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The invention and development of collider physics in the twentieth century

provides us with opportunities to determine which particles exist in nature, their prop-

erties, and the ways they interact with each other. The discovery of the Higgs boson,

the last undetected particle predicted in the Standard Model (SM) of Particle Physics,

brought a lot of excitement to the international physics community. The SM is based

on the gauge group SU(3)QCD ×SU(2)weak ×U(1)hypercharge . Through a process called

Spontaneous Symmetry Breaking (SSB), it is broken down to SU(3)QCD × U(1)EM

at a scale around 247 GeV [1]. Since the SM is a renormalizable theory with 27

parameters, we can test it by performing enough experiments with enough preci-

sion. It is possible to improve the infrared aspects of the standard treatment of the

DGLAP-CS evolution theory to take into account a large class of higher-order cor-

rections that significantly improve the precision of the theory for any given level of

fixed-order calculation of its respective kernels [2]. We use recently introduced MC

realizations of IR-improved DGLAP-CS parton showers to study the attendant im-

provement effects in W + jets at the LHC in the MG5 aMC@NLO framework for exact

O(αs) corrections. Implementation of the new IR-improved kernels in the framework



of HERWIG6.5 yields the new IR-improved parton shower MC HERWIRI1.031 [3].

Events are showered by HERWIG6.5 and HERWIRI1.031 with PTRMS = 2.2 GeV

and PTRMS = 0 GeV, respectively. We compare our results with the available LHC

data and discuss the corresponding phenomenological implications. In Chapter Four

we have used the latest results provided by CMS and ATLAS for 7 TeV. In Chapter

Five we have used the CMS results published in 2017 for 8 TeV.
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CHAPTER ONE

The Standard Model of Particle Physics

1.1 Introduction

The main aim of particle physics is to search for increasingly accurate the-

ories to describe the fundamental laws of nature. The most fundamental theory of

elementary particles according to our current understanding is the Standard Model

(SM). The SM merges two separate theories: Quantum ChromoDynamics (QCD), a

theory describing the strong force, which is responsible for the attraction between the

protons and the neutrons in the nuclei of atoms, and the ElectroWeak (EW) theory,

which is responsible for some types of radioactive decays such as beta radiation. In

other words, the Standard Model unifies electromagnetism and the two nuclear forces

into one model based on Yang-Mills gauge theories.

The electroweak theory as introduced by Glashow [5], Salam [6], and Weinberg

[7] describes the electromagnetic and weak interactions between quarks and leptons.

In 1961, Glashow constructed a model for weak and electromagnetic interactions

of leptons based on gauge SU(2) × U(1) invariance. He assumed that, together

with photons, there also exist charged W and neutral Z intermediate bosons. The

masses of the W and Z bosons were inserted by hand. The model introduced by

Glashow was unrenormalizable, so he threw it away. In 1967–68, Weinberg and

Salam constructed the SU(2) × U(1) model of electroweak interactions of leptons

using the spontaneous breakdown of the gauge symmetry [8–12]. In 1971–72, it was

proved by t’Hooft and Veltman [13–17] that models of this type are renomalizable.

Weinberg [18] then generalized the model to quarks using the mechanism proposed by

Glashow, Iliopoulos and Maiani [19]. The GWS (Glashow-Weinberg-Salam) theory is

based on the notion that there exist charged and neutral intermediate vector bosons
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and it is constructed in such a way that massless fundamental fermions have SU(2)×

U(1) gauge invariance. Then, the interaction of Higgs [8, 20] scalar fields, with both

gauge vectors and fermions, is introduced. As a consequence of the breakdown of

the underlying symmetry, leptons, quarks and intermediate bosons acquire masses.

In 1973, Politzer [21], Gross and Wilczek [22, 23] discovered a remarkable property

of Yang-Mills theories [24], “asymptotic freedom,” which means that the running

coupling constant solution of the renormalization group equation goes to zero when

the energy goes to infinity. That could explain the experimental fact that the nucleon

behaves in high energy deep inelastic lepton scattering as if it is composed of free

quarks [25]. The strong interactions are mediated by eight massless vector bosons

called gluons, which are in the adjoint representation of SU(3). QCD has the beautiful

property of asymptotic freedom, which provides the means of confining quarks and

gluons.

1.1.1 Predictions

The Glashow-Weinberg-Salam (GWS) theory predicts the existence of neutral

currents. The neutral current of GWS theory is a linear combination of the third

component of the V −A isovector current and the electromagnetic current. The only

free parameter, which enters the definition of the neutral current in the standard

theory, is sin2(θW ) where θW is called the Weinberg angle. Neutral currents were

discovered at CERN in 1973 using a large bubble chamber named Gargamelle [26–29].

In the Gargamelle experiment, the νµ(ν̄µ) + N → νµ(ν̄µ) + X processes and the

ν̄µ + e→ ν̄µ + e process were observed.

After the discovery of the weak interactions between electrons and nucleons by

Stanford [30, 31] and Novosibirsk [32, 33], it became possible to perform a complete

phenomenological analysis of all the neutral current data. In 1980–81, experiments on

the e+e− beams [34] provided new data that also agree with the standard electroweak

theory. For more than five decades, different experiments were performed to increase
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the precision of the parameters proposed and used in the standard model of particle

physics. The Higgs boson was still undetected, although in some experiments people

could find some constraints on its mass [35]. Finally, the ATLAS and CMS experi-

ments at CERN’s Large Hadron Collider (LHC) announced they had each observed

a new particle in the mass region around 126 GeV [36]. The discovery of the Higgs

boson showed that the standard model of particle physics is a consistent mathemati-

cal framework with the ability to have observational predictions. It seems that a new

era of higher precision has begun.

1.1.2 The Precision Theory

The perturbative nature of quantum field theory provides the possibility of

organizing any calculation regarding Feynman diagrams. The computation of higher-

order Feynman diagrams involves the inclusion of real and virtual corrections and is

characterized by different kinds of singularities. Ultraviolet (UV) singularities appear

only in virtual diagrams and are removed by renormalization. Infrared (IR) soft and

collinear divergences, appearing in theories with massless particles, like QED and

QCD, cancel out when summing over all the degenerate physical states. The Bloch-

Nordsieck theorem [37] states that IR divergences cancel out in transition probabilities

for inclusive processes. Order by order in perturbative QED, the sum of the virtual

and real corrections is IR finite.

In this dissertation, we start with the method developed by Yennie, Frautschi

and Suura (YSF) [38,39] for resumming the infrared terms in QED and extend it to

the non-abelian gauge theories, e.g. QCD, EW, QCD ⊗ QED, and Monte Carlo event

generators [2,40–48]. At the end, we give a comparison of the exact amplitude-based

resummation theory with the LHC data for W + jets at
√
s = 7 and 8 TeV.
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1.2 The SM of the Strong and Electroweak Interactions

In this section, we attempt to formulate a gauge theory of electroweak inter-

actions and strong interactions. We first study the SM before electroweak symme-

try breaking. Then, by introducing spontaneous symmetry breaking, we write the

Lagrangian density of the SM along with the Higgs field and show how the Higgs

mechanism generates masses for the three gauge bosons and fermions.

1.2.1 The SM Before Electroweak Symmetry Breaking

Before introducing the SM Lagrangian density, we focus on two different kinds

of fields in the SM, i.e., matter fields and gauge fields. There are three different

generations of left-handed and right-handed chiral quarks and leptons. The left-

handed fermions are in weak isodoublets, while the right-handed fermions are in

weak isosinglets. We write these three different generations as follows:

L1 =

 νe

e−


L

, eR1 = e−R, Q1 =

 u

d


L

, uR1 = uR, dR1 = dR

L2 =

 νµ

µ−


L

, eR2 = µ−R, Q2 =

 s

c


L

, uR2 = cR, dR2 = sR

L3 =

 ντ

τ−


L

, eR3 = τ−R , Q3 =

 t

b


L

, uR3 = tR, dR3 = bR,

(1.1)

where left-handed and right-handed fermions are defined
ψL =

(1− γ5)

2
ψ

ψR =
(1 + γ5)

2
ψ.

(1.2)

We note that the left-handed fermions all transform as left-handed Weyl spinors,

i.e., in the (1
2
, 0) representation of the Lorentz group, the right-handed fermions all

happen to be SU(2) singlets so they are uncharged under the weak interactions and

they transform as right-handed Weyl spinors under the Lorentz group. It is worth to
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noting that the right-handed neutrinos are pure gauge singlets that are beyond the

observables addressed by the GWS theory.

The fermion hypercharge, defined in terms of the third component of the weak

isospin I3
f and the electric charge Qf in units of the proton charge +e, is given by

Yf = 2Qf − 2I3
f . (1.3)

We easily find the fermions hypercharge as follows:

Y{e−, µ−, τ−} = 2(−1)− 2(−1

2
) = −1⇒ YLi = −1

Y{e−R , µ
−
R , τ

−
R }

= 2(−1)− 2(0) = −2⇒ YeRi = −2

Y{u, c, t} = 2(
2

3
)− 2(

1

2
) =

1

3
⇒ YQi =

1

3

Y{d, s, b} = 2(−1

3
)− 2(−1

2
) =

1

3
⇒ YQi =

1

3

YuRi = 2(
2

3
)− 2(0) =

4

3

YdRi = 2(−1

3
)− 2(0) = −2

3
.

(1.4)

We note that the quarks are triplets under the SU(3)c group, while leptons are color

singlets. This leads to the important relation∑
f

Yf =
∑
f

Qf = 0, (1.5)

which ensures the cancellation of chiral anomalies within each generation and pre-

serves the renormalizability of the electroweak theory. Besides fermions, there are the

gauge fields corresponding to the spin-one bosons that meditate the interactions. In

the electroweak sector we have the field Bµ(x), which corresponds to the generator Y

of the U(1)Y group, and the three fields W 1
µ(x), W 2

µ(x), and W 3
µ(x), which correspond

to the generators of the SU(2)L group; these generators for SU(2)L are the famous

Pauli matrices (apart from an additional factor of 1
2
) with the commutation relations

between these generators given by

[Y, Y ] = 0 and [T a, T b] = iεabcT
c with a, b, c = 1, 2, 3, (1.6)
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where εabc is the famous antisymmetric tensor. In the strong interaction sector, there

is an octet of gluon fields G1
µ(x), . . . , G8

µ(x), which correspond to the eight generators

of the SU(3)c group. These correspond to the anti-commuting Gell-Mann matrices,

which obey the relations

[T a, T b] = ifabcT
c with a, b, c = 1, . . . , 8, (1.7)

and

Tr[T aT b] =
1

2
δab, (1.8)

where the tensor fabc is for the structure constants of the SU(3)c group.

The gauge fields are given by

Ga
µν(x) = ∂µG

a
ν(x)− ∂νGa

µ(x) + gsfabcG
b
µ(x)Gc

ν(x)

W a
µν(x) = ∂µW

a
ν (x)− ∂νW a

µ (x) + g2εabcW
b
µ(x)W c

ν (x)

Bµν(x) = ∂µBν(x)− ∂νBµ(x),

(1.9)

where gs, g2, and g1 are, respectively, the coupling constants of SU(3)c, SU(2)L,

and U(1)Y . The non-Abelian nature of the SU(3)c and SU(2)L groups causes self-

interactions between gauge fields W a
µ (x) and W a

µ (x) such as

quadratic gauge boson coupling: − 1

4
g2
sfabcfdecG

a
µG

b
νG

dµGeν , (1.10)

and

triple gauge boson couplings: gsfabcG
a
µG

b
ν∂

µGcν . (1.11)

The matter fields ψ are minimally coupled to the gauge fields through the covariant

derivative Dµ which for the case of quarks is defined as

Dµψ =

(
∂µ − igsT aGaµ − ig2T

aWaµ − ig1
Yq
2
Bµ

)
ψ, (1.12)

which leads to the coupling between the fermion and gauge fields, for example

− gsψ̄Ga
µγ

µψ. (1.13)
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The SM Lagrangian without mass terms for fermions and gauge bosons is given by

LSM = −1

4
Ga
µνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν

+ iL̄i /DµLi + iēRi /DµeRi + iQ̄i /DµQi + iūRi /DµuRiid̄Ri /DµdRi .

(1.14)

This Lagrangian is clearly invariant under any local SU(3)c×SU(2)L×U(1)Y gauge

transformations for fermions and gauge fields. In the case of the electroweak sector,

for instance, we have

L(x)→ L
′
(x) = ei

∑3
a=1 αa(x)Ta+iβ(x)YL(x)

R(x)→ R
′
(x) = eiβ(x)YR(x)

~Wµ(x)→ ~W
′
µ(x) = ~Wµ(x)− 1

g2
∂µ~α(x)− ~α(x)× ~Wµ(x)

Bµ(x)→ B
′
µ(x) = Bµ(x)− 1

g1
∂µβ(x).

(1.15)

The gauge bosons and the fermions have been kept massless in this Lagrangian. We

show how by implementing the Higgs mechanism, which is based on spontaneous

symmetry breaking, the fermions and gauge bosons gain masses.

1.3 The Higgs Mechanism

We start with a simple scalar real field φ with the usual Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 − 1

4
φ4. (1.16)

This Lagrangian is clearly invariant under the transformation φ → −φ since it does

not include cubic terms. If the mass term µ2 is positive, the potential V (φ) is also

positive if the self-coupling λ is positive and the minimum of the potential is obtained

for φ0 ≡ 〈0|φ|0〉 = 0 shown in the left-hand side of Figure (1.1). If µ2 < 0, the

potential V (φ) has a minimum, which can be found as follows

d

dφ
V (φ) = µ2φ+ λφ3 = 0⇒ φ = 0, ±

√
−µ

2

λ
. (1.17)

Since
d2

dφ2
V (±

√
−µ

2

λ
) > 0, we conclude that φ2

0 ≡
〈
0|φ2|0

〉
= −µ

2

λ
≡ v2, and it is

obvious that φ = 0 is not a minimum as shown in the right-hand side of Figure 1.1.
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We must expand φ around one of the minima v by defining the field σ as φ = v + σ.

We rewrite the Lagrangian in terms of new field σ, and the Lagrangian becomes

L =
1

2
∂µσ∂

µσ − (−µ2)σ2 −
√
−µ2λσ3 − λ

4
σ4 − λ

4
(
µ2

λ2
)2. (1.18)

The Lagrangian in Eq. (1.18) is related to a theory of scalar field of mass m2 = −2µ2,

Figure 1.1: The potential V of the scalar field φ in the case µ2 > 0 (left) and µ2 < 0 (right).

with σ3 and σ4 self-interactions. Since the new Lagrangian now contains cubic terms,

the σ → −σ symmetry is broken: it is not anymore apparent in L. It can be

shown that for every spontaneously broken continuous symmetry, besides massive

particles, the theory also contains massless scalar spin-0 particles called Goldstone

bosons. This brings us to the Goldstone theorem: For every spontaneously broken

continuous symmetry, the theory contains massless scalar (spin-0) particles called

Goldstone bosons.

1.3.1 The Higgs Mechanism in an Abelian Theory

We can apply the same argument to the case of a local U(1) symmetry. A

complex scalar field coupled to itself and to an electromagnetic field Aµ(x)

L = −1

4
FµνF

µν +Dµφ
∗Dµφ− µ2φ∗φ− λ(φ∗φ)2, (1.19)
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with Dµ = ∂µ − ieAµ. The Lagrangian is invariant under the usual local symmetry

U(1) transformation

φ(x)→ eiα(x)φ(x) and Aµ(x)→ Aµ(x)− 1

e
Aµ(x). (1.20)

For µ2 < 0, the field φ(x) will acquire a vacuum expectation value and the minimum

of the potential V will be at

〈φ0〉 ≡ 〈0|φ|0〉 =

√
(−µ

2

2λ
) ≡ v√

2
. (1.21)

We thus expand the scalar field φ(x) around the vacuum state 〈φ0〉

φ(x) =
1√
2

[v + φ1(x) + iφ2(x)] (1.22)

and rewrite the Lagrangian in the form

L = −1

4
FµνF

µν +
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 − v2λφ2

1 +
1

2
e2v2Aµ(x)Aµ(x)− evAµ(x)∂µφ2.

(1.23)

We can conclude:

• There is photon mass term in the Lagrangian with MA = ev = −eµ
2

λ
.

• We still have a scalar particle φ1 with mass Mφ1 = −2µ2.

• We have a Goldstone boson φ2.

1.4 The Higgs Mechanism in the SM

Applying the Higgs mechanism to the case of SM is more complicated than our

example for Abelian gauge theory. We have different gauge bosons in the standard

model. Only three gauge bosons W± and Z should acquire mass and the photon

and gluons should still remain massless. Therefore, we need at least three degrees

of freedom for the scalar fields. The simplest choice is a complex SU(2) doublet of

scalar field φ

ΦH(x) =

 φ+

φ0

 , (1.24)
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with Yφ = +1 and I3
φ = −1

2
. We now add the invariant terms of the scalar field part

LH = (DµΦH(X))(DµΦH(X))− µ2Φ†H(x)ΦH(x)− λ(Φ†H(x)ΦH(x)), (1.25)

with

DµΦH(x) =

(
∂µ − ig2

τa

2
W a
µ − ig1

1

2
Bµ

)
ΦH(x). (1.26)

For µ2 < 0, the neutral component of the doublet field ΦH will develop a

non-zero vacuum expectation value

〈ΦH〉0 ≡ 〈0|ΦH |0〉 =

 0

v√
2

 with v =

√
−µ

2

λ
(1.27)

We now write the field ΦH(x) in terms of four fields θ1,2,3(x) and H(x) at first order

as follows

ΦH(x) =

 θ2 + iθ1

1√
2
(v +H(x))− iθ3

 = eiθa(x) τ
a

v

 0

1√
2
(v +H(x))

 . (1.28)

We then define the gauge transformation for ΦH(x) in the form

ΦH(x)→ Φ
′

H(x) = e−iθa(x)τaΦH(x) =

 0

1√
2
(v +H(x))

 . (1.29)

One can prove that |DµΦH(x)|2 can be written in the form

|DµΦH(x)|2 =

∣∣∣∣(∂µ − ig2
τa
2
W a
µ − i

1

2
g1Bµ(x)

)
ΦH(x)

∣∣∣∣2

=
1

2

∣∣∣∣∣
 ∂µ − i

2
(g2W

3
µ + g1Bµ) − ig2

2
(W 1

µ − iW 2
µ)

g − ig2

2
(W 1

µ + iW 2
µ) ∂µ + i

2
(g2W

3
µ − g1Bµ)


 0

v +H(x)

∣∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v +H)2|W 1
µ + iW 2

µ |2 +
1

8
(v +H)2|g2W

3
µ − g1Bµ|2.

(1.30)

Now we define the new fields W± and Zµ:

W± =
1√
2

(W 1
µ + iW 2

µ), Zµ =
g2W

3
µ − g1Bµ√
g2

1 + g2
2

, Aµ =
g2W

3
µ + g1Bµ√
g2

1 + g2
2

. (1.31)
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By picking up the terms that are bilinear in the fields W±, Zµ, Aµ, we obtain

M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµA
µ. (1.32)

During the spontaneous breaking of symmetry, the gauge bosons W± and Zµ

gain masses. Aµ still remains massless:

MW =
v

g2

, MZ =
v

2

√
g2

1 + g2
2, MA = 0. (1.33)

So far, we have shown how gauge fields acquire masses through the Higgs

mechanism. The question is how fermions gain masses under the spontaneous break-

ing of symmetry. We can generate the fermion masses using the same scalar field

ΦH with hypercharge Y = 1 by using the isodoublet Φ̃H(x) = iτ2Φ∗H(x), which has

hypercharge Y = −1. We introduce the SU(2)L×U(1)Y invariant Yukawa Lagrangian

Lfermion = −λeL̄ΦHeR − λdQ̄ΦHdR − λuQ̄Φ̃HuR + h.c. (1.34)

For the case of the electron, we obtain

Le = − 1√
2

(ν̄e, ēL)

 0

(v +H(x))

 eR

= − 1√
2
λe(v +H)ēLeR,

(1.35)

which leads to me =
λev√

2
. Similarly, we find mu =

λuv√
2

and md =
λdv√

2
.

1.4.1 The Higgs Particle in the SM

We find the Higgs Lagrangian in terms of the vacuum expectation value (VEV)

and H(x). We start with the Higgs potential term V (ΦH) = µ2Φ†HΦH + λ(Φ†HΦH)2

V =
µ2

2
(0, v +H)

 0

(v +H(x))

+
λ

4

∣∣∣∣∣(0, v +H)

 0

(v +H(x))

∣∣∣∣∣
2

= −1

2
λv2(v +H)2 +

1

4
(v +H)4.

(1.36)
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We rewrite the Higgs Lagrangian in the form

LH =
1

2
(∂µH)(∂µH)− V

=
1

2
(∂µH)2 − λv2H2 − λvH3 − λ

4
H4.

(1.37)

From the Higgs Lagrangian, one can find that the Higgs particle mass reads

M2
H = 2λv2 = −2µ2. (1.38)

The VEV, v, is fixed in terms of W bosons mass MW or the Fermi constant G as

follows

MW =
1

2
g2v =

(√
2g2

8G

) 1
2

⇒ v =
1

(
√

2G)
1
2

' 246 GeV. (1.39)

Finally, we summarize the interactions of the fermions and gauge bosons in

the electroweak standard model. The equations for the field rotation that lead to the

physical gauge bosons in Eq. (1.31) define the Weinberg angle θW
1 as follows Aµ = cos θWBµ + sin θWW

3
µ

Zµ = − sin θWBµ + cos θWW
3
µ

(1.40)

where

sin θW =
g1√
g2

1 + g2
2

=
e

g2

=

√
1− M2

W

M2
Z

. (1.41)

Using the results in Eq. (1.40), we can rewrite the fermionic part of the SM Lagrangian

in the form

LN.C. = eJAµ A
µ +

g2

cos θW
JZµ Z

µ,

LC.C. =
g2√

2
(J+
µW

+µ + J−µW
−µ),

(1.42)

1Angle by which spontaneous symmetry breaking rotates the original vector boson plane and
producing as a result the Z boson and the photon.
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for the neutral and charged current parts, respectively. The corresponding currents

are given by

JAµ = Qf f̄γµf,

JZµ =
1

4
f̄γµ[(2I3

f − 4Qf sin2 θW )− 2γ5I
3
f )]f,

J+
µ =

1

2
f̄uγµ(1− γ5)fd.

(1.43)

1.5 Summary

We can summarize our discussion of the SM in a compact Figure 1.2. The

electroweak theory with QCD forms the Standard Model of particle physics. In the

SM there is some interplay between the electroweak sector and the QCD sector due

to the fact that particles feel both forces. The SM summarizes the present knowledge

of particle physics.

• There are twelve force carriers: the eight gluons, the W±, Z0 and the photon.

• The matter particles are divided into two types: leptons and quarks. We also

must include their antiparticles.

• We have a grand total of 61 particles in the SM: 6 × 2 leptons, 6 × 3 × 2

quarks, 12 gauge bosons and the Higgs boson.

13



Figure 1.2: Elementary particles in the SM2

2Picture taken from https://en.wikipedia.org/wiki/Standard_Model/
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CHAPTER TWO

DGLAP-CS Theory

2.1 Introduction

The quark parton model introduced by Feynman [49, 50] provides us with a

simple description of the physics of deep inelastic scattering. Later on, Gross and

Wilczek [22, 23] and Politzer [21] independently introduced a theoretical framework,

which is given by the asymptotically free gauge theory of strong interactions based

on the color algebra. In the leading logarithmic approximation, the results can be

phrased in the parton language by assigning a well determined Q2 dependence to the

parton densities.

In this chapter we prove that an alternative derivation of all results for the

Q2 behaviour of deep inelastic scattering is possible. This approach, although less

general, is simpler than the usual approach, which can be derived in a direct way

from the basic vertices of QCD.

2.2 The Master Equations

We start with the unpolarized case when only the densities

qi(x) = qi+(x) + qi−(x) (2.1)

are relevant. We start by considering the simplest case of only one flavour of quark.

We denote it by qNS (x) in which we mean the net number of quarks in the proton,

that is, the algebraic summation of quarks and anti-quarks in the proton as follows:

qNS (x, t) = q(x, t)− q̄(x, t), (2.2)

where the variable t is defined as t = ln(Q
2

Q2
0
) with Q2

0 a suitable renormalization point.

The label NS stands for non singlet. The Q2 dependence can be expressed in terms

15



of moments of parton densities. We define

MNS
n (t) =

1∫
0

dx xn−1qNS (x, t). (2.3)

One can prove [22,23] that the t dependence of the moments is of the form

MNS
n (t) = MNS

n (0)

[
α(0)

α(t)

]ANS
n

2πb

. (2.4)

Here α(t) is the running coupling constant of QCD, where α(t) = g2(t)
4π

. In the leading

logarithmic approximation α(t) is of the form [51,52]

α

α(t)
= 1 + bαt, (2.5)

with α = α(0) and b = 11C2(G)−4T (R)
12π

, where C2(G) and T (R) are Casimir operators

for the adjoint representation G of the color group and for the representation R of

the fermion, respectively (see Appendix A).

