
ABSTRACT

Count Regression Models With a Misclassified Binary Covariate:
A Bayesian Approach

MaryAnn Morgan-Cox, Ph.D.

Chairpersons: James D. Stamey, Ph.D. and John W. Seaman, Jr., Ph.D.

Mismeasurment, and specifically misclassification, are inevitable in a variety of

regression applications. Fallible measurement methods are often used when infallible

methods are either expensive or not available. Ignoring mismeasurement will result

in biased estimates for the associated regression parameters. The models presented

in this dissertation are designed to correct this bias and yield variance estimates

reflecting the uncertainty that is introduced by flawed measurements. We consider

a generalized linear model for a Poisson response. This model accounts for the mis-

classification associated with the binary exposure covariate. In the first portion of

the analysis, diffuse priors are utilized for the regression coefficients and the effective

prior sample size technique is implemented to construct informative priors for the

misclassification parameters. In the second portion of the analysis we place informa-

tive priors on the regression parameters and diffuse priors on the misclassification

parameters. We also present results of a simulation study that incorporates prior

information for both the regression coefficients and the misclassification parameters.

Next, we extend the Poisson model with a single binary covariate in various

ways, including adding a continuous covariate and accounting for clustering through

the use of random effects models. We also consider a zero-inflated version of the

model. Simulation studies are summarized for each extension.



Finally, we discuss an application in which frequentist and Bayesian logis-

tic regression models are used to predict prevalence of high BMI-for-age among

preschool-aged children in Texas.
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CHAPTER ONE

Introduction

1.1 Overview

The Poisson distribution arises naturally in the study of data taking the form of

counts; for instance, a major area of application is epidemiology, where the incidence

of diseases is studied. While this dissertation will focus on Bayesian modeling of

problems that occur within healthcare-related research topics, the models presented

herein can be easily adapted to other scenarios.

In Section 1.2 we introduce the Bayesian Poisson regression model that will

serve as the foundation for investigations presented in Chapters 2 and 3. We intro-

duce the notion of covariate mismeasurement in Section 1.3 and briefly discuss the

impact experienced when the mismeasurement is not accounted for in a model. In

Section 1.4 we outline three specific model extensions that will account for compli-

cations regularly encountered in the study of Poisson count outcomes. In Section

1.5 we acquaint the reader with an application in which we use logistic regression to

model prevalence of high BMI-for-age in children. We conclude with a dissertation

plan in Section 1.6.

The statistical literature is replete with analyses using Poisson rates and

counts. This reflects the importance of such data in many fields of study as well as the

inherent flexibility of Poisson models. Here are just a few examples: Poisson models

have been used for literary analyses, as Mosteller and Wallace (1964) did for the Fed-

eralist papers and Efron and Thisted (1976) did with Shakespeare’s works. Many

medical applications involve Poisson data, including the Rand Health Insurance Ex-

periment work by Keeler and Rolph (1988) that estimated the effects of coinsurance

on cost per treatment episode and the number of treatment episodes. A multivariate
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Poisson-gamma mixture distribution was used by Nelson (1985) to model correlation

and heterogeneity in cross-sectional analyses of felony infractions and of criminal vic-

timization data. Lawless (1987) used a Poisson generalized linear model and a profile

log-likelihood to analyze random effects for tumor data, while a mixed effects Pois-

son regression model was offered by Vonesh (1990) to analyze risk factors associated

with continuous ambulatory peritoneal dialysis. Wolfe, Petroni, McLaughlinN, and

McMahon (1991) compared extra-Poisson variance models with Poisson error mod-

els for estimating diagnosis-specific hospital discharge rates. Disease incidence and

mortality rates were analyzed by Bernardinelli and Montomoli (1992) using Gibbs

methods and Poisson empirical Bayes methods developed by Clayton and Kaldor

(1987). Papageorgiou and Loukas (1988) compared “double-zero” proportion and

maximum likelihood estimators for the negative binomial-Poisson distribution using

traffic accident data. Christiansen and Morris (1997) fit parametric random-effects

models to survival data for transplant patients. Home run data have been analyzed

by Albert (1992, 2007) using various Poisson hierarchical methods. More recently,

Gibbons et al. (2008) explored a Bayesian mixed effects Poisson model to model

rare adverse events in order to study the relationship between anti-depressants and

suicide.

Generalized linear models, and Poisson models in particular, are most relevant

in epidemiology. In prospective cohort studies, where the researcher is interested in

learning about the association between exposure and disease, the Poisson regres-

sion model has proven to be an important alternative to the proportional hazards

model (Breslow and Day, 1987; Preston, 1998). A grouping of the data into an

event-time table classifying cases and person-years by the set of time intervals and

covariate categories forms the basis for Poisson regression analysis. Veierod and

Laake (2001) presented this as an advantage in large cohort studies, when contrasted
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to the proportional hazards model. In clinical trials with discrete data and low prob-

ability of events, a Poisson model is the natural and most popular choice (Zaslavsky,

2009).

1.2 The Bayesian Poisson Model

Bayesian Poisson methods are a natural framework for the continual updating

inherent in adverse event reporting and for clinical trials in which historical data or

expert opinion are readily available. Paramount among advantages associated with

the Bayesian paradigm is its consistency with the laws of probability. Inferences

in the Bayesian paradigm are easily interpreted and communicated. Furthermore,

Bayesian methods can accommodate scenarios that have proven problematic for

frequentist methods.

Poisson models are often appropriate when count data do not result from a

fixed number of trials. For instance, if y is the number of adverse events due to

pharmaceutical drug use in Texas during the coming week, there is no fixed upper

limit n for y. The Poisson probability mass function for the jth outcome is

f(yj|xj) =
e−λjλ

yj

j

yj!
, yj = 0, 1, 2, ... j = 1, ..., J (1.1)

In the log linear version of the Poisson regression model, the mean is parameterized

as λj = exp(xjβ) to ensure that λj > 0, where xj = [x0j, ..., xk−1j] is a 1× k vector

consisting of an intercept and k−1 covariates, and β′ = [β0, ..., βk−1] is a 1×k vector

of regression parameters.

Under the Bayesian framework, prior distributions are required for all unknown

parameters in the model. We assume independent priors, p(·), on the k regression

parameters introduced above, yielding the joint prior given by

p(β0, β1, . . . , βk−1) = p(β0)× p(β1)× . . .× p(βk−1).

3



The resulting joint posterior distribution is

p(β0, β1, . . . , βk−1|y,x) ∝ f(β0, β1, . . . , βk−1|y,x)× p(β0, β1, . . . , βk−1),

where y is a vector of Poisson count responses. For example, we might take each

p(β) to be a normal distribution with mean µβ and variance σ2
β. Such a model is

presented in Figure 1.1.

 
 
 
 

log   

|

,  

,
,  

Figure 1.1: Summary of the Bayesian Poisson regression model.

Priors may be chosen to encompass existing knowledge based on results or

parameter estimates from historical data or may impart relatively little information

in relation to that provided by the data (Congdon, 2005). We consider models for

three different prior structures. Initially we assign locally uniform priors to the

regression parameters and informative priors to the misclassification parameters. In

subsequent simulation studies (see Section 2.5), we consider informative priors for

the regression parameters and diffuse priors for the misclassification parameters.

We also consider (see Section 2.6) the case where expert opinion or historical data

is available for both the regression parameters and the misclassification parameters,

and compare the estimates resulting from each of the prior specifications.
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1.3 The Impact of Covariate Misclassification

A common problem in medical research is mismeasurement, where the out-

come of interest cannot be perfectly observed because of fallible tests or imprecise

measurement tools. When a test response is continuous, mismeasurement is called

measurement error. When the patient outcome is discrete, mismeasurement is called

misclassification. If the Poisson response variable used in a design is estimated using

a misclassified covariate, successive decisions may be affected. Safety intervention

protocols and/or treatment decisions based on inaccurate responses will compromise

the safety and efficiency of the design.

In epidemiologic studies of the relationship between exposure and disease, mis-

classification of exposure is common and known to introduce bias in the coefficient

estimates. The possibility of misclassification should preclude reliance on the maxim

that, as long as the misclassification is nondifferential, effect estimates will be conser-

vative underestimates of the true underlying effect estimate. This is because biases

both towards and away from null are possible, as illustrated by Veierod and Laake

(2001).

Errors in disease exposure classification can yield misleading inferences for

covariate effects when the probability of error itself is related to the covariates.

More accurate inferences are possible using supplemental data on both true and

fallible disease exposure counts at various covariate levels Whittemore and Gong

(1991). Using Bayesian modeling techniques, we present a method for incorporating

such supplemental data in the form of expert opinion into Poisson regression models

via informative priors.

There has been a continuing interest in assessing effects of misclassification on

exposure-disease associations, as evidenced by the increase in published misclassifi-

cation research. Reade-Christopher and Kupper (1991) derived approximate models

for assessing the potential bias when misclassification is ignored. More recently,
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Veierod and Laake (2001) derived exact expressions for the bias in the Poisson re-

gression coefficients of a categorical exposure variable subject to misclassification.

In Chapters 2 and 3, we consider a case in which a binary exposure variable is

subject to misclassification. Further assumptions are that the misclassification is

nondifferential in variety and that any additional covariates are measured without

error.

To examine this problem, we first consider a simple Poisson regression model

in which the Poisson count is estimated using a binary exposure covariate subject to

misclassification (see Section 2.4). Expanding the work of Liu, Gustafson, Cherry,

and Burstyn (2009), we develop a model to incorporate the misclassification in the

binary covariate, and results from a simulation experiment are provided to illustrate

the effects of ignoring misclassification on conclusions reached by the design.

1.4 Extensions to the Poisson Model w/ Misclassification

A key feature of the Poisson distribution is that its variance equals its mean.

Sample counts vary more when their mean is higher. In practice, however, count

observations often exhibit variability exceeding that predicted by the Poisson model.

This is called overdispersion. We may assume that each patient has the same prob-

ability of experiencing an adverse event in the next month. More realistically, these

probabilities vary, due to factors such as the amount of time in treatment, whether

the patient is adherent to a treatment regimen, or even geographical location. Such

variation causes adverse event counts to display more variation than predicted by

the Poisson model. In Sections 3.3 and 3.4 we present methods that accommo-

date extra overdispersion through random effects models and zero-inflation models,

respectively.

In modeling event counts collected from a clinical trial or after-market safety

study, there are usually a relatively large number of zeros (non-events). Commonly
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used models such as the Poisson or geometric distributions can underestimate the

zero-event probability and hence make it difficult to identify significant covariate

effects.

In Section 3.4, we consider model expansions for count responses with excess

zeros relative to what standard distributional assumptions, such as the Poisson,

can predict. In the literature, “zero-inflated count data” refers to data for which a

generalized linear model has lack of fit due to disproportionately many zeros. Such

data are common in studies including substantial numbers of subjects prone to zero

counts and others yielding non-zero counts. An example of a variable that one might

expect to be zero-inflated is the number of times a subject used medical services in

the previous year: some subjects may have a zero observation because of chance,

whereas others may have a zero observation because they have a fear of doctor’s

offices or they lack insurance (Deb and Trivedi, 1997).

The zero-inflation model considers the study population a mixture of two sub-

populations. One of the subpopulations is regarded as “not at-risk” and must have a

response value of zero. This is commonly called a “structural zero”. Among subjects

in the “at-risk” subpopulation, the responses follow a Poisson distribution, giving a

zero-inflated Poisson model (ZIP). Sampling zeros may arise in the at risk popula-

tion with probability exp(−λ), where λ is the Poisson mean. Hence, the membership

status is unobservable if the response is zero.

Zero-inflated models for count data have been widely used in statistical science

to model a variety of real life count data such as manufacturing defects (Lambert,

1992); sexual behavior (Heilbron, 1994); medical (Bohning, 1998; Cheung, 2002);

dental (Bohning et al., 1999; Karlis and Ntzoufras, 2006; Mwalili, Lesaffre, and

Declerck, 2008); crime (Famoye and Singh, 2006), and sports data (Karlis and Nt-

zoufras, 2006). Such models introduce an extra probability parameter to capture an
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excess of zero values that cannot be estimated sufficiently by the assumed Poisson

model.

In Section 3.2, we extend the Poisson regression model with a misclassified

binary covariate to include an additional continuous covariate, and results from

subsequent simulation experiments are presented. Finally, in Sections 3.3 and 3.4

random effects and zero-inflation components are incorporated into the model, and

simulation studies indicate that prediction is improved compared to models without

such adjustments.

1.5 Measurement Error in Logistic Regression - An Application

Age adjusted body mass index (BMI) is the standard method to identify and

follow overweight children. Children with values exceeding the 95th percentile as

defined by the BMI standards established in 2000 by the CDC are said to have

“childhood obesity”. Nutritional guidelines, health district budgets, and even med-

ical interventions are often, in part, based on the prevalence of high BMI-for-age

that exists in an area. The National Health Examination Survey (NHANES) is the

primary tool used by policy makers to estimate the prevalence of high BMI-for age.

In Chapter 4 we present a study in which we investigate age and gender ad-

justed BMI measurements, taken between Fall 2003 and Spring 2008, for 18,462

children who participated in the Head Start program, which is funded and admin-

istered by the US Department of Health and Human Services Administration for

Children and Families.

Specifically, data were collected from Head Start centers in several South Texas

border counties and one Central Texas county. The data from this study are used

in two ways. First, results are compared to the cohort of the NHANES sample

consisting of 2-5 year old children, presented by Ogden, Carroll, and Flegal (2008).

Second, the prevalence of high BMI-for-age among pre-school children in South Texas
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exceeding that of the 2000 CDC growth curves is examined to determine if there are

any regional differences between the border counties of South Texas and a central

Texas non-border county.

1.6 Plan of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we

extend the work of Liu et al. (2009) to analyze Poisson data, assuming misclassi-

fied exposure and no additional covariates. Within this model we examine three

different prior structures and compare the merit of each through simulation study.

In Chapter 3, three model extensions are considered - the addition of a continuous

covariate, incorporation of random effects, and addition of a zero-inflation parame-

ter. In Chapter 4, we focus on extending a logistic regression model by performing

a Bayesian analysis of the dataset. Conclusions and remarks on future extensions

and research are made in the Discussion sections of Chapters 3 and 4. Each chap-

ter of this dissertation is essentially self-contained with individual literature reviews

and conclusions. For details on the code necessary for the implementation of the

methods found in this dissertation, please contact the author.
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CHAPTER TWO

Poisson Regression When Exposure is Subject to Misclassification

2.1 Overview

Misclassification of a binary exposure variable is a common issue in clinical

studies. The exposure misclassification can be especially problematic in retrospec-

tive studies, such as case-control studies. Often, “experts” can supply information

and estimates regarding other covariates and their relationship to the exposure vari-

able. In order to incorporate the expert beliefs we implement a Bayesian model that

accounts for exposure subject to misclassification. In the case of a single covari-

ate reflecting the presence or absence of exposure, there are 3 unknown parameters

- the test has unknown sensitivity, specificity, and probability of exposure. How-

ever, there is only 1 degree of freedom, since knowing the total sample size and

the number of “exposed” patients fixes the number of “unexposed” patients (and

vice versa). Having more parameters to estimate than degrees of freedom results in

the need for constraints on at least a subset of the model parameters in order to

carry out estimation procedures (Joseph et al., 1995). Gustafson (2003) extended

the idea of overparameterization to more complex models (specifically linear and

logistic regression).

We explore the performance achieved when the constraints, in the form of

informative prior distributions, are placed on different subsets of model parameters

for a Poisson regression model. First, we study this model’s performance when

such informative priors are placed on the misclassification parameters with more

diffuse priors on the regression parameters. Second, we consider the effect of placing

informative priors on the regression parameters. Finally, we consider the case where

all of the model parameters are constrained through the use of informative priors.
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Our work expands on that by Liu, Gustafson, Cherry, and Burstyn (2009), who

examined a Bayesian method to adjust for misclassification in matched case-control

studies. They assumed validation data involving gold-standard exposure assessment

was unavailable, but that expert prior opinion concerning the nature of the misclas-

sification was available. We present a simple method to assess the bias in Poisson

regression coefficients for a binary exposure variable subject to misclassification.

Matched case-control studies are often used to analyze the relationship between

a binary exposure variable and the presence or absence of disease. In retrospective

studies, misclassification of a variable due to forgetfulness or misreporting is not

uncommon. If a non-trivial level of misclassification is anticipated, then a model

should be built to account for it. Ignoring misclassification in a study can lead to

biased estimates and inaccurate standard errors (Prescott and Garthwaite, 2005).

If a perfect, but expensive “gold standard” measure is available, it can be

compared to the ordinary measure for a subset of the study group. For example,

in epidemiology, a case-note review provides more reliable but expensive source of

information about exposure than the less-expensive postal questionnaire. If study-

ing occupational exposure to chemicals, a patient may not provide accurate recall

about the chemicals they handled on a particular day, while employers records may

contain all of this information. A full search of this information could be too ex-

pensive. Of course, validation data and/or multiple exposure assessments are not

always available. In these cases a gold standard does not exist, but expert prior

knowledge about exposure-disease association and/or misclassification parameters

may be abundant. Constructing a prior distribution based on expert opinion is

critical to our approach. (There is a rich literature on the elicitation of prior distri-

butions using expert opinion. See, for example, O’Hagan et al. (2006) and references

therein.)
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2.2 Impact of Misclassified Binary Variables

Many explanatory variables encountered in statistical practice are categorical

rather than continuous in nature. Mismeasurement arises for these variables when

the actual and recorded categories for subjects differ. Unlike the case of mismea-

surement in a continuous variable, when the surrogate variable can be expressed as

a sum of the true variable plus a noise variable, one must characterize the mismea-

surement of the categorical variable in terms of classification properties, i.e., given

the true classification, how likely is a correct classification? We focus on the impact

of misclassification in binary explanatory variables.

Consider the relationship between a Poisson response variable, y, and a binary

explanatory variable x. Since x is binary, we can write

logE(y|x) = β0 + β1x. (2.1)

For a study subject, suppose we observe (y, x∗) rather than (y, x), where the binary

variable x∗ is an imperfect surrogate for x. Under the assumption of nondifferen-

tial misclassification, whereby x∗ and y are conditionally independent given x, the

magnitude of the misclassification can be described by the sensitivity and specificity

of x∗ as a surrogate for x. With respect to biomedical applications, we typically

refer to x = 0 as “unexposed” and x = 1 as “exposed”. The sensitivity, η, is the

probability that a true exposure is correctly identified; that is, η ≡ P (x∗ = 1|x = 1).

The specificity, θ, is the probability that a true nonexposure is correctly identified;

that is, θ ≡ P (x∗ = 0|x = 0).

