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Though we might not recognize it, mathematics is manifested in the world around 

us. To begin to see an example of this, we first develop the theory that links together the 

Fibonacci numbers, the Golden Ratio, and continued fractions to ultimately present some 

well-known (and some less well-known) results on the best approximation of irrational 

numbers by fractions. A discussion on irrationality, specifically with regard to the Golden 

Ratio, brings us to the conclusion that the Golden Ratio is among the most irrational 

numbers of the real line. Armed with this theory, we then examine the mechanics behind 

plant growth and discover surprising connections between mathematics and flower 

development. Through an in-depth understanding of the mathematical tools and number-

theoretic results initially outlined, we are brought to a deeper appreciation of the Creation 

that surrounds us as we recognize the order and pattern that exist in the natural world. 
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PREFACE 
 
 
 The natural world in which we live is both complex and beautiful; though most 

people would agree that mathematics is a complex subject, it is unfortunately much less 

likely to be associated with the word ``beautiful''. It seems that a lack of understanding of 

mathematics (or perhaps merely a lack of interest in it) has made the subject as a whole 

into one that is perceived as irrelevant to everyday life, but the truth is that this is not the 

case. The realm of mathematics contains a wealth of knowledge that is not only important 

in its own right, but is also a vital, ever-present part of nearly all aspects of our life. If this 

is the case, though, why does math seem to be such an under-appreciated subject among 

the general population? 

The subject of mathematics itself certainly does not help remedy this issue of under-

appreciation, for it seems to be one of the hardest subjects to communicate to individuals 

outside of the field. Higher level mathematics certainly deserves recognition as a rich, well-

developed, and imperative area of knowledge, but as research continues, the various 

branches of mathematics begin to grow just like a tree: new branches form off of old ones, 

each with a narrower focus, each with its own set of vocabulary, notation, definitions, and 

theorems, making it difficult even for mathematicians to be conversant in areas in which 

they do not specialize. How much more daunting is the task of communicating such areas 

of math to individuals outside of the subject! It was with this task in mind, though, that I 

chose to present the following exposition of an area of Number Theory centering on 

continued fractions: by laying out all terminology, explaining all notation, and providing 

rigorous proof to verify claims that develop into
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some interesting final results, it is my hope that the material presented here can be 

understood and appreciated by anyone who has taken a basic course in Calculus. 

In case the mathematics on its own does not merit its own appreciation in the eyes 

of the general reader, the technical explanation in Chapter One will be applied to nature in 

Chapter Two. For just as we can appreciate the natural beauty that we see around us every 

day, we should also appreciate the role that mathematics plays in nature and biology once 

we are introduced to the principles that govern those relevant areas of math. The links 

between the created world around us and certain mathematical principles can inform our 

understanding of the order and pattern seen in nature. By delving into the realm of Number 

Theory, we can see an example of how math speaks volumes in the world of plant 

development and growth. The hope is that exploring the areas of Fibonacci numbers, the 

Golden Ratio, continued fractions, best-approximation theory, and irrationality, and how 

they relate to plant growth will bring us to a deeper appreciation for Creation as we 

recognize the order and pattern in the natural world. 
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CHAPTER ONE

From Fibonacci to Irrationality

What do a Medieval mathematician and a sunflower seed have in common? A guess

would be “not much”; however, plant life is more closely related to the mathematical

interests of Fibonacci than one would think. The astounding symmetry, patterns,

and order exhibited by plants are not just sheer happenstance or evolutionary chance.

Indeed, the overwhelming presence of order in nature suggests that it is not just a

happy coincidence that nature looks and functions as it does. By observing patterns

in leaves, seeds, petals, or branches and connecting these patterns to some accessible

yet powerful mathematics, the mechanisms and principles that drive plant growth

and development can begin to be understood, bringing with them an appreciation for

the complexity of a Creation that functions almost flawlessly.

Counting Rabbits and Other Computations

The Medieval Age was by no means a hotbed of academic progress; in keeping

with such a theme, the “Dark Ages”, as they are thus aptly named, did not feature

much mathematical development. In this era of relatively small mathematical ad-

vancements, however, one man stands apart as a Medieval pioneer in mathematics:

Leonardo Pisano, known to the modern world as Fibonacci. The author of a num-

ber of books that feature a wide variety of mathematical topics, Fibonacci sought to

introduce Arabic numerals and methods of arithmetic to the Roman world, and his

advances are monumental enough to affect today’s society: even basic addition and

subtraction would be cumbersome when using Roman numerals! Fibonacci’s most

well-known work is, of course, Liber Abaci. Although the book requires well over

500 pages in a current translation (see, for example, [6]), Liber Abaci ’s crown jewel

requires hardly a page of print. The “rabbit problem”, as it has come to be known,
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baby rabbit pairs adult rabbit pairs total rabbit pairs
beginning 0 1 1

end of month 1 1 1 2
end of month 2 1 2 3
end of month 3 2 3 5
end of month 4 3 5 8
end of month 5 5 8 13
end of month 6 8 13 21
end of month 7 13 21 34
end of month 8 21 34 55
end of month 9 34 55 89
end of month 10 55 89 144
end of month 11 89 144 233
end of month 12 144 233 377

Table 1. Rabbit Population Growth

is not even particularly challenging, but this has not stopped it from giving birth

to one of the most celebrated and well-known mathematical entities: the Fibonacci

sequence.

The Fibonacci sequence arises as one attempts to solve the rabbit problem, the

rules of which are summarized below, taken from [6]:

(1) There exist a pair of adult rabbits consisting of one male and one female;

rabbits of this species never die.

(2) At the beginning of the first month, these rabbits mate.

(3) At the end of a month, one male and one female rabbit are born to the rabbit

parents, becoming a new rabbit pair.

(4) It takes a pair of baby rabbits a month to mature into adult rabbits, at which

point they mate and begin producing rabbit pairs, one pair per month.

How many pairs of rabbits exist at the end of a year? The solution is summarized

in Table 1. In [6], Fibonacci goes on to explain that the total for a given month can

be found by adding the totals of the two previous months together. The author also

asserts that one can continue this pattern indefinitely to find the total number of

rabbits for any given month. Thus the Fibonacci sequence was born. The sequence
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 . . .
1 1 2 3 5 8 13 21 34 55 89 144 . . .

Table 2. The Fibonacci Sequence

Figure 1. In deriving of the Golden Ratio, we discover that x = φ.

is defined by

F1 = 1;F2 = 1;Fn+1 = Fn + Fn−1, n ≥ 2,

and the first few terms of the sequence are shown in Table 2. The Fibonacci sequence,

though relatively old in the mathematical world, continues to be studied with great

vigor today. There are myriad fascinating properties of this particular sequence of

numbers. One such property deals with the Golden Ratio, but before the connection

between Fibonacci numbers and the Golden Ratio is given, the Golden Ratio itself

will be introduced.

The Golden Ratio and the Golden Angle

The Golden Ratio goes by a number of names and a number of symbols; it will

be denoted here by φ. The numerical value of φ is φ = 1+
√
5

2
≈ 1.61803398.... The

Golden Ratio is not simply an arbitrarily chosen value. It is derived from a special

set of ratios. Consider a line segment divided into two sections, one of unit length,

as labelled in Figure 1. Suppose that the ratio of the longer section to the unit

length section is equal to the ratio of the length of the whole segment to the longer

section, meaning x + 1 : x = x : 1. Then x+1
x

= x
1
and x2 = x + 1. This means

that x2 − x − 1 = 0, so by the Quadratic Formula, x = 1±√5
2

= φ. Thus the Golden

Ratio is aptly named, as it is derived from a set of ratios, and it satisfies the equation

x2 − x− 1 = 0. Note that the conjugate φ̄ = 1−√5
2

also satisfies this equation.
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It will be important to note that the Golden Ratio is an irrational number, meaning

that it cannot be represented as a fraction of form p
q

with p and q being integers. The

following proof, based on that found in [1], will verify this claim.

Theorem 1. φ is irrational.

Proof. Suppose to the contrary that φ = p
q

is rational, with p, q ∈ Z and p
q

in lowest

terms (meaning gcd(p, q) = 1). Since φ satisfies the relation φ2 − φ− 1 = 0, it must

be that (p
q
)2 − p

q
− 1 = 0. From this, algebraic manipulation gives

p2

q2
=
p

q
+ 1

p2 = pq + q2 = q(p+ q).

Since p + q ∈ Z, this means q | p2. Then gcd(p, q) = 1 implies q = 1. The relation

(p
q
)2 − p

q
− 1 = 0 also gives

p2

q2
=
p

q
+ 1

1 =
q

p
− q2

p2

q2

p2
=
q

p
− 1

q2 = qp− p2 = p(q − p).

Since q − p ∈ Z, this means p | q2. Again, gcd(p, q) = 1 implies p = 1. Thus

φ = p
q

= 1
1

= 1. However, that means φ2 − φ − 1 = 12 − 1 − 1 = −1 6= 0, a

contradiction. Therefore φ 6= p
q

is irrational. �

A similar entity to the Golden Ratio is the Golden Angle. When one takes a circle

and divides it into two segments, one being of unit length, and when the ratio of

the length of the other segment to the unit length segment is equal to the ratio of

the circumference to the length of the other segment, the angle θ is referred to as

the Golden Angle. This can be seen in Figure 2: if y is the angle we seek and the

relationships between the arc segments are those just described, then 2π−y : y = 2π :
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Figure 2. In deriving the Golden Angle, we discover that y = θ.

2π−y and hence 2π−y
y

= 2π
2π−y . This gives the quadratic equation y2+y(−6π)+4π2 = 0,

which has roots y = π(3±√
5); we take the smaller root, namely y = π(3−√

5) = θ

to be the Golden Angle. Its value is approximately θ ≈ 137.50776405...◦.

The relationship between the Fibonacci numbers and the Golden Ratio is a simple

one, namely that the limit as n approaches infinity of the ratio of two consecutive

Fibonacci numbers is equal to the Golden Ratio:

lim
n→∞

Fn+1

Fn

=
1 +

√
5

2
= φ.

In order to verify that this is true, an equation known as Binet’s Formula is needed.

Binet’s Formula is a non-recursive formula that can find the value of any number

in the Fibonacci sequence, and it is presented as a lemma (with proof taken from

[5]) below that will then allow us to verify the truth of this Fibonacci-Golden Ratio

relationship.

Lemma 1. (Binet’s Formula) For all n ∈ N,

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−√

5

2

)n]
.

Proof. Recall the equation x2 − x − 1 = 0 examined earlier along with its roots,

which are α = 1+
√
5

2
and β = 1−√5

2
. This means, of course, that α2 − α − 1 = 0 and

β2 − β − 1 = 0, or α2 = α + 1 and β2 = β + 1. Multiplying these last two equations
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by αn and βn, respectively, we see that αn+2 = αn+1 + αn and βn+2 = βn+1 + βn.

