
ABSTRACT 

Edge Computing with an “Internet of Things” Based Sensor Array: An Innovative 

Approach to Near Real Time Seismic Exploration and Monitoring 

Frank Sepulveda, Ph.D. 

Mentor: Jay Pulliam, Ph.D. 

We demonstrate the feasibility of leveraging an Internet of Things (IoT)-based 

sensor array to orchestrate edge-based (i.e., in a field setting) storage and computing 

resources capable of characterizing the subsurface, using ambient seismic noise, in near 

real-time. Our approach enables the continuous assessment of results and the 

identification of opportunities to modify the sensor array in more optimal configurations 

depending upon ambient noise field characteristics. Moreover, we can assess the need to 

leave the array in place for longer or shorter than originally planned with high levels of 

confidence our survey objectives have been met. 

Over the course of our four deployments (i.e., Texas – May 2017, Nevada – June 

2017, Texas – July 2018, and Nevada – May 2019) we developed an edge-based 

framework that utilized commercially available communication infrastructure, digitizers, 

embedded systems, and an established distributed database (i.e., DataStax Enterprise; 

DSE) to store and process sensor array data, in a field setting. This framework allowed 

us to overcome real-world performance limiters (e.g., bandwidth, power, etc.) commonly 

encountered while carrying out remote seismic exploration or monitoring. Moreover, it 



provides an alternative solution to centralized (i.e., cloud-based) data storage and 

processing strategies that often have more demanding network capacity and reliability 

requirements. 

The use of DSE (powered by Apache Cassandra), as our edge-based distributed 

database, is central to the scalability and reliability of our framework. To the best of our 

knowledge, no one has attempted to use DSE or Cassandra, on an embedded system, as a 

seismic sensor array’s edge-based datastore. Our use of DSE is beneficial in the 

following three ways: 1) it supports the highly scalable write-heavy workloads common 

to sensor arrays, 2) it allows for the use of the same fault tolerant distributed database 

across a variety of commercially available hardware (e.g., embedded systems, servers, 

etc.), and 3) it seamlessly maintains and replicates data along a user defined continuum of 

locations (i.e., “edge to cloud”). We believe geoscientists can use our edge-based solution 

to improve existing and develop novel methods to characterize the subsurface. 
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CHAPTER ONE 

 

Introduction 

 

 

This dissertation represents the conclusion of six years of research comprising the 

design, development, and deployment of a system capable of acquiring, transmitting, and 

processing seismic data in a field setting (i.e., “the edge”). Exploiting 20 years of 

technology advancements, we integrated commercially available data acquisition 

systems, a distributed datastore, embedded systems, and telemetry into an edge storage 

and computing framework for seismic sensor networks. This framework provides 

geoscientists a solution to implement existing, or to develop novel, methods to 

characterize the subsurface in near real-time. 

In 2016, Dr. Jay Pulliam and I integrated commercial off the shelf components, an 

embedded system and a data acquisition system used widely in geophysics, to create an 

Internet of Things (IoT)-based device that allowed for single-node processing of seismic 

data, in a field setting. This work, which resulted in an IoT-based sensor network node 

capable of performing single-station seismic processing, was published in Seismological 

Research Letters (Chapter Two). 

Our proposal to develop a novel, near real time approach to geothermal seismic 

exploration and monitoring via ambient seismic noise interferometry was supported by 

funding from the U.S. Department of Energy (Energy Efficiency and Renewable Energy 

Agency, Geothermal Technologies Program, Award Number: DE-EE0007699). The 

principal investigator was Dr. Pulliam and project partners included Mr. Joe Iovenitti 
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(Consulting Geologist) and Drs. John and Marge Queen (Hi-Q Geophysical, Inc.). Joseph 

Soloman Thangraj (Baylor University Ph.D. Candidate) and Diego Quiros (Baylor 

University Postdoctoral Fellow) supported seismic analysis, Tim Meredith (Baylor 

University Geoscience Instrumentation Specialist) designed and implemented wireless 

telemetry, and Dr. John Dunbar performed deployment surveys. All collaborators 

participated in multiple field deployments. 

Over the course of our four deployments (i.e., Texas – May 2017, Nevada – June 

2017, Texas – July 2018, and Nevada – May 2019) the advantages of real-time 

processing were realized in a field setting. These advantages included: 1) the ability to 

continuously assess our results to determine if re-deployment in a more optimal 

configuration was necessary and 2) the early demobilization of the array if survey 

objectives have been achieved. The project period was between October 2016 and August 

2019, and the final report was submitted December 2019. The final report will be adapted 

for future publication in Journal of Geophysics and Engineering or another comparable 

journal (Chapter Three). 

Dr. Pulliam and I incorporated lessons learned over the course of our field 

deployments to formalize a general purpose edge storage and computing framework for 

IoT-based sensor networks. Geoscientist and others engaged in remote environmental 

monitoring could leverage this framework to support applications in which: 1) the dense 

acquisition of data is occurring, 2) low latency is required, or 3) network connectivity is 

either constrained or nonexistent. This work was submitted to Sensors for publication and 

is currently under review (Chapter Four). 



3 

 

Chapter Five describes new or prospective innovations that could be incorporated 

into an IoT-based sensor array, like the one described here, to extend geophysical 

exploration or monitoring functionality and performance. Lastly, “best practice” 

recommendations for successful development, testing, and data acquisition/processing are 

summarized and additional applications of the IoT-based sensor array are discussed. 
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CHAPTER TWO 

 

The Internet of Geophysical Things: Raspberry Pi Enhanced REF TEK (RaPiER) System 

Integration and Evaluation 

 

This chapter published as: Frank Sepulveda and Jay Pulliam (2016), The Internet of 

Geophysical Things: Raspberry Pi Enhanced REF TEK (RaPiER) System Integration and 

Evaluation, Seismological Research Letters 2016;87:345-57. 

 

 

Abstract 

 

The proliferation of commercial Internet of Things (IoT) devices is raising 

consumers’ awareness of the benefits of enhancing everyday objects with the ability to 

communicate, sense, and process information. Commercial-off-the-shelf (COTS) 

versions of the embedded technologies responsible for the rise of the IoT are easy-to-use, 

inexpensive, and relatively powerful. IoT Makers, technological do-it-yourself 

enthusiasts, utilize these technologies and the IoT ecosystem to create IoT devices that 

range from casual hobbyist to entrepreneurial in nature. 

In an effort to develop a “no-engineer-needed” Internet of Geophysical Things 

(IoGT) device, we integrated a COTS embedded computer with a geoscience-related 

COTS data acquisition system (DAS). Using skills common to geoscientists, we 

integrated the Raspberry Pi System-On-Chip with the REF TEK (a Trimble brand) 130-

01 DAS. This Raspberry Pi enhanced REF TEK (RaPiER) provides IoGT Makers a 

platform for the development of geoscientific sensor node or network enhancements. 

IoGT Makers can use the RaPiER to tinker with IoT capabilities while simultaneously 

acquiring research quality data. Geoscientific (i.e., seismic) application areas that may 



5 

 

benefit from RaPiER, particularly RaPiER nodal processing, include earthquake and 

engineering seismology. 

In this article, we discuss the emerging technologies that allow IoGT Makers to 

build their own IoGT device. We review our selection of the Raspberry Pi and REF TEK 

130-01 for IoGT device integration. We provide a RaPiER system integration guide and 

REF TEK interface software compiled for the Raspberry Pi (Ⓔ available in the electronic 

supplement to this article). We present methods to expand RaPiER capabilities using the 

Raspberry Pi’s ecosystem. Last, we discuss our evaluation of RaPiER’s performance and 

its suitability for realistic field deployments. 

 

Introduction 

 

To tech-savvy consumers, the Internet of Things (IoT) represents a long-awaited 

technological utopia: a plethora of revolutionary IoT devices unified in the automatic and 

unobtrusive performance of day-to-day tasks intended to improve the quality of human 

life. Manufacturers selling these devices brand their wares with “IoT” as a buzz phrase 

intended to ascribe these devices with “smarts” or “intelligence.” The use of IoT as a 

buzz phrase is similar to the use of the buzz phrases “cyber-this…” or “e-that…” that 

accompanied the rise of the Internet (Miller, 2015). And, as with the Internet, the 

expectation is that the IoT will revolutionize the world. However, the timeframe for its 

large-scale adoption and its socioeconomic impact remain uncertain (McEwen and 

Cassimally, 2014; Greengard, 2015; Miller, 2015). 

The proliferation and connection of IoT devices has commenced (Miller, 2015); 

however, there remains a general lack of understanding regarding what the IoT actually 

is. Kevin Ashton, inventor of the phrase “Internet of Things,” describes the IoT as 
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computers capable of sensing and making sense of the world without the need for 

extraneous human interaction (Ashton, 2009; Gabbai, 2015). In practice, the IoT 

represents a set of everyday objects enhanced with devices that are capable of sensing, 

processing, and communicating with each other to achieve a common objective, on a 

scale that was previously unattainable (Whitmore et al., 2014). 

In the past, the creation of “enchanted objects,” a metaphor used by McEwen and 

Cassimally (2014) to describe IoT devices, was limited to those with seemingly arcane 

knowledge of computer science or engineering. With the rise of the Maker Movement 

(Voight, 2014), a cadre of technological do-it-yourselfers create their own IoT devices. 

Leveraging commercial-off-the-shelf (COTS) components, Makers participate in a rich 

IoT Maker ecosystem that allows all levels of users, from hobbyist to entrepreneur, to 

bootstrap projects that range from the useless to the essential (see Data and Resources). 

In the spirit of the Maker Movement, we have “enchanted” a COTS data 

acquisition system (DAS) with an inexpensive and easy-to-use embedded computer to 

create our own Internet of Geophysical Things (IoGT) device. Our “no-engineer-needed” 

IoGT device integrates the Raspberry Pi with the REF TEK (a Trimble brand) 130-01. 

With 130-01 and REF TEK Interface (RTI) software capabilities intact, the Raspberry Pi 

Enhanced REF TEK (RaPiER) allows geoscientists to leverage the Raspberry Pi’s 

“embarrassment of riches” (McEwen and Cassimally, 2014) and its Maker ecosystem to 

bootstrap myriad novel sensor node or network enhancements. 

In this article, we discuss the emerging technologies that allow IoGT Makers, 

using skills common to geoscientists, to build their own IoGT device. We review the 

selection of the Raspberry Pi and REF TEK 130-01 for our IoGT device system 
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integration. We provide a RaPiER system integration guide. We present methods to 

expand RaPiER capabilities using guides obtained from the Raspberry Pi’s ecosystem. 

Last, we discuss RaPiER performance and its suitability for realistic field deployments. 

Refer to Table 2.1 for a complete list of acronyms that appear throughout this article. 

 
Table 2.1 List of Acronyms 

 

Acronym  Definition 

bps Bits per second         

CF Compact flash     

COM Computer‐on‐module    

COTS Commercial‐off‐the‐shelf    

CPU Central processing unit    

DAS Data acquisition system    

GPIO General purpose input/output    

GPU Graphics processing unit    

GSN Global Seismic Network    

IoGT Internet of Geophysical Things    

IoT Internet of Things     

IRIS Incorporated Research Institution for Seismology  

LAN Local‐area network     

OEM Original equipment manufacturer   

PASSCAL Portable Array Seismic Studies of the Continental Lithosphere 

PPSD Probabilistic power spectral density   

RaPiER Raspberry Pi Enhanced REF TEK   

RPF Raspberry Pi Foundation    

RTI REF TEK interface     

SSH Secure shell     

SSMTP Secure simple mail transfer protocol   

SOC System‐on‐chip     

SWaP Size, weight, and power    

VSFTPD Very secure FTP Daemon    

WAN Wide‐area network     

WSN Wireless sensor network       
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Trends in Big Data and The Internet of Things 

 

Big Data is an emerging technology defined by excesses in the “volume, variety, 

velocity, and value” of all kinds of data (Schutt and O’Neil, 2013). This includes 

conventional time series, geolocation, image, mobile, network, sensor, and social network 

data (Schutt and O’Neil, 2013). Although the IoT is not responsible for the glut of data 

currently besetting companies, the expectation is that, once the IoT “goes live,” its data 

will inundate and overwhelm those who try to use it (Baldwin, 2014). 

The current state of Big Data and the IoT, as per the Gartner hype cycle for 

emerging technologies (LeHong and Fenn Gartner, 2014), places Big Data within the 

cycle’s “trough of disillusionment” and the IoT at the apogee of the cycle’s “peak of 

inflated expectations.” Big Data has been replaced at the top of the peak of inflated 

expectations in the previous year’s cycle by the IoT (Press, 2014). Considering that IT 

executives are almost evenly split between the IoT being worthy of its buzz or entirely 

overhyped (Bertolucci, 2014), it is important that we consider carefully the potential 

scientific value of Big Data resulting from IoT devices. 

Cukier and Mayer-Schoenberger (2013) present three aspects to embrace in order 

to use Big Data: (1) collect and use a lot of data, (2) accept that the benefits of using a lot 

of data outweigh the drawbacks of including shoddy data, and (3) abandon the desire to 

understand the cause of a thing. Although most geoscientists would agree on the benefits 

of collecting and using a lot of data, few may be willing to accept shoddy data or accept 

understanding “what happened” in lieu of “how it happened.” Big Data, particularly data 

resulting from IoT devices, may not be of sufficient quality for serious scientific study 

(Schutt and O’Neil, 2013).  
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Wireless Sensor Network Legacy 

 

Past deployments of wireless sensor networks (WSNs) for geoscientific purposes 

can be used to guide IoGT device system integration. Geoscience WSNs are typically 

designed, developed, and tested by computer scientists or engineers collaborating with 

geoscientists to accomplish a specific objective. The lessons learned over the course of 

five years of working with geoscientists to deploy various WSNs for volcanic monitoring 

(Challen and Welsh, 2010), were used to guide our IoGT device system integration. 

Challen and Welsh (2010) recognize the benefits of providing geoscientists more 

data resulting from a large number of inexpensive and low size, weight, and power 

(SWaP) sensor nodes. However, a desire for more data must be weighed in the context of 

finite WSN resources (e.g., bandwidth, power, etc.) and the desire to provide 

geoscientists with the type of high-quality data to which they are accustomed (Challen 

and Welsh, 2010). 

By building upon multiple successful deployments and redefining geoscientists’ 

expectations, considerable advances have been made with WSNs; however, this has not 

been without trade-offs (e.g., data quality, deployment duration, etc.) (Challen and 

Welsh, 2010). These trade-offs may force geoscientists to accept that the benefits of more 

data outweigh the drawbacks of shoddy (i.e., lower-quality) data (Challen and Welsh, 

2010). Geoscientists may be reluctant to accept these data, because they may be unable to 

use the data with their existing processing techniques. 

Challen and Welsh (2010) repeatedly stress the importance of developing WSNs 

within the context of finite WSN resources and an overarching scientific objective. 

Ideally, this requires the identification of the minimum quality or quantity of data 
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required to achieve a scientific objective (Challen and Welsh, 2010). Unfortunately, data 

of minimum quality or quantity may result in WSNs that are too application specific or 

data that can only determine that a phenomenon has occurred but not how it occurred. 

Understanding how a phenomenon occurs is typically a geoscientist’s primary objective. 

Interestingly enough, the Challen and Welsh (2010) lessons learned mirror Cukier 

and Mayer-Schoenberger (2013) three aspects to embrace in order to use Big Data. Using 

their efforts as a guide, we selected and integrated our IoGT device components to 

provide geoscientists with (1) high-quality data that allows for the detection and 

characterization of geosciences-related phenomena, (2) a non-application-specific 

solution, and (3) a versatile, yet technologically accessible, solution. 

 

System Integration Background 

 

The joining of components, near the end of their development cycle, into a system 

capable of increased functionality is known as system integration (Technopedia, n.d.). 

IoT device system integrators, typically engineers working as professional Makers, apply 

their broad range of skills to develop high-quality products intended for commercial 

distribution. IoGT Makers, perhaps lacking the breadth and depth of computer science 

and engineering skills of professional system integrators, must select their IoGT device 

components carefully. RaPiER uses non-application-specific, technologically accessible 

components. Our selection of components allows geoscientists familiar with basic 

electronics, Linux, networking, and scripting languages the ability to build their own 

RaPiER.  
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Embedded Systems 

 

An internet search of the term “embedded system” yields a wide range of 

products with applications ranging from hobbies to industrial. Embedded systems are 

often classified, by name more than by function, into categories such as microcontroller, 

embedded computer, system-on-chip (SOC), computer-on-module (COM), or system-on-

module (SOM). We use the term “embedded computer” as a generic term to describe an 

embedded system. 

Embedded computers, at their most basic level, consist of a processor and 

memory located on a single chip. Embedded computers are typically low SWaP, intended 

for specific applications, and have modest capabilities when compared with desktop or 

laptop computers. There is considerable variability in embedded computer performance 

specifications and peripheral capabilities (e.g., Bluetooth, WiFi, etc.). 

 

Embedded Computer Selection 

 

Three embedded computers were considered for RaPiER system integration: (1) 

the Arduino microcontroller, (2) the Gumstix COM, and (3) the Raspberry Pi SOC (see 

Data and Resources). The Arduino, admittedly the most popular platform for IoT device 

development (McEwen and Cassimally, 2014), was not selected due to its use of a 

bootloader or real-time operating system. To bootstrap REF TEK’s existing RTI 

software, RaPiER’s embedded computer must run a Linux operating system. 

Gumstix and Raspberry Pi both use suitable Linux operating systems and offer 

relatively similar performance specifications. However, a Gumstix option is notably more 

expensive than a Raspberry Pi option. The Gumstix Overo COM costs $100–$230 and 

requires an expansion board that can range from $30 to $150. In February 2015, the 
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Raspberry Pi Foundation (RPF) released Raspberry Pi 2 model B to replace the 

Raspberry Pi 1 model B+. The Raspberry Pi 2 model B offers significant performance 

improvements compared to its predecessor and retails for approximately $40. 

The Raspberry Pi possesses a number of other features that make it an ideal 

embedded computer for IoGT device development. The RPF provides a Debian-based 

Linux operating system (i.e., Raspbian) that is optimized for the Raspberry Pi, officially 

supported, easy to install, and easily configured. Gumstix operating systems are primarily 

third party and, in our opinion, considerably more difficult to install and configure. 

Third-party expansion boards, known as “hats” or “shields,” are available for 

purchase and interface with the Raspberry Pi via its general purpose input/output (GPIO) 

pins. These easily accessible GPIO pins also allow Makers to interface custom electronic 

circuits with the Raspberry Pi. Many of the projects found within the Raspberry Pi’s 

milieu utilize GPIO pins to connect sensors and actuators. First- and third-party 

expansion boards are available for the Gumstix; however, they are often more expensive 

and not as easy to use. 

Ultimately, it was the Raspberry Pi’s ease of use and robust ecosystem that made 

it the most compelling embedded computer option. The Raspberry Pi’s ecosystem caters 

to a wide range of Maker skill levels; it was originally intended to help develop computer 

science skills in children (McEwen and Cassimally, 2014). Novice Makers unfamiliar 

with basic electronics, Linux, and programming can easily find Raspberry Pi projects to 

develop the skills required to move on to more advanced projects. Experienced Makers 

will find the Raspberry Pi’s ecosystem to be an ever-expanding source of valuable 

resources that support all types of projects.  
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Data Acquisition System Selection 

 

To develop an IoGT device that was truly “no engineer needed,” we would need a 

DAS that required a minimum amount of troubleshooting. The original equipment 

manufacturer (OEM) would have to provide hardware and software support, product 

documentation, and be willing to support novel uses of their products. The DAS would be 

capable of acquiring data from a variety of sensors and have reasonable input impedance, 

input voltage range, and number of input channels. Last, using a common port and a well-

established protocol, the DAS would be capable of transmitting data to a computer in 

near-real time. Ideally, the geoscience community would already be familiar with the 

DAS and have confidence in the quality of the data it produces. 

Our choice of the REF TEK 130-01 as RaPiER’s DAS was strongly influenced by 

its broad acceptance and wide use within the geoscience community. REF TEK (i.e., 

Refraction Technology Inc.) became part of Trimble Navigation Limited in October 

2012. For a listing of geoscience-related REF TEK (a Trimble brand) instrument 

deployments (i.e., digital telemetry networks) refer to Trimble’s website (see Data and 

Resources). Although the 130-01 has been replaced by the 130S-01, 130-01 product 

documentation, training, and troubleshooting support are available via REF TEK support. 

The REF TEK 130-01 transmits data, in near-real time, to a computer running 

REF TEK’s RTI software via a common port (i.e., Ethernet or serial) and a well-

established protocol (i.e., User Datagram Protocol [UDP]). Last, the 130-01 has been 

used to collect data for a variety of scientific and engineering applications. 

The Incorporated Research Institutions for Seismology Portable Array Seismic 

Studies of the Continental Lithosphere (PASSCAL) Instrument Center and EarthScope 
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USArray Array Operations Facility maintains over 850 REF TEK 130-01s in its 

inventory (see Data and Resources). The 130-01s are available to research and 

educational institutions as per PASSCAL and USArray governing policies. Given its 

availability, capability, flexibility, performance, quality, and widespread use, we feel 

confident in choosing the 130-01 as RaPiER’s DAS. 

REF TEK has supported our novel use of the REF TEK 130-01. Unfortunately, 

the market for REF TEK software products specifically developed for embedded 

computers is limited. REF TEK support has indicated that they do not intend to provide 

this software to other customers and cannot support these untested and unsupported REF 

TEK products. REF TEK support has granted us permission to share the software we 

were provided. REF TEK can provide customers a sales quote for the development costs 

associated with an embedded computer version of their RTI software upon request. 

 

System Integration 

 

Embedded computers, unlike desktop or laptop computers, typically do not use 

conventional 32-bit or 64-bit processors (e.g., AMD FX, Intel Core i7, etc.). The 

Raspberry Pi 2 model B uses an Advanced RISC Machine (ARM) 32-bit Cortex-A7 

processor. ARM processor architecture is ideal for embedded computing applications that 

require high performance while maintaining low SWaP (see Data and Resources). 

Unfortunately, this means that software compiled for conventional processors will not run 

on the Raspberry Pi. 

It was necessary to obtain a version of REF TEK’s RTI software compiled 

specifically for the ARM architecture. We were provided an untested and unsupported 

ARM architecture version of some of the RTI software modules by REF TEK. This 
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software did not include documentation or installation scripts. It was necessary to 

develop our own installation and configuration process for RaPiER system integration. 

This required that we draw heavily from the Raspberry Pi’s ecosystem and REF TEK’s 

product documentation. To best assist IoGT Makers in performing their own RaPiER 

system integration, we provide the ARM architecture RTI software (Ⓔ available in the 

electronic supplement), Raspberry Pi and RTI installation and configuration scripts (Ⓔ 

available in the electronic supplement), and a detailed RaPiER system integration guide. 

 

Raspberry Pi 

 

The Raspberry Pi Foundation (n.d.) provides official documentation that details 

initial setup, operating system installation, usage, and configuration of the Raspberry Pi 

via their website. IoGT Makers should utilize the Raspberry Pi’s ecosystem to review the 

differences in Raspberry Pi models, identify what peripherals are required, perform initial 

setup, install an operating system, and utilize the configuration tool, command line, and 

desktop environment. We recommend IoGT Makers unfamiliar with Linux review the 

RPF’s step-by-step instructions and fundamental Linux usage documentation before 

getting started with RaPiER system integration. The preparation of a Raspberry Pi for 

RaPiER system integration will require IoGT makers to (1) select appropriate peripherals, 

(2) install an operating system, (3) set configuration options, and (4) modify Linux 

settings. 

IoGT Makers should consider the following when selecting Raspberry Pi 

peripherals. Use a micro-SD card with a minimum of 8 GB of storage. The Raspberry Pi 

should be powered using a 5 V USB power supply with a 2 A output. Makers may 

encounter reliability issues that are difficult to troubleshoot when using a power supply 
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with less than 2 A output. We recommend Makers use an externally powered USB hub to 

connect mouse, keyboard, and WiFi adapter to avoid power-related reliability issues. The 

Raspberry Pi 1 model B+ and Raspberry Pi 2 model B+ have four USB 2.0 ports that can 

provide up to 1.2 A for USB devices; however, a 2 A power supply is required (Gibbs, 

2015). Makers should reference the Raspberry Pi’s ecosystem to verify the peripheral 

devices are compatible prior to purchase. 

The RPF recommends beginners start with Noobs, an install manager that allows 

users to select from a variety of first and third-party operating systems (Raspberry Pi 

Foundation, n.d.). We recommend that IoGT Makers bypass Noobs and proceed to install 

Raspbian Wheezy (see Data and Resources) as their operating system. RaPiER system 

integration was performed using Raspbian Wheezy. 

The initial boot of a Raspbian Wheezy install will automatically display the 

Raspberry Pi Software Configuration Tool. This tool is also referred to as raspi-config. 

IoGT Makers will use raspi-config to prepare the Raspberry Pi for RaPiER system 

integration. The RPF provides raspi-config usage documentation. Using raspi-config, 

Makers should Expand Filesystem, Change User Password, and set Enable Boot to 

Desktop/Scratch to boot to Desktop Log in…. Once raspi-config setup changes are 

finalized (i.e., Finish), Raspberry Pi will now automatically logon the pi user to the 

Raspbian Wheezy desktop environment. Makers can return to the Raspberry Pi Software 

Configuration Tool by running. 

