
 
 
 
 
 
 
 
 

ABSTRACT 
 

New Approaches to Characterize and Simulate Reservoirs  
by Machine Learning and Model-coupling Strategies 

 
Jiajun Jiang, Ph.D. 

 
Mentor: Scott C. James, Ph.D. 

 
 
 This dissertation comprises two topics. The first topic introduces an innovative 

multiphase, multicomponent reservoir simulator to simulate the solvent thermal resource 

innovation process (STRIP). In this framework, a STARS model injected steam only and 

governed the model by synchronizing temperature, pressure, and phase saturations for 

two parallel iterations of GEM models (GEM-1 and GEM-2). GEM models were used to 

mimic steam-CO2 co-injection by adjusting injection rates and relative permeabilities to 

match targeted reservoir properties. The updated relative permeabilities representing 

viscosity reduction by CO2 were then delivered back to the STARS model and the 

process repeated for the entire simulation. This new framework demonstrated the superior 

performance of STRIP compared to traditional steam injection. 

 The second topic investigates classification and segmentation of geologic features 

from image logs. CNNs were trained to identify vuggy facies from a well in the Arbuckle 

Group in Kansas. The complete dataset was culled by removing poor-quality images to 

generate a cleaned dataset for comparison. Various types of data were used to label the 



image log for supervised learning. After hyperparameter optimization, median accuracy 

for vuggy/non-vuggy facies classification was 0.847 for the cleaned dataset (0.813 for the 

complete dataset). This study demonstrated the effectiveness of using microresistivity 

image logs in a CNN to classify facies while highlighting the importance of data quality 

control and hyperparameter optimization.  

To characterize a reservoir, geologic features need to be segmented (pixel-wise 

identification). A modified U-Net, a form of FCN, was used to segment drilling-induced 

fractures (DIFs) from an image log. The U-Net algorithm was trained with borehole 

resistivity images (feature) against manually labeled image logs using two datasets 

(original and augmented where the mirror image of the original dataset was also 

included). A balanced cross-entropy loss function was used because of the unbalanced 

label data (60× more non-fracture than fracture pixels). The results demonstrated the 

robustness of this U-Net model for DIF segmentation. Moreover, the model trained on 

the augmented dataset outperformed that trained on the original dataset (intersection over 

union of 0.73 vs. 0.61). Finally, this study was in accord with previous studies that 

showed how overlapping pixels improved predictions. 
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CHAPTER ONE 
 

Introduction 
 
 
 In the second decade of 21st century, reducing environmental footprints and 

conducting digital transformation are two major challenges for the petroleum industry. 

This dissertation addressed two selected topics of these challenges. The first topic was 

simulating and evaluating the solvent thermal resource innovation process (STRIP), 

which is an eco-friendly, thermal-enhanced-oil-recovery (TEOR) method that provides 

improved recovery factors. The second topic focused on using cutting-edge deep-learning 

technology to automate traditionally labor-intensive geologic characterizations. 

 Compared to traditional TEOR methods, STRIP significantly improves the 

thermal efficiency and reduces greenhouse gas emission by delivering all the combustion 

heat to the pay zone. The second chapter developed a multi-phase multi-component 

simulation framework to simulate the STRIP technology. Traditionally, the commercial 

software package STARS (Thermal and Advanced Reservoir Simulator) employs a K-

value method. However, the K-value method cannot accurately simulate the combustion 

byproduct CO2 and steam co-injection process. Another simulator GEM (Compositional 

and Unconventional Simulator) has the capability to solve miscible or near-miscible gas 

injection but cannot handle thermal evolution. Hence, this innovative framework coupled 

the thermal features of STARS and compositional features of GEM. A STARS model 

governed the energy and material conservations for steam injection without CO2. Two 

parallel GEM models (GEM-1 and GEM-2) synchronized temperature, pressure, and 
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phase saturation with the governing STARS model. GEM-1 simulated hot water injection 

with additional immiscible gas (CH4) at increased injection rates to match gas (steam) 

saturations in STARS. A final GEM-1 run simulated hot water, CH4, and CO2 co-

injection to mimic steam and CO2 co-injection, which yielded the expected production 

increase. GEM-2 injected hot water and CH4 at the calibrated rates from GEM-1 and 

yielded increased production in the final run of GEM-1 by adjusting relative 

permeabilities. Here, the adjusted relative permeabilities reflected the CO2-altered rock-

fluid properties. Finally, the updated relative permeabilities were fed back to STARS 

model and the simulation continued. Thermal efficiencies and oil recovery rates by 

STARS and traditional steam injection were compared through this new simulation 

framework. For this study, Jiajun Jiang developed and implemented ideas and analyzed 

results. Dr. Scott James provided critical review and served as corresponding author. Dr. 

Mohamad Mojarab provided manuscript review. 

 The second topic focused on charactering geologic features of carbonate 

reservoirs from microresistivity image logs. Unlike clastic reservoirs, carbonate 

reservoirs have poor permeability-porosity correlation due to the presence of diagenetic 

features such as vugs and fractures. The third chapter introduced an innovative deep-

learning workflow for identifying vuggy facies from image logs. Traditionally, 

identifying vuggy facies is a labor-intensive process and requires the efforts of 

experienced geologists. Convolutional neural networks (CNNs), which have been broadly 

applied to multi-image classification in computer vision, were used in this study. First, 

the raw image-log data were clipped to half-foot interval. As a comparison, a cleaned 

dataset was generated by removing clipped images with poor quality. Next, facies labels 
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were interpreted based on core descriptions, conventional wireline logs, and nuclear 

magnetic resonance (NMR) data. The labeled data were split into training, validation, and 

test datasets. Finally, a hyperparameter optimization process was employed to improve 

model performance and reduce over-fitting. The results of models trained by the 

complete dataset and cleaned dataset were compared. For this study, Jiajun Jiang 

developed and implemented ideas and analyzed results. Dr. Chicheng Xu, Dr. Rui Xu, 

Dr. Scott James, and Dr. Weichang Li provided critical review. Dr. Dawn Jobe 

contributed to the data labelling process. 

For an in-depth understanding subsurface rock-fluid properties and reservoir 

geomechanics, facies classification from image logs is only the first step for carbonated 

reservoir characterization. The deep-learning endeavors need to be extended to pixel-wise 

geologic feature segmentation. In the fourth chapter, a drilling-induced fractures (DIFs) 

segmentation pipeline was developed using a U-Net framework. Vertical DIFs were 

selected as segmentation targets for two reasons: (1) vertical DIFs are important 

indicators for horizontal maximum stress that significantly affect reservoir 

geomechanical analyses and (2) other types of fractures (such as natural fractures and en-

echelon DIFs) were not widely distributed in the available dataset. U-Net is special form 

of a Fully Connected Network (FCN), which output labeled images. Labeled images were 

binary (0 denotes non-fracture pixels and 1 denotes fracture pixels) with the same 

dimensions as the input image. Image logs were labeled manually and clipped into a 

trainable size (128 × 128). An augmented training dataset was generated by simply 

mirroring the image and corresponding labels and adding these to the original dataset. 

The U-Net models were separately trained on these two training datasets and predictions 
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were made on the same test dataset. The importance of data augmentation and the 

robustness of the U-Net algorithm were evaluated by multiple classification/segmentation 

metrics. For this study, Jiajun Jiang developed and implemented ideas and analyzed 

results. Dr. Scott James provided critical review and served as corresponding author. 
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CHAPTER TWO 
 

A Multiphase, Multicomponent Reservoir-simulation Framework for Miscible Gas and 
Steam Co-injection 

 
This chapter was published as Jiang, J., James, S.C., Mojarab M., 2019, A Multiphase, 

Multicomponent Reservoir-simulation Framework for Miscible Gas and Steam Co-
injection, SPE Reservoir Evaluation & Engineering. 

 
 

Abstract 
 
 The Solvent Thermal Resource Innovation Process (STRIP), a downhole steam-

generation technology, has the capacity to show improved recovery factors with a 

significantly reduced environmental footprint compared to traditional thermal-enhanced-

oil-recovery (TEOR) methods, most notably by delivering all the combustion heat to the 

payzone. In this effort, a quarter-symmetry inverse-five-spot model and a multiphase, 

multicomponent, reservoir-simulation framework were used to simulate the STRIP 

technology. Commercial simulators such as CMG-STARS (thermal and advanced-

processes reservoir simulator) often use the K-value approach to simulate TEOR. 

However, the method cannot simulate STRIP’s carbon dioxide (CO2) and steam 

coinjection because the K-value method does not consider miscible gas injection. On the 

other hand, CMG’s GEM (compositional simulator) includes the effects of miscible gases 

but does not provide comprehensive support for steam injection processes, which are 

better handled by STARS. The novel simulation framework developed here leverages and 

combines the individual strengths of STARS (thermal features) and GEM (compositional 

features). In this framework, STARS simulated steam injection (but cannot directly 

simulate the effects of CO2) and was the governing model that synchronized temperature, 
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pressure, and phase saturations for two parallel iterations of the GEM models (GEM-1 

and GEM-2) at each time step. Immiscible CH4 was added to GEM models to maintain 

gas saturations equivalent to the STARS model. GEM-1 simulated hot-water and CH4 

injection, but at increased rates to yield a pressure field and gas saturations equivalent to 

STARS. A final run of GEM-1 injected both CO2 and hot water and demonstrated the 

expected increase in oil production. Calibrated injection rates from GEM-1 were 

specified in GEM-2 to ensure equivalence of the pressure field. Next, the GEM-2 model 

also simulated hot-water and CH4 injection, but matched both water and oil productions 

along with oil saturations from the final GEM-1 run by altering relative permeabilities. 

Finally, the updated relative permeabilities were fed back to STARS and iteration 

proceeded. Results from this framework were verified against a STARS steam-injection 

simulation. Finally, when considering co-injection of CO2, STRIP’s superior performance 

was demonstrated through increased oil recovery and a lower steam-oil ratio. 

 
Introduction 

 
 Petroleum engineers rely chiefly on numerical simulations to accurately predict 

hydrocarbon-reservoir performance under variable geologic conditions and 

development/exploitation strategies (Ertekin et al. 2001, Aziz and Settari 1979). Unlike 

conventional reservoirs, development methods for bitumen and heavy oil often rely on 

thermally enhanced oil recovery (TEOR) such as steam-assisted gravity drainage (SAGD, 

Cyr et al. 2001). Simulating TEOR methods is markedly more complicated than 

estimating the response of a black-oil reservoir (Chow and Butler 1996) because of the 

highly nonlinear response of the system to stimulation. 
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This effort was motivated by the need to simulate new technologies like RII North 

America Incorporated’s (RII-NA’s) Solvent Thermal Resource Innovation Process 

(STRIP), which is fuel efficient, environmentally friendly, and has the potential to 

recover more oil with less energy than traditional TEOR methods (Voskov et al. 2016). 

STRIP is a downhole steam-generation technology that delivers steam and combustion-

product CO2 to the payzone to generate a gas drive in heavy oil (Figure 2.1(a)).  The 

steam transfers heat to the reservoir and the condensed hot water front drives the heated, 

more mobile oil. Simultaneously, the noncondensible CO2 combustion product dissolves 

into the heavy oil to further decrease its viscosity. A STRIP burner is installed within the 

cavity of an existing well (drilled for primary production) completed in a heavy-oil 

reservoir (Figure 2.1(b)). Oxygen, fuel, and water are co-injected through annular tubes 

from the well head to the burner (Figure 2.1(c)). A slug of silane is cast down the 

innermost fuel tube and oxygen is coordinated to simultaneously issue from the burner 

(James et al. 2012, James et al. 2014, James et al. 2015). Silane auto-ignites in the 

presence of oxygen (Kondo et al. 1994, 1995, Hecht et al. 2011). The silane slug is 

chased with methane, which burns with stoichiometric oxygen (Hill et al. 1985). Water 

flows outside the combustion shroud to cool it and provide the steam source. Important 

advantages of STRIP include the fact that burners can be installed in existing wells, 

100% of the combustion energy is delivered to the payzone, the potential to use produced 

gas as process fuel, and the potential to recycle produced water as the water source for 

steam. A steam quality of 0.8 was used in this study as specified according to STRIP 

combustion calculations by Voskov et al. (2016). Given the presence of CO2, STRIP 
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injection fluids correspond to those often used in Expanding Solvent-SAGD (ES-SAGD), 

hence STRIP is an efficient version of solvent-steam co-injection technology. 

 

Figure 2.1. Cartoon of STRIP operation. (a) Heavy oil is displaced and driven by steam 
and CO2 generation in the payzone. (b) The injected oxygen and fuel are auto-ignited by 
a slug of silane and generate steam and CO2 in the combustion cavity. (c) Oxygen, fuel, 
and water are delivered through separate tubing strings from the wellhead to the burner. 
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A particular challenge to accurately simulating this complicated process is to 

faithfully replicate the highly nonlinear relationship between flow, transport, and heat 

transfer as components partition across phases and two common approaches are used to 

solve this multi-phase, multicomponent problem. One method uses K values, which are 

ratios of phases of single components calculated from flash calculations (Lucia 2010). 

The advantage of using K values is their computational efficiency because flash 

calculations are not required for each time step (Rannou et al. 2013). However, the K 

values are calculated from real-gas equations of state (EOS) and are quite sensitive to 

temperature and pressure, with lesser sensitivity to composition (Lucia et al. 2012, Lucia 

and Bonk 2012). Nevertheless, compositional effects cannot be ignored in near-miscible 

or miscible gas-injection systems such as STRIP (Orr 2007). The second, more 

computationally expensive approach solves EOS at each model gridblock at each time 

step (Hassanzadeh et al. 2008, Voskov et al. 2016), but it accurately describes the phase 

equilibrium and transport properties of reservoir fluids (Chang et al. 1996). Thermal 

compositional simulators have been studied for many years (Rubin and Buchanan 1985, 

Mifflin et al. 1991, Varavei and Sepehrnoori 2009, Voskov et al. 2016); however, 

because of numerical instabilities and computational expense, they have not been broadly 

implemented in commercial simulation software, although progress with research codes 

is underway (Voskov et al. 2016, Voskov 2017, Chen et al. 2018, Ganapathy and Voskov 

2018, Khait et al. 2018).  

There were three primary motivations for use of the full EOS approach over the 

K-value method: 
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1) Three-phase EOS and K-value approaches have been compared for steam and 

non-condensable gas co-injection (Zaydullin et al. 2017). That study 

concluded that EOS and K-values approaches yielded similar results. 

However, their ES-SAGD simulation injected methane and steam, which this 

framework can be extended to handle. The solubilities of methane in both 

heavy oil and water are about an order of magnitude lower than CO2 for the 

same reservoir conditions (Dhima et al. 1999, Tharanivasan et al. 2006). 