Now we differentiate both sides of Eq. (2.4) with respect to t to find the

differential equation for MNS
n (t) by using the result in Eq. (2.5). One can show:

d

dt
MNS

n (t) = MNS
n (0)

d

dt

[
α(0)

α(t)

]ANS
n

2πb

(2.6)

= MNS
n (0)

d

dt

[
1 + αbt

]ANS
n

2πb

(2.7)

=
ANS
n

2π
α(0)

[
1 + αbt

]ANS
n −1

2πb

. (2.8)

A little simplification yields:

d

dt
MNS

n (t) =
α(t)

2π
MNS

n (t)ANS
n , (2.9)

with assigned initial value MNS
n = MNS

n (0). It is easy to show that Eq. (2.9) can be

written of the form:

dqNS (x, t)

dt
=
α(t)

2π

1∫
x

dy

y
qNS (y, t)P

(
x

y

)
, (2.10)
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provided that

1∫
0

dz zn−1P (z) = ANS
n . (2.11)

We multiply both sides of Eq. (2.11) by xn−1 and integrate from 0 to 1. We then find:

1∫
0

dx
dqNS (x, t)

dt
xn−1 =

α(t)

2π

1∫
0

dx xn−1

1∫
x

dy

y
qNS (y, t)P

(
x

y

)
. (2.12)

By using Eq. (2.3) we rewrite the left hand side of Eq. (2.12) as follows:

dMNS
n

dt
=
α(t)

2π

1∫
0

dx xn−1

1∫
x

dy

y
qNS (y, t)P

(
x

y

)
. (2.13)

It is easy to show the integration order can be interchanged by using
1∫
0

dx
1∫
x

dy (...) =

1∫
0

dy
y∫
0

dx (...). We can rewrite Eq. (2.13) as follows:

dMNS
n

dt
=
α(t)

2π

1∫
0

dy xn−1

y∫
0

dx

y
qNS (y, t)P (

x

y
). (2.14)

Introducing a new variable z =
x

y
yields:

dMNS
n

dt
=
α(t)

2π

1∫
0

dy yn−1qNS (y, t)

1∫
0

dz zn−1P (z). (2.15)

We compare Eq. (2.15) with Eq. (2.9) and find that

MNS
n (t) =

1∫
0

dy yn−1qNS (y, t) (2.16)

is valid if and only if ANS
n =

1∫
0

dz zn−1P (z). It is convenient to rewrite Eq. (2.10) in

the form

qNS (x, t) + dqNS (y, t) =

1∫
0

dy

1∫
0

dz δ(zy − x)qNS (y, t)

[
δ(z − 1) +

α

2π
P (z)dt

]
.

(2.17)
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The interpretation of this equation is very easy. Given a quark with momentum

y there is a chance that it radiates a gluon by reducing its energy from y to x. we

can easily conclude that the quantity

Pqq + dPqq = δ(z − 1) +
α

2π
P (z)dt, (2.18)

is the probability density of finding, inside a quark, another quark with fraction z of

the parent momentum. The α
2π
P (z)dt term is the variation per unit t at order α of

the probability density of finding inside a quark another quark with fraction z of the

parent momentum.

In parton language, singlet density is a combination of the sum of all quark and

anti-quark densities and gluon densities inside the proton in the P∞ frame. We write

down differential equations similar to Eq. (2.10) that describe the Q2 dependence in

the general case we demonstrated above. They are

dqi(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[ 2f∑
j=1

qj(y, t)Pqiqj

(
x

y

)
+G(y, t)PqiG

(
x

y

)]
, (2.19)

dG(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[ 2f∑
j=1

qj(y, t)PGqj

(
x

y

)
+G(y, t)PGG

(
x

y

)]
. (2.20)

The indices i and j run over quarks and anti-quarks of all flavours. Quarks at higher

energy can lose energy by gluon radiation. Similarly, a gluon inside the proton may

annihilate into a quark and anti-quark or a gluon-gluon pair. This is why the number

of gluons changes.

One can simplify Eqs. (2.19) and (2.20) by using the fact that color and flavour

commute. We immediately derive the following properties for splitting functions as

follows:

• A gluon is emitted without flavour exchange → Pqiqj is diagonal.

• The probability of a emitting a gluon is the same for all flavours if we neglect

the mass of all particles → PGqj = PGq.
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• Gluon annihilation creates a quark and anti-quark pair with equal probability

for all flavours → PqiG = PqG.

By imposing the above conditions on Eqs. (2.19) and (2.20), one can rewrite them in

the simpler form

dqi(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[
qi(y, t)Pqq

(
x

y

)
+G(y, t)PqG

(
x

y

)]
, (2.21)

dG(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[ 2f∑
j=1

qj(y, t)PGq

(
x

y

)
+G(y, t)PGG

(
x

y

)]
. (2.22)

By summing Eq. (2.22) over i = 1, . . . , 2f , we find

d
∑2f

i=1 q
i(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[ 2f∑
j=1

qj(y, t)Pqiqj

(
x

y

)
+ 2fG(y, t)PqiG

(
x

y

)]
. (2.23)

It is the matrix

1∫
0

dz zn−1

Pqq(z) 2fPqG(z)

PGq(z) PGG(z)

 ≡
ANS

n 4T (R)AqGn

AGqn AGGn )

 (2.24)

that gives the logarithmic exponents for each n as given in [22, 23, 53]. It is clear

that for each value of n the matrix in Eq. (2.24) must be diagonalized to find the

eigenvalues and eigenvectors of the Q2 evolution equations.

We can also find the derivatives for two quarks (or a quark and an anti-quark)

for the non-singlet case by subtracting Eq. (2.21) twice. We obtain

dqi(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[
qi(y, t)Pqq

(
x

y

)
+G(y, t)PqG

(
x

y

)]
, (2.25)

dqj(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[
qj(y, t)Pqq

(
x

y

)
+G(y, t)PqG

(
x

y

)]
. (2.26)

By subtracting Eq. (2.25) from Eq. (2.26) one can find

d
[
qi(x, t)− qj(x, t)

]
dt

=
α(t)

2π

1∫
x

dy

y

[
qi(x, t)− qj(x, t)

]
Pqq

(
x

y

)
. (2.27)
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This shows that Pqq is the same function for singlet quarks and for all types of non-

singlet anti-quarks.

The functions α(t)
2π
PGq(z) and α(t)

2π
PqG(z) can be interpreted as probability den-

sities. The first, α(t)
2π
PGq(z), is the probability density per unit t at order α of finding a

gluon inside a quark (or an anti-quark) with fraction z of the momentum of the parent

quark. Similarly, α(t)
2π
PqG(z) can be interpreted as the probability density per unit t

at order α of finding a quark (or an anti-quark) inside a gluon with with fraction z of

the momentum of the parent gluon. Needless to say, either α(t)
2π
PGq(z) or α(t)

2π
PqG(z)

is non-diagonal. For the diagonal functions α(t)
2π
Pqq(z) and α(t)

2π
PGG(z) the probability

involves delta function singularities at z = 1. For example, for cases including gluons

one can write

PGG + dPGG = δ(z − 1) +
α

2π
PGG(z)dt. (2.28)

Therefore only for z < 1, α(t)
2π
PGq(z) and α(t)

2π
PqG(z) are probability densities.

2.3 Properties of DGLAP-CS Splitting Functions

Based on conservation of momentum and the number of particles, we can

immediately find some interesting properties of these splitting functions as explained

below.

1. The total number of quarks minus anti-quarks is conserved. This means

that the probability of finding a quark in a quark over all values of z must add up to

one. It follows that the integrated correction of order α must be zero

1∫
0

dz Pqq(z) = 0, (2.29)

which means

ANS
n = 0 for n = 1. (2.30)
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This is another indication that charges are protected against Q2 corrections. We shall

see that the values of ANS
n are all negative for n > 1 due to the presence of δ function

singularities that destroy the positive definiteness of the integrals Pqq and PGG.

2. Momentum conservation puts further restrictions on the P functions at

z < 1. We obtain

Pqq(z) = PGq(1− z), (2.31)

PqG(z) = PqG(1− z), (z < 1) (2.32)

PGG(z) = PGG(1− z). (2.33)

To interpret Eq. (2.31), one can say when a quark splits into a gluon with fraction (1−

z) of its momentum and another quark with fraction z of its momentum, conservation

of momentum requires that Pqq(z) = PGq(1−z). Otherwise, momentum conservation

is violated.

3. At z = 1, due to the presence of the δ function, Eqs. (2.31), (2.32), and

(2.33) are violated. But it must remain true that the total momentum of the proton

remains unchanged. We obtain

1∫
0

dz z
[
Pqq(z) + PGq(z)

]
= 0, (2.34)

1∫
0

dz z
[
PqG(z) + PGG(z)

]
= 0, (2.35)

which guarantee the conservation of the total momentum of the proton, as expected.

We return to the master equation, Eq. (2.24). Based on the properties of

the DGLAP-CS splitting functions derived above, we find some useful relationships

between matrix elements ANS
n , AqGn , AGqn , and AGGn . For example, using Eqs. (2.24)

and (2.31) results in

ANS
n =

1∫
0

dz zn−1Pqq(z) =

1∫
0

dz zn−1PGq(1− z). (2.36)
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Making a change of variable z → 1− z and replacing z by 1− z results in

ANS
n =

1∫
0

dz (1− z)n−1PGq(z) =

1∫
0

dz
n−1∑
k=0

(−1)kzk
(
n− 1

k

)
PGq(z) (2.37)

=
n−1∑
k=0

(−1)k
(
n− 1

k

) 1∫
0

dz zkPGq(z) =
n−1∑
k=0

(−1)k
(
n− 1

k

)
AGqk+1. (2.38)

Eq. (2.29) implies for n = 1 that AGq1 = 0. We can eliminate AGq1 from Eq. (2.38) and

write a sum rule for the logarithmic exponents with n > 1, which reads

ANS
n =

n−1∑
k=1

(−1)k
(
n− 1

k

)
AGqk+1. (2.39)

Another similar sum rule is obtained for the combination AqGn and AGGn by using

Eqs. (2.31), (2.32), (2.33), (2.34), and (2.35). We start with

1∫
0

dz zn−1
[
2fPqG(1− z) + PGG(1− z)

]
=

1∫
0

dz(1− z)n
[
2fPqG(z) + PGG(z)

]
(2.40)

=
n−1∑
k=0

(−1)k
(
n− 1

k

) 1∫
0

dz (z)n
[
2fPqG(z) + PGG(z)

]
. (2.41)

We find Bn:

Bn = 2fAqGn + AGGn =
n−1∑
k=2

(−1)k
(
n− 1

k

)[
2fAqGK+1 + AGGK+1

]
(2.42)

=
n−1∑
k=2

(−1)k
(
n− 1

k

)
Bk+1. (2.43)

Or equivalently,

[
1 + (−1)n

]
Bn =

n−1∑
j=3

(−1)j−1

(
n− 1

j − 1

)
Bj. (2.44)

This relation implies that the Bn’s for even n are determined by the Bn’s for odd n.
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2.4 Calculation of Logarithmic Exponents

2.4.1 Spin Average Case

In this section we compute the splitting functions Pqq, PqG, PGq, and PGG

based on the basic vertices of QCD. The method we deal with here is the extension of

the results of von Weizsacker-Williams [54] in quantum electrodynamics (QED). In

this case, the equivalent number of photons inside an electron with fraction z of the

electron momentum is evaluated to order α and contains a factor of ln( E
me

), which

plays the same role as t = ln(Q
2

Q2
0
) in our case.

We first calculate P (z) at z < 1 in the absence of the δ function in P (z), and

then we shall deal with with δ function singularities at z = 1. We want to evaluate the

probability of finding a particle B inside a particle A with fraction z of the momentum

of A in the p∞ frame to lowest order α. We derived the probability formula in the

previous section

dPBA =
α

2π
PBA(z)dz dt. (2.45)

Figure 2.1: (Left) The intermediate state B added to the process A + D → C + f .
(Right) B +D → f1.

We suppose that C is the third particle in the vertex where B and A appear.

By comparing the cross section for the two processes in Figure 2.1, where D is a given

particle and f is an arbitrary final state, we can easily identify the probability. We

1Taken from Ref. [52].
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first define the matrix element

Sij − δij = 2πiδ(Ej − Ei)Mij

∏
k

1√
2Ek

, (2.46)

where k runs over all external particles. We use the old perturbation theory results

to find the contribution to Mij in Eq. (2.46) of a given intermediate state B for the

left diagram in Figure 2.1. MA+D→C+f can be written

MA+D→C+f = g2 VA→B+CVB+D→f

2EB(EB + EC − EA)
, (2.47)

where Vij is the invariant matrix element of the interaction. Similarly, for the right

diagram in Figure 2.1 we obtain

MB+D→f = gVB+D→f . (2.48)

We can easily find the cross section associated with the left and right diagrams in

Figure 2.1 as follows

dσLeft =
g4

8EAED

|VA→B+C |2|VB+D→f |2

4E2
B(EB + EC − EA)2

× (2π)2δ4(kA + kD − kC − kf )
d3kC

(2π)32EC

∏
f

d3Pf
(2π)32Ek

(2.49)

dσRight =
g2

8EAED
|VB+D→f |2(2π)4δ4(KB + kD − kf )

∏
f

d3Pf
(2π)32Ek

. (2.50)

By using Eq. (2.45),

dσLeft = dPBA dz dσRight , (2.51)

and one can relate Eqs. (2.49) and (2.50) to obtain dPBA:

dPBA dz =
EB
EA

|VA→B+C |2

4E2
B(EB + EC − EA)2

d3kC
(2π)3(2EC)

. (2.52)
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We use our results in Appendix C to simplify the above equation:

kµA = (p,~0, p) (2.53)

kµB = (zp+
P 2
T

2zp
, ~PT , zp) (2.54)

kµC = ((1− z)p+
P 2
T

2(1− z)p
,− ~PT , (1− z)p). (2.55)

We thus have

4E2
B(EB + EC − EA)2 =

P 4
T

(1− z)2p2
(p+

P 2
T

2z2p
)2

=
P 4
T

(1− z)2
+O(P 8

T ),

(2.56)

d3kC
(2π)3(2EC)

=
dk1

Cd
2kC

16π3(1− z)

=
dzdP 2

T

16π2(1− z)
,

(2.57)

while dk1
Cd

2kC = πd((1− z)p)(−dP 2
T ) = πpdz dP 2

T .

Thus, the result is

dPBA(z) =
α

2π

z(1− z)

2

∑
spins

|VA→B+C |2

P 2
T

d ln(P 2
T ), (2.58)

where the sum is over the spins of B and C and an average over the spin of A is

indicated (if it is necessary). In the case of interest, |VA→B+C |2 vanishes linearly in

P 2
T . This indicates that the ratio |VA→B+C |2

P 2
T

in Eq. (2.58) is finite at P 2
T = 0. Also, for

a virtual mass −Q2 for particle D, the integral in P 2
T has an upper limit of order Q2,

so at the leading logarithmic approximation, d ln(P 2
T ) can be directly interpreted as

dt. By comparing Eq. (2.58) and (2.45) we obtain

PBA(z) =
1

2
z(1− z)

∑
spins

|VA→B+C |2

P 2
T

(z < 1), (2.59)

which only depends on the vertex ABC as expected.
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2.4.2 The Quark-Gluon Vertex

Let us now focus on the quark gluon vertex in Figure 2.2 in order to evaluate

PGq(z). In this case VA→B+C = Vq→Gq. We must find∑
spins

|Vq→Gq|2 =
∑
spins

Vq→Gq × V †q→Gq.

It is easy to show

Vq→Gq = iūjs(kC)γµtaiju
i
s(kA)εµ, (2.60)

where εµ is the gluon’s polarization. We obtain∑
spins

|Vq→Gq|2 =
1

2× 3

∑
spins,pol ,color

|iūs(kC)γµtaijus(kA)εµ|2

=
1

2

∑
a Tr(tata)

3
Tr(/kCγ

µ/kAγ
ν)
∑
pol

εµε
∗
ν

=
1

2
C2(R)Tr(/kCγ

µ/kAγ
ν)
∑
pol

εµε
∗
ν

=
1

2
C2(R)(4)(kµCk

ν
A + kνCk

µ
A − kC · kAg

µν)
∑
pol

εµε
∗
ν .

(2.61)

Care must be taken so that only physical transverse gluon states are included in the

sum, and we therefore write ∑
pol

εµε
∗
ν → δij − kiBk

j
B

k2
B

. (2.62)

Figure 2.2: The quark gluon vertex which determines PGq and Pqq.
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We use Eq. (2.62) to simplify Eq. (2.61). One can show∑
spins

|Vq→Gq|2 =
1

2
C2(R)(4)(kjCk

i
A + kiCk

j
A − (kC · kA)gij)× (δij −

kBikBj
k2
B

)

=
1

2
C2(R)(4)(2~kA · ~kC − 2

(~kA · ~kB)(~kC · ~kB)

~k2
B

+ 2(kA · kC))

= 4C2(R)

[
(1− z)p2 − (zp2)(z(1− z)p2 − P 2

T )

z2p2
+

P 2
T

1− z

]
' 2C2(R)

z2(1− z)
(1 + (1− z)2)P 2

T +O(P 4
T ).

(2.63)

We can thus state the result

PGq(z) =
1

2
z(1− z)

∑
spins

|Vq→Gq|2 ×
1

P 2
T

= C2(R)
1 + (1− z)2

z
→ PGq(z) = C2(R)

1 + (1− z)2

z
,

(2.64)

which holds for all z, since we are dealing with a non-diagonal density. From the last

equation, by using the symmetry relation PGq(z) = Pqq(1− z), we also obtain

pqq(z) = C2(R)
1 + z2

1− z
(z < 1). (2.65)

The 1
1−z singularity in Pqq(z) arises from the soft gluon Bremsstrahlung spectrum and

are typical of vector theories. We will regularize it by interpreting it as a distribution

function.

2.4.3 The Gluon Annihilation Vertex

We now calculate PqG from the vertex in Figure 2.3. Since PqG is proportional

to the probability density of finding inside a gluon (averaged over colors) a quark (or

an anti-quark) of given flavour and of any color, in this case the sum and average in

color space simply bring in a factor of 1
2
. We have

VG→qq̄ = ivjs(kC)γµtaijū
i
s(kB)εµ, (2.66)
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∑
spins

|VG→qq̄|2 =
1

8

∑
spins,pol ,color

|ivs(kC)γµtaijūs(kB)εµ|2

=

∑
a Tr(tata)

8
Tr(/kCγ

µ/kBγ
ν)

1

2

∑
pol

εµε
∗
ν

=
1

4
Tr(/kCγ

µ/kBγ
ν)
∑
pol

εµε
∗
ν

=
1

4
(4)(kµCk

ν
B + kνCk

µ
B − (kC · kB)gµν)

∑
pol

εµε
∗
ν

= (kiCk
j
B + kjCk

i
B − (kC · kB)gij)× (δij − kiAk

j
A

k2
A

)

= 2(~kB · ~kC −
(~kA · ~kC)(~kB · ~kA)

~k2
A

+ (kA · kC))

= P 2
T

z2 + (1− z)2

z(1− z)
.

(2.67)

We finally derive

PqG(z) =
z2 + (1− z)2

2
. (2.68)

The symmetry under the change of z into (1 − z) in expected because PqG(z) =

Pq̄G(1− z) = PqG(1− z) as we mentioned before.

2.4.4 The Three-Gluon Vertex

One can show

VG→GG = −2iCabc

[
(εaA · εbB)(kB · εcC)− (εaA · εcC)(kC · εbB)− (εcC · εbB)(kB · εaA)

]
, (2.69)

Figure 2.3: The annihilation vertex of a gluon into quark and anti-quark pair, which fixes
PqG.

28



where kA · εaA = kB · εbB = kC · εcC = 0 and 1
N2−1

∑
bcCabcCabc = C2(G). It is only

a matter of algebra to derive the result for the three-gluon vertex in Figure 2.4 as

follows: ∑
spins

|VG→GG|2 = 4C2(G)
P 2
T

z(1− z)

[
1− z
z

+
z

1− z
+ z(1− z)

]
, (2.70)

and

PGG(z) = 2C2(G)

[
1− z
z

+
z

1− z
+ z(1− z)

]
(z < 1), (2.71)

which is completely consistent with PGG(z) = PGG(1 − z). We now complete the

determination of Pqq(z) and PGG(z) by fixing their behaviour at z = 1. Note that all

moments of these two functions would be divergent at z = 1. We therefore start by

regularizing the factor 1
1−z by reinterpreting it as a distribution 1

(1−z)+
that has the

following properties:

1∫
0

dz f(z)

(1− z)+

≡
1∫

0

f(z)− f(1)

1− z
dz =

1∫
0

dz ln (1− z)
d

dz
f(z) (2.72)

1∫
0

dz
1

(1− z)+

= 0, (2.73)

with f(z) being an arbitrary test function that is sufficiently regular at the end point.

We then add to Pqq(z)and PGG(z) a δ(1 − z) with the coefficient determined by the

Figure 2.4: The three-gluon vertex relevant to PGG.
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constraints in the equations above. We thus rewrite Pqq(z) and PGG(z) as follows:

Pqq(z) = C2(R)

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
, (2.74)

and

PGG(z) = 2C2(G)

[
z

(1− z)+

+
1− z
z

+ z(1− z) +

(
11

12
− 1

3

T (R)

C2(G)

)
δ(1− z)

]
. (2.75)

2.4.5 The Logarithmic Exponents

By having Pqq(z), PqG(z), PGq(z), and PGG(z), one can evaluate the moments

of the P (z) functions, which give the set of constants An according to Eq. (2.24).

We first calculate the moments of 1
(1−z)+

, which is useful for future calculations. A

straightforward integration yields

1∫
0

dz zn−1

(1− z)+

≡
1∫

0

zn−1 − 1

1− z
dz = −

n−1∑
j=1

1

j
. (2.76)

We finally obtain

ANS
n ≡

1∫
0

dz zn−1Pqq(z) = C2(R)

[
− 1

2
+

1

n(n+ 1)
− 2

n∑
j=2

1

j

]
, (2.77)

AGqn ≡
1∫

0

dz zn−1PGq(z) = C2(R)
n2 + n+ 2

n(n2 − 1)
, (2.78)

4T (R)AqGn ≡ 2f

1∫
0

dz zn−1PqG(z) = 2T (R)
n2 + n+ 2

n(n+ 1)(n+ 2)
, (2.79)

and

AGGn ≡
1∫

0

dz zn−1PGG(z) = C2(G)

[
− 1

6
+

2

n(n− 1)
+

2

(n+ 1)(n+ 2)
− 2

n∑
j=2

1

j
− 2

3

T (R)

C2(G)

]
.

(2.80)

This set of logarithmic exponents coincide with the results of Refs. [22, 23,53].
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2.5 Spin-dependent Case

2.5.1 The Master Equations

We consider the Q2 dependence of quark densities with given helicity, which

are relevant for scaling breaking effects in deep inelastic scattering on polarized tar-

gets. Based on a similar approach in the previous section, one can write the master

equations as follows:

dqi±(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[
qi+(y, t)Pq±q+

(
x

y

)
+ qi−(y, t)Pq±q−

(
x

y

)

+G+(y, t)Pq±G+

(
x

y

)
+G−(y, t)Pq±G−

(
x

y

)]
,

(2.81)

dG±(x, t)

dt
=
α(t)

2π

1∫
x

dy

y

[ 2f∑
i=1

qi+(y, t)PG±q+

(
x

y

)
+

2f∑
i=1

qi−(y, t)PG±q−

(
x

y

)

+G+(y, t)PG±G+

(
x

y

)
+G−(y, t)PG±G−

(
x

y

)]
.

(2.82)

The previous set of equations can be simplified by considering that parity conservation

in QCD implies the relation PA+B±(z) = PA−B∓(z) for any A and B. We define the

sums qi+ + qi− = qi, G+ +G− = G and differences ∆qi = qi+ − qi−, ∆G = G+ −G−.

For the sums we have

PAB = PA+B+ + PA−B+ . (2.83)

It is also convenient to define

∆PAB = PA+B+ − PA−B+ . (2.84)

We then derive the master equations in the form

d

dt
∆qi(x, t) =

α(t)

2π

1∫
x

dy

y

[
∆qi(y, t)∆Pqq

(
x

y

)
+ ∆G(y, t)∆PqG

(
x

y

)]
, (2.85)

d

dt
∆G(x, t) =

α(t)

2π

1∫
x

dy

y

[ 2f∑
i=1

∆qi(y, t)∆PGq

(
x

y

)
+ ∆G(y, t)∆PGG

(
x

y

)]
. (2.86)
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In the simplest case of non-singlet quark densities, one can show

d

dt
∆qNS (x, t) =

α(t)

2π

1∫
x

dy

y
∆qNS (y, t)∆Pqq

(
x

y

)
. (2.87)

When masses are neglected, the vector quark-gluon coupling in Figure 2.2 is helicity

conserving. We directly conclude that

Pq−q+(z) = 0, (2.88)

Pq+q+(z) = Pqq = ∆Pqq(z) = C2(R)

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
. (2.89)

The same quark-gluon vertex of Figure 2.2 also determines PG+q+(z) and PG+q+(z).

