
ABSTRACT

Bayesian Approaches to Parameter Estimation and Variable Selection for
Misclassified Binary Data

Daniel Beavers, Ph.D.

Chairperson: James D. Stamey, Ph.D.

Binary misclassification is a common occurrence in statistical studies that,

when ignored, induces bias in parameter estimates. The development of statistical

methods to adjust for misclassification is necessary to allow for consistent estimation

of parameters. In this work we develop a Bayesian framework for adjusting statisti-

cal models when fallible data collection methods produce misclassification of binary

observations. In Chapter 2, we develop an approach for Bayesian variable selection

for logistic regression models in which there exists a misclassified binary covariate.

In this case, we require a subsample of gold standard validation data to estimate

the sensitivity and specificity of the fallible classifier. In Chapter 3, we propose a

Bayesian approach for the estimation of population prevalence of a biomarker in

repeated diagnostic testing studies. In such situations, it is necessary to account for

interindividual variability which we achieve through both the inclusion of random

effects within logistic regression models and Bayesian hierarchical modeling. Our

examples focus on applications for both reliability studies and biostatistical studies.

Finally, we develop an approach to attempt to detect conditional dependence param-

eters between two fallible diagnostic tests for a binary logistic regression covariate

in the absence of a gold standard test in Chapter 4. We compare the performance

of the proposed procedure to previously published means assessing model fit.
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CHAPTER ONE

Introduction

1.1 Misclassification

Misclassification can be considered a special case of measurement error specif-

ically for the situation when measurement is the categorical classification of items.

Its prevalence within nearly every field of statistics is a by-product of life in an im-

perfect world, and statistical inference that ignores misclassification introduces bias

into the estimation and decision-making process.

The general approach to estimation in the presence of misclassified binary

data can be simplified into the following steps. First, we must assume that the true

classification status for an observation exists, which we may denote with the random

variable T where individuals are classified to group T = 1 with probability τ and

to group T = 0 with probability (1 − τ). Most times we will assume that direct

observation of T is impossible. There are notable exceptions where the ability to

observe T does exist, although the means by which it is obtained may prohibitively

invasive or expensive. In these situations cheaper and easier alternatives are desirable

to use in conjunction with or replacement of T . Next, we must assume that the

measurement process or processes observe scalar or vector X, which we assume has

some relationship to the true exposure status T . In the case of binary scalar X, we

define the sensitivity as S = pr(X = 1|T = 1), and the specificity as C = pr(X =

0|T = 0). Conversely, we may choose to characterize the relationship between X

and T in terms of misclassification rates, where we define the false negative rate

θ− = pr(X = 0|T = 1) and the false positive rate θ+ = pr(X = 1|T = 0). However,

we note that S = 1− θ− and C = 1− θ+, and thus either approach can lead to the

proper adjustment of the resulting estimates.
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There are multiple ways to model the relationship between T and X, including

• When a gold standard classifier for T exists but its use is excessively ex-

pensive or may introduce unnecessary risks, it may be desirable to use a

double-sampling protocol. In this case, all individuals are classified using

one fallible test protocol, summarized by X, and a smaller subsample of

these individuals are classified a second time using the gold standard test T .

Using the relationship of X and T from the subsample, we can determine the

misclassification rates of X and adjust the complete data set for individuals

from the larger sample who have X but no T . This approach will be further

explored in Chapter 2.

• When T is unobservable, a multiple test protocol may be utilized in which

vector X contains multiple fallible classifications of an individual. One of

the most common and efficient means is the dual test protocol, in which X1

is measured with sensitivity and specificity S1 and C1, respectively, and X2

likewise has respective sensitivity and specificity S2 and C2. The statistical

issues regarding this form of adjustment for identifiability primarily concern

parameter identifiability and possible conditional dependence between the

two diagnostic tests. These issues are discussed in Chapter 4.

• When T is unobservable, repeated independent binary tests may be per-

formed on an observation. Each test has the same sensitivity and specificity,

and, provided that at least a moderately large number of individuals have at

minimum three repeated tests, we can produce estimates of the sensitivity,

specificity, and prevalence τ . This is the approach taken in Chapter 3.

1.2 Bayesian Estimation

Statistical inference based on “classical” or “frequentist” methods places a

distributional assumption on a random variable or vector represented by Y with
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range Y that is assumed to be governed by fixed parameter vector θ. Because θ

is typically unknown, the goal of inference is to observe some randomly selected

sample y′ = (y1, . . . , yn) through which estimates of θ are empirically derived.

The most utilized approach generally involves maximizing the likelihood function

L(θ|y1, . . . , yn) = f(y1, . . . , yn|θ) where f(·) is the probability density function of Y .

The Bayesian approach to statistical inference differs from the frequentist ap-

proach in the sense that θ is assumed to be a random variable rather than a fixed

quantity. As a random variable, we define θ to have range Θ as well as its own

density function p(θ). We refer to this function as the prior distribution which like

any other density function contains all known information about θ. Inference from a

Bayesian perspective thus combines our prior information of the parameter with the

observed knowledge gained from the likelihood using Bayes’ rule to yield a posterior

distribution

p(θ|y) =
p(θ)f(Y|θ)∫

θ∈Θ

p(θ)f(y|θ)dθ
.

All posterior information on θ is contained within p(θ|y), which may or may not have

a closed form. For a far more thorough and meaningful introduction to Bayesian

inference see Lee (2004), Gelman et al. (2004), and Robert (2001).

The limitations to Bayesian inference historically dealt primarily with the often

complicated and intractable form of the posterior distribution p(θ|y). However, the

advent of Markov Chain Monte Carlo (MCMC) methods have allowed practitioners

of Bayesian inference to obtain numerical representations of the posterior distribu-

tion via computationally intensive tools such as the Gibbs Sampler and Metropolis-

Hastings algorithm. A thorough treatment of MCMC methods can be found in

Robert and Casella (2004).

The Bayesian paradigm for estimation of misclassified binary data simply be-

haves as a missing data problem in which T is unobserved for some or all individuals,

and posterior estimates of T and the related parameter τ can be produced via im-
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putation of the missing observations from a Markov Chain Monte Carlo sampler.

Thus, imputation of T and estimation of τ are a part of the same process. For more

information on this convenient consequence of Bayesian estimation see Carroll et al.

(2006).

1.3 Modeling Probabilities Associated with Binary Outcomes

Modeling data with binary outcomes typically utilizes three link functions to

relate the response probability πi = pr(Yi = 1) to the covariate vector zi:

(1) the logit link:

f(πi|zi) = log

(
πi

1− πi

)
= ziβ.

(2) the probit link:

f(πi|zi) = Φ−1(πi) = ziβ.

where Φ−1(·) is the inverse CDF of the standard normal distribution

(3) the log link:

f(πi|zi) = log(πi) = ziβ.

We will proceed using the logit link function throughout this document due

to its ease of interpretation of model parameters. The estimated value of parameter

βk associated with covariate zk is interpreted as the change in the log-odds of the

response per unit change in zk, where we define the odds as π/(1−π). The interpre-

tation is not quite as straightforward using alternative link functions, and the use

of the logit link is nearly ubiquitous in the public health sciences. More information

on modeling discrete outcomes and the use of logistic regression can be found in

Agresti (2002) Chapters 4 and 5.

1.4 Model Selection from a Bayesian Perspective

In Chapters 2 and 4 we explore the process of variable selection from a Bayesian

perspective. A worthwhile introduction and summary of current methods is found
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in Dellaportas et al. (2002), which provides a suitable background for the methods

discussed in this dissertation. Model selection has been a prominent if not often

poorly defined branch of statistical modeling that attempts to identify the single

model out of a larger set of possible models that satisfies certain optimal properties.

We refer to the process as often poorly defined because of the broad diversity of

optimal properties as well as the subjective definition of the possible models under

consideration.

We briefly introduce variable selection from a Bayesian perspective in a similar

manner to Dellaportas et al. (2002). Suppose that we observe data Y that we assume

was generated by one of M possible models. We represent the (typically finite) set of

possible arrangement of parameters as ΘM such that θm ∈ ΘM where m = 1, . . . ,M .

It is our desire to identify the posterior probability of the model mth model p(m|y)

based on the prior probability of that model p(m) and the likelihood of the model

given the data p(y|m) using Bayes theorem

p(m|y) =
p(m)p(y|m)∑M
i=1 p(m)p(y|m)

. (1.1)

Once we have identified p(m|y) for all m ∈ M we can identify the model that best

meets our optimal properties by simply identifying

max
m∈M

{p(m|y)} = m′.

Assuming model m′ has parameters θm′ , we can then uniquely estimate θm′ .

We note based on the denominator of 1.1 that the posterior probability of the

mth model depends on the other possible models being considered. This leaves open

the possibility that maxm∈M{p(m|y)} = m′ as a consequence of the elements of Θ

rather than as a consequence of model m′ being the data generating model. Thus, it

is important that if we are attempting to recover the data generating model that it is

one of the models under consideration by our approach, which potentially increases

the possible size of ΘM . The size of ΘM is a difficult matter to manage. If we
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are considering including k possible covariates for consideration in the model, then

there are 2k possible unique arrangements of parameters. Our proposed method

in Chapter 2 attempts to identify the highest posterior probability model in the

presence of a moderately large k.

The actual size of M is often limited by the number of covariates observed/avail-

able and practical concerns such as whether to consider all possible arrangements

of interactions of covariates and polynomial expansions. In the broader context of

model selection, the larger question exists whether the basic parametric assumptions

are suitable and whether linear or nonlinear fits are more appropriate. Furthermore,

even if we include the “data generating” model among the set Θ, the ability to detect

a covariate as significantly contributing to the posterior is often a function of the

sample size, regardless of the selection criteria utilized.

1.5 Identifiability

We define model identifiability using Casella and Berger (2002) such that for a

parameter θ and θ′ from the same family of distributions with density/mass function

f(·), if θ 6= θ′, then f(x|θ) 6= f(x|θ′). Identifiability becomes a concern typically

when the number of parameters exceed the available data for their estimation. In

the typical assumption for analysis of variance for j groups, we express the mean of

the ith group θi as

θi = µ + τi,

where µ is the common mean of all groups and τi is the deviation from the common

mean for the ith group. We cannot uniquely estimate µ and τi because we have j

groups and j +1 parameters, requiring the simplifying assumption that
∑j

i=1 τi = 0.

With regard to misclassification, in section 1.1 we mention that we cannot cor-

rect for the effect of misclassification when we only observe X, our fallible classifier.

This occurs because we define the relationship of the true classification status T to
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X as

pr(X = 1|T ) = T × S + (1− T )× (1− C),

where S is our sensitivity and C is the specificity. If we know T we have observed

two random variables to estimate the two unknown probabilities S and C. Without

knowledge of T this further reduces to

pr(X = 1) = ET [pr(X = 1|T )] = τ × S + (1− τ)× (1− C),

which involves three unknown parameters.

Identifiability is as much of a concern to a Bayesian statistician as a frequentist,

although the Bayesian approach has the unique ability to estimate models that lack

identifiability under certain conditions. Specifically, if we have information about a

parameter that we can represent in the prior distribution, we can produce posterior

estimates of model parameters that combine these known and unknown portions.

We confront further identifiability issues in Chapter 4.

The chapters are divided as follows: in Chapter 2 we introduce a Bayesian

variable selection in the presence of a misclassified binary covariate. In Chapter

3 we discuss a Bayesian approach to parameter estimation using pass/fail data in

which we introduce different approaches to estimation of misclassification parame-

ters. Chapter 4 explores possible dependence between misclassification parameters

in a binary dual test protocol in which we investigate the impact of model specifi-

cation in marginally identifiable scenarios. Finally, in Chapter A we include the R

and WinBUGS code for execution of the methods described in the chapters.
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CHAPTER TWO

Bayesian Variable Selection for a Logistic Regression Model with a Misclassified

Binary Covariate

2.1 Introduction

Variable selection is a specific type of model selection in which a parsimo-

nious subset of covariates are identified as significant in the prediction of a response.

Bayesian approaches to variable selection have been a rapidly advancing area of the

statistics literature over the past 15 years. Though numerous approaches have been

developed for variable selection, as of the time of publication, few have dealt with

selecting a parsimonious set of covariates in the presence of misclassified data. We

introduce a general approach to Bayesian variable selection for logistic regression

models when a binary covariate is misclassified.

Model selection methods have a rich history in the classical statistical litera-

ture, with substantial contributions regarding how we relate information to statistical

theory made by Kullback and Leibler (1951), Akaike (1973), and Mallows (1973).

Most of the major gains in the Bayesian literature regarding model and variable se-

lection have occurred since the early 1990s coinciding with the advent of computing

power and subsequent widespread usage of Markov Chain Monte Carlo methods, in-

cluding papers by Carlin and Chib (1995), George and McCulloch (1993), Kuo and

Mallick (1998), Dellaportas et al. (2002), and Gelfand and Ghosh (1998), among

others.

Variable selection simultaneously accomplishes several purposes in statistical

inference. First, variable selection identifies the subset of covariates from a larger

collection that significantly predicts changes or differences in the model outcome,

thereby answering the investigational question of which covariates of a larger set

8



satisfy some optimal parsimonious criteria. In epidemiological literature, model

selection is frequently used to identify which covariates confound the relationship

between some exposure and outcome (Greenland, 1989). Secondly, the resulting

model accomplishes dimension reduction, selecting only the important covariates

from a larger set for a more parsimonious model and thus minimizing the prob-

lems associated with having a large number of covariates relative to the sample

size. Thirdly, most properly applied variable selection procedures should be able

to eliminate potential multicollinearity in the model by identifying the covariate(s)

most significantly related to the outcome and removing covariates that are linear

combinations or near-linear combinations of the significant covariates.

Developing Bayesian approaches to variable selection poses a unique challenge.

Typically there are numerous competing models, and typical decision-making tools

such as Bayes factors are ill-equipped to handle the dimensionality of the problem.

For a model with k covariates, there are 2k possible competing models from which

to choose. Moreover, as with any statistical inference, consideration must be made

to prior knowledge of the problem, and great care must be exercised to produce

prior probabilities that reflect what prior knowledge may exist without unwittingly

inducing prior distributions contrary to the true nature of the parameters.

Misclassification of binary data in generalized linear models has been shown to

produce biased estimates of the relationships between covariates and responses. In

this chapter, we address the situation where a single binary covariate is potentially

misclassified. For example, we may be forced to rely on a fallible diagnostic test to

determine participants’ disease status. The latent gold standard value is replaced by

a fallible surrogate measure. Suppose a means to acquire a gold standard measure-

ment exists but its use is prohibitively expensive or invasive for widespread use in

the study. In such situations, researchers will often gather measurements based on

the surrogate variable on all individuals and additionally obtain the gold standard

9



measure for a subsample of the study. This validation subset is said to be inter-

nal, because it is gathered from within the actual study cohort. Studies that are

externally validated use estimates of sensitivities and specificities of the surrogate

measure from data sources other than the study of interest and are not addressed

in the current paper.

In many situations it is reasonable to assume that the sensitivity and specificity

of the surrogate variable may in some way depend on the covariates, leading to

differential misclassification of the covariate value in question. For example, using

body mass index to define obesity status has been shown to be unreliable among

Asian populations and athletes (Wang et al., 1994). In order to allow for maximum

flexibility and accuracy of the model, we propose a model where the sensitivity

and specificity of the surrogate measure is modeled allowing for dependence on the

remaining covariates.

The use of a validation subsample, also referred as double sampling, can be

an efficient and accurate basis to correct for bias introduced by misclassification

(Tenenbein, 1970). However, the selection of the validation subsample itself must

be able to provide sufficient and representative information about the larger study

sample. The subsample must then be acquired via a known, random mechanism such

as a simple random sample or stratified simple random sample to ensure consistency

with the rest of the sample and thus the population. Furthermore, the size of

the validation subsample will necessarily be constrained by cost or other practical

considerations, but the number of observations must be large enough to handle

estimation of potentially numerous covariates.

In this paper, we attempt to merge the ideas of variable selection and cor-

recting for misclassification in a single procedure. To date, there are few published

methods that simultaneously select model covariates while adjusting for misclassi-

fication. Gerlach and Stamey (2007) and Powers et al. (2009) are among the few
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papers at this time, and these methods focus on misclassified outcomes rather than

covariates. The proposed method offers a convenient way to identify the appropriate

set of covariates across multiple models simultaneously. Furthermore, the method

estimates three important relationships: the relationship between the covariates and

desired response, the measurement of the true exposure in the presence of the re-

maining perfectly observed covariates, and the sensitivities and specificities of the

surrogate variable. Additionally the sensitivities and specificities may also depend

on the remaining covariates. In the methods section, we introduce the models and

define the potential nature of the misclassification, followed by a discussion of the

variable selection method we use. Next, we perform four simulations using the

stated method on a set of randomly generated data. Then we apply the method

to an existing data set to demonstrate its effectiveness in providing a parsimonious

model while adjusting for misclassification. Finally, we discuss the results as well as

considerations for future research.

2.2 Methods

2.2.1 Models

2.2.1.1 Disease model. We consider a typical logistic regression scenario

from prospectively observed data. Suppose we wish to estimate the probability

of observing a random outcome of interest for the ith individual, Yi, such that

Yi ∼ Bernoulli(πi). Furthermore, assume that for random outcome variable Yi of

our N independent study participants we observe the P -dimensional covariate vector

zi such that

logit(πi) = logit(pr(Yi = 1|zi)) = β0 + z′iβ.
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If all P covariate values as well as response Y are measured without misclassification,

then

pr(Yi = 1|zi) =
exp(β0 + z′iβ)

1 + exp(β0 + z′iβ)

is consistent for πi.

Let us now consider the case in which our response depends upon z and T .

The model is

logit(pr(Yi = 1|zi, Ti)) = β0 + z′iβ + TiβP+1,

but suppose T is a gold standard measure that is only available for a subset n of

the larger study sample N . Instead, suppose we observe covariate X, a potentially

misclassified binary exposure variable. For our model, we now have our response

Y , which is related to perfectly observed covariates z and potentially misclassified

covariate X. If we were to simply substitute X for T , our model would potentially

be biased for π (Carroll et al., 2006).

