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For the third order ordinary differential equation, y′′′ = f(x, y, y′, y′′), it is assumed

that, for some m ≥ 4, solutions of nonlocal boundary value problems satisfying

y(x1) = y1, y(x2) = y2,

y(xm)−
m−1∑
i=3

y(xi) = y3,

a < x1 < x2 < · · · < xm < b, and y1, y2, y3 ∈ R, are unique when they exist. It

is proved that, for all 3 ≤ k ≤ m, solutions of nonlocal boundary value problems

satisfying

y(x1) = y1, y(x2) = y2,

y(xk)−
k−1∑
i=3

y(xi) = y3,

a < x1 < x2 < · · · < xk < b, and y1, y2, y3 ∈ R, are unique when they exist. It is then

shown that solutions do indeed exist.
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CHAPTER ONE

Introduction

In this dissertation, we will be concerned with solutions of nonlocal boundary

value problems for the third order ordinary differential equation,

y′′′ = f(x, y, y′, y′′). (1.1)

In particular, we will discuss the uniqueness of solutions of certain boundary value

problems for (1.1) implying the uniqueness of solutions of other boundary value prob-

lems, and we will see that certain conditions for the uniqueness of solutions to bound-

ary value problems for (1.1) imply that solutions exist. More precisely, we will study

questions concerning solutions of (1.1) satisfying

y(x1) = y1, y(x2) = y2, (1.2)

y(xm)−
m−1∑
i=3

y(xi) = y3, (1.3)

where m ≥ 4 is a positive integer, a < x1 < x2 < · · · < xm < b, and y1, y2, y3 ∈ R,

relative to solutions of (1.1) satisfying boundary conditions (1.2) and

y(xk)−
k−1∑
i=3

y(xi) = y3, (1.4)

where 3 ≤ k ≤ m, and the boundary condition in (1.4) is interpreted as y(x3) = y3

in the case k = 3.

Boundary value problems for third order ordinary differential equations have

been studied both for their use in applications and for purely theoretical interest. Such

equations can arise in models for boundary layer theory in fluid mechanics [1, 23, 47,

48, 49, 50], for problems involving convection in a porous medium or a flow adjacent

to a standing wall [6], and in models attempting to explain large-scale [9] or one-

layer [14] ocean circulation. Theoretical papers for third order problems have dealt
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with upper and lower solutions [8, 36], multiple solutions and eigenvalue problems

[2], periodic solutions [44], monotone boundary conditions [7], limit point/limit circle

criteria [4], and so on.

Nonlocal boundary value problems have also received a share of attention in

both applied and theoretical settings. For a few examples, see papers by Bai and

Fang [3], Feng and Webb [16, 17], Guo, Shan, and Ge [19], Gupta, Ntouyas, and

Tsamatos [20], Ma [41, 42, 43], Thompson and Tisdell [46], and Zhang and Wang

[51].

The third order, nonlocal boundary value problems in this dissertation are sim-

ilar in form to a recent paper by Clark and Henderson [10], and expound upon the

ideas in a paper by Jackson and Schrader [33]. For other discussions of third order,

nonlocal boundary value problems for ordinary differential equations, please see pa-

pers by Liu, Zhong, and Jiang [40], Benbouziane, Boucherif, and Bouguima [5], and

Du, Lin, and Ge [13].



CHAPTER TWO

Uniqueness Implies Uniqueness

2.1 Brief Overview

For the third order ordinary differential equation,

y′′′ = f(x, y, y′, y′′),

it is assumed that, for some m ≥ 4, solutions of nonlocal boundary value problems

satisfying

y(x1) = y1, y(x2) = y2,

y(xm)−
m−1∑
i=3

y(xi) = y3,

a < x1 < x2 < · · · < xm < b, and y1, y2, y3 ∈ R, are unique when they exist. It

is proved that, for all 3 ≤ k ≤ m, solutions of nonlocal boundary value problems

satisfying

y(x1) = y1, y(x2) = y2,

y(xk)−
k−1∑
i=3

y(xi) = y3,

a < x1 < x2 < · · · < xk < b, and y1, y2, y3 ∈ R, are unique when they exist.

This “uniqueness implies uniqueness” result plays an important roll in demon-

strating the existence of the solutions in question. For other examples of work on

the topic, please see papers by DeBortoli, Henderson, and Pruet [12], Henderson and

Jackson [27], Lasota and Opial [39], and Lasota and Luczyński [37, 38].

2.2 Preliminary Result

We will begin by proving a theorem concerning the uniqueness of solutions for

similar boundary value problems.

3
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Theorem 2.1 (Uniqueness Implies Uniqueness). Suppose that the differential equation

y′′′ = f(x, y, y′, y′′), (2.1)

satisfies the following three conditions:

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (2.1) are unique and exist on all of

(a, b); and,

(C) Solutions of the boundary value problem for (2.1) with boundary conditions

y(x1) = y1, y(x2) = y2, y(x5)− y(x4)− y(x3) = y3, (2.2)

for any a < x1 < x2 < x3 < x4 < x5 < b and any y1, y2, y3 ∈ R, are unique

when they exist.

Then solutions of the boundary value problem for (2.1) with boundary conditions

y(x1) = y1, y(x2) = y2, y(x4)− y(x3) = y3, (2.3)

for any a < x1 < x2 < x3 < x4 < b and any y1, y2, y3 ∈ R, are unique when they

exist.

Proof: The proof is by contradiction. In particular, suppose (A), (B), and (C)

hold, and that u(x) and v(x) are distinct solutions of the boundary value problem

(2.1), (2.3), for some points a < x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R. Let

w(x) = u(x)− v(x). Since u(x) and v(x) satisfy the boundary conditions in (2.3), we

have

u(x1) = v(x1),

u(x2) = v(x2),

u(x4)− u(x3) = v(x4)− v(x3),
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or w(x1) = w(x2) = w(x4) − w(x3) = 0. Under Condition (B), either w′(x2) 6= 0 or

w′′(x2) 6= 0.

Case 1: w′(x2) 6= 0. Assume, without loss of generality, that w′(x2) > 0.

Then there exists an α > 0 such that x2 +α < x3 and w(x) is strictly increasing (and

therefore positive since w(x2) = 0) on (x2, x2 +α]. Now since w(x2 +α) ≥ w(x) for all

x ∈ [x2, x2+α], there exists x2 < t1 < t2 < t3 ≤ x2+α such that w(t1)+w(t2) = w(t3),

so that we have

w(x1) = w(x2) = 0,

w(t3)− w(t2)− w(t1) = 0.

That is, we have

u(x1) = v(x1),

u(x2) = v(x2),

u(t3)− u(t2)− u(t1) = v(t3)− v(t2)− v(t1).

Then u(x) ≡ v(x) on (a, b) by Condition (C), which contradicts our assumption that

u(x) and v(x) are distinct.

Case 2: w′(x2) = 0, w′′(x2) 6= 0. We may assume, without loss of generality,

that w′′(x2) > 0. Then there exists a β > 0 such that x2 + β < x3 and w′′(x) > 0 on

(x2, x2+β]. Hence w′(x) is strictly increasing (and therefore positive since w′(x2) = 0)

on (x2, x2+β]. Since w(x2) = 0, we have w(x) is positive and increasing on (x2, x2+β],

and we may repeat the argument from Case 1. The proof is complete.

2.3 General Case

The previous uniqueness implies uniqueness result may be generalized as follows.

Theorem 2.2 (Uniqueness Implies Uniqueness). For the differential equation

y′′′ = f(x, y, y′, y′′), (2.4)
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assume that the following conditions hold:

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (2.4) are unique and exist on all of

(a, b); and,

(C) For some integer m ≥ 4, solutions of the boundary value problem for (2.4)

with boundary conditions

y(x1) = y1, y(x2) = y2, (2.5)

y(xm)−
m−1∑
i=3

y(xi) = y3, (2.6)

a < x1 < x2 < · · · < xm < b and y1, y2, y3 ∈ R, are unique, when they exist.

Then solutions of the differential equation (2.4) with boundary conditions (2.5)

and

y(xk)−
k−1∑
i=3

y(xi) = y3, (2.7)

for all positive integers k with 3 ≤ k ≤ m (where the boundary condition in (2.7) is

interpreted as y(x3) = y3 in the case k = 3), for any a < x1 < x2 < · · · < xk < b and

any y1, y2, y3 ∈ R, are unique when they exist.

Proof: The proof is by induction. We will begin by showing the theorem is

true for the case m = 4, k = 3. We are assuming Conditions (A) and (B) hold, and

that solutions for the differential equation (2.4) with boundary conditions (2.5) and

y(x4)−y(x3) = y3, for a < x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R, are unique when

they exist.

Now, suppose that u(x) and v(x) are distinct solutions of (2.4) with boundary

conditions (2.5) and y(x3) = y3, for a < x1 < x2 < x3 < b and y1, y2, y3 ∈ R. Let
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w(x) = u(x)− v(x). We have

u(x1) = v(x1),

u(x2) = v(x2),

u(x3) = v(x3),

so that

w(x1) = w(x2) = w(x3) = 0.

We have by Condition (B) that either w′(x2) 6= 0 or w′′(x2) 6= 0. Let us examine each

case.

Case 1: w′(x2) 6= 0. We may assume, without loss of generality, that w′(x2) > 0.

Therefore, since w(x2) = 0, w(x3) = 0, and w(x) = u(x) − v(x) is continuous, w(x)

has a local maximum on (x2, x3), say at x = β. Then we must have α ∈ (x2, β) and

γ ∈ (β, x3) such that

w(α) = w(γ),

u(α)− v(α) = u(γ)− v(γ),

u(α)− u(γ) = v(α)− v(γ).

We have that u(x) and v(x) satisfy

u(x1) = v(x1),

u(x2) = v(x2),

u(α)− u(γ) = v(α)− v(γ).

Therefore, u(x) ≡ v(x) on (a, b), by Condition (C). This contradicts our assumption

that u(x) and v(x) are distinct.

Case 2: w′(x2) = 0 but w′′(x2) 6= 0. Assume, without loss of generality, that

w′′(x2) > 0. Then there exists a δ > 0 such that x2 < x2 + δ < x3 and w′′(x) > 0 on

[x2, x2 + δ]. Thus w′(x) is strictly increasing on [x2, x2 + δ]. Since w′(x2) = 0, it is the
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case that w′(x) is positive on (x2, x2 + δ]; and so w(x) is increasing on [x2, x2 + δ],

and therefore positive on (x2, x2 + δ], since w(x2) = 0. We see that w(x) must in fact

be positive on all of (x2, x3) by Condition (A) and the fact that the next zero of w(x)

occurs at x3, so we may now repeat the argument of Case 1.

