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On Rings with Distinguished Ideals and Their Modules
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Let S be an integral domain, RS an S algebra, and F a family of left ideals of

R. Define EndS(R,F ) = {ϕ ∈ EndS(R+) : ϕ(X) ⊆ X for all X ∈ F}. In 1967,

H. Zassenhaus proved that if R is a ring such that R+ is free of finite rank, then there

is a left R module M such that R ⊆ M ⊆ QR and EndZ(M) = R. This motivates

the following definitions: Call RZ a Zassenhaus ring with module M if the conclusion

of Zassenhaus’ result holds for the ring R and module M . It is easy to see that if RZ

is a Zassenhaus ring then R has a family F of left ideals such that EndZ(R,F ) = R.

(If F has this property, then call F a Zassenhaus family (of left ideals) of the ring

R.) While the converse doesn’t hold in general, this dissertation examines examples

of rings R for which the converse does hold, i.e. R has a Zassenhaus family F of left

ideals that can be used to construct a left R module M such that R ⊆M ⊆ QR and

EndZ(M) = R.
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CHAPTER ONE

Introduction

In [24], Hans Zassenhaus showed that for a ring R with a finite rank, free

additive group, there is a group G such that the rank of G is equal to the rank of R

and EndZ(G) = R. From [1, page 2], the rank of an abelian group G is the dimension

of the rational vector space Q ⊗Z G. On the other hand, in [10], A. L. S. Corner

gave an example of a ring R with a torsion free, finite rank, free additive group, such

that there is a group G with rankG = 2(rankR) and End(G) = R but there is no

group of smaller rank with this property. These two results motivate the following

definition: A ring R with 1 ∈ R and additive group R+ torsion free is a Zassenhaus

ring if there is a left R-module RM so that R ⊆ M ⊆ QR and EndZ(M) = R. In

this case, rankM = rankR. Henceforth, all rings R are assumed to have an identity

element 1R sometimes denoted as 1.

The notion of a Zassenhaus ring represents a generalization of a more recent

notion, that of an E-ring. A ring R with additive group R+ is an E-ring if and

only if each endomorphism of R+ is multiplication on the left by some element of

R, i.e. EndZ(R) = R. E-rings play a noteworthy role in the theory of torsion-free

abelian groups of finite rank (tffr groups); see the survey [22] on E-rings and their

generalizations.

To show that a particular ring is a Zassenhaus ring, it is often useful to look

for a family of left ideals of the ring from which to construct the necessary mod-

ule. This construction method motivates the search for a family of ideals of R

such that maps leaving the constituent ideals invariant turn out to be merely mul-

tiplications by elements of R. To that end, let R be an algebra over a commu-

tative ring S. Let F be a family of left ideals of R and define EndS(R+,F ) =

{ϕ ∈ EndS(R+) : ϕ(X) ⊆ X for all X ∈ F}. Call F a Zassenhaus family for R if
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EndS(R+,F ) = R. In general, a Zassenhaus family for an S-algebra depends on S.

Note that R is an E-ring if and only if the empty set is a Zassenhaus family for the

Z-algebra R.

Chapter Two shows that every Zassenhaus ring has a Zassenhaus family. If R

is a Zassenhaus ring, one can construct the ideals for a Zassenhaus family for R from

the module that makes R a Zassenhaus ring.

Chapter Three exhibits several rings for which it is easy to construct concrete

Zassenhaus families. A Zassenhaus family can be constructed for each of the following:

EndS(F ) where S is a commutative ring and F is a free S-module, a matrix ring,

and a ring of polynomials in one indeterminate over an infinite field. This chapter

shows that if the divisible hull of a torsion free ring has a Zassenhaus family, then

from that family, one can construct a Zassenhaus family for the ring. Conversely, if a

ring has an additive group which is free of finite rank and the ring has a Zassenhaus

family, then a Zassenhaus family for the divisible hull of the ring can be constructed.

From these results, there is a Zassenhaus family for both polynomials with integer

coefficients and a ring first exhibited by A. L. S. Corner. Finally, a Zassenhaus family

for an incidence algebra over a field exists.

Chapter Four contains the construction of a Zassenhaus family over Z for an

arbitrary ring R of algebraic integers of a finite degree, Galois field extension of the

rationals. In this case, R+ is a finitely generated free group. Hence, Zassenhaus’

original result combined with the results of Chapter Two is enough to show that R

has a Zassenhaus family. But this approach does not indicate the structure of the

ideals in this Zassenhaus family. The construction of a natural and concrete example

of a Zassenhaus family for R is exhibited.

Chapter Five proves that if R is in a large subclass of Dedekind domains then

there are some necessary and sufficient conditions for R to have a Zassenhaus family

over Z.
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Chapter Six shows that some rings with Zassenhaus families are Zassenhaus

rings. This chapter contains a lemma that, in some cases, gives one a method to

construct a module M from ideals of a Zassenhaus family for a ring R such that

EndZ(M) = R with rankM = rankR. This lemma is applied to the Zassenhaus

families from Chapter Four for polynomials with integer coefficients, Corner’s ring,

and rings of algebraic integers.

Chapter Seven gives an alternate, more elementary, proof of Zassenhaus’s orig-

inal result. The proof uses only linear algebra and some elementary number theory.

Chapter Eight exhibits for the ring R of n×n matrices with integer entries, the

construction of a module M with EndZ(M) = R, rankM = rankR, and M+ a Butler

group. Again, Zassenhaus’ original result guarantees the existence of a module M ,

but tells us nothing about the structure of the module.

Chapter Nine proves that a certain subclass of PID’s are not Zassenhaus rings.

This result provides an example in Chapter Ten of a ring with a Zassenhaus family

that is not a Zassenhaus ring. Thus having a Zassenhaus family is not equivalent to

being a Zassenhaus ring. Many of the results in this dissertation have appeared in

[6], [7], and [8].



CHAPTER TWO

Zassenhaus Rings have Zassenhaus Families

Denote by Π the set of prime numbers of N. If p ∈ Π and if G is an additive

group then tp(G) denotes the set of all elements of G with order a power of p. For

n ∈ N, let G[pn] = {g ∈ G : png = 0}. That is, g ∈ G[pn] if and only if the order of

g = pm with m ≤ n.

For a ring R, let R+ denote the additive group of R. Unless otherwise noted,

identify R with the subring of EndZ(R) in which each map is multiplication on the

left by some element of R. Where convenient, write R· or even just R for this subring.

Definition 2.1. A ring R with identity whose additive group R+ is torsion free is called

a Zassenhaus ring if and only if there is a left R-module RM so that R ⊆ M ⊆ QR

and EndZ(M) = R. The module M is called the Zassenhaus module for the ring R.

Definition 2.2. Suppose that R is a ring with identity that is also an algebra over a

(commutative) ring S. Let F be a family of some left ideals of R and define

EndS(R+,F ) =
{
ϕ ∈ EndS(R+) : ϕ(X) ⊆ X for all X ∈ F

}
.

Then F is called a Zassenhaus family for R if and only if EndS(R+,F ) = R. If S = Z

then write EndZ(R) and End(R+,F ) in place of EndZ(R+) and EndZ(R+,F ).

Theorem 2.3. If R is a Zassenhaus ring then R has a Zassenhaus family over Z.

Proof: Suppose that there is a left R-module RM so that R ⊆ M ⊆ QR

and EndZ(M) = R. Note that M/R is torsion because QR/R is torsion. Let p be

a prime number and n ∈ N. Define Mp,n by Mp,n/R = (tp(M/R))[pn]. So Mp,n/R

is the set of all elements a + R of M/R such that there is a positive integer m ≤ n

with pm(a + R) = R. Alternatively, Mp,n is the largest subgroup of M for which

pnMp,n ⊆ R. Define Xp,n = pnMp,n ⊆ R.

4
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To see that Xp,n is a left ideal of R, suppose that r ∈ R and x ∈ Xp,n. There is

an m ∈ Mp,n such that x = pnm. Then pn(m + R) = R, and thus pnm ∈ R. Hence

rpnm = pnrm ∈ R and pn(rm + R) = R. Therefore rm ∈ Mp,n. It follows that

rx = pnrm ∈ pnMp,n = Xp,n.

Note that pnR ⊆ Xp,n ⊆ R. For, from the definitions, R ⊆ Mp,n. Hence

pnR ⊆ pnMp,n = Xp,n. It suffices to show that F = {Xp,n : p ∈ Π, n ∈ N} is a

Zassenhaus family for R. Suppose that ϕ ∈ EndZ(R) so that ϕ(Xp,n) ⊆ Xp,n for each

Xp,n ∈ F . The map ϕ has a unique extension ψ ∈ EndQ(QR): For q ∈ Q and a ∈ R,

define ψ(qa) = qϕ(a). Elementary calculation shows that this map is well defined.

Under this definition, it is clear that ψ|R = ϕ. Suppose that γ ∈ End(QR) such that

γ|R = ϕ. Let qa ∈ QR. Then γ(qa) = qγ(a) = qϕ(a) = ψ(qa).

To see that ψ(Mp,n) ⊆Mp,n for all p ∈ Π and n ∈ N, notice that Mp,n in QR is

just (1/pn)Xp,n from the definition of Xp,n. Then

ψ(Mp,n) = ψ((1/pn)Xp,n)

= (1/pn)ψ(Xp,n)

= (1/pn)ϕ(Xp,n)

⊆ (1/pn)Xp,n = Mp,n.

Since M =
∑

p,nMp,n, then ψ(M) ⊆ M . It follows that ψ|M is an element of

End(M). But each of the elements of End(M) is just multiplication on the left by

some element of R. So ψ|R = ϕ ∈ R. �

The converse of Theorem Ten may be stated as a question: Does every ring

with a Zassenhaus family over Z have a Zassenhaus module? The answer to this

question is no. That is, the converse of Theorem 2.3 does not hold in general. In

Chapter Nine, results provide a whole class of counterexamples for the converse. In

Chapter Ten a specific counterexample from that class is exhibited.



CHAPTER THREE

Examples of Rings with Zassenhaus Families

Theorem 3.1. Let S be a ring and F a free S-module. Then EndS(F ), the S-algebra

of S-linear endomorphisms of F , has a Zassenhaus family over S.

Proof: Let E = EndS(F ). Fix a basis B over S for F . Given x ∈ F and b ∈ B,

define ϕx,b and ϕx in E by

ϕx,b(c) =


x if c = b,

0 otherwise

and ϕx(c) = x for all c ∈ B. Let Jb = {ϕx,b : x ∈ F} and J = {ϕx : x ∈ F}.

For any finite subset I of B, define OI = {ϕ ∈ E : ϕ(I) = 0}. Then OI is a

left ideal of E. The set {OI : I ⊆ B, I finite} forms a basis of neighborhoods of the

0 map for the finite topology on E. It suffices to show that F = {J} ∪ {Jb : b ∈

B} ∪ {OI : I ⊆ B, I finite} is a Zassenhaus family for E.

Let Φ ∈ EndS(E) such that Φ(X) ⊆ X for all X ∈ F . Then Φ also leaves

invariant J and Jb for each b ∈ B. For each x ∈ F it follows that Φ(ϕx) = ϕβ(x) for

some β(x) ∈ F . Note that if x, y ∈ F and c ∈ B, then (ϕx+ϕy)(c) = ϕx(c) +ϕy(c) =

x + y = ϕx+y(c). So ϕx + ϕy = ϕx+y. Then ϕβ(x+y) = Φ(ϕx+y) = Φ(ϕx + ϕy) =

Φ(ϕx) + Φ(ϕy) = ϕβ(x) + ϕβ(y) = ϕβ(x)+β(y). Thus β : F → F preserves addition.

It will be seen that β is S-linear. For s ∈ S, x ∈ F , and c ∈ B, then ϕsx(c) =

sx = sϕx(c). Thus ϕsx = sϕx for all x ∈ F and for all s ∈ S. Let s ∈ S and x ∈ F .

Then ϕsβ(x) = sϕβ(x) = sΦ(ϕx) = Φ(sϕx) = Φ(ϕsx) = ϕβ(sx) and so sβ(x) = β(sx).

Therefore β ∈ E.

Let b ∈ B. There is a βb ∈ E similar to β above but related to the action of Φ

on Jb instead of J . If x ∈ F then Φ(ϕx,b) = ϕβb(x),b for some βb(x) ∈ F . Note that if

x, y ∈ F then (ϕx,b +ϕy,b)(b) = ϕx,b(b) +ϕy,b(b) = x+ y = ϕx+y,b(b), and if b 6= c ∈ B
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then (ϕx,b + ϕy,b)(c) = ϕx,b(c) + ϕy,b(c) = 0 = ϕx+y,b(c). So ϕx,b + ϕy,b = ϕx+y,b.

Then ϕβb(x+y),b = Φ(ϕx+y,b) = Φ(ϕx,b +ϕy,b) = Φ(ϕx,b) + Φ(ϕy,b) = ϕβb(x),b +ϕβb(y),b =

ϕβb(x)+βb(y),b. Thus βb : F → F preserves addition.

It will be seen that βb is S-linear. If s ∈ S, x ∈ F , then ϕsx,b(b) = sx = sϕx,b(b),

and if b 6= c ∈ B then ϕsx,b(c) = 0 = s·0 = ϕx,b(c). Thus ϕsx,b = sϕx,b for all x ∈ F and

for all s ∈ S. Then ϕsβb(x),b = sϕβb(x),b = sΦ(ϕx,b) = Φ(sϕx,b) = Φ(ϕsx,b) = ϕβb(sx),b

and so sβb(x) = βb(sx). Therefore βb ∈ E.

Let I be a finite subset of B. If x ∈ F and c ∈ I then (ϕx −
∑

b∈I ϕx,b)(c) =

ϕx(c) − ϕx,c(c) = x − x = 0. So ϕx −
∑

b∈I ϕx,b ∈ OI for all x ∈ F . Then Φ(ϕx −∑
b∈I ϕx,b) = ϕβ(x)−

∑
b∈I ϕβb(x),b ∈ OI for all x ∈ F . Note that the finite topology is

Hausdorff. It follows that the maps
∑

b∈I ϕβb(x),b indexed over all finite I define a net

that converges to ϕβ(x) in the finite topology. Hence, for c ∈ B, it must follow that

β(x) = ϕβ(x)(c) =
∑

b∈B ϕβb(x),b(c) = ϕβc(x),c(c) = βc(x). Therefore β(x) = βb(x) for

all x ∈ F and for all b ∈ B.

