
ABSTRACT

Performance Improvements to Peer-to-Peer File Transfers Using Network Coding

Aaron A. Kelley, M.S.

Mentor: William B. Poucher, Ph.D.

A common peer-to-peer approach to large data distribution is to divide the

data into blocks. Peers will gather blocks from other peers in parallel. Problems with

this approach are that each peer must know which blocks other peers have available,

and in some instances it may not be possible to complete a download if certain blocks

are not available in the network. Network coding, a method of distributing data over

a peer-to-peer network by employing linear algebra, addresses these issues but comes

with a substantial computational overhead. We examine possibilities for mitigating

this extra computational cost through reduction of number of operations required

to perform matrix multiplication in a finite field, by taking advantage of the small

number of elements in the field and precomputing results. We evaluate our approach

through simulation and demonstrate that it may serve to allow for faster transfer

times on a more robust peer-to-peer network.

Performance Improvements to Peer-to-Peer File Transfers Using Network Coding

by

Aaron A. Kelley, B.S.

A Thesis
Approved by the Department of Computer Science

Gregory D. Speegle, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

William B. Poucher, Ph.D., Chairperson

Michael J. Donahoo, Ph.D.

C. Randall Bradley, D.M.A.

Accepted by the Graduate School
May 2013

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c© 2013 by Aaron A. Kelley

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

1 Introduction 1

1.1 Large File Distribution and Problems 3

1.1.1 Unicast . 4

1.1.2 Multicast . 6

1.1.3 Peer-to-peer . 9

1.2 Network Coding . 11

1.2.1 File Reconstruction via Linear Algebra 12

1.2.2 Linear Algebra over Finite Fields 13

1.3 Network Coding Performance Refinements 14

1.3.1 Reconstruction via Fast Square Matrix Multiplication 15

1.3.2 Encoding and Decoding . 16

1.3.3 Precomputation . 16

1.4 Thesis Organization . 17

2 Related Work 18

2.1 Peer-to-peer Networking . 18

2.1.1 BitTorrent . 19

iv

2.1.2 Network Coding . 22

2.1.3 Network Coding with Real-time Multimedia Streaming 37

2.2 Existing Techniques for Encoding and Reconstruction 39

2.2.1 Generations . 39

2.2.2 Density . 41

2.2.3 Folded Block Encoding . 42

2.3 Galois Fields . 43

2.4 Strassen’s Algorithm for Fast Square Matrix Multiplication 46

3 Design and Implementation 52

3.1 Fast GF Implementation . 52

3.2 GF8 Precomputation . 53

3.2.1 Näıve Matrix Multiplication 53

3.2.2 Reordering Computation . 54

3.2.3 Applying Precomputation . 55

3.2.4 High Performance . 59

3.2.5 Run Time . 60

3.2.6 Memory . 61

3.2.7 Application to Network Coding 62

3.3 Application of Strassen’s Algorithm 62

3.4 Network Coding Library . 66

3.4.1 Network Coding Implementations 66

4 Experimental Evaluation 68

v

4.1 Fast Matrix Multiplication . 68

4.2 Simulator . 70

4.2.1 Simulation Behavior . 72

4.2.2 Library Performance . 74

4.2.3 Network Protocol and Simulator Behavior 79

4.2.4 Simulation Results . 80

5 Summary 92

5.1 Future Work . 93

5.1.1 Other Matrix Multiplication Algorithms 93

5.1.2 Real-World Experiments . 94

BIBLIOGRAPHY 95

vi

LIST OF FIGURES

1.1 Unicast use of network resources . 5

1.2 Multicast use of network resources . 7

1.3 Peer-to-peer use of network resources 10

2.1 BitTorrent network reaching a bad state 23

2.2 Potential for redundant data transmission in a peer-to-peer network . 24

2.3 Generation of a coded block . 27

2.4 Peer receiving a coded block . 28

2.5 Peer decoding the original file data 28

2.6 Generation of a coded block from other coded blocks 32

4.1 Running time of precomputation algorithm and näıve algorithm . . . 71

4.2 Simulator network configurations . 72

4.3 Textbook GF16: Number of Peers Finished Downloading Over Time . 81

4.4 Textbook GF16: Total Responses Over Time 82

4.5 Textbook GF16: Total Innovative Blocks Transferred Over Time . . . 82

4.6 GF8 vs GF16: Total Simulation Time 84

4.7 GF8 vs GF16: Innovation Rate . 85

4.8 Textbook vs Folded Block: Total Simulation Time 86

4.9 Textbook vs Folded Block: Innovation Rate 87

4.10 Folded Block Encoding: Innovation Rate Over Time 87

vii

4.11 Textbook vs Batch: Total Simulation Time 88

4.12 Textbook vs Batch: Innovation Rate 88

4.13 Summary: Total Simulation Time . 89

4.14 Summary: Innovation Rate . 89

4.15 Regular vs Choked: Total Simulation Time 90

4.16 Regular vs Choked: Innovation Rate 91

viii

LIST OF TABLES

2.1 Addition in GF(2) . 44

2.2 Multiplication in GF(2) . 44

4.1 Running time of precomputation algorithm and näıve algorithm . . . 70

4.2 Time required for basic operations . 76

4.3 Generating a coefficient vector at various stages of completion 78

4.4 Generating a coded block at various stages of completion 78

4.5 Checking for innovation at various stages of completion 79

4.6 Performance of “long” operations with batch encoding 79

ix

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for their advice and

assistance in this research: Dr. Bill Poucher and Dr. Jeff Donahoo from the Depart-

ment of Computer Science, and Dr. Randall Bradley from the Department of Church

Music. I would also like to particularly thank Dr. David Sturgill of North Carolina

State University, as he was greatly involved in the discussions that led to many of the

ideas presented here and continued his involvement even after departing the faculty

of Baylor University. Additionally, I would like to thank Mike Hutcheson and Baylor

University Academic and Research Computing Services for providing access to the

Kodiak computing cluster, which assisted greatly in performing the simulations used

to evaluate this research. Finally, I would like to thank all of the members of the

Department of Computer Science for the support that they provided in many ways

throughout my undergraduate and graduate career.

x

CHAPTER ONE

Introduction

Peer-to-peer file transfers take up an ever-increasing amount of bandwidth on

the Internet. It has been claimed that BitTorrent alone accounts for over one third

of all of the traffic on today’s Internet [ipo07]. Peer-to-peer networks offer content

producers and distributors an easier way to get their content to a large number of

people. Using a more traditional approach, such as simply putting content on a web

site to be downloaded via HTTP, content providers would need web servers with

enough network capacity to serve everyone who is interested in downloading data

from them. Peer-to-peer offers a delivery system that grows in network capacity as

the number of participants grows, because each participant contributes part of its

network capacity to the delivery of the data to other participants. Applications of

peer-to-peer networking include the delivery of large audio or video files, the delivery

of software, and peer-to-peer networking even has some real-time applications like

routing data for video conference calls.

For example, consider a band that has some new music tracks that it would

like to release. This new band does not yet have any deals with a record company

or major distributor. They want to get their music out to an audience, both because

they would like to share their music with more people and because they would like

to reach potential fans. The Internet seems like a great way to reach a potential

audience of millions, so they are interested in using the Internet to distribute their

1

new recordings to interested listeners for free. There are, however, a number of ways

to share music on the Internet. Each method involves transferring the data from

a source, a computer operated by the band members, and a number of recipients,

computers operated by people who want to download the music.

One obvious solution seems to be to set up a web site with a regular web hosting

service, and offer the music for download there. If enough people are interested,

though, problems begin to arise. Audio files are considerably larger than regular

text and graphical web content, so the web site will begin generating a significant

amount of traffic. This traffic can potentially lead to network congestion near where

the web site is being hosted, which may also affect other web sites running from the

same location. The web host may ask the band to pay more to compensate for the

extra bandwidth. As the music starts to get popular, other issues surface, and it

may become necessary to add more servers to handle the traffic generated by the

demand for the music. Provisioning these additional servers takes time, and if they

are not ready soon enough, people may have trouble accessing the music because not

enough serving capacity is available. If the interest level rises quickly, the problem

is made worse, as there is less time to plan for the increased traffic. Eventually,

people may get tired of waiting for the traffic problem to be worked out, and when

the extra serving capacity is available, it may no longer needed because people have

moved on to something else and the interest level has dropped. Finally, using regular

web hosting may become prohibitively expensive for the band, as they do not have

a lot of money to provide resources sufficient to support all who are interested in

downloading.

2

By leveraging technologies that have recently started to become mainstream,

like BitTorrent, sharing the music with the band’s new fans becomes much easier.

Fans who download their music contribute their Internet connection to further redis-

tribute the music to other fans. This is peer-to-peer networking. With peer-to-peer

software, fans who want to download the music may receive it partially from the

band’s host and partially from other peers who are also downloading the music. As

a fan receives the files that they desire, they automatically begin to share the files

with other fans who are also interested. The responsibility for delivering the data is

shared by the band’s web host and the fans themselves. As more fans download the

music and donate some of their bandwidth to this effort, the capacity of the network

to deliver music to more fans grows. The delivery system scales up to be able to

handle more listeners as the number of listeners increases, with little or no extra cost

to the band members themselves.

Because peer-to-peer network traffic accounts for so much of the traffic on the

Internet today, making it more efficient by reducing or eliminating redundant traffic

will lead to more optimal use of the network and faster delivery of content to the

people who want it. My work focuses on reducing unnecessary traffic in a peer-to-

peer network, leading to more efficient use of the network resources.

1.1 Large File Distribution and Problems

As long as there have been computers, there has been interest in sharing data

between them. Now that the Internet is widely used by the general public, more

people than ever constantly need to move data from one computer to another. When

3

a large number of users are interested in obtaining a copy of the same large file, there

are a number of ways to share this file between them.

1.1.1 Unicast

Perhaps the most direct solution is a unicast server-client protocol. HTTP is

such a protocol, used for web page traffic on the Internet today. In this case, all of

the interested receivers might download the file from a single server. The web server

is the source in this scenario. Referring to the previous music sharing example, this

scenario corresponds to the case in which the band distributes their music on a web

site from a single web server.

While this solution utilizes an already widely-used protocol, there are obvious

problems. The web server must transmit a separate copy of the file to each recipient

who asks for it. Because of this exchange, many duplicate copies of the data are

traversing network links near the source, which is not an optimal use of network

resources. Figure 1.1 illustrates this exchange. In the figure, the computer at the

top represents the source, or the computer on which the original copy of the file

resides. The file data is represented by the bar at the top of the figure. The source

is connected to the recipients, represented by the computers at the bottom of the

figure, by a network of links and routers. The lines with arrows indicate the path

a transmission of the file data must take. The file must be separately transmitted

to each recipient, and each transmission uses the source’s single network link. A

duplicate copy of the entire file is sent across this link for each recipient, and other

links in the network are used multiple times as well.

4

Figure 1.1: Unicast use of network resources. Note that the link near the source, at
the top of the figure, is used each time a copy of the file is sent.

As the number of recipients increases, the speed at which the server can transmit

the file to an individual user decreases, because more recipients share the limited

capacity of the source’s network connection. Additionally, each recipient may be

individually sending back acknowledgements of data received, so that the source can

determine if some part of the file needs to be retransmitted due to network error.

These acknowledgements generate even more traffic that must share the source’s

single network link. If the number of recipients grows too large, network congestion

may occur near the source, which may further reduce the speed at which the file

travels to the recipients. In extreme cases, this use may drive the web server offline.

A possible solution to this issue is to host the file on multiple web servers in

multiple locations. Technologies are already in place that allow duplication of web

content among multiple servers and facilitating the connection between a recipient

and a server that is located close to them geographically. Using multiple servers adds

the complexity of maintaining each server and keeping the content hosted on them in

5

sync. At best, this method increases the number of recipients that can be served by

an amount that is directly proportional to the number of web servers that are in use.

1.1.2 Multicast

Some of the problems that are incurred by using a unicast protocol can be

alleviated by using a multicast protocol [JJ97]. Using multicast, the source transmits

only one copy of the file contents, and multicast-aware routers handle replicating the

data onto different network links. The data continues to be copied until it reaches

all of the recipients, without any duplicate data being sent over a particular link.

Figure 1.2 provides an illustration of multicasting. Put simply, the source broadcasts

the file once, the network replicates the file while it is in transit, and all of the

recipients simply listen to receive it. As shown in the figure, only one copy of the

file data is sent over any particular network link, and the intermediate routers handle

duplicating the data and passing it on toward the recipients, so redundant traffic is

eliminated. Data is also not transmitted on links that do not eventually lead to an

interested recipient, allowing for more efficient use of network resources.

While multicast avoids congestion near the source, it raises a different set of

problems. The source can only transmit as fast as the slowest link in the network that

connects the source to all of the recipients, or there will be one or more recipients who

cannot receive all of the data because they do not have the bandwidth available to keep

up with the transmission. If the recipients participating in multicast send positive

acknowledgements or requests for retransmission back to the source, complications

arise, because these acknowledgements may cause network congestion near the source

6

Figure 1.2: Multicast use of network resources. The intermediate routers handle
duplicating the data so that it reaches all of the recipients. If some network links are
slower than others, the transmission must either run at the speed of the slowest link
in the network, or recipients on the other side of the slow link will miss some of the
information.

in a situation similar to that of unicast. If a recipient misses part of the file as a result

of a network error or insufficient bandwidth, the recipient will be unable to recover

the data.

There are a number of ways to work around this problem of data recovery.

One possible solution is to have the source transmit the file over and over again.

Consequently, if a recipient misses part of the file for some reason, it can simply wait

until the next time that part of the file is transmitted and attempt to receive it again

at that time. In this case, a recipient may have to wait for two or more copies of

the file to be transmitted before the recipient has a complete copy of the file. Should

a recipient receive all but the last piece of the file successfully, that recipient must

wait for all of the file data to be transmitted again before it has another chance to

complete the file.

7

The problem of recovering lost data can also be addressed by using erasure

codes [Riz97]. Using this method, the data is split into blocks, and some additional

blocks containing recovery information are generated to be transmitted after all of

the blocks of the file have been sent. This process is done in such a way that, if a

recipient misses one of the original blocks of the file, it can pick up one of the extra

blocks which are transmitted at the end, and from that, compute the missing block,

no matter which block was missed. A recipient may pick up some of these extra blocks

to compensate for original blocks missed, though the number of extra blocks required

may be slightly higher than the number of blocks missed. Consequently, recipients

do not have to wait for the entire file to be retransmitted before having a chance to

pick up the information that they need to complete the download.