Similar calculations reveal

Vq→G±q = iūjs(kC)(
1 + γ5

2
)taiju

i
s(kA)ε∗µ± , (2.90)

and

|Vq→G±q|2 =
1

2× 3

∑
a

Tr(tata) Tr

(
/kCγ

µ/kAγ
ν(

1 + γ5

2
)2

)
ε∗±µε±ν

= C2(R) Tr

(
/kCγ

µ/kAγ
ν(

1 + γ5

2
)

)
ε∗±µε±ν

=
P 2
T

2z(1− z)

1

z

[
(2− 2z + z2)± z(2− z)

]
.

(2.91)

We note that we have defined the gluon momentum in the form

kµB =

(
zp+

P 2
T

2zp
, px, py, zp)

)
, (2.92)

and for the corresponding polarization 4-vector for positive and negative helicity we

can approximately set

ε± '
(

0,

√
1

2
,±i
√

1

2
,−px ± ipy√

2zp

)
, (2.93)
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where kµB.ε± = 0. We thus obtain

PG+q+(z) = C2(R)
1

z
, (2.94)

PG−q+(z) = C2(R)
(1− z)2

z
, (2.95)

∆PGq(z) = PG+q+(z)− PG−q+(z) = C2(R)
1− (1− z)2

z
. (2.96)

We now evaluate Pq+G+(z) and Pq−G+(z) from the annihilation vertex in Figure 2.3.

The invariant vertex gives

VG+→q±q̄ = ivjs(kC)γµtaijū
i
s(kB)ε±µ. (2.97)

A sum over the final anti-quark spin yields

|VG+→q±q̄|2 =
1

8

∑
a,b

Tr(tatb)Tr

(
/kCγ

µ (1± γ5)

2
/kB

(1± γ5)

2
γν
)
ε∗+µε+ν

=
1

2
Tr

(
/kCγ

µ (1± γ5)

2
/kB

(1± γ5)

2
γν
)
ε∗+µε+ν

=
1

2
Tr

(
/kCγ

µ/kBγ
ν (1± γ5)

2

)
ε∗+µε+ν

=
P 2
T

z(1− z)

[
(z2 + (1− z)2)± (z2 − (1− z)2)

]
.

(2.98)

We find

Pq+G+(z) =
1

2
z2, (2.99)

Pq−G+(z) =
1

2
(1− z)2, (2.100)

∆PqG(z) = Pq+G+(z)− Pq−G+(z) =
1

2

[
z2 − (1− z)2

]
. (2.101)

We must now evaluate PG+G+ and PG−G+ from the three-gluon vertex in Figure 2.4.

The polarization vectors are

ε+A =

√
1

2
(0, 1, i, 0), (2.102)

ε±B =

√
1

2
(0, 1,±i,−px ± ipy

zp
), (2.103)

ε±C =

√
1

2
(0, 1,±i, px ± ipy

zp
), (2.104)

33



where (kA · ε+A) = (kB · ε±B) = (kC · ε±C) = 0.

We finally find

VG+→G±G± = −2iCabc

(
(ε+A · ε∗±B)(kB · ε∗±C)−(ε+A · ε∗±C)(kC · ε∗±B)

− (ε+A · kB)(ε∗±C · ε±B)

)
.

(2.105)

Simple algebra leads to

PG+G+ = C2(G)(1 + z4)

(
1

z
+

1

1− z

)
, (z < 1) (2.106)

PG−G+ = C2(G)
(1− z)3

z
. (2.107)

The behaviour at z = 1 of the diagonal density PG+G+ is immediately obtained by

similar analogy to previous section as follows:

PG+G+ = C2(G)

[
(1 + z4)

(
1

z
+

1

(1− z)+

)
+

(
11

6
− 2

3

T (R)

C2(G)

)
δ(1− z)

]
, (2.108)

and

∆PGG(z) = C2(G)

[
(1 + z4)

(
1

z
+

1

(1− z)+

)
− (1− z)3

z
−
(

11

6
−2

3

T (R)

C2(G)

)
δ(1− z)

]
.

(2.109)

2.5.2 The Logarithmic Exponents

The logarithmic exponents are defined as follows

1∫
0

dz zn−1

∆Pqq(z) 2f∆PqG(z)

∆PGq(z) ∆PGG(z)

 ≡
ÃNS

n 4T (R)ÃqGn

ÃGqn ÃGGn

 , (2.110)
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which are

ÃNS
n = ANS

n , (2.111)

ÃGqn = C2(R)
n+ 2

n(n+ 1)
, (2.112)

ÃqGn =
1

2

n− 1

n(n+ 1)
, (2.113)

ÃGGn = C2(G)

[
11

6
− 2

3

T (R)

C2(G)
+

2

n
− 4

n+ 1
− 2

n−1∑
j=1

1

j

]
. (2.114)

All the results we have found in this chapter are in complete agreement with the

results of [55–57], obtained by the operator formalism.

2.6 Parton Shower with HERWIG

HERWIG [58] provides a full simulation of hard lepton-lepton, lepton-hadron,

and hadron-hadron scattering and soft hadron-hadron collisions in a single package

with the following special features:

• Initial- and final-state QCD jet evolution with soft gluon interference taken

into account via angular ordering;

• Color coherence of both initial and final partons in all hard processes;

• Azimuthal correlation within and between jets due to gluon interference and

polarization;

• A cluster model for jet hadronization based on non-perturbative gluon split-

ting, and similar clustering for soft and underlying hadronic events;

• A space-time picture of event development, from parton shower to hadronic

decays.

HERWIG is written in FORTRAN with the ability for the user to modify and develop

the main program HWIGPR to generate the type and number of events required [58].

Final-state parton showering is generated by a so-called coherent algorithm with the

following properties in Ref. [58]:
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• The energy fractions are distributed according to the leading-order DGLAP-

CS splitting functions derived in this chapter;

• The full available phase space is restricted to an angular-ordered region;

• The emission angles are distributed according to the famous Sudakov form

factors, with the virtual corrections and unresolved real emissions;

• For soft emitted gluons, the azimuth is distributed according to the eikonal

dipole distribution [59];

• For non-soft emitted gluons, the azimuth is distributed according to spin

effects [60, 61];

• In each branching the scale of αs is the relative transverse momentum of the

two daughters;

• In the heavy flavour production case the mass of the quark modifies the

angular-ordered phase space.

The HERWIG parton shower evolution is done in terms of variables z and ξ, where

z is the parton energy fraction and ξ is an angular variable defined as follows:

Pi → Pj + Pk ⇒ zj =
Ej
Ei

(2.115)

Pi → Pj + Pk ⇒ ξjk =
(pj.pk)

EjEk
. (2.116)

For massless partons at small angles ξjk ' 1
2
θ2
jk . The values of z are chosen according

to DGLAP-CS splitting functions and the distribution of ξjk is determined by the

Sudakov form factors.

36



CHAPTER THREE

IR-Improved DGLAP-CS Theory

3.1 Introduction

In this chapter, it is shown that the exact, amplitude-based resummation al-

lows IR-improvement of the usual DGLAP-CS theory [2, 40]. The resummation of

large infrared effects in the kernels of the usual DGLAP-CS theory improves their

infrared behavior and gives better control of the accuracy of a given fixed-order calcu-

lation throughout the entire phase space of the respective physical process, especially

when the prediction is given by Monte Carlo methods.

3.1.1 Resummation

In perturbative quantum field theory, one can write the observableO as follows:

O =
∑
n

(cnα
n
s +Rn), (3.1)

where cn is computed from the Feynman diagram and Rn is the remainder of order

n. The observable O must be infrared safe, Rn has to be very small, cn must be well

behaved for large n, and αs is a small coupling constant. If all of those conditions are

satisfied, the resummation can be written as

O = 1 + αs(L
2 + L+ 1) + α2

s(L
4 + L3 + L2 + L+ 1) + . . .

= exp

(
Lg1(αsL) + g2(αsL) + αsg3(αsL) + . . .

)
× C(αs) + . . .

(3.2)

where L is large logarithm, e.g. ln( Q
Q0

) or ln( s
m2
e
). Writing down any observable in

the form of Eqs. (3.1) and (3.2) enables us to restore the predictive power, increases

theoretical accuracy, and has better physical description of the problem.
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3.1.2 Resummation and Exponentiation in QED

In 1961, Yennie, Frautschi, and Suura (YFS) [38] developed a general treat-

ment of the infrared divergence problem in QED. The main feature of this treatment

is based on the separation of the infrared divergences as multiplicative factors, which

are treated to all orders of perturbation theory, and the conversion of the residual

perturbation into one which has no infrared divergence, and hence no need for an

infrared cutoff. Following the YSF approach, for a typical process of the Abelian

gauge theory, e.g. e+(pe) e
−(pē) → f̄(pf̄ ) f(pf ) + n(γ)(k1, k2, . . . , kn), one can prove

that the total cross section for the process can be represented by

dσexp = exp(2α ReB + 2αB̃)
∞∑
n=0

∫ n∏
j=1

d3kj
k0
j

∫
d4y

(2π)4
eiy·(p1+q1−p2−q2−

∑
j kj)+D

× β̄n(k1, k2, . . . , kn)
d3p2

p0
2

d3q2

q0
2

(3.3)

whereB and B̃ are the virtual infrared function and real infrared function respectively,

β̄n(k1, k2, . . . , kn) are hard photon residuals and

2αB̃ =

∫ k≤Kmax d3k

k0

S̃(k), (3.4)

D =

∫
d3k

S̃(k)

k0

(e−iy·k − θ(Kmax − k), (3.5)

B =
−i
8π3

∫
d4k

k2 − λ2

∑
i<j

ZiθiZjθj

(
(2piθi − k)µ
k2 − 2k.piθi

+
(2pjθj + k)µ
k2 + 2k.pjθj

)2

, (3.6)

where Zi has the sign of the ith charge and θi = −(+) if is outgoing (incoming) and

S̃(k) =
α

4π2

∑
i<j

ZiθiZjθj

(
piµ
k.pi
− pjµ
k.pj

)2

. (3.7)

Eqs. (3.6) and (3.7) can be expressed in the form

S̃(k) =
α

4π2

[
−
(
pēµ
pē.k
− peµ
pe.k

)2

+ ef

(
pfµ
pf .k

− peµ
pe.k

)2

− ef
(
pf̄µ
pf̄ .k

− peµ
pe.k

)2

− ef
(
pfµ
pf .k

− pēµ
pē.k

)2

+ ef

(
pf̄µ
pf̄ .k

− pēµ
pē.k

)2

− e2
f

(
pf̄µ
pf̄ .k

− pfµ
pf .k

)2]
,

(3.8)
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and

B =
−i
8π3

∫
d4k

k2 − λ2 + iε

[
−
(
−2peµ − kµ

k2 + 2k.pe + iε
+
−2pēµ + kµ

k2 − 2k.pē + iε

)2

+ ef

(
−2peµ − kµ

k2 + 2k.pe + iε
+

2pfµ + kµ
k2 + 2k.pf + iε

)2

− ef
(
−2peµ − kµ

k2 + 2k.pe + iε
+

2pf̄µ + kµ

k2 + 2k.pf̄ + iε

)2

− ef
(
−2pēµ − kµ

k2 + 2k.pē + iε
+

2pf̄µ + kµ

k2 + 2k.pf̄ + iε

)2

+ ef

(
−2pēµ − kµ

k2 + 2k.pē + iε
+

2pfµ + kµ
k2 + 2k.pf + iε

)2

+ e2
f

(
2pfµ − kµ

k2 − 2k.pf + iε
+

2pfµ + kµ
k2 + 2k.pf + iε

)2]
.

(3.9)

3.1.3 QCD Exponentiation

We assume that the amplitude for the emission of n real gluons in our typical

subprocess, Qα + Q̄
′ᾱ → Q

′′γQ̄
′′′γ̄ + n(G), where α, ᾱ, γ, and γ̄ are color indices, is

represented by

M(n)αᾱ
γγ̄l =

∑
l

M
(n)αᾱ
γγ̄l , (3.10)

where M
(n)
l is the contribution toM(n) from Feynman diagrams with l virtual loops.

Symmetrization yields

M
(n)
l =

1

l!

∫ l∏
j=1

d4kj
(2π)4(k2

j − λ2 + iε)
ρ

(n)
l (k1, k2, . . . , kl), (3.11)

where ρ
(n)
l is a symmetric function of its arguments k1, k2, . . . , kl and will be our

infrared gluon regulator mass for IR singularities. We now define the virtual IR

emission factor SQCD(k) for a gluon with four-momentum k, for the k → 0 regime

such that

lim
k→0

k2

(
ρ

(n)αᾱ
γγ̄1 |leading Casimir contribution − SQCD(k)ρ

(n)αᾱ
γγ̄0

)
= 0. (3.12)

One can write ρ
(n)
l as follows

ρ
(n)
l = SQCD(kl) ρ

(n)
l−1(k1, . . . , kl−1, kl) + β1

l (k1, . . . , kl−1; kl), (3.13)
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where the residual amplitude β1
l (k1, . . . , kl−1, kl) will now be taken as defined by

Eq. (3.13). β1
l (k1, . . . , kl−1, kl) has two properties:

• it is symmetric in its first l − 1 arguments;

• has no infrared singularity since the IR singularities for gluon l are contained

in SQCD(kl).

Iteration of Eq. (3.13) yields

ρ
(n)
l = SQCD(kl)SQCD(kl−1)ρ

(n)
l−2(k1, . . . , kl−2) + SQCD(kl)β

1
l−1(k1, . . . , kl−2; kl−1)

+ SQCD(kl−1)β1
l−1(k1, . . . , kl−2; kl) + β2

l (k1, . . . , kl−2; kl−1, kl).

(3.14)

Again, the residual amplitude β2
l (k1, . . . , kl−2; kl−1, kl) in Eq. (3.14) has the following

properties:

• it is symmetric in its first l− 2 arguments and in its two arguments kl−1 and

kl;

• it has no infrared singularity since the IR singularities for gluons l and l − 1

are contained in SQCD(kl) and SQCD(kl−1).

Repeated iterations of Eq. (3.13) and exploitation of the symmetry of ρn now leads

to the relation

ρ
(n)
l = SQCD(kl)SQCD(kl−1) . . . SQCD(k1)β0

0

+
l∑

i=1

SQCD(kl) . . . SQCD(ki+1)SQCD(ki−1) . . . SQCD(k1)β1
1

+ . . .+
l∑

i=1

SQCD(ki)β
l−1
l−1(k1, . . . , ki−1, ki+1, . . . , kl) + βll(k1, . . . , kl),

(3.15)

where the virtual gluon residuals have the following properties:

• they are symmetric functions of their arguments;

• they do not have any infrared singularities since the IR singularities are con-

tained in the product SQCD(k1, . . . , SQCD(ki).
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Eq. (3.15) can be expressed in a compact equation

ρ
(n)
l = SQCD(kl)SQCD(kl−1) . . . SQCD(k1)β0

0

+
l∑

i=1

∏
j 6=i

SQCD(kj)β
1(kj) + . . .+ βll(k1, . . . , kl).

(3.16)

By following the YFS approach, one can prove that the Eqs. (3.10) and (3.11) can be

expressed as

M(n) = e(αsBQCD )

∞∑
j=0

m
(n)
j , (3.17)

where we have defined

αsBQCD =

∫
d4k

k2 − λ2 + iε
SQCD(k), (3.18)

m
(n)
j =

1

j!

∫ j∏
i=1

d4ki
k2
i − λ2 + iε

βj(k1, . . . , kj). (3.19)

We note that the cross section can be written as

dσ̃n =
e(2αsReBQCD )

n!

∫ n∏
m=1

d3km√
k2
m + λ2

δ(p1 + q1 − p2 − q2 −
n∑
i=1

ki)

× ρ̄(n)(p1, p2, q1, q2, k1, . . . , Kn)
d3p2

p0
2

d3q2

q0
2

,

(3.20)

where we have defined

ρ̄(n)(p1, p2, q1, q2, k1, . . . , Kn) =
∑

spin,color

∣∣∣∣∣∣∣∣ ∞∑
j=0

m
(n)
j

∣∣∣∣∣∣∣∣2 (3.21)

in the incoming QQ̄
′

center of mass system and the remaining kinematical factors

have been absorbed into the normalization of the amplitudes for simplicity.

The exponentiated cross section can be easily derived by summing over all

dσ̃n, analogous to YFS arguments [38] of quantum elecrodynamics. The YFS-like

cross section is in the form

dσ̂exp =
∞∑
n=0

dσ̃n = eSUM IR(QCD)

∞∑
n=0

(
1

n!

)∫ n∏
j=1

∫
d3kj
k0
j

×
∫

d4y

2(π)4
eiy·((p1+q1−p2−q2−

∑
ki)+DQCD βn(k1, . . . , kn)

d3p2

p0
2

d3q2

q0
2

(3.22)
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with

SUM IR(QCD) = 2αsReBQCD + 2αsB̃QCD(Kmax), (3.23)

2αsB̃QCD(Kmax) =

∫
d3k

k0
S̃QCD(k)θ(Kmax − k), (3.24)

DQCD =

∫
d3k

k
S̃QCD(k)

[
e−iy.·k − θ(Kmax − k)

]
, (3.25)

1

2
β̄0 = dσ(1−loop) − 2αsReBQCDdσB, (3.26)

1

2
β̄1 = dσB1 − S̄QCD(k)dσB, (3.27)

where the β̄n are the QCD hard gluon residuals, and dσ(1−loop) and dσB1 are the

exact one-loop and single Bremsstrahlung cross sections, respectively. It is worth

mentioning that the right-hand side of Eq. (3.22) does not depend on the dummy pa-

rameter Kmax, which has been introduced for cancellation of the infrared divergences

in SUM IR(QCD) to all order in αs.

So far, we have found the exponentiated cross section for QCD based on the

extension of the YFS approach. In the YFS method we are dealing with the emission

of soft photons, and due to the Abelian nature of quantum electrodynamics, it is very

easy to show that the soft photon residuals, β(k1, . . . , kn), are IR finite. In QCD,

because of the non-Abelian gauge theory origins, it is generally expected that there

are infrared divergences in the β̄n that are not removed into the SQCD(k) and S
′
QCD(k)

when these infrared functions are isolated in our calculation of the exponentiated cross

section. Here we demonstrate that these infrared singularities, if they still exist in

βn, give a vanishing contribution to the cross section in Eq. (3.22).

We start with the left-hand side of Eq. (3.22). Renormalizability of quantum

chromodynamics along with the Bloch-Nordsieck cancellation theorem [37] guarantees

the infrared finiteness of the left-hand side of Eq. (3.22). From the infrared finiteness

of dσexp and SUM IR(QCD) it follows that the quantity

d¯̂σexp ≡ e−SUM IR(QCD)dσexp (3.28)
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must be infrared finite to all orders in αs. Let us now define the residual non-Abelian

infrared divergence part of each contribution β̄
(l)
n via

β̄(l)
n = ˜̄β(l)

n +Dβ̄(l)
n , (3.29)

where the new function ˜̄β
(l)
n is free of any infrared divergences and Dβ̄

(l)
n contains all

leftover infrared divergences in β̄
(l)
n . It is clear that in the limit fabc → 0, where fabc

are the group structure constants, the function Dβ̄
(l)
n vanishes. We define Dβ̄

(l)
n by

a minimal subtraction of the IR divergences in it so that it only contains the actual

pole and transcendental constants, 1
ε
−CE for ε = 2− d

2
, in dimensional regularization

or lnλ2 in the gluon mass regularization. We can write this as∫
dPh Dβ̄(l)

n ≡
n+l∑
i=1

dn,li lni(λ2), (3.30)

where coefficients dn,li are independent of λ when λ→ 0.

At order O(αns ), the infrared finiteness of the contribution to d¯̂σexp requires the con-

tribution

d¯̂σnexp ≡
∫ n∑

l=0

1

l!

l∏
j=1

∫
kj≥Kmax

d3Kj

kj
S̃QCD(kj)

n−l∑
i=0

1

i!

l+i∏
j=l+1

∫
× d3kj

k0
j

β̄
(n−l−i)
i (kl+1, . . . , kl+i)

d3p2

p0
2

d3q2

q0
2

(3.31)

to be finite. We conclude that

Dd¯̂σnexp ≡
∫ n∑

l=0

1

l!

l∏
j=1

∫
kj≥Kmax

d3Kj

kj
S̃QCD(kj)

n−l∑
i=0

1

i!

l+i∏
j=l+1

∫
× d3kj

k0
j

Dβ̄
(n−l−i)
i (kl+1, . . . , kl+i)

d3p2

p0
2

d3q2

q0
2

(3.32)

is finite. Since the integration for the final states is completely arbitrary, the in-

dependent power of the infrared regulator ln(λ2) in Eq. (3.32) must give vanishing

contributions, which means we can drop the Dβ̄
(l)
n from our calculation for the cross

section in Eq. (3.22), since they do not make a net contribution to the final parton

cross section. We can rewrite Eq. (3.22) as follows:

43



dσ̂exp =
∞∑
n=0

dσ̃n = eSUM IR(QCD)

∞∑
n=0

(
1

n!

)∫ n∏
j=1

∫
d3kj
k0
j

×
∫

d4y

(2π)4
eiy·((p1+q1−p2−q2−

∑
ki)+DQCD ˜̄βn(k1, . . . , kn)

d3p2

p0
2

d3q2

q0
2

(3.33)

where the hard gluon residuals ˜̄βn(k1, . . . , kn) are defined as

˜̄βn(k1, . . . , kn) =
∞∑
l=0

˜̄β(l)
n (k1, . . . , kn) (3.34)

and are all infrared finite to all orders in O(αs) [62].

3.1.4 QCED Resummation

The new QCED [63,64], QED ⊗QCD, theory is obtained by simultaneously

resumming the large IR terms in QCD and the exact IR-divergent terms in QED for

a prototypical process

pp→ l̄l +m(γ) + n(g) +X (3.35)

where n and m(g) here refers to the number of real photons and real gluons respec-

tively. We can easily extend our results in the two previous sections to arrive at the

new results as follows:

dσ̂exp =
∞∑
n=0

dσ̃n = eSUM IR(QCED)

∞∑
n,m=0

∫ n∏
j1=1

d3kj1
kj1

m∏
j2=1

d3k
′
j2

k
′
j2

×
∫

d4y

(2π)4
eiy·(p1+q1−p2−q2−

∑
kj1−

∑
k
′
j2)+DQCED

× ˜̄βn,m(k1, . . . , kn; k
′

1, . . . , k
′

m)
d3p2

p0
2

d3q2

q0
2

(3.36)

where the new YFS residuals are ˜̄βn,m(k1, . . . , kn; k
′
1, . . . , k

′
m) with n hard gluons and

m hard photons. The infrared functions are now given by
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SUM IR(QCED) = 2αsReB
nls
QCED + 2αsB̃

nls
QCED(Kmax), (3.37)

2αsB̃QCED(Kmax) =

∫
d3k

k0
S̃nlsQCED(k)θ(Kmax − k), (3.38)

DQCED =

∫
d3k

k
S̃nlsQCD(k)

[
e−iy·k − θ(Kmax − k)

]
, (3.39)

and the functions SUM IR(QCED), DQCED are determined from their QCD analogues

SUM IR(QCD), DQCD via the following substitutions
Bnls

QCD → Bnls
QCD +Bnls

QED ≡ Bnls
QCED ,

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED ,

S̃nlsQCD → S̃nlsQCD + S̃nlsQED ≡ S̃nlsQCED .

(3.40)

The residuals ˜̄βn,m(k1, . . . , kn; k
′
1, . . . , k

′
m) are free of infrared singularities, so Eq. (3.36)

is a representation that is exact and IR finite and can therefore be used to make con-

tact with parton shower MC’s without double counting or unnecessary averaging of

effects such as the gluon azimuthal angular distribution relative to its parent’s mo-

mentum direction.

3.2 DGLAP-CS Splitting Functions

In this section, we apply the QCD master formula in Eq. (3.22), following the

analogous argument for QED in Ref. [52], to find P exp
qq (z). The basic starting point of

Figure 3.1: The usual process
q → q(1− z) +G(z).

Figure 3.2: Multiple gluon improvement q →
q(1− z) +G(ξ1) + . . .+G(ξx)

where z =
∑

j ξj.
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our analysis is the infrared divergences in the kernel that determines this evolution:

d

dt
qNS(x, t) =

αs(t)

2π

∫ 1

x

dy

y
qNS(y, t)Pqq

(
x

y

)
(3.41)

where the result for the kernel Pqq(z) is

Pqq(z) = CF
1 + z2

1− z
for z < 1. (3.42)

It is obvious that this kernel has a non-integrable IR singularity at z = 1, which is

the point of zero energy gluon emission, and this is as it should be. The standard

treatment of this problem is to regularize it by the following replacement

1

(1− z)
→ 1

(1− z)+

(3.43)

where the distribution 1
(1−z)+

is the +-function distribution with the possible repre-

sentation

1

(1− z)+

=
1

(1− z)
θ(1− ε− z) + ln εδ(1− z) for ε→ 0 (3.44)

The final result for Pqq(z) is then

Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
, (3.45)

which satisfies the physical condition∫ 1

0

dz Pqq(z) = 0. (3.46)

The behaviour of the differential spectrum of the process for z → 0 in Q(αs) is non-

integrable and has to be cut off, and thus this spectrum is only poorly represented

by the Q(αs) calculation. We intend to show that the resummation of the large, soft

higher-order effects changes the z → 0 behaviour non-trivially and we will find that

the 1
1−z behaviour is modified to (1− z)γ−1.
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For Figure (3.1), we write our exact amplitude-based exponentiated cross sec-

tion as follows:

dσ̂exp = eSUM IR(QCD)

∫ {
1

0!
˜̄β0

∫
d4y

(2π)4
eiy·(P1−P2)+DQCD

+
1

1!