In both cases we reach a contradiction to our assumption that u(x) and v(x)

are distinct solutions of the selected boundary value problem. We conclude that the

theorem holds for m = 4 and k = 3. To complete the proof, we now show that the

theorem holds for an arbitrary positive integer m > 4 and the case k = m− 1.

Assume Conditions (A), (B), and (C) hold for a positive integer m > 4. Let

u(x) and v(x) be distinct solutions of the differential equation (2.4) with boundary

conditions (2.5) and

y(xk)−
k−1∑
i=3

y(xi) = y3, (2.8)

for k = m − 1, any a < x1 < x2 < · · · < xk < b, and any y1, y2, y3 ∈ R. Let

w(x) = u(x)− v(x). We have

w(x1) = w(x2) = 0,

w(xk)−
k−1∑
i=3

w(xi) = 0.

By Condition (B), we know either w′(x2) 6= 0 or w′′(x2) 6= 0. We will examine each

case.

Case 1: w′(x2) 6= 0. Assume, without loss of generality, that w′(x2) > 0. Then

there exists α > 0 such that x2 < x2 + α < x3 and w(x) is strictly increasing on

(x2, x2 + α). Observe that w(x) is also positive on (x2, x2 + α) since w(x2) = 0.

Therefore we may choose x2 < t1 < t2 < · · · < tk−1 ≤ x2 + α such that

w(tk−1)−
k−2∑
i=1

w(ti) = 0.
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That is, we have

u(x1) = v(x1),

u(x2) = v(x2),

u(tk−1)−
k−2∑
i=1

u(ti) = v(tk−1)−
k−2∑
i=1

v(ti).

Therefore, u(x) ≡ v(x) on (a, b), by Condition (C). This contradicts our assumption

that u(x) and v(x) are distinct.

Case 2: w′(x2) = 0 but w′′(x2) 6= 0. Assume, without loss of generality, that

w′′(x2) is positive. Then there exists a δ > 0 such that x2 < x2 + δ < x3 and w′(x) is

strictly increasing on [x2, x2 +δ]. Since w′(x2) = 0, it is the case that w′(x) is positive

on (x2, x2 + δ], and so w(x) is increasing on [x2, x2 + δ], hence positive on [x2, x2 + δ]

since w(x2) = 0. We may now choose the appropriate values of ti, i = 1, 2, . . . , k− 1,

from (x2, x2 + δ] to repeat the argument of Case 1.

We conclude that the result holds for the case k = m − 1. This completes the

proof of the theorem.



CHAPTER THREE

Uniqueness Implies Existence

3.1 Brief Overview

For the third order ordinary differential equation,

y′′′ = f(x, y, y′, y′′),

it is assumed that, for some m ≥ 4, solutions of nonlocal boundary value problems

satisfying

y(x1) = y1, y(x2) = y2,

y(xm)−
m−1∑
i=3

y(xi) = y3,

for any a < x1 < x2 < · · · < xm < b and y1, y2, y3 ∈ R, are unique when they exist.

It is proved that, for all 3 ≤ k ≤ m, solutions of nonlocal boundary value problems

satisfying

y(x1) = y1, y(x2) = y2,

y(xk)−
k−1∑
i=3

y(xi) = y3,

for any a < x1 < x2 < · · · < xk < b and y1, y2, y3 ∈ R, do in fact exist.

3.1.1 History

The existence of solutions to differential equations has long been a topic of

interest for applied mathematicians. In particular, many papers have been written

that demonstrate the existence of solutions when one of the underlying assumptions

is that, if there is a solution, it must be unique. For a few examples, please see

papers by Davis and Henderson [11], Henderson [25, 26], Henderson and McGwier

[29], Jackson [32], Klaasen [34, 35], and Lasota and Opial [39].

10
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In this dissertation, the “shooting method” of obtaining solutions is used. That

is, a fixed set of data is introduced, along with a family of solutions that all satisfy the

set at some points. One then proceeds to show that at least one of the solutions hits a

specified target point, whereby one accomplishes proving that all desirable points get

hit by some solution. For examples of other work that employs the shooting method,

the reader is invited to see papers by Jackson and Schrader [33] and Henderson,

Karna, and Tisdell [28].

3.1.2 Prerequisite Results

In this section, we state a number of results that are fundamental to our unique-

ness implies existence theorems. In particular, we include the statement of a continu-

ous dependence of solutions upon initial conditions result, a crucial pre-compactness

condition, a uniqueness implies existence theorem for conjugate boundary value prob-

lems, and a theorem on invariance of domain. Since each of these is in the existing

literature, we state them here without proof.

Theorem 3.1 (Continuous Dependence of Solutions Upon Initial Conditions). Let

g(t, x) be continuous on an open set D ⊆ R × Rn, and assume that initial value

problems for x′ = g(t, x) on D have unique solutions. Given any (t0, x0) ∈ D, let

x(t; t0, x0) denote the solution of

x′ = g(t, x)

x(t0) = x0

with maximal interval (α(t0, x0), ω(t0, x0)). Then for every ε > 0 and every compact

[a, b] ⊆ (α(t0, x0), ω(t0, x0)), there exists a δ > 0 such that (t1, x1) ∈ D, |t0 − t1| < δ,

and ‖x1 − x0‖ < δ imply that [a, b] ⊆ (α(t1, x1), ω(t1, x1)), the maximal interval of

existence of the solution x(t; t1, x1) of

x′ = g(t, x)
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x(t1) = x1,

and ‖x(t; t1, x1)− x(t; t0, x0)‖ < ε on [a, b].

The norm in the Theorem is the usual Euclidean norm on Rn.

The next two theorems are due to Jackson and Schrader [33].

Theorem 3.2. Assume the differential equation

y′′′ = f(x, y, y′, y′′) (3.1)

satisfies the following three conditions:

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (3.1) are unique and exist on all of

(a, b); and,

(C) Solutions of the boundary value problem for (3.1) with boundary conditions

y(x1) = y1, y(x2) = y2, y(x3) = y3, (3.2)

for any a < x1 < x2 < x3 < b and any y1, y2, y3 ∈ R, are unique when they

exist.

Let [c, d] be a closed subinterval of (a, b) and let {yn(x)} be a sequence of solutions

of (3.1) such that |yn(x)| ≤ M on [c, d] for some M > 0 and all n ≥ 1. Then

{yn(x)} contains a subsequence {ynj
(x)} such that {y(i)

nj (x)} converges uniformly on

each compact subinterval of (a, b) for i = 0, 1, 2.

Theorem 3.3 (Uniqueness Implies Existence). Assume that (3.1) satisfies (A), (B),

and (C) from the previous theorem. Then, given any a < x1 < x2 < x3 < b and any

y1, y2, y3 ∈ R, the boundary value problem (3.1), (3.2) has a solution.

The last theorem in this section is due to L. E. J. Brouwer [30, 45].
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Theorem 3.4 (Brouwer Invariance of Domain Theorem). If φ : G ⊆ Rn → Rn is

continuous and one-to-one, and if G is an open set, then φ(G) is an open set and φ

is a homeomorphism.

3.2 Preliminary Result

Our first uniqueness implies existence result deals with the boundary value

problem

y′′′ = f(x, y, y′, y′′), (3.3)

y(x1) = y1, y(x2) = y2, (3.4)

y(x4)− y(x3) = y3. (3.5)

We will assume the following conditions throughout this section:

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (3.3) are unique and exist on all of

(a, b); and,

(C) For any a < x1 < x2 < x3 < x4 < b and any y1, y2, y3 ∈ R, solutions of the

boundary value problem (3.3)–(3.5) are unique when they exist.

We begin by proving a continuous dependence theorem that will be needed in

the proof of our uniqueness implies existence theorem.

Theorem 3.5 (Continuous Dependence). Assume Conditions (A), (B), and (C) are

satisfied. Let z(x) be an arbitrary but fixed solution of (3.3). Then given any a <

x1 < x2 < x3 < x4 < b, any c and d with a < c < x1 and x4 < d < b, and any ε > 0,

there exists a δ > 0 such that |xi−ti| < δ, i = 1, 2, 3, 4, and max{|z(x1)−y1|, |z(x2)−

y2|, |z(x4)− z(x3)− y3|} < δ imply that (3.3) has a solution y(x) satisfying

y(t1) = y1, y(t2) = y2, y(t4)− y(t3) = y3,

and
∣∣z(i)(x)− y(i)(x)

∣∣ < ε on [c, d], for i = 0, 1, 2.
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Proof: We will make use of the Brouwer Invariance of Domain Theorem in our

proof. Let us define our open set G and our function φ.

Fix t0 ∈ (a, b). Define G ⊆ R7 by

G = {(t1, t2, t3, t4, c1, c2, c3) : a < t1 < t2 < t3 < t4 < b; c1, c2, c3 ∈ R}.

G is open in R7. Now define φ : G ⊆ R7 → R7 by

φ
(
(t1, t2, t3, t4, c1, c2, c3)

)
=
(
t1, t2, t3, t4, u(t1), u(t2), u(t4)− u(t3)

)
where u(x) is a solution of (3.3) satisfying

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3.

The function φ is continuous since solutions of (3.3) depend continuously upon initial

conditions, by Theorem 3.1.

We claim φ is one-to-one. To see this, suppose

φ
(
(s1, s2, s3, s4, h1, h2, h3)

)
= φ

(
(t1, t2, t3, t4, c1, c2, c3)

)
.

Clearly si = ti, i = 1, 2, 3, 4. We have

w(t0) = h1, w′(t0) = h2, w′′(t0) = h3,

and

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3,

for solutions w(x) and u(x) of (3.3). Then

u(t1) = w(s1) = w(t1), u(t2) = w(s2) = w(t2),

and

u(t4)− u(t3) = w(s4)− w(s3) = w(t4)− w(t3).

Then by condition (C) we have w ≡ u on (a, b), which implies that hi = ci, i = 1, 2, 3,

and φ is one-to-one. By the Brouwer Invariance of Domain Theorem, φ(G) is open

and φ−1 is continuous on φ(G).
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We will use the continuity of φ−1 to establish the result of our theorem. Let

z(x) be a solution of (3.3). Choose a < x1 < x2 < x3 < x4 < b, as well as c

and d such that a < c < x1, x4 < d < b, and choose ε > 0. By continuity

with respect to initial conditions, there exists η > 0 such that, for our fixed solu-

tion z(x),
∣∣z(i−1)(t0) − ci

∣∣ < η, for i = 1, 2, 3, implies
∣∣u(i−1)(x) − z(i−1)(x)

∣∣ < ε

on [c, d], i = 1, 2, 3, where u(x) is the solution of (3.3) with u(i−1)(t0) = ci, i =

1, 2, 3. Now
(
x1, x2, x3, x4, z(x1), z(x2), z(x4) − z(x3)

)
∈ φ(G), φ(G) is open, and

φ−1 : φ(G) → G is continuous. Hence, there exists δ > 0 such that |xi − ti| < δ, for

i = 1, 2, 3, 4, and max{|z(x1)− y1|, |z(x2)− y2|, |z(x4)− z(x3)− y3|} < δ imply that

(t1, t2, t3, t4, y1, y2, y3) ∈ φ(G) and φ−1
(
(t1, t2, t3, t4, y1, y2, y3)

)
is in the open ball of

radius η centered at

φ−1
((

x1, x2, x3, x4, z(x1), z(x2), z(x4)− z(x3)
))

=
(
x1, x2, x3, x4, z(t0), z

′(t0), z
′′(t0)

)
.

