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Abstract

This work extends the applications of Anderson-type Hamiltonians to include transport char-

acterized by anomalous diffusion. Herein, we investigate the transport properties of a one-

dimensional disordered system that employs the discrete fractional Laplacian, (−∆)s, s ∈ (0, 2),

in combination with results from spectral and measure theory. It is a classical mathematical result

that the standard Anderson model exhibits localization of energy states for all nonzero disorder

in one-dimensional systems. Numerical simulations utilizing our proposed model demonstrate

that this localization effect is enhanced for sub-diffusive realizations of the operator, s ∈ (1, 2),

while the super-diffusive realizations of the operator, s ∈ (0, 1), can exhibit energy states with

less localized features. These results suggest that the proposed method can be used to exam-

ine anomalous diffusion in physical systems where strong correlations, structural defects, and

nonlocal effects are present.

Keywords: Anderson localization, anomalous diffusion, discrete fractional Laplacian, spectral

approach, disordered systems

1. Introduction

The concept of localization was first studied by P. W. Anderson in 1958, when he suggested

that sufficiently large impurities in a disordered medium could lead to the localization of elec-

trons. This phenomenon is known as Anderson localization and has motivated various mathemat-
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ical and physical studies in the past 60 years. The classical localization problem in one-dimension

is well understood in systems with nearest-neighbor interactions, yet there are a multitude of

open questions related to transport driven by correlated and nonlocal effects. Herein, we pro-

pose a non-local model for studying one-dimensional anomalous transport which provides new

perspectives on numerous physical and mathematical problems. This new model allows for the

consideration of systems which exhibit exotic transport properties and interactions. In particular,

we are interested in a generalized notion of diffusion known as anomalous diffusion.

Diffusion is a persistent random walk characteristic of diverse systems, such as neutrons

in nuclear reactors [1], stock market prices [2], and pollen particles suspended in fluids [3].

In the standard diffusion regime, the mean squared displacement of an ensemble of moving

particles increases linearly in time, i.e. 〈(x − x0)2〉 ∼ tβ, where β = 1. However, nonlinear mean

squared displacement, characterized by exponents β , 1, is also possible, yielding two distinct

examples of anomalous transport: subdiffusion, when β ∈ (0, 1), and superdiffusion, when β > 1.

Anomalous diffusion has been analyzed theoretically and observed experimentally in various

physical systems, including amorphous semiconductors, glasses, porous media, granular matter,

and plasmas [4–10]. Such diffusive behavior has also been related to complex processes such as

turbulence, biological cell motility, and superconductivity [11–13]. In the presence of disorder,

many of the aforementioned systems are known to exhibit localization properties, although the

definitions of localization in each study strongly depend on the underlying physical system. The

current study aims to investigate the effect of anomalous diffusion on the transport properties

of one-dimensional disordered media. This research is the first of its kind in that it combines

the spectral approach developed in [14] and the known discrete fractional Laplacian results from

[15]. The proposed method employs the spectral definition of localization, which will be further

discussed in Section 3.

The time evolution of a physical system is governed by the repeated application of a Hamil-

tonian operator to a given initial state. A typical Hamiltonian for modeling transport via classical

diffusion in a one-dimensional disordered system is given by the discrete random Schrödinger

operator of the form

Hε := −∆ +
∑
i∈Z

εi 〈·, δi〉 δi, (1)

where ∆ is the discrete Laplacian in one-dimension, with 〈·, ·〉 being the `2(Z) inner product,

δi are the standard Kronecker delta functions defined on Z, and εi are random variables taken
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to be independently and identically distributed (i.i.d.) according to the uniform distribution on

[−c/2, c/2],with c > 0. The operator given in (1) does not allow one to model systems exhibiting

anomalous diffusion, hence, we extend this method by considering the random discrete fractional

Schrödinger operator, formally given by

Hs,ε := (−∆)s +
∑
i∈Z

εi 〈·, δi〉 δi, (2)

for some s ∈ (0, 2).

The operator (−∆)s is the discrete fractional Laplacian and will be defined in the following

section. The operator (−∆)s can be used to describe the non-local motion of an electron in a one-

dimensional chain with atoms located at all integer lattice points in Z. When s = 1, the operator

in (2) reduces to the classical random discrete Schrödinger operator, given in (1), studied in

[16]. However, when s , 1, this operator considers the possibility of electrons jumping to

non-neighboring lattice points, which corresponds to an anomalous-type diffusion process. The

perturbation
∑

i∈Z εi 〈·, δi〉 δi can be used to model random displacements of the atoms located

at the lattice points. This perturbation is almost surely a non-compact operator, which means

that classical perturbation theory cannot be applied (for more details see [17, 18]). Here, the

parameter c is interpreted as the strength of the disorder at the lattice points. Finally, it is worth

emphasizing that the nonlinear mean squared displacement exponent β, while related, differs

from the fractional power of the discrete Laplace operator. For the particular operator considered

in this study, β is asymptotically proportional to s−1. More details regarding this relationship will

be provided in Section 2.3.

In the classical setting, s = 1, it has been shown via the spectral method (see Section 3

for details) that localization is expected for all disorders c > 0 [14]. The spectral method was

introduced in [14], where it was also used to numerically confirm the existence of extended states

for the two-dimensional discrete random Schrödinger operator for weak disorder. Applications to

other underlying geometries, such as the square, hexagonal, triangular lattice in two-dimensions,

and the three-dimensional square lattice, were explored in [19–23]. The unperturbed operator

used in these papers was the classical Laplacian (s = 1). The spectral approach allows for the

development of efficient computational techniques that can provide direction and intuition for

analytic results in both mathematics and physics. Moreover, the physical interpretation of this

approach has been recently established [20]. Other theoretical expectations and results for the
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continuous counterpart of (2), in the case where s ∈ (0, 1), have been established in [24].