Compositional effects cannot be ignored in near-miscible or miscible gas-

injection systems such as STRIP (Orr 2007) so the EOS method is a sufficient 

if not better choice for steam-CO2 co-injection. Other studies comparing EOS 

and K-value methods on hot-water injection and steam-condensable-gas co-

injection, however, have demonstrated notable disparities (Heidari 2014, 

Varavei and Sepehrnoori 2009); production rates from these models showed 

that EOS-based cumulative oil production was more accurate than that for the 

K-value simulator. 

2) During STRIP simulation, CO2 and steam were considered miscible gases and 

K values were a function of composition. By definition, K values are 

calculated with respect to the key (or predominant) component only as a 

function of temperature and pressure. To relax this assumption, WINPROP 

uses Hand’s Rule to calculate composition-dependent K values (CMG 2015c, 

Van-Quy et al. 1972). Hand's Rule is a tie-line relationship that, for a ternary 

system, assumes all tie-lines intersect at a point (CMG 2015b, Van-Quy et al. 

1972, Young and Stephenson 1983). However, there are several drawbacks to 
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using Hand’s Rule. First, it is an empirical method based on the assumption 

that all tie lines intersect at a point. Significant errors may result near the 

critical point (where the liquid and gas phases have the same density) because 

the K values are strong functions of composition near the critical point. 

Second, the phase envelopes may be nonlinear. Third, though not needed here, 

heavy oil can be composed of hundreds of component and selecting only one 

primary component for the K-value tables may lead to inaccuracies because 

composition-dependent K values are vectors with lengths equal to the number 

of components.  

3) CO2 is an important solution gas for producing heavy oil. The nature of heavy 

oil in terms of solution gas is quite different from conventional light oil. For 

example, foamy oil flow is a type of two phase oil-gas flow in which the gas 

phase (mostly CO2) remains partially or completely dispersed in the oil (Maini 

1999). Foamy oil drive and cyclic solvent/CO2 injection are notably different 

from conventional solution gas drive and miscible/immiscible solvent 

injection (Maini 1999, Saner and Patton 1986). 

This study outlines the development of a new thermal compositional simulation 

framework based on the widely used commercial tool, Thermal and Advanced Processes 

Reservoir Simulator (STARS, CMG 2015b) developed by Computer Modelling Group 

Ltd. (CMG), coupled to the Compositional and Unconventional Oil and Gas Reservoir 

Simulator (GEM, CMG 2015a) through the Parameter ESTimation software, PEST 

(Doherty 2016b, 2016a). This effort was motivated by RII-NA’s desire to simulate their 

STRIP technology using commercial software accepted as the industry standard. 
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The non-condensable gases CO2 and CH4 have different liquid-gas relative 

permeabilities than water vapor (Nourozieh et al. 2015). However, simulating the effects 

of these non-condensable gases on endpoint saturations is an area of active research and 

was not attempted here. In GEM-2, the updated relative permeabilities were adjusted to 

match the production rates and oil saturations for the entire model domain, so the relative 

permeabilities were regarded as average relative permeabilities throughout the model 

domain. This was necessary because adding adjustable permeability parameters for each 

model cell would be computationally intractable and ill-defined with many more 

parameters than calibration data points. 

The theory of rate-dependent dissolution and exsolution reveals that gas 

dissolution into bitumen at low temperature is slow and that exsolution of dissolved gas is 

minimal without significant pressure variation (Nourozieh et al. 2012). Another theory 

indicates that non-condensable gas can improve the thermal efficiency of steam-chamber 

development, because non-condensable gas can accumulate between the cold reservoir 

and steam front and acts as an insulator (Nourozieh et al. 2015). However, these effects 

were not explicitly studied here. 

 
Mathematical Formulations 

 
A comprehensive numerical model that considers the different mechanisms of 

fluid flow, reactive transport, and thermodynamic interactions within heterogeneous 

porous media is required to optimize ES-SAGD processes in heavy oil and bitumen 

reservoirs. Simulating ES-SAGD is complicated by the nonlinear interrelationships 

between oil, water, and condensable and non-condensable gas phases, all of which 

undergo varying degrees of fluid flow and transport. A particular challenge to this 
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modeling approach is to accurately describe how components partition across the 

multiple phases, which yields a highly nonlinear coupling between flow and heat transfer. 

There is an active debate as to whether the non-condensable gas accumulates at the steam 

front (thereby reducing heat transfer to the oil phase and decreasing oil production) or 

whether it accumulates at the top of the reservoir (where it acts as an insulator to reduce 

heat losses to the overburden thereby improving ES-SAGD thermal efficiency). Some 

experiments suggest that co-injection of a non-condensable gas with steam may reduce 

the steam-oil ratio (SOR, Nourozieh et al., 2015). A verified model of these scenarios 

may help resolve this debate. 

In STARS, to ensure energy and mass conservation, accumulations are equal to 

the rate of change of net inflow plus sources and sinks. Mass conservation for flowing 

(and absorbing) component i is: 

 
   

f w w o o g g v

w w o o g g w w g g o o w w o o g g ,
i i i k k k

i i i i

i i i i i i i i i

V S w S x S y V A
t

v w v x v y D w D y D q w q xx q y

  

        

      
     

(1) 

where t is time, Vf is volume of all fluid phases, wi, xi, and yi are mole fraction of 

component i in aqueous, oleic, and gaseous phases, respectively, Vv is void volume, ρw, 

ρo, and ρg are mass densities of aqueous, oleic, and gaseous phases, respectively, Sw, So, 

and Sg are saturations of the aqueous, oleic, and gaseous phases respectively,   is 

porosity, Ai is adsorption level, vw, vo, and vg are the volumetric flow rates of aqueous, 

oleic, and gaseous phases, respectively, Dw, Do, and Dg are the component dispersibilities 

in aqueous, oleic, and gaseous phases, respectively (component dispersibilities in the 

three phases are functions of geometric factors and component dispersion coefficients), 
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Δwi is mole fraction change of component i in the aqueous, phase, qw, qo, and qg are the 

volumetric well flow rates for aqueous, oleic, and gaseous phases, respectively, and 

subscript k is the well layer number, which is the model layer index vertical to the well 

path. 

Energy is conserved as: 

 
 

   
f w w o o g g v s s r r

w w w o o o

w o

g g g w w w o o o g

g

gT ,
k k k g

V S U S U S U V c U V U
t

v H v H v H q H q H q H

  

      

       
      

  (2) 

where Ur is energy per rock volume, cs is total solids concentration, Uw, Uo, Ug, and Us 

are the internal energies of aqueous, oleic, gaseous, and solid phases, respectively, γ is the 

thermal transmissibility (the product of geometric factors and thermal conductivity), ΔT 

is temperature change, and Hw, Ho, and Hg, are the enthalpies of aqueous, oleic, and 

gaseous phases, respectively.  

The K values calculated from a real-gas EOS in STARS are most sensitive to 

temperature and pressure, but compositional effects must be considered (Orr 2007). 

During the STRIP simulation, CO2 and steam were considered miscible gases and K 

values were a function of composition.  

To address the shortcomings of the K-value method, GEM solves the EOS every 

time step when simulating solvent injection. GEM uses CMG’s advanced EOS 

compositional simulator based on the Peng-Robinson EOS for complex phase behavior 

involving CO2 (CMG 2015a).  
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The material balance finite-difference equations in GEM are: 

     1 1 1
o o g cog g 0m m n m m m n m m m n n

i i i i i

V
Px y P P q M M

T
                   


D D

,  (3) 

    
c c c

1
w w 1 1 1

1 1
cwo 0n

n n n
m n m m n nV

P P q M M
T

  
 




        


D , (4) 

where τo, τg, and τw are the molar transmissibilities (product of effective permeability and 

geometric factors) of oleic, gaseous, and aqueous phases, respectively, Pcog and Pcwo are 

oil-gas and water-oil capillary pressures, respectively, P is oleic phase pressure, V is 

gridblock volume, qi is injection/production rate of component i, nc is number of non-

water components, nc + 1 refers to water, qnc+1 is injection/production rate of water,  is 

depth, Τ is temperature, superscripts n and n + 1 are the previous and current time levels, 

when using the explicit solver, superscript m is n while it is n + 1 for the implicit solver, 

γo, γg, and γw are the pressure gradients of oleic, gaseous, and aqueous phases, 

respectively, Mi is moles of component i per unit gridblock volume, and 
c 1nM   is moles of 

water per unit of gridblock volume. 

The oil simulated in this model was a typical heavy oil described in Table 2.1. 

Initially, no gases were assumed dissolved in the oil (dead oil). The Peng-Robinson EOS 

estimated component-phase equilibrium behavior (Robinson and Peng 1978). Mixture 

viscosities were calculated according to the Modified Pedersen Method (Pedersen and 

Fredenslund 1987). Figure 2.2 shows the viscosity of dead oil as a function of 

temperature. WINPROP estimated EOS coefficients, which were used to predict gas-oil 

system behaviors including solubility of gas in oil for the GEM simulations. Gas 
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dissolution into aqueous phases was calculated using Henry’s Law with Harvey’s 

correlation applied to CO2 (Harvey 1996). 

Table 2.1. Heavy oil data. 
 

 

 

 
 

 
Figure 2.2. Heavy oil viscosity changes with temperature. 

 
 
The simulated reservoir was an inverted five-spot, quarter-symmetry model with 

steam injection (Figure 2.3) and three layers in the vertical. The top and bottom layers 

were impermeable and represent overburden and underburden rocks. Heat transfer was 

allowed through all model layers. In traditional TEOR methods, wellbore heat loss can be 

as high as 50% (Petroleum Technology Alliance Canada 2005). Because STRIP 

generates steam directly in the payzone, wellbore heat loss was not included in the 

Specific gravity 1.012 

Molecular weight (kg/kmol) 600 

Density (kg/m3) 1011.8 
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framework. Reservoir physico-chemical parameters including dimensions, initial 

conditions, and thermal properties are listed in Table 2.2. Well-configuration information 

is presented in Table 2.3. 

 

Figure 2.3. A 3D view of the inverse five-spot, quarter-symmetry model. Underburden 
and overburden layers in red are impermeable but conduct heat. The layer in blue is the 
reservoir. 
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Table 2.2. Reservoir conditions. 
 

 
 

Table 2.3. Well configurations. 
 

 
 
Two model parameters, maximum bottom-hole pressure (BHP) and maximum 

injection rate, constrain the STARS injection rate. By specifying the maximum BHP as 

 Reservoir Overburden  Underburden 
Thickness (m) 10 50 50 
Reservoir dimensions (m3) 25×25×10 25×25×50 25×25×50 
Grid block size (m3) 2.5×2.5×10 2.5×2.5×50 2.5×2.5×50 
Depth (m) 400 350 410 
Porosity (-) 0.3 0 0 
Permeability (md) 1,000 0 0 
Oil saturation 0.7 0 0 
Water saturation 0.3 0 0 
Gas saturation 0 0 0 
Reservoir temperature (°C) 11 11 11 
Reservoir pressure (MPa) 1.596 1.596 1.596 
Volume heat capacity (J/m3-°C) 2.6×106 2.7×106 2.7×106 
Rock thermal conductivity (J/m-d-°C) 232,877 230,000 230,000 
Oil thermal conductivity (J/ m-d-°C) 12,960 12,960 12,960 
Water thermal conductivity (J/ m-d-°C) 52,704 52,704 52,704 
Gas thermal conductivity (J/ m-day-°C) 4,000 4,000 4,000 

 STARS GEM-1 GEM-1 final run GEM-2 
BHP (MPa) 8 8 8 8 
Steam temperature (°C) 230 n/a n/a n/a 
Steam quality (−) 0.8 n/a n/a n/a 
Injected water mole 
fraction (−) 0.9 0.9 

0.9 
0.9 

Injected CH4 mole 
fraction (−) 0.1 0.1 0.1 
Injected CO2 mole 
fraction (−) 0 0 0.1 0 

Water (steam) injection 
rate, qw (m3/d) 

10 Varied 
90 mole% of calibrated 

GEM-1 
4

mod
CHwq q   

Same as 
GEM-1 

Methane injection rate, 

4CHq  (m3/d) 0 Varied 
10 mole% of calibrated 

GEM-1 
4

mod
CHwq q  

Same as 
GEM-1 
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8 MPa, which is higher than typical situations, and a maximum injection rate of 

10 m3/day, this ensured that a constant injection rate of 10 m3/day was maintained 

throughout the STARS simulation. Note that the high maximum BHP was never achieved 

during the simulation because it was constrained by the injection rate. The constant 

injection rate was required for the framework because without it, BHP could limit the 

volume input to the system, but only if the injection rate caused that pressure to be 

exceeded. If this condition was not met, PEST would not identify BHP as a sensitive 

variable, thus necessitating the arbitrarily high maximum BHP when calibrating 

maximum injection rate. 

As opposed to STARS, GEM decouples the phase-equilibrium equations and 

solves them separately in an inner loop (Collins et al. 1992, CMG 2015a). GEM 

calculates the flow for each component, i, rather than the flow of each phase. Hence, 

GEM is better suited to solve the CO2-steam co-injection problem. The Sigmund method 

was used to calculate non-condensable gas diffusion (Sigmund 1976). In GEM, fluid 

mixing is a combined result of diffusion, local velocity gradients, locally heterogeneous 

streamline lengths, and mechanical mixing (Lake 1989). However, GEM is not a thermal 

simulator, although different temperatures are allowed in each gridblock. 

The PEST software suite facilitates parameter estimation and uncertainty analysis 

of complex models (Moore and Doherty 2005). In the GEM models, several parameters 

(injection rates and relative permeability coefficients) were calibrated to match previous 

STARS and GEM model outputs. PEST calibrated two GEM models by adjusting their 

input parameters such that their outputs matched previous model outputs (specified 

observation data). This was accomplished by minimizing an objective function 
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formulated as a weighted sum of squared errors between GEM outputs and the specified 

observation data. The framework managing the STARS model and GEM calibrations was 

built in MATLAB (although Python would work just as easily).  

 
Coupling Methodology 

 
CMG’s STARS simulates thermal, non-isobaric, three-phase flow and transport 

(oil, water, and steam), but does not directly include the effects of a non-condensable 

CO2 phase, which is miscible in the steam phase and has significant solubility in both the 

oil and water phases. On the other hand, CMG’s GEM simulates the non-condensable 

CO2 phase, but it is an isothermal model. The new framework couples STARS and GEM 

to simulate ES-SAGD technologies like STRIP. 