Say that

φ−1
(
(t1, t2, t3, t4, y1, y2, y3)

)
= (t1, t2, t3, t4, d1, d2, d3).

If u(x) is the solution of (3.3) satisfying

u(t0) = d1, u′(t0) = d2, u′′(t0) = d3,

then
∣∣u(i−1)(x)− z(i−1)(x)

∣∣ < ε on [c, d], i = 1, 2, 3. Moreover,

(t1, t2, t3, t4, y1, y2, y3) = φ
(
(t1, t2, t3, t4, d1, d2, d3)

)
= φ

((
t1, t2, t3, t4, u(t0), u

′(t0), u
′′(t0)

))
=

(
t1, t2, t3, t4, u(t1), u(t2), u(t4)− u(t3)

)
,

so that

u(t1) = y1, u(t2) = y2, u(t4)− u(t3) = y3.

The proof of Theorem 3.5 is complete.

We now have the necessary machinery to prove a uniqueness implies existence

theorem for the boundary value problem (3.3)–(3.5).
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Theorem 3.6 (Uniqueness Implies Existence). Assume Conditions (A), (B), and (C)

hold. Then for any a < x1 < x2 < x3 < x4 < b and any y1, y2, y3 ∈ R, the boundary

value problem (3.3)–(3.5) has a solution.

Proof: Assume that (3.3) satisfies Conditions (A), (B), and (C). Choose a <

x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R. Now, from Theorem 2.2, we also have the

following condition satisfied:

(D) For any a < x1 < x2 < x3 < b and any y1, y2, y3 ∈ R, solutions of the

boundary value problem

y′′′ = f(x, y, y′, y′′),

y(x1) = y1, y(x2) = y2, y(x3) = y3

are unique when they exist.

Therefore, Theorem 3.3 implies we have a unique solution, say z(x), to the three point

boundary value problem

y′′′ = f(x, y, y′, y′′),

y(x2) = y2, y(x3) = 0, y(x4) = y3.

Now, define the set S by

S =
{
u(x1) : u is a solution of (3.3) with u(x2) = y2, u(x4)− u(x3) = y3

}
.

Certainly z(x1) ∈ S, so S is nonempty. We will show that S is both open and closed,

and since R is connected, we will have shown that S = R. Therefore we will have

y(x1) = y1 ∈ S, and our proof will be complete.

S is open: Let p0 ∈ S. Then p0 = u(x1) for some solution u(x) of (3.3) with

u(x2) = y2 and u(x4)− u(x3) = y3. By Theorem 3.5, there exists a δ > 0 sufficiently
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small such that if |p− p0| < δ, then there is a solution up(x) of (3.3) with

up(x1) = p,

up(x2) = u(x2) = y2,

up(x4)− up(x3) = u(x4)− u(x3) = y3.

We have p ∈ S, whence (p0 − δ, p0 + δ) ⊆ S, so S is open.

S is closed: Assume S is not closed. Then there exists an r0 which is a limit

point of S, but r0 is not in S. Then there exists an infinite sequence of distinct points

{rt}∞t=1 ⊂ S such that rt → r0. Without loss of generality we may assume {rt}∞t=1

is strictly monotone, say strictly monotone increasing. Since {rt}∞t=1 ⊂ S, we have a

sequence of functions {yt(x)}∞t=1 such that each yt(x) is a solution of (3.3) satisfying

yt(x1) = rt,

yt(x2) = z(x2) = y2,

yt(x4)− yt(x3) = z(x4)− z(x3) = y3.

By our uniqueness condition and our assumption that {rt}∞t=1 is strictly monotone

increasing, it must be the case that yt+1(x) > yt(x) on (a, x2). Choose τ ∈ (a, x1).

By Theorem 3.3, there exists a solution w(x) of (3.3) satisfying

w(τ) = 0, w(x1) = r0, w(x2) = y2.

It follows from Theorem 3.2 that {yt(x)}∞t=1 cannot be uniformly bounded on any

compact subinterval of (a, b). To see this, suppose there exist [c, d] ⊂ (a, b) and

M > 0 such that {|yt(x)|}∞t=1 < M on [c, d]. Then {yt(x)}∞t=1 contains a subsequence

{ytj(x)}∞j=1 such that {ytj(x)}∞j=1 converges uniformly on [x1, x4], say ytj(x)∞j=1 con-

verges uniformly to y(x) on [x1, x4]. But ytj(x1) → r0, ytj(x2) = y2, and ytj(x4) −

ytj(x3) = y3, so y(x) would be a solution of (3.3) satisfying

y(x1) = r0, y(x2) = y2, y(x4)− y(x3) = y3,



18

which contradicts our assumption that r0 is not in S. Hence, there exists a positive

integer T1 such that yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there exists θ ∈ (x1, x2)

and a positive integer T2 such that yt(θ) > w(θ) for all t ≥ T2. Therefore, for some

T ≥ max{T1, T2}, we have

yT (τ) > w(τ), yT (x1) < w(x1) = r0, yT (θ) > w(θ).

It follows that w(x) − yT (x) must have a zero on (τ, x1), say w(α) = yT (α) for

τ < α < x1. Similarly, w(x) − yT (x) must have a zero on (x1, θ), say w(β) = yT (β)

for x1 < β < θ. We have then that

w(α) = yT (α), w(β) = yT (β), w(x2) = yT (x2) = y2.

Since both w(x) and yT (x) are assumed to be solutions of (3.3), Condition (D) implies

that w(x) ≡ yT (x) on (a, b). But then

r0 = w(x1) = yT (x1) = rT < r0,

which is a contradiction. We must conclude that S contains all of its limit points,

and is therefore closed.

3.3 General Case

It is possible to generalize the results of the previous section. We begin by

proving a continuous dependence theorem that is analogous to Theorem 3.5.

Theorem 3.7 (Continuous Dependence). Assume that the differential equation

y′′′(x) = f(x, y, y′, y′′) (3.6)

satisfies the following three conditions:

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (3.6) are unique and exist on all of

(a, b); and,
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(C) For some positive integer m ≥ 4, any a < x1 < x2 < · · · < xm < b and any

y1, y2, y3 ∈ R, solutions of the boundary value problem for (3.6) with boundary

conditions

y(x1) = y1, y(x2) = y2, (3.7)

y(xm)−
m−1∑
i=3

y(xi) = y3, (3.8)

are unique when they exist.

Choose a positive integer k such that 3 ≤ k ≤ m. Let z(x) be an arbitrary but fixed

solution of (3.6). Then for any a < x1 < x2 < · · · < xk < b, any c and d with

a < c < x1 and xk < d < b, and any ε > 0, there exists a δ > 0 such that |xi− ti| < δ,

i = 1, 2, . . . , k, and max
{
|z(x1) − y1|, |z(x2) − y2|,

∣∣z(xk) −
∑k−1

i=3 z(xi) − y3

∣∣} < δ

imply that (3.6) has a solution y(x) with

y(t1) = y1, y(t2) = y2, y(tk)−
k−1∑
i=3

y(ti) = y3,

and
∣∣z(i)(x)− y(i)(x)

∣∣ < ε on [c, d], i = 0, 1, 2.

Proof: Assume (3.6) satisfies Conditions (A), (B), and (C) for some positive

integer m ≥ 4. Choose k such that 3 ≤ k ≤ m. Fix t0 ∈ (a, b). Define the set

G ⊂ Rk+3 by

G = {(t1, t2, . . . , tk, c1, c2, c3 : a < t1 < t2 < · · · < tk < b; c1, c2, c3 ∈ R} .

G is open in Rk+3. Now define φ : G ⊂ Rk+3 → Rk+3 by

φ
(
(t1, t2, . . . , tk, c1, c2, c3)

)
=

(
t1, t2, . . . , tk, u(t1), u(t2), u(tk)−

k−1∑
i=3

u(ti)

)
,

where u(x) is the solution of (3.6) satisfying

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3.

The function φ is continuous since solutions of (3.6) depend continuously upon initial

conditions, by Theorem 3.1. We claim that φ is one-to-one. To see this, suppose that

φ
(
(s1, s2, . . . , sk, h1, h2, h3)

)
= φ

(
(t1, t2, . . . , tk, c1, c2, c3)

)
.
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It is clear from the definition of φ that si = ti, i = 1, 2, . . . , k. We have

w(t0) = h1, w′(t0) = h2, w′′(t0) = h3,

and

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3,

for solutions w(x) and u(x) of(3.6). Then

u(t1) = w(s1) = w(t1), u(t2) = w(s2) = w(t2),

and

u(tk)−
k−1∑
i=3

u(ti) = w(sk)−
k−1∑
i=3

w(si) = w(tk)−
k−1∑
i=3

w(ti).

Then by Theorem 2.2 and Condition (C), we have w ≡ u on (a, b), which implies that

hi = ci, for i = 1, 2, 3. Thus φ is one-to-one. By the Brouwer Invariance of Domain

Theorem, φ(G) is open and φ−1 is continuous on φ(G).

Now, let z(x) be a solution of (3.6). Choose a < x1 < x2 < · · · < xk < b,

any c and d with a < c < x1 and xk < d < b, and any ε > 0. By continuous

dependence upon initial conditions, there exists an η > 0 such that, for our fixed

solution z(x),
∣∣z(i−1)(t0) − ci

∣∣ < η, for i = 1, 2, 3, implies
∣∣u(i−1)(x) − z(i−1)(x)

∣∣ < ε

on [c, d], i = 1, 2, 3, where u(x) is the solution of (3.6) with u(i−1)(t0) = ci, i = 1, 2, 3.

We have (
x1, x2, . . . , xk, z(x1), z(x2), z(xk)−

k−1∑
i=3

z(xi)

)
∈ φ(G),

φ(G) is open, and φ−1 : φ(G) → G is continuous. Therefore, there exists a δ > 0 such

that |xi − ti| < δ, for i = 1, 2, . . . , k, and

max

{
|z(x1)− y1|, |z(x2)− y2|,

∣∣∣∣∣z(xk)−
k−1∑
i=3

z(xi)− y3

∣∣∣∣∣
}

< δ

imply that (t1, t2, . . . , tk, y1, y2, y3) ∈ φ(G) and φ−1
(
(t1, t2, . . . , tk, y1, y2, y3)

)
is in the

open ball of radius η centered at

φ−1

(
x1, x2, . . . , xk, z(x1), z(x2), z(xk)−

k−1∑
i=3

z(xi)

)
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= (x1, x2, . . . , xk, z(t0), z
′(t0), z

′′(t0)) .