$ sudo raspi-config 

To complete the preparation of the Raspberry Pi for RaPiER system integration, 

IoGT Makers will use the RaPiER_RaspberryPi.sh script (Ⓔ available in the electronic 
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supplement). This script will do the following: (1) create a reftek user, (2) assign reftek 

superuser privilege, (3) change the default auto-logon user to reftek, (4) change the 

default computer keyboard layout from United Kingdom to United States, and (5) change 

default network interface settings. Copy all of the contents located within the 

RaPiER_Project directory (Ⓔ available in the electronic supplement) to the /home/pi 

directory. Next, run 

$ cd /home/pi 

to navigate to the pi user home directory. Run the command 

$ sudo chmod +x RaPiER_RaspberryPi.sh 

to make the script executable. Run 

$ sudo ./RaPiER_RaspberryPi.sh 

in the command line to execute the script. Upon completion of the script, the 

Raspberry Pi will automatically reboot and log the reftek user onto the Raspbian Wheezy 

desktop environment. 

 

Raspberry Pi as RTPD Data Server 

 

IoGT Makers should set a password for the reftek user before continuing with 

RaPiER system integration. Run 

$ sudo passwd reftek 

and follow ensuing prompts to set a new password. 

The REF TEK Protocol Daemon (RTPD) RTI software module provides for the 

near-real-time communication of data between the 130-01 and an RTPD data server. RTI 

archive utilities are used to create, copy, rebuild, retrieve, review, and write RTPD 
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archives. For an RTPD archive to acquire data, all of the required RTI files and folders 

must be in the correct location and have the correct owner and permission. Run 

$ cd /home/reftek 

to navigate to the reftek user home directory. Run 

$ ./RaPiER_REFTEK.sh 

to execute the RTI software install and configuration script. IoGT Makers can 

start, stop, and check the status of RTPD service by running 

$ service rtp {start, stop, status}. 

To automatically start the RTPD service after the Raspberry Pi boots, run 

$ sudo crontab –e. 

Scroll to the very bottom of the command line interface and add 

@reboot sh /etc/init.d/rtp start. 

Save and exit when done. Reboot the Raspberry Pi. 

The Raspberry Pi is now configured to operate as an RTPD server. However, it is 

necessary to establish a network connection between the Raspberry Pi and the REF TEK 

130-01 and to create an RTPD archive to finalize RaPiER system integration. This 

requires IoGT Makers to (1) establish a physical connection (i.e., Ethernet) between the 

Raspberry Pi and the 130-01, (2) configure the Raspberry Pi with a static IP address (i.e., 

Ethernet), (3) configure the RTPD rtpd.ini file, (4) configure the 130-01 acquisition (i.e., 

channel and stream) and network settings (i.e., IP address and RTP address), and (5) 

create an RTPD archive. 

To make RaPiER system integration easier for IoGT Makers unfamiliar with REF 

TEK’s products, the Raspberry Pi network interface (i.e., Ethernet), RTPD rtpd.ini file, 
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and RTPD archive were automatically configured and created during execution of the 

RaPiER_RaspberryPi.sh and RaPiER_REFTEK.sh scripts. The Raspberry Pi was 

configured with a static IP address of 192.168.1.100/24. The rtpd.ini file was configured 

with a command client IP address and discovery IP address of 192.168.1.100. The 

rtpd.ini file was configured with an archive directory of /home/reftek/data/archive, and 

the RTPD archive was created. 

IoGT Makers can finalize RaPiER system integration by establishing a physical 

connection between the Raspberry Pi and the REF TEK 130-01, via a network switch 

(Fig. 2.1), and configuring the 130-01’s acquisition and network settings. Connecting the 

130-01 to a network switch requires REF TEK’s 130 to Ethernet RJ45 hub cable (part 

number 130-8019). IoGT Makers unfamiliar with 130-01 acquisition and network 

configuration should refer to REF TEK’s product manuals for guidance. With 130-01 

acquisition started and the RTPD service running, RaPiER’s RTPD archive should start 

building. RaPiER integration is now complete. 

 

 
 

Figure 2.1. Raspberry Pi Enhanced REF TEK (RaPiER) concept.  
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There are several other Raspberry Pi configuration options IoGT Makers should 

consider. By default, the RaPiER system is configured to save RTPD archive data to the 

Raspberry Pi’s micro-SD card (i.e., /home/reftek/data/archive). Once IoGT Makers are 

familiar with the RaPiER operation, we recommend they configure the Raspberry Pi to 

save RTPD archive data to a USB flash drive. Instructions are available, via the 

Raspberry Pi’s ecosystem, for mounting a USB flash drive to a specific directory when 

the Raspberry Pi boots. 

IoGT Makers intending to deploy their RaPiER to the field should use raspi-

config to set Enable Boot to Desktop/Scratch to Console Text and set Advanced Options 

to enable secure shell (SSH). These modifications will reduce Raspberry Pi power 

consumption by allowing Makers to interface with RaPiER without the need for a 

desktop environment or peripherals. Refer to RPF documentation for raspi-config usage. 

With RaPiER integration complete, we anticipate IoGT Makers will be eager to 

utilize the RaPiER to enhance their sensor nodes or networks; however, these efforts 

should not interfere with existing REF TEK 130-01 and RTI software capabilities. 

Typically, the 130-01 is configured to locally record data to a compact flash (CF) card, 

transmit data to a remote RTPD server, or both record locally and transmit data to a 

remote RTPD server. Collocation of a local RTPD server (i.e., Raspberry Pi) with a 

deployed 130-01 requires Makers configure the RaPiER to transmit data from the local 

RTPD server to the remote RTPD server. The collocation of a local RTPD server with a 

deployed 130-01 does not interfere with data recording to a CF card. 

There are many methods to transmit data to multiple RTPD servers. The simplest 

method is for IoGT Makers to configure the REF TEK 130-01 to transmit data to two 
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separate RTPD servers; however, this requires 130-01 firmware v.3.7.2 or later. An 

alternate method is the automatic synchronization of the local RTPD archive with a 

remote RTPD archive. Makers can accomplish this synchronization using RTPD 

“chaining” (Fig. 2.2). Refer to REF TEK’s product manuals for details regarding 130-01 

configuration and RTPD chaining. 

 

 
 

Figure 2.2. RaPiER, with local and remote RTPD servers shown. 

 

 

Expanding RaPiER’s Capabilities 

 

To demonstrate the ease with which IoGT Makers can expand RaPiER 

capabilities, we present three guides, obtained from the Raspberry Pi’s ecosystem, that 

allow Makers to configure the RaPiER as a data, e-mail, file transfer protocol (FTP), and 

webserver (Fig. 2.3). By expanding RaPiER capabilities, Makers can configure RaPiER 

to (1) analyze, manipulate, and store data in a client-server model, (2) send low-

bandwidth notifications via e-mail, (3) allow remote access to the RTPD archive, and (4) 

monitor system performance.  
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Figure 2.3. RaPiER with expanded capability shown. 

 

 

With the RTPD archive as its database, the RaPiER can be configured as a data 

server. IoGT Makers (i.e., RaPiER owners) can configure remote access and control of 

RaPiER resources and allocate data-related services or tasks to the RaPiER (e.g., 

analysis, conversion, etc…). Client (i.e., RaPiER subscriber) requests would leverage the 

RaPiER’s Raspberry Pi to perform useful data processing. There is no specific guide for 

RaPiER data server configuration; the use of RaPiER as a data server is a characteristic 

of the overarching RaPiER concept. 

As an e-mail server, RaPiER can send its owner and subscribers notifications. 

These notifications could result from regularly scheduled activity or could be triggered in 

response to a change of state. Secure simple mail transfer protocol (SSMTP) (see Data 

and Resources) is a lightweight, low bandwidth, and reliable way for the RaPiER to send 

notifications via Email. IoGT Makers can easily incorporate SSMTP e-mail notifications 



23 

 

into their shell or python scripts. Using SMTP Mail Setup (TNET, n.d.) as a guide, we set 

up our RaPiER as an e-mail server. 

The REF TEK 130-01 can record data to a CF card locally, transmit data to a 

remote RTPD server, or both record locally and transmit data. Recording data locally on 

a 130-01’s CF card is often considered a fail-safe in case network communication 

becomes unavailable. Unfortunately, 130-01 users must physically retrieve the CF card 

from the unit. The RaPiER’s RTPD archive will continue to build even if remote network 

communication is lost. Once network communication is reestablished, the RaPiER’s 

owner and/or subscribers can retrieve missing archive data via FTP. 

Very secure FTP Daemon (VSFTPD; see Data and Resources) facilitates FTP 

server access and allows users to create custom user accounts with custom directories. 

Although not specifically intended for the Raspberry Pi, we found the Bourdeau (2012) 

VSFTPD setup guide to be a particularly good resource. Bourdeau’s guide was used to 

configure our RaPiER as an FTP server. 

IoGT Makers wishing to field a RaPiER will likely want to evaluate and monitor 

its system performance. Munin (see Data and Resources), a networked performance 

monitoring tool, allows the RaPiER’s owner and subscribers to monitor Raspberry Pi 

performance data. Prior to the installation of Munin, it is necessary to configure the 

RaPiER as a webserver. “How to Host a Website with Raspberry Pi” (Orsini, 2014) was 

used as a guide to set up the Raspberry Pi as an Apache webserver (see Data and 

Resources). Munin was installed and configured using “Monitoring Raspberry Pi 

temperatures” (Langner, 2015) as a guide. Munin continuously monitors Raspberry Pi 
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performance data (e.g., core temperature, central processing unit [CPU]/memory usage, 

etc.) and allows users to view or export data for analysis. 

 

RaPiER Measures of Effectiveness 

 

The REF TEK 130-01 has been in use since 2002 and has garnered a reputation as 

a reliable DAS. As a system intended for deployment to remote field stations with limited 

infrastructure and harsh environmental conditions, the 130-01 is lightweight and 

mechanically tough. REF TEK reports the 130-01’s power consumption to be ∼1.4 W 

while recording three channels with Global Positioning System and communications 

active. Its operating temperature range is −20°C to +60°C. 

In contrast, the Raspberry Pi was not developed with harsh environmental 

conditions and finite resources in mind. Nonetheless, as an embedded computer, the 

Raspberry Pi is thermally robust and has relatively low power requirements. According to 

the RPF, the operating temperature range of the Raspberry Pi 2 model B is determined by 

the lowest maximum and highest minimum operating temperature of its individual 

computer module components (i.e., −25°C to +80°C). The exact power consumption of 

Raspberry Pi is dependent upon an individual’s use-case. In general, the Raspberry Pi 2 

model B’s power consumption can be estimated to be ∼1.2 W (for single-core, idling, 

with communications, and no peripherals; Eames, 2015). 

To evaluate the effectiveness of RaPiER as a geoscience node, we evaluated its 

suitability and performance. System suitability is a measure of its ability to operate in its 

intended environment. System performance measures refer to quantifiable parameters 

associated with its ability to function as intended. Our evaluation of the RaPiER’s 

effectiveness is not intended to be a comprehensive determination of its readiness for 
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field deployment. Rather, IoGT Makers can use our preliminary evaluation to guide their 

own RaPiER integration and subsequent deployments. 

 

Measures of Suitability 

 

We fabricated two nodes for RaPiER effectiveness evaluation. The nodes’ 

peripheral components (i.e., Ethernet switch and USB flash drive) were varied to 

determine if it would be necessary to use components with higher operating temperature 

ranges (Table 2.2). The two nodes were assembled similarly and placed within identical 

enclosures (Fig. 2.4). 

 
Table 2.2 RaPiER Nodes 1 and 2 Components 

 

  Raspberry Pi SOC*   Ethernet Switch   USB Flash 

RaPiER 

Node 

Make and 

Model 

Operating 

Temperature 

Range 

  
Make and 

Model 

Operating 

Temperature 

Range 

  
Make and 

Model 

Operating 

Temperature 

Range 

1 
Raspberry Pi 

2† 
−25°C to 

+80°C 
  

Brainboxes 

SW‐504 

−40°C to 

+80°C 
  

MIT 

TECH 

MLC 

64 GB 

0°C to 

+85°C 

2 
Raspberry Pi 

2 

−25°C to 

+80°C 
  

Brainboxes 

SW‐005 

0°C to 

+70°C 
  

PNY 

Attaché 

128 GB 

0°C to  

+60°C 

*SOC, system on chip. 

†Heat sinks on Raspberry Pi 2 CPU/GPU and Ethernet modules. 
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Figure 2.4. RaPiER node interior: (left) node 1 and (right) node 2. 

 

 

The two RaPiER nodes were emplaced within an unventilated wooded shed for a 

seven-day suitability test (Fig. 2.5). The nodes were powered up and acquisition was 

started. Using Munin, we monitored the nodes’ Raspberry Pi core temperatures and 

system uptime during our suitability test. Over the course of our suitability test, outdoor 

temperatures ranged from 22.0°C to 37.2°C. Raspberry Pi core temperatures ranged from 

41.9°C to 63.2°C and 43.3°C to 64.3°C for RaPiER nodes 1 (Fig. 2.6) and 2, 

respectively. Typically, a Raspberry Pi’s core temperature, within a climate-controlled 

room (i.e., 25°C), is approximately 40°C.  
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Figure 2.5. RaPiER nodes 1 and 2 (gray square enclosures) located within wooden shed 

for seven‐day suitability test. REF TEK 130‐01s (black rectangular enclosures) are 

located between the RaPiER nodes. 

 

 

 
 

Figure 2.6. Seven‐day RaPiER node 1 suitability test results. (left) System uptime and 

(right) Raspberry Pi core temperature plots were generated using a networked 

performance monitoring tool (i.e., Munin). 

 

 

We observed no hardware-related failures during our seven-day suitability test. 

RaPiER node 1’s Raspberry Pi core temperature was ∼1.3°C lower than node 2’s core 

temperature. The difference in node core temperatures is most likely due to the heat sinks 
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placed on node 1’s Raspberry Pi’s CPU/graphics processing unit (GPU) and Ethernet 

modules. 

We measured a RaPiER node’s power consumption given our specific use-case. 

This included the DC-to-DC converter, Ethernet switch, Raspberry Pi 2 model B, REF 

TEK 130-01, and USB flash drive. Power consumption was also measured while the 

node was processing 130-01 data. 

We estimate the RaPiER node’s power consumption to be 2.36–3.10 W higher 

than the REF TEK 130-01’s (Table 2.3). This 130%–170% increase in power 

consumption is appreciable; however, a single 20 W solar panel (at eight hours of sun, 

with a worst weather multiple of 0.65) could be used to offset the node’s power 

consumption for our specific use-case. Nonetheless, we recommend IoGT Makers 

carefully examine their field station’s power budget prior to node deployment. 

 
Table 2.3 RaPiER Node Power Consumption Estimates 

 

  
Power Consumption Estimates by Component 

(Watts) 
  

RaPiER  

Node 

REF TEK 

130‐01* 

Raspberry Pi 

SOC† 

Ethernet 

Switch 

Total Power 

Consumption 

(Watts) 

1 1.82 1.7 0.66 4.18 

2 1.82 1.7 0.65 4.17 

2 

(processing 

data) 

1.82 2.47‡ 0.65 4.94 

*Three channels, passive sensor, Global Positioning System (GPS) active, with communications. 

†Single core system on chip (SOC), RTPD active, with communications. 

‡Estimated power consumption, processing data. 

 

 

To quantify a RaPiER node’s impact on network resources, we collected 12 hours 

of network traffic statistics using Munin. These statistics included active local-area-

network (LAN) traffic between the Raspberry Pi 2 model B and the REF TEK 130-01 
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and idle wide-area-network (WAN) traffic between the Raspberry Pi 2 model B and the 

Internet. Average LAN traffic was measured to be 2880 bits per second (bps) inbound 

and 179 bps outbound (Fig. 2.7). WAN traffic averaged ∼13 bps inbound and outbound 

(Fig. 2.7). 

 

 
 

Figure 2.7. Twelve hour RaPiER node impact on network resources test results. (left) 

Local‐area‐network traffic and (right) wide‐area‐network traffic plots were generated 

using a networked performance monitoring tool (i.e., Munin; bps, bits per second). 

 

 

Observed RaPiER node LAN traffic roughly correlates in size with 12 hours of 

RTPD archive data. Node idle WAN traffic represents a modest use of network 

resources. A year of idle WAN traffic would be ∼100 MB. The RaPiER node does not 

appear to negatively impact LAN or WAN resources; however, IoGT Makers should be 

aware that interactions with the node (e.g., data retrieval, remote access, etc.) will utilize 

network resources. 

 

Measures of Performance 

 

REF TEK’s RTI software is a well-established solution for the acquisition of 

near-real-time data from REF TEK 130-01 field stations to data centers. However, the 

ARM architecture version of the RTI software is untested. As such, we investigated the 

reliability of the ARM architecture RTPD module and the quality of archive data. 
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To evaluate the reliability of the ARM architecture RTPD module, we monitored 

the RaPiER nodes’ RTPD archives and logs during our seven-day suitability test. We 

verified that the nodes’ archives contained the expected number of data files and that 

these files were of the correct duration. We reviewed the nodes’ daily RTPD logs for 

errors. We observed no RTPD module reliability issues during our suitability test. 

We assessed RaPiER’s RTPD archive data quality by comparing it with the REF 

TEK 130-01 CF card data. We selected 36 nonconsecutive two-hour files, collected over 

six days, from the RTPD archive and the CF card. We calculated the correlation 

coefficients for each channel of the 36 pairs of data files. The correlation coefficients 

indicated a perfect match between the RTPD archive and CF card data. 

As a secondary measure of RTPD archive data quality, we ran a data-processing 

workflow (Fig. 2.8) on a RaPiER node for approximately eight days (i.e., nodal 

processing). During these eight days, the RaPiER node acquired data from a Nanometrics 

Trillium Compact (120s) broadband seismometer (Nanometrics, n.d.). The workflow 

automatically generated hourly waveform plots (Fig. 2.9). A second RaPiER data-

processing workflow was run to generate a probabilistic power spectral density (PPSD) 

plot (Fig. 2.10) (McNamara, 2004). Waveform and PPSD plots were automatically 

uploaded to a cloud storage service for review. The ObsPy Python toolbox (Beyreuther et 

al., 2010; see also Data and Resources) was used to generate waveform and PPSD plots.  
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Figure 2.8. RaPiER nodal processing workflows for data‐quality performance measure 

evaluation. Workflows automatically generate and upload time and frequency domain 

plots for qualitative review. 

 

 

 
 

Figure 2.9. Sample of one‐hour waveform triple plot (RaPiER nodal processing). 

Background broadband seismometer data are shown as a velocity (m/s) versus time (s) 

plot. The instrument response was removed, data were de‐meaned and detrended, and a 

low‐pass filter applied (10 Hz).  
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Figure 2.10. Sample of 168‐segment (i.e., 168 hour) probabilistic power spectral density 

(PPSD) plot. The broadband seismometer PPSD plot shows amplitude (dB, noise) versus 

period (s). 

 

 

Waveform plots were generated using a routine similar to the ObsPy 

Development Team (n.d.a) “obspy.signal – Signal Processing Routines for ObsPy.” 

Waveform signal processing consisted of (1) loading a one-hour miniSEED data file, (2) 

removing the instrument response, (3) de-meaning and detrending the data, (4) applying a 

filter (i.e., low pass, 10 Hz, two corners, and zero phase), and (5) generating a triple plot 

(i.e., Z, N, and E) of velocity (in meters per second) versus time (in seconds). 

The PPSD plots were generated using the ObsPy Tutorial “Visualizing 

Probabilistic Power Spectral Densities” (ObsPy Development Team, n.d.b) as a guide. 

This routine first establishes a path to the data (i.e., 168 one-hour miniSEED files). The 

routine then gets poles and zeros information from a dataless SEED file. Next, the routine 

initializes a new PPSD instance. Additional one-hour data files are then added to the 

PPSD estimate. All PPSD processes (e.g., de-meaning and detrending, instrument 
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response, etc.) are done internally. When complete, this routine generates a graphical 

representation of the PPSD. This process was repeated for each channel (i.e., Z, N, and 

E). Refer to McNamara (2004) or the ObsPy Tutorial “Visualizing Probabilistic Power 

Spectral Densities” for additional information regarding internal PPSD processes or 

visualization. 

Our experience with RaPiER nodal processing was resoundingly positive. Hourly 

waveform plots were typically processed and uploaded in less than two minutes and a 

168-segment (i.e., 168 hour) PPSD plot was generated in approximately 50 min. We 

reviewed the 168 waveform plots and the 168-segment PPSD plots to identify anomalous 

RTPD archive data. No obviously atypical RTPD archive data were observed in the time 

or frequency domain. 

 

Discussion and Conclusions 

 

RaPiER’s relatively low power consumption, modest use of network resources, 

and apparent thermal robustness make it a viable option for remote field station 

deployments. Given our specific field station conditions, we determined that it was not 

necessary to use high-temperature node components (i.e., Ethernet switch and USB flash 

drive). However, we encourage IoGT Makers to consider their field station conditions 

and use-case prior to RaPiER system integration and node deployment. Although we did 

not fully test REF TEK’s ARM architecture RTI software archive utilities or the RTPD 

module’s functionality, our preliminary performance evaluation indicated that the 

software is reliable and produces quality archive data. 

Given RaPiER’s ease of integration and effectiveness as a geoscience node, we 

consider RaPiER a practical addition to a geoscientist’s equipment inventory. Aside from 
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REF TEK products, our RaPiER node cost approximately $220. As an economically 

attractive and inherently educationally aligned solution, we anticipate RaPiER will be 

well received as a platform for geoscience graduate and undergraduate students to 

develop basic electronics, Linux, networking, and programming skills. As Hall and 

Bianco (2012) describe, students can develop the underrated skill of tinkering while 

simultaneously acquiring quality data for serious scientific study. 

Geoscientists engaged in critical deployments may be reluctant to disturb their 

existing nodes to implement nonessential enhancements such as RaPiER. To alleviate 

possible reticence regarding RaPiER, geoscientists should consider that RaPiER does not 

interfere with the REF TEK 130-01’s ability to record data to a CF card locally or to 

transmit data to a remote RTPD server. This is particularly true if the 130-01 is flashed 

with firmware 3.7.2 or later and is configured to transmit its data stream to a local RTPD 

server and remote RTPD server, independently. 

The fact that RaPiER expands local data storage capabilities beyond the REF 

TEK 130-01’s CF cards is another reason to consider its implementation. The RaPiER’s 

owner can configure the node to store RTPD archive data to any type or size of storage 

device that is compatible with Raspberry Pi. By using RaPiER, geoscientists could 

increase their deployment durations and lower storage media costs. A 128 GB USB flash 

drive, micro-SD card, and CF card cost approximately $35, $100, and $180 respectively. 

The only CF cards for which REF TEK guarantees compatibility with the 130-01 are 

REF TEK CF cards. A REF TEK 4 GB CF card cost approximately $100. 

RaPiER implementation provides automatic failover for 130-01s configured to 

continuously transmit data to a remote RTPD server; that is, should remote network 
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communication go down, RaPiER’s RTPD archive will continue to build regardless of 

remote network status. Once a connection with the network is reestablished, missing data 

can be retrieved using a variety of methods (e.g., FTP, SSH, etc.). Geoscientists are no 

longer required to retrieve 130-01 CF cards to reacquire missing data from remote RTPD 

archives. 

Of all the reasons to consider RaPiER integration and implementation, perhaps 

the most compelling is nodal processing. After all, for RaPiER to be considered an IoT 

device it must be smart. Our foray into nodal processing was to meet our immediate need 

to efficiently assess RTPD archive data quality. Geoscientific (i.e., seismic) application 

areas that may benefit from nodal processing (e.g., automated, near-real time, etc.) 

include earthquake (e.g., aftershock studies) and engineering (e.g., site characterization) 

seismology. 

Considering the Raspberry Pi’s capabilities and the wealth of information 

available via its ecosystem, we only scratched the surface of RaPiER nodal processing. 

As geoscientists’ bridge between familiar and unfamiliar technologies, RaPiER allows 

for the realization of Ashton’s vision of IoT devices sensing and making sense of the 

world for themselves. However, in our case as geoscientists, our IoGT device senses and 

makes sense of the physical mechanisms of the world.  
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Data and Resources 

 

The data acquired to evaluate the effectiveness of the RaPiER as a geoscience 

node (i.e., suitability and performance) were acquired as benchtop data and were not 

intended for subsequent seismic processing. 

We recommend prospective IoT Makers review information available from 

http://www.adafruit.com (last accessed February 2016) or http://www.makezine.com (last 

accessed February 2016) for examples of IoT projects. For information specific to the 

Arduino microcontroller, Gumstix computer on module, or the Raspberry Pi system on 

chip, refer to http://www.arduino.cc (last accessed February 2016), 

https://www.gumstix.com (last accessed February 2016), and 

https://www.raspberrypi.org (last accessed February 2016), respectively. The Raspberry 

Pi Foundation (n.d.) provides official documentation that details initial setup, operating 

system installation (https://www.raspberrypi.org/downloads/raspbian/, last accessed 

February 2016), usage, and configuration of the Raspberry Pi. 