In hydrocarbon reservoirs, relative permeabilities are strong functions of the 

solvent-gas concentrations in the vapor phase (Schneider and Owens 1976). These 

solvents also decrease liquid-phase viscosities particularly for heavy oils, which also 

swell, resulting in enhanced oil mobility. Considered from a different perspective, the 

physico-chemical changes effected by the solvent are conceptually equivalent to an 

increase in the relative permeability of the formation. The idea forwarded here is to use 

an isothermal GEM solvent-water co-injection simulation to identify augmented relative 

permeabilities that result in the equivalent enhanced oil mobility achieved through an ES-

SAGD process. Then, STARS simulations using these augmented relative permeabilities 

will reflect the effects of non-isothermal co-solvent injection despite the fact that STARS 

only has the capacity to expressly simulate the effects of steam injection. A complication 

that had to be overcome was the incongruity between STARS and GEM because each 

uses different multi-phase and thermodynamic properties for water. Specifically, GEM 
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does not have the ability to consider the steam phase. To represent the steam phase in 

GEM, an immiscible gas phase (CH4) was added to maintain gas saturations equivalent to 

the STARS model. If live oil was simulated, injecting N2 would have been a better option 

to distinguish oil content from injected gas. The water and CH4 injection rates in the 

GEM model were adjusted to match the pressure field and gas saturations from the 

STARS model. Even though hot water and CH4 injections were used in GEM, the overall 

framework reflects the use of steam (not hot water) injection for two reasons: (1) the 

STARS model with steam injection governs mass and energy conservation; (2) the GEM 

models uses hot water and CH4 co-injection to mimic the steam environment. An iterative 

approach was required to solve this nonlinear process wherein the strengths of each 

model were leveraged to overcome their individual weaknesses. 

Overall, the framework required iteration of three models as shown in the flow 

chart in Figure 2.4: one STARS model and two GEM models for each user-defined time 

increment until the total simulation time period was completed. STARS simulated steam 

injection (but cannot directly simulate the effects of CO2) and was the governing model 

that synchronized temperature, pressure, and phase saturations for the GEM models at 

each time step. 

 
Framework Design 

 
This novel framework leverages and combines the individual strengths of STARS 

(thermal features) and GEM (multicomponent features). A MATLAB script executed 

STARS, GEM, and PEST and also read and exchanged information between the three 

programs according to the flow chart in Figure 2.4, with steps summarized below:  
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0) Initialize the framework; see Note 0) below. 

1) Execute the STARS model; see Note 1) below. 

2) MATLAB Module 1: Generate the PEST-1 and GEM-1 input files; see 

Note 2) below. 

3) Execute the PEST-1 calibration of GEM-1; see Note 3) below. 

4) MATLAB Module 2: Generate the Final GEM-1 input file; see Note 4) 

below. 

5) Execute the Final GEM-1 model; see Note 5) below. 

6) MATLAB Module 3: Generate the PEST-2 and GEM-2 input files; see 

Note 6) below. 

7) Execute the PEST-2 calibration of GEM-2; see Note 7) below. 

8) MATLAB Module 4: Generate the next STARS input file; see Note 8) 

below. 

Additional details are noted below: 

0) All STARS and GEM models shared the same grid, reservoir properties, 

and well locations, which were sent to the first execution of STARS and 

the MATLAB script as initial and boundary conditions. Initial relative 

permeabilities are shown in Figure 2.5.Time was initialized, 

(e.g., t = 0 days), the STARS/GEM model time steps were set 

(e.g., t = 0.1 days), the framework-iteration time step was established 

(e.g., t = 1 day), and the end time specified (e.g., tmax = 365 days). 

1) Run the STARS model from t to t + t in steps of t (see Tables 2.1, 2.2, 

and 2.3) 
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2) Because there is no heat equation solution, spatially variable temperatures

were independently specified in each gridblock of the GEM-1 input file

equal to the output from the STARS run (i.e., t ≈t + t). Moreover, the

effects of steam condensation were incorporated by injecting CH4 (
4

mod
CHq ), 

but only after modifying its physical properties in the GEM-1 input to be a 

weighted average of 90 mol% steam and 10 mol% CO2 calculated at the P 

and T (output from the STARS model) in each gridblock – importantly 

with zero miscibility. 

Moreover, because GEM ensures saturation conservation and global 

compositions for oleic and gaseous phases, STARS outputs (in terms of 

phase saturations) were modified as: 

o g w 1,S S S   (5) 

4o CH 1,Z Z    (6) 

  
4o CH o g w 1,Z Z S S S    (7) 
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where Zo and 
4CHZ  are global compositions of oil and methane, 

respectively, do and 
4CHd are the molar densities at the temperature and 

pressure in each gridblock, and Sw, So, and Sg are saturations of aqueous, 

oleic, and gaseous phases in each gridblock. The preceding equations were 

used to translate STARS outputs into the calibration targets in the PEST-1 

input file, which were used to when minimizing the objective function (see 

Table 2.5). 

3) Calibrate the GEM-1 model (from t to t + t in steps of t) by adjusting 

water and modified-CH4 volumetric well-injection rates, qw and 
4

mod
CHq , 

respectively, within specified bounds (Table 2.4). Initial values of these 

rates supplied to PEST came from the STARS model run. 

4) To approximate the combustion products from the STRIP process, which 

were assessed by Voskov et al. (2016), 
2COq  was specified in the 

Final GEM-1 input file as 10 mole% of the total STARS injection rate (

4CHwq q ) thereby respecting stoichiometric combustion of CH4 with pure 

oxygen while qw was specified as the remaining 90 mole%. In the Final 

GEM-1 input run, global compositions and water saturations (indicated 

with the asterisk) were: 

 
   

 
2o w CO w*

w w
o w

1 1 1
,

1 1

Z S Z S
S S

Z S

   


 
  (10) 

 
   

 
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4 4
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CH CH *
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where Sw, 
4

CH
Z , and Zo are outputs from the calibrated GEM-1 model while 

2
CO

Z  was from the Final GEM-1 run at the previous time step (or zero the 

first time through the framework). 

5) Execute the Final GEM-1 model from t to t + t in steps of t.

6) Build the GEM-2 input file using gridblock P and T from the MATLAB

Module 1 as well as injection rates from qw and 
4

mod
CHq  from the calibrated 

GEM-1 run.  

Specify the calibration targets as the oil and water production rates, Qo and 

Qw, respectively, as well as the spatially variable 
4

*
CHZ  and *

oZ  calculated 

from STARS saturations making sure to also use 
2

*
COZ  from the preceding 

Final GEM-1 run (output from t) in the PEST-2 input file. 

In the GEM-2 calibration (from t to t + t in steps of t), there were 27 

observations to match comprising So for each of the 25 gridblocks along 

with water and oil productions (see Table 2.5). GEM-2 was calibrated to 

match productions, hence larger weights were assigned to water and oil 

productions during calibration (Table 2.6). Increased oil mobility due to 

the CO2 combustion products from STRIP was represented by adjusting 

the relative permeability parameters listed in  defining Stone’s Model II 
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relative permeability curves (CMG 2015b, Aziz and Settari 1979). 

Because GEM ensures the maximum ro for both oil-water (rocw) and gas-

fluid (rogcg) relative permeability functions to be equal. rogcg was fixed to 

rocw, decreasing the number of adjustable parameters to 15. Next, GEM-2 

was calibrated to match water and oil productions from the final GEM-1 

run, as well as each payzone gridblock’s oil saturations by varying the 16 

parameters listed in Table 2.5. 

7) . In Stone’s Model II, relative permeability curves are defined as: 

 ,
1.0

N
S S

S S
 

 
    

w

w wcrit
rw rwiro

wcrit oirw

  (14) 

 ,
1.0

N
S S

S S
 

 
    

ow

o orw
row rocw

wcon orw

  (15) 

 ,
1.0

N
S S

S S S
 

 
      

g

g gcrit
rg rogcl

gcrit oirg wcon

  (16) 

 ,
1.0

N
S S S

S S S
 

  
      

og

l org wcon
rog rogcg

gcon org wcon

  (17) 

where S is endpoint saturation, specifically Swcrit is critical water 

saturation, Swcon is connate water saturation, Soirw is irreducible oil 

saturation in the water-oil relative permeability function, Sorw is residual 

oil saturation in the water-oil relative permeability function, Soirg is 

irreducible oil saturation in the gas-liquid relative permeability function, 

Sorg is residual oil saturation in the gas-liquid relative permeability 
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function, Sgcrit is critical gas saturation above which gas flows, Sgcon is 

connate gas saturation, rocw is oil relative permeability at connate water 

saturation, rwiro is water relative permeability at irreducible oil saturation, 

rgcl is gas relative permeability at connate liquid saturation, rogcg is oil 

relative permeability at connate gas saturation, and Nw, Now, Nog, and Ng 

are exponents for κrw, κrg, κrow, and κrog, respectively. 

Finally, these 15 calibrated relative permeability parameters were used to 

formulate the relative permeabilities (κrw, κrg, κrow, and κrog described in the next Section) 

built into STARS input file that will simulate the next time step (or output the overall 

framework simulations if tmax, was exceeded). 
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Figure 2.4. Flow chart for the simulation framework. For each time step, the governing 
STARS model runs with updated relative permeabilities from the GEM-2 calibration, 
which was run with appropriate 

4

mod
w CHq q  and 

2COq  injection rates from the final run of 

GEM-1. 
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Figure 2.5. (a) Initial and adjusted average relative permeabilities for the liquid-gas 
system. (b) Initial and adjusted average relative permeabilities for the oil-water system. 
The solid curves are initial κr curves, and the dashed curves are adjusted average κr 
curves from GEM-2. 

Table 2.4. Adjustable parameters for GEM-1. 

Adjustable Parameter Initial value Lower bound Upper bound 

qw (m3/day) 10 0 15

CH4 injection rate (m3/day) 0 0 5
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Table 2.5. Number of adjustable parameters and observations with corresponding weights 
for the GEM calibrations. 

Model Adjustable parameters Numbers of observations Weight 

GEM-1 
P at each gridblock 25 1 

So and Sg at each gridblock 25 1 

GEM-2 

Qw for t + t 1 20

Qo for t + t 1 20

So at each gridblock 25 1 
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Table 2.6. Adjustable parameters from the GEM-2 calibration defining the relative 
permeability curves. 

Adjustable parameter Initial value Lower bound Upper bound 

Swcrit 0.13 0.05 0.3

Swcon 0.13 0.04 0.3

Soirw 0 0 0.2

Sorw 0.39 0.2 0.45

Soirg 0 0 0.1

Sorg 0.2 0.05 0.25

Sgcrit 0.05 0 0.1

Sgcon 0 0 0.5

rocw 0.948 0.8 1

rwiro 0.79 0.6 1

rgcl 0.2 0.1 0.3

rogcg rocw Fixed Fixed

Nw 2 1 3

Now 2 1 3

Nog 2 1 3

Ng 2 1 3
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Model Analysis 
 

To ensure mass and energy conservation, a verification model demonstrated that 

the framework can replicate the results of a simple steam-injection model from STARS. 

A verification model was built using the reservoir properties, well configurations, and 

fluid properties described in Tables 2.1−2.4 and 2.6 except that the injection composition 

in the final run of GEM-1 was 100% water (no CO2). For verification, the framework 

must be able to faithfully represent a steam-injection model. Figure 2.6 shows that the 

recovery factors from both the new framework and the STARS steam-injection model for 

a year-long run are identical. To further verify the framework, a coarsened model with 

5 × 5 m2 gridblocks (four times the original resolution of 2.5 × 2.5 m2) also demonstrated 

an identical match.  

 

Figure 2.6. Recovery factor for a steam-injection-only STARS simulation compared to 
the equivalent from the new framework. The blue curve is from STARS and the red curve 
is from the new framework.  
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Using the verified framework, a CO2-steam co-injection model was run for one 

year. Figure 2.7 compares recovery factors from the CO2-steam co-injection model from 

the new framework to an equivalent STARS steam-injection model. At equivalent 

reservoir conditions and volumetric injection rates, pure steam and STRIP’s CO2-steam 

mixtures will have different enthalpies. Because this study focused on developing a new 

coupling method for simulating and comparing the performance of STRIP to steam 

injection at equal enthalpy injection rates, no enthalpy correction was considered 

although such a correction could be added in the Final GEM-1 run. More oil was 

produced from the CO2-steam co-injection model than from the steam-injection model. 

At the end of the year-long simulation, the CO2-steam co-injection model produced 6% 

more oil than the steam-injection model. Figure 2.8 compares oil production rates from 

steam injection to those from STRIP. After 129 days of operation, the CO2-steam co-

injection model indicated injection/production connectivity (with oil production rates > 5 

m3/day), whereas the steam-injection model had connectivity after 146 days of operation. 

Unconventional oil and gas companies tend to be smaller companies subject to larger 

financial pressure (Weijermars 2011). The early breakthrough between injection and 

production wells would improve economic feasibilities and mitigate early cash-flow 

problems. The increased productivity and early breakthrough illustrate the effects of CO2 

viscosity reduction on oil recovery. Steam injection alone reached a minimum cumulative 

SOR of 3.6 on the 281st day while the CO2-steam co-injection achieved a minimum 

cumulative SOR of 3.1 on 262nd day (Figure 2.9). At the end of the simulation, the 

cumulative SOR for the CO2-steam co-injection model was 3.8 compared to 4.0 for steam 
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injection. The high SOR (out of range in Figure 2.9) was due to minimal production rates 

before a steam-chamber connection was established. 

 

 

Figure 2.7. Recovery factor versus cumulative enthalpy injected for steam injection 
compared to STRIP. 
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Figure 2.8. Oil production rates for steam injection compared to those from STRIP. 
Dashed lines indicate four oil-rate peaks. 
 

 

Figure 2.9. Cumulative SOR for steam injection compared to that from STRIP. 
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In Figure 2.7 and Figure 2.9, recovery factor and cumulative SOR of steam 

injection tend to approach those of STRIP at end of model run. As mentioned earlier, 

compared to steam injection, STRIP achieved steam breakthrough sooner. In real 

operations, well controls would establish steady production upon an early breakthrough 

of STRIP. For example, if injection and production rates were controlled (reduced) by 

defining maximum BHP at production wells and maximum instantaneous SOR at 

production wells, a low SOR would be maintained (Voskov et al. 2016). In this study, to 

maintain a constant injection rate and simplify the simulation framework, a high 

maximum BHP was defined at the injection well. Without simulating well control, the 

catch-up performance of steam injection was operationally related rather than process-

related. In practice, STRIP will further outperform steam injection when well control is 

implemented. 

Figure 2.10 reveals four peaks in BHP for STRIP are observed but only one for 

steam injection. STRIP’s four BHP peaks coincide with the four oil-production-rate 

peaks in Figure 2.8. These multiple oil peaks indicate superior sweep efficiency and 

produce more oil for STRIP. What’s more, the higher final (steady-state) BHP also 

improved sweep efficiency and reduced residual oil saturation because of the CO2 

injected into the formation. 
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Figure 2.10. Injection well BHP for steam injection compared to that from STRIP. 
Dashed lines indicate four BHP peaks. 