Suppose that

φ−1
(
(t1, t2, . . . , tk, y1, y2, y3)

)
= (t1, t2, . . . , tk, d1, d2, d3).

If u(x) is the solution of (3.6) satisfying

u(t0) = d1, u′(t0) = d2, u′′(t0) = d3,

then
∣∣u(i−1)(x)− z(i−1)(x)

∣∣ < ε on [c, d], i = 1, 2, 3. Moreover,

(t1, t2, . . . , tk, y1, y2, y3) = φ ((t1, t2, . . . , tk, d1, d2, d3))

= φ ((t1, t2, . . . , tk, u(t0), u
′(t0), u

′′(t0)))

=

(
t1, t2, . . . , tk, u(t1), u(t2), u(tk)−

k−1∑
i=3

u(ti)

)
,

so that u(x) is the solution of (3.6) satisfying

u(t1) = y1, u(t2) = y2, u(tk)−
k−1∑
i=3

u(ti) = y3.

Everything is in place to prove our last theorem of this chapter, a uniqueness

implies existence result. This theorem is a generalization of Theorem 3.6.

Theorem 3.8 (Uniqueness Implies Existence). Assume that the differential equation

(3.6) satisfies Conditions (A), (B), and (C) of Theorem 3.7. Then for any integer

3 ≤ k ≤ m, any a < x1 < x2 < · · · < xk < b and any y1, y2, y3 ∈ R, the boundary

value problem for (3.6) with boundary conditions (3.7) and

y(xk)−
k−1∑
i=3

y(xi) = y3 (3.9)

has a solution. The boundary condition in (3.9) is interpreted as y(x3) = y3 in the

case k = 3.
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Proof: The proof is by induction on m. Note that Theorem 3.6 gives us our

result for the case m = 4. Let m ≥ 4 be given. For inductive purposes, let k

such that 4 ≤ k ≤ m be given, and assume that, for all 4 ≤ h ≤ k − 1, any

a < x1 < x2 < · · · < xh < b and any y1, y2, y3 ∈ R, there exists a solution for (3.6)

satisfying (3.7) and

y(xh)−
h−1∑
i=3

y(xi) = y3. (3.10)

Let y1, y2, y3 ∈ R be chosen. Then there is a unique solution, say z(x), to the

boundary value problem for (3.6) such that

z(x2) = y2,

z(x3) = 0,

z(xk)−
k−1∑
i=4

z(xi) = y3.

We have that z(x) satisfies the boundary conditions

y(x2) = y2, (3.11)

y(xk)−
k−1∑
i=3

y(xi) = y3. (3.12)

Define the set S by

S = {u(x1) : u(x) is a solution of (3.6) satisfying (3.11)− (3.12)}.

We will show that S contains y1.

Certainly z(x1) ∈ S, so S is nonempty. Since R is a connected set, the proof of

the Theorem will be complete when we show that S is both open and closed, whereby

S = R.

S is open: Suppose p0 ∈ S. Then p0 = u(x1) for some solution u(x) of (3.6)

with u(x2) = y2 and u(xk)−
∑k−1

i=3 u(xi) = y3. By Theorem 3.7, there exists a δ > 0

sufficiently small such that, if |p − p0| < δ, then there is a solution up(x) of (3.6)
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satisfying

up(x1) = p,

up(x2) = u(x2) = y2,

up(xk)−
k−1∑
i=3

up(xi) = u(xk)−
k−1∑
i=3

u(xi) = y3.

That is, p ∈ S, whence (p0 − δ, p0 + δ) ⊂ S, so S is open.

S is closed: Assume to the contrary that S is not closed. Then S does not

contain some of its limit points, so there exists an r0 that is a limit point of S, but

r0 is not in S. Therefore, there is an infinite sequence of distinct points {rt}∞t=1 ⊂ S

such that rt → r0. Without loss of generality, assume {rt}∞t=1 is strictly monotone,

say strictly monotone increasing. Since {rt}∞t=1 ⊂ S, we have a sequence of functions

{yt(x)}∞t=1 such that each yt(x) is a solution of (3.6) satisfying

yt(x1) = rt,

yt(x2) = z(x2) = y2,

yt(xk)−
k−1∑
i=3

yt(xi) = z(xk)−
k−1∑
i=3

z(xi) = y3.

Choose τ ∈ (a, x1). By Theorem 2.2 and Theorem 3.3, there exists a solution w(x)

of (3.3) satisfying

w(τ) = 0, w(x1) = r0, w(x2) = y2.

By our uniqueness condition and our assumption that {rt}∞t=1 is strictly monotone

increasing, it must be the case that yt+1(x) > yt(x) on (a, x2) for all t ∈ N. It

follows from Theorem 3.2 and our assumption that r0 is not in S that {yt(x)}∞t=1

cannot be uniformly bounded on any compact subinterval of (a, b). (See the argument

in the proof of Theorem 3.6.) Hence, there exists a positive integer T1 such that

yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there exists θ ∈ (x1, x2) and a positive

integer T2 such that yt(θ) > w(θ) for all t ≥ T2. Therefore, for some T ≥ max{T1, T2},
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we have

yT (τ) > w(τ), yT (x1) < w(x1) = r0, yT (θ) > w(θ).

It follows that w(x)−yT (x) must have a zero on (τ, x1), say w(α) = yT (α), τ < α < x1.

Similarly, w(x) − yT (x) must have a zero on (x1, θ), say w(β) = yT (β), x1 < β < θ.

We have then that

w(α) = yT (α),

w(β) = yT (β),

w(x2) = yT (x2) = y2.

Since both w(x) and yT (x) are assumed to be solutions of (3.6), Theorem 2.2 and

Condition (C) imply that w ≡ yT on (a, b). Then we have

r0 = w(x1) = yT (x1) = rT < r0,

a contradiction. We must conclude that S contains all of its limit points and is

therefore closed.



CHAPTER FOUR

Advanced Results

In the final chapter of this dissertation, we will build on our earlier results by

the addition of a left side nonlocal boundary condition similar in form to the right

side nonlocal boundary condition of our preceding work. As before, we will proceed

with a uniqueness implies uniqueness theorem, a continuous dependence theorem,

and finally, a uniqueness implies existence theorem.

4.1 Uniqueness Implies Uniqueness

Theorem 4.1 (Uniqueness Implies Uniqueness). Suppose the following three conditions

hold for the differential equation

y′′′ = f(x, y, y′, y′′). (4.1)

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (4.1) are unique and exist on all of

(a, b); and,

(C) For some m, n ∈ N with n > 1, any a < x1 < x2 < · · · < xm+n < b and any

y1, y2, y3 ∈ R, solutions of the boundary value problem for (4.1) with boundary

conditions

y(x1)−
n−1∑
i=2

y(xi) = y1, (4.2)

y(xn) = y2, (4.3)

y(xm+n)−
m+n−1∑
j=n+1

y(xj) = y3, (4.4)

are unique when they exist. We take the boundary condition (4.2) to mean

y(x1) = y1 in the case that n = 2, and the boundary condition (4.4) is taken

to be y(x3) = y3 in the case that m = 1.

25
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Then for any integers p and q such that 1 ≤ p ≤ m, 1 < q ≤ n, solutions for the

boundary value problem for (4.1) with boundary conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.5)

y(xq) = y2, (4.6)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3, (4.7)

where the boundary condition (4.5) is taken to mean y(x1) = y1 in the case that q = 2,

and the boundary condition (4.7) is taken to be y(x3) = y3 in the case that p = 1, are

unique when they exist.

Proof: There are three nontrivial cases: p = m and 1 < q < n, 1 ≤ p < m and

q = n, and 1 ≤ p < m and 1 < q < n. We will prove each case by induction.

Proof of Case 1: p = m and 1 < q < n. Assume Conditions (A) and (B) hold,

and that Condition (C) holds for some positive integer m and for n = 3. Set p = m,

q = 2. We are assuming the uniqueness of solutions of the boundary value problem

for (4.1) with boundary conditions

y(x1)− y(x2) = y1,

y(x3) = y2,

y(xp+3)−
p+2∑
j=4

y(xj) = y3,

for any a < x1 < x2 < · · · < xp+3 < b and any y1, y2, y3 ∈ R. Suppose that, for some

a < x1 < x2 < · · · < xp+2 < b and some y1, y2, y3 ∈ R, there are distinct solutions

u(x) and v(x) of the boundary value problem for (4.1) with boundary conditions

y(x1) = y1,

y(x2) = y2,

y(xp+2)−
p+1∑
j=3

y(xj) = y3.
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Set w(x) = u(x)− v(x). Since u(x) and v(x) both solve the boundary value problem,

we have that

w(x1) = w(x2) = w(xp+2)−
p+1∑
j=3

w(xj) = 0.

By Condition (B), we know that either w′(x1) 6= 0 or w′′(x1) 6= 0. Suppose

w′(x1) 6= 0. Without loss of generality, assume w′(x1) > 0. Therefore, since w(x1) =

w(x2) = 0, it must be the case that w(x) is positive on (x1, x2) and has a local

maximum on (x1, x2). Suppose the local maximum occurs at x = α ∈ (x1, x2). Now,

there must exist β ∈ (x1, α) and γ ∈ (α, x2) such that w(β) = w(γ). This gives us

a < β < γ < x2 < · · · < xm+2 with

w(β)− w(γ) = w(x2) = w(xp+2)−
p+1∑
j=3

w(xj) = 0.

In other words, we have

u(β)− u(γ) = v(β)− v(γ),

u(x2) = v(x2),

u(xp+2)−
p+1∑
j=3

u(xj) = v(xp+2)−
p+1∑
j=3

v(xj).

Our uniqueness condition gives us that u(x) ≡ v(x) on (a, b), but this contradicts our

assumption that u(x) and v(x) are distinct.

If we assume w′(x1) = 0, then it must be true that w′′(x1) 6= 0. Assume, without

loss of generality, that w′′(x1) > 0. Thus w′(x) is increasing on a right-neighborhood

of x1, and in fact w′(x) is positive on such a neighborhood since w′(x1) = 0. Therefore,

since w(x1) = w(x2) = 0 and by our uniqueness assumption, we have w(x) > 0 on

(x1, x2), and w(x) obtains a local maximum on (x1, x2). We may repeat our argument

for the assumption w′(x1) 6= 0. We conclude the result holds for p = m, n = 3, q = 2.