Herein, we extend the application of the spectral approach to the study of transport guided

by nonlocal interactions. Recent numerical studies have suggested that delocalized transport be-

havior can potentially occur in media with correlated disorders [25–27]. In contrast, the present

work employs the operator given by (2) to model the nonlocal interaction, while assuming ran-

dom uncorrelated on-site energies. Using this model, we numerically investigate localization

properties of the operator given by (2). By considering various fractional powers of the Lapla-

cian, we demonstrate enhanced localized behavior for s ∈ (1, 2) and enhanced transport for

s ∈ (0, 1). These observations have interesting implications both mathematically and physically,

thus yielding exciting new avenues of research. The current study will undoubtedly motivate

the consideration of localization in the presence of anomalous diffusion with respect to the more

restrictive definitions, such as dynamic localization.

This article is organized as follows. Section 2 provides relevant theoretical background re-

garding the discrete fractional Laplacian and its associated nonlocal weights. Section 3 details

the spectral approach employed for studying the transport behavior of the newly proposed model.

Section 4 outlines in detail the numerical method used in our simulations. We provide computa-

tional results that validate the proposed method and elucidate numerous analytical properties of

the random discrete fractional Schrödinger operator. Finally, concluding remarks and a discus-

sion of possible future projects are provided in Section 5.

2. Theoretical Background

In the following sub-sections we present the necessary theoretical background for the discrete

fractional Laplacian. Section 2.1 introduces the discrete fractional Laplacian and outlines some

necessary results for the construction of the numerical method. Novel results regarding higher

fractional powers of the Laplacian are provided. In Section 2.2, we briefly provide a description

of physical interpretations of the discrete fractional Laplacian relevant to the current work and

Section 2.3 provides a brief motivation of the relationship between the fractional power of the

Laplace operator and its associated nonlinear mean squared displacement.

2.1. Discrete Fractional Laplacian

The fractional Laplacian has been studied in mathematics for nearly a century. Understood as

the classical Laplacian raised to positive powers, this operator has received attention in potential
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theory, fractional calculus, harmonic analysis, and probability theory [28–31]. However, only

recently has the operator garnered attention in the fields of differential equations and physics.

Due to this newfound interest, the fractional Laplacian has become one of the most researched

mathematical objects of the past decade. Classically, only fractional powers s ∈ (0, 1) have been

considered, and in this case, one can define the fractional Laplacian on Rd as the hyper-singular

integral given by

(−∆)su(x) := cd,s lim
ε→0+

∫
Rd\Bε(x)

u(x) − u(ξ)
|x − ξ|d+2s dξ, (3)

where x ∈ Rd, Bε(x) is the d−dimensional ball of radius ε > 0 centered at x ∈ Rd, and cd,s is

some normalization constant. The operator can also be defined as a pseudo-differential operator

via its Fourier transform, i.e.,

(̂−∆)su(ξ) = |ξ|2sû(ξ). (4)

The recent interest in the fractional Laplacian has been a direct consequence of the revolution-

ary work by Caffarelli and Silvestre, who demonstrated in [32] that one may study (−∆)s, s ∈

(0, 1), via the Dirichlet-to-Neumann operator associated with a particular extension problem.

The Dirichlet-to-Neumann operator is a particular example of the Poincaré-Steklov operator and

maps the values of a harmonic function on the boundary of some domain to the normal derivative

values of the same function on the same boundary. Caffarelli and Silvestre’s approach provided

an extension of a well-known result regarding the square root of the Laplacian as it arose in fluid

dynamics and finance (see [33] and the references therein). That is, for s ∈ (0, 1), they showed

that

(−∆)su(x) = cs lim
t→0+

t1−2svt(x, t), (5)

where v(x, t) : Rd × R→ R+ is the solution to the following Bessel-type problem vtt(x, t) +
1 − 2s

t
vt(x, t) + ∆v(x, t) = 0, x ∈ Rd, t > 0,

v(x, 0) = u(x), x ∈ Rd,
(6)

and cs := 22s−1Γ(s)/Γ(1 − s). Thus, one may study the highly nonlocal fractional Laplacian op-

erator by considering the local problem (6). While (6) is posed in one higher dimension and

exhibits either a singular or degenerate nature depending on the value of s, it is amenable to clas-

sical analytical and numerical techniques. Recent work by Chen, Lei, and Wei has demonstrated

that similar extension problems may be derived for higher fractional powers of the Laplacian,
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though these extensions have not yet been employed in approximating solutions to higher-order

problems [34].

In this study, we investigate the fractional powers of the discrete Laplacian for exponents

s ∈ (0, 2). While numerous definitions of such an operator exist (for instance, see [35]), we begin

by introducing existing results for s ∈ (0, 1) (see [15, 36]) and then expand them to the case

where s ∈ (0, 2). Let u : Z → R with un := u(n), n ∈ Z. We then define the discrete Laplacian

on Z as

∆un := un+1 − 2un + un−1. (7)

For the discrete Laplacian, an extension problem similar to (6) can be generated and solved

uniquely, with its bounded solution given by

v(x, t) =
1

Γ(s)

∫ ∞

0
zs−1e−t2/4ze−z∆(−∆)su(x) dz, (8)

where e−z∆ is the standard semigroup generated by the discrete Laplacian on Z [36–39]. Explicit

calculation then yields, via (5), the following representation

(−∆)su(x) =
1

Γ(−s)

∫ ∞

0
z−s−1

(
e−z∆ − I

)
u(x) dz, (9)

where I is the identity operator. The expression (9) is often used as the definition of fractional

powers of the Laplacian [15, 36]. It is also important to note that the formulations outlined above

result in operators which are not discretizations of the continuous fractional Laplace operator (for

instance, see [40–42]). From (9) and standard results regarding the discrete Laplacian semigroup

(see [43] and references therein), the following theorem has been developed [15].