If η ∈ E, then η −
∑

b∈I ϕη(b),b ∈ OI for all finite subsets I of B. Note that

Φ(η)−
∑

b∈I Φ(ϕη(b),b) = Φ(η)−
∑

b∈I ϕβb◦η(b),b = Φ(η)−
∑

b∈I ϕβ◦η(b),b. Since Φ pre-

serves the OI , it follows that Φ(η) −
∑

b∈I ϕβ◦η(b),b ∈ OI for all finite subsets I of

B. Hence, for all c ∈ B, it must be the case that Φ(η)(c) =
∑

b∈B ϕβ◦η(b),b(c) =

ϕβ◦η(c),c(c) = β ◦ η(c). So Φ(η) = β ◦ η. Therefore Φ is multiplication on the left by

β ∈ E and so F is a Zassenhaus family for E. �

If F is finitely generated over S, linear algebra can be used to find a Zassenhaus

family. Such an approach is taken for next result.

Proposition 3.2. Let S be a ring with identity, and let R = Matn×n(S) = EndS(Sn)

be the ring of n × n matrices over S. Then there is a Zassenhaus family F =

{Ji : 1 ≤ i ≤ n + 1} of left ideals of the S-algebra R such that R = ⊕ni=1Ji and

Jn+1 ∩ (⊕1≤j 6=i≤nJi) = {0} for all 1 ≤ j ≤ n.
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Proof: Define εij ∈ R be the matrix with 1 in the (i, j) position and 0 ev-

erywhere else, εi = εii, and Ji = Rεi = ⊕1≤α≤nSεαi. Note that Ji is the collection

of matrices from R with nonzero entries possible only in the i-th column and zeros

everywhere else. Of course R = ⊕ni=1Ji. Define ε(i) =
∑n

j=1 εij a matrix with ones in

the i-th row and zeros everywhere else. Then set Jn+1 = Rε(1) in which is collected

the matrices where each row has the same value in every position, i.e. each row is con-

stant. So Jn+1 = ⊕ni=1Sε
(i). If M ∈ Jn+1 and zero appears anywhere in the i-th row,

then the whole i-th row must be zero. Let 1 ≤ j ≤ n. Then Jn+1∩(⊕1≤i 6=j≤nJi) = {0}

since the elements of ⊕1≤i 6=j≤nJi have only zero entries in the j-th column.

Suppose that r = (rαβ) ∈ R. Then rεij = (cαβ) where cαβ =
∑

k rαk(εij)kβ. But

(εij)kβ is zero unless k = i and β = j. Then cαj = rαi, and for β 6= j, cαβ = 0. It

follows that rεij =
∑n

α=1 rαiεαj.

To show that there is a Zassenhaus family, let ϕ ∈ EndS(R+) such that ϕ(Ji) ⊆

Ji for all 1 ≤ i ≤ n + 1. Since the εij form an S-basis of R, there are tij,αβ ∈ S such

that ϕ(εji) =
∑

1≤α,β≤n tji,αβεαβ. Since ϕ(Ji) ⊆ Ji, ϕ(εji) ∈ Ji. The entries of ϕ(εji)

not in the i-th column are all zero. Thus tji,αβ = 0 for all β 6= i. It follows that

ϕ
(
ε(i)
)

= ϕ

(
n∑
j=1

εij

)
=

n∑
j=1

ϕ(εij)

=
n∑
j=1

(
n∑

α=1

tij,αjεαj

)
=

n∑
α=1

(
n∑
j=1

tij,αjεαj

)

=
n∑

α=1

ciαε
(α) =

n∑
α=1

n∑
j=1

ciαεαj

for some ciα ∈ S. Then tij,αj = ciα for all 1 ≤ j ≤ n, i, and α. Hence

ϕ(εji) =
∑

1≤α,β≤n

tji,αβεαβ =
∑

1≤α≤n

tji,αiεαi =
∑

1≤α≤n

cjαεαi.

Comparing the final expression in our string of equalities to the usual definition of

matrix multiplication, ϕ = (ciα) ∈ R. �
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Proposition 3.3. The K-algebra K[x] of all polynomials in indeterminate x over an

infinite field K has a Zassenhaus family over K.

Proof: Enumerate distinct elements aj of K for all 0 < j ∈ N. Then define

a0 = 0. Put F = {(aj + xn)K[x] : n ∈ N, j > 0} for our candidate for a Zassenhaus

family.

Suppose that ϕ ∈ EndK(K[x]) with ϕ(X) ⊆ X for each X ∈ F and ϕ(K) =

{0}. Then there are polynomials gn,j so that ϕ(aj + xn) = (aj + xn)gn,j for all n and

j. But

ϕ(aj + xn) = ϕ(aj) + ϕ(xn)

= 0 + ϕ(xn) = ϕ(xn)

= xngn,0

for all n and j > 0. It follows that (aj + xn)gn,j = xngn,0 for all n and j > 0.

Note that gcd(aj + xn, xn) = 1 for all j > 0. Then the polynomial aj + xn

divides gn,0 for all j > 0. The only possibility is that gn,0 = 0 for all n. It follows

from the linearity of ϕ that ϕ = 0.

Suppose that ψ ∈ EndK(K[x]) so that ψ(X) ⊆ X for all X ∈ F . Consider

ϕ(a) = ψ(a)−ψ(1) ·a. Then ϕ(K) = {0}. The preceding arguments show that ϕ = 0

and so ψ = ψ(1). Therefore F is a Zassenhaus family for the K-algebra K[x]. �

The next two propositions deal with restrictions and extensions. Let R be a

torsion free ring. Define the Q-algebra A = Q⊗Z R. Proposition 3.4 shows that if A

has a Zassenhaus family F over Q, then the family of restrictions X ∩ R of X ∈ F

to R is a Zassenhaus family over Z for R. Proposition 3.6 shows that if R+ is a free

group that has finite rank, if R has an Zassenhaus family F , and if each X ∈ F is

pure in R, then the family of extensions Q⊗ZX of X ∈ F to Q⊗ZR is a Zassenhaus

family for A.
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Proposition 3.4. Suppose that R is a torsion free ring with identity such that the Q-

algebra A = Q⊗ZR has a Zassenhaus family F over Q. Then F ′ = {X ∩R : X ∈ F}

is a Zassenhaus family over Z for the ring R.

Proof: Identify R with 1⊗ R. Let X ∈ F and x ∈ X. Then x = qr for some

q ∈ Q and r ∈ R. Since q−1 = q−11R ∈ QR and X is an ideal of QR, r = q−1x ∈ X

and so r ∈ X ∩ R. Thus X ⊆ Q(X ∩ R). The inclusion Q(X ∩ R) ⊆ X holds since

Q(X ∩R) ⊆ QX = X. Therefore X = Q⊗ (X ∩R).

Suppose that ϕ ∈ EndZ(R) so that ϕ(X ∩ R) ⊆ X ∩ R for all X ∈ F . Note

that ψ = idQ⊗ϕ ∈ EndQ(A) with ψ|R = ϕ. Then ψ(X) = ψ(Q ⊗ (X ∩ R)) =

Q⊗ ϕ(X ∩ R) ⊆ Q⊗X ⊆ X. Since F is a Zassenhaus family for A, it follows that

ψ = a· for some a ∈ A. But ϕ(1) is in R and ϕ(1) = ψ(1⊗ 1) = a(1⊗ 1) = a. Hence

ϕ is just left multiplication by a ∈ R. �

Recall the following definition from abelian group theory; e.g., see [1].

Definition 3.5. A subgroup H of a group G is pure in G if and only if H ∩ nG = nH

for each integer n.

Proposition 3.6. Suppose that R is a ring such that R+ free of finite rank. If R has a

Zassenhaus family F over Z with the property that each X ∈ F is pure in R, then

F ′ = {QX : X ∈ F} is an Zassenhaus family over Q for the Q-algebra QR.

Proof: Since R+ is free of finite rank, there are ri ∈ R such that R+ =

r1Z⊕ · · · ⊕ rnZ for some n ∈ N. Let ψ ∈ EndQ(QR,F ′). Then ψ(ri) =
∑n

k=1 qi,krk

for some qi,k ∈ Q. For 1 ≤ i ≤ n, denote by mi the least common multiple of

the denominators of the qi,k ranging over k. Then miψ(ri) =
∑n

k=1(miqi,k)rk where

miqi,k ∈ Z. So miψ(ri) ∈ R. Denote by m the product of the mi. For 1 ≤ i ≤ n,

mψ(ri) ∈ R. It follows that mψ(R) = mψ(r1)Z⊕ · · · ⊕mψ(rn)Z ⊆ R.

Now mψ(X) ⊆ R and mψ(X) ⊆ QX so that mψ(X) ⊆ QX ∩R. From purity,

one argues that QX ∩R = X. It is clear that X ⊆ QX ∩R. Let r ∈ QX ∩R. Then
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one can assume that r is of the form (a/b)r′ for some a/b ∈ Q and some r′ ∈ X.

So br = ar′. Since X is pure in R+, there is an x ∈ X such that bx = ar′. Hence

x = (a/b)r′ = r and r ∈ X. Therefore QX ∩ R = X and mψ(X) ⊆ X. Since F is a

Zassenhaus family for R, mψ|R = t ∈ R. Since mψ is Q–linear, mψ is multiplication

by t on all of QR. Thus ψ = (1/m)t ∈ QR. �

In the foregoing proposition, the hypothesis that R+ is free of finite rank cannot

be dropped. If this hypothesis is weakened to merely finite rank, one can only say

that ψ(R) ⊆ ψ(r1)Q ⊕ · · · ⊕ ψ(rn)Q. In this case, an infinite number of x ∈ ψ(R)

may require a distinct mx to achieve mxψ(x) ∈ R. There may be no least common

multiple m available so that mψ(R) ⊆ R.

Lemma 3.7. The ring Z[x] of integer polynomials has a Zassenhaus family F over Z

such that all members of F are direct summands of the additive group of Z[x].

Proof: Note that A = Q⊗Z Z[x] is a Q-algebra. Moreover, A is isomorphic to

Q[x], the Q-algebra of all polynomials in indeterminate x over the infinite field Q. By

Proposition 3.3, A has a Zassenhaus family. Proposition 3.4 provides the Zassenhaus

family for Z[x].

It remains to show that each member of this family is a direct summand of the

free abelian group (Z[x])+. A member X of the family for A from Proposition 3.3

has the form X = (q + xn)Q[x] for some q ∈ Q. This member is used in Proposition

3.4 to provide the member Y = X ∩ Z[x] of the family for Z[x].

It will be seen that Y = Z[x] ∩ (q + xn)Q[x] = (a + bxn)Z[x] where a and b

are the numerator and denominator of q respectively. Note that if f(x) ∈ Z[x] then

(a+bxn)f(x) = (q+xn)bf(x) ∈ (q+xn)Q[x]. Hence (a+bxn)Z[x] ⊆ Z[x]∩(q+xn)Q[x].

Let g(x) = (q+xn)f(x) ∈ Z[x]∩(q+xn)Q[x]. Then (q+xn)f(x) = (a+bxn)(1/b)f(x).

This means that the binomial a + bxn divides the polynomial g(x) in the ring Q[x].

Note that g(x) = qf(x) + xnf(x) ∈ Z[x]. If g(x) =
∑m

i=0 gix
i and f(x) =

∑`
i=0 fix

i,
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then qf(x) + xnf(x) =
∑`+n

i=0 f
′
ix
i where either f ′i = qfi or f ′i = 0 for i < n. It follows

that qfi ∈ Z for 0 ≤ i < `. Then b divides each fi in Z and (1/b)f(x) ∈ Z[x]. Thus

(a+ bxn) divides g(x) in the ring Z[x]. Therefore (a+ bxn)Z[x] = Z[x]∩ (q+xn)Q[x].

To see that Y is a direct summand of the free group of Z[x], note that for any

polynomial p(x) in Z[x], the Euclidean Algorithm guarantees that p(x) = r(x) + (a+

bxn)g(x) where r(x) and g(x) are unique in Z[x] but r(x) is not in Y . �

Next, consider a ring that was introduced by A. L. S. Corner to obtain torsion

free abelian groups without indecomposable summands [12, page 145].

Definition 3.8. A semigroup is a set that is closed under an associative binary opera-

tion. In general, a semigroup need not be closed with respect to inverses of elements.

Definition 3.9. Suppose that R is a ring and Λ is a semigroup. Then the semigroup

ring RΛ = ⊕a∈ΛRa is the set of all finite sums
∑

i riai with each ri ∈ R and each

ai ∈ Λ. Define addition term-wise, in the usual manner for direct sums. Define ring

multiplication for a =
∑

i riai and b =
∑

j sjbj in RS as ab =
∑

i,j(risj)(aibj).

Definition 3.10. Let Λ = {γ : 0 ≤ γ ∈ Q}. Define a semigroup structure on Λ by

setting αβ = max{α, β} for all α, β ∈ Λ.

Lemma 3.11. Let R = SΛ be the semigroup ring of Λ over a commutative ring S.

Then F = {Rγ : γ ∈ Λ}∪{R(1−γ) : γ ∈ Λ} is a Zassenhaus family for the S-algebra

R. Moreover, each member of F is a direct summand of the S-module R+.

Proof: Let ϕ ∈ EndS(R) such that ϕ(S) = {0} where ϕ leaves each member

of F invariant. There is a column-finite Λ × Λ-matrix M = [sα,β]α,β∈Λ with entries

in S such that ϕ(α) =
∑

β∈Λ βsβ,α for all α ∈ Λ.

For α, β ∈ Λ, β divides α if and only if α ≥ β. Since Rγ = ⊕γ≤α∈ΛSα is

invariant under ϕ for all γ ∈ Λ, sβ,γ = 0 for all 0 ≤ β < γ. In particular, sβ,0 = 0 for

all β ∈ Λ.
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If β, γ ∈ Λ such that β > γ, then β − βγ = β − β = 0. For γ ∈ Λ, expand

R(1− γ) in terms of direct summands:

R(1− γ) = 〈β − βγ : β ∈ Λ〉S

= 〈β − γ : 0 ≤ β < γ〉S

= ⊕0≤β<γS(β − γ).