Now, assume that Conditions (A) and (B) hold, and that Condition (C) holds

for m and some positive integer n > 3. That is, we are assuming uniqueness for
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solutions of (4.1) satisfying boundary conditions

y(x1)−
n−1∑
i=2

y(xi) = y1, (4.8)

y(xn) = y2, (4.9)

y(xm+n)−
m+n−1∑
j=n+1

y(xj) = y3, (4.10)

for any a < x1 < x2 < · · · < xm+n < b and any y1, y2, y3 ∈ R. Set p = m, q = n− 1.

Suppose that, for some a < x1 < x2 < · · · < xp+q and y1, y2, y3 ∈ R, we have distinct

solutions u(x) and v(x) of the boundary value problem for (4.1) satisfying boundary

conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.11)

y(xq) = y2, (4.12)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3. (4.13)

Set w(x) = u(x) − v(x). We have u(x1) −
∑q−1

i=2 u(xi) = v(x1) −
∑q−1

i=2 v(xi), so that

w(x1) −
∑q−1

i=2 w(xi) = 0. Likewise we have u(xq) = v(xq), so that w(xq) = 0, and

u(xp+q)−
∑p+q−1

j=q+1 u(xj) = v(xp+q)−
∑p+q−1

j=q+1 v(xj), so that w(xp+q)−
∑p+q−1

j=q+1 w(xj) = 0.

Claim: It cannot be the case that w(xi) = 0 for every i among {2,3,. . . ,q-1}. To

establish the claim, assume to the contrary that w(xi) = 0 for all i ∈ {2, 3, . . . , q−1}.

Then w(x1) = 0, since w(x1) −
∑q−1

i=2 w(xi) = 0. Now, since w(x1) = w(x2) = 0 and

w(x) = u(x) − v(x) is continuous, we may choose α, β ∈ (x1, x2) with α < β and

w(α) = w(β), or equivalently, w(α)− w(β) = w(x1) = 0. Then we have

0 = w(x1)−
q−1∑
i=2

w(xi)

= w(α)− w(β)−
q−1∑
i=2

w(xi)

= w(α)−

(
w(β) +

q−1∑
i=2

w(xi)

)
,
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so that u(x) and v(x) satisfy

u(α)−

(
u(β) +

q−1∑
i=2

u(xi)

)
= v(α)−

(
v(β) +

q−1∑
i=2

v(xi)

)
,

u(xq) = v(xq),

u(xp+q)−
p+q−1∑
j=q+1

u(xj) = v(xp+q)−
p+q−1∑
j=q+1

v(xj).

But then, Condition (C) implies that u(x) ≡ v(x) on (a, b), a contradiction of our

assumption that u(x) and v(x) are distinct. The claim is established.

We have that w(xi) 6= 0, for some i ∈ {2, . . . , q−1}. Without loss of generality,

assume that w(xq−1) 6= 0. Then since w(xq) = 0, and w(x) = u(x) − v(x) is a

continuous function, we may choose α, β ∈ (xq−1, xq) such that α < β and w(α) +

w(β) = w(xq−1). Therefore, we have

w(x1)−
q−1∑
i=2

w(xi) = w(x1)−

(
q−2∑
i=2

w(xi) + w(α) + w(β)

)
= 0,

whence u(x) and v(x) satisfy

u(x1)−

(
q−2∑
i=2

u(xi) + u(α) + u(β)

)
= v(x1)−

(
q−2∑
i=2

v(xi) + v(α) + v(β)

)
,

u(xq) = v(xq),

u(xp+q)−
p+q−1∑
j=q+1

u(xj) = v(xp+q)−
p+q−1∑
j=q+1

v(xj).

Thus u(x) ≡ v(x), by Condition (C). This contradicts our assumption that u(x) and

v(x) are distinct. The proof of Case 1 is complete.

Proof of Case 2: 1 ≤ p < m and q = n. We begin by proving the case m = 2,

p = 1, and q = n ≥ 2 is some positive integer. That is, we are assuming Conditions

(A) and (B), and that, for any a < x1 < x2 < · · · < xn+2 < b and any y1, y2, y3 ∈ R,

solutions of the boundary value problem for (4.1) satisfying boundary conditions

y(x1)−
n−1∑
i=2

y(xi) = y1, (4.14)

y(xn) = y2, (4.15)

y(xn+2)− y(xn+1) = y3, (4.16)
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are unique, when they exist.

Suppose that, for some a < x1 < x2 < · · · < xn+1 < b and some y1, y2, y3 ∈ R,

we have distinct solutions u(x) and v(x) of the boundary value problem for (4.1)

satisfying boundary conditions

y(x1)−
n−1∑
i=2

y(xi) = y1,

y(xn) = y2,

y(xn+1) = y3.

Set w(x) = u(x) − v(x). We have u(x1) −
∑n−1

i=2 u(xi) = v(x1) −
∑n−1

i=2 v(xi), or

w(x1)−
∑n−1

i=2 w(xi) = 0, and u(xn) = v(xn), so that w(xn) = 0, and finally, u(xn+1) =

v(xn+1), or w(xn+1) = 0. It is the case that w(x) cannot have a zero on (xn, xn+1),

else we would get an immediate contradiction to our assumption that u(x) and v(x)

are distinct, by our uniqueness condition. Therefore, since w(xn) = 0, w(xn+1) = 0,

and w(x) = u(x) − v(x) is a continuous function, it must be the case that w(x) has

a local extremum on (xn, xn+1). Then we may choose α, β ∈ (xn, xn+1) such that

w(α) = w(β). We have

w(α) = w(β),

u(α)− v(α) = u(β)− v(β),

u(α)− u(β) = v(α)− v(β).

Therefore, u(x) and v(x) are solutions of (4.1) satisfying

u(x1)−
n−1∑
i=2

u(xi) = v(x1)−
n−1∑
i=2

v(xi),

u(xn) = v(xn),

u(α)− u(β) = v(α)− v(β).

Then our uniqueness condition implies u(x) ≡ v(x) on (a, b), which contradicts our

assumption that u(x) and v(x) are distinct. Case 2 holds if m = 2, p = 1, and

q = n ≥ 2 is some positive integer.
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It remains to prove the case p = m − 1 and q = n. Suppose that Conditions

(A), (B), and (C) hold, and let p = m − 1 and q = n. Additionally, for some

a < x1 < x2 < · · · < xp+q < b and some y1, y2, y3 ∈ R, assume that u(x) and v(x) are

distinct solutions of the boundary value problem for (4.1) satisfying

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.17)

y(xq) = y2, (4.18)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3. (4.19)

Set w(x) = u(x) − v(x). We have u(x1) −
∑q−1

i=2 u(xi) = v(x1) −
∑q−1

i=2 v(xi), or

w(x1)−
∑q−1

i=2 w(xi) = 0. Likewise, we have u(xq) = v(xq), or w(xq) = 0, and finally,

u(xp+q)−
∑p+q−1

j=q+1 u(xj) = v(xp+q)−
∑p+q−1

j=q+1 v(xj), or w(xp+q)−
∑p+q−1

j=q+1 w(xj) = 0.

Claim: It cannot be the case that w(xj) = 0 for each j ∈ {q+1, . . . , p+q−1}. To

establish the claim, assume to the contrary that w(xj) = 0 for every j ∈ {q+1, . . . , p+

q − 1}. Then w(xp+q) = 0, since w(xp+q)−
∑p+q−1

j=q+1 w(xj) = 0. Now, since w(xp+q) =

w(xp+q−1 = 0, and w(x) = u(x)− v(x) is continuous, there exist α, β ∈ (xp+q−1, xp+q)

such that α < β and w(α) = w(β), or equivalently, w(β)− w(α) = w(xp+q) = 0. We

have

0 = w(xp+q)−
p+q−1∑
j=q+1

w(xj)

= w(β)− w(α)−
p+q−1∑
j=q+1

w(xj)

= w(β)−

(
p+q−1∑
j=q+1

w(xj) + w(α)

)
,

so that, for a < x1 < x2 < · · · < xp+q−1 < α < β < b, u(x) and v(x) satisfy

u(x1)−
q−1∑
i=2

u(xi) = v(x1)−
q−1∑
i=2

v(xi),

u(xq) = v(xq),

u(β)−

(
p+q−1∑
j=q+1

u(xj) + u(α)

)
= v(β)−

(
p+q−1∑
j=q+1

v(xj) + v(α)

)
.
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Condition (C) implies that u(x) ≡ v(x) on (a, b), but this contradicts our assumption

that u(x) and v(x) are distinct. The claim is true.

By our claim, we have that w(xj) 6= 0 for some i ∈ {q + 1, . . . , p + q − 1}.

Without loss of generality, assume w(xq+1) 6= 0. Then, since w(xq) = 0, and w(x) =

u(x) − v(x) is continuous, we may choose α, β ∈ (xq, xq+1) with α < β such that

w(xq+1) = w(α) + w(β). Then we have

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = w(xp+q)−

(
w(α) + w(β) +

p+q−1∑
j=q+2

w(xj)

)
= 0,

whence u(x) and v(x) satisfy

u(x1)−
q−1∑
i=2

u(xi) = v(x1)−
q−1∑
i=2

v(xi),

u(xq) = v(xq),

u(xp+q)−

(
u(α) + u(β) +

p+q−1∑
j=q+2

u(xj)

)
= v(xp+q)−

(
v(α) + v(β) +

p+q−1∑
j=q+2

v(xj)

)
,

for a < x1 < x2 < · · · < xq < α < β < xq+2 < · · · < xp+q < b. We see that

u(x) ≡ v(x) by Condition (C), contradicting our assumption that u(x) 6= v(x). This

completes the proof of Case 2.

Proof of Case 3: 1 ≤ p < m and 1 < q < n. Assume that Conditions (A)

and (B) hold, and that Condition (C) holds for m = 2 and n = 3. That is, for any

a < x1 < x2 < x3 < x4 < x5 < b and any y1, y2, y3 ∈ R, we are assuming uniqueness of

solutions of the boundary value problem for (4.1) that satisfy the boundary conditions

y(x1)− y(x2) = y1,

y(x3) = y2,

y(x5)− y(x4) = y3.

Now, for some a < x1 < x2 < x3 < b and some y1, y2, y3 ∈ R, suppose that u(x) and

v(x) are distinct solutions of the boundary value problem for (4.1) that both satisfy

the boundary conditions

y(x1) = y1, y(x2) = y2, y(x3) = y3.
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Set w(x) = u(x)−v(x). Then we have u(xi) = v(xi), for i = 1, 2, 3, so that w(xi) = 0,

for i = 1, 2, 3. Therefore, since w(xi) = 0, for i = 1, 2, 3, and since w(x) = u(x)−v(x)

is continuous, we may choose α, β ∈ (x1, x2) such that α < β and w(α) = w(β), and

we may choose η, θ ∈ (x2, x3) such that η < θ and w(η) = w(θ). Thus we have

w(α) = w(β),

u(α)− v(α) = u(β)− v(β),

u(α)− u(β) = v(α)− v(β),

and

w(η) = w(θ),

u(η)− v(η) = u(θ)− v(θ),

u(η)− u(θ) = v(η)− v(θ),

u(θ)− u(η) = v(θ)− v(η).