Subtracting these two equalities yields

αn+2 − βn+2 = αn+1 − βn+1 + αn − βn,

and we divide by α− β to finally obtain

αn+2 − βn+2

α− β
=
αn+1 − βn+1 + αn − βn

α− β
=
αn+1 − βn+1

α− β
+
αn − βn

α− β
.

For k ≥ 0, let Hk = αk−βk

α−β . Then the previous equation can be rewritten as Hn+2 =

Hn+1 + Hn; notice that this follows the same recursion formula as the Fibonacci

sequence, with each term being the sum of the previous two terms. The question

that remains is whether the initial values H1 and H2 match those of the Fibonacci

sequence as well. Since

H1 =
α− β
α− β

= 1 = F1

and

H2 =
α2 − β2

α− β
=

(α− β)(α + β)

α− β
= α + β =

1 +
√

5

2
+

1−
√

5

2
=

2

2
= 1 = F2,

we see that this is, in fact, the case. Thus Fn = Hn = 1√
5

[(
1+
√

5
2

)n
−
(

1−
√

5
2

)n]
for

all n ≥ 1. �

Binet’s Formula is useful in its own right: calculating F371 can be done much more

quickly by employing the formula rather that using the recursion relation that defines

the Fibonacci sequence to calculate the 370 terms that come before F371 in addition to

F371 itself. But the real value in Binet’s Formula, at least in terms of our investigation,

is its usefulness in showing that lim
n→∞

Fn+1

Fn
= φ; the proof of this fact, presented below

in Theorem 2, is taken from [9].

Theorem 2.

lim
n→∞

Fn+1

Fn
= φ =

1 +
√

5

2
.
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Proof. Once again, we denote the Golden Ratio by φ = 1+
√

5
2

and its conjugate by

φ̄ = 1−
√

5
2

; note that φ − φ̄ = 1+
√

5
2
− 1−

√
5

2
= 2

√
5

2
=
√

5. With this notation, Binet’s

Formula takes the form Fn = 1√
5

(
φn − φ̄n

)
. This means

Fn+1

Fn
=

1√
5

(
φn+1 − φ̄n+1

)
1√
5

(
φn − φ̄n

) =
φn+1 +

(
φφ̄n − φφ̄n

)
− φ̄n+1

φn − φ̄n

=
φ
(
φn − φ̄n

)
φn − φ̄n

+
φ̄n
(
φ− φ̄

)
φn − φ̄n

= φ+

√
5φ̄n

φn − φ̄n

= φ+
√

5

(
φn − φ̄n

φ̄n

)−1

= φ+
√

5

(
φn

φ̄n
− 1

)−1

.

Now,

φ

φ̄
=

1+
√

5
2

1−
√

5
2

=

(
1+
√

5
2

1−
√

5
2

)(
1+
√

5
2

1+
√

5
2

)
=

(
1+
√

5
2

)2

1−5
4

= −(1 +
√

5)2

4
= −6 + 2

√
5

4
= −3 +

√
5

2
,

and |φ
φ̄
| > 1, so we have the following string of limits:

lim
n→∞

(
φ

φ̄

)n
=∞;

lim
n→∞

(
φ

φ̄

)n
− 1 =∞;

lim
n→∞

((
φ

φ̄

)n
− 1

)−1

= 0;

lim
n→∞

√
5

((
φ

φ̄

)n
− 1

)−1

= 0.

Thus

lim
n→∞

Fn+1

Fn
= lim

n→∞

[
φ+
√

5

(
φn

φ̄n
− 1

)−1
]

= φ =
1 +
√

5

2
.

�

This tidy Theorem 2 establishes a very close connection between Fibonacci num-

bers and the Golden Ratio, but what exactly does it mean? A useful interpretation

is that if you take two consecutive numbers of the Fibonacci sequence and create an
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improper fraction by placing the larger of the two numbers in the numerator and the

smaller in the denominator, you can arrive at a pretty good rational approximation

to φ, the Golden Ratio. The further along in the Fibonacci sequence you are when

you create this fraction, the better your approximation will be. Thus the relationship

between the Fibonacci sequence and the Golden Ratio is useful: rational approxi-

mations to irrational numbers, especially irrational numbers (like φ) that appear in

such abundance in certain spheres of the sciences, make computation much easier

and quicker at times. In fact, such approximations are so useful and sought-after

that many mathematicians devote their research to best-approximation methods in

a number of areas, only one of which is irrational numbers. In the case that we’re

considering with the Golden Ratio and rational approximations using the Fibonacci

sequence, we’ve clearly found a set of fraction approximations to φ. But are these the

“best” rational approximations we can get for the irrational φ?

An Introduction to Continued Fractions

To answer this question, we need a bit more mathematical machinery, namely an

intriguing topic in Number Theory called continued fractions. Continued fractions

look like this:

a0 +
1

a1 + 1
a2+ 1

a3+
1

a4+
1

...

but are usually denoted by [a0; a1, a2, a3, ...]. Each ai is a real number (usually positive,

although a0 need not be). When ai ∈ Z for all ai’s in the continued fraction, the

continued fraction is called simple. There are also both finite and infinite continued

fractions. A finite continued fraction terminates (for example, a = [a0; a1, a2, ..., an])

while an infinite continued fraction does not (for example, b = [b0; b1, b2, b3, ...] with

an infinite number of terms). Simply put, rational numbers have finite continued

fractions and irrational numbers have infinite continued fractions, which is actually
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very intuitive. If we have a finite continued fraction

x = [a0; a1, ..., an] = a0 +
1

a1 + 1

...+ 1
an

,

then we can use basic algebraic manipulation to work this continued fraction into

something that looks like a regular fraction, namely, p
q

for some p, q ∈ Z. But if we

have an infinite continued fraction

x = [a0; a1, a2, ...] = a0 +
1

a1 + 1
a2+ 1

...

,

there is no ending term an, so there is no starting point at which we can begin

manipulating the continued fraction into a more recognizable form. Although this

is not proof of the fact that infinite continued fractions are irrational numbers, it

does intuitively illustrate that it should be impossible to write an infinite continued

fraction as a rational number p
q
.

We are interested in one irrational number in particular; what is the (infinite)

continued fraction expansion for φ? There is more than one way to find a continued

fraction expansion given any real number, and the most widely-used method involves

successive uses of the greatest integer function. However, our knowledge of the Golden

Ratio runs relatively deep at this point, so there is a more straight-forward approach

that can be used to answer this question. Recall the identity φ2 − φ − 1 = 0, or

φ2 = φ+1. Dividing by φ yields φ = φ+1
φ

= 1+ 1
φ
. Having established this relationship,

we can replace the φ in the denominator on the right-hand side by 1 + 1
φ
. Repeating

this process gives

φ = 1 +
1

φ
= 1 +

1

1 + 1
φ

= 1 +
1

1 + 1
1+ 1

1+ 1

...

.
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Thus we can write the continued fraction expansion for the Golden Ratio immediately

as φ = [1; 1, 1, 1, ...], which is infinite, as expected.

The next notion needed to arrive at our destination of rational approximations to φ

is that of convergents. The “kth convergent” of a continued fraction a = [a0; a1, a2, ...]

is found by simply truncating the continued fraction after the term ak. This is denoted

by Ck = [a0; a1, a2, ..., ak]. Each convergent is clearly a finite continued fraction, so

each convergent of any continued fraction (finite or infinite) will be a rational number,

say Ck = pk
qk

. The value of the convergent Ck can be found by untangling the continued

fraction using basic algebraic manipulation or by employing some well-known formulas

for calculating such values. As we will eventually hope to calculate a number of

convergents for φ, a formula would certainly be helpful. Letting Ck = pk
qk

, the kth

convergent can be calculated using the recursive formula

Ck =
pk
qk

=
akpk−1 + pk−2

akqk−1 + qk−2

, k ≥ 2,

for the continued fraction [a0; a1, a2, ...]; it is easily seen that C0 = a0 and C1 =

a0 + 1
a1

= a0a1+1
a1

. We include the simple proof of this formula, taken from [5], since it

will be employed as we continue our investigation.

Theorem 3. The kth convergent of the simple continued fraction [a0; a1, a2, ...] is

Ck = pk
qk

(as outlined above) for k ≥ 0.

Proof. We proceed by induction on k, so first consider a set of base cases for

k = 0, k = 1, and k = 2:

C0 = a0 =
p0

q0

;

C1 = a0 +
1

a1

=
a0a1 + 1

a1

=
p1

q1

;

C2 = a0 +
1

a1 + 1
a2

= a0 +
1

a1a2+1
a2

= a0 +
a2

a1a2 + 1
=
a0(a1a2 + 1) + a2

a1a2 + 1

=
a2(a0a1 + 1) + a0

a1a2 + 1
=
a2p1 + p0

a2q1 + q0

=
p2

q2

.
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Now, assume Cn = pn
qn

= anpn−1+pn−2

anqn−1+qn−2
for 2 ≤ n ≤ k and consider the convergent

Cn+1 = [a0; a1, a2, ..., an, an+1], which can be rewritten as Cn+1 = [a0; a1, a2, ..., an, an+1] =

[a0; a1, a2, ..., an+ 1
an+1

]. As this finite continued fraction has n+1 terms, the inductive

hypothesis implies

Cn+1 =
(an + 1

an+1
)pn−1 + pn−2

(an + 1
an+1

)qn−1 + qn−2

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1

,

the desired result. Thus the formula holds. �

For a finite continued fraction x = [a0; a1, ..., an], it is easy to see that the nth

convergent Cn is actually equal to the number given by x = [a0; a1, ..., an]; hence

x = Cn = [a0; a1, ..., an], meaning that the last convergent of a finite continued frac-

tion is actually equal to the original value x. For an infinite continued fraction

α = [a0; a1, a2, ...], define a′k = [ak, ak+1, ...]. Comparing this to our notation for

convergents, we see that the convergent Ck gives the value of the truncated infinite

continued fraction up to the term ak, while a′k ignores all terms that come before ak,

giving only the tail of the infinite continued fraction from ak onward. With this new

notation, we can rewrite α = [a0; a1, a2, ..., an, a
′
n+1], noting that a′n+1 need not be

an integer or even a rational number, but will in fact be itself an infinite continued

fraction if α is irrational. This is, of course, an abuse of notation, since we defined

continued fractions be composed of integers only, but we will see that the resulting

theory will function quite well if we can overlook this notational abuse. Since this

new representation of α’s continued fraction now looks like a finite continued fraction,

it is safe to say that the “last convergent” of α is equal to the actual value of α. This

is a slight variation of our original notion of a convergent, since this final convergent

will be defined in terms of a′n+1, which is not an integer, as it has been in the past.