∫
d3k1

k0
1

˜̄β1(k1)

∫
d4y

(2π)4
eiy·(P1−P2−k1)+DQCD + ...

}
d3P2

P 0
2

d3q2

q0
2

(3.47)

We simplify Eq. (3.47) by using the following calculations:∫
d4y

(2π)4
eiy·(P1−P2)+DQCD

d3P2

P 0
2

d3q2

q0
2

=

∫
dy0

2π
eiy

0(E1−E2)+DQCD

×
∫

d3y

(2π)3
ei~y·(

~P1−~P2)d
3P2

P 0
2

d3q2

q0
2

=

∫
dy0

2π
eiy

0(E1−E2)+DQCDδ3(~P1 − ~P2)
d3P2

P 0
2

d3q2

q0
2

,

(3.48)

and similar calculation yields∫
d4y

(2π)4
eiy·(P1−P2−k1)+DQCD

d3P2

P 0
2

d3q2

q0
2

=

∫
dy0

2π
eiy

0(E1−E2−k0
1)+DQCD

×
∫

d3y

(2π)3
ei~y·(

~P1−~P2−~k1)d
3P2

P 0
2

d3q2

q0
2

=

∫
dy0

2π
eiy

0(E1−E2−k0
1)+DQCDδ3(~P1 − ~P2 − ~k1)

d3P2

P 0
2

d3q2

q0
2

,

(3.49)

where we have used the definition of Dirac’s delta function

δ3(x) =

∫
d3k

(2π)3
e−i

~k.~x. (3.50)

Substituting Eqs. (3.48) and (3.49) into Eq. (3.47) results in

dσ̂exp = eSUM IR(QCD)

∫ {
˜̄β0

∫ ∞
−∞

dy

(2π)
e

{
iy(E1−E2)+

∫ k<Kmax d3k
k
S̃QCD (k)[eiy.k−1]

}

∫
d3k1

k1

˜̄β1(k1)

∫ ∞
−∞

dy

(2π)
e

{
iy(E1−E2−k0

1)+
∫ k<Kmax d3k

k
S̃QCD (k)[eiy.k−1]

}

+ ...

}
1

q0
2

d3P2

P 0
2

,

(3.51)

where we used the following identities to simplify Eq. (3.51):∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

d3q2 δ
3(~q1 − ~q2) = 1, (3.52)
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and ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

d3q2 δ
3(~q1 − ~q2 − ~k1) = 1, (3.53)

where  for n = 0⇒ P µ
1 − P

µ
2 = qµ1 − q

µ
2

for n = 1⇒ P µ
1 − P

µ
2 − k

µ
1 = qµ1 − q

µ
2 .

(3.54)

Now we use the decomposition of P µ
1 , P µ

2 , and kµ1 to simplify Eq. (3.51) as follows:
P µ

1 = (E,E, 0, 0)

kµ1 = (zE +
P 2
T

2zE
, Px, Py, zE)

P µ
2 = ((1− z)E +

P 2
T

2(1−z)E ,−Px,−Py, (1− z)E).

(3.55)

One can find

E1 − E2 = P 0
1 − P 0

2 = E − (1− z)E = zE if O(P 2
T ) = 0. (3.56)

Thus we write Eq. (3.51) in the form of

dσ̂exp = eSUM IR(QCD)

∫ {
˜̄β0

∫ ∞
−∞

dy

(2π)
e

{
iy(zE))+

∫ k<Kmax d3k
k
S̃QCD (k)[eiy·k−1]

}

∫
d3k1

k1

˜̄β1(k1)

∫ ∞
−∞

dy

(2π)
e

{
iy(zE−k0

1)+
∫ k<Kmax d3k

k
S̃QCD (k)[eiy·k−1]

}

+ ...

}
1

q0
2

d3P2

P 0
2

.

(3.57)

Using the results in Ref. [38], one can derive

IY FS(zE, 0) =

∫ ∞
−∞

dy

(2π)
e

{
iy(zE))+

∫ k<Kmax d3k
k
S̃QCD (k)[eiy.k−1]

}
= FYFS (γq)

γq
zE

(3.58)

and

IY FS(zE, k1) =

∫ ∞
−∞

dy

(2π)
e

{
iy(zE−k0

1)+
∫ k<Kmax d3k

k
S̃QCD (k)[eiy.k−1]

}

=

(
zE

zE − k1

)1−γq
IYFS (zE, 0) =

(
zE

zE − k1

)1−γq
FY FS(γq)

γq
zE

,

(3.59)
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where

S̃QCD(k) = −αsCF
8π2

(
P µ

1

k.P1

− P µ
2

k.P2

)2

DGLAP−CS synthesized

, (3.60)

and

FYFS (γq) =
e−CEγq

Γ(1 + γq)

γq = CF
αs
π
t =

4CF
β0

where β0 = 11− 2

3
nf .

(3.61)

Using the well-known results for the respective real and virtual infrared function from

Refs. [43–45] we obtain

SUMIR(QCD) = 2αsReBQCD + 2αsB̃QCD(Kmax)

=
1

2

(
2CF

αs
π
t ln

Kmax

E
+ CF

αs
2π
t+

αsCF
π

(π2

3
− 1

2

))
,

(3.62)

where on the right-hand side of the last result we have applied the DGLAP-CS syn-

thesized procedure in Ref. [65] to remove the collinear singularities in accordance with

the standard QCD factorization theorem [66–68].

We now define z ≡ Kmax
E

and use it to simplify Eq. (3.62) as follows:

SUM IR(QCD) = 2αsReBQCD + 2αsB̃QCD(Kmax)

=
1

2

(
2CF

αs
π
t ln z +

αs
2π
t+

αsCF
π

(π2

3
− 1

2

))
.

(3.63)

And subsequently we find

⇒ eSUM IR(QCD) = exp(CF
αs
π
t ln z) exp(

1

2

αs
2π
t) exp

(
αsCF
π

(π2

3
− 1

2
)

)
= zγq exp(

1

2

αs
2π
t) exp

(
αsCF
π

(π2

3
− 1

2
)

)
= zγq e

1
2
δq ,

(3.64)

where we have used

exp(CF
αs
π
t ln z) =

(
exp(ln z)

)CF αstπ
= zCF

αst
π , (3.65)
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since exp(ln z) = z. We can rewrite Eq. (3.57) in the following form:∫
αs
2π
PBA dt dz = zγq e

1
2
δqFYFS (γq)

{[ ˜̄β0γq
zE

+

∫
dk1 k1 dΩ1

(
zE

zE − k1

)1−γq γq
zE

]
d3P2

E2q0
2

}
= zγq e

1
2
δqFYFS (γq)

∫
αs
2π
P 0
BA dt dz +O(α2

s).

(3.66)

Now, using the definition from the previous chapter, we can find

PBA = zγq e
1
2
δqFYFS (γq)P

0
BA, (3.67)

where P 0
BA = 1

2
z(1− z)

∑̄
spin

|VA→B+C |2
P 2
T

zγq e
1
2
δqFYFS (γq). If we choose A = q, B = G,

and C = q one can find

P exp
Gq (z) =

1

2
z(1− z)

∑̄
spin

|Vq→G+q|2

P 2
T

zγq e
1
2
δqFYFS (γq), (3.68)

and

P exp
qq (z) =

1

2
z(1− z)

∑̄
spin

|Vq→G+q|2

P 2
T

(1− z)γq e
1
2
δqFYFS (γq). (3.69)

Or equivalently, we write the final expressions for P exp
Gq (z) and P exp

qq (z) as follows:

P exp
qq (z) = CF e

1
2
δqFYFS (γq)

1 + z2

1− z
(1− z)γq ,

P exp
Gq (z) = CF e

1
2
δqFYFS (γq)

1 + (1− z)2

z
zγq for z < 1,

(3.70)

which is consistent with P exp
Gq (z) = P exp

Gq (1− z).

The normalization condition in Eq. (3.46) gives us the final expression for

P exp
qq (z):

P exp
qq (z) = CF e

1
2
δqFYFS (γq)

[
1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

]
, (3.71)

where

fq(γq) =
2

γq
− 2

γq + 1
+

1

γq + 2
. (3.72)

The result in Eq. (3.71) is then our IR-improved kernel for non-singlet DGLAP-CS

evolution in QCD. We emphasize that the appearance of the integrable function (1−
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z)γq−1 in the place of 1
(1−z)+

was anticipated by Gribov and Lipatov [69]. Conservation

of momentum tells us that∫ 1

0

dz z (P exp
Gq (z) + P exp

qq (z))
?
= 0. (3.73)

Using the results in Eqs. (3.70), (3.71), and (3.72) we have to check that the following

integral vanishes:

I =

∫ 1

0

dz z

(
1 + (1− z)2

z
zγq +

1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

)
=

∫ 1

0

dz

(
(1 + (1− z)2)zγq − (1 + z2)(1− z)γq +

1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

)
= 0

(3.74)

The first two terms on the right-hand side of Eq. (3.74) cancel out as one can see by

using the change of variable z → 1− z in one of them, and integration over the last

two terms on the right-hand side of Eq. (3.74) also vanishes due to the normalization

condition in Eq. (3.46).

Figure 3.3: Three gluon vertex associated with the calculation of PGG(z).

We now find P exp
GG (z) using the two Feynman diagrams in Figure (3.3). We

write the exact amplitude-based resummation cross section for Feynman diagrams in
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Figure (3.3) as follows:∫
αs
2π
P exp
GG (z) dt dz =

1

2

(∫
αs
2π
PBA dt dz +

∫
αs
2π
PCA dt dz

)
, (3.75)

where B = G and A = G. In analogy with the previous results, one can show that∫
αs
2π
PBA dt dz = eSUM IR(QCD)

{[ ˜̄β0γG
zE

+

∫
dk1 k1 dΩ1

(
zE

zE − k1

)1−γG γG
zE

]
d3P2

E2q0
2

}
,

= eSUM IR(QCD)

∫
αs
2π
P 0
BA(z) dt dz +O(α2

s),

⇒ PBA = 2CGFYFS (γG)e
1
2
δG

[
z(1− z)γG

1− z
+

(
1− z
z

+ z(1− z)

)
zγG
]
.

(3.76)

and∫
αs
2π
PCA dt dz = eSUM IR(QCD)

{[ ˜̄β0γG
(1− z)E

+

∫
dk1 k1 dΩ1

×
(

(1− z)E

(1− z)E − k1

)1−γG γG
(1− z)E

]
d3P2

E2q0
2

}
= eSUM IR(QCD)

∫
αs
2π
P 0
CA(1− z) dt dz +O(α2

s),

⇒ PCA = 2CGFYFS (γG)e
1
2
δG

[
(1− z)zγG

z
+

(
z

1− z
+ z(1− z)

)
(1− z)γG

]
.

(3.77)

In these equations we have used

γG = CG
αs
π
t =

4CG
β0

(3.78)

δG =
γG
2

+
αsCG
π

(
π2

3
− 1

2

)
. (3.79)

We can find the final result for P exp
GG (z) by using the results in Eqs. (3.76) and (3.77)

and plugging into Eq. (3.75):

P exp
GG (z) =

1

2
(PBA + PCA)

= 2CGFYFS (γG)e
1
2
δG

[
z(1− z)γG

1− z
+

(1− z)zγG

z

+
1

2

(
(1− z)zγG+1 + z(1− z)γG+1

)] (3.80)
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We see again that exponentiation has made the singularities at z = 0 and z = 1

integrable. Finally, the standard formula for PqG(z) is well-behaved integrable in the

IR regime, we do not need to improve it here to make it integrable and we note that

the singular contributions in the other kernels are expected to dominate the evolution

effects in any case. PqG(z) is

pqG(z) =
1

2
(z2 + (1− z)2). (3.81)

To normalize P exp
GG (z), we take into account the virtual corrections such that the gluon

momentum sum rule ∫ 1

0

dz z(2nfPqG(z) + P exp
GG (z)) = 0 (3.82)

is satisfied. This gives us the IR-improved result as follows

P exp
GG (z) = 2CGFYFS (γG)e

1
2
δG

{
1− z
z

zγG +
z

1− z
(1− z)γG

+
1

2

(
(1− z)zγG+1 + z(1− z)γG+1

)
− fG(γG)δ(1− z)

}
,

(3.83)

where for fG(γG) we find

fG(γG) =
nf

6CGFY FS(γG)
e−

1
2
δG +

2

γG(1 + γG)(2 + γG)
+

1

(1 + γG)(2 + γG)

+
1

2(3 + γG)(4 + γG)
+

1

(2 + γG)(3 + γG)(4 + γG)
.

(3.84)

We summarize at this point the new IR-improved kernels set as follows

P exp
qq (z) = CF e

1
2
δqFYFS (γq)

[
1+z2

1−z (1− z)γq − fq(γq)δ(1− z)

]
,

P exp
Gq (z) = CF e

1
2
δqFYFS (γq)

1+(1−z)2

z
zγq ,

pqG(z) = 1
2
(z2 + (1− z)2),

P exp
GG (z) = 2CGFYFS (γG)e

1
2
δG

{
1− z
z

zγG +
z

1− z
(1− z)γG

+
1

2

(
(1− z)zγG+1 + z(1− z)γG+1

)
− fG(γG)δ(1− z)

}
.

(3.85)

Returning now to the improvement of P exp
qG (z) for the sake of completeness and for

providing better precision, we apply the same arguments to the process G→ q+ q̄ to
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get the exponentiated result

P exp
qG (z) = e

1
2
δqFYFS (γq)

1

2

{
z2(1− z)γG + (1− z)2zγG

}
, (3.86)

where the gluon momentum sum rule gives the new normalization constant for P exp
GG (z)

f̄G(γG) =
nf
CG

1

(1 + γG)(2 + γG)(3 + γG)
+

2

γG(1 + γG)(2 + γG)

+
1

(1 + γG)(2 + γG)
+

1

2(3 + γG)(4 + γG)
+

1

(2 + γG)(3 + γG)(4 + γG)
.

(3.87)

The constant f̄G(γG) should be substituted for fG(γG) in P exp
GG (z) whenever the expo-

nentiated result is used.

3.3 The Logarithmic Exponents

We now look into the phenomenological effects of IR-improved on the moment

of the structure functions by discussing the corresponding effects on the moments of

the parton distributions.

We know that moments of the kernels determine the exponents in the loga-

rithmic variation of the moments of the quark distributions and for the non-singlet

case we have

d

dt
MNS

n (t) =
αs(t)

2π
ANSn MNS

n (t), (3.88)

where

MNS
n (t) =

∫ 1

0

dz zn−1qNS(z, t) (3.89)

and the quantity ANSn is given by

ANSn =

∫ 1

0

dz zn−1 P exp
qq (z)

= CFFYFS (γq)e
1
2
δq [B(n, γq) +B(n+ 2, γq)− fq(γq)],

(3.90)
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where the beta function, B(x, y) is defined

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.91)

One can find the remaining elements of the leading logarithmic exponents for the

other IR-improved splitting functions as follows

AGqn =

∫ 1

0

dz zn−1P exp
Gq (z) = CFFYFS (γq)e

1
2
δq

[
1

n+ γq − 1
+B(3, n+ γq − 1)

]
,

(3.92)

AGGn =

∫ 1

0

dz zn−1P exp
GG (z) = 2CGFYFS (γq)e

1
2
δq

[
B(n+ 1, γG) +B(n+ γG − 1, 2)

+
1

2

(
B(n+ 1, γG + 2) +B(n+ γG + 1, 2)

)
− f̄(γG)

]
,

(3.93)

2nfA
qG
n = 2nf

∫ 1

0

dz zn−1P exp
qG (z) = nfFYFS (γG)e

1
2
δG

(
B(n+ 2, 1 + γG) +B(n+ γG, 3)

)
.

(3.94)

We now compare the asymptotic behavior of ANSn and the IR-improved ANSn for large

n. One can easily investigate that when n→∞, limn→∞A
NS
n = −2CF limn→∞ ln(n)→ −∞,

limn→∞(ANSn )IR−improved → −fq(γq) for 0 ≤ z < 1.
(3.95)

The two results are also different at finite n, e.g. n = 2. We get, for example, for

αs ' 0.118:

ANSn =

 CF (−1.33), un− IR− improved

CF (−0.996), IR− improved
(3.96)

which shows that the effects we have calculated are important for all values of n in

general. We also can solve the differential equation introduced in Eq. (3.88) by the
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standard method as

lnMNS
n (t)

∣∣∣∣t
t0

=

∫ t

t0

αs(t)

2π
ANSn dt

⇒MNS
n (t) = MNS

n (t0)e
∫ t
t0

αs(t)
2π

ANSn dt
.

(3.97)

We then use the IR-improved ANSn result in Eq. (3.90) and substitute it into the final

result we found in the previous equation:

MNS
n (t) = MNS

n (t0)eCFFYFS (γq)[B(n,γq)+B(n+2,γq)−fq(γq)]e
γq
4

×
∫ t

t0

αs(t)

2π
e
α(t)CF

π

(
π2

3
− 1

2

)
dt

= MNS
n (t0)e

2CF
β0

FYFS (γq)[B(n,γq)+B(n+2,γq)−fq(γq)]e
γq
4

× eEi(
1
2
δ1αs(t0))−Ei( 1

2
δ1αs(t))

= MNS
n (t0)e

ān

[
Ei( 1

2
δ1αs(t0))−Ei( 1

2
δ1αs(t))

]
,

(3.98)

where we have used

ān =
2CF
β0

FYFS (γq)[B(n, γq) +B(n+ 2, γq)− fq(γq)]e
γq
4 , (3.99)

δ1 =
CF
π

(
π2

3
− 1

2

)
. (3.100)

The mathematical special function Ei(x) is defined as follows

Ei(x) =

∫ x

−∞

dy

y
ey. (3.101)

We study the behavior of MNS
n (t) for large t and t0 with t� t0 by using the following

expansion

Ei(x) = γ + ln |x|+
∞∑
k=1

xk

kk!
, (3.102)
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which leads to

Ei(
1

2
δ1αs(t0))− Ei(1

2
δ1αs(t)) = ln

α(t0)

α(t)
+
∞∑
k=1

1

kk!

(
(
αs(t0)δ1

2
)k − (

αs(t)δ1

2
)k
)

' ln
α(t0)

αs(t)
+
δ1

2
(αs(t0)− αs(t)) +O(α2

s),

(3.103)

for t� t0 ⇒ αs(t0)� αs(t). One can rewrite Eq. (3.98) in the form of

MNS
n (t) = MNS

n (t0)

(
αs(t0)

αs(t)

)ā′n
, (3.104)

where

ā
′

n = ān

(
1 +

δ1

2

(αs(t0)− αs(t))
ln(α(t0)

αs(t)
)

)
. (3.105)

We can compare these results with the un-IR-improved result in which Eq. (3.104)

holds exactly with ā
′
n = 2ANSn

∣∣∣∣
un−IR−improved

. Phenomenologically, for n = 2, taking

Q0 = 2 GeV and evolving to Q = 100 GeV, if we set ΛQCD = 0.2 GeV and use nf = 5

for definiteness of illusion, we see that we get a shift of the respective evolved NS

moment by ∼5%.

We also note that the size of the exponent γq is what one would expect from

analogy with QED [70–74], where with Q = 100 GeV we have the analogous result

γe = αEM
π

(ln Q2

m2
e
− 1) ' 0.054 whereas here, with αs ' 0.118, which is about 10 times

αEM , we get a value for γq that is about 10 times γe.

In sum, we have used exact rearrangment of the QCD Feynman series to isolate

and resum the leading IR contributions to the physical processes that generate the

evolution kernels in DGLAP-CS theory. Finally, we have a new scheme for precision

LHC theory.
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In obvious notation,

σ =
∑
i,j

∫
dx1dx2Fi(x1)Fj(x2)σ̂(x1x2s)

=
∑
i,j

∫
dx1dx2F

′

i (x1)F
′

j (x2)σ̂
′
(x1x2s)

(3.106)

where the primed quantities are associated with the IR-improved kernels in the stan-

dard QCD factorization calculus.

3.4 Parton Shower with HERWIRI1.031

The implementation of the new IR-improved kernels in the HERWIG6.5 en-

vironment results in a new MC, HERWIRI1.0(31), which stands for high energy

radiation with IR improvement. This means

DGLAP− CS PAB ⇒ IR− improved DGLAP− CS P exp
AB . (3.107)

For the transition from HERWIG6.5 to HERWIRI1.0(31), we modify the ker-

nels in the HERWIG6.5 module HWBRAN and in the attendant related modules as

mentioned in Eq. (3.107). For the definiteness, we illustrate the implementation by

an example. In this example [75], the probability that no branching occurs above the

virtuality cutoff Q2
0 is ∆a(Q

2, Q2
0), so that

d∆a(t, Q
2
0) = −dt

t
∆(t, Q2

0)
∑
b

∫
dz

αs
2π
Pba(z), (3.108)

which can be solved and written in the following form

∆a(Q
2, Q2

0) = exp

(
−
∫ Q2

Q2
0

dt

t

∑
b

∫
dz

αs
2π
Pba(z)

)
. (3.109)

The attendant nonbranching probability appearing in the evolution is

∆(Q2, t) =
∆a(Q

2, Q2
0)

∆a(t, Q2
0)

, (3.110)

58



where t = k2
a is the virtuality of gluon a. The respective virtuality of parton a is then

generated by

R = ∆a(Q
2, t), (3.111)

where R is a random number uniformly distributed in [0,1]. Also, αs(Q) is

αs(Q) =
2π

b0 ln(Q
Λ

)
, (3.112)

where β = b0

∣∣
nc

and nc is the number of colors. We now find all these parameters for

PqG(z) and P exp
qG (z) as follows

∆a(Q
2, Q2

0) = exp

(
−
∫ Q2

Q2
0

dt

t

∫
dz

αs
2π
Pba(z)

)
= exp

(
−
∫ Q2

Q2
0

1

3

dt

t

2

b0 ln( t
Λ2 )

)
= exp

(
− 2

3b0 ln( t
Λ2 )

∣∣∣∣Q2

Q2
0

)

= exp

(
− 2

3b0

ln

(
ln(Q

2

Λ2 )

ln(
Q2

0

Λ2 )

))

=

[
ln(Q

2

Λ2 )

ln(
Q2

0

Λ2 )

]− 2
3b0

,

(3.113)

where we have used∫
0

1 dz
αs(Q

2)

2π
PqG(z) =

2

b0 ln(Q
2

Λ2 )

∫ 1

0

dz
1

2
[z2 + (1− z)2]

=
2

3

1

b0 ln(Q
2

Λ2 )
.

(3.114)

If we now use ∆a(Q
2, t) = R, then[

ln( t
Λ2 )

ln(
Q2

0

Λ2 )

] 2
3b0

= R, (3.115)

which implies that

t = Λ2

(
Q2

Λ2

)R 3b0
2

. (3.116)
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We recall in HERWIG6.5 [58] we have

b0 =

(
11

3
nc −

2

3
nf

)
nf = 5,≡ 2

3
BETAF,

(3.117)

where in the last line we used the notation in HERWIG6.5. The momentum available

after a qq̄ split in HERWIG6.5 is given by

QQBAR = QCDL3

(
QLST

QCDL3

)RBETAF

(3.118)

which is in complete agreement with Eq. (3.116) when we note the identifications

t = QQBQR2, Λ ≡ QCDL3, and Q ≡ QLST.

We now repeat the above calculation for P exp
qG (z)∫ 1

0

dz
αs(Q

2)

2π
P exp
qG (z) =

2FYFS(γG)e
1
2
δG

b0 ln(Q
2

Λ2 )

1

2

∫ 1

0

[z2(1− z)γG + (1− z)2zγG ]

=
4FYFS(γG)e

1
2
δG

b0 ln(Q
2

Λ2 )(1 + γG)(2 + γG)(3 + γG)
.

(3.119)

This leads to

∆a(Q
2, Q2

0) =

∫ Q2
0

Q2

dt

t

4FYFS(γG)e
1
2
δG

b0 ln( t
Λ2 )(1 + γG)(2 + γG)(3 + γG)

=
4FYFS(γG)e

1
2
δG

b0(1 + γG)(2 + γG)(3 + γG)
Ei

(
1,

8.369604402

b0 ln( t
Λ2 )

)∣∣∣∣Q2

Q2
0

.

(3.120)

And the IR-improved formula for ∆a(Q
2, t) can be written in the form

∆a(Q
2, t) = exp[−F (Q2)− F (t)], (3.121)

where

F (Q2) =
4FY FS(γG)e

1
2
δG

b0(1 + γG)(2 + γG)(3 + γG)
Ei

(
1,

8.369604402

b0 ln(Q
2

Λ2 )

)
, (3.122)

and the Ei is the integral function.

