
ABSTRACT

Robot Path Planning with a Moving Goal

Daniel Drake

Chairperson: Scott Koziol, Ph.D.

Path planners in which a hunter is required to chase after a moving target is

an important problem for modern robotic systems such as Unmanned Aerial Vehicles

(UAVs) and Unmanned Underwater Vehicles (UUVs). This thesis describes an in-

cremental moving target path planning algorithm which leverages previous planning

data to update the path in the case where the target moves. The algorithm in this

thesis addresses the need for a quick path-planner that can be used in an environment

where the target is moving. The algorithm does this by sacri�cing optimality in or-

der to reduce the complexity of the problem. The algorithm will be shown to reduce

the complexity of re-planning by approximately 12 times while only increasing path

length taken by 1.5%. Within this thesis analytical estimates of the best and worst

case complexity of the algorithm were developed, and these estimates were validated

with experimental data.
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CHAPTER ONE

Introduction

Moving target path planners are used in situations where a hunter has to reach a

goal which moves. Applications of this within robotics includes Unmanned Aerial Ve-

hicles (UAVs) and Unmanned Underwater Vehicles (UUVs) where a robot is required

to chase another robot or moving object such as a submarine [2], or robotic arms

where an object required to be grabbed is moved along a conveyer. Path planners can

also be used in networking where one has to send data to a certain location, with a

moving target algorithm being used when that location is uncertain or changing [3].

If a path planner which was not specialized for cases with a moving target was used

in these situations, it is possible that by the time a new path was calculated, it would

be made irrelevant by the distance the target moved during calculation.

The way the robot's environment is mapped into a path planner's data structure

can vary based on the application. Popular choices for representing an environment

include:

• Potential �elds: A �eld is placed across the robot's map with obstacles being

represented by values of repulsion and the target being represented by an

attraction value allowing for a steepest decent to be used to maneuver a

robot through the environment. This also creates a smooth path for a robot

to follow making it popular for manipulators [4].

• Cell Decomposition, Fig. 1.1 : A graph is made with connected nodes repre-

senting a set amount of physical space. Blocked nodes are included to repre-

sent the obstacles and open nodes to represent space that can be navigated.

This allows scaling of complexity with the resolution of the nodes as smaller
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nodes would lead to a more exact but more complex environment. Two pop-

ular ways to connect the nodes are an 8 connected and 4 connected grid.

• Visibility Graphs , Fig. 1.2: A system where a set of nodes and paths are cre-

ated by connecting the vertices of the obstacles with one another by drawing

a line straight between them and seeing if an obstacle blocks that path. The

implementation of this is simple and can be proven to give an optimal path

unless a safety factor is introduced for the robot [4].

• Voronoi diagrams, Fig. 1.3: This method maximizes the distance of the robot

to obstacles by using all points that are equidistant between two obstacles

as possible areas the robot can go. This maximizes the safety of the robot

though can lead to a relatively long path.

Figure 1.1: Example of a Cell Decomposition Environment. With the black square repre-
senting an obstacle, the green line indicating the shortest path in an 8 connected grid, and
the red line indicating a shortest path within a 4 connected or Manhattan grid.
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Figure 1.2: Example of a Visibility Graph. The black box represents an obstacle, the blue
circle represents the hunter, the red circle represents the goal, and the paths able to be taken
are shown in gray.

Figure 1.3: Example of a Voronoi Graph. The black box represents an obstacle, the blue
circle represents the hunter, the red circle represents the goal, and the paths able to be
taken are shown in gray. The paths are equidistant between the obstacle and the wall.
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Moving target problems are often represented by cell decomposition by using a

connected graph of nodes, ( [1] [5] [6]) and in this paper the problem will be in a four-

connected graph , or Manhattan graph, where the hunter or target can move from

any unblocked node to any unblocked neighbor with a cost of one. Blocked nodes

cannot be moved to or from and represent obstacles in the environment. Edges of

the graph are treated as blocked nodes to keep a static sized graph and prevent the

hunter or the target from leaving the grid. Given the nature of a chase, the target

will be set to move at the same speed as the hunter, but skip a turn to move every

so often. This is done to allow the hunter to catch up with the target in the case of

the target moving directly away. It is also assumed that all nodes can be checked for

a straight line distance, which ignores obstacles, to another node for purposes of a

heuristic search.

The popular metrics used for evaluating path planners include: completeness,

optimality, and complexity [7]. Completeness is the idea that if a path exists from

the start to the goal, the algorithm will �nd it, and if a path does not exist the

planner will tell you. This is important because if a path planner is not complete it

is unable to be used in certain circumstances. Optimality in the context of this thesis

relates to the planner's ability to �nd the shortest path. This metric can expanded

for non-optimal algorithms to see how sub-optimal they are. To do this the length of

the path generated can be compared to a path generated by an algorithm known to

be optimal. Space Complexity is a measure of the amount of memory required for the

algorithm to plan a path. Time Complexity is a measure of how long the algorithm

will take to �nd a solution. This measurement can vary based upon the algorithm

and environment. Within environments and algorithms based in cell decomposition

a common metric is to see how many cells have been calculated. Within A* based

algorithms the calculation of a node involves searching neighboring nodes for a path.