We can show that the extent to which η and θ are less than one is indica-

tive of the severity of the misclassification. Applying the nondifferential property

and adapting Gustafson’s (2003) linear model to accommodate the the log linear
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relationship in the Poisson generalized linear model yields

logE(y|x∗) = E[E(y|x)|x∗]

= β0 + β1E(x|x∗)

= β0 + β1x
∗P (x = 1|x∗ = 1) + β1(1− x∗)P (x = 1|x∗ = 0)

= β∗0 + β∗1x
∗,

where

β∗0 = β0 + β1P (x = 1|x∗ = 0) (2.2)

and

β∗1 = 1− P (x = 0|x∗ = 1)− P (x = 1|x∗ = 0). (2.3)

Equation (2.3) shows that more attenuation results from larger probabilities

of misclassification given the apparent classification. Moving forward, we express

the attenuation the other way around, using sensitivity and specificity which are

probabilities of misclassification given the true classification. Let τ = P (x = 1)

and τ ∗ = P (x∗ = 1), which are the actual and apparent prevalences of exposure,

respectively, in the population at hand.

The apparent prevalence of exposure can be written as a function of the actual

prevalence of exposure, the sensitivity, and the specificity:

τ ∗ = P (x = 1)P (x∗ = 1|x = 1) + P (x = 0)P (x∗ = 1|x = 0) (2.4)

= τη + (1− τ)(1− θ)

= τ(η + θ − 1) + (1− θ).

From Bayes’ Theorem we have

P (x = 0|x∗ = 1) =
P (x = 0)P (x∗ = 1|x = 0)

P (x∗ = 1)
(2.5)

=
(1− τ)(1− θ)

τ ∗
,
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and

P (x = 1|x∗ = 0) =
τ(1− η)

1− τ ∗
. (2.6)

Incorporating (2.5) and (2.6) into (2.3) yields,

α ≡ β∗1
β1

= 1− (1− τ)(1− θ)
τ ∗

− τ(1− η)

1− τ ∗
(2.7)

= (η + θ − 1)
τ(1− τ)

τ ∗(1− τ ∗)
.

Equation (2.7) becomes one when η = 1 and θ = 1. As terminology, we

refer to (2.7) as the attenuation factor, while the magnitude of the relative bias is

equivalent to 1−α (Gustafson, 2003). The effect of misclassification is to attenuate

bias, and the attenuation worsens with the severity of the misclassification. To

illustrate this trait, we can examine attenuation as a function of sensitivity and

specificity at various levels of prevalence. This is done in the form of contour plots

of the attenuation in (2.7), as shown in Figure 2.1. When τ = 0.4, the bias is near-

symmetric in η and θ. The contours reveal that substantial attenuation can occur

without the misclassification being very severe. For example, η = θ = 0.9, which

can be interpreted as 10% misclassification, yields α = 0.79, interpreted as 21%

attenuation. Compared to the analogous case with continuous measurement error,

where 10% measurement error produces only 1% attenuation. Gustafson (2003)

posits that having 10% of all the measurements “entirely corrupted” in the binary

case is much more damaging than having all the measurements corrupted by 10%

in the continuous case.

The contour plots also reveal that unbalanced misclassification, where θ and η

differ, is less damaging than the balanced case of θ = η. For example, when τ = 0.4,

η = 1 and θ = 0.8 yields an attenuation factor of 0.77, which is slightly less than

the attenuation factor corresponding to the η = θ = 0.9 scenario.

The left panel of Figure 2.1 corresponds to τ = 0.2, which can be regarded as a

“rare exposure” scenario typifying many epidemiological investigations. Clearly the

14



0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ηη

θθ

αα = 0.9
αα = 0.8
αα = 0.7
αα = 0.6
αα = 0.5

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ηη

θθ

αα = 0.9
αα = 0.8
αα = 0.7
αα = 0.6
αα = 0.5

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ηη

θθ

αα = 0.9
αα = 0.8
αα = 0.7
αα = 0.6
αα = 0.5

Figure 2.1: Contours of the attenuation factor as a function of sensitivity and speci-
ficity. The left panel corresponds to τ = P (x = 1) = 0.2, the center panel corre-
sponds to τ = 0.4, and the right panel corresponds to τ = 0.8.

attenuation worsens more with declining specificity than with declining sensitivity

in this scenario. This makes sense, as there are far more true negatives than true

positives in the population. Hence the specificity describing the classification of true

negatives has a bigger impact than the sensitivity describing the classification of

true positives. When η and θ are comparable, the attenuation is now stronger than

in the τ = 0.4 case of common exposure. For instance, η = θ = 0.9 now yields a

stronger attenuation factor of 0.66, compared to 0.79 in the τ = 0.4 case. This is of

particular concern in light of the general epidemiological interest in rare exposures.

Continuing the consideration of η = θ = 0.9, we can see from (2.7) that when τ = 0.1

or τ = 0.05 the attenuation factor drops further to 0.49 and 0.32, an exceedingly

substantial attenuation. In the context of rare exposure, even mild nondifferential

misclassification can lead to wildly misleading inferences if left unchecked (Gustafson

and Greenland, 2006).

The right panel of Figure 2.1 corresponds to τ = 0.8, which can be regarded

as a “frequent exposure” scenario. The attenuation worsens more with declining

sensitivity than with declining specificity in this instance. Just as the rare exposure

attenuation characteristics make intuitive sense, so do the frequent exposure atten-
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uation characteristics. There are far more true positives in the population. Hence,

the sensitivity that describes the classification of true positives has a larger impact

than the specificity describing the classification of true negatives. Just as in the case

of τ = 0.2, τ = 0.8 yields an attenuation factor of 0.66 when η = θ = 0.9, as the

exposure probabilities are symmetric about τ = 0.5.

To illustrate how this pertains to our model, let y be our response which is

measured without error. Each subject in a study has a true and an observed exposure

status. Misclassification occurs when the true and observed exposure status differ for

any patient in the study. A “naive” model attempts to directly model the response

using only the observed exposure status, as shown in Figure 2.2, with no regard for

the underlying misclassification structure. Failure to incorporate misclassification

components results in biased estimates and low coverage in both the frequentist and

Bayesian settings.
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Figure 2.2: Summary of the naive Poisson regression model. This model attempts
to model y|x when the data is actually in the form of x∗.

2.3 The Bayesian Model

To build the model that does account for misclassification, we first let yj

be the observed Poisson count, measured without error, for the jth trial/patient,

j = 1, . . . , J . Let xj be the binary exposure status for the jth patient and let x∗j be

the 1×2 vector of covariates including the intercept and the apparent exposure status
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that is susceptible to error, x∗j = ( 1 x∗j ). The true Poisson rate is denoted by λj.

To correct for misclassification of the exposure status, we incorporate the following

misclassification parameters and we assume that the sensitivity, η, specificity, θ, and

probability of exposure, τ , are independent.

We assume that yj|xj ∼ Poisson(λj), j = 1, . . . , J , where λj = g−1(xjβ) and

g(·) is the log link function with regression coefficients vector β′ ≡ (β0, β1). We

relate the covariates to the response using the log link, yielding λj = exp{xjβ}.

The observed data is represented by the density function

f(yj|xj) =
λ
yj

j e
−λj

yj!
, (2.8)

and the resulting likelihood is given by

f(β, η, θ, τ |y,x,x∗) ∝
J∏
j=1

[xjη
x∗j (1− η)1−x∗j + (1− xj)θ1−x∗j (1− θ)x∗j ] (2.9)

× τxj (1− τ)1−xjλ
yj

j e
−λj ,

where y is a J × 1 vector of observed Poisson counts, X is a J × 2 matrix of

covariates including the intercept and the true exposure status, X∗ is a J×2 matrix

of covariates including the intercept and the apparent exposure status, and, as noted

above, λj = exp{x′jβ}. We assume that x1j, the exposure status for the jth patient,

is subject to misclassification, and we replace x1j with its surrogate, x∗1j, through

the relationship,

P (x∗ = 1|x = 1) = xη + (1− x)(1− θ). (2.10)

Assuming independent priors, p(·), for all unknown unknown parameters, the

joint prior is given by

p(β0, β1, η, θ, τ) = p(β0)× p(β1)× p(η)× p(θ)× p(τ).

The resulting joint posterior distribution is

p(β0, β1, η, θ, τ |y,x,x∗) ∝ f(β0, β1, η, θ, τ |y,x,x∗)p(β0, β1, η, θ, τ). (2.11)

17



This model is shown in Figure 2.3.
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Figure 2.3: Summary of the Poisson regression model with misclassification. The
dashed line denotes substitution of a variable with its surrogate.

2.4 Model 1: Informative Priors for the Misclassification Parameters

In the first set of analyses, we place diffuse normal priors on both regression

coefficients: β0 ∼ N(µβ0 , σ
2
β0

) and β1 ∼ N(µβ0 , σ
2
β0

). We assume independent infor-

mative priors on the misclassification components, with sensitivity, specificity, and

the probability of exposure each receiving beta priors centered on a value obtained

using expert opinion. Because the beta family of distributions offers a wide variety

of shapes in the region [0,1], it is considered a natural choice for modeling proba-

bilities. Additionally, the use of informative beta priors ensures useful inferences on

model parameters (Joseph, Gyorkos, and Coupal, 1995).

2.4.1 Prior Structures

Following Stamey, Seaman, and Young (2005), we use the notion of equivalent

prior sample size (EPSS) to construct beta priors of varying informativeness for the

misclassification parameters. For a moderately informative prior, we chose a beta

distribution with shape parameters selected so that the EPSS is equivalent to 50

patients by setting the mean of each prior distribution to the prior hypothesized
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values of sensitivity, specificity, and probability of exposure. If an equivalent prior

sample size, j∗, is considered, and it is believed η = η∗, θ = θ∗, and τ = τ ∗ are the

likely values, we have the equations

a+ b = j∗, c+ d = j∗, e+ f = j∗,

a
a+b

= η∗, c
c+d

= θ∗, e
e+f

= τ ∗.
(2.12)

From this system of equations, if we specify η∗ = 0.9, θ∗ = 0.7, and τ ∗ = 0.8

to be the likely values, and if we utilize an equivalent prior sample size of j∗ = 50,

we have

b = 50(1− 0.9), d = 50(1− 0.7), f = 50(1− 0.8),

a = 50− b, c = 50− d, e = 50− f.
(2.13)

This system of equations results in a beta(45, 5) prior for η, a beta(35, 15) prior for

θ, and a beta(40, 10) prior for τ . This specification corresponds to Case 1 of the

simulation study outlined in the following section.

Similarly, for a less informative beta prior, we chose shape parameters yielding

an equivalent prior sample size of j∗ = 30. For Case 1 we have

b = 30(1− 0.9), d = 30(1− 0.7), f = 30(1− 0.8),

a = 30− b, c = 30− d, e = 30− f,
(2.14)

which yields three less informative priors for the misclassification parameters: a

beta(27, 3) prior for η, a beta(21, 7) prior for θ, and a beta(24, 6) prior for τ .

2.4.2 Simulation Study Design

In this section, we describe an application of the model in (2.11) and methods

in Sections 2.3 and 2.4 to simulated data sets, illustrating the impacts of ignor-

ing, and subsequently correcting for, misclassification in the previously introduced

Bayesian Poisson regression design. We are interested in investigating the effect of

the misclassification on the estimates produced by the naive model. Additionally, we
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are interested in learning under which values of sensitivity, specificity, and exposure

probability the corrected models produce the most accurate estimates.

Data were generated using the 12 combinations of sensitivity, specificity, and

probability of exposure specified in Table 2.1. The scenarios were chosen to reflect

what we feel is interesting about the problem of misclassification. We examine

situations in which data is generated for varying levels of misclassification to assess

the impact on the model’s ability to estimate the parameters, with the regression

coefficient corresponding to the binary misclassified covariate, β1, being of particular

interest. We then assess the impact when varying levels of exposure are simulated.

Table 2.1: Fixed Values of Sensitivity, Specificity, and
Probability of Exposure for the Simulation Study

Case η θ τ
1 0.9 0.7 0.8
2 0.9 0.7 0.4
3 0.9 0.7 0.2
4 0.9 0.5 0.8
5 0.9 0.5 0.4
6 0.9 0.5 0.2
7 0.7 0.9 0.8
8 0.7 0.9 0.4
9 0.7 0.9 0.2
10 0.5 0.9 0.8
11 0.5 0.9 0.4
12 0.5 0.9 0.2

We begin by inflicting minor misclassification on the design with high values

of sensitivity and specificity of η = 0.9 and θ = 0.7 in Cases 1 through 3. In Cases

4 through 6 we maintain the same level of sensitivity, η = 0.9, and decrease the

specificity to θ = 0.5. In our third scenario we lower sensitivity to η = 0.7 and raise

the specificity to θ = 0.9, seen in Cases 9 through 12. Our fourth and final scenario

for Cases 10 through 12 finds us decreasing the sensitivity further to η = 0.5 while
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maintaining a specificity of θ = 0.9.

Initally, we generated 100 datasets, each with J = 300 Poisson count responses

based on a single binary covariate subject to misclassification. A second phase

of simulations included datasets made up of J = 500 responses. We specify the

regression coefficients to be β0 = 1.9 and β1 = 0.8, and we set the misclassification

parameter values according to each of the scenarios in Table 2.1. We call this Data

A.

For prior distributions, we used β0 ∼ N(0, 10) and β1 ∼ N(0, 10), as well as

informative beta priors on η, θ, and τ as described in (2.12) such that the equivalent

prior sample size is j∗ = 30. Subsequently, simulations using priors based on an

equivalent prior sample size of j∗ = 50 and j∗ = 100 were conducted.

To fit this model we used Markov chain Monte Carlo (MCMC) methods im-

plemented in the WinBUGS software package. WinBUGS uses MCMC methods

to sample from the desired posterior distribution resulting from the stationary dis-

tribution of a Markov chain (Lunn, Thomas, Best, and Spiegelhalter, 2000). This

method is particularly useful when the posterior distribution is not in closed form,

as the MCMC methods only require that we specify the full conditionals (Gelman,

Carlin, Stern, and Rubin, 2003). The simulation study comprised 100 iterations,

was implemented on a 3.00 GHz Intel Pentium 4 processor with 4.0 GB RAM, and

required 29 hours to reach completion for each of the cases, including 10.5 hours for

each corrected model and 8 hours for the naive model.

While we present each of the these as Bayesian models, maximum likelihood

estimates and frequentist confidence intervals resulting from the naive and gold

standard models are computed for the sake of comparison.
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2.4.3 Simulation Study Results

To summarize the simulation results, we report the average of the 100 estimates

of the regression coefficients for each of the twelve scenarios. In addition, we recorded

the interval estimate lengths and coverage based on 95% confidence intervals and

credible sets. These results are displayed in Tables A.1 through A.51 located in

Appendix A.

Within the η = 0.9 and θ = 0.7 cases, the coverage in the corrected models far

surpasses the coverage in the naive model. In varying τ , the probability of exposure,

we see in Table A.14 that the corrected model with moderately informative priors

performs best when τ = 0.4 where the coverage for the regression coefficients β0 and

β1 is 0.96 and 0.99, respectively. This drops off in the case of τ = 0.8 in Table A.13

and for τ = 0.2 in Table A.15, where the coverage for the regression coefficients β0

and β1 is 0.92 and 0.92 when τ = 0.8 and the coverage for the regression coefficients

β0 and β1 is 0.92 and 0.96 when τ = 0.2. The coverage for η is high, between 0.98

(τ = 0.4) and 1.00 (τ = 0.8 and τ = 0.2), which is to be expected when we consider

the sensitivity with which the data was generated.

A primary interest is the model’s ability to correctly estimate β1, the impact

of true positive exposure on the response variable. In examining the resulting out-

put for Case 1 through Case 3, we find from Table A.14 that the average credible

set interval width for the posterior mean to be smallest at 0.1589 when τ = 0.4

and moderately informative priors are assigned to the misclassification parameters.

When mildly informative priors are assigned, Table A.8 indicates the interval width

remains at 0.1589. The associated frequentist gold standard confidence interval

widths for β1 when τ = 0.4 and moderately informative and mildly informative

priors are assigned are 0.1464 and 0.1465, respectively. When the probability of

exposure is high, τ = 0.8, the interval width for the posterior mean of β1 is wider at

0.2783 (Table A.13) with moderately informative priors and 0.2801 (Table A.7) with
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mildly informative priors. When the probability of exposure is low/rare, τ = 0.2,

the interval width for the posterior mean of β1 is also wider at 0.2649 (Table A.14)

with moderately informative priors and 0.3285 (Table A.9) with mildly informative

priors. The coverages produced by the models that attempt to account for misclas-

sification are greater than 0.90, while the coverages associated with the naive model

estimates range from 0.00 to 0.08.

The naive model produces very poor estimates for β1, with the Bayesian esti-

mates ranging from 0.1439 when τ = 0.4 to 0.2559 when τ = 0.8. The frequentist

estimates are also poor, ranging from 0.2557 when τ = 0.8 to 0.5011 when τ = 0.4.

As we would expect, the estimates produced from a model that does not account

for misclassification are heavily attenuated.

Keeping the sensitivity high at η = 0.9, we lower the specificity to θ = 0.5 and

again examine the performance of our three different models. Within the η = 0.9

and θ = 0.5 cases (Cases 4 through 6 of Table 2.1), the coverage in the corrected

models again surpasses the coverage in the naive model. In varying τ , the probabil-

ity of exposure, we see in Tables A.31 and A.28 that the corrected models achieve

the best coverage when τ = 0.8, where the coverage for the regression coefficients β0

and β1 are 0.95 and 0.96 when moderately informative priors are used and 0.97 and

0.98 when mildly informative priors are used, respectively. For average exposure

τ = 0.4, Tables A.32 and A.29 present slightly lower coverages, with the moder-

ately informative priors achieving 0.95 and 0.93 and the mildly informative priors

achieving 0.95 and 0.95 coverage. We will see, however, that the interval widths

for the posterior estimates are considerably narrower. For low exposure, τ = 0.2 in

Tables A.33 and A.30, the coverage for the regression coefficients β0 and β1 is 0.97

and 0.94 when moderately informative priors are assigned and 0.94 and 0.96 when

mildly informative priors are used.
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Again, a primary interest is our models’ ability to correctly estimate the impact

of true positive exposure on the response variable, quantified in β1. In examining

the resulting output for Case 4 through Case 6, we find from Table A.32 that the

average credible set interval width for the posterior mean is narrowest at 0.1595

when τ = 0.4 and moderately informative priors are assigned to the misclassification

parameters. When mildly informative priors are assigned, Table A.29 indicates the

interval width grows slightly to 0.1605. The associated frequentist gold standard

confidence interval widths for β1 when τ = 0.4 and moderately informative and

mildly informative priors are assigned are 0.1463 and 0.1464, respectively. When the

probability of exposure is high, τ = 0.8, the interval width for the posterior mean

of β1 is wider at 0.2954 (Table A.31) with moderately informative priors and 0.2953

(Table A.28) with mildly informative priors. When the probability of exposure is

low/rare, τ = 0.2, the interval widths for the posterior means are the widest, β1

is 0.4418 (Table A.33) with moderately informative priors and 0.4819 (Table A.30)

with mildly informative priors. The coverages produced by the models that attempt

to account for misclassification are greater than 0.90, while the coverages associated

with the naive model estimates range from 0.00 (Tables A.25 and A.26) to 0.01

(Table A.27).