For a listing of geoscience-related REF TEK instrument deployments, refer to the 

Trimble Navigation Limited website 

(http://www.trimble.com/Infrastructure/Digital‑Telemetry‑Networks.aspx, last accessed 

February 2016). The Incorporated Research Institutions for Seismology Portable Array 

Seismic Studies of the Continental Lithosphere Instrument Center and EarthScope 

USArray Array Operations Facility inventory is available from 

https://www.passcal.nmt.edu/content/general-information/equipment-inventory (last 

accessed February 2016). 
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Additional information regarding the ARM processors can be obtained from 

http://www.arm.com/products/processors (last accessed February 2016). Ⓔ The ARM 

architecture REF TEK Interface (RTI) software and Raspberry Pi and RTI installation 

and configuration scripts are available in the electronic supplement. Refer to 

https://packages.debian.org/stable/mail/ssmtp (last accessed February 2016) and 

https://security.appspot.com/vsftpd.html (last accessed February 2016) for additional 

information regarding SSMTP and VSFTPD. Additional information regarding Munin 

can be obtained from http://munin-monitoring.org (last accessed February 2016). The 

Apache Software Foundation HTTP Server Project (http://httpd.apache.org/, last accessed 

February 2016) provides Apache webserver set up information. Installation instructions 

for the ObsPy Python toolbox are available at http://github.com/obspy/obspy/wiki (last 

accessed February 2016). 
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CHAPTER THREE 

 

A Novel, Near Real Time Approach to Seismic Exploration and Monitoring via Ambient 

Seismic Noise Interferometry 

 

 

Abstract 

 

A new, cost effective and non-invasive exploration method using ambient seismic 

noise was developed and tested with promising results. Our general objectives were to 

build and test a new-generation seismic system capable of acquiring, transmitting, and 

processing seismic data in near real-time and to test the new technology in a geothermal 

field setting. The intent of the latter objective was to investigate opportunities for 

adapting survey acquisition parameters provided by near real-time data processing. 

Development proceeded in two phases: we first designed, built, and tested a 20-node 

array at the Soda Lake Geothermal Field, Nevada, then we scaled up to 144 nodes and 

greater aperture for a test at the San Emidio Geothermal Field, Nevada. We demonstrated 

the larger array was able to perform its data acquisition, transmission, and processing 

functions successfully; the advantages of real-time, “in the field” processing, were 

realized. These advantages include continuous assessment of results and opportunities to 

re-deploy stations in more optimal configurations depending upon characteristics of the 

ambient noise field and options to leave the array in place longer (or shorter) than 

originally planned with high levels of confidence survey objectives have been achieved, 

before the decision to demobilize the array is made.  
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Introduction 

 

As of the early 2000s, engineering and scientific interest in wireless sensor 

networks (WSNs) was well established (Ilyas & Mahgoub, 2006). The availability of 

inexpensive and low size, weight, and power (SWaP) computers, sensors, and wireless 

communications allowed for the development of engineering and scientific related WSNs 

intended to: 1) acquire and process data, 2) detect and characterize activities or events of 

interest, and 3) communicate “sensed information” back to users (Ilyas & Mahgoub, 

2006). Despite widespread interest, the development and adoption of WSNs remained 

technologically challenging due to the inherent complexities (e.g., bandwidth, power, 

etc.) of transforming sensor nodes into a resource-efficient network (Ilyas & Mahgoub, 

2006). 

Application areas for WSNs include, but are not limited to, civil engineering, 

defense, environmental monitoring, etc. (Ilyas & Mahgoub, 2006). However, due to the 

technical challenges of wireless sensor network (WSN) development, WSN developers 

often collaborate with domain experts (e.g., medical professionals, scientists, etc.). For 

instance, Challen and Welsh (2010) spent five years working with geoscientists to 

develop a variety of WSNs for volcanic monitoring. These volcanic monitoring WSNs 

provided geoscientists better data (i.e., quantity and spatial-distributed) by deploying 

many inexpensive and low SWaP nodes around an active volcano; however, the solution 

remained constrained by finite resources (e.g., bandwidth, power, etc.) (Challen & Welsh, 

2010). 

Challen and Welsh (2010) were forced to make tradeoffs between data quality, 

deployment duration, cost, etc. These tradeoffs may ultimately require that geoscientists 



43 

 

accept that the benefits of more data offset the drawbacks of lower-quality data. To 

minimize tradeoffs, Challen and Welsh (2010) suggested the development of WSNs 

within the context of a specific scientific objective where the minimum quality or 

quantity of data required has been previously identified. Unfortunately, WSNs designed 

for specific scientific objectives may prove too application specific for use in other 

geoscientific endeavors without additional WSN developer support. Also, data of 

minimum quality or quantity may limit geoscientists’ ability to understand the processes 

underlying an event of interest. 

The utilization of WSNs to acquire, disseminate, and process geoscientific data in 

the field or other remote environments (sometimes referred to as “the edge”) is 

challenging. Challenges are compounded as the number of WSN nodes increases or the 

nodes are distributed across a larger geographic area. Fortunately, within the past eight 

years there were major advances in the availability and capability of embedded systems 

(i.e., Raspberry Pi1) and distributed databases (i.e., Apache Cassandra2). 

The proliferation of Internet of Things (IoT) devices has resulted in a need for 

edge computing: computing facilities that allow for the processing and analysis of data 

near the point of acquisition (Hamilton, 2018). Similarly, fog computing involves the 

processing and analysis of data across one or more nodes in a network (Hamilton, 2018). 

Confronted with identical real-world logistical constraints as geoscientific WSNs (e.g., 

bandwidth, outages, etc.), mainstream IoT-based sensor network edge computing is 

advancing rapidly in a direction that benefits geoscientific applications. 

 
1 https://www.raspberrypi.org/ 

2 https://cassandra.apache.org/ 
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In this paper, we document attempts to develop and implement a solution 

allowing for the automated acquisition, transmission, storage, and processing of seismic 

data at “the edge” and in near real-time. We developed and/or implemented solutions in 

the following areas: 1) embedded systems, 2) a distributed database, 3) solution 

architecture, and 4) telemetry infrastructure. We conducted four test and evaluation 

(T&E) events of varying durations: one each at Eastland Lakes, Texas in May 2017, Soda 

Lake Geothermal Field, Nevada in June 2017, Baylor Research and Innovation 

Collaborative (BRIC), Texas in July 2018, and San Emidio Geothermal Field, Nevada in 

May 2019. Because of the complexity of WSNs (Ilyas & Mahgoub, 2006) and the 

relative newness of edge computing (Hamilton, 2018), we leveraged experience gained 

during our four T&E events to develop, implement, and refine solutions that allowed us 

to increase the number of seismic stations while maintaining the ability to acquire, 

transmit, store, and process seismic data in the field and in near real-time. Additional 

information regarding embedded systems, distributed database, solution architecture, and 

telemetry infrastructure is provided below. 

 

Embedded Systems 

 

Embedded systems include a wide range of products and an even wider range of 

applications ranging from hobbyist to industrial. Embedded systems include 

microcontrollers, embedded computers, system-on-chip, computer-on-module, system-

on-module, etc. Typically, embedded systems are low SWaP, intended for specific 

applications, and have modest capabilities when compared with desktop or laptop 

computers. 
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The Raspberry Pi is among the most popular processors to be incorporated into 

embedded systems. As of December 2018, the Raspberry Pi was the world’s third best-

selling general purpose computer (Heath, 2019). As a system originally intended to teach 

children computer science, the Raspberry Pi is inherently easy-to-use and inexpensive 

(Heath, 2019). However, having developed an immense community of users, beyond 

children, use of the Raspberry Pi for industrial and scientific endeavors are 

commonplace. 

To provide geoscientists a “no engineer needed” solution for enhanced sensor 

node development and maintain the high-quality data geoscientists are accustomed to, 

Sepulveda and Pulliam (2016) integrated a Raspberry Pi 2 and the REF TEK 130-01 to 

develop the “Raspberry Pi Enhanced REF TEK” (RaPiER). Although the RaPiER 

represented a capable single-node solution for edge-based geoscientific applications 

(Sepulveda & Pulliam, 2016), our current efforts required a multi-node solution. Our 

desire to acquire, transmit, store, and process seismic data in a manner that minimizes 

software development (i.e., non-geoscientific) requires that we carefully select an 

embedded system that allows for “articulated” edge storage. Similar to IoT edge storage 

(Koegler, 2019), our solution should allow us the ability to combine data from multiple 

devices and perform seismic processing in a field setting. 

 

Distributed Database 

 

A distributed computing system, as defined by (Özsu & Valduriez, 2011), is a 

collection of autonomous computing devices, interconnected by a computer network, that 

allows for the cooperative completion of tasks. Although the complexities of the exact 

nature of “distribution” (e.g., data, processing logic, etc.) are beyond the scope of this 
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discussion, the fundamental need to distribute processing flows from the need to improve 

computation speeds, the global nature of modern enterprises, and the need to 

accommodate large volumes of data (Özsu & Valduriez, 2011). 

Within the context of an enterprise, the physical location of data is often an 

afterthought. With cloud, on-premises, and hybrid (i.e., both cloud and on-premises) 

database solutions available, the actual physical location of data can become unimportant 

if high-bandwidth, high-availability, and fault tolerant network connectivity is available. 

The intricacies of distributed processing are similarly obscured by the easy-to-use, 

enterprise-grade, database management system tools that business users have come to 

expect. Microsoft Access, MySQL, and Oracle are examples of popular relational 

database management systems (RDBMS) (Carpenter & Hewitt, 2016). 

As data volumes increase, RDBMS administrators have two available scaling 

options: 1) the distribution of data across more machines (i.e., horizontal scaling) or 2) 

increasing the system performance of the existing machine (i.e., vertical scaling) 

(Carpenter & Hewitt, 2016). Vertical scaling, although simple to implement, may not be 

the most effective strategy. Horizontal scaling uses relatively inexpensive commodity 

hardware to distribute the database across multiple systems, thus reducing the overall 

workload of individual systems. 

Unfortunately, a distributed RDBMS results in distributed transactions. This 

requires the implementation of a two-phase commit to prevent new transactions from 

executing until the prior transaction is complete and a commit response has been returned 

to the transaction manager (Carpenter & Hewitt, 2016). As the number of transactions 

(i.e., data velocity) and duration of transaction processing time (i.e., data volume) 
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increase, the RDBMS will likely encounter performance issues resulting from the way 

RDBMSs inherently operate (Carpenter & Hewitt, 2016; Chen & Zhang, 2014). 

Given our desire to ingest hundreds of millions of samples per day into a database 

running on a modest number of nodes, spread across thousands of meters, we required a 

distributed database that was well-suited to timeseries data, built for high availability, 

linear (i.e., horizontal) scalability, and decentralization. Circa 2016, we performed a 

literature review to identify RDBMS alternatives that were ideally suited for mid-to-large 

scale IoT-based sensor network applications (Abramova et al., 2014; Confais et al., 2016; 

Duarte & Bernardino, 2016; Le et al., 2014; van der Veen et al., 2012). Given our 

requirements, a “Not only SQL” (NoSQL) database, specifically Apache Cassandra, 

emerged as our database of choice. 

Initially created by Facebook to solve their Inbox Search problem, Cassandra 

leveraged Amazon’s Dynamo and Google’s Bigtable to meet challenging write-heavy 

(i.e., billions per day), geographical distribution, reliability, and scalability requirements 

(Lakshman & Malik, 2010). Cassandra, accepted as an Apache Software Foundation top 

level project in February 2010, is an open source, distributed, decentralized, hybrid, 

operationally simple, elastically scalable, highly available, fault-tolerant, and tuneably 

consistent database (Carpenter & Hewitt, 2016; Ploetz et al., 2018). While Cassandra was 

an established NoSQL solution in 2016, to the best of our knowledge, no one had 

attempted to deploy Cassandra on an embedded system in support of a scientific 

endeavor. Although feasible, the extremely modest performance (in terms of CPU speed, 

RAM complement, etc.) of embedded systems and constraints of real-world ad hoc 

wireless networks would require a carefully considered approach to meet our goal. Our 
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design evolved during the course of a three-year development program, particularly in 

response to lessons learned during four major T&E events. Important and instructive 

details of that evolution are documented in the following sections. 

 

Solution Architecture 

 

 

Eastland Lakes, Texas, May 2017 and Soda Lake Geothermal Field, Nevada, June 2017 

 

In May 2017 and June 2017, we deployed 20 RaPiER nodes configured so that 

each Raspberry Pi 3 was responsible for: 1) the acquisition of data from one REF TEK 

130-01, 2) conversion of said data from REF TEK native formatted (RTP) file and 

insertion into Cassandra, 3) running Cassandra as a Transactional Data Center (DC) 

participating in a two DC (i.e., three and 20 node) cluster (Fig. 3.1). The Transactional 

DC, composed of 20 RaPiER nodes, was responsible for the insertion of seismic data into 

the cluster. The Query DC was responsible for handling queries for subsequent seismic 

processing. Unfortunately, the modest resources (i.e., processor and memory) of the 

Raspberry Pi 3 resulted in frequent RaPiER downtime (e.g., hangs, reboots, etc.). 

In order to improve reliability, we decided to offload the Raspberry Pi 3’s 

Cassandra-related workload by replacing the Raspberry Pi 3 with an Asus Tinker Board3. 

The Tinker is like the Raspberry Pi 3; however, it has an additional gigabyte of RAM 

(i.e., two gigabytes). The additional gigabyte of RAM significantly improved Cassandra’s 

performance and reliability.  

 
3 https://www.asus.com/us/Single-Board-Computer/Tinker-Board/ 
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Figure 3.1. Eastland Lakes and Soda Lake T&E event architecture. 
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In addition to downtime related to the embedded system, we experienced 

downtime related to network compartmentalization. One section of the ad hoc wireless 

network we established to allow for data replication, gossip, etc., between node-to-node 

and DC-to-DC would disconnect from another section of the network. Eventually, nodes 

were deprecated due to unanswered topological gossip state updates. This resulted in a 

loss of Cassandra data insertion and replication. 

 

Baylor Research and Innovation Collaborative, Texas, July 2018 

 

Given the lightweight workload now required of the Raspberry Pi 3 (i.e., without 

Cassandra) and our desire to lower cost, we decided that it was feasible to increase the 

number of REF TEK 130-01s transmitting data to an individual Raspberry Pi 3 from one 

to three. In July 2018, we deployed a combination of Raspberry Pi 3s and Tinkers in a 

tiered configuration. 

Our shift to a tiered configuration was motivated by a desire to: 1) transition to a 

hub-and-spoke topology (Fig. 3.2) that would allow us to implement a replication 

solution that tolerates inevitable network outages (i.e., real-world conditions), and 2) 

scale up the number of seismic stations to more than one hundred. A schematic of the 

configuration deployed at Baylor’s BRIC complex is shown in Fig. 3.3. In order to fully 

realize the benefits of a tiered configuration, we transitioned from Cassandra (i.e., 

Community Edition) to DataStax Enterprise4 (DSE). DSE is an enterprise-grade version 

of Cassandra that provides “commercial confidence” and extra capabilities such as 

automatic management services, advanced security, and advanced functionality.  

 
4 https://www.datastax.com/products/datastax-enterprise 
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Figure 3.2. Example of hub-and-spoke topology. 

 

 

Our primary interest in advanced functionality was DSE Advanced Replication5, 

which supports the configurable replication of data from source to destination clusters in 

a manner that tolerates intermittent loss of connectivity. Using DSE Advanced 

Replication we transitioned from a single cluster with two DCs to a direct cluster-to-

cluster configuration (i.e., Transactional Cluster and Query Cluster) that was inherently 

tolerant of network outages (i.e., backhaul telemetry). 

During the BRIC T&E event, we observed throughput issues that required us to 

stagger the insertion of data in order to minimize potential data loss; however, this 

introduced a data replication lag (i.e., approximately 4 hours). Although the tiered 

configuration and DSE Advanced Replication improved performance and reliability, 

further improvements to telemetry infrastructure would be necessary and we also 

 
5 https://docs.datastax.com/en/dse/5.1/dse-

dev/datastax_enterprise/advReplication/advRepTOC.html 
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recognized the need to scale down from four Raspberry Pi 3s per Tinker to three 

Raspberry Pi 3s per Tinker. 

 

San Emidio Geothermal Field, Nevada, May 2019 

 

The San Emidio T&E event would ideally consist of 144 seismic stations, 48 

RaPiER nodes, and 32 Tinkers (i.e., Cassandra nodes). Given the scale of this T&E event, 

it was necessary to introduce new terminology. A group of nine REF TEK 130-01s, three 

Raspberry Pi 3s, and one Tinker was labeled a “flight.” Four flights became known as a 

“squadron.” Each squadron (i.e., Transactional Cluster) would replicate data to 

“headquarters” (i.e., Query Cluster) via DSE Advanced Replication. A schematic of the 

configuration deployed at San Emidio T&E event is shown in Fig. 3.4. 
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Figure 3.3. BRIC T&E event architecture. 
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Figure 3.4. San Emidio T&E event architecture. 
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Telemetry Infrastructure 

 

Over the course of four T&E events, our telemetry infrastructure evolved. 

Initially, we relied on a home-use wireless solution to transmit data from individual 

RaPiER nodes to a central location that was within a couple of hundred meters. In order 

to allow for an increased number of nodes spread over greater distances (i.e., thousands 

of meters), we transitioned from a home-use wireless solution to a more professional-

grade wireless solution. 

 

Eastland Lakes, Texas, May 2017 and Soda Lake Geothermal Field, Nevada, June 2017 

 

The need to protect exposed Raspberry Pi 3 boards from the elements required 

that we place RaPiER nodes within enclosures located, on the ground, along our 2D line. 

Given the length of our 2D line and the location of enclosures on the ground, the 

Raspberry Pi 3’s integrated onboard Wi-Fi was a suboptimal solution. As such, we 

leveraged a generic USB Wi-Fi dongle that allowed for the connection of an antenna 

external to the RaPiER’s enclosure; thus, improving Wi-Fi signal quality. See Fig.3.5 for 

Eastland Lakes and Soda Lake T&E event telemetry infrastructure. 

We relied on multiple EnGenius ENS202EXT (i.e., 802.11n) units operating as 

wireless access points (WAPs) and wireless repeaters to transmit data among the 20 

nodes (i.e., Transactional DC) and transmit data to the three node Query DCs. Although 

effective, wireless repeaters represent a “first-generation” solution in which signal is 

acquired and rebroadcast on the same frequency; halving available bandwidth and 

increasing latency (Cossick, 2019). 
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Figure 3.5. Eastland Lakes and Soda Lake T&E event telemetry infrastructure. 
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In addition to bandwidth limitations, we identified two other performance limiters 

that we believe were responsible for the network compartmentalization discussed 

previously. First, we relied on generic USB Wi-Fi dongles that proved to be unreliable 

due to driver related issues and/or insufficient power from our DC-to-DC converters. 

Second, we used a home-use router (i.e., ASUS RT-N56U) with limited configurability. 

We implemented the following upgrades to subsequent T&E events: 1) ASUS RT-N56U 

router to the Ubiquiti Edgerouter X router, 2) generic USB Wi-Fi dongles to TP-LINK 

Archer T2UH AC600 Wi-Fi dongles, and 3) 3 or 5-amp DC-to-DC converters to 10-amp 

DC-to-DC converters. 

 

Baylor Research and Innovation Collaborative, Waco, Texas, July 2018 

 

The need arose to protect Tinker boards from a storm, and we placed them within 

enclosures. Given the length of our 2D line and the location of enclosures on the ground, 

the Tinker’s integrated onboard Wi-Fi required an antenna external to the Tinker’s 

enclosure. To improve Wi-Fi signal quality, we initially planned to leverage a generic 

USB Wi-Fi dongle that allowed for the connection of an antenna external to the Tinker’s 

enclosure. However, the integration of a Tinker and a Wi-Fi dongle introduced a 

complication. 

USB Wi-Fi dongle driver support for the Tinker was limited. A Linux kernel 

mismatch prevented us from utilizing the Raspberry Pi 3’s USB Wi-Fi dongle driver 

solution to solve the Tinker driver issues. Ultimately, we were unable to use the TP-

LINK Archer T2UH AC600 Wi-Fi dongles with the Tinker. Fortunately, the Tinker 

allowed for the connection of an antenna directly to the Tinker board. Although an 
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effective solution for the BRIC T&E event, we would need revisit Tinker specific Wi-Fi 

connectivity for a subsequent T&E event. 

We continued to rely on multiple EnGenius ENS202EXT units operating as 

WAPs and wireless repeaters to transmit data amongst the four Transactional DC nodes 

and transmit data to the Query DC for the BRIC T&E event. We intentionally delayed 

upgrading (i.e., 802.11ac) our wireless solution (e.g., WAPs, repeaters, etc.) until we 

verified the suitability of DSE Advanced Replication for our specific purpose and 

benchmarked data insertion rates given a real-world wireless implementation. However, 

we did upgrade the router, USB Wi-Fi dongles, and DC-to-DC converters to enhance 

telemetry reliability. Fig. 3.6 illustrates BRIC T&E event telemetry infrastructure. 

The implementation of our tiered configuration, in conjunction with the utilization 

of DSE Advanced Replication, improved overall performance and reliability. However, 

as previously mentioned, we were forced to stagger the insertion of data across the 

Transactional Cassandra cluster due to bandwidth limitations. Subsequent T&E events 

required that we upgrade our wireless solution, better balance our architecture (i.e., 

number of RaPiER per Tinker), and downsample seismic data. 
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Figure 3.6. BRIC T&E event telemetry infrastructure. 
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San Emidio Geothermal Field, Nevada, May 2019 

 

Ultimately, we decided not to use the TP-LINK Archer T2UH AC600 Wi-Fi 

dongles with the Tinkers. We connected individual Tinkers to a radio via the Tinker’s 

Ethernet port and a switch. These radios facilitated squadron-to-headquarters, squadron-

level Tinker to Tinker, and squadron-level Tinker to Raspberry Pi 3 communication; use 

of Wi-Fi varied depending on our specific telemetry configuration (Fig. 3.7-3.9). There 

were three upgrades to our San Emidio T&E event wireless solution: 1) transition from 

802.11n to 802.11ac, 2) transition to a wireless distribution system (WDS) access point, 

and 3) implementation of backhaul telemetry. Details regarding these three wireless 

solution upgrades are provided below. 

The 802.11ac standard was established by IEEE in 2013 and is fully backward-

compatible with previous Wi-Fi standards (e.g., 802.11a, 802.11b, etc.). At 1300 

megabits per second (Mbps), 802.11ac is theoretically 3x faster than 802.11n (i.e., 450 

Mbps). However, real-world 802.11ac and 802.11n speeds are closer to 720 Mbps and 

240 Mbps, respectively (Kelly, 2014). More importantly for our purposes, beamforming 

is built into the 802.11ac standard which makes 802.11ac speeds inherently better than 

802.11n at greater range (Kelly, 2014). In order to take advantage of 802.11ac 

performance enhancements, we transitioned from EnGenius ENS202EXT to EnGenius 

ENS500EXT-AC WAPs for the San Emidio T&E event. 

A WDS access point allows users to interconnect multiple WAPs into a single 

network without the need for wired connections (Kalinich, 2010). Although WDS access 

point theoretically remains subject to the “halving available bandwidth” limitation 

(Kalinich, 2010), some vendors (such as EnGenius) implement proprietary WDS access 
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point enhancements (e.g., EnJet™, Wave 2, etc.) to maximize throughput and increase 

reliability. Our upgrade to a WDS access point from “first-generation” wireless repeater 

technology improved the overall quality of our San Emidio T&E event wireless solution. 

Prior to the San Emidio T&E event, we configured our wireless solutions as a 

single network to which all nodes connected wirelessly in a similar manner. However, by 

increasing the number of seismic stations (i.e., 20/48 to 144) and increasing the overall 

distance of our 2D line (i.e., approximately 500 to approximately 2000 meters), we 

needed to implement independent backhaul telemetry between each squadron and 

headquarters. We chose the EnStation5-AC wireless bridge as our backhaul telemetry 

solution going forward. 
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Figure 3.7. San Emidio T&E event “wired” telemetry configuration. 
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Figure 3.8. San Emidio T&E event “hybrid” telemetry configuration. 
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Figure 3.9. San Emidio T&E event “wireless” telemetry configuration. 
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To evaluate the feasibility of various telemetry options, we implemented three 

telemetry configurations during the San Emidio T&E event: 1) “wired,” 2) “hybrid,” and 

3) “wireless.” Table 3.1 summarizes San Emidio T&E event telemetry configurations. In 

the “wired” configuration (Fig. 3.7), all squadron-level communication (i.e., REF TEK 

130-01 to Raspberry Pi 3, Raspberry Pi 3 to Tinker, and Tinker to Tinker) was via 

Ethernet cables (i.e., Cat6). Squadron-to-headquarters (i.e., backhaul) communication 

was via a point-to-point (PtP) wireless bridge. The “hybrid” configuration (Fig. 3.8) 

utilized a WDS access point for squadron-level Tinker-to-Tinker communication. 

Ethernet cables were used for Raspberry Pi 3 to Tinker and REF TEK 130-01 to 

Raspberry Pi 3 communication. Squadron-to-headquarters communication was via a PtP 

wireless bridge. Lastly, the “wireless” configuration (Fig. 3.9) utilized a WDS access 

point for squadron-level Tinker-to-Tinker communication and a wireless access point for 

Raspberry Pi 3 to Tinker communication. Ethernet cables were used for REF TEK 130-

01 to Raspberry Pi 3 communication. Squadron-to-headquarters communications was via 

a PtP wireless bridge.  
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Table 3.1. Summary of San Emidio T&E Event Telemetry Configurations 
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Results and Discussion: T&E Event at Eastland Lakes, Texas May 2017 

 

Fig. 3.10 shows the location of Baylor’s Eastland Lakes facility and the T&E 

event’s deployment geometry. Station locations, along with serial numbers of major 

components are tabulated in the data report archived at the IRIS DMC6. 