In HERWIG6.5 for the q → qG branching process, we have the implementation

of the usual DGLAP-CS kernels, e.g.
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WMIN=MIN(ZMIN *(1.- ZMIN),ZMAX *(1.- ZMAX))

ETEST =(1.+ ZMAX **2)* HWUALF(5-SUDORD*2,QNOW*WMIN)

ZRAT = ZMAX/ZMIN

30 Z1=ZMIN*ZRAT** HWRGEN (0)

Z2 = 1.- Z1

PGQW =(1.+Z2*Z2)

ZTEST=PGQW*HWUALF(5-SUDORD*2,QNOW*Z1*Z2)

IF(ZTEST.LT.ETEST*HWRGEN (1)) GOTO30

...

where the branching of q to G at z = z1 occures in the interval from zmin to zmax set

by the inputs to the program and the current value of the virtuality QNOW,HWUALF is

the respective function for αs in the program and HWRGEN(J) are uniformly distributed

random numbers on the interval [0, 1].

We now make the replacement for the IR-improved kernels in the HERWIG6.5

to find the HERWIRI1.031 code

NUMFLAV =5

B0 =11. -2./3.* NUMFLAV

L=16./(3.* B0)

DELTAQ=L/2+ HWUALF (5.- SUDORD*2,QNOW*WMIN )*1.184056810

ETEST =(1.+ ZMAX **2)* HWUALF (5.- SUDORD*2,QNOW*WMIN)

& *EXP (0.5* DELTAQ )*FYFSQ(NUMFLAV -1)* ZMAX**L

ZRAT = ZMAX/ZMIN

30 Z1=ZMIN*ZRAT** HWRGEN (0)

Z2 = 1.- Z1

DELTAQ=L/2+ HWUALF (5.- SUDORD*2,QNOW*WMIN )*1.184056810
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PGQW =(1.Z2*Z2)*EXP (0.5* DELTAQ )* FYFSQ(NUMFLAV -1)*Z1**L

ZTEST=PGQW*HWUALF(5-SUDORD*2,QNOW*Z1*Z2)

IF(ZTEST.LT.ETEST*HWRGEN (1)) GOTO30

...

so that with the identification γq ≡ L, δq ≡ DELTAQ, FY FS(γq) ≡ FYFSQ(NUMFLAV− 1).

Final-state parton showering is generated by a so-called coherent algorithm

with the following properties:

• The energy fractions are distributed according to the leading-order IR-improved

DGLAP-CS splitting functions derived in this chapter;

• The full available phase space is restricted to an angular-ordered region;

• The emission angles are distributed according to the famous Sudakov form

factors, with the virtual corrections and unresolved real emissions;

• For soft emitted gluons, the azimuth is distributed according to the eikonal

dipole distribution [59];

• For non-soft emitted gluons, the azimuth is distributed according to spin

effects [60, 61];

• In each branching the scale of αs is the relative transverse momentum of the

two daughters;

• In the heavy flavour production case, the mass of the quark modifies the

angular-ordered phase space.

The HERWIRI1.031 parton shower evolution is done in terms of two variables

z and ξ, where z is the parton energy fraction and ξ is an angular variable defined as

follows:

Pi → Pj + Pk ⇒ zj =
Ej
Ei

(3.123)

Pi → Pj + Pk ⇒ ξjk =
(pj.pk)

EjEk
. (3.124)

62



For massless partons at small angles, ξjk ' 1
2
θ2
jk . The values of z are chosen ac-

cording to IR-improved DGLAP-CS splitting functions and the distribution of ξjk is

determined by the Sudakov form factors.

We realize the IR-improved DGLAP-CS theory in the MADGRAPH5 aMC@N

LO framework and specifically we recall the connection between our constructs in the

master formula in Eq. (3.36) and the constructs in the MC@NLO methodology. We

may represent the MC@NLO differential cross section via [76]:

dσMC@NLO =

[
B + V +

∫
(RMC − C)dΦR

]
dΦB[∆MC(0) +

∫
(RMC/B)∆MC(kT )dΦR]

+ (R−RMC)∆MC(kT )dΦBdΦR

(3.125)

where B is Born distribution, V is the regularized virtual contribution, C is the

corresponding counter-term required at exact NLO, R is the respective exact real

emission distribution for exact NLO, RMC = RMC(PAB) is the parton shower real

emission distribution so that the Sudakov form factor is

∆MC(pT ) = e[−
∫
dΦR

RMC (ΦB,ΦR)

B
θ(kT (ΦB ,ΦR)−pT )],

where as usual it describes the respective no-emission probability. The respective

Born and real emission differential phase spaces are denoted by dΦA, A = B, R.

We find it very important still to emphasize that the representation of the differen-

tial distribution for MC@NLO illustrates the compensation between real and virtual

divergent soft effects discussed in the Appendices of Ref. [2, 42] in establishing the

validity of Eq. (3.33) for QCD. More specifically, from comparison with Eq. (3.33)

restricted to its QCD aspect we get the identifications, accurate to O(αs),

1

2

ˆ̄̃
β0,0 = B̄ + (B̄/∆MC(0))

∫
(RMC/B)∆MC(kT )dΦR

1

2

ˆ̄̃
β1,0 = R−RMC −BS̃QCD

(3.126)
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where we defined [77]

B̄ = B(1− 2αs<BQCD) + V +

∫
(RMC − C)dΦR

and we understand that the DGLAP-CS kernels in RMC are to be taken as the IR-

improved ones as we derived in Refs. [2,42]. Although we have suppressed the super-

script nls for simplicity of notation, to avoid double counting of effects the QCD vir-

tual and real infrared functionsBQCD and S̃QCD are understood to be DGLAP-CS syn-

thesized as explained in Refs. [2,42,63,64]. Most importantly, in view of Eq. (3.126),

we observe that the way to the extension of frameworks such as MC@NLO to exact

higher orders in {αs, α} is open via our
ˆ̄̃
βn,m and will be taken up elsewhere [78].

We use the MC@NLO methodology in the automated MADGRAPH5 aMC@NL

O framework to investigate IR-improvement effects in the processes pp→ W + n jets

+ X in what follows.
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CHAPTER FOUR

IR-improved DGLAP-CS Parton Shower Effects for Associated Production of a W
Boson and Jets in pp Collisions at

√
s = 7 TeV

4.1 Event Generation, Analysis and Cuts (ATLAS Collaboration)

The generators for W + jet events are MADGRAPH5 aMC@NLO [79] in-

terfaced with HERWIG6.521 and HERWIRI1.031, which use next-to-leading-order

(NLO) matrix element calculations. The number of events generated for the W, W + 1

jet, W + 2 jets, and W + 3 jets processes are 107, 106, 105, and 105, respectively.

These events are showered by MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS

= 0) and MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV).1 During

the analysis, jets were reconstructed using the anti-kt algorithm with R = 0.4 with

FastJet [80] and the cuts in Table 4.1 were imposed.

Table 4.1: Kinematic criteria defining the fiducial phase space for the W → l + νl channel.

Combined channel W → l + νl where l = {e, µ}
Lepton P l

T P l
T > 25 GeV

Lepton rapidity ηl |ηl| < 2.5
Missing transverse energy Emiss

T > 25 GeV
Transverse mass mT > 40 GeV
Jet algorithm Anti-kT
Radius parameter R R = 0.4

Jet P jet
T P jet

T > 30 GeV
Jet rapidity Yjet |Yjet| < 4.4
Jet isolation ∆R(l, jet) > 0.5 (jet is removed)

1We will see later that HERWIRI gives either a better fit to the data or an acceptable fit
without this extra Gaussian kick.
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The transverse mass, mT , is defined as mT =
√

2P l
TP

νl
T (1− cos ∆φ) where ∆φ

is the difference in the azimuthal angle between the direction of the lepton momentum

and the associated neutrino, νl, which can be written as

∆φ = φl − φνl . (4.1)

Rapidity is defined as
1

2
ln

[
E + pz
E − pz

]
, where E denotes the energy of the particle and

pz is the longitudinal component of the momentum. Finally, the jet isolation, ∆R,

which is a Lorentz invariant quantity, is defined as

∆R(l, jet) =
√

∆φ2(l, jet) + ∆η2(l, jet), (4.2)

where 
∆φ(l, jet) = φl − φjet,

∆η(l, jet) = ηl − ηjet,

η = − ln tan
(
θ
2

)
.

(4.3)

4.2 Results (ATLAS Collaboration)

The measured W(→ l+νl) + jets fiducial cross sections [81] are shown and com-

pared to the predictions of MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-

GRAPH5 aMC@NLO/HERWIG6.521. Each distribution is combined separately by

minimizing a χ2 function. The factors applied to the theory predictions are summa-

rized in Appendix F.

We have used the following notation throughout this dissertation:

• herwiri ≡ MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS = 0);

• herwig ≡ MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV).
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4.2.1 Transverse Momentum Distributions

The differential cross sections as a function of the leading jet transverse mo-

mentum are shown in Figure 4.1 and Figure 4.2 for the W + ≥1 jet and W + 1

jet cases, respectively. In both cases, there is agreement between the data and pre-

dictions provided by HERWIRI and HERWIG for PT ≤ 200 GeV. In Figure 4.1,(
χ2

d.o.f

)
HERWIRI

= 5.98 and
(
χ2

d.o.f

)
HERWIG

= 10.62. In Figure 4.2,
(
χ2

d.o.f

)
HERWIRI

= 5.18 and(
χ2

d.o.f

)
HERWIG

= 4.91. We note that the
(
χ2

d.o.f

)
functions have been calculated for the

first 9 bins. For PT ≥ 200 GeV, in most cases, the predictions underestimate the

data. HERWIRI predictions in both figures, in three cases overlap with the data for

PT ≥ 200 GeV.

Figure 4.1: Cross section for the production of W + jets as a function of the
leading jet PT for Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

67



Figure 4.2: Cross section for the production of W + jets as a function of the
leading jet PT for Njet = 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.3: Cross section for the production of W + jets as a function of the
leading jet PT for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.4: Cross section for the production of W + jets as a function of the sec-
ond leading jet PT for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

The differential cross sections for the production of W + ≥2 jets as a function

of the leading jet PT and the second leading jet PT are shown in Figure 4.3 and

Figure 4.4, respectively. HERWIRI and HERWIG generally describe the data well

for PT < 200 GeV. In Figure 4.3,
(
χ2

d.o.f

)
HERWIRI

= 1.19 and
(
χ2

d.o.f

)
HERWIG

= 1.49, while

for 200 < PT < 350 GeV it seems that they both fail to describe the data. For

250 < PT < 550 GeV, HERWIRI predictions overlap with the data while HERWIG

either underestimates or overestimates the data. Finally, for energies higher than

550 GeV, they both underestimate the data.

Figure 4.4 shows that HERWIRI, in general, gives a better fit to the data

for PT < 150 GeV, where
(
χ2

d.o.f

)
HERWIRI

= 1.06 and
(
χ2

d.o.f

)
HERWIG

= 1.69. For higher

PT , in some cases HERWIRI predictions overlap with the data while HERWIG either

underestimates or overestimates the data. We conclude that HERWIRI gives a better

fit to the data as expected.
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Figure 4.5: Cross section for the production of W + jets as a function of the
leading jet PT for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.6: Cross section for the production of W + jets as a function of the third
leading jet PT for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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The differential cross sections for the production of W +≥3 jets as a function of

the leading jet PT and the third leading jet PT are shown in Figure 4.5 and Figure 4.6,

respectively. In Figure 4.5, for PT < 150 GeV, the predictions provided by HERWIRI

and HERWIG are in complete agreement with the data, where
(
χ2

d.o.f

)
HERWIRI

= 0.27

and
(
χ2

d.o.f

)
HERWIG

= 0.20. For PT > 150 GeV, HERWIG gives a better fit to the data

while HERWIRI underestimates the data. In Figure 4.6, HERWIRI clearly gives a

better fit to the data for low PT , where
(
χ2

d.o.f

)
HERWIRI

= 3.32 and
(
χ2

d.o.f

)
HERWIG

= 9.44.

For large PT , in almost all cases HERWIRI and HERWIG predictions underestimate

the data.

In general, one could conclude that the predictions provided by HERWIRI

give a better fit to the data for soft PT .

Figure 4.7: Cross section for the production of W + jets as a function of the
leading jet Yj for Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.8: Cross section for the production of W + jets as a function of the sec-
ond leading jet Yj for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

4.2.2 Rapidity Distributions

The differential cross sections for the production of W + ≥1 jet as a function

of the leading jet Yj are shown in Figure 4.7. The predictions provided by HERWIRI

and HERWIG are generally in agreement with the data, although in three cases

HERWIRI predictions overlap with the data while the HERWIG predictions either

underestimate or overestimate the data. We clearly conclude that HERWIRI gives a

better fit to the data with
(
χ2

d.o.f

)
HERWIRI

= 0.35 and
(
χ2

d.o.f

)
HERWIG

= 0.70.

The differential cross sections for the production of W +≥2 jets as a function of

the second leading jet Yj are shown in Figure 4.8. The results provided by HERWIRI

and HERWIG overlap with the data in almost all cases. In two cases, the HERWIRI

predictions overlap with the data and in two cases the HERWIG results overlap with

the data while HERWIRI predictions either underestimate or overestimate the data:(
χ2

d.o.f

)
HERWIRI

= 1.01 and
(
χ2

d.o.f

)
HERWIG

= 0.63.
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Figure 4.9: Cross section for the production of W + jets as a function of the third
leading jet Yj for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

The differential cross sections for the production of W + ≥ 3 jets as a function

of the third leading jet Yj are shown in Figure 4.9. For Yj < 3.6, with the exception

of one case in which only the HERWIG prediction overlaps with the data, HERWIRI

and HERWIG predictions are in agreement with the data. For Yj > 3.6, in one case

HERWIRI overlaps with the data while HERWIG overestimates the data, and in the

other case HERWIG overlaps with the data while HERWIRI underestimates the data:(
χ2

d.o.f

)
HERWIRI

= 1.05 and
(
χ2

d.o.f

)
HERWIG

= 0.43.

4.2.3 Dijet Angular Variables, Invariant Mass, Separation

In this subsection the differential cross sections are shown as functions of the

difference in azimuthal angle (∆φj1,j2), the difference in the rapidty (∆Yj1,j2), the

angular separation (∆Rj1,j2) and the dijet invariant mass (mj1,j2), compared to the
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data. We define the above variables as follows

∆Yj1,j2 = |Yj1 − Yj2|, (4.4)

∆φj1,j2 = |φj1 − φj2|, (4.5)

∆Rj1,j2 =
√

(∆φj1,j2)2 + ∆ηj1,j2)2, (4.6)

mj1,j2 =

√
(Ej1 + Ej2)2 − (~Pj1 + ~Pj2)2 =

√
m2
j1

+m2
j2

+ 2(Ej1Ej2 − ~Pj1 · ~Pj2).

(4.7)

We note that in Eq. (4.6), ηj1,j2 is the difference in rapidity of the first and second

leading jets. The ith jet is defined as

P µ
ith-jet = (Ej1 , ~Pith-jet) (4.8)

Figure 4.10: Cross section for the production of W + jets as a function of the di-
jet invariant mass mj1,j2 between the two leading jets for Njet ≥ 2. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.11: Cross section for the production of W + jets as a function of the dif-
ference in the rapidity between the two leading jets for Njet ≥ 2. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

The differential cross sections for the production of W + ≥2 jets as a function

of the dijet invariant mass between the two leading jets are shown in Figure 4.10.

The cross sections are fairly well modeled by HERWIRI for mj1,j2 < 400 GeV. For

mj1,j2 > 400 GeV there are cases in which HERWIRI gives a good fit to the data

while HERWIG predictions either underestimate or overestimate the data. In com-

parison, predictions provided by HERWIRI describe the data better than HERWIG:(
χ2

d.o.f

)
HERWIRI

= 2.19 and
(
χ2

d.o.f

)
HERWIG

= 2.68.

The differential cross sections for the production of W + ≥2 jets as a function

of the difference in the rapidity between the two leading jets are shown in Figure 4.11.

For ∆Yj1j2 < 3 the predictions provided by HERWIRI give a better fit to the data.

For 3 < ∆Yj1j2 < 4, HERWIG results provide a better description of the data:(
χ2

d.o.f

)
HERWIRI

= 2.08 and
(
χ2

d.o.f

)
HERWIG

= 4.77.
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Figure 4.12: Cross section for the production of W + jets as a function of the
angular separation between the two leading jets for Njet ≥ 2. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.13: Cross section for the production of W + jets as a function of the dif-
ference in the azimuthal angle between the two leading jets for Njet ≥ 2. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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The differential cross sections for the production of W + ≥2 jets as a function

of the angular separation between the two leading jets are shown in Figure 4.12. For

∆Rj1,j2 > 3, the cross sections are fairly well modeled by the predictions of HERWIRI

and HERWIG. For ∆Rj1,j2 < 3, in two cases the prediction provided by either of them

fail to describe the data; in most cases they both give a satisfactory fit to the data:(
χ2

d.o.f

)
HERWIRI

= 1.59 and
(
χ2

d.o.f

)
HERWIG

= 0.78.

The differential cross sections for the production of W + ≥2 jets as a function

of the azimuthal angle between the two leading jets are shown in Figure 4.13. For

∆φj1,j2 > 2.2 and 1 < ∆φj1,j2 < 1.4, the cross sections are well modeled by HERWIRI

and HERWIG:
(
χ2

d.o.f

)
HERWIRI

= 1.46 and
(
χ2

d.o.f

)
HERWIG

= 0.49.

4.2.4 Scalar Sum HT

In this subsection we will study the W + jets cross sections as a function of

HT , the summed scalar PT of all identified object in the final state. For example, for

a prototypical process

pp→ l + νl + j1 + j2, (4.9)

we define HT as follows

HT = PT (l) + PT (νl) + PT (j1) + PT (j2), (4.10)

where l = e, µ.

The differential cross sections as a function of HT are shown in Figure 4.14,

Figure 4.15, Figure 4.16, Figure 4.17, Figure 4.18, and Figure 4.19 respectively. We

will study the W + jets cross sections as a function of HT for low HT . We will see in

some cases HERWIRI predictions are in agreement with the data and in some cases

HERWIG predictions give a better fit to the data. In general, a better agreement is

provided for the lower jet multiplicities, e.g. W + 1 jet and W + ≥ 1 jet.
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Figure 4.14: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.15: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet = 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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The differential cross sections for the production of W + ≥1 jet as a function

of the scalar sum HT are shown in Figure 4.14. For HT < 100 GeV, HERWIG

predictions are in agreement with data while the predictions provided by HERWIRI

underestimate the data:
(
χ2

d.o.f

)
HERWIRI

= 2.41 and
(
χ2

d.o.f

)
HERWIG

= 1.41. For 100 < HT <

1000 GeV, the differential cross sections are fairly well modeled by the HERWIRI and

HERWIG predictions.

The differential cross sections for the production of W + 1 jet as a function

of the scalar sum HT are shown in Figure 4.15. For the case HT < 100 GeV, HER-

WIG predictions are in agreement with the data while the predictions provided by

HERWIRI overestimate the data:
(
χ2

d.o.f

)
HERWIRI

= 2.07 and
(
χ2

d.o.f

)
HERWIG

= 0.74. For

100 < HT < 250 GeV, the differential cross sections are fairly well modeled by the

HERWIRI and HERWIG predictions. For 250 < HT < 400 GeV, the HERWIG

predictions are in better agreement with the data. Finally, for higher energies, the

predictions provided by HERWIRI and HERWIG tend to be either above or below

the data.

The differential cross sections for the production of W + ≥2 jets as a function

of the scalar sumHT are shown in Figure 4.16. The predictions provided by HERWIRI

and HERWIG underestimate the data at HT < 200 GeV, with
(
χ2

d.o.f

)
HERWIRI

= 3.10

and
(
χ2

d.o.f

)
HERWIG

= 1.32. In the 200 < HT < 250 GeV range, HERWIG gives a

better fit to the data; in the 250 < HT < 350 GeV range, HERWIRI predictions are

in better agreement with the data. For large HT , HERWIRI predictions either are

in agreement with the data or have less discrepancy with the data than the results

provided by HERWIG, as Figure 4.16 reveals.

The differential cross sections for the production of W + 2 jets as a function

of the scalar sum HT are shown in Figure 4.17. HERWIRI and HERWIG seem to be

unable to provide a good fit for the data at HT < 200 GeV where they underestimate

the data:
(
χ2

d.o.f

)
HERWIRI

= 4.85 and
(
χ2

d.o.f

)
HERWIG

= 3.16.
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Figure 4.16: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.19: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet = 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.17: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet = 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.18: Cross section for the production of W + jets as a function of the
scalar sum HT for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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At energies around 200 < HT < 250 GeV, HERWIRI and HERWIG predic-

tions overlap fairly well with the data. In general, we conclude that the discrepancy

of the predictions provided by HERWIRI is less than that of HERWIG.

The differential cross sections for the production of W + ≥3 jets as a function

of the scalar sum HT are shown in Figure 4.18. A good fit is provided by the HERWIG

predictions for HT < 200 GeV, where
(
χ2

d.o.f

)
HERWIRI

= 4.01 and
(
χ2

d.o.f

)
HERWIG

= 1.84.

The HERWIG predictions overlap fairly well with the data for 200 < HT < 400 GeV.

For the higher range 650 < HT < 1000 GeV, the HERWIRI predictions are in agree-

ment with the data while HERWIG either underestimates or overestimates the data.

The differential cross sections for the production of W + 3 jets as a function

of the scalar sum HT are shown in Figure 4.19. HERWIG gives a better fit to the

data for HT < 200, with
(
χ2

d.o.f

)
HERWIRI

= 3.75 and
(
χ2

d.o.f

)
HERWIG

= 2.34. In general, the

predictions provided by HERWIG give a better fit to the data.

4.2.5 Scalar Sum ST

In this subsection, we study the behavior of W + jets cross sections as a

function of the scalar sum ST , where ST is defined as the summed scalar PT of all the

jets in the event:

ST =

Njet∑
i=1

|PT (i)|, (4.11)

where |PT (i)| is the transverse momentum of the ith jet and Njet is the maximum

number of jets in each event. The differential cross sections as a function of HT

are shown in Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24

respectively. We will study the W + jets cross sections as a function of ST for low

ST . We will see in some cases HERWIRI predictions are in agreement with the data

and in some cases HERWIG predictions give a better fit to the data. In general,

a better agreement is provided for the lower jet multiplicities, e.g. W + 1 jet and

W + ≥ 1 jet.
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Figure 4.20: Cross section for the production of W + jets as a function of the
scalar sum ST for Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.21: Cross section for the production of W + jets as a function of the
scalar sum ST for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.22: Cross section for the production of W + jets as a function of the
scalar sum ST for Njet = 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

The differential cross sections for the production of W + ≥1 jet as a function

of the scalar sum ST are shown in Figure 4.20. A good fit to the data is provided

by HERWIRI at ST < 100 GeV while HERWIG predictions lie above the data:(
χ2

d.o.f

)
HERWIRI

= 0.35 and
(
χ2

d.o.f

)
HERWIG

= 0.81. For 100 < ST < 400 GeV, the HERWIRI

and HERWIG predictions are in very good agreement with the data. For higher values

of ST , HERWIRI and HERWIG predictions lie below the data.

The differential cross sections for the production of W + ≥2 jets as a function

of the scalar sum ST are shown in Figure 4.21. For ST < 100 GeV, The predictions

provided by HERWIRI and HERWIG lie above the data:
(
χ2

d.o.f

)
HERWIRI

= 12.07 and(
χ2

d.o.f

)
HERWIG

= 3.50. For medium energies, the HERWIG prediction gives a fair fit to

the data. For large energies, HERWIG gives a good fit to the data.

The differential cross sections for the production of W + 2 jets as a func-

tion of the scalar sum ST are shown in Figure 4.22. Good agreement is provided
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by the predictions of HERWIG at ST < 150 GeV, where
(
χ2

d.o.f

)
HERWIRI

= 5.47 and(
χ2

d.o.f

)
HERWIG

= 4.19. HERWIG in general gives either a better fit to the data or less

discrepancy in comparison with HERWIRI.

In Figure 4.23,
(
χ2

d.o.f

)
HERWIRI

= 4.31 and
(
χ2

d.o.f

)
HERWIG

= 0.70. Figure 4.24 shows

the cross sections for the production of W + jet as a function of the exclusive jet

multiplicity. The predictions provided by HERWIG give a better fit to the data, with(
χ2

d.o.f

)
HERWIRI

= 7.31 and
(
χ2

d.o.f

)
HERWIG

= 1.08.

It is clear in some cases HERWIRI predictions are in agreement with the data

and in some cases HERWIG predictions give a better fit to the data. In general,

a better agreement is provided for the lower jet multiplicities, e.g. W + 1 jet and

W + ≥ 1 jet.

Figure 4.23: Cross section for the production of W + jets as a function of the
scalar sum ST for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.24: Cross section for the production of W + jets as a function of the
scalar sum ST for Njet = 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.25: Cross section for the production of W + jets as a function of
the inclusive jet multiplicity. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.26: Cross section for the production of W + jets as a function of
the exclusive jet multiplicity. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

4.2.6 Cross Sections

The cross sections for W → l + νl production as functions of the inclusive

and exclusive jet multiplicity are shown in Figure 4.25 and Figure 4.26. Figure 4.25

shows the cross sections for the production of W + jet as a function of the inclusive

jet multiplicity. A good fit is provided by HERWIRI and HERWIG for Njet ≥ 1 and

Njet ≥ 2 while for Njet ≥ 3 and 4, HERWIRI predictions underestimate the data.