Because both measures are binary, it is reasonable to assume that

T ∼ Bernoulli(p)

and that

X ∼ Bernoulli(q)

where

q = pr(X = 1|T, S, C) = T × S + (1− T )× (1− C),

and S and C are the sensitivity and specificity, respectively, of the surrogate ex-

posure indicator X. In this situation, q is the conditional probability of observing

X = 1 given the known true exposure status as well as the sensitivity and speci-

ficity. Because we are assuming our observational data are prospectively ascertained,

rather than retrospectively as in a case-control study, it is reasonable to assign the

simplifying assumption that the misclassification probabilities S and C are indepen-

dent of the response but may depend on other covariates contained in z. Violations
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of this assumption, when the rate of misclassification also depends on the value of

the response such as in case-control studies, require additional levels of complexity,

as described by Prescott and Garthwaite (2005).

We can subsequently model the outcome π by imputing the unobserved T from

X through the validation subsample. This will require estimation of the measure-

ment relationship between T and z as well as the dependence of the sensitivities and

specificities on z.

2.2.1.2 Measurement model. Typically in medical and epidemiological stud-

ies, the exposure of an individual depends on a number of demographic and environ-

mental factors. This is unique to observational data due to the lack of researchers’

control over assignment of the treatment or exposure of interest to the study partici-

pants (Cochran and Chambers, 1965). In our present case of a misclassified covariate

with an available validation subsample, we are solely interested in the relationship

between T and the remaining perfectly measured covariates, z. As previously de-

fined, pr(T = 1) = p, but now we are allowing more flexibility by defining the

probability of exposure p as dependent on the other (perfectly observed) covariate

values, z. Thus, the probability of observing exposure T given the observed covariate

vector z is

logit(pr(Ti = 1|zi)) = logit(pi) = λ0 + z′iλ.

2.2.1.3 Sensitivity and specificity models. As previously mentioned, often

it is a reasonable possibility that the sensitivity and specificities of diagnostic tests

differ based on the observed covariates. For example, in studies where exposure to a

disease is of interest, a test may have different detection rates between genders, or a

disease state may be masked by comorbidities and confounding variables. In such a

situation, it is important to adjust based on these covariates. Likewise, if exposure
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to an occupational hazard is of interest, often exposure may depend on the duration

of employment, age, or the worker’s physical location in relation to the hazard.

It is reasonable to assume then that the sensitivity of the test for the ith

observation given covariate vector z can be modeled as

logit(Si|zi) = logit(pr(Xi = 1|Ti = 1, zi)) = γ0 + z′iγ (2.1)

and likewise the specificity as

logit(Ci|zi) = logit(pr(Xi = 0|Ti = 0, zi)) = µ0 + z′iµ. (2.2)

Both the sensitivity and specificity are modeled as logistic responses and possibly

depend on the P perfectly covariates contained in z.

The posterior distribution for the model parameters without the variable se-

lection component is shown below:

f(β,λ, γ, µ|Y,X, zi, Ti) ∝ f(β, λ, γ, µ)

×
N∏

i=1

pr(Yi = 1|β, λ, γ, µ, zi, Xi, Ti)×
n∏

i=1

pr(Ti = 1|λ, zi)

×
n∏

i=1

pr(Xi = 1|γ, λ, zi, Ti = 1)×
n∏

i=1

pr(Xi = 0|µ, λ, zi, Ti = 0)

2.2.2 Bayesian Variable Selection

In the preceding models, we have identified four interrelated statistical mod-

els with potentially a large total number of covariates. It is unlikely that all the

covariates that are important for estimating the sensitivity, S, are also important

for estimating the probability of exposure, p, for example. The disease model as

stated presently depends upon P + 1 covariates, and the measurement, sensitivity,

and specificity models each depend upon P covariates. Under our considered four

models, there are potentially M = 4P + 1 covariates that could be included for esti-

mation of the outcome, measurement, and misclassification probabilities. To achieve
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parsimony, it is desirable to identify the covariates that significantly contribute to

the model while excluding those that do not.

Using a similar argument as Dellaportas et al. (2002), suppose our response

random variable Y is generated from model g, where g is one of G competing models

under consideration. Then we define the set of parameters for model g by θg, where

θg ∈ Θg and Θg represents all possible values for the coefficients of model g. We

recognize f(y|g, θg) defines the likelihood for the data under model g, and thus there

are G possible discrete representations of f(y|g, θg). If we assign prior probability

f(g) to model g, then the posterior probability for model g can be expressed as

f(g|y) =
f(g)f(y|g)∑

g∈G f(g)f(y|g)
, g ∈ G.

We define the marginal likelihood for m as

f(y|g) =

∫
θg∈Θg

f(y|g, θg)f(θg|g)dθg,

where f(θg|g) is the conditional prior distribution for the parameters θg.

Kuo and Mallick (1998) proposed placing independent binary indicator vari-

ables on covariates in general and generalized linear models. The vector of indicator

variables that yields the highest posterior probability identifies the preferred subset

of covariates based on the observed data. We extend this method to identify the

significant subset of covariates across our four related logistic regression models to

not only estimate the unbiased relationship between the response and the necessary

perfectly observed covariates but also to estimate the important covariates governing

the measurement, sensitivity, and specificity of the imperfectly measured covariate.

To this end, we define ω′ = (ω1, ω2, . . . , ωM). This vector contains the M

indicator variables for each of the parameters contained in the four models. We

note that because each ωj must take either 0 or 1 in value, there are 2M possible

manifestations of ω. Therefore, let us define ωk ∈ Ω, where Ω is the set of all possible

2M vectors and ω′
k = (ω1k, ω2k, . . . , ωMk).
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In previous sections we introduced the model parameter vectors β, λ, γ, and

µ, which specify the disease model, measurement model, sensitivity, and specificity,

respectively. Let us define the M -dimensional vector θ′ =

[
β λ γ µ

]
and thus

ϑ′ = (ω′θ)′ = (β1ω1, . . . , βP+1ωP+1, λ1ωP+2, . . . ,

λP ω2P+1, γ1ω2P+2, . . . , γP ω3P+1, µ1ω3P+2, . . . , µP ωM),

which contains all possible parameters, multiplied by the appropriate indicator vari-

able from ω. We multiply each model parameter in θ by the corresponding element

in ωk to obtain posterior estimates of elements of θ given ωk.

The posterior distribution of the model adding the variable selection compo-

nent appears as follows:

f(ω|β, λ, γ, µ) = f(ω|θ) ∝ f(ω)
M∏

j=1

f(θ|ω).

We select

max
ωk∈Ω

pr(ωk|β, λ, γ, µ)

as the most likely data-generating model.

The models from the preceding sections now appear as:

logit(pr(Yi = 1|β, zi, Ti, ω)) = β0 +
P∑

i=1

βiZiωi + βP+1TiωP+1,

logit(pr(Ti = 1|λ, ω, zi)) = λ0 +
P∑

i=1

λiZiω{P+1+i},

logit(pr(Xi = 1|γ, ω, Ti = 1, zi)) = γ0 +
P∑

i=1

γiZiω{2P+1+i},

logit(pr(Xi = 0|µ, ω, Ti = 0, zi)) = µ0 +
P∑

i=1

µiZiω{3P+1+i}.

The biggest advantage of the proposed method is that it eliminates the need

to compute multiple Bayes’ factors or to invoke complicated multiple-dimensional
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MCMC sampling schemes. In the present application the scheme allows for simul-

taneous estimation across the four models to obtain the most parsimonious set of

covariates describing the overall relationship between the covariates, exposures, and

disease, empirically estimated from the prior information and likelihood functions.

Furthermore, the selection process is not only intuitively appealing, but it also satis-

fies a critical optimality property: the vector of covariates with the highest posterior

probability minimizes the Bayes risk under zero-one loss (Kadane and Lazar, 2004).

2.2.2.1 Prior elicitation and specification. All necessary information for the

likelihood of the model parameters, including the misclassification parameters, is

contained in z, X, Y , and the validation subsample data T . Thus, in the absence of

expert opinion or prior information, we could use so-called “noninformative” priors

of N(0, σ2IM) on θ where 0 is an M -dimensional vector with each value equal to

0, IM is the M × M identity matrix, and σ2 is an arbitrarily large variance value

that reflects one’s prior knowledge about the variance of the parameter mean, such

as 1000. Furthermore, independent diffuse normal priors, such as N(0, 1000), could

be placed on the model intercept terms.

Next, lacking prior evidence, we assumed that each ωj is distributed as an

independent Bernoulli(φj) random variable, and thus a reasonable prior value to

reflect this uncertainty is φj = 0.5. This induces the prior probability for the kth

vector from Ω is pr(ωk) = 1/M . Each covariate has equal probability of inclusion

or exclusion, and the prior independence assumption of the covariates will almost

certainly be lost in the posterior distributions.

2.2.2.2 Computation. We arrive at posterior density estimates of the param-

eters typically via Gibbs sampling. The described models can easily be implemented

in a statistical software package capable of handling MCMC procedures such as Win-
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BUGS. However, for those who desire more control over the specific sampling routine,

the papers published by Kuo and Mallick (1998) and Dellaportas et al. (2002) dis-

cuss strategies for Gibbs sampling routines to arrive at posterior estimates, which

can be implemented in computational packages such as R or MatLab. It should be

noted, especially because these methods are developed with large data sets in mind

they can be fairly time consuming to execute.

2.3 Simulation

To test the proposed method, we performed four simulations of varying sample

sizes using pseudo-randomly generated values from known parametric distributions.

We used the following combinations of total sample sizes (N) and validation sample

sizes (n): 1) N = 2000, n = 500; 2) N=1000, n=500; 3) N = 2000, n = 250; and 4)

N = 1000, n = 250. We defined the outcome variable Y to be related via the logit

link to p = 3 covariates: Z1, Z2, and T , where T is a perfectly observed exposure

that has been ascertained for n individuals. The surrogate value X is observed

for all N participants. Using the n perfectly observed values, we can estimate the

exposure using the estimated sensitivities and specificities for the remaining N − n

observations.

The sample sizes above were selected specifically to demonstrate the perfor-

mance of the method under varying N and n combinations. The latter two examples,

where n = 250, are especially informative about the ability of our method to select

the “correct” parameter set (in the sense that the procedure identifies a model that

includes the appropriate nonzero coefficients). Given our specified parameter values,

the model in some circumstances will have too few observations in the validation

sample for estimation of the sensitivities and specificities within certain subpop-

ulations. These examples can be viewed as variable selection in the presence of

inappropriately small validation sample sizes.
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Initially we generated N observed values of z = (Z1, Z2) as independent

Bernoulli random variables with probabilities 0.4 and 0.5, respectively. These rep-

resent the perfectly observed covariates. In the measurement model, we defined

the true exposure, T , to depend on the covariates zi via a logistic regression model

with parameter values of λ = (−0.2, 1.6,−2.0). Next, we define the sensitivity and

specificity that describe the relationship between T and X according the the models

above, using sensitivity parameter vector γ = (2.5, 0,−1.8) and specificity param-

eter vector µ = (0.4, 1.6, 0). Thus, the sensitivity pr(X = 1|T = 1) depends only

on Z2, and the specificity pr(X = 0|T = 0) depends only on Z1 in this hypothet-

ical situation. Finally, we generate the response Y using the full unbiased logistic

regression model with parameter values β = (−1, 0, 1.1,−0.8).

The full code for use in WinBUGS v1.4.1 is included in the Appendix. We code

four logistic regression models with all possible covariates (9), multiplying indicator

variable ωi, where i = 1, . . . , 9, to the ith covariate across the models. The resulting

model appears as

logit(pr(Y |β, z, T )) = β0 + β1Z1ω1 + β2Z2ω2 + β3Tω3

logit(pr(T = 1|λ, z, X)) = λ0 + λ1Z1ω4 + λ2Z2ω5

logit(pr(X = 1|γ, T = 1, z)) = γ0 + γ1Z1ω6 + γ2Z2ω7

logit(pr(X = 0|µ, T = 0, z)) = µ0 + µ1Z1ω8 + µ2Z2ω9

At this point it becomes apparent that, unlike other proposed variable selection

procedures, it is only necessary to explicitly write the full model once in the code,

and the algorithm then identifies the appropriate covariates to include, returning

the posterior probability of each of the 29 = 512 possible vectors of covariates.

We generate 150 data sets at each of the specified sample sizes and obtained

the results that follow. Note, for the sake of space, we only included information that

indicates which model was selected with the highest posterior probability as well as
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the rank of the correct (data generating) model. Each model was enumerated from

1 to 512, and the data generating model is identified as model 223.

All data were generated by R version 2.5.1. Using the R2WinBUGS package

(Gelman et al., 2004), the data passed into WinBUGS version 1.4.1 where all poste-

rior distributions were estimated via MCMC sampling. For each generated dataset,

we executed 3 chains with different initial conditions. We discarded a 5000 iteration

burn-in to allow the chains to converge to the target distribution and then we kept

a 15,000 iteration sample of the posterior distribution. We observed no major issues

with convergence or autocorrelation in the resulting chains. The decision to execute

150 simulations per sample size was mainly related to the time required to execute

a single iteration of the model, which required up to 45 minutes depending on the

sample size and processor. Furthermore, the sequential nature of WinBUGS limits

our ability to fully utilize computing advances such as multiple-core processors.

2.3.1 Simulation Results for N=2000, n=500

The first simulation has a sufficiently large sample size to be able to properly

identify the subset of model covariates of the highest posterior probability. In Figure

2.1 we observe that the algorithm identifies the appropriate set of covariates with

observed probability 140/150 = 0.93. The next highest frequency model, number

219, contains all nonzero coefficients except β3. Its value (β3 = −0.8) has the

smallest absolute distance from zero of the elements of the β-vector, and thus this

would be the one least likely to be detected. The algorithm omits β3 with observed

relative frequency 6/150 = 0.04. Finally, for the remaining 4 generated datasets,

the model selection procedure identifies model 159, which contains all appropriate

nonzero covariates except for γ2 = −1.8. This covariate aids in estimating the

sensitivity ,and all information that contributes to the posterior mean of λ, γ, or µ

comes from the validation subsample.
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Correct model

Correct model –

Correct model – 2

Model 223 Model 219 Model 159

Figure 2.1: Frequencies of posterior highest posterior probability models for 150 simulated
data sets; N=2000, n=500.

2.3.2 Simulation Results for N=1000, n=500

The objective of the second simulation is to assess the impact of reducing the

overall sample size, N , while maintaining the same validation subsample size, n.

In Figure 2.2, we observe that the algorithm appropriately identifies model 223 as

having the highest posterior probability 115 times of the 150 simulated data sets for

an estimated probability of 0.77. We note that among the competing models, model

219 (described in the previous paragraph) is the second highest frequency model,

selected 29 times. Model 159 (described previously) and model 155 (same as 223

except omits β3 and γ2) were each chosen 3 times.

The finding of note is that when we decrease the overall sample size N , we

impair the performance of the model selection procedure. However, the results

are still overwhelmingly favorable under the given parameter values. The overall

reduction in the sample size still selects the correct model with the highest frequency.

The biggest difference occurs in the method’s ability to correctly include β3, where

32/150 = 0.21 of the selected models omit the covariate. However, we maintained
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the validation subsample size of n = 500, and thus the observed probability of

selecting a model that incorrectly omits γ2 remained 6/150 = 0.04, as in the first

simulation. This is noteworthy because the estimation of γ2 can only be done from

the validation data. Thus, we see the reduction in the overall sample size changed our

ability to identify a covariate from the disease model, but the models that depend on

the validation data set (i.e., any model that requires exact knowledge of T ) remain

unaltered by this reduction.

Correct model

Correct model –

Correct model – 2

Correct model – – 2

Model 219Model 223 Model 155 Model 159

Figure 2.2: Frequencies of posterior highest posterior probability models for 150 simulated
data sets; N=1000, n=500.

2.3.3 Simulation Results for N=2000, n=250

For the next two simulations, we reduce the validation subset size by 50% and

evaluate the model selection procedure’s performance. In Figure 2.3, we see that

the correct model, 223, is still identified as the highest posterior model a majority of

the time and that it far outperforms any competing model. However, the excluded

models again provide information on what portions of the model are impaired by

the reduction of the subsample size; the second most frequently selected highest

posterior probability model is that of 159, the model that contains all appropriate
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covariates except that it excludes γ2. This is noteworthy because the reduction in

the validation sample size limits our ability to estimate and thus include covariates

that help measure the relationship between the misclassified X and gold-standard

T .

Less frequently, the procedure selects the model that omits the β3 covariate,

and in an even smaller number of cases omits both β3 and γ2. We do note that the

frequency with which the β3 covariate is excluded is higher in this case than in the

first simulation where N = 2000 and n = 500. We observe that simply having a large

number of observations doesn’t guarantee proper estimation and performance of the

model selection procedure; having sufficient gold-standard validation information

strongly aids in our ability to estimate the disease model covariates with certainty.

Correct model

Correct model –

Correct model – 2

Correct model – – 2

Model 223 Model 159 Model 219 Model 155 Model 191

Figure 2.3: Frequencies of posterior highest posterior probability models for 150 simulated
data sets; N=2000, n=250.

2.3.4 Simulation Results for N=1000, n=250

The fourth and final simulation evaluates the variable selection procedure’s

performance under minimal overall sample size and validation subsample size. At
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this point, we have observed that the variables that are most severely affected by such

reductions appear to be β3 and γ2. As we see in Figure 2.4, this pattern continues.

For the first time, we have identified a scenario in which the true data generating

model is correctly identified less than half the time, but the correct model is still

assigned with the highest posterior density more frequently than any other model.

Under these conditions, the models 219 and 159 appear to be selected with similar

frequency, indicating that when model 223 is not selected, the procedure typically

fails to identify only one covariate. Slightly less than 10% of the time, the procedure

identifies a model that excludes both covariates.

Correct model

Correct model – 2

Correct model –

Correct model – – 2

Model 223 Model 219 Model 159 Model 155 Model 95

Figure 2.4: Frequencies of posterior highest posterior probability models for 150 simulated
data sets; N=1000, n=250.

2.4 Example

To demonstrate the method on previously published data, we use data from

highway safety research published by Hochberg (1977). In this study, we wish to

determine whether the probability of an automobile accident producing an injury

depends on the binary covariates driver gender, car damage (low or high), and seat

belt use. However, the information on the police reports regarding belt usage is
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subject to systematic misclassification errors that may potentially depend on the

other covariates gender and car damage. We assume all other data contained on

the police report are considered accurate. The majority of the data observations

(80, 084) have data recorded solely from police accident reports, while a subsample

(n = 1, 796) of drivers had the police accident report along with a more intensive

follow-up interview that contains what we will consider gold standard information

regarding seat belt usage. The total sample size is N = 81, 880.