 

 
6 https://ds.iris.edu/ds/nodes/dmc/ 
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Figure 3.10. Location of the Eastland Lakes test site (Waco, Texas).  
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Data Products 

 

RTP files are closed and transferred to the Raspberry Pi 3’s solid state drive every 

five minutes at time intervals that are staggered to balance network traffic. There they are 

inserted into Cassandra. Raw data recorded at Eastland Lakes are shown in Fig. 3.11; 

station spacing is 15 m. 

Fig. 3.12 shows a source gather for hammer blows generated at station 13. The 

straight lines indicate direct arrivals of a compressional wave with velocity 520 m/s at left 

and a shear wave with velocity 320 m/s at right. Arrivals that marked a compressional 

wave with a velocity of 520 m/s are indicated. These arrivals suggest Vp/Vs equal to 

1.62. Hammer blows were performed to test and calibrate all the instruments and to help 

identify waves that are identified in virtual source gathers that are produced with ambient 

noise. Times of all hammer blows are tabulated in the data report archived at the IRIS 

DMC. 

Figures 3.13 and A.1 (i.e., supplemental material) show virtual source gathers 

(VSGs) generated at Eastland Lakes after 25 hours of data acquisition. VSGs are 

produced automatically after each hour of data acquisition by the RaPiER array. 

However, each hour’s data is added to all data recorded previously and the complete 

dataset is processed after each hour. Over time, the VSGs are expected to converge to 

optimum Green’s functions as waves arriving from off-axis cancel each other and new, 

on-axis sources contribute arrivals that stack constructively with previous arrivals. 

In Fig. 3.13, each virtual source location is indicated at the top of each figure and 

the distance of each station from the virtual source location is indicated as “offset.” Fig. 

3.13 y-axis refers to time lag. Virtual source gathers are sometimes folded about the zero 
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time lag but we prefer the unfolded presentation because it shows the waves’ directions 

of approach. Waves that arrive from an off-axis directions are expected to cancel but 

waves that traverse the array along its axis in opposite directions will stack to opposite 

sides of the zero time lag (i.e., a wave traveling from, for example, left to right will have 

negative time lags for the virtual source at right while a wave traveling from right to left 

will have positive time lags for the virtual source at the right). For example, Fig. 3.13a 

shows the VSG for station 19. The geophone at station 20 appears to have been poorly 

coupled to the ground compared to the majority of the other stations’ geophones. 

Nevertheless, arriving waves are still in evidence and a rough moveout (change in time of 

arrival with distance) can begin to be discerned. Station 20 (Fig. 3.13b) shows moveout 

more clearly. 

Note that trace 5 appears to be unusually noisy in Fig. 3.13a,b. This is partly 

because the plots are trace-normalized and the arrival at zero lag is small. However, it is 

also likely that the geophone at station 5 suffered from poor coupling (i.e., placed at the 

gravel edge of a paved road). We attempted to troubleshoot the station, its cables, and 

geophone but none of our efforts produced a significant improvement. While station 5 

shows clear arrivals in some time intervals, the data used to produce these VSGs 

represents the total amount of data acquired during the test, so improvements that resulted 

from troubleshooting are included with the problematic data. As a result of our 

experience with the Eastland Lakes T&E event we developed a set of real-time 

assessment tools, including data metrics, which we employed subsequently. These allow 

us to identify issues and respond more quickly. 
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Figure 3.11. Sample of raw RTP files recorded during the Eastland Lakes T&E event.  
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Figure 3.12. Shot gather for hammer blows at station 13 during the Eastland Lakes T&E event. 
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Figure 3.13. VSGs at a) station 19 and b) station 20 after 25 hours of data acquisition and 

processing of Eastland Lakes T&E event data. 
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Among the supplemental figures, VSGs become richer and more complex from 

Station 11 (Fig. A.1k) to Station 1 (Fig. A.1s). Multiple arrivals appear prominently in, 

for example, Stations 16 (Fig. A.1o) and 18 (Fig. A.1q), among others. These occur 

during a section of the line that is clearly a low-lying, now silted, settling pond. It rained 

heavily overnight during our survey and this part of the line filled with water, so some of 

our data were acquired before the rain and roughly ten hours of data were acquired during 

and after the rain. 

The Eastland Lakes T&E event was intended to test the RaPiER array’s 

functionality, including data acquisition, telemetry, and processing and an assessment of 

the data products. While the goal of deployment was to produce VSGs, the clarity, 

impulsiveness, and number of arrivals identified in those VSGs was not paramount. The 

VSGs in Figures 3.13 and A.1 show asymmetric arrivals; the asymmetry is caused by 

waves arriving from directions other than along the axis of the array and not being 

canceled by arrivals from their opposite direction (i.e., 180° azimuth). Such asymmetry is 

sometimes unavoidable when working with ambient noise, since we cannot control the 

locations of sources, but if the array is left in place longer these wayward arrivals are 

more likely to be canceled. The levels of noise on the VSGs will likewise decrease with 

greater deployment duration, further, the peaks of arrivals will sharpen, and the number 

of “events” (arriving waves) will increase. These desirable effects are demonstrated in the 

VSGs from the Soda Lake T&E event presented in the following section. 

 

Discussion 

 

Overall, the results of the Eastland Lakes test were successful in that they 

produced clear arrivals with consistent moveout across the array, allowed us to determine 
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a reasonable Vp/Vs ratio to begin 2D modeling, and identified several issues that needed 

to be addressed to improve the RaPiER array’s performance. Most importantly, however, 

it led to the conclusion that the strategy we proposed and design we created for 

automated seismic interferometry is workable, useful, and inexpensive. Further, 

computations were performed more quickly than anticipated, producing results within 15 

minutes after each hour’s data acquisition was completed. 

Issues that needed to be addressed included a) improving the robustness of 

connections and, ideally, components such as the Wi-Fi dongles, b) leaving the array in 

place for a longer duration (to allow off-axis waves to cancel), and c) developing real-

time quality control metrics and figures that would allow us to identify shortcomings 

easily. Complete failures are easy to spot but “less-than-ideal” data quality is less 

obvious. However, with the real-time assessments we developed after Eastland Lakes we 

can mobilize troubleshooting efforts more quickly and focus on the offending 

components or issues more acutely. 

  

Power and telemetry. Power systems performed well, with battery voltages 

dropping modestly (i.e., approximately 0.4 volt) over 24 hours of continuous operation 

(without solar panels recharging batteries). Telemetry bandwidth appeared more than 

adequate for data transfer and command and control (i.e., one channel sampled at 100 

sample/s). We experienced issues connecting to nodes via ssh from the central hub; 

however, it is likely these issues were related to network compartmentalization rather 

than network drops. Wi-Fi dongles performed reasonably well overall but were affected 

by the relatively high ambient temperatures (i.e., approximately 37 C) and occasionally 

the Raspberry Pi 3 would fail to initialize the Wi-Fi dongle after a reboot. A subsequent 



75 

 

reboot was required to properly initialize the Wi-Fi dongle. It is possible that this is a 

low-power issue related to the 3-amp limit of our DC-to-DC converters. 

  

Data. RaPiER single node data acquisition performed well. However, the RaPiER 

node RTPD archive status files became corrupted several times, likely due to multiple 

RaPiER reboots, and had to be rebuilt for REF TEK 130-01 data acquisition to continue. 

Of the 20 nodes, only two nodes experienced REF TEK 130-01 data loss over the course 

of approximately 18 hours of continuous acquisition. 

 

Results and Discussion: T&E Event at Soda Lake Geothermal Field, Nevada June 2017 

 

Fig. 3.14 shows the location of the T&E event at Soda Lake Geothermal Field 

near Fallon, Nevada and the event’s the deployment geometry. Station locations, along 

with serial numbers of major components are tabulated in the data report archived at the 

IRIS DMC. 

 



76 

 

 

 
 

Figure 3.14. Location of Soda Lake test site (Fallon, Nevada).  
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Data Products 

 

Note that the geothermal plant operated by Cyrq Energy is roughly 2.5 km from 

the end of the deployment and is nearly aligned with the axis of the array (Fig. 3.14). The 

plant is likely to be a source of energy recorded by the array, which may or may not be 

beneficial. Its seismic energy is more likely to be partitioned into surface waves than 

body waves and is therefore less useful for reflection imaging. 

Each station’s REF TEK 130-01 digitizer was programmed to produce data files 

of 5 minutes duration. A continually running process on the RaPiER (‘cron job’, in Linux 

language) wrote each file to the RaPiER’s Micro SD card. An example of a five-minute 

data file written by a REF TEK 130-01 in its RTP format is shown in Fig. 3.15. 

The data were then inserted into Cassandra and another cron job extracted data 

from Cassandra in 1-hour intervals and converted the data to miniseed format. Miniseed 

is a binary format that is widely used in seismology and is the format required by 

MSNoise7, the program we use to compute and stack cross-correlations. Miniseed files in 

our implementation are “cumulative,” in the sense that the file produced at each hour for 

each station contains the total amount of data recorded by that station since the 

processing “block” was started. For example, the RaPiER array computes the first set of 

Green’s functions two hours after recording has begun and then computes a new set every 

hour after that. At hour 2, two hours of data are processed. At hour 3, three hours of data 

are processed: the same two hours that were processed previously plus additional data 

that were recorded in the intervening hour. At hour 4, four hours of data are processed, 

 
7 http://www.msnoise.org/ 
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and so on. While this is computationally inefficient, the time required to perform all the 

computations is negligible, even on the Raspberry Pi 3. 

Fig. 3.16 shows a source gather for a hammer blow at station 11 at Soda Lake 

Geothermal Field. The station spacing is 30 m. Station 6 (not shown) malfunctioned due 

to extremely high temperatures. Straight lines indicate the direct arrivals of a 

compressional wave with a velocity of 270 m/s and a shear wave with a velocity of 167 

m/s, resulting in a Vp/Vs of 1.61. We performed a number of hammer blows to check 

array performance and to identify target arrivals with their wavespeeds. 

Fig. 3.17 shows VSGs in which each station serves as a virtual source. Figures 

3.17 and A.2a-g show a strong arrival at positive time lags that traverses the entire array. 

Another strong arrival appears at negative time lags from Stations 12-20 but that one 

folds into the positive-lag arrival and therefore represents the same “event” (wave 

arrival). There are additional hints of both earlier (faster) arrivals and later (slower) 

arrivals at positive time lags. Fig. 3.17b, the VSG for Station 19, shows the same strong 

arrival as in the VSG for Station 20 but the faster arrival is much clearer, as well. Later 

events are less clear than at Station 20. 

  



79 

 

 
 

Figure 3.15. Sample of raw RTP files recorded during the Soda Lake T&E event. 
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Figure 3.16. Shot gather for hammer blows at station 11 during the Soda Lake T&E 

event. 
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Figure 3.17. VSGs at a) station 20 and b) station 19 produced, after 45 hours of data 

acquisition and processing of Soda Lake T&E event data. 
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As the virtual source moves from right to left in Figures A.2a-g, the arrival from 

the opposite end of the line (the wave arriving at negative time lags) remains clear. 

However, the arrival is much less clear in Figures A.2h-r. There are other differences as 

well. Figures A.2a-g clearly show later arrivals on the left side of the line (negative 

offsets) whereas later arrivals on Figures A.2h-t are much less clear. Given that the events 

appear on other VSGs, they must also exist on Figures A.2h-r and their amplitudes could 

probably be boosted with additional processing. Note the tendency of the traces at 

greatest offsets from the virtual source in each gather to have the greatest levels of noise. 

This just reflects the drop-off in amplitude as a function of distance. Each Green’s 

function (trace) on each gather is normalized to its greatest amplitude, so the appearance 

of more noise on distant traces indicates the smaller difference between noise and wave 

amplitudes at that distance. The absolute amplitudes of noise are likely to be the same on 

each trace for a given VSG. 

Note the improved appearance overall of the VSGs produced at Soda Lake 

(Figures 3.17 and A.2) compared to those produced at Eastland Lakes (Figures 3.13 and 

A.1). The improvement is due to the longer deployment duration (45 hours vs. 25 hours) 

but also is due to the frequency content and directionality of the ambient noise at each 

site. The sandy soil in which we installed geophones should have produced less strong 

coupling than at Eastland Lakes (where soils had a much greater clay content) but that is 

not evident in the VSGs. It’s possible the longer deployment duration (i.e., greater “fold” 

of the stacks) overwhelmed the lower amplitudes produced by poor coupling. Or perhaps 

the coupling was comparable for the vertical components at each location and the 



83 

 

difference will be confined to the horizontal components (which we have not worked 

with yet). 

Regardless, the difference between the two sets of VSGs highlights the need for 

an automated, near real-time acquisition and processing system. Ideally, one would not 

want to end the Eastland Lakes deployment after 15 hours and the Soda Lake deployment 

may have gone on longer than was necessary. We will discuss Green’s function 

convergence in more detail below. In particular, we will show that 20 hours might well 

have been adequate for the deployment at Soda Lake even though 25 hours was (most 

likely) not adequate to characterize the subsurface at Eastland Lakes. 

 

Discussion 

 

  

Power. The Micro-USB B Connector to DC power, via DC-to-DC (i.e., 12 volt to 

5 volt) converter that we fabricated caused power issues. These issues caused intermittent 

drops in data acquisition and network connectivity. The relatively low-quality connectors 

(i.e., Micro-USB B) were often damaged during connection or disconnection to the 

Raspberry Pi 3 and small movements of the damaged connector subsequently caused 

unplanned power cycling. A sporadic loss of data resulted from the Raspberry Pi 3 being 

powered down or the RTP files being corrupted during power cycling. 

We also observed, while troubleshooting, that the USB Wi-Fi dongle occasionally did not 

power up correctly during the initial boot of the Raspberry Pi 3. This issue occurred 

randomly, approximately 10-15% of the time, while using the power cables we 

fabricated. It is possible that the 3-amp limit of the DC-to-DC converter is insufficient. 
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We recommend using a 5-amp or 10-amp DC-to-DC converter and splicing the converter 

to a factory terminated Micro-USB B connector. 

  

Telemetry. Although telemetry bandwidth was more than sufficient for our needs 

(i.e., one channel at 100 samples/s), we experienced multiple instances of 

“compartmentalization” in the Wi-Fi network. Compartmentalization prevented stations, 

connected to different repeaters, from communicating as expected. We spent a 

considerable amount of time troubleshooting the access point, repeaters, and the router; 

however, we were unable to diagnose and reconfigure the network to eliminate 

compartmentalization reliably. We recommend that subsequent efforts incorporate a 

professional-grade, as opposed to home-use, router. Professional-grade routers allow a 

network to be configured explicitly, with more advanced and flexible features, so that we 

can specify which stations connect to which access point or repeater. 

  

Data. The last 2.5 seconds of every five-minute RTP file were not properly parsed 

and inserted into Cassandra. This likely occurred due to a bug in the Python parsing 

script. The total percentage of RTP data lost due to this bug is approximately 0.83%, so it 

did not significantly impact the results (and all the RTP data were preserved, as well, so 

no data were lost). The parsing script was subsequently reworked to handle all data in 

every RTP file properly. 

  

Green’s function convergence. Fig. 3.18 shows the average L2 norm computed 

for each VSG vs. hour (numbered from the beginning of data acquisition). We compute 

this value by finding the L2 norm (square root of the sum of the squares) of amplitudes 

for each trace, find the sum over all traces, then divide by the number of traces 
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represented on the VSG. Failures, including telemetry, REF TEK 130-01, cable 

connectivity, or processing errors, can cause a station to fail to appear on any given VSG. 

We normalize by the number of traces that appear on a VSG. 

The average L2 norm (i.e., norm) value can be expected to decrease as the results 

converge to correct Green’s functions because most of the excursions on each trace are 

caused by random noise. The smallest norm for a trace would be one in which a wave 

arrival appears as a perfect delta function and all other amplitudes are zero. This will 

never be the case, of course, but we can approach this ideal value by stacking cross-

correlation functions computing for successive time intervals. Random noise will stack 

destructively, decreasing in amplitude, while coherent wave arrivals will stack 

constructively, increasing their amplitudes. 

The average norm on a VSG should, therefore, decrease over time but the nature 

of that decrease is critical. One can expect the norm to decrease rapidly during the first 

few hours as traces that consist primarily of random noise are replaced by traces that 

contain coherent waves. Improvements will continue but eventually the improvements in 

successive time intervals will no longer be significant. The threshold at which 

improvements are deemed to be “insignificant” is subjective, of course, but it is important 

to have quantitative tools such as these norms on which to base discussions, further study, 

and, ultimately, clear decisions. 

For example, Fig. 3.18a shows a dramatic improvement through the 20th hour for 

the VSG at Station 20; the improvement is even more dramatic in Fig. 3.18b (Station 19). 

After that, the average norm climbs a bit before ultimately returning to its previous value. 

This degradation is likely due to our use of a gas-powered generator that was needed to 
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power notebook computers at our central staging facility. Recall that all data recorded up 

to a particular time are used to compute the VSGs for that time point, so “bad” data that 

are added during a particular interval will have an effect for a time but will ultimately be 

overwhelmed by additional “good” data. This appears to be what happened. We used the 

generator during the last half of the second day of recording when our notebook 

computers needed to be recharged, but then we left the site in the evening and did not 

start the generator the next day, leading to quieter conditions in the vicinity of the array. 

Most, but not all, of the norm vs. time curves for other stations are similar to the 

curves shown in Fig. 3.18. Some stations (e.g., station 7) did not have data prior to hour 

20 due to failures of Raspberry Pi 3 processors, which we replaced. The telemetry at 

Station 6 (Fig. 3.19) failed for a few hours but the processing continued as though new 

data were arriving, so the “changes” during those hours were exactly zero, which resulted 

in the same norm being computed. This is due to a small bug that we later fixed in our 

codes, in the latter case. 

Fig. 3.20 shows examples of VSGs computed after 20 hours of data acquisition, 

for comparison to VSGs computed after 45 hours shown in Fig. 3.17. Fig. 3.20 caption 

summarizes some differences between the two sets of VSGs. The final decision that 

VSGs are “good enough” and that data acquisition should be ended is subjective and will 

differ from application to application and from group to group. Aside from its technical 

issues, greater convergence (“improvement”) can be achieved through longer 

deployments and more assiduous attention to troubleshooting, both of which involve 

greater costs.  
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Figure 3.18. Average VSG L2 norm – a rough measure of Green’s function convergence 

– as a function of total hours of data acquired and processed, for a) station 20 and b) 

station 19, during the Soda Lake T&E event. 

  

Station 20a)

b) Station 19
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Figure 3.19. Average VSG L2 norm – a rough measure of Green’s function convergence 

– as a function of total hours of data acquired and processed, for a) station 6 and b) 

station 7, during the Soda Lake T&E event. 

  

Station 6

Station 7
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Figure 3.20. a) VSG for Station 16 after 20 hours of data acquisition and processing and 

b) VSG for station 13 after 20 hours of data acquisition and processing during the Soda 

Lake T&E event. The faster arrival at negative offsets and positive time lags is clearer 

and has greater time separation from the slower arrival after 45 hours than after 20 hours. 

Arrivals at positive offsets and positive time lags are clearer and extend over a narrower 

time interval after 45 hours than after 20 hours. Also, the two VSGs’ noise levels at 

distant offsets are greater after 20 hours than after 45 hours. 
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We examined but rejected several other strategies for determining Green’s 

function convergence, including the computation of “residual traces,” in which we 

subtract each hour’s VSG trace for a given station from the previous hour’s trace and plot 

the result. While this is useful for identifying arrival times of certain waves, the most 

important result is cumulative (the sum of all the waves that traversed the array during 

our deployment) because seismic interferometry depends on waves that arrive from a 

particular off-axis direction being canceled by waves arriving from the opposite direction. 

A second approach involves computing and plotting the average norms of those “VSG 

residual” plots but that approach suffers from the same shortcoming as the residual plots 

themselves. Assessing minor changes in wave arrivals in small time increments is not a 

reliable indicator of convergence to the Green’s function between two stations. 

 

Results and Discussion: T&E Event at San Emidio Geothermal Field, Nevada, May 2019 

 

Fig. 3.21 shows the San Emidio Geothermal Field (near Gerlach, Nevada) and the 

T&E event’s deployment geometry. Station locations, along with serial numbers of major 

components are tabulated in the data report archived at the IRIS DMC. 
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Figure 3.21. Location of the San Emidio Geothermal Field (Near Gerlach, NV). Station 1 and 142 are shown along an approximately 

2120 m seismic line. The seismic line consists of 142 seismic stations (only end stations shown) spaced approximately 15 m apart. 
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We planned to deploy four squadrons and four headquarters totaling 144 seismic 

stations, 48 Raspberry Pi 3 (RaPiER nodes with three seismic stations each), 16 Tinkers 

(squadron-level), and 16 Tinkers (headquarters-level). A squadron would acquire 

approximately 778 million samples per day, insert approximately 156 million samples per 

day (downsampled) into a Transactional Cluster, and subsequently replicated to the 

Query cluster (i.e., headquarters). 

Due to broken or missing REF TEK 130-01 components, unplanned 

troubleshooting, and weather-related delays, we only deployed 142 seismic stations, 8 

Tinkers (squadron #1 and squadron #2), and 8 Tinker (headquarters #1 and headquarters 

#2). Regardless of the total number of squadrons deployed, the organization of squadrons 

and headquarters into independent groups allowed us to assess our data acquisition, 

transmission, storage, and processing. 

 

Data Products 

 

Fig. 3.22 shows the VSG for station 60 using all vertical-component data. The 

VSG’s main features include a first arrival with velocity approximately 333 m/s, visible 

to the end of the array, and slower arrivals, visible to approximately 300 m offsets, which 

appear to be dispersive. The latter arrivals are almost certainly surface waves; the higher-

amplitude first arrival’s velocity is typical of air waves, although in the context of passive 

recording of ambient noise a significant air wave is not expected. Regardless, no reflected 

arrivals are obvious in the raw stacks. This is not surprising, given the array deployment 

over deep sediments on the valley floor. 

The same arrivals appear prominently on the VSG for station 66 (Fig. 3.23a). 

Median filtering over seven traces decreases the coherence and amplitude of the first 
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arrival (v=333 m/s) (Fig. 3.23b). Windowing a shorter time period (3 s) (Fig. 3.24) shows 

the effectiveness of median filtering in revealing the surface waves but no additional 

arrivals are apparent. However, applying a similar process to station 99 VSG (Fig. 3.25), 

where surface waves are less coherent reveals possible reflection events (highlighted). 

Regardless, the main goal of this deployment was to test and evaluate the RaPiER array’s 

performance in terms of data acquisition and processing. We would expect to produce 

more revealing VSGs with higher gain sensors and/or deployment in areas without such 

deep, highly attenuating sediments. 
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Figure 3.22. VSG for station 60 (San Emidio T&E event) shows a first arrival with velocity of ~333 m/s, which is similar to a typical 

velocity of an air wave, and dispersive surface waves, the slower, more steeply dipping, arrivals visible from 0-300 m offset. 
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Figure 3.23. a) VSG for station 66 (San Emidio T&E event) shows a first arrival with velocity of ~333 m/s, which is similar to a 

typical velocity of an air wave.  
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Figure 3.23. b) VSG for station 66 (San Emidio T&E event) after applying a seven-trace median filter to minimize the first arrival 

with velocity 333 m/s. 
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Figure 3.24. VSG for station 66 (San Emidio T&E event): windowed comparison of a) 

raw VGS for station 66 (left) and b) the median-filtered version (right). Later arrivals, 

i.e., reflections, are not apparent in b). 

 

 

 
 

Figure 3.25. VSG for station 99 (San Emidio T&E event:) Windowed comparison of a) 

raw VSG for station 99 (left) and b) median-filtered version (right). The two transparent 

lines highlight possible reflections in b).  
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Discussion 

 

  

Data acquisition issue. In order to reduce data lag during the San Emidio T&E 

event, we decided to insert the vertical component of seismic data, at a decimated sample 

rate of 50 samples/s, into Cassandra. Vertical component data with a maximum frequency 

of approximately 20-25 Hz was what we needed for near real-time processing of seismic 

data at “the edge” so a Nyquist frequency of 25 Hz was acceptable. We set the gain 

setting of the REF TEK 130-01 stream parameters to unity for the San Emidio T&E 

event. Subsequent, post-event analysis revealed that we should have set the REF TEK 

130-01 gain setting to 32x. Our use of geophones, in a relatively low-noise environment, 

in conjunction with a gain setting of 1x resulted in generally low amplitude signals that 

complicated seismic processing and reduced sensitivity. 

  

Emplacement issue. We transported the San Emidio T&E event equipment from 

Texas to Nevada in two 20’ trucks. To conserve space, we stacked empty bins and 

utilized unassembled node bins (e.g., RaPiER, Tinker, etc.) to store equipment. Although 

this approach allowed us to minimize the volume of our transportation footprint, it 

required that we assemble nodes onsite. The assembly of the nodes proved to be labor-

intensive and time-consuming; as was the assembly of backhaul telemetry (e.g., antenna 

masts, enclosures, etc.). Inclement weather further complicated node assembly and 

reduced our ability to emplace San Emidio T&E event equipment in a timely manner. 