4.3 Summary

The realization of the IR-improved DGLAP-CS theory, when used in the MAD-

GRAPH5 aMC@NLO/HERWIRI1.031 O(α) ME-matched parton shower framework,

provides us with the opportunity to explain the differential cross sections for a W bo-

son produced in association with jets in pp collisions in the recent LHC data from

ATLAS, without the need of an unexpectedly hard intrinsic Gaussian distribution
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with an rms value of PTRMS = 2.2 GeV in parton’s wave function. In our view, this

can be interpreted as providing a rigorous basis for the phenomenological correctness

of such unexpectedly hard distributions insofar as describing these data using the

usual unimproved DGLAP-CS showers is concerned.

4.4 Event Generation, Analysis and Cuts (CMS Collaboration)

The generators for W + jet events are MADGRAPH5 aMC@NLO [79] in-

terfaced with HERWIG6.521 and HERWIRI1.031, which use next-to-leading-order

(NLO) matrix element calculations. The number of events generated for the W, W + 1

jet, W + 2 jets, and W + 3 jets processes are 107, 106, 105, and 105, respectively.

These events are showered by MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS

= 0) and MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV).2 During

the analysis, jets were reconstructed using the anti-kt algorithm with R = 0.5 with

FastJet [80] and the cuts in Table 4.2 were imposed.

Table 4.2: Kinematic criteria defining the fiducial phase space for the
W → µ+ νµ channel.

Muon channel (W → µ+ νµ)
Lepton P µ

T P µ
T > 25 GeV

Lepton rapidity ηµ |ηµ| < 2.1
Missing transverse energy Emiss

T > 25 GeV
Transverse mass mT > 50 GeV
Jet algorithm Anti-kT
Radius parameter R R = 0.5

Jet P jet
T P jet

T > 30 GeV
Jet rapidity Yjet |Yjet| < 2.4
Jet isolation ∆R(µ, jet) > 0.5 (jet is removed)

The transverse mass, mT , is defined as mT =
√

2P µ
T P

νµ
T (1− cos ∆φ) where ∆φ

is the difference in the azimuthal angle between the direction of the muon momentum

2We will see later that HERWIRI gives either a better fit to the data or an acceptable fit
without this extra Gaussian kick.
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and the associated muon neutrino, νµ, which can be written as

∆φ = φµ − φνµ . (4.12)

Rapidity is defined as
1

2
ln

[
E + pz
E − pz

]
, where E denotes the energy of the particle and

pz is the longitudinal component of the momentum. Finally, the jet isolation, ∆R,

which is a Lorentz invariant quantity, is defined as

∆R(µ, jet) =
√

∆φ2(µ, jet) + ∆η2(µ, jet) (4.13)

where 
∆φ(µ, jet) = φµ − φjet,

∆η(µ, jet) = ηµ − ηjet,

η = − ln tan( θ
2
).

(4.14)

4.5 Results (CMS Collaboration)

The measured W(→ µ + νµ) + jets fiducial cross sections [82] are shown

and compared to the predictions of MADGRAPH5 aMC@NLO/HERWIRI1.031 and

MADGRAPH5 aMC@NLO/HERWIG6.521. Each distribution is combined separately

by minimizing a χ2 function. The factors applied to the theory predictions are sum-

marized in Appendix G.

4.5.1 Transverse Momentum Distributions PT

The differential cross sections in jet PT for inclusive jet multiplicities from

1 to 3 are shown in Figure 4.27, Figure 4.28 and Figure 4.29, and compared with

predictions provided by HERWIRI1.031 and HERWIG6.521.
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Figure 4.27: Cross section for the production of W + jets as a function of the
leading jet PT for Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.28: Cross section for the production of W + jets as a function of the sec-
ond leading jet PT for Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.29: Cross section for the production of W + jets as a function of the third
leading jet PT for Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

The differential cross sections as functions of the first three leading jets are

shown in Figure 4.27, Figure 4.28, and Figure 4.29. In Figure 4.27, the predic-

tions provided by HERWIRI and HERWIG give a very good fit to the data, with(
χ2

d.o.f

)
HERWIRI

= 1.72 and
(
χ2

d.o.f

)
HERWIG

= 1.33.

In Figure 4.28, for PT ≤ 150 GeV, a better fit is provided by HERWIG to

the data points, where
(
χ2

d.o.f

)
HERWIRI

= 6.53 and
(
χ2

d.o.f

)
HERWIG

= 3.60. For higher values

of PT , the predictions provided by HERWIRI lie below the data while the HERWIG

results either underestimate or overestimate the data.

In Figure 4.29, the HERWIG predictions, in general, give a better fit to the

data:
(
χ2

d.o.f

)
HERWIRI

= 5.21 and
(
χ2

d.o.f

)
HERWIG

= 3.18.
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4.5.2 The Scalar Sum of Jet Transverse Momenta HT

In this subsection, the differential cross sections are shown as function of HT

for inclusive jet multiplicities 1–3. The scalar sum HT is defined as

HT =

Njet∑
i=1

PT (ji), (4.15)

for each event.

The differential cross sections as a function of HT for inclusive jet multiplicities

1–3 are shown in Figure 4.30, Figure 4.31, and Figure 4.32. In Figure 4.30, the

predictions provided by HERWIG give a better fit to the data with
(
χ2

d.o.f

)
HERWIRI

= 5.19

and
(
χ2

d.o.f

)
HERWIG

= 2.58. In Figure 4.31, for HT > 200 GeV, HERWIRI gives a better

fit to the data while in Figure 4.32 the predictions provided by HERWIG give a

better fit to the data. In Figure 4.31,
(
χ2

d.o.f

)
HERWIRI

= 48.55 and
(
χ2

d.o.f

)
HERWIG

= 57.57.

In Figure 4.32,
(
χ2

d.o.f

)
HERWIRI

= 29.56 and
(
χ2

d.o.f

)
HERWIG

= 14.73.

Figure 4.30: Cross section for the production of W + jets as a function of HT for Njet ≥ 1.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.31: Cross section for the production of W + jets as a function of HT for Njet ≥ 2.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.32: Cross section for the production of W + jets as a function of HT for Njet ≥ 3.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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4.5.3 Pseudorapidity Distributions |η(j)|

In this section, the differential cross sections are shown as functions of pseu-

dorapidities of the three leading jets. The pseudorapidity is defined as

η ≡ − ln

(
tan

θ

2

)
, (4.16)

where θ is the angle between the particle three-momentum ~P and the positive direc-

tion of the beam axis. One can prove that Eq. (4.16) is written in the form

η =
1

2
ln

(
|~P |+ PL

|~P | − PL

)
= arctanh

(
PL

|~P |

)
, (4.17)

where PL where is the component of the momentum along the beam axis.

The problem with rapidity is that it can be hard to measure for highly rel-

ativistic particles. We need the total momentum vector of a particle, especially at

high values of the rapidity where the z component of the momentum is large, and the

beam pipe can be in the way of measuring it precisely.

However, there is a way of defining a quantity that is almost the same thing

as the rapidity which is much easier to measure than y for highly energetic particles.

This leads to the concept of pseudorapidity η.

Hadron colliders measure physical momenta in terms of transverse momentum,

PT , polar angle in the transverse plane, φ, and pseudorapidity. To obtain Cartesian

momenta (Px, Py, Pz), (with the z-axis defined as the beam axis), the following con-

versions are used:


Px = PT cosφ,

Py = PT sinφ,

Pz = PT sinh η.

(4.18)
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Figure 4.33: Cross section for the production of W + jets as a function of |η(j1)| for Njet ≥ 1.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.34: Cross section for the production of W + jets as a function of |η(j2)| for Njet ≥ 2.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.35: Cross section for the production of W + jets as a function of |η(j1)| for Njet ≥ 3.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

In Figure 4.33 the cross section is shown as a function of |η(j1)|, the leading

jet pseudorapidity. The predictions provided by HERWIRI are in better agreement

with the data, with
(
χ2

d.o.f

)
HERWIRI

= 0.78 and
(
χ2

d.o.f

)
HERWIG

= 1.58. In Figure 4.34,

in general, HERWIG gives a better fit to the data, with
(
χ2

d.o.f

)
HERWIRI

= 7.61 and(
χ2

d.o.f

)
HERWIG

= 6.85. Figure 4.35 shows that the HERWIG predictions are in better

agreement with the data, with
(
χ2

d.o.f

)
HERWIRI

= 3.27 and
(
χ2

d.o.f

)
HERWIG

= 2.43.

4.5.4 Azimuthal Angular Distribution Between the Muon and the Leading Jet

The differential cross sections are shown as functions of the azimuthal angle

between the muon and the first three leading jets for inclusive jet multiplicities 1–3.

The azimuthal angle between the muon and the leading jet is defined as

cos(∆Φ(µ, j1)) =
Px(µ)Px(j1) + Py(µ)Py(j1)√

P 2
x (µ) + P 2

y (µ)
√
P 2
x (j1) + P 2

y (j1)
, (4.19)
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Figure 4.36: Cross section for the production of W + jets as a function of the az-
imuthal angle between the muon and the leading jet ∆Φ(µ, j1) for Njet ≥ 1. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

with  µµ = (Eµ, Px(µ), Py(µ), PL(µ)),

jµ1 = (Ej1 , Px(j1), Py(j1), PL(j1)),
(4.20)

The differential cross sections as functions of the azimuthal angle between the muon

and the first three leading jets are shown in Figure 4.36, Figure 4.37, and Figure 4.38

for inclusive jet multiplicities 1–3, respectively.

In Figure 4.36 and Figure 4.38, the data are better modeled by the predictions

provided by HERWIRI as expected as well as Figure 4.37 shows that the HERWIG

predictions give a better fit to the data. In Figure 4.36,
(
χ2

d.o.f

)
HERWIRI

= 5.07 and(
χ2

d.o.f

)
HERWIG

= 10.68. In Figure 4.37,
(
χ2

d.o.f

)
HERWIRI

= 10.94 and
(
χ2

d.o.f

)
HERWIG

= 5.95. In

Figure 4.38,
(
χ2

d.o.f

)
HERWIRI

= 3.54 and
(
χ2

d.o.f

)
HERWIG

= 2.457.
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Figure 4.37: Cross section for the production of W + jets as a function of the azimuthal
angle between the muon and the second leading jet ∆Φ(µ, j2) for Njet ≥ 2. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.38: Cross section for the production of W + jets as a function of the azimuthal
angle between the muon and the second leading jet ∆Φ(µ, j3) for Njet ≥ 3. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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Figure 4.39: Measured cross section versus inclusive jet multiplicity. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

Figure 4.40: Measured cross section versus exclusive jet multiplicity. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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4.5.5 Cross Sections

The measured W(→ µνµ) + jets fiducial cross sections are shown in Figure 4.39

and Figure 4.40 and compared to the predictions of MADGRAPH5 aMC@NLO/

HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521. The measured in-

clusive jet multiplicity distributions are in agreement with the predictions of HER-

WIRI, while the measured exclusive jet multiplicity distributions are in agreement

with the predictions of HERWIG. Figure 4.39 shows the differential cross sections

for the inclusive jet multiplicities 1–3. HERWIRI gives a better fit to the data. Fig-

ure 4.40 shows the differential cross sections for the exclusive jet multiplicities 1-3.

The cross sections provide by HERWIG give a better fit to the data. In Figure 4.39,(
χ2

d.o.f

)
HERWIRI

= 0.92 and
(
χ2

d.o.f

)
HERWIG

= 2.30 while in Figure 4.40,
(
χ2

d.o.f

)
HERWIRI

= 4.66

and
(
χ2

d.o.f

)
HERWIG

= 1.65.

4.6 Summary

The realization of the IR-improved DGLAP-CS theory, when used in the MAD-

GRAPH5 aMC@NLO/HERWIRI1.031 O(α) ME-matched parton shower framework,

provides us with the opportunity to explain the differential cross sections for a W bo-

son produced in association with jets in pp collisions in the recent LHC data from

CMS, without the need of an unexpectedly hard intrinsic Gaussian distribution with

an rms value of PTRMS = 2.2 GeV in parton’s wave function. In our view, this can

be interpreted as providing a rigorous basis for the phenomenological correctness of

such unexpectedly hard distributions insofar as describing these data using the usual

unimproved DGLAP-CS showers is concerned.
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CHAPTER FIVE

IR-improved DGLAP-CS Parton Shower Effects for Associated Production of a W
Boson and Jets in pp Collisions at

√
s = 8 TeV

5.1 Event Generation, Analysis and Cuts (CMS Collaboration)

The generators for W + jet events are MADGRAPH5 aMC@NLO [79] in-

terfaced with HERWIG6.521 and HERWIRI1.031, which use next-to-leading-order

(NLO) matrix element calculations. The number of events generated for the W, W + 1

jet, W + 2 jets, and W + 3 jets processes are 107, 106, 105, and 105, respectively.

These events are showered by MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS

= 0) and MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV).1 During

the analysis, jets were reconstructed using the anti-kt algorithm with R = 0.5 with

FastJet [80] and the cuts in Table 5.1 were imposed.

Table 5.1: Kinematic criteria defining the fiducial phase space for the
W → µ+ νµ channel.

Muon channel (W → µ+ νµ)
Lepton P µ

T P µ
T > 25 GeV

Lepton rapidity ηµ |ηµ| < 2.1
Missing transverse energy Emiss

T > 25 GeV
Transverse mass mT > 50 GeV
Jet algorithm Anti-kT
Radius parameter R R = 0.5

Jet P jet
T P jet

T > 30 GeV
Jet rapidity ηjet |ηjet| < 2.4
Jet isolation ∆R(µ, jet) > 0.5 (jet is removed)

1We will see later that HERWIRI gives either a better fit to the data or an acceptable fit
without this extra Gaussian kick.
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The transverse mass, mT , is defined as mT =
√

2P µ
T P

νµ
T (1− cos ∆φ) where ∆φ

is the difference in the azimuthal angle between the direction of the muon momentum

and the associated muon neutrino, νµ, which can be written as

∆φ = φµ − φνµ . (5.1)

Rapidity is defined as
1

2
ln

[
E + pz
E − pz

]
, where E denotes the energy of the particle and

pz is the longitudinal component of the momentum. Finally, the jet isolation, ∆R,

which is a Lorentz invariant quantity, is defined as

∆R(µ, jet) =
√

∆φ2(µ, jet) + ∆η2(µ, jet) (5.2)

where 
∆φ(µ, jet) = φµ − φjet,

∆η(µ, jet) = ηµ − ηjet,

η = − ln tan( θ
2
).

(5.3)

5.2 Results (CMS Collaboration)

The measured W(→ µ+νµ) + jets cross sections [83] are shown and compared

to the predictions of MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS = 0) and

MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV). The 8 TeV data

sample allows us to determine the cross sections for jet multiplicities up to 3 and to

study the fiducial cross sections as functions of most kinematic observables for up

to three jets. Each distribution is combined separately by minimizing a χ2 function.

The factors applied to the theory predictions are summarized in Appendix H.
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Figure 5.1: Cross section for the production of W + jets as a function of the
leading-jet PT in Njet ≥ 1. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.2: Cross section for the production of W + jets as a function of the sec-
ond leading-jet PT in Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.3: Cross section for the production of W + jets as a function of the
third leading-jet PT in Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

5.2.1 Transverse Momentum Distributions PT

The differential cross sections in jet PT for inclusive jet multiplicities from

1 to 3 are shown and compared with predictions provided by HERWIRI1.031 and

HERWIG6.521. The differential cross sections as functions of the first three leading

jets are shown in Figure 5.1, Figure 5.2, and Figure 5.3. In Figure 5.1, a good fit is

provided by both HERWIRI and HERWIG for PT ≤ 350 GeV while for PT > 400 GeV

the predictions provided by HERWIRI and HERWIG lie below the data. However,

the HERWIRI predictions are closer to the data. In Figure 5.2 both HERWIRI

and HERWIG provide a fairly good fit to the data for PT ≤ 100 GeV. In 100 <

PT < 300 GeV, there are cases in which the theoretical predictions provided by either

HERWIRI or HERWIG overlap with the data. For higher values of PT , PT > 350 GeV,

both HERWIRI and HERWIG underestimate the data although the HERWIG results

are closer to the data in some cases. In Figure 5.1, for PT ≤ 140 GeV,
(
χ2

d.o.f

)
HERWIRI

=
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1.36 and
(
χ2

d.o.f

)
HERWIG

= 2.26. In Figure 5.2 for PT < 140 GeV,
(
χ2

d.o.f

)
HERWIRI

= 8.50

and
(
χ2

d.o.f

)
HERWIG

= 8.57.In Figure 5.3, a very good fit is provided by HERWIRI to

the data for PT ≤ 150 GeV. For higher values of PT , HERWIG predictions overlap

with the data while HERWIRI predictions either underestimates or overestimates the

data. In Figure 5.3,
(
χ2

d.o.f

)
HERWIRI

= 3.21 and
(
χ2

d.o.f

)
HERWIG

= 2.24.

5.2.2 The Scalar Sum of Jet Transverse Momenta HT

In this section, the differential cross sections are shown as functions of HT for

inclusive jet multiplicities 1–3. The scalar sum HT is defined as

HT =

Njet∑
i=1

PT (ji), (5.4)

for each event. In this notation, HT represents the scalar sum of the jets’ transverse

momenta.

Figure 5.4: Cross section for the production of W + jets as a function of HT in Njet ≥ 1.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.5: Cross section for the production of W + jets as a function of HT in Njet ≥ 2.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.6: Cross section for the production of W + jets as a function of HT in Njet ≥ 3.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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The differential cross sections as functions of HT for inclusive jet multiplicities

1–3 are shown in Figure 5.4, Figure 5.5, and Figure 5.6. In Figure 5.5, a good fit

is provided by HERWIRI predictions for HT ≤ 400 GeV. For higher values of HT ,

HERWIRI predictions are closer to the data. In Figure 5.5, in HT ≤ 200 GeV,

HERWIG gives a better fit to the data. For 200 < HT < 450 GeV, both HERWIRI

and HERWIG predictions overlap with the data. For higher values of HT , in one case

HERWIG overlaps and in one case HERWIRI overlaps with the data while for 800 <

HT < 1200 GeV both HERWIRI and HERWIG underestimate the data. In Figure 5.4,(
χ2

d.o.f

)
HERWIRI

= 2.07 and
(
χ2

d.o.f

)
HERWIG

= 4.11. In Figure 5.5,
(
χ2

d.o.f
)HERWIRI = 13.10 and(

χ2

d.o.f

)
HERWIG

= 7.96. In Figure 5.6,
(
χ2

d.o.f

)
HERWIRI

= 8.53 and
(
χ2

d.o.f

)
HERWIG

= 5.48.

5.2.3 The Pseudorapidity Distributions |η(j)|

In this section, the differential cross sections are shown as functions of pseu-

dorapidities of the three leading jets.

In Figure 5.7, the cross sections are shown as a function of |η(j1)|, the leading

jet pseudorapidity. The predictions provided by both HERWIRI and HERWIG give

a very good fit to the data. In Figure 5.8, the cross sections are shown as a function

of |η(j2)|, the second leading jet pseudorapidity. The distribution is well modeled by

both HERWIRI and HERWIG in |η(j2)| < 2.2. For larger values of |η(j2)|, HER-

WIG clearly gives a better fit to the data. In Figure 5.7,
(
χ2

d.o.f

)
HERWIRI

= 0.30 and(
χ2

d.o.f

)
HERWIG

= 0.38. In Figure 5.8,
(
χ2

d.o.f

)
HERWIRI

= 0.84 and
(
χ2

d.o.f

)
HERWIG

= 0.66. In

Figure 5.9, the cross sections are shown as a function of |η(j3)|, the third leading jet

pseudorapidity. A very good fit is provided by HERWIRI for |η(j3)| < 2. For higher

values of |η(j3)|, both HERWIRI and HERWIG underestimate the data. However,

the data is closer to HERWIG’s predictions. In Figure 5.9,
(
χ2

d.o.f

)
HERWIRI

= 0.62 and(
χ2

d.o.f

)
HERWIG

= 1.02.
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Figure 5.7: Cross section for the production of W + jets as a function of |η(j1)| in Njet ≥ 1.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.8: Cross section for the production of W + jets as a function of |η(j2)| in Njet ≥ 2.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.9: Cross section for the production of W + jets as a function of |η(j1)| in Njet ≥ 3.
The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.

5.2.4 Dijet PT Distributions

In this section, the differential cross sections are shown as a functions of the

dijet PT (calculated from the two leading jets) for inclusive jet multiplicities 2–3. The

dijet PT is defined as

dijet PT =
√

(Px(j1) + Px(j2))2 + ((Py(j1) + Py(j2))2, (5.5)

with  jµ1 = (Ej1 , Px(j1), Py(j1), PL(j1)),

jµ2 = (Ej2 , Px(j2), Py(j2), PL(j2)),
(5.6)

where

PT =
√
P 2
x + P 2

y . (5.7)
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In Figure 5.10, the cross section is shown as function of the dijet PT for Njet ≥

3. A better fit is provided for the data by the HERWIRI predictions in PT ≤ 150 GeV.

For higher values of PT , the predictions provided by both HERWIRI and HERWIG

lie below the data points although HERWIRI is closer to the data. In Figure 5.10,(
χ2

d.o.f

)
HERWIRI

= 1.17 and
(
χ2

d.o.f

)
HERWIG

= 1.43. In Figure 5.11, the cross section is shown

as function of the dijet PT for Njet ≥ 2. In this case again a better fit is provided by

HERWIRI in PT ≤ 350 GeV. For 350 < PT < 450 GeV, HERWIG gives a better

fit to the data. For PT ≥ 450 GeV, the predictions provided by both HERWIRI and

HERWIG underestimate the data, although HERWIRI results are closer to the data.

In Figure 5.11,
(
χ2

d.o.f

)
HERWIRI

= 7.54 and
(
χ2

d.o.f

)
HERWIG

= 9.07.

Figure 5.10: Cross section for the production of W + jets as a function of dijet PT in Njet ≥
3. The data are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031
and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.11: Cross section for the production of W + jets as function of dijet PT in Njet ≥ 2.
The data are compared to predictions from MADGRAPH5 aMC@NLOHERWIRI1.031 and
MADGRAPH5 aMC@NLO/HERWIG6.521.

5.2.5 The Rapidity Difference Distributions

In this subsection, differential cross sections are presented as functions of the

difference in rapidity. The difference in rapidity between the first and second leading

jets is defined as

|∆Y (j1, j2)| = |Y (j1)− Y (j2)|, (5.8)

with 
Y (j1) =

1

2
ln

[
Ej1 + PL(j1)

Ej1 − PL(j1)

]
,

Y (j2) =
1

2
ln

[
Ej2 + PL(j2)

Ej2 − PL(j2)

]
,

(5.9)

where Ej1 and Ej1 are energies for the first and the second leading jet, respectively.

PL(j1) and PL(j2) represent the longitudinal momenta for the first and second leading

jet.
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In Figure 5.12 and Figure 5.13, cross sections are presented as functions of

difference in rapidity for inclusive jet multiplicities 2–3. Figure 5.12 shows that for

cases |∆Y (j1, j2)| ≤ 0.5 and 1 < |∆Y (j1, j2)| ≤ 3.5, both HERWIRI and HERWIG

give good fits to the data. In 0.5 < |∆Y (j1, j2)| < 1, a better fit is given to the data

by the predictions provided by HERWIG. In Figure 5.12,
(
χ2

d.o.f

)
HERWIRI

= 2.00 and(
χ2

d.o.f

)
HERWIG

= 1.98. In Figure 5.13,
(
χ2

d.o.f

)
HERWIRI

= 0.48 and
(
χ2

d.o.f

)
HERWIG

= 1.04. In

Figure 5.13, the data is well modeled by the predictions provided by both HERWIRI

and HERWIG although the theoretical predictions provided by HERWIRI are closer

to the data in many cases. In Figure 5.13,
(
χ2

d.o.f
)HERWIRI = 0.48 and

(
χ2

d.o.f
)HERWIG = 1.04.

Figure 5.12: Cross section for the production of W + jets as a function of difference is
rapidity |∆Y (j1, j2)| in Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.13: Cross section for the production of W + jets as a function of difference
is rapidity |∆Y (j1, j2)| in Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.14: Cross section for the production of W + jets as a function of difference
is rapidity |∆Y (j1, j2)| in Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.15: Cross section for the production of W + jets as a function of difference
is rapidity |∆Y (j2, j3)| in Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

In Figure 5.14 and Figure 5.15, cross sections are presented as functions of

difference in rapidity for inclusive jet multiplicity 3. In both cases, the data is well

modeled by the predictions provided by both HERWIRI and HERWIG. In many cases

HERWIRI predictions are closer to the data. In Figure 5.14,
(
χ2

d.o.f

)
HERWIRI

= 1.20 and(
χ2

d.o.f

)
HERWIG

= 0.56. In Figure 5.15,
(
χ2

d.o.f

)
HERWIRI

= 0.33 and
(
χ2

d.o.f

)
HERWIG

= 0.52.