Initially, we analyze the data ignoring misclassification. We define the response

Yi as the binary response of injury status (0 = uninjured, 1 = injured) for the

ith individual (i = 1, . . . , N). Furthermore, the fallible measure for belt usage is

denoted by Xi, where Xi = 1 indicates that belt usage was reported by the police

and Xi = 0 indicates no reported belt usage. The indicators Z1,i and Z2,i represent

gender (1=male) and car damage (1=high), respectively. The Bernoulli response Yi

occurs with probability πiN , where

logit(πiN) = β0N + β1NXi + β2NZ1,i + β3NZ2,i.

In this formulation, βN is the parameter vector for the näıve model that ignores

misclassification. We subsequently multiply each element of βN by a Bernoulli

indicator variable so that our model becomes

logit(πiN) = β0N + ω1β1NXi + ω2β2NZ1,i + ω3β3NZ2,i. (2.3)

Because there are three parameters in the model to consider, the procedure must

choose between 23 = 8 possible models. We place diffuse normal prior distributions

on the model parameters such that βN ∼ N(0, σ2I4), where σ2 = 1, 000 and Ij is

the j × j identity matrix. Furthermore, we place independent Bernoulli(0.5) prior

distributions on each ωk where k = 1, 2, 3.

To account for the misclassified covariate X, we define the true belt usage

indicator variable Ti for the ith individual where Ti = 1 indicates the study par-
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ticipant was wearing a belt and Ti = 0 if not. The variable T is observed for only

the subsample (n = 1, 796) and is distributed Bernoulli with probability p. We now

define the Bernoulli response Yi as occurring with probability πi, where

logit(πi) = β0 + β1Ti + β2Z1,i + β3Z2,i.

Furthermore, we allow the probability of T (pr(T = 1) = p) as well as the sensitivity

(S) and specificity (C) of X to depend on Z1 and Z2 as follows:

logit(pi) = λ0 + λ1Z1,i + λ2Z2,i,

logit(Si) = γ0 + γ1Z1,i + γ2Z2,i,

logit(Ci) = µ0 + µ1Z1,i + µ2Z2,i.

To develop a more parsimonious model, we multiply binary indicator param-

eters ω = (ω1, . . . , ω9) to each covariate of the set of models so that our system of

equations becomes

logit(πi) = β0 + ω1β1Ti + ω2β2Z1,i + ω3β3Z2,i, (2.4)

logit(pi) = λ0 + ω4λ1Z1,i + ω5λ2Z2,i, (2.5)

logit(Si) = γ0 + ω6γ1Z1,i + ω7γ2Z2,i, (2.6)

logit(Ci) = µ0 + ω8µ1Z1,i + ω9µ2Z2,i. (2.7)

Assuming no prior information we place diffuse normal prior distributions for

each of the model parameters in the manner of

β ∼ N(0, σ2I4),

λ ∼ N(0, σ2I3),

γ ∼ N(0, σ2I3),

µ ∼ N(0, σ2I3).
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Table 2.1. Top Five Posterior Model Probabilities for Naive Model

Covariate Vector Posterior probability

(β1N , β2N , β3N) 0.996

(β1N , 0, β3N) 0.004

All others 0

Next, for each ωk (k = 1, . . . , 9), we assign prior distribution

ωk ∼ Bernoulli(0.5).

In this situation we have 29 = 512 possible models with an equal induced

prior probability for each model. We assign initial values to each of three chains,

execute a 5, 000 iteration burn-in, and then keep 15, 000 samples from the posterior

distribution for each chain. The five highest probability posterior distributions are

listed in Table 2.3.

We first observe in Table 2.4 the posterior model probabilities for the vari-

able selection procedure from model 2.3 in which we näıvely assume X is observed

perfectly. It should come as no surprise that, of the eight possible models, over-

whelmingly the highest posterior model includes all three binary covariates. Given

the extremely large sample size N = 81, 880, all parameter standard deviation esti-

mates are small enough that the posterior mean supports ωj = 1 for j = 1, 2, 3.

In Table 2.4 we observe the parameter estimates for the näıve model. These

shall be used as a basis for comparison with the posterior values from Table 2.4.

For now, we simply note the model parameters are nonzero with small standard

deviations, which is consistent with the general notion of a variable being useful for

posterior prediction.

We observe in Table 2.3 the models identified by their posterior probability

when we attempt to correct for misclassification. The highest posterior probability
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Table 2.2. Highest posterior probability model parameter estimates

Parameter Mean Standard Deviation 95% Credible Interval

β0N −2.13 0.02 (−2.18,−2.10)

β1N 1.54 0.02 (1.50, 1.59)

β2N −0.38 0.02 (−0.42,−0.35)

β3N -0.28 0.033 (−0.35,−0.22)

Table 2.3. Top 5 Posterior Model Probabilities for Misclassification Model

Covariate Vector Posterior probability

(β1, β2, β3, 0, 0, 0, γ2, µ1, 0) 0.54

(β1, β2, β3, 0, λ2, 0, 0, µ1, 0) 0.24

(β1, β2, β3, λ1, λ2, 0, 0, 0, 0) 0.19

(β1, β2, β3, λ1, λ2, 0, 0, µ1, 0) 0.015

(β1, β2, β3, 0, λ2, 0, γ2, µ1, 0) 0.0059
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model has no covariates from the λ model, indicating that neither gender nor crash

severity likely contribute significantly to the estimation of p.

Given this information, we can now construct the posterior distribution with

the least posterior predictive variability. We fit the following model

logit(πi) = β0 + β1Ti + β2Z1,i + β3Z2,i,

logit(pi) = λ0,

logit(Si) = γ0 + γ2Z2,i,

logit(Ci) = µ0 + µ1Z1,i.

which yields the posterior estimates listed on Table 2.4.

We note that the posterior mean estimates for β in Table 2.4 have similar

means to the posterior estimates for βN in Table 2.4 with the notable exception for

β1 for T compared to β1 for X. It appears that the misclassification resulted in an

attenuation of the effect of seat belt usage on the probability of injury. When the

misclassification has been accounted, we observe an even lower probability of injury

for belt users than was observed by the misclassified parameter. Furthermore, the

corrected model has a slightly larger parameter standard deviation, which reflects

our added uncertainty due to the misclassified covariate.

2.5 Discussion

It should be noted from the preceding simulation results that this method of

variable selection consistently identifies the “correct” model out of a large number

of equally likely (based on assumed a priori probabilities) competing models a very

high proportion of the time, even in the cases where the validation sample size is

small relative to the overall study sample. The priors used for variable selection in

this article extend the method proposed by Kuo and Mallick (1998) to misclassified

data, and more generally, to simultaneous approximations of posterior distributions

of multiple interrelated models.
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Table 2.4. Highest posterior probability model parameter estimates

Parameter Mean Standard Deviation 95% Credible Interval

β0 −2.11 0.02 (−2.15,−2.06)

β1 1.54 0.02 (1.51, 1.59)

β2 −0.39 0.02 (−0.43,−0.35)

β3 -0.38 0.05 (−0.47,−0.29)

λ0 -1.60 0.05 (−1.70,−1.50)

γ0 -0.18 0.09 (−0.34,−0.00)

γ2 0.37 0.05 (0.26, 0.48)

µ0 3.58 0.14 (3.33, 3.86)

µ1 0.87 0.20 (0.53, 1.30)
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As mentioned previously, upon selecting the parameter vector of the highest

posterior probability, we would now consider this model as being most likely the

“data generating” vector, that is, the vector including the covariates that most

likely generated the observed sample. In situations where the selected vector defies

logic or does not clearly distinguish itself as the superior model, logic demands that

we consider the next closest competitor or competitors as potential data generating

models. While the selected model is optimal under the Bayes decision rule using zero-

one loss, in practice closely competing models may force additional consideration for

the researcher or in some cases selection of multiple candidate models. Although

this situation is undesirable from a decision-making framework, often the observed

data does not implicate a single vector of covariates as overwhelmingly being clearly

the most probable, and thus the procedure should not be viewed with the same

simplicity that is commonly reserved for misinterpretations of p-values. Besides, a

variable selection procedure is more appropriately viewed as an investigational tool,

and paring the possible models, for example, from over 500 to 3 or fewer can still be

considered successful in the sense of how many possible models were removed from

consideration.

The simulations in this paper were designed mainly to correspond with the

example cited. Thus, this paper uses binary data as both covariates and responses.

Future work could include model selection for models with continuous covariates.

Kuo and Mallick (1998) successfully introduced their method using continuous co-

variates, so it is unlikely that any major differences will result. The appeal of the

proposed method is its ease in implementing over a complicated model. The deci-

sion to select only covariates and not intercept terms of the sensitivity, specificity,

and measurement models was based on the knowledge that the binary variable was

misclassified. The process of selecting the covariates can be viewed as letting the

data determine whether the misclassification was differential, i.e. the sensitivities,

31



specificities, or measurement differed with respect to the other covariates. A model

that excludes all covariates for the sensitivities and specificities would indicate that

the misclassification is nondifferential.
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CHAPTER THREE

Bayesian Approaches to Pass-Fail Testing for Biostatistical Applications

3.1 Introduction

Repeated binary testing (i.e. pass-fail inspections, go/no-go testing) is regu-

larly utilized in quality control studies as a means to classify items when quantitative

methods are prohibitive or nonexistent (Boyles, 2001). Biostatisticians have adapted

several of these developments for application in biological studies, modifying such

methods to be able to account for the complex variability present in biological sys-

tems (Fujisawa and Izumi, 2000). Fallible classification systems introduce bias into

the measurement process, and reliable estimation of misclassification probabilities

helps yield individual classification and population prevalence estimates with greater

precision and consistency.

Few studies have utilized the strength of the Bayesian approach in the develop-

ment of methods to estimate parameters in binary classification systems. Bayesian

estimation through Markov Chain Monte Carlo simultaneously estimates classifi-

cation probabilities at the individual and population level, and the possibility of

including prior information remains a strength of the Bayesian approach. Hierarchi-

cal statistical modeling is another option made readily available through Bayesian

estimation that is especially applicable when the data arise from biostatistical data.

The intent of this work is to develop a Bayesian framework to develop a general

approach to parameter estimation for pass-fail models, especially within the context

of biostatistical approaches for detecting the presence of biomarkers. This includes

the development of MCMC approaches to sampling from the posterior distributions

of the misclassification probabilities as well as the construction of hierarchical ap-

proaches to account for potentially unmeasured interindividual variability. In quality
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control settings, it is often reasonable to assume that individual items are homoge-

neous with regard to the probability of having “passable” qualities, and furthermore

that the probability of misclassification by the inspection system is likewise homoge-

neous. In biostatistical studies, flexible methods must be readily available to account

for heterogeneity among individuals that affect the ability to detect a disease state

or exposure captured via a discretized biomarker.

In the methods section we propose various models for estimating assumed sta-

tionary misclassification probabilities. Furthermore, we propose a Gibbs sampler

that can produce the desired posterior density estimates for the model parameters.

In the following section we propose models for hierarchical estimation of misclassi-

fication probabilities where we assume the probability of misclassification for each

individual arises hierarchically from a common distribution. We present results for

a simulation to determine the necessary sample sizes to be able to produce reli-

able estimates of both prevalence and misclassification probabilities, and we follow

this with examples using previously published data sets. Finally, we conclude by

discussing future directions for subsequent research.

3.2 Modeling

For a sample of N randomly selected observations, we denote the true status

of the observation with random variable T , where T ∼ Bernoulli(τ). Thus, each

observation contains the condition of interest with probability τ = Pr(T = 1),

which will also be referred to as the prevalence of T . However, we assume that the

measurement of the status uses a fallible classifier, and consequently the random

variable T is latent.

Instead, we observe a repeated number of independent observations from the

ith individual to assess the presence of the status, Ti, assumed to be stationary with

respect to the observational interval. Let binary Yi,j denote the result of the jth
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time (j = 1, 2, . . . , ni) that individual i (i = 1, 2, . . . , N) is tested. For each Yi,j we

define the conditional probabilities θ− = Pr(Yi,j = 0|Ti = 1) (false negative rate)

and θ+ = Pr(Yi,j = 1|Ti = 0) (false positive rate) with respect to latent Ti. The

conditional densities of Yi,j are

Yi,j|Ti = 0 ∼ Bernoulli(1− θ−),

Yi,j|Ti = 1 ∼ Bernoulli(θ+).

Note, an alternate definition of the misclassification probabilities could involve using

the sensitivity (1−θ−) and specificity (1−θ+) of the measurement system, although

the two approaches yield the same inference of the posterior distribution.

Finally, we define Xi =
∑ni

j=1 Yi,j. Because each of the ni repeated tests are

independent, the conditional distribution Xi|Ti = 1 is binomial(ni, θ+), and likewise

Xi|Ti = 0 ∼ binomial(ni, 1− θ+). However, because T is latent, inference about the

parameters depends on the joint distribution of X and T . A useful identity is

f(xi, ti|θ−, θ+, τ) = f(xi|ti, θ−, θ+)f(ti|τ).

Hence the joint distribution of the observed data vector x and the latent vector

t is

f(x, t|θ−, θ+, τ) =
N∏

i=1

f(xi|ti, θ−, θ+)f(ti|τ)

∝
N∏

i=1

(
τ(1− θ−)xi(θ−)ni−xi

)ti

×
(
(1− τ)(θ+)xi(1− θ+)ni−xi

)1−ti .

3.3 Conjugate Beta Priors

Because θ−, θ+, and τ are probabilities and thus can be nonzero only within

the unit interval, independent beta prior distributions are reasonable in the absence

of other evidence (Joseph et al., 1995). Note that this parameterization could allow
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for a nonidentifiable model without the restriction θ− + θ+ ≥ 1 (Rogan and Gladen,

1978). Let us proceed assuming independent prior distributions such that

θ− ∼ beta(α−, β−),

θ+ ∼ beta(α+, β+),

τ ∼ beta(α0, β0).

Thus, the joint posterior distribution of the parameters is

f(θ−,θ+, τ |x, t) ∝ p(θ−, θ+, τ)f(x, t|θ−, θ+, τ)

∝ τ
∑N

i=1 ti+α0−1(1− τ)N−
∑N

i=1 ti+β0−1

× (θ−)
∑N

i=1 ti(ni−xi)+α−−1(1− θ−)
∑N

i=1 tixi+β−−1

× (θ+)
∑N

i=1(1−ti)xi+α+−1(1− θ+)
∑N

i=1(1−ti)(ni−xi)+β+−1.

(3.1)

In the absence of any prior information, a common noninformative prior for

each of θ−, θ+, and τ is the beta(1,1) distribution, which assumes equal probability

for all possible values across the domain of each of the parameters. We observe

f(θ−,θ+, τ |x, t) ∝ p(θ−, θ+, τ)f(x, t|θ−, θ+, τ)

∝ τ
∑N

i=1 ti(1− τ)N−
∑N

i=1 ti

× (θ−)
∑N

i=1 ti(ni−xi)(1− θ−)
∑N

i=1 tixi

× (θ+)
∑N

i=1(1−ti)xi(1− θ+)
∑N

i=1(1−ti)(ni−xi).

(3.2)

The posterior distribution shown in 3.2 takes the form of the frequentist like-

lihood function previously published (van Wieringen and van den Heuvel, 2005).

However, we proceed under the general formulation of the posterior distribution

shown in 3.1.

3.3.1 MCMC Sampling from the Posterior

Prior frequentist approaches to this problem have been proposed. Espeland

and Hui (1987) discusses the use of latent class analysis for estimating parameters in

36



the presence of binary misclassification. The approach of Reese et al. (2008) defines

an E-M algorithm that produces point estimates somewhat comparable to the Gibbs

Sampling approach described below. However, our approach is fully Bayesian and

thus allows for the incorporation of prior information.

It is straightforward to sample from the posterior distribution using the general

beta priors from (3.1).

i Begin with n1, n2, . . . , nN , our data vector x. Set initial values τ (0),θ
(0)
− , and

θ
(0)
+ .

ii Randomly generate data vector t(0) of length N where t
(0)
i is distributed

Bernoulli(τ (0)).

iii For k = 1, 2, . . .

(a) sample θ
(k)
− from beta

(
N∑

i=1

t
(k)
i (ni − xi) + α−,

N∑
i=1

t
(k)
i xi + β−

)
.

(b) sample θ
(k)
+ from beta

(
α+ +

N∑
i=1

(1− t
(k)
i )xi, β+ +

N∑
i=1

(
1− t

(k)
i

)
(ni − xi)

)
.

(c) sample τ (k) from beta

(
N∑

i=1

t
(k)
i + α0, N −

N∑
i=1

t
(k)
i + β0

)
.

(d) generate t(k) where t
(k)
i is distributed Bernoulli

(
ξ

(k)
i

)
and

ξ
(k)
i =

τ (k)
(
θ

(k)
−

)ni−xi
(
1− θ

(k)
−

)xi

τ (k)
(
θ

(k)
−

)ni−xi
(
1− θ

(k)
−

)xi

+ (1− τ (k))
(
θ

(k)
+

)ni−xi
(
1− θ

(k)
+

)xi
.

Note:

ξ
(k)
i = Pr

(
Ti = 1|Xi = xi, τ

(k), θ
(k)
− , θ

(k)
+

)
=

Pr
(
Ti = 1, Xi = xi|τ (k), θ

(k)
− , θ

(k)
+

)
Pr

(
Xi = xi|τ (k), θ

(k)
− , θ

(k)
+

)
=

Pr
(
Ti = 1, Xi = xi|τ (k), θ

(k)
− , θ

(k)
+

)
∑1

ti=0 Pr
(
Ti = ti, Xi = xi|τ (k), θ

(k)
− , θ

(k)
+

)
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(e) Store the parameter values of interest, increment k by 1, return to step

(a), and repeat.

iv Burn in at least several hundred iterations of the Gibbs sampler until con-

vergence to the posterior has been achieved, discard these initial values, and

then keep several thousand iterations of each parameter to represent the full

posterior distribution.

3.4 Alternate Parameterizations for Misclassification Probabilities

The preceding sections define the binary test model taking advantage of the

relationships between the beta and binomial distributions. We now consider alter-

nate means to define the model and estimate the parameters under a more diverse

set of assumptions.