The naive model produces very poor estimates for β1, with the Bayesian es-

timates ranging from 0.1641 when τ = 0.8 to 0.3768 when τ = 0.2. The naive

frequentist estimates are also poor, ranging from 0.1641 when τ = 0.8 to 0.3774

when τ = 0.2. As in Cases 1 through 3 of Table 2.1, the estimates produced from a

model that does not account for misclassification are heavily attenuated.

In the third scenario we lower the sensitivity to η = 0.7, and we raise the

specificity to θ = 0.9 and again examine the performance of our three different

models. Case 7 through Case 9 (Tables A.34 through A.42) correspond to data

generated using η = 0.7 and θ = 0.9. The coverage in the corrected models again
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surpass the coverage in the naive model. In varying τ , the probability of exposure,

we see in Tables A.42 and A.39 that the corrected models achieve the best coverage

when τ = 0.2, where the coverage for the regression coefficients β0 and β1 are 0.97

and 0.94 when moderately informative priors are used and 0.95 and 0.97 when mildly

informative priors are used, respectively. For average exposure τ = 0.4, Tables A.41

and A.38 present slightly lower coverages, with the moderately informative priors

achieving 0.91 and 0.91 and the mildly informative priors achieving 0.95 and 0.96

coverage. We will see, however, that some of the interval widths for the posterior

estimates are considerably narrower when the probability of exposure is τ = 0.4.

For common exposure, τ = 0.8, in Tables A.33 and A.30, the coverage for the

regression coefficients β0 and β1 is 0.97 and 0.94 when moderately informative priors

are assigned and 0.94 and 0.96 when mildly informative priors are used.

With respect to β1, in the resulting output for Case 7 through Case 9 we

find from Table A.41 that the average credible set interval width for the posterior

mean is narrowest at 0.1587 when τ = 0.4 and moderately informative priors are

assigned to the misclassification parameters. When mildly informative priors are

assigned, Table A.38 indicates the interval width grows slightly to 0.1589. The asso-

ciated frequentist gold standard confidence interval widths for β1 when τ = 0.4 and

moderately informative and mildly informative priors are assigned are 0.1464 and

0.1467, respectively. When the probability of exposure is high, τ = 0.8, the interval

width for the posterior mean of β1 is wider at 0.2737 (Table A.40) with moderately

informative priors and 0.2787 (Table A.37) with mildly informative priors. When

the probability of exposure is low/rare, τ = 0.2, the interval widths for the posterior

means are the widest, β1 is 0.3879 (Table A.42) with moderately informative priors

and 0.4685 (Table A.39) with mildly informative priors. The coverages produced by

the models that attempt to account for misclassification are greater than or equal

to 0.89, while the coverages associated with the naive model estimates range from
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0.00 (Tables A.34) when the exposure probability is high to 0.66 (Table A.36) when

the exposure probability is low.

The naive model produces better estimates for β1 that in previous scenarios,

with the Bayesian estimates ranging from 0.3725 when τ = 0.2 to 0.4988 when

τ = 0.4. The naive frequentist estimates are also poor, ranging from 0.3724 when

τ = 0.2 to 0.4986 when τ = 0.4. As in Cases 1 through 6, the estimates produced

from the models that do not account for misclassification are heavily attenuated.

In our final scenario we further lower the sensitivity to η = 0.5, and we raise

the specificity to θ = 0.9 and again examine the performance of our three different

models. We have decreased our models’ ability to correctly detect a positive expo-

sure to 0.5. Case 10 through Case 12 (Tables A.43 through A.51) correspond to

data generated using η = 0.5 and θ = 0.9. The coverage in the corrected models

again surpass the coverage in the naive model. As we examine the results obtained

by varying τ , the probability of exposure, we see in Tables A.50 and A.47 that the

corrected models achieve the best coverage when τ = 0.4, where the coverage for

the regression coefficients β0 and β1 are 0.98 and 0.97 when moderately informative

priors are used and 0.97 and 0.95 when mildly informative priors are used, respec-

tively. For common exposure τ = 0.8, Tables A.51 and A.48 present slightly lower

coverages, with the moderately informative priors achieving 0.98 and 0.94 and the

mildly informative priors achieving 0.97 and 0.96 coverage. While these coverages

are very close to those attained when τ = 0.4, the interval estimates are much wider

when τ = 0.8. For rare exposure, τ = 0.2 in Tables A.49 and A.46, the coverage for

the regression coefficients β0 and β1 is 0.94 and 0.93 when moderately informative

priors are assigned and 0.99 and 0.99 when mildly informative priors are used.

Once again, a primary interest is our model’s ability to correctly estimate

β1, the impact of true positive exposure on the response variable. In examining

the resulting output for Case 10 through Case 12, we find from Table A.50 that
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the average credible set interval width for the posterior mean is narrowest at 0.1750

when τ = 0.4 and moderately informative priors are assigned to the misclassification

parameters. When mildly informative priors are assigned, Table A.47 indicates the

interval width narrows slightly to 0.1519. The associated frequentist gold standard

confidence interval widths for β1 when τ = 0.4 and moderately informative and

mildly informative priors are assigned are 0.1464 and 0.1464, respectively. When the

probability of exposure is high, τ = 0.8, the interval width for the posterior mean

of β1 is wider at 0.2990 (Table A.49) with moderately informative priors and 0.3034

(Table A.46) with mildly informative priors. When the probability of exposure is

low/rare, τ = 0.2, the interval widths for the posterior means are the widest, β1

is 0.3713 (Table A.51) with moderately informative priors and 0.5957 (Table A.51)

with mildly informative priors. The coverages produced by the models that attempt

to account for misclassification are greater than or equal to 0.90, while the coverages

associated with the naive model estimates range from 0.00 (Tables A.43) when the

exposure probability is high to 0.65 (Table A.45) when the exposure probability is

low.

The naive model produces estimates for β1 that are more biased than in the

previous scenario, with the Bayesian estimates ranging from 0.2689 when τ = 0.2

to 0.3936 when τ = 0.4. The naive frequentist estimates are also poor, ranging

from 0.2686 when τ = 0.2 to 0.3931 when τ = 0.4. As in Cases 1 through 9, the

estimates produced from the models that do not account for misclassification are

heavily attenuated.

Throughout Chapter 2, we exhibit our simulation results graphically as well as

with tables. These graphs follow a common template, which is illustrated in Figure

2.4. This particular figure represents Model 1 under Cases 1 through 3 in Table 2.1,

where informative beta priors are placed on the misclassification parameters and

diffuse priors are placed on the regression coefficients, as discussed in Section 2.4.
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C3

Case 1  Case 2

Case 3

 
N:   Naïve Model 
C1:  Corrected Model with EPSS=30 
C2:  Corrected Model with EPSS=50 
C3:  Corrected Model with EPSS=100 

C2C1

Figure 2.4: Variation within the estimates for β1 for Cases 1, 2, and 3. Posterior
means and credible set intervals are plotted for the naive model and the corrected
models with EPSS=30, 50, and 100.

The left four vertical bars represent simulations performed with data gener-

ated according to Case 1. The first bar corresponds to the naive model, and the

remaining bars correspond to the corrected model with varying degrees of informa-

tiveness incorporated into the priors on the misclassification parameters. The four

vertical bars in the center represent the simulations performed with data generated

according to Case 2, and the four bars to the right represent the simulations per-

formed with data generated according to Case 3. Within each set of four, we have a

naive model and three corrected models with increasing equivalent prior sample size.

The horizontal line across the entire figure is the true parameter value (β1 = 0.8).

The horizontal line atop each vertical bar is the simulation average upper bound

on the 95% credible interval. The lower horizontal line on each vertical bar is the

simulation average lower bound on the interval. The central dot is the simulation

average posterior mean. The dark gray box is plus or minus one simulation stan-

dard deviation on the posterior mean. The light gray boxes are plus or minus one

simulation standard deviation on the upper 97.5% and lower 2.5% bounds.
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We look at the first scenario, when η = 0.9 and θ = 0.7. There is considerable

variation in the posterior estimates for β1 when the probability for exposure is low

(τ = 0.2). The variation decreases as the degree of informativeness in the prior

distributions increases. The naive models produce estimates with less variation, but

the estimates are far from the true value.

2.5 Model 2: Informative Priors for the Regression Parameters

Here we introduce Model 2, in which we examine the effects of placing the

information accrued from experts on the regression coefficients and place minimally

informative distributions on the misclassification parameters.

2.5.1 Prior Structures

In Model 1 (see Section 2.4), we illustrated Bayesian fitting of a Poisson re-

gression model using a diffuse prior on the regression coefficients. Suppose instead

that we have subjective beliefs about the regression vector. A convenient way of rep-

resenting these beliefs is by use of informative priors on the regression coefficients,

β0 and β1.

There exists a variety of methods to incorporate expert opinion and/or histor-

ical data into prior specification for regression parameters. For Model 2 we choose a

straightforward method in which we assign independent informative normal priors

and we specify the means to be equal to the true value and the standard deviations

to be small.

2.5.2 Simulation Study Design

As with Model 1, we generated 100 datasets, each with J = 300 Poisson count

responses based on a single binary covariate subject to misclassification. A second

phase of simulations performed on a subset of the cases from Table 2.1 included

datasets made up of J = 500 responses. The analysis is performed on the same
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data, Data A, as we set the regression coefficients as β0 = 1.9 and β1 = 0.8, and

we set the misclassification parameter values according to each of the scenarios in

Table 2.1.

For prior distributions, we initially specify β0 ∼ N(1.8, 0.09) and β1 ∼ N(0.8, 0.09),

as well as diffuse beta(1, 1) priors on η, θ, and τ . A second phase of simulations are

carried out on Model 2, with the standard deviation for the normal priors on the

regression parameters decreased from σ = 0.3 to σ = 0.2.

2.5.3 Simulations Study Results

To summarize the simulation results, we report the average of the 100 estimates

of the regression coefficients for each of the twelve scenarios. In addition, we recorded

the interval estimate lengths, and coverage based on 95% confidence intervals and

credible sets. These results are displayed in Tables A.52 through A.69 located in

Appendix A.

Upon inspection of the results in Tables A.52 through A.54 we find the interval

widths for the Bayesian estimates of each model parameter to be larger than antic-

ipated, particularly with the cases that model low exposure (τ = 0.2). For the first

scenario, where η = 0.9 and θ = 0.7, the average credible set width is 0.5339 (Table

A.54). The average credible set widths for β1 when the probability for exposure is

low for the other scenarios are 0.3684, 0.5620, and 0.4919 as found in Tables A.63,

A.66, and A.69, respectively.

As a diagnostic measure, we plot the estimates for β1 produced during each

MCMC iteration of our simulation study. In Figure 2.5 we see the variation between

estimates for β1 is much greater when the exposure probability is low (τ = 0.2),

than when the exposure probability is higher (τ = 0.8).
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N

N:   Naïve Model 
C4:  Corrected Model with SD = 0.3 
C5:  Corrected Model with SD = 0.2 

Case 1 Case 2

Case 3

Figure 2.5: Variation within the estimates for β1 for Cases 1, 2, and 3. Posterior
means and credible set intervals are plotted for the naive model and the corrected
models with σ = 0.3 and σ = 0.2.

Further investigation of the posterior distributions for β1 when the exposure

probability is low reveals problems with convergence. In Figure 2.6 we present the

prior and posterior distributions for β1 when Case 3 is considered.
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Figure 2.6: Prior and posterior distributions for β1 when Case 3 is considered.

Figure 2.6 illustrates the difficulty the model is having with convergence. The

posterior distributions for β1 under Model 2 are not unimodal and exhibit a large
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amount of variability. Investigation of the variation between estimates for the other

model parameters produced results consistent with those presented above.

We consider a subset of the cases presented in Table 2.1 for further study.

For Case 1 through Case 3, we make the priors on β0 and β1 more informative by

decreasing the standard deviations from σ = 0.3 to σ = 0.2. We find the more

informative priors do lead to a decrease in credible set widths. For Case 3 we find

the interval width for β0 decreases by 40%, from 0.2942 when σ = 0.3 (Table A.54)

to 0.1781 when σ = 0.2 (Table A.57). The interval width for β1 decreases 42%, from

0.5339 when σ = 0.3 to 0.3102 when σ = 0.2. Similar interval width decreases were

observed for each of the misclassification parameters. We do see, however, that the

posterior distribution continues to exhibit multi-modality, as presented in Figure

2.7.

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6
7

Prior − N(0.8, 0.04)
Posterior−Corrected Model
True Value

Figure 2.7: Prior and posterior distributions for β1 when the standard deviation on
the prior is reduced to σ = 0.2.

The simulation is repeated once more, with the study sample size increased

from J = 300 to J = 500 patients. The interval widths continue to decrease, as

evidenced in Tables A.58 through A.60 where the interval width for β0 decreases

32



by 30 percent, from 0.1781 when J = 300 to 0.1276 when J = 500 (Table A.60).

The interval width for β1 also decreases from 0.3102 when J = 300 to 0.2179 when

J = 500.
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Figure 2.8: Prior and posterior distributions for β1 when the standard deviation on
the prior is reduced to σ = 0.2 and the study sample size is increased to J = 500.

While the posterior distribution only exhibits a small amount of variation

toward the left tail (Figure 2.8), we are not entirely satisfied with the performance

of Model 2. With regard to the usefulness of expert opinion and/or historical data

in overparameterized models, prior information appears to be most helpful when

applied to the misclassification parameters as opposed to the regression parameters.

In the next section, we investigate model performance when expert opinion and/or

historical data are available for all model parameters.

2.6 Model 3: Informative Priors on All Model Parameters

We conclude with Model 3, an analysis that places informative distributions

on both the regression parameters and the misclassification parameters.
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2.6.1 Prior Structures

Occasionally a researcher is presented with expert opinion and historical data

related to both the misclassification parameters and the regression parameters.

Model 3 incorporates this wealth of information via informative normal priors on

the regression parameters and informative beta priors on the misclassification pa-

rameters.

The normal priors are centered at the true value and small standard deviations

are assigned, yielding β0 ∼ N(1.9, 0.04) and β1 ∼ N(0.8, 0.04). The notion of

equivalent prior sample size is again employed to construct informative priors for

the misclassification parameters.

2.6.2 Simulation Study Design

For Model 3 we generated 100 datasets, each with J = 300 Poisson count

responses based on a single binary covariate subject to misclassification. A second

phase of simulations performed on a subset of the cases from Table 2.1 included

datasets made up of J = 500 responses. We continue to use Data A, in which set

the regression coefficients as β0 = 1.9 and β1 = 0.8, and we set the misclassification

parameter values according to each of the scenarios in Table 2.1.

For prior distributions, we specify β0 ∼ N(1.8, 0.04) and β1 ∼ N(0.8, 0.04),

as well as informative beta priors for η, θ, and τ representing three degrees of

informativeness. Initially we consider an equivalent prior sample size of j∗ = 30

for all twelve cases. We increase the informative nature of these priors and repeat

the simulations on a subset of cases from Table (2.1) using an equivalent prior sample

size of j∗ = 50 and j∗ = 100.

2.6.3 Simulation Study Results

To summarize the simulation results, we report the average of the 100 estimates

of the regression coefficients for each of the twelve scenarios. In addition, we recorded
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the interval estimate lengths and coverage based on 95% confidence intervals and

credible sets. These results are displayed in Tables A.70 through A.96 located in

Appendix A.

We perform a number of adjustments throughout the simulation study in our

attempts to learn which simulation characteristics are most predictive of successful

estimation of model parameters. Our primary interest lies in the Model 3’s ability to

correctly estimate β1, the impact of true positive exposure on the response variable.

While we perform each simulation adjustment on all cases, we present the detailed

results corresponding to the first scenario only in Tables A.70 through A.87. Recall

that in our first scenario, we begin by inflicting minor misclassification on the design

with high values of sensitivity and specificity of η = 0.90 and θ = 0.70 in Cases 1

through 3 of Table 2.1.

Tables A.70 through A.72 contain the estimates produced when Model 3 is

fit to data simulated according to Cases 1, 2, and 3 using a study sample size of

J = 300, and the beta priors on the misclassification parameters are constructed

using an equivalent prior sample size of j∗ = 30. For frequent exposure, τ = 0.8,

Model 3 produces posterior means of 1.9033 and 0.7972 for β0 and β1, respectively.

The associated credible set widths are narrower and the coverages, 0.99 and 0.96,

are higher than those produced by Model 1 (Table A.7) and Model 2 (A.52).

Tables A.73 through A.75 contain the results obtained when the study sample

size is increased to J = 500. We also note that when the probability of exposure is

low (τ = 0.2), the posterior means for β0 and β1 of 1.9005 and 0.8014, respectively,

are accompanied by credible set widths of 0.0885 and 0.1417 and coverages of 0.98

and 0.99. Model 3 clearly outperforms Model 1 and Model 2, where the cases asso-

ciated with low exposure probabilities tended to produce the most biased estimates

with the widest credible set widths. Table A.75 indicates that Model 3 performs as
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well as, and perhaps better than, the “gold standard” model - in which a frequentist

Poisson regression model is fit with the true data.

Next, we increase the degree of information incorporated into the prior dis-

tributions for the misclassification parameters and consider moderately informative

priors with equivalent prior sample size of j∗ = 50. In Tables A.76 through A.81

we see that, as expected, Model 3 produces more accurate posterior means and nar-

rower interval widths than the analogous analyses performed with Model 1 (Tables

A.13 through A.18)and Model 2 (Tables A.55 through A.57). When the probability

of exposure is frequent τ = 0.8, Model 3 produces coverages for β0 and β1 that are

higher than those produced by the gold standard analysis, though with slightly wider

intervals (Table A.76). When common exposure probabilities are considered, Model

3 performs well - producing the exact same coverages of 0.96 for β0 and 0.97 for β1

as the gold standard. When the probability of exposure is low (Table A.77), Model

3 achieves greater coverage than the gold standard. Increasing the study sample

size to J = 500 results narrower credible set widths and slightly lower coverages, as

evidenced in Tables A.79 through A.81.

Finally, we examine the case where we have a great amount of historical data,

and we construct the prior distributions for the misclassification parameters to be

representative of the information gained from 100 patients in a previous study (j∗ =

100). We first consider a study sample size specified to be J = 300. Increasing the

level of information in the misclassification priors results in a marked improvement

of the coverage of our parameter of interest, β1. When j∗ = 30, the posterior mean

produced by Model 3 is 0.8044 with a credible set width of 0.1829 and a coverage of

0.90 (Table A.72). Increasing the prior information to j∗ = 100 results in a posterior

mean of 0.7999 with a credible set width of 0.1802 and coverage of 0.97 (Table A.87).

This increase in accuracy is comparable to that obtained when the equivalent prior

sample size is j∗ = 30 with the study sample size increased to J = 500. However,
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obtaining the information from the additional 70 patients in the historical data is

likely to be much less expensive than enrolling an additional 200 patients in the

study.