Theorem 1 [15]. For s ∈ (0, 1), we define

`s :=

u : Z→ R : ‖u‖`s :=
∑
n∈Z

|un|

(1 + |n|)1+2s < ∞

 .
i. For u ∈ `s we have

(−∆)sun =
∑

m∈Z; m,n

(un − um) Ks(n − m), (10)

where the discrete kernel is given by

Ks(m) :=


4sΓ(1/2 + s)
√
π|Γ(−s)|

·
Γ(|m| − s)

Γ(|m| + 1 + s)
, m ∈ Z\{0},

0, m = 0.
(11)
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ii. For s ∈ (0, 1) there exists constants 0 < cs ≤ Cs such that, for any m ∈ Z\{0},

cs

|m|1+2s ≤ Ks(m) ≤
Cs

|m|1+2s . (12)

iii. If u ∈ `0, then lim
s→0+

(−∆)sun = un.

iv. If u is bounded, then lim
s→1−

(−∆)sun = −∆un.

From Theorem 1, we are able to discern many useful properties which are important for

both the theoretical analysis and computational procedures employed in problems involving the

fractional Laplacian. In the ensuing experiments, our calculations will be based on (10) and its

various approximations, the details of which are contained in Section 4.

It now remains to discuss the case when s ∈ (1, 2). In [44] it was shown that for s > 1, we

have

(−∆)sun = (−∆)s−1(−∆)un. (13)

Using (13), we have the following theorem for s ∈ (1, 2). The proof for Theorem 2, parts ii.-iv.,

are similar to those in [36] but we include them for completeness.

Theorem 2. For s ∈ (1, 2), we define

`s :=

u : Z→ R : ‖u‖`s :=
∑
n∈Z

|un|

(1 + |n|)1+2s < ∞

 .
i. For u ∈ `s we have (−∆)sun is given by (10), where the discrete kernel is also given by

(11).

ii. For s ∈ (1, 2) there exists constants 0 < cs ≤ Cs such that, for any m ∈ Z\{0}, the discrete

kernel Ks satisfies (12).

iii. If u is bounded, then lim
s→1+

(−∆)sun = −∆un.

iv. If u is bounded, then lim
s→2−

(−∆)sun = (−∆)2un, where (−∆)2 is the classical bi-harmonic

operator.
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Proof. i. Let s ∈ (1, 2) and define vn := (−∆)un. Then, for n ∈ Z, we have

(−∆)sun = (−∆)s−1(−∆)un

= (−∆)s−1vn

=
∑

m∈Z; m,n

(vn − vm)Ks−1(n − m)

= vn

∑
m∈Z; m,n

Ks−1(n − m) −
∑

m∈Z; m,n

vmKs−1(n − m)

= As−1vn −
∑

m∈Z; m,n

vmKs−1(n − m), (14)

where

As :=
4sΓ(1/2 + s)
√
πΓ(1 + s)

. (15)

Employing the definition of vn in (14) yields

(−∆)sun = As−1[2un − un−1 − un+1] −
∑

m∈Z; m,n

[2um − um−1 − um+1]Ks−1(n − m)

= As−1[2un − un−1 − un+1] − [2un−1 − un−2 − un]Ks−1(1)

− [2un+1 − un − un+2]Ks−1(−1) −
∑

m∈Z; m,n,n±1

[2um − um−1 − um+1]Ks−1(n − m)

= [2As−1 + 2Ks−1(1)]un −
∑

m∈Z; m,0

un−m[2Ks−1(m) − Ks−1(m − 1) − Ks−1(m + 1)]

= γ(1)
s−1un −

∑
m∈Z; m,0

un−mγ
(2)
s−1(m), (16)

where

γ(1)
s−1 := 2As−1 + 2Ks−1(1) and γ(2)

s−1(m) := 2Ks−1(m) − Ks−1(m − 1) − Ks−1(m + 1)

and we have used the fact that Ks−1(−1) = Ks−1(1). In order to obtain the desired result, we must

show that γ(1)
s−1 = As and γ(2)

s−1(m) = Ks(m), m ∈ Z\{0}. We proceed by direct calculation. First,

we note that

Ks−1(1) =
4s−1Γ(s − 1/2)Γ(2 − s)
√
π|Γ(1 − s)|Γ(1 + s)

=
4s−1Γ(s − 1/2)(1 − s)Γ(1 − s)

√
π|Γ(1 − s)|sΓ(s)

=
4s−1Γ(s − 1/2)(s − 1)

√
πsΓ(s)

,
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since s ∈ (1, 2), which yields

γ(1)
s−1 = 2As−1 + 2Ks−1(1)

= 2
4s−1Γ(s − 1/2)
√
πΓ(s)

+ 2
[
4s−1Γ(s − 1/2)(s − 1)

√
πsΓ(s)

]
=

2 · 4s−1Γ(s − 1/2)
√
πΓ(s)

[
1 +

s − 1
s

]
=

4sΓ(s + 1/2)
√
πΓ(1 + s)

= As. (17)

In order to prove the remaining equality, we note that we can rewrite (11) as

Ks(m) =
(−1)m+1Γ(2s + 1)

Γ(1 + s + m)Γ(1 + s − m)
, m , 0, (18)

by employing the duplication and Euler reflection formula to each Gamma function, as was

shown in [15]. Thus, we have

γ(2)
s−1(m) = 2Ks−1(m) − Ks−1(m − 1) − Ks−1(m + 1)