 
 
Average relative permeabilities through the entire model run were plotted and 

compared to the initial relative permeability curves in Figure 2.5. In the gas-fluid system 

(left), the relative permeability of the fluid increased while the relative permeability of 

the gas decreased. In the oil-water plot (right), oil relative permeability decreased at low 

water saturations, but increased at high water saturations while water relative 

permeability was increased throughout. The increased water relative permeability 

explains the increased water production observed for STRIP compared to steam injection 

(Figure 2.11). Oil cut curves for STRIP and steam injection have similar but shifted 

shapes (Figure 2.12). STRIP’s similar oil cut with more water production than for steam 

injection demonstrate that STRIP produces more oil than steam injection even for 

equivalent energy input. Figure 2.13 compares the oil per unit area from the two models 
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on day 90; the CO2-steam co-injection model reveals a more condensed oil front and 

higher sweep efficiency. 

 

Figure 2.11. Cumulative water production for steam injection compared to that from 
STRIP. 
 

 

Figure 2.12. Oil cut for steam injection compared to that from STRIP. 
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Figure 2.13. Oil per unit area on the 90th day for (a) steam injection and (b) STRIP, which 
demonstrates higher sweep efficiency and a condensed oil front. 

 
 
Of course, there is no free lunch. The framework is much more computationally 

expensive, because at each time step, the framework calls PEST to do two history-

matching exercises, which each require on the order of 100 GEM model runs (although 

these are only run for t days). 

 
Conclusion and Future Works 

 
A new framework integrating CMG STARS and GEM was built to simulate 

STRIP operation, conceptually similar to ES-SAGD, only more thermally and materially 

efficient. An inverted five-spot, quarter-symmetry model with typical heavy-oil reservoir 

characteristics was used for this demonstration. The framework was verified by 

reproducing a simple steam-injection model from STARS. In addition to the 

environmental advantages, the STRIP CO2-steam co-injection process has the potential to 

produce more oil for the same enthalpy injected into a given reservoir. Compared with 

steam injection, STRIP achieved an early breakthrough, which can mitigate the early 
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cash-flow problems for unconventional operators. The CO2-steam co-injection model 

demonstrated that solvent CO2 plays an important role in increasing oil recovery 

corresponding to adjusting relative permeabilities to yield a lower SOR and increased oil 

produced compared to traditional steam-injection. By implementing practical well 

controls, STRIP will further improve performance.  

 Future research will focus on decreasing the computational costs and testing the 

framework on a larger domain. The framework called STARS, PEST (twice), and many 

runs of GEM each time step. As the number of payzone gridblock increases, STARS and 

GEM computational expenses will commensurately increase. Reducing the numbers of 

parameters adjusted by PEST will spare model calls and insensitive relative-permeability 

parameters could be fixed to affect this reduction. If the sensitivity of a parameter is 

lower than some user-defined limit, the parameter could be set as a constant. For 

example, initial investigations revealed that parameters Soirw, Soirg, and Sgcon might be 

fixed in the GEM-2 model for homogeneous subsurface rock properties. 
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Abstract 
 
 Identification of vuggy intervals and understanding their connectivity are critical 

for predicting carbonate reservoir performance. Although core samples and conventional 

well logs have been traditionally used to classify vuggy facies, this process is labor 

intensive and often suffers from data inadequacies. Recently, Convolutional Neural 

Network (CNN) algorithms have approached human-level performance at multi-image 

classification and identification tasks. In this study, CNNs were trained to identify vuggy 

facies from a well in the Arbuckle Group in Kansas. Borehole resistivity images were 

pre-processed into half-foot intervals; this complete dataset was culled by removing poor-

quality images to generate a cleaned dataset for comparison. Core descriptions along with 

conventional gamma ray, neutron/density porosity, photoelectric factor, and nuclear 

magnetic resonance T2 data were used to label these datasets for supervised learning. 

Hyperparameters defining the CNN network architecture (numbers of convolutional 

layers and filters and the numbers of dense layers and neurons) and minimize overfitting 

(dropout rates, patience, and minimum delta) were optimized. The median losses and 

accuracies from five Monte Carlo realizations of each hyperparameter combination were 

the metrics defining CNN performance. After hyperparameter optimization, median 
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accuracy for vuggy/non-vuggy facies classification was 0.847 for the cleaned dataset 

(0.813 for the complete dataset). This study demonstrated the effectiveness of using 

microrestivity image logs in a CNN to classify facies as either vuggy or non-vuggy, while 

highlighting the importance of data quality control. Moreover, this effort lays the 

foundation for developing CNNs to segment images to estimate vuggy porosity. 

 
Introduction 

 
Unlike clastic reservoirs, carbonate reservoirs typically have poor porosity-

permeability correlations due to the presence of vugs and fractures. Vugs were defined as 

non-fabric selective secondary solution pores by Choquette and Pray (1970). Another 

important study defined vugs as pore spaces significantly larger than particles (Lucia 

1983, Lucia 1995). For reservoir characterization, the debate continues as to which 

definition is superior (Lucia 1983, Lucia 1995, Lønøy 2006). Regardless of which 

definition you prefer, this study developed a method for identifying vuggy intervals from 

image data, not a new carbonate porosity-classification system. Here, vugs are simply 

defined as solution-enlarged cavities in rock. Depositional pores as well as cracks formed 

during tectonism may be enlarged by secondary diagenetic processes such as dissolution 

to form grain- to fist-sized or larger vugs.  

Vuggy intervals can be difficult to identify on conventional wireline logs because 

these logs lack dimensional resolution; vugs are 3D features and wireline data are 1D 

(Cunningham et al. 2004, Ausbrooks et al. 1999, Newberry et al. 1996). Identification of 

vuggy intervals and understanding their connectivity are critical for predicting reservoir 

performance. Intervals with isolated vugs may yield a high neutron-log porosity signal, 
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yet they produce less oil than intervals with lower neutron-log porosity and more 

connectivity.  

Vug identification is traditionally a labor-intensive process requiring acquisition 

of subsurface core for experienced geologists to describe the geologic facies and pore-

types. Lucia (1983) summarized a general process for geologists to identify vugs from 

cores: (1) recognize interparticle pore space; (2) visually estimate particle size; and 

(3) visually recognize vuggy porosity. Recently, nuclear magnetic resonance (NMR), 

micro-computed tomography, and computed tomography were used to identify vugs in 

carbonates with fine particles (e.g., clay-silt particles) and then to quantify vuggy 

porosity (Li et al. 2017, Vik et al. 2007, Doveton and Watney 2014). Traditional core 

descriptions, NMR, and tomography measurements are important inputs for geologic 

modeling and reservoir simulation. However, these techniques are limited by the 

availability of cores. Therefore, tools and workflows for identifying vugs from subsurface 

log data are needed to act as surrogates for core-based descriptions. 

Microresistivity imaging logs support identification of vuggy intervals and can 

potentially be used as proxies for core-based vug identification. Unlike conventional 

wireline logs, microresistivity logs provide a higher degree of geologically relevant 

information using images from the sidewall of a borehole from which reservoir properties 

can be inferred including lithology, grain-size, bedding and dip angles, fracture 

orientations, and pore-types. Interpretation of image logs can be time-consuming and 

heavily dependent upon the experience of the interpreter. In this study, we developed a 

method for rapid interpretation of vuggy intervals from image logs so that vug 

identification can be extended to wells without cores.  
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Microresistivity logs are a type of unstructured data (images that are not 

organized in a pre-defined model) generated by indirect electrical measurements of the 

surrounding rock formations in a borehole. These unstructured data can be interpreted 

using computer-assisted object detection and image classification. 

Newberry et al. (1996) proposed an analytical method using the classic Archie 

saturation equation to compute porosity distributions from resistivity image logs. 

Cunningham et al. (2004) applied filters and pixel counts to quantify vuggy porosity from 

optical image logs. A geostatistical approach has been used to generate porosities from 

images logs to achieve reliable matches to core plug measurements (Tilke et al. 2006). 

Igneous lithology classification from image logs was undertaken using feature 

engineering and principal component analysis (Jungmann et al. 2011). However, in each 

of these studies, challenges remained when assessing geologic information. Even though 

image logs provide more and different information from conventional logs, there may be 

significant data insufficiency. In other words, unlike color images with the three RGB 

channels, data collected by resistivity image-logging tools are single-channel images. 

Previous quantitative studies only focused on classification through pixel counts for rocks 

with limited heterogeneity with features that could be easily distinguished. For example, 

Newberry et al. (1996) and Cunningham et al. (2004) used dark pixels (high resistivity 

responses) to identify vugs in shales and carbonate formations without fractures, but dark 

pixels in image logs are non-unique and can also indicate vugs, fractures, shales, cherty 

layers, etc. As a result, these approaches are limited to fairly homogeneous materials. 

Machine learning (ML) has proven to be a powerful tool for identification of 

geologic features from unstructured data (Lary et al. 2016, Bergen et al. 2019, Xu et al. 
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2019, James et al. 2018). Among ML algorithms, a convolutional neural network (CNN) 

was selected because of successful applications to computer-vision problems (Krizhevsky 

et al. 2012, Kalchbrenner et al. 2014, LeCun et al. 2015). Moreover, CNNs have been 

successfully applied to geoscientific image classification in mineralogy, seismic, and 

remote-sensing studies (Jobe et al. 2018, Hu et al. 2015, Xu et al. 2019, Wu et al. 2019). 

This study identified vuggy intervals by applying a CNN to borehole-resistivity image 

logs. 

 
Geologic Background 

 
This study focused on the Arbuckle Group shown in gray in Figure 3.1, which 

appears throughout Kansas and ranges from 150 to 1500 m thick (Keroher and Kirby 

1948, Cole 1975). The current conceptual model of the Arbuckle Group is based on early 

petroleum well drillings (1917–1940); however, they only penetrated shallow portions of 

the formation (3 to 15 m) and provided low-quality logging data that do not meet modern 

standards (Franseen and Byrnes 2012). In recent decades, deep wells with modern 

logging data became available for Arbuckle Group rocks, but most wells lack core 

correlation. What’s more, the dearth of equivalent strata and a biostratigraphic framework 

precludes a complete understanding of the Arbuckle Group. As a target, especially for 

gas production, the Arbuckle Group needs more study to appraise its production 

potential.  

The Arbuckle Group is part of the Cambrian-Ordovician Great American 

Carbonate Bank, which ranges from the north flank to the south of the North American 

Craton (Wilson et al. 1991). During the Cambrian to Ordovician, Kansas was located 20 

to 30° south of the equator and south of the Transcontinental Arch (Ross Jr 1976). 
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Shallow marine limestone was deposited north of the Transcontinental Arch with cherty 

dolomite and dolomitic limestone in the north (Ross Jr 1976). Sea levels started to fall at 

the end of the early Ordovician and exposed Cambrian-Ordovician-deposited carbonates. 

A series of uplifts in the early Pennsylvanian, especially the Nemaha and Central Kansas 

uplifts, intensified erosion and uneven paleotopography of these carbonates (thickness 

contours in Figure 3.1). Another significant event induced by uplift and erosion yielded 

an unconformity between the Arbuckle Group and overlying Simpson Group. Structural-

stratigraphic traps developed with karstic fractures that enhanced porosity on the tops of 

these paleohighs (Adler et al. 1971, Walters 1958, Franseen and Byrnes 2012).  

The Arbuckle Group is mainly composed of shallow-water ramp-type subtidal to 

peritidal carbonates (Franseen 1994, 2000, Franseen et al. 2004, Franseen and Byrnes 

2012, Steinhauff et al. 1998). Different scales of subtidal to peritidal cycles (<3 ft to 

>20 ft) controlled the distribution of depositional facies and increased the vertical 

heterogeneity of the Arbuckle formation (Franseen 2000, Steinhauff et al. 1998). 

Furthermore, the vertical heterogeneity (packing of thin layers) complicates labelling and 

identification of facies intervals. Historically, most oil and gas reservoirs were only found 

in the top 25–50 ft of the Arbuckle formation, suggesting that it was a karstic fracture-

controlled reservoir with a short oil column (Adler et al. 1971). Later studies revealed 

remarkable matrix porosity in the deeper unkarsted carbonates indicating the potential for 

oil reserves in these strata (Franseen and Byrnes 2012). 

Data used in this study were from the Wellington KGS 1-32 well (location 

indicated in Figure 3.1) and include borehole images, conventional and nuclear magnetic 

resonance (NMR/NMR-T2) log data, as well as core descriptions. In addition, gamma ray 



51 
 

(GRTC), resistivity (RT-10, -20, -30, -60, and -90), neutron/density porosity (NPHI, 

RHOB), and photoelectric factor (PEF) wireline logs were collected. Figure 3.2 shows 

the stratigraphic column of Wellington KGS 1-32 (Franseen and Byrnes 2012). 

Diagenesis including dolomitization, dissolution and karsting, fracturing, and 

hydrothermal alteration have added complexity to the lithologies. The dataset (2,695 ft of 

images) covers the Cambrian-Ordovician Arbuckle Group as well as the overburden 

Simpson Group and underburden Precambrian igneous formations. The well was chosen 

because it has a full-spectrum data set covering most well-log data types. 

 
Figure 3.1. Location of Wellington #1–32 and isopach map of the Kansas Arbuckle 
Group, which is thicker in southeastern Kansas and absent in the white area. Contours 
were modified from Cole (1975). 
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Figure 3.2. Stratigraphic chart for the Arbuckle Group and adjacent formations (modified 
from Franseen and Byrnes, 2012).The lithologic patterns were from USGS (2006). 
Cambrian-Ordovician Arbuckle Group rocks are mainly composed of shallow-water 
subtidal to peritidal carbonates. 
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The lithologies present in Wellington KGS 1-32 include sandstone, shale, 

limestone, dolomite, cherty limestone, and granite. The Arbuckle Group experienced 

non-destructive dolomitization, so the original texture of the depositional facies was 

maintained. Previous studies identified eight dominant depositional facies in the 

Arbuckle Group: clotted algal boundstone, laminated algal boundstone, peloidal 

packstone-grainstone, mixed packstone-grainstone, ooid packstone-grainstone, 

wackestone-mudstone, intra-Arbuckle shale, and conglomerate and breccia (Steinhauff et 

al. 1998, Franseen and Byrnes 2012). 

 
Methods 

 
 Figure 3.3 shows the workflow for this study. Preprocessing took about 50% of 

the time and effort due to the various data types and complicated data pre-processing. 

Training took about 30% of the time because the CNNs used in this study were relatively 

small. Post-processing took about 20% of the time.  