3.4.1 The Dirichlet Misclassification Model

The method of estimation of prevalence and misclassification probabilities pre-

viously described can be criticized as misstating the true domain of θ− and θ+. If

θ− and θ+ are small, modifying the domain is unnecessary in practice. However,

intuitively, it may be desirable to place a Dirichlet prior distribution on the misclas-

sification parameters so that their shared domain is within the unit interval. We

define

p(θ−, θ+) =
1

B(α1, α2, α3)
θα1−1
− θα2−1

+ (1− θ− − θ+)α3−1 (3.3)

where B(α1, α2, α3) is the beta function for α1, α2, α3 > 0, and 0 ≤ θ− ≤ 1, 0 ≤ θ+ ≤

1, and 0 ≤ θ− + θ+ ≤ 1. The added intuitive benefit of the Dirichlet distribution

is that the false positive and false negative rates can be perceived as arising from

the same random processes whose domains are dependent. Furthermore, a single

Dirichlet prior distribution depends upon three hyperparameters rather than two

independent beta distributions which rely on four hyperparameters, resulting in a

moderate step toward increased parsimony.
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We construct a joint prior distribution with misclassification parameters inde-

pendent of τ , and we obtain the posterior distribution

f(θ−,θ+, τ |x, t) ∝ p(θ−, θ+, τ)f(x, t|θ−, θ+, τ)

∝ τ
∑N

i=1 ti+α0−1(θ−)
∑N

i=1 ti(ni−xi)+α1−1(1− θ−)
∑N

i=1 tixi

(1− τ)
∑N

i=1(1−ti)+β0−1 × (θ+)
∑N

i=1(1−ti)xi+α2−1(1− θ+)
∑N

i=1(1−ti)(ni−xi)

(1− θ+ − θ−)α3−1 .

Sampling from the posterior distribution is similar to sampling from (3.1)

with the exception that the first two steps are modified such that we jointly sample

(θ
(k)
− , θ

(k)
+ ) from the density

f(θ
(k)
− ,θ

(k)
+ |x, t(k)) ∝

(
θ

(k)
−

)∑N
i=1 t

(k)
i (ni−xi)+α1−1 (

1− θ
(k)
−

)∑N
i=1 t

(k)
i xi

×
(
θ

(k)
+

)∑N
i=1(1−t

(k)
i )xi+α2−1 (

1− θ
(k)
+

)∑N
i=1(1−t

(k)
i )(ni−xi)

×
(
1− θ

(k)
+ − θ

(k)
−

)α3−1

.

These parameters can be sampled jointly from the unnamed distribution above,

or each may be sampled separately from the conditional densities

f(θ
(k)
− |θ(k)

+ ,x, t(k)) ∝
(
θ

(k)
−

)∑N
i=1 t

(k)
i (ni−xi)+α1−1 (

1− θ
(k)
−

)∑N
i=1 t

(k)
i xi

× (1− θ
(k)
+ − θ

(k)
− )α3−1

(3.4)

and

f(θ
(k)
+ |θ(k)

− ,x, t(k)) ∝
(
θ

(k)
+

)∑N
i=1(1−t

(k)
i )xi+α2−1

×
(
1− θ

(k)
+

)∑N
i=1(1−t

(k)
i )(ni−xi) (

1− θ
(k)
+ − θ

(k)
−

)α3−1

.

(3.5)

Sampling from the posterior distribution using priors allowing for conditional

dependence requires the Metropolis-Hastings algorithm, and it is likely advisable to

use beta densities as the proposal distributions for the misclassification parameters in

the Metropolis-Hastings step of the sampler. This is a reasonable approach because
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we note in Equations 3.4, the full conditional posteriors asymptotically approach

beta densities. Furthermore, asymptotically the portion of the posterior related to

(1− θ− − θ+) simply serves as a constraint on the domain of the parameters. If we

set α3 with a prior value of 1, then this is true for all sample sizes. As a practical

matter, we desire a classification system that yields reasonably small misclassification

probabilities (θ− + θ+ � 1). Absent this, we will almost certainly fail to produce

consistent posterior estimates regardless of the constraints we place on the domain.

3.4.2 Model-Based Approaches for Misclassification Probabilities

One approach of modeling the increased variability due to interindividual fac-

tors is to account for the differences in measurements using a mixed effects logistic

regression model. For example, we can estimate how misclassification probabilities

vary based on the age and/or gender of the respondent, and we can estimate the

random variation introduced from random effects such as geographical variation or

unobserved individual-level factors. The use of latent class models has often been

employed for identification of binary probabilities in the presence of misclassifica-

tion (Espeland and Hui, 1987). In the stated situation of modeling sensitivities and

specificities, a frequentist latent class approach was introduced by Qu et al. (1996)

that shares some similarities to our Bayesian approach.

Let us define the two matrices Z− and Z+, where Z− is an n×p1 matrix where

column vector z1 is a column of ones and the remaining columns represent p1 − 1

vectors containing the observed fixed effects information for the FNR, θ−. Similarly,

Z+ is an n×q1 matrix with an intercept column followed by q1−1 vectors containing

all information for the FPR, θ+. Next, we define W− and W+ as the n × p2 and

n× q2 design matrices for the random effects for vectors θ− and θ+, respectively. In

such a situation we use the mixed models

logit(θ−) = Z−γ− + W−λ− (3.6)
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and

logit(θ+) = Z+γ+ + W+λ+ (3.7)

where γ− and γ+ are parameter vectors associated with the fixed effects Z− and Z+,

and λ− and λ+ explain the variability introduced via W− and W+, respectively,

to the response probabilities. Often we assume normal distributions on the random

effects λ− ∼ N(0,Σ−) and λ+ ∼ N(0,Σ+).

The assumption that Z− = Z+ is quite a temptation given that in most studies,

all participants will typically have the same covariate information collected. How-

ever, this notation is general enough to allow that different factors may influence

the sensitivity and specificity differently. For example, we may wish to maximize

the posterior predictive ability of the models by selecting the most parsimonious set

of covariates for each of θ− and θ+. This would almost certainly result in a different

set of variables in Z− and Z+ and likewise for W− and W+.

In the event that only response data was recorded (xi out of ni repeated tests

for N individuals) and there is still a suspicion that latent interindividual factors that

affect the FNR and FPR exist within the data, we turn to a model-based approach

to detect this additional variation. Obviously no fixed effects have been observed

except in the extremely unusual case that individuals are to be considered fixed.

Specifically, suppose the true misclassification probabilities are generated from the

models

logit(θ−) = logit(Pr(Y = 0|T = 1)) = γ− + ε−,i (3.8)

logit(θ+) = logit(Pr(Y = 1|T = 0)) = γ+ + ε+,i (3.9)

where each ε−,i ∼ N(0, σ2
−) and ε+,i ∼ N(0, σ2

+). In this situation, each individual is

generated from the same population sharing common misclassification probabilities

θ− = logit−1(γ−) and θ+ = logit−1(γ+), but within each individual the probability

of misclassification varies based upon ε− and ε+. The extra “noise” or overdisper-

sion results in data for which extreme cases are observed more often than expected
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(likewise for underdispersion). For example, if each individual is observed 10 times

with misclassification probabilities θ− = 0.1 and θ+ = 0.1, it would be highly un-

likely to observe a substantial number of individuals with Xi = 4, 5, or 6. Likewise,

approximately 35% of true positives and true negatives would have Xi = 10 or 0,

respectively, according to basic binomial probabilities. When the data deviates from

this expected behavior substantially, there is likely unaccounted variability in the

model, which can be estimated via a random effect.

3.5 Hierarchical Model-Based Approaches for Estimating Misclassification

Probabilities

In biostatistics, interindividual variability rarely allows for simplistic assump-

tions of homogeneous misclassification errors to be satisfied. Consider the situation

in which the probability of misclassification may depend on some factor or factors

that vary among individuals, such as age, percent body fat, or the presence of a co-

morbid condition such as diabetes. It may be that the presence or combinations of

such factors may make a biomarker more difficult to detect, and thus the probability

of misclassification is a function of the set of relevant conditions. Hierarchical models

may help facilitate the additional random variability in the event of nonhomogeneous

misclassification rates.

3.5.1 The Hierarchical Dirichlet Prior Model

In some cases it is of interest to hierarchically estimate the parameters of the

misclassification probabilities θ−, θ+, and the related quantity 1 − θ− + θ+. For

each αi (h = 1, 2, 3) from (3.3), we can place a gamma(φ1,h, φ2,h) prior distribution

recalling that E[αi] = φ1,h/φ2,h and V [αi] = φ1,h/φ
2
2,h. Each set of φ1,h and φ2,h can

be set to reflect our prior knowledge of the parameters of the Dirichlet distribution

for θ− and θ+. Furthermore, if necessary we can utilize diffuse prior distributions to

represent our lack of knowledge, such as setting φ1,h ≥ 1 and φ2,h ≤ 1.
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In such a situation, we allow for the ith individual to have his or her own

probabilities of misclassification, (θ−,i, θ+,i), where now we modify (3.3) as follows:

p(θ−,i, θ+,i) =
1

B(α1,i, α2,i, α3,i)
θ

α1,i−1
−,i θ

α2,i−1
+,i (1− θ−,i − θ+,i)

α3,i−1 (3.10)

where each αh,i (h = 1, 2, 3) is an observation from

p(αh,i|φ1,h, φ2,h) =
φ

φ1,h

2,h

Γ(φ1,h)
α

φ1,h−1

h,i exp(−φ2,hαh,i). (3.11)

The variability among the parameters (α1,i, α2,i, α3,i) explain the interindividual vari-

ation in misclassification probabilities.

The prior distribution on each αh,i in equation (3.11) is completely governed

by the values of the hyperparameters (φ1,h, φ2,h). Specifically, because the variability

of each αh,i is strongly governed by φ2,h, especially its value relative to φ1,h, a diffuse

prior distribution will have small values for φ2,h. The mean of the prior distribution

is less relevant than the variance, as small variance priors have posterior distributions

that favor the prior mean and large variance priors yield posteriors that favor the

likelihood “mean”.

An important subtlety exists if the researcher has prior information. Suppose

a pilot study uses a group of truly exposed or diseased individuals (T = 1) to

gain information on the false negative rate (θ−) of the detection system, where

E[α1/(α1 + α2 + α3)] = θ−. Nothing further is known about the false positive rate

(θ+). To place a small prior variance on the α1 prior distribution and noninformative

distributions on the α2 and α3 ultimately yields a posterior distribution with little

contribution from the prior information. The reason is that placing a joint prior

distribution on (θ−, θ+) requires joint knowledge of the two parameters. Thus, any

method for eliciting prior information for a single misclassification parameter would

necessitate the use of independent distributions such as the beta.

For example, consider the situation in which from our pilot study, 35 of 40

diseased individuals were properly identified as diseased with five false negatives.

43



We wish to construct a distribution that reflects this information for θ− using our

Dirichlet prior that further reflects a lack of information regarding θ+. If we assign

α1 a prior distribution with mean 5 (say, the conjugate gamma(5, 1)), α2 a prior

distribution with mean 1,(i.e. a gamma(1, 1)), and α3 a prior distribution with

mean 39 (i.e. a gamma(39, 1)), we induce prior mean E[θ−] = 0.125, which reflects

our prior knowledge with prior standard deviation
√

(5× 35)/(402 × 41) = 0.052.

However, this also induces prior mean E[θ+] = 0.025 with prior standard deviation√
(1× 39)/(402 × 41) = 0.024, which has less variability than the parameter for

which we have information. Even with a modest amount of prior information on

a single parameter as in this case, we have induced a prior distribution on θ+ that

cannot accurately reflect our lack of prior information. The Dirichlet distribution

necessarily contains information about both parameters due to the linking quantity

(1− θ−− θ+), and consequently we require independent priors distributions if we do

not have information on both parameters.

3.6 Identifiability

Previous literature on these models from the frequentist realm make clear that

the model satisfies identifiability only when 1) θ− + θ+ ≤ 1 and 2) the number of

repeated measurements of the ith individual is such that ni ≥ 3. When θ− and θ+

are small, the first limitation is negligible. Either the beta or Dirichlet prior models

are sufficient for estimation for small misclassification probabilities. The second

limitation is quite easily overcome in the Bayesian realm under certain conditions.

Specifically, as long as there exists sufficient information to be able to estimate

θ−,θ+, and τ , then a subset of the sample can contain individuals with fewer than

3 repeated observations. We must assume that individuals are randomly assigned

to the number of repeated tests they receive such that the number of tests (n) is

independent of T .
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This can be accomplished numerous ways, depending on whether the primary

focus is on estimation of τ or θ− and θ+. If the misclassification probabilities are of

primary interest, a large number of repeated observations relative to the size of the

misclassification probability is desirable. If knowledge of the latent τ is of interest,

then a larger number of individuals with fewer repeated tests could be gathered.

Perhaps the worst case scenario, but still better than assuming the misclassified

values to be known, is to use informative prior distributions on the misclassification

probabilities based on information gained from previous studies.

In this situation, especially with only 1 or two repeated tests, we may still gain

some information for θ− and θ+; however, depending on the size of θ− and θ+ we

can gain substantial information for τ .

3.7 Estimation

One of the primary problems with this approach, especially in detecting whether

a random effect exists among individuals, is how many observations are required such

that the model benefits from adding a random effect. This problem can be parti-

tioned into two aspects: first, it is of interest to determine how many individuals,

N , are required for efficient estimation of the parameters, and secondly, how many

repeated observations nested within each individual, ni, are required for efficient es-

timation of the random effect. The following simulation explores the model’s ability

to estimate a random effect under varying levels of N and ni.

We generated the data set assuming a prevalence τ = 0.55 and misclassification

probabilities θ− = 0.14, and θ+ = 0.05. For estimation, we are using models 3.8 and

3.9, and thus we define γ− = logit−1(0.14) ≈ −1.815 and γ− = logit−1(0.05) ≈

−2.944 . We used sample sizes N = 15, 45, and 100, and for each sample size we

obtained ni = 5, 9, and 12 independent observations from each simulated participant.

For each N/n combination, we generated one data set with no random effect and one
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data set where we added normally distributed random effects to the misclassification

parameters

logit(θ−,i) = logit(θ−) + ε−,i,

and

logit(θ+,i) = logit(θ+) + ε+,i

where ε−,i ∼ N(0, σ2
−) where σ− = 0.15 and ε+,i ∼ N(0, σ2

+)where σ+ = 0.25. We

generated and analyzed 200 simulated data sets. Each data set was analyzed twice.

The first analysis estimates the model parameters ignoring any random effect, and

the second analysis accounts for random effects in the misclassification probability

models. For each parameter we present the posterior mean, standard deviation, and

95% credible interval coverage.

For all models, we assume that our prior information for τ can be explained

by a beta(1, 1) distribution, and that γ− and γ+ have N(0, 10) prior distributions.

For models in which we account for random effects ε− and ε+, we assume σ− and

σ+ are distributed uniform(0, 20).

3.7.1 Simulation Results

3.7.1.1 Datasets generated without a random effect. For each simulated data

set, we set initial values for each of three chains. We ran a 5, 000 iteration burn-in

followed by a 10, 000 observation sample thinning every third observation. During

the sample we monitored τ , γ−, γ+, and in certain cases σ− and σ+.

The first three tables present posterior estimates from data generated without

random effects. We compare estimation methods in which we account for a random

effect versus estimation where we ignore any potential random effect to elucidate

the potential bias introduced by attempting to estimate an effect that may or may

not be present. More importantly, given our parameter values, at what points with
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respect to N and n do we obtain reasonable estimates of the parameters. In Table

3.1, unsurprisingly a sample of 15 individuals yields relatively large posterior esti-

mates of the parameter standard deviations for τ , although the model that includes

estimation of a random effect produced substantially larger posterior standard devi-

ations. Furthermore, there is little added benefit to observing repeated observations

with regard to τ . It should be noted, the prior mean for τ , which was assigned a

beta(1, 1) prior, is 0.5, which explains why the clearly biased and imprecise estimated

value of τ from the model that includes random effects could be as close to 0.55 as

it is.

The estimated posterior means for τ when estimated without random effect

consistently approach the parameter value 0.55 at all combinations of overall sample

size N and intra-individual repeated tests n. When the data is estimated where we

näıvely include a random effect in the misclassification models, the posterior mean

of τ tends to be biased toward the prior mean (0.50), a trend that continues well

into the largest sample size of the simulation, especially for small n. Similarly, the

posterior mean estimates for θ− and θ+ are extremely biased for N = 15 when the

random effect is included in the model, and this improves only with substantial

increases in either the overall sample size or the number of repeated tests.

There is a marked improvement in precision of the posterior distributions

for θ− and θ+ when measured without a random effect as n grows larger. These

improvements are not seen in the models in which a random effect is included, as

these models perform extremely poorly under such small sample sizes, especially with

a diffuse prior distribution on σ− and σ+. Because the data is not generated with

a random effect, we can directly observe the instability introduced by superfluous

parameters. The prior parameter values for the random effects are centered at mean

10, although the posterior mean should be zero. The proximity of the posterior

mean to either 0 or 10 when the random effect has been included in the model is a
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useful means to determine the relative contribution of the likelihood versus the prior

to the posterior value.

As N grows larger, obviously the standard deviations for τ grow smaller, but

it also becomes evident that increasing n has an effect of reducing the standard

deviations in Tables 3.2 and 3.3, even when the models are estimated with a random

effect. The standard deviations for τ measured with and without random effects are

nearly the same when N = 45 and n = 12, and a similar effect occurs for N = 100

with n = 9 and 12.

The estimation of the posterior mean for σ− and σ+ was only attempted for half

of the simulations, and given that these data were generated without a random effect,

it is evident that we would prefer to observe the model yield posterior estimates for

these parameters as close to zero as possible. However, because of the diffuse prior

distributions as well as the relatively large means we used for these parameters, this

simulation gives us an idea of how much information in terms of sample size we

require to overcome the bias introduced via the added variability. The resounding

result from this simulation is that under the current parameterization, if there is

doubt as to whether a random effect exists, the proposed Bayesian approach achieves

posterior mean estimates closer to the generating values when the random effect is

omitted.