As IP multicast is not widely deployed on the commercial Internet [RES06], and

because of the wide range of network capacity that may be available for recipients

connected to the Internet, multicast is only suited for use in local area networks,

where all of the hosts are connected to the source by high-speed links. However, a

number of ways to deploy a multicast-like system on an overlay network that uses

unicast transmissions have been explored [MJV96] [RHKS01] [hCRZ02] [CDK+03].

Such a system could allow for content distribution with the advantages of multicast,

without requiring IP multicast support from the network. Additionally, other data

recovery solutions become available, such as designating only some participants as

responsible for sending positive acknowledgements [HSC95].

8

1.1.3 Peer-to-peer

Today’s solution to this problem is BitTorrent [Coh03] or other peer-to-peer

protocols. As seen in Figure 1.3, the file is split up into n blocks, which are typically

contiguous segments of the file as it resides on disk. The recipients cooperate in

spreading blocks of the file around as peers. One or more peers start with a complete

copy of the file; these peers are referred to as seeds. Seeds transmit blocks of the

file to other peers who are connected to them. As peers receive blocks of the file,

they can, in turn begin transmitting blocks to other peers. Eventually, a given peer

will collect all of the blocks and can become a seed itself. As more peers join this

network to receive the file, they contribute their bandwidth to help spread the file

data; so, as the number of peers increases, the potential throughput of the network

increases, and the network scales nicely to handle the hosts interested in receiving the

file. Peers with different bandwidth constraints can still participate, as only unicast

communication is used between peers in this network. Congestion is not typically a

problem because, even if there is a single seed, as the seed transmits blocks, more

sources of each block become available.

Peer-to-peer networks are ever-changing. Network churn occurs as peers enter

and leave the network over time. If peers leave quickly after completing their down-

loads, or if the network has a high rate of churn, the source may have to retransmit

blocks that are lost to the network when a peer departs. Also, in networks with

sparsely connected clusters of peers, information on which peers have which blocks

in the network may not be readily available, and this can lead to a seed transmitting

multiple copies of the same block when it is not necessary. Furthermore, in a network

9

(a) Consider this network of peers partic-
ipating in peer-to-peer distribution of a
file. The peer at the top is the seed, and
begins with a complete copy of the file.
The seed chooses one of the blocks and
sends it to one of the peers.

(b) The seed then chooses another block
and sends it to another peer.

(c) While the seed is transmitting its sec-
ond block, the peer that received the first
block may share its block with another
peer.

(d) As more and more blocks are sent
into the network of peers, they are able
to share the blocks with each other and
take on the responsibility of distributing
the file.

Figure 1.3: Peer-to-peer use of network resources.

10

with high churn or few participants, it may become difficult to find particular pieces

of the file. A peer may have to query many peers before finding a copy of the last few

blocks it needs. If the original seed leaves the network and none of the other peers

have a complete copy of the file, it may even be the case that there are no copies

of a particular block in the network. In this case, none of the peers will be able to

complete their download.

The peers that are interested in downloading the file discover each other by

communicating with a centralized tracker which knows about all of the peers, or

by exchanging messages in a larger decentralized peer-to-peer overlay network. The

overlay network comprises many peers that are sharing data with each other, though

not all of the peers are necessarily interested in obtaining the same file. They all help

each other find peers that can help them obtain more of the file that they are looking

for or peers that they can share the parts of the file that they have with. Some peers

in the overlay network may not be interested in downloading files at all. However,

they may serve to help make connections between peers who are interested.

1.2 Network Coding

Network coding [GR05] allows peers to participate in peer-to-peer file distribu-

tion without concern for which blocks of the file other peers have. As with BitTorrent,

the file is divided into blocks. However, instead of transmitting a block of the file,

a seed transmits a coded block that contains an amalgamation of some information

from each block of the file. Peers aid in file distribution by sending coded blocks that

contain an amalgamation of all of the information they have received so far. If there

11

are n blocks in the original file, peers need to receive n of these amalgamated blocks

before being able to decode the original file. This is done using linear algebra. Each

block transmitted is a linear combination of all of the information that the peer has,

and recovering the original file amounts to solving a linear algebra problem.

With each coded block, a list of coefficients used to generate it is transmitted.

Because random coefficients are used in the computation of each of these linear com-

binations, there is a low probability that any of the coded blocks transmitted will be

identical. Therefore, there is very little risk that the same data is ever transmitted

more than once over any particular network link.

1.2.1 File Reconstruction via Linear Algebra

The use of linear algebra in encoding and decoding adds considerable compu-

tational overhead to network coding that is not present in a protocol like BitTorrent.

With BitTorrent, the file is split into blocks, and peers make progress towards com-

pleting the file by swapping blocks with each other. A peer knows that a block is

useful if it is a block that it has not yet received a copy of. With network coding,

copies of blocks from the file are not transmitted over the network; all coded blocks

transmitted are linear combinations of blocks from the file. The coefficients received

with a block must be examined against all previous sets of coefficients a peer has

received to determine if the new block actually contains any previously unknown

information. A coded block that contains new information is said to be innovative.

Additionally, transmitting a block in a network coding environment requires

more computation than transmitting a block in BitTorrent network. With BitTorrent,

12

to transmit a block, a peer has only to transmit a copy of a block of the file as it

resides on disk. With network coding, the process of sending a coded block requires

the entire file to be processed, as each coded block has some information about each

of the blocks of the file.

Finally, decoding the file upon receipt of enough blocks is more computationally

intensive using network coding. When using BitTorrent, decoding the file is almost

trivial—the different blocks of the file must be laid out in the correct order on the

disk, and this work can be done as the blocks are individually received. With network

coding, most of the work required to decode the file cannot be done until all of the

needed blocks have been received, and decoding the file requires solving many systems

of linear equations, which can grow to be a very expensive operation as the size of

the file increases.

The speed of these operations is a large concern in a network coding imple-

mentation. Presently, the computational time required for these operations makes

network coding unattractive for sharing large files in a peer-to-peer network. Even

though less data may be required to be transmitted over the network, the added cost

of the linear algebra operations increases the total time before the file is ready to be

used by the user downloading it. If it were possible to make these operations less

expensive, network coding would be more viable for general use.

1.2.2 Linear Algebra over Finite Fields

Performing network coding operations with real numbers can quickly lead to an

increase in the magnitude of the values being transmitted. As elements from the file

13

are multiplied by random coefficients to produce unique linear combinations, more

and more bits will be needed to represent the values with enough precision to permit

eventual decoding. Depending on how the block elements are stored in memory, this

process will lead to either overflow, numeric instability, or numbers requiring an ever-

increasing amount of memory capacity to store. Any of these issues can make network

coding infeasible.

These issues arise when performing the network coding operations in the field

of real numbers. The field of real numbers is perhaps the most widely-known mathe-

matical field, consisting of all positive and negative numbers and the rules by which

they are manipulated. More generally, a field [Apr] is a set of possible values, along

with the rules for addition and multiplication operations. A field is also closed un-

der addition and multiplication. The inverses of the additional and multiplication

operations are subtraction and division, respectively. These operations provide ev-

erything needed to perform the linear algebra required by network coding. While

the real number field has an infinite number of values, there exist finite fields with

a fixed number of possible values. Using a finite field would allow all of the possible

values to be stored in a fixed number of bits in memory, eliminating any possibility

of overflow or numeric instability. The Galois finite field [GP85] is a common choice

for implementations of network coding.

1.3 Network Coding Performance Refinements

This work focuses on reducing the computational overhead of network coding

by increasing the speed of square matrix multiplication. This elementary operation

14

can speed up both encoding of blocks to send to other peers and the final decode of

the original file.

1.3.1 Reconstruction via Fast Square Matrix Multiplication

With network coding, peers build a coefficient matrix and a data matrix as

blocks are received. The rows of the data matrix contain the blocks amalgamated

data provided by other peers, and the corresponding rows of the coefficient matrix

contain the associated coefficient data. The original data can be recovered by inverting

the coefficient matrix and multiplying it by the data matrix. The data matrix is

generally not a square matrix. While it contains the same number of rows as the

coefficient matrix, it is typically much wider. It can be split into a series of square

matrices, and each of these multiplied by the inverted coefficient matrix in turn. The

resulting square matrices joined together yields the same result as computing the

entire product in one multiplication. Therefore, the process of decoding the original

data using network coding can be reduced to the multiplication of a series of square

matrices.

Both the final decode of the data and batch encoding of blocks can be im-

plemented by multiplication of square matrices. By using a matrix multiplication

technique with an asymptotic running time lower than standard näıve matrix multi-

plication, it may be possible to further improve the realtime performance of network

coding. Many techniques with an asymptotic running time lower than O(n3) have

been explored. For example, Strassen’s algorithm involves computing the product of

two matrices by computing the product of sums of submatrices, and has an asymp-

15

totic running time of about O(n2.81). Further performance improvements may be

achieved by tailoring these methods to Galois finite fields [Cut07].

1.3.2 Encoding and Decoding

Generating a block for transmission requires multiplying each block of the file

by a random coefficient and adding up the results. This is a linear combination of

all of the blocks in the file. The results, along with the random coefficients that were

used, are transmitted to a peer who is requesting a block. Blocks do not have to

be generated one at a time, they can be generated in batches. Batch encoding, or

generating a batch of n blocks for transmission, where n is the number of blocks that

the file is divided into, can be done with matrix multiplication.

Network coding involves a lot of computational overhead that more basic block-

swapping techniques like BitTorrent do not. Because the network coding operations

of encoding blocks and decoding the original file data can both be implemented using

matrix multiplication, decreasing the time required to perform these multiplications

will lower network coding’s computational overhead and make it a more attractive

solution for peer-to-peer file transfer.

1.3.3 Precomputation

With a finite field, the the set of values occurring in a matrix is not only finite,

but depending on the field size, it may also be quite small. Such a small field space

can allow for things like precomputing all possible scalar-vector products of parts of

matrices and reusing the results to reduce the total number of operations required to

multiply two matrices. We have developed a technique for precomputing all multiples

16

of matrix columns needed during matrix multiplication. After a preprocessing step,

these precomputed results are used to quickly compute the product. Furthermore,

this technique can be effectively combined with a variant of Strassen’s algorithm to

yield square matrix multiplication that is not only asymptotically better than O(n3),

but also requires no scalar multiplication during the most computationally expensive

phase of matrix multiplication.

1.4 Thesis Organization

This thesis is divided into five chapters. The second chapter discusses existing

work related to both network coding and fast matrix multiplication, and some perfor-

mance issues are addressed. Details on the design and implementation of my solutions

follow in the third chapter. In the fourth chapter, the performance of these solutions

is evaluated. In the final chapter, we summarize our contributions to network coding

and their effectiveness, we highlight some particular contributions, and some avenues

of future work are explored.

17

CHAPTER TWO

Related Work

Peer-to-peer networking has been gathering interest since broadband Internet

access began to make its way into homes across the world. It was leveraged early on

to power some controversial file-swapping services such as Napster [Ald01]. In the

following years, many approaches to peer-to-peer networking have been explored, and

it is routinely used for transferring large files or multimedia content. Skype uses a

peer-to-peer network to route voice and video calls over the Internet [GDJ06]. BitTor-

rent has arisen as one of the protocols most widely used to transfer large files [ipo07].

This chapter explores some existing approaches to peer-to-peer networking, as well

as some of the areas that pertain to network coding in particular.

2.1 Peer-to-peer Networking

As broadband Internet becomes more widespread, there is an increasing number

of hosts capable of transmitting data at high data rates. Furthermore, with the ever

increasing computational speed and decreasing cost of computers, even the most

readily available devices have significant computational power. This increased speed

allows for a break in the traditional client-server approach to application design,

as the machines that traditionally act as clients now have significant resources to

contribute. By taking advantage of these resources, content providers can leverage a

content delivery system that grows in capacity as the number of users increases, with

little or no cost to themselves. Users can help in the distribution of content. Peer-

18

to-peer traffic already accounts for a significant portion of total Internet traffic, so

making sure that it is done effectively is important to making sure that the hardware

that powers the Internet is efficiently used.

2.1.1 BitTorrent

BitTorrent is the one of the most widely used peer-to-peer protocols for trans-

ferring large files. The first implementation was made available in 2001. In just a

few years, it became, arguably, the protocol of choice for peer-to-peer distribution

of large files [btu04]. Some major video game companies, such as Valve Corporation

and Blizzard Entertainment, use BitTorrent to distribute their games, software up-

dates, and other content [Sch04] [Ent]. Many Linux distributions are made available

through BitTorrent [Sch04]. Social networks Facebook and Twitter use BitTorrent to

distribute software updates to their servers [Tor10a] [Tec12] [Tor10b].

2.1.1.1 How BitTorrent Works

BitTorrent [Coh03] was designed to make participating in peer-to-peer distribu-

tion of files easy for end users. While browsing the Internet, a user may come across

a link to some content that may be downloaded with BitTorrent. This link refers to

a .torrent file, which the system opens with the default torrent-handling application,

and the download begins. For the user, this process is straightforward, even though

there is a lot of work going on the background. Internally, downloading a file via Bit-

Torrent is significantly more complicated than downloading a file via typical unicast

protocol like HTTP.

19

The .torrent file contains some information about the data file to be downloaded,

like its name and size, block size, and a hash for each block. The data file is divided

into n blocks to be transferred individually. The hash value for each block allows

each block to be verified as correct as it is received. It also contains the address of

the tracker, which the BitTorrent application contacts to get a list of peers which are

either in the process of downloading a copy of the file or already have a complete

copy of the file available.

The BitTorrent application begins to connect to peers reported by the tracker.

The peers swap information about which blocks they have, and they may request

blocks from each other. This communication between the peers, as well as the com-

munication between the peers and the tracker, generates a small amount of overhead

traffic. BitTorrent allows block requests to be queued to minimize the time spent

waiting between downloading multiple blocks from another peer. Most BitTorrent

applications implement a tit-for-tat or choking algorithm, which rewards peers that

provide blocks and tends to ignore peers that do not provide blocks. This tit-for-tat

requirement encourages peers to give some resources back to the network, and dis-

courages peers from only downloading blocks from other peers without sharing any of

the blocks they have already downloaded. Also, the BitTorrent application typically

employs a rarest block first approach to choosing which block to request. When possi-

ble, it requests blocks that, from the information it has available, seem to be the least

widespread in the network. However, block selection is not part of the protocol and

clients may implement other strategies, such as downloading the blocks in sequential

order to allow media playback to begin before the download is complete.