These ideals are invariant under ϕ for all 0 < γ ∈ Λ. It follows that

ϕ(1− γ) = ϕ(−γ) =
∑
β≥γ

−βsβ,γ =
∑

0≤β<γ

(β − γ)tβ,γ

for some tβ,γ ∈ S. Equating coefficients for the terms of the two sums yields −sγ,γ =∑
0≤β<γ tβ,γ and tβ,γ = 0 for 0 ≤ β < γ. Taken together, these results for the

coefficients imply that sγ,γ = 0 for all γ > 0 as well as sβ,α = 0 for all β > γ. Thus

M is the zero matrix and ϕ = 0.

Suppose that ψ ∈ EndS(R) such that the members of F are invariant under

ψ. Define ϕ(x) = ψ(x)− ψ(1) · x for each x ∈ R. Then ϕ(S) = 0. By the preceding

argument, ϕ = 0 so that ψ(x) = ψ(1) ·x for each x ∈ R. Therefore F is a Zassenhaus

family for R.

Let γ ∈ Λ. Then γ = max{γ, γ} = γ · γ. Thus γ is an idempotent of the

commutative ring R. By [14, Lemma 14.8], R = Rγ ⊕R(1− γ). �

Definition 3.12. [21, Definition 1.1.7] A partially ordered set X is locally finite if and

only if for any a, b ∈ X the interval [a, b] = {x ∈ X : a ≤ x ≤ b} is finite.

Definition 3.13. [21, Definition 1.2.1] Let X be a partially ordered set and R a com-

mutative ring with identity. Define elements of the incidence algebra:

I(X,R) = {f : X ×X → R : f(x, y) = 0 if x 6≤ y}
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Define operations for f, g ∈ I(X,R); r ∈ R; and a, b, x ∈ X:

(f + g)(a, b) = f(a, b) + g(a, b)

(f · g)(a, b) =
∑
a≤x≤b

f(a, x) · g(x, b)

(rf)(a, b) = r · f(a, b)

Theorem 3.14. Let K be a field and X a finite partially ordered set. Then the incidence

K–algebra R = I(X,K) has a Zassenhaus family over K.

Proof: Denote by � the partial order on X. Without loss, one can label the

elements of X as {1, 2, . . . , n}. By [21, Lemma 1.2.5], the labels can be applied such

that if a, b ∈ X with b � a then b ≥ a. By applying an isomorphism from [21,

Proposition 1.2.7] and then a transpose, one may take R = ⊕n≥α�β≥1Keαβ with eαβ

the n× n matrix with the identity of K in the (α, β) position and zeros everywhere

else.

Proceed by induction on n. If n = 1 then R is K itself. In this case, let

ϕ ∈ EndK(K). For r ∈ K, ϕ(r) = rϕ(1). So ϕ is just multiplication on the right by

ϕ(1) ∈ K. The empty set serves as a Zassenhaus family since the algebra and ring

coincide.

Suppose that for partially ordered sets Y of cardinality less than n, I(Y,K) has

a Zassenhaus family. This time, take the candidate for a Zassenhaus family for R

to be the collection of all left ideals of R. Let ϕ ∈ EndK(R) so that ϕ(1) = 0 and

ϕ(J) ⊆ J for every left ideal J of R. Note that for j ∈ X, Rejj = ⊕α�jKeαj. So Rejj

is the collection of matrices in R with entries in the j-th column and zeros everywhere

else. Define S = ⊕nj=2Rejj. Then R = Re11 ⊕ S. Since R is lower triangular, the 1

row of any element of S has only zero entries. So S is isomorphic to the collection

of lower triangular n− 1× n− 1 matrices. Using the transpose and [21, Proposition

1.2.7], S is isomorphic to I(X∗, K) where X∗ = X−{1}. Since Re11 and S are direct



15

summands of R, they are left ideals of R. Then ϕ(Re11) ⊆ Re11 and ϕ(S) ⊆ S. Then

ϕ̃ = ϕ|S is a K–linear endomorphism of S.

Let J be a left ideal of S. If r is a matrix of J then define r∗ to be the matrix

resulting from attaching a row of all zeros as the 1 row and a column of all zeros in

the 1 column. Define J∗ = {r∗ : r ∈ J} ⊆ R. Let r ∈ R and t ∈ J . Then r = r1 + s∗

for some r1 ∈ Re11 and s ∈ S. So rt∗ = (r1 + s∗)t∗ = r1t + s∗t∗. Simple matrix

multiplication is enough to show that s∗t∗ = (st)∗. Since r1 has nonzero entries only

in the first column and the first row of t is zero, r1t
∗ = 0. Since J is a left ideal of S,

st ∈ J and (st)∗ ∈ J∗. Thus rt∗ ∈ J∗. Therefore J∗ is a left ideal of R.

Since J∗ is a left ideal of R, ϕ(J∗) ⊆ J∗. But J∗ ∩ Re11 = 0. So J∗ ⊆ S if one

views S in the strictest sense as a direct summand of R. Then it has been shown

that ϕ̃(J) ⊆ J . Therefore ϕ̃ leaves invariant any left ideal of S. By the induction

hypothesis, S has a Zassenhaus family, so ϕ̃ is multiplication on the left by ϕ̃(1S) ∈ S.

Recall that ϕ̃(1S) = 0. Hence ϕ̃ = 0. Note that 1S =
∑n

i=2 eii and 1R = e11 + 1S.

It was assumed that ϕ(1R) = 0. It follows that ϕ(e11) = 0. For n ≥ i, j ≥ 2, since

ϕ̃ = 0 and eij ∈ S, ϕ(eij) = 0.

Fix n ≥ k ≥ 2 such that k � 2 and k � 1. Define Jk = R(ek1 + ekk). Let

r = (rij) ∈ R. Then rek1 is the matrix whose 1 column is the k-th column of

r, but zeros everywhere else. Also, rekk is the matrix with the same k-th column

as r, but zeros everywhere else. Hence Jk = R(ek1 + ekk) = ⊕α�kK(eα1 ⊕ eαk).

By definition, Jk is a left ideal of R. Then ϕ(Jk) ⊆ Jk. Note that k � 2 and

α � k implies that α ≥ 2. In this case, ϕ(eαk) = 0 for all k � 2 and α � k.

Hence ϕ(Jk) = ⊕α�kK(ϕ(eα1)⊕ϕ(eαk) = ⊕α�kKϕ(eα1). Since ⊕α�kKϕ(eα1) = Re11

is a left ideal of R, ⊕α�kKϕ(eα1) ⊆ Re11. It follows that ϕ(Jk) ⊆ Re11. Thus

ϕ(Jk) ⊆ Jk ∩ Re11 = {0}. Since ek1 + ekk ∈ Jk and ekk ∈ S, 0 = ϕ(ek1 + ekk) =

ϕ(ek1) + ϕ(ekk) = ϕ(ek1). Therefore ϕ(ek1) = 0 for each k ≥ 2 such that k � 1. So

ϕ(Re11) = 0. Thus ϕ is zero on all of R.
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Let ψ ∈ EndK(R+) and define ϕ(r) = ψ(r) − ψ(1R) · r. Then ϕ(1R) = 0 and

the foregoing argument shows that ψ is multiplication on the left by ψ(1R) ∈ R.

Therefore the collection of left ideals of R contains a Zassenhaus family for R. By

induction, R = I(X,K) has a Zassenhaus family whenever X is finite. �



CHAPTER FOUR

Rings of Algebraic Integers with Zassenhaus Families

Rings of algebraic integers provide more examples of rings with Zassenhaus

families over Z. For the following discussion, fix some notation.

Notation 4.1. Suppose that S is the ring of algebraic integers of a Galois field extension

F over Q with degree n. Denote by G = {g1, g2, ..., gn} the finite Galois group for F

over Q, and set g1 = idF .

Recall some basic definitions from [15, Chapter 1, Section 6].

Definition 4.2. A prime ideal P of S lies above a prime number p if and only if

P ∩ Z = pZ.

Definition 4.3. The ramification index of a prime ideal P of S over the prime number

p ∈ Z is the power of P that appears in the prime factorization of pS.

Definition 4.4. A prime ideal P of S is ramified over a rational prime p ∈ Z if either

the ramification index of P is greater than one or if the field S/P is not separable

over Z/pZ.

Definition 4.5. A prime number p ∈ Z is ramified in S if and only if pS is divisible

by some ramified prime ideal of S.

Definition 4.6. Suppose that a prime ideal P of S lies over a prime number p. The

relative degree of P over p is the dimension of S/P over Z/pZ.

Lemma 4.7. If SG = {
∑n

i=1 sigi : si ∈ S}, then Q⊗SG = Q⊗End(S+) = EndQ(F+).

Proof: Field automorphisms map roots to conjugate roots. Then each element

of G maps S back into S. So SG ⊆ End(S+).

17
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Taking an argument from [4, Lemma 2.2.7], it will be seen that F has a basis

contained in S. Since F as an extension over Q has finite degree n, there is a basis

{x1, x2, . . . , xn} for F . Since F is a finite Galois extension, each of the xi are algebraic

over Q. Let 1 ≤ i ≤ n. For xi, there is an mi ∈ N and there are z(i, k) ∈ Q for

0 ≤ k ≤ mi such that z(i,mi)x
mi
i +z(i,m−1)xmi−1

i + . . .+z(i, 1)xi+z(i, 0) = 0. One

can assume that the z(i, k) are in Z (multiply the equation by a common denominator

if necessary). Allow us to supress the i for now to write zk for z(i, k) and m for mi.

Then

zm−1
m (xmi + zm−1x

m−1
i + . . .+ z1xi + z0) = 0

zmmx
m
i + zm−1z

m−1
m xm−1

i + . . .+ z1z
m−1
m xi + z0z

m−1
m = 0

(zmxi)
m + zm−1(zmxi)

m−1 + . . .+ z1z
m−2
m (zmxi) + z0z

m−1
m = 0.

Since, as has just shown, zmxi is the root of a monic polynomial with coefficients in

Z, zmxi ∈ S. Define the set Y = {y1, y2, . . . , yn} ⊆ S where yi = z(i,mi)xi. Since

the xi are linearly independent, so must be the yi. Thus Y forms a basis for F . It

follows that Y forms a basis for S. This shows that F+/S+ is torsion. The fact that

for each f ∈ F there is a number ` ∈ N so that `f ∈ S is used in the future. Note

that Q⊗ F = Q⊗ S.

By the preceding argument S+ is free abelian of rank n. Hence End(S+) is

isomorphic to Matn×n(Z). Then End(S+) is a rank n2 free abelian group and must

have a basis with n2 elements. By [13, Lemma V.7.5], G is a linearly independent

collection of maps in End(S+). It is easy to see that {yigj : 1 ≤ i, j + 1 ≤ n} is

linearly independent in End(S+) and has cardinality n2. Therefore this set is a basis

for both End(S+) and SG so SG = End(S+).

From [19, Lemma 2.4], End(F+) = FG where FG = {
∑n

i=1 figi : fi ∈ F}.

Suppose that f =
∑n

i=1 figi ∈ FG. Then the fi are elements of F . There is an

mi ∈ N so that mifi ∈ S. Let m = lcmimi. Then mfi ∈ S for each i. It follows
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that mf ∈ SG. Therefore Q⊗ FG = Q⊗ SG. At this point, it has been shown that

Q⊗ SG = Q⊗ End(S+) = End(F+).

Any Q-linear endomorphism of F+ is also Z-linear. Hence EndQ(F+) ⊆ End(F+).

Let ϕ ∈ End(F+), q ∈ Q, and x ∈ F . Say q has numerator a and denominator b.

By definition F is an extension of Q so that b−1x ∈ F . Then ϕ(qx) = aϕ(b−1x) =

qϕ(bb−1x) = qϕ(x). Hence End(F+) = EndQ(F+). Finally, Q⊗SG = Q⊗End(S+) =

EndQ(F+). �

Theorem 4.8. S has a Zassenhaus family F = {Li : i < ω} of prime ideals such that

each Li lies above a prime number pi and (i 7−→ pi) is a one-to-one correspondence

of the ideals in F to the set of all prime numbers p such that some ideal of F lies

over p.

Proof: First construct F . Note that F = Q[π] for some π with minimial

polynomial mF (x) ∈ Z[x] of degree n. Denote by P the set P of rational primes p ∈ Z

such that mF (x) (mod p) has a root. From [9, Proposition on page 298], the set P is

infinite.

By [15, Theorem 1.7.3], the prime numbers that ramify in S are the prime

numbers p such that pZ contains the discriminant ideal I [15, Section 7] of S over Z.

I = µZ for some µ ∈ Z. Then µZ ⊆ pZ means that p divides µ. Only a finite number

of rational primes divide µ. Exclude these primes from P. Then P is still infinite, and

p is not ramified for each p ∈ P.

Let p ∈ P and mF (x) = mF (x) (mod p). Let mF (x) = g1(x)a1 · · · gt(x)at for

some distinct irreducible polynomials gi(x) over Z/pZ. By Kummer’s Theorem [15,

Theorem 1.7.4], pS = Qa1
1 Q

a2
2 · · ·Qat

t for some distinct prime ideals Qi of S such that

the relative degree of Qi is the degree of gi. Since p is not ramified, each ai = 1. Then

pS = Q1Q2 · · ·Qt. Since p ∈ P, there is a root a of mF (x) in Z/pZ. It follows that

gk(x) = (x − a) for some 1 ≤ k ≤ t. So Qk has relative degree 1. By [15, Theorem



20

1.6.8], the prime ideals Q1, Q2, . . . , Qt lying above p each have the same ramification

index e and relative degree f such that eft = n. In this case, e = 1. Since Qk has

relative degree 1, f = 1. Thus t = n and pS factors into n distinct prime ideals.

Also by Kummer’s Theorem, G transitively permutes the n prime ideals. Since

G has order n, only idF fixes all of the Qi lying over p. Let P = {pi : i < ω}.