3.7.1.2 Datasets generated with a random effect. Generating datasets that

include random effects will inherently increase the variability of the posterior esti-

mates. The need for a simulation is to compare estimates from such datasets in

which we capture the additional random variability versus estimates in which we

ignore additional random variability. We can directly compare the performance of

the two methods and at varying sample sizes to gauge the effect of varying quantities

of data on estimates. We observe the results in Tables 3.4, 3.5, and 3.6.
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Table 3.1. Simulated datasets for N=15 generated without a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.499 0.544 0.505 0.545 0.506 0.532
StDev 0.27 0.124 0.26 0.115 0.247 0.115

95% CI Coverage 1 0.976 1 0.97 0.998 0.95

γ− (= -1.815) 0.124 -1.96 0.263 -1.92 0.336 -1.859
StDev 2.52 0.653 2.400 0.368 2.32 0.315

95% CI Coverage 1 0.948 1 0.932 1 0.948

γ+ (= -2.944) -0.153 -3.2 -0.391 -3.19 -0.601 -3.11
StDev 2.53 1.14 2.46 0.716 2.4 0.593

95% CI Coverage 1 0.966 1 0.956 0.992 0.936

σ−(= 0) 7.65 —– 6.25 —– 5.19 —–
StDev 5.2 —– 4.9 —– 4.47 —–

95% CI Coverage —– —– —– —– —– —–

σ+(= 0) 7.61 —– 5.95 —– 4.811 —–
StDev 5.2 —– 4.78 —– 4.27 —–

95% CI Coverage —– —– —– —– —– —–
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Table 3.2. Simulated datasets for N=45 generated without a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.5 0.549 0.516 0.548 0.528 0.544
StDev 0.239 0.073 0.135 0.0714 0.0873 0.0714

95% CI Coverage 1 0.964 0.99 0.946 0.986 0.954

γ− (= -1.815) 0.208 -1.87 -1.13 -1.84 -1.76 -1.82
StDev 2.2 0.294 1.07 0.201 0.385 0.172

95% CI Coverage 0.996 0.946 0.984 0.956 0.974 0.952

γ+ (= -2.944) -0.722 -3.14 -2.37 -3 -3.06 -3
StDev 2.34 0.598 1.46 0.358 0.725 0.304

95% CI Coverage 0.994 0.952 0.984 0.96 0.984 0.946

σ−(= 0) 6.25 —– 2.699 —– 1.34 —–
StDev 4.7 —– 2.43 —– 1.2 —–

95% CI Coverage —– —– —– —– —– —–

σ+(= 0) 5.52 —– 1.44 —– 0.479 —–
StDev 4.35 —– 1.47 —– 0.436 —–

95% CI Coverage —– —– —– —– —– —–
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Table 3.3. Simulated datasets for N=100 generated without a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.488 0.549 0.543 0.551 0.549 0.55
StDev 0.167 0.0496 0.0556 0.0487 0.0494 0.0487

95% CI Coverage 0.996 0.958 0.958 0.93 0.956 0.948

γ− (= -1.815) -0.737 -1.84 -1.88 -1.83 -1.86 -1.82
StDev 1.42 0.189 0.168 0.131 0.129 0.112

95% CI Coverage 0.992 0.954 0.952 0.95 0.934 0.936

γ+ (= -2.944) -2.09 -3.03 -3.18 -2.96 -3.12 -2.96
StDev 1.85 0.37 0.419 0.238 0.278 0.202

95% CI Coverage 0.992 0.938 0.932 0.936 0.934 0.962

σ−(= 0) 4.68 —– 0.918 —– 0.57 —–
StDev 3.51 —– 0.709 —– 0.372 —–

95% CI Coverage —– —– —– —– —– —–

σ+(= 0) 2.57 —– 0.347 —– 0.284 —–
StDev 2.3 —– 0.22 —– 0.166 —–

95% CI Coverage —– —– —– —– —– —–
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For sample size N = 15 in Table 3.4, we observe similar results as when the

data were generated without an individual-level random effect observed in Table 3.1.

The posterior estimate for τ scarcely changes from the prior mean, and in general,

estimation of the posterior for all parameters is more effective if the random effect

is ignored for small sample sizes, regardless of the size of n. The same holds true

for the estimation of the posterior probabilities in Table 3.5 at all levels of n except

potentially at the highest value, n = 12. Thus, when the sample size is moderately

large, a large number of repeated tests makes the estimates for the random effects

model comparable to the model estimated without random effects. However, we

clearly observe that the estimated posterior means for σ− and σ+ are still larger than

we might hope, although the 95% credible interval coverage improves considerably

as n increases.

At the largest sample size in Table 3.6, the posterior means are moderately

comparable across the two methods. There is even potential evidence that although

the data were generated with an intra-individual random effect, the posterior means

measured without the random effect are no worse than the estimation with the

random effect. However, the posterior parameter estimates and 95% credible interval

coverage also produce estimates that are moderately close to the generating value

when n = 9 and 12. Therefore we conclude that estimation of random effects in

these types of models require moderately large sample sizes (represented here by

N) and a moderately large number of repeated tests within each individual. It is

fairly evident that 5 repeated tests is too few given the parameter values we have

used, and tests on the order of 8 to 10 are required for moderately useful posterior

estimates.

It is noteworthy however that this simulation used moderately small values

for σ− and σ+, and moreover the prior distributions we used were extremely diffuse

and not informative of the values we were trying to estimate. The intention of using
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Table 3.4. Simulated datasets for N=15 generated with a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.501 0.532 0.504 0.544 0.505 0.539
StDev 0.271 0.124 0.263 0.115 0.246 0.114

95% CI Coverage 1 0.978 1 0.956 1 0.954

γ− (= -1.815) 0.233 -1.93 0.279 -1.88 0.25 -1.85
StDev 2.51 0.659 2.37 0.365 2.3 0.307

95% CI Coverage 1 0.952 1 0.956 1 0.93

γ+ (= -2.944) -0.243 -3.18 -0.385 -3.1 -0.631 -3.14
StDev 2.53 1.13 2.43 0.696 2.4 0.603

95% CI Coverage 0.998 0.968 0.998 0.936 0.992 0.923

σ−(= 0.15) 7.63 —– 6.24 —– 5.23 —–
StDev 5.14 —– 4.88 —– 4.44 —–

95% CI Coverage 0.118 —– 0.184 —– 0.402 —–

σ+(= 0.25) 7.57 —– 5.99 —– 4.66 —–
StDev 5.13 —– 4.76 —– 4.17 —–

95% CI Coverage 0.234 —– 0.36 —– 0.675 —–
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Table 3.5. Simulated datasets for N=45 generated with a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.501 0.539 0.515 0.552 0.529 0.546
StDev 0.245 0.0731 0.14 0.0714 0.0945 0.0713

95% CI Coverage 1 0.956 0.994 0.952 0.974 0.94

γ− (= -1.815) 0.327 -1.82 -1.09 -1.83 -1.68 -1.82
StDev 2.2 0.294 1.14 0.199 0.47 0.171

95% CI Coverage 0.998 0.956 0.992 0.96 0.976 0.954

γ+ (= -2.944) -0.691 -3.08 -2.26 -2.97 -2.92 -2.95
StDev 2.32 0.579 1.49 0.356 0.811 0.3

95% CI Coverage 0.998 0.938 0.99 0.952 0.986 0.948

σ−(= 0.15) 6.17 —– 2.7 —– 1.47 —–
StDev 4.65 —– 2.44 —– 1.28 —–

95% CI Coverage 0.104 —– 0.522 —– 0.732 —–

σ+(= 0.25) 5.59 —– 1.55 —– 0.617 —–
StDev 4.43 —– 1.62 —– 0.561 —–

95% CI Coverage 0.338 —– 0.896 —– 0.986 —–
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Table 3.6. Simulated datasets for N=100 generated with a random effect

Posterior Estimates
5 Repeated 9 Repeated 12 Repeated
Binary Tests Binary Tests Binary Tests

With Without With Without With Without
Random Random Random Random Random Random

Parameter Effects Effects Effects Effects Effects Effects

τ (=0.55) 0.49 0.549 0.538 0.548 0.548 0.55
StDev 0.17 0.0498 0.0562 0.0488 0.05 0.0487

95% CI Coverage 1 0.954 0.978 0.952 0.952 0.946

γ− (= -1.815) -0.714 -1.83 -1.88 -1.82 -1.88 -1.83
StDev 1.43 0.19 0.172 0.131 0.132 0.112

95% CI Coverage 0.996 0.95 0.964 0.954 0.95 0.95

γ+ (= -2.944) -2.04 -2.98 -3.18 -2.96 -3.11 -2.95
StDev 1.84 0.362 0.412 0.237 0.285 0.201

95% CI Coverage 0.978 0.954 0.954 0.946 0.942 0.966

σ−(= 0.15) 4.6 —– 0.953 —– 0.603 —–
StDev 3.44 —– 0.726 —– 0.402 —–

95% CI Coverage 0.154 —– 0.726 —– 0.824 —–

σ+(= 0.25) 2.58 —– 0.36 —– 0.307 —–
StDev 2.29 —– 0.223 —– 0.174 —–

95% CI Coverage 0.702 —– 0.988 —– 0.994 —–
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such small parameter values was that on the logit scale the added variability would

likely be detectable without adding excessive noise to the data. However, including

the possibility of random effects yielded noisy estimates. A more flexible or even

informative prior distribution may have improved the performance of the models,

although this would require a diffuse gamma prior distribution on σ− and σ+, which

have documented difficulties when implemented in MCMC algorithms.

3.8 Applications

We demonstrate the methods using two datasets. The first was published by

Boyles (2001) and serves as a simple demonstration of the method from the quality

control literature. The second data set was published by Fujisawa and Izumi (2000)

originally and demonstrates the advantages of the Bayesian approach for parameter

estimation over previously published methods. For all simulations, we use WinBUGS

v1.4.3 (Lunn et al., 2000).

3.8.1 Quality Control Data Example

The first data set features 9 repeated observations among 38 independent units

from inkjet print-sample inspection data. The data are presented on Table 3.7 and

feature the frequencies of “Pass” test results.

Table 3.7. Repeated Binary Test Frequencies for 38 Subjects

# of tests ni = 9
xi 0 1 2 3 4 5 6 7 8 9
Frequency 10 2 2 1 2 0 0 3 2 16

We estimate the probability that any randomly selected item, Ti, is acceptable,

τ = pr(Ti = 1), as well as the false positive rate and false negative rate, θ+ and θ−,

respectively. We use the posterior distribution described in 3.2 and subsequent Gibbs

sampler, where we assume beta(1, 1) prior distributions on each of τ , θ+, and θ−.

We set initial values for each of 3 chains, run a 1000 iteration burn-in, and collect
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samples of 1000 observations from the posterior. The posterior results are presented

in Table 3.8.

Table 3.8. Assumes beta(1,1) priors on all parameters

Posterior Mean Posterior St Dev 95% Credible Interval

τ 0.55 0.078 (0.39, 0.70)

θ− 0.047 0.016 (0.022, 0.082)

θ+ 0.12 0.026 (0.070, 0.17)

Suppose the sampled inkjet cartridges were manufactured on different days or

at different production facilities. In such a situation, we might assume that there

exist some inherent heterogeneity among the individual cartridges that potentially

cannot be measured directly other than in the added variability in the response. For

example, looking at the data in Table 3.7 and the results in Table 3.8, we might be

suspicious of additional components of variability when we observe that
∑N

i=1 I(xi =

3) <
∑N

i=1 I(xi = 4) and
∑N

i=1 I(xi = 7) >
∑N

i=1 I(xi = 8) where I(·) is the

indicator function. This potentially suggests additional variability in θ− and θ+ that

may require the use of hierarchical Bayesian modeling. Furthermore, the preceding

simulations show that with a moderately large sample size and moderately large

number of repeated observations, it is possible to detect inter-individual random

variability that exists

To allow for a hierarchical model, we assume that for the ith individual θ−,i and

θ+,i are sampled from a Dirichlet(α1, α2, α3) distribution. Lacking further prior in-

formation, we place gamma(4, 1) hyperprior distributions upon each αj(j = 1, 2, 3).

This allows for estimation of a unique τ , 38 realizations each of θ− and θ+, and full

posterior estimates of each αj. We denote θ̃− as the set of 38 estimated posterior

57



Table 3.9. Posterior estimates of hierarchical Dirichlet model

Posterior Mean Posterior St Dev 95% Credible Interval
τ 0.56 0.081 (0.40, 0.72)
α1 0.72 0.30 (0.29, 1.4)
α2 1.2 0.49 (0.45, 2.3)
α3 7.5 2.5 (3.4, 13)

θ̃− 0.072 0.034 (0.038, 0.082)

θ̃+ 0.12 0.026 (0.070, 0.17)

false negative rates, and θ̃+ as the set of 38 estimated posterior false positive rates.

We observe the results in Table 3.9.

Obviously we have changed the prior information placed on the misclassifica-

tion parameters in both distribution and in quantity. The larger the value of the

first parameter in the gamma hyperprior distribution, the more “informative” the

prior distribution for each of the αj elements. Thus, in our example where each

αj is assumed to be equally unknown, we have a posterior that is slightly biased

toward equal values of α1, α2, and α3. This is an unfortunate consequence of using a

gamma hyperprior distribution on the elements of the Dirichlet distribution in this

case. The relatively small posterior value for α1 necessitated a slightly larger prior

distribution mean to avoid a gamma distribution that samples too close to the lower

bound of zero.

3.8.2 Biostatistical Application

We next employ our model on a data set of tests for the MNSs antigen group

within atomic bomb survivors and their children. The data are presented in Table

3.10. We observe that each individual was assessed n = 2, 3, or 4 times, and because

blood antigen status should not vary by time, the testing method clearly contains

misclassification. However, there is evidence that intraindividual factors may affect

the ability to detect these antigens, especially participant age and health status.
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Table 3.10. Test Quality Control Data from Fujisawa & Izumi, 2000

Frequencies of Positive Tests given ni

# of tests ni = 2 ni = 3 ni = 4
Antigen City 0 1 2 0 1 2 3 0 1 2 3 4

M Hiroshima 419 8 1918 77 4 1 279 4 1 0 0 29
Nagasaki 257 13 958 26 2 1 127 3 0 0 0 13

N Hiroshima 714 23 1587 117 5 10 225 13 0 0 2 19
Nagasaki 324 70 799 40 3 27 85 4 1 0 4 7

S Hiroshima 1823 29 208 269 1 10 33 24 1 0 2 1
Nagasaki 868 52 43 83 1 7 4 8 0 0 0 0

s Hiroshima 19 1 2316 9 0 0 349 0 0 0 1 33
Nagasaki 5 5 1065 1 1 3 133 0 0 0 0 15

The majority of tested individuals were tested only twice, although we require

n ≥ 3 to maintain identifiability. As discussed previously, the Bayesian approach to

parameter estimation can easily overcomes this in two ways. First, if we possess prior

information on the parameters, we can represent prior knowledge on the misclassi-

fication parameters with a distribution that will allow for identifiable estimation of

τ for when n < 3; likewise, we may estimate the misclassification parameters with

known prior information on τ . Secondly, if we possess a moderately large number of

individuals with n ≥ 3, then this information can be incorporated into the model to

gain additional knowledge of τ for individuals with fewer than three repeated binary

tests.

Our data set satisfies the latter condition. We require the assumption that

the number of repeated binary tests are randomly assigned to individuals; thus, we

assume the probability of misclassification is independent of n. Otherwise, we make

few prior assumptions about the parameters by assigning beta(1, 1) prior distribu-

tions to each of τ , θ−, and θ+. Next, we sample according to the scheme described

for the posterior in 3.1. During the sampling scheme, we obtain estimates of θ− and

θ+ from the individuals with n ≥ 3 and allow these estimates to apply guide the

additional information we obtain from τ where n = 2.
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Table 3.11. Posterior estimates for model with beta(1,1) priors

Antigen City Parameter Mean St Dev 0.025% 0.975%
M Hiroshima τ 0.813 0.00744 0.799 0.828

θ− 0.000817 0.000547 0.0000831 0.00215
θ+ 0.0110 0.00353 0.00495 0.0187

Nagasaki τ 0.788 0.0111 0.766 0.809
θ− 0.00292 0.00175 0.000334 0.00693
θ+ 0.0181 0.00747 0.00530 0.0342

N Hiroshima τ 0.685 0.00903 0.667 0.702
θ− 0.00734 0.00162 0.00440 0.0108
θ+ 0.00706 0.00265 0.00269 0.0129

Nagasaki τ 0.723 0.0128 0.698 0.748
θ− 0.0475 0.00559 0.0369 0.0589
θ+ 0.0148 0.00795 0.00269 0.0331

S Hiroshima τ 0.117 0.00680 0.104 0.130
θ− 0.0650 0.0123 0.0423 0.0903
θ+ 0.00169 0.00102 0.000232 0.00413

Nagasaki τ 0.103 0.0144 0.0740 0.131
θ− 0.320 0.0529 0.210 0.419
θ+ 0.00494 0.00411 0.000161 0.0154

s Hiroshima τ 0.989 0.00197 0.985 0.993
θ− 0.000461 0.000294 0.0000692 0.00118
θ+ 0.0199 0.0189 0.000579 0.0698

Nagasaki τ 0.990 0.00452 0.979 0.996
θ− 0.00227 0.00130 0.000180 0.00513
θ+ 0.280 0.152 0.0417 0.600

The results presented in Table 3.11 display the posterior information regarding

each parameter for each location and antigen type. As we might expect the preva-

lence τ for unique antigen types is quite similar across locations. Furthermore, the

probabilities of misclassification are uniformly small with very few exceptions. Even

in situations in which the misclassification probabilities are greater than 0.10, we

must note that the prior means of each of the parameters is 0.5, and that in these

cases there is an extreme value for τ , reducing the number of true positives or true

negatives even with a large sample size.
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The conclusions of the first model give evidence that the antigen type across

the two cities have similar prevalences. Furthermore, because the misclassification

probabilities are generally small (with a couple of exceptions), we could model these

as being generated with a common mean and the deviations from this mean be

attributable to a random effect. The model we propose to simplify the estimation

process uses the 4 element design vector z′ = (1, Z1, Z2, Z3) where Z1 is an indicator

variable such that Z1,i = 1 if the ith individual has antigen N and 0 otherwise, and

correspondingly, Z2,i = 1 for antigen S and Z3,i = 1 for antigen s. Then we define

logit(τk) = z′β,

logit(θ−,i) = γ− + ε−,i,

logit(θ+,i) = γ+ + ε+,i

for k = 1, . . . , 4 where τk is the posterior prevalence of the given antigen, and β′ =

(β0, β1, β2, β3) where intercept β0 represents the log-odds of antigen M, and β1, β2,

and β3 represent the change in the log-odds corresponding to antigens N, S, and

s, respectively. Furthermore, θ−,i and θ+,i represent the false negative and false

positive rates, respectively, for i = 1, . . . , N . We define γ− and γ+ as the log-odds

of the common mean false negative and false positive rates, respectively, and ε−,i

and ε+,i are the respective random effects, where we assume ε−,i ∼ N(0, σ2
−) and

ε+,i ∼ N(0, σ2
+).