= (−1)mΓ(2s − 1)
[

−2
Γ(s + m)Γ(s − m)

−
s + m − 1

Γ(s + m)Γ(s − m)(s − m)
−

s − m − 1
(s + m)Γ(s + m)Γ(s − m)

]
=

(−1)mΓ(2s − 1)
Γ(s + m)Γ(s − m)

[
−2 −

s + m − 1
s − m

−
s − m − 1

s + m

]
=

(−1)mΓ(2s − 1)
Γ(s + m + 1)Γ(s + m − 1)

[
−4s2 + 2s

]
=

(−1)m+1Γ(2s + 1)
Γ(1 + s + m)Γ(1 + s − m)

= Ks(m), (19)

by (18). Combining (17) with (19) yields the desired result.

ii. This result follows from the the application of Lemma 9.2, from [36], to (11).

iii. Following the ideas from i., we can write

(−∆)sun = P1 + P2,

where

P1 := (−un−1 + 2un − un+1)Ks(1) and P2 :=
∑

m∈Z; m,0,1

(un − un−m)Ks(m).
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We obtain the desired result if we show Ks(1)→ 1 and P2 → 0, as s→ 1+. To that end, we have

lim
s→1+

Ks(1) = lim
s→1+

4sΓ(1/2 + s)
√
π|Γ(−s)|

·
Γ(1 − s)
Γ(2 + s)

=
4Γ(3/2)
√
πΓ(3)

= 1.

Now, by the assumption that u is bounded—that is, ‖u‖`∞ < ∞, where ‖ · ‖`∞ is the norm on

`∞(Z)—we have

‖P2‖`∞ ≤ 2‖u‖`∞
∑

m∈Z; m,0,1

Ks(m) = 2‖u‖`∞
[
4sΓ(1/2 + s)
√
πΓ(1 + s)

− 1
]
.

Since lims→1+ 4sπ−1/2Γ(1/2 + s)/Γ(1 + s) = 1, we have

‖P2‖`∞ → 0, as s→ 1+,

which is the desired result.

iv. We begin by recalling that the discrete biharmonic operator is given by

(−∆)2un = un−2 − 4un−1 + 6un − 4un+1 + un+2. (20)

Just as before, by symmetry we can write

(−∆)sun = S 1 + S 2 + S 3,

where

S 1 := (−un−1 + 2un − un+1)Ks(1), S 2 := (−un−2 + 2un − un+2)Ks(2),

and

S 3 :=
∑

m∈Z; m,0,1,2

(un − un−m)Ks(m).

Similar to before, we show that Ks(1)→ 4, Ks(2)→ −1, and S 3 → 0, as s→ 2−, where

lim
s→2−

Ks(1) = lim
s→2−

4sΓ(1/2 + s)
√
π|Γ(−s)|

·
Γ(1 − s)
Γ(2 + s)

=
32Γ(5/2)
√
πΓ(4)

= 4

and

lim
s→2−

Ks(2) = lim
s→2−

4sΓ(1/2 + s)
√
π|Γ(−s)|

·
Γ(2 − s)
Γ(3 + s)

=
−16Γ(5/2)
√
πΓ(5)

= −1.

Once again, by the assumption that u is bounded, we have

‖S 3‖`∞ ≤ 2‖u‖`∞
∑

m∈Z; m,0,1,2

Ks(m) = 2‖u‖`∞
[
4sΓ(1/2 + s)
√
πΓ(1 + s)

− 4 + 1
]
.
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Since lims→2− 4sπ−1/2Γ(1/2 + s)/Γ(1 + s) = 3, we have

‖S 3‖`∞ → 0, as s→ 2−,

which is the desired result.

Thus, we may use (10) and (11) for numerical approximations of the random discrete frac-

tional Schrödinger operator given in (2). Finally, in order to provide the readers with a more

concrete understanding of the discrete weights studied in this section, we include a plot of Ks(m),

for various values of s ∈ (0, 2). Of particular interest is the smooth transition between the weight

functions in the regimes s ∈ (0, 1) and s ∈ (1, 2), while there is an abrupt qualitative shift at

s = 1. Moreover, one is able to clearly see the rapid decay of the values of Ks(m), as m→ ±∞.
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Figure 1: Plots of the discrete weight functions for various s−values. [LEFT] A plot of the discrete weights correspond-

ing to the superdiffusive parameter regime. [RIGHT] A plot of the discrete weights corresponding to the subdiffusive

parameter regime. The monotonic transition within each parameter regime is evident, with a clear qualitative transition

occurring as s→ 1+.

2.2. Physical Interpretation

A physical interpretation of the discrete fractional Laplacian has been provided in [36]. We

include that description for completeness and expand it to include our newly developed model.

Let u be a discrete harmonic function on Z, that is, −∆u = 0. Then u also satisfies the following

discrete mean value property:

un =
1
2

un−1 +
1
2

un+1. (21)

This classical result provides the physical intuition that is well understood for the classical dis-

crete Laplacian in one-dimension. That is, by (21), we see that a discrete harmonic function

represents a physical situation in which a particle will jump to either of the two adjacent nodes
11



with equal probability, namely, one-half. This intuition may be generalized to the current situa-

tion to provide a physical interpretation of the fractional Laplacian.