Because of this, we will use a special notation to refer to this last convergent, namely
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C∗n+1. Hence we have, writing α = [a0; a1, a2, ..., an, a
′
n+1], that

α = C∗n+1 =
pn+1

qn+1

=
a′n+1pn + pn−1

a′n+1qn + qn−1

.

Using the formula from Theorem 3, we can now compute as many convergents of

φ = [1; 1, 1, 1, ...] as we desire:

C0 = a0 = 1;

C1 = a0 +
1

a1

= 1 +
1

1
= 2;

C2 =
1(2) + 1

1(1) + 1
=

3

2
;

C3 =
1(3) + 2

1(2) + 1
=

5

3
;

C4 =
1(5) + 3

1(3) + 2
=

8

5
.

Before we get too carried away with this process, note should be taken: since ai = 1

for all i ≥ 0, the convergent formula becomes

Ck =
pk
qk

=
1(pk−1) + pk−2

1(qk−1) + qk−2

=
pk−1 + pk−1

qk−1 + qk−2

,

when we are considering the continued fraction of φ. Now, given the previous formulas

for the convergents C0 = p0
q0

and C1 = p1
q1

as well as the continued fraction φ =

[1; 1, 1, ...], it is clear that p0 = 1, p1 = 2, q0 = 1, and q1 = 1 in this case. Breaking

the convergent formula apart to examine the numerators and denominators separately,

we see that pk = pk−1 +pk−2 and qk = qk−1 +qk−2, which are recursion formulas of the

same form as that used for the Fibonacci sequence. Noting that p0 = F2, p1 = F3,

q0 = F1, and q1 = F2, we can quickly conclude that pk = Fk+1+Fk and qk = Fk+Fk−1,

from which we see that

Ck =
pk
qk

=
Fk+1 + Fk
Fk + Fk−1

=
Fk+2

Fk+1

.

12



Then

lim
k→∞

Fk+2

Fk+1

= lim
k→∞

Ck = lim
k→∞

[1; 1, 1, ..., 1] = [1; 1, 1, 1, ...] = φ,

further verification that lim
n→∞

Fn+1

Fn
= φ.

By building up the theory behind continued fractions and examining how that

theory applies to the Golden Ratio, we’ve arrived again at the conclusion that ratios

of consecutive Fibonacci numbers make decent rational approximations to φ. But

again, are we any closer to finding out if these fraction approximations are best-

possible? The answer is yes, though we might not yet see how, and one final push in

the area of convergents and continued fractions will shine the light on this result. The

Best-Approximation Theorem (Theorem 4 to come) for irrational numbers will seal

the deal, but before we conclude the current section, a number of lemmas will first

be introduced in order to make the flow of logic easier to understand in the section

to come. The proof of these three lemmas are taken from [5].

Lemma 2. Let Cn = pn
qn

be the nth convergent of the (simple) continued fraction

given by α = [a0; a1, a2, a3, ...]. Then for n ≥ 1, we have

pnqn−1 − qnpn−1 = (−1)n−1.

Proof. We proceed by induction on n. For the base case in which n = 1, we see that

p1q0 − q1p0 = (a0a1 + 1)(1)− (a1)(a0) = 1 = (−1)0 = (−1)1−1,

using the formulas for p0, p1, q0, and q1 previously outlined. Now, assume that

pnqn−1−qnpn−1 = (−1)n−1 and recall that pn = anpn−1 +pn−2 and qn = anqn−1 +qn−2.

Then consider:

pn+1qn − qn+1pn = (an+1pn + pn−1)qn − (an+1qn + qn−1)pn

= an+1(pnqn − pnpn) + pn−1qn − qn−1pn

13



= −(pnqn−1 − qnpn−1) = −(−1)n−1 = (−1)n,

using the inductive hypothesis to arrive at the desired conclusion. Thus the formula

holds for all n ≥ 1. �

Lemma 3. Let Cn = pn
qn

be the nth convergent of the (simple) continued fraction

given by α = [a0; a1, a2, a3, ...]. Then gcd(pn, qn) = 1 for all n ≥ 1.

Proof. Let d = gcd(pn, qn). Since pn ≥ 0 and qn ≥ 0 by definition for n ≥ 1,

d ≥ 0 also. By Lemma 2, pnqn−1 − qnpn−1 = (−1)n−1. Now, d | pn and d | qn, so

d | pnqn−1 − qnpn−1 and thus d | (−1)n−1. Potential divisors of (−1)n−1 are only −1

and 1, but since d ≥ 0, it must be that d = 1. Therefore gcd(pn, qn) = 1 for all

n ≥ 1. �

Lemma 4. Let Cn = pn
qn

be the nth convergent of the (simple) continued fraction

given by α = [a0; a1, a2, ...]. Then α ≥ pn
qn

if n is even, and α ≤ pn
qn

if n is odd.

Proof. From a previous discussion, we can write

α = [a0; a1, a2, ...] = α = [a0; a1, ..., an, a
′
n+1],

so that

α = C∗n+1 =
a′n+1pn + pn−1

a′n+1qn + qn−1

.

Then, employing Lemma 2, we have

x− pn
qn

=
a′n+1pn + pn−1

a′n+1qn + qn−1

− pn
qn

=
a′n+1pnqn + pn−1qn
qn(a′n+1qn + qn−1)

−
a′n+1qnpn + qn−1pn
qn(a′n+1qn + qn−1)

=
a′n+1pnqn + pn−1qn − a′n+1qnpn − qn−1pn

qn(a′n+1qn + qn−1)

=
pn−1qn − qn−1pn
qn(a′n+1qn + qn−1)

=
(−1)n

qn(a′n+1qn + qn−1)
.

Now, the denominator of this last fraction contains only positive values and thus is

itself positive. Thus the sign of (−1)n

qn(a′n+1qn+qn−1)
will be negative if n is odd and positive

14



if n is even, giving 
x− pn

qn
≤ 0, n odd,

x− pn
qn
≥ 0, n even.

Therefore x ≤ pn
qn

when n is odd and x ≥ pn
qn

when n is even. �

Some Best-Approximation Results

The search for the set of rational numbers that constitute the best fractional approx-

imations to the Golden Ratio is not yet over, but the Best-Approximation Theorem is

now within sight. The first lemma provides only a preliminary bound for the distance

between α and the nth convergent of α, but Lemma 6 gets very close to the heart

of the matter and in fact makes the proof of the Best-Approximation Theorem quite

simple; the proof of this lemma, along with the proof of Lemma 5 and of Theorem 4,

is taken from [5].

Lemma 5. Let α = [a0; a1, a2, ...] be irrational with convergents Cn = pn
qn

for all

n ∈ N. Then for any n ∈ N, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2
n

.

Proof. From a previous discussion, we can write

α = [a0; a1, a2, ...] = [a0; a1, ..., an, a
′
n+1],

so that

α = C∗n+1 =
a′n+1pn + pn−1

a′n+1qn + qn−1

.

Then, employing Lemma 2,

α− pn
qn

=
a′n+1pn + pn−1

a′n+1qn + qn−1

− pn
qn

=
a′n+1pnqn + pn−1qn
qn(a′n+1qn + qn−1)

−
a′n+1qnpn + qn−1pn
qn(a′n+1qn + qn−1)

=
a′n+1pnqn + pn−1qn − a′n+1qnpn − qn−1pn

qn(a′n+1qn + qn−1)
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=
pn−1qn − qn−1pn
qn(a′n+1qn + qn−1)

=
(−1)n

qn(a′n+1qn + qn−1)
,

so ∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(a′n+1qn + qn−1)
,

noting that this last denominator is necessarily positive. Now, since

a′k = [ak; ak+1, ak+2, ...] = ak +
1

ak+1 + 1

...

,

it is clear that ak < a′k for all k ∈ N. Hence we have an+1 < a′n+1, giving an+1qn +

qn−1 < a′n+1qn + qn−1 and qn(an+1qn + qn−1) < qn(a′n+1qn + qn−1), and finally∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(a′n+1qn + qn−1)
<

1

qn(an+1qn + qn−1)
=

1

qnqn+1

≤ 1

q2
n

,

with this last inequality being simply the result of the fact that qn ≤ qn+1 for all

n ∈ N, a clear implication of the recursive formula for convergents seen in Theorem

3. �

Lemma 6. Let Cn = pn
qn

be the nth convergent of the infinite continued fraction

x = [a0; a1, a2, a3, ...], and let a, b ∈ Z with 1 ≤ b < qn+1. Then |qnx− pn| ≤ |bx− a|.

Proof. Begin by considering the following system of equations:
pnα + pn+1β = a,

qnα + qn+1β = b.

Written in matrix form, this system corresponds to: pn pn+1

qn qn+1

 α

β

 = A

 α

β

 =

 a

b

 .
The determinant of the matrix A is pnqn+1−qnpn+1 = −(pn+1qn−qn+1pn) = −(−1)n =

(−1)n+1 by the identity in Lemma 2; since this determinant is nonzero, there exists
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a solution (α, β) to this system. A relatively tedious amount of row-reduction and

algebraic manipulation (in which Lemma 2 is again useful) allow one to arrive at the

solution 
α = (−1)n+1(aqn+1 − bpn+1),

β = (−1)n+1(bpn − aqn).

Now, suppose α = 0; then clearly (−1)n+1(aqn+1− bpn+1) = 0, implying that aqn+1−

bpn+1 = 0 and aqn+1 = bpn+1. From this, it can be seen that qn+1 | bpn+1. But

gcd(pn+1, qn+1) = 1 by Lemma 3, so the conclusion is that qn+1 | b. However, if

qn+1 | b, then it is obvious that qn+1 ≤ b, which is a contradiction to 1 ≤ b < qn+1.

Thus we must have α 6= 0, which provides the condition |α| > 0; since α ∈ Z, this

really gives us that |α| ≥ 1. In the case where β = 0, we read off from the matrix

equation above that describes the system under consideration that αpn = a and

βqn = b. Then

|bx− a| = |αqnx− αpn| = |α||qnx− pn| ≥ |qnx− pn|,

which is the desired result. This concludes the case where β = 0, so we assume that

β 6= 0 for the remainder of the proof. Note that, since β ∈ Z, the fact that |β| ≥ 1 is

implicit in this assumption.

Now, suppose β < 0. The second equation in our system is qnα + qn+1β = b, or

qnα = b− qn+1β. By definition, b > 0 and qn+1 > 0; this combined with β < 0 implies

that qnα ≥ 0, and since qn ≥ 0 also by definition, we conclude that α > 0 in this case.