We have observed no prior information, and thus we utilize moderately diffuse

prior distributions for each parameter. We set

β ∼ N(0, 100I4),

γ− ∼ N(0, 100),

γ+ ∼ N(0, 100),

σ− ∼ gamma(1, 1),
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σ+ ∼ gamma(1, 1),

where I4 is the 4× 4 identity matrix.

We initialize the chains, reject the first 1000 burn-in observations, and then

collect a sample of 10,000 posterior observations from the WinBUGS sampler, thin-

ning every third observation. The posterior estimates of means and variability terms

are presented in Table 3.12.

Table 3.12. Posterior estimates for Hiroshima survivors model-based estimates

Parameter Mean St Dev 0.025% 0.975%
β0 1.42 0.040 1.34 1.50
β1 -0.58 0.053 -0.68 -0.48
β2 -3.48 0.072 -3.63 -3.34
β3 3.29 0.180 2.94 3.65
γ− -5.05 0.86 -6.91 -3.50
γ+ -5.10 0.59 -6.28 -3.95
σ− 2.53 0.66 1.57 4.10
σ+ 1.17 0.64 0.26 2.76

3.9 Discussion

This is a straightforward extension of the previous work done on pass/fail

testing systems with the added benefit of Bayesian inference. The addition of hi-

erarchical modeling in this context opens possibilities for the broader use of these

methods in the biostatistical arena by controlling for and estimating the effects of

interindividual variability. The assumption that the misclassification probabilities

are constant over time could be relaxed in future research to allow for new advances

in diagnostic capabilities.
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CHAPTER FOUR

Bayesian Approaches to Detecting Dependent Binary Data

4.1 Introduction

Binary misclassification is a common phenomenon in the biological and epi-

demiological sciences that results in biased statistical inference when adjustment

for the misclassification is not performed. Approaches to statistical inference that

accounts for misclassification has a lengthy history in the frequentist literature (see

Tenenbein (1970), Hochberg (1977), and Espeland and Hui (1987)). In the late

twentieth century, the Bayesian approach to statistical inference flourished thanks

to developments in the applicability of MCMC methods (Gelfand and Smith, 1990)

and the increasing speed and ubiquity of computing power. Some major develop-

ments in Bayesian approaches to statistical estimation in the presence of misclassified

binary data include Paulino et al. (2003), Joseph et al. (1995), and Gustafson (2004).

Correction for binary misclassification can be an expensive, time-consuming,

and often invasive process because typically we require at least two observations

by which we attempt to quantify the test probabilities of correct classification, the

sensitivity and specificity. Furthermore, it requires planning in the design process

to allocate time, money, etc. to collect sufficient data by which we validate our

fallible classifier. When a perfect classifier, or gold standard test, exists, we may

choose to test all study participants using our fallible classifier and utilize the gold

standard test on a subsample of the total study population (Tenenbein, 1970). This

method, known as double sampling, is generally utilized when the gold standard is

exceedingly expensive or introduces unacceptable risk to the larger study population.

Many situations require measurement in which a gold standard test does not

exist or is not safely available for use. Such tests rely on two or more imperfect
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measurement systems without the convenience of comparison with a perfect classi-

fier. For example, Fujisawa and Izumi (2000) utilized a repeated binary diagnostic

test to estimate the prevalence of blood-based antigens among a longitudinal study

group in Japan. Another tool is the dual test protocol, which relies on two fallible

binary classifiers to estimate the latent true classification status. Its use has been

documented by Joseph et al. (1995) in a Bayesian context for the serological exam-

ination testing for Strongyloides infection among Cambodian refugees in Canada.

One assumption that was made by Joseph et al. (1995) that was later adopted by

Ren and Stone (2007a) was that the tests were conditionally independent, or that

the processes by which one test fails to correctly classify an observation has nothing

to do with the processes by which the second test misclassifies an individual.

A more general approach developed by Black and Craig (2002) allows for

potential dependence between diagnostic test sensitivities and/or specificities. How-

ever, they recognize that any such method suffers from a lack of identifiability of

model parameters, requiring informative prior assumptions on model parameters to

estimate the unknowns. This is unrealistic in many situations as our reliance on a

dual test protocol usually implies a lack of information on the test properties.

It is important to have some knowledge of the impact of misspecification on

the dependence assumption of a dual test protocol. We attempt to evaluate the

impact of ignoring misclassification parameter dependence on posterior parameter

estimates. Additionally, we use noninformative prior distributions to properly ac-

count for dependent misclassification probabilities to evaluate whether a nonidenti-

fiable Bayesian model can produce reliable posterior estimates in such a situation.

The final aim of the chapter is to evaluate statistical methods to detect conditional

dependence between binary diagnostic tests in the context of no or little prior data.

In Section 4.2 we formulate the general likelihood and posterior distribution

assuming an independent dual test protocol. In Section 4.3 we add dependence
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parameters between the sensitivities and specificities and formulate the full posterior

distribution. In Sections 4.4.1 and 4.4.2 we describe two statistical approaches for

detecting conditional dependence in binary diagnostic tests, and in Section 4.5 we

evaluate the posterior estimates and performance of the model evaluation methods

in detecting dependence in binary tests. We apply the methods to a previously

published data set in 4.6.

4.2 Independent Binary Tests

In a simple logistic regression situation with multiple covariates, we assume

that the relationship between the binomial response Y and the covariate vector z of

length p can be explained by the relationship

logit(π) = z′β (4.1)

where π = pr(Y = 1|z) and vector β′ = (β0, . . . , βp) where βk represents the log-

odds contribution of the kth element of vector z. Consistent estimation of π relies

on perfectly observed response and covariate values.

4.2.1 Misclassification

Suppose we introduce an additional binary covariate that is measured with

error due to a fallible classification system. Because of the error, it is actually

impossible to observe its true status, represented by T , forcing us to rely on fallible

classifiers that may produce results inconsistent with the truth. One such method

is the dual test protocol, which is efficient due to its reliance upon two binary

tests. Using such a system allows us to estimate the true exposure status of T , the

covariate of interest, where we assume T is distributed Bernoulli(τ). We denote

the two fallible binary classifiers as X1 and X2, where we define the sensitivities

S1 = pr(X1 = 1|T = 1) and S2 = pr(X2 = 1|T = 1) and the specificities C1 =

pr(X1 = 0|T = 0) and C2 = pr(X2 = 0|T = 0). If the two tests are independent,
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the joint distribution of the observed X1 and X2 given the latent T is

f(x1, x2|t) =
(
Sx1

1 (1− S1)
1−x1Sx2

2 (1− S2)
1−x2

)t

×
(
(1− C1)

x1C1−x1
1 (1− C2)

x2(C2)
1−x2

)1−t
.

(4.2)

To arrive at the full joint distribution of the observed variables X1, X2, and the

latent T , we employ the distribution of T such that

f(x1, x2, t) = f(x1, x2|t)f(t)

=
(
τSx1

1 (1− S1)
1−x1Sx2

2 (1− S2)
1−x2

)t

×
(
(1− τ)(1− C1)

x1C1−x1
1 (1− C2)

x2(C2)
1−x2

)1−t
.

We can then sum latent T from the statement by noting f(x1, x2) =
∑1

t=0 f(x1, x2, t)

to obtain a distribution that will ultimately allow us to make inference upon our pa-

rameters based solely upon the observed data. Thus, we denote the joint distribution

of independent X1 and X2 as

f(x1, x2) = (τS1S2 + (1− τ)(1− C1)(1− C2))
I(x1=1,x2=1)

× (τS1(1− S2) + (1− τ)(1− C1)C2)
I(x1=1,x2=0)

× (τ(1− S1)S2 + (1− τ)C1(1− C2))
I(x1=0,x2=1)

× (τ(1− S1)(1− S2) + (1− τ)C1C2)
I(x1=0,x2=0) ,

(4.3)

where I(·) is the indicator function. The joint distribution of N independent obser-

vations takes the form of a multinomial distribution.

We note that we can only observe X1 and X2 with four possible outcomes:

X1 = X2 = 0; X1 = 0, X2 = 1; X1 = 1, X2 = 0; and X1 = X2 = 1. Given that there

are five parameters (S1, S2, C1, C2, and τ), this model is not identifiable. We can

gain additional information if the value of τ varies based on our perfectly observed

covariates z via the logistic regression model-based identity

f(t|z) = pr(T = t|z) =
exp (t(z′λ))

1 + exp(z′λ)
,
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where λ is the parameter vector that relates z to τ . If there is substantial separation

between the prevalence of τ at different levels of z, that is, for significantly large

values of λ, then identifiability will likely be achieved (Cheng et al., 2007).

We allow the mean of our outcome variable Y to vary based upon z and T ,

such that we can rewrite 4.1 as

f(y|t, z) = pr(Y = y|z, t) =
exp (y(z′β + φt))

1 + exp(z′β + φt)
,

where φ is the coefficient for latent T .

Using these relationships, we develop our likelihood for the ith individual as

f(yi, x1,i, x2,i, zi|ti, S1, S2, C1, C2, β, λ, φ) = f(yi|ti, zi)f(ti|zi)f(x1,i, x2,i|ti). (4.4)

We next define the prior information that we have for our parameters using

the general notation

f(β, φ, λ, S1, S2, C1, C2)

to represent our prior distribution. Assuming a sample of size N observations, where

we denote y′ = (y1, . . . , yN), x1 = (x1,1, . . . , x1,N), etc., we combine the likelihood

and prior distributions in the manner of Ren and Stone (2007a) to obtain the pos-

terior distribution

f(β, φ, λ, S1, S2, C1, C2, t|x1,x2,y,Z)

= f(β, φ, λ, S1, S2, C1, C2)
N∏

i=1

f(yi, x1,i, x2,i, zi|ti, S1, S2, C1, C2, β, λ, φ)

= f(β, φ, λ, S1, S2, C1, C2)

{
N∏

i=1

exp (yi(z
′
iβ + φti))

1 + exp(z′iβ + φti)

}

×

{
N∏

i=1

(
S

x1,i

1 (1− S1)
1−x1,iS

x2,i

2 (1− S2)
1−x2,i

)ti

}

×

{
N∏

i=1

(
(1− C1)

x1,iC
1−x1,i

1 (1− C2)
x2,i(C2)

1−x2,i

)1−ti

}

×

{
N∏

i=1

exp (t(z′iλ))

1 + exp(z′iλ)

}
.

67



4.3 Dependent Binary Tests

Suppose that X1 and X2 are dependent tests such that pr(X1 = 1, X2 = 1|T =

1) 6= S1×S2 and/or pr(X1 = 0, X2 = 0|T = 0) 6= C1×C2. Let us define conditional

dependence term for the sensitivities ρS = pr(X1 = 1, X2 = 1|T = 1)− S1S2 where

ρS ∈ ((S1 − 1)(1− S2), min(S1, S2)− S1S2) Vacek (1985). Likewise, the conditional

dependence term for the specificities ρC = pr(X1 = 0, X2 = 0|T = 0) − C1C2 is

defined on the interval ((C1−1)(1−C2), min(C1, C2)−C1C2). To add the dependence

terms to the data likelihood, we simply modify the joint density of X1 and X2 such

that

f(x1, x2|ti) = (ti(S1S2 + ρS) + (1− ti)((1− C1)(1− C2) + ρC))I(x1=1,x2=1)

× (ti(S1(1− S2)− ρS) + (1− ti)((1− C1)C2 − ρC))I(x1=1,x2=0)

× (ti((1− S1)S2 − ρS) + (1− ti)(C1(1− C2)− ρC))I(x1=0,x2=1)

× (ti((1− S1)(1− S2) + ρS) + (1− ti)(C1C2 + ρC))I(x1=0,x2=0) .

(4.5)

It is then straightforward to obtain the marginal density for the dual test protocol

as

f(x1, x2) = (τ(S1S2 + ρS) + (1− τ)((1− C1)(1− C2) + ρC))I(x1=1,x2=1)

× (τ(S1(1− S2)− ρS) + (1− τ)((1− C1)C2 − ρC))I(x1=1,x2=0)

× (τ((1− S1)S2 − ρS) + (1− τ)(C1(1− C2)− ρC))I(x1=0,x2=1)

× (τ((1− S1)(1− S2) + ρS) + (1− τ)(C1C2 + ρC))I(x1=0,x2=0) .

(4.6)

From our likelihood distribution expressed in 4.4, we note that the inclusion of

dependence parameters only affects f(x1, x2|t), but the conclusions necessarily have

a bearing on the estimation of latent T , and using 4.3 when in fact the tests are

dependent subsequently introduces bias into the conclusions. Estimation of π and

subsequently S1, S2, C1, and C2 depend on all other parameters through the MCMC

algorithm as demonstrated by Ren and Stone (2007a).

We assume in the preceding model similarly to Dendukuri and Joseph (2001)

that the test sensitivities and specificities are homogeneous across values of z. This
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simplifying assumption should necessarily be scrutinized; however, the loss of the

homogeneity assumption of our model eliminates the already marginal identifiability

of the data, resulting in the need for the use of informative prior distributions to

achieve posterior parameter estimates. We proceed assuming homogeneous misclas-

sification probabilities as we assume no further prior information on our parameters.

4.4 Model Assessment Methods

Because parameter identifiability is such a concern, the introduction of a de-

pendence term or terms will create an additional challenge for estimation from the

posterior distributions. On the other hand, to simply ignore the association intro-

duces potential bias into the parameter estimates.

4.4.1 Gibbs Variable Selection

In order to achieve parsimony and develop objective criteria regarding whether

to include or exclude dependence parameters we extend a Bayesian variable selection

procedure to this context in which model identifiability becomes a major concern.

We use the method of Gibbs Variable Selection proposed by Dellaportas et al. (2002)

in which we use the binary indicator priors for variable selection in regression (Kuo

and Mallick, 1998) to identify the most parsimonious model. We create k = 2

indicator variables γ1 and γ2 and multiply them by ρS and ρC , respectively, and

allow the MCMC process to identify the model of highest posterior value. We thus

modify 4.5 as follows:

f(x1, x2|ti) = (ti(S1S2 + ρSγ1) + (1− ti)((1− C1)(1− C2) + ρCγ2))
I(x1=1,x2=1)

× (ti(S1(1− S2)− ρSγ1) + (1− ti)((1− C1)C2 − ρCγ2))
I(x1=1,x2=0)

× (ti((1− S1)S2 − ρSγ1) + (1− ti)(C1(1− C2)− ρCγ2))
I(x1=0,x2=1)

× (ti((1− S1)(1− S2) + ρSγ1) + (1− ti)(C1C2 + ρCγ2))
I(x1=0,x2=0) .

(4.7)
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Each γj (j = 1, 2) is assigned a Bernoulli(0.5) prior distribution which induces four

possible models of equal prior probability:

(1) the independent model, in which γ1 = γ2 = 0 and the tests are subsequently

considered independent,

(2) the dependent sensitivity model, in which γ1 = 1 and γ2 = 0,

(3) the dependent specificity model, in which γ1 = 0 and γ2 = 1, and

(4) the dual dependence model where both γ1 = γ2 = 1.

A method for sampling such a model from WinBUGS is explained in Ntzoufras

(2002).

4.4.2 Deviance Information Criteria

The Deviance Information Criteria (DIC) is a Bayesian measure for assess-

ing model fit in which incorporates the posterior deviance, or fit of the data given

the selected parameters, penalized by the additional complexity due to adding

extra parameters as explained by Spiegelhalter et al. (2002) in their seminal pa-

per. This measure gives similar results as Akaike’s Information Criteria (Akaike,

1973) under negligible prior information, but its subsequent strength is its ability

to produce model assessments under informative or noninformative prior assump-

tions. We define posterior distribution p(θ|y) with parameter set θ and data y such

that E[θ|y] = θ̄, which implies θ̄ is simply the set of posterior parameter means.

Next, we define D(θ̄) = −2log(p(y|θ̄)) + 2log(f(y)), where for E[Y ] = µ(θ) then

f(y) = p(y|µ(θ) = y). Then

DIC = D(θ̄) + 2pD,

where pD is roughly interpreted as the expected degree of “overfitting” of the pos-

terior estimates θ̄ to the data y. Strictly speaking, for model with focus of inference
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Θ, then

pD{Y, Θ, θ̄} = Eθ|y[−2log(p(y|θ))] + 2log[p(y|θ̄(y))]

is the proposed effective number of parameters.

Because the DIC increases with pD, its value should increase with superfluously

added parameters and decrease where the fit genuinely improves without overfitting.

However, we use it in the context of attempting to determine the fit of an already

saturated model in the attempt to determine whether its performance can identify

the data generating model in a noninformative prior setting.

4.5 Simulation

We note that previous explorations of this model assuming an independent

dual test protocol analyzed a single simulated data set rather than a series of simu-

lated data sets (Ren and Stone (2007a),Ren and Stone (2007b)). Furthermore, when

considering the more general approach taken by Black and Craig (2002), we note

that a relatively large amount of prior information was used for model evaluation and

subsequent estimation of model parameters. Our approach is to utilize the diffuse

prior approach of Ren and Stone (2007a) in the attempt to estimate the parameters

of various combinations of dependent binary tests in models similar to that of Black

and Craig (2002).

In our simulations, we address three primary concerns:

(1) we attempt to quantify the model instability that arises when we include

conditional dependence in our analysis when in reality the dual test protocol

is independent.

(2) we quantify the bias introduced when the data analysis ignores conditional

dependence when in reality the dual test protocol contains conditionally

dependent process.
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(3) we detect the data-generating model via the use of Gibbs Variable Selection

and DIC statistic discussed in sections 4.4.1 and 4.4.2.

In all situations we assume that no prior information exists and thus we use diffuse

priors on all parameters. This adds a computational burden as the MCMC chain

must attempt to estimate unique parameter values in a near-nonidentifiable model.

For each of four scenarios, we generate 200 datasets of N = 800 observations.