  

Equipment issue. Each seismic station was supposed to include a quick 

deployment box. Unfortunately, some quick deployment boxes contained broken or were 
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missing components. We were forced to fixed broken components “on the fly” and 

cannibalize seismic stations to emplace a total of 142 seismic stations. 

  

REF TEK 130-01 GPS issue. On April 6, 2019 many Garmin GPS devices were 

susceptible to a GPS Week Number Rollover issue; “– a sort of mini Y2K Bug…” that 

could corrupt GPS devices’ location and time data (Vincent, 2019). Older REF TEK 130-

01 GPS receivers (i.e., “humpback”) models had been identified by IRIS PASSCAL as 

vulnerable to the rollover issue prior to our San Emidio T&E event; however, older 

version of the “puck” REF TEK 130-01 GPS receivers had not. We were provided new 

versions of the “puck” REF TEK 130-01 GPS receiver by PASSCAL without out an 

explanation for the need to replace identical looking older “puck” versions. As such, our 

initial “wired” test block resulted in datetime corrupted REF TEK 130-01 data. See Fig. 

A.3 for details. 

  

REF TEK 130-01 backup battery issue. The REF TEK 130-01 uses a backup 

battery to maintain acquisition parameters when the power is disconnected from the REF 

TEK 130-01. All REF TEK 130-01 acquisition parameters were set prior to the San 

Emidio T&E event. Six REF TEK 130-01s had bad backup batteries. Once emplaced, 

acquisition parameters (i.e., channel and stream) were verified on all REF TEK 130-01s. 

However, even though the REF TEK 130-01s with bad backup batteries showed properly 

set acquisition parameters via REF TEK field setup controller (FSC) application, these 

REF TEK 130-01s created many short-duration RTP files instead of single files of five-

minute duration. For REF TEK 130-01s with bad backup batteries it was necessary to 

delete and reenter acquisition parameters via FSC before they functioned correctly. 
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Although a relatively easy fix, this issue was difficult to diagnose and required that we 

repeatedly visit malfunctioning REF TEK 130-01s along the seismic line. 

  

“Wireless” configuration issue. Despite our best efforts to identify a solution that 

allowed for wireless communication between the Raspberry Pi 3 and Tinker during our 

San Emidio T&E event’s “wireless” configuration, we encountered unexpected problems. 

Specifically, we were unable to connect the Raspberry Pi 3 via the TP-Link Archer 

T2UH AC600 Wi-Fi dongle to the Tinker via the EnGenius ENS500EXT-AC. The issue 

was likely caused by a frequency band mismatch between the TP-Link Wi-Fi dongle and 

the 3rd party Wi-Fi antenna we chose. We had previously (BRIC T&E event) used the 

TP-Link Wi-Fi dongle with the 3rd party Wi-Fi antenna (i.e., 802.11n/b/g) but not with 

the EnGenius ENS500EXT-AC (i.e., 802.11ac). 

We attempted to utilize an EnGenius ENS500EXT-AC to enable wireless 

connectivity for approximately half of squadron #2’s Raspberry Pi 3s. However, after 

approximately six hours into our “wireless” configuration test we began to experience 

power-related (i.e., low voltage) failures on multiple squadron #2 Cassandra nodes. The 

power-related failures were due to multiple days of cloud cover negatively impacting the 

recharging of Cassandra node batteries. 

 

Conclusions and Recommendations 

 

With respect to earlier editions, the T&E event at San Emidio in May 2019 

represented a major refinement of solutions (e.g., embedded systems, a distributed 

database, etc.) and a challenging logistical effort to prepare, mobilize, deploy, and 

maintain seismic stations, RaPiER nodes, Tinker nodes, and the requisite power and 
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telemetry infrastructure. The emplacement issues, equipment issues, and unplanned 

troubleshooting, documented above, and weather delays significantly impacted our 

ability to deploy our solution as planned. Ideally, future efforts should include a 

simplified assembly and deployment procedure that does not require an in-depth 

knowledge of RaPiER and Tinker nodes. Also, processes should be incorporated (e.g., 

checklists, test shots, etc.) that better verify initial status and that gauge subsequent 

solution performance and the quality of acquired data. Last, additional time to perform 

adjustment and evaluate results should be budgeted. 

 

Embedded Systems Performance 

 

Over the course of four T&E events, the Raspberry Pi 3 (i.e., RaPiER node’s 

embedded system) performed reliably. During our most recent T&E event (i.e., San 

Emidio) there were no instances where we failed to capture data due to a Raspberry Pi 3 

related failure. Although we increased RaPiER workload and operated the system in 

environmentally challenging conditions (e.g., temperature, rain, etc.) the Raspberry Pi 3 

continued to provide an easy-to-use, inexpensive, and reliable solution to maintain the 

RTP archive at “the edge.” 

Our use of the Tinker as our Cassandra node’s embedded system presented 

challenges. The Tinker’s user community is not as robust as the Raspberry Pi 3’s. Simple 

problems, such as our USB Wi-Fi dongle issue, were excessively challenging. Although 

the extra gigabyte of RAM the Tinker provided was necessary for Cassandra to perform 

reliably, we spent a disproportionate amount of time troubleshooting basic Tinker 

functionality. 
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Ideally, a Raspberry Pi 3 with greater than one gigabyte RAM and improved 

USB/Ethernet throughput would replace the Tinker. Unfortunately, we did not have 

access to an “enhanced” Raspberry Pi 3 during our four T&E events. However, in June 

2019 the Raspberry Pi Foundation announced the release of the Raspberry 4 (Upton, 

2019). The Raspberry Pi 4 currently comes in three available RAM configurations (i.e., 2, 

4, and 8 GB), offers USB 3.0 support, and Gigabit Ethernet connectivity (Upton, 2020). 

In the future, we recommend using the Raspberry Pi 4 as the Cassandra node’s embedded 

system instead of the Tinker. 

 

Cassandra (i.e., DSE) and DSE Advanced Replication Performance 

 

Our implementation of Cassandra (i.e., DSE) at “the edge” was relatively 

straightforward. It was necessary to tune settings given our decision to run DSE on 

hardware well below DataStax’s minimum recommend resources; however, we did not 

encounter compatibility issues (e.g., processor architecture, Linux, etc.). Our use of DSE 

Advanced Replication was equally straightforward. We successfully utilized DSE 

Advanced Replication to implement a hub-and-spoke topology that “hardened” our 

solution against inevitable network outages. 

Our use of DSE and DSE Advanced Replication allowed us to maintain a 

distributed database at “the edge” that ingested approximately 156 million samples per 

day (i.e., one squadron) with a mean ingest rate of approximately 1700 rows per second 

(i.e., “hybrid” configuration). 1700 rows per second was more than double our target 

minimum ingest rate of 750 rows per seconds. Our ability to query and extract one hour’s 

worth of squadron data (i.e., 36 seismic stations) in approximately ten minutes (i.e., 
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approximately 11,000 samples retrieved per second) allowed for more than enough time 

to perform our seismic processing hourly. 

  

“Wired configuration”. Approximately 99.7% and 98.9% of the data acquired 

(i.e., REF TEK 130-01) was ingested into squadron-level Transactional Clusters, 

squadron #1 and #2 respectively. 100% of the data ingested into the Transactional 

Clusters (i.e., squadron #1 and #2) was replicated to their respective Query Clusters. 

  

“Hybrid configuration”. Approximately 99.2% and 99.9% of the data acquired 

(i.e., REF TEK 130-01) was ingested into squadron-level Transactional Clusters, 

squadron #1 and #2 respectively. Approximately 99.9% and 100% of the data ingested 

into the Transactional Clusters (i.e., squadron #1 and #2) was replicated to their 

respective Query Clusters. 

  

“Wireless configuration”. Approximately 85.0% of the data acquired (i.e., REF 

TEK 130-01) was ingested into squadron-level Transactional Cluster (i.e., squadron #2). 

However, 99.5% of the data acquired (i.e., REF TEK 130-01) was ingested into 

headquarters-level Query Cluster (i.e., squadron #2). We observed an anomaly where 

more data resided within a Query Cluster than a Transactional Cluster. This anomaly 

resulted in an 8.8% difference between the amount of data residing within squadron #2’s 

Transactional Cluster and Query Cluster. Although the cause of the anomaly remains 

unknown, we interpret this as a Cassandra “failure” most likely due to squadron-level 

Wi-Fi issues and a DSE Advanced Replication “success” via backhaul Wi-Fi telemetry.  
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Solution Architecture 

 

Our tiered configuration allowed us to successfully create an “articulated” edge 

storage solution; “articulated” in that our solution consisted of more than two sections 

(i.e., clusters) connected by a “flexible joint” (i.e., solution architecture and telemetry). 

Learning lessons over the course of four T&E events, we balanced resources and 

requirements to deliver an ostensibly endless elastic solution that affords geoscientists the 

ability to combine data from multiple devices and perform seismic processing at “the 

edge.” Our tiered configuration, in conjunction with Cassandra (i.e., DSE) and DSE 

Advanced Replication, allows for the implementation of edge, fog, and/or cloud solutions 

without the need for non-geoscientific software development. 

 

Telemetry Performance 

 

Although we experienced technical issues with our San Emidio T&E event’s 

“wireless” configuration, we believe that use of commercial off the shelf Wi-Fi 

represents a viable solution for bandwidth intensive geoscience applications. The 

squadron-level and backhaul Wi-Fi telemetry used during the San Emidio T&E event 

represented an “out-of-the-box” solution (i.e., IP-based) that integrated seamlessly with 

embedded systems and Cassandra. Nonetheless, professional-grade wireless solutions do 

require a level of expertise that goes beyond typical home-use wireless expertise. 

 

Suggestions for Future Work 

 

The REF TEK 130-01 is readily available and in wide use by the geoscience 

community; however, its end-of-life status motivates us to consider other data acquisition 

systems. A cableless seismic acquisition system such as the iSeis Sigma may represent a 
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more cost-effective and rugged alternative to the REF TEK 130-01. With iSeis’ support, 

the recompiling Sigma acquisition software for the Raspberry Pi (i.e., ARM architecture) 

is a relatively straightforward process. 

The release of the Raspberry Pi 4 represents a tremendous opportunity. In 

addition to simplifying the development process, the 4 or 8 GB Raspberry Pi may provide 

an opportunity to leverage distributed computing at “the edge.” DSE advanced 

functionality includes Apache Spark8. Spark is an open source framework that allows for 

distributed in memory processing across a cluster of machines that includes machine 

learning, stream processing, and graph analytics libraries (Ryza et al., 2015). The Tinker 

did not provide enough RAM support both Cassandra and Spark; however, the 4 or 8 GB 

version of the Raspberry Pi may. 

With respect to processing: naively stacking all available data is unlikely to 

produce convergence to empirical Green’s functions as quickly as selectively stacking the 

“highest quality” VSGs for subsets of the time periods computed. We are actively 

pursuing strategies for identifying the “panels” of VSGs that carry the most information 

about later arrivals, ideally reflections. Features that can be identified and extracted in the 

field could potentially speed up convergence significantly and help deliver the full 

potential of ambient noise processing at “the edge.” 
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Abstract 

 

In the past 20 years, technological advances have reduced the complexity and cost 

of developing sensor networks for remote environmental monitoring. However, the 

challenges of acquiring, transmitting, storing, and processing remote environmental data 

remain significant. The transmission of large volumes of sensor data to a centralized 

location (i.e., the cloud) burdens network resources, introduces latency and jitter, and can 

ultimately impact user experience. Edge computing has emerged as a paradigm in which 

substantial storage and computing resources are located at the “edge” of the network. In 

this paper, we present an edge storage and computing framework leveraging 

commercially available components organized in a tiered architecture and arranged in a 

hub-and-spoke topology. The framework includes a popular distributed database to 

support the acquisition, transmission, storage, and processing of Internet of Things based 

sensor network data in a field setting. We present details regarding the architecture, 

distributed database, embedded systems, and topology used to implement an edge-based 

solution. Lastly, a real-world case study (i.e., seismic) is presented that leverages the edge 

storage and computing framework to acquire, transmit, store, and process millions of 

samples of data per hour.  
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Introduction 

 

The availability of inexpensive low power microcontrollers, sensors, and 

transceivers in the late 1990s resulted in a flurry of Wireless Sensor Network (WSN) 

activity in the early 2000s (Corke et al., 2010). By the mid-2000s, WSN experts (i.e., 

computer and software engineers) were collaborating with geoscientists to deploy WSNs 

for environmental monitoring (Martinez et al., 2006; Talzi et al., 2007; Werner-Allen et 

al., 2005). The increased spatial and temporal measurements provided by WSNs were 

beneficial; however, the design, development, and deployment of WSNs continued to 

rely heavily on WSN experts (Challen & Welsh, 2010). Commercially available WSN 

components required considerable modification before they could be deployed in real-

world environments (Talzi et al., 2007) and they often experienced reliability problems 

requiring multiple iterations of design and development before a reliable solution could 

be delivered (Challen & Welsh, 2010). WSN development was further complicated by 

interoperability problems resulting from the wide variety of available proprietary and 

nonproprietary solutions (e.g., hardware, protocols, etc.) (Mainetti et al., 2011). 

WSNs and the Internet of Things (IoT) both originated in the late 1990s. The IoT 

represents a convergence of technologies allowing things (e.g., devices, objects, etc.) to 

communicate via the Internet (Gaber et al., 2019). Initially, interest in WSNs outpaced 

the IoT. Google Trend1 data indicated year-to-year (i.e., 2004 to 2012) interest in WSNs 

varied between 1.3 to 4.7 times greater than the IoT. In 2013, interest in the IoT overtook 

WSNs and has increased year-to-year (i.e., 2013 to 2019) monotonically from 1.4 to 14.7 

times greater than WSNs. Greengard (2015) credits the 2007 release of the iPhone and 

 
1 https://trends.google.com/ 
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2010 release of the iPad with increased interest in the IoT. However, we believe the 

availability of inexpensive and easy-to-use embedded systems with Internet connectivity 

(e.g., Arduino2, Gumstix3, etc.) in the late 2000s contributed to increased IoT 

development activity. 

Internet Protocol (IP) is the principal network layer protocol of the Internet that 

provides communication among disparate networks (Neves & Rodrigues, 2010). IP was 

not initially considered suitable for WSNs given the limited computational resources and 

constrained power budget typical of WSN nodes (Vasseur & Dunkels, 2010). 

Nonetheless, by 2010, researchers had demonstrated IP-based WSN applications were 

feasible (Neves & Rodrigues, 2010) and had cataloged numerous examples of IP-based 

WSNs within industry and the scientific community (Vasseur & Dunkels, 2010). IP-

based sensor networks (i.e., wired and wireless) aligned closely with the IoT; thus, 

resulting in IoT-based sensor networks that reduced overall complexity, promoted 

interoperability, and increased scalability (Alcaraz et al., 2010; Lazarescu, 2013; Zorzi et 

al., 2010). 

Currently, WSNs are contributing greatly to the IoT by transforming agriculture, 

healthcare, and industrial automation (Jan et al., 2019). WSNs are considered a basic 

component of the IoT and the primary means of communication between machines and 

the future Internet (Chung & Kim, 2016). The continued integration of WSNs and the IoT 

is expected to result in a significant increase in the number of sensors connected to the 

Internet (Kocakulak & Butun, 2017). 20 to 30 billion IoT devices are expected to be 

 
2 https://www.arduino.cc/ 

3 https://www.gumstix.com/ 
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connected to the Internet by 2020 (Nordrum, 2016) and countless numbers of sensors will 

be connected to those devices. The scale and complexity of IoT data, specifically sensor 

network data, will be unprecedented. 

Given the modest resources of IoT devices, IoT data is typically offloaded to the 

cloud for storage and subsequent processing (Premsankar et al., 2018). Cloud computing 

(i.e., the cloud) consists of centralized applications offered as services via the Internet and 

the resources in the cloud provider’s data center providing those services (Armbrust et 

al., 2010). The cloud, with its virtually limitless resources, supports the management of 

IoT devices as well as the applications and services exploiting IoT data (Botta et al., 

2016). However, cloud computing may not be the ideal solution for IoT applications 

where edge devices (e.g., IoT, mobile, etc.) are major producers data (Garcia Lopez et al., 

2015; Shi et al., 2016; Varghese et al., 2016). The transmission of large volumes of edge 

device data to the cloud burdens network resources, introduces latency and jitter, and 

ultimately impacts user experience (Satyanarayanan, 2017). Moreover, excessive 

backhaul network traffic to the cloud negatively impacts the performance and 

survivability of edge devices by increasing power consumption, introducing a single-

point-of-failure, and wasting edge device computing resources (Garcia Lopez et al., 2015; 

Satyanarayanan, 2017; Shi et al., 2016; Varghese et al., 2016). 

Edge computing represents an emerging paradigm where substantial storage and 

computing resources are placed at the edge of the network (Satyanarayanan, 2017; 

Yousefpour et al., 2019). The “edge” is the local network typically one-hop away from an 

edge device (Yousefpour et al., 2019). The adage “compute is cheap, storage is cheaper, 

but data movement is very expensive” (Morgan, 2018) and the fact that edge device 
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performance enhancements have outpaced network performance enhancements (Shi et 

al., 2016) illustrate the motivation to move storage and computing resources to the edge. 

Edge computing allows for the better control of data (e.g., privacy, security, etc.), 

enhanced application performance (e.g., jitter, latency, etc.), increased scalability (e.g., 

data aggregation, preprocessing, etc.) and improved survivability (e.g., connectivity, 

reduced power consumption, etc.) (Satyanarayanan, 2017). 

Within the current IoT landscape, edge computing is considered a critical 

computing paradigm (Yousefpour et al., 2019). Edge computing is particularly useful to 

IoT applications where: 1) low latency is required, 2) connectivity is constrained (i.e., 

network capacity) or nonexistent, or 3) dense acquisition of, relatively high sample rate, 

data is occurring (Premsankar et al., 2018; Yousefpour et al., 2019). IoT applications 

utilizing IoT-based sensor networks to perform remote environmental monitoring (i.e., 

seismic) typically acquire relatively high sample rate data (i.e., 10s or 100s of samples 

per second, sps), from one, tens, hundreds, or even thousands of sensors, in locations 

where connectivity is either constrained or nonexistent. 

As geoscientists, we intend to mitigate performance limiters commonly 

encountered when deploying IoT-based sensor networks for seismic monitoring by 

utilizing edge computing to collectively process data “in a field setting” without 

disrupting acquisition and regularly assess the quality of our deployment strategy and 

results. Essentially, we aim to reduce the cost and risk typically associated with seismic 

monitoring. 
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In this paper, we present an edge storage and computing framework for IoT-based 

sensor networks. The framework uses common embedded systems (i.e., Raspberry Pi4 

and Tinker Board5) and IP-based networks to orchestrate general purpose, edge-based, 

computing services using a popular distributed database (i.e., Apache Cassandra). Our 

goal was to utilize this framework to automate the acquisition, transmission, storage, and 

processing of seismic data, in a field setting. The main contributions of this paper are: 1) 

an architecture and topology supporting IoT-based sensor network edge storage and 

computing, 2) the selection and review of a distributed database that complements the 

architecture and topology, 3) recommendations regarding embedded systems to support 

the acquisition, storage, and processing of sensor data, and 4) details regarding a real-

world remote environmental monitoring (i.e., seismic) case study in which approximately 

13 million samples were acquired, transmitted, stored, and processed hourly. In a field 

setting, greater than 99% of the data acquired by edge devices (i.e., seismic stations) was 

stored, queried, and extracted from edge nodes for seismic processing. 

 

Motivation 

 

There are myriad examples in which WSNs have been proposed to replace cable-

based connectivity for seismic monitoring applications (S. Savazzi et al., 2011; Stefano 

Savazzi, Goratti, et al., 2009; Stefano Savazzi, Rampa, et al., 2009); however, these 

efforts largely focus on wireless technology itself (e.g., protocols, specification, etc.). In 

2018, Jamali-Rad and Campman (2018) proposed a wireless sensing framework, that 

 
4 https://www.raspberrypi.org/ 

5 https://www.asus.com/us/Single-Board-Computer/Tinker-Board/ 
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utilized low-power wide-area network (LPWAN), to prioritize: 1) inherently IoT-

compatible, low power, and long range wireless sensors, 2) scalable advanced wireless 

networking protocols, and 3) cloud storage and computing. The static context header 

compression initiative (SCHC) for IoT interoperability further strengthens the viability of 

LPWAN of IoT applications (Sanchez-Gomez et al., 2020). SCHC is a novel 

compression and fragmentation scheme for transmitting IPv6/UDP packets over 

LPWANs (Toutain et al., 2018.). 

The wireless sensing framework proposed by Jamali-Rad and Campman (2018) 

and Jamali-Rad et al. (2018) relied upon a cloud paradigm (i.e., a centralized model) for 

remote data storage and analysis. This centralized model required that acceptable latency, 

data transmission rates, and data generation rates were considered when identifying 

applicable scenarios of interest (Jamali-Rad et al., 2018; Jamali‐Rad & Campman, 2018). 

Jamali-Rad and Campman (2018) identified four scenarios of interest (i.e., triggered 

and/or continuous monitoring): 1) ground motion monitoring, 2) ambient-noise seismic 

interferometry, 3) microseismic fracture monitoring, and 4) quality control for active land 

seismic surveys. However, continuous monitoring applications required that an 

appropriate wireless network was available (Jamali‐Rad & Campman, 2018). 

Valero et al. (2019) and Clemente et al. (2020) propose an in situ signal 

processing approach that leverages IoT technologies to develop a real-time system for 

performing seismic analytics within the sensor network. This approach is ideal for 

scenarios in which a centralized model is untenable due to constrained or nonexistent 

backhaul connectivity (Valero et al., 2019). Valero et al. (2019) and Clemente et al. 

(2020) leverage their respective solutions to successfully perform autonomous, in situ, 
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seismic imaging for thirteen nodes located a few meters apart and six nodes located 

approximately 15 meters apart, respectively. Valero et al. (2019) and Clemente et al. 

(2020) both use MySQL6 to store data on individual sensor network nodes. 

The challenges of acquiring, transmitting, storing, and processing seismic data are 

non-trivial. The seismic methods used extensively in the oil and gas industry are costly 

and time consuming; seismic surveys require operators to assume substantial cost and 

risk (Jones, 2018). Likewise, seismic methods employed within the scientific community 

are typically costly and time consuming. The outlay costs for a single transportable array 

broadband seismic station (i.e., USArray7) was between $30,000 to $50,000 (USD) 

(“USArray - Adopt a Station - Lower 48,” n.d.). The utilization of edge storage and 

computing to reduce the cost and mitigate the risk typically associated with seismic 

methods could have a profound impact on the oil and gas industry and the scientific 

community. The edge storage and computing framework described below could also 

prove to be particularly beneficial to the emerging Industrial Internet of Things (IIoT) or 

other sensor-heavy IoT applications. 

Ongoing Information and Communication Technology (ICT) development has 

resulted in the availability of increased computing resources and widespread connectivity 

enabling scientists and engineers to streamline research and create practical solutions to 

real-world problems (Fratu et al., 2016). In 2016, we integrated a commercially available 

geoscience-related digitizer (i.e., REF TEK 130-01) with an inexpensive and easy-to-use 

embedded system (i.e., Raspberry Pi) to provide the Raspberry Pi Enhanced REF TEK 

 
6 https://www.mysql.com/ 

7 http://www.usarray.org/ 
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(RaPiER) platform (Sepulveda & Pulliam, 2016). The RaPiER proved to be an effective 

single-node edge-based solution; however, more complex analysis requires data from 

multiple nodes to be processed collectively. We built upon our previous effort and 

utilized easy-to-use and well-established (i.e., within the ICT community) components to 

develop a novel edge-based solution capable of scaling to hundreds of nodes deployed 

over thousands of meters. 

 

Framework Overview 

 

 

Background 

 

We planned to acquire data from approximately 150 seismic stations (i.e., 

digitizers and sensors) spaced evenly along a line slightly more than two kilometers in 

length. Each seismic station would acquire 250 sps data from three channels (i.e., a tri-

axis geophone); however, only one channel (i.e., the vertical), downsampled to 50 sps, 

would be processed. It would therefore be necessary to acquire, transmit, store, and 

collectively process approximately 650 million data samples per day, in a field setting. At 

24 bits per sample, this would result in approximately 1.8 gigabytes (GB) of data 

generated per day. The seismic stations would be deployed in a remote environment, 

without permanent support infrastructure (e.g., communication, power, etc.), for 

approximately one week. We intended to utilize commercially available communications 

infrastructure, digitizers, a distributed database, and embedded systems to minimize the 

cost and complexity of implementing the edge-based solution described here. 

Given the requirements described above, we developed an edge-based solution 

relying upon an IoT-based sensor network to accomplish our goals as geoscientists. Over 
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the course of multiple deployments, we developed a tiered architecture of embedded 

systems, arranged in a hub-and-spoke topology, hosting a distributed database allowing 

for the acquisition, transmission, storage, and hourly processing of seismic data. Thus, 

allowing for the adjustment, if necessary, of the configuration (e.g., acquisition 

parameters, geometry, etc.) and modification (i.e., the shortening or lengthening) of the 

duration of our deployment with high levels of confidence our goals had been achieved. 

Details regarding our deployment will be provided in the Case Study section of this 

paper. 