Let i < ω and let k = (i mod n) + 1. Pick a single prime ideal Qi lying above

pi such that gk(Qi) 6= Qi. Define a candidate F for a Zassenhaus family for S as

F = {Qi : i < ω}.

Let {a1, a2, ..., an} be an integral basis of S. By Lemma 4.7, Q ⊗ SG = Q ⊗

End(S+) = EndQ(F+). Define an n × n-matrix ∆ over S by ∆ = (gi(aj))1≤i,j≤n.

Then det(∆) 6= 0 since det(∆) is a linear combination of basis elements for the

linear transformations of S+. Then there is a matrix ∆−1 with entries in F . It

follows that ∆−1 ∈ EndQ(F+). From Lemma 4.7, EndQ(F+) = Q ⊗ End(S+) so

∆−1 ∈ Q⊗ End(S+). It follows that there is a number m∆ ∈ N such that m∆∆−1 ∈

End(S+) = Matn×n(S). That is, m∆∆−1 has entries in S.

Let ϕ ∈ End(S+) such that ϕ(P ) ⊆ P for all P ∈ F . Lemma 4.7 promises

some m ∈ N such that mϕ =
∑n

i=1 sigi ∈ SG. Borrowing a technique from [19,

Lemma 2.5]:

Let f = mϕ. Then f(P ) ⊆ P for all P ∈ F . Observe that

(f(a1), ..., f(an)) =

(
n∑
i=1

sigi(a1), ...,
n∑
i=1

sigi(an)

)

= (s1, s2, ..., sn)∆.

Let x ∈ P for some P ∈ F . Then

(f(xa1), ..., f(xan)) =

(
n∑
i=1

sigi(xa1), ...,
n∑
i=1

sigi(xan)

)

=

(
n∑
i=1

sigi(x)gi(a1), ...,
n∑
i=1

sigi(x)gi(an)

)

= (s1g1(x), ..., sngn(x))∆ ∈ P × P × ...× P.
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Recall that m∆∆−1 is a matrix with entries in S. Thus

(f(xa1), ..., f(xan))m∆∆−1 = m∆(s1g1(x), ..., sngn(x))

∈ P × P × ...× P.

It follows that m∆sigi(P ) ⊆ P for all 1 ≤ i ≤ n. If p divides m∆ then exclude p from

P. Since only a finite number of primes divide m∆, P is still infinite.

Suppose that p ∈ P with P ∈ F the corresponding prime ideal lying over p.

Note that pS ⊆ P so that S/P is a torsion p-group. Also, m∆sigi(P ) ⊆ P . From

gcd(p,m∆) = 1 it follows that sigi(P ) ⊆ P .

Let 2 ≤ i ≤ n. For k = (i mod n) + 1, pk ∈ P with corresponding P =

Pk ∈ F such that gi(P ) 6= P . Recall that P has relative degree 1 over p. Then

S/P is isomorphic to Z/pZ a field and so P is a maximal ideal of S. It follows that

S = gi(P ) + P and 1 = gi(a) + b for some elements a and b of P . This implies that

si = sigi(a) + sib ∈ P + P = P . Then si ∈ P for all P ∈ F . It follows that si is not

a unit.

If si 6= 0, then siS is a nontrivial, proper ideal of S such that siS ⊆ Pk for all

Pk ∈ F such that k = (i mod n) + 1. Since P is infinite, there are infinitely many

such Pk. Then siS factors into an infinite number of distinct prime ideals of S. This

is a contradiction.

From this contradiction, one can conclude that si = 0 for 2 ≤ i ≤ n. Thus

f = mϕ = s1 idF . Then ϕ(1) = s1/m ∈ F . But ϕ(1) ∈ S so s1/m ∈ S. Therefore ϕ

is multiplication on the left by an element in S. �

A direct application of the preceding theorem leads to the following corollary.

Corollary 4.9. Let S be the ring of algebraic integers of the quadratic number field

F = Q[
√
m]. Then S has a Zassenhaus family of prime ideals all lying over distinct

primes.
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Let F , S, and m be as in the preceding corollary. One can actually construct the

Zassenhaus family for S using the techniques developed in the proof of the preceding

theorem. Let G = {idF , σ} be the Galois group of F .

First, suppose that m > 0. By Dirichlet’s Arithmetic Progression Theorem [18,

Theorem 6.21], the set Γ = {p ∈ Π : p ≡ 1 mod 4m} is infinite. Note that each of 4

and m is a divisor of 4m. From [16, page 19], p ≡ 1 mod 4 and p ≡ 1 modm for all

p ∈ Γ. Since 12 ≡ 1 modm, each p ∈ Γ is a quadratic residue modm. By Gauss’s

Quadratic Reciprocity Theorem [16, Proposition II.2.5] and [16, Proposition II.2.3],

it follows that m is a quadratic residue mod p for all p ∈ Γ.

Now suppose that m < 0. Since p ≡ 1 mod 4m, then (p−1)/2 is an even integer.

The [16, Proposition II.2.3] implies that -1 is a quadratic residue mod p.

Then any m ∈ Z is a quadratic residue mod p for all p ∈ Γ. Define Γ
′

the set

of all primes p ∈ Γ such that p is not ramified in S. By the second paragraph of

the proof of 4.8, Γ
′

is cofinite in Γ and has infinite cardinality. Also by the second

paragraph of the proof of Theorem 4.8, pS = PpQp with distinct prime ideals Pp and

Qp of S. Since G operates transitively on the set {Pp, Qp}, σ(Pp) = Qp for all p ∈ Γ
′
.

The family F = {Pp : p ∈ Γ
′} now has the properties required to apply the proof of

Theorem 4.8. Note that by [15, Theorem 1.9.2], S = Z[d] where

d =


√
m if d ≡ 2, 3 mod 4,

1+
√
m

2
if d ≡ 1 mod 4.



CHAPTER FIVE

Some Dedekind Domains have Zassenhaus Families

Lemma 5.1. [19, Lemma 2.5] Let R be an integral domain such that R+ is torsion free

and let D be the field of fractions of R. Let Λ be a finite set of ring automorphisms

of R, let sσ ∈ R for each σ ∈ Λ, and let f =
∑

σ∈Λ sσσ ∈ EndZ(R). If X is an ideal

of R such that f(X) ⊆ X, then there is a nonzero sΛ ∈ R such that sΛ only depends

on Λ and sΛsσσ(X) ⊆ X for each σ ∈ Λ.

Proof: Let λ be an ordinal such that {aν : ν < λ} a maximal Z-independent

set in R+. Equivalently, {aν : ν < λ} is maximal such that ⊕ν<λaνZ ⊆ D and

R/(⊕ν<λaνZ) is torsion. Note that each σ ∈ Λ extends uniquely to an automorphism

of D. Abusing notation, call that map σ as well. Enumerate Λ as Λ = {σi : 1 ≤ i ≤

n}. For each 1 ≤ i ≤ n define an element ∆i ∈ Rλ, the cartesian product of λ many

copies of R, by ∆i = (σi(aν))ν<λ.

Define the n× λ matrix over R by

∆ =



∆1

∆2

...

∆n


To see that the rows of ∆ are independent over D, assume that there are xi ∈ D such

that 0 =
∑n

i=1 xi[(σi(aν))ν<λ]. Summing the terms of each sequence,(
n∑
i=1

xiσi

)
(aν) = 0 for each ν < λ

Let r ∈ R. From earlier comments, there is a natural number mr such that mrr

is a linear combination of a finite number of the aν . It follows that

0 =

(
n∑
i=1

xiσi

)
(mrr) = mr

(
n∑
i=1

xiσi

)
(r)

23
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Since R+ is torsion-free and mr is nonzero,

0 =

(
n∑
i=1

xiσi

)
(r)

It follows that
∑n

i=1 xiσi is the zero map on R. The proof of Lemma 7.5 in [Hunger-

ford, page 291] can easily be modified to show that automorphisms of R are linearly

independent over D from which one can conclude that xi = 0 for 1 ≤ i ≤ n. Therefore

the rows of ∆ are independent. Thus one can perform elementary row operations over

D on ∆ that, after finitely many steps, yield the “row reduced echelon form” of ∆.

Since the rows of ∆ are linearly independent over D, there is some n× n matrix M

over D such that M∆ has n “pivot columns”. Thus, a permutation of the ordinals

less than λ can be performed such that, after this adjustment of the enumeration of

{aν : ν < λ}, then M∆ = [In
...Ψ] where In is the n × n identity matrix. This means

that ∆ = [∆1
...∆2] and M∆ = [M∆1

...M∆2] = [In
...Ψ] and so M = ∆−1

1 is invertible.

Since ∆1 has entries in R, M has entries in D. The matrix M has a finite number of

entries so there is a nonzero sΛ ∈ R such that sΛM has entries in R.

Note that (f(aν))ν<λ = (
∑n

j=1 sjσj(aν))ν<λ = (s1, s2, . . . , sn)∆. Let x ∈ X.

Then

(f(xaν))ν<λ = (
n∑
j=1

sjσj(xaν))ν<λ

= (
n∑
j=1

sjσj(x)σj(aν))ν<λ

= (s1σ1(x), . . . , snσn(x))∆ ∈ X(n).

where X(n) denotes the Cartesian product of n copies of X. Let ∆−1
1

0


denote the λ × n matrix with the n × n block ∆−1

1 above a block whose entries are

all zero. Then

(s1σ1(x), . . . , snσn(x))∆ = (s1σ1(x), . . . , snσn(x))[∆1
...∆2] ∈ X(n)
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So

(s1σ1(x), . . . , snσn(x))[∆1|∆2]

 ∆−1
1

0

 ∈ X(n)

 ∆−1
1

0


which is equivalent to

(s1σ1(x), . . . , snσn(x))In ∈ X(n)∆−1
1 .

It follows that

sΛ(s1σ1(x), . . . , snσn(x))In ∈ X(n)sΛ∆−1
1 ⊆ X(n).

Therefore sΛsσσ(X) ⊆ X for each σ ∈ Λ. �

Theorem 5.2. Let R be a Dedekind domain such that R+ is torsion free, P the set

of all prime ideals of R, and D the field of fractions of R. Moreover, let KP be the

kernel of the natural map Aut(R)→ SP where SP is the group of permutations of P,

and assume that End(R+) ⊆ D[Aut(R)]. Then R has a Zassenhaus family of ideals

if and only if KP = {idR}.

Proof: Assume that σ ∈ KP and σ 6= idR. This means that σ(P ) = P for

all P ∈ P and since R is Dedekind, σ(X) = X for all ideals X of R. If σ ∈ R·

then σ = σ(1)· = 1· = idR, a contradiction. This shows that R $ {ϕ ∈ EndZ(R) :

∀X ER(ϕ(X) ⊆ X)} and R has no Zassenhaus family of ideals.

Now assume that KP = {idR}. It follows that for any idR 6= σ ∈ Aut(R), there

is some P ∈ P such that σ(P ) = Q ∈ P but Q 6= P . Let {βn : n < ω} be an

increasing, unbounded sequence of natural numbers. Define Xσ,n = PQβn . Then for

0 6= s,

sσ(Xσ,n) = sQσ(Q)βn ⊆ PQβn

only if sQ ⊆ Qβn .
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Assume that there is a k such that sQ ⊆ Qβk . Since sRQ ⊆ sQ, the factoriza-

tion of sR into prime ideals must contain a factor Qα such that α ≥ βk − 1. Since

{βn : n < ω} increases without bound, there is an index m such that βm > α. Then

sQ 6⊆ Qβm . It has been shown that for any 0 6= s ∈ R, there is an index m such that

sσ(Xσ,m) 6⊆ Xσ,m.

Suppose that ϕ ∈ End(R+) such that ϕ(Xσ,n) ⊆ Xσ,n for each σ ∈ Aut(R) and

each n ∈ N. Since ϕ(R) ⊆ R, it follows that sϕ =
∑k

i=1 siσi for some s, si ∈ R and

some σi ∈ Aut(R).

Let 1 ≤ i ≤ k. By the preceding lemma, siσi(Xσ,n) ⊆ Xσ,n for each σ ∈ Aut(R)

and each n ∈ N. In particular, siσi(Xσi,n) ⊆ Xσ,n for each n ∈ N. By the construc-

tion of the Xσi,n, it must be the case that σi = idR for all i. Therefore sϕ = t where

t =
∑

i si. Then ϕ is the multiplication by s−1t ∈ D. But s−1t = ϕ(1) ∈ R and it

follows that ϕ ∈ R. This shows that F = {Xσ,n : σ ∈ Aut(R), n ∈ N} is a Zassenhaus

family of R. �



CHAPTER SIX

From Zassenhaus Families to Zassenhaus Rings

For particular rings with Zassenhaus families, Lemma 6.8 below allows us to con-

struct modules from the Zassenhaus families to satisfy the definition of a Zassenhaus

ring. That is, various partial converses for Theorem 2.3 follow from this lemma. Re-

call the following definitions from abelian group theory; see, for example, [1]. Abelian

groups in this section are presumed torsion free unless noted otherwise. From Defi-

nition 3.5, a subgroup H of a group G is pure in G if and only if H ∩ nG = nH for

each integer n.

Definition 6.1. Suppose that H is a subgroup of a torsion free abelian group G. Then

the purification of H in G is H∗ = {g ∈ G : ∃n ∈ Z(ng ∈ H)}.

Lemma 6.2. H∗ is pure in G.

Proof: Let n ∈ Z and g ∈ G such that ng ∈ H∗. Then there is an m ∈ Z so

that (mn)g = m(ng) ∈ H. Hence g ∈ H∗ and ng ∈ nH∗. So H∗ ∩ nG = nH∗ for any

n ∈ Z. Therefore H∗ is pure in G. �

Definition 6.3. Suppose that G is an abelian group and that p is a prime number.

Define a function hGp : G → N ∪ {∞} as follows. If there is an n ∈ N so that g is

divisible by pn but not pk for k > n, then set hGp (g) = n. Otherwise, set hGp (g) =∞.

The value hGp (g) is called the p-height of g in G. For each g ∈ G, the height sequence

(hGp (g))p∈Q can be considered.