Supposing instead that β > 0 and recalling that we’ve chosen b such that b < qn+1,

we have b < βqn+1 (since |β| ≥ 1 for all β implies β ≥ 1 in this case) and hence

0 < b − βqn+1. The right-hand side of the equation considered in the previous case,

namely qnα = b− qn+1β, is thus negative in value, so qnα is negative as well. Again,

since qn ≥ 0, this means α < 0 in this case. Thus β < 0 implies α > 0, and β > 0

implies α < 0. This means β and α always have opposite signs. What is more, pn
qn
−x
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and pn+1

qn+1
−x also have opposite signs by Lemma 4, implying the same about qnx− pn

and qn+1x− pn+1. This, along with the fact that α and β have opposite signs, shows

that α(qnx−pn) and β(qn+1x−pn+1) must have the same sign. This allows us to see,

finally, that

|bx− a| = |(αqn + βqn+1)x− (αpn + βpn+1)| = |α(qnx− pn) + β(qn+1x− pn+1)|

= |α(qnx− pn)|+ |β(qn+1x− pn+1)| = |α||(qnx− pn)|+ |β||(qn+1x− pn+1)|

> |α||qnx− pn| ≥ |qnx− pn|,

noting that for any x, y ∈ R having the same sign, we know that |x + y| = |x| + |y|.

Therefore |qnx− pn| ≤ |bx− a|, and the final result is obtained. �

Finally, on to the coveted best-approximation theorem:

Theorem 4. Let x be irrational with (infinite) continued fraction expansion x =

[a0; a1, a2, a3, ...], and let Cn = pn
qn

be the nth convergent of x’s continued fraction

expansion. If 1 ≤ b ≤ qn and a, b ∈ Z, then a
b
∈ Q satisfies∣∣∣∣x− pn

qn

∣∣∣∣ ≤ ∣∣∣x− a

b

∣∣∣ .
Proof. Suppose to the contrary that

∣∣∣x− pn
qn

∣∣∣ > ∣∣x− a
b

∣∣. Then

|qnx− pn| = |qn|
∣∣∣∣x− pn

qn

∣∣∣∣ ≥ |b| ∣∣∣∣x− pn
qn

∣∣∣∣ > |b| ∣∣∣x− a

b

∣∣∣ = |bx− a|,

which is clearly a contradiction to Lemma 6. Therefore
∣∣∣x− pn

qn

∣∣∣ ≤ ∣∣x− a
b

∣∣. �

The claim is that this theorem proves that ratios of consecutive Fibonacci numbers

are the best rational approximations to the irrational φ, but this implication may

not be obvious, so we follow the conclusion of the theorem logically to arrive at this

desired result. The term on the left-hand side of the inequality in the statement of

the previous theorem is |α− pn
qn
|, which is the difference between the nth convergent
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and the irrational number α viewed in absolute value. Another way to look at this

is as an error term: this absolute value ultimately tells us how close the convergent

Cn is to the actual value of α, or how good of an approximation the fraction Cn is to

α. The full inequality in the statement of the theorem tells us that this error term is

bounded above by |α− a
b
|, where b is any integer between 1 and qn (the denominator

of Cn) and a is any integer. This right-hand-side term |α− a
b
| is another error term,

this time communicating how close the fraction a
b

is to the actual value of α. Thus

the full inequality |α− pn
qn
| ≤ |α− a

b
| tells us that convergents make the best rational

approximations to any given irrational α in that any fraction whose numerator is

unrestricted and whose denominator is positive and bounded above by qn is farther

away from α than pn
qn

is to α.

In the case in which we are interested, α = φ and Cn = pn
qn

= Fn+2

Fn+1
, so rewriting

Theorem 4 in these terms gives∣∣∣∣φ− Fn+2

Fn+1

∣∣∣∣ ≤ ∣∣∣φ− a

b

∣∣∣
for 1 ≤ b ≤ Fn+1. This means that, when a bound is placed on the size of the

denominator, ratios of consecutive Fibonacci numbers provide the best rational ap-

proximations to the Golden Ratio, exactly what we set out for in the first place!

A Most Irrational Discussion

We now know that ratios of consecutive Fibonacci numbers provide the best rational

approximations to the irrational number φ, and generally, we know that convergents

of any irrational give the best rational approximations to it. But what is most in-

teresting is that φ is the “most irrational” of the irrational numbers, and it is with

this concept that we conclude this section. By “most irrational”, we mean that the

rational approximations of φ are farther away from φ than rational approximations

of all other irrational numbers are from any other irrational number. Since we ap-

proximate irrational numbers with convergents and the approximations improve the
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farther along we are in the sequence of convergents, we can rephrase the notion of a

“most irrational” number by saying that the sequence of convergents of φ converges to

φ slower than any other sequence of convergents converges to its respective irrational

number. In order to solidify our claim that φ is the most irrational number, we will

present a series of theorems to come; but before we get there, we must introduce and

develop a new definition that will make the flow of these last theorems a bit smoother.

For α, β ∈ R, α is said to be equivalent to β if there exist integers a, b, c, d ∈ Z with

ad − bc = ±1 such that α = aβ+b
cβ+d

; it turns out that this equivalence condition is, in

fact, an equivalence relation. The importance of this fact will be explained following

its proof, which is taken from [7].

Lemma 7. The definition of equivalent numbers gives an equivalence relation.

Proof. There are three conditions to check in order to verify an equivalence relation:

(1) For any α ∈ R, α is equivalent to α.

Let α ∈ R. Then α = 1(α)+0
0(α)+1

with 1(1)− 0(0) = 1, so α is equivalent to α.

(2) If α is equivalent to β, then β is equivalent to α.

Let α be equivalent to β. Then there exist a, b, c, d ∈ Z such that ad−bc = ±1

and α = aβ+b
cβ+d

. We then have the following:

α =
aβ + b

cβ + d

α(cβ + d) = cαβ + dα = aβ + b

cαβ − aβ = −dα + b

β(cα− a) = −dα + b

β =
−dα + b

cα− a
,

with (−d)(−a)− bc = ad− bc = ±1. Thus β is equivalent to α.

(3) If α is equivalent to β and β is equivalent to γ, then α is equivalent to γ.

Let α be equivalent to β and β be equivalent to γ. Then there exist
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a, a0, b, b0, c, c0, d, d0 ∈ Z such that α = aβ+b
cβ+d

and β = a0γ+b0
c0γ+d0

with ad−bc = ±1

and a0d0 + b0c0 = ±1. Combining these equalities gives

α =
aβ + b

cβ + d
=
a
(
a0γ+b0
c0γ+d0

)
+ b

c
(
a0γ+b0
c0γ+d0

)
+ d

=

aa0γ+ab0+b(c0γ+d0)
c0γ+d0

ca0γ+cb0+d(c0γ+d0)
c0γ+d0

=
aa0γ + ab0 + bc0γ + bd0

ca0γ + cb0 + dc0γ + dd0

=
(aa0 + bc0)γ + (ab0 + bd0)

(ca0 + dc0)γ + (cb0 + dd0)
.

Clearly, (aa0 + bc0), (ab0 + bd0), (ca0 + dc0), (cb0 + dd0) ∈ Z. Also,

(aa0 + bc0)(cb0 + dd0)− (ab0 + bd0)(ca0 + dc0)

= aa0cb0 + aa0dd0 + bc0cb0 + bc0dd0 − (ab0ca0 + ab0dc0 + bd0ca0 + bd0dc0)

= aa0dd0 + bc0cb0 − ab0dc0 − bd0ca0

= a0d0(ad− bc) + c0b0(bc− ad)

= a0d0(ad− bc)− b0c0(ad− bc)

= (a0d0 − b0c0)(ad− bc) = (±1)(±1) = ±1.

Thus α is equivalent to γ.

Since these three properties hold, we conclude that the above definition of equivalent

numbers gives an equivalence relation on the real numbers. �

What does it mean that this is an equivalence relation on R? An equivalence

relation produces equivalence classes ; the equivalence class of a number α ∈ R is

simply the set of all numbers that are equivalent to α (i.e. the set of all β ∈ R such

that there exist a, b, c, d ∈ Z with ad − bc = ±1 and α = aβ+b
cβ+d

). An equivalence

relation actually forms a partition of R through these equivalence classes, meaning

two things:

(1) Every α ∈ R falls in one equivalence class; this means that the union of all

equivalence classes is equal to R.
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(2) Every α ∈ R is a member of only one equivalence class; this means that

equivalence classes are disjoint.

This discussion on equivalent numbers, equivalence relations, and equivalence classes

seems like only an excuse to use the words “equivalent” and “equivalence” more

than usual, but these notions of equivalent numbers will be useful as we continue to

develop the idea of a “most irrational” number. The following lemma (the proof of

which comes from [7]) gives a characterization of equivalent numbers that will aid in

the proof of Theorem 7; this characterization will prove itself to be significantly more

enlightening than the original definition of equivalent numbers, and it will connect

back to the previous discussion on continued fractions.

Lemma 8. Two irrational numbers α, β ∈ R are equivalent if and only if α =

[a0; a1, a2, ..., ak, b0, b1, b2, ...] and β = [c0; c1, c2, ..., cn, b0, b1, b2, ...] for some k, n ∈ N.

Proof. First, let α = [a0; a1, a2, ..., ak, b0, b1, b2, ...] and β = [c0; c1, c2, ..., cn, b0, b1, b2, ...]

for some k, n ∈ N . Let γ = []b0; b1, b2, ...]. Then α = [a0; a1, ..., ak, γ] = pkγ+pk−1

qkγ+qk−1

with pkqk−1 − qkpk−1 = ±1 by Lemma 2, so α is equivalent to γ. Similarly, β =

[b0; b1, ..., bn, γ] = rnγ+rn−1

snγ+sn−1
with rnsn−1 − snrn−1 = ±1, again by Lemma 2, so β is

equivalent to γ. By Theorem 7, then, α is equivalent to β.

Now suppose that α and β are equivalent. Then there exist a, b, c, d,∈ Z such

that β = aα+b
cα+d

with ad − bc = ±1. Without loss of generality, we may suppose

that cα + d > 0, for if this were not the case, we could replace a, b, c, and d with

−a,−b,−c, and −d to achieve a positive denominator. Now, let α = [a0; a1, a2, ...] be

the continued fraction of α. Then we can write

α = [a0; a1, a2, ...] = [a0; a1, a2, ..., ak−1, a
′
k] =

pk−1a
′
k + pk−2

qk−1a′k + qk−2

,
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where {pn
qn
}∞n=1 denotes the sequence of convergents of α. But then we have

β =
a
(
pk−1a

′
k+pk−2

qk−1a
′
k+qk−2

)
+ b

c
(
pk−1a

′
k+pk−2

qk−1a
′
k+qk−2

)
+ d

=

apk−1a
′
k+apk−2+bqk−1a

′
k+bqk−2

qk−1a
′
k+qk−2

cpk−1a
′
k+cpk−2+dqk−1a

′
k+dqk−2

qk−1a
′
k+qk−2

=
apk−1a

′
k + apk−2 + bqk−1a

′
k + bqk−2

cpk−1a′k + cpk−2 + dqk−1a′k + dqk−2

=
(apk−1 + bqk−1)a′k + (apk−2 + bqk−2)

(cpk−1 + dqk−1)a′k + (cpk−2 + dqk−2)

=
Pa′k +R

Qa′k + S
,

where P = apk−1+bqk−1, Q = cpk−1+dqk−1, R = apk−2+bqk−2, and S = cpk−2+dqk−2.