20

If all of the peers are participating well, the capacity of the network to provide

content to peers increases as more peers join the network. This allows the delivery

of large files to large numbers of users to scale up much higher and much more cost-

effectively than a collection of web servers.

2.1.1.2 Problems with BitTorrent

Like most other peer-to-peer protocols in widespread use today, BitTorrent

works by having peers swap actual blocks from the file. This requires the peer to

be aware of which blocks other peers have available to offer. After all, peers cannot

share blocks of the file that they do not yet have. In cases where the number of peers

participating in the network is rather small, it may become more and more difficult

to find needed blocks of the file as a peer gets closer and closer to completion of the

download. This problem is sometimes referred to as the last block problem [KYV+09],

and, in this case, a user may see the network throughput drop towards the end of

the download while the BitTorrent client searches for peers that have the last needed

file blocks. It is also possible to have a situation in which some blocks required to

complete the download are no longer available in the network, in which case, it is

impossible for peers to complete the download unless a new peer or seed arrives with

the missing information.

This situation is shown in Figure 2.1. In the figure, a seed and four peers

are participating the distribution of a file via BitTorrent. The blocks of the file are

represented by the bar next to each computer. Solid blocks indicate that the peer

has a copy of that block of the file, and white blocks indicate that the peer does not

21

yet have a copy of that block. Illustrated in the figure is one possible scenario which

may unfold that leaves the network without a copy of one of the blocks of the file,

with the remaining three peers unable to complete their download.

In some more specific situations, BitTorrent may actually cause an obvious

waste of network resources [GR05]. Consider the case illustrated in Figure 2.2, in

which there are two large groups of peers connected by a slow network link. None of

the peers are completely aware of which peers have which pieces of the file, or even

that there is a bottleneck. If two different peers on one side of the slow link send the

same block to two different peers on the other side of the link, that link has carried

redundant information. Even if only one copy of a particular block is sent across

the slow link, peers on the other side will be able to quickly swap that block among

themselves; it would be a more efficient use of resources to send only distinct blocks

across the slow link.

2.1.2 Network Coding

Network coding [GR05] provides a possible solution to these issues. As with

BitTorrent, the file is split into blocks. However, instead of actually swapping these

blocks, the peers share encoded blocks, which are random linear combinations of all

of the blocks in the file. Each block a peer receives is highly likely to tell it something

new about every block in the file, and once a peer receives enough of these encoded

blocks, it is able to decode the original data. Because blocks are very highly likely

to be innovative, peers do not need to keep up with which blocks other peers have.

There is no searching for the last block; the peer simply keeps receiving blocks until it

22

(a) Consider this case with a seed and
four other peers participating in a BitTor-
rent network. None of the peers have com-
pleted their download yet; only the seed
has a complete copy of the file. They con-
tinue to trade blocks.

(b) The peer on the right receives the last
two blocks that it needs. It now has a
complete copy of the file, and it becomes
a seed.

(c) The original seed, having sent out one
copy of each block in the file, leaves the
network. The new seed sends out a few
more blocks.

(d) The new seed leaves the network.
Even though there are seven copies of file
blocks out in the network and only four
blocks are needed to reconstruct the orig-
inal file data, none of the peers have a
copy of the last block of the file, so none
of them can complete their download.

Figure 2.1: BitTorrent network reaching a bad state, with no copies of a particular
block available. Peers left in the network are unable to complete their download of
the file.

23

Figure 2.2: Potential for redundant data transmission in a peer-to-peer network. In
this figure, there are two clusters of peers, but the clusters are connected by a single
slow link. The best use of network resources would be sending as little redundant
information over the slow link as possible. However, as each peer does not have
a complete picture of what is happening in the network, optimal network usage is
difficult to achieve.

has n of them. Also, because of the randomness component that goes into generating

each block, each one is highly likely to be unique. This process results in a more

optimal use of network resources as duplicate data is unlikely.

2.1.2.1 Encoding Blocks

Network coding could work in conjunction with a number of existing peer-

to-peer protocols, like BitTorrent. What needs to change is only the actual data

encoding, data being transmitted, and the file decode process. Other details, like

peer discovery, tit-for-tat requirements, and the actual network protocol would require

little change.

As with BitTorrent, the file is divided into blocks for delivery. Each block is a

fixed size, with m elements. An element is a fixed-length piece of the file, perhaps

24

one or two bytes, agreed upon by all peers. Each element is treated as a value from

the finite field in which the mathematics are being performed.

With BitTorrent, if a peer were to transmit a block to another peer, the data

transmitted would be a copy of one of the blocks from the file. With network coding,

blocks from the file are not transmitted; rather, each transmitted block will be a coded

block, that actually contains some information about each of the blocks in the file.

Ideally, each coded block will be unique.

This process is accomplished by generating a linear combination of all of the

blocks in the file. Random coefficients are used, so that each coded block is highly

likely to be different than any other. The data in the file can be thought of as an

n ×m matrix, the file matrix, D, where each row of the matrix is one block of the

file, m elements wide. As illustrated in Figure 2.3, a seed preparing to send a block

of the file first generates one random coefficient for each row of this matrix. These

random coefficients form the coefficient vector, V , which is an n× 1 row vector. The

seed then prepares a data vector, E, which is an m × 1 row vector. Each element

in the data vector is the dot product of the coefficient vector and the corresponding

column of the file matrix. More generally, the ith element of the data vector is the

dot product of the coefficient vector and the ith column of the file matrix, or looking

at the vectors as a whole, E = V × D. As the entire file is used in generating the

data vector, the data vector contains some information about each block in the file.

Pseudocode for the process of encoding a block follows:

25

for i : 1...n do

Vi ← rand

end for

for i : 1...m do

Ei ← 0

for j : 1...n do

Ei ← Ei + Vj ×Dj,i

end for

end for

The coefficient vector V and data vector E together form a coded block. These

are transmitted to another peer that is working on downloading the file. The data

vector contains some information about each block of the file, and the coefficient

vector contains the information about how the data vector was computed from the

original file data.

2.1.2.2 Decoding the File

Each peer maintains a coefficient matrix, C, and a data matrix, B, each with n

rows. These matrices are initially empty. As a peer receives coded blocks consisting of

coefficient vectors and data vectors, it stores them as rows in these matrices, filling in

the rows top-to-bottom. As the coefficient vectors are n elements long, the coefficient

matrix is an n × n square matrix. Data vectors contain m elements, so the data

matrix is an n ×m matrix, the same size as the file matrix. Coefficient vectors and

data vectors that arrive together are stored at the same row in their corresponding

matrices, as shown in Figure 2.4. After filling these two matrices—that is, after

receiving n coefficient and data vectors—the peer is ready to decode the original file.

26

Figure 2.3: Generation of a coded block. The file matrix (red) contains the file data.
Each block of the file is one row of the file matrix. The seed generates one random
coefficient for each block, and these make up the coefficient vector, V (green). Then,
each element of the data vector E (blue) is computed as the dot product of the
coefficient vector and a column from the file matrix. The coefficient vector V and
data vector E together make up a coded block, which is sent off to a peer who is
downloading the file.

Consider a peer with full coefficient and data matrices. To decode the file,

the peer must discover the file matrix. Here, each element of the data matrix is a

linear combination of a column of the unknown file matrix. A column of the data

matrix, along with the entire coefficient matrix, forms a system of n linear equations

with n unknowns. The coefficients of these equations are the values in the coefficient

matrix. This system is solvable using standard techniques for solving systems of linear

equations, and the resulting column vector is a column from the file matrix.

27

Figure 2.4: Peer receiving a coded block. The peer takes the coefficient vector V
and data vector E and stores them as rows in its local coefficient matrix C and data
matrix B.

Figure 2.5: Decoding the original file data. This can be computed as C−1 ×B = D.

Note that, for the system of linear equations to be solvable or for the coefficient

matrix to be invertible, all of the rows of the coefficient matrix must be linearly

independent. Because the coefficient vectors are generated randomly, the chance of a

new coefficient vector being linearly dependent on any set of less than n previously

generated coefficient vectors is very small. Nonetheless, peers must check to make sure

that incoming coefficient vectors are linearly independent with respect to their existing

set of coefficient vectors, stored as rows in the coefficient matrix. If a coefficient

vector is found to be linearly dependent, it and its corresponding data vector will be

discarded. If a peer receives a coded block that contains a coefficient vector that is

linearly independent from all previously received coefficient vectors, that coded block

is said to be innovative.

Because there are m columns in the data matrix, the peer actually has m differ-

ent systems of linear equations to solve, though all of them have the same coefficient

28

values. Solving the system of linear equations involving the ith column of the data

matrix gives the values in the ith column of the file matrix. Once all of the systems

of linear equations are solved, the file matrix contains the original file data; thus, the

peer has successfully decoded the file.

Each peer maintains a data matrix, but needs to compute the file matrix, which

is only known by seeds and contains the original file data. The data matrix could be

computed by multiplying the coefficient matrix by the file matrix:

B = C ×D

As described in the previous section, each element of the data matrix is the dot

product of the corresponding row of the coefficient matrix with a column of the file

matrix. This is exactly what is produced by C ×D. Because of this, if a peer only

knows the coefficient and data matrices, the file matrix can be computed with a

matrix multiplication as well:

D = C−1 ×B

Inverting the coefficient matrix and multiplying it with the data matrix yields the

original file data, D, as shown in Figure 2.5. Pseudocode for decoding the original

file data is given here:

D ← invertMatrix(C)×B

2.1.2.3 Encoding Blocks from Coded Blocks

Peers that do not have a copy of the original file can still generate coded blocks

to share with other peers. These coded blocks will contain some information about

29

every piece of the information that the peer has received so far. The process is similar

to that of creating a coded block from the original file data. But if a peer does not

have the original file data, all of the information it has about the file is in its coefficient

matrix and data matrix, so that information will have to be used in the creation of

the coded block.

As before, a vector of random coefficients, V , is needed to create a random

linear combination of all of the data available. Each element of the data vector, E,

can be computed by taking the dot product of V and the corresponding column from

the data matrix—just as described in Section 2.1.2.1, except the data matrix is used

instead of the file matrix. The resulting data vector is a random linear combination

of all of the information available in the peer’s data matrix.

However, the peer’s data matrix does not contain the original file data. Rather,

each row in this matrix is a random linear combination of the original file data, and

the corresponding rows of the coefficient matrix describe how each row of the data

matrix was constructed. Because of this, the information in the peer’s coefficient

matrix must be folded into the coefficient vector, V , before it is sent out. This can be

done by replacing each element of V with the dot product of the original V and the

corresponding column of the coefficient matrix. Pseudocode for this process is given

here:

30

for i : 1...n do

Ri ← rand

end for

for i : 1...m do

Ei ← 0

for j : 1...n do

Ei ← Ei + Rj ×Bj,i

end for

end for

for i : 1...n do

Vi ← 0

for j : 1...n do

Vi ← Vi + Rj × Cj,i

end for

end for

In terms of linear algebra, as described in Section 2.1.2.1, coded blocks are

computed from the original file data as E = V ×D, where E is the data vector, V is

a random coefficient vector, D is information from the original file. V and E are sent

to another peer, where the process can later be reversed to discover the original file

data D. A peer that does not yet have the entire file does not have D to use in the

computation of coded blocks, but such a peer can use the information that it already

has to compute useful coded blocks. It computes blocks as E ′ = R×E, where R is a

random coefficient vector, E is matrix of information from coded blocks received so

far, and E ′ is a new data vector. If R and E ′ were sent to another peer, that would

not be enough information to help in decoding D. However, in a similar manner, the

peer may compute V ′ as V ′ = R × C, where C is the matrix of coefficient vectors

31

Figure 2.6: Generation of a coded block from other coded blocks. The process is very
similar to the process of generating a coded block from the original file data as in
Figure 2.3, however, the coefficient matrix C must be folded into the new coefficient
vector V as well.

received so far. V ′ and E ′ are sent to another peer and are just as useful for later

decoding of D as blocks from a peer that has a copy of the original file data.

The process of encoding blocks can be generalized to be the same for peers that

have a copy of the original file and peers that do not have a copy of the original file.

Peers that have a copy of the original file use the file data for their data matrix and

the identity matrix for their coefficient matrix. With this, such peers can use this

process and come up with the same results as the process described in Section 2.1.2.1.

Taking the dot product of a vector with columns from the identity matrix yields the

same vector, so peers that have the original file data can effectively skip this step.

This is reflected by the final if statement in the pseudocode for this process, given

below.

32

for i : 1...n do

Vi ← rand

end for

if F decoded then

C ← identitymatrix

B ← F

end if

for i : 1...m do

Ei ← 0

for j : 1...n do

Ei ← Ei + Vj ×Bj,i

end for

end for

if F not decoded then

R← V

for i : 1...n do

Vi ← 0

for j : 1...n do

Vi ← Vi + Rj × Cj,i

end for

end for

end if

If a peer has only received j coded blocks, it can only share j new coded blocks

with another particular peer. Any additional blocks would be linearly dependent on

the previous ones. After j coded blocks have been sent, any additional coefficient

vectors would have to be either linearly dependent on the first j.

33

2.1.2.4 Checking for Innovation

A peer must receive n innovative coded blocks before it can decode the file

data. Each coded block should be checked as it arrives to see if it is innovative.

Non-innovative blocks do not provide additional information about the file data and

there is no reason to add their information to the B and C matrices. Additionally,

receiving a non-innovative block may be an indication that the peer that sent it does

not have any additional innovative information at the moment, which may play into

how the application schedules networking activity and requests to other peers.

To check to see if a coded block is innovative, the coefficient vector from the

block is checked against all previously received coefficient vectors to see if it brings

the peer closer to building an invertible matrix C. For C to be invertible, all rows

must be linearly independent. If this is the case, the matrix C will be triangularisable.

Checking a matrix for triangularisability is an O(n3) operation; however, it is possible

to check coded blocks for innovation in O(n2) time by maintaining a triangularized

matrix T based on C as coded blocks are received using the method outlined below.

for r : 1...c do

p← Pr

t← Vp

for i : 1...n do

Vi ← Vi − t× Tr,i

end for

end for

34

j ← 1

while j ≤ n AND Vj = 0 do

j ← j + 1

end while

if j > n then

NOT INNOVATIVE

end if

Pc ← j

p← Tc,Pc

for i : 1...n do

Vi ← Vi ÷ p

end for

Tc ← V

INNOVATIVE

The vector V represents the coefficient vector from the coded block that is

being checked for innovation. Note that although the contents of V are modified

throughout this process of checking for innovation, it is the original values of V that

are stored in C should V be found to be innovative. The vector P contains n elements

initialized to all zeros, and T is an n×n matrix initialized to all zeros. The values of

P represent the indices of the pivot columns for each row of T . The values of P and

T are maintained between innovation checks. The value c represents the number of

innovative coded blocks that have been previously received.

