  Assume to the contrary that R has a Zassenhaus module M. Recall
definitions and notations from Lemmas 9.2, 9.3, 9.4, and 9.5. By Lemma 9.6, for
every nonidentity automorphism of R there are indexes 1 < i # e < k such that
o(P) = P..

Let p € P. Define O, = {i : 1 <1 < kel = 0foralln € N} and A, =
{1,2,...,k} — O,. There are two cases, either A, is empty or it is not.

Suppose that A, is empty. In this case, for all n € N, the ring R = X,,,, =
p"M,,, so that p"R = M, ,,. Then 0(M,,,) =c(p™"R) =p "o(R) =p "R = M,,.

Suppose that A, is not empty. Let ¢« € A,. There is a least n; such that
eg;zli_l =0 and eg%i #0. If i € A and t € N, then eff;)nﬁt = eﬁ%i + tay,;.

Let 7,5 € A, such that ¢ < j and n € N. Then for some t,r € N, n =n; +t =
n; +r. Note that r = n; —n; +¢. If i = j then 61(3% — eg%j = ez(f;)ni — eg%i = 0.

Otherwise

) () )
p,n p,n = Cpnitt ep,nﬁr

= e(f)i +ta,; — (e({%j +ray, ;)
= p,%i - 61(;{7)1.7- +t(api — apj) + (ni — nj)ay,;

Note that the expression eé,%i - el(,{%j + (n; — nj)a,; does not depend on n.
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For P; € II, the image of P, under o is also a prime ideal. So ¢ induces a permu-
tation o on the indices {1,...,k}. Then o(pR) = po(R) = pR so that J(Hfil P =
HZ . P/, Since o is a ring automorphism, U(HZ PP = Hf LO(P;)% Hz 1 Pa” g

o(i)”

Unique factorization implies that Pa’” = PZ&‘;“) and ay; = Gpo(s)-
If 7,7 € A, so that o(i) = j then a,;, = a,;. Thus e,(f;z1 — e,(f,% = eff,%i —
e,(,{%j + (n; — n;)a,,; which does not depend on n. For such pairs ¢, j define D;; =

e,(,% — 61(;]77)13 + (n; —nj)a, ;. There are a finite number of integers D; ; so one can pick
a natural number D greater than all of them.

If o(i) = i then P2i%" = PP*9% C PO I (i) = j then PO = pP¥eis,
From D > D, ; = é% — e,(,{,)@ it follows that

() (7)
D n n
Therefore P e, C Pe” .

Since R is a PID, there is an s € R such that sR = []/*, PP. Then

(2)

50(Xpn HPDHP%”

k” (i)
PD+ep n

o o(i)
=1

kp .
e
< | | Pt =X,
i=1

Thus so(X,,) C Xpn. Now so(M,,) = so(p " Xpn) = p "so(Xpn) € p "Xy =
M, .. Therefore so(M,,) C M,,. Since idg # o, the map so is not multiplication

by an element of R. It follows that R cannot be Zassenhaus ring. [



CHAPTER TEN

Conclusion: A Ring with a Zassenhaus Family that is not a Zassenhaus Ring

The following example is a natural adaptation of the example from [20, page
987] to our Zassenhaus family and Zassenhaus ring terminology.

Denote by R = Zi3[i] the ring of polynomials in i = /=1 with coefficients
from the ring integers localized at the prime ideal 13Z. The prime ideals of Z;3]i]
are (24 3i)R and (2 — 3i)R. The mapping o(a + bi) = a — bi is a nontrivial ring
automorphism for R. By Theorem 9.7, R is not a Zassenhaus ring.

It is easy to show that Endz(R) C Q[Aut(R)]. Aut(R) = {idg, o} where o is
the map above. Since ¢ maps (a +ib)R to (a —ib)R, K, = {idg}. By Theorem 5.2,
there is a Zassenhaus family for R. Therefore Z;3[i] has a Zassenhaus family but is
not a Zassenhaus ring.

Zassenhaus families are used directly to construct modules sufficient for showing
that several disparate classes of finite rank rings are Zassenhaus rings. The Zassenhaus
families of Z[x], SA, rings of algebraic integers of finite degree Galois extentions of Q,
and Mat, x,(Z) provide modules which show that these rings are Zassenhaus rings.
This is evidence for making the case that any finite rank ring with a Zassenhaus
family is, in fact, a Zassenhaus ring. But it has been shown that such a definitive

converse for our first theorem is not possible.
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