5.2.6 Dijet Invariant Mass Distributions

The cross sections are shown as functions of the dijet invariant mass calculated

from the two leading jets for inclusive jet multiplicities 2–3. The dijet invariant mass

is defined as

m(j1, j2) =

√
(Ej1 + Ej2)2 − (~Pj1 + ~Pj2)2 =

√
m2
j1

+m2
j2

+ 2(Ej1Ej2 − ~Pj1 · ~Pj2),

(5.10)

where the leading jet is defined as jµ1 = (Ej1 , ~Pj1).
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Figure 5.16: Cross section for the production of W + jets as a function of dijet invari-
ant mass |M(j1, j2)| in Njet ≥ 2. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.17: Cross section for the production of W + jets as a function of dijet invari-
ant mass |M(j1, j2)| in Njet ≥ 3. The data are compared to predictions from MAD-
GRAPH5 aMC@NLO/HERWIRI1.031 and MADGRAPH5 aMC@NLO/HERWIG6.521.
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In Figure 5.16 and Figure 5.17, the cross sections are shown as functions of

the dijet invariant mass for inclusive jet multiplicities 2–3. In Figure 5.16, a good fit

is provided by HERWIRI predictions to the data for ∆M(j1, j2) ≤ 200 GeV while

for 200 < ∆M(j1, j2) < 300 GeV, HERWIG gives a better fit to the data. For

higher values of ∆M , the predictions provided by HERWIG are in better agreement

with the data. In Figure 5.17, a better fit is provided by HERWIRI to the data for

50 < ∆M(j1, j2) < 400 GeV. For higher values of ∆M , HERWIG predictions either

overlap with the data or are closer to the data. In Figure 5.16,
(
χ2

d.o.f

)
HERWIRI

= 1.85

and
(
χ2

d.o.f

)
HERWIG

= 0.73. In Figure 5.17,
(
χ2

d.o.f

)
HERWIRI

= 4.19 and
(
χ2

d.o.f

)
HERWIG

= 1.95.

5.2.7 Dijet Angular Separation Distribution

The cross section is shown as a function of the angular separation between the

two leading jets for jet inclusive multiplicity 2. The angular separation between the

two leading jets is defined as

∆R(j1, j2) =
√

(∆φ(j1, j2)2 + ∆Y (j1, j2)2, (5.11)

where ∆Y (j1, j2) = Yj1 − Yj2 and ∆φ(j1, j2) = φ(j1)− φ(j1).

Figure 5.18 shows the cross section as a function of angular separation between

the first two leading jets for inclusive jet multiplicity 2. For 2 < ∆R(j1, j2) < 4.5,

HERWIRI predictions are in better agreement with the data. A better fit is provided

to the data by HERWIG predictions for ∆R(j1, j2) < 2. In Figure 5.18,
(
χ2

d.o.f
)HERWIRI =

3.06 and
(
χ2

d.o.f
)HERWIG = 2.16.
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Figure 5.18: Cross section for the production of W + jets as a function of the an-
gular separation between the two leading jets ∆R(j1, j2) in Njet ≥ 2. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

5.2.8 Azimuthal Angular Distribution

The differential cross section is given as a function of the difference in azimuthal

angle ∆Φ(j1, j2) for an inclusive jet multiplicity 2. In Figure 5.19, the data is well

modeled by the predictions provided by HERWIRI. In Figure 5.19,
(
χ2

d.o.f

)
HERWIRI

=

0.81 and
(
χ2

d.o.f

)
HERWIG

= 0.97.

The azimuthal angular distribution between the first and second leading jet is

defined as

cos(∆Φ(j1, j2)) =
Px(j1)Px(j2) + Py(j1)Py(j2)√

P 2
x (j1) + P 2

y (j1)
√
P 2
x (j2) + P 2

y (j2)
(5.12)
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Figure 5.19: Cross section for the production of W + jets as a function of the differ-
ence in azimuthal angle between the two leading jets ∆Φ(j1, j2) in Njet ≥ 2. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

5.2.9 The Azimuthal Angular Distribution Between the Muon and the Leading Jet

The differential cross sections are shown as functions of the azimuthal angle

between the muon and the first three leading jets for inclusive jet multiplicities 1–3.

The azimuthal angle between the muon and the leading jet is defined as

cos(∆Φ(µ, j1)) =
Px(µ)Px(j1) + Py(µ)Py(j1)√

P 2
x (µ) + P 2

y (µ)
√
P 2
x (j1) + P 2

y (j1)
, (5.13)

with  µµ = (Eµ, Px(µ), Py(µ), PL(µ)),

jµ1 = (Ej1 , Px(j1), Py(j1), PL(j1)),
(5.14)
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Figure 5.20: Cross section for the production of W + jets as a function of the az-
imuthal angle between the muon and the leading jet ∆Φ(µ, j1) in Njet ≥ 1. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

In Figure 5.20, Figure 5.21, and Figure 5.22 the data are better modeled by the

predictions provided by HERWIRI as expected. In Figure 5.20,
(
χ2

d.o.f

)
HERWIRI

= 0.42

and
(
χ2

d.o.f

)
HERWIG

= 0.98. In Figure 5.21,
(
χ2

d.o.f

)
HERWIRI

= 0.80 and
(
χ2

d.o.f

)
HERWIG

= 1.30.

In Figure 5.22,
(
χ2

d.o.f

)
HERWIRI

= 0.92 and
(
χ2

d.o.f

)
HERWIG

= 0.95.

5.2.10 Cross Sections

The measured W (→ µνµ) + jets fiducial cross sections for inclusive and exclu-

sive jet multiplicity distributions are shown in Figure 5.23 and Figure 5.24, respec-

tively. For inclusive jet multiplicity a good fit is given to the data by the theoretical

predictions provided by HERWIRI and HERWIG. On the other hand, in Figure 5.24,

HERWIG gives a better fit to the measured cross sections for exclusive jet multiplic-

ity 0–4. In Figure 5.23,
(
χ2

d.o.f

)
HERWIRI

= 3.05 and
(
χ2

d.o.f

)
HERWIG

= 2.98. In Figure 5.24,(
χ2

d.o.f

)
HERWIRI

= 5.37 and
(
χ2

d.o.f

)
HERWIG

= 2.19.
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Figure 5.21: Cross section for the production of W + jets as a function of the azimuthal
angle between the muon and the second leading jet ∆Φ(µ, j2) in Njet ≥ 2. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.22: Cross section for the production of W + jets as a function of the azimuthal
angle between the muon and the second leading jet ∆Φ(µ, j2) in Njet ≥ 3. The data
are compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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Figure 5.23: Measured cross section versus inclusive jet multiplicity. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.

Figure 5.24: Measured cross section versus exclusive jet multiplicity. The data are
compared to predictions from MADGRAPH5 aMC@NLO/HERWIRI1.031 and MAD-
GRAPH5 aMC@NLO/HERWIG6.521.
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5.3 Summary

The realization of the IR-improved DGLAP-CS theory, when used in the MAD-

GRAPH5 aMC@NLO/HERWIRI1.031 O(α) ME-matched parton shower framework,

provides us with the opportunity to explain the differential cross sections for a W bo-

son produced in association with jets in pp collisions in the recent LHC data from

CMS, without the need of an unexpectedly hard intrinsic Gaussian distribution with

an rms value of PTRMS = 2.2 GeV in parton’s wave function. In our view, this can

be interpreted as providing a rigorous basis for the phenomenological correctness of

such unexpectedly hard distributions insofar as describing these data using the usual

unimproved DGLAP-CS showers is concerned.
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CHAPTER SIX

IR-improved DGLAP-CS Parton Shower Effects for Associated Production of a W
Boson and Jets in pp Collisions at

√
s = 13 TeV

6.1 Event Generation, Analysis and Cuts (CMS Collaboration)

The generators for W + jet events are MADGRAPH5 aMC@NLO [79] in-

terfaced with HERWIG6.521 and HERWIRI1.031, which use next-to-leading-order

(NLO) matrix element calculations. The number of events generated for the W, W + 1

jet, W + 2 jets, and W + 3 jets processes are 107, 106, 105, and 105, respectively.

These events are showered by MADGRAPH5 aMC@NLO/HERWIRI1.031 (PTRMS

= 0) and MADGRAPH5 aMC@NLO/HERWIG6.521 (PTRMS = 2.2 GeV). During

the analysis, jets were reconstructed using the anti-kt algorithm with R = 0.5 with

FastJet [80] and the cuts in Table 6.1 were imposed.

Table 6.1: Kinematic criteria defining the fiducial phase space for the W → µ+ νµ channel

Muon channel (W → µ+ νµ)
Lepton P µ

T P µ
T > 25 GeV

Lepton rapidity ηµ |ηµ| < 2.1
Missing transverse energy Emiss

T > 25 GeV
Transverse mass mT > 50 GeV
Jet algorithm Anti-kT
Radius parameter R R = 0.5

Jet P jet
T P jet

T > 30 GeV
Jet rapidity Yjet |Yjet| < 2.4
Jet isolation ∆R(µ, jet) > 0.5 (jet is removed)

The transverse mass, mT , is defined as mT =
√

2P µ
T P

νµ
T (1− cos ∆φ) where ∆φ

is the difference in the azimuthal angle between the direction of the muon momentum
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and the associated muon neutrino, νµ, which can be written as

∆φ = φµ − φνµ . (6.1)

Rapidity is defined as
1

2
ln

[
E + pz
E − pz

]
, where E denotes the energy of the particle and

pz is the longitudinal component of the momentum. Finally, the jet isolation, ∆R,

which is a Lorentz invariant quantity, is defined as

∆R(µ, jet) =
√

∆φ2(µ, jet) + ∆η2(µ, jet) (6.2)

where 
∆φ(µ, jet) = φµ − φjet,

∆η(µ, jet) = ηµ − ηjet,

η = − ln tan( θ
2
).

(6.3)

6.1.1 Transverse Momentum Distributions PT

The cross sections differential in jet PT for inclusive jet multiplicities from 1

to 3 are shown in Figure 6.1, Figure 6.2, and Figure 6.3.

6.1.2 Cross Sections

The measured W(→ µνµ) + jets fiducial cross sections are shown in Figure 6.4

and Figure 6.5.

6.2 The Future Work

The data for the 13 TeV cms energy should be available soon, so we have

recorded several expectations in anticipation of their release [84].
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Figure 6.1: Cross section for the production of W + jets as a function of the leading jet PT
in Njet ≥ 1.

Figure 6.2: Cross section for the production of W + jets as a function of the second leading
jet PT in Njet ≥ 2.
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Figure 6.3: Cross section for the production of W + jets as a function of the third leading
jet PT in Njet ≥ 3.

Figure 6.4: Cross sections versus exclusive jet multiplicity.
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Figure 6.5: Cross sections versus inclusive jet multiplicity.
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CHAPTER SEVEN

Overall Summary

In this study, we have made an extensive treatment of the role and inter-

play of IR-improved DGLAP-CS theory and precision theory for the important pro-

cesses pp → W + n jets + X (n = 1, 2, 3) at the LHC cms energies of 7, 8, and

13 TeV. In the cases of 7 and 8 TeV cms energies, we have compared predictions with

ATLAS and CMS data. We have found that, as we expected, in general, the IR-

improvement of the exact NLO matrix-element matched parton shower predictions

in the MADGRAPH5 aMC@NLO framework, with the parton shower realization via

HERWIRI1.031 for the IR-improved results and via HERWIG6.5 for the compari-

son of unimproved results, are closer to the data in the soft regime of spectra such

as those for various jet PT ’s, HT , and ST , as well as for spectra that feature soft

correlations such as ∆R(j1, j2). This study therefore shows that the improvement

in the description of the soft regime of the single Z/γ∗ production process at LHC

and FNAL by the IR-improved exact NLO ME matched parton shower predictions,

achieved by HERWIRI1.031 in the MC@NLO framework, in the observables such as

the Z/γ∗ PT extends to the various observables in the processes pp→ W + n jets +

X at the LHC at 7 and 8 TeV (n = 1, 2, 3). The data for the 13 TeV cms energy

should be available soon, so we have recorded several expectations in anticipation of

their release [84].

We conclude by emphasizing that this study is the first study of IR-improvement

effects in which the observables of jets are analyzed. Previous studies in Refs. [3,78,85]

used lepton observables to probe the role of IR-improvement in precision physics stud-

ies at high energy colliding beam devices. What we see is that the IR-improvement

effects are not washed out, in general, by soft strong interactions inherent in the
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hadronization processes that are involved in the transition from partons to hadrons

in jets. This is consistent with the overall space-time view of the hard hadron-hadron

collision, wherein the IR-improvement implemented on the partons in the hard sub-

process occurs before these partons are hadronized to make the observable hadrons in

jets. The jet observables should therefore be good probes of IR-improvement. Given

the importance of the pp → W + n jets + X processes for new physics searches, for

example, our results argue strongly for the use of IR-improved results in analyzing

their soft regimes. A complete precision study has to correctly predict both the hard

and the soft regimes of the various observables.
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APPENDIX A

Group Theory

A.1 SU(3)

A.1.1 SU(3) Generators

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2



(A.1)

A.1.2 Gell-Mann Matrices and Their Properties

Ta =
1

2
λa (A.2)

[
Ta, Tb

]
= ifabcTc (A.3)

{
Ta, Tb

}
=

1

3
δab + dabcTc (A.4)

TaTb =
1

2

[1
3
δab + (dabc + ifabc)Tc

]
(A.5)

T aijT
a
kl =

1

2

[
δilδjk − δijδlk

]
(A.6)
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Tr(Ta) = 0 (A.7)

Tr(TaTb) =
1

2
δab (A.8)

Tr(TaTbTc) =
1

4
(dabc + ifabc) (A.9)

Tr(TaTbTaTc) = − 1

12
δbc (A.10)

A.1.3 The Structure Constants

The structure constants satisfy the following Jacobi identities:

fabefecd + fcbefaed + fdbeface = 0, (A.11)

fabedecd + fcbedaed + fdbedace = 0. (A.12)

Where fabc are antisymmetric SU(3) structure constants with non-zero values given

by

f123 = 1, f147 =
1

2
, f156 = −1

2
, f246 =

1

2
, f257 =

1

2

f345 =
1

2
, f367 = −1

2
, f458 =

√
3

2
, f678 =

√
3

2
.

(A.13)

A.1.4 Some Definition and Terminology

Let Ta and Tb be the n-dimensional representation matrix and we define Tn(R)

and C2(n) by

Tr(T anT
b
n) = TR(n)δab (A.14)

T · T = C2(n) I (A.15)
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By convention, the normalization of the SU(N) matrix is chosen to be TF ≡

TR(n = N) = 1
2
. With this choice, the SU(N) matrices satisfy the following relations

TF ≡ TR(NF ) =
1

2
(A.16)

TR(NA) = N (A.17)

CF ≡ C2(NF ) =
N2 − 1

N
(A.18)

CA = C2(NA) = N, (A.19)

where subscript F denotes fundamental n = NF = N and A denotes adjoint (n =

NA = N2 − 1).
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APPENDIX B

The Plus Functions

B.1 Definition

The plus functions are well behaved if and only if convoluted with a smooth

function that vanishes rapidly as x→ 1.

B.2 Property

They have the property that

1∫
0

[
F (x)

]
+

= 0 (B.1)

and are defined as follows

[
F (x)

]
+
≡ lim

β→0

{
F (x)θ(1− x− β)− δ(1− x− β)

1−β∫
0

F (y) dy

}
(B.2)

where

θ(y) = 0 for y ≤ 0, (B.3)

θ(y) = 1 for y ≥ 0. (B.4)

B.3 Famous Plus Functions

1

(1− x)+

≡ lim
β→0

{
1

(1− x)
θ(1− x− β) + δ(1− x− β) log β

}
(B.5)(

log(1− x)

1− x

)
+

≡ lim
β→0

{
log(1− x)

(1− x)
θ(1− x− β) + δ(1− x− β)

1

2
log2 β

}
. (B.6)

B.4 Useful Identity

(1− z)a−1 =
1

a
δ(1− z) +

1

(1− z)+

+
∞∑
j=1

aj

j!

[
logj(1− z)

1− z

]
(B.7)
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APPENDIX C

Decomposition of Momentum

In this appendix we find the the decomposition of momentum in the p∞ frame

for massless particles.

Figure C.1: Diagram for a process that emits an extra parton (denoted as c) in the final
state. Parton b carries fraction z of the momentum of parton a [4].

We define variables in the infinite momentum frame as follows

P µ
a = (Ea,~0, Pza) (C.1)

P µ
b = (Eb, ~PT , Pzb) (C.2)

P µ
c = (Ec,− ~PT , Pzc), (C.3)

where P 2
a = P 2

b = P 2
c = 0 and Ea = p. We find

Pzb = zp = zPza →
Pzb
Pza

= z (C.4)

Pzc = (1− z)p = (1− z)Pza →
Pzc
Pza

= (1− z) (C.5)

θ = θb + θc. (C.6)

We can rewrite eqs. (C.1), (C.2), and (C.3)

P µ
a = (Ea,~0, p) (C.7)

P µ
b = (Eb, ~PT , pz) (C.8)

P µ
c = (Ec,− ~PT , p(1− z)). (C.9)
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If we use the fact that we neglected the mass of partons, it can be shown that

P 2
a = 0 → E2

a − p2 = 0 (C.10)

P 2
b = 0 → E2

b − |PT |2 − p2z2 = 0 (C.11)

P 2
c = 0 → E2

c − |PT |2 − (1− z)2p2 = 0. (C.12)

We solve eqs. (C.10), (C.11), and (C.12) to find the energy of each particle. We

obtain

Ea = p (C.13)

Eb = zp(1 +
P 2
T

z2p2
)

1
2 ' zp+

P 2
T

2zp
(C.14)

Ec = (1− z)p(1 +
P 2
T

(1− z)2p2
)

1
2 ' (1− z)p+

P 2
T

2(1− z)p
. (C.15)

We decompose the momentum of each particle into transverse and longitudinal com-

ponents in the p∞ frame as follows:

P µ
a = (p,~0, p) (C.16)

P µ
b = (zp+

P 2
T

2zp
, ~PT , zp) (C.17)

P µ
c = ((1− z)p+

P 2
T

2(1− z)p
,− ~PT , (1− z)p). (C.18)

The following equations are very useful for future calculations:

EB
EA

=
zp(1 +

P 2
T

z2p2 )

p
' z +O(P 2

T ) (C.19)

dP 2
T

P 2
T

= d(lnP 2
T ). (C.20)
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We find θb and θb in Figure C.1.

|PT | = Pzb sin θb ' zp θb (C.21)

|PT | = Pzc sin θc ' (1− z)p θc (C.22)

→ θb
1− z

=
θc
z

(C.23)

θ = θb + θc =
θb

1− z
=
θc
z
. (C.24)

One can easily prove that

t = −Q2 = (Pa − Pc)2 =
|PT |2

1− z
. (C.25)
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APPENDIX D

Analysis

1 c

2 c Example analysis for "p p > e+ ve [QCD]" process.

3 c Example analysis for "p p > e- ve~ [QCD]" process.

4 c Example analysis for "p p > mu+ vm [QCD]" process.

5 c Example analysis for "p p > mu- vm~ [QCD]" process.

6 c Example analysis for "p p > ta+ vt [QCD]" process.

7 c Example analysis for "p p > ta- vt~ [QCD]" process.

8 c

9 C----------------------------------------------------------------------

10 SUBROUTINE RCLOS()

11 C DUMMY IF HBOOK IS USED

12 C----------------------------------------------------------------------

13 END

14

15

16 C----------------------------------------------------------------------

17 SUBROUTINE HWABEG

18 C USER’’S ROUTINE FOR INITIALIZATION

19 C----------------------------------------------------------------------

20 INCLUDE ’HERWIG65.INC’

21 include ’reweight0.inc’

22 integer j,kk,l,i

23 character *5 cc(2)

24 data cc/’ ’,’Born ’/

25 integer nwgt ,max_weight ,nwgt_analysis

26 common/cnwgt/nwgt

27 common/c_analysis/nwgt_analysis

28 parameter (max_weight=maxscales*maxscales+maxpdfs +1)

29 character *15 weights_info(max_weight)

30 common/cwgtsinfo/weights_info

31 c

32 call inihist

33 nwgt_analysis=nwgt

34 do i=1,1

35 do kk=1, nwgt_analysis

36 l=(kk -1)*16+(i-1)*8

37 call mbook(l+1,’total rate ’//cc(i)// weights_info(kk),

38 & 1.0d0 ,0.5d0 ,5.5d0)

39 call mbook(l+2,’lep rapidity ’//cc(i)// weights_info(kk),
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40 & 0.5d0 ,-5d0 ,5d0)

41 call mbook(l+3,’lep pt ’//cc(i)// weights_info(kk),

42 & 10d0 ,0d0 ,200d0)

43 call mbook(l+4,’et miss ’//cc(i)// weights_info(kk),

44 & 10d0 ,0d0 ,200d0)

45 call mbook(l+5,’trans. mass ’//cc(i)// weights_info(kk),

46 & 5d0 ,0d0 ,200d0)

47 call mbook(l+6,’w rapidity ’//cc(i)// weights_info(kk),

48 & 0.5d0 ,-5d0 ,5d0)

49 call mbook(l+7,’w pt ’//cc(i)// weights_info(kk),

50 & 10d00 ,0d0 ,200d0)

51 call mbook(l+8,’cphi[l,vl] ’//cc(i)// weights_info(kk),

52 & 0.05d0 ,-1d0 ,1d0)

53 call mbook(l+9,’j1 pt5 ’//cc(j)// weights_info(kk),

54 & 5d0 ,30d0 ,40d0)

55 call mbook(l+10,’j1 pt10 ’//cc(j)// weights_info(kk),

56 & 10d0 ,40d0 ,80d0)

57 call mbook(l+11,’j1 pt20 ’//cc(j)// weights_info(kk),

58 & 20d0 ,80d0 ,160d0)

59 call mbook(l+12,’j1 pt40 ’//cc(j)// weights_info(kk),

60 & 40d0 ,160d0 ,200d0)

61 call mbook(l+13,’j1 pt50 ’//cc(j)// weights_info(kk),

62 & 50d0 ,200d0 ,250d0)

63 call mbook(l+14,’j1 pt60 ’//cc(j)// weights_info(kk),

64 & 60d0 ,250d0 ,310d0)

65

66

67 enddo

68 enddo

69 999 END

70

71 C----------------------------------------------------------------------

72 SUBROUTINE HWAEND

73 C USER’’S ROUTINE FOR TERMINAL CALCULATIONS , HISTOGRAM OUTPUT , ETC

74 C----------------------------------------------------------------------

75 INCLUDE ’HERWIG65.INC’

76 REAL*8 XNORM

77 INTEGER I,J,KK ,l,nwgt_analysis

78 integer NPL

79 parameter(NPL =15000)

80 common/c_analysis/nwgt_analysis

81 OPEN(UNIT=99,FILE=’HERLL.TOP’,STATUS=’UNKNOWN ’)

82 OPEN(UNIT=98,FILE=’wptATLAS -ptmp5pti0wrd.DAT’,STATUS=’NEW’)

83 C XNORM IS SUCH THAT THE CROSS SECTION PER BIN IS IN PB, SINCE THE HERWIG

84 C WEIGHT IS IN NB, AND CORRESPONDS TO THE AVERAGE CROSS SECTION

139



85 XNORM =1.D3/DFLOAT(NEVHEP)

86 DO I=1,NPL

87 CALL MFINAL3(I)

88 CALL MCOPY(I,I+NPL)

89 CALL MOPERA(I+NPL ,’F’,I+NPL ,I+NPL ,(XNORM ),0.D0)

90 CALL MFINAL3(I+NPL)

91 ENDDO

92 C

93 CALL MPRINT (7)

94 do i=1,1

95 do kk=1, nwgt_analysis

96 l=(kk -1)*16+(i-1)*8

97 call multitop(NPL+l+1,NPL -1,3,2,’total rate ’,’ ’,’LIN’)

98 call multitop(NPL+l+2,NPL -1,3,2,’lep rapidity ’,’ ’,’LIN’)

99 call multitop(NPL+l+3,NPL -1,3,2,’lep pt ’,’ ’,’LOG’)

100 call multitop(NPL+l+4,NPL -1,3,2,’et miss ’,’ ’,’LOG’)

101 call multitop(NPL+l+5,NPL -1,3,2,’trans. mass ’,’ ’,’LOG’)

102 call multitop(NPL+l+6,NPL -1,3,2,’w rapidity ’,’ ’,’LIN’)

103 call multitop(NPL+l+7,NPL -1,3,2,’w pt ’,’ ’,’LOG’)

104 call multitop(NPL+l+8,NPL -1,3,2,’cphi[l,vl] ’,’ ’,’LOG’)

105 call multitop(NPL+l+9,NPL -1,2,3,’j1 pt5 ’,’ ’,’LOG’)

106 call multitop(NPL+l+10,NPL -1,2,3,’j1 pt10 ’,’ ’,’LOG’)

107 call multitop(NPL+l+11,NPL -1,2,3,’j1 pt20 ’,’ ’,’LOG’)

108 call multitop(NPL+l+12,NPL -1,2,3,’j1 pt40 ’,’ ’,’LOG’)

109 call multitop(NPL+l+13,NPL -1,2,3,’j1 pt50 ’,’ ’,’LOG’)

110 call multitop(NPL+l+14,NPL -1,2,3,’j1 pt60 ’,’ ’,’LOG’)