Therefore, u(x) and v(x) are solutions of the boundary value problem for (4.1) that

satisfy

u(α)− u(β) = v(α)− v(β),

u(x2) = v(x2),

u(θ)− u(η) = v(θ)− v(η),

with a < α < β < x2 < η < θ < b. Our uniqueness condition says that u(x) ≡ v(x)

on (a, b), which is a contradiction of our assumption that u(x) and v(x) are distinct.

We conclude that Case 3 holds for m = 2 and n = 3.

Suppose that Conditions (A), (B), and (C) hold for positive integers m > 2 and

n > 3. Set p = m − 1 and q = n − 1. Assume that, for some a < x1 < x2 < · · · <

xp+q < b and some y1, y2, y3 ∈ R, there exist distinct solutions u(x) and v(x) of the

boundary value problem for (4.1) that satisfy the boundary conditions of (4.5)-(4.7).
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Set w(x) = u(x)− v(x). We have then that

u(x1)−
q−1∑
i=2

u(xi) = v(x1)−
q−1∑
i=2

v(xi),

u(xq) = v(xq),

u(xp+q)−
p+q−1∑
j=q+1

u(xj) = v(xp+q)−
p+q−1∑
j=q+1

v(xj),

or equivalently,

w(x1)−
q−1∑
i=2

w(xi) = 0,

w(xq) = 0,

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = 0.

From arguments in the proofs of Case 1 and Case 2, we know that our assumption

that u(x) and v(x) are distinct implies that it cannot be the case that w(xi) = 0 for all

i ∈ {1, 2, . . . , q−1}, nor can w(xj) = 0 for all j ∈ {q+1, . . . , p+q}. Assume, without

loss of generality, that w(xq−1) 6= 0 and w(xq+1) 6= 0. Thus, since w(xq−1) 6= 0 and

w(xq+1) 6= 0, w(xq) = 0, and w(x) = u(x) − v(x) is a continuous function, we may

choose α, β ∈ (xq−1, xq) such that α < β and w(α) + w(β) = w(xq−1), and we may

choose η, θ ∈ (xq, xq+1) such that η < θ and w(η) + w(θ) = w(xq+1). Hence we have

w(x1)−
q−1∑
i=2

w(xi) = w(x1)−

(
q−2∑
i=2

w(xi) + w(α) + w(β)

)
= 0,

and

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = w(xp+q)−

(
w(η) + w(θ) +

p+q−1∑
j=q+2

w(xj)

)
= 0,

whence u(x) and v(x) satisfy

u(x1)−

(
q−2∑
i=2

u(xi) + u(α) + u(β)

)
= v(x1)−

(
q−2∑
i=2

v(xi) + v(α) + v(β)

)
,

u(xq) = v(xq),

u(xp+q)−

(
u(η) + u(θ) +

p+q−1∑
j=q+2

u(xj)

)
= v(xp+q)−

(
v(η) + v(θ) +

p+q−1∑
j=q+2

v(xj)

)
,
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for a < x1 < x2 < · · · < xq−2 < α < β < xq < η < θ < xq+2 < · · · < xp+q < b. Then

Condition (C) implies that u(x) ≡ v(x) on (a, b), which contradicts our assumption

that u(x) and v(x) are distinct. This completes the proof of Case 3, and thus the

proof of Theorem 4.1 is complete.

4.2 Continuous Dependence

Theorem 4.2 (Continuous Dependence). For the differential equation

y′′′ = f(x, y, y′, y′′), (4.20)

suppose that the following three conditions hold.

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (4.20) are unique and exist on all of

(a, b); and,

(C) For some m, n ∈ N with n > 1, any a < x1 < x2 < · · · < xm+n < b and

any y1, y2, y3 ∈ R, solutions of the boundary value problem for (4.20) with

boundary conditions

y(x1)−
n−1∑
i=2

y(xi) = y1, (4.21)

y(xn) = y2, (4.22)

y(xm+n)−
m+n−1∑
j=n+1

y(xj) = y3, (4.23)

are unique when they exist. We take the boundary condition (4.21) to mean

y(x1) = y1 in the case that n = 2, and the boundary condition (4.23) is taken

to be y(x3) = y3 in the case that m = 1.

Choose positive integers p and q such that 1 ≤ p ≤ m and 1 < q ≤ n. Let z(x) be an

arbitrary but fixed solution of (4.20). Then for any a < x1 < x2 < · · · < xp+q < b,
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any c and d with a < c < x1 and xp+q < d < b, and given ε > 0, there exists a δ > 0

such that |xi − ti| < δ, for i = 1, 2, . . . , p + q, and

max

{∣∣∣z(x1)−
q−1∑
i=2

z(xi)− y1

∣∣∣, |z(xq)− y2|,
∣∣∣z(xp+q)−

p+q−1∑
j=q+1

z(xj)− y3

∣∣∣} < δ

imply that (4.20) has a solution y(x) with

y(t1)−
q−1∑
i=2

y(xi) = y1,

y(tq) = y2,

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3,

and
∣∣z(k)(x)− y(k)(x)

∣∣ < ε, for k = 0, 1, 2, on [c, d].

Proof: Assume that Equation (4.20) satisfies Conditions (A), (B), and (C) for

a positive integer m and a positive integer n > 1. Choose integers p and q such that

1 ≤ p ≤ m and 1 < q ≤ n. Let ε > 0 be given. Fix t0 ∈ (a, b). We will use the

Brouwer Invariance of Domain Theorem in our proof.

Define the set G ⊂ Rp+q+3 by

G = {(t1, t2, . . . , tp+q, c1, c2, c3) : a < t1 < t2 < · · · < tp+q < b; c1, c2, c3 ∈ R}.

G is open in Rp+q+3. Now define φ : G ⊂ Rp+q+3 → Rp+q+3 by

φ
(
(t1, t2, . . . , tp+q, c1, c2, c3)

)
=(

t1, t2, . . . , tp+q, u(t1)−
q−1∑
i=2

u(ti), u(tq), u(tp+q)−
p+q−1∑
j=q+1

u(tj)

)
,

where u(x) is the solution of (4.20) satisfying

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3.

The function φ is continuous since solutions of (4.20) depend continuously upon initial

conditions, by Theorem 3.1. We claim that φ is one-to-one. To see this, suppose that

φ
(
(s1, s2, . . . , sp+q, h1, h2, h3)

)
= φ

(
(t1, t2, . . . , tp+q, c1, c2, c3)

)
.
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The definition of φ gives us that si = ti, for i = 1, 2, . . . , p + q. We have

w(t0) = h1, w′(t0) = h2, w′′(t0) = h3,

and

u(t0) = c1, u′(t0) = c2, u′′(t0) = c3,

for solutions w(x) and u(x) of (4.20). Then we have

u(t1)−
q−1∑
i=2

u(ti) = w(s1)−
q−1∑
i=2

w(si) = w(t1)−
q−1∑
i=2

w(ti),

u(tq) = w(sq) = w(tq),

u(tp+q)−
p+q−1∑
j=q+1

u(tj) = w(sp+q)−
p+q−1∑
j=q+1

w(sj) = w(tp+q)−
p+q−1∑
j=q+1

w(tj).

Then by Theorem 4.1 and Condition (C), we have w(x) ≡ u(x) on (a, b), which

implies that hi = ci, for i = 1, 2, 3. Thus φ is one-to-one. By the Brouwer Invariance

of Domain Theorem, φ(G) is open and φ−1 is continuous on φ(G).

Now, let z(x) be a solution of (4.20). Choose a < x1 < x2 < · · · < xp+q < b,

any c and d with a < c < x1 and xp+q < d < b, and choose ε > 0. By Theorem 3.1,

there exists an η > 0 such that, for our fixed solution z(x),
∣∣z(i−1)(t0) − ci

∣∣ < η, for

i = 1, 2, 3, implies
∣∣u(i−1)(x)− z(i−1)(x)

∣∣ < ε on [c, d], for i = 1, 2, 3, where u(x) is the

solution of (4.20) with u(i−1)(t0) = ci, for i = 1, 2, 3. We have(
x1, x2, . . . , xp+q, z(x1)−

q−1∑
i=2

z(xi), z(xq), z(xp+q)−
p+q−1∑
j=q+1

z(xj)

)
∈ φ(G),

φ(G) is open, and φ−1 : φ(G) → G is continuous. Therefore, there exists a δ > 0 such

that |xi − ti| < δ, for i = 1, 2, . . . , p + q, and

max

{∣∣∣∣∣z(x1)−
q−1∑
i=2

z(xi)− y1

∣∣∣∣∣ , |z(xq)− y2|,

∣∣∣∣∣z(xp+q)−
p+q−1∑
j=q+1

z(xj)− y3

∣∣∣∣∣
}

< δ

imply that (t1, t2, . . . , tp+q, y1, y2, y3) ∈ φ(G), and that φ−1
(
(t1, t2, . . . , tp+q, y1, y2, y3)

)
is in the open ball of radius η centered at

φ−1

(
x1, x2, . . . , xp+q, z(x1)−

q−1∑
i=2

z(xi), z(xq), z(xp+q)−
p+q−1∑
j=q+1

z(xj)

)
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=
(
x1, x2, . . . , xp+q, z(t0), z

′(t0), z
′′(t0)

)
.

Suppose that

φ−1
(
(t1, t2, . . . , tp+q, y1, y2, y3)

)
= (t1, t2, . . . , tp+q, d1, d2, d3).

If u(x) is the solution of Equation (4.20) satisfying

u(t0) = d1, u′(t0) = d2, u′′(t0) = d3,

then
∣∣u(i−1)(x)− z(i−1)(x)

∣∣ < ε on [c, d], for i = 1, 2, 3. Moreover,

(t1, t2, . . . , tp+q, y1, y2, y3) = φ
(
(t1, t2, . . . , tp+q, d1, d2, d3)

)
= φ

(
t1, t2, . . . , tp+q, u(t0), u

′(t0), u
′′(t0))

)
=

(
t1, t2, . . . , tp+q, u(t1)−

q−1∑
i=2

u(ti), u(tq), u(tp+q)−
p+q−1∑
j=q+1

u(tj)

)
,

so that u(x) is the solution of Equation (4.20) satisfying

u(t1)−
q−1∑
i=2

u(ti) = y1,

u(tq) = y2,

u(tp+q)−
p+q−1∑
j=q+1

u(tj) = y3.