To assess the variation among the estimates, we plot the posterior means and

95% credible set bounds for β1 that are produced during each MCMC iteration of our

simulation study when the study sample size is J = 300. We include the estimates

produced by the naive model as well. In Figure 2.9 we see that the variation between

estimates for β1 is consistent across the corrected models. Increasing the equivalent

prior sample size from j∗ = 30 to j∗ = 50, and then from j∗ = 50 to j∗ = 100,

results in slightly less variation. Case 2 (τ = 0.4) produces estimates with the least

amount of variability.

 

N:   Naïve Model 
C6:  Corrected Model with EPSS=30 and SD=0.2 
C7:  Corrected Model with EPSS=50 and SD=0.2 
C8:  Corrected Model with EPSS=100 and SD=0.2 

Case 1  Case 2 Case 3

N 

C6  C7 C8 

Figure 2.9: Variation within the estimates for β1 produced by Model 3.

Tables A.88 through A.96 contain the estimates produced by three additional

scenarios. In Cases 4 through 6 of Table 2.1, we maintain the same level of sensitivity,

η = 0.9, and decrease the specificity to θ = 0.5. In our third scenario we lower

sensitivity to η = 0.7 and raise the specificity to θ = 0.9, seen in Cases 9 through

12. Our fourth and final scenario for Cases 10 through 12 from Table 2.1 finds
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us decreasing the sensitivity further to η = 0.5 while maintaining a specificity of

θ = 0.9. Each scenario produced results consistent with those described in detail

above.

While viewing the average posterior means and average credible set widths is

an important element of the statistical analysis, we also present graphical represen-

tations of the accuracy achieved by each of the models presented here. We see from

Figure 2.10 that the simulation variation for estimates of β1 is greater under Model 2

than Models 1 or 3. Model 3 leads to the smallest amount of within simulation vari-

ation. Increasing the equivalent prior sample size leads to more accurate estimates

and higher coverages, while increasing the study sample size results in decreased

credible set width.

 

Model 1

Model 2

Model 3

C1  C2

C3 

C4  C5 
C6 C7  C8

C1:  Corrected Model with EPSS=30
C2:  Corrected Model with EPSS=50 
C3:  Corrected Model with EPSS=100 
C4:  Corrected Model with SD=0.3 
C5:  Corrected Model with SD=0.2 
C6:  Corrected Model with EPSS=30 & SD=0.2 
C7:  Corrected Model with EPSS=50 & SD=0.2 
C8:  Corrected Model with EPSS=100 & SD=0.2 

Figure 2.10: Variation within the estimates for β1 produced by Models 1, 2, and 3
when Data A is simulated according to Case 3.

Model 3 leads to estimates and coverages that achieve, and in some cases

exceed, that of the gold standard analysis in which a frequentist Poisson regression

model is fit to the true data.
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2.7 Discussion

In our Bayesian model for Poisson outcomes using surrogate data, we find that

expert opinion and/or historical data that provides information about the misclassi-

fication parameters is more useful in fitting overparameterized models than similar

information about the regression parameters. When little is known about the mis-

classification parameters, one must be able to put very informative priors on the

regression parameters and the study sample size must be quite large in order to

obtain model convergence and reliable estimates. Not surprisingly, the estimates

with the least bias, smallest interval width, and greatest coverage are achieved when

expert opinion and/or historical data are available for both the misclassification

parameters and the regression parameters.

Nondifferential misclassification of a binary explanatory variable yields atten-

uated estimates of associated effects. While binary misclassification seems to be

more damaging than continuous covariate measurement error in general, they share

some key features. In both cases a primary determinant of how bad the bias will

be is the strength of correlation between the mismeasured explanatory variable and

other precisely measured explanatory variables. While we have focused on the case

of a single misclassified exposure covariate in this chapter, we extend the model to

consider an additional precisely measured explanatory variable in the next chapter.

Also, the mismeasurement bias does not depend on the actual distribution of the re-

sponse variable. Generally speaking, the bias due to mismeasurement worsens as the

proportion of subjects exposed gets close to zero (or close to one). In epidemiological

contexts it is often natural to conduct studies with low exposure prevalences, so there

is a clear need for methods which adjust inferences to account for misclassification.

Some such methods are introduced and considered by Gustafson (2003).
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CHAPTER THREE

Poisson Regression With Misclassified Binary Covariate - Extensions

3.1 Overview

In this chapter, we consider three complications common to Poisson regression

in biomedical settings and propose modeling strategies for each. These include the

following:

(1) Poisson regression when there is a continuous covariate in addition to the

binary covariate subject to misclassification,

(2) Incorporating random effects to account for residual variability that exceeds

that expected under the Poisson mean-variance property, and

(3) Accounting for excess zeros in the Poisson count via zero-inflated Poisson

models.

Each of these results in an extension of the model introduced in Chapter II.

This chapter is organized as follows. In Section 3.2 we expand the model from

Chapter 2 and present the Bayesian Poisson regression model with an additional

continuous covariate. We also present the results of a simulation study designed

to examine model performance. In Section 3.3 we introduce the concept of ran-

dom effects as a means of accounting for excess variability. We also summarize

simulation results for the model with random effects. In Section 3.4 we discuss an

alternative method for accounting for excess variability when the data is subject to

zero-inflation. We present a small simulation study and then illustrate the methods

using an example. In Section 3.5 we make concluding remarks.
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3.2 Continuous Covariate

It has been suggested that acknowledging and accounting for misclassification

in a model is less pivotal when additional covariates are present in addition to the

covariate subject to misclassification (Veierod and Laake, 2001). We show that fail-

ure to account for covariate effects when attempting to distinguish between exposed

and non-exposed patients can result in poor accuracy and considerable bias. If the

misclassification rates are independent of any covariates in the model (nondifferen-

tial misclassification), the direction of the bias is always towards zero (Armstrong,

1998).

To adjust for the bias induced by misclassification, we can use patient infor-

mation in addition to exposure status, such as blood glucose levels, blood pressure,

and age. In what follows, we examine the extent to which such information improves

prediction of exposure status.

3.2.1 The Bayesian Model

Let yj be the observed Poisson count, measured without error, for the jth

patient, j = 1, . . . , J . Let x1j be the binary exposure status for the jth patient

and let x2j be the value associated with a continuous covariate. Now let x∗j be a

1× 3 vector of covariates including the intercept, the apparent exposure status that

is susceptible to error, and the value of the continuous covariate measured without

error, that is,

x∗
′

j = ( 1 x∗1j x2j ).

The true Poisson rate is denoted by λj, and is once again related to the covariates

through its link function, log(λj) = β0j+β1jx1j+β2jx2j. To correct for misclassifica-

tion of the exposure status, we incorporate the following misclassification parameters

and assume that the sensitivity, η, specificity, θ, and probability of exposure, τ are
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independent. For an individual with true exposure status xj we have

P (x∗1j = 1) = P (x∗1j = 1|x1j = 1)× P (x1j = 1)

+ P (x∗1j = 1|x1j = 0)× P (x1j = 0)

= x1jη + (1− x1j)(1− θ).

We assume that yj|xj ∼ Poisson(λj), j = 1, . . . , J , where xj is the 1 × 3 vector

that contains the true covariate values for the jth patient, β′ ≡ (β0, β1, β2) are the

regression coefficients, and we relate the covariates to the response using the log link

yielding λj = exp{xjβ}.

The observed counts are distributed Poisson with probability mass function

f(yj|xj) =
λ
yj

j e
−λj

yj!
, (3.1)

so that the resulting likelihood is

f(β, η, θ, τ |y,x,x∗) ∝
J∏
j=1

[xjη
x∗j (1− η)1−x∗j + (1− xj)θ1−x∗j (1− θ)x∗j ] (3.2)

× τxj (1− τ)1−xjλ
yj

j e
−λ,

where y is a j × 1 vector of observed Poisson count responses. We assume that x1j,

the exposure status for the jth patient, is subject to misclassification, and we replace

x1j with its surrogate, x∗1j.

3.2.2 Prior Distributions

We assume independent informative beta priors on the values of sensitivity,

specificity, and probability of exposure. The beta family of distributions offers a wide

variety of shapes with support [0,1], and is therefore considered a natural choice for

modeling probabilities. We place normal priors on all three regression coefficients,

β0 ∼ N(µβ0 , σ
2
β0

), β1 ∼ N(µβ1 , σ
2
β1

), and β2 ∼ N(µβ2 , σ
2
β2

). The beta and normal

priors may be fit using prior data and expert opinion. See, for example, Johnson,
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Gastwirth, and Pearson (2001) or Joseph, Gyorkos, and Coupal (1995). Assuming

prior independence of all unknown parameters, the joint prior is given by

p(β0, β1, β2, η, θ, τ) = p(β0)× p(β1)× p(β2)× p(η)× p(θ)× p(τ), (3.3)

where p(·) is the generic notation for a prior density. The resulting joint posterior

distribution is

p(β0, β1, β2, η, θ, τ |y,x,x∗) ∝ f(β, η, θ, τ |y,x,x∗)p(β0, β1, β2, η, θ, τ). (3.4)

This model is shown in Figure 3.1.
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Figure 3.1: Summary of the Poisson regression model with additional continuous
covariate. The dashed line denotes substitution of a variable with its surrogate. All
hyperprior beta parameters are assumed known, along with the normal parameters.

3.2.3 Simulation Study Design

To investigate the performance of our expanded model, the following simula-

tion study was conducted. First J = 300 outcomes were generated from a Poisson

distribution where the rate of event occurrence, λj, is related to the covariates via

the log link. Given the data (X∗,y), where X∗ is the J × 3 matrix of covariate

information for all J patients and y is the J × 1 vector of observed event counts, we

fit the model described in Section 3.2.1. For this simulation, we fix the regression
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coefficients in the generalized linear model arbitrarily to be β′ = (1.9, 0.8,−0.2)

while we allow η, θ, and τ to vary across the cases. We call this Data B.

The regression coefficients receive diffuse normal priors, β0 ∼ N(0, 10), β1 ∼

N(0, 10), and β2 ∼ N(0, 10). Given that the variance used here, 10, is at least five

times the magnitude of regression coefficient values, we felt this was a relatively non-

informative choice. We investigated two beta priors within each corrected model. For

a moderately informative prior, we chose a beta distribution with shape parameters

selected so that the equivalent prior sample size (EPSS) is equivalent to 50 patients

by setting the mean of each prior distribution to the prior hypothesized values of

sensitivity, specificity, and probability of exposure. From Chapter 2, if an equivalent

prior sample size, j∗, is considered, and it is believed η = η∗, θ = θ∗, and τ = τ ∗ are

the likely values, we have the equations

a+ b = j∗, c+ d = j∗, e+ f = j∗,

a
a+b

= η∗, c
c+d

= θ∗, e
e+f

= τ ∗.
(3.5)

From this system of equations, for Case 1 we specify η∗ = 0.9, θ∗ = 0.7, τ ∗ = 0.8,

and j∗ = 50, we have

b = 50(1− 0.9), d = 50(1− 0.7), f = 50(1− 0.8),

a = 50− b, c = 50− d, e = 50− f.
(3.6)

This system of equations results in a beta(45, 5) prior for η, a beta(35, 15) prior for

θ, and a beta(40, 10) prior for τ for Case 1 of our simulation study. Similarly, for

a mildly informative beta prior, we chose shape parameters yielding an equivalent

prior sample size of j∗ = 30. For Case 1 we have

b = 30(1− 0.9), d = 30(1− 0.7), f = 30(1− 0.8),

a = 30− b, c = 30− d, e = 30− f,
(3.7)

which yields three less informative priors for the misclassification parameters: a

beta(27, 3) prior for η, a beta(21, 7) prior for θ, and a beta(24, 6) prior for τ .
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Thus, we use somewhat diffuse priors for the regression coefficients and infor-

mative priors for the misclassification parameters whose true values change for each

of the twelve configurations of the simulation, provided in Table 3.1.

Table 3.1: Fixed Values of Sensitivity, Specificity, and Probability
of Exposure for the Continuous Covariate Simulation Study.

Case η θ τ

1 0.9 0.7 0.8

2 0.9 0.7 0.4

3 0.9 0.7 0.2

4 0.9 0.5 0.8

5 0.9 0.5 0.4

6 0.9 0.5 0.2

7 0.7 0.9 0.8

8 0.7 0.9 0.4

9 0.7 0.9 0.2

10 0.5 0.9 0.8

11 0.5 0.9 0.4

12 0.5 0.9 0.2

We performed the analysis using the naive model and the model accounting

for exposure misclassification specified in (3.7). For each of the 100 samples in our

simulation, we record the coverage, posterior mean, and 95% credible set for each

parameter in both models. The results are summarized in Tables B.1 through B.36,

located in Appendix B. In each table we provide the average posterior mean (across

the 100 replications), the interval width, and the coverage for the naive and corrected
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models (with differing prior structure) corresponding to each configuration listed in

Table 3.1. (See Section 2.4.3 for a discussion of within simulation variability.)

To fit this model we used Markov chain Monte Carlo (MCMC) methods im-

plemented in the WinBUGS software package. WinBUGS uses MCMC methods

to sample from the desired posterior distribution resulting from the stationary dis-

tribution of a Markov chain. This method is particularly useful when the posterior

distribution is not in closed form, as the MCMC methods only require that we specify

the full conditionals as described in Gelman et al. (2003). We used three indepen-

dent chains with dispersed starting values, each of length 25,000 after a burn-in of

5,000. The simulation study comprised 100 iterations, was implemented on a 3.00

GHz Intel Pentium 4 processor with 4.0 GB RAM, and required 34 hours to reach

completion for each of the cases, including 12 hours for each corrected model and

10 hours for the naive model.

3.2.4 Simulation Study Results

As in Chapter 2, in our first scenario we investigate the estimates obtained

when we specify the sensitivity to be η = 0.9 and the specificity to be θ = 0.7. Tables

B.1 through B.9 contain the results of Cases 1 through 3 where frequent exposure is

modeled by τ = 0.8, common exposure is modeled by τ = 0.4, and rare exposure is

modeled by τ = 0.2, respectively. When expert opinion is available and moderately

informative priors can be assigned to the misclassification parameters, the model

produces the best estimates when the true probability of exposure is τ = 0.4. In

Table B.5 we see that the coverages for each of the regression coefficients, β0, β1,

and β2 are 0.97, 0.97, and 0.93, respectively, exceeding the corresponding coverages

obtained when τ = 0.8 (Table B.2) and τ = 0.2 (Table B.8). We also see that widths

of the credible sets when τ = 0.4 are slightly narrower than those associated with

τ = 0.2 and much narrower than those for τ = 0.8. Finally, the corrected model
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results from Table B.5 also indicate that the frequentist gold standard estimates

associated with τ = 0.4 produce higher coverages and narrower confidence interval

widths than the other values of τ .

Tables B.3, B.6, and B.9 present the simulation results for a corrected model

that uses mildly informative priors on the misclassification parameters. Examination

of the regression coefficient estimates indicates that the model produces better results

when the probability of exposure is τ = 0.8, commonly known as frequent exposure.

According to Table B.3 the corrected model with mildly informative priors results in

a coverage of 0.99, 0.97, and 0.95 for β0, β1, and β2, respectively. While the credible

set widths are wider than those associated with the common exposure (τ = 0.4)

and (τ = 0.2), the coverages reported for τ = 0.8 are considerably higher than

those reported in Table B.6 and B.9. Table B.6 reports the coverages for β0, β1,

and β2 to be 0.85, 0.95, and 0.90, respectively, when τ = 0.4. Table B.9 reports

coverages of 0.91, 0.96, and 0.91 for the aforementioned regression coefficients when

the probability of exposure is low (τ = 0.2).

In all three cases of this first scenario, the corrected models produce better

coverages than the naive models. While corrected models result in coverages at or

above 0.85, the naive model produces coverages in the 0.0 to 0.87 range (Tables B.1,

B.4, and B.7). In each case the corrected model produces higher coverages, but it

is notable that the coverage for the naive models is significantly higher with the

addition of the continuous covariate measured without error than in the data with a

single binary covariate from Chapter II. The naive model produces biased estimates

whose magnitude is inflated for β0 and attenuated for β1. The estimates for β2 have

small bias, although the latter fluctuates toward and away from zero in the different

cases. The frequentist estimates produced by the corrected models perform well in

this scenario, with coverages comparable to those produced by the Bayesian model

and slightly narrower confidence intervals.
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In our second scenario, we investigate the estimates obtained when we maintain

a high sensitivity of η = 0.9 and lower the specificity to θ = 0.5. Tables B.10

through B.18 contain the results of Cases 4 through 6 of Table 3.1 where frequent

exposure is modeled by τ = 0.8, common exposure is modeled by τ = 0.4, and rare

exposure is modeled by τ = 0.2, respectively. When expert opinion is available and

moderately informative priors can be assigned to the misclassification parameters,

this model produces the best estimates when the true probability of exposure is

τ = 0.8. This makes intuitive sense when you consider that Case 4 models a high

probability of positive exposure using a diagnostic test with a probability of detecting

the positive exposure. In Table B.11 we see that the coverages for each of the

regression coefficients, β0, β1, and β2 are 0.97, 0.98, and 0.97, respectively, exceeding

the corresponding coverages obtained when τ = 0.4 (Table B.14) and τ = 0.2 (Table

B.17). We also see that widths of the credible sets when τ = 0.8, are slightly

narrower than those associated with τ = 0.4 but somewhat wider than those for

τ = 0.2. Finally, the corrected model results from Table B.11 also indicate that the

frequentist gold standard estimates associated with τ = 0.4 produce higher coverages

and narrower confidence interval widths than the common exposure probability τ =

0.4 and higher coverages but wider interval widths than the rare exposure probability

τ = 0.2.

Tables B.12, B.15, and B.18 present the simulation results for a corrected

model that uses mildly informative priors on the misclassification parameters. As

can be seen, an exposure probability of τ = 0.2 yields the best regression coefficient

estimates. According to Table B.18 the corrected model with mildly informative

priors results in a coverage of 0.98, 0.99, and 0.95 for β0, β1, and β2, respectively.

Regression coefficient credible set widths are wider than for common exposure (τ =

0.4), but are more narrow than those with frequent exposure (τ = 0.8). Coverages

for τ = 0.2 are somewhat higher than those reported in Tables B.12 and B.15.
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Coverages for β0, β1, and β2, reported for τ = 0.4 in Table B.15, are 0.98, 0.94, and

0.94, respectively. The aforementioned regression coefficients exhibited coverages of

0.96, 0.96, and 0.94 when τ = 0.8, as seen in Table B.12.

In all three cases of this second scenario, the corrected models produce better

coverages than the naive models. While corrected models result in coverages at or

above 0.92, the naive model produces coverages in the 0.0 to 0.90 range (Tables

B.10, B.13, and B.16). In each case the corrected model produced higher coverages,

but it is notable that, like the first scenario, the coverage for the naive models is

significantly higher with the addition of the continuous covariate measured without

error than in the data with a single binary covariate from Chapter II. The naive

model produces biased estimates, again with magnitudes inflated for β0 and atten-

uated for β1. The estimates for β2 have small bias is very small, and it fluctuates

toward and away from zero in the different cases. The frequentist gold standard

estimates produced by the corrected models perform well in this scenario, with cov-

erages comparable to those produced by the Bayesian model and slightly narrower

confidence interval widths.