We begin by looping through each of the c previously received coefficient vectors.

For each of these vectors, a row was stored in T . The vector t × Tr, where Tr is the

corresponding row from T and t is the value of V at the position associated with the

pivot column of Tr, is subtracted from V for each row stored in T . When the loop is

35

finished, the vector V will have a zero in every column that has been selected as the

pivot column in each of rows of T . After this, the first non-zero value of V is located.

If one is not found, E is linearly dependent on previously received coefficient vectors,

which means it is not innovative. Otherwise, the coefficient vector may be accepted

as innovative. The pivot column is recorded, and V is normalized with respect to the

previously stored row in T and then stored as the next row. The original coefficient

vector V and corresponding data vector E may be stored as new rows in the peer’s

coefficient matrix C and data matrix B.

2.1.2.5 Finite Fields

If these operations are done in the real number field, the magnitude of the

numeric values in the data vector becomes an issue. Each of the values in the data

vector generated by a seed is the dot product of randomly generated coefficients and

values from the file. As an example, if the possible values of the random coefficients

and the possible values of elements in the file are the whole numbers 1 through 100,

then the magnitude of the resulting dot product is significantly larger, with the range

of possible results being 1 through 10,000. The problem becomes worse when peers

generate coded blocks from their coded blocks, which already contain these large

values. Consequently, the more peers that the data contained in a particular coded

block has passed through since it originated from a seed, the larger the magnitude

of the values in the data vector. As a result, the data matrix requires significantly

more storage space to store and network capacity to transfer than the original file

data. If attempts are made to control the magnitude of the values of the data vectors,

36

numeric stability becomes a concern. Operating in a finite field instead of the real

number field alleviates this problem.

2.1.3 Network Coding with Real-time Multimedia Streaming

Network coding has been evaluated for use in real-time streaming scenarios to,

for example, deliver streaming audio or video to a group of users [WL07]. The live

stream is divided into segments, each of which has the same duration. The segments

are treated much like generations, described in Section 2.2.1, which are further divided

into n blocks for use with network coding. A client receiving the live stream first needs

to obtain the first segment, so it requests coded blocks generated from blocks of the

first segment from other peers. Once it has received n of these coded blocks, it should

be able to decode the first segment of the stream and begin playback. At this point,

it begins requesting blocks from the next segment of the stream, while at the same

time generating coded blocks from any segments that it possesses, and sending these

coded blocks out to other peers that need them.

For this process to work, the peer must be able to receive and decode the

segments of the stream as fast as it can play them, and other peers must be able to

generate coded blocks fast enough to keep playback going. Research has shown that

the computational overhead of network coding is not prohibitive at normal streaming

media bitrates, and that using network coding for real-time media streaming may

be beneficial if the available supply bandwidth is barely higher than the demand

bandwidth, as network coding provides less redundant network traffic [WL07].

37

2.1.3.1 Problems with Network Coding

Network coding introduces some non-trivial computational overhead to a regu-

lar peer-to-peer protocol. Encoding blocks using the method described here requires

a complete pass over the file. Coefficient vectors must be checked for linear inde-

pendence after they arrive, and the final decode requires a matrix inversion and the

multiplication of two potentially very large matrices.

Furthermore, it is difficult to check the integrity of received data until it is time

to decode the file. With BitTorrent, peers can check blocks of the file they receive,

because the .torrent file contains a hash for each block in the file. Corrupt blocks

can be easily detected and discarded. As corrupt blocks can be readily identified, not

only are network errors that result in bad data being received by a peer addressed,

but also malicious attempts to spread bad data. In network coding, because of the

random coefficients, all blocks transmitted are unique, so they cannot be checked

against a known hash. Thus, any bad blocks received cannot be detected until the

file is decoded, when a hash of the entire file can be computed. If the file is found

to be corrupted, no practical method has been developed to determine which of

the coded blocks is bad. This problem could be solved if individual coded blocks

could be authenticated as correct. Work has been done on methods to authenticate

blocks using secure random checksums [GR06]. A homomorphic hashing function

can be used to compute a signature for each block, and the signature can survive the

operations used to compute new blocks. While verifying the signature adds additional

computational complexity, this complexity can be alleviated somewhat by periodically

checking received blocks in batches. While this checking can guard against accidental

38

network corruption, the problem of finding a trusted source remains, as a peer with a

copy of the original file data can create corrupt coded blocks with a seemingly valid

signature.

2.2 Existing Techniques for Encoding and Reconstruction

The process for encoding coded blocks using network coding, as described in

Section 2.1.2, is an O(n×m) operation. The entire file must be processed to create

one coded block. In the case of a peer that does not yet have a complete copy of the

file, it must process all of the data it has received so far to create one block. For a

sufficiently large value of n, peers may not be able to generate coded blocks as fast

as they can transmit them. This limitation slows down the transfer of the file to all

peers. Even if less network traffic is required for all peers to obtain a copy of the file

with network coding than would be required with a standard block-sharing protocol

like BitTorrent, if the rate of transmission is limited by the computations required to

perform network coding, it may take longer to distribute the file.

2.2.1 Generations

One way to limit the computational cost of generating a coded block is to

divide the file into some number of equally-sized contiguous subsets called genera-

tions [GMR06]. When generating a coded block, instead of using every block of the

file, only blocks from a particular generation are used. The resulting coded block

contains some information about every block in its generation, but not about every

block in the entire file. If the file contains n blocks, and g generations are to be used,

then there will be dn/ge blocks in each generation. A peer must collect a h = dn/ge

39

blocks for a particular generation in order to decode the data in that generation, and

a peer needs to decode every generation to have all of the original file data.

Using generations effectively changes the large linear algebra problem that must

be solved to decode the original file into g smaller problems. Because the number of

elements in each generation is much lower than the number of elements in the entire

file, generating coded blocks becomes much cheaper. Whether generations are used or

not, if the size of each block remains constant, the number of total blocks necessary to

decode the file remains the same. Without generations, a peer must receive n coded

blocks to decode the entire file, and with generations, a peer must receive h coded

blocks from each of g generations, for a total of h× g = n coded blocks.

Using generations not only reduces the cost of generating a coded block, but it

also reduces the cost of decoding the file. Without generations, a coefficient vector

contains one element for each block of the file, or n total elements. When it comes

time to decode the file, the coefficient matrix will be an n×n matrix, which represents

a system of linear equations. Solving this system is an O(n3) operation. However,

when using generations, each coefficient vector only contains h elements—one for each

block of the generation. When it comes time to decode the file, there are g separate

h× h coefficient matrices. Solving each of these is an O(h3) operation, so the cost of

decoding the entire file is O(g × h3). Since h × g = n, for g greater than 1, h must

be less than n by a factor of g, so the cost of decoding the entire file is reduced by

a factor of g. So, using generations can speed up both the encoding of coded blocks

and the decoding of the original file data.

40

Furthermore, using generations also allows for progressive decoding of the file.

Instead of waiting to receive n coded blocks before any of the file data can be decoded,

as few as h coded blocks allows a generation to be decoded. This decoding may allow

the peer to start using the beginning of the file, while waiting for enough coded blocks

to decode the rest of it.

Generations do not come without disadvantages. Using generations makes it

more likely for coded blocks to be non-innovative, as there are fewer values in each

coefficient vector which makes it more likely for linearly dependent or even identical

coefficient vectors to be chosen. If a peer has enough coded blocks to decode several

entire generations, only coded blocks generated from elements in the remaining gen-

erations of the file are useful. As a result, a problem similar to BitTorrent’s last block

problem can arise, wherein a peer nearing completion of its download has trouble

locating another peer that can provide blocks from the last generation that it needs

to be able to decode all of the original file data. As h decreases and g increases, these

issues intensify. Taken to the extreme case that h = 1 and g = n, the advantages

that network coding offers over BitTorrent completely disappear.

2.2.2 Density

Another way to reduce the computational cost of generating coded blocks is to

add a density parameter [WL06]. If there are n blocks in the entire file, the density

parameter, q, where q ≤ n, is used to determine how many of the blocks are to be used

to generate a coded block. The use of the density parameter is rather straightforward.

Instead of using all n blocks when generating a coded block, q blocks are selected at

41

random. Thus, coded blocks will only contain information about some q out of the n

blocks of the original file.

Using the density parameter speeds up the generation of coded blocks, as each

block of the file does not need to be processed each time a coded block is created.

Using a very low density can make the creation of coded blocks very fast. Encoding

a block using the entire file is an O(n ×m) operation, but with a density of q, it is

reduced to O(q×m). However, now each coded block no longer contains information

about each block of the original file, and using a low density increases the number of

non-innovative blocks that are generated.

2.2.3 Folded Block Encoding

Folded block encoding [Cut07] allows for coded blocks to be created without the

need to process the entire file. With folded block encoding, an index, i, is maintained

starting at 0. Also, the last transmitted coefficient vector, V , and data vector, E, are

stored, also initialized to all zeros.

When a peer needs to create a coded block to send to another peer, a random

number s is generated. The ith row of the peer’s coefficient matrix is multiplied by

s and added to V , and the result becomes the coefficient vector associated with the

new coded block. Similarly, the ith row of the peer’s data matrix is multiplied by

s and added to E, and the result becomes the data vector associated with the new

coded block. Now, the coded block is ready to be sent, its coefficient vector and data

vector are stored as the new V and E. The value of i is incremented, looping back

around to 0 once it exceeds the number of rows in the coefficient and data matrices.

42

Using this method, the first coded block that a peer transmits contains infor-

mation about only the first block in its data matrix. The second coded block contains

information about the first two blocks in its data matrix, the third coded block con-

tains information about the first three blocks, and so on. Once a peer generates n

coded blocks, all coded blocks transmitted by the peer contains some information

about every block of the original file.

This approach has the advantage that, to generate a coded block, a peer only

needs to process one block of its file data, as opposed to processing the entire file as

described in Section 2.1.2.1. The disadvantage is that early coded blocks generated

by a particular peer contain information about a small number of blocks from the

entire file, making it more likely for them to be non-innovative. Even so, early blocks

generated by a particular peer that does not start with a complete copy of the file

are highly likely to contain information about multiple blocks of the original file. The

first block a peer receives will become the basis for the first block it generates, so it

will contain information about the same blocks of the original file.

2.3 Galois Fields

A Galois finite field [Wei] [GP85] is a field with a finite number of elements. The

number of elements is the order of the field. The order of the field is always prime,

or a power of a prime. For computer science applications, orders that are powers of

two that are multiples of eight are ideal, because they fully utilize the possible values

that can be stored in a particular number of bytes. For example, GF(28), the Galois

finite field of order 256, has 256 possible values and can be stored in eight bits, or

43

one byte. GF(216) has 65,536 possible values and can be stored in two bytes. These

fields will be referred to in shorthand as GF8 and GF16.

In a Galois field with an order that is prime, that is, GF(p) where p is prime,

the elements of the field can be represented as integers from 0 up to one less than

the order of the field. For instance, GF(2) contains only the elements 0 and 1, but

GF(7) contains elements 0 up to 6. Addition and multiplication in such a field is

the same as addition and multiplication in the field of real numbers modulo p. Thus,

such a field is closed over addition and multiplication, as no elements lower than 0 or

higher than p− 1 can be the result of addition or multiplication of values of the field.

The addition and multiplication tables of GF(2) are shown in Tables 2.1 and 2.2,

respectively. Notice that while this is modulo-2 arithmetic, the addition operation is

also the same as the bitwise XOR operation.

Table 2.1: Addition in GF(2)

+ 0 1
0 0 1
1 1 0

Table 2.2: Multiplication in GF(2)

× 0 1
0 0 0
1 0 1

In a Galois field with an order that is a power of a prime, that is, GF(pF) where

p is prime and F > 1, elements of the field can be represented as polynomials with

coefficients that are elements of GF(p). If p = 2, the only possible coefficients are 0

44

and 1, and the bit vector representation of a particular value can represent the value of

the coefficient associated with each term of the polynomial. Consider the Galois field

GF(23). There are only eight possible values, and each of them can be represented

using only three bits. The value represented by the bit vector 101 corresponds to

the polynomial x2 + 1, the value represented by the bit vector 010 corresponds to

the polynomial x, the value represented by the bit vector 110 corresponds to the

polynomial x2 + x, and so on.

Adding and multiplying elements of the field GF(pF), where p is prime and

F > 1, can be computed by adding and multiplying the polynomial representation of

the elements, and then taking the modulus of the result with respect to a primitive

polynomial [Rus03] of degree F . Rules for adding and multiplying the coefficients fol-

low the rules of adding and multiplying the elements of the field GF(p). The primitive

polynomial guarantees that the field is closed under addition and multiplication [Wei].

The Galois finite field satisfies everything that we need for network coding—

that is, the field is closed under the basic operations of addition and multiplication,

and they are reversible with subtraction and division. An 8- or 16-bit Galois field is a

common choice for use with a network coding implementation. In a field where p = 2,

this means that addition is the same as the bitwise XOR (exclusive OR) operation

of the bit vector representation of the values, as addition in GF(2) is the same as

XOR and adding two polynomials requires simply adding together the coefficients

of the various terms of the polynomial. This allows for highly efficient addition and

subtraction operations.

45

Multiplication and division can be performed with table lookups. As the field

has a limited number of values, depending on the field size chosen, the results for

multiplication and division can be computed ahead of time and looked up when

needed. Additionally, by taking advantage of patterns in the sequence of results for

all possible multiplication and division operations, it is possible to store the results

in a table that is much smaller than F × F .

2.4 Strassen’s Algorithm for Fast Square Matrix Multiplication

Network coding involves a lot of operations on matrices. A great deal of what

needs to be done can be implemented using matrix multiplication, so using a high-

performance matrix multiplication algorithm is critical in creating a high-performance

network coding implementation.

Two matrices may be multiplied together if the number of columns in the first is

equal to the number of rows in the second. The resulting matrix has the same number

of rows as the first and the same number of columns as the second. Each value of the

product matrix is the dot product of the values from the corresponding row of the

first matrix and the corresponding column of the second. More specifically, suppose

there is a matrix multiplication problem C = A × B. A particular value of C, Ci,j,

is computed by taking the dot product of the ith row of A and the jth column of B.