4.3 Uniqueness Implies Existence

We end this chapter, and this dissertation, with several uniqueness implies

existence results. First, two corollaries follow immediately from Theorem 4.2 by

applying Theorems 3.3 and 3.8, respectively.

Corollary 4.1 (Uniqueness Implies Existence). Suppose that Conditions (A), (B), and

(C) from Theorem 4.2 hold. Then for any a < x1 < x2 < x3 < b and any y1, y2, y3 ∈

R, the boundary value problem

y′′′ = f(x, y, y′, y′′),
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y(x1) = y1, y(x2) = y2, y(x3) = y3,

has a unique solution.

Corollary 4.2 (Uniqueness Implies Existence). Suppose that Conditions (A), (B), and

(C) from Theorem 4.2 hold. Then for any positive integer k with 3 ≤ k ≤ m+ 2, any

a < x1 < x2 < · · · < xk < b, and any y1, y2, y3 ∈ R, the boundary value problem for

the differential equation

y′′′ = f(x, y, y′, y′′),

with boundary conditions

y(x1) = y1,

y(x2) = y2,

y(xk)−
k−1∑
i=3

y(xi) = y3,

has a unique solution. The third boundary condition is taken to mean y(x3) = y3 in

the case k = 3.

Theorem 4.3 (Uniqueness Implies Existence). For the differential equation

y′′′ = f(x, y, y′, y′′), (4.24)

suppose that the following three conditions hold.

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (4.24) are unique and exist on all of

(a, b); and,

(C) For any a < x1 < x2 < x3 < x4 < x5 < b and any y1, y2, y3 ∈ R, solutions of

the boundary value problem for (4.24) with boundary conditions

y(x1)− y(x2) = y1, (4.25)

y(x3) = y2, (4.26)

y(x5)− y(x4) = y3, (4.27)
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are unique, when they exist.

Then given any a < x1 < x2 < x3 < x4 < x5 < b and any y1, y2, y3 ∈ R, the boundary

value problem (4.24)-(4.27) has a solution, which is unique by Condition (C).

Proof: Let a < x1 < x2 < x3 < x4 < x5 < b and y1, y2, y3 ∈ R be given. By

Corollary 4.2, there exists a unique solution of (4.24), say z(x), satisfying

z(x1) = y1,

z(x2) = 0,

z(x5)− z(x4) = y3.

Then z(x) is a solution of the boundary value problem for (4.24) that satisfies the

boundary conditions

y(x1)− y(x2) = y1, (4.28)

y(x5)− y(x4) = y3. (4.29)

Define the set S by

S = {u(x3) : u(x) is a solution of (4.24) satisfying (4.28)− (4.29)}.

Our proof will be complete when we demonstrate that y2 ∈ S.

We have z(x3) ∈ S, so that S is nonempty. We will show that S is both open

and closed, whereby S = R by the connectedness of R.

S is open: Let p0 ∈ S. Then p0 = u(x3) for some solution u(x) of (4.24) with

u(x1) − u(x2) = y1 and u(x5) − u(x4) = y3. By Theorem 4.2 there exists a δ > 0

sufficiently small such that, if |p − p0| < δ, then there is a solution up(x) of (4.24)

with

up(x3) = p,

up(x1)− up(x2) = u(x1)− u(x2) = y1,

up(x5)− up(x4) = u(x5)− u(x4) = y3.
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That is, p ∈ S, so (p0 − δ, p0 + δ) ⊂ S, whence S is open. The proof of the Theorem

will be complete when we show that S is also closed.

S is closed: Assume S is not closed. Then S does not contain at least one of

its limit points. Let r0 be a limit point of S that is not contained in S. There exists

an infinite sequence of distinct points {rt}∞t=1 ⊂ S such that rt → r0. Without loss

of generality, we may assume that {rt}∞t=1 is strictly monotone, say strictly monotone

increasing. Now, {rt}∞t=1 ⊂ S implies that there exists a sequence {yt(x)}∞t=1 such

that each yt(x) is a solution of (4.24) with

yt(x3) = rt,

yt(x1)− yt(x2) = z(x1)− z(x2) = y1,

yt(x5)− yt(x4) = z(x5)− z(x4) = y3.

Choose τ ∈ (x2, x3). By Corollary 4.2, there exists a unique solution w(x) of

the differential equation (4.24) satisfying

w(τ) = 0, w(x3) = r0, w(x5)− w(x4) = z(x5)− z(x4) = y3.

By Theorem 4.1, we have that the conditions of Theorem 3.2 are met. Also, observe

that yt+1(x1) > yt(x1) on (x2, x3) for all t ∈ N, else the yt(x), and therefore the rt,

would not be distinct. It follows from Theorem 3.2 and our assumption that r0 is

not in S that {yt(x)}∞t=1 cannot be uniformly bounded on any compact subinterval of

(a, b). (See the argument in the proof of Theorem 3.6.) Hence, there exists a positive

integer T1 such that yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there exists θ ∈ (x3, x4)

and a positive integer T2 such that yt(θ) > w(θ) for all t ≥ T2. Therefore, for some

T ≥ max{T1, T2}, we have

yT (τ) > w(τ), yT (x3) < w(x3) = r0, yT (θ) > w(θ).

It must be the case that w(x)−yT (x) has a zero on (τ, x3), say w(α) = yT (α) for some

α ∈ (τ, x3). Similarly, w(x) − yT (x) must have a zero on (x3, θ), say w(β) = yT (β)
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for some β ∈ (x3, θ). We have then that w(x) and yT (x) are solutions of (4.24) that

satisfy

w(α) = yT (α),

w(β) = yT (β),

w(x5)− w(x4) = yT (x5)− yT (x4) = y3.

Theorem 4.1 implies that w(x) ≡ yT (x) on (a, b). But that would imply

r0 = w(x3) = yT (x3) = rT < r0,

a contradiction. We conclude that S contains all of its limit points, whereby S is

closed.

Theorem 4.4 (Uniqueness Implies Existence). Assume that Conditions (A), (B), and

(C) from Theorem 4.3 hold. Then for any a < x1 < x2 < x3 < x4 < b and any

y1, y2, y3 ∈ R, the boundary value problem for

y′′′ = f(x, y, y′, y′′), (4.30)

satisfying boundary conditions

y(x1)− y(x2) = y1, (4.31)

y(x3) = y2, (4.32)

y(x4) = y3, (4.33)

has a unique solution.

Proof: Let a < x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R be given. By Corollary

4.1, there exists a unique solution of (4.30), say z(x), such that

z(x1) = y1, z(x2) = 0, z(x4) = y3.



43

That is, z(x) is a solution of the differential equation (4.30) that satisfies the boundary

conditions

y(x1)− y(x2) = y1, (4.34)

y(x4) = y3. (4.35)

Define the set S by

S = {u(x3) : u(x) is a solution of (4.30) satisfying (4.34)− (4.35)}.

To complete the proof, we will show that y2 ∈ S.

We have z(x3) ∈ S, so that S is nonempty. We will show that S is both open

and closed, whereby S = R by the connectedness of R.

S is open: Let p0 ∈ S. Then p0 = u(x3) for some solution u(x) of (4.30) with

u(x1)− u(x2) = y1 and u(x4) = y3. By Theorem 3.5 there exists a δ > 0 sufficiently

small such that, if |p− p0| < δ, then there is a solution up(x) of (4.30) with

up(x3) = p,

up(x1)− up(x2) = u(x1)− u(x2) = y1,

up(x4) = u(x4) = y3.

That is, p ∈ S, so (p0 − δ, p0 + δ) ⊂ S, whence S is open. The proof of the Theorem

will be complete when we show that S is also closed.

S is closed: Assume S is not closed. Then S does not contain at least one of

its limit points. Let r0 be a limit point of S that is not contained in S. There exists

an infinite sequence of distinct points {rt}∞t=1 ⊂ S such that rt → r0. Without loss

of generality, we may assume that {rt}∞t=1 is strictly monotone, say strictly monotone

increasing. Now, {rt}∞t=1 ⊂ S implies that there exists a sequence {yt(x)}∞t=1 such
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that each yt(x) is a solution of (4.30) with

yt(x3) = rt,

yt(x1)− yt(x2) = z(x1)− z(x2) = y1,

yt(x4) = z(x4) = y3.

Choose τ ∈ (x2, x3). By Corollary 4.1, there exists a unique solution w(x) of the

differential equation (4.30) satisfying

w(τ) = 0, w(x3) = r0, w(x4) = yt(x4) = y3.

By Theorem 4.1, we have that the conditions of Theorem 3.2 are met. Also, observe

that yt+1(x1) > yt(x1) on (x2, x4) for all t ∈ N, else the yt(x), and therefore the rt,

would not be distinct. It follows from Theorem 3.2 and our assumption that r0 is

not in S that {yt(x)}∞t=1 cannot be uniformly bounded on any compact subinterval of

(a, b). (See the argument in the proof of Theorem 3.6.) Hence, there exists a positive

integer T1 such that yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there exists θ ∈ (x3, x4)

and a positive integer T2 such that yt(θ) > w(θ) for all t ≥ T2. Therefore, for some

T ≥ max{T1, T2}, we have

yT (τ) > w(τ), yT (x3) < w(x3) = r0, yT (θ) > w(θ).

It must be the case that w(x)−yT (x) has a zero on (τ, x3), say w(α) = yT (α) for some

α ∈ (τ, x3). Similarly, w(x) − yT (x) must have a zero on (x3, θ), say w(β) = yT (β)

for some β ∈ (x3, θ). We have then that w(x) and yT (x) are solutions of (4.30) that

satisfy

w(α) = yT (α), w(β) = yT (β), w(x4) = yT (x4) = y3.

Theorem 4.1 implies that w(x) ≡ yT (x) on (a, b). But that would imply

r0 = w(x3) = yT (x3) = rT < r0,

a contradiction. We conclude that S contains all of its limit points, whereby S is

closed.



45

Theorem 4.5 (Uniqueness Implies Existence). For the differential equation

y′′′ = f(x, y, y′, y′′), (4.36)

suppose that the following three conditions hold.

(A) f : (a, b)× R3 → R is continuous;

(B) Solutions of initial value problems for (4.36) are unique and exist on all of

(a, b); and,

(C) For some m, n ∈ N with n > 1, any a < x1 < x2 < · · · < xm+n < b and

any y1, y2, y3 ∈ R, solutions of the boundary value problem for (4.36) with

boundary conditions

y(x1)−
n−1∑
i=2

y(xi) = y1, (4.37)

y(xn) = y2, (4.38)

y(xm+n)−
m+n−1∑
j=n+1

y(xj) = y3, (4.39)

are unique when they exist. We take the boundary condition (4.37) to mean

y(x1) = y1 in the case that n = 2, and the boundary condition (4.39) is taken

to be y(xn+1) = y3 in the case that m = 1.