In our third scenario we investigate the estimates obtained when we decrease

the sensitivity to η = 0.7 and raise the specificity to θ = 0.9. Tables B.10 through

B.18 contain the results of Cases 7 through 9 in Table 3.1. As in Cases 4 through

5, when expert opinion is available and moderately informative priors can be as-

signed to the misclassification parameters, this model produces the best estimates

when the true probability of exposure is τ = 0.8. In Table B.20 we see that the

coverages for each of the regression coefficients, β0, β1, and β2 are 0.97, 0.97, and

0.96, respectively, exceeding the corresponding coverages obtained when τ = 0.4

(Table B.23) and τ = 0.2 (Table B.26). Note, however, that the credible set widths

when modeling τ = 0.8 are wider than those associated with τ = 0.4 and τ = 0.2.

Finally, the corrected model results from Tables B.20, B.23 and B.26 present almost
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identical coverages associated with the confidence interval around the gold standard

frequentist estimates. Similar coverages leads us to look at the width of the associ-

ated interval, and we find that the credible set widths produced when τ = 0.4 and

τ = 0.2 are significantly smaller than those produced when τ = 0.8.

Tables B.21, B.24, and B.27 present the simulation results for a corrected

model that uses mildly informative priors on the misclassification parameters. In

studying the resulting estimates of the regression coefficients, we see that the model

produces similar results across values of τ , but considering our primary coefficient

of interest, β1, the coverage of 0.97 when τ = 0.4 is the highest and the credible set

width associated with it is narrower than that of τ = 0.8 or τ = 0.2. According to

Table B.23 the corrected model with mildly informative priors results in a coverage

of 0.89, 0.97, and 0.93 for β0, β1, and β2, respectively. Table B.21 reports the

coverages for β0, β1, and β2 to be 0.94, 0.95, and 0.98, respectively, when τ = 0.8

and Table B.27 reports coverages of 0.91, 0.93, and 0.95 for the aforementioned

regression coefficients when the probability of exposure is low (τ = 0.2).

In all three cases of this scenario, the corrected models produced better cov-

erages than the naive models. While corrected models resulted in coverages at or

above 0.89, the naive model produced coverages in the 0.0 to 0.89 range (Tables

B.19, B.22, and B.25). In each case the corrected model produced higher coverages,

but it is notable that, like the first scenario, the coverage for the naive models is

significantly higher with the addition of the continuous covariate measured without

error than in the data with a single binary covariate from Chapter II. Again, the

naive model produces biased estimates: magnitudes for β0 are inflated, and those for

β1 are attenuated. The estimates for β2 exhibited a small bias, and it fluctuated to-

ward and away from zero in the different cases. The frequentist estimates produced

by the corrected models perform well in this scenario, with coverages comparable to

those produced by the Bayesian model when the probability of exposure was high
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τ = 0.8 and higher than those produced by the Bayesian model when the probability

of exposure was common τ = 0.4 and low τ = 0.2. The frequentist gold standard

estimates were also accompanied by slightly narrower confidence interval widths in

this scenario.

In our final scenario we investigate the estimates obtained when we further

decrease the sensitivity to η = 0.5 and maintain a high specificity of θ = 0.9.

Tables B.28 through B.36 contain the results of Cases 10 through 12 where frequent

exposure is modeled by τ = 0.8, common exposure is modeled by τ = 0.4, and rare

exposure is modeled by τ = 0.2, respectively. When expert opinion is available and

moderately informative priors can be assigned to the misclassification parameters,

this model produces the best estimates when the true probability of exposure is

τ = 0.4. In Table B.32 we see that the coverages for each of the regression coefficients,

β0, β1, and β2 are 0.96, 0.95, and 0.97, respectively, which are similar to the coverages

obtained when τ = 0.8 (Table B.29). We do, however, see that the credible set

widths when modeling τ = 0.4 are considerably narrower than those associated with

τ = 0.8 and τ = 0.2. The corrected model results from Tables B.29, B.32 and B.35

present high coverages associated with the confidence interval around the frequentist

estimates. Similar coverages leads us to look at the width of the associated interval,

and we find that the CI interval widths produced when τ = 0.4 and τ = 0.2 are

slightly smaller than those produced when τ = 0.8.

Tables B.30, B.33, and B.36 present the simulation results for a corrected

model that uses mildly informative priors on the misclassification parameters. In

studying the resulting estimates of the regression coefficients, we see that the model

produces similar results across values of τ , but considering our primary coefficient of

interest, β1, the coverage of 0.99 when τ = 0.8 is the highest, although the credible

set width associated with it is twice as wide as the interval associated with τ = 0.4.

According to Table B.30 the corrected model with mildly informative priors results in
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a coverage of 0.96, 0.99, and 0.94 for β0, β1, and β2, respectively. Table B.33 reports

the coverages for β0, β1, and β2 to be 0.97, 0.96, and 0.96, respectively, when τ = 0.4

and Table B.36 reports coverages of 0.96, 0.95, and 0.97 for the aforementioned

regression coefficients when the probability of exposure is low (τ = 0.2).

In this scenario, the corrected model fails to produce better coverages than

the naive model for all but one of the regression coefficients, namely β2. Because

our primary interest is the estimation of the covariate subject to misclassification,

we will not put significant weight on this finding as the coverages and estimates

for β1 produced by the naive model differ grossly from nominal. While corrected

models resulted in coverages at or above 0.89, the naive model produced coverages

in the 0.0 to 0.95 range (Tables B.28, B.31, and B.34). In now familiar fashion, the

naive model yields biased estimates, with inflated magnitudes for β0 and attenuated

magnitudes for β1. And, once again, the estimates for β2 exhibited only a small bias,

and it fluctuated toward and away from zero in the different cases. The frequentist

estimates produced by the corrected models perform well in this scenario, with

coverages comparable to those produced by the Bayesian model. The frequentist gold

standard estimates were also accompanied by slightly narrower confidence interval

widths in this scenario.

Just as in Chapter 2, we exhibit our simulation results graphically as well as

with tables. Figure 3.2 corresponds to the continuous covariate model under Cases

1 through 3 in Table 3.1, where informative beta priors are placed on the misclas-

sification parameters and diffuse priors are placed on the regression coefficients, as

discussed in Section 3.2.2.

The left three vertical bars represent simulations performed with data gener-

ated according to Case 1. The first bar corresponds to the naive model, and the

remaining bars correspond to the corrected model with varying degrees of informa-

tiveness incorporated into the priors on the misclassification parameters. The three
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Case 1 Case 2 Case 3

N:   Naïve Model 
C1:  Corrected Model with EPSS=30 
C2:  Corrected Model with EPSS=50 

N

C1  C2 

Figure 3.2: Variation within the estimates for β1 for Cases 1, 2, and 3. Posterior
means and credible set intervals are plotted for the naive model and the corrected
models with EPSS=30 and EPSS=50.

vertical bars in the center represent the simulations performed with data generated

according to Case 2, and the three bars to the right represent the simulations per-

formed with data generated according to Case 3. Within each set of three, we have a

naive model and two corrected models with increasing equivalent prior sample size.

The horizontal line across the entire figure is the true parameter value (β1 = 0.8).

The horizontal line atop each vertical bar is the simulation average upper bound

on the 95% credible interval. The lower horizontal line on each vertical bar is the

simulation average lower bound on the interval. The central dot is the simulation

average posterior mean. The dark gray box is plus or minus one simulation stan-

dard deviation on the posterior mean. The light gray boxes are plus or minus one

simulation standard deviation on the upper 97.5% and lower 2.5% bounds.

Ultimately, we see that nondifferential misclassification of a binary explanatory

variable yields attenuated estimates of associated effects. While binary misclassifi-

cation seems to be more damaging than continuous measurement error in general

(see Section 2.2), they share key features (Gustafson, 2003). In each case a primary

53



predictor of the extent of the bias is the strength of the relationship between the

mismeasured explanatory variable and the precisely measured explanatory variable.

In the previous chapter we noted that, generally speaking, the bias due to

misclassification worsens as the proportion of subjects exposed nears the extremes

of [0, 1]. In epidemiological contexts it is not uncommon to conduct studies with low

exposure prevalences, and we reiterate the clear need for methods which can adjust

inferences to account for misclassification, such as those presented by Gustafson

(2003).

3.3 Random Effects

One of the assumptions for the generalized linear model (GLM) is that the

responses are independent. However, it is reasonable to assume that observations

within a cluster will tend to be more alike than observations from different clusters.

For example, repeated observations on a patient in a longitudinal study are unlikely

to be independent. In sample surveys responses from members of the same commu-

nity are likely to be correlated. In another example, Hougaard, Lee, and Whitmore

(1997) established that, for counts of the number of epileptic seizures, there is very

large individual variation in the seizure rate. Likewise, in genetic epidemiology, ob-

servations on members of the same family will most certainly be correlated (Zeger

and Karim, 1991).

If prior experience or expert opinion leads us to believe there is clustering

among observations, or lack of independence of any nature, analysis that assumes

independence is inappropriate (Agresti, 2002). The dependence structure may be

accommodated by including random effects, resulting in a mixed model. The gen-

eralized linear mixed model (GLMM) is an extension of the GLM that allows both

fixed effects and random effects. Breslow and Clayton (1993), Agresti et al. (2000),
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and Gibbons et al. (2008) have each explored a mixed model for Poisson counts when

the covariates are assumed to be measured without error.

Often, residual variability under under a Poisson distribution exceeds that ex-

pected under the postulated variance-mean relationship. One approach to handling

such a violation is to use a GLMM. Thus for a Poisson outcome, yj ∼ Poisson(λj),

we might stipulate a model for the mean, λj, containing both fixed and random

effects:

log(λj) = xjβ + εj,

where xj is a vector of covariates with corresponding coefficient vector β, and where

the εj are parametric in this study (e.g. normal), but could possibly be semi-

parametric (e.g. where we could plausibly use a Dirichlet process prior for the εj

with a normal baseline model). Congdon (2005) notes that this approach translates

into adding a set of parameters which increase in number with the sample size,

making the likelihood nonregular and raising the question about how many effective

parameters are in the model.

3.3.1 The Bayesian Model

In this section we describe the Bayesian GLMM that accommodates a Poisson

count with misclassified binary predictor variable. We let yj be the observed count

that is produced by a Poisson process with rate parameter λj, where log λj = x′jβ for

the jth covariate pattern. Here, β is a vector of regression coefficients corresponding

to xj, a 1 × k vector of covariates, one of which is the binary covariate subject to

exposure misclassification.

Agresti (2002) describes the GLMM as a two stage model. In the initial

stage, the observed responses follow a traditional generalized linear model (GLM),

conditioned on the random effects. As a result of this conditioning on random effects,

observations within a cluster, such as for a patient group or a testing site, may be
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independent. At the second stage, the random effects are assumed independent,

with εj ∼ N(0, σ2
ε).

For the mixed model, the likelihood function of the observed data is

f(β, η, θ, τ, ε, σ2
ε |y,x,x∗) =

J∏
j=1

f(yi|β, η, θ, τ, εj)f(εj|σ2
ε)

=
J∏
j=1

[xjη
x∗j (1− η)1−x∗j + (1− xj)θ1−x∗j (1− θ)x∗j ]

× τxj (1− τ)1−xjλyje−λ

×
J∏
j=1

(2πσ1)−1/2exp[−ε2
j/(2σ

2)],

where ε = (ε1, ε2, . . . , εj) and g(λj) = xjβ + εj, conditioned on the random effects.

3.3.2 Prior Distributions

We assume independent informative beta priors on the values of sensitivity,

specificity, and probability of exposure. As in Section 3.2.3, we use beta priors for

the misclassification parameters. We place diffuse normal priors on both regression

coefficients, β0 ∼ N(µβ0 , σ
2
β0

) and β1 ∼ N(µβ1 , σ
2
β1

). These diffuse normal priors are

relatively noninformative compared to the likelihood because they are “flat” where

the likelihood is peaked. We place a normal prior on the random effects component,

ε ∼ N(µε, σ
2
ε), and a hyperprior on the variance component of the random effects

σε ∼ unif(0, B), where B is an upper bound. Assuming prior independence of all

unknown parameters, the joint prior distribution is given by

p (β, η, θ, τ, ε) = p(β)× p(η)× p(θ)× p(τ)× p(ε), (3.8)

and the joint posterior distribution is

p (β, η, θ, τ, ε|y,x,x∗) ∝ f (β, η, θ, τ, η, ε|y,x,x∗)× p (β, η, θ, τ, η, ε) . (3.9)

A graphical summary of this model is displayed in Figure 3.3.
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Figure 3.3: Summary of the Poisson regression model with random effects. (The
dashed line denotes substitution of a variable with its surrogate.)

3.3.3 Simulation Study Design

To compare the fixed effect model to the mixed effect model when random

effects are indeed present, data are generated according to the model specified in

(3.9). We assume independent beta priors for the sensitivity, specificity, and prob-

ability of exposure, with “likely” values η = (0.9, 0.7, 0.5), θ = (0.9, 0.7, 0.5) and

τ = (0.8, 0.4, 0.2). The equivalent prior sample size, j∗ = 30, yields mildly in-

formative priors, and the equivalent prior sample size, j∗ = 50, yields moderately

informative priors.

Using (3.8) we obtain the priors η ∼ beta(27, 3) , θ ∼ beta(21, 9), and τ ∼

beta(24, 6) for Case 1 of Table 3.1 when considering an equivalent prior sample

size of j∗ = 30. The regression coefficients receive diffuse normal distributions,

β0 ∼ N(0, 10) and β1 ∼ N(0, 10). We place a uniform(0.001, 5) prior on the

standard deviation of the random effect (Gelman, 2006). We call this Data C.

To fit this model we used Markov chain Monte Carlo (MCMC) methods im-

plemented in the WinBUGS software package, as in Section 3.2.3. We used three

independent chains, each with 25,000 iterations after a 5,000 burn-in. The results

are presented in Tables B.37 through B.52 of Appendix B.
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It is important to check the robustness of the posterior to changes in the upper

bound, B, for the uniform prior on σε. To do so, we consider a sequence of values

for B, and run the model for each value in the sequence, each time monitoring the

posterior summaries for σε. Figure 3.4 indicates that the posterior estimate interval

widths stabilize quickly, and we choose B = 5 as the upper bound for our simulation.

(a) (b)

Figure 3.4: Investigation of the effect of changing the upper bound on the uniform
prior for σε. The 95% posterior interval widths for (a) β0 and (b) β1 are plotted
against the upper bound used in simulation.

3.3.4 Simulation Study Results

We now compare the operating characteristics and estimates that result from

three competing models, as follows:

(1) The model using random effects, as described in Section 3.3;

(2) The model using fixed effects, effectively ignoring additional variability (see

Section 2.2);

(3) The gold standard model that fits the Poisson regression to the true data.

We record the coverage, posterior mean, and 95% credible set for each parameter in

both models. We consider a simulation size of N = 100. The simulation results are

provided in Tables B.37 through B.96, which can be found in Appendix B. (Within

simulation variability is discussed as well, just as in Section 2.4.3.)
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Tables B.37 through B.60 contain the results produced by the fixed effects and

random effects models when an equivalent prior sample size of j∗ = 30 is used to

calculate priors for the misclassification parameter combinations listed in Table 3.1.

Here, J = 300 observations are generated for each simulation iteration.

Tables B.31 through B.84 contain the results produced by the fixed effects and

random effects models when an equivalent prior sample size is increased to j∗ = 50

for the construction of priors for the same misclassification parameter combinations.

Again, we have J = 300 observations generated for each simulation iteration.

Tables B.85 through B.96 contain the results produced by the fixed effects and

random effects models for Case 1 through Case 6 when the equivalent prior sample

size remains at j∗ = 50. This time the study sample size is increased to J = 500

observations for each simulation iteration.

In our first scenario we again investigate the estimates obtained when we

specify the sensitivity to be η = 0.9 and the specificity to be θ = 0.7. Tables B.37

through B.42 contain the results of Cases 1 through 3 where frequent exposure is

modeled by τ = 0.8, common exposure is modeled by τ = 0.4, and rare exposure is

modeled by τ = 0.2. Table B.37 presents the results obtained from the fixed effects

model, where we fail to account for excess variability. Comparing the results to

Table B.38 where we do account for the variability using the random effects model,

we find the resulting estimates and coverages to be similar. The credible set widths

are comparable at 0.2786 for the fixed effects model and 0.2841 for the mixed model.

The frequentist gold standard analysis produces estimates of 0.8000 (96% coverage)

and 0.7960 (97% coverage), respectively.

Examining the common exposure (τ = 0.4) under the same scenario in Tables

B.39 and B.40, we find that the fixed and random effects models again perform com-

parably, with the fixed effects model achieving 96% coverage for β1 with a credible
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set width of 0.1592 and the random effects model achieving 95% coverage for β1 with

a credible set width of 0.1594.

Tables B.41 and B.42 pertain to the low exposure (τ = 0.2), and we see a sig-

nificant increase in interval widths, with the fixed effect model producing a posterior

mean of 0.7320 and interval width of 0.3871 for β1. The increase is also experienced

in the random effects model, which produces a posterior mean of 0.7362 and interval

width of 0.3888. We see increases in the interval width of every other model param-

eter as well. We investigate this apparent model instability by plotting the posterior

mean and credible set for β1 produced for each iteration of the simulation, as pre-

sented in Figure 3.5. We find the posteriors to be multi-modal and we conclude that

the model is having difficulty converging when the probability of exposure is low.
v

 

Case 2Case 1

Case 3
N:   Naïve Model 
C1:  Random Effects Model with EPSS=30 
C2:  Random Effects Model with EPSS=50 

N

C1  C2 

Figure 3.5: Posterior means and credible sets for β1 in Cases 1, 2, and 3 when
EPSS=30 and EPSS=50.

Investigating further, we conduct another simulation in which the same fixed

effects and random effects models are fitted with moderately informative priors con-

structed using an equivalent prior sample size of j∗ = 50. Tables B.65 and B.66

contain the results of this simulation. We see that coverages for the model parameters
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increase, but the interval widths for β1 produced by the Bayesian models are still

much wider than those achieved with higher exposure probabilities.

The simulation for Case 3 is conducted a third time, maintaining the equivalent

prior sample size for the informative priors of j∗ = 50 but increasing the study sample

size to J = 500. The results are presented in Tables B.89 and B.90. There is a sharp

decrease in the interval widths of all model parameters for both the fixed and random

effects models. The credible set width for β1 produced by the random effects model

is just 0.1873, a significant decrease from 0.4351, the width produced by the same

model when the study size was J = 300.

In Figure 3.6, we plot the posterior distributions for β1 from the simulations

described above.

−0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
10

12

Prior − N(0, 10)
Posterior: EPSS=30, J=300
Posterior: EPSS=30, J=500
Posterior: EPSS=50, J=500

Figure 3.6: Prior and posterior distributions for our parameter of interest, β1, when
data is simulated according to Case 3. An increase in EPSS and study size results
in a posterior with most of its mass centered on the true value.