The collective processing of sensor network data, at the edge of the network, 

reduces the cost of individual sensor nodes, increases fault tolerance, and promotes 

flexible configuration and management of shared sensor network resources (i.e., 

communication, storage, and computational); however, these resources must be capable 

of handling the velocity, volume, etc. of sensor network data (Ilyas & Mahgoub, 2006). It 

is necessary to implement an edge-based solution where the design and arrangement of 

communication, storage, and computational resources support the processing of sensor 

network data and mitigate the inevitable network connectivity problems commonly 

encountered during remote environmental monitoring. The following subsections present 

information regarding the selection of an appropriate architecture, topology, distributed 

database, embedded systems, and communication infrastructure to support the edge 

storage and computing framework. 
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Architecture 

 

  

Background. In an effort to maximize energy efficiency, sensor networks in the 

early 2000s adopted an architectural design that assumed it would be necessary to store 

and process data, as close to the data source as possible, on nodes with modest resources 

(Gnawali et al., 2006). This architectural design featured an application-specific and data-

centric approach where the sensor networks were customized for specific applications 

and data was decoupled from the sensors (i.e., nodes) producing it (Estrin et al., 1999). 

Essentially, an egalitarian collection of sensor nodes, located within an immediate 

vicinity of each other, coordinate to achieve high-level objectives (Estrin et al., 1999). 

  

Tenet principle. Although this approach was widely adopted, Gnawali et al. 

(2006) believed it increased system complexity and decreased manageability. Gnawali et 

al. (2006) expected future large-scale sensor networks would be tiered (i.e., lower and 

upper). The lower tier would consist of many constrained sensor nodes and the upper tier 

would consist of fewer less-constrained nodes (Gnawali et al., 2006). The upper tier 

reduced complexity and increased manageability via the restriction of multi-node storage 

and processing to the upper tier (i.e., the Tenet principle) (Gnawali et al., 2006). The 

restriction of multi-node storage and processing to the upper tier could introduce a single-

point-of-failure or be less energy efficient (Estrin et al., 1999). Nonetheless, the Tenet 

architectural principle complements our desire to minimize the complexity of integrating 

commercially available components into an overarching edge storage and computing 

framework.  



 

121 

 

Proposed architecture. Reference Architectures (RA), such as INTEL-SAP RA, 

Edge Computing RA 2.0, etc., were developed to establish standards regarding the design 

of edge computing architectures and their integration with ICT (Sittón-Candanedo et al., 

2019). Edge computing RA are typically based upon a three-layer model including cloud 

services as the upper layer (Sittón-Candanedo et al., 2019). Fig 4.1 illustrates a generic 

edge computing reference architecture. 

We utilized general purpose embedded systems to implement an architecture 

consisting of three, Tenet architectural principle inspired, tiers (i.e., lower, middle, and 

upper); however, our tiers (i.e., layers) are defined by workload. The complexity of the 

workload and, in turn, embedded systems (i.e., hardware and software) increases from the 

lower to upper layers. The lower layer is responsible for the “sensing workload,” the 

middle layer maintains the “transactional workload,” and the upper layer supports an 

“analytic workload.” See Fig. 4.2 for our edge storage and computing architecture. The 

sensing workload consists of edge devices (i.e., digitizers and sensors) and edge gateways 

(i.e., lower layer embedded systems) responsible for the acquisition of raw sensor data, 

the pre-processing of sensor data, and its subsequent insertion into middle layer edge 

nodes. Middle layer edge nodes form a distributed database that stores sensor data from 

multiple edge devices and replicates the data to the upper layer edge nodes. The upper 

layer edge nodes form a distributed database that stores sensor data from multiple middle 

edge nodes. Sensor data within the upper layer edge nodes can be queried and extracted 

locally for analysis or it can be replicated to other locations (e.g., cloud, edge, etc.).  
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Figure 4.1. Generic edge computing architecture. 

 

 

 
 

Figure 4.2. Proposed edge computing architecture.  
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Topology 

 

  

Background. The distance sensor network data traverses (i.e., wired and wireless) 

varies from a few meters to thousands of kilometers. Network delay, errors, etc. could 

negatively impact the quality and timeliness of sensor network performance (Ilyas & 

Mahgoub, 2006). Considering the inevitable network connectivity problems commonly 

encountered during remote environmental monitoring, it is necessary to arrange 

communication, storage, and computational resources in a manner ameliorating the 

negative effects of data delay, loss, etc. in the collective processing of sensor network 

data (Ilyas & Mahgoub, 2006). 

  

Hub-and-spoke. In communications networks, the hub-and-spoke topology 

consists of nodes (i.e., spokes) connected to centralized hubs acting as switching points 

for network traffic (Klincewicz, 1998). Hubs are interconnected with other hubs via 

backbone (i.e., backhaul) networks typically carrying larger volumes of network traffic 

compared to hub-to-spoke network connections (Klincewicz, 1998). The hub-and-spoke 

topology is commonly used for computer, military, and telecommunication applications 

(Karatas & Onggo, 2019). Sensor networks often adopt a hub-and-spoke topology to 

improve system performance by efficiently routing traffic between specific sources and 

destinations (Karatas & Onggo, 2019). 

We adopted a hub-and-spoke topology, consisting of wired and wireless 

networks, to facilitate the concentration of sensor network data from the lower to upper 

layers of our edge storage and computing architecture. Fig. 4.3 illustrates the specific 

hub-and-spoke network (i.e., a tree/star network) used. In the tree/star network, nodes are 
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connected to a hub (i.e., a concentrator) that is, in turn, connected to a central location or 

other to another intermediary concentrator, in a hierarchical structure (Klincewicz, 1998). 

Our choice of the tree/star network was influenced by the following three factors: 1) the 

hierarchical structure allows for the use of concentrators with greater capability (e.g., 

memory, storage, etc.) as they progress upward in the tree (Klincewicz, 1998), 2) the 

limits (e.g., network capacity, storage and processing capabilities, etc.) of concentrators 

can be overcome by adding additional concentrators and redistributing nodes 

accordingly, and 3) the tree/star networks allows for the continued addition of nodes (i.e., 

scaling), provided sufficient backhaul network capacity. 

 

 
 

Figure 4.3. An example of a tree/star network. 

 

 

Distributed Database 

 

  

Background. A structured collection of data, relating to some modeled real-world 

phenomena, is known as a database (Özsu & Valduriez, 2011). If the database structure 

(i.e., model) takes the form tables, it is known as a relational database (Özsu & Valduriez, 

2011). The relational model has been used to develop most conventional distributed 
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database technology (Özsu & Valduriez, 2011). A collection of multiple, logically 

interrelated, databases distributed over a network is known as a distributed database 

(Özsu & Valduriez, 2011). Distributed database management system (DBMS) is the 

software used to obfuscate the complexity of distributed data storage and allow for the 

management of the distributed database (Özsu & Valduriez, 2011). Like DBMS, a 

relational database management system (RDBMS) afford similar functionality to users. 

Microsoft Access, MySQL, and Oracle are examples of RDBMS with which readers may 

be familiar. 

As data volumes increase, RDBMS administrators have two available scaling 

options: 1) the distribution of data across more machines (i.e., horizontal scaling) or 2) 

increasing the system performance of the existing machine (i.e., vertical scaling) 

(Carpenter & Hewitt, 2016). Vertical scaling is simple to implement; however, it may not 

be the most effective scaling method given cost and technology limitations. Horizontal 

scaling uses relatively inexpensive commodity hardware to distribute the database across 

multiple systems, thus reducing the overall workload of individual systems. 

Unfortunately, a distributed RDBMS results in distributed transactions. This requires the 

implementation of a two-phase commit to prevent new transactions from executing until 

the prior transaction is complete and a commit response has been returned to the 

transaction manager (Carpenter & Hewitt, 2016). As the number of transactions (i.e., data 

velocity) and duration of transaction processing time (i.e., data volume) increase, the 

RDBMS will likely encounter performance problems resulting from the way RDBMS 

inherently operate (Carpenter & Hewitt, 2016; Chen & Zhang, 2014). 
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In 2016, we conducted a literature review to identify RDBMS (i.e., SQL) 

alternatives ideally suited for remote environmental monitoring applications (Abramova 

et al., 2014; Confais et al., 2016; Duarte & Bernardino, 2016; Le et al., 2014; van der 

Veen et al., 2012). Given our need to store and process 100s of millions of samples per 

day, a “Not only SQL” (i.e., NoSQL) database, specifically Apache Cassandra8, emerged 

as our database of choice. Initially created by Facebook to solve their Inbox Search 

problem, Cassandra leveraged Amazon’s Dynamo and Google’s Bigtable to meet 

challenging write-heavy (i.e., billions per day), geographically distributed, reliability, and 

scalability requirements (Lakshman & Malik, 2010). Cassandra, accepted as an Apache 

Software Foundation (ASF) top level project in February 2010, is an open source, 

distributed, decentralized, multi-location (e.g., cloud, on-premises, etc.), operationally 

simple, nearly linearly scalable (i.e., horizontally scalable), highly available, fault-

tolerant, wide-column database (Carpenter & Hewitt, 2016; Ploetz et al., 2018). 

 

CAP theorem. To better illustrate the differences between SQL and NOSQL (i.e., 

Cassandra) we will elaborate on the Consistency, Availability, and Partition tolerance 

(CAP) theorem (Carpenter & Hewitt, 2016). In 2000, Eric Brewer conceived that there 

are three, mutually dependent, requirements present within large-scale distributed 

systems: consistency, availability, and partition tolerance (Carpenter & Hewitt, 2016). 

Consistency means each node in the system returns the “correct” response, availability 

necessitates each request eventually receives a response, and partition tolerance requires 

the distributed system continue to function even when faulty connectivity has partitioned 

 
8 https://cassandra.apache.org/ 



 

127 

 

the network (Gilbert & Lynch, 2012). CAP theorem – sometimes referred to as Brewer’s 

theorem – states it is only possible to strongly support two of the three requirements at a 

time (Carpenter & Hewitt, 2016). The CAP theorem was formally proved to be true by 

Gilbert and Lynch (2002). Fig. 4.4 was inspired by a graphic presented by Carpenter and 

Hewitt (2016) illustrating where a variety of datastores align along the CAP continuum. 

Relational databases (e.g., MySQL, SQL Server, etc.) prioritize availability and 

consistency and Cassandra prioritizes availability and partition tolerance (Carpenter & 

Hewitt, 2016). 

 

 
 

Figure 4.4. CAP Theorem with examples of datastores positioned along CAP continuum. 

 

 

In 2012, Brewer provided an updated perspective maintaining that CAP theorem’s 

“2 of 3” is misleading because 1) partitions are uncommon, 2) low level choices between 

availability and consistency occur often, and 3) availability, consistency, and partition 

tolerance are continuous rather than binary (Brewer, 2012). Brewer’s update is germane 
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to enterprise-grade solutions including robust network infrastructure, servers, etc. 

However, we believe edge-based solutions running on extremely modest hardware, 

regularly encountering network connectivity problems, require a database with 

architectural pillars (i.e., mechanisms) supporting a bottom-up approach to partition 

tolerance. Moreover, edge-based solutions may benefit from a more nuanced approach to 

partitioning (e.g., data, operational, etc.) and tunable consistency that may significantly 

improve the solution’s robustness to major network connectivity problems without 

immediately compromising availability (Gilbert & Lynch, 2012). 

  

Apache Cassandra – physical architecture. According to Carpenter and Hewitt 

(2016), a collection of Cassandra nodes managing a dataset are known as a cluster. A 

Cassandra cluster is composed of nodes, i.e., a single instance of Cassandra running on a 

computer, and one or more data centers; a Cassandra data center (DC) is a logical set of 

nodes, connected via a reliable network, that are relatively close to each other (Carpenter 

& Hewitt, 2016). Fig. 4.5 illustrates a Cassandra cluster consisting of two DCs, each with 

four Cassandra nodes. Cassandra clusters can consist of multiple DCs, often 

geographically distributed, containing one or more Cassandra nodes (Carpenter & Hewitt, 

2016). However, a minimum of four Cassandra nodes are typically required to realize the 

advantages of Cassandra as a distributed database. Refer to Carpenter and Hewitt (2016) 

for additional information regarding the physical architecture of Cassandra.  



 

129 

 

Apache Cassandra – ring. The data managed by a Cassandra cluster is known as a 

ring; each node comprising the ring is assigned a range of data known as its token range 

(Carpenter & Hewitt, 2016) (see Fig. 4.6). An individual token within a Cassandra node’s 

token range is identified by a 64-bit integer that represents a partition within the ring 

(Carpenter & Hewitt, 2016). A Cassandra cluster’s tokens therefore span the range -263 to 

263-1 (Carpenter & Hewitt, 2016). When data is written to Cassandra, a hashing function 

(i.e., a partitioner) determines the data’s token value based upon its partition key 

(Carpenter & Hewitt, 2016). The data’s token value is compared with Cassandra nodes’ 

token ranges, its owner-node is identified, and the data is written to the appropriate 

partition (Carpenter & Hewitt, 2016). Cassandra is able to write data to disk quickly 

because its design does not require disk reads or seeks (Carpenter & Hewitt, 2016). 

Essentially, Cassandra writes data to, likewise reads data from, disk sequentially 

according to the data’s partition key; this design is particularly advantageous when 

working with time series data that has been partitioned (i.e., bucketed) according to 

anticipated access patterns (e.g., hourly, daily, etc.). For detailed information regarding 

Casandra’s ring or write path refer to Carpenter and Hewitt (2016).  
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Figure 4.5. Cassandra cluster, with two DCs, and four Cassandra nodes each. 

 

 

 
 

Figure 4.6. Cassandra cluster and ring shown with four Cassandra nodes and their 

respective token ranges.  
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Apache Cassandra – replication and consistency. In Cassandra, the database 

object controlling the replication of data to one or more nodes or DCs within a Cassandra 

cluster is known as the keyspace; the user defined parameter (i.e., replication factor) 

determining how data is replicated across Cassandra nodes and DCs is specified in the 

keyspace (Carpenter & Hewitt, 2016). Read queries or write operations in Cassandra 

include a user defined consistency level specifying how many nodes must respond before 

a read or write is considered successfully completed (Carpenter & Hewitt, 2016). 

Together, replication factor and consistency level allow for tunable consistency 

supporting Cassandra’s prioritization of availability and partition tolerance over the “all 

or nothing” approach of strict consistency (Carpenter & Hewitt, 2016). It is important to 

note that any Cassandra node (i.e., coordinator node) or client connected to a coordinator 

node can coordinate a read or write operation; the coordinator node determines which 

Cassandra node or nodes own the data (i.e., replicas) and forwards the read or write 

request accordingly (Carpenter & Hewitt, 2016). 

  

Apache Cassandra – mechanisms. Anti-entropy, gossip, etc. are some of the 

architectural pillars (i.e., mechanisms) supporting Cassandra’s decentralized distributed 

operations. A review of all these mechanisms is beyond the scope of the current 

discussion; however, it is important to note that some of these mechanisms are considered 

essential for decentralized edge-based sensor network solutions in general (Kamath et al., 

2016). Below, we will provide a brief introduction to Cassandra’s commit log, hinted 

handoff, gossip protocol, and snitch mechanisms. Our selection of Cassandra for our 

edge-based solution’s distributed database was heavily influenced by its use of these 
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mechanisms. For additional information regarding these mechanisms refer to Carpenter 

and Hewitt (2016). 

When a write operation occurs, Cassandra immediately writes the data to a 

commit log (i.e., to disk); the commit log is a mechanism supporting Cassandra’s 

durability via crash-recovery (Carpenter & Hewitt, 2016). A write operation is not 

considered successful unless it is written to the commit log (Carpenter & Hewitt, 2016). 

If a Cassandra node crashes, the commit log is replayed in order to ensure data is not lost 

(Carpenter & Hewitt, 2016). If a write operation is sent to a coordinator node and the 

Cassandra node owning the partition corresponding to the data’s partition key is 

unavailable, Cassandra implements the hinted handoff mechanism (Carpenter & Hewitt, 

2016). Hints are saved on the coordinator node and are sent via hinted handoff once the 

replica node or nodes are back online (Carpenter & Hewitt, 2016). Cassandra utilizes a 

gossiping protocol to exchange endpoint state information amongst Cassandra nodes 

(Carpenter & Hewitt, 2016). In addition to the gossip protocol, Cassandra also 

implements a snitch to gather network topology information; Cassandra uses this 

information to efficiently route read and write operations by determining the relative 

proximity of Cassandra nodes (Carpenter & Hewitt, 2016). 

  

Apache Cassandra – DataStax Enterprise. Initially, we planned to replicate data 

from the middle to upper layer of our architecture by deploying a single Cassandra cluster 

consisting of two DCs (i.e., a transactional DC and an analytic DC). Our first real-world 

field deployment (June 2017) consisted of a single Cassandra cluster with a 20 Cassandra 

node transactional DC and a three Cassandra node analytic DC. Unfortunately, 

intermittent network connectivity (i.e., wireless backhaul network) between the two DCs 
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resulted in Cassandra nodes being deprecated due to unanswered topological gossip state 

updates. Ultimately, this resulted in a loss of data replication at the Cluster and DC levels. 

In order to overcome the real-world network connectivity problems commonly 

encountered during remote environmental monitoring, we needed a solution allowing for 

cluster-to-cluster (i.e., middle-to-upper layer) replication that was tolerant of faulty 

backhaul network connectivity. 

For subsequent field deployments, we transitioned from Cassandra (i.e., DataStax 

Community Edition) to DataStax Enterprise9 (DSE). DSE is an enterprise-grade version 

of Cassandra providing commercial confidence and extra capabilities such as automatic 

management services, advanced security, and advanced functionality. Our primary 

interest in DSE’s advanced functionality was DSE Advanced Replication10. DSE 

Advanced Replication supports the configurable replication of data from source to 

destination clusters in a manner tolerate of the intermittent loss of backhaul network 

connectivity. DSE Advanced Replication allows for the configuration of automatic 

failover, permits, and priority to manage traffic between clusters (“Traffic between the 

clusters | DSE 6.0 Admin guide,” n.d.). Using DSE Advanced Replication, we 

transitioned from a single cluster with two DCs to a direct cluster-to-cluster 

implementation. DSE Advanced Replication could be configured to further extend our 

infrastructure to support additional one-to-one or many-to-one (i.e., cluster(s)-to-cluster) 

 
9 https://www.datastax.com/products/datastax-enterprise 

10 https://docs.datastax.com/en/dse/6.0/dse-

admin/datastax_enterprise/advReplication/advRepTOC.html 
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implementations. Although not open-source, DSE grants customers a limited no-fee 

license11 for non-production purposes, without the right to support. 

  

Apache Cassandra – summary. There are three key takeaways regarding the use 

of Cassandra (i.e., DSE) as the edge storage solution for our IoT-based sensor network: 

1) DSE is ideally suited for time series data because of its sequential (i.e., from disk) read 

and write operations, 2) mechanisms, such as commit log, gossip, hinted handoff, and 

snitches, allow DSE to support high availability, fault-tolerant, and geographically 

distributed implementations, and 3) the shared-nothing architecture of DSE, when 

coupled with DSE Advanced Replication, enables nearly linear horizonal scalability for 

our edge storage and computing framework. 

 

Embedded Systems 

 

  

Background. Embedded systems include, but are not limited to, microcontrollers, 

embedded computers, system-on-chip, computer-on-module, and system-on-module. 

Typically, embedded systems are inexpensive, low power, small, and have modest 

capabilities when compared with desktop or laptop computers. The Raspberry Pi12 is 

among the most popular embedded systems. As of December 2018, the Raspberry Pi was 

the world’s third best-selling general purpose computer (Heath, 2019). As a system 

originally intended to teach children computer science, the Raspberry Pi is inherently 

easy-to-use and inexpensive (Heath, 2019). Having developed an immense community of 

 
11 https://www.datastax.com/legal/datastax-enterprise-terms 

12 https://www.raspberrypi.org/ 



 

135 

 

users, Raspberry Pi based industrial and scientific projects are commonplace (Deshmukh 

& Shinde, 2016; Kumar & Rajasekaran, 2016; Merchant & Ahire, 2017). 

Our initial selection of the Raspberry Pi was influenced by the Raspberry Pi’s vast 

community of users and its widespread use within the industrial and scientific 

communities. We began our development of a multi-node edge-based solution in October 

of 2016. At the time, the Raspberry Pi 3 B (i.e., 1.2 GHz 64-bit quad core processor with 

1 GB of RAM) was available. We installed and configured DSE on the Raspberry Pi 3 B; 

however, the modest resources of the Raspberry Pi 3 B resulted in frequent downtime 

(e.g., hangs, reboots, etc.). 

In order to improve reliability, we offloaded the Raspberry Pi’s DSE workload by 

replacing the Raspberry Pi 3 B with the Asus Tinker Board13. The Tinker is like the 

Raspberry Pi 3 B, with an additional gigabyte of RAM (i.e., 2 GB of RAM total). We 

found the additional gigabyte of RAM significantly improved DSE performance and 

reliability. Although the Tinker performed well as a DSE node, its user community is not 

as large as the Raspberry Pi’s. We spent a disproportionate amount of time configuring 

the Tinker due to its relatively limited support (e.g., drivers, examples, etc.). 

In June 2019, the Raspberry Pi Foundation announced the release of the 

Raspberry 4. The Raspberry Pi 4 comes in three available configurations (i.e., with 1 GB, 

2 GB, and 4 GB of RAM), offers USB 3.0 support, and Gigabit Ethernet connectivity 

(Upton, 2019). We recently bench tested the Raspberry Pi 4 (i.e., with 2 GB of RAM) 

and confirmed DSE performance and reliability was equivalent to the Tinker’s; however, 

we have not had an opportunity to test the Raspberry 4 in a field setting. Any future 

 
13 https://www.asus.com/us/Single-Board-Computer/Tinker-Board/ 
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efforts on our part would utilize the Raspberry Pi 4 (i.e., with 2GB or 4 GB of RAM) as 

our DSE node’s embedded system. 

  

Related work. Cassandra and DSE were established cloud and on-premises 

NoSQL solution in 2016; however, to the best of our knowledge no one had attempted to 

deploy Cassandra or DSE, on an embedded system, as an edge-based storage and 

computing solution supporting remote environmental monitoring. Nonetheless, there 

have been several publications since 2016 exploring the idea of utilizing the Raspberry Pi 

and Cassandra for IoT applications (Ferencz & Domokos, 2018; Richardson, 2017; 

Romero López, 2017). In 2017, Richardson (2017) explored the feasibility of using the 

Raspberry Pi to host Cassandra in support of IoT applications. Richardson (2017) utilized 

the Raspberry Pi (i.e., with 1 GB of RAM) and virtual machines (i.e., with 1 GB, 2 GB, 

and 4 GB of RAM) to assess the feasibility and performance impact of hosting Cassandra 

on modest platforms; a minimum of 2 GB of RAM was identified by Richardson (2017) 

as critical for “in-situ IoT storage” using Cassandra. Also in 2017, Romero Lopez (2017) 

undertook the ambitious endeavor of creating a three node Raspberry Pi (i.e., with 1GB 

of RAM) Cassandra cluster, deployed via Docker14, including Apache Spark15. Romero 

Lopez (2017) concluded the Raspberry Pi did not have enough memory (i.e., RAM) for 

Cassandra or Spark and recommend 4 GB and 8 GB of memory for Cassandra and Spark, 

respectively. 

 
14 https://www.docker.com/ 

15 https://spark.apache.org/ 
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In 2018, Ferencz and Domokos (2018) introduced a data acquisition and storage 

system using Cassandra and the Raspberry Pi as an alternative to existing IoT data 

acquisition and storage solutions. Although their system architecture represented a 

practical and flexible approach to IoT acquisition and storage, Ferencz and Domokos 

(2018) did not run Cassandra on the Raspberry Pi. Likewise, Ooi et al. (2016) utilized the 

Raspberry Pi and Cassandra to effectively acquire and store sensor network data (i.e., 

seismic); however, Cassandra was not run on the Raspberry Pi. 

 

Communication Infrastructure 

 

There is considerable interest in novel, inherently IoT compatible, wireless 

technologies (i.e., low-power wide-area networks) for seismic applications (Jamali‐Rad 

& Campman, 2018). However, in order to minimize complexity, we utilized 

commercially available IP-based wired and wireless components to connect our 

digitizers, edge devices, edge gateways, and edge nodes. The ports used by Cassandra 

and DSE for cluster communication and the port used by our digitizers are all IP-based; 

Cassandra and DSE use TCP and the REF TEK 130-01 uses UDP. See Fig. 4.7 for an 

overview of the communication infrastructure used for the case study presented in the 

following section. 

An important point to consider, when using embedded systems for remote 

environmental monitoring, is that their onboard Wi-Fi capabilities are typically 

inadequate for real-world deployments. Typically, remote environmental monitoring 

requires that embedded systems and other electronics be placed within enclosures located 

on or near the ground, in which case the quality of wireless connectivity may degrade. 

Ideally, embedded systems would connect to a Wi-Fi antenna external to the enclosure. 
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Unfortunately, the Raspberry Pi required board-level modification to connect an external 

Wi-Fi antenna. The Tinker did allow for the connection of an external antenna via a 

MHF4 connector; however, the onboard Wi-Fi of the Raspberry Pi (i.e., Raspberry Pi 3 

B) and the Tinker did not support our desire to utilize 802.11ac standard communication 

infrastructure. 