 

Figure 3.3. Workflow for this study. 
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Data Quality 
 

Image logs were visualized with Schlumberger’s Techlog 2019.1. The data were 

pre-processed to harmonize them such that they were all properly correlated with depths 

(depth correction). Image log pixel values ranged from 0 to 255 and were plotted with a 

white-yellow-black color scheme (see Figure 3.4) where high-resistivity responses are 

represented by yellow-white colors and low-resistivity by brown-black. 

A typical resistivity image-logging tool has 4, 6, or 8 pads that are pressed against 

the borehole side wall. Electrical currents are forced into the rock through electric node 

arrays on the pads. Geologic features can be identified by different resistivity responses 

received by the tool. Inadequate contact between the pads and the side wall (e.g., due to 

sidewall collapse, the presence of low-resistivity brine, or vugs larger than the pads) can 

yield low-quality data (add reference). 

A data-quality check revealed three types of poor-quality images (Figure 3.4): 

(1) over-saturated image logs (e.g., false high-resistivity measurements due to loss of pad 

contact with the sidewall) that do not reveal any information (Figure 3.4(a)); (2) improper 

function of the logging tool (e.g., pad slippage) generated elongated striping 

(Figure 3.4(b)); and (3) malfunction of at least one pad leading to partial information loss 

(Figure 3.4(c)). Removing these poor-quality images from the training data set should 

provide a more robust CNN model and boost prediction accuracies. However, the 

ultimate goal of ML is full automation (i.e., the ML algorithm should have the capability 

to process even poor-quality-images). In this study, CNN models were trained using both 

the complete dataset and the cleaned dataset with poor-quality images removed and 
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accuracies were compared. The 3rd type was not removed in the cleaned dataset because 

it still contains considerably useful information. 

 

Figure 3.4. (a) Image log too bright to reveal any information; (b) image logs shows 
elongated features and loss of vertical resolution; (c) malfunction of pad two of six. 
 
 
Data Labelling 
 

Binary vuggy/non-vuggy facies were manually classified using gamma ray 

(GRTC), resistivity (RT10, RT20, RT30, RT60, and RT90), neutron/density porosity 

(NPHI, RHOB), photoelectric factor (PEF), core descriptions, and NMR T2. During 

facies labeling, there were several challenges that had to be addressed. For example, from 

3168 to 3186 ft, the high gamma ray, low NMR T2, and low resistivity implied a possible 

shale section (outlined in turquoise in Figure 3.5). The image column in this region 
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indicates shale interbedded with carbonate and this was labeled as non-vuggy although 

this was a more qualitative assessment and a judgment call by the geologist. 

Figure 3.6 (a) and (d) show image logs with corresponding NMR T2 and core photos for 

non-vuggy facies, whereas (b) and (c) are vuggy facies. Another issue was related to 

identifying black strips or laminae. Previous studies have used simple pixel counts on 

image logs to measure vug-porosity and gamma-ray cutoff to identify shale, which has 

low resistivity and is represented by darker colors (Ausbrooks et al. 1999). Due to the 

lower resistivity of shale, a resistivity threshold was used to label shale pixels in image 

logs. But this approach is not possible here because of the inability to distinguish low-

resistivity chert and horizontal fractures from shale. In Figure 3.6 (a) and (c), the cherty 

layers have similar resistivities (layers of dark colors) to shale layers. A third issue was 

that the neutron-density logs sometimes contradicted the NMR T2 distributions, which 

are the transverse relaxations times that are proportional to pore-throat radii. Finally, both 

vuggy facies and fractures had NMR T2 distributions with peaks at longer times 

(Figure 3.6). Longer NMR T2 times indicate larger pores, but these data alone do not 

provide enough information to distinguish pore types (vugs or fractures, 

e.g., Figure 3.6 (b) and (d)). These challenges highlight the importance of using diverse

data types for facies labeling. 

Recall the data quality issues mentioned earlier, the data-quality indices were 

labelled based on image data only. The first and second types of image with poor quality 

were label as bad (0) and rest images are good (1).  
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Figure 3.5. Wireline data (GRTC, RT-10, -20, -30, -60, -90, NPHI, RHOB, PEF, and 
NMR T2) used for labeling vuggy facies. 
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Figure 3.6. Images for (a) shale, (b) dolomite, (c) dolomite with chert, and (d) granite 
with corresponding average NMR T2 distributions and core photos. Clear large T2 
distributions are apparent in both vuggy facies and fractured rocks. Here, NMR T2 
averages comprise four quarter-foot intervals over the one-foot image. 

Data Clipping 

A Python script divided the single-well borehole image log into multiple smaller 

images with a user-defined number of pixels. A moving window sequentially scanned the 

image and saved each scan as an input sample (no overlap) for CNN training and testing. 

The image log was divided into 60×200-pixel samples in depth and width, respectively, 

representing half-foot intervals. To accommodate feature map reduction (discussed later), 

each sample was zero padded to a size of 64×208. The resulting 5355 samples with 

corresponding facies labels were split into training/validation/test datasets in a ratio of 
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0.8/0.1/0.1 (Table 3.1). A total of 199 samples (3.7%) were identified as images with 

poor quality. Cleaned datasets included the same samples from the previous split but 

removed those images with poor quality. Note that stratification (ensuring that the ratio of 

vuggy to non-vuggy facies was consistent in the training/validation/test datasets) was not 

necessary because the ratio of vuggy to non-vuggy facies was close to 1 (0.82). 

 

Table 3.1. Number of samples comprising the complete and cleaned datasets. 
 

Dataset name Complete datasets Cleaned datasets 

Training  4285 4129 

Validation  535 516 

Test 535 511 
 
 
CNN Framework 
 

CNNs have been used in computer vision for decades (LeCun and Bengio 1995, 

Krizhevsky et al. 2012, Kalchbrenner et al. 2014) and successful implementation on 

powerful graphical processing units (GPUs) combined with ever-increasing availability 

of training data has increased the popularity of CNNs (Russakovsky et al. 2015, LeCun et 

al. 2015). Today, CNNs are also used for natural language processing, hyperspectral 

image processing, and medical information analyses (Lee and Kwon 2017, Chen et al. 

2017, Yamashita et al. 2018). 

CNNs typically comprise three types of layers: convolutional, pooling, and fully 

connected layers. Convolutional layers are the primary building blocks for CNNs; they 

apply filters to the upstream input data to generate feature maps that identify and classify 

local features. An image comprising one (e.g., grayscale) or more (e.g., RGB) two-



60 

dimensional arrays are output. An output tensor from a convolutional layer is calculated 

as:  

1

*K 1, .
N

j i j j
i

f B j J


    
 
A I K   (0.18) 

In the preceding equation, input tensor, Ii (one of N channels of an image or a feature 

map), is convoluted ( ) with filter Kj. These convoluted tensors are summed and bias, Bj, 

is added to produce the total input to the nonlinear activation function, f. This activation 

function is applied to each element of all input channels, thereby yielding output tensor 

Aj. Output tensors calculated from J filters are then assembled into a 3D tensor. The goal 

when training a CNN is to update the values of each filter that determine the local 

features that optimize image classification. 

To progressively reduce the size of the feature maps and speed computation, 

convolutional layers are followed by pooling layers. The most common pooling layer, 

max pooling, reduces array size of the feature maps (outputs from convolutional layers) 

by selecting only the maximum value from a block with a user-defined size (e.g., a 2 × 2 

kernel size):  

 1max .l l
j s j

A A (0.19) 

Here, maxs extracts the maximum values from the output of the previous convolutional 

layer ( 1
j
A l ) from each distinct s × s pooling block. The resulting number of elements 

from each output tensor are s2 times smaller than the input, but the total number of output 

tensors remains unchanged. 
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After several sets of convolutional layers and pooling layers, CNNs are usually 

finalized through several fully connected (FC) layers and an output layer. The output 3D 

feature maps (A) from convolutional layers are unrolled into vector h. The FC layers 

calculate: 

  f ,b  z w h   (0.20) 

where z is the output from the FC layer, w is the weight vector applied to the FC layer, σ 

is a nonlinear activation function, and bf  is the bias for the FC layer. Finally, predictions 

are made from the output layer: 

  o oˆ ,S b  y w z   (0.21) 

where ŷ  is the prediction vector from the output layer, wo is the weight vector applied to 

the output layer, S is the softmax function, and bo is the bias for the output layer. In this 

study, the ŷhas two classes: [1, 0] represents non-vuggy and [0, 1] represents vuggy 

facies. The cross-entropy loss function was used. 

In computer vision, if thousands of objects are identified from millions of 

pictures, CNN architectures with many layers, such as ResNet, Inception, and VGGNet 

(152, 19, and 16 layers respectively), demonstrate good performance (He et al. 2016, 

Szegedy et al. 2017, Simonyan and Zisserman 2014). However, for a small dataset like 

the greyscale image inputs with resolution 60×200 and binary output in this study, large 

CNNs are not necessary. A recent machine learning competition, the Statoil/C-CORE 

Iceberg Classifier Challenge, required participants to identify icebergs from two-channel 

75×75 images. The top solutions implemented CNNs with few layers and parameters. 

Figure 3.7 shows the base CNN model with three layers used in this study. The padded 
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input image (64×208) was fed into convolutional layer 1 (Conv1) with 32 filters yielding 

output feature maps of dimension 64×208×32. A max pooling layer (Pool1) followed 

Conv1 to reduce the feature maps to 32×104×32. Conv2 and Pool2 worked similarly to 

Conv1 and Pool1 but with different sizes. After Pool2, the 3-D feature maps were 

unrolled into a 1-D vector and fed into a fully connected layer (FC1). Finally, the vuggy 

or non-vuggy facies labels were predicted.  

Figure 3.7. Base CNN used in this study. 

CNNs were built with TensorFlow GPU 1.8.0 and Keras GPU 2.2.4. TensorFlow 

is a free and open-source software library for deep learning written in Python. Keras is a 

high-level neural network application program interface capable of running on top of 

TensorFlow. Depending on the CNN architecture in this study, training a CNN for 200 

epochs took 3 to 7 minutes (NVIDIA Tesla V100). An epoch is defined as presentation of 

all samples in a training dataset (Table 3.1) to the network. 

Hyperparameter Optimization 

Hyperparameter optimization is required to maximize classification accuracy for 

the test dataset by minimizing validation loss. Recall that the CNN was not privy to the 

test dataset during either training or validation. Hyperparameters provide overarching 

control of the learning process but are not learned as are network parameters (e.g., node 

weights and biases). These hyperparameters were divided into two groups: those that 
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specify network architecture (numbers of convolutional layers and filters and the 

numbers of dense layers and neurons) and those that minimize overfitting (dropout rates 

and the patience and minimum delta for early stopping). Dropout randomly disconnects 

neurons (w = 0) during training (Srivastava et al. 2014). Patience is defined as the number 

of epochs that transpire without decreasing the validation loss by some minimum delta 

(Witten et al. 2016), whereupon training is stopped. When optimizing the early stopping 

hyperparameters, additional training runs were not necessary because all training and 

validation loss data were available from the runs used to optimize the network 

architecture and dropout rates. Patience ranged from 0 to 20 in unit increments with 

minimum deltas from 0 to 0.01 in steps of 0.001. 

The hyperparameter tuning process was conducted for both the complete and 

cleaned datasets. Because the GPU algorithm (NVIDIA CUDA® Deep Neural Network 

library, CuDNN) used in the TensorFlow is non-deterministic (i.e., the same seed number 

for the random number generator yields slightly different results) (Alberti et al. 2018, 

Marrone et al. 2019), five Monte Carlo-type iterations were performed for each validation 

exercise. The CNN was trained five times for each combination of hyperparameters in 

Table 3.2 (bold entries indicate optimized results) for 200 epochs. These 4800 training 

runs (10 convolution layer options × 8 dense layer options × 3 convolution layer dropout 

rates × 4 FC dropout rates × 5 iterations) required fifteen days on the GPU. 
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Table 3.2. Hyperparameter variations interrogated in this study. 

Conv layers Dense layers Conv dropout FC dropout 

16, 32 32 0.15 0.3 

32, 64 64‡ 0.25 0.4

64, 128 128 0.35‡, † 0.5† 

16, 32, 64 64, 32 0.6‡ 

32, 48, 64 128, 64 

32, 64, 128 256, 128† 

64, 128, 256 512, 256 

64, 128, 128 128, 64, 32 

32, 64, 128, 256‡, † 

64, 100, 128, 150 

‡Cleaned dataset. 
†Complete dataset. 

Figure 3.8 shows the median loss per epoch from these five Monte Carlo 

iterations where the median training loss (blue curve) always decreased; however, the 

median validation loss (red curve) reached a minimum before increasing. Table 3.3 lists 

the optimized early stopping hyperparameters along with overall performance metrics. 

The validation exercise was stopped at the 74th epoch with a patience of 6 and a 

minimum delta of 0.03. Despite differences in network sizes, for both datasets the 

training processes was interrupted at around the 75th epoch. Upon supplying the test 

datasets to the trained CNN models using optimized hyperparameters, unsurprisingly the 

cleaned dataset outperformed the complete dataset through both a lower median 

validation loss and a higher median test accuracy.  
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Figure 3.8. Range of the five Monte Carlo iterations showing validation loss (orange) and 
training loss (cyan) with medians (red and blue curves, respectively). The black dashed 
line is at the 74th epoch where the training process was interrupted. These results are from 
the cleaned dataset yielding the lowest validation loss. 

Table 3.3. Optimized early stopping hyperparameters for the complete and cleaned 
datasets as well as model-performance metrics. 

Hyperparameters and metrics Complete dataset Cleaned dataset 

Minimum delta 0 0.03 

Patience 8 6

Stopped epoch 79 74 

Median validation loss 0.308 0.277 

Median test accuracy 0.813 0.847 
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Results and Discussion 

Using the complete dataset to train the base model yielded a median accuracy of 

0.791 on the test dataset. After hyperparameter optimization, prediction accuracies from 

the five Monte Carlo realizations trained using the complete dataset ranged from 0.794 to 

0.836 with a median of 0.813 (a 3% improvement); however, the cleaned dataset had a 

median test accuracy of 0.847 (a 7% improvement) and ranged from 0.800 to 0.861. The 

improved accuracy reflects the significance of hyperparameter optimization and data-

quality control in this image-based deep-learning study. Figure 3.9 compares the CNN 

outputs from the complete and cleaned dataset to the labeled dataset. 
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Figure 3.9. Facies predictions for both complete and cleaned datasets using the optimized 
hyperparameters (Tables 3.2 and 3.3) compared to the labeled dataset. The first column 
indicates how the data were partitioned into training, validation, and testing datasets. 
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It is not uncommon to hear deep learning be described as a “black box;” however, 

the authors believe that it is critical to dispel this myth. By combining domain expertise 

with the science and numerics behind machine learning, we go beyond simply reporting 

accuracies to identify the reasons why the model failed to correctly classify vuggy 

formations. Figure 3.10 shows three examples of misclassification from the optimized 

CNN trained on the cleaned dataset (median accuracy of 0.847) with columns indicating 

the input image, label, prediction, and vuggy/non-vuggy probability, respectively. Shale 

layers, which frequently appeared in the datasets, were associated with dark pixels. 