We see that

PQ−RS = (apk−1 + bqk−1)(cpk−1 + dqk−1)− (apk−2 + bqk−2)(cpk−2 + dqk−2)

= acpk−1pk−2 + bdqk−1qk−2 + adpk−1qk−2 + bcpk−2qk−1

−acpk−1pk−2 − bdqk−1qk−2 − adpk−2qk−1 − bcpk−1qk−2

= ad(pk−1qk−2)− bc(pk−1qk−2 − pk−2qk−1) = (ad− bc)(pk−1qk−2) = (±1)(±1) = ±1,

using Lemma 2. Now, by Lemma 5, we know
∣∣∣α− pn

qn

∣∣∣ < 1
q2n

, so −1
q2n

< α − pn
qn
< 1

q2n

and hence −1
qn

< qnα − pn < 1
qn

. This means that qnα − pn = δn
qn

for any n ∈ N

and some δn ∈ R such that |δn| < 1, so we can write pk−1 = αqk−1 + δ1
qn−1

and

pn−2 = αqn−2 + δ2
qn−2

, where |δ1| < 1 and |δ2| < 1. Then

Q = cpk−1 + dqk−1 = cαqk−1 +
cδ1

qk−1

+ dqk−1 = (cα + d)qk−1 +
cδ1

qk−1

and

S = cpk−2 + dqk−2 = cαqk−2 =
cδ2

qk−2

+ dqk−2 = (cα + d)qk−2 +
cδ2

qk−2

.
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We see that

lim
k→∞

(Q− S) = lim
k→∞

(
(cα + d)qk−1 +

cδ1

qk−1

−
(

(cα + d)qk−2 +
cδ2

qk−2

))

= lim
k→∞

((cα + d)(qk−1 − qk−2)) + lim
k→∞

(
cδ1

qk−1

− cδ2

qk−2

)
= (cα + d) lim

k→∞
(qk−1 − qk−2) + 0,

since the general formula for qn, given by qn = anqn−1 + qn−2, implies qn → ∞ as

n → ∞. This general formula for qn also tells us that qn > qn−1 for all n ∈ N,

implying that qk−1 − qk−2 > 0 for all k ∈ N. This, along with the assumption that

cα + d > 0, implies that

lim
k→∞

(Q− S) = (cα + d) lim
k→∞

(qk−1 − qk−2) > 0.

This means that there exists a k1 ∈ N such that k ≥ k1 implies Q−S > 0, or Q > S.

We also see that

lim
k→∞

S = lim
k→∞

(
(cα + d)qk−2 +

cδ2

qk−2

)
= lim

k→∞
(cα + d)qk−2 + lim

k→∞

cδ2

qk−2

= (cα + d) lim
k→∞

qk−2 + 0 > 0,

for similar reasons to those above, so there exists k2 ∈ N such that k ≥ k2 implies

S > 0. Taking k0 = max{k1, k2}, we have that k ≥ k0 implies Q > S > 0. We now

know that β =
Pa′k+R

Qa′k+S
with PS − QR = ±1 and Q > S > 0 for all k ≥ k0. Since

P
Q
∈ Q, we can write this fraction as a finite continued fraction:

P

Q
= [c0; c1, ..., cn] = c0 +

1

c1 + 1

c2+
... 1

cn

= c0 +
1

c1 + 1

c2+
... 1

cn−1+1

= c0 +
1

c1 + 1

c2+
... 1

(cn−1)+1
1

= [c0; c1, c2, ..., cn − 1, 1].
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This means we can write the finite continued fraction of P
Q

in two ways, one way with

an even number of terms and one way with an odd number of terms. We will then

choose to write P
Q

= [c0; c1, ..., cn] in such a way that n satisfies PS − QR = ±1 =

(−1)n−1. Now, we will denote the set of convergents of P
Q

by { r0
s0
, r1
s1
, ..., rn

sn
}. Then,

since P
Q

has a finite continued fraction, we know that P
Q

= rn
sn

. Cross-multiplication

gives Psn = Qrn. By Lemma 3, we know that gcd(rn, sn) = 1; since PS −QR = ±1,

it is clear that gcd(P,Q) = 1. From Psn = Qrn, then, we can conlcude that sn | Q,

rn | P , P | rn, and Q | sn; this implies that rn = P and sn = Q. Now, employing

Lemma 2 again, we can write

PS −QR = rnS − snR = (−1)n−1 = rnsn−1 − rn−1sn,

giving rnS−snR = rnsn−1−rn−1sn, so rnS−rnsn−1 = snR−snrn−1 and rn(S−sn−1) =

sn(R − rn−1). Again, since gcd(rn, sn) = 1, this implies that rn | (R − rn−1) and

sn | (R − sn−1). Now, we have that sn = Q > S > 0 and sn > sn−1. First, suppose

that S − sn−1 ≥ 0. Then 0 ≤ |S − sn−1| = S − sn−1 < sn − sn−1 < sn. Suppose now

that S−sn−1 < 0. Then sn−1−S > 0 and 0 < |S−sn− 1| = |sn−1−S| = sn−1−S <

sn−S < sn. In both cases, then, we see that |S−sn−1| < sn. But sn | (S−sn−1), so it

must be the case that S − sn−1 = 0, or S = sn−1. Then rnS − snR = rnsn−1− rn−1sn

gives rnsn−1 − snR = rnsn−1 − rn−1sn; hence snR = rn−1sn and R = rn−1sn
sn

= rn−1.

This means that P
Q

= rn
sn

and R
S

= rn−1

sn−1
are the nth and (n− 1)st convergents of any

continued fraction that begins with [c0; c1, ..., cn]. But we also have that β =
Pa′k+R

Qa′k+S
=

rna′k+rn−1

sna′k+sn−1
; this is precisely the formula for the (n + 1)st convergent of the continued

fraction [c0; c1, ..., cn, a
′
k]. Since there are n + 1 terms in this continued fraction, we

know that the (n+1)st convergent Cn+1∗ is actually the value of the continued fraction

itself; this means that β = Cn+1∗
rna′k+rn−1

sna′k+sn−1
= rn+1

sn+1
= [c0; c1, ..., cn, a

′
k], so we conclude

that β = [c0; c1, ..., cn, a
′
k] = [c0; c1, ..., cn, ak, ak+1, ak+2, ...], as desired. �
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The above lemma, though quite lengthy, is actually very important to our discussion

because it gives a direct link between equivalent numbers and continued fractions.

Specifically, it tells us that two numbers are equivalent precisely when they share the

same tail of their continued fraction; the common tail may begin at different points

for each number without affecting their equivalence. To illustrate this new look

at equivalent numbers, here is an example. Recalling that the Golden Ratio is φ =

[1; 1, 1, 1, 1, ...], the number given by [2; 3, 3, 1, 1, 2, 1, 1, 1, ...] is equivalent to φ because

they eventually have a common tail. Similarly, [2; 3, 3, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, ....] is

equivalent to [5; 9, 7, 2, 1, 4, 1, 2, 1, 2, 1, 2, ...]. But [1; 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] is

not equivalent to φ because its tail will never become entirely an endless string of 1’s.

We are now well-prepared to see a series of theorems that speak to the irrationality

of the Golden Ratio. The proofs of Theorems 5, 6, and 7 are taken from [7].

Theorem 5. For any irrational α, there are infinitely many rational numbers p
q

such

that |p
q
− α| < 1

q2
√

5
.

Proof. To show this, we will show that for every three consecutive convergents of

α = [a0; a1, a2, ...], one of those three convergents will satisfy |pn
qn
− α| < 1

q2n
√

5
, where

pn
qn

= Cn is the nth convergent of α. To begin, we see that∣∣∣∣pnqn − α
∣∣∣∣ =

∣∣∣∣pnqn − a′n+1pn + pn−1

a′n+1qn + qn−1

∣∣∣∣
=

∣∣∣∣pna′n+1qn + pnqn−1 − a′n+1pnqn − pn−1qn
a′n+1q

2
n + qn−1qn

∣∣∣∣ =

∣∣∣∣pnqn−1 − pn−1qn
a′n+1q

2
n + qn−1qn

∣∣∣∣
=

∣∣∣∣ (−1)k−1

a′n+1q
2
n + qn−1qn

∣∣∣∣ =
1

a′n+1q
2
n + qn−1qn

=
1

q2
n

(
a′n+1 + qn−1

qn

) ,
by appealing to a previous notational discussion and Lemma 2. If we can show that

a′i + qi−2

qi−1
>
√

5 for at least one of the values i = n− 1, i = n, and i = n+ 1, this will

complete the proof. To show this, suppose to the contrary that a′i + qi−2

qi−1
≤
√

5 for

i = n − 1, i = n and i = n + 1. The following then hold for i = n − 1, i = n, and
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i = n+ 1:

(1) a′i = [ai, ai+1, ai+2, ...] = ai +
1

a′i+1

,

by definition; defining bn = qn−2

qn−1
for all n ∈ N,

(2)
1

bi+1

=
qi
qi−1

=
qi − qi−2 + qi−2

qi−1

=
qi − qi−2

qi−1

+
qi−2

qi−1

= ai + bi,

since qi = aiqi−1 + qi−2; and, combining these,

(3)
1

a′i+1

+
1

bi+1

= a′i − ai + ai + bi = a′i + bi ≤
√

5,

since we assume a′i + bi = a′i + qi−2

qi−1
≤
√

5 for i = n − 1, i = n, and i = n + 1. Then

we have

1 = a′i
1

a′i
≤ (
√

5− bi)
(√

5− 1

bi

)
,

for i = n and i = n + 1, employing equation (3). This gives the following string of

inequalities, again for i = n and i = n+ 1:

1 ≤ (
√

5− bi)
(√

5− 1

bi

)
= 6−

√
5

(
bi +

1

bi

)
√

5

(
bi +

1

bi

)
≤ 5

bi +
1

bi
≤ 5√

5
=
√

5.