For the ith observation within each dataset we generate binary response yi, “true”

classification status ti, fallible dual binary test protocol outcomes x1,i and x2,i, and

design vector z′i =

(
1 z1,i z2,i z3,i

)
, where for h = 1, 2, 3, binary zh,i indicates

the ith participant’s inclusion in one of four mutually exclusive groups. We further

define

logit(pr(ti = 1|zi)) = z′iλ = −0.85− z1,i + z2,i + 2z3,i,

logit(pr(yi = 1|ti, zi)) = z′iβ + φti = −0.7− 0.3z1,i + 0.8z2,i + 1.6z3,i + 1.4ti,

pr(x1,i = 1, x2,i = 1|ti) = ti(S1S2 + ρS) + (1− ti)((1− C1)(1− C2) + ρC),

pr(x1,i = 1, x2,i = 0|ti) = ti(S1(1− S2)− ρS) + (1− ti)((1− C1)C2 − ρC),

pr(x1,i = 0, x2,i = 1|ti) = ti((1− S1)S2 − ρS) + (1− ti)(C1(1− C2)− ρC),

pr(x1,i = 0, x2,i = 0|ti) = ti((1− S1)(1− S2) + ρS) + (1− ti)(C1C2 + ρC),

where S1 = 0.9, S2 = 0.7, C1 = 0.75, and C2 = 0.95 for all simulated data sets.

Although the data will be generated with T , we will then assume that T is latent

and proceed with posterior estimation with only Y , X1, X2, and z.

The four subsections diverge with respect to the quantities ρS and ρC . In

Section 4.5.1 we generate X1 and X2 with ρS = ρC = 0, which implies the two tests

are conditionally independent. In Section 4.5.2 we define ρS = 0.05 and ρC = 0,

implying the sensitivities are conditionally dependent but not the specificities; in

Section 4.5.3 we reverse the relationship and define ρS = 0 and ρC = 0.025, implying

indpendent sensitivities and dependent specificities. Finally, in Section 4.5.4 we
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generate X1 and X2 assuming dependent sensitivities and specificities ρS = 0.05 and

ρC = 0.025.

For each generated dataset, we perform five analyses:

(1) we obtain posterior parameter estimates assuming both tests are indepen-

dent

(2) we obtain posterior parameter estimates assuming the sensitivities are de-

pendent and the specificities are independent

(3) we obtain posterior parameter estimates assuming the sensitivities are inde-

pendent and the specificities are dependent

(4) we obtain posterior parameter estimates assuming both tests are dependent

(5) we estimate the DIC and the posterior model probability using Gibbs Vari-

able Selection.

For each analysis, we place the following prior information:

β ∼ N(0, 20I4),

λ ∼ N(0, 20I4),

φ ∼ N(0, 20),

S1 ∼ beta(1, 1),

S2 ∼ beta(1, 1),

C1 ∼ beta(1, 1),

C2 ∼ beta(1, 1),

where 0 is a vector of length four with all elements equal to zero and I4 is the 4× 4

identity matrix. Furthermore, for Sections 4.5.2 and 4.5.4 we define

ρS ∼ uniform(LS, US)
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where LS = (S1 − 1)(1 − S2) and US = min(S1, S2) − S1S2. This induces a prior

mean for ρS of 0.02 and a prior standard deviation of 0.029. Likewise for Sections

4.5.3 and 4.5.4 we define

ρC ∼ uniform(LC , UC)

where LC = (C1 − 1)(1 − C2) and UC = min(C1, C2) − C1C2. This induces a prior

mean for ρC of 0.0125 and a prior standard deviation of 0.014. We note this as

we analyze these parameters’ posterior distributions to determine how substantially

they differ from their prior distributions. For Sections 4.5.1 and 4.5.3 we assume

ρS = 0, and for Sections 4.5.1 and 4.5.2 we assume ρC = 0.

We use R v2.7.2 to generate each dataset, and we subsequently use the R2WinBUGS

program (Gelman et al., 2004) to estimate each model using WinBUGS v1.4.3 (Lunn

et al., 2000). For each set of 800 observations, we performed a 1000 iteration burn-

in followed by a 5000 iteration sample, thinning every third observation. Model

convergence was assessed by visual inspection of the trace and autocorrelation plots.

4.5.1 Independent Binary Tests

For the first two tables, Tables 4.1 and 4.2, we generate data without depen-

dence between tests and analyze the output using the four approaches explained in

Section 4.5. The first column of posterior estimates matches the process by which

the data were generated, and subsequently the posterior parameter means of the 200

datasets are reasonably close to the actual data generating value. This is unsurpris-

ing as Black and Craig (2002) effectively showed similar results, although with far

more prior information required. However, it is of interest to determine the effect

of attempting to estimate an effect that is not actually present within the data,

especially given the constraints of a marginally identifiable model already.

The second column of Table 4.1 demonstrates the effect of estimating for de-

pendent sensitivities when in fact they are independent. We note the addition of
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ρS forces the observed sensitivities smaller, and subsequently the posterior mean for

ρS is larger than that of the prior distribution, although its 95% credible interval

contains zero and the standard deviation is nearly identical to the prior. We observe

that φ, the model coefficient associated with the latent true classification status, is

inflated. The mean posterior credible interval bounds still contain the “true” value

1.4, but compared to the model in which the dependence is ignored, there is clearly

a loss of consistency in estimates. The disease model intercept (β0) decreases while

all remaining disease model posterior estimates (β1, β2, β3) are attenuated. There is

a universal increase in parameter standard deviations when we measure the model

with dependent sensitivities, which reflects the added variability due to a superfluous

parameter when identifiability is already strained.

In the first column of Table 4.2 we observe the posterior estimates when we at-

tempt to estimate the model with an added dependent specificity parameter. Again,

the posterior parameter means are not with the generating value, although in this

case we observe attenuation in all disease model parameters except φ which is en-

larged at approximately the same magnitude as when the sensitivities were modeled

as dependent. All parameters in vector γ are biased away from zero, and the poste-

rior means of the specificities are small.

In the final column of Table 4.2 demonstrates perhaps the most egregious of

model misspecification, in which we assume both the sensitivities and specificities are

dependent. The posterior means for all misclassification parameters (S1, S2, C1, C2)

are biased, and this introduces a great deal of variability into the posterior distribu-

tions of the model parameters. The inconsistency demonstrated by modeling with

a single superfluous dependence parameter is substantially exaggerated when both

dependence parameters are included, and the posterior model parameter standard

deviations are especially inflated. This model struggles to produce estimates similar

to the data-generating distributions. In general, it is rather unsurprising that when
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the dual tests are independent, the analysis that assumes independence produces

superior results and smaller parameter variances.

4.5.2 Conditionally Dependent Sensitivities

In Tables 4.3 and 4.4, we observe the posterior estimates for data generated

with conditionally dependent sensitivities (ρS = 0.05) analyzed four ways. In the

first analysis, we ignore the possible dependence and analyze the data with the two

tests treated independently. When ρS is ignored, the mean posterior sensitivities

are overestimated, but the specificities are unchanged. Despite the inconsistent

estimates of the sensitivities, most of the posterior estimates of the model parameters

are not dramatically affected. There is a slight attenuation of φ, but in general the

other parameters in β are only mildly biased, although their 95% credible intervals

contain the generating value.

In the second column on Table 4.3, we observe the posterior means for the

data analyzed accounting for the dependent sensitivities. The 95% credible inter-

val does not contain zero, and the posterior mean is substantially larger than the

prior distribution mean, which allows us to conclude the model properly recognized

the dependence parameter as being present in the data. However, the estimated

sensitivities are mildly lower than the data generating values. Otherwise, the pos-

terior model means are somewhat comparable to the independent model situation,

although the standard devations are inflated. Given the similarities between the two

means of estimation on Table 4.3, it does not appear that accounting for the depen-

dence substantially improved the model parameter posterior estimates dramatically

over the analysis assuming independence.

In Table 4.4, we analyze the data assuming dependent specificities. In this

case, not only are the sensitivity posterior mean estimates too high, the specificity

posterior mean estimates are too low due to the presence of a specificity dependence
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term. The models estimating γ, β, and φ witness the most egregious deviations

from the data generating values for γ0, γ1, and φ. However, these inconsistencies are

comparable to those observed in the appropriate model (which assumes dependent

sensitivities), with the exception of the poor sensitivity and specificity estimates.

We conclude that to model conditionally dependent specificities when the sensitiv-

ities are actually dependent yields poor posterior estimates of the sensitivities and

specificities while only slightly affecting the model parameter estimates.

The second column of Table 4.4 displays the estimates in which we attempt

to account for dependent sensitivities and specificities in the presence of data gen-

erated with conditionally dependent sensitivities. Attempting to model dependence

in both lacking substantial prior information yields diffuse posterior estimates that

are not consistent with the data generating values. Furthermore, the sensitivities

and specificities are far too small. We can conclude that attempting to model dually

dependent misclassification probabilities lacking prior information yields poor model

estimates.

4.5.3 Conditionally Dependent Specificities

We display the results for the third portion of the simulation in Tables 4.5 and

4.6 in which we generate 200 data sets with conditionally independent test sensitiv-

ities and conditionally dependent dual test protocol specificities, where ρC = 0.025.

In the first column of Table 4.5 we present the posterior estimates of the analysis

when we ignore the conditional dependence between the specificities and assume the

tests are fully independent. It should be noted, due to the relatively high speci-

ficity of the second test where S2 = 0.95, the magnitude of ρC is necessarily smaller

than the sensitivity in the preceding Section 4.5.2. Due to this relatively small

contribution of ρC , it comes as little surprise that the posterior estimates in which

the dependence is ignored are fairly robust to the misspecification. The posterior
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mean specificities are slightly high, but few other posterior parameter means deviate

substantially from the data generating values.

In the second column of 4.5, we observe the posterior estimates when we

account for dependent sensitivities and ignore the dependent specificities. The mis-

classification probabilities S1, S2, C1, and C2 are inconsistent, and there is some no-

ticeable bias in the estimated means within γ. However, the disease model estimates

β and φ fare generally well against this model misspecification.

In the first column of 4.6, we note that the model in which we correctly account

for dependent specificities correctly excludes zero for the 95% credible interval for

ρC . However, this produces slightly lower posterior mean specificities than the data

generating value. Furthermore, there appears to be some instability in the estimates

for γ and φ. Although this model matches the data generating scenario, it appears

that the posterior distributions for the parameters are no better and perhaps worse

than when we ignore the conditional dependence altogether. This may be due to

the identifiability concerns we have already mentioned as well as the relatively small

size of ρC .

The final column of 4.6 presents the posterior estimates when we attempt to

account for conditional dependence in both sets of misclassification parameters. As

in previous sections, the posterior mean misclassification probabilities are fairly dis-

tant from the data generating values, giving rise to diffuse and inconsistent posterior

estimates for the model parameters. It again appears that the addition of a second

model parameter for an already strained model results in poor posterior estimates.

4.5.4 Conditionally Dependent Sensitivities and Specificities

For the fourth simulation, we generate data with dually dependent sensitivities

and specificities, ρS = 0.05 and ρC = 0.025. Table 4.7 displays the model posterior

estimates when we ignore the dependence and assume conditionally independent
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tests. We note that the misclassification probabilities are fairly substantially over-

estimated, including 95% credible intervals for S1 and C2 that do not contain the

data generating values. Otherwise, the parameter estimates are affected although

not as dramatically as the misclassification probabilities. We observe attenuation

in the posterior means for γ which actually may help adjust for the overestimated

misclassification parameters. Furthermore, the disease model parameters β and φ

are fairly robust, with φ deviating perhaps more than any other parameter. This is

likely due to the difficulty of estimation from biased S1, S2, C1, and C2.

In Table 4.7, we include a parameter to estimate the conditional dependence

between the sensitivities while ignoring the dependent specificities. The posterior

estimates from this model are generally more consistent with the data generating

values than the independence model, which is likely due to the relatively large value

of the sensitivity dependence parameter ρS. Once this parameter has been included,

it appears most posterior estimates are subsequently adjusted and the exclusion of

ρC is not deleterious to estimation.

We observe the effect of ignoring ρS and estimating ρC in the first columns of

Table 4.8. While the specificities are representative of the data generating values,

the sensitivities are high due to the exclusion of ρS. We observe fairly substantial

deviations for the means of γ0 and γ1 from the parameter values, and furthermore

the standard deviation for φ is considerably larger in this scenario than for the two

previous estimates we observed. In general, the inclusion of specificity dependence

did not produce estimates as consistent as when we included sensitivity dependence,

although this is likely due to the relatively larger magnitude of ρS compared to ρC .

The final approach to analyzing the dually-dependent binary tests is in the

second column of Table 4.8. The posterior 95% credible intervals for the dependence

parameters ρS and ρC both exclude zero, which indicate the model was sensitive

enough to detect their presence; however, the estimated means are larger than the
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data generating values. This produces sensitivity and specificity estimates that are

too small relative to the generating values. Furthermore, the model posterior values

are highly inconsistent, most notably φ which greatly exaggerates the effect of T

on the response Y . Although the data are generated with conditionally dependent

sensitivities and specificities, due to the identification difficulties with this model

in the absence of prior information, either ignoring the dependence or estimating

the dependence parameter of the largest magnitude may alleviate the bias of a

conditionally dependent dual test protocol and produce posterior estimates that are

potentially more representative of the parameter value than to attempt to model

both misclassification dependence parameters.

Although in practice it may be plausible to assume that the sensitivities and/or

the specificities of a dual test protocol may be conditionally dependent, direct esti-

mation of the magnitude of the dependence is extremely difficult in the absence of

prior information. In the preceding simulation, we have demonstrated the perfor-

mance of the model parameter posterior distributions when we

(1) correctly identify independent dual binary tests,

(2) attempt to model dependence parameters in independent binary tests,

(3) correctly identify dependence between test sensitivities, specificities, or both,

(4) falsely assume dependent binary tests are independent.

Without overwhelmingly compelling reason to model test dependence, our sim-

ulations show that ignoring dependence or estimating a single dependence parameter

is potentially superior to attempting to fit a marginally identifiable model with two

dependence parameters. To some extent the specific parameter values we selected

may account for this result, but in general, it appears that the model posterior esti-

mates are relatively robust to incorrect under-parameterization than it is to correct
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over-parameterization. Although ignoring dependence in a potentially dependent

dual test protocol may seem negligent on the part of the statistician, we note that

the model posterior estimates’ consistency deteriorate as additional parameters are

introduced into the model.

These conclusions are valid only in situations in which prior information for

the dual tests does not exist. The strength of the Bayesian approach can allow for

incorporation of prior data as demonstrated by Black and Craig (2002). Further-

more, when there exists evidence that binary tests may be conditionally dependent,

in the absence of prior information about the tests it may be desirable to assume that

both the sensitivities and specificities are dependent. In the context of this example,

it may be best to model a single dependence parameter, preferably the misclas-

sification dependence parameter with the largest possible value as determined by

max(ρS) = min(S1, S2)− S1S2 and max(ρC) = min(C1, C2)− C1C2.

4.5.5 Model Assessment and Selection

For each data set within the preceding simulations, we additionally recorded

the DIC for each model as explained in Section 4.4.2, and we fit the data set with

a Gibbs Variable Selection procedure as explained in Section 4.4.1. The goal was

to identify a statistical procedure that may allow us to consistently identify the

presence or absence of dependence between binary test protocols. Ideally, the DIC

should be minimized for the correct (i.e. data generating) model, and the posterior

probability via GVS should be maximized. We present the mean posterior DIC

values and model probability values in Table 4.9.

We identify the data generating model across the top of the table, and we

quantify each method’s posterior evaluation of the four candidate models. If the

selection methods presented in Table 4.9 performed as advertised, we should observe

the model with the smallest DIC and highest posterior probability to have matching
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column and row headings. This clearly is not the case. Overall the DIC method

tends to uniformly prefer the independence model, while the GVS method uniformly

prefers the dually dependent model. Ultimately our conclusion is that, to some

extent, both models fail to discriminate the data generating model with consistency.

This is likely due to the identifiability concerns already addressed in subsequent

sections. The DIC is a measure of how well a given set of data fit the selected

model under the assumption of a “correct” number of parameters. In our situation,

introducing semi-identifiable parameters such as ρS and/or ρC are simply considered

extra noise within the model due to the difficulty in achieving unique estimates. On

the other hand, Gibbs Variable Selection using binary indicator covariates minimizes

a model’s posterior prediction variability under zero-one loss Kadane and Lazar

(2004). Although it was developed as a means for regression variable selection and

not as a means to attempt to identify parameters in scarcely identifiable models, the

posterior results show that the inclusion of dependence parameter will likely yield

lower variance posterior predictions, even in situations where no dependence exists.

A closer look at Table 4.9 reveals that the DIC criteria produces fairly consis-

tent results favored toward the independent model regardless of the means by which

the data were generated. On the other hand, although the GVS criteria tends to

favor the full dependence model with the greatest posterior probability, we note that

the independent model is selected with the highest probability when the data gen-

erating model used independent sensitivities and specificities. Likewise, the other

three models achieved the highest probability within its row for the appropriate data

generating model. Therefore, the row marginal probabilities show evidence that the

GVS tended to agree with the data generating model, with the intolerable caveat

that column marginal probabilities always favor the model with both dependence

parameters included.
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Table 4.9. Mean Posterior Model Evaluation Estimates of Simulated Datasets

Indept Dep. S Dep. C Dep. S & C
Model DIC GVS DIC GVS DIC GVS DIC GVS

Independent 2936 0.127 2580 0.068 2722 0.056 2283 0.031

Dependent S 5997 0.232 7682 0.282 7132 0.079 8858 0.129

Dependent C 5056 0.201 5930 0.113 5849 0.289 6774 0.140

Dep. S & C 5717 0.441 7035 0.536 6193 0.576 7556 0.701

4.6 Epidemiological Example

To assess the model robustness under the four situations described in Section

4.5, we use a dataset published previously by Ren and Stone (2007a) to display the

effects on the parameter estimates of modeling conditional dependence terms ρS and

ρC . The original aims of the study were to examine the relationship between initial

oxygenation status, T , and inpatient hospitalization status Y , among individuals

with community acquired pneumonia (CAP). However, the measurement of true

oxygenation status is fallible, and researchers rely instead on oxygenation status

collected prospectively in the emergency department (X1) and oxygenation status

collected retrospectively via a medical chart review (X2). We define X1 = 1 or

X2 = 1 when hypoxemia is observed, which we define as pulse oximetry less than

90% or PO2 less than 60 mm Hg. Furthermore, each participant is assigned to one

of four Pneumonia Severity Index (PSI) score categories (Fine et al., 1997) that

summarize the patient’s pneumonia risk profile. The PSI is contained in vector z.