Definition 6.4. For a given height sequence α = (hGp (g))p∈Q define the type of α in

G, denoted type(α), to be the collection of all height sequences β for elements of G

such that β differs from α at only a finite number of entries by only a finite amount.

If g ∈ G then the type of g is just the type of its height sequence.

27
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A brief inspection will confirm that, in an abelian group, types are equivalence

classes. That is, the property of belonging to a type is transitive, reflexive, and

symmetric within the context of elements and the group operation of an abelian

group.

Definition 6.5. A group G is homogenous if and only if all nonzero elements have the

same type.

Let z ∈ Z. Then z is divisible by only a finite number of primes, and each

prime divisor divides z only up to a finite power. If α is the height sequence for z in

Z, α differs from 0 = (0)p∈Π at only a finite number of entries by, at most, a finite

amount. Thus α ∈ type(0) (equivalently, g is of type 0). Therefore, Z is homogenous

of type 0.

If α = (ap) and β = (bp) are height sequences, then say α ≤ β if and only if

ap ≤ bp for all p ∈ Π. It is easy to show that this is a partial order (see [1, Section

1]). This partial order induces a partial order for the types. For types τ0 and τ1, say

τ0 ≤ τ1 if and only if there are height sequences α0 ∈ τ0 and α1 ∈ τ1 so that α0 ≤ α1.

Definition 6.6. For a type τ , set G(τ) = {g ∈ G : type(g) ≥ τ}.

Lemma 6.7. If A is any abelian group, a ∈ A, and n,m ∈ N such that gcd(m,n) = 1

and ma ∈ nA. Then a ∈ nA.

Proof: There is a b ∈ A so that ma = nb. There are integers r and s so that

1 = rn+ sm. Then m = (1− rn)/s. Using our new identity for m,

(1− rn)a = snb

a− rna = snb

a = n(ra+ sb) ∈ nA.

�
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Lemma 6.8. Suppose that G is a torsion free abelian group that is homogeneous of

type 0. Suppose further that there is a family {Vi : i ∈ I} of at most countably many

pure subgroups of G such that

(1) G =
∑

i∈I Vi, and

(2) each G/Vi is homogeneous of type 0.

Let {Pi : i ∈ I} be a family of disjoint infinite sets of primes, and set Ri =

〈p−1 : p ∈ Pi〉 ⊆ Q. Denote by τi the type of Ri for all i ∈ I. Define M =
∑

i∈I RiVi.

Then M(τi) = (Vi)∗. That is, the purification of Vi in M is just M(τi).

Proof: Lemma 6.7 shows that if A is any abelian group and n,m ∈ N such

that gcd(m,n) = 1, then ma ∈ nA for some a ∈ A implies a ∈ nA.

To see that M/G is torsion, let a ∈ M . Then a =
∑

i p
−1
i vi for some pi ∈ Pi

and vi ∈ Vi. A finite number of the terms in the summation are nonzero so there

is a finite least common multiple ` for the pi. For each i ∈ I, `p−1
i vi ∈ Vi. Thus

`a =
∑

i `p
−1
i vi ∈

∑
i Vi = G. Therefore M/G is torsion.

Let i ∈ I and v ∈ Vi. If p ∈ Pi, then v = p(1/p)v and (1/p)v ∈ M . Thus

hMp (v) ≥ hMp (1/p). If p 6∈ Pi then any element of Ri is only finitely divisible by p

and the same goes for v. Then, by the construction of M , type(v) ≥ type(τi). Thus

Vi ⊆M(τi).

To see that M(τi) is pure in M , let k ∈ Z and a ∈ M such that ka ∈ M(τi).

For each p ∈ Π, hMp (ka) ≤ hZ
p (k) + hMp (a). Since hZ

p (k) is nonzero for at most finitely

many p ∈ Π, type(a) = type(ka) ≥ τi. Thus a ∈ M(τi) and ka ∈ kM(τi). It follows

that M(τi) is pure in M .

Since M(τi) is pure in M and Vi ⊆ M(τi), it is clear that (Vi)∗ ⊆ M(τi). To

show that M(τi) ⊆ (Vi)∗, let s ∈ M(τi). Since M/G is torsion, there is some m ∈ N

such that s′ = ms ∈ G ∩M(τi).
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The set P
′
i = {p ∈ Pi : s′ ∈ pM, s′ 6∈ pG, gcd(p,m) = 1} is cofinite in Pi. For,

if p 6∈ P
′
i then one or more of s′ 6∈ pM , s′ ∈ pG, and gcd(p,m) 6= 1 holds. So the

complement of P
′
i is the union of C0 = {p ∈ Pi : s′ 6∈ pM}, C1 = {p ∈ Pi : s′ ∈ pG},

and C2 = {p ∈ Pi : gcd(p,m) 6= 1}. It suffices to show that each of these sets is finite.

If s′ 6∈ pM , then s′ is not divisible by p in M . But s′ ∈ M(τi) so the height

sequence for s′ in M has at most finitely many entries such that the entry is less than

the corresponding entry for τi. Recall that τi is the type of Ri which is generated

by the inverses of the primes of Pi. Let τ pi denote the p-th entry for τi. Then τ pi is

not zero for p ∈ Pi. It follows that s′ is not divisible by p for at most finitely many

p ∈ Pi. Therefore C0 is finite.

Note that s′ ∈ G and G is homogenous of type 0. Then the height sequence for

s′ in G has entries that differ from 0 in at most finitely many places. It follows that

s′ is divisible by at most finitely many p ∈ Pi in G. Thus s′ ∈ pG for at most finitely

many p ∈ Pi. Therefore C1 is finite.

Since m is divisible by at most a finite number of primes, gcd(p,m) 6= 1 for

a finite number of p ∈ Π. Since Pi is infinite, gcd(p,m) 6= 1 for a finite number of

p ∈ Pi. Thus C2 is finite. Then P
′
i is cofinal in Pi.

Let Πi be the set of all square-free natural numbers whose prime factors are

contained in Pi. Let p ∈ P ′
i . By the definition of P

′
i , there is an x ∈M so that px = s′.

From the construction of M , it follows that x =
∑

j

1

qj
vj for some vj ∈ Vj and qj ∈ Πj.

Let q =
∏

j 6=i qj. Since px = s′ =
∑

j

1

qj
vj one can rewrite the summation so that no

term has p in the denominator. One can assume that gcd(p, q) = 1. Now

qx = q
∑
j

1

qj
vj =

∑
j

q

qj
vj = g +

1

qi
v′i

with v′i = qv′i and g a linear combination of the vj with j 6= i. Note that g ∈ G. This

implies that qs′ = pqx = pg +
p

qi
v′i. Then pv′i ∈ qiG ∩ Vi = qiVi since Vi is pure in G.

Either p divides qi or not.
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Assume p does not divide qi. Since pv′i ∈ qiV , then v′i ∈ qiVi and v′i = qiv
′′
i for

some v′′i ∈ Vi. Thus qs′ = p(g + v′′i ). Since p ∈ P ′
i and gcd(p, q) = 1, the element s′ is

in pG. This contradicts the definition of P
′
i .

Thus one can assume that qi = pt for some t ∈ N. Since qi is square-free,

gcd(p, t) = 1. It follows that qts′ = ptg+
pt

qi
v′i = ptg+ v′i. Then qt(s′+Vi) ∈ p(G/Vi).

Since both q and t are relatively prime to p, gcd(p, qt) = 1. It follows that

s′ + Vi ∈ p(G/Vi) for all p ∈ P ′
i . This shows that type(s′ + Vi) ≥ τi > 0. But G/Vi

is homogeneous of type 0. The only possibility is that s′ + Vi = Vi, and thus s′ ∈ Vi.

Since ms = s′ ∈ Vi, s ∈ (Vi)∗. �

Theorem 6.9. Suppose that R is a ring such that R/pR has no nonzero nilpotent

elements for any prime p, QR has a Zassenhaus family F
′

= {QVi : i ∈ I}, and the

Vi are ideals of R such that R+ and {Vi : i ∈ I} satisfy Lemma 6.8. Then R is a

Zassenhaus ring.

Proof: Let Ri ⊆ Q be as described in Lemma 6.8. Set M =
∑

i∈I RiVi ⊆ QR.

For i ∈ I, Lemma 6.8 shows that M(τi) = (Vi)∗.

Let ϕ ∈ EndZ(M) such that ϕ(1) = 0. Let a ∈M(τi) and p ∈ Π. If hMp (a) = n,

then a = pnz for some z ∈ M with z not divisible by p. In this case, ϕ(a) = pnϕ(z).

If hMp (a) =∞, then ϕ(a) must be divisible by any power of p as well. It follows that

the type of ϕ(a) is greater than or equal to the type of a. Hence ϕ maps M(τi) into

itself. Then

ϕ(Vi) ⊆ ϕ((Vi)∗) ⊆ ϕ(M(τi)) ⊆M(τi) = (Vi)∗

the purification of Vi in M . Let g ∈ (Vi)∗. Then there is an n ∈ N so that ng ∈ Vi.

Hence g = (1/n)(ng) ∈ QVi. Therefore ϕ(Vi) ⊆ QVi.

Since R ⊆ M ⊆ QR, QM = QR. From [1, Section 0], there is a unique

extension ψ ∈ EndQ(QM) = EndQ(QR) of ϕ. Then ψ(QVi) = Qψ(Vi) ⊆ QVi. Since
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F
′

is a Zassenhaus family, ψ is multiplication on the left by
r

q
for some r ∈ R and

some q ∈ N. Recall that ψ(1) = ϕ(1) = 0. So ψ = ϕ = 0.

Let γ ∈ EndZ(M) and i ∈ I. Then γ(M(τi)) ⊆ M(τi) = (Vi)∗ = QVi ∩ M

and so γ(QVi) ⊆ QVi. Then γ leaves invariant the member ideals of F
′
. Hence

γ is multiplication on the left by some element of QR. Since m = γ(1) ∈ M ,

(γ −m·)(1) = 0. By the preceding paragraph, (γ −m·) is the zero map. Thus γ is

multiplication on the left by m.

To conclude that R is a Zassenhaus ring, it suffices to show that m ∈ R. To

this end, let x + R ∈ M/R. From Lemma 6.8, x =
∑n

i=1(1/qi)vi where each vi ∈ Vi

and qi is a product of distinct primes raised only to the first power from Pi. Recall

that the Pi are mutually disjoint. Hence q = lcmi qi is a product of distinct primes

raised only to the first power. Then qx ∈ R. It follows that the order q = o(x + R)

and is square free. Also, x = (
∑n

i=1 aivi)/q for appropriate ai ∈ N. Notice that the

numerator is in R.

One can write m =
s

q
with s ∈ R and q = o(m+R). Then ϕ(m) = m·m =

s2

q2
∈

M . Let p be a prime divisor of q and q = pq′. Since q is square free, gcd(p, q′) = 1.

So (q′)2 s
2

q2
=
s2

p2
∈M . Thus o

(
s2

p2
+R

)
divides p2 and is square-free. It must be the

case that p
s2

p2
=
s2

p
∈ R. Then p

s2

p
= s2 ∈ pR. It follows that (s+ pR)2 = 0 ∈ R/pR

since R/pR has no nonzero nilpotent elements.

It has been shown that s2 ≡ 0(mod p). Thus p divides s2. This can only be the

case when p divides s. Then s ∈ pR. Since q = o(m+R), the element m =
s

q
cannot

be reduced. But p is a divisor of both q and s. Hence q must not have any prime

divisors, i.e. q = 1. Therefore ϕ is multiplication on the left by s ∈ R. �

The next two corollaries apply Theorem 6.9 to obtain examples of Zassenhaus

Modules constructed from Zassenhaus families. Note that in the next corollary, the

ring Z[x] is considered. This ring does not have finite rank.
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Corollary 6.10. The ring Z[x] of polynomials with integer coefficients is a Zassenhaus

ring.

Proof: Let R = Z[x]. For each prime p, if p does not divide 0 6= g(x) ∈ Z[x]

then p does not divide (g(x))n for n ∈ N. Hence R/pR has no nonzero nilpo-

tent elements. By Proposition 3.3, F
′

= {QVi : i ∈ I} is a Zassenhaus fam-

ily of the Q-algebra QR. Lemma 3.7 shows that R has a countable Zassenhaus

family F = {Vi : i ∈ I} such that each Vi is a direct summand of R+. That

R =
∑

i∈I Vi is clear by inspection. Let Ri ⊆ Q be as described in Lemma 6.8.

Set M =
∑

i∈I RiVi ⊆ QR. It is easy to see that R is homogenous of type 0. Let

i ∈ I. From [11], direct summands of abelian groups are pure. By Lemma 3.7, each

element of our Zassenhaus family for Z[x] is pure in the additive group of Z[x]. Each

element of the Zassenhaus family of Lemma 3.7 is pure in the additive group of Z[x].

Since the additive group of Z[x] is a direct sum of copies of Z, Z[x] is homogenous

of type 0. Then for each element Y of the Zassenhaus family for Z[x] from Lemma

3.7, (Z[x])/Y is homogeneous of type 0. So Lemma 6.8 applies. The assertion follows

from Theorem 6.9. �

Corollary 6.11. Let R = SΛ the ring defined in Lemma 3.11 with the additional

hypotheses that S+ is homogenous of type 0, S+ is free of finite rank, and S/pS has

no nonzero nilpotent elements for any prime p. In this case, R is a Zassenhaus ring.

Proof: The Zassenhaus family of Lemma 3.11 is countable. The family

F = {Vi : i ∈ I} can be enumerated with a countable index set I. From the

definition, R = ⊕γ∈ΛγS. To apply Lemma 6.8, one needs to know that R is homoge-

nous of type 0. This property follows directly from the fact that S is homogenous of

type 0 and R is the direct sum of copies of S. By Lemma 3.11, R is the sum of all the

Vi and each Vi is a direct summand of R. It follows that each Vi is pure in R and R/Vi
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is isomorphic to a direct summand of R. Since direct summands of R are homogenous

of type 0, R/Vi is homogenous of type 0. By Proposition 3.6, F
′
= {QVi : i ∈ I} is a

Zassenhaus family of the Q–algebra QR. The hypotheses of Lemma 6.8 are satisfied.