A USB Wi-Fi dongle (i.e., TP-Link Archer T2UH AC60016) was used to 

circumvent embedded system Wi-Fi limitations. The TP-Link Archer T2UH AC600 

allowed for the connection of an external Wi-Fi antenna and utilized the 802.11ac 

standard; however, the Tinker did not support the use of the TP-Link Archer T2UH 

AC600. Ultimately, external antenna capable, 802.11ac standard, Wi-Fi connectivity was 

achieved by connecting the Tinker to a radio (i.e., EnGenius ENS500EXT-AC17) via its 

Ethernet port. The Raspberry Pi used the TP-Link Archer T2UH AC600 to achieve 

external antenna capable, 802.11ac standard, Wi-Fi connectivity.  

 
16 https://www.tp-link.com/us/home-networking/adapter/archer-t2uh/?utm_medium=select-local 

17 https://www.engeniustech.com/engenius-products/enturbo-outdoor-5-ghz-11ac-wave-2-

wireless-access-point/ 
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Figure 4.7. Communication infrastructure “wireless” configuration San Emidio 

Geothermal Field T&E event case study.  
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Case Study 

 

 

Background 

 

Our edge storage and computing framework for IoT-based sensor networks was 

developed over the course of four test and evaluation (T&E) events occurring in May 

2017 (Eastland Lakes, Texas), June 2017 (Soda Lake Geothermal Field, Nevada), July 

2018 (Baylor Research and Innovation Collaborative, Texas), and May 2019 (San Emidio 

Geothermal Field, Nevada). Our first deployment to a geothermal field (i.e., Soda Lake 

Geothermal Field) consisted of 20 seismic stations deployed along a line approximately 

575 meters in length and our second deployment to a geothermal field (i.e., San Emidio 

Geothermal Field) consisted of 144 seismic stations (i.e., planned) deployed along a line 

approximately 2100 meters in length. The case study described below is specific to the 

San Emidio Geothermal Field T&E event that occurred in May 2019. 

 

Edge Storage and Computing Workflow 

 

A brief overview of the responsibilities of the layers (i.e., workloads) of the edge 

storage and computing framework was provided in the Framework Overview section of 

this paper. What follows is a detailed description of the actions performed by the sensing, 

transactional, and analytic workloads. The sensing workload is responsible for the 

acquisition of raw seismic data (i.e., three-channels at 250 sps) and the storage of this 

data in an archive (i.e., RTPD archive) maintained by the edge gateway. The RTPD 

archive is maintained “as is” in order to keep an original copy of the raw seismic data. A 

file watcher running on the edge gateway is used to monitor the RTPD archive. When a 

RTPD file closes, the file (i.e., five-minute file) is copied to a preprocessing directory. 
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Every five minutes, files from the preprocessing directory are read, converted, processed, 

and data for the vertical channel (i.e., a single channel at 50 sps) is saved as a Comma-

Separated Value (CSV) file formatted for insertion into the transactional workload DSE 

cluster (i.e., transactional cluster). The edge gateway connects to the transactional cluster, 

via a coordinator node, and writes the CSV data into the cluster. The data is then 

replicated across the transactional cluster according to a user defined replication factor of 

two. Two copies of the data are saved on the transactional cluster. 

DSE Advanced Replication is configured to replicate data from the transactional 

cluster to the analytic workload DSE cluster (i.e., analytic cluster). If the backhaul 

network connectivity between the transactional and analytic clusters is down, the 

transactional cluster maintains the data needing replication until backhaul connectivity is 

reestablished. With connectivity reestablished, the transactional cluster replicates data to 

the analytic cluster. The data is then replicated across the analytic cluster according to a 

user defined replication factor of two. Two copies of the data are saved on the analytic 

cluster. See Figure 4.8 for an overview of the San Emidio Geothermal Field T&E event 

edge-based solution workflow. 

 

 
 

Figure 4.8. San Emidio Geothermal Field T&E event edge-based solution workflow.  
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Every hour, data from the analytic cluster is queried and extracted for subsequent 

seismic processing. Query and extract script were executed, against the analytic cluster, 

on a Mini PC (i.e., Intel NUC18) collocated with the analytic cluster. Extracted data was 

then automatically copied to a second collocated Intel NUC designated for seismic 

processing. 

 

Implementation 

 

  

Planned. Prior to the San Emidio Geothermal Field T&E event, we leveraged 

information obtained from our previous three T&E events to identify performance 

limiters (e.g., ingest rates, network capacity, etc.) that could not be easily overcome 

without significant upgrades to solution hardware (i.e., communication infrastructure and 

embedded systems). Likewise, we considered other physical limiters such as internode 

spacing of seismic stations, overall length of the seismic line, topography, and 

operational constraints (e.g., vehicle access, weather, etc.). We considered these limiters 

in tandem with our geoscientific requirements to organize edge devices, edge gateways, 

and edge nodes, layer-by-layer (i.e., lower, middle, and upper), into an edge-based 

solution allowing us to acquire, transmit, store, and process seismic data hourly, in a field 

setting. The edge-based solution was then replicated and scaled up until it totaled 144 

seismic stations. Fig. 4.9 illustrates a “headquarters” consisting of four upper layer edge 

nodes (i.e., analytic cluster) connected wirelessly to a “squadron” consisting of four 

middle layer edge nodes (i.e., transactional cluster), in turn, connected (i.e., wired or 

wirelessly) to twelve lower layer edge gateways, in turn, connected (i.e., wired) to 36 

 
18 https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html 
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edge devices. Each squadron was responsible for acquiring approximately 778 million 

samples per day; however, only approximately 156 million samples per day were inserted 

into the transactional cluster (i.e., squadron) and subsequently replicated to the analytic 

cluster (i.e., headquarters). 

  

Actual. We intended to deploy four squadrons and four headquarters totaling 144 

lower layer edge devices (i.e., seismic stations), 48 lower layer edge gateways, 16 middle 

layer edge nodes, and 16 upper layer edge nodes. Ultimately, we only deployed 142 

seismic stations due to broken or missing REF TEK 130-01 components and middle layer 

and upper layer components for two (i.e., squadron #1 and squadron #2) of the four 

planned squadrons. Fig. 4.10 shows a lower layer station consisting of an edge device and 

edge gateway and Fig. 4.11 shows a middle layer edge node. Weather-related delays and 

unplanned troubleshooting (i.e., digitizers and communication infrastructure) were 

primarily responsible for our inability to deploy all four squadrons. However, the 

organization of squadrons and headquarters into groups, operating independent of each 

other, provided an opportunity to assess the performance and suitability of our edge-

based solution regardless of the total number of squadrons deployed. 
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Figure 4.9. San Emidio Geothermal Field T&E event single squadron and headquarters layout pair.  
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Figure 4.10. San Emidio Geothermal Field T&E event lower layer edge device and edge gateway.  
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Figure 4.11. San Emidio Geothermal Field T&E event exterior view of middle layer edge node (left) and interior view edge node 

(right). 
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Communication infrastructure. During the San Emidio Geothermal Field T&E 

event, we deployed our edge-solution in three different communication infrastructure 

configurations (i.e., “wired,” “hybrid,” and “wireless”) corresponding to T&E event test 

blocks. The three different configurations allowed us to assess system (e.g., distributed 

database, embedded system, etc.) performance “layer-by-layer” as we transitioned from 

predominantly wired to predominantly wireless infrastructure. All three configurations 

utilized wireless (i.e., a point-to-point wireless bridge) for backhaul network cluster-to-

cluster (i.e., middle-to-upper layer) replication; likewise, all three configurations utilized 

wired (i.e., Ethernet cables) for lower layer edge device to edge gateway connectivity. 

Headquarters edge nodes (i.e., analytic cluster) were collocated and always connected to 

each other using wired (i.e., Ethernet cable) connections. 

The “wired” configuration utilized Ethernet cables to connect lower layer edge 

gateways to middle layer edge nodes and middle layer edge nodes (i.e., the transactional 

cluster) to each other. The “hybrid” configuration continued to use Ethernet cables to 

connect lower layer edge gateways to middle layer edge nodes; however, middle layer 

edge nodes (i.e., the transactional cluster) were connected to each other wirelessly (i.e., a 

WDS access point). Lastly, the “wireless” configuration connected middle layer edge 

nodes (i.e., the transactional cluster) to each other wirelessly (i.e., a WDS access point) 

and lower layer edge gateways were also connected to middle layer edge nodes 

wirelessly (i.e., a wireless access point). Table 4.1 provides an overview of 

communication infrastructure configuration. “Wired” and “hybrid” test blocks were 

conducted for squadron #1 and “wired,” “hybrid,” and “wireless” test blocks were 

conducted for squadron #2.  
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Table 4.1. Communication Infrastructure Configuration. 

 

Communication 

Infrastructure 

Configuration 

Lower Layer  

to 

Lower Layer 

Lower Layer 

to 

 Middle Layer 

Middle Layer 

to 

Middle Layer 

Middle Layer 

to 

Upper Layer 

Edge Device 

to 

Edge Gateway 

Edge Gateway 

to 

Edge Node 

Edge Node 

to 

Edge Node 

Transactional 

Cluster to 

Analytic Cluster 

“Wired” Ethernet Cable Ethernet Cable Ethernet Cable 
Point-to-Point 

Wireless Bridge 

“Hybrid” Ethernet Cable Ethernet Cable 

Wireless 

Distribution System 

Access Point 

Point-to-Point 

Wireless Bridge 

“Wireless” Ethernet Cable 
Wireless 

Access Point 

Wireless 

Distribution System 

Access Point 

Point-to-Point 

Wireless Bridge 

 

 

Layer performance – lower layer. Although weather-related delays were primarily 

responsible, unplanned troubleshooting also impacted our ability to deploy middle layer 

and upper layer components for the planned four squadrons. Digitizer (i.e., the REF TEK 

130-01) problems (i.e., GPS week number rollover (Vincent, 2019) and bad backup 

battery problems) were relatively easy to solve; however, they were difficult to diagnose. 

Without the ability to remotely configure the REF TEK 130-01 we were forced to visit 

seismic stations multiple times before the lower layer components were fully functional. 

The REF TEK 130-01 can be configured remotely using software provided by the 

vendor; however, we had not configured the REF TEK 130-01 and the Raspberry Pi (i.e., 

the edge gateway) to allow remote access to REF TEK 130-01. 

Once faulty components were replaced (i.e., the GPS antenna and backup 

batteries) and the REF TEK 130-01s reconfigured, the lower layer performed its sensing 

workload as expected. No edge gateway hardware (i.e., the Raspberry Pi) or software 

(e.g., operating system, Python script, etc.) failures were observed; however, there were 
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instances in which faulty lower layer components required troubleshooting or needed to 

be replaced (e.g., Ethernet cables, Ethernet switches, etc.). 

  

Layer performance – lower layer to middle layer. For the “wired” configuration 

approximately 99.7% and 98.9% of the data acquired by the edge devices was inserted, 

by the edge gateways, into the edge nodes (i.e., the transactional cluster), for squadron #1 

and #2 respectively. Approximately 99.2% and 99.9% of “hybrid” configuration data 

acquired by the edge devices was inserted, by the edge gateways, into the edge nodes 

(i.e., transactional cluster), for squadron #1 and #2 respectively. Lastly, the “wireless” 

configuration resulted in approximately 85.0% of the data acquired by the edge devices 

being inserted, by the edge gateways, into the edge nodes (i.e., transactional cluster) for 

squadron #2. 

We transitioned from 802.11n to 802.11ac standard communication infrastructure 

for the San Emidio Geothermal Field T&E event. Unfortunately, compatibility problems 

with the edge gateway’s external antenna and USB Wi-Fi dongle prevented us from 

deploying our wireless configuration as planned. Spare radios (i.e., the EnGenius 

ENS500EXT-AC), from our two undeployed squadrons, were used to connect edge 

gateways wirelessly, via their Ethernet port; however, modifications to the edge gateway 

“wireless” communication infrastructure were performed in a field setting and required 

troubleshooting that we believe negatively impacted overall “wireless” configuration 

performance. 

During the San Emidio Geothermal Field T&E event, each edge gateway was 

responsible for inserting 45,000 samples of seismic data into DSE every five minutes. A 

minimum rate of 150 sps (i.e., per edge gateway) was required to ingest data into DSE 
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faster than it was created by edge devices. However, data processing overhead, 

distributed database-related mechanisms, and variations in network capacity could affect 

ingest rates. The ratio of edge devices, edge gateways, and edge nodes (i.e., 36:12:4) was 

adjusted, prior to the T&E event, to allow for a least five times (i.e., 750 sps) the required 

minimum ingest rate. 

Ultimately, our use of 802.11ac standard communication infrastructure supported 

edge gateway ingest rates ranging from approximately 1200 to 1900 sps, depending upon 

the communication infrastructure configuration. Approximately eight to twelve times the 

required minimum ingest rate was available during the San Emidio Geothermal Field 

T&E event. This provided adequate network capacity to support increasing the number of 

devices per edge gateway, the ingestion of additional device channels (i.e., the horizontal 

channels), or increasing the sampling rate of data ingested into DSE. 

  

Layer performance – middle layer to upper layer. For squadron #1 and squadron 

#2, 100% of “wired” test block data inserted into the transactional cluster was replicated 

to the analytic cluster (i.e., headquarters #1 and headquarters #2), via DSE Advanced 

Replication. Approximately 99.9% of squadron #1 and 100% of squadron #2 “hybrid” 

test block data were replicated to their respective analytic cluster (i.e., headquarters #1 

and headquarters #2), via DSE Advanced Replication. Lastly, 99.5% of squadron #2 

“wireless” test block data was replicated to its analytic cluster (i.e., headquarters #2), via 

DSE Advanced Replication. The DSE Advanced Replication backlog was monitored 

during the “wired,” “hybrid,” and “wireless” test blocks; the DSE Advanced Replication 

backlog never exceeded more than a few 1000 writes (i.e., samples). 
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Note that only 85.0% of squadron #2 “wireless” test block data acquired by edge 

devices was inserted into its transactional cluster; however, 99.5% of squadron #2 

“wireless” test block data was replicated from its transactional cluster to analytic cluster. 

This represents an anomaly where more edge device data resided within an analytic 

cluster than its corresponding transactional cluster. Although the exact cause of this 

anomaly remains unknown, we believe the anomaly is a result of the independent 

communication links (i.e., point-to-point wireless versus WDS access point) and the 

different mechanisms (e.g., commit log, hinted handoff, etc.) used by DSE versus DSE 

Advanced Replication (i.e., change-data-capture). 

  

Layer performance – upper layer. An automated script (i.e., Python) was used to 

query and extract seismic data hourly from the analytic clusters. Leveraging the Python 

Cassandra driver19, seismic data was queried from the two analytic clusters (i.e., 

headquarters #1 and headquarters #2) in parallel and CSV files were extracted for 

subsequent seismic processing. The query and extract scripts were executed on an Intel 

NUC and the extracted CSV files were then automatically copied to a second Intel NUC 

designated for seismic processing. The query and extract of one hour’s worth of squadron 

data (i.e., 36 seismic stations or approximately 6.5 million samples) took approximately 

ten minutes, at a rate of approximately 11,000 sps. This provided up to 50 minutes to 

perform seismic processing before the next one hour’s worth of data was available for 

query and extract.  

 
19 https://docs.datastax.com/en/developer/python-driver/3.18/ 
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Results 

 

 

The overall effectiveness of the edge storage and computing framework for IoT-

based sensor networks can be assessed by considering its performance and suitability. 

The solution’s performance refers to quantifiable metrics associated with its ability to 

function as intended and its suitability refers to its ability to operate in its intended 

environment. 

 

Performance 

 

  

Hardware and software. In the previous section, a layer-by-layer assessment of 

the edge storage and computing framework’s performance was provided for the San 

Emidio Geothermal Field T&E event. This assessment indicates: 1) lower layer and 

lower-to-middle layer implementations somewhat effectively (i.e., 85% or greater) 

acquired, processed, transmitted, and stored seismic data into DSE, 2) the middle to 

upper layer effectively (i.e., 99% or greater) replicated seismic data wirelessly from one 

DSE cluster to another via DSE Advanced Replication, and 3) the upper layer supported 

the timely query and extract of seismic data (i.e., approximately 6.5 million samples in 10 

minutes) from DSE for subsequent seismic processing. 

  

Architecture and topology. Assessing the performance of the edge-based 

solution’s architecture and topology quantitatively is challenging. Our selection of a 

Tenet principle inspired architecture and the tree/star hub-and-spoke topology was not 

driven by specific performance requirements; rather, our choice of architecture and 

topology evolved over the course of our four T&E events. Nonetheless, we believe the 
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architecture and topology of the edge-based solution support the implementation non-

application specific solutions, allowing for tunable scalability, that complement the 

constraint driven nature of remote environmental monitoring. 

 

Suitability 

 

From a suitability perspective, we are confident the San Emidio Geothermal Field 

T&E event represented a real-world remote environmental monitoring use case. It was 

necessary for us to deploy temporary infrastructure supporting the operation of edge 

devices, edge gateways, and edge nodes (i.e., edge components). Antenna masts, 

batteries, enclosures, and solar panels were deployed to support the continuous 

acquisition, transmission, storage, and processing of data, without the need to service 

edge components. 

  

Power. Our power related support infrastructure relied on one 60 Amp-hour 

battery and a 20 W solar panel for each edge device (i.e., REF TEK 130-01) not 

collocated (i.e., not sharing a battery) with an edge gateway (i.e., Raspberry Pi), one 60 

Amp-hour battery and 20 W solar panel for each edge device and edge gateway pair (i.e., 

sharing a battery), and two 60 Amp-hour batteries and a 60 W solar panel for each edge 

node (i.e., Tinker). 

We estimated the overall power draw, via bench testing, of an edge device not 

collocated with an edge gateway at approximately 2 W, an edge device and edge gateway 

pair at approximately 4 W, and an edge node at approximately 8W. The variability in 

power draw is a result of the various components, configurations, and workloads of the 

edge components. Without considering solar charging, we estimated a minimum of six 
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days’ worth of available power for edge devices not collocated with an edge gateway, 

three days’ worth of power for edge device and edge gateway pairs, and three days’ 

worth of power for edge nodes. 

Our power estimates proved to be accurate. During the San Emidio Geothermal 

Field T&E event we experienced more than three days of continuous cloud coverage that 

limited solar charging. We observed low voltage conditions that triggered solar charge 

controller power cycling (i.e., load off) until battery voltage was restored. This resulted in 

the temporary loss of a few edge components, typically in the early morning, until power 

was restored later that morning. 

  

Environmental. Over the course of our four T&E events, we have had ample 

opportunity to assess the environmental suitability of the edge-based solution. We 

deployed the equipment in temperatures that ranged from approximately 1°C to 48°C and 

in weather that included dry, dusty, rainy, sleeting, and windy conditions. 

Provided they are protected from moisture, commercially available components 

can usually operate across a wide range of temperatures and environmental conditions. 

The EnGenius ENS500EXT-AC and the Raspberry Pi’s operating temperatures are -20°C 

to 60°C and -25°C to 80°C, respectively. However, we did experience temperature-

related failures (i.e., overheating) when deploying other commercially available 

components (i.e., home or lab use) such as DC-to-DC converters, Ethernet switches, etc. 

during our first two T&E events. Ultimately, we transitioned to industrial-use 

components with operating temperatures more closely aligned with the Raspberry Pi’s 

operating temperature. We did not experience any problems related to environmental 

conditions during our last two T&E events.  
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Discussion 

 

The edge storage and computing framework utilizes easy-to-use, inexpensive, and 

well-established commercially available components and a popular distributed database 

to orchestrate an edge-based solution for IoT-based sensor networks. Moreover, our use 

of an architecture inspired by the Tenet principle and the tree/start hub-and-spoke 

topology supports highly configurable, general purpose solutions that meet the demands 

of constraint-driven applications such as remote environmental monitoring. Metrics 

acquired during the San Emidio Geothermal Field T&E event indicate that the solution 

supported the in situ acquisition, transmission, storage, and processing of seismic data. 

As a result, we believe the use of embedded systems (i.e., the Raspberry Pi and Tinker), 

Mini PCs (i.e., the Intel NUC), DSE, and DSE Advanced Replication to implement an 

edge-based solution that reduces the cost and risk associated with seismic methods is 

tenable. 

As geoscientists, our need to design, develop, and deploy an edge-based solution 

to acquire and process seismic data in a field setting was strongly influenced by our 

method of seismic monitoring. We planned to utilize a cost effective and non-invasive 

exploration method using ambient (i.e., passive) seismic noise to characterize the 

subsurface. One of the primary challenges of using passive (i.e., anthropogenic or 

natural) seismic noise sources is not knowing the characteristics of the noise sources in 

advance. As a result, it is impossible to know when you have acquired enough data to 

successfully characterize the subsurface without first processing and analyzing the data. 

The edge-based solution described here minimizes the cost and mitigates the risk 

typically associated with passive methods of seismic exploration. With data in hand, in a 
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field setting, myriad possibilities are available to leverage conventional and bleeding 

edge methods to generate higher quality data products. For a summary of framework 

features see Table 4.2. 

 
Table 4.2. Summary of Edge Storage and Computing Framework Features. 

 

Framework Features 

Architecture Utilizes a tiered architecture supporting workloads of varying complexity. 

Topology Utilizes a hub-and-spoke topology supporting the addition and/or redistribution of 

edge nodes to overcome common edge-based performance limiters. 

Distributed 

Database 

Uses a datastore based upon an open-source solution that: 

1) is ideally suited for time series data, 

2) supports high availability, fault-tolerant, and geographically distributed 

implementations, and 

3) offers nearly linear horizontal scalability.  
Embedded 

Systems 

Uses easy-to-use, inexpensive, and well-established commercially available 

components. 

Communication 

Infrastructure 

Uses commercially available IP-based wired and wireless components. 

 

 

Although we successfully demonstrated an effective edge storage and computing 

framework for IoT-based sensor networks, this edge-based solution is not without 

limitations. For instance, the deployment of conventional sensor networks (i.e., wired or 

wireless) is often logistically challenging. The effort required to prepare, mobilize, and 

deploy 142 seismic stations for the San Emidio Geothermal Field T&E event was 

significant. The cables, digitizers, enclosures, power systems, and sensors required for 

seismic monitoring are expensive, sizeable, and often require specialized knowledge to 

configure, deploy, and maintain. Commercially available embedded systems and 

communication infrastructure are relatively easy-to-use and inexpensive; however, they 
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add to the overall logistical burden of sensor network deployments. The value of edge 

storage and computing must be weighed carefully against its logistical impact. 

Commercially available digitizers used in geoscience applications, such as the 

REF TEK 130-01, are typically very reliable and do not require a lot of supervision. 

Although Cassandra and DSE support high availability and fault tolerant 

implementations, our use of embedded systems to host DSE at the edge represents a 

novel implementation that required continuous oversight during the San Emidio 

Geothermal Field T&E event. DSE OpsCenter20 is an enterprise-grade management and 

monitoring solution for DSE clusters; however, the OpsCenter client is not available for 

embedded systems (i.e., ARM architecture processors). In order to monitor our edge-

based solution, we used Ansible21 and custom Python code to log performance metrics; 

however, our performance monitoring did not include an overview dashboard. Instead, 

we were forced to manually review log files throughout our T&E event. We recommend 

using an overview dashboard, such as OpsCenter, to monitor the overall status of the 

edge-based solution. 

The San Emidio Geothermal Field T&E event provided an opportunity to assess, 

at hourly intervals, our edge-based solution and the quality of our deployment strategy 

(i.e., process) in a geoscience application. Unfortunately, an abundance of data can often 

result in “analysis paralysis” that stifles the decision-making process. When confronted 

with large data rates, we learned that we needed a strategy that automated the assessment 

edge-based products and process. 

 
20 https://www.datastax.com/products/datastax-enterprise/dse-opscenter 

21 https://www.ansible.com/ 
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Typically, geoscience-related products are generated using “human-in-the-loop” 

systems that exploit the domain expertise of geoscientists. We believe the automatic 

generation of geoscience-related products, using an edge-based solution, require 

specialized methods to objectively assess the overall quality of the products. These 

specialized methods (e.g., artificial intelligence, statistical, etc.) are necessary to support 

the relatively rapid operational tempo afforded by an edge-based solution. Likewise, we 

believe an automated edge-based (i.e., decentralized) version of a seismic quality control 

program, similar to the program put forth by Ringler et al. (2015), allowing for the timely 

identification and communication of data quality problems would benefit the edge-based 

solution. 

 

Conclusion 

 

In this paper, we presented an edge storage and computing framework that 

leverages commercially available communication infrastructure, digitizers, and 

embedded systems. The framework is organized in a tiered architecture, arranged in a 

hub-and-spoke topology, and hosts a popular distributed database to support the 

acquisition, transmission, storage, and processing of IoT-based sensor network data. We 

provided details regarding the selection of the architecture, distributed database, 

embedded systems, and topology used to implement the solution. Lastly, a real-world 

(i.e., geoscience) case study was presented that leveraged the edge storage and computing 

framework to acquire, transmit, store, and process millions of samples of seismic data per 

hour. More than 99% of the data acquired by edge devices (i.e., seismic stations) was 

stored, queried, and extracted from edge nodes for subsequent seismic processing, in a 

field setting. 
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The June 2019 release of the Raspberry Pi 4, in three available configurations 

(i.e., with 1 GB, 2 GB, and 4 GB of RAM), further complements the architecture, 

inspired by the Tenet principle, and tree/star hub-and-spoke topology of the solution. The 

availability of three inherently compatible Raspberry Pi 4 versions, with differing 

capabilities (i.e., RAM), eliminates the need to use different types of embedded systems 

and Mini PCs for different layers (i.e., lower, middle, and upper), thus simplifying the 

overall effort required to design, develop, and deploy an edge-based solution. 