Since bi = qi−2

qi−1
∈ Q and

√
5 6∈ Q, we actually have strict inequality in the last

equation, giving the following:

bi +
1

bi
−
√

5 < 0

b2
i + 1− bi

√
5 < 0

b2
i − bi

√
5 +

5

4
<

1

4
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(√
5

2
− bi

)
<

1

4

√
5

2
− bi <

1

2
√

5

2
− 1

2
=

1

2
(
√

5− 1) < bi,

once again for i = n and i = n+ 1. Using this last inequality and also equation 2, we

finally arrive at

an =
1

bn+1

− bn <
1

1
2
(
√

5− 1)
− 1

2
(
√

5− 1)

=
2

(
√

5− 1)

(
√

5 + 1)√
5 + 1

− 1

2
(
√

5− 1) =
1

2
(
√

5 + 1)− 1

2
(
√

5− 1) = 1,

a contradiction, since we take an ≥ 1 for all n ∈ N. Hence a′i + qi−2

qi−1
>
√

5 for at least

one of the values i = n− 1, i = n, and i = n+ 1, meaning

1

a′i + qi−2

qi−1

<
1√
5

holds for at least one out of every three consecutive convergents of α and hence holds

for infinitely many convergents pn
qn

. Thus∣∣∣∣pnqn − α
∣∣∣∣ =

1

q2
n

(
a′n+1 + qn−1

qn

) < 1

q2
n

√
5

for infinitely many n ∈ N. �

Theorem 6. In Theorem 5, the
√

5 is best possible; if it is replaced by any number

larger than
√

5 the theorem does not hold for all irrational numbers.

Proof. We show that if
√

5 is replaced by any larger number, say A >
√

5, then

Theorem 5 does not hold specifically for α = φ, meaning there do not exist infinitely

many fractions that approximate φ with an error term less than 1
q2A

. Suppose to

the contrary that there are infinitely many p
q
∈ Q such that |p

q
− φ| < 1

q2A
. Then

there are infinitely many p
q
∈ Q such that − 1

q2A
< p

q
− φ < 1

q2A
, meaning that there
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are infinitely many such rationals such that φ = p
q

+ δ
q2

where δ ∈ R is fixed with

|δ| < 1
A
< 1√

5
. This gives the following string of equivalences:

φ =
p

q
+

δ

q2

q

(
1 +
√

5

2

)
− p =

δ

q

q

2
− p =

δ

q
−
√

5q

2(q
2
− p
)2

=

(
δ

q
−
√

5q

2

)2

q2

4
+ p2 − pq =

δ2

q2
+

5q2

4
− δ
√

5

q2 + 4p2 − 4pq =
4δ2

q2
+ 5q2 − 4δ

√
5

−4q2 + 4p2 − 4pq =
4δ2

q2
− 4δ
√

5

−q2 + p2 − pq =
δ2

q2
− δ
√

5.

Let’s take a closer look at this last equation. For all q ∈ Z, we have −q2 +p2−pq ∈ Z,

so δ2

q2
− δ
√

5 ∈ Z for all q ∈ Z. But we also have

lim
|q|→∞

(
δ2

q2
− δ
√

5

)
= lim
|q|→∞

(
δ2

q2

)
− δ
√

5 = −δ
√

5,

so since |δ| < 1√
5
, we know −1√

5
< δ < 1√

5
and

1 =

√
5√
5
> −δ

√
5 = lim

|q|→∞

(
δ2

q2
− δ
√

5

)
>
−
√

5√
5

= −1.

This means that if we pick q0 ∈ Z with |q0| large enough, we can ensure that −1 <

δ2

q2
− δ
√

5 < 1 for all q ∈ Z with |q| ≥ |q0|, giving −1 < −q2 + p2 − pq < 1 for all such

q ∈ Z. But since −q2 +p2−pq ∈ Z, this implies that −q2 +p2−pq = p2−pq− q2 = 0

for all such q ∈ Z. Viewing p2− pq− q2 as a quadratic equation in the variable p, the
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Quadratic Formula gives

p =
q ±

√
q2 − 4(−q2)

2
=
q ±

√
5q2

2
=
q

2
(1±

√
5).

But we know that p ∈ Z, so since q
2
(1 ±

√
5) is irrational for all non-zero q ∈ Z, it

must be that q = 0. This contradicts p
q
∈ Q. Hence for all q ∈ Z with |q| ≥ |q0|,

the equation −q2 + p2 − pq = δ2

q2
− δ
√

5 is false. Thus there are only finitely many

q ∈ Z such that −q2 + p2 − pq = δ2

q2
− δ
√

5 holds (specifically, all q ∈ Z with

−q0 < q < q0). For a fixed q ∈ (−q0, q0), there are at most two options for p ∈ Z such

that −q2 + p2 − pq = δ2

q2
− δ
√

5 holds. This gives only finitely many p
q
∈ Q such that

−q2 + p2 − pq = δ2

q2
− δ
√

5, a contradiction. Thus there must be finitely many p
q
∈ Q

such that |p
q
− φ| < 1

q2A
for A >

√
5. �

Theorem 7. For any irrational α that is not equivalent to φ, there are infinitely

many rational numbers p
q

such that |p
q
− α| < 1

q22
√

2
.

Proof. As in the proof of Theorem 5, we show that for any three consecutive conver-

gents pn−1

qn−1
, pn
qn

, and pn+1

qn+1
of α, at least one must satisfy |pi

qi
− α| < 1

q2i 2
√

2
. To do this,

we again note that ∣∣∣∣pnqn − α
∣∣∣∣ =

1

q2
n

(
a′n+1 + qn−1

qn

) ,
so it is enough to show that a′i+1 + qi−1

qi
> 2
√

2 for at least one of i = n − 1, i = n,

and i = n + 1. Suppose to the contrary that a′i+1 + qi−1

qi
> 2
√

2 for i = n− 1, i = n,

and i = n+ 1, and once again we will define bn = qn−2

qn−1
for all n ≥ 2. As in the proof

of Theorem 5, equations (1) and (2) hold for i = n− 1, i = n, and i = n+ 1, as does

the following modified version of equation (3):

(4)
1

a′i+1

+
1

bi+1

= a′i − ai + ai + bi = a′i + bi ≤ 2
√

2.
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Then, for i = n and i = n+ 1, we have the following:

1 = a′i
1

a′i
≤ (2
√

2− bi)
(

2
√

2− 1

bi

)
= 9− 2

√
2

(
bi +

1

bi

)

bi +
1

bi
≤ 8

2
√

2
= 2
√

2;

since bi = qi−2

qi−1
∈ Q but 2

√
2 6∈ Q, we have strict inequality in this last equation.

Then

b2
i + 1− 2

√
2 < 0

(
√

2− bi)2 < 1

√
2− bi < 1

for i = n and i = n+ 1. This gives

an =
1

bn+1

−bn <
1√

2− 1
−
√

2+1 =
1√

2− 1

(√
2 + 1√
2 + 1

)
−
√

2+1 =

√
2 + 1

1
−
√

2+1 = 2,

which holds for any n ∈ N. But since α is not equivalent to φ, there are infinitely

many k ∈ N such that ak ≥ 2, which gives a contradiction in the above equation for

all such k ∈ N. Then for each such k ∈ N, at least one of i = k − 1, i = k, and

i = k + 1 must be such that a′i+1 + qi−1

qi
> 2
√

2. This means that∣∣∣∣piqi − α
∣∣∣∣ =

1

q2
i

(
a′i+1 + qi−1

qi

) < 1

q2
i 2
√

2

holds for at least one of i = k − 1, i = k, and i = k + 1, where k ∈ N is one of

the infinitely many integers such that ak ≥ 2. This gives infinitely many rational

approximations p
q

to any α (not equivalent to φ) such that∣∣∣∣pq − α
∣∣∣∣ < 1

q22
√

2
.

�
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Now let’s revisit these theorems to determine what they actually tell us. In Theorem

5, we learn that, for any irrational α, there are infinitely many fractions p
q

(for example,

all convergents of α) that are within a distance of 1
q2
√

5
from α. However, in the proof

of Theorem 6, we discover that the Golden Ratio has only finitely many fractions p
q

that are within a distance of 1
q2A

from α for any A >
√

5. What is more, in Theorem

7, we learn that for any irrational α whose continued fraction does not end in an

infinite string of 1’s, there are infinitely many fractions p
q

(once again, all convergents

of α will work) that are within a distance of 1
q22
√

2
from α. So while the Golden Ratio

φ is as well-approximable by fractions as other irrationals are when we have an error

bound of 1
q2
√

5
, φ fails to be well-approximable by fractions when the error bound

is decreased to 1
q22
√

2
. Since all irrationals that are not in the equivalence class of φ

(using the equivalence relation that follows from the definition of equivalent numbers)

are as well-approximable with the bound of 1
q22
√

2
as they are with the bound of 1

q2
√

5
,

these facts tell us that the equivalence class of φ contains exactly those irrational

numbers that have the worst rational approximations, in the sense that they do not

have infinitely many rational approximations that fall within 1
q22
√

2
of α while all

other irrationals do. This does not mean that we cannot get arbitrarily close to φ

using fractions, for we already know that lim
n→∞

Fn+1

Fn
= φ, meaning that there exists

N ∈ N such that n ≥ N implies |Fn+1

Fn
− φ| < ε for any arbitrarily small ε > 0, even

for ε < 1
q2
√

5
. The difference is that the ε > 0 that we chose here was fixed and

independent of the chosen p
q

(in this case, the chosen Fn+1

Fn
), whereas the error bounds

discussed in the above theorems depend directly on the denominator of the rational

approximation p
q

to φ, meaning the bounds get smaller as the denominator increases.

While this seems like a very nuanced and vague distinction, it is important in that

it amounts to the Golden Ratio (and those irrationals in its equivalence class) being

least like a fraction as a number can be; φ is a representative of the class of the most

irrational numbers on the number line.
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CHAPTER TWO

How Do Plants Grow, and How Do They Relate to Fibonacci?

At this point, we have mastered much in the realm of Fibonacci numbers and

continued fractions, but exactly how does this relate at all to plants? Moreover, why

should we even believe that there is a potential relationship between this area of

number theory and plant structure? Answering this second question is as easy as

taking a closer look at the inhabitants of the closest flowerbed. Examining the head

of a sunflower, one can immediately see much order and pattern, but most noticeable

are two different sets of spirals that seem to emanate from the center of the flower

head; these spirals are called parastichies. One family of parastichies on the flower

head turns in the clockwise direction while the other family turns in the counter-

clockwise direction. These two sets of spirals intertwine together perfectly to create

circular symmetry while filling the flower head. If one was to pick any such flower

head and count the number of parastichies in the clockwise direction and the number

of parastichies in the counter clockwise direction, the odds are quite good that both

of these numbers will actually be Fibonacci numbers. What is more, they are often

consecutive numbers in the Fibonacci sequence. Turning next to the nearest tree and

examining leaf arrangement around a twig, if one estimates the fraction of a full turn

between two consecutive leaves, the estimate will usually be a ratio of two Fibonacci

numbers (for example, 2/5 of a full turn, 1/3 of a full turn, 8/13 of a full turn, etc.).