Assume that u is a fractional discrete harmonic function, that is, (−∆)su = 0. Then by (10)

we have that u satisfies the following discrete fractional mean value property:

un =
∑

m∈Z,m,n

umPs(n − m), (22)

where

Ps(m) :=
1
As

Ks(m), (23)

As :=
∑

m∈Z Ks(m), and Ps(0) = 0. In this representation, Ps(m) is a probability distribution

on Z, allowing one to interpret the fractional case in a similar fashion to the classical result

given by (21). That is, by (22), it follows that a fractional discrete harmonic function describes

a particle which may jump to any point in Z and the probability that the particle jumps from

point n to point m is given by Ps(n − m). If s ∈ (0, 1), Theorem 1 implies that the probability of

jumping from point n to point m is proportional to |n − m|−(1+2s). In this situation, as s→ 1−, the

probability of jumping from n to an adjacent point tends to one, while the probability of jumping

to a nonadjacent point tends to zero. Further, as s → 0+, the probability of jumping from the

point n to any point in Z tends to zero, resulting in no jumps, as a value of s = 0 represents no

diffusion.

Theorem 2 also allows for a physical interpretation to hold for s ∈ (1, 2), although the con-

struction of this interpretation requires more care. In the case that s ∈ (1, 2), we may write

s = 1 + s̃, where s̃ ∈ (0, 1). We can then decompose our operator as

(−∆)sun = (−∆)s̃(−∆)un (24)

and perform the computation in stages. First, we apply the standard Laplace operator to un to

obtain

vn := (−∆)un, (25)

whose interpretation is exactly analagous to the classical setting: that is, a particle located at

position n will jump to either n − 1 or n + 1 with equal probability. We then apply the nonlocal

operator to vn; that is, we compute (−∆)s̃vn. This action has the same probabilistic interpretation

from the previous paragraph (see (22) and (23)). However, when the two actions are composed

together, there is the possibility of the particle moving back to its original location (thus reducing
12



the probability that it will land at n − 1 or n + 1) which is demonstrated by the possibility of

negative weights (see Figure 1).

It is important to note that the negative weights does not translate into a negative probabilities.

Instead, the negative weights assigned to the nearest neighbors should be interpreted as nonzero

probabilities of the particle staying at its original location. Moreover, when s ∈ (1, 2), it is the

case that these negative coefficients will only occur at the “nearest neighbor” sites. As before,

when s → 1+, the probability of jumping from n to an adjacent point tends to one, while the

probability of jumping to a nonadjacent point tends to zero. Now, as s → 2−, we have that the

probabilistic interpretation converges to exactly that of the discrete biharmonic operator [45, 46].

2.3. Nonlinear Mean Squared Displacement

We now provide a more explicit description of the relationship between the fractional power,

s, in Hs,ε , and the nonlinear mean squared displacement, β, mentioned in the Introduction. In

order to demonstrate this relationship, we consider the following non-local Cauchy problem vt(x, t) = −(−∆)sv(x, t), x ∈ Z, t > 0,

v(x, 0) = ϕ(x), x ∈ Z.
(26)

It was shown in [47] that the solution to (26), for appropriate bounded initial values, is given by

v(x, t) =
∑
k∈Z

Gs(x − k, t)ϕ(k), (27)

where

Gs(x, t) :=
1

2π

∫ π

−π

et(4 sin2(z/2))s
e−ixz dz, (28)

when s ∈ (0, 1). It is relatively straightforward to generalize this result to obtain a representation

for s ∈ (0, 2).

Theorem 3. The solution to (26) is given by (27) when s ∈ (1, 2).

We omit the proof of Theorem 3, for brevity, but note that the approach is similar to our

methods employed in the proof of Theorem 2, combined with the methods employed in [47].

Theorem 3 allows for the representation of all parameter regimes of interest via the solution

form (27). It is then clear that Gs(x, t) acts as a discrete Green’s function for the problem (26).

With the above representation in hand, one may calculate the mean squared displacement to be

〈(x − x0)2〉 ∼ t1/s, (29)
13



where s ∈ (0, 2). We want to make a few notes regarding the expression in (29). We have omitted

the calculations required to obtain (29) as they are similar to that of the classical case, except one

must employ Mittag-Leffler and Fox H-functions. Note that the contributions from the random

coefficients in (2) do not contribute to the mean squared displacement calculated by (29) due to

the fact that we compute an expected value as part of the calculation. Also note that (29) is an

asymptotic relationship at t → ∞.Using this relation, we see that the mean squared displacement

scales inversely with the fractional power of the Laplace operator, and that we obtain the classical

linear mean squared displacement as s→ 1.

3. Spectral Approach to Transport in Disordered Systems

We have successfully employed the spectral approach in numerous settings and have demon-

strated it to be quite effective in the study of transport behavior – see, for instance, [14, 19–22].

In this section we provide a brief overview of the spectral method employed in [14], as it applies

to the discrete fractional Schrödinger operator.

On `2(Z) – the space of two-sided square-summable sequences – we consider the random

discrete fractional Schrödinger operator defined in (2). That is, we consider

Hs,ε := (−∆)s +
∑
i∈Z

εi 〈 · , δi〉δi

where 〈·, ·〉 denotes the `2(Z) inner product, δi is the standard basis of Z, and εi are random

variables taken to be i.i.d. according to the uniform distribution on [−c/2, c/2]. We are most

interested in the change in transport behavior as we vary the diffusion parameter s.

A vector ϕ is cyclic for a (bounded) operator T on a separable Hilbert space X, if the forward

orbit of ϕ under T has dense linear span (i.e., X = clos span{T nϕ : n ∈ N ∪ {0}}). The central

result (see Corollary 3.2 of [14]) behind the spectral method can be formulated as follows:

If we can find a (non-trivial) vector that is not cyclic for (Hs,ε) with positive proba-

bility, then almost surely there are de-localized states.

As a side note, we mention that the existence of de-localized states indicates transport by the

RAGE theorem, see e.g., Section 1.2 of [48].