The data arise from the Emergency Department Community Acquired Pneumonia

(EDCAP) Trial published in 2004 (Yealy et al., 2004).

We define our prior distributions identically to that used in Section 4.5. We

ran a 2000 iteration burn-in followed by a 10000 iteration sample from the posteriors,

and we assessed the chain convergence by visual inspection of autocorrelation and
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trace plots. We ran 3 chains in parallel, thinning every third observation. We note

that the model is fairly sensitive to starting values of the chains.

In Table 4.10 we observe the posterior estimates for the data set analyzed

four ways. We note the similarities in the posterior estimates when we assume the

binary tests are independent and when we add single the conditional dependence

parameter for the specificities ρC . This is likely due to the large specificities of both

tests, which constrain the domain of ρC to a relatively small range. Subsequently,

there is only a slight change in the overall specificity between the case where all

dependence is ignored and the case when ρC is included. The consequences of this

change would be that φ, the parameter associated with the true oxygenation status,

will be somewhat elevated from its already high value, although its credible interval

is greatly reduced.

We further note a great deal of agreement in the posterior estimates when we

model conditional dependence between the sensitivities and for the dually dependent

sensitivities and specificities model. It is noteworthy that adding the dual depen-

dence parameters did not result in highly unstable posterior estimates as occurred

in the simulation. However, the specificities are greatly reduced when the tests are

assumed conditionally dependent. As we observe, the sensitivities (and in the second

case the specificities) decrease by approximately 0.2 when modeled with dependence

as the dependence parameter appears to be quite large. At this point it may be

reasonable to solicit the advice of an expert; while a small shift in the sensitivity

value may seem innocuous, a very large shift may produce estimates contrary to

the known or assumed properties of the test, especially when specificity values sink

below 0.5.

We include the DIC and posterior probability for each model, although as we

observed in Section 4.5 these criteria may not be as informative as we might hope.
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4.7 Discussion

Conditional dependence between binary diagnostic tests creates difficulties in

model estimation when prior information is not known or available. The Bayesian

approach to parameter estimation is powerful in that it does not require model

identifiability in the same sense as frequentist estimation. However, prior information

is necessary for consistent estimation of posterior means, and we have identified that

dual test protocols with both dependent sensitivities and specificities result in poor

estimates of the posterior under “noninformative” prior distributions. We are more

likely to achieve consistent posterior estimates by ignoring one or both dependence

parameters rather than to attempt to model them in a nonidentifiable model.

Based on the poor performance of DIC and GVS in this paper, future research

should focus on further Bayesian methods for identifying conditionally dependent

binary tests with minimal prior assumptions.
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CHAPTER FIVE

Concluding Remarks

5.1 Future Work in the Area of Bayesian Variable Selection

The approach we developed in Chapter 2 was developed and demonstrated for a

misclassified binary covariate in a logistic regression model when gold standard data

is available. Further research should appeal to more general forms of models, such

as the broader class of generalized linear models and nonlinear or semiparametric

models. Additionally, as we have demonstrated in subsequent chapters, misclassifi-

cation can be adjusted multiple ways, including double sampling, repeated binary

testing, and dual test protocols. Future approaches to Bayesian variable selection

should either consider alternate misclassification correction schemes or be general

enough to not require specification of the type of misclassification.

The model we propose has satisfactory performance for moderately large data

sets based on the results from the simulation. The method is designed for large

sample sizes, although its performance for smaller samples should be scrutinized.

Furthermore, as mentioned in Chapter 2, the model should be tested for both con-

tinuous covariates as well as covariate interactions. Additionally, this method should

be considered in future research as a data reduction tool for scenarios for small n

and large p.

5.2 Future Work in the Area of Repeated Binary Diagnostic Testing

The methods proposed in Chapter 3 are both straightforward Bayesian ex-

tensions of the existing pass/fail literature as well as the introduction of novel ap-

proaches to estimating misclassification variability. These methods make the basic

assumption that the true classification status T is fixed with respect to time. Fur-
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thermore we developed the method under fairly basic considerations, such as fixed

covariate values. Modifying this governing assumption about the effect of time upon

the study outcome T may radically change the form of the problem into a change

point problem. Additionally, further work should consider possible time-dependent

covariates in the model to assess whether these may affect the probability of disease

detection.

The approach described also could easily be extended to a multivariate set-

ting. The form of the data we analyzed from Fujisawa and Izumi (2000) was such

that combining individual observations into vectors was impossible. However, as

the antigens we observed likely occur dependently to one another, the proposed

method could benefit from the full individual antigen profile rather than considering

observations independently.

5.3 Future Work in the Area of Dual Test Protocols

Our contributions in Chapter 4 include assessing the quality of the dependence

assumptions regularly placed on dual test protocols as well as their impacts on

other covariates when the misclassified variable is a model predictor. Based on

our results, the more conservative approach appears to be to ignore dependence or

include a single dependence parameter rather than risk the instability introduced by

nonidentifiability when we introduce excessive parameters given the data. Because

informative priors make parameter estimation much stronger in this case, further

work should be done on the process of incorporating prior information into these

types of models. For example, if our external validation set is comprised of different

types of individuals or observations than the main study, we require methods for

matching the data from the external study with that of the main study individuals.

Otherwise we could be introducing biased data into our results.

96



5.4 Comments

This work introduces several new approaches to parameter estimation and

model selection in the presence of binary misclassified data. Almost all of our ap-

proaches require moderately large data sets, although in Chapter 3 we demonstrate

that our method works well with a sample of only 38 unique observations. Due to

the inherent high variability of binary data, this is an obstacle that may be over-

come in future studies with adequate prior information on the parameters. However,

without prior data, specification of prior distributions must be taken with great care

to adequately include the full potential parameter space of the model while not over-

stating our knowledge or supposed knowledge of the parameter. This debate over

“noninformative” priors is adequately introduced and debated in Kass and Wasser-

man (1996). In no portion of this dissertation did we assume informative knowledge

of prior distributions, though this is debatable simply on the grounds of the form of

the priors which we did employ.
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APPENDIX A

WinBUGS Code for Described Methods

The following code was written for use in WinBUGS v1.4.3 Lunn et al. (2000).

Each section indicates the portion of the text for which it is intended to be used.

A.1 Bayesian Variable Selection Method from Chapter 2

covbvs<-function()

{

for (i in 1:N){

# y is perfectly observed response (1= injured, 0 = uninjured)

y[i] ~ dbern(pi[i])

logit(pi[i]) <- beta[1] + beta[2]*x1[i]*g[1] + beta[3]*x2[i]*g[2]

+ beta[4]*tx3[i]*g[3]

tx3[i] ~ dbern(p[i])

logit(p[i]) <- lambda[1] + lambda[2]*x1[i]*g[4] + lambda[3]*x2[i]*g[5]

x3[i] ~ dbern(q[i])

q[i] <- tx3[i]*se[i] + (1-tx3[i])*(1-sp[i])

logit(se[i]) <- gamma[1] + gamma[2]*x1[i]*g[6] + gamma[3]*x2[i]*g[7]

logit(sp[i]) <- tau[1] + tau[2]*x1[i]*g[8] + tau[3]*x2[i]*g[9]

}

for (i in 1:4){

beta[i] ~ dnorm(0.0,1.0E-3)

}

for (i in 1:3){

gamma[i] ~ dnorm(0.0,1.0E-3)

tau[i] ~ dnorm(0.0,1.0E-3)

lambda[i] ~ dnorm(0.0, 1.0E-3)

}

for (k in 1:terms){
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index[k]<-pow(2,k-1)

g[k] ~ dbern(0.5) #Prior on models

}

mdl<-1+inprod(g[ ], index[ ])

for (s in 1:models){

pmdl[s]<-equals(mdl,s) #Create model indicators

}

}

A.2 Repeated Binary Diagnostic Test Code for Chapter 3

1.2.1 General Beta Priors Model

model

{

for (i in 1:8)

{

p3[i,1] <- pow(QN[i],2)*tau[i] + pow(1-QP[i],2)*(1-tau[i])

p3[i,2] <- 2*(QN[i]*(1-QN[i])*tau[i] + (1-QP[i])*QP[i]*(1-tau[i]))

p3[i,3] <- pow(1-QN[i],2)*tau[i] + pow(QP[i],2)*(1-tau[i])

n3[i]<-sum(x3[i,])

x3[i,1:3] ~ dmulti(p3[i,1:3],n3[i])

p4[i,1] <- pow(QN[i],3)*tau[i] + pow(1-QP[i],3)*(1-tau[i])

p4[i,2] <- 3*pow(QN[i],2)*(1-QN[i])*tau[i] + 3*pow(1-QP[i],2)*QP[i]*(1-tau[i])

p4[i,3] <- 3*QN[i]*pow(1-QN[i],2)*tau[i] + 3*(1-QP[i])*pow(QP[i],2)*(1-tau[i])

p4[i,4] <- pow(1-QN[i],3)*tau[i] + pow(QP[i],3)*(1-tau[i])

n4[i]<-sum(x4[i,])

x4[i,1:4] ~ dmulti(p4[i,1:4],n4[i])

p5[i,1] <- pow(QN[i],4)*tau[i] + pow(1-QP[i],4)*(1-tau[i])

p5[i,2] <- 4*(pow(QN[i],3)*(1-QN[i])*tau[i] + pow(1-QP[i],3)*QP[i]*(1-tau[i]))

p5[i,3] <- 6*(pow(QN[i],2)*pow(1-QN[i],2)*tau[i] + pow(1-QP[i],2)*pow(QP[i],2)*(1-tau[i]))

p5[i,4] <- 4*(QN[i]*pow(1-QN[i],3)*tau[i] + (1-QP[i])*pow(QP[i],3)*(1-tau[i]))

p5[i,5] <- pow(1-QN[i],4)*tau[i] + pow(QP[i],4)*(1-tau[i])

n5[i]<-sum(x5[i,])

x5[i,1:5] ~ dmulti(p5[i,1:5],n5[i])

QN[i] ~ dbeta(1,1)

QP[i] ~ dbeta(1,1)

tau[i] ~ dbeta(1,1)

}

}
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1.2.2 Dirichlet Misclassification Priors Model

model

{

for (i in 1:n)

{

y[i] ~ dbin(p1[i],k[i])

p1[i] <- (1-theta[1])*t[i] + theta[2]*(1-t[i])

t[i] ~ dbern(tau)

}

r1 ~ dgamma(1,1)

r2 ~ dgamma(1,1)

r3 ~ dgamma(1,1)

rt <- r1 + r2 + r3

theta[1] <- r1/rt

theta[2] <- r2/rt

theta[3] <- r3/rt

tau ~ dbeta(1,1)

}

1.2.3 Hierarchical Dirichlet Misclassification Priors Model

model

{

for (i in 1:n)

{

y[i] ~ dbin(p1[i],k[i])

p1[i] <- (1-theta1[i])*t[i] + theta2[i]*(1-t[i])

t[i] ~ dbern(tau)

theta1[i] <- r1[i]/rt[i]

theta2[i] <- r2[i]/rt[i]

r1[i] ~ dgamma(alpha[1],1)

r2[i] ~ dgamma(alpha[2],1)

r3[i] ~ dgamma(alpha[3],1)

rt[i] <- r1[i] + r2[i] + r3[i]

}

alpha[1] ~ dgamma(1,1)

alpha[2] ~ dgamma(1,1)

alpha[3] ~ dgamma(1,1)
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tau ~ dbeta(1,1)

}

1.2.4 Model for Fujisawa Dataset

model

{

for (i in 1:8)

{

p3[i,1] <- pow(QN[i],2)*tau[i] + pow(1-QP[i],2)*(1-tau[i])

p3[i,2] <- 2*(QN[i]*(1-QN[i])*tau[i] + (1-QP[i])*QP[i]*(1-tau[i]))

p3[i,3] <- pow(1-QN[i],2)*tau[i] + pow(QP[i],2)*(1-tau[i])

n3[i]<-sum(x3[i,])

x3[i,1:3] ~ dmulti(p3[i,1:3],n3[i])

p4[i,1] <- pow(QN[i],3)*tau[i] + pow(1-QP[i],3)*(1-tau[i])

p4[i,2] <- 3*pow(QN[i],2)*(1-QN[i])*tau[i] + 3*pow(1-QP[i],2)*QP[i]*(1-tau[i])

p4[i,3] <- 3*QN[i]*pow(1-QN[i],2)*tau[i] + 3*(1-QP[i])*pow(QP[i],2)*(1-tau[i])

p4[i,4] <- pow(1-QN[i],3)*tau[i] + pow(QP[i],3)*(1-tau[i])

n4[i]<-sum(x4[i,])

x4[i,1:4] ~ dmulti(p4[i,1:4],n4[i])

p5[i,1] <- pow(QN[i],4)*tau[i] + pow(1-QP[i],4)*(1-tau[i])

p5[i,2] <- 4*(pow(QN[i],3)*(1-QN[i])*tau[i] + pow(1-QP[i],3)*QP[i]*(1-tau[i]))

p5[i,3] <- 6*(pow(QN[i],2)*pow(1-QN[i],2)*tau[i] + pow(1-QP[i],2)*pow(QP[i],2)*(1-tau[i]))

p5[i,4] <- 4*(QN[i]*pow(1-QN[i],3)*tau[i] + (1-QP[i])*pow(QP[i],3)*(1-tau[i]))

p5[i,5] <- pow(1-QN[i],4)*tau[i] + pow(QP[i],4)*(1-tau[i])

n5[i]<-sum(x5[i,])

x5[i,1:5] ~ dmulti(p5[i,1:5],n5[i])

logit(QN[i]) <- fn + ref1[i]

logit(QP[i]) <- fp + ref2[i]

logit(tau[i]) <- b[1] + b[2]*equals(a[i],2) + b[3]*equals(a[i],3) + b[4]*equals(a[i],4)

ref1[i] ~ dnorm(0,pr1)

ref2[i] ~ dnorm(0,pr2)

}

for (i in 1:4) {b[i] ~ dnorm(0,0.01)}

fn ~ dnorm(0,0.01)

fp ~ dnorm(0,0.01)

pr1 <- pow(sig1, -2)

pr2 <- pow(sig2, -2)

sig1 ~ dgamma(1,1)

sig2 ~ dgamma(1,1)

}
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A.3 Code for Dependent Diagnostic Tests in Chapter 4

1.3.1 Dual Dependence Model for EDCAP Data

model

{

for (k in 1:n)

{

y[k]~dbern(py[k])

logit(py[k] ) <- bet[1]+bet[2]*tx[k]+bet[3]*equals(z[k],2)+bet[4]*equals(z[k],3)+ bet[5]*equals(z[k],4)

pf[k,1]<-tx[k]*(se1*se2+covse)+(1-tx[k])*((1-sp1)*(1-sp2)+covsp)

pf[k,2]<-tx[k]*(se1*(1-se2)-covse)+(1-tx[k])*((1-sp1)*sp2-covsp)

pf[k,3]<-tx[k]*((1-se1)*se2-covse)+(1-tx[k])*(sp1*(1-sp2)-covsp)

pf[k,4]<-tx[k]*((1-se1)*(1-se2)+covse)+(1-tx[k])*(sp1*sp2+covsp)

x[k,1:4] ~ dmulti(pf[k,1:4],1)

tx[k]~dbern(px[k])

logit(px[k]) <- gam[1]+gam[2]*equals(z[k],2)+gam[3]*equals(z[k],3) + gam[4]*equals(z[k],4)

}

for (i in 1:5){

bet[i] ~ dnorm(0,0.05)

}

for(j in 1:4){

gam[j] ~ dnorm(0,0.05)

}

se1 ~ dbeta(1,1)

se2 ~ dbeta(1,1)

sp1 ~ dbeta(1,1)

sp2 ~ dbeta(1,1)

us <- min(se1,se2) - se1*se2

ls <- (se1 - 1)*(1-se2)

covse ~ dunif(ls, us)

uc <- min(sp1,sp2) - sp1*sp2

lc <- (sp1 - 1)*(1-sp2)

covsp ~ dunif(lc, uc)

}
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1.3.2 Variable Selection Algorithm for EDCAP Data

model

{

for (k in 1:n)

{

y[k]~dbern(py[k])

logit(py[k] ) <- bet[1]+bet[2]*tx[k]+bet[3]*equals(z[k],2)+bet[4]*equals(z[k],3)+ bet[5]*equals(z[k],4)

pf[k,1]<-tx[k]*(se1*se2+g[1]*covse)+(1-tx[k])*((1-sp1)*(1-sp2)+g[2]*covsp)

pf[k,2]<-tx[k]*(se1*(1-se2)-g[1]*covse)+(1-tx[k])*((1-sp1)*sp2-g[2]*covsp)

pf[k,3]<-tx[k]*((1-se1)*se2-g[1]*covse)+(1-tx[k])*(sp1*(1-sp2)-g[2]*covsp)

pf[k,4]<-tx[k]*((1-se1)*(1-se2)+g[1]*covse)+(1-tx[k])*(sp1*sp2+g[2]*covsp)

x[k,1:4] ~ dmulti(pf[k,1:4],1)

tx[k]~dbern(px[k])

logit(px[k]) <- gam[1]+gam[2]*equals(z[k],2)+gam[3]*equals(z[k],3) + gam[4]*equals(z[k],4)

}

for (i in 1:5){

bet[i] ~ dnorm(0,0.05)

}

for(j in 1:4){

gam[j] ~ dnorm(0,0.05)

}

se1 ~ dbeta(1,1)

se2 ~ dbeta(1,1)

sp1 ~ dbeta(1,1)

sp2 ~ dbeta(1,1)

us <- min(se1,se2) - se1*se2

ls <- (se1 - 1)*(1-se2)

covse ~ dunif(ls, us)

uc <- min(sp1,sp2) - sp1*sp2

lc <- (sp1 - 1)*(1-sp2)

covsp ~ dunif(lc, uc)

for (k in 1:2){

index[k]<-pow(2,k-1)

g[k] ~ dbern(0.5) #Prior on models

}
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mdl<-1+inprod(g[ ], index[ ])

for (s in 1:4){

pmdl[s]<-equals(mdl,s) #Create model indicators

}

}
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