Moreover, there was a pattern in their spatial continuity; they were arranged 

contiguously, especially in horizontal directions because of layering. In Figure 3.10, 

misclassifications were due to (a) interbedded thin shale layers, (b) a cavity, and 

(c) horizontal fractures. Figure 3.10(a) substantiates the concerns discussed in the

Geologic Background about vertical geologic heterogeneity in the Arbuckle group. If an 

input sample had interbedded alternating facies (e.g., thin shale layers between thicker 

limestone layers), a geologist might label this interval as vuggy because limestone was 

the dominant facies. However, the CNNs were sensitive to the presence of dark pixels, 

which are interpreted as shale (non-vuggy). Figure 3.10(b) further demonstrates 

misclassifications of an interval with dark pixels; the CNN classified this image as non-

vuggy because of the chunk of dark pixels, which were interpreted as shale. Artifact can 

also arise from the way in which the images were partitioned (clipped). The dark pixels at 

the bottom of Figure 3.10(c) are a horizontal fracture. When the image was clipped across 

this fracture, to the CNN, the pixel arrangement was consistent with the common spatial 

contiguity of shale pixels. Without more training data, these less-frequent features 
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(e.g., horizontal fractures, cavities, cherts, etc.) were misidentified as shale layers (non-

vuggy). Note also that misclassified samples such as Figure 3.10(c) often had nearly 

equal probabilities of being vuggy or non-vuggy facies indicating less confidence in this 

prediction from the CNN.  

 
 

 
Figure 3.10. Misclassification due to (a) thin shale layers; (b) with cavity; (c) horizontal 
and vertical fractures, however the probability still provides some information. 
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Figure 3.11 shows confusion matrices for the median accuracy of the complete 

and cleaned datasets (Tables 3.2 and 3.3). Rows indicate prediction accuracies for each 

facies while columns represent the labels. Overall accuracies were higher for the cleaned 

dataset with a more balanced performance between vuggy and non-vuggy facies. 

Figure 3.11. Confusion matrices for (a) the complete and (b) cleaned datsets based on the 
configurations in (Tables 3.2 and 3.3). Rows indicate prediction accuracies for each 
facies while columns are those for manual interpreted labels. There is better accuracy for 
non-vuggy facies prediction than vuggy faices for the complete dataset and equal 
accuracy for the cleaned dataset. 

It is important to keep in mind that because the datasets came from a single well, 

it would not be appropriate to apply this trained CNN with its optimized hyperparameters 

to datasets from different wells without additional validation exercises. To extend the 

application of this modeling framework, a larger dataset must be assembled – one that 

includes the range of lithologic and diagenetic features present in the Arbuckle Group. 
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Conclusions and Future Work 

In this study, the geology at the Wellington 1-32 borehole was classified as either 

vuggy or non-vuggy using a combination of core descriptions and conventional data 

including gamma ray, neutron/density porosity, photoelectric factor, and NMR T2. Next, 

a CNN-based deep-learning framework was constructed to automate facies classification 

according to microrestivity images. First, the microresistivity image for the entire 

borehole was divided into 5355 images (64×208 pixels after padding). This complete 

dataset was analyzed and those images with poor quality were removed from 

consideration (cleaned dataset). Next, both complete and cleaned datasets were split into 

training/validation/test datasets in a 0.8/0.1/0.1 ratio. Hyperparameters defining the 

network architecture and minimizing overfitting were optimized to minimize validation 

losses. Importantly, because the GPU algorithm is not repeatable, during the optimization 

process, each hyperparameter combination was repeated five times and the median 

validation losses were reported. Before hyperparameter optimization, the base CNN 

model yielded an accuracy of 0.791, which was improved to 0.813 (3%) with the 

complete dataset and 0.847 (7%) with the cleaned dataset when using optimized 

hyperparameters, highlighting the significance of data quality control in machine learning 

projects. 

Optimal results can never be achieved by blindly applying machine-learning 

models. Instead, both domain knowledge and insight from data science are needed to 

interpret the results from machine learning models. Mispredictions were investigated and 

were largely a result of the single-well dataset failing to adequately capture the range of 

heterogeneity in the Arbuckle Group. For example, features like cavities, which have 
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dark pixels, were under-represented in the training and validation data, thus making them 

difficult to distinguish from shale, which are also characterized by dark pixels. 

To improve its robustness, this method should be applied to multiwell datasets 

because the ultimate goal is to use trained machine learning models to quickly classify 

newly acquired microresistivity logs. Moreover, the framework developed here could 

easily be extended to identify other geologic features including fractures, beddings, and 

lithologies. Finally, the present study has laid the foundation for pixelwise segmentation 

of microrestivity logs. In addition to classifying vuggy formations, the authors intend to 

use CNNs to estimate vug porosity by counting the number of vug pixels in each image. 

Acknowledgments 

The authors wish to acknowledge the use of the Aramco Americas Houston 

Research Center facilities for this study. Jiajun Jiang was a graduate intern for Aramco 

Americas for a portion of the time that this study was conducted. The authors sincerely 

thank Dr. Dawn McAlpin for her assistance with data labeling and extend special thanks 

to Dr. Weichang Li for his technical review. 



73 
 

References 
 
Adler, F. J., Adler, F. J., Caplan, W. M. et al. 1971. Future Petroleum Provinces of the 

Mid-Continent, Region 7. Future petroleum provinces of the United States: Their 
geology and potential: AAPG Memoir 15: 985–1120. 
https://doi.org/10.1306/02060705012. 

Alberti, M., Pondenkandath, V., Würsch, M. et al. 2018. Deepdiva: A Highly-Functional 
Python Framework for Reproducible Experiments. Presented at the 2018 16th 
International Conference on Frontiers in Handwriting Recognition (ICFHR), 
Niagara Falls, NY, USA,. https://doi.org/10.1109/ICFHR-2018.2018.00080. 

Ausbrooks, R., Hurley, N. F., May, A. et al. 1999. Pore-Size Distributions in Vuggy 
Carbonates from Core Images, Nmr, and Capillary Pressure. Presented at the SPE 
annual technical conference and exhibition, Houston, TX. SPE-56506-MS. 
https://doi.org/10.2118/56506-MS. 

Bergen, K. J., Johnson, P. A., Maarten, V. et al. 2019. Machine Learning for Data-Driven 
Discovery in Solid Earth Geoscience. Science 363 (6433): eaau0323. 
https://doi.org/10.1126/science.aau0323. 

Chen, M. C., Ball, R. L., Yang, L. et al. 2017. Deep Learning to Classify Radiology Free-
Text Reports. Radiology 286 (3): 845-852. 
https://doi.org/10.1148/radiol.2017171115. 

Choquette, P. W. and Pray, L. C. 1970. Geologic Nomenclature and Classification of 
Porosity in Sedimentary Carbonates. AAPG bulletin 54 (2): 207-250. 
https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D. 

Cole, V. B. 1975. Subsurface Ordovician-Cambrian Rocks in Kansas. Reprinted 1981ed) 
Lawrence, Kansas: Kansas Geological Survey 2. 

Cunningham, K. J., Carlson, J. I., and Hurley, N. F. 2004. New Method for 
Quantification of Vuggy Porosity from Digital Optical Borehole Images as 
Applied to the Karstic Pleistocene Limestone of the Biscayne Aquifer, 
Southeastern Florida. Journal of Applied Geophysics 55 (1-2): 77-90. 
https://doi.org/10.1016/j.jappgeo.2003.06.006. 

Doveton, J. and Watney, L. 2014. Textural and Pore Size Analysis of Carbonates from 
Integrated Core and Nuclear Magnetic Resonance Logging: An Arbuckle Study. 
Interpretation 3 (1): SA77-SA89. https://doi.org/10.1190/INT-2014-0050.1. 

Franseen, E. 1994. Facies and Porosity Relationships of Arbuckle Strata: Initial 
Observations from Two Cores, Rice and Rush Counties, Kansas: Kansas Geol. 
Survey Open-File Rep: 94-53. 



74 

Franseen, E. 2000. A Review of Arbuckle Group Strata in Kansas from a Sedimentologic 
Perspective: Insights for Future Research from Past and Recent Studies. The 
Compass: Earth Science Journal of Sigma Gamma Epsilon 75 (2-3): 68-89. 

Franseen, E. K., Brynes, A. P., Cansler, J. R. et al. 2004. The Geology of Kansas 
Arbuckle Group. Midcontinent Geoscience: 1-43. 

Franseen, E. K. and Byrnes, A. P. 2012. Arbuckle Group Platform Strata in Kansas: A 
Synthesis. 

He, K., Zhang, X., Ren, S. et al. 2016. Deep Residual Learning for Image Recognition. 
Proc., Proceedings of the IEEE conference on computer vision and pattern 
recognition770-778. https://doi.org/10.1109/cvpr.2016.90  

Hu, F., Xia, G.-S., Hu, J. et al. 2015. Transferring Deep Convolutional Neural Networks 
for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote 
Sensing 7 (11): 14680-14707. https://doi.org/10.3390/rs71114680. 

James, S. C., Zhang, Y., and O'Donncha, F. 2018. A Machine Learning Framework to 
Forecast Wave Conditions. Coastal Engineering 137: 1-10. 
https://doi.org/10.1016/j.coastaleng.2018.03.004. 

Jobe, T., Vital-Brazil, E., and Khaif, M. 2018. Geological Feature Prediction Using 
Image-Based Machine Learning. Petrophysics 59 (06): 750-760. 
https://doi.org/10.30632/PJV59N6-2018a1. 

Jungmann, M., Kopal, M., Clauser, C. et al. 2011. Multi-Class Supervised Classification 
of Electrical Borehole Wall Images Using Texture Features. Computers & 
geosciences 37 (4): 541-553. https://doi.org/10.1016/j.cageo.2010.08.008. 

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. 2014. A Convolutional Neural 
Network for Modelling Sentences. arXiv preprint arXiv:14042188. 
https://doi.org/10.3115/v1/p14-1062  

Keroher, R. P. and Kirby, J. J. 1948. Upper Cambrian and Lower Ordovician Rocks in 
Kansas: University of Kansas publications. 

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. Imagenet Classification with Deep 
Convolutional Neural Networks. Proc., Advances in neural information 
processing systems1097-1105. https://doi.org/10.1145/3065386. 

Lary, D. J., Alavi, A. H., Gandomi, A. H. et al. 2016. Machine Learning in Geosciences 
and Remote Sensing. Geoscience Frontiers 7 (1): 3-10. 
https://doi.org/10.1016/j.gsf.2015.07.003. 

LeCun, Y. and Bengio, Y. 1995. Convolutional Networks for Images, Speech, and Time 
Series. The handbook of brain theory and neural networks 3361 (10): 1995. 



75 
 

LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep Learning. nature 521 (7553): 436. 
https://doi.org/10.1038/nature14539. 

Lee, H. and Kwon, H. 2017. Going Deeper with Contextual CNN for Hyperspectral 
Image Classification. IEEE Transactions on Image Processing 26 (10): 4843-
4855. https://doi.org/10.1109/TIP.2017.2725580. 

Li, B., Tan, X., Wang, F. et al. 2017. Fracture and Vug Characterization and Carbonate 
Rock Type Automatic Classification Using X-Ray Ct Images. Journal of 
Petroleum Science and Engineering 153: 88-96. 
https://doi.org/10.1016/j.petrol.2017.03.037. 

Lønøy, A. 2006. Making Sense of Carbonate Pore Systems. AAPG bulletin 90 (9): 1381-
1405. https://doi.org/10.1306/03130605104. 

Lucia, F. 1983. Petrophysical Parameters Estimated from Visual Descriptions of 
Carbonate Rocks: A Field Classification of Carbonate Pore Space. Journal of 
petroleum technology 35 (03): 629-637. SPE-10073-PA. 
https://doi.org/10.2118/10073-PA. 

Lucia, F. J. 1995. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for 
Reservoir Characterization. AAPG bulletin 79 (9): 1275-1300. 
https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D. 

Marrone, S., Olivieri, S., Piantadosi, G. et al. 2019. Reproducibility of Deep CNN for 
Biomedical Image Processing across Frameworks and Architectures. Proc., 2019 
27th European Signal Processing Conference (EUSIPCO)1-5. 
https://doi.org/10.23919/EUSIPCO.2019.8902690. 

Newberry, B., Grace, L., and Stief, D. 1996. Analysis of Carbonate Dual Porosity 
Systems from Borehole Electrical Images. Proc., Permian Basin Oil and Gas 
Recovery ConferenceSPE-35158-MS. https://doi.org/10.2118/35158-MS. 

Ross Jr, R. J. 1976. Ordovician Sedimentation in the Western United States. Presented at 
the Rocky Mountain Association of Geologists Symposium. 

Russakovsky, O., Deng, J., Su, H. et al. 2015. Imagenet Large Scale Visual Recognition 
Challenge. International journal of computer vision 115 (3): 211-252. 
https://doi.org/10.1007/s11263-015-0816-y. 

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint arXiv:14091556. 

Srivastava, N., Hinton, G., Krizhevsky, A. et al. 2014. Dropout: A Simple Way to 
Prevent Neural Networks from Overfitting. The journal of machine learning 
research 15 (1): 1929-1958. 
https://dl.acm.org/doi/abs/10.5555/2627435.2670313. 



76 

Steinhauff, M., Franseen, E., and Byrnes, A. 1998. Arbuckle Reservoirs in Central 
Kansas—Relative Importance of Depositional Facies, Early Diagenesis and 
Unconformity Karst Processes on Reservoir Properties: Kansas Geological 
Survey. Open-file Report: 98-55. 

Szegedy, C., Ioffe, S., Vanhoucke, V. et al. 2017. Inception-V4, Inception-Resnet and the 
Impact of Residual Connections on Learning. Proc., Thirty-First AAAI 
Conference on Artificial Intelligence. 

Tilke, P. G., Allen, D., and Gyllensten, A. 2006. Quantitative Analysis of Porosity 
Heterogeneity: Application of Geostatistics to Borehole Images. Mathematical 
Geology 38 (2): 155-174. https://doi.org/10.1007/s11004-005-9011-y. 