Unlike multiplication of real numbers, multiplication of matrices is not commutative.

In this section, multiplication of square matrices is considered.

The total number of operations required to compute the matrix multiplication

depends on the size of both of the original matrices. If both A and B are square

46

matrices with n elements in each row and column, then C will also be an n × n

matrix. There are n2 elements of C to compute. Each is the dot product of a row

from A and a column from B. Both the row of A and column of B hold n values,

so each dot product will require n multiplication operations and (n − 1) addition

operations. With n2 elements to compute, each requiring (n+n+ 1) operations, this

näıve approach to matrix multiplication is an O(n3) operation.

Work has already been done on finding algorithms for matrix multiplication

with a running time of less than O(n3). Strassen’s algorithm [Str69] [CLRS01] is an

algorithm that can be applied recursively to square matrix multiplication problems,

and has a running time of O(nlog7), or about O(n2.81). Using the same matrix mul-

tiplication problem C = A × B, each a square matrix of size n × n, each of these

matrices can be divided into four submatrices of size n/2× n/2 as follows: r s

t u

 =

 a b

c d

 e f

g h

Each of the submatrices a through d are made up of the elements from one quadrant

of the original matrix A. Similarly, the submatrices e through h contain elements

from quadrants of B. The submatrices r through u, when computed, will contain

elements from quadrants of C.

47

The submatrices of the product matrix, r, s, t, and u can be computed using

standard matrix multiplications involving the other submatrices, as follows:

r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

Here, the final product is computed with eight matrix multiplications and four matrix

additions. Matrix addition is an O(n2) operation, significantly cheaper than matrix

multiplication for large matrices, so we ignore this cost for now. Each of the matrix

multiplications may still be an O(n3) operation. These submatrices only contain n/2

elements in each dimension though, so with n being cut in half, the running time of

each matrix multiplication is cut by a factor of eight with respect to how long it would

take to multiply two n×n matrices. That is, the cost of each of these multiplications

is O((n/2)3) = O(n3/8). However, because there are still eight matrix multiplications

required, there has been no performance gain.

Because matrix additions and subtractions are so much cheaper than matrix

multiplication, using many of these operations to eliminate even one of the required

matrix multiplication operations may be a net gain in performance. Strassen’s al-

gorithm describes a method by which we may compose these submatrices to achieve

exactly this result. Only seven matrix multiplications are required to compute C.

48

Consider these two multiplications of the submatrices above.

P1 = a× (f − h)

P2 = (a + b)× h

Adding P1 and P2 gives the following:

P1 + P2 = a× (f − h) + (a + b)× h

= af − ah + ah + bh

= af + bh

This is exactly what is needed to compute the submatrix s, part of the final product

C. s is computed here with two matrix multiplications, two matrix additions, and

one matrix subtraction.

The following five matrix multiplications allow for computing of the remaining

submatrices, r, t, and w:

P3 = (c + d)× e

P4 = d× (g − e)

P5 = (a + d)× (e + h)

P6 = (b− d)× (g + h)

P7 = (a− c)× (e + f)

P1 through P7 each require only one matrix multiplication to compute, for a total of

seven matrix multiplications. This is less than eight matrix multiplications, which

means that so far, less work has been done generating these products than would be

required to compute C with the näıve approach.

49

Using these seven matrices P1 through P7, each of the submatrices r, s, t, and

u of A, the final product, may be computed.

s = P1 + P2

= a× (f − h) + (a + b)× h

= af − ah + ah + bh

= af + bh

t = P3 + P4

= (c + d)× e + d× (g − e)

= ce + de + dg − de

= ce + dg

r = P5 + P4 − P2 + P6

= (a + d)× (e + h) + d× (g − e)− (a + b)× h + (b− d)× (g + h)

= ae + ah + de + dh + dg − de− ah− bh + bg + bh− dg − dh

= ae + bg

u = P5 + P1 − P3 − P7

= (a + d)× (e + h) + a× (f − h)− (c + d)× e− (a− c)× (e + f)

= ae + ah + de + dh + af − ah− ce− de− ae− af + ce + cf

= cf + dh

While many matrix additions and subtractions are required to compute all of

the pieces of C, because matrix multiplication is so much more expensive than matrix

addition or subtraction, for sufficiently large matrices, the cost of performing all of

50

these operations does not outweigh the amount of time saved by avoiding one more

matrix multiplication.

This algorithm can be applied recursively. If this technique is used for square

matrix multiplication and provides a running time of less than O(n3), and only seven

multiplications of the submatrices are required during execution, why not use the

same technique to perform these submatrix multiplications as well? When it comes

time to multiply two n/2 × n/2 matrices, this technique may be employed, which

will involve further breaking these matrices into n/4×n/4 matrices, computing seven

n/4×n/4 matrix products, and adding them together to form the pieces of the product

matrix. The matrix products required at this step can be computed by employing this

technique algorithm once again, and breaking the matrices into n/8×n/8 matrices. As

execution continues deeper into this recursion tree and the matrices being multiplied

become smaller and smaller, the time saved by using this technique instead of the

näıve approach also becomes smaller and smaller. Eventually, the cost of computing

all of the extra matrix additions and subtractions outweighs the time saved by not

performing an eighth matrix multiplication. At this point, it is appropriate to fall

back to using the näıve method.

51

CHAPTER THREE

Design and Implementation

By taking advantage of the properties of the Galois finite field, it is possible

to do some precomputation to save time during the multiplication of two square

matrices. This technique has applications in network coding that can be used to

reduce the computational overhead involved with generating new data vectors and

also with decoding the original file data once enough coded blocks have been received.

3.1 Fast GF Implementation

Network coding is generally performed in a finite number space, to avoid prob-

lems with overflow or loss of precision during coefficient multiplication. The Galois

finite field [Wei] [GP85] works well for this application. The field size is predefined,

and all values take up a fixed number of bits in memory.

Addition and subtraction operations are trivial and can be performed with

a simple bitwise XOR. For added performance, these operations can be performed

in bulk. A typical 64-bit x86-64 CPU can perform a 64-bit XOR operation with

one instruction. When values are laid out appropriately in memory, addition and

subtraction of multiple values can be computed simultaneously by applying the XOR

operation to several values at once. This allows for computing the sums of two sets

of GF8 values 8 at a time.

Multiplication and division are slightly more complicated; however, log tables

can be generated that allow the multiplication and division operations to be performed

52

in constant time. The time required to produce these precomputed tables and the

amount of memory required to store them grows at O(F), where F is the number of

bits used to store each value. For GF16, the largest field size used in this project,

0.75 megabytes of memory is required to store the precomputed tables and they can

be produced in less than a second on a modern CPU. Thus, this precomputation

step has a negligible impact on the performance of a program using this Galois field

implementation.

3.2 GF8 Precomputation

By taking advantage of the finite field, it is possible to reduce the total number

of operations required to compute the product of two square matrices, if the matrices

are sufficiently large. Additionally, by carefully laying out the values in memory, it

is possible to further improve performance by adding groups of elements at the same

time and promoting cache locality.

3.2.1 Näıve Matrix Multiplication

Let this be the matrix multiplication problem to be solved:

A×B = C

Given matrices A and B that both have n elements in a row or column, matrix C

is to be computed. A standard approach is to iterate over all of the elements in the

C matrix. A particular element of Ci,j of matrix C is computed by taking the dot

product of row i of A and column j of B. By iterating over each of the elements in

C, the entire product is computed. This standard approach is detailed below.

53

for i : 1...n do

for j : 1...n do

Ci,j ← 0

for k : 1...n do

Ci,j ← Ci,j + Ai,k ×Bk,j

end for

end for

end for

3.2.2 Reordering Computation

The same result can be computed using a different order of operations. For

instance, consider the case where the loop iterates over elements of B. For a particular

element Bi,j, each element in column i of A is multiplied by Bi,j, and the resulting

scaled column is added to column j of C. After all of the elements in B have been

processed in this way, each element of C contains the dot product of a row of A and a

column of B, just as with the typical matrix multiplication algorithm. This reordered

approach is detailed below. Note that the second loop is set up in such a way that

the elements of matrix B are traversed in row-major order.

54

for i : 1...n do

for j : 1...n do

Ci,j ← 0

end for

end for

for i : 1...n do

for j : 1...n do

for k : 1...n do

Ck,j ← Ck,j + Ak,i ×Bi,j

end for

end for

end for

Whereas the standard ordering computes one dot product at a time, this order-

ing interleaves the computation of the n dot products. The matrix C is initialized to

all zeros in the first loop. In the second loop, column i of the matrix A is multiplied

by a particular value from the matrix B and added column j of the matrix C. This

repeats for all different values of B.

3.2.3 Applying Precomputation

It may be possible to decrease the amount of time the matrix multiplication

takes by precomputing all possible multiples of the columns of A, or all possible scaled

A columns. These results can be used in the computation of C. This does not make

sense for real-valued matrices, as there is an infinite amount of numbers by which

we could need to multiply any column of A. However, when using a finite field, all

possible scaled A columns can be computed in advance and simply looked up during

the matrix multiplication.

55

Using this method, prior to multiplication, all possible scaled A columns are

computed. After precomputation, when processing element Bi,j, it would be necessary

to multiply the value by Ai,k, the final loop of the reordered algorithm above. This

multiplication can be skipped, as the entire column has already been multiplied by

this value and the result can be looked up. Then, adding this column to column j of

C simply requires iterating down the two columns and adding the elements together.

This approach to matrix multiplication is detailed below.

for i : 1...n do

for j : 1...n do

for k : 0...2F − 1 do

Pk,i,j ← Ai,j × k

end for

end for

end for

for i : 1...n do

for j : 1...n do

Ci,j ← 0

end for

end for

for i : 1...n do

for j : 1...n do

v ← Bi,j

for k : 1...n do

Ck,j ← Ck,j + Pv,k,i

end for

end for

end for

56

The scaled A columns will be stored in a three-dimensional matrix P , the

scale table for A. As the elements of these matrices are elements of a finite field,

F represents the field size, in bits. P contains 2F copies of A, each one scaled by a

different value. As P is a three-dimensional matrix, each element of P can be referred

to using three coordinates k, i, j as seen in the first loop above. The coordinate k

represents the value that the matrix A is scaled by, and the coordinates i and j simply

mirror the coordinates of the two-dimensional matrix A. In the final loop, instead of

performing a multiplication operation, values of P are looked up. Pv,k,i is the same

as Ak,i × v.

Note that with this method, all of the multiplication is done during the pre-

computation step, the first loop above. The rest of the algorithm is very similar to

the reordered algorithm. In the final loop above, when it comes time to perform the

multiplication that was performed in the final loop in Section 3.2.2, the result can be

looked up in the matrix of precomputed values P . The value Ak,i×Bi,j, for any value

Bi,j, has already been computed and stored in P during the precomputation step.

The number of multiplication operations required by the standard matrix mul-

tiplication algorithm is n3. To instead precompute all possible products that may be

needed, n2× 2F multiplication operations are needed. This is fewer multiplications if

2F is less than n.

In this approach, the matrix A is used as the basis of precomputation. All

multiples of columns of A are precomputed. A similar method can be used with B

as the basis of precomputation, by precomputing and storing multiples of rows of B.

This approach is detailed in below.

57

for i : 1...n do

for j : 1...n do

for k : 0...2F − 1 do

Pk,i,j ← Ai,j × k

end for

end for

end for

for i : 1...n do

for j : 1...n do

Ci,j ← 0

end for

end for

for i : 1...n do

for j : 1...n do

v ← Bi,j

for k : 1...n do

Cj,k ← Cj,k + Pv,j,i

end for

end for

end for

The precomputation may also be used to reduce the number of multiplications

required with the standard multiplication algorithm, without the reordering of op-

erations described above. However, using the reordered matrix multiplication sets

up some potential performance improvements, as detailed in the following section.

Additionally, when using the precomputation, a significant amount of memory may

be required to store the scaled columns. This is discussed in Section 3.2.6.

58

3.2.4 High Performance

Assuming that the elements of each of the matrices are stored sequentially

in memory in row-major order, a small modification can be made to the process

described previously, so that the values of matrix P are accessed sequentially during

the final loop. This modification is shown in below. With respect to the previous

listing, Pk,i,j is changed to Pk,j,i in the first loop. This alteration simply changes the

order in which the precomputed values are stored in the matrix P . To account for

this change, the lookup in the final loop is changed from Pv,k,i to Pv,i,k. As this final

loop is iterating over the variable k, the statement Cj,k +Pv,i,k accesses elements from

the matrices C and P sequentially.

for i : 1...n do

for j : 1...n do

for k : 0...2F − 1 do

Pk,j,i ← Ai,j × k

end for

end for

end for

for i : 1...n do

for j : 1...n do

Ci,j ← 0

end for

end for

59

for i : 1...n do

for j : 1...n do

v ← Bi,j

for k : 1...n do

Cj,k ← Cj,k + Pv,i,k

end for

end for

end for

Thus, the addition operations performed in the final loop require simply adding

the values of two contiguous segments of n values from memory. Because the values

are contiguous, cache locality is promoted. Furthermore, when using Galois finite

fields, addition is the same as the XOR operation. As a result, when adding these

two columns, groups of values can be taken and processed at the same time. Modern

CPUs can process an XOR operation on as many as eight bytes at a once in a single

instruction, as described in Section 3.1. This simultaneous processing of multiple

values at once can greatly reduce the total number of operations required to add the

two columns.

3.2.5 Run Time

The standard square matrix multiplication algorithm, detailed in Section 3.2.1,

has a run time of O(n3). There are two parts of the precomputation algorithm. The

first part is the precomputation step, the first for loop in Section 3.2.4. As described

in Section 3.2.3, this step has a run time of O(n2 × 2F), which is less than O(n3)

if 2F is less than n. The results of this step can be used for multiple multiplication

operations if the same matrix A is used. In the case that many multiplications are

60

required with the same matrix A, the cost of this step can be amortized over all of

them.

The second part is the step that uses the precomputed results to generate the

product, shown in the second two loops in Section 3.2.4. This step has a run time

of O(n3), the same as the standard algorithm. However, this step has only addition

operations and no multiplication operations. Because Galois field addition operations

are faster than multiplication operations, and because multiple addition operations

can be applied at a time, the actual run time of the precomputation technique will

be faster than the standard algorithm.