In our second scenario we maintain a sensitivity of η = 0.9 and lower the

specificity to θ = 0.5. As we can see from Tables B.41 through B.43, the random

effects model outperforms the fixed effects model when frequent exposure (Table

B.42) or common exposure (Table B.44) are assumed. When τ = 0.8, the random

effects model achieves 93% coverage for β1 compared to 91% achieved by the fixed
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effects model. When τ = 0.4 the random effects model model is again superior,

achieving 98% coverage for β1 compared to 95% coverage that results from the use

of the fixed effects model.

When considering Case 6, we see that the low exposure probability again

results in model instability. From Tables B.47 and B.48 we see the credible set

widths produced for β1 by the fixed and random effects models are 0.4347 and

.5710, respectively. In Tables B.71 and B.72 we find that increasing the equivalent

prior sample size to j∗ = 50 does not resolve the problem, and credible set widths

of 0.3380 and 0.5379 are reported for β1. Maintaining an equivalent prior sample

size of j∗ = 50 and increasing the study size to J = 500 as in the previous scenario

does produce more accurate posterior means and narrower credible set widths. For

example, from Table B.96 we have that the credible set width for β1 resulting from

use of the random effects model is 0.2072, a reduction of greater than 50% from the

credible set obtained when the study sample was of size J = 300.

In our third scenario we assume a lower sensitivity of η = 0.7 and a high

specificity of θ = 0.9. In this scenario, found in Tables B.45 through B.48, the

random effects model does not perform as well as the fixed effects model. Continuing

with the consideration of our regression coefficients, β0 and β1, the random effects

model results in coverage for β0 and β1 of 0.94 and 0.93, respectively, while the fixed

effects model results in coverages of 0.96 and 0.96. The disparity grows when we

assume a common exposure τ = 0.4 as the random effects model results in coverage

for β0 and β1 of 0.89 and 0.91, respectively, while the fixed effects model results in

coverages of 0.96 and 0.95.

In our final scenario we investigate the estimates obtained when we lower the

sensitivity to η = 0.5 but we maintain high specificity θ = 0.9, with the results

presented in Tables B.49 through B.52. We continue to see the increased credible

set widths for cases corresponding to low exposure probabilities. We anticipate that
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this can be resolved by increasing the study sample size, just as we outlined for the

first two scenarios.

3.4 Zero-inflation

In biomedical or healthcare research, outcomes of interest often consist of count

variables. For such counts, the Poisson regression model is commonly used to ex-

plain the relationship between outcome variable and a set of explanatory variables.

However, it is often the case that there is a higher proportion of zero counts than

would be predicted by the Poisson distribution, possibly due to a distinct subpop-

ulation of subjects whose only response is zero counts. Suppose, for example, that

the outcome is the number of postoperative complications related to a surgical pro-

cedure. Patients who are at small risk have zero complications. Patients who are at

a higher risk of postoperative complications will exhibit Poisson distributed num-

bers of complications. When extra-zero counts are observed, it has been suggested

that applying the basic Poisson regression model is problematic. The relative errors

incurred by ignoring the presence of extra zeros were studied by Gupta, Gupta, and

Tripathi (1996), who showed that more error is observed for small values of the count

if a basic Poisson model is used instead of a modified Poisson model which adjusts

for extra-zeros.

In order to adjust for these extra zero counts, various modifications of the Pois-

son regression model have been proposed. Lambert (1992) described a zero-inflated

Poisson (ZIP) model as a two-component mixture model where one component has

a degenerate distribution at zero and the other is a Poisson count model. An ob-

served zero count would arise from the degenerate component with probability π0.

Hur et al. (2002) extended that model for the case of clustered data (e.g., patients

observed within hospitals) and present random-effects ZIP models. Mwalili, Lesaf-

fre, and Declerck (2008) attempted to correct for misclassification of dental caries
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data in a zero-inflated negative binomial regression model. Bayesian analysis of

zero-inflated models has been described in detail by Ghosh, Mukhopadhyay, and

Lu (2006). We investigate a Bayesian treatment of the zero-inflated Poisson model,

where we extend the previously studied models to include a binary covariate subject

to misclassification.

3.4.1 The Bayesian Model

Suppose fD(y|φ) is a probability density for y, with parameter vector φ. The

zero-inflated version of this density, denoted by Y ∼ ZID(π0, φ), has a density of

the form

fZID(y) = π0I(y = 0) + (1− π0)fD(y|φ)

where fD(y|φ) is a probability density or mass function with parameter vector φ

and 0 < π0 < 1. From the equation above, the probability density at zero is equal

to π0 + (1 − π0)fD(0|φ), while the density at y > 0 is given by (1 − π0)fD(y|φ).

Moreover, the mean and variance of this distribution are equal to

E(Y ) = (1− π0)E(YD),

and

V (Y ) = (1− π0) (V (YD) + π0E(YD)) ,

respectively.

The zero-inflated Poisson (ZIP) is the simplest ZID. The full ZIP model has

the following representation:

Yi ∼ ZIP (π0, λi) and log(λi) = Xiβ,

where Xi is a design matrix and β is a corresponding vector of coefficients.

As noted by Ntzoufras (2008), the excessive proportion of zeros, π0, is usually

assumed constant across all observations, but covariates can also be incorporated
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here with little difficulty. For example, we may model this dependence as

log

(
π0i

1− π0i

)
= XZ

i β
Z ,

where XZ
i and βZ are a design matrix and a vector of coefficients, respectively.

In Figure 3.7, we see the difference that even a small value of π0 makes in

the distribution of the data. For this example 100 responses were generated from a

Poisson distribution with event rate λ = 3. We also generated 100 responses from

a zero-inflated Poisson distribution with the same event rate but a probability of

zero-state of π0 = 0.2. The regression estimates produced by a basic Poisson model

would be grossly inaccurate if applied to zero-inflated data.
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Figure 3.7: Comparison of data generated from a zero-inflated Poisson distribution
constant rate λ and relatively low probability of zero-state with data generated from
a basic Poisson distribution with the same rate.

3.4.2 Prior Distributions

We place normal priors on both regression coefficients, β0 ∼ N(µβ0 , σ
2
β0

) and

β1 ∼ N(µβ1 , σ
2
β1

), where the variances will be large, creating diffuse distributions.
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We assume independent informative beta priors on the values of sensitivity, speci-

ficity, and probability of exposure. We also choose a beta distribution for π0, the

probability of zero-inflation. When available, expert opinion will be incorporated in

the construction of an informative beta prior for π0. Assuming prior independence

of all unknown parameters, the joint prior distribution is given by

p(β, η, θ, τ, π0) = p(β)× p(η)× p(θ)× p(τ)× p(π0), (3.10)

and the joint posterior distribution is

p(β, η, θ, τ, π0|y,x,x∗) ∝ f(β, η, θ, τ, π0|y,x,x∗)× p(β, η, θ, τ, π0), (3.11)

where η, θ, and τ are defined as in Section 2.2. A graphical summary of this model

is displayed in Figure 3.8.
 

 

 

 

log��� � �	 
 �� 

 

�| � ������ 
 �1 � ��1 � ��� 

 � ������� 

�| � ������� ��,  	� 

�	 � !�"#$
 , %#$

& � 

�� � !�"#$
 , %#'

& � 

 

� � ��() *+, , �,- 

� � ��()�+., �.� 

� � ��() �+/ , �/� 

 	 ~ ��()*+1$,�1$-  

Figure 3.8: Summary of the zero-inflated Poisson regression model. The dashed line
denotes substitution of a variable with its surrogate.

3.4.3 Simulation Study Design

To compare the zero-inflated Poisson model to the tradition Poisson model

when zero-inflation is indeed present, data are generated according to the model

specified in (3.14). We assume independent beta priors for the sensitivity, specificity,
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and probability of exposure, with “likely” values η = (0.9, 0.7), θ = (0.9, 0.7) and τ =

(0.8, 0.2), and the equivalent prior sample size j∗ = 50 yields moderately informative

priors.

Using (3.8) we obtain the priors η ∼ beta(45, 5) , θ ∼ beta(35, 15), τ ∼

beta(40, 10), and π0 ∼ beta(5, 45) for Case 1 of Table 3.2 when considering an equiv-

alent prior sample size of j∗ = 50. The regression coefficients receive the diffuse

normal distributions, β0 ∼ N(0, 10) and β1 ∼ N(0, 10). Just as in Section 3.2.2, we

feel this is a relatively non-informative choice because the variance is of considerably

greater magnitude than the coefficients leading to priors that are “flat” where the

likelihood is peaked . We examine the cases where the the probabilities of exposure

are “frequent” and “low”, τ = 0.8 and τ = 0.2, as stated in Table 3.2. We call this

Data D.

Table 3.2: Fixed Values of Sensitivity, Specificity, Probability of Exposure,
and Probability of Zero-Inflation for the ZIP Simulation Study

Case η θ τ π0

1 0.9 0.7 0.8 0.1

2 0.9 0.7 0.8 0.2

3 0.9 0.7 0.2 0.1

4 0.9 0.7 0.2 0.2

5 0.7 0.9 0.8 0.1

6 0.7 0.9 0.2 0.1

We performed the analysis using the naive model and the model accounting

for zero inflation specified in (3.11). We record the coverage, posterior mean, and

95% credible set for each parameter in both models. We consider a simulation size

of N = 100, and sample sizes of J = 300. We summarize the simulation results in
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Tables B.97 through B.108, located in Appendix B. In each table we provide the

average posterior mean (across the 100 replications), the interval width, and the

coverage for the naive and corrected models corresponding to each configuration

listed in Table 3.2.

3.4.4 Simulation Study Results

In our first scenario we investigate the estimates obtained when we specify the

sensitivity to be η = 0.9 and the specificity to be θ = 0.7. Tables B.97 through

B.104 contain the results of Cases 1 through 4 where frequent exposure is modeled

by τ = 0.8 and rare exposure is modeled by τ = 0.2. When expert opinion is

available and moderately informative priors can be assigned to the misclassification

and zero-inflation parameters, the model produces the best estimates when the true

probability of exposure is high, τ = 0.8, and probability of zero-inflation is very low

(π0 = 0.1).

In the results presented in Appendix B, two tables are presented for each

case listed in Table 3.2. The first contains the results when a basic Poisson model

is used to analyze the zero-inflated data. Here, “naive” refers to a model that

does account for misclassification, but to account for zero-inflation. The second

contains the results obtained when a zero-inflated Poisson model is used to analyze

the same zero-inflated data. For both the basic and zero-inflated models, Bayesian

and frequentist estimates, interval widths, and coverages are provided.

In Table B.97 we see that the posterior means are highly inaccurate and the

credible set widths are large. With no expert opinion available for the regression

coefficients, the basic Poisson model fails to converge for Case 1. In Table B.98, the

posterior means are close to the true values and the credible set widths are within

the expected range. The zero-inflated model achieves coverages between 0.93 and

1.00 for each parameter in the model.
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To confirm the suspicions of nonconvergence in the basic Poisson model, we

consider Case 1 from Table 3.2. We compare the posterior distribution for β1 pro-

duced by the basic Poisson model to the posterior distribution for β1 produced by

the zero-inflated Poisson model in Figure 3.9 below.
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Prior − N(0, 10)
Posterior − Basic Poisson Model
Posterior− Zero−Inflated Poisson Model

Figure 3.9: Prior and posterior distributions for β1 when Case 1 is considered.

The frequentist parameter estimates presented in Tables B.97 and B.98 are

stable, but the very low coverages for β0 and β1 that result from the use of a basic

Poisson regression model on the true data are much lower than those that result

from the use of a zero-inflated Poisson regression model on the true data, the “gold

standard” in this case. The basic Poisson model results in coverages of 0.56 and 0.90

for β0 and β1, respectively. The zero-inflated Poisson model fit to the gold standard

data results in coverages of 0.96 and 0.95.

The results for Case 2, in which we raise the probability of zero-inflation to

π0 = 0.2, are indicative of convergence problems similar to that of Case 1 for the

basic Poisson model. In comparing Case 1 and Case 2, we can see from Table

B.98 and B.100 that when the probability of zero-inflation grows, the posterior

means for β0 and β1 are less accurate and produce wider credible set intervals.

The Bayesian zero-inflated model does continue to outperform the frequentist gold
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standard zero-inflated model in its estimation and coverage of β0 and performs sim-

ilarly to the frequentist model in the estimation and coverage of β1.

Tables B.101 through B.104 contain the results obtained when the true rate

of exposure is lowered to τ = 0.2. The basic Poisson model continues to struggle

with convergence issues. For Case 3, when the probability of zero-inflation is very

low (π0 = 0.1), the zero-inflated Poisson model achieves higher coverage than the

frequentist zero-inflated model. Here the Bayesian model produces coverages of 0.95

for β0 and 0.97 for β1, compared to 0.92 and 0.94 for the frequentist model.

In our second scenario we investigate the estimates obtained when we lower the

sensitivity to η = 0.7 and raise the specificity to be θ = 0.9. Tables B.105 through

B.108 contain the results of Case 5 and Case 6 where frequent exposure is modeled

by τ = 0.8 and rare exposure is modeled by τ = 0.2. We can see in Tables B.106 and

B.108 that the posterior means for the regression parameters and their associated

credible set widths are reminiscent of those produced by the basic Poisson model.

In changing the parameterization of the misclassification parameters by lowering the

sensitivity and raising the specificity, we find that both the basic and zero-inflated

Poisson models fail to converge.

This simulation study, while small, does give us a glimpse at the vulnerabilities

and potential of the Bayesian zero-inflated Poisson models. Without expert opinion

for the regression parameters and/or without a larger sample size, the Bayesian

models are not robust with respect to zero-inflated data. When the information and

sample size that we have available are sufficient for model convergence, the zero-

inflated Bayesian model outperforms each of the other models. In the next section

we present an example in which our data set is very large. In this case we will

see that model convergence can be achieved even when we have no expert opinion

or prior information regarding many of the model parameters, as long as we have

expert opinion concerning the probability of zero-inflation.

70



3.4.5 Example

Cost and access continue to be the fundamental issues in the debate over the

future of the American health-care system. An important element of this debate

concerns the health-care needs of the elderly. During the past two decades, the

population aged 65 and over increased more than twice as fast as the younger pop-

ulation and they account for a disproportionate share of medical care expenditures

(Deb and Trivedi, 1997). We wish to model instances of medical care utilization by

the elderly in the United States using data from the National Medical Expenditure

Survey, 1987. A feature of these data is that they include a high proportion of zero

counts, as seen in Figure 3.10.

number of visits to a physician in an office setting (OFP)

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
50

0
10

00
15

00
20

00
25

00

Figure 3.10: Number of visits to a physician in an office setting - as reported by the
National Medical Expenditure Survey.

The data are obtained from the National Medical Expenditure Survey (NMES)

which was conducted in 1987 and 1988 to provide a comprehensive picture of how

Americans use and pay for health services. The NMES is based upon a represen-

tative, national probability sample of the civilian, non-institutionalized population

and individuals admitted to long-term care facilities during 1987. Under the house-
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hold survey of the NMES, more than 38,000 individuals in 15,000 households across

the United States were interviewed quarterly about their health insurance coverage,

the services they used, and the cost and source of payments of those services. These

data were verified by cross-checking information provided by survey respondents

with providers of health-care services. In addition to health-care data, NMES pro-

vides information on health status, employment, sociodemographic characteristics,

and economic status.

For our example we consider a subsample of individuals ages 66 and over, a

total of 4,406 observations. Deb and Trivedi (1997) considered six mutually exclusive

measures of utilization, but for the sake of illustration we will consider a single

outcome - visits to a physician in an office setting (OFP). Additionally, we consider a

single economic predictor variable - employment status (EMP). The number of visits

to a physician takes on the role of a Poisson outcome measured without error and

employment status plays the role of a binary covariate subject to misclassification,

thus replicating the model presented in Figure 2.3, with the added complexity of

apparent zero-inflation.

We perform two analyses, the first using a “naive” model in which zero-inflation

is not accounted for in the traditional Poisson regression model, and the second using

a model that incorporates an additional parameter, π0, to account for zero-inflation.

Because we have little historical data regarding the sensitivity and specificity for

employment responses, we place diffuse beta(1, 1) priors on η, θ, and τ . We place an

informative beta(5, 45) prior on the probability of zero-inflation π0.

To fit each model we used Markov chain Monte Carlo (MCMC) methods im-

plemented in the WinBUGS software package. We used three independent chains,

each with 25,000 iterations after a 5,000 burn-in. The results of the first analysis in

which we fail to account for zero-inflation are presented in Table 3.3.
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Table 3.3: Posterior Summaries for the Naive Model

Parameter Mean SD MCerror 2.5% 50% 97.5%

β0 1.5340 0.7504 0.0345 0.9744 1.0150 2.6130

β1 0.5306 1.5010 0.0691 −1.612 1.5820 1.6160

η 0.8978 0.0157 6.596E-4 0.8773 0.8916 0.9296

θ 0.0920 0.0161 6.611E-4 0.0677 0.0872 0.1207

τ 0.4284 0.2025 0.0093 0.2699 0.2912 0.7271

We see that the standard errors for our parameters of interest, β0 and β1, are

quite large as well as the 95% credible set widths. In viewing the posterior densities

and trace plots produced by WinBUGS and presented as Figure 3.11, we see that

the model is not converging.
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Figure 3.11: Posterior densities and trace plots for β0 and β1.

We implement MCMC methods again within WinBUGS to fit the second

model in which we account for zero-inflation through an additional parameter, π0.

The results of this analysis are presented in Table 3.4.
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Table 3.4: Posterior Summaries For The Zero-Inflated Model

Parameter Mean SD MCerror 2.5% 50% 97.5%

β0 1.419 0.01379 1.439E-4 1.391 1.419 1.445

β1 1.361 0.01298 8.507E-5 1.335 1.361 1.386

η 0.8914 0.005483 2.117E-5 0.8805 0.8915 0.9019

θ 0.08604 0.01038 4.937E-5 0.06669 0.08572 0.1074

τ 0.2185 0.008847 7.075E-5 0.2014 0.2184 0.236

π0 0.1437 0.005508 2.33E-5 0.133 0.1436 0.1546

Compared to the results from the naive model, the standard deviations and

Monte Carlo error have decreased significantly. Again, we examine the posterior

densities and trace plots for β0 and β1 in Figure 3.12 and see that convergence is

achieved and the posterior densities are smooth and unimodal. Similarly, we present

the posterior densities for each model parameter in Figure B.1 through Figure B.6,

located in Appendix B.
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Figure 3.12: Posterior densities and trace plots for β0 and β1.
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3.5 Discussion

In this chapter, we have extended our Bayesian model to analyze data in which

the response follows a Poisson distribution and is predicted by a covariate subject to

misclassification as well as 1) an additional continuous covariate measured without

error, 2) a random effects component to account for excess variability that arises

when responses are correlated or not independent of one another, and 3) a zero-

inflation component to account for the excess variability that arises when there are

two different states within a single population.