The assertion follows from Theorem 6.9. �

The next result helps show that rings of algebraic integers are Zassenhaus rings.

Proposition 6.12. Suppose that S is a ring with identity such that S+ is a free abelian

group of finite rank. Suppose that F = {Pi : i < ω} is a Zassenhaus family of right

ideals of S. Suppose further that for each i < ω, there is a (unique) number pi such

that piS is properly contained in Pi and the ring Si = Pi/piS has the property that

x ∈ Si with x2 = 0 implies x = 0.

Then there is a right S module M such that S ⊆M ⊆ QS and

EndZ(M+) = S. Moreover, p(tp(M/S)) = 0 for all prime numbers p.

Proof: Define M =
∑

i<ω p
−1
i Pi ⊆ QS. Let ϕ ∈ EndZ(M+). Note that

S+ is finitely generated, say by {s1, s2, . . . , sn}, and M/S is torsion. Then for each

si there is a ki such that kiϕ(si) ∈ S. Define k = lcmi ki. Let s ∈ S. Then

s = z1s1+z2s2+. . .+znsn for some zi ∈ Z. So ϕ(s) = z1ϕ(s1)+z2ϕ(s2)+. . .+znϕ(sn).

It follows that kϕ(s) ∈ S. Therefore kϕ|S = ψ ∈ EndZ(S+).

Note that tpi(M/S) = (p−1
i Pi)/S. Let i < ω and p−1

i s ∈ p−1
i Pi. Then

pikϕ(p−1
i s) + S = kϕ(s) + S = S. Hence kϕ(p−1

i s) + S ∈ tpi(M/S). So kϕ(p−1
i Pi) ⊆

p−1
i Pi. Therefore ψ(Pi) = pikϕ(p−1

i Pi) ⊆ Pi for all i < ω.

Since F is a Zassenhaus family, ψ = s· ∈ S· and ϕ =
s

k
∈ EndZ(M+). Note

that ϕ(1) =
s

k
∈ M . From the construction of M , there is a finite subset I of ω,

there is a u ∈ S, and there are bi ∈ Pi − piS so that
s

k
=
∑

i∈I
bi
pi

+ u.

Fix j ∈ I and define q =
∏

i∈I−{j}
pi. Then q

s

k
=
qbj
pj

+ w for some w ∈ S. But

the denominator pj stops us short of the desired conclusion. So it can only be said
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that q
s

k
· ∈ EndZ(M+). Then

bj
pj
· qs
pj

=
qb2
j

p2
j

+
bjw

pj
∈ M . All elements in M/S have

square-free orders. But p2
j

qb2
j

p2
j

∈ S. So the order of
qb2
j

p2
j

+S must be pj. Thus
qb2
j

pj
∈ S.

Then q(bj + pjS)2 = 0 ∈ Sj. Recall that gcd(q, pj) = 1. By our hypothesis, bj ∈ pjS

which contradicts the choice of bj. Thus I is empty and so ϕ =
s

k
· ∈ S· as desired.

�

Corollary 6.13. Let S be the ring of algebraic integers of either a quadratic number

field or some Galois field extension field F over Q of finite degree. Then there is an

S ⊆M ⊆ QS such that EndZ(M+) = S.

Proof: By Corollary 4.9 and Theorem 4.8, there is a Zassenhaus family F =

{Pi : i < ω} of right ideals of S. Since the (i → pi) relation is injective, for each

i < ω, there is a unique number pi such that piS is properly contained in Pi.

Fix i < ω, and let x ∈ Si such that x2 = 0. By Proposition 6.12, it suffices to

show that x = 0. Since x ∈ Si, x = q+ piS for some q ∈ Pi. By hypothesis, q2 ∈ piS.

Let piS = Q1Q2 · · ·Pi · · ·Qk where k ∈ N and each Qi is a prime ideal of S. Then

q2 ∈ Qi for each 1 ≤ i ≤ k, and q2 ∈ Pi. Since these ideals are prime, q ∈ Qi for each

1 ≤ i ≤ k, and q ∈ Pi. Thus q ∈ Q1Q2 · · ·Pi · · ·Qk = piS. It follows that x = 0. �



CHAPTER SEVEN

An Alternate Proof of Zassenhaus’s Result

Zassenhaus’s result from [24] is relevant to the topic of Zassenhaus rings, as one

might expect. This chapter presents an alternate proof of this result that uses some

ideas of Butler’s from [9]. First, here are a few lemmas to help in the alternate proof.

Lemma 7.1. Let R be a torsion free ring with identity. Let F = {Li : i < N} be a

countable family of left ideals of R such that Li = Rbi where bi ∈ R is not a zero

divisor. Suppose that, for each i < N, there is a prime number pi, a nonzero natural

number γi, and an integer δi such that pγii δiR ⊆ Li, pi and δi are relatively prime,

and (i 7−→ pi) is injective. Define M = R +
∑

i∈N p
−γi
i Li ⊆ QR. If y ∈ M and

y· ∈ EndZ(M), then y ∈ R.

Proof: Note that tpi(M/R) = (p−γii Li +R)/R. Furthermore, tp(M/R) = 0 for

primes p not among the pi. It follows that M/R is torsion. Let y +R be an element

of M/R. Then y =
v

k
for some v ∈ R and some product k of finitely many of the

pi. Choose k to be the order of y + R in M/R. Since R is closed under addition, it

suffices to prove the result for the case in which k = pi for some i < ω.

Note that (
v

pi
p−γii Li+R)/R ⊆ tpi(M/R) = (p−γiLi+R)/R. Then p

−(γi+1)
i vLi ⊆

p−γii Li+R. Multiplying this last relation through by pγii δi, p
−1
i δivLi ⊆ δiLi+p

γi
i δiR ⊆

Li + Li = Li. Then vδiLi ⊆ piLi. Since pi and δi are relatively prime, vLi ⊆ piLi.

Since Li = Rbi, there is some r ∈ R such that vbi = pirbi. Since bi is not a zero

divisor in R, v = pir. Therefore y = r ∈ R. �

The proof of the following lemma uses some linear algebra. Basic definitions can

be found in [13, Chapter VII]. Recall from [13, Page 356] the notion of an invariant

subgroup of a free abelian group with respect to one of the group’s endomorphisms.
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Suppose that F is a free abelian group and ϕ ∈ EndZ(F ). Let ρ ∈ Z[x]. Note that

ρ(ϕ) ∈ EndZ(F ). For a ∈ F , define a · ρ = ρ ◦ϕ(a). In this manner, ϕ induces a Z[x]

module structure on F . Using these definitions, let e ∈ F and define W = eZ[τ ]. By

the obvious argument, it is easy to see that W is τ invariant.

Lemma 7.2. Let F be a free abelian group of finite rank, let 0 6= e ∈ F , and let

τ ∈ EndZ(F ). Define W = eZ[τ ] as the τ invariant subgroup of F generated by e,

and denote by W∗ the purification of W in F . Then there is (a least) k ∈ N so that

kW∗ ⊆ W .

Let c ∈ Z such that c is not an eigenvalue of τ , and let α ∈ N. If αe ∈ F (c− τ)

then det(c− τ |W ) divides kα.

Proof: Let χτ (x) = det(x − τ) be the characteristic polynomial of τ . Then

χτ (x) ∈ Z[x] and is monic [13, Page 366], i.e. χτ (x) leading coefficient 1. Using [13,

Theorem VII.4.1], one can say something about the structure of W . The minimal

polynomial mτ (x) of τ is in Z[x] and divides χτ . Thus mτ is also monic. Let f(x) =∑m
i=0 aix

i ∈ Z[x] be the minimal poynomial of τ |W . By the definition of mτ , mτ ◦

τ |W = 0. Then f divides mτ . Hence f is monic and am = 1. Then Z[τ |W ] is a ring

extension of degree m over Z. It follows that Z[τ |W ] = ⊕m−1
i=1 Z(τ |W )i. Since e ∈ W ,

W = ⊕m−1
i=1 eτ

iZ.

An easy consequence of [13, Theorem II.1.6] is that F/W∗ is finitely generated.

By [11, Corollary 28.3] since W∗ is pure in F and F/W∗ is finitely generated, W∗ is a

direct summand of F . Then F = W∗ ⊕ C where C is just the complement of W∗ in

F . An elementary argument suffices to show that QF = QW ⊕QC.

Since c is not an eigenvalue of τ , there is no nonzero a ∈ F so that τ(a) = ca.

That is, there is no nonzero a ∈ F such that (c − τ)(a) = 0. Hence ker(c − τ) = 0.

Equivalently, 0 is not an eigenvalue of c − τ . By [13, VII.5.4], the roots of the

characteristic polynomial χc−τ for c− τ are precisely the eigenvalues for c− τ . Then

χc−τ (0) 6= 0.
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Since c− τ is a zero of χc−τ , c− τ is a root of a monic polynomial over Z. Then

there is a minimal polynomial mc−τ (x) =
∑`

j=0 bjx
j for c− τ . Then mc−τ (x) divides

χc−τ . Hence 0 is not a root for mc−τ (x) and so mc−τ (0) = b0 6= 0. The following

calculations allow us to say something useful about (c− τ)−1.

b0 = (c− τ)
∑̀
j=1

−bj(c− τ)j−1

1 = (c− τ)b−1
0

∑̀
j=1

−bj(c− τ)j−1

(c− τ)−1 = (mc−τ (0))−1
∑̀
j=1

−bj(c− τ)j−1

In short, (c−τ)−1 ∈ (mc−τ (0))−1Z[c−τ ]. Since c is just a constant integer, Z[c−τ ] ⊆

Z[τ ]. Then (c− τ)−1 ∈ (mc−τ (0))−1Z[τ ].

Suppose that αe ∈ F (c − τ). Then (αe)(c − τ)−1 ∈ mc−τ (0)−1W∗ ∩ F = W∗

since W∗ is pure in F . It follows that αe ∈ W∗(c− τ). Thus there is a k ∈ N so that

kαe ∈ W (c− τ) =
(
⊕m−1
i=0 eτ

iZ
)

(c− τ). Define the m×m matrix C(f) = (uij)1≤i,j≤m

where

uij =


1 if i = j + 1, 1 ≤ j ≤ m− 1

−ai−1 if j = m

0 otherwise

Graphically,

C(f) =



0 0 · · · 0 −a0

1 0 · · · ... −a1

0 1 0
... −a2

...
. . . . . .

...
...

0 · · · 0 1 −am−1


The matrix C(f) is called the companion matrix of the monic polynomial f(x). Define
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B = cIm×m − C(f). Then

B =



c 0 · · · 0 a0

−1 c · · · ... a1

0 −1 c
... a2

...
. . . . . . . . .

...

0 · · · 0 −1 c+ am−1


Suppose kαe =

(∑m−1
i=0 eτ izi

)
(c− τ). Then

kαe = e
m−1∑
i=0

(cziτ
i − ziτ i+1)

= e

(
m−1∑
i=0

cziτ
i −

m∑
i=1

zi−1τ
i

)

= e

(
cz0 − zm−1τ

m +
m−1∑
i=1

(czi − zi−1)τ i

)
Equating coefficients of powers of τ yields cz0 = kα, zm−1 = 0, and czi − zi−1 = 0 for

1 ≤ i ≤ m− 1. Let

−→z =


z0

...

zm−1

 ∈ Zm.

Elementary computations show that

B−→z =



cz0 + a0zm−1

−z0 + cz1 + a1zm−1

−z1 + cz2 + a2zm−1

...

−zm−3 + czm−2 + am−2zm−1

−zm−2 + zm−1(c+ am−1)


=



kα

0

...

0


(7.1)

and χC(f)(x) = det(xIm−C(f)) = f(x). Then χC(f)(c) = det(B) = f(c). Recall from

elementary linear algebra (see for example [13, Pages 352 and 353]) that B has a clas-

sical adjoint (or adjugate) adj(B) which is a matrix with the property that adj(B)B =
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det(B)I. Multiplying (1) from the left by adj(B), then det(B)zm−1 = c1mkα where

c1m is the (1,m)-cofactor of the matrix B, just the (1, m) entry of adj(B). By [13,

Page 352], c1m is (−1)m+1 times the determinant of the matrix obtained by deleting

the first row and m-th column from B. But this matrix is upper triangular with only

−1 on the main diagonal. Thus the determinant for this matrix is a product of the

−1 entries. So c1m = (−1)m+1(−1)m = (−1)2m+1 = −1. Then det(B)zm−1 = −kα.

Therefore f(c) = det(B) divides kα. �

With the aid of the above lemmas, an alternate proof to Zassenhaus’s result

can be given.

Theorem 7.3. (Zassenhaus Theorem [24]) Let R be a ring with identity such that

R+ is free abelian of finite rank. Then there is a left R module M such that R ⊆

M ⊆ QR and EndZ(M) = R. That is, every additive endomorphism of M is merely

multiplication on the left by some element of R. Moreover tp(M/R) is bounded for

all primes p.

Proof: Define Σ = {σ ∈ EndZ(R) : 0 6= σ and σ(1) = 0}. Since R+ is free

and of finite rank, Σ is countable and can be enumerated as {σi : i < ω}. Note that

Σ is the collection of additive endomorphisms of R each of which cannot possibly be

multiplication by some element of R. For each i < ω, since at least σ(1) is not zero,

there is some τi ∈ R and some nonzero ei ∈ R, such that σi(−τi) = ei.

Let i < ω. Using the notation from Lemma 7.2, suppose that ci ∈ Z such that ci

is not an eigenvalue of τi. Then there is no µ ∈ R so that τi ·µ = ciµ. In other words,

there is no µ ∈ R so that 0 = (ci − τi) · µ. Then ci − τi has a trivial kernel and must

be invertible. The image of ci − τi may be a proper subgroup of R+. However, the

inverse of ci− τi has a unique extension to QR. Thus this extension can be identified

with the inverse, a member of End(QR+). By Lemma 7.2, there is some ki such that

if αei ∈ R(ci − τi), then det(ci − τi|W ) = fi(ci) divides αki.
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There are infinitely many primes q such that fi(x) mod q has a root in Z/qZ.

This is a well known result in number theory, an elementary proof of which is con-

tained in [9, proposition on page 298]. Hence, for each i ∈ N, one can pick such a

prime pi where pi is not in {pj : 0 ≤ j ≤ i− 1} and pi does not divide ki.