The non-cyclicity of a vector follows if its forward orbit stays away from a particular di-

rection. In other words, if we can find a vector v that remains at a positive distance from
14



span{Hk
s,εϕ : k ∈ N, k ≤ n} as n → ∞, then the vector is non-cyclic. With some linear alge-

bra (see Proposition 3.1 of [14]) this distance can be expressed explicitly by

Dn
s,ε :=

√√
1 −

n∑
k=0

〈v,mk〉
2

〈mk,mk〉
, (30)

where {mk} is the orthogonal sequence of `2(Z) vectors obtained from applying the Gram–

Schmidt algorithm to {ϕ,Hs,εϕ,H2
s,εϕ, . . .}.

In the current study, we choose v to be a linear combination of basis vectors, in order to

account for the nonlocality of the action of Hs,ε . However, it is worth noting that spectral theory

allows for any v ∈ `2(Z) to be an appropriate choice. With this choice, we investigate the

dependence of (de)localization on the diffusion parameter s. To emphasize this point, we will

write Dn
s,ε . Summarizing the theory, our numerical investigations employ the following tool:

lim
n→∞

Dn
s,ε > 0 ⇒ de-localization.

We also note that the operator Hs,ε is self-adjoint in `2(Z). This follows immediately from

the spectral theorem and the fact that the discrete Laplacian in self-adjoint in `2(Z). This fact

allows us to apply the efficient computational techniques outlined in [14]. We omit these details

for brevity, but use them when performing the numerical experiments in the ensuing section.

4. Numerical Experiments

This section outlines the numerical method and provides numerical simulations which ver-

ify the proposed approach. In Section 4.1, the formulation of the fractional Laplacian given in

Theorems 1 and 2 is used to justify the numerical method. Section 4.2 then provides relevant

simulation results for the method obtained for various parameter choices. Finally, an orthogo-

nality check to confirm that the employed forward Gram–Schmidt algorithm creates orthogonal

vectors in this setting is outlined and performed in Section 4.3.

It is worth noting that the experiments presented do not provide rigorous justification or proof

for the occurrence of localized or extended states. Rather, they provide a qualitative analysis

of the transport behavior of the modeled systems as the fractional power s is varied. A more

detailed study is planned in forthcoming work, with initial efforts being focused on an expanded

numerical study with accompanying physical and mathematical interpretations, including the

15



scope and limitations of the new technique. Moreover, we will focus on applying our results to

specific physical problems.

4.1. Motivation of Computational Method

As outlined in Section 3.1, the spectral approach employed in this study requires the exam-

ination of the forward orbit of arbitrarily chosen initial vectors under the action of the random

discrete fractional Schrödinger operator. Thus, our computational method must accurately and

efficiently apply the operator given by (2). The case s = 1 is relatively straightforward to imple-

ment due to the definition of the discrete Laplacian given in (7). This definition will be used as a

special case of our current approach and has been considered in more detail in [14, 21, 22].

We consider the one-dimensional lattice Z and an arbitrary function u : Z → R. Then by

(10), we have

(−∆)sun =
∑

m∈Z; m,n

(un − um)Ks(n − m),

for s ∈ (0, 2) and the kernel Ks given by (11). Due to the symmetry of the kernel, we may rewrite

the above and obtain

(−∆)sun =
∑
m∈N

(2un − un−m − un+m)Ks(m) (31)

for s ∈ (0, 2). Thus, for some 1 � M ∈ N, we have

(−∆)sun =

M∑
m=1

(2un − un−m − un+m)Ks(m) + RM(un), (32)

where

RM(un) :=
∞∑

m=M+1

(2un − un−m − un+m)Ks(m). (33)

For simplicity, our computational method will disregard the remainder term, RM(un). A simi-

lar truncation was employed for the simulations in [15, 36], as well. The remainder is guaranteed
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to be bounded and well-controlled by our choice of M due to (12). In fact, we have

|RM(un)| ≤ 4 max
m>M
|um|

∫ ∞

M
Ks(x) dx

= Bs

∫ ∞

M

Γ(x − s)
Γ(x + 1 + s)

dx

= B̃s

∫ ∞

M

∫ ∞

0
e−(x−s)y(1 − e−y)2s dy dx

≤ B̃s

∫ ∞

M

∫ ∞

0
e−(x−s)y dy dx

=
B̃s

(M − s)2 ,

where

Bs := 4 max
m>M
|um| ·

4sΓ(1/2 + s)
√
π|Γ(−s)|

and B̃s :=
Bs

Γ(1 + 2s)
,

and we have employed the property

Γ(x − s)
Γ(x + 1 + s)

=
1

Γ(1 + 2s)

∫ ∞

0
e−(x−s)y(1 − e−y)2s dy, (34)

which is valid for x − s > 0 [49]. Moreover, we have that

max
s∈(0,2)

B̃s ≈ 1.27324 ×max
m>M
|um|,

occurring when s = 1/2, 3/2, which yields

RM(um) ∼
1

M2 . (35)

Thus, dropping the term RM(un) in (32) appears reasonable. By doing so, we obtain

Hs,εun ≈

M∑
m=1

(2un − un−m − un+m)Ks(m) + εnun, (36)

where the εn are i.i.d. according to the uniform distribution on [−c/2, c/2], for some fixed c > 0.

The approximation given by (36) is employed in the following computations. Since the goal

of the current project is to explore the behavior of (2), we leave detailed error and convergence

analysis of our approximation given by (36) for future work.

4.2. Numerical Simulations in a One-Dimensional Disordered System

Consider the discrete random fractional Schrödinger operator given by (2) with indepen-

dently and identically distributed random variables εi. The spectral approach outlined in Section
17



3 dictates that if we can find a disorder c > 0 for which

Ds,ε := lim
n→∞

Dn
s,ε > 0, (37)

with nonzero probability, then (2) will exhibit de-localized energy states. We will now explain

how one can verify de-localization numerically.