These numbers are often referred to as phyllotactic ratios. If you buy a pineapple at

the grocery store and take a good look at the pattern that wraps around its outside,

you can see three sets of parallel spirals moving in different directions. Again, the

number of spirals in each of the three families should be a Fibonacci number. While

these observations may seem coincidental, further investigation will show that spiral

patterns and Fibonacci numbers are unbelievably common in nature: they can be
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seen in pinecones, artichokes, asparagus, broccoli, celery, trees, thorns, flowers, and

many other places. With these observations, it should not surprise us that Fibonacci

is quite closely related to more than just hypothetical rabbit populations. Fibonacci’s

sequence is everywhere in nature!

In order to determine the precise relationship between the mathematics of Chap-

ter One and plant structure, we will now develop a foundational knowledge of plant

growth and develop this understanding in some specific areas, namely leaf arrange-

ment on a stem and seed distribution on the head of a flower. Though this is not an

exhaustive list of how all parts of all plants grow, it is sufficient to eventually see how

the prior discussion on Fibonacci numbers, continued fractions, and the Golden Ratio

can teach us about the order and pattern that exist in the seemingly-random world

of nature. The discussion contained in this chapter is taken from that in Chapter 10

of [1], except where otherwise indicated.

An Introduction to Plant Growth

As with most things, a very good place to start an exposition on plant growth is at

the very beginning: namely, the beginning of a plant’s life. When a plant stem first

begins to grow from a seed, new plant cells are created at the top of the stem, adding

height and leaving behind older cells as the plant gets taller. A region called the

apex is found at the very tip of the stem, and this is where most new cell production

occurs. As cells from the apex multiply, they form groups called primordia; these

groups of cells are what will eventually become leaves, petals, seeds, and the like.

These primordia are formed successively from the apex, and what is most interesting

is that they form a spiralling pattern, creating what is called the generative spiral.

As the stem’s height increases, the primordia are left behind at various intervals

and begin to develop into whichever of the various plant parts they are destined to

become. To illustrate the importance of the generative spiral and its relationship to
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the mathematics we have covered, we will now take a literal look at the apex and its

immediate primordia.

Let’s examine a hypothetical newborn plant that is currently nothing more than

a stem and an apex; we suppose that no primordia exist currently. Cells in the

apex begin to multiply and group themselves together to form the first primordium.

As cell production continues from the apex, the height of the stem increases, and

this first primordium is left behind (though only slightly) while cell production shifts

to contribute to and form the next primordium. Once this second primordium is

completed, production shifts again to a new third primordium, and the previous two

primordia are left to eventually develop as they will. The main question to examine,

then, is this: as primordia are produced and left behind, how are they arranged in

relation to the apex and in relation to one another? This arrangement (especially

with respect to the primordia that develop into leaves around a stem) and the study

of the mechanisms that govern it are referred to as phyllotaxis.

The question regarding primordia distribution will take some time to examine thor-

oughly, though it will not necessarily be difficult to answer given our wide mathemat-

ical knowledge. To begin the investigation, we must establish a basic understanding

of primordia arrangement. As new primordia develop, they must be placed where

there is space; a plant would obviously not choose to leave behind primordia from

the apex in a straight line, one behind the other, because there is simply more space

for each new primordium if it is placed elsewhere. What is more, this straight-line

approach would produce a lopsided plant: it would result in a flower whose leaves,

petals, and seeds lined up one on top of the other in a straight line along one side

of the stem, which is certainly far from the symmetric design we see around us! If a

plant then seeks to place the newest primordium in such a way that it has space to

grow and develop, it will then space each primordium at some distance away from its

immediate neighbors. The most logical plan of attack for the young plant, then, is to
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choose a constant angle (say, α) that will be the angle between each pair of consec-

utive primordia because this will ensure that each primordium is given the space it

needs to grow. Of course, the resulting pattern will be a spiral (the generative spiral);

it turns out that the most common constant angle between consecutive primordia is

the Golden Angle. Though we currently have no argument to back up this claim,

we will develop a systematic approach that will eventually arrive at this conclusion.

Thus, armed only with the knowledge that there is a constant (yet unknown) angle α

between two consecutive primordia and that this distribution of primordia results in

a spiral (the generative spiral), we will break down the problem of primordia arrange-

ment around the apex into two parts, investigating various examples of plant growth

to illustrate the process and shed light on the question. First, in order to determine

how successive primordia are arranged in relation to each other, we will discuss how

leaves arrange themselves around a stem. Looking then at seed distribution on the

head of a flower, we will see an example of how primordia are arranged in relation to

the apex.

Leaf Arrangement

Leaves are a very important part of plant anatomy: they take in sunlight to be used

in photosynthesis that will ultimately provide the plant with the energy it needs to

grow and survive. This explains the thin, flat shape of leaves; their shape maximizes

surface area, allowing sunlight to reach the largest leaf area possible and hence giving

the plant as much energy at one time as possible. We don’t need much mathematics

to see why this leaf shape makes sense, but math will come in handy as we explore

why leaves arrange themselves as they do around a stem. All leaves on a particular

plant serve the same purpose, meaning that their combined efforts add together to

all contribute to the plant’s energy supply. Just like each individual leaf is shaped

so as to maximize the amount of sunlight that can reach it, all of the leaves on a

flower appear to arrange themselves around the stem so as to (once again) maximize
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(a) (b) (c) (d) (e)

Figure 3. Marking a hypothetical leaf arrangement around a stem
(represented by the larger center circle); the bottommost leaf is repre-
sented by dot 1, the next lowest by dot 2, etc. Dotted lines represent
the rays emanating from the center on which the leaves lie.

the total amount of leaf surface area that can be exposed to sunlight. If this is the

case, then it would not make sense, for example, for two leaves to stack one on top

of the other because this would prevent the bottom leaf from being able to access

sunlight. This brings up a question: how can leaves arrange themselves so that they

don’t block each other from sunlight?

To answer this question, we must take a literal bird’s eye view of plant growth.

Armed with the knowledge that primordia appear in a spiralling pattern on a young

plant and that some promordia will develop into leaves, we can conclude that leaves

appear around a stem in a spiral pattern as well, and at this point we can be fairly

confident that the angle between consecutive leaves will be the Golden Angle; this

will often be the case, but we would like to arrive at this conclusion by logically

developing an argument as to why such an arrangement would make sense. Now, as

a stem gets taller, it “leaves behind” leaves, starting at the bottom and working to

the top of the stem and distributing the leaves at various intervals around the stem

itself. Viewing this process from above, we can imagine a circle with the plant stem

at the center. We mark the ray emanating from the stem in the direction towards

which the first leaf points as the positive x-axis. Drawing another ray from the center

in the direction towards which the second leaf points will give us an angle between

these two rays. Drawing such a ray for each successive leaf will give the same angle

between each pair of two successive rays. Such a sample progression can be seen in
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(a) (b)

Figure 4. If we use an angle between two consecutive leaves that is a
rational multiple of 360◦, we see here that leaves will begin to stack one
on top of the other as the cycle of leaf placement repeats. There is an
angle of 90◦ = 1

4
(360)◦ between consecutive leaves in Diagram (A) and

an angle of 2
7
(360)◦ between consecutive leaves in Diagram (B). Again,

the numbers label the leaves in succession, beginning at the bottom of
the stem and working towards the top.

Figure 3; the leaves are labelled successively, from the bottom of the stem upwards.

We can use diagrams such as these to help us in seeing the answer to the question of

ideal leaf arrangement. Figure 4 shows two such diagrams. Now, the angle between

each successive new leaf represents a part of the whole 360◦ circle. For example, the

angle between consecutive leaves in Figure 4(A) is 90◦, which is one fourth of the full

circle, or 1
4
(360)◦. Our question can then be rephrased: what is the angle between

successive leaves that results in the best possible leaf arrangement around the stem,

or what is the factor by which we must multiply 360◦ by to get this desired angle?

Intuition and the examples in Figure 4(A) and 4(B) show that this factor cannot be

a rational number, for if this were the case, we see that leaves would eventually begin

stacking on top of each other as the distribution pattern began to repeat, and this

would block sunlight from all leaves except the handful that were lucky enough to

land on top of the stack. This means that the desired angle between successive leaves

cannot be a fraction multiple of 360◦, and hence it must be an irrational multiple of

360◦.
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There are only a handful of irrational numbers with which most people are familiar:

the number π is perhaps the most well-known, followed by Euler’s e, perhaps,
√

2,

and, of course, our friend φ. This might lead one to think that this irrational-multiple

conclusion is a good deal; while we know there are more fractions than we can name,

there appear to be only a few irrational numbers, so we must simply test out each

(π, e,
√

2, φ, etc.) to see which gives an ideal leaf arrangement! The truth is, however,

that there are many, many more irrational numbers than there are fractions; there are

infinitely, infinitely many. How, then, are we supposed to figure out which irrational

multiple of 360◦ gives us the best leaf arrangement? The answer lies, surprisingly, in

continued fractions and the Golden Ratio.

Theorem 4, the Best-Approximation Theorem, has shown us that all irrational

numbers can be approximated by fractions, and that the fractions that produce the

best approximations are in fact the convergents of the irrational number’s continued

fraction expansion. But Theorem 7 has also shown us that φ is in the equivalence

class of the least-rational of all irrational numbers, meaning that its convergents

give a worse approximation of it than any other convergents approximate any other

irrational number. In other words, while all irrational numbers are decidedly not

fractions, φ is, in a sense, the absolute farthest from being a fraction of all of the

irrational numbers. By this logic, it would certainly make sense that the angle that

we seek between leaves is the full 360◦ multiplied by a factor of φ. But this is a

number we know! We see that φ(360) = (1.61803398...)(360) = 582.4922328..., which

amounts to a full 360◦ rotation around the circle plus an extra 222.4922328...◦ (in

the counter-clockwise direction, as convention dictates); this is, of course, equivalent

to simply an angle of 222.4922328...◦. But 222.4922328...◦ in the counter-clockwise

direction is the same thing as 137.5077672...◦ in the clockwise direction, which is

precisely θ, the Golden Angle, as predicted.