Fix i ∈ N and set q = pi. Note that if an integer c(t) has the form c(t) = c+tq for

some t ∈ Z then, mod q, c(t) is a root of fi(x). Thus the set {c ∈ Z : fi(c) ≡ 0 mod q}

is infinite. Since R has finite rank, τi has only finitely many eigenvalues. Therefore

ci can be chosen such that ci is not an eigenvalue of τi and fi(ci) ≡ 0 mod q. Then

fi(ci) = det(ci − τi|W ) = qγiδi for some nonzero γi ∈ N and some integer δi that q

does not divide.

Since ci−τi ∈ R, the associated linear transformation is just a diagonal matrix.

It is easy to see that the classical adjoint of this linear transformation must also be

a diagonal matrix. It follows that there is some ρ ∈ R such that ρ(ci − τi) = qγiδi.

Thus qγiδiR ⊆ R(ci − τi). Note that q divides fi(ci) = det(ci − τ |W ) but q does not

divide δiki. Recall that if δiei = δiσ(−τi) ∈ R(ci − τi), then det(ci − τi|W ) = fi(ci)

divides δiki. Therefore δiσi(ci − τi) = δiσi(−τi) 6∈ R(ci − τi).

Set Li = R(ci − τi), and switch back to pi in place of q. Define M = R +∑
i<ω p

−γi
i Li ⊆ QR. Let ϕ ∈ EndZ(M). Since R+ is finitely generated and M/R is

torsion, there is some m ∈ N such that mϕ(R) ⊆ R. In particular, mϕ(1) ∈ R. Let

σ = mϕ− (mϕ(1))· ∈ EndZ(R). Note that σ(1) = 0.

Assume that 0 6= σ. Then σ ∈ Σ and σ = σi for some i < ω. Thus

δiσi(ci − τi) 6∈ Li. Note that σi induces an endomorphism of M/R. It follows that

σi(p
−γi
i Li) ⊆ p−γii Li + R. Hence δiσi(Li) ⊆ δiLi + pγii δiR ⊆ Li + Li = Li. This

contradicts δiσi(ci− τi) 6∈ Li. Thus σi = 0 and so ϕ = ϕ(1)· ∈ EndZ(M). Recall that

ϕ(1) ∈M . By Lemma 7.1, ϕ(1) ∈ R. �



CHAPTER EIGHT

Integer Matrix Rings are Zassenhaus Rings

This chapter shows that the ring Matn×n(Z) of n × n integer matrices, where

n ≥ 2, is a Zassenhaus ring.

Definition 8.1. [23, Example 2.3.3] For a prime number p, let Z(p∞) = Z[1/p]/Z be

the divisible p-group.

Definition 8.2. [2, Chapter 3] A finite rank torsion free group G is completely decom-

posable if and only if G = ⊕ni=1Ai where n ∈ N and each Ai is rank 1.

Definition 8.3. [2, Chapter 3] A finite rank torsion free group G is Butler group if and

only if G is a pure subgroup of some completely decomposable group.

Definition 8.4. [11, Section 7] Let p be a prime number. The p-adic topology for a

group A is the topology generated by defining the collection of neighborhoods of zero

as {pkA : k ∈ N}.

Proposition 8.5. Let R = Matn×n(Z) be the ring of n × n integer matrices where

n ≥ 2. For 1 ≤ i ≤ n, let pi be distinct prime numbers. There is an R-module M

such that M/R ≈ ⊕n+1
i=1 Z(p∞i ) and M is a Zassenhaus module for R. Moreover, M is

a torsion free finite rank Butler group.

Proof: Let F = {Ji : 1 ≤ i ≤ n+1} be the Zassenhaus family from Proposition

3.2. Define M =
∑n+1

i=1 JiZ[1/pi]. By construction, M is a sum of finitely many rank

1 subgroups so that M is a Butler group. To see that M/R ≈ ⊕n+1
i=1 Z(p∞i ), note that

M = ⊕n+1
i=1 JiZ[1/pi]. Define σ : M/R → ⊕n+1

i=1 Z(p∞i ) as follows. If α + R ∈ M/R

then α =
∑n+1

i=1 Jiai for some ai ∈ Z[1/pi]. Set σ(α + R) =
∑n+1

i=1 (ai + Z). If

α + R, β + R ∈ M/R are equal where β =
∑n+1

i=1 Jibi, then ai − bi ∈ Z. In this case,

σ(β + R) = σ(α + R). Thus σ is well defined. If α ∈ kerσ, then the ai are each in
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Z. It follows that σ is monic; it is clearly epic. So σ is an isomorphism showing that

M/R ≈ ⊕n+1
i=1 Z(p∞i ).

Let a + R ∈ M/R and pni a ∈ R for some i and some nonzero n ∈ N. Then

a = r/pni for some r ∈ R. In this case, the entries of the matrix a are in Z[1/pi]. Since

the denominators of these entries must each be divisible by a power of pi, a must be

an element of JiZ[1/pi]. Thus tpi(M/R) = (JiZ[1/pi] +R)/R.

Let ϕ ∈ End(M). Note that R+ is finitely generated and M/R is torsion.

Then there is some m ∈ N such that ψ = mϕ ∈ End(M) with ψ(R) ⊆ R. Let

x ∈ Ji for some 1 ≤ i ≤ n + 1. Then pni ψ(p−ni x) ∈ R. Since x may have summands

divisible by pni , ψ(p−ni x) ∈ p−ni R+R. Since ψ is an endomorphism on M , ψ(p−ni x) ∈

M ∩ (p−ni R + R) = p−ni Ji + R. Therefore ψ(x) ∈ Ji + pni R for all n ∈ N. Then

ψ(Ji) ⊆ ∩k∈N(Ji + pni R) for all 1 ≤ i ≤ n + 1. To show that ψ(Ji) ⊆ Ji for all

1 ≤ i ≤ n+ 1 some elementary topology is applied.

Suppose that the matrix a ∈ ∩k∈Np
k
iR. Then each of the entries of a has

pi-height ∞. But the entries of a are integers and so must have finite pi height.

Thus {0} = ∩k∈Np
k
iR. Therefore a convergent sequence in the pi-adic topology of R

converges to a unique limit.

Let a ∈ R be a limit point of Ji. Then there is a sequence (ak)k∈N converging

to a such that each ai ∈ Ji . For each k ∈ N, a−ak ∈ pkiR. Let C be the complement

of Ji in R. Then a = b + c for some b ∈ Ji and some c ∈ C. Fix 0 < k ∈ N for the

moment. Then b + c = ak + pki r for some r ∈ R. Then c = ak − b + pki . There are

b′ ∈ Ji and c′ ∈ C so that r = b′ + c′. Hence c = ak − b + pki (b
′ + c′). Since c ∈ C,

c = pki c
′. Thus c has infinite pi height. Then c = 0 and a = b. This shows that a ∈ Ji.

Therefore Ji is closed in the pi-adic topology.

Suppose that a ∈ ∩k∈N(Ji + pkiR). Note that Ji is not disjoint from pkiR for

each k ∈ N. Then a is a limit point of Ji. Since Ji is closed, a ∈ Ji. Thus Ji =

∩k∈N(Ji + pkiR) for all 1 ≤ i ≤ n+ 1. Finally ψ(Ji) ⊆ Ji for all 1 ≤ i ≤ n+ 1.
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Since F is a Zassenhaus family, ψ = r· for some r ∈ R. Thus ϕ =
r

m
· ∈

End(M). Without loss, assume that
r

m
is reduced. That is, r /∈ pR for any prime p

dividing m.

To ultimately derive a contradiction, assume thatm = pj for some 1 ≤ j ≤ n+1.

From the definition of M , r ∈ Jj. If 1 ≤ j ≤ n, pick 1 ≤ j 6= k ≤ n. Label the entries

of r as r = (rij)i disregarding the ri` where ` 6= j since these entries are zero. Then

rεjk =
∑n

α=1 rαjεαk ∈ Jk. There is some β such that rβj /∈ pjR as otherwise
r

m
would

not be reduced. It follows that ϕ(εjk) =
rεjk
pj

/∈M . Note that the numerator is in Jk

but the denominator is different from pk. Thus ϕ(εjk) /∈M which is a contradiction.

If j = n + 1 then r =
∑n

α=1 rα(
∑n

β=1 εαβ) where rα ∈ R. Since
r

m
is reduced

there is some 1 ≤ i ≤ n such that ri ∈ R − pn+1R. Then rεik ∈ Jk and rεik =∑n
α=1 rαεαk ∈ Jk − pn+1R. Similar to the previous case, ϕ(εik) =

rεik
pn+1

/∈ M , a

contradiction.

Having exhausted the cases for which m = pj for some 1 ≤ j ≤ n+ 1, it follows

that m = 1 and ϕ is multiplication on the left by r ∈ R. Therefore M provide the

module necessary to declare R a Zassenhaus ring. �



CHAPTER NINE

Some PIDs are not Zassenhaus Rings

For the next theorem, a slight variation of [5, Corollary 10.18] is needed.

Lemma 9.1. If R is a Noetherian integral domain and {bnR : n ∈ N} is an infinite

strictly descending chain of principal ideals of R, then ∩nbnR = {0}.

Proof: If bn = 0 for all n then there is nothing to show. Suppose that the bn are

nonzero. Since bn+1R ⊆ bnR, it follows that bn+1 = bnsn. Let 0 6= x ∈ ∩kbkR. Since

0 6= x ∈ bnR, there is a 0 6= yn ∈ R such that x = bnyn. Then bnyn = bn+1yn+1 =

bnsnyn+1. Since the chain is strictly descending, 0 6= bn. Then bn(yn − snyn+1) = 0

implies that yn = snyn+1. It follows that yn ∈ yn+1R and so ynR ⊆ yn+1R. Since R

is Noetherian, there is a k such that ykR = yk+tR for all t ∈ N. Then yk = yk+1sn

and yk+1 = ykrk for some rk ∈ R. Hence yk(1 − skrk) = 0 and so sk, rk are units in

R. Since bk+1 = bksk and sk is a unit, then bkR = bk+1R contradicting the hypothesis

that {bnR : n ∈ N} is a strictly descending chain. Therefore, x = 0. �

Lemma 9.2. Suppose R is a PID such that R+ is torsion free, the set Π of prime ideals

of R is finite, and R has a nontrivial ring automorphism. The set P = {p prime :

pR 6= R} is finite but nonempty.

Proof: Identify each σ ∈ Aut(R) with its unique extension σ ∈ EndQ(QR).

Let p ∈ Z be a prime number such that pR 6= R. Then p is not a unit. Then the

ideal (p) generated by p is contained in some maximal ideal P . Maximal ideals are

prime so that P ∈ Π.

If q is a prime number distinct from p, then q 6∈ P . To see this, assume that

q ∈ P . Since q and p are prime numbers, they are relatively prime. So there are
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integers α and β such that 1 = αp + βq. Since P is a ring, 1 = αp + βq ∈ P . But

then P = R. Therefore, there is at most one prime number contained in each P ∈ Π.

It follows that there are only finitely many prime numbers p such that pR 6= R.

Define P = {p prime : pR 6= R}. By the preceding arguments, the cardinality

of P is less than or equal to the cardinality of Π. Therefore P is finite. Let P = {pi :

1 ≤ i ≤ `}.

Let p ∈ P. Then pR 6= R implies that pnR 6= pn−1R for n ∈ N. So {pnR : n ∈ N}

is a strictly descending sequence of principle ideals. From the preceding lemma,

∩npnR = 0.

Note that for every prime number q 6∈ P, the ideal qR = R. Then qnR = R by

a trivial inductive argument. If 0 6= r ∈ R, it has been shown that the p height of r

is at most finite for p ∈ P and the q height of r is infinite for prime numbers q 6∈ P.

Therefore, the type of an element r in R is (αp)p prime where αp ∈ N for the finite

number of primes p ∈ P and αp =∞ for p 6∈ P. Therefore R+ is homogenous of type

τP where

τP(p) =


0 if p ∈ P

∞ otherwise

If P = ∅ then pR = R for all primes p. Thus R+ is divisible and R+ = ⊕κQ,

a vector space over Q. Then QR = R. In this case, End(R) is the ring of linear

transformations of a vector space over Q. Hence if the rank of R is κ, End(R) is the

ring of κ× κ matrices with entries in Q.

Suppose that R has a Zassenhaus module M . Since QR = R, then M = R.

Suppose further that R = End(M). Then R = End(R) is the ring of endomorphisms

of a Q vector space and thus not commutative for κ > 1. This shows that κ = 1

and R = Q. But Q has no nontrivial automorphisms which contradicts one of our

hypotheses about R. Therefore P 6= ∅. �
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Lemma 9.3. Suppose R is a PID such that R+ is torsion free, the set Π of prime ideals

of R is finite, and R has a nontrivial ring automorphism. If R has a Zassenhaus

module M then there is a family of submodules {Mp,n : p ∈ P, n ∈ N} such that

M =
∑
p∈P

⋃
n∈N

Mp,n

and for p ∈ P and n ∈ N, each submodule Mp,n has the following properties

(1) R ⊆Mp,n;

(2) Mp,n ⊆Mp,n+1;

(3) pnMp,n ⊆ R;

(4) pMp,n+1 ⊆Mn; and

(5) Mp,n+t ∩ p−nR ⊆Mp,n for all t ∈ N.

Proof: Define P = {p prime : pR 6= R}. By Lemma 9.2, P is finite but

nonempty. Let p ∈ P. Note that since R is a PID, R is a Dedekind domain. Since

pR 6= R, pR is a proper ideal of the Dedekind domain R and has a unique factorization

into powers of the prime ideals of R. For p ∈ P, it follows that the principle ideal

pR =
∏k

i=1 P
ap,i
i for some ap,i ∈ N.

To see that M/R is a P group, let m + R ∈ M/R. Then m = (a/b)r for some

a/b ∈ Q and for some r ∈ R. For any prime q 6∈ P, r is q divisible. Thus one can

assume that b is a product of powers of primes from P. Since P is finite, ζ =
∏

p∈P p

is an integer. Then ζ(a/b)r ∈ R so that ζ · (m+R) = R in M/R.