3.2.6 Memory

The precomputed results require 2F times the amount of memory as the amount

required to store a copy of A. More specifically, the amount of memory required to

store the precomputed multiples of the columns of A, in bytes, is:

n2 × 2F × (F ÷ 8)

As described in Section 3.2.3, these precomputed results are stored in the three-

dimensional matrix P . P contains 2F copies of the n × n matrix A, one scaled by

each value in the finite field.

In network coding, using a larger field size has the benefit of a reduced chance

of collision; that is, the chance that a newly generated random coefficient vector is

linearly dependent on any previously randomly generated vectors. However, using

a large field size can make precomputation more expensive. For example, using the

16-bit Galois finite field, which is commonly used with network coding, precomput-

61

ing every possible multiplication of the matrix A would require storing 16,536 (216)

matrices the same size as A. With GF16, each element of the matrix is two bytes

long. If A is an n2 matrix, the amount of memory needed in bytes is n2 × 16536× 2.

With GF8, the field size is dropped down to 8 bits, and the matrices need twice the

number of elements in each row to store the same amount of data. However, only 256

(28) columns need to be precomputed for each column of A. The memory needed for

precomputation drops to (n× 2)× n× 256, significantly less than that required with

GF16.

3.2.7 Application to Network Coding

Once a peer participating in network coding is ready to decode the original file,

the peer inverts its coefficient matrix and multiplies the result by its data matrix. The

same result can be obtained by dividing the data matrix into square matrices and

multiplying them all by the inverted coefficient matrix in turn [Cut07]. This multipli-

cation can be carried out using the precomputation method described in Section 3.2.3,

with an added benefit: the precomputation step (the first loop in Section 3.2.4) only

needs to be performed once, using the inverted coefficient matrix as A. The results

can be used to multiply the inverted coefficient matrix by each of the pieces of the

data matrix, without any multiplication operations.

3.3 Application of Strassen’s Algorithm

It may be possible to further reduce the amount of time required for square

matrix multiplication by basing the implementation on a matrix multiplication al-

gorithm that has a lower asymptotic running time, rather than the näıve algorithm.

62

Näıve square matrix multiplication is an O(n3) operation, where n is the number

of elements in a row or column of the matrices. Strassen’s algorithm has a lower

asymptotic running time of about O(n2.81).

As you recall from Section 2.4, Strassen’s algorithm involves decomposing the

original matrices into four submatrices, each with half the number of elements in each

dimension as the original matrices, representing the four quadrants of the original ma-

trices. These matrices are then combined through addition and subtraction in such

a way that the product of the original two matrices can be computed by computing

seven products of these smaller matrices, P1 through P7, rather than the equivalent

of eight multiplications that would be required using the standard matrix algorithm.

Even though many more matrix additions and subtractions are performed, for suf-

ficiently large matrices these extra operations do not outweigh the benefit of being

able to skip one of the eight matrix multiplications.

Under Strassen’s algorithm, the matrix decomposition is applied recursively.

When the time comes to compute one of these seven products of composed submatri-

ces, instead of using the standard matrix multiplication algorithm, the decomposition

technique is applied to compute the product. A “threshold” value must be set such

that, when the size of the matrices being multiplied falls below this value, the recur-

sion stops and regular matrix multiplication is used. Otherwise, once the decomposed

matrices become small enough, the cost of extra matrix addition and subtraction oper-

ations required by decomposition technique begins to outweigh the benefit of skipping

a matrix multiplication, and the decomposition technique becomes slower than the

näıve algorithm.

63

When falling back to regular matrix multiplication, the precomputation method

described in the previous section is used to speed up the operation. Whenever the

computation reaches a level in the recursion tree when the matrix size reaches the

threshold, multiples of columns of a are computed so that the product of each of P1

through P7 can be computed with no further multiplication operations.

The results of an entire execution of Strassen’s algorithm are precomputed

so that it can be used to compute several products with the same A matrix, as it

is possible to reuse the precomputed results to compute several products with the

method described in the Section 3.2.7. To use this method, the recursion tree for the

Strassen’s decomposition is followed for the A matrix only. When threshold where

regular matrix multiplication would be used is reached, the multiples of columns of

each of the submatrices a, a + b, c,+d, d, a + d, b − d, and a − c are precomputed

and stored. These precomputed results allow P1 through P7 to be computed later,

for any matrix B, without the need to perform any multiplication operations. After

the entire recursive process is complete, it can be repeated with the B matrix. Each

time the threshold at which a regular matrix multiplication would be used is reached,

the precomputed results are utilized using the process described in Section 3.2.3.

More memory is required to store the precomputed results with this method

than with the method described in the Section 3.2.3. Let n be the number of elements

in a row or column of the matrices being multiplied. If the domain of the elements is

the 8-bit Galois finite field, n2 bytes are required to store one of the square matrices.

Without Strassen’s algorithm, the amount of memory required to store the precom-

puted results for one of the matrices is 256 × n2. Using Strassen’s decomposition

64

just once, there are now 7 matrices to precompute, but each of them contains only

one fourth the number of elements as the original. Therefore, the amount of memory

required for precomputation increases by a factor of 7/4, or 1.75. This factor holds as

the threshold for Strassen’s algorithm is decreased—for each level of recursion that

is added, the amount of memory required for the precomputed results increases by a

factor of 1.75. If the number of levels of recursion is L, the memory requirement is

as follows:

n2 × 256×
(

7

4

)L

If the threshold for Strassen’s algorithm is T , then the following relation exists be-

tween T , L, and n:

T × 2L−1 = n

Thus, the memory requirement in terms of n and T is:

n2 × 256×
(

7

4

)log2(n
T)+1

The standard algorithm for matrix multiplication has a run time of O(n3). This

method has the same asymptotic runtime as Strassen’s algorithm, which is O(nlog7),

but it will also run faster than Strassen’s algorithm without precomputation for the

same reasons as those described in Section 3.2.5. The standard algorithm does not

have any memory overhead other than the memory required to store the two factors

and the product, n2 × 3. So, the time savings offered by this method come at a

significant memory cost.

The performance of this approach has been tested, and the results are given in

Section 4.1.
65

3.4 Network Coding Library

I have written a network coding library to allow for testing the performance of

various network coding implementations. The library contains a few different network

coding implementations. The library was written in C++.

3.4.1 Network Coding Implementations

The network coding library supports three different network coding implemen-

tations. First is the simple implementation, which uses the methods described in

Gkantsidis and Rodriguez’s original paper [GR05] to generate coefficient and data vec-

tors, and standard matrix multiplication for decoding. Second is the Cutchin-Sturgill

implementation, which uses folded block encoding, as described in Section 2.2.3 and

is further explored in Andrew Cutchin’s master’s thesis [Cut07]. This implementation

allows for coefficient and data vectors to be computed more quickly. Finally, there

are two batch implementations that take advantage of the precomputation method

introduced in Section 3.2.

The batch encoding method generates several coefficient and data vector pairs at

once. Upon processing a request for a coefficient or data vector, the library generates

several of them and may keep them around to service future requests. However, if

new innovative data is received, a decision must be made to either continue sending

out the previously generated coefficient and data vectors, which no longer reflect all

of the information preciously received, or to discard them and generate a new set,

which would incur a computational penalty. As such, two different implementations of

this method are available: the batch lazy implementation which keeps the previously

66

computed vectors around until they have all been sent out once, and the batch eager

implementation which always sends out vectors that reflect all of the information that

a peer has.

67

CHAPTER FOUR

Experimental Evaluation

The precomputation technique for matrix multiplication described in Section 3.2

can be applied to network coding using batch encoding, as described in Section 3.4.1.

In order to test the performance of batch encoding against other network coding tech-

niques, tests using various network coding configurations have been run on a network

simulator. The network simulation framework used is ns-3 [ns312]. Each network

coding technique has different overhead attributed to the linear algebra operations

and the method used to perform them, so each one must be benchmarked so that

the computation time required for each operation can be reflected accurately in the

simulator.

In this chapter, first, the precomputation technique for matrix multiplication

is evaluated on its own. Next, the performance characteristics of each network cod-

ing technique are examined. Finally, the results from the network simulations are

presented.

4.1 Fast Matrix Multiplication

Here, the performance of the precomputation technique for matrix multiplica-

tion presented in Section 3.2 is considered. This is an O(n3) algorithm. The opportu-

nity for performance improvement comes from the use of the precomputed scaled A

columns to reduce the total number of multiplication operations required, and laying

the values out in memory so that they can be added in groups. In this case, an 8-bit

68

Galois field is used, and items are added in 64-bit chunks, so 8 field elements can be

added at once.

There are 256 possible values in an 8-bit Galois field. Multiplying a matrix of

size 256× 256 using the näıve matrix multiplication algorithm requires 2563 multipli-

cation operations. If the precomputation technique were used, all of the multiplication

operations would be done during the precomputation step. Each value of the A ma-

trix would be multiplied by each of the 256 values in the field, so the total number

of multiplication operations is also 2563. However, consider a larger matrix of size

512 × 512. In this case, the number of multiplication operations required using the

näıve algorithm is 5123, but using the precomputation technique, only 5122 × 256

are required. For matrix sizes larger than 256 × 256, the precomputation technique

requires fewer operations than when using the näıve algorithm. Similarly, for matrix

sizes smaller than 256× 256, the precomputation technique requires more operations

than when using the näıve algorithm. Because of this, we expect both methods to

perform about the same for matrices of size 256× 256, the näıve method to be faster

for matrices smaller than 256× 256, and the precomputation method to be faster for

matrices larger than 256× 256.

As seen in Table 4.1, these expectations hold rather well. These tests were

run on a Linux system with an Intel Core 2 Duo T7700 (2.4 GHz) processor and

reflect only the time required to complete the matrix multiplication operation, with

the factors and the product stored in memory. When computing the product of two

matrices of size 256×256 filled with random data, both algorithms require almost the

same amount of time. However, as the matrix size becomes smaller and smaller, the

69

näıve algorithm becomes faster and faster compared to the precomputation algorithm.

As the matrix becomes larger, the precomputation technique quickly becomes faster

than the näıve algorithm. These results are further illustrated in Figure 4.1.

Table 4.1: Running time of precomputation algorithm and näıve algorithm

n precomputation näıve
8 5.63× 10−5 3.56× 10−6

16 2.19× 10−4 2.04× 10−5

32 7.70× 10−4 1.45× 10−4

64 3.14× 10−3 1.16× 10−3

128 1.60× 10−2 1.02× 10−2

256 8.76× 10−2 9.77× 10−2

512 0.400 0.782
1024 1.83 6.30
2048 10.0 187

The column n represents the matrix size. Times are reported in seconds. For
matrices of size larger than 256× 256, the precomputation algorithm displays a

clear advantage in terms of runtime.

4.2 Simulator

I have written a simulator that utilizes the library described in Section 3.4. The

simulator is built on the ns-3 simulation framework [ns312]. The simulator allows

the performance of various network coding scenarios to be measured on a simulated

network. Variables like the network coding implementation, block size, field size, link

speed, and number of peers can be adjusted to see what impact they have on total

end-to-end performance. Experimental results are presented in Section 4.2.4.

Two different network configurations are used for the simulation, as illustrated

in Figure 4.2. In each configuration, peers are evenly distributed among one of 32

hubs. Each peer has a 50 mbps connection to its hub with no latency. The hubs

themselves are arranged into two CSMA networks with 16 hubs on each. The link

70

1.00E‐06

1.00E‐05

1.00E‐04

1.00E‐03

1.00E‐02

1.00E‐01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

8 16 32 64 128 256 512 1024 2048

Ti
m
e
re
qu

ire
d
fo
r m

ul
tip

lic
at
io
n

(s
ec
on

ds
)

Matrix size

precomputation naïve

Figure 4.1: Running time of a multiplication operation using the precomputation and
näıve algorithms on various square matrix sizes. The x -axis shows the various matrix
sizes, from 8 × 8 up to 2048 × 2048. The y-axis shows the time required in seconds
on a logarithmic scale.

between the hubs on each network is 50 mbps with zero latency. Peers attached to

one hub connected to peers attached to a different one must share the bandwidth of

the CSMA network on which the hubs are connected. As described in Section 2.1.2,

maximum efficiency can be achieved by sending no redundant data between hubs.

The difference between the two network configurations is the bandwidth of the

link between the two CSMA networks on which the hubs are attached. The regular

network configuration has the two networks connected by a 50 mbps link—the same

as the rest of the network links in the simulation. The choked network configuration

has the two networks connected by a 5 mbps link, creating a bandwidth bottleneck be-

tween the two networks, and increasing the performance penalty incurred by sending

redundant data across the slow link.

71

Figure 4.2: Two network configurations are available in the simulator. They are iden-
tical, except for the bandwidth of the link in the center connecting the two networks.
Peers are distributed evenly across the hubs.

4.2.1 Simulation Behavior

The parameters specified for each simulation are which network coding imple-

mentation to use, the Galois field size (GF8 or GF16), the file size, the block size

m, the number of peers, the network type (regular or choked), and the timing pro-

file. At the beginning of a simulation run, there is a single seed which has a file

to be distributed to the rest of the peers. Peers begin the simulation by setting up

connections between themselves. Each peer attempts to connect to four other peers,

and will accept connections from up to eight other peers. Each peer attempts to

connect to other randomly selected peers until they reach their minimum number of

four connections.

Once the network has been set up, time begins progressing in the simulation.

Each peer asks the other peers to which it is connected to send a coefficient vector,

representing the information that they have available about the file. Once the coef-

72

ficient vector is received, the peer checks to see if it is linearly independent from all

of the coefficient vectors that it has accepted so far. If the coefficient vector is not

linearly independent, then it is unlikely that the peer has any innovative information,

so there is a delay before another coefficient vector is requested. If the coefficient

vector is linearly independent, the peer that sent it has innovative data, so a coded

block containing a coefficient vector and data vector is requested from that peer.

Once the coded block is received, the coefficient vector is again checked for linear in-

dependence, and if it is independent, the coefficient vector and data vectors are added

to that peer’s coefficient matrix and data matrix. Once a peer receives n innovative

data vectors, it can decode the file data and become a seed. The peer will then cease

asking other peers for data but continue to service requests from other peers. Once

all of the peers have managed to decode the file, the simulation ends.