Let’s summarize this conclusion one more time. If we are spacing out leaves around

a stem, we have seen quite clearly that if the angle between two successive leaves is
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a fraction multiple of the full circle, then leaves will very quickly begin to stack on

top of each other as the pattern around the stem continues. This will block sunlight

from many leaves. Then it must be that the angle between two consecutive leaves

must be an irrational sector of the full circle, because an irrational angle will ensure

that leaves never line up exactly one on top of the other. However, we have seen

that irrational numbers can be approximated with fractions even though their values

are not fractions themselves; the better the rational approximations are for a given

irrational α, the closer leaves will come to stacking one on top of the other, as if

we were using a rational angle between leaves. Therefore, the irrational number

that will allow a plant to expose the largest amount of leaf area to sunlight will

be the number that has the worst rational approximations. We have seen that this

number is precisely the Golden Ratio φ, whose angular counter-part is the Golden

Angle θ. Thus it would seem that a plant should space out its leaves at an angle of

θ = 137.5077672...◦ apart so as to create the most effective use of leaf surface area in

harvesting sunlight.

Seed Distribution

Seed distribution is the second verse of the same song as leaf distribution. We can

apply the logic of leaf distribution to see precisely why the Golden Angle leads to a

closest-packing design of seeds on a flower head, meaning a pattern that allows no

overlap of seeds or gaps between seeds. But while in the case of leaves we needed to

only determine the optimal angle between consecutive leaves, the case for seeds will

add an additional element to the question, for we must now determine the optimal

angle between consecutive seeds as well as the optimal distance of each seed from

the center of the flower head. Figure 5 provides a diagram to illustrate how seed

distribution can be represented graphically. Now, similarly to the case of leaves,

placing consecutive seeds at a fractional multiple of 360◦ apart will result in a wagon-

wheel arrangement full of gaps (see Figure 6), so we know we need an angle that is an
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(a) (b) (c)

(d) (e) (f)

Figure 5. Marking a hypothetical seed arrangement around an apex
(represented by the dot at the origin); dot 1 represents the first pri-
mordium created from the apex, dot 2 represents the next primordium
created by the apex, etc. As more primordia are formed, those already
in existence are forced farther away from the center and begin to form
a spiralling pattern. Here, the x- and y-axes serve simply as a point
of reference; we have arranged the diagrams so that the most recent
primordium appears along the positive x-axis.

irrational multiple of 360◦. The Golden Angle, of course, is as poorly approximable

by fractions as they come, so as the number of seeds increases, the seed arrangement

will be as far from resembling the wagon-wheel patterns seen in Figure 6 as possible;

no other irrational multiple of 360◦ will be as far from this pattern as the Golden

Angle is, which is a consequence of the Best-Approximation Theorem. The farthest

thing from a wagon-wheel pattern is, of course, a closest-packing in which all seeds

are evenly spaced apart. Hence the Golden Angle does provide a closest-packing of

seeds in that it allows seeds to be spaced out optimally from each other. It is most

interesting that even slight deviations from the Golden Angle lead to drastic changes
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(a) (b)

Figure 6. Figure (A) shows an angle of 90◦ = 1
4
(360)◦ between con-

secutive seeds, while Figure (B) shows an angle of 2
7
(360)◦ between con-

secutive seeds. Again, seeds are labelled in succession, beginning with
the earliest-developed seeds, which are forced outward as new seeds are
produced from the center. The resulting wagon-wheel pattern will re-
sult for any angle between consecutive seeds that is a rational multiple
of 360◦.

in the pattern seen on a flower head; for examples of this, see [1]. In addition, the

two sets of spiralling families of parastichies hinted at in the opening discussion of

this chapter are the most clearly observed when the Golden Angle is employed; in [8],

Naylor presents flower heads constructed using angles of
√
2(360)◦ and π(360)◦. The

parastichies in these flower heads, though still visible, become much more difficult to

trace, particularly as the number of seeds grows. It appears, then, that employing

the Golden Ratio gives a flower head the optimal arrangement of seeds, and that

arrangements resulting from other angles actually do not come close to producing

such an ideal closest-packing as the Golden Angle does. However, this sheds no light

yet on how each seed should be spaced apart from the center of the flower head.

To determine the optimal distance between the center of the flower head and each

individual seed, we present a model outlined by Micheal Naylor in [8] and referenced

as well in [1]. Suppose that there are n seeds on the head of a flower, each having an

area of one square unit. If it is assumed that the seeds are arranged so as to produce
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a closest-packing, then the area of the flower head will be equal to the sum of the

areas of each of the individual seeds. Since there are n seeds each having an area of

one square unit, the area of the circular flower head will be approximately A = n.

The general formula for the area of a circle, however, is A = πr2, where r is the

radius of the circle. Hence we can write A = πr2 = n, where r is the radius of the

flower head, giving r2 = n
π

and r =
√

n
π

= 1√
π

√
n. This means that the radius of the

flower head is equal to a constant (namely, a constant quite close to 1√
π
) multiplied

by the square root of the total number of seeds on the flower head; we say then that

the radius is proportional to the square root of the number n of seeds. What does

this tell us about the distance between individual seeds and the center? Assuming

that the seed farthest from the center lies on the perimeter of the circle constituting

the head of the flower, the distance between this seed and the center will actually be

equal to the radius of the flower head, which we know should be proportional to the

square root of the total number of seeds. In his model, Naylor takes the constant of

proportionality between the radius and the number of seeds to be 1, so that a flower

head of n seeds will have a radius of length
√
n. But dismissing the seed farthest

away from the center gives a circular patch of n− 1 seeds, the radius of which must

be
√
n− 1, according to Naylor’s model, giving us the distance between the center

and this (n − 1)st seed. Dismissing the two seeds farthest from the center on our

flower head of n seeds gives a circular patch of n− 2 seeds; its radius (and hence the

distance between the (n− 2)nd seed and the center) will be
√
n− 2. In fact, for any

k ≤ n, the distance between the center of the flower head and the kth seed from the

center will be
√
k, the radius of the circular flower head containing k seeds.

This then gives us a complete understanding of how seed arrangement on a flower

head should optimally work. If we have placed k seeds on the flower head, the (k+1)st

seed from the center should be placed at a distance of
√
k + 1 from the center and an

angle of φ(360)◦ from the kth seed from the center. This uniquely defines the location

of each individual seed, giving us a precise picture of what a closest-packing of seeds
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on a flower head should look like. This generalizes quite easily to the arrangement

of primordia around the apex, because to define the location of each primordium,

we must know its distance from the apex and the angle that it makes with the

previous primordium. For the precise reasons discussed in the investigation of seed

arrangement, each primordium should be at a distance proportional to the square root

of the total number of existing primordia away from the apex, and the angle between

this primordium and its immediate predecessor should be the Golden Angle. Since

seeds, leaves, petals, thorns, and all other plant parts develop from primordia, this

gives us a complete model for plant growth: an efficiently-growing plant will space

consecutive petals, consecutive seeds, consecutive thorns, etc. apart by the Golden

Angle and will space them out from the center of the stem at a distance proportional

to the square root of the total number of primordia, when necessary.

The presence of the Fibonacci numbers observed in the opening discussion of this

chapter stems from the relationship between Fibonacci numbers and the Golden Ratio

as well as the important role that the Golden Ratio plays in plant development. Each

individual occurrence of Fibonacci numbers in nature, from the phyllotactic ratios

observed in leaf arrangement on a tree to the number of parastichies in a particular

spiral family and beyond, has its own story to tell that adds even more intricacies

and details to the relationship between plants and the Golden Ratio. While there

is not time here to investigate each such occurrence, [8] and [4] are good resources

with which one could begin. This discussion on primordia and the Golden Angle

simply serves to illustrate the fact that Fibonacci numbers, the Golden Ratio, and

continued fractions appear to be intrinsically related to fundamental plant growth

and development; the pattern and beauty that we see in flower seeds and petals,

leaves on a tree, stalks of a celery plant, and florets of broccoli are all a result of basic

primordia development and its relationship to mathematics.

What is most interesting about this optimized model of plant growth is that it

is not the only one, nor is it necessarily the most widely accepted. There are many
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approaches to modelling plant growth, and many of them help us to better understand

plant development, but the truth is that, like most models, each is an imperfect

representation of true plant growth. These models and theories have been developed,

improved, and revised for quite a long time (for a history of phyllotactic theory, see

[2]), but they still cease to present a perfect representation of how plants actually grow

in practice. It certainly is amazing that even after such intensive and prolonged study,

we are unable to fully understand and accurately reproduce something as simple as

plant structure and development. Though mathematics provides us with an over-

abundance of knowledge and insight in many areas of life, even it cannot unlock all

of the secrets and dispel all of the mystery that the world around us holds.

Concluding Remarks

We have now seen a few examples of how the Golden Ratio and continued fractions

can explain how a logically-functioning plant should arrange its leaves and its seeds

in order to make the most efficient use of its space and resources, but this seems to

be a hypothetical understanding of plant growth. While it is easy enough to say “if

I were a plant, I would choose to space my leaves precisely the Golden Angle apart

from each other, because that makes mathematical sense”, it is much more difficult

to say that all plants do actually employ the Golden Angle, and even if we could say

that all plants do this, it would be yet another great leap to say that all plants do this

because it makes the most mathematical sense. The point here is that it is impossible

to determine whether or not all plants space their seeds out according to the Golden

Angle; there are simply too many plants to check, and what is more, there are plants

that do not follow such a rule. That being said, there has been work conducted to

determine whether or not this relationship between math and plant growth is strong

enough to imply plausible connection. One such in-depth study conducted on pine

cones can be seen in [4]. This investigation sought to determine whether spiralling

patterns of parastichies in pine cones consistently follow Fibonacci-like patterns. By
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examining thousands of pine cones from a wide range of conifer trees, investigators

saw that for the majority of tree species considered, only between 1% and 2% of cones

examined deviated from the usual pattern of two spirals moving in opposite directions

around the cone, one consisting of 8 spiral families and the other of 5 families. In

a handful of cases, 100% of cones examined conformed to this pattern. Though this

is not definitive evidence that the mathematics of Fibonacci numbers, the Golden

Ratio, and continued fractions governs plant growth, it does imply a correlation of

some form.

If nothing else, the study of math and plant growth at least makes us stop and

think about the relationship between these two entities. There is strong evidence for

much order and design in plant development, and the potential for such a connection

between math and nature suggests a beauty and logic hidden in the world in which we

live. Though we are able to do nothing more than conjecture that the Golden Ratio,

Fibonacci numbers, and continued fractions govern the development and structure

of plants, this apparent connection does suggest that there is some force of order

driving plant growth. This order demands the existence of a Creator. Whether He

purposefully employed mathematics in this creation or whether this mathematical and

biological connection is simply the coincidental result of an entirely unrelated divine

blueprint, God chose pattern, logic, purpose, and order to create the captivating and

beautiful world in which we live, and through this He has built bridges between the

natural world and mathematics that help each discipline deepen one’s understanding

of the other and of the world in general.
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