Define Mp,n as the submodule of M such that Mp,n/R = (M/R)[pn]. That is,

Mp,n is the set of all m ∈ M such that pnm ∈ R. Set Mp,0 = R. It follows that the

structure of M can be given in terms of the newly defined submodules:

M =
∑
p∈P

⋃
n∈N

Mp,n.
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As for the properties of each Mp,n:

(1) follows directly from the definition of Mp,n.

(2) Since pnMp,n ⊆ R, then pn+1Mp,n ⊆ R. By definition Mp,n ⊆Mp,n+1.

(3) follows directly from the definition of Mp,n.

(4) Note that pn+1Mp,n+1 = pn(pMp,n+1) ⊆ R. By definition pMp,n+1 ⊆Mp,n.

(5) Let t ∈ N and m ∈ Mp,n+t ∩ p−nR. Since m ∈ Mp,n+t, m ∈ M . Since

m ∈ p−nR, m + R ∈ (M/R)[pn]. Then m + R ∈ Mp,n/R. So m + R = m′ + R for

some m′ ∈Mp,n. Then m−m′ ∈ R ⊆Mp,n. Thus m ∈Mp,n. �

Lemma 9.4. Recalling the notation and hypotheses of Lemma 9.3: For p ∈ P define

Xp,n = pnMp,n. Then each Xp,n =
∏k

i=1 P
e
(i)
p,n

i for some prime ideals Pi of R and some

integer exponents e
(i)
p,n. Furthermore

(1′) pnR ⊆ Xp,n.

(2′) pXp,n ⊆ Xp,n+1.

(3′) Xp,n+1 ⊆ Xp,n.

(4′) Xp,n+t ∩ ptR ⊆ ptXp,n for t ∈ N.

(5′) ptXp,n ⊆ Xp,n+t for t, n ∈ N.

(6′) Xp,n+t ∩ ptR = ptXp,n for t, n ∈ N.

Proof: Set Xp,0 = R. From the definition of Mp,n, one can conclude that Xp,n is

an ideal of R. Since R is a Dedekind domain, each Xp,n has a unique factorization into

powers of the prime ideals of R. Let this factorization be given by Xp,n =
∏k

i=1 P
e
(i)
p,n

i .

Define e
(i)
p,0 = 0.

(1′) By (1), it follows that R ⊆Mp,n. Then pnR ⊆ pnMp,n+1 = Xp,n.

(2′) By (2), pXp,n = pn+1Mp,n ⊆ pn+1Mp,n+1 = Xp,n+1.
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(3′) Xp,n+1 = pn+1Mp,n+1 = pn(pMp,n+1) ⊆ pnMp,n = Xp,n by (4).

(4′) Xp,n+t ∩ ptR = pn+t(Mp,n+t ∩ p−nR) ⊆ pn+tMp,n ⊆ Xp,n by (5).

(5′) For t = 1, the statement is just (2′). Suppose the claim holds for a t ∈ N.

Then pt+1Xp,n = p(ptXp,n) ⊆ pXp,n+t by the induction hypothesis. By (2’), pXp,n+t ⊆

Xp,n+t+1.

(6′) If t, n ∈ N, then Xp,n+t ∩ ptR = ptXp,n. To see this, note that (4′) and the

last claim imply that Xp,n+t ∩ ptR ⊆ ptXp,n ⊆ Xp,n+t ∩ ptR for all t, n ∈ N. �

Lemma 9.5. Recall from Lemma 9.3: pR =
∏k

i=1 P
ap,i
i . For the exponents e

(i)
p,n defined

in Lemma 9.4 the following properties hold:

(i) e
(i)
p,n ≥ 0.

(ii) nap,i ≥ e
(i)
p,n.

(iii) e
(i)
p,n + ap,i ≥ e

(i)
p,n+1.

(iv) e
(i)
p,n+1 ≥ e

(i)
p,n.

(v) If p = pj then max{e(j)
p,n+t, tap,j} = e

(j)
p,n + tap,j for t ∈ N.

(vi) If p = pi then either e
(i)
p,n+t = e

(i)
p,n + tap,i or e

(i)
p,n = 0 for t ∈ N.

Proof: (i) follows directly from the definition.

(ii) Let Pi be the unique prime ideal of R that lies over p = pi. By (1′),

P
nap,i
i = (pR)n = pnR ⊆ Xp,n =

kp∏
j=1

P
ej,n
j . Then P

nap,i
i ⊆ P

e
(i)
p,n

i . So nap,i ≥ e
(i)
p,n.

(iii) By (2′),
kp∏
i=1

P
e
(i)
p,n+ap,i

i =
kp∏
i=1

P
ap,i
i P

e
(i)
p,n

i = pRXp,n ⊆ pXp,n ⊆ Xp,n+1 =

kp∏
i=1

P
e
(i)
p,n+1

i . Then P
e
(i)
p,n+ap,i

i ⊆ P
e
(i)
p,n+1

i . Hence e
(i)
p,n + ap,i ≥ e

(i)
p,n+1.

(iv) By (3′),
kp∏
i=1

P
e
(i)
p,n+1

i = Xp,n+1 ⊆ Xp,n =
kp∏
i=1

P
e
(i)
p,n

i . Then P
e
(i)
p,n+1

i ⊆ P
e
(i)
p,n

i .

Hence e
(i)
p,n+1 ≥ e

(i)
p,n.
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(v) Let t, n ∈ N. By (4′), Xp,n+t ∩ ptR ⊆ ptXp,n. Let bi = max{e(i)
p,n+t, tap,i}.

From the factorization into prime ideals ofXp,n+t and ptR, P bi
i ⊆ Xn+t∩ptR. From (4′)

and the factorization of ptXp,n, it follows that bi ≥ e
(i)
p,n + tap,i. By (iii), e

(i)
p,n + ap,i ≥

e
(i)
p,n+1. By a trivial inductive argument, e

(i)
p,n + tap,i ≥ e

(i)
p,n+t for t ∈ N. Clearly,

e
(i)
p,n + tap,i ≥ tap,i. Then e

(i)
p,n + tap,i ≥ bi. Therefore bi = e

(i)
p,n + tap,i.

(vi) Note that from (v) it follows that e
(i)
p,n + tap,i is either e

(i)
p,n+t or tap,i. If

tap,i = e
(i)
p,n + tap,i, then e

(i)
p,n = 0. �

Lemma 9.6. Suppose R is a PID such that R+ is torsion free, the set Π of prime ideals

of R is finite, and R has a nontrivial ring automorphism σ. If R is a Zassenhaus

ring, then there are distinct prime ideals P and Q of R such that σ(P ) = Q.

Proof: Recall definitions and notations from Lemmas 9.2, 9.3, 9.4, and 9.5.

Assume that id 6= σ ∈ Aut(R) such that σ(P ) = P for each P ∈ Π. Since σ is an

automorphism, σ(pR) = pσ(R) = pR.

From the above lemmas, if p ∈ P then the principle ideal pR =
∏k

i=1 P
ap,i
i for

some ap,i ∈ N. Also

M =
∑
p∈P

⋃
n∈N

Mp,n

and Xp,n = pnMp,n =
∏k

i=1 P
e
(i)
p,n

i for p ∈ P and n ∈ N.

Then σ(Xp,n) =
∏k

i=1 σ(Pi)
e
(i)
p,n =

∏k
i=1 P

e
(i)
p,n

i = Xp,n. Note that σ|R : R → R

has a unique extension to σ : QR → QR. So σ(Xp,n) = σ(pnMp,n) = pnσ(Mp,n) is

a well-defined statement. It follows that pnσ(Mp,n) = pnMp,n ⊆ R. By definition,

σ(Mp,n) ⊆Mp,n. Therefore

σ(M) =
∑
p∈P

⋃
n∈N

σ(Mp,n) ⊆
∑
p∈P

⋃
n∈N

Mp,n = M.

So σ : M → M and σ ∈ End(M). Suppose that there is an r ∈ R so that

σ(x) = r ·x for each x ∈ R. Then σ(1) = r. Since σ is a ring automorphism, σ(1) = 1.
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Therefore r = 1 and σ = idR. This contradicts the hypothesis that idR 6= σ. There-

fore σ cannot be multiplication by an element of R. Finally by our choice of M , R

cannot be a Zassenhaus ring. �

Theorem 9.7. Suppose R is a PID such that R+ is torsion free, the set Π of prime

ideals of R is finite, and R has a nontrivial ring automorphism. Then R is not a

Zassenhaus ring.

Proof: Assume to the contrary that R has a Zassenhaus module M . Recall

definitions and notations from Lemmas 9.2, 9.3, 9.4, and 9.5. By Lemma 9.6, for

every nonidentity automorphism of R there are indexes 1 ≤ i 6= e ≤ k such that

σ(Pi) = Pe.

Let p ∈ P. Define Op = {i : 1 ≤ i ≤ k, e
(i)
p,n = 0 for all n ∈ N} and Λp =

{1, 2, . . . , k} − Op. There are two cases, either Λp is empty or it is not.

Suppose that Λp is empty. In this case, for all n ∈ N, the ring R = Xp,n =

pnMp,n so that p−nR = Mp,n. Then σ(Mp,n) = σ(p−nR) = p−nσ(R) = p−nR = Mp,n.

Suppose that Λp is not empty. Let i ∈ Λp. There is a least ni such that

e
(i)
p,ni−1 = 0 and e

(i)
p,ni 6= 0. If i ∈ Λ and t ∈ N, then e

(i)
p,ni+t = e

(i)
p,ni + tap,i.

Let i, j ∈ Λp such that i ≤ j and n ∈ N. Then for some t, r ∈ N, n = ni + t =

nj + r. Note that r = ni − nj + t. If i = j then e
(i)
p,ni − e

(j)
p,nj = e

(i)
p,ni − e

(i)
p,ni = 0.

Otherwise

e(i)
p,n − e(j)

p,n = e
(i)
p,ni+t − e

(j)
p,nj+r

= e(i)
p,ni

+ tap,i − (e(j)
p,nj

+ rap,j)

= e(i)
p,ni
− e(j)

p,nj
+ tap,i − (ni − nj + t)ap,j

= e(i)
p,ni
− e(j)

p,nj
+ t(ap,i − ap,j) + (ni − nj)ap,j

Note that the expression e
(i)
p,ni − e

(j)
p,nj + (ni − nj)ap,j does not depend on n.
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For Pi ∈ Π, the image of Pi under σ is also a prime ideal. So σ induces a permu-

tation σ on the indices {1, . . . , k}. Then σ(pR) = pσ(R) = pR so that σ(
∏kp

i=1 P
ap,i
i ) =∏kp

i=1 P
ap,i
i . Since σ is a ring automorphism, σ(

∏kp
i=1 P

ap,i
i ) =

∏kp
i=1 σ(Pi)

ap,i =
∏kp

i=1 P
ap,i
σ(i) .

Unique factorization implies that P
ap,i
σ(i) = P

apσ(i)

σ(i) and ap,i = apσ(i).

If i, j ∈ Λp so that σ(i) = j then ap,i = ap,j. Thus e
(i)
p,n − e

(j)
p,n = e

(i)
p,ni −

e
(j)
p,nj + (ni − nj)ap,j which does not depend on n. For such pairs i, j define Di,j =

e
(i)
p,ni − e

(j)
p,nj + (ni − nj)ap,j. There are a finite number of integers Di,j so one can pick

a natural number D greater than all of them.

If σ(i) = i then P
D+e

(i)
p,n

σ(i) = P
D+e

(i)
p,n

i ⊆ P
e
(i)
p,n

i . If σ(i) = j then P
D+e

(i)
p,n

σ(i) = P
D+e

(i)
p,n

j .

From D > Di,j = e
(i)
p,n − e(j)

p,n it follows that

e(i)
p,n −Di,j = e(j)

p,n

e(i)
p,n +D > e(j)

p,n

Therefore P
D+e

(i)
p,n

j ⊆ P
e
(j)
p,n

j .

Since R is a PID, there is an s ∈ R such that sR =
∏kp

i=1 P
D
i . Then

sσ(Xp,n) =

kp∏
i=1

PD
i

kp∏
i=1

P
e
(i)
p,n

σ(i)

=

kp∏
i=1

P
D+e

(i)
p,n

σ(i)

⊆
kp∏
i=1

P
e
(i)
p,n

i = Xp,n

Thus sσ(Xp,n) ⊆ Xp,n. Now sσ(Mp,n) = sσ(p−nXp,n) = p−nsσ(Xp,n) ⊆ p−nXp,n =

Mp,n. Therefore sσ(Mp,n) ⊆ Mp,n. Since idR 6= σ, the map sσ is not multiplication

by an element of R. It follows that R cannot be Zassenhaus ring. �



CHAPTER TEN

Conclusion: A Ring with a Zassenhaus Family that is not a Zassenhaus Ring

The following example is a natural adaptation of the example from [20, page

987] to our Zassenhaus family and Zassenhaus ring terminology.

Denote by R = Z13[i] the ring of polynomials in i =
√
−1 with coefficients

from the ring integers localized at the prime ideal 13Z. The prime ideals of Z13[i]

are (2 + 3i)R and (2 − 3i)R. The mapping σ(a + bi) = a − bi is a nontrivial ring

automorphism for R. By Theorem 9.7, R is not a Zassenhaus ring.

It is easy to show that EndZ(R) ⊆ Q[Aut(R)]. Aut(R) = {idR, σ} where σ is

the map above. Since σ maps (a+ ib)R to (a− ib)R, Kπ = {idR}. By Theorem 5.2,

there is a Zassenhaus family for R. Therefore Z13[i] has a Zassenhaus family but is

not a Zassenhaus ring.

Zassenhaus families are used directly to construct modules sufficient for showing

that several disparate classes of finite rank rings are Zassenhaus rings. The Zassenhaus

families of Z[x], SΛ, rings of algebraic integers of finite degree Galois extentions of Q,

and Matn×n(Z) provide modules which show that these rings are Zassenhaus rings.

This is evidence for making the case that any finite rank ring with a Zassenhaus

family is, in fact, a Zassenhaus ring. But it has been shown that such a definitive

converse for our first theorem is not possible.

53
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