In the numerical experiments, we initially fix c and fix one computer-generated realiza-

tion of the random variables εi. In our case, these random variables are uniformly distributed

in [−c/2, c/2]. We then calculate the values of Dn
s,ε for n ∈ {0, 1, 2, ...} and each s−value of inter-

est. Since Dn
s,ε is a positive, monotonically decreasing sequence, one can construct approximate

lower bounds (with respect to the probability distribution) of the limit Ds,ε . This is exactly the

approach taken in [14, 19–21, 23]. In these works, it is noted that the distance values may de-

cay logarithmically, so the authors performed a careful re-scaling of the horizontal axis by an

exponent a < 0. A lower bound for all possible y−intercepts of any linear approximation of

the re-scaled distance values is then computed, and serves as a lower bound for D1,ε . A positive

lower bound implies the existence of extended states, with the results being quite strong due to

the overestimation of the likely lower bound. In fact, it was shown there that de-localized states

exist for nontrivial disorder values in various two-dimensional geometries. This being the first

exploration of its kind, our primary goal is to demonstrate the qualitative difference between the

anomalous and classical diffusion cases. To aid in the interpretation of the qualitative differences

in the plots, we provide the following criterion:

Numerical Interpretation Criterion: For a fixed realizations of εi, a fixed vector

v, and the integer n sufficiently large, if Dn
s2,ε

> Dn
s1,ε

and Hs1,ε exhibits de-localized

states, then the Hs2,ε exhibits de-localized states. The converse of this statement

holds, as well.

Since it is known that all energy states for (2) will be localized when s = 1, it follows that

D1,ε = 0, for all choices of the vector v. This important result provides a baseline, for various

non-zero c−values, to be combined with the aforementioned Numerical Interpretation Criterion.

Any distance plots decaying more slowly than those for s = 1 can be interpreted as exhibiting

enhanced transport behavior, as compared to the known localized behavior of s = 1. Similarly,

any distance plot decaying more quickly than those for s = 1 can be interpreted as exhibiting

inhibited transport behavior, as compared to the known localized behavior of s = 1. However,
18



it is important to note that such occurrences do not guarantee the existence (or lack thereof) of

de-localized states.

As an example, we compare the distance plots for s = 0.9, 1.0, 1.1, for several different disor-

der values. The values s = 0.9 and s = 1.1 are arbitrarily chosen superdiffusive and subdiffusive

parameters, respectively, while s = 1 corresponds to the classical case. In Figure 2, we have

fixed M = 300 (as in (36)) and

v =

M−1∑
i=0

[
(−1)iδ1+i + (−1)i+1δ−1−i

]
(38)

(as in (30)), for each simulation. More details regarding the choice of v will be explored in future

work. However, we note that this choice of v is motivated by the need to consider the nonlocal

effects of the underlying operator. The parameter regime for c has been purposely chosen small,

due to the expected dominance of localization behavior in one-dimensional systems. Each plot

is the result of averaging ten simulations, in an effort to reduce the spurious effects of certain

realizations of the random perturbations.
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Figure 2: Plots of the function Dn
s,ε for various parameter regimes (with n being the number of iterations). Each plot

considers the cases s = 0.9, 1, 1.1. The c−values considered are (a) c = 0.0001, (b) c = 0.001, (c) c = 0.005, and (d)

c = 0.01. The graphs of Dn
s,ε decay more quickly as c increases, with the graph corresponding to s = 0.9 decaying more

slowly than the graphs of s = 1 and s = 1.1, in each case.

From Figure 2, it is clear that the superdiffusive case, s = 0.9, results in a distance plot

that decays more slowly, with respect to the number of time steps, than the other two cases in

each of the presented plots. We see that the subdiffusive graphs decay more quickly than the

classical case for the smallest values of disorder, c, but then does so more slowly for c ≥ 0.005.

We remark that the first two plots are the expected results, while these latter two plots could

be due to random variations of the underlying probability realizations. This slower decay as

c increases is not surprising, as the subdiffusive case represents nonlocal interactions and the

s = 1 case represents local (nearest neighbor) interactions. The nonlocality of the operator when

s = 0.9 contributes to this slower decay due to the nonzero probability of a long-range jump.

The complicated nature of these nonlocal, subdiffusive interactions were outlined in Section 2.2.

Regardless of the c−value, we see that both the subdiffusive and classical cases have a very steep

initial decent, while the superdiffusive case descends more slowly.
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These plots demonstrate that the transport behavior, especially for small disorder, can be

quite different. It is interesting to point out the notably slower decay of the superdiffusive case,

as compared to the classical case, which is known to localize [48]. These observations raise the

question as to whether de-localized energy states can be observed when s ∈ (0, 1). These results

will be explored both computationally and theoretically in more detail in the future.

These behaviors are still preserved for a different choice of v, as demonstrated in Figure 3.

We still consider vectors of the form (38), however, we consider the two distinct vectors: one

corresponding to M = 300 and one corresponding to M = 400. As before, there is an expectation

of slight differences in the results due to fluctuations in the realizations of the random parameters.

However, we still see a strong agreement in qualitative behavior. Figures 3a and 3b represent

results for two different c−values, but the same fixed vector v with M = 300. Figures 3c and 3d

show results for the same c−values as Figures 3a and 3b, but compute the distance with a vector v

with M = 400. We see that even with different choices of the vector v, the plots agree reasonably

well.
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Figure 3: A comparison of the effects that different choices of the vector v have on the computation of the distance values

Dn
s,ε . [LEFT] We consider the plots for (a) M = 300 and c = 0.0005, (b) M = 300 and c = 0.001, (c) M = 400 and

c = 0.0005, and (d) M = 400 and c = 0.001. While there are slight difference in the results, the plots are qualitatively the

same.