The simulator outputs a detailed log of events with timestamps so that vari-

ous statistics can be measured after the simulation is complete. As the simulation

progresses, there are two causes of the passage of virtual time. One is the simulated

delay of sending data over the links. As each link has a fixed speed, it takes time

to transmit data between peers. The other is the time that it takes to perform the

various network coding operations. The network coding implementation, file size, and

block size all affect the complexity of the computations that must be performed. The

benchmarks described in Section 4.2.2 are used to ensure that the amount of time

that the network coding computations take to perform is reflected in the simulation.

Simulation throughput results are presented in Section 4.2.4.

73

4.2.2 Library Performance

To run network coding tests on a simulated network, the data that each peer

is tracking must be maintained in memory. This data includes a data matrix B and

a coefficient matrix C for each peer. The data matrix in particular may be quite

large, as it contains as much data as exists in the file being shared. However, only

the C matrix and the coefficient vectors generated by the peers have any impact on

the progression of the simulation. The contents of the file being shared are arbitrary

and maintaining the B matrix, which only serves to allow the eventual decoding of

the original file data, is not actually necessary. The B matrix may be left out to save

memory operations performed on it may be skipped to save time. However, with B

left out, the time required to perform operations in the simulator is not the same as the

time that would be required in a real-world situation. In order to properly simulate

the processing delays of various computational operations performed by the peers

in the network, each simulated network coding configuration had to be individually

benchmarked. The results of these benchmarks can serve as a starting point for

evaluating the overall performance of each configuration.

For these tests, three different network coding implantations were used. The

first implementation is of the simple textbook method described in Section 2.1.2. The

second brings in the folded block encoding optimization introduced in Section 2.2.3.

The third uses the precomputation technique with batch encoding as described in

Section 3.4.1.

The first two implementations generate coefficient vectors and data vectors one

at a time, while batch encoding generates a block of up to n coded blocks at once.

74

If a peer using the batch encoding receives a new innovative coded block, but it still

has precomputed blocks that have not been sent out over the network, there are two

choices. One choice is for the peer to continue to send out blocks that have been

previously precomputed, but these blocks no longer represent all of the information

that the peer has available. Another choice is for peer to precompute a new batch

of blocks, using the new information; however, this precomputation will require a

substantial amount of computational time before the new set of blocks will be ready.

Both techniques are considered here. In lazy mode, a peer will send out all of the

blocks that it has computed before generating a new batch. In eager mode, a peer

will prefer to dump its precomputed blocks and generate a new batch if it has new

information available.

In addition to looking at the effects of choosing lazy mode or eager mode with

batch encoding, we will also compare some different parameters of the textbook im-

plementation. Specifically, we will be looking at the performance difference between

choosing to use GF8 or GF16, and on the trade-off between using a larger block size

m or a larger number of blocks n.

For these tests, the size of the file being shared is 325 MB. The benchmark

was performed by measuring the time taken to perform each one of these operations

over 10,000 repetitions and averaging the results. These tests were performed on a

Windows system with an Intel Xeon E5440 (2.83 GHz) processor.

For each configuration, the time required to answer a request for a coefficient

vector, to answer a request for a coded block, and to decode the file data are presented

in Table 4.2. Batch encoding performs well because it simply takes a precomputed

75

result and returns it. Decoding takes notably less time under batch encoding because

the precomputation technique for matrix multiplication described in Section 3.2 is

used. Folded block encoding also performs well for generating coded blocks because

each time a coefficient vector or data vector is prepared, it is saved and incrementally

updated to produce the next response. The textbook implementation bears the entire

overhead of the linear algebra computations required. Larger block sizes perform

better.

Table 4.2: Time required for basic operations

Implementation Block size Coefficient vector Coded block Decode
Textbook GF16 650 KB 15 3772275 1492304905
Textbook GF8 L 650 KB 13 4390223 2006610130
Textbook GF8 M 459 KB 21 4527085 3145311457
Textbook GF8 S 325 KB 21 4641732 4121064399
Folded block 650 KB 719 7066 2235190760
Batch 650 KB 1 2367 900900799

The time in microseconds required to answer a request for a coefficient vector, to
answer a request for a coded block, and to decode the file data.

The time required for a peer that has not yet received enough blocks to decode

the file to perform some operations depends on how many blocks the peer currently

has received. In particular, the time required to generate a coefficient vector, gen-

erate a coded block, and check a coefficient vector for linear independence depends

on the number of blocks previously received, c. Generating a coefficient vector is an

O(c) operation using the textbook encoding method, or O(n) for the folded block and

batch encoding methods. Generating a coded block is an O(c ×m) operation using

the textbook encoding method, or O(n+m) for the folded block and batch encoding

methods. In the case that a new batch of blocks is required when using batch en-

76

coding, getting a new coefficient vector or coded block requires matrix multiplication

operations so the runtime is O((m÷ n)× n2.81), but in this case it does not depend

on the number of previously received blocks. Checking a coefficient vector for linear

independence is an O(c2) operation for all implementations.

Each of these operations have asymptotic running times bounded by a polyno-

mial of degree 2 with respect to the value c. In order to model the running times in

the simulator, a polynomial of degree 2 is used. In order to determine the coefficients,

the operations were benchmarked when the peer had received 10% of the blocks re-

quired to decode the file, and then again at 50% and 90%. These results were run

through a three-parameter regression to come up with a quadratic equation, to be

used to compute an approximation of how long these operations would take when a

peer is at any stage of completion.

These results are presented in Tables 4.3, 4.4, and 4.5. When generating coef-

ficient vectors or coded blocks, while the textbook encoding method gets slower as

more blocks are received, folded block and batch encoding perform the same. This is

because the work needed to compute a coefficient vector or data vector under folded

block or batch encoding does not depend on the number of blocks previously re-

ceived. On the other hand, checking for linear independence becomes slower as more

blocks are received no matter which method is being used. As the same method is

used to check for linear independence under all implementations, the differences in

performance here are related only to the differences in field size and block size chosen.

The time required to output a coefficient vector or a coded block when using

the precomputation implementation depends on whether or not filling the request

77

Table 4.3: Generating a coefficient vector at various stages of completion

Implementation Block size 10% 50% 90%
Textbook GF16 325 KB 4 9 13
Textbook GF8 L 650 KB 3 6 10
Textbook GF8 M 459 KB 4 9 15
Textbook GF8 S 325 KB 7 15 23
Folded block 650 KB 714 717 716
Batch 650 KB 1 1 1

The time in microseconds required to generate a coefficient vector when 10%, 50%,
and 90% of the required blocks have been received.

Table 4.4: Generating a coded block at various stages of completion

Implementation Block size 10% 50% 90%
Textbook GF16 325 KB 278229 1899524 3478025
Textbook GF8 L 650 KB 301506 1859641 3815402
Textbook GF8 M 459 KB 302691 2115597 4073879
Textbook GF8 S 325 KB 318451 2491939 3623952
Folded block 650 KB 7040 7069 7054
Batch 650 KB 2317 2302 2675

The time in microseconds required to generate a coded block when 10%, 50%, and
90% of the required blocks have been received.

will require the computation of an entire set of precomputed blocks. As a result, the

benchmark results for the precomputation technique are split. There is one set of

results for how long it takes to fulfill a “fast” request, which simply requires taking a

precomputed block and sending it along, and for how long it takes to fulfill a “slow”

request, wherein a new batch of blocks must be computed. In the context of the

simulation, “fast” requests occur much more frequently than “slow” ones but the

difference must be taken into account.

78

These results are presented in Table 4.6. The amount of work that goes into

producing a new batch of blocks is the same, whether a coefficient vector or a coded

block has been requested. The time required to produce a coded block is slightly

higher only because of the time required to return the data vector component.

Table 4.5: Checking for innovation at various stages of completion

Implementation Block size 10% 50% 90%
Textbook GF16 325 KB 473 2054 3467
Textbook GF8 L 650 KB 254 1129 2089
Textbook GF8 M 459 KB 466 2303 4788
Textbook GF8 S 325 KB 1198 4801 8703
Folded block 650 KB 313 1485 2669
Batch 650 KB 294 1258 2675

The time in microseconds required to check a coefficient vector for linear
independence.

Table 4.6: Performance of “long” operations with batch encoding

Operation 10% 50% 90% Seed
Generate coefficient vector 773171834 862859695 895562846 928612103
Generate coded block 776689563 863394540 889500213 929284378

The time in microseconds required to return a coefficient vector or coded block with
batch encoding, when a new batch of blocks must be computed first.

4.2.3 Network Protocol and Simulator Behavior

To determine how various network coding schemes affect the time from the first

coded block being sent to the last peer receiving the last coded block and decoding the

original file data, we implemented a peer-to-peer protocol that uses network coding in

a network simulator, ns-3. The ns-3 simulator allows for many clients to be simulated

on a network topology of our choosing.

79

The computational time required for the coefficient vector generation, data

block generation, coefficient vector checking, and file decode was measured in ad-

vance as described in Section 4.2.2 and introduced artificially during the simulation.

Simulated peers only have to keep up with their coefficient matrices to know about

which incoming coded blocks are innovative or not, and when they will be able to

successfully decode the file, so operations on the data matrix are not performed dur-

ing the simulation, to save time. The delay caused by the transmission of data over

the network is handled by ns-3.

4.2.4 Simulation Results

In each run, 512 peers are attempting to download a 325 MB file. Initially, there

is a single seed, and the remaining 511 peers start with no data. For each run, we

measure the total end-to-end transmission time, which is how long it takes for all 511

peers to finish downloading a copy of the data. We also measure the innovation rate,

which is the percentage of blocks that are transmitted that are accepted as innovative

by their recipient.

4.2.4.1 Simulation Progression

At the beginning of each simulation run, all of the peers have already established

their connections but only one of them has any data to share. Figure 4.3 shows how

long it takes for all of the peers to finish downloading all of the blocks that they need

to decode the original file. This figure shows the progression of a simulation using the

textbook method for network coding with GF16. Most peers finish between 16,000

and 18,000 seconds, though some of them finish earlier and some of them finish later.

80

When the simulation begins, all of the peers begin making requests, but only

a few peers are connected to the seed. As a result, most peers receive coefficient

vectors that indicate that their neighbors do not have innovative data available. As

described in Section 4.2.3, this causes the peers to wait before making another request.

Figure 4.4 shows the cumulative number of innovative and non-innovative responses

received by all of the peers over time, and Figure 4.5 shows the cumulative number

of coded blocks accepted by all peers time. Despite the fact that only a few peers are

connected to the seed at the beginning, the number of useful coded blocks that have

been sent increases at a constant rate until near the end when there are only a few

peers left downloading.

0

100

200

300

400

500

0 5000 10000 15000 20000

N
um

be
r o

f P
ee
rs
 F
in
ish

ed

Time into Simulation (Seconds)

Figure 4.3: Textbook GF16: Number of peers finished downloading over time. The
x -axis represents the number of seconds into the simulation, and the y-axis represents
the cumulative number of peers that have finished downloading. When all 511 peers
finish, the simulation is complete.

81

0

500000

1000000

1500000

2000000

2500000

0 5000 10000 15000 20000N
um

be
r o

f C
um

ul
at
iv
e
Re

sp
on

se
s

Time into Simulation (Seconds)

Innovative Non‐innovative

Figure 4.4: Textbook GF16: Total responses over time. In this graph, the x -axis
represents the number of seconds that have passed in the simulation. The blue line
shows the total number of cumulative innovative responses and the orange line shows
the number of non-innovative responses as the simulation progresses. Toward the
end, non-innovative responses disappear altogether; this is represented by blue line
continuing past the orange line.

0

50000

100000

150000

200000

250000

300000

0 5000 10000 15000 20000

N
um

be
r o

f C
um

ul
at
iv
e
Bl
oc
ks
 A
dd

ed

Time into Simulation (Seconds)

Figure 4.5: Textbook GF16: Total innovative blocks transferred over time. In this
graph, the x -axis represents the number of seconds that have passed in the simulation.
The line shows the total number of blocks that have been received by all peers. There
are 512 peers and the file is split into 512 blocks, so the simulation is finished when
261,632 (511× 512) blocks have been received.

82

4.2.4.2 GF8 vs GF16

To begin with, we examine the impact of choosing GF16 or GF8, using the

textbook encoding scheme. With GF16, a block size of 650 KB is used, so the file is

divided evenly into 512 blocks (n = 512). In this case, the coefficient matrix is of size

512 × 512, but as each element requires two bytes worth of storage, each coefficient

vector or row of the matrix is 1024 bytes long and the total size of the coefficient

matrix in bytes is 512× 512× 2 or 512 KB.

For GF8, three different block sizes were used. The first is 650 KB, the same

block size used in the GF16 experiment. In this case, the coefficient matrix is of

size 512 × 512, but each element requires only one byte of storage, so each row of

the matrix is 512 bytes long and the total size of the coefficient matrix in bytes is

512×512 or 256 KB. The next block size chosen was about 459.35 KB, which divides

the file into 725 blocks (n = 725). In this case, the total size of the coefficient matrix

is 725× 725 or just over 513 KB, very close to the size of the coefficient matrix in the

GF16 experiment. The last block size chosen was 325 KB, which divides the file into

1024 blocks (n = 1024). In this case, the size of the coefficient matrix is 1024× 1024,

and each coefficient vector is 1024 bytes long, the same as in the GF16 experiment.

Therefore, each one of these block sizes preserves an aspect of the GF16 experiment:

at 650 KB, the block size is the same as in the GF16 experiment; at 459.35 KB, the

storage overhead associated with the coefficient matrix is the same; and at 325 KB,

the length of the coefficient vectors is the same.

The results of these tests are illustrated in Figures 4.6 and 4.7. The innovation

rate is notably higher with GF16, and GF16 finishes faster.

83

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

GF8 (325KB) GF8 (459KB) GF8 (650KB) GF16

To
ta
l S
im

ul
at
io
n
Ti
m
e
(S
ec
on

ds
)

Figure 4.6: GF8 vs GF16: Total simulation time. The y-axis represents the total
simulation time in seconds. This graph shows how long it took for all peers to finish
downloading the file when using GF16 and when using GF8 with three different block
sizes.

4.2.4.3 Folded Block Encoding

Given that GF16 appears to be a better choice when using textbook encoding,

we will compare this scenario against folded block encoding, using the same block size

of 650 KB. The results are illustrated in Figures 4.8 and 4.9. Although folded block

encoding was found to have faster block generation in Section 4.2.2, it performed worse

in this test due to a lower innovation rate than textbook encoding. The number of

innovative and non-innovative blocks sent over time is shown in Figure 4.10. Because

only one value in the coefficient vector is changed with each new block, it may be the

case that many blocks must be generated before innovation is found, particularly late

in the simulation when many peers are finished or nearly finished with the file. The

delay before asking for another coefficient vector upon the receipt of non-innovative

information, described in Section 4.2.1, may cause peers to take even longer to finish.