The proposed models performed well for a simulated data set with known

characteristics. To further verify the robustness of our model, we should generate

data with different regression coefficient design points. It would also be of interest

to build upon the work of Hur et al. (2002) and examine the operating charac-

teristics achieved when combining the random effects and zero-inflation models in

the Bayesian setting. Additional variability would surely be at a minimum if zero-

inflation and clustering effects were accounted for.
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CHAPTER FOUR

Using Logistic Regression to Analyze the Prevalence of Obesity: An Application

4.1 Overview

According to a recent report from the Centers for Disease Control and Preven-

tion (CDC) (Sharma et al., 2009), obesity prevalence among low-income, preschool-

aged children in the United States has stabilized around 14.6% since 2003. The

prevalence of overweight children may have stabilized, but it has done so at such a

high level that it remains a concern, particularly in the Mexican American popu-

lation where the prevalence of high body mass index (BMI) is greater. Among the

risks associates with increased body weight is diabetes (Weiss et al., 2004).

Age adjusted body mass index (BMI) is the standard method to identify and

follow overweight children. Children with values exceeding the 95th percentile as

defined by the BMI standards established in 2000 by the CDC are said to have

“childhood obesity” (Barlow, 2007). The population as a whole has grown more

obese, and obesity in children has increased since that time as well (Weiss et al.,

2004), though, as noted above, the prevalence has appeared stable from about 2003

through 2008.

This chapter focuses on a study investigating age and gender adjusted BMI

for 18,462 children from Fall 2003 through Spring 2008. These children were par-

ticipants in the Head Start program, which is funded and administered by the US

Department of Health and Human Services Administration for Children and Fami-

lies. Specifically, data were collected from Head Start centers in several South Texas

border counties and one Central Texas county. In our analysis, we use the data from

this study in two ways. First, results are compared to the cohort of the NHANES

sample consisting of 2-5 year old children, presented by Ogden, Carroll, and Flegal
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(2008). Second, those children who are found to have a BMI-for-age that exceeds

that of the 2000 CDC growth curve are examined to determine if there are any

regional differences between the border counties of South Texas and a non-border

county in central Texas. Our results suggest that prevalence estimates for high BMI

children in the predominantly latino population exceeds those obtained by Ogden

using the Mexican American subset of the 2-5 year cohort within the NHANES

sample. Furthermore, our analyses suggest that there are some regional differences

among the prevalence of high BMI between border and non-border counties in Texas.

This chapter is organized as follows. In Section 4.2 we describe the data

collection process and provide descriptive statistics. In Section 4.3 we perform two

analyses. First, we compute the BMI-for-age for each child and compare the the

results to those reported by Ogden et al. (2008) in order gauge how representative the

Mexican American cohort of the national survey sample is of the Mexican American

population in Texas. Second, we perform logistic regression on our sample in an

attempt to determine which covariates are most likely to predict whether a child’s

BMI-for-age exceeds that of the 2000 CDC growth curve. Section 4.4 contains a

Bayesian treatment of the logistic regression problem. Conclusions and comments

on future research are contained in Section 4.5.

4.2 Data Collection

BMI is an inexpensive and easy-to-perform method of screening for weight-

related health problems (Pietrobelli et al., 1998). It is calculated from a person’s

weight and height as

BMI =
weight(kg)

(height(m))2
or BMI =

703 · weight(lbs)
(height(in))2

.

BMI is considered a reliable indicator of body fatness for most people, including

children (Freedman and Sherry, 2009). For children and teens, the CDC considers

age and gender specific BMI, referred to as BMI-for-age, with each gender having
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its own set of comparative values. The BMI standards for children younger than 6

years of age were established in 2000 by Kuczmarski et al. (2002) on behalf of the

CDC. The CDC has established age and gender specific BMI growth charts to allow

establishment of standards for overweight in children.

In the study yielding the data we analyze here, BMI values were computed for

18,462 children who participated in the Head Start program from Fall 2003 through

Spring 2008 at centers in three south Texas border counties and one Central Texas

county. The gender and date of birth were recorded for each participant at the time

of enrollment in the program and their height and weight were measured within the

first 30 days of enrollment at the Head Start centers.

The results of this study are compared to the cohort of the NHANES sample

consisting of 1,770 2-5 year old children that participated in the NHANES study

between 2003 and 2006, studied by Ogden et al. (2008). The data in our study

consists primarily of Mexican American children, with more than 90% of the legal

guardians identifying the children as Mexican American at the time of program

enrollment. A secondary consideration was to determine whether or not there are

differences in childhood obesity rates when comparing the Rio Grande region of

Texas with a more northernly county. Figure 4.1 presents a map of the Texas

counties from which samples were obtained. The southern-most counties, Dimmit,

Cameron, and Hidaldo, are located on the Texas/Mexico border. The northern most

county, Bastrop, is located in central Texas.

The Texas data are summarized in Table 4.1 and Table 4.2. Table 4.1 contains

a cross tabulation of age and year. Age-in-months are grouped by age-year, for

children 2 years old (24-35 months) through 5 years old (60-71 months). Observation

dates are grouped by calendar year (January-December) for 2003-2008. In the fall

of 2003, 495 observations were obtained, and another 436 in 2004. Participation

increased in 2005, when data were received for 1,280 children, and continued through

78



Figure 4.1: Texas Counties. The shaded counties yielded data for our study.

2006 (3,875 observations) and 2007 (9,021 observations). During the spring of 2008,

data for 3,355 children were submitted.

Table 4.2 contains a cross tabulation of county and year. One county reported

in 2003 and 2004. Three counties reported in 2006 and 2008, and four counties

reported in 2005 and 2007. Throughout the study, Bastrop County reported BMI

measurements for 947 program participants, Cameron County reported for 4092,

Dimmit County reported for 1467, and Hidalgo County reported for 11,956.

Table 4.1: Cross Tabulation of Age by Year

age (in years) year
2003 2004 2005 2006 2007 2008 Total

2 70 54 162 508 355 22 1171
3 416 297 674 2877 4465 737 9466
4 9 84 422 450 4045 1776 6786
5 0 1 12 10 154 820 997

Total 495 436 1280 3875 9021 3355 18462
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Table 4.2: Cross Tabulation of County by Year

age (in years) year

2003 2004 2005 2006 2007 2008 Total

Bastrop 0 0 276 0 324 347 947

Cameron 0 0 11 535 2925 621 4092

Dimmit 0 0 24 378 1065 0 1467

Hidalgo 495 436 969 2962 4707 2387 11956

Total 495 436 1280 3875 9021 3355 18462

4.3 Data Analysis

In this section we set the stage for later modeling efforts by considering, largely

via descriptive statistics, questions about the similarities that may or may not exist

between the Mexican American cohort of the NHANES study and our cohort of

Head Start children. Our data analysis consists of two parts. First, observed results

from this study are compared with the findings given in Ogden. In the second part

statistical models are used to estimate the prevalence of obesity using the CDC

BMI growth charts for specified cut points. In addition, these models allow allow

detection of trends in obesity rates among pre-school aged children in south and

central Texas. Furthermore, we investigate the possible prevalence differences in

these rates in the border regions of south Texas when compared to a non-border

county in central Texas.

4.3.1 Comparison with Ogden et al. Findings

Ogden et al. (2008) used the NHANES data for 2003-2006 to determine the

prevalence of children age 2-5 exceeding the CDC BMI. They reported that 24.4%

exceeded the 85th percentile, 12.5% exceeded the 95th percentile and 8.5% exceeded

80



the 97th percentile, with males having slightly but not significantly higher BMI

than females. Non-Hispanic black and Mexican American children were more likely

to have a high BMI than non-Hispanic white children. The highest prevalence was

found in the Mexican American children: in the 2-5 year age group 29.9% were at

or above the 85th percentile, 16.7% at or above the 95th percentile, and 13.4% at or

above the 97th percentile. Again, the males were more likely than females to have

a higher BMI when compared to their non-Hispanic white counterparts.

In comparison, the prevalence among Mexican American children in the na-

tional sample was higher, with 32.4% of the 2-5 year old Mexican American males

exceeding the 85th percentile, 18.8% exceeding the 95th percentile, and 16% exceed-

ing the 97th percentile. Only 27.3% of the 2-5 year old Mexican American females

exceeded the 85th percentile, 14.5% exceeded the 95th percentile, and 10.8% ex-

ceeded the 97th percentile.

The observed prevalence of high BMI in the Texas study is higher than the re-

sults reported by Ogden et al. (2008) We find that among the Texas pre-school aged

males, 40.79% exceeded the 85th percentile, 20.01% exceeded the 95th percentile,

and 15.60% exceeded the 97th percentile. Comparatively, Ogden et al. report that

only 32.4% of the 2-5 year old Mexican American males in the NHANES study ex-

ceeded the 85th percentile, 18.8% exceeded the 95th percentile, and 16% exceeded

the 97th percentile. The results for Texas pre-school aged females indicate that

36.73% exceed the 85th percentile, 19.04% exceed the 95th percentile, and 14.81%

exceed the 97th percentile. Using the NHANES sample, Ogden et al. report that

only 27.3% of the 2-5 year old Mexican American females exceeded the 85th per-

centile, 14.5% exceeded the 95th percentile, and 10.8% exceeded the 97th percentile.

The results for the four Texas counties are summarized in Table 4.3.
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Table 4.3: Percent Overweight and Obese by County

BMI > 85% BMI > 95%

County Male Female Male Female

Bastrop 41.51 37.01 19.29 16.02

Cameron 43.80 40.20 23.92 19.28

Dimmit 38.94 35.81 17.47 19.52

Hidalgo 39.82 35.62 18.94 19.21

To this point we have compared the obesity prevalence in this study with the

Ogden results. In order to illustrate the extent of obesity found in this study, we

compare the distribution of pre-school aged BMI with the results found in the CDC

tables. In the next section, we will model the prevalence of different levels of obesity

as defined by the CDC BMI tables using logistic regression. Before making these

comparisons, we want to illustrate how the distribution of the Texas pre-school aged

BMI compares with the CDC tables in the tails of the distribution (those with the

highest incidence of childhood obesity). That is, we compare the distribution of the

Texas data with the CDC tables by computing the percent change from the CDC

BMI baseline values at different cut points.

Figure 4.2 illustrates the percent change in the sample percentiles of BMI as

compared to those given in the CDC growth curve at the 50th, 85th, 95th, and 97th

percentile for the ages 2-5. For example, when considering the 95th percentile for

both the Texas data and the CDC distribution of 3 year old males and females we

observe that the percent change is 18.4%. This means that the 95th percentile in

the Texas data for three year old children when ignoring gender differences is 18.4%

higher than would be expected from the CDC BMI tables. Figure 4.3 presents the

percent change from CDC baseline results by gender.
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Figure 4.2: Percent change from CDC by age (combined genders)

(a) (b)

Figure 4.3: Percent change from CDC by age for (a) females and (b) males

Figure 4.4 illustrates the percent change in the percentiles of the BMI for the

Texas pre-school aged children as compared to the expected percentiles using the

CDC BMI tables at four different percentiles, the 50th, 85th, 95th, and 97th for the

ages 2-5. In Bastrop County, the BMI corresponding to the 50th percentile for a

preschool child is 16.4, which is 7.5% higher than the BMI corresponding to the 50th
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percentile in the 2000 CDC charts, 15.2. The 85th, 95th, and 97th percentiles for

Bastrop County are 10%, 19%, and 22% higher than that of the 2000 CDC growth

charts, respectively.

In Cameron County, the BMI corresponding to the 50th percentile for a

preschool child is 16.6, which is 8.5% higher than the BMI corresponding to the

50th percentile in the 2000 CDC charts, 15.3. The 85th, 95th, and 97th percentiles

for Cameron County are 13%, 21%, and 25% higher than that of the 2000 CDC

growth charts, respectively.

In Dimmit County, the BMI corresponding to the 50th percentile for a preschool

child is 16.4, which is 6.6% higher than the BMI corresponding to the 50th percentile

in the 2000 CDC charts, 15.4. The 85th, 95th, and 97th percentiles in Dimmit

County are 9%, 16%, and 19% higher than that of the 2000 CDC growth charts,

respectively.

In Hidalgo County, the BMI corresponding to the 50th percentile for a preschool

child is 16.3, which is 6.5% higher than the BMI corresponding to the 50th percentile

in the 2000 CDC charts, 15.3. The BMI corresponding to the 85th, 95th, and 97th

percentiles in Hidalgo county are 11%, 20%, and 24% higher than that of the 2000

CDC growth charts, respectively.

Figure 4.5 presents the percent change from CDC baseline results by county

and gender.
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Figure 4.4: Percent change from CDC by county (combined genders)

(a) (b)

Figure 4.5: Percent change from CDC by county for (a) females and (b) males
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4.3.2 Estimation of Obesity Prevalence

We now turn to the question of whether or not obesity prevalence is uniform

across Texas counties. Here, descriptive statistics will not suffice. As we shall

see, variability in BMI results are clearly a function of covariates, and therefore

more sophisticated statistical modeling is required. In this part of the analysis

we are interested in in determining if there are there are differences in childhood

obesity prevalence between the Texas border counties and non-border counties. The

procedure is to estimate the probability of exceeding the CDC BMI threshold at

specified cut points for the three South Texas counties and one Central Texas county

for the 2003 - 2008 time period while controlling for gender and year as covariates.

The four cut points are at the 50th, 85th, 95th, and 97th percentiles.

The probability of exceeding the CDC BMI threshold at a specified cut point is

estimated using the logistic regression model where yi is a binary response indicating

whether the observed BMI of the ith child exceeds the BMI associated with a specified

CDC cut point. The logistic regression model is

Yi ∼ Bernoulli(πi) and πi =
ex
′
iβ

1 + exiβ
,

where πi = g−1(xiβ) and g(·) is the logit link function. Here X is an N × 9 design

model matrix made up of an intercept and 8 dummy variables used to model the

covariates year (X1, . . . , X4), county (X5, . . . , X7), and gender (X8), and xi is the

1×9 vector of covariate values for the ith child. Let β be a 9×1 vector of regression

coefficients associated with the covariates in X.

The density function for the collected data is

f(yi|xi) = πyi

i × (1− πi)1−yi .

The likelihood function is

f(β|y,X) ∝
N∏
i=1

πyi

i (1− πi)1−yi , (4.1)
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where y′ = (y1, y2, . . . , yN) is a 1 × N vector of binary responses indicating the

presence or absence of a BMI-for-age exceeding that of the CDC growth curve.

The reference subgroups for the logistic regression are chosen to facilitate com-

parisons between levels of covariates that are thought to be significant predictors of

prevalence:

• Bastrop County; it is located in Central Texas thus allowing for a direct

comparison to the border counties.

• Females; based on results from the first portion of our analysis, we suspect

gender to be a significant covariate.

• 2003; a primary interest to the medical researcher involved the investigation

of a possible time trend, with the physician believing the prevalence may

increase incrementally between 2003 and 2008.

Thus, the ith child with covariate profile xi = ( 1 0 0 0 0 0 0 0 0 ) would

represent a female child from Bastrop County whose BMI was recorded in 2003.

Table 4.4 contains the results obtained when using frequentist logistic regres-

sion to model the probability that a child’s BMI-for-age exceeds that of the CDC

growth curve using county, gender, and year as predictor variables. A question of

primary interest concerns whether or not there is a temporal trend in the prevalence

of high BMI. The results indicate that there is not a temporal effect in these data

when using the 85th, 95th, and 97th percentile cut points. The “year” effect is

excluded as a covariate in subsequent models.
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Table 4.4: Logistic Regression Results Using Year, Gender, and County

≥ 50% ≥ 85% ≥ 95% ≥ 97%

Effect DF Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value

county 3 7.2892 0.0632 19.9178 0.0002 14.6291 0.0022 20.7074 0.0001

gender 1 93.7589 < .0001 28.5076 < .0001 2.3637 0.1242 1.9378 0.1639

year 5 24.4677 0.0002 2.2023 0.8205 2.2909 0.8076 4.5446 0.4739

Table 4.5 summarizes the results for the second model of predicting the preva-

lence using “county” and “gender” as covariates. The results indicate there is a

significant county effect at each cut point and a significant gender effect at the 50th

and 85th percentile cut points. The gender effect was insignificant at the high-

est level of obesity. These differences were then investigated using the parameter

estimates and odds ratios.

Table 4.5: Logistic Regression Results Using Gender and County

≥ 50% ≥ 85% ≥ 95% ≥ 97%

Effect DF Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value

county 3 11.7872 0.0081 23.1155 < .0001 14.6016 0.0022 20.7232 0.0001

gender 1 93.3843 < .0001 28.4611 < .0001 2.3018 0.1292 1.8505 0.1737

Table 4.6 contains the maximum likelihood estimates (MLE) for the param-

eters in the reduced model. With Bastrop County as the reference county, only

Cameron County (the southernmost border country) is significant using the 85th,

95th and 97th percentile cut points. Dimmit County (the northernmost border

county) does not appear to be significantly different from Bastrop County at any

of the cut points. The prevalence of high BMI in Hidalgo County is significantly

different than that of Bastrop county at the 50th and 85th percentile cut points.

The MLEs and p-values for the gender comparison – with females serving as the ref-
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erence group – indicate that there is a significant difference between the prevalence

of high BMI among males and females at the 50th and 85th percentile cut points,

with females having lower prevalence than males.

Table 4.6: Maximum Likelihood Estimates at Each Cut Point

≥ 50% ≥ 85% ≥ 95% ≥ 97%

Parameter DF MLE p-value MLE p-value MLE p-value MLE p-value

intercept 1 1.2120 < .0001 -0.4414 < .0001 -1.4416 < .0001 -1.7728 < .0001

county Cameron 1 0.0174 0.6572 0.1179 0.0004 0.1495 0.0003 0.2036 < .0001

county Dimmit 1 -0.0761 0.1641 -0.0653 0.1732 -0.0423 0.4804 -0.0439 0.5139

county Hidalgo 1 -0.0868 0.0073 -0.0615 0.0271 -0.00245 0.9440 0.0276 0.4828

gender Female 1 -0.1716 < .0001 -0.0805 < .0001 -0.0280 0.1456 -0.0282 0.1847

The odds ratios are given in Table 4.7 using Bastrop County and Female as the

reference groups. Figure 4.6 illustrates the odds ratios with 95% Wald confidence

intervals for prevalence of high BMI as compared to the CDC growth curves for

the 50th, 85th, 95th, and 97th percentile. Each of the pairwise comparisons are

given in this figure. For example, the odds ratio for males versus females at the

85th percentile cut point is 1.182 with 95% Wald confidence limits of [1.112, 1.257].

Because the confidence interval for this ratio is greater than one there is a significant

difference in the estimated proportions of males that exceed the CDC BMI 85th

percentile as compared to the estimated proportion of females that exceed the CDC

BMI 85th percentile.