USGS. 2006. FGDC Digital Cartographic Standard for Geologic Map Symbolization. US 
Geological Survey Techniques and Methods 11 (A2). 
https://doi.org/10.3133/tm11a2  

Vik, B., Djurhuus, K., Spildo, K. et al. 2007. Characterisation of Vuggy Carbonates. 
Proc., SPE/EAGE Reservoir Characterization and Simulation ConferenceSPE-
111434-MS. https://doi.org/10.2118/111434-MS. 

Walters, R. F. 1958. Differential Entrapment of Oil and Gas in Arbuckle Dolomite of 
Central Kansas. AAPG Bulletin 42 (9): 2133-2173. 

Wilson, J., Fritz, R., and Medlock, P. 1991. The Arbuckle Group: Relationship of Core 
and Outcrop Analyses to Cyclic Stratigraphy and Correlation. Proc., Arbuckle 
core workshop and field trip: Oklahoma Geological Survey Special 
Publication133-144. 

Witten, I. H., Frank, E., Hall, M. A. et al. 2016. Data Mining: Practical Machine 
Learning Tools and Techniques: Morgan Kaufmann. 

Wu, X., Liang, L., Shi, Y. et al. 2019. Faultseg3d: Using Synthetic Data Sets to Train an 
End-to-End Convolutional Neural Network for 3d Seismic Fault Segmentation. 
Geophysics 84 (3): IM35-IM45. https://doi.org/10.1190/geo2018-0646.1. 

Xu, C., Misra, S., Srinivasan, P. et al. 2019. When Petrophysics Meets Big Data: What 
Can Machine Do? Proc., SPE Middle East Oil and Gas Show and Conference. 
https://doi.org/10.2118/195068-MS. 

Yamashita, R., Nishio, M., Do, R. K. G. et al. 2018. Convolutional Neural Networks: An 
Overview and Application in Radiology. Insights into imaging 9 (4): 611-629. 
https://doi.org/10.1007/s13244-018-0639-9. 



77 
 

 
 
 

CHAPTER FOUR 
 

Drilling-induced Fracture Segmentation Using a Convolutional Neural Network 
 

This chapter prepared as: Jiang, J., James, S.C. 
Drilling-induced Fracture Segmentation Using a Convolutional Neural Network,  

Journal of Petroleum Science & Engineering. 
 
 

Abstract 
 
 Identifying drilling-induced fractures (DIFs) and understanding their genesis are 

critical for reservoir geomechanical analyses. Although microresistivity image logs have 

been used to trace DIFs, this process is labor intensive and typically requires expensive 

software. Recently, Fully Convolutional Network (FCN) algorithms have approached 

human-level performance at multi-image semantic segmentation tasks. A modified U-

Net, a form of FCN, was used to segment DIFs from a microrestivity image log from a 

well in the Arbuckle Group in Kansas. The U-Net algorithm was trained with the 

borehole resistivity image (feature) against manually labeled image logs (label: 1 for DIF 

pixels, 0 for non-DIF pixels) using two datasets. The first of these was simply the original 

borehole resistivity log while the second (augmented) included the mirror image of the 

original dataset. A balanced cross-entropy loss function was used because of the 

unbalanced label data (about 60× more non-fracture pixels than fracture pixels). After 

training, each U-Net model (trained on one of the two datasets) made predictions for a 

continuous segment of the borehole. Because of the potential for discontinuities in 

predictions across adjacent image logs of a continuous borehole segment, a stitching 

strategy was implemented by vertically overlapping pixels, which were Gaussian 
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weighted. All predictions achieved better than 0.56 intersection over union performance 

thus demonstrating the robustness of this U-Net model for DIF segmentation. Moreover, 

the model trained on the augmented dataset outperformed that trained on the original 

dataset (intersection over union of 0.73 versus 0.61). Finally, consistent with other 

studies, we demonstrated that overlapping pixels improved prediction accuracy. This 

effort lays the foundation for developing U-Nets to segment natural fractures, beddings, 

and vugs. 

Introduction 

During the drilling and production phases of developing petroleum and 

geothermal reservoirs, reservoir geomechanical analyses are necessary to prevent 

wellbore sidewall collapse or wellbore failure (Dasgupta et al. 2019, Zoback 2010, 

Fellgett et al. 2018, Brudy and Zoback 1999). Also, reservoir geomechanics significantly 

govern hydrofracturing procedures for unconventional petroleum reservoirs (Weng 

2015). The stress state, which is simply represented by three end-member regimes 

(vertical stress Sv, maximum horizontal stress SH, and minimum horizontal stress Sh) 

provides key controls for reservoir geomechanics models (Dasgupta et al. 2019, Zoback 

2010). 

Because Sv is due to overburden pressure, it can be estimated from density logs 

(Tingay et al. 2003). The horizontal stresses, Sh and SH, are largely affected by global and 

reginal tectonic stresses (Brudy and Zoback 1999, Zoback 1992). The magnitude of Sh is 

measured with leak-off tests or from hydro-fracturing data (De Bree and Walters 1989, 

Raaen et al. 2006). The magnitude of SH can be calculated based on known Sh (Brudy and 

Zoback 1999). The orientations of Sh and SH can be estimated from well breakouts and 
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drilling-induced fractures (DIFs). One of the best methods to identify well breakouts and 

DIFs is through examination of image logs. Traditionally, well-trained engineers or 

geoscientists visualize and interpret image logs with software suites (Dasgupta et al. 

2019). This study identifies DIFs using a deep-learning method based on open-source 

Python libraries, which can improve time and cost efficiencies. 

When a wellbore is drilled, the cylindrical hollow volume provides no support for 

surrounding rock. Once stresses concentrated at the well sidewall exceed the rock 

compressive strength, breakouts occur (Bell and Gough 1979, Zhou 1994), which are 

wellbore enlargements (sidewall spalling) caused by compressive failures. Previous 

studies have shown that spalling occurs along the Sh direction and are separated by 180° 

(Brudy and Zoback 1999, Tingay et al. 2003). 

On the other hand, if stresses at the well sidewall exceed the rock tensile strength, 

DIFs occur (Barton and Zoback 2002, Tingay et al. 2003). There are two types of DIFs: 

vertical and en-echelon DIFs. DIFs typically come in pairs separated by 180° along the 

SH direction (Brudy and Zoback 1999). Vertical DIFs are parallel or near parallel to the 

well axis, whereas en-echelon DIFs are inclined to the well axis. Under theoretical 

conditions, both types of DIFs should be separated by 90° from breakouts. 

DIFs can be difficult to identify on conventional wireline logs because these logs 

lack dimensional resolution; DIFs are 3D features and wireline data are 1D. To identify 

and further segment DIFs, image logging tools, which can generate 2D images based on 

physical-property contrasts of wellbore sidewall, are used. Generally, there are two types 

of image-logging tools can be used: resistivity and acoustic image-logging tools. 

Compared to acoustic image-logging tools, resistivity tools are more sensitive to finer 
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scale geologic features (Ja'fari et al. 2012, Massiot et al. 2015). This study used resistivity 

image logs. 

Machine learning (ML) has proven to be a powerful tool for identification of 

geologic features from unstructured data (Bergen et al. 2019, James et al. 2018, Lary et 

al. 2016, Xu et al. 2019). Among ML algorithms, a convolutional neural network (CNN) 

was selected because of successful applications to computer-vision problems 

(Kalchbrenner et al. 2014, Krizhevsky et al. 2012, LeCun et al. 2015). More specifically, 

fracture segmentation is a form of image semantic segmentation. Fully convolutional 

networks (FCNs), a subset of CNNs, have outperformed other methods for image 

semantic segmentation tasks (Ronneberger et al. 2015, Long et al. 2015). A recent 

milestone by Wu et al. (2019) impressed the petroleum geoscience community by 

demonstrating that an FCN  beat all other previous methods for fault-picking tasks from 

3D seismic datasets. This study segmented vertical DIFs in a borehole resistivity image 

log by applying an FCN. 

Vertical Drilling-induced Fractures 

Here, we assumed that the well axis is vertically drilled and the Sv is a principal 

stress. As mentioned above, a hole drilled in an ideal elastic medium concentrates 

stresses on the wellbore sidewall. Kirsch (1898) concluded that stress is a function of 

angular position and radial distance from the center of the wellbore for a circular hole in 

an elastic medium and this is expressed mathematically as: 

 H h H h 0= 2 cos 2 2 ,S S S S P P            (22) 

where σθ is the tangential stress around the borehole, θ is the angle around the borehole 

wall start from the orientation of SH, P0 is pore pressure, and ΔP is the pressure difference 
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between P0 and the drilling mud pressure. In the preceding equation, when θ equals π/2 

or 3π/2, the maximum σθ coincides with the minimum horizontal stress Sh while the 

minimum σθ coincides with the maximum horizontal stress SH at θ = 0 or π as shown in 

Figure 4.1. 

 

Figure 4.1. Stress on the borehole sidewall. 
 
 
 Thus, breakouts (sidewall spalling) tend to occur in alignment with Sh if the 

(maximum) σθ exceeds the rock compressive strength. Conversely, in the direction of SH, 

DIFs tend to occur because the rock tensile strength (T) is overcome when aligned with 

minimum σθ. The conditions that can initialize vertical DIFs can be derived from (1): 

h H 03 2 .S S P P T      (23) 

Sh and SH are primarily controlled by tectonic stresses. Additionally, pore and drilling 

mud pressures also play important roles in the initiation of vertical DIFs. 
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In real systems, vertical DIFs are not absolutely straight and often slightly 

inclined. These situations may be caused by, among other things, well axis deviation, a 

principal stress other than Sv, and rock heterogeneity (Brudy and Zoback 1999). Because 

this study focused on fracture segmentation of resistivity images, further discussion of 

geomechanics is beyond the scope of this paper. 

Fractures on Image Logs 

A typical resistivity image-logging tool has 4, 6, or 8 pads that are pressed against 

the borehole sidewall. Halliburton’s XRMI used in this study has 6 pads spaced 60° apart 

(Nie et al. 2013, Lai et al. 2018). Electrical currents are forced into the rock through 

electric node arrays on each pad. Geologic features and lithologies can be identified by 

different resistivity responses received by the tool. Light-colored (white‐yellow) pixels 

represent resistive materials cement and dense rocks, organic matter, or hydrocarbon-

bearing rocks; dark-colored (brown‐black) pixels represent conductive clay and shale or 

water-invaded voids and pore spaces (Khoshbakht et al. 2012, Muniz and Bosence 2015, 

Lai et al. 2018).  

In this study, the borehole image log was taken from a well with water-based 

drilling mud, so the mud-invaded open fractures should be shown in dark colors. Because 

we targeted vertical DIFs, different types of fractures must be distinguished: (1) natural 

fractures are shown as partial or full sinusoidal waves because these are failure planes 

intersected with the borehole; (2) vertical or tensile DIFs are parallel or near-parallel to 

well axis (vertical wells) and appear in pairs spaced 180° apart; (3) en-echelon DIFs are 

inclined and also have 180° offsets (they look like well-known en-echelon faults or 

fractures in geology).  
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Data Preparation 
 

Data used in this study were from the Wellington KGS 1-32 well, Arbuckle 

Group (Figure 2 and Figure 3). The Arbuckle Group ranges from 150 to 1,500 m thick 

and covers most Kansas (Keroher and Kirby 1948, Cole 1975). The existing geological 

model of the Arbuckle Group is mainly based on early well drillings (1917–1940); 

however, only shallow portions of the formation (3 to 15 m) were broken through with 

low-quality logging data that do not meet modern standards (Franseen and Byrnes 2012). 

In recent decades, deep wells with modern logging data were accessible for Arbuckle 

Group rocks, but core samples are only available in handful wells. What’s more, the 

dearth of equivalent strata and a biostratigraphic framework limits a comprehensive 

understanding of the Arbuckle Group. As a target, especially for gas production and 

carbon-dioxide sequestration, more study in detail need to be engaged to evaluate its 

economic values. 
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Figure 4.2. Location of Wellington #1-32 and isopach map of the Kansas Arbuckle 
Group, which is thicker in southeastern Kansas and absent in the white area. Contours 
were modified from Cole (1975). 
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Figure 4.3. Stratigraphic chart for the Arbuckle Group and adjacent formations (modified 
from Franseen and Byrnes, 2012).The lithologic patterns were from USGS (2006). 
Cambrian-Ordovician Arbuckle Group rocks are mainly composed of shallow-water 
subtidal to peritidal carbonates. 
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The dataset (2,695 ft (821.4 m) of images from 2,549 (776.9) to 5,244 ft 

(1,600 m) below surface) covers the Cambrian-Ordovician Arbuckle Group as well as the 

overburden Simpson Group and underburden Precambrian igneous formations. Given the 

paucity of training data (due to the labor-intensive manual labeling exercise) only 500 ft 

(152.4 m) (from 3,466 (1,056.4) to 3,966 ft (1,208.8 m)) and 83 ft (25.3 m) (from 3,966 

(1,208.8 m) to 4,049 ft (1,234.1 )) of images were labeled and used as the training and 

test datasets , respectively. Notably, having a small training dataset often precludes 

effective development of machine learning models; however, here, if the U-Net model 

can be effectively trained on this small dataset, then the robustness of the algorithm will 

be demonstrated. The medical image processing software, ImageJ, was used to manually 

label vertical DIFs (Abràmoff et al. 2004). A labeled image is the same size as the 

corresponding log image; it is a binary image where 1 and 0 denote fracture and non-

fracture pixels, respectively. 

The original image and labels with a width of 200 pixels and a length of 60,000 

pixels (500 ft × 120 pixels/ft) (152.4 m × 394 pixels/m) need to be divided into a smaller, 

trainable sizes for ML exercises. A moving window with a size of 128×128 scanned the 

resistivity image and corresponding labeled image horizontally before jumping to the 

next row for another horizontal scan. Two scans were taken across each row with 56-

pixel overlap. This process was repeated over the entire 60,000-pixel image and each 

128×128 scan was saved as an input sample and an image label. To accommodate the 

balanced cross-entropy loss function (discussed later), samples with no labeled fracture 

pixels were screened out. Ultimately, the training dataset had 310 samples while the 
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augmented training dataset comprised those 310 samples along with another 310 samples 

that were the mirror images (upside down) of the original dataset. 

 
Methodology 

 
For image classification tasks, CNN frameworks such as ResNet, Inception, and 

VGGNet have proven their robustness (He et al. 2016, Simonyan and Zisserman 2014, 

Szegedy et al. 2017). However, these frameworks typically output 1D vectors that cannot 

provide enough information for image segmentation. Long et al. (2015) introduced an 

FCN that includes only convolutional layers (no fully connected layers) and therefore 

produces segmentation maps that have the same dimensions as the input images. 