84

0

5

10

15

20

25

GF8 (325KB) GF8 (459KB) GF8 (650KB) GF16

In
no

va
tio

n
Ra

te
 (%

)

Figure 4.7: GF8 vs GF16: Innovation rate. The y-axis represents the innovation rate.
This graph shows the innovation rate during the simulation when using GF16 and
when using GF8 with three different block sizes.

4.2.4.4 Batch Encoding

Batch encoding is performed using GF8, due to the prohibitive memory require-

ments of storing the precomputed results used during matrix multiplication if GF16

were used. These simulations use a block size of 650 KB, as that was the best per-

forming configuration under the textbook encoding method with GF8. Figures 4.11

and 4.12 show the results of these tests. As described in Section 3.4.1, there are

two modes of operation, eager and lazy. The eager implementation computes a new

batch more frequently, and as may be expected, this results in a higher innovation

rate. Additionally, the eager implementation results in a total transfer time that is

slightly lower than textbook encoding with GF16, though it takes longer than the

fastest performing textbook GF8 test. The lazy method saves some computational

time by computing new batches of blocks less often, but the resulting lower innovation

rate actually makes it end up taking much longer to finish.

85

0

5000

10000

15000

20000

25000

30000

35000

40000

Textbook Folded Block

To
ta
l S
im

ul
at
io
n
Ti
m
e
(S
ec
on

ds
)

Figure 4.8: Textbook vs Folded Block: Total simulation time. The y-axis represents
the total simulation time in seconds. This graph shows how long it took for all peers
to finish downloading the file when using the textbook method and folded block
encoding.

4.2.4.5 Summary

The results from Sections 4.2.4.2 through 4.2.4.4 are presented in Figures 4.13

and 4.14. Out of the various tests shown, most of them perform about the same.

Folded block encoding and batch lazy perform poorly due to low innovation rates,

and textbook GF8 with a large block size finishes in the shortest amount of time.

Network coding is expensive. Both folded block encoding and lazy batch encod-

ing utilize shortcuts that reduce the computational complexity at the cost of reduced

innovation. The simulation results show that these innovation shortcuts do not nec-

essarily pay off. Eager batch encoding demonstrates that it is possible to reduce the

computational complexity without sacrificing innovation.

86

0

5

10

15

20

25

Textbook Folded Block

In
no

va
tio

n
Ra

te
 (%

)

Figure 4.9: Textbook vs Folded Block: Innovation rate. The y-axis represents the
innovation rate. This graph shows the innovation rate during the simulation when
using the textbook method and folded block encoding.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 5000 10000 15000 20000 25000 30000N
um

be
r o

f C
um

ul
at
iv
e
Re

sp
on

se
s

Time into Simulation (Seconds)

Innovative Non‐innovative

Figure 4.10: Folded Block Encoding: Innovation rate over time. This graph is set
up the same way as the one in Figure 4.4. The x -axis represents the number of
seconds that have passed in the simulation. The blue line shows the total number
of cumulative innovative responses and the orange line shows the number of non-
innovative responses as the simulation progresses.

87

0

10000

20000

30000

40000

50000

60000

70000

GF16 Textbook GF8 Textbook
(650KB)

Batch lazy Batch eager

To
ta
l S
im

ul
at
io
n
Ti
m
e
(S
ec
on

ds
)

Figure 4.11: Textbook vs Batch: Total simulation time. The y-axis represents the
total simulation time in seconds. This graph compares the total time required for all
peers to download the file when using the two batch methods against the textbook
method.

0

10

20

30

40

50

60

GF16 Textbook GF8 Textbook (650KB) Batch lazy Batch eager

In
no

va
tio

n
Ra

te
 (%

)

Figure 4.12: Textbook vs Batch: Innovation rate. The y-axis represents the innova-
tion rate. This graph compares the innovation rates of the two batch methods with
the textbook method.

88

0

10000

20000

30000

40000

50000

60000

70000

GF8
(325KB)

GF8
(459KB)

GF8
(650KB)

GF16
Textbook

Folded
Block

Batch lazy Batch eager

To
ta
l S
im

ul
at
io
n
Ti
m
e
(S
ec
on

ds
)

Figure 4.13: Summary: Total simulation time. The y-axis represents the total simu-
lation time in seconds. This graph combines the results presented in Figures 4.6, 4.8,
and 4.11.

0

10

20

30

40

50

60

GF8 (325KB) GF8 (459KB) GF8 (650KB) GF16
Textbook

Folded Block Batch lazy Batch eager

In
no

va
tio

n
Ra

te
 (%

)

Figure 4.14: Summary: Innovation rate. The y-axis represents the innovation rate.
This graph combines the results presented in Figures 4.7, 4.9, and 4.12.

89

0

10000

20000

30000

40000

50000

60000

70000

GF8
(325KB)

GF8
(459KB)

GF8
(650KB)

GF16
Textbook

Folded
Block

Batch lazy Batch eager

To
ta
l S
im

ul
at
io
n
Ti
m
e
(S
ec
on

ds
)

Regular Choked

Figure 4.15: Regular vs Choked: Total simulation time. All tests finished slightly
more slowly on the choked network, except folded block encoding and batch lazy.

4.2.4.6 Choked Network

As described in Section 4.2, two different network layouts are used for testing.

The results presented up until this point were run on the regular network configura-

tion. The choked network configuration reduces the available bandwidth on the link

that separates half of the peers from the others. Sending redundant data over this

link is particularly detrimental to the overall performance of the system. This can

be used to test the various configurations and see if any of them perform particularly

well or poorly with the addition of this slow link.

90

0

10

20

30

40

50

60

GF8 (325KB) GF8 (459KB) GF8 (650KB) GF16
Textbook

Folded Block Batch lazy Batch eager

In
no

va
tio

n
Ra

te
 (%

)

Regular Choked

Figure 4.16: Regular vs Choked: Innovation rate. The innovation rate suffered slightly
for each test except textbook GF8 with the smallest block size.

These results are presented in Figures 4.15 and 4.16. The innovation was slightly

lower in every test on the choked network, except textbook encoding with GF8 and

the smallest block size of 325 KB. In this case, the innovation rate was actually higher

on the choked network by about 0.13%. In terms of total time before every transfer

is complete, the transfers took slightly longer on the choked network in every test,

except the two slowest performing tests, folded block encoding and batch encoding

with the lazy method.

91

CHAPTER FIVE

Summary

In Section 1.1, we explored a number of ways to share a file with a large num-

ber of recipients. Peer-to-peer networking offers the benefit that the network capacity

scales up with the number of recipients. With regard to peer-to-peer networks, net-

work coding offers the ability for peers to participate in a peer-to-peer network and

share a file without any peer having to keep track of which peers have which pieces

of the file available. Though this method has benefits and can potentially solve Bit-

Torrent’s last block problem, one of the main problems with network coding is the

substantial computational overhead associated with it.

In Section 3.2, we introduced a precomputation technique for square matrix

multiplication that takes advantage of the properties of the Galois finite field to per-

form square matrix multiplication more quickly. In Section 3.3, we demonstrated how

this technique can take advantage of the decomposition technique used by Strassen’s

algorithm to further reduce its runtime. Though the precomputation technique can

save a lot of time when multiplying large matrices, the time savings come with a

substantial memory overhead. In Section 3.2.7, we described how fast square matrix

multiplication with precomputation can be applied to network coding. This technique

was implemented with network coding as batch encoding.

As seen in Section 4.2.4.5, several different network coding techniques were

used. Innovation shortcuts penalize the innovation rate as can be seen with both

92

folded block encoding and lazy batch encoding, which results in the total file decode

across all peers taking a longer amount of time, while eager batch encoding, which

does not perform any innovation shortcuts, performs favorably.

5.1 Future Work

Modern desktop computers use processors with multiple computational cores

that can execute multiple streams of instructions in parallel. There are several inde-

pendent tasks in network coding that can be parallelized. For instance, checking a

coefficient vector for innovation is currently a single-threaded operation, as demon-

strated in Section 2.1.2.4. If a parallel algorithm were implemented, it may be able

to take advantage of additional performance enhancements. Work has already been

done on parallelizing the file decode process [Cut07]. Finally, work on square ma-

trix multiplication that allows for both generating coded blocks and file decoding, if

parallelized, may lead to even greater performance improvements.

Furthermore, it is becoming more common to see graphics cards being used for

general computational tasks. Modern graphics cards are capable of parallel compu-

tation on a scale grander than multi-core processors, but they are more limited in

the operations that can be run together, lending themselves toward single instruc-

tion, multiple data (SIMD) scenarios. It may be possible to take advantage of this

capability to make computing the product of square matrices even faster.

5.1.1 Other Matrix Multiplication Algorithms

As mentioned in Section 2.4, näıve matrix multiplication has a running time of

O(n3) and Strassen’s algorithm has a running time of about O(n2.81). Matrix multi-

93

plication algorithms with even lower running times have been developed, such as the

Coppersmith-Winograd matrix multiplication algorithm at about O(n2.375) [CW87],

or more recent improvements to the algorithm at about O(n2.373) [Wil11]. How-

ever, these algorithms bring such a high constant overhead that they are slower than

Strassen’s algorithm for practical applications. It may be possible to take advantages

of the properties of the finite field to reduce the constant overhead of one of these

algorithms so that it performs more competitively against Strassen’s algorithm. If

this were the case, it may be used to further reduce the computational overhead of

the matrix multiplication operations used with network coding.

5.1.2 Real-World Experiments

The results presented in Section 4.2.4 come from running network coding on a

simplified, simulated network. The simulation results are encouraging and it may be

worth implementing a prototype that could be evaluated on a real network. Running

experiments over the Internet or on other real-world networks will give a better un-

derstanding of whether or not the precomputation matrix multiplication technique

applied to network coding has any tangible, real-world benefits over more typical

block-swapping protocols like BitTorrent or different approaches to network coding.

94

BIBLIOGRAPHY

[Ald01] John Alderman. Sonic Boom: Napster, MP3, and the New Pioneers of Music.
2001.

[Apr] Apronus. Fields - definition and basic properties. ProvenMath, Everything
proven from axioms: http://www.apronus.com/provenmath/fields.htm.

[btu04] Bittorrent: 35% of all traffic - from piracy and politics to pop culture...
DSLReports.com, 2004.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth content dis-
tribution in cooperative environments. In Peer-to-Peer Systems II. Springer
Berlin / Heidelberg, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, chapter 28.2. The MIT Press, 2001.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer Systems, 2003.

[Cut07] Andrew E. Cutchin. Towards efficient and practical reliable bulk data trans-
port for large receiver sets. Master’s thesis, Baylor University, 2007.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. In STOC ’87 Proceedings of the nineteenth annual ACM
symposium on Theory of computing. ACM Press, 1987.

[Ent] Blizzard Entertainment. Blizzard entertainment legal faq. “How is it that
Blizzard can distribute such large files to the public?”, http://www.blizzard.
com/us/legalfaq.html.

[GDJ06] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study of the
skype peer-to-peer voip system. In International Workshop on Peer-to-Peer
Systems, 2006.

[GMR06] Christos Gkantsidis, John Miller, and Pablo Rodriguez. Comprehensive
view of a live network coding p2p system. In IMC. ACM Press, 2006.

[GP85] William A. Greene and Wayne Patterson. Using galois fields in computer
science. In ACM annual conference on Computer Science. ACM Press, 1985.

[GR05] Christos Gkantsidis and Pablo Rodriguez. Network coding for large scale
content distribution. In IEEE Infocom. IEEE Communications Society, 2005.

95

[GR06] Christos Gkantsidis and Pablo Rodriguez. Cooperative security for network
coding file distribution. In IEEE Infocom. IEEE Communications Society,
2006.

[hCRZ02] Yang hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system mul-
ticast. In IEEE Journal on Selected Areas in Communications. IEEE Com-
munications Society, 2002.

[HSC95] Hugh W. Holbrook, Sandeep K. Singhai, and David R. Cheriton. Log-based
receiver-reliable multicast for distributed interactive simulation. In ACM SIG-
COMM Computer Communication Review. ACM Press, 1995.

[ipo07] Internet study 2007. Technical report, ipoque, 2007.

[JJ97] Vicki Johnson and Marjory Johnson. How ip multicast works. Technical re-
port, Stardust.com, Inc, 1997.

[KYV+09] Hun Jeong Kang, Aaram Yun, Eugene Y. Vasserman, Hyung Tae Lee,
Jung Hee Cheon, and Yongdae Kim. Secure network coding for a p2p system.
In ACM Computer and Communications Security Conference. ACM Press,
2009.

[MJV96] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven lay-
ered multicast. In ACM SIGCOMM Computer Communication Review. ACM
Press, 1996.

[ns312] ns-3. 2012.

[RES06] Sylvia Ratnasamy, Andrey Ermolinskiy, and Scott Shenker. Revisiting ip
multicast. In ACM SIGCOMM Computer Communication Review. ACM
Press, 2006.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. In Networked
Group Communication. Springer Berlin / Heidelberg, 2001.

[Riz97] Luigi Rizzo. Effective erasure codes for reliable computer communication pro-
tocols. In ACM SIGCOMM Computer Communication Review. ACM Press,
1997.

[Rus03] Frank Ruskey. Information on primitive and irreducible polynomials.
University of Victoria, http://www.theory.csc.uvic.ca/~cos/inf/neck/

PolyInfo.html, 2003.

[Sch04] Seth Schiesel. File sharings new face. The New York Times, 2004.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 1969.

96

[Tec12] Ars Technica. Exclusive: a behind-the-scenes look at facebook release engi-
neering. 2012.

[Tor10a] TorrentFreak. Facebook uses bittorrent, and they love it. 2010.

[Tor10b] TorrentFreak. Twitter uses bittorrent for server deployment. 2010.

[Wei] Eric W. Weisstein. Finite field. In MathWorld. Wolfram Research, Inc.

[Wil11] Virginia Vassilevska Williams. Breaking the coppersmith-winograd barrier.
UC Berkeley and Stanford University, 2011.

[WL06] Mea Wang and Baochun Li. How practical is network coding? In IEEE
International Workshop on Quality of Service. IEEE Communications Society,
2006.

[WL07] Mea Wang and Baochun Li. Lava: A reality check of network coding in
peer-to-peer live streaming. In IEEE Infocom. IEEE Communications Society,
2007.

97