111

112

113

114

115 enddo

116 enddo

117 CLOSE (99)

118 CLOSE (98)

119 END

120

121 C----------------------------------------------------------------------

122 SUBROUTINE HWANAL

123 C USER’’S ROUTINE TO ANALYSE DATA FROM EVENT

124 C----------------------------------------------------------------------

125 INCLUDE ’HERWIG65.INC’

126 include ’reweight0.inc’

127 DOUBLE PRECISION HWVDOT ,PSUM(4),PPV(5),PTW ,YW,YE,PPL(5),PPLB(5),

128 & PTE ,PLL ,PTLB ,PLLB ,var ,mtr ,etmiss ,cphi

129 INTEGER ICHSUM ,ICHINI ,IHEP ,IV ,IFV ,IST ,ID,IJ ,ID1 ,JPR ,IDENT ,
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130 # ILL ,ILLB ,IHRD ,jbfw ,IDBSH ,ISTBSH

131 INTEGER njet ,count_j ,jpart ,MU ,NT

132 integer maxtrack ,maxjet ,bahram

133 parameter (maxtrack =2048, maxjet =2048)

134 integer ntracks ,jetvec(maxtrack)

135 double precision ptj1 ,jet_ktradius ,jet_ktptmin ,palg ,getpt ,

136 &pjet(4,maxtrack),ptrack(4,maxtrack)

137 LOGICAL DIDSOF ,FOUNDL ,FOUNDN ,ISL ,ISN

138 REAL*8 PI,getrapidity

139 PARAMETER (PI =3.14159265358979312 D0)

140 REAL*8 WWW0 ,TINY ,SIGNL ,SIGNN

141 INTEGER KK ,I,L,IL,IN ,J

142 DATA TINY /.1D-5/

143 integer nwgt_analysis ,max_weight

144 common/c_analysis/nwgt_analysis

145 parameter (max_weight=maxscales*maxscales+maxpdfs +1)

146 double precision ww(max_weight),www(max_weight)

147 common/cww/ww

148 data bahram /0/

149 c

150 IF (IERROR.NE.0) RETURN

151 IF (WW(1).EQ.0D0) THEN

152 WRITE (*,*)’WW(1) = 0. Stopping ’

153 STOP

154 ENDIF

155 C CHOOSE IDENT = 11 FOR E - NU_E

156 C IDENT = 13 FOR MU - NU_MU

157 C IDENT = 15 FOR TAU - NU_TAU

158 IDENT =11

159 C INCOMING PARTONS MAY TRAVEL IN THE SAME DIRECTION: IT’’S A POWER -SUPPRESSED

160 C EFFECT , SO THROW THE EVENT AWAY

161 IF(SIGN (1.D0,PHEP (3 ,4)).EQ.SIGN (1.D0,PHEP (3 ,5))) THEN

162 CALL HWWARN(’HWANAL ’ ,111)

163 GOTO 999

164 ENDIF

165 DO I=1, nwgt_analysis

166 WWW(I)=EVWGT*ww(i)/ww(1)

167 ENDDO

168 CALL HWVSUM(4,PHEP(1,1),PHEP(1,2),PSUM)

169 CALL HWVSCA(4,-1D0,PSUM ,PSUM)

170 ICHSUM =0

171 ICHINI=ICHRG(IDHW (1))+ ICHRG(IDHW (2))

172 DIDSOF =.FALSE.

173 FOUNDL =.FALSE.

174 FOUNDN =.FALSE.
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175 DO 100 IHEP=1,NHEP

176 IF (IDHW(IHEP).EQ.16) DIDSOF =.TRUE.

177 IF (ISTHEP(IHEP).EQ.1) THEN

178 CALL HWVSUM(4,PHEP(1,IHEP),PSUM ,PSUM)

179 ICHSUM=ICHSUM+ICHRG(IDHW(IHEP))

180 ENDIF

181 IST=ISTHEP(IHEP)

182 ID=IDHW(IHEP)

183 ID1=IDHEP(IHEP)

184 Cbflw ==================================================

185 DO jbfw = 1,3

186 ISL=ABS(ID1).EQ.IDENT

187 ISN=ABS(ID1).EQ.IDENT +1

188 IF(((IST.GE.120. AND.IST.LE .125). OR.IST.EQ.1.OR.IST.EQ.198)

189 & .AND.ISL.AND..NOT.FOUNDL)THEN

190 IL=IHEP

191 FOUNDL =.TRUE.

192 SIGNL=SIGN(1D0 ,DBLE(ID1))

193 ENDIF

194 IF(((IST.GE.120. AND.IST.LE .125). OR.IST.EQ.1)

195 & .AND.ISN.AND..NOT.FOUNDN)THEN

196 IN=IHEP

197 FOUNDN =.TRUE.

198 SIGNN=SIGN(1D0 ,DBLE(ID1))

199 ENDIF

200 IF(.NOT.FOUNDL.OR..NOT.FOUNDN)THEN

201 IDENT=IDENT +2

202 ENDIF

203 ENDDO

204 IDENT = 11

205 Cbflw ====================================================

206 100 CONTINUE

207 IF(.NOT.FOUNDL.OR..NOT.FOUNDN)THEN

208 WRITE (*,*)’NO LEPTONS FOUND.’

209 WRITE (*,*)’CURRENTLY THIS ANALYSIS LOOKS FOR’

210 IF(IDENT.EQ.11) WRITE (*,*)’E - NU_E’

211 IF(IDENT.EQ.13) WRITE (*,*)’MU - NU_MU’

212 IF(IDENT.EQ.15) WRITE (*,*)’TAU - NU_TAU ’

213 WRITE (*,*)’IF THIS IS NOT MEANT ,’

214 WRITE (*,*)’PLEASE CHANGE THE VALUE OF IDENT IN THIS FILE.’

215 STOP

216 ENDIF

217 IF(SIGNN.EQ.SIGNL)THEN

218 WRITE (*,*)’TWO SAME SIGN LEPTONS!’

219 WRITE (*,*)IL,IN,SIGNL ,SIGNN
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220 STOP

221 ENDIF

222 C CHECK MOMENTUM AND CHARGE CONSERVATION

223 IF (HWVDOT(3,PSUM ,PSUM).GT.1.E-4* PHEP (4 ,1)**2) THEN

224 CALL HWUEPR

225 CALL HWWARN(’HWANAL ’ ,112)

226 GOTO 999

227 ENDIF

228 IF (ICHSUM.NE.ICHINI) THEN

229 CALL HWUEPR

230 CALL HWWARN(’HWANAL ’ ,113)

231 GOTO 999

232 ENDIF

233 DO IJ=1,5

234 PPL(IJ)=PHEP(IJ ,IN)

235 PPLB(IJ)=PHEP(IJ ,IL)

236 PPV(IJ)=PPL(IJ)+PPLB(IJ)

237 ENDDO

238 ye = getrapidity(pplb(4), pplb (3))

239 yw = getrapidity(ppv(4), ppv (3))

240 pte = dsqrt(pplb (1)**2 + pplb (2)**2)

241 ptw = dsqrt(ppv (1)**2+ ppv (2)**2)

242 etmiss = dsqrt(ppl (1)**2 + ppl (2)**2)

243 mtr = dsqrt (2d0*pte*etmiss -2d0*ppl (1)* pplb (1)-2d0*ppl (2)* pplb (2))

244 cphi = (ppl (1)* pplb (1)+ ppl (2)* pplb (2))/ pte/etmiss

245 var = 1.d0

246 C INITIALIZE JETS

247 NT=0

248 NTRACKS =0

249 NJET=0

250 DO IHEP=1,NHEP

251 IF (ISTHEP(IHEP).EQ.1) THEN

252 CALL HWVSUM(4,PHEP(1,IHEP),PSUM ,PSUM)

253 ICHSUM=ICHSUM+ICHRG(IDHW(IHEP))

254 ENDIF

255 ISTBSH=ISTHEP(IHEP)

256 IDBSH=IDHEP(IHEP)

257 c Define particles that go into jet.

258 IF (ISTBSH.EQ.1. AND.ABS(IDBSH ).GE.100) THEN

259 NTRACKS=NTRACKS +1

260 DO MU=1,4

261 PTRACK(MU,NTRACKS )=PHEP(MU ,IHEP)

262 ENDDO

263 IF(NTRACKS.EQ.MAXTRACK) THEN

264 WRITE (*,*)’HWANAL: TOO MANY PARTICLES , INCREASE MAXTRACK ’
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265 STOP

266 ENDIF

267 ENDIF

268 ENDDO

269 IF (NTRACKS.EQ.0) THEN

270 WRITE (*,*) ’NO TRACKS FOUND , DROP ANALYSIS OF THIS EVENT ’

271 GOTO 999

272 ENDIF

273 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

274 C KT ALGORITHM , FASTJET IMPLEMENTATION

275 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

276 NJET=0

277 JET_KTRADIUS = 0.4D0

278 JET_KTPTMIN = 30D0

279 PALG=-1D0

280 CALL fastjetppgenkt(PTRACK ,NTRACKS ,JET_KTRADIUS ,JET_KTPTMIN ,PALG ,

281 $ PJET ,NJET ,JETVEC)

282 c Check that jets are ordered in pt

283 do i=1,njet -1

284 if (getpt(pjet(1,i)).lt.getpt(pjet(1,i+1)) ) then

285 write (*,*) ’ERROR jets not ordered ’

286 stop

287 endif

288 enddo

289 c Choosing The Leading Jet’s Pt for njet=3

290 if (njet.ge.3) then

291 ptj1 = getpt(pjet (1,3))

292 endif

293 c Filling The Histograms

294

295 do i=1,1

296 do kk=1, nwgt_analysis

297 l=(kk -1)*16+(i-1)*8

298 call mfill(l+1,var ,www(kk))

299 call mfill(l+2,ye,www(kk))

300 call mfill(l+3,pte ,www(kk))

301 call mfill(l+4,etmiss ,www(kk))

302 call mfill(l+5,mtr ,www(kk))

303 call mfill(l+6,yw,www(kk))

304 call mfill(l+7,ptw ,www(kk))

305 call mfill(l+8,cphi ,www(kk))

306 c Imposing Rapidity Cut For the Leading Jet , where |y|< 4.4

307

308 if (dabs(getrapidity(pjet(4,1),pjet (3 ,1))).lt.4.4d0.and.

309 & pte.gt.25d0.and.(dabs(ye).lt.2.5d0).and.etmiss.gt.25d0.and.mtr.gt.40d0) then

144



310 call mfill(l+9,ptj1 ,www(kk))

311 call mfill(l+10,ptj1 ,www(kk))

312 call mfill(l+11,ptj1 ,www(kk))

313 call mfill(l+12,ptj1 ,www(kk))

314 call mfill(l+13,ptj1 ,www(kk))

315 call mfill(l+14,ptj1 ,www(kk))

316

317 endif

318 enddo

319 enddo

320 999 END

321

322 function getrapidity(en,pl)

323 implicit none

324 real*8 getrapidity ,en,pl ,tiny ,xplus ,xminus ,y

325 parameter (tiny =1.d-8)

326 xplus=en+pl

327 xminus=en-pl

328 if(xplus.gt.tiny.and.xminus.gt.tiny)then

329 if( (xplus/xminus ).gt.tiny.and.( xminus/xplus ).gt.tiny)then

330 y=0.5d0*log( xplus/xminus )

331 else

332 y=sign (1.d0,pl)*1.d8

333 endif

334 else

335 y=sign (1.d0,pl)*1.d8

336 endif

337 getrapidity=y

338 return

339 end

340

341 function getpt(p)

342 implicit none

343 real*8 getpt ,p(4)

344 getpt=dsqrt(p(1)**2+p(2)**2)

345 return

346 end
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APPENDIX E

Fortran Functions

E.1 PT Distributions

First leading jet PT

getpt(pjet (1,1))

Second leading jet PT

getpt(pjet (1,2))

Third leading jet PT

getpt(pjet (1,3))

where

function getpt(p)

implicit none

real*8 getpt ,p(4)

getpt=dsqrt(p(1)**2+p(2)**2)

return

E.2 Rapidity Distributions

Leading jet rapidity

getrapidity(pjet(4,1),pjet (3 ,1))

Second leading jet rapidity

getrapidity(pjet(4,2),pjet (3 ,2))

Third leading jet rapidity

getrapidity(pjet(4,3),pjet (3 ,3))

where

function getrapidity(en,pl)

implicit none

real*8 getrapidity ,en,pl ,tiny ,xplus ,xminus ,y

parameter (tiny =1.d-8)

xplus=en+pl

xminus=en-pl
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if(xplus.gt.tiny.and.xminus.gt.tiny)then

if( (xplus/xminus ).gt.tiny.and.( xminus/xplus ).gt.tiny)then

y=0.5d0*log( xplus/xminus )

else

y=sign (1.d0,pl)*1.d8

endif

else

y=sign (1.d0,pl)*1.d8

endif

getrapidity=y

return

end

E.3 Pseudorapidity Distributions

Leading jet |η|

dabs(getpseudorap(pjet (1 ,1)))

Second leading jet |η|

dabs(getpseudorap(pjet (1 ,2)))

Third leading jet |η|

dabs(getpseudorap(pjet (1 ,3)))

where

function getpseudorap(p)

implicit none

real*8 getpseudorap ,en,ptx ,pty ,pl,tiny ,pt,eta ,th ,p(4)

parameter (tiny =1.d-5)

c

en=p(4)

ptx=p(1)

pty=p(2)

pl=p(3)

pt=sqrt(ptx **2+ pty **2)

if(pt.lt.tiny.and.abs(pl).lt.tiny)then
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eta=sign (1.d0,pl)*1.d8

else

th=atan2(pt ,pl)

eta=-log(tan(th/2.d0))

endif

getpseudorap=eta

return

end

E.4 ∆Φ(µ, j) Distributions

Leading jet and the muon

acos((pjet (1 ,1)* pplb (1)+ pjet (2 ,1)* pplb (2))/( getpt(pjet (1 ,1))* pte))

Second leading jet and the muon

acos((pjet (1 ,2)* pplb (1)+ pjet (2 ,2)* pplb (2))/( getpt(pjet (1 ,2))* pte))

Third leading jet and the muon

acos((pjet (1 ,3)* pplb (1)+ pjet (2 ,3)* pplb (2))/( getpt(pjet (1 ,3))* pte))

where

pte = dsqrt(pplb (1)**2 + pplb (2)**2).
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APPENDIX F

Scale Factors for ATLAS at
√
s = 7 TeV

Table F.1: Summary of the scale factors applied to the theoretical predictions for ATLAS
at
√
s = 7 TeV

Figure number αHERWIRI αHERWIG

(
χ2

d.o.f

)
HERWIRI

(
χ2

d.o.f

)
HERWIG

Figure 4.1 0.02335 0.02513 9.98474 16.9469
Figure 4.2 0.01863 0.01717 23.1067 11.1928
Figure 4.3 0.03113 0.03241 6.51761 8.87521
Figure 4.4 0.03501 0.03221 24.0232 16.5196
Figure 4.5 0.01460 0.01481 0.941833 0.163036
Figure 4.6 0.01562 0.01141 4.85216 13.4582
Figure 4.7 0.03978 0.04038 0.353112 0.709754
Figure 4.8 0.05890 0.06062 1.01752 0.637338
Figure 4.9 0.02850 0.03601 1.05569 0.434552
Figure 4.10 0.01298 0.01297 2.1948 2.68611
Figure 4.11 0.08608 0.08051 2.0814 4.77456
Figure 4.12 0.01311 0.01324 1.59142 0.78912
Figure 4.13 0.01322 0.01328 1.4619 0.49994
Figure 4.14 0.10004 0.10673 1.88696 1.562
Figure 4.15 0.13106 0.09607 23.3802 8.52
Figure 4.16 0.3112 0.2617 7.1233 6.109
Figure 4.17 0.3304 0.2424 28.5654 21.648
Figure 4.18 0.3124 0.2593 8.19456 2.98847
Figure 4.19 0.3543 0.2311 14.1328 7.50
Figure 4.20 0.1076 0.1128 1.43 2.71
Figure 4.21 0.2720 0.2436 21.5295 14.342
Figure 4.22 0.3429 0.2521 22.763 19.7175
Figure 4.23 0.3514 0.2625 22.195 18.234
Figure 4.24 0.3421 0.2075 30.821 18.2947
Figure 4.25 0.5547 0.5309 4.31 0.70
Figure 4.26 0.5420 0.5172 7.31 1.08
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APPENDIX G

Scale Factors for CMS at
√
s = 7 TeV

Table G.1: Summary of the scale factors applied to the theoretical predictions for CMS at√
s = 7 TeV

Figure number αHERWIRI αHERWIG

(
χ2

d.o.f

)
HERWIRI

(
χ2

d.o.f

)
HERWIG

Figure 4.27 0.04373 0.04521 1.16335 1.9151
Figure 4.28 0.06442 0.06216 5.591 3.82266
Figure 4.29 0.52852 0.4025 6.103 2.4118
Figure 4.30 0.18762 0.1915 2.5960 1.29178
Figure 4.31 0.3491 0.2943 21.777 28.785
Figure 4.32 0.4285 0.3658 14.784 7.369
Figure 4.33 0.04635 0.046702 0.7881 1.584
Figure 4.34 0.06175 0.062021 3.8088 3.4261
Figure 4.35 0.02552 0.025342 1.6397 1.2184
Figure 4.36 0.01701 0.01671 2.53745 5.34
Figure 4.37 0.022356 0.022522 5.47165 2.9765
Figure 4.38 0.009275 0.0092 1.7727 2.2856
Figure 4.39 0.6836 0.559 0.92899 1.1542
Figure 4.40 0.6251 0.5551 2.3304 0.825
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APPENDIX H

Scale Factors for CMS at
√
s = 8 TeV.

Table H.1: Summary of the scale factors applied to the theoretical predictions for CMS at√
s = 8 TeV

Figure number αHERWIRI αHERWIG

(
χ2

d.o.f

)
HERWIRI

(
χ2

d.o.f

)
HERWIG

Figure 5.1 0.05581 0.05855 6.0504 9.144
Figure 5.2 0.07883 0.07482 41.7595 21.4685
Figure 5.3 0.030104 0.03287 19.0735 10.0991
Figure 5.4 0.2119 0.2210 2.0716 4.1188
Figure 5.5 0.4781 0.4672 13.10445 7.96725
Figure 5.6 0.4071 0.3479 8.53955 5.4858
Figure 5.7 0.052016 0.052775 0.305495 0.387096
Figure 5.8 0.06923 0.07114 0.84021 0.66108
Figure 5.9 0.02769 0.028416 0.62492 1.02488
Figure 5.10 0.03445 0.03287 1.17762 1.431335
Figure 5.11 0.025012 0.022301 7.5463 9.0727
Figure 5.12 0.07566 0.07701 2.008275 1.982775
Figure 5.13 0.03193 0.03173 0.4878 1.0485
Figure 5.14 0.031543 0.033212 1.206995 0.561883
Figure 5.15 0.033432 0.034312 0.332517 0.521925
Figure 5.16 0.022063 0.024331 1.85015 0.730665
Figure 5.17 0.010332 0.009302 4.1995 1.95863
Figure 5.18 0.02432 0.02427 3.06359 2.168
Figure 5.19 0.025132 0.025212 0.817415 0.97
Figure 5.20 0.0189112 0.01888931 0.429538 0.98431
Figure 5.21 0.0249110 0.0245101 0.80973 1.30554
Figure 5.22 0.0103311 0.0104312 0.92223 0.95851
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APPENDIX I

The Factorization Theorem

The Factorization Theorem [86–90] describes the separation of the physics

associated with jet formation from that associated with the hard-scattering in high-

energy particle collisions. For example, for the case of muon production, the process

is written as follows

A(P1) +B(P2)→ µ+(k1) + µ−(k2) + X, (I.1)

where the incoming hadrons A and B have momenta P1 and P2, respectively, the

outgoing muons have momenta K1 and K2, and X denotes any additional final-state

particles. The four-momentum of the virtual photon that couples to the lepton pair

is q = k1 + k2, with mass Q2 = q2. The partons are assumed to be spread randomly

inside the hadrons, each parton carrying a momentum fraction x1, x2 where x1, x2 ∈

[0, 1] so that their momenta are p1 = x1P1 and p2 = x2P2, respectively. The masses of

the partons and the hadrons are neglected, since they are much smaller than Q2. The

hadronic cross section is written as a convolution of the hard (partonic) scattering

cross section with the parton densities of the hadrons A and B as

dσH(S) =
∑
i,j

∫ 1

0

dx1dx2fiA(x1)fjB(x2)dσij(s), (I.2)

where S is the hadronic and s = x1x2S is the partonic CM energy. The parton density

functions (PDF) are fiA and fjB. More precisely, fiA(xi) describes the probability

of finding a parton i with momentum fraction xi inside the hadron A. The PDFs

are not calculable because of the large coupling constant at the energy scales of the

proton; however, they are universal functions which can be measured in one process

152



Figure I.1: Factorization of hard and soft processes in the Drell-Yang reaction1.

and used to predict any other. The factorization may be pictured as in Figure.I.1.

The small blobs represent the PDF’s of the initial hadrons and the large blob in the

center stands for the hard scattering.

1Picture taken from http://www.physics.smu.edu/~olness/cteqpp/potter_dy.pdf
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APPENDIX J

Jet Clustering and Anti-kt Algorithm

Jets are produced due to the hard partons that participate in the short-distance

interaction at the early times of a hadron-hadron collision. The cross sections in QCD

diverge when the angle of emission or the energy of the emitted gluon go to zero.

In perturbative QCD, each emission corresponds to the real part of a higher-order

correction and comes with a power of the strong coupling, αs. From the previous

arguments, it is clear that n emissions contribute to the O(αns ) correction. However,

the complete O(αns ) correction requires diagrams up to n loops. It is shown that these

come with divergences that match exactly those of the real emissions.

The above mechanism of cancellation of the singularities fails with a bad choice

of a jet definition. This can be shown schematically in the following picture. In the

top section of Figure J.1, the real and virtual corrections to dijet production are

presented. The red cones represent a jet definition. Each correction is denoted by a

1
ε

pole of the dimensional regularization. These corrections can be written as

1

ε
J

(2)
IRC−safe −

1

ε
J

(2)
IRC−safe → finite. (J.1)

The above equation shows that the divergences coming from the real correction are

canceled by the divergences associated to the virtual correction. On the contrary, in

the bottom picture where a different jet definition was applied to the very same real

and virtual diagrams, the real diagram is classified as a 3-jet event while the virtual

diagram is still a 2-jet event. This has serious consequences because the poles are now

multiplied by different jet functions, respectively J (3) and J (2). Thus, the cancellation

of singular terms does not occur, and the final result is infinite. This can be shown
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mathematically as

1

ε
J

(3)
IRC−safe −

1

ε
J

(2)
IRC−safe →∞. (J.2)

The above equation shows that the divergences coming from the real correction are

not canceled by the divergences associated with the virtual correction. Hence, the

fact that we obtain a nonsensical theoretical results in the above example comes from

the bad choice of jet definition.

Figure J.1: The infrared and collinear safety of a jet algorithm1.

It is clear from the above examples that the IRC-safety of a jet definition is a

crucial requirement if we are not to waste the results for higher-order corrections to

1Taken from Ref. [91].
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processes with jets. A complete jet definition consists of the following elements:

Jet definition = jet algorithm + parameters + recombination scheme (J.3)

Jet algorithms fall into two classes: the cone algorithms and the sequential

recombination algorithms. The sequential recombination algorithms dominate almost

exclusively in the jet measurements at the LHC. They represent a bottom-up approach

by starting to combine the closest particles, according to a distance measure which

can be generally written as

dij = min(P 2p
T i , P

2p
Tj)

∆R2
ij

R2
, diB = P 2p

T i (J.4)

where dij is the distance between the particles i and j and diB is a distance between

the particle i and the beam. The parameter R is called the jet radius and ∆R2
ij = (yi−

yj)
2 +(φi−φj)2 is the geometric distance between the particles i and j in the rapidity-

azimuthal angle plane. The value of the parameter p defines specific algorithm from

the sequential-recombination family: p = 1 for the kt algorithm [92, 93], p = 0 for

the Cambridge/Aachen (C/A) algorithm [94], and p = −1 for the anti-kt algorithm

[95]. Given a set of the final-state particles, each procedure of finding jets with the

sequential-recombination algorithm consists of the following steps:

• Compute distances between all pairs of final-state particles, dij, as well as the

particle-beam distances diB.

• If dij and diB recombine the two particles, remove them from the list of final-

state particles, and add the particle ij to that list.

• if diB < dij, call the particle i a jet and remove it from the list of particles.

• Repeat the above procedure until there are no particles left.

In spite of the fact that the distance measure of the three algorithms can be

written as a single formula, because of the different values of the power p, each of
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them exhibits a different behaviour. The kt algorithm starts from clustering together

the low-pT objects and it successively accumulates particles around them. The C/A

algorithm is insensitive to the transverse momenta of particles and it builds up jets

by merging particles closest in the y − φ plane. The anti-kt algorithm starts from

accumulating particles around high-pT objects, just opposite to the behaviour of the

kt algorithm. In the anti-kt algorithm, the clustering stops when there is nothing

within radius R around the hard center. For that reason, anti-kt leads to jets that

take circular shapes in the y− φ plane. This last feature makes the anti-kt algorithm

particularly attractive from the experimental point of view [91].
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