More importantly, the 4 GB version of the Raspberry Pi 4 provides an easy-to-

use, inexpensive, and well-established embedded system to support an edge-based 

implementation of Apache Spark. Spark, accepted as an ASF top level project in 

February 2014, is the most actively developed, open source, unified computing engine for 

the parallel processing of data on a computer cluster (Chambers & Zaharia, 2018). Spark 

manages and coordinates the execution of tasks across a cluster of computers (Chambers 

& Zaharia, 2018). Leveraging the pooled resources of a computer cluster, often in 

conjunction with a distributed datastore, Spark can process data that a single computer 

typically cannot (Chambers & Zaharia, 2018). 

Our edge-based solution is already capable of implementing Spark. DSE provides 

additional out-of-the-box capabilities, via DSE Analytics22, that include Spark 

integration. Using the Raspberry Pi’s quad-core processor and 4 GB of RAM, upper layer 

edge nodes could be configured for an analytic workload that leverages the DSE cluster 

to support Spark (i.e., distributed processing). We have used the Raspberry Pi 4 (i.e., with 

4 GB of RAM) to host a four-node, i.e., Spark-enabled, analytic workload DSE cluster 

 
22 https://docs.datastax.com/en/dse/6.0/dse-dev/datastax_enterprise/analytics/analyticsTOC.html 
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and have performed a series of bench tests to assess the feasibility of edge-based 

distributed processing. We believe the utilization of multiple Raspberry Pi 4s to host a 

Spark-enabled DSE cluster is feasible and warrants further investigation. 

 

Funding 

 

This research was funded by the U.S. Department of Energy, Office of Energy 

Efficiency and Renewable Energy, under FOA DE-FOA-0001445. 

 

Acknowledgments 

 

The development and testing described here was supported by funding from the 

U.S. Department of Energy (Energy Efficiency and Renewable Energy Agency, 

Geothermal Technologies Program, Award Number: DE-EE0007699). Instrumentation 

and data archiving were provided by the Incorporated Research Institutions for 

Seismology through their PASSCAL and Data Management Centers, respectively. Both 

centers provided technical support. 

All data and associated metadata from our T&E events at Eastland Lakes, Soda 

Lake Geothermal Field, the Baylor Research and Industrial Collaborative, and San 

Emidio Geothermal Field have been archived at the Data Management Center (DMC) 

operated by the Incorporated Research Institutions for Seismology (IRIS). The open-

source algorithms and codes used to derive processed and interpreted seismic results, 

including detailed descriptions of data processing methodology, are available with 

MSNoise distribution: www.msnoise.org. 

We want to thank Joe Iovenitti, Tim Meredith, John Queen, Marge Queen, Diego 

Ugalde Quiros, and Joseph Thangraj for their programmatic and technical support of this 



 

161 

 

project. We also want to thank the San Emidio Geothermal Field team for their support of 

the May 2019 T&E event. Lastly, F. Sepulveda wants to thank Jon Haddad (The Last 

Pickle) and Patrick McFadin (DataStax) for their support regarding Cassandra and DSE. 

 

Disclaimer 

 

This report was prepared as an account of work sponsored by an agency of the 

United States Government. Neither the United States Government nor any agency 

thereof, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government 

or any agency thereof. 

 

Conflict of Interest 

 

The final report for this research was submitted to the U.S. Department of Energy 

in December 2019. In May 2020, F. Sepulveda began working with DataStax as a Data 

Architect. DataStax had no role in the design of the study; in the collection, analyses or 

interpretation of data; in the writing of the manuscript, or in the decision to publish the 

results.  



 

162 

 

References 

 

Abramova, V., Bernardino, J., & Furtado, P. (2014). Which NoSQL Database? A 

Performance Overview, 1(2), 8. 

 

Alcaraz, C., Najera, P., Lopez, J., & Roman, R. (2010). Wireless Sensor Networks and 

the Internet of Things: Do We Need a Complete Integration? 

 

Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., et al. (2010). A 

view of cloud computing. Communications of the ACM, 53(4), 50. https://doi.org/ 

10.1145/1721654.1721672 

 

Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud 

computing and Internet of Things: A survey. Future Generation Computer 

Systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021 

 

Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer, 

45(2), 23–29. https://doi.org/10.1109/MC.2012.37 

 

Carpenter, J., & Hewitt, E. (2016). Cassandra: the definitive guide (Second edition). 

Sebastopol, CA: O’Reilly Media, Inc. 

 

Challen, G., and M. Welsh (2010). Volcano monitoring: Addressing data quality through 

iterative deployment, in Wireless Sensor Networks, E. Gaura (Editor), Springer, 

New York, New York, 71–113. 

 

Chambers, B., & Zaharia, M. (2018). Spark: the definitive guide: big data processing 

made simple (First edition). Sebastapol, CA: O’Reilly Media. 

 

Chen, C. L. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, 

techniques and technologies: A survey on Big Data. Information Sciences, 

275(Supplement C), 314–347. https://doi.org/10.1016/j.ins.2014.01.015 

 

Chung, M., & Kim, J. (2016). The Internet Information and Technology Research 

Directions based on the Fourth Industrial Revolution. KSII Transactions on 

Internet and Information Systems, 10, 1311–1320. https://doi.org/10.3837/ 

tiis.2016.03.020 

 

Clemente, J., Li, F., Valero, M., Chen, A., & Song, W. (2020). ASIS: Autonomous 

Seismic Imaging System With In Situ Data Analytics and Renewable Energy. 

IEEE Systems Journal, 14(1), 1277–1284. https://doi.org/10.1109/ 

JSYST.2019.2920073 

  



 

163 

 

Confais, B., Lebre, A., & Parrein, B. (2016). Performance Analysis of Object Store 

Systems in a Fog/Edge Computing Infrastructures. In 2016 IEEE International 

Conference on Cloud Computing Technology and Science (CloudCom) (pp. 294–

301). https://doi.org/10.1109/CloudCom.2016.0055 

 

Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., & Moore, D. (2010). 

Environmental Wireless Sensor Networks. Proceedings of the IEEE, 98(11), 

1903–1917. https://doi.org/10.1109/JPROC.2010.2068530 

 

Deshmukh, A. D., & Shinde, U. B. (2016). A low cost environment monitoring system 

using raspberry Pi and arduino with Zigbee. In 2016 International Conference on 

Inventive Computation Technologies (ICICT) (Vol. 3, pp. 1–6). https://doi.org/ 

10.1109/INVENTIVE.2016.7830096 

 

Duarte, A., & Bernardino, J. (2016). Cassandra for Internet of Things: An Experimental 

Evaluation. In IoTBD. https://doi.org/10.5220/0005846400490056 

 

Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: 

scalable coordination in sensor networks. In Proceedings of the 5th annual 

ACM/IEEE international conference on Mobile computing and networking  - 

MobiCom ’99 (pp. 263–270). Seattle, Washington, United States: ACM Press. 

https://doi.org/10.1145/313451.313556 

 

Ferencz, K., & Domokos, J. (2018). IoT Sensor Data Acquisition and Storage System 

Using Raspberry Pi and Apache Cassandra. In 2018 International IEEE 

Conference and Workshop in Óbuda on Electrical and Power Engineering 

(CANDO-EPE) (pp. 000143–000146). https://doi.org/10.1109/CANDO-

EPE.2018.8601139 

 

Fratu, O., Pejanovic-Djurisic, M., Poulkov, V., & Gavrilovska, L. (2016). Introduction to 

Special Issue “Current Trends in Information and Communications Technology.” 

Wireless Personal Communications, 87(3), 615–617. 

https://doi.org/10.1007/s11277-016-3228-6 

 

Gaber, M. M., Aneiba, A., Basurra, S., Batty, O., Elmisery, A. M., Kovalchuk, Y., & 

Rehman, M. H. U. (2019). Internet of Things and data mining: From applications 

to techniques and systems. WIREs Data Mining and Knowledge Discovery, 9(3), 

e1292. https://doi.org/10.1002/widm.1292 

 

Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., et al. 

(2015). Edge-centric Computing: Vision and Challenges. SIGCOMM Comput. 

Commun. Rev., 45(5), 37–42. https://doi.org/10.1145/2831347.2831354 

 

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, 

available, partition-tolerant web services. ACM SIGACT News, 33(2), 51–59. 

https://doi.org/10.1145/564585.564601  



 

164 

 

Gilbert, S., & Lynch, N. (2012). Perspectives on the CAP Theorem. Computer, 45(2), 

30–36. https://doi.org/10.1109/MC.2011.389 

 

Gnawali, O., Jang, K.-Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., et al. (2006). 

The Tenet Architecture for Tiered Sensor Networks. In Proceedings of the 4th 

International Conference on Embedded Networked Sensor Systems (pp. 153–166). 

New York, NY, USA: Association for Computing Machinery. 

https://doi.org/10.1145/1182807.1182823 

 

Greengard, S. (2015). The internet of things. Cambridge, Massachusetts: MIT Press. 

 

Heath, N. (2019, December). How the Raspberry Pi was created: A visual history of the 

$35 board. Retrieved August 6, 2019, from https://www.techrepublic.com/ 

pictures/how-the-raspberry-pi-was-created-a-visual-history-of-the-35-board/ 

 

Ilyas, M., & Mahgoub, I. (Eds.). (2006). Sensor network protocols. Boca Raton: 

CRC/Talor & Francis. 

 

Jamali‐Rad, H., & Campman, X. (2018). Internet of Things-based wireless networking 

for seismic applications. Geophysical Prospecting, 66(4), 833–853. 

https://doi.org/10.1111/1365-2478.12617 

 

Jamali-Rad, H., Campman, X., MacKay, I., Walk, W., Beker, M., van den Brand, J., et al. 

(2018). IoT-based wireless seismic quality control. The Leading Edge, 37(3), 

214–221. https://doi.org/10.1190/tle37030214.1 

 

Jan, M. A., Khan, F., & Alam, M. (2019). Recent Trends and Advances in Wireless and 

IoT-enabled Networks. Retrieved from https://doi.org/10.1007/ 

978-3-319-99966-1 

 

Jones, C. M. (2018). The oil and gas industry must break the paradigm of the current 

exploration model. Journal of Petroleum Exploration and Production 

Technology, 8(1), 131–142. https://doi.org/10.1007/s13202-017-0395-2 

 

Kamath, G., Agnihotri, P., Valero, M., Sarker, K., & Song, W.-Z. (2016). Pushing 

Analytics to the Edge. In 2016 IEEE Global Communications Conference 

(GLOBECOM) (pp. 1–6). https://doi.org/10.1109/GLOCOM.2016.7842181 

 

Karatas, M., & Onggo, B. S. (2019). Optimising the barrier coverage of a wireless sensor 

network with hub-and-spoke topology using mathematical and simulation models. 

Computers & Operations Research, 106, 36–48. https://doi.org/10.1016/ 

j.cor.2019.02.007 

 

Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a review. 

Location Science, 6(1), 307–335. https://doi.org/10.1016/S0966-8349(98)00042-4 

 



 

165 

 

Kocakulak, M., & Butun, I. (2017). An overview of Wireless Sensor Networks towards 

internet of things. In 2017 IEEE 7th Annual Computing and Communication 

Workshop and Conference (CCWC) (pp. 1–6). https://doi.org/10.1109/ 

CCWC.2017.7868374 

 

Kumar, R., & Rajasekaran, M. P. (2016). An IoT based patient monitoring system using 

raspberry Pi. In 2016 International Conference on Computing Technologies and 

Intelligent Data Engineering (ICCTIDE’16) (pp. 1–4). https://doi.org/10.1109/ 

ICCTIDE.2016.7725378 

 

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage system. 

ACM SIGOPS Operating Systems Review, 44(2), 35. https://doi.org/10.1145/ 

1773912.1773922 

 

Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental 

Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics 

in Circuits and Systems, 3(1), 45–54. https://doi.org/10.1109/ 

JETCAS.2013.2243032 

 

Le, T. D., Kim, S. H., Nguyen, M. H., Kim, D., Shin, S. Y., Lee, K. E., & Righi, R. da R. 

(2014). EPC information services with No-SQL datastore for the Internet of 

Things. In 2014 IEEE International Conference on RFID (IEEE RFID) (pp. 47–

54). https://doi.org/10.1109/RFID.2014.6810711 

 

Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks 

towards the Internet of Things: A survey. In SoftCOM 2011, 19th International 

Conference on Software, Telecommunications and Computer Networks (pp. 1–6). 

 

Martinez, K., Padhy, P., Elsaify, A., Zou, G., Riddoch, A., Hart, J. K., & Ong, H. L. R. 

(2006). Deploying a sensor network in an extreme environment. In IEEE 

International Conference on Sensor Networks, Ubiquitous, and Trustworthy 

Computing (SUTC’06) (Vol. 1, p. 8 pp.-). https://doi.org/10.1109/ 

SUTC.2006.1636175 

 

Merchant, H., & Ahire, D. D. (2017). Industrial Automation using IoT with Raspberry Pi. 

 

Morgan, T. P. (2018, February 19). Pushed To The Edge. Retrieved December 28, 2019, 

from https://www.nextplatform.com/2018/02/19/pushed-to-the-edge/ 

 

Neves, P., & Rodrigues, J. (2010). Internet Protocol over Wireless Sensor Networks, 

from Myth to Reality. Journal of Communications, 5. https://doi.org/10.4304/ 

jcm.5.3.189-196  



 

166 

 

Nordrum, A. (2016, August). Popular Internet of Things Forecast of 50 Billion Devices 

by 2020 Is Outdated - IEEE Spectrum. Retrieved January 7, 2020, from 

https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-

forecast-of-50-billion-devices-by-2020-is-outdated 

 

Ooi, G. L., Tan, P. S., Lin, M.-L., Wang, K.-L., Zhang, Q., & Wang, Y.-H. (2016). Near 

real-time landslide monitoring with the smart soil particles. Japanese 

Geotechnical Society Special Publication, 2, 1031–1034. https://doi.org/10.3208/ 

jgssp.HKG-05 

 

Özsu, M. T., & Valduriez, P. (2011). Principles of distributed database systems (3rd ed). 

New York: Springer Science+Business Media. 

 

Ploetz, A., Neeraj, N., & Malepati, T. (2018). Mastering Apache Cassandra 3.x: an 

expert guide to improving database scalability and availability without 

compromising performance. Retrieved from 

http://proquest.safaribooksonline.com/9781789131499 

 

Premsankar, G., Di Francesco, M., & Taleb, T. (2018). Edge Computing for the Internet 

of Things: A Case Study. IEEE Internet of Things Journal, 5(2), 1275–1284. 

https://doi.org/10.1109/JIOT.2018.2805263 

 

Richardson, D. P. (2017). Cloud Benchmark Testing of Cassandra on Raspberry Pi for 

Internet of Things Capability (No. AFIT-ENG-MS-17-M-065). AIR FORCE 

INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-

PATTERSON AFB United States. Retrieved from https://apps.dtic.mil/docs/ 

citations/AD1054746 

 

Ringler, A. T., Hagerty, M. T., Holland, J., Gonzales, A., Gee, L. S., Edwards, J. D., et al. 

(2015). The data quality analyzer: A quality control program for seismic data. 

Computers & Geosciences, 76, 96–111. https://doi.org/10.1016/ 

j.cageo.2014.12.006 

 

Romero López, E. (2017). Creación de un cluster formado por tres Raspberry PI-3 que 

alojarán una base de datos NoSQL (Apache Cassandra) y motor de cálculo 

distribuido (Apache Spark), desplegado en contenedores (Docker). Retrieved 

from http://openaccess.uoc.edu/webapps/o2/handle/10609/67505 

 

Sanchez-Gomez, J., Gallego-Madrid, J., Sanchez-Iborra, R., Santa, J., & Skarmeta, A. F. 

(2020). Impact of SCHC Compression and Fragmentation in LPWAN: A Case 

Study with LoRaWAN. Sensors, 20(1), 280. https://doi.org/10.3390/s20010280 

 

Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30–

39. https://doi.org/10.1109/MC.2017.9 

 



 

167 

 

Savazzi, S., Goratti, L., Fontanella, D., Nicoli, M., & Spagnolini, U. (2011). Pervasive 

UWB sensor networks for oil exploration. In 2011 IEEE International Conference 

on Ultra-Wideband (ICUWB) (pp. 225–229). https://doi.org/10.1109/ 

ICUWB.2011.6058833 

 

Savazzi, Stefano, Rampa, V., & Spagnolini, U. (2009). High-Density Wireless Geophone 

Networks for Oil and Gas Monitoring and Exploration. ERCIM News. 

 

Savazzi, Stefano, Goratti, L., Spagnolini, U., & Latva-aho, M. (2009). Short-range 

wireless sensor networks for high density seismic monitoring. Retrieved August 

5, 2020, from /paper/Short-range-wireless-sensor-networks-for-high-Savazzi-

Goratti/00ca7e20a8f216b9078950d66d6fa4137dd528fe 

 

Sepulveda, F., & Pulliam, J. (2016). The Internet of Geophysical Things: Raspberry Pi 

Enhanced REF TEK (RaPiER) System Integration and Evaluation. Seismological 

Research Letters, 87(2A), 345–357. https://doi.org/10.1785/0220150234 

 

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and 

Challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/ 

10.1109/JIOT.2016.2579198 

 

Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodríguez-González, S., & Casado-

Vara, R. (2019). A review of edge computing reference architectures and a new 

global edge proposal. Future Generation Computer Systems, 99, 278–294. 

https://doi.org/10.1016/j.future.2019.04.016 

 

Talzi, I., Hasler, A., Gruber, S., & Tschudin, C. (2007). PermaSense: Investigating 

permafrost with a WSN in the Swiss Alps (pp. 8–12). Presented at the 

Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets 

2007. https://doi.org/10.1145/1278972.1278974 

 

Toutain, L., Minaburo, A., Barthel, D., Zúñiga, J.-C., & Gomez, C. (n.d.). Static Context 

Header Compression (SCHC) and fragmentation for LPWAN, application to 

UDP/IPv6. Retrieved August 5, 2020, from https://tools.ietf.org/html/draft-ietf-

lpwan-ipv6-static-context-hc-10 

 

Traffic between the clusters | DSE 6.0 Admin guide. (n.d.). Retrieved August 3, 2020, 

from https://docs.datastax.com/en/dse/6.0/dse-admin/datastax_enterprise/ 

advReplication/advRepClusterTraffic.html 

 

Upton, E. (2019, June). Raspberry Pi 4 on sale now from $35 - Raspberry Pi. Retrieved 

August 26, 2019, from https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-

now-from-35/ 

 

USArray - Adopt a Station - Lower 48. (n.d.). Retrieved January 10, 2020, from 

http://www.usarray.org/researchers/adopt/lower48  



 

168 

 

Valero, M., Li, F., & Song, W. (2019). Smart Seismic Network for Shallow Subsurface 

Imaging and Infrastructure Security, 13. 

 

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., & Nikolopoulos, D. S. (2016). 

Challenges and Opportunities in Edge Computing. In 2016 IEEE International 

Conference on Smart Cloud (SmartCloud) (pp. 20–26). https://doi.org/10.1109/ 

SmartCloud.2016.18 

 

Vasseur, J.-P., & Dunkels, A. (2010). Interconnecting smart objects with IP: the next 

Internet. Burlington, MA: Morgan Kaufmann Publishers/Elsevier. 

 

van der Veen, J. S., van der Waaij, B., & Meijer, R. J. (2012). Sensor Data Storage 

Performance: SQL or NoSQL, Physical or Virtual. In 2012 IEEE Fifth 

International Conference on Cloud Computing (pp. 431–438). Honolulu, HI, 

USA: IEEE. https://doi.org/10.1109/CLOUD.2012.18 

 

Vincent, J. (2019, March 8). Older GPS devices are facing their own mini Y2K bug next 

month. Retrieved August 12, 2019, from https://www.theverge.com/2019/3/8/ 

18255847/gps-week-rollover-issue-2019-garmin-tomtom-devices-affected 

 

Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., & Welsh, M. (2005). Monitoring 

volcanic eruptions with a wireless sensor network. In Proceeedings of the Second 

European Workshop on Wireless Sensor Networks, 2005 (pp. 108–120). 

https://doi.org/10.1109/EWSN.2005.1462003 

 

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., et al. 

(2019). All one needs to know about fog computing and related edge computing 

paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330. 

https://doi.org/10.1016/j.sysarc.2019.02.009 

 

Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s INTRAnet of things 

to a future INTERnet of things: a wireless- and mobility-related view. IEEE 

Wireless Communications, 17(6), 44–51. https://doi.org/10.1109/ 

MWC.2010.5675777 

  



 

169 

 

 

 

 

CHAPTER FIVE 

 

Conclusion 

 

 

We demonstrated the feasibility of leveraging an IoT-based sensor array to 

orchestrate edge-based storage and computing resources capable of characterizing the 

subsurface, using ambient seismic noise, in near real-time. Our edge-based solution 

utilized commercially available communication infrastructure, digitizers, embedded 

systems, and DSE (powered by Apache Cassandra) to store and process sensor array data, 

in a field setting. The scalability and reliability provided by our novel use of DSE, as an 

edge-based distributed database, was also validated. 

Although the REF TEK 130-01 is readily available and in wide use by the 

geoscience community, its end-of-life status motivates us to consider other seismic 

digitizers. Cableless (i.e., nodal) seismic digitizers, like those used in oil and gas 

exploration, may represent a more cost-effective and rugged alternative to the REF TEK 

130-01. Future implementations of the edge-based solution described herein should 

consider other nodal seismic digitizers. Coordination with their respective vendors is 

likely necessary to discuss the porting of existing software to the ARM architecture 

common to embedded systems. 

We struggled in early 2018 to identify an inexpensive and widely used embedded 

system, with 2 GB of RAM, to support our edge-based implementation of DSE. By May 

2020, three variants of the immensely popular Raspberry Pi 4 are currently available with 

2, 4, and 8 GB of RAM. The incredible pace of edge device performance enhancements 
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(e.g., embedded systems, mobile devices, etc.) provides new opportunities to leverage 

unused device resources, computing and memory, to implement edge-based distributed 

processing (i.e., Apache Spark1). 

Spark is the most actively developed, open source, unified computing engine for 

the parallel processing of data on a computer cluster (Chambers & Zaharia, 2018). Spark 

leverages the pooled resources of a computer cluster, often in conjunction with a 

distributed datastore, to process data that a single computer cannot (Chambers & Zaharia, 

2018). Spark can connect to a wide variety of distributed data stores and messages buses, 

supports traditional bulk extract, load, transform (ETL) operations, and provides libraries 

for common data analysis tasks such as graph analytics (GraphX), machine learning 

(MLib), streaming processing (Spark Streaming), and working with structured data 

(Spark SQL) (Chambers & Zaharia, 2018). 

Given the variety, velocity, and volume of data (i.e., “Big Data”) commonly 

generated during seismic exploration and monitoring, the excess computing and memory 

resources of IoT-based sensor array nodes could be used in conjunction with edge-based 

distributed data storage and processing to extend seismic exploration and monitoring 

functionality and performance. 

DSE supports Spark via DSE Analytics2 (i.e., integrated Spark). We have 

performed limited DSE Analytics bench testing with four Raspberry Pi 4s (i.e., 4 GB) 

and believe distributed edge-based processing is feasible and warrants further 

investigation. In additional to the seismic application area (i.e., ambient seismic noise) 

 
1 https://spark.apache.org/ 

2 https://docs.datastax.com/en/dse/6.0/dse-dev/datastax_enterprise/analytics/analyticsTOC.html 
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described herein, we believe our framework could be implemented, with relative ease, to 

enhance and optimize active source seismic and engineering seismology methods. 

Typically, management and monitoring solutions are used to keep track of 

distributed databases, virtual machines, etc. within the cloud or on-premises data centers. 

These solutions often use a graphical user interface (GUI) to provide operators an easy 

way to observe the status of their resources. Unfortunately, we did not implement a GUI 

during our field T&E events. We relied on logs to assess the status and performance of 

our edge-based solution. The manual review of logs proved labor intensive and we 

recommend the adoption of a GUI approach to better monitor an edge-based solution. 

The creation of geoscience-related analysis products is typically a “human-in-the-

loop” process. However, an abundance of data, available in near real-time, can 

overwhelm geoscientists performing analysis in a field setting. We believe the continued 

development of specialized methods (e.g., artificial intelligence, statistical, etc.) are 

necessary to objectively assess the overall quality of analysis products created using a 

near real-time edge-based solution. Moreover, the implementation of an automated edge-

based seismic quality control program, like the centralized program put forth by Ringer et 

al. (2015), is necessary for the timely identification of data quality problems. 
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APPENDIX 

 

Supplemental Material to Chapter Three 

 

 

Figure A.1 (a-q). The following 17 final VSGs were produced automatically after 25 

hours of data acquisition by the RaPiER array, Eastland Lakes. The source location is 

indicated at the top of the figure and by the 0.0 location on the x-axis. The distance of 

each station from the virtual source location is indicated on the x-axis as “offset.” The y-

axis refers to time lag. 
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Figure A.2 (c-t). The following 18 final VSGs were produced automatically after 45 hours of data acquisition by the RaPiER array at 

Soda Lake Geothermal Field (Fallon, NV). 
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Figure A.3. San Emidio T&E event GPS week number rollover issue. 
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