4.3. Orthogonality Check

It is well-known that the forward Gram-Schmidt procedure loses orthogonality in many cal-

culations, which can cast doubt on our proposed distance calculations. In order to demonstrate

the accuracy of our algorithm, we stored the entire Krylov subspace generated on a smaller prob-

lem instance (n = 150) and stored these as columns of a matrix K. Then, we computed the value

Q = ‖KT K− I‖∞, which deviates from zero in proportion to the loss of orthogonality. The values

of Q resulting from various c−values employed in our algorithm are presented in Table 1, for

two different choices of the truncation parameter, M, and s−values representing superdiffusion,

classical diffusion, and subdiffusion.

Two rows of results are shown for each s−value. The first row demonstrates the Q−values

for the parameter regimes employed in most of our computational experiments, while the second

demonstrates the orthogonality preservation for larger disorders. The results in both rows show
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that the forward Gram-Schmidt vectors are nearly orthogonal. The first row for each s−value

shows very little change within the c−values considered, while the orthogonality seems to de-

crease as c grows.
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M s

100

0.9

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 5.94e-13 7.26e-13 1.09e-12 1.27e-12 1.49e-12 1.16e-12

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 7.27e-13 9.54e-13 2.28e-11 2.89e-10 1.04e-10 2.37e-08

1

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 4.53e-14 8.06e-13 7.14e-13 7.96e-13 5.75e-13 6.33e-13

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 1.57e-12 4.22e-11 7.78e-09 5.69e-09 1.61e-09 5.27e-08

1.1

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 7.26e-13 9.09e-13 2.03e-12 1.93e-12 7.77e-13 7.48e-13

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 1.44e-13 8.29e-12 4.18e-10 1.72e-10 5.16e-08 1.50e-08

500

0.9

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 5.94e-13 6.39e-13 6.73e-13 3.66e-13 8.65e-13 7.59e-13

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 3.86e-13 4.60e-12 4.06e-12 3.73e-12 5.31e-11 1.21e-10

1

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 4.53e-14 8.06e-13 7.14e-13 7.96e-13 5.75e-13 6.33e-13

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 1.57e-12 4.22e-11 7.78e-09 5.69e-09 1.61e-09 5.27e-08

1.1

c 0.0 0.0001 0.0005 0.001 0.005 0.01

Q 1.85e-12 5.28e-12 5.34e-12 4.07e-12 3.19e-12 7.90e-12

c 0.5 1.0 1.5 2.0 2.5 3.0

Q 3.61e-12 1.86e-10 2.24e-10 3.76e-09 9.38e-10 7.67e-08

Table 1: Presentation of the loss of orthogonality due to the forward Gram-Schmidt procedure via the ∞−norm of the

matrix of orthogonalized vectors, when n = 150. We present multiple values of each of the parameters employed in the

computational algorithm.
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5. Conclusions and Future Work

In this work, we presented novel results regarding the properties of the discrete fractional

Laplacian, (−∆)s, s ∈ (0, 2), and explored the transport behavior of a newly defined fractional

Schödinger operator using a spectral technique. We introduced known results for (−∆)s, s ∈

(0, 1], and developed the analogous results for the subdiffusive operator, s ∈ (1, 2). In particular,

we derived an explicit representation for the action of the subdiffusive discrete fractional Lapla-

cian and provided convergence results with respect to the parameter s. Physical interpretations

of this nonlocal operator were provided via probabilistic methods, and by relating the param-

eter s to the asymptotic mean squared displacement in the anomalous diffusion regime. These

initial discussions provide the theoretical framework to justify the applicability of the proposed

operator to both quantum mechanical and classical transport problems in the physical world.

The primary contribution of this work is proposing a numerical approach combining the ex-

isting spectral method (introduced in [14]) with our newly defined discrete fractional Schrödinger

operator given in (2). Preliminary results from our simulations demonstrate a clear qualitative

difference in the transport behavior of a one-dimensional disordered system as the fraction is var-

ied. In particular, for s > 1 (s < 1) the corresponding transport behavior is more (less) localized

than the classical case given by s = 1. For the classical case, s = 1, it is well known that all trans-

port under (2) is localized for any nonzero disorder. Using this result as a baseline, our presented

results suggest that non-localized transport can exist for systems modeled by superdiffusion. The

numerical and physical conditions needed for such a phenomenon to occur will be characterized

in our next article. The forthcoming work will provide a detailed study on the transport behavior

of the one-dimensional system as a function of the various simulation and operator parameters,

which determine the disorder concentration and nature of the nonlocal interactions. The observed

results will then be used to identify the applicability of the proposed numerical approach to the

study of transport phenomena in various physical systems. Limitations of the calculation will

also be discussed.

Our other future work will pursue several different paths, with the ultimate goal of further

developing a powerful computational tool for the study of transport behavior in complex disor-

dered media. To extend the findings of the present work, we will provide a detailed discussion on

physical interpretation and proper scaling of the proposed technique. Such considerations will

allow for the investigation of open questions regarding the parameters needed for de-localized
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energy states to exist in complex media, such as strongly coupled systems, multi-component

flows, and plasmas. In these systems, the existence of extended states in the anomalous diffu-

sion regime will be discussed as a mechanism for the onset of various dynamical phenomena,

including turbulence, streaming instabilities, and global vorticity. Finally, we plan to extend this

work to higher-dimensional settings. This direction requires both theoretical and computational

endeavors that can greatly impact the scientific community.
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