Table 4.7: Odds Ratios with 95% Wald Intervals

≥ 50% ≥ 85% ≥ 95% ≥ 97%
county
Cameron vs. Bastrop 0.879 (0.738, 1.048) 1.115 (0.964, 1.290) 1.289 (1.072, 1.551) 1.478 (1.196, 1,862)
Dimmit vs. Bastrop 0.801 (0.652, 0.983) 0.928 (0.780, 1.105) 1.064 (0.854, 1.327) 1.154 (0.897, 1.485)
Hidalgo vs. Bastrop 0.793 (0.673, 0.935) 0.932 (0.813, 1.069) 1.108 (0.930, 1.319) 1.240 (1.014, 1.516)
gender
Male vs. Female 1.416 (1.319, 1.519) 1.182 (1.112, 1.257) 1.060 (0.983, 1.143) 1.059 (0.975, 1.151)
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(a) (b)

(c) (d)

Figure 4.6: Odds Ratios with 95% Wald Intervals at the (a) 50th, (b) 85th, (c) 95th,
and (d) 97th percentile cut points.

Figure 4.7 contains the corresponding prediction estimates and 95% confidence

intervals. For example a randomly selected female student from Bastrop County has

an estimated probability of 39% [36.3%, 42.5%] of exceeding the CDC 85th percentile

cut point. The largest disparity is found in Cameron County, where the estimated

probability of a male student of exceeding the 85th percentile cut point is 42%.
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(a) (b)

(c) (d)

Figure 4.7: Prediction Estimates with 95% Confidence Bands for the (a) 50th, (b)
85th, (c) 95th, and (d) 97th percentile cut points.

4.4 Bayesian Analysis

4.4.1 Model Development

We now develop the Bayesian model for modeling the binary outcome as a

function of “county” and “gender”. We let y = 1 if a child’s BMI-for-age exceeds

a predetermined percentile for his or her age and gender, and y = 0 otherwise.

All covariates in the model are assumed to be measured without error, as we are

interested in examining the relationship between the response y and the predictor

variables.
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As in Section 4.4, let πi = P (yi = 1|xi) be the probability that the ith child,

with covariate profile xi, has a BMI-for-age exceeding that of the CDC growth curve.

The logistic regression model we wish to fit is the same as that described in Section

4.4. We assume that (yi|xi) ∼ Bernoulli(πi), where πi = g−1(xiβ) and g(·) is the

logit link function. Again, the density function for the collected data is

f(yi|xi) = πyi

i × (1− πi)1−yi ,

and the likelihood function is

f(β|y,X) ∝
N∏
i=1

πyi

i (1− πi)1−yi , (4.2)

where y′ = (y1, y2, . . . , yN) is a 1 × N vector of binary responses indicating the

presence or absence of a BMI-for-age exceeding that of the CDC growth curve, and

xi is a 1 × k vector containing the covariate profile for the ith child. The design

matrix is X ≡ (1 : X1 : · · · : Xk−1), where 1 is an N ×1 vector of ones, X1, . . . , Xk−1

are N × 1 vectors of covariate values, and “:” denotes horizontal concatenation.

Under the Bayesian framework, a prior distribution, p(·), is required for each

unknown parameter in the model. For each of the k = 5 regression coefficients,

we assume independent diffuse Normal priors, βk ∼ N(0, 106). Assuming prior

independence of all unknown parameters, the joint prior distribution for model is

given by

p(β0, β1, β2, β3, β4) = p(β0)× p(β1)× p(β2)× p(β3)× p(β4).

The resulting joint posterior distribution is

p(β0, β1, β2, β3, β4|y,X) ∝ f(β0, β1, β2, β3, β4|y,X)p(β0, β1, β2, β3, β4). (4.3)

For ease of illustration, we write the product of the independent normal priors as

a k-dimensional multivariate normal distribution with mean vector µ and k × k
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covariance matrix Σ. We take the diagonal elements of Σ to be 106 with zero off

diagonal elements. This model is depicted in Figure 4.8.

 
 
 
 

logit  

| ,

~ ,  

Figure 4.8: Summary of Bayesian Logistic Regression Model

4.4.2 Chains / Convergence

The data analysis for this paper was performed using SAS software, Version

9.2 of the SAS System for Windows, taking advantage of the newly implemented

bayes statement within the GENMOD procedure.

One long chain is mathematically justifiable (see Gilks et al., 1996, p. 13, and

references therein), but our means for assessing convergence rely on multiple chains.

Specifically, the Gelman and Rubin diagnostics (Gelman and Rubin, 1992; Brooks

and Gelman, 1997) are based on analyzing multiple (m) simulated Markov Chain

Monte Carlo chains by comparing the variances within each chain and the variance

between chains. A large deviation between these two variances indicates nonconver-

gence. In SAS PROC GENMOD, the first chain is used for posterior inference, such

as mean and standard deviation; the other m− 1 chains are used for computing the

diagnostics and are discarded afterward. This test can be computationally costly,

because it prolongs the simulation m-fold. It is best to choose different initial values

for all chains. The initial values should be as dispersed from each other as possible
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so that the Markov chains can fully explore different parts of the parameter space

before they converge to the target.

Therefore, in the first stage we run three independent chains of 10,000 iter-

ations each with a burn-in of 2,000. We specify dispersed starting values and rely

on the results to establish convergence. In the second stage, we repeat the simula-

tion with one long chain of 30,000 iterations following a burn-in of 5,000 to obtain

posterior estimates and Monte Carlo error from SAS.

We illustrate the merits of thinning through a comparison of the autocorrela-

tion plots produced when we run the full and reduced models for our data. Using

analysis for the 85th percentile, we present autocorrelation plots for the regression

coefficient pertaining to the dummy covariate “year2003”, defined as X0 as in Section

4.3.2, which demonstrated the most dramatic difference. Figure 4.9(a) shows the au-

tocorrelation plot for 2003 with no thinning. Figure 4.9(b) shows the autocorrelation

plot for 2003 using thinning, where we retained every 10th update. This results in

3,000 usable iterations. Thinning the chain yielded the desired improvement in the

correlation, and we proceed to perform the Bayesian analysis using thinning.

(a) (b)

Figure 4.9: Autocorrelations for 2003 at the 85th Percentile with (a) no thinning,
and (b) thin = 10.
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4.4.3 Model Selection

There are several methods that provide a measure of “evidence in favor of a

model”. We examine two such methods that make use of the penalized likelihood

ratio form. The Akaike information criterion (AIC) is a measure of goodness of

model fit that balances model fit against model simplicity (Akaike, 1974). AIC has

the form

AIC ≡ −2 logL+ 2k,

where k is the number of parameters estimated in the model, and logL is the natural

log of the likelihood evaluated at the value of the estimated parameters. For the full

model, where we consider multiple levels of “year”, “county”, and “gender”, k = 9;

for the reduced model, where we remove “year” as a covariate, k = 5. The AIC is

useful in comparing and selecting nonnested model specifications (Gill, 2008), but

Carlin and Louis (2009) note that the AIC has a strong bias toward models that

overfit with extra parameters because the penalty component is linear with respect

to increases in the number of explanatory variables, and the log likelihood often

increases more rapidly.

The Bayesian information criterion (BIC), occasionally referred to as the

Schwarz criterion, is a similar measure. It penalizes the complexity of the model

where complexity refers to the number of parameters in model (Schwarz, 1978).

BIC is defined by

BIC ≡ −2 logL+ k logN,

where k is the number of parameters estimated in the model, logL is the natural log

of the likelihood, and N is the total sample size. A penalty for overparameterization

enters the model through the second term in the BIC. However, the penalty for

additional parameters is stronger than that of the AIC. As noted by Leonard and

Hsu (2001), the BIC is not recommended for use if log(N/2π) < 2, that is, if
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N ≤ 46. Our sample size, N = 18462, is very large and, thus, not subject to this

constraint. PROC GENMOD uses the full log likelihoods, with all terms included,

for computing both the BIC and the AIC.

In our analysis, we compare the BIC and AIC for the full and reduced mod-

els. Table 4.8 contains the Bayesian information criterion and Akaike information

criterion for both the full and reduced models at each of the four cut points.

Table 4.8: Information Criterion for Full and Reduced Model

≥ 50% ≥ 85% ≥ 95% ≥ 97%

BIC AIC BIC AIC BIC AIC BIC AIC

Full Model 18992.33 18914.78 23068.23 22990.67 17105.81 17028.26 14768.85 14691.30

Reduced Model 18968.07 18929.29 23021.66 22982.88 17059.32 17020.54 14724.47 14685.70

Clearly, the smaller BIC and AIC values correspond to the reduced model at

each cut point.

4.4.4 Bayesian Results

The 85th percentile has been established by the CDC as the cutoff for “over-

weight” status and is widely accepted among the medical community as such. It

is a focal point of pediatric obesity prevention, and as such we present the results

of the Bayesian logistic regression analysis at this cutpoint, and then move on to

the results at the 50th, 95th, and 97th percentiles. Table 4.9 presents the posterior

mean, standard deviation, and several percentiles for each variable.
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Table 4.9: Posterior Summaries For The 85th Percentile

Parameter N Mean SD Percentiles

25% 50% 75%

Intercept 3000 −0.4412 0.0237 −0.4576 −0.4408 −0.4251

Cameron 3000 0.1177 0.0334 0.0941 0.1179 0.1404

Dimmit 3000 −0.0665 0.0478 −0.0985 −0.0664 −0.0345

Hidalgo 3000 −0.0614 0.0273 −0.0797 −0.0616 −0.0428

Male 3000 0.0837 0.0157 0.0730 0.0838 0.0946

Note that none of the posterior credible sets contain zero. Figure 4.10 through

Figure 4.14 contain plots of the posterior distributions for β0, ..., β4.

−0.60 −0.55 −0.50 −0.45 −0.40 −0.35 −0.30

0
5

10
15

Prior − N(0, 10^6)
Posterior

Figure 4.10: Prior and posterior distributions for β0. The diffuse normal prior
appears to be constant at zero in this plot but, of course, is everywhere positive.

Much information was gained about β0, which left alone in the model corre-

sponds to a female subject from Bastrop County, from the observed data through

the Bayesian analysis. This is indicated by the increase in precision compared to

the prior. Figure 4.11 through Figure 4.14 shows the same for the parameters β1

through β4.
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Figure 4.11: Prior and posterior distributions for β1 corresponding to Cameron
County.
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Prior − N(0, 10^6)
Posterior

Figure 4.12: Prior and posterior distributions for β2 corresponding to Dimmit
County.

98



−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

0
5

10
15

Prior − N(0, 10^6)
Posterior

Figure 4.13: Prior and posterior distributions for β3 corresponding to Hidalgo
County.
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Figure 4.14: Prior and posterior distributions for β4 corresponding to males.

Tables C.1, C.2, and C3 present the posterior means, standard deviations,

and quartiles for each predictor variable at the 50th, 95th, and 97th percentiles,

respectively.

The Bayesian approach also enables us to produce posterior distributions for

the odds of a child having a BMI-for-age that exceeds that of the 2000 CDC growth

curve given that the child is a member one level of a covariate versus another level.

In Table 4.7 (Section 4.3.2) we presented the odds ratios, and their respective Wald
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95% confidence intervals resulting from the frequentist analysis, for the county and

gender comparisons of primary interest. In Figure 4.15 we present the posterior

densities for the odds that, given a child has a BMI-for-age that exceeds that of the

50th percentile of the CDC growth curve, the child is a male. The posterior densities

corresponding to the 85th, 95th, and 97th percentiles are given as well. Note that,

while all four posterior modes are greater than one, there is a significant shift from

the 85th to the 95th percentile.

 

exceeds 50th Percentile 

exceeds 85th Percentile

exceeds 95th Percentile

exceeds 97th Percentile

Figure 4.15: Posterior distribution of the odds that a child with a BMI-for-age that
exceeds the CDC growth curve is a male (versus female).

4.4.5 Induced Prior

Although we have used diffuse priors throughout this analysis, the induced

prior on the ith probability, i.e., the distribution of

πi =
exp xiβ

1 + exp xiβ
(4.4)

is in fact informative. This is easy to see by simulating values of πi, computing (4.4),

and plotting the resulting relative frequency distribution. We have done this for the

case of π26, where the 26th child corresponds to a female from Bastrop county with
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covariate profile x26 = ( 1 0 0 0 0 ). Figure 4.16 displays the relative frequency

of 10,000 simulated values of π26. Clearly, the transformation induces an informative

prior. We must verify that, despite this informativeness, we have not biased the

resulting posteriors. In fact, our sample size is sufficiently large that this is not the

case, as can be seen in Figure 4.17.

ππ

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 4.16: Induced prior on πi for a female student from Bastrop County (x0i = 1).

In our example, the data set is comprised of more than 18,000 observations

and the data is likely to overwhelm this issue with the induced prior. In Figure 4.17

we see that while the induced prior places most of the density at the end points of

the [0,1] interval, the posterior distribution for π26 is narrowly centered around 0.39.

In fact, the posterior distribution is so heavily centered at 0.39 that our general

plotting methods cannot capture the entire density.

Figure 4.18 captures the posterior distribution for π26, the probability that

a female student from Bastrop County has a BMI-for-age that exceeds that of the

CDC growth curve.
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Figure 4.17: Induced prior on π26 and the resulting posterior distribution for π26 .

Figure 4.18: Posterior distribution for π26 .

4.5 Conclusion

Our study revealed a significantly higher prevalence of children with high BMI

for age in our populations in both central Texas and the United States/Mexico

border counties from both the CDC 2000 BMI charts, the analysis of NHANES

data by Ogden et al. (2008) even when compared to the Hispanic subpopulation.

In addition, based on the Pediatric Nutrition Surveillance System (PedNSS), the

CDC estimated the prevalence of obese preschool children in Texas as 14.5% in 2003

and 16.2% in 2008 (Sharma et al., 2009). The prevalence in our population exceeds
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that as well. The only estimate of prevalence similar to our population is that of

Anderson and Whitaker (2009) in a study of prevalence of obesity in 4 year old

children from different ethnic groups in 2005 where the overall prevalence at the

95th percentile was 22% in the Hispanic group.

Although there was no significant change in the prevalence of high BMI during

the years 2003-2008, the five-year-old children were consistently the highest BMI-

for-age group over all suggesting that the same increasing prevalence of high BMI

within the 6-11 year will be seen as in the analysis of Ogden et al. (2008). An ad-

ditional concern is that the percent deviation from the CDC growth curve increases

in our population between age 2-5 (Figure 4.2). The growth curve depicts a de-

crease of BMI for age during this age span since the height generally changes faster

than the weight suggesting a very significant weight increase in our population since

the height values are increasing appropriately. The average BMI of children who

exceeded the 85th percentile was 19.13, and the average BMIs of the children who

exceeded the 95th and 97th percentiles were 20.76 and 21.42, respectively. These

levels of BMI increase morbidity in children. Endothelial dysfunction, dyslipidemia,

type 2 diabetes, and hepatic steatosis have all been recently reported (Pena et al.,

2006; Haines et al., 2007; Alisi et al., 2009). In the predominantly Mexican Amer-

ican population in our area, the risk of these disorders is even higher than in the

average population of obese children due to the combination of Hispanic and Native

American heritage. Additionally, a survey of the Head Start population in a south-

ern border county of Texas did reveal that although the caloric intake was high, the

protein and fiber content was lower in the diet provided by the parents than that

provided by the Head Start facilities. In particular, there was a high consumption

of foods with high-sugar and high-fat contents (Mier et al., 2007). Each of the four

counties that contributed data to the survey analyzed in this study was provided a

nutrition intervention activity to improve awareness of the importance of avoiding
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sugar containing beverages and consuming more low fat protein sources (Mier et al.,

2005).

4.6 Discussion

The observed prevalence of high BMI in Mexican American children age 2-5

in the Texas study is higher than the results for Health and Nutrition Examination

Survey (NHANES) for 2003-2006. There was no change in the overall prevalence

of high BMI from 2003-2008 in the population. Furthermore, the analysis suggests

that there are some regional differences among the prevalence of high BMI between

border and non-border counties in Texas. Although the prevalence of high BMI was

stable during the 2003-2008 time period for the 2-5 year old Head Start population in

our sample, it far exceeds the national level and the Texas Mexico border counties

had the highest prevalence demonstrating a critical need for dietary and exercise

education and interventions in this underserved area.

The data reporting was not uniform across the period of analysis. One border

county (Hidalgo) reported in 2003 and 2004, with Bastrop, Cameron, and Dimmit

counties reporting in 2005 through 2008. In the future, the study will be expanded

to include two additional South Texas counties and one additional Central Texas

county. More data from 2008 and new data for 2009 will be available soon, and

will be incorporated into the analysis. Occasionally, measurements such as height

and weight suffer from measurement error, usually as a result of faulty equipment or

inconsistent data collecting practices. Failing to control for such measurement error

can result in attenuation of the standard errors, and inaccurate confidence intervals.

Future analyses will include components that control for such measurement error.
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Figure B.1: Posterior densities and trace plots for β0.

Figure B.2: Posterior densities and trace plots for β1.

Figure B.3: Posterior densities and trace plots for η.
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Figure B.4: Posterior densities and trace plots for θ.

Figure B.5: Posterior densities and trace plots for τ .

Figure B.6: Posterior densities and trace plots for π0.
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APPENDIX C

Chapter IV Tables
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Figure C.1: Trace, Autocorrelation, and Posterior Density Plots for β0 (Intercept)

Figure C.2: Trace, Autocorrelation, and Posterior Density Plots for β1 (Cameron)

191



Figure C.3: Trace, Autocorrelation, and Posterior Density Plots for β2 (Dimmit)

Figure C.4: Trace, Autocorrelation, and Posterior Density Plots for β3 (Hidalgo)
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Figure C.5: Trace, Autocorrelation, and Posterior Density Plots for β4 (Males)

Table C.1: Posterior Summaries For The 50th Percentile

Parameter N Mean SD Percentiles

25% 50% 75%

Intercept 3000 1.2136 0.0282 1.1942 1.2128 1.2322

Cameron 3000 0.0171 0.0395 −0.0101 0.0172 0.0439

Dimmit 3000 −0.0772 0.0545 −0.1137 −0.0773 −0.0402

Hidalgo 3000 −0.0874 0.0318 −0.1097 −0.0866 −0.0652

Male 3000 0.1746 0.0177 0.1629 0.1745 0.1862
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Table C.2: Posterior Summaries For The 95th Percentile

Parameter N Mean SD Percentiles

25% 50% 75%

Intercept 3000 −1.4434 0.0300 −1.4636 −1.4429 −1.4225

Cameron 3000 0.1506 0.0408 0.1231 0.1514 0.1776

Dimmit 3000 −0.0418 0.0593 −0.0809 −0.0403 −0.00273

Hidalgo 3000 −0.00119 0.0351 −0.0247 −0.00134 0.0232

Male 3000 0.0288 0.0189 0.0167 0.0287 0.0412

Table C.3: Posterior Summaries For The 97th Percentile

Parameter N Mean SD Percentiles

25% 50% 75%

Intercept 3000 −1.7749 0.0350 −1.7989 −1.7746 −1.7512

Cameron 3000 0.2037 0.0456 0.1727 0.2032 0.2342

Dimmit 3000 −0.0455 0.0684 −0.0919 −0.0463 0.000747

Hidalgo 3000 0.0297 0.0402 0.00357 0.0300 0.0560

Male 3000 0.0285 0.0217 0.0136 0.0285 0.0434
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