However, their FCN had several drawbacks including poor time efficiency, global 

context information was ignored, and limited application to 3D images (Liu et al. 2015, 

Minaee et al. 2020).  

To improve the performance of this FCN, FCN variants were invented (He et al. 

2017, Zhao et al. 2017, Liu et al. 2015). U-Net, the encoder-decoder-based FCN used in 

this study, was originally designed for biological microscopy image segmentation 

(Ronneberger et al. 2015). The original U-Net was applied to images with dimensions of 

572×572. Due to our smaller input (128×128 greyscale images), the U-Net used in this 

study had fewer layers each with reduced dimensions.  

Generally, a U-Net comprises two parts: a contracting path on the left and an 

expanding path on right. The contracting path functions as an encoder that compresses 

input images into a latent space. Here, the latent space refers to a feature representation 

(usually with smaller dimensions) that distills and saves useful semantic information 
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(Minaee et al. 2020, Ronneberger et al. 2015). The expanding path (decoder) predicts 

segmentation based on the information stored in the latent space. 

Figure 4.4. Topology of the simplified U-Net used in this study. 

U-Net is typically composed of four types of layers: convolutional, concatenation,

max pooling, and upsampling layers (input and output layers are convolutional layers). 

Convolutional layers are responsible for detecting local image features and their nodes 

only connect to a small spatial subsets of input image channels through sets of shared 

weights. Each set of shared weights is known as a kernel (or filter). For convolutional 

layers, one (e.g., grayscale) or more (e.g., RGB or outputs from previous convolutional 

layers) two-dimensional (2D) arrays (channels) are input and multiple 2D arrays are 

output. The following equation is used to generate a single output array from a 

convolutional layer:  

1

*K 1, .
N

j i j j
i

f B j J


    
 
A I K   (24) 

Above, each input array, Ii, which is one of N channels of an image, is convoluted with 

(*) with filter Kj. Then bias Bj is added to the sum of these convoluted matrices to 
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produce a total input. Ultimately, nonlinear activation function, f (sigmoid for the output 

layer and ReLU for all other layers), is applied to each element of the matrix of total 

inputs to produce output matrix Aj. Each of these 2D output matrices, one for each of J 

filters, is assembled into a 3D tensor. The goal of the training process is to find the 

components of each filter that extract appropriate image features for optimal image 

segmentation. 

To reduce the computational expense and to extract hierarchical image features 

(patterns such as edges that assemble into higher-order features), a convolutional layer is 

followed by a pooling layer. Max pooling layers decrease the dimensions of feature maps 

(outputs from convolutional layers) by selecting the maximum value from within a user-

defined number of neighboring elements (e.g., 4 for a 2×2 kernel size):  

  1max .l l
j s j

A A   (25) 

Here, the output from the upstream convolutional layer, 1
j
A l , has its maximum value 

extracted from each distinct s×s pooling block, all of which are assembled into jA l . The 

output tensor is s times smaller along both spatial dimensions, but the number of output 

arrays remains the same. 

 The image-to-image process of U-Net cannot be implemented without using 

upsampling layers. Upsampling layers increase the feature map dimensions from 

previously extracted semantic information until the dimensions of input image are 

achieved. The upsampling method used in this study was bilinear interpolation. The 

elements of an input tensor were sparsely and evenly placed to an enlarged tensor. The 
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empty positions in the enlarged tensor were filled using bilinear interpolation that honors 

the closest known elements at the four corners of each empty position: 

 1up ,l l
j s j

A A (26) 

where the output tensor is s times larger than the input and the numbers of output arrays 

remains the same. 

Concatenation layers are used in the expanding path to include global context: 

 con 1 2, ,X X X (27) 

where Xcon is the output concatenated 3D tensor (feature map), X1 is the 3D tensor that is 

not upsampled and contains global information while X2 is the 3D tensor from an 

upsampling layer. 

The cross-entropy loss function for general binary image segmentation is: 

   
1 1

ˆ ˆ ˆ, log( ) 1 log(1 ),
N N

i i i i i i
i i

y y y y y y
 

    L = (28) 

where yi is a binary label (0 or 1) for a single pixel, ˆiy  is the corresponding prediction 

(0 < ˆiy  < 1), and N is the number of pixel in a sample (128×128 = 16,384). However, due 

to significantly different numbers of fracture and non-fracture pixels (fracture pixels do 

not exceed 1.6% of the total number of pixels in this training dataset), the U-Net model 

can erroneously achieve a high accuracy by correctly determining the non-fracture pixels 

and misidentifying the few fracture pixels. To overcome this shortcoming of the original 

cross-entropy loss function when applied to imbalanced datasets, a balanced cross-

entropy loss function was proposed (Xie and Tu 2015). This method first calculates the 

class-balancing weight, which is the ratio of non-fracture to total pixels: 
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N





    (29) 

Thus 1 − β denotes the ratio of fracture-to-total pixels while β / 1 – β is the ratio of non-

fracture-to-fracture pixels. If β = 1, β / 1 − β cannot be solved so samples without fracture 

pixels were excluded. The balanced cross-entropy loss function is: 

      
1 1

ˆ ˆ ˆ, log( ) 1 1 log(1 ).
N N

i i i i i i
i i

y y y y y y 
 

     L =   (30) 

The U-Net used here was built with TensorFlow GPU 1.8.0 and Keras GPU 2.2.4. 

TensorFlow is an open-source software library for deep learning written in Python. Keras 

is a high-level neural network application program interface capable of running on top of 

TensorFlow. An epoch is defined as presentation of all samples in a training dataset to the 

network. 

A continuous section of 83 ft (25.3 m) of image logs (120 pixels per foot) was 

supplied to the trained U-Net model to test its performance. Given that there were two 

image samples across the 200-pixel width of the borehole, a 56-pixel horizontal overlap 

was required as shown in Figure 4.5(a). This necessitated a post-processing step applied 

to each sample’s prediction to seamlessly stitch together overlapping samples. This was 

achieved by element-wise multiplication of the prediction matrix by a filter matrix where 

the filter component for non-overlapping pixels was 1 and was weighted using a 

Gaussian distribution that was a function of overlap distance when corresponding to an 

overlapping pixel (shaded light blue in Figure 4.5(b)) (Wu et al., 2019). 
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In addition to the 56-pixel horizontal overlap, an approach using an 8-pixel 

vertical overlap to stitch together vertically adjacent samples (Figure 5(b)) was compared 

to a run without vertical overlap.  

Predictions were element-wise multiplied by a Gaussian weight filter: 

2

2

8( )
exp ,

D d

d D
w


    

(31) 

where d is the distance index for a pixel in an overlapping area and D is the width of 

overlapping pixels (1 for the pixels on the border to D = 8 or 56 for the pixels at the 

innermost row or column of the overlapping areas). Results were compared both with and 

without the 8-pixel vertical overlap.  
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Figure 4.5. In the center, red squares represent adjacent image-log samples and dark red 
areas denote overlapping pixels. To each side are the post-processing filters with the 
intensity of the blue color indicating the weight. (a) No vertical overlapping with 
Gaussian weighting (as a function of overlap distance) in the 56-pixel overlapping areas. 
(b) Eight-pixel vertical overlap with Gaussian weighting.
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Results and Discussion 

The U-Net architecture was trained using both the original and augmented 

datasets. Predictions with different training datasets and with or without vertical overlap 

were compared using standard AUC (Area Under the Curve)-ROC (Receiver Operating 

Characteristics) curves (Figure 4.6). The model trained by original data without VO 

showed slightly weak performance and rest three exercises performed similarly strong 

(Table 4.1).  

Because of the unbalanced nature of the datasets (60× more fracture than non-

fracture pixels), the Intersection Over Union (IOU), known as the Jaccard Index, was 

used to further assess performance. The IOU is calculated as the area of the intersection 

between the predicted segmentation and true label divided by the area of the union 

between the predicted segmentation and true label (1 represents perfect segmentation and 

0 denotes zero prediction accuracy). Table lists the IOUs calculated for the non-fracture 

pixels, the fracture pixels, and their arithmetic average. The augmented dataset 

outperformed the original dataset, which was expected given the larger size of the 

training dataset. The results also show that VO can improve average IOU by 5.9% for the 

model trained on the original dataset and 3.3% on the model trained on the augmented 

dataset.  
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Figure 4.6. AUC-ROC curves were used to evaluate the U-Net fracture segmentation 
methods with different datasets and with and without vertical overlap (VO). 
 
 

Table 4.1. AUC and IOU measurements for four exercises with different datasets and 
with and without VO. 

 

Metrics Original dataset 

Original 
dataset with 

VO 
Augmented 

dataset 

Augmented 
dataset with 

VO 
AUC 0.967 0.989 0.983 0.990 

IOU (non-fracture) 0.899 0.921 0.964 0.970 
IOU (fracture) 0.215 0.259 0.420 0.460 
IOU (average) 0.557 0.590 0.692 0.715 

 
 

Figure 4.7 shows 8 ft (2.4 m) of input images and the corresponding probability 

that a pixel is a fracture. The model trained on only the original datasets reveals quite a 

bit of misprediction (second and third columns in Figure 4.7). The model trained with the 

augmented dataset shows a significant improvement (fourth and fifth columns in 

Figure 4.7). Noise is evident on the stitching lines between image logs for predictions 
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made without VO (second and fourth columns in Figure 4.7), whereas that noise was 

significantly reduced in predictions with VO (third and fifth columns in Figure 4.7). 

Figure 4.7. Eight feet of U-Net predictions presented as the probability. The first column 
is input image data. The second to fifth columns indicate prediction probabilities from 
models trained with the original and augmented datasets and predicted with or without 
VO. 

Both the original and augmented datasets were trained using 200 epochs (i.e., the 

number of times that the neural network is fed the entire dataset). Each dataset was 

divided into minibatches composed of 32 samples. Network weights and biases were 
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updated at end of each minibatch to gradually reduce prediction error (loss). Recall that 

the augmented dataset (with 620 samples) was twice the size of the original dataset (310 

samples). With the fixed minibatch size, the model trained on the augmented dataset had 

network weights and biases updated twice as many times. To confirm that performance 

improvement was correctly attributed to the data augmentation and not the more frequent 

weights/biases updates, the model trained on the original dataset was specified to run for 

400 epochs (twice as many to yield the same number of network weights/biases updates 

as the augmented dataset), but no additional improvements resulted.  

The final assignment of a pixel as either fracture or non-fracture was made using a 

probability threshold of 0.5 (<0.5 is non-fracture, ≥0.5 is fracture) as shown in Figure 4.8. 

The model trained with the augmented dataset shows robust tracing of all fractures 

although they were predicted to be slightly thicker than the true fractures (see, for 

example, the log between 4,103 (1,250.9) and 4,014 ft (1,223.5 m)). Final predictions 

made without VO show discontinuities between adjacent vertical images because some of 

that noise was greater than the threshold value. Implementing VO improved model 

performance. 
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Figure 4.8: Final image segmentation corresponding to the probabilities in Figure 4.7. 
The first column is the label. The second to fifth columns indicate predictions from 
models trained with the original or augmented datasets and predicted with or without VO. 
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Conclusions and Future Work 
 

In this study, pixel-wise manual fracture labeling was done on 583 ft (177.7 m) of 

microresistivity image logs (500 ft (152.4 m) for training and 83 ft (25.3 m) for testing) 

from the Wellington 1-32 borehole. Images without fractures in them were discarded 

leaving 310 samples in the original training dataset. An augmented dataset was generated 

by simply reversing the images and labels (double the size of the original training 

dataset). Next, an FCN-based U-Net framework was customized to segment DIFs from 

microresistivity image logs. To accommodate the unbalance dataset (fracture pixels were 

only 1.6% of all pixels), the balanced cross-entropy loss function was used. Finally, two 

trained U-Net models (original and augmented datasets) generate predictions with and 

without VO. The AUC-ROC curves, typically used to quantify the performance of 

segmentation tasks, were virtually indistinguishable across the four sets of predictions. 

Instead, the IOU metric better indicated relative performances. Training on the 

augmented dataset significantly improved segmentation performance (21.2% 

improvement over predictions trained with the original dataset). Use VO also improved 

segmentation performance (5.9% improvement with the original dataset and 3.3% with 

the augmented dataset).  

 Historically, machine-learning applications in the geosciences have been hindered 

by insufficient data availability for model training (a large labeled dataset). This study 

demonstrated how a small dataset can be used to successfully perform image 

segmentation especially upon implementation of data augmentation.  

 The overarching goal of this effort was to segment natural fractures from image 

logs. However, this dataset did not include many natural fractures, instead having DIFs. 
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As a follow-on to this work, a labeled dataset with natural fractures will be supplied to 

this U-net model to determine whether it can also segment natural fractures. Moreover, 

this study can be easily extended to identify other geological features from image logs 

including beddings and vugs. 
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CHAPTER FIVE 
 

Conclusions 
 
 
 Decreasing the environmental footprint and executing data transformation are two 

ongoing challenges for the petroleum industry. This study, which was split into two parts, 

studied two selected topics related to these challenges. In the first topic, a multiphase, 

multicomponent reservoir simulation framework was built to simulate the innovative 

TEOR method STRIP. In the second topic, geologic features were classified and 

segmented by deep-learning methods from microresistivity image logs. 

In the first topic, an innovative simulation framework, which leverages the 

advantages of CMG’s STARS and GEM emissions simulated STRIP operation. This 

framework was validated by replicating a simple steam injection case from STARS. Then 

the performances of STRIP and steam injection were compared. STRIP outperformed 

traditional steam injection in multiple aspects: same oil produced with less enthalpy 

injected, lower SOR, and earlier reservoir breakthrough. This framework also 

demonstrated the significance of solvent CO2 that decreased heavy oil viscosity and 

improved oil recovery. 

The second topic started with a CNN method to identify vuggy facies from 

microresistivity image logs. Labels of either vuggy or non-vuggy facies for image logs 

were interpreted using a combination of core descriptions and conventional data 

including gamma ray, neutron/density porosity, photoelectric factor, and NMR T2. As a 

comparison, a cleaned dataset was generated by removing images with poor quality. 
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After hyperparameter optimization, the prediction accuracies of CNN models were 

improved. The results illustrated that the data-cleaning process had the capacity to further 

improve model performance. Domain knowledge, insight from data science, and 

sufficient training data are needed to further improve prediction accuracy for classifying 

heterogeneous geologic features.  

The second topic was extended to segment DIFs from same image-log dataset. 

583 ft of microresistivity image log were manually labeled and split into training and test 

datasets. A data-augmentation method, simply reversing the input images and 

corresponding labels, doubled the training dataset size for a comparison. An FCN-based 

U-Net method was customized to segment DIFs. The results showed that data

augmentation can significantly improve model performance. Making prediction with VO 

also improved performance. 
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