Then for any positive integers p and q with 1 ≤ p ≤ m and 1 < q ≤ n, any a < x1 <

x2 < · · · < xp+q < b and any y1, y2, y3 ∈ R, the boundary value problem for (4.36)

with boundary conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.40)

y(xq) = y2, (4.41)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3, (4.42)

has a (unique) solution. As in the supposition, we take the boundary condition (4.40)

to mean y(x1) = y1 in the case that q = 2, and the boundary condition (4.42) is taken

to be y(xq+1) = y3 in the case that p = 1.
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Proof: Assume that Conditions (A), (B), and (C) hold. The proof is by induc-

tion. We have shown that the Theorem holds for the case m = 2 and n = 3. Let

m ≥ 2 and n ≥ 3 be given. For inductive purposes, assume that, for all 2 ≤ h ≤ m−1

and 3 ≤ k ≤ n − 1, any a < x1 < x2 < · · · < xh+k < b and any y1, y2, y3 ∈ R, there

exists a solution for (4.36) satisfying

y(x1)−
k−1∑
i=2

y(xi) = y1,

y(xk) = y2,

y(xh+k)−
h+k−1∑
j=k+1

y(xj) = y3.

To complete the proof, we will show that the Theorem holds for each of three

nontrivial cases.

(1) p = m− 1 and q = n.

(2) p = m and q = n− 1.

(3) p = m and q = n.

Proof of Case 1: p = m− 1 and q = n. Let a < x1 < x2 < · · · < xp+q < b and

y1, y2, y3 ∈ R be given. By assumption, there exists a unique solution, say z(x), to

the boundary value problem for (4.36) satisfying

z(x1)−
q−2∑
i=2

z(xi) = y1,

z(xq−1) = 0,

z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

Then z(x) solves the differential equation (4.36) and satisfies the boundary conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.43)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3. (4.44)
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Define the set S by

S = {u(xq) : u(x) is a solution of (4.36) satisfying (4.43)− (4.44)}.

We will show that y2 ∈ S. We have that z(xq) ∈ S, so that S is nonempty. We will

show that S is both open and closed, whereby S = R, since R is a connected set.

S is open: Let p0 ∈ S. Then p0 = u(xq) for some solution u(x) of (4.36) with

u(x1)−
q−1∑
i=2

u(xi) = y1,

u(xp+q)−
p+q−1∑
j=q+1

u(xj) = y3.

By Theorem 4.2, there is a δ > 0 sufficiently small such that, if |p − p0| < δ, then

there is a solution up(x) of (4.36) with

up(xq) = p,

up(x1)−
q−1∑
i=2

up(xi) = u(x1)−
q−1∑
i=2

u(xi) = y1,

up(xp+q)−
p+q−1∑
j=q+1

up(xj) = u(xp+q)−
p+q−1∑
j=q+1

u(xj) = y3.

Therefore p ∈ S, whence (p0 − δ, p0 + δ) ⊂ S, so S is open. The proof of Case 1 will

be complete when we show that S is also closed.

S is closed: Assume to the contrary that S is not closed. Then S does not

contain some of its limit points. Choose r0 such that r0 is a limit point of S that is not

contained in S. Then there exists an infinite sequence of distinct points {rt}∞t=1 ⊂ S

such that rt → r0. Without loss of generality, we may assume that {rt}∞t=1 is strictly

monotone, say strictly monotone increasing. Now, {rt}∞t=1 ⊂ S implies that there

exists a sequence {yt(x)}∞t=1 such that, for each t ∈ N, yt(x) is a solution of (4.36)



48

that satisfies

yt(x1)−
q−1∑
i=2

yt(xi) = z(x1)−
q−1∑
i=2

z(xi),

yt(xq) = rt,

yt(xp+q)−
p+q−1∑
j=q+1

yt(xj) = z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

Choose τ ∈ (xq−1, xq). By Corollary 4.2, there exists a unique solution w(x) of (4.36)

satisfying

w(τ) = 0,

w(xq) = r0,

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

By Theorem 4.1 we have that the conditions of Theorem 3.2 are met. Also, observe

that yt+1(x1) > yt(x1) on (xq−1, xq+1) for all t ∈ N, else the yt(x), and therefore the

rt, would not be distinct. It follows from Theorem 3.2 and our assumption that r0

is not in S that {yt(x)}∞t=1 cannot be uniformly bounded on any compact subinterval

of (a, b). (See the argument in the proof of Theorem 3.6.) Hence, there exists a

positive integer T1 such that yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there

exists θ ∈ (xq, xq+1) and a positive integer T2 such that yt(θ) > w(θ) for all t ≥ T2.

Therefore, for some T ≥ max{T1, T2}, we have

yT (τ) > w(τ), yT (xq) < w(xq) = r0, yT (θ) > w(θ).

It must be the case that w(x)−yT (x) has a zero on (τ, xq), say w(α) = yT (α) for some

α ∈ (τ, xq). Similarly, w(x) − yT (x) must have a zero on (xq, θ), say w(β) = yT (β)

for some β ∈ (xq, θ). We have then that w(x) and yT (x) are solutions of (4.36) that
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satisfy

w(α) = yT (α),

w(β) = yT (β),

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = yT (xp+q)−
p+q−1∑
j=q+1

yT (xj) = y3.

Theorem 4.1 gives us that w(x) ≡ yT (x) on (a, b). But that would imply

r0 = w(xq) = yT (xq) = rT < r0,

a contradiction. We conclude that S contains all of its limit points, whereby S is

closed.

Proof of Case 2: p = m and q = n− 1. Let a < x1 < x2 < · · · < xp+q < b and

y1, y2, y3 ∈ R be given. By assumption, there exists a unique solution, say z(x), to

the boundary value problem for (4.36) satisfying

z(x1)−
q−1∑
i=2

z(xi) = y1,

z(xq+1) = 0,

z(xp+q)−
p+q−1∑
j=q+2

z(xj) = y3.

Then z(x) solves the differential equation (4.36) and satisfies the boundary conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.45)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3. (4.46)

Define the set S by

S = {u(xq) : u(x) is a solution of (4.36) satisfying (4.45)− (4.46)}.

We will show that y2 ∈ S. We have that z(xq) ∈ S, so that S is nonempty. We will

show that S is both open and closed, whereby S = R, since R is a connected set.



50

S is open: Let p0 ∈ S. Then p0 = u(xq) for some solution u(x) of (4.36) with

u(x1)−
q−1∑
i=2

u(xi) = y1,

u(xp+q)−
p+q−1∑
j=q+1

u(xj) = y3.

By Theorem 4.2, there is a δ > 0 sufficiently small such that, if |p − p0| < δ, then

there is a solution up(x) of (4.36) with

up(xq) = p,

up(x1)−
q−1∑
i=2

up(xi) = u(x1)−
q−1∑
i=2

u(xi) = y1,

up(xp+q)−
p+q−1∑
j=q+1

up(xj) = u(xp+q)−
p+q−1∑
j=q+1

u(xj) = y3.

Therefore p ∈ S, whence (p0 − δ, p0 + δ) ⊂ S, so S is open. The proof of Case 2 will

be complete when we show that S is also closed.

S is closed: Assume to the contrary that S is not closed. Then S does not

contain some of its limit points. Choose r0 such that r0 is a limit point of S that is not

contained in S. Then there exists an infinite sequence of distinct points {rt}∞t=1 ⊂ S

such that rt → r0. Without loss of generality, we may assume that {rt}∞t=1 is strictly

monotone, say strictly monotone increasing. Now, {rt}∞t=1 ⊂ S implies that there

exists a sequence {yt(x)}∞t=1 such that, for each t ∈ N, yt(x) is a solution of (4.36)

that satisfies

yt(x1)−
q−1∑
i=2

yt(xi) = z(x1)−
q−1∑
i=2

z(xi),

yt(xq) = rt,

yt(xp+q)−
p+q−1∑
j=q+1

yt(xj) = z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

Choose τ ∈ (xq−1, xq). By Corollary 4.2, there exists a unique solution w(x) of (4.36)
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satisfying

w(τ) = 0,

w(xq) = r0,

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

By Theorem 4.1 we have that the conditions of Theorem 3.2 are met. Also, observe

that yt+1(x1) > yt(x1) on (xq−1, xq+1) for all t ∈ N, else the yt(x), and therefore the

rt, would not be distinct. It follows from Theorem 3.2 and our assumption that r0

is not in S that {yt(x)}∞t=1 cannot be uniformly bounded on any compact subinterval

of (a, b). (See the argument in the proof of Theorem 3.6.) Hence, there exists a

positive integer T1 such that yt(τ) > w(τ) = 0 for all t ≥ T1. Likewise, there

exists θ ∈ (xq, xq+1) and a positive integer T2 such that yt(θ) > w(θ) for all t ≥ T2.

Therefore, for some T ≥ max{T1, T2}, we have

yT (τ) > w(τ), yT (xq) < w(xq) = r0, yT (θ) > w(θ).

It must be the case that w(x)−yT (x) has a zero on (τ, xq), say w(α) = yT (α) for some

α ∈ (τ, xq). Similarly, w(x) − yT (x) must have a zero on (xq, θ), say w(β) = yT (β)

for some β ∈ (xq, θ). We have then that w(x) and yT (x) are solutions of (4.36) that

satisfy

w(α) = yT (α),

w(β) = yT (β),

w(xp+q)−
p+q−1∑
j=q+1

w(xj) = yT (xp+q)−
p+q−1∑
j=q+1

yT (xj) = y3.

Theorem 4.1 gives us that w(x) ≡ yT (x) on (a, b). But that would imply

r0 = w(xq) = yT (xq) = rT < r0,

a contradiction. We conclude that S contains all of its limit points, whereby S is

closed.
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Proof of Case 3: p = m and q = n. Let a < x1 < x2 < · · · < xp+q < b and

y1, y2, y3 ∈ R be given. With the proof of Case 1 we established the existence of a

unique solution of (4.36), say z(x), satisfying

z(x1)−
q−2∑
i=2

z(xi) = y1,

z(xq−1) = 0,

z(xp+q)−
p+q−1∑
j=q+1

z(xj) = y3.

The z(x) solves the differential equation (4.36) and satisfies the boundary conditions

y(x1)−
q−1∑
i=2

y(xi) = y1, (4.47)

y(xp+q)−
p+q−1∑
j=q+1

y(xj) = y3. (4.48)

Define the set S by

S = {u(xq) : u(x) is a solution of (4.36) satisfying (4.47)− (4.48)}.

We may apply the argument from the proof of Case 1 to establish that S = R, whence

y2 ∈ S. This completes the proof of the Theorem.
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