4



This is the most repeated process in algorithms such as A* [8] a popular path planner

algorithm.

Many path planning algorithms within a cell decomposition environment are

based upon A* [8]. A* creates a path by pointing connected nodes to one another

creating a chain from the start to goal. To connect two nodes A* checks two things,

if a path is possible between the two nodes, and if that path is shorter than any

other path already calculated involving those nodes. A* uses a heuristic and list of

closed and open nodes to determine which nodes need to be checked as to determine

a path. This heuristic is important as it prevents simply all nodes from being looked

at in a wave like fashion. The heuristic used is an admissible one which means that it

underestimates or correctly estimates the distance between two nodes [9]. The admis-

sibility of a heuristic is important as an admissible heuristic can maintain optimality

of a path.

In order to approach the problem of a moving target, incremental algorithms

were used that re-plan an already known path based on information gathered during

the initial path planning. One example of this is D* [10] which is for use in a partially

known environment, or where obstacles will move. It does this in a cell decomposition

map by blocking the node in which the obstacle moved into or where a new obstacle

was found. It then checks if the path went through that node and if so checks the

search tree connected to that node for changes that need to be made. This signif-

icantly decreased the number of nodes required to be recalculated as compared to

re-evaluating the map every time a new obstacle was found. In this case a search tree

refers to a set of nodes that point to one another to create paths that the robot may

travel.

Other search trees within this thesis were looked at to see what was a�ected

when a target moved. It was found that when the goal moved the search trees gener-

ated by the nodes immediately surrounding goal and where these trees edges touched
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one another could change drastically based upon how and where the goal moved.

From this an algorithm was created to track and update these nodes by creating a

list of leaf nodes to be recalculated upon goal move.

The algorithm in this thesis addresses the need for a quick path-planner that

can be used in an environment where the target is moving. The algorithm does this by

sacri�cing optimality in order to reduce the complexity of the problem. The algorithm

will be shown to reduce the complexity of re-planning by approximately 12 times while

only increasing path length taken by 1.5%.

Chapter 2 will go over a more in-depth background on path planning. This will

be followed by a description of the algorithm and how it acts in best and worst case

scenarios. 994 lines of Matlab code were written to implement the algorithm and test

it with experiments, Appendix A . The experiments done to analyze the algorithm

will then be detailed and the results of these experiments will be separated into two

sections, optimality and complexity. Finally, the meaning and impact of the results

will be discussed.
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CHAPTER TWO

Related Work

Djikstra [11] established a path planning algorithm for a grid of connected

nodes in which there exists a path between any two nodes, and a method to �nd the

shortest path between any of these nodes. Djikstra's algorithm was then expanded

upon to create a series of best �t algorithms [12] with a notable one being A* [8]. Path

planning algorithms can address a variety of problems such as routing, networking,

and speech recognition [9].

The algorithm described in this thesis is based on A*. The environment used in

A* is based on cell decomposition and denotes each node as blocked if it is an obstacle,

or unblocked if the robot is able to move through it, Fig. 1.1. A* connects nodes to

create a path by placing a pointer in each node which points to another node it is

connected to. A* aims to create the shortest chain of pointers between the start to the

goal possible. In order to do this, two sets of nodes are created and a few parameters

are assigned to them. The two sets nodes are assigned to are the open and closed sets.

The open set contains all the nodes that are being considered for expansion, while

the closed set contains all the nodes that have been expanded and are not currently

considered for expansion. The parameters assigned to the nodes are: the cost of the

robot moving to the current node, g, the cost of moving from one node to another,

c (which can vary from node to node), and a heuristic provided by the user which

estimates the cost of moving from the current node to the goal, h. The parameter h is

typically the straight line distance from a node to the goal. For a simple environment

a cost of c = 1 is used to move through any two connected open nodes. To expand

a node A* takes a singular node and looks at all the nodes connected, so in a four

connected grid it looks at the four surrounding nodes assuming they are all open. It
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then checks the cost of moving from the expanded node c to its connecting nodes and

adds this to the cost of the expanded node g. If this combined cost g +c is less than

the connected node's cost to the goal g' or if if the connected node does not have a

cost assigned to it, the connected node now points to the expanded node and is put

into the open set. Once all the connecting nodes have been checked, the expanded

node is set to the closed set and a new node is expanded until the goal is reached.

In order to determine the order of nodes expanded, A* �rst expands the start node

creating an initial set of open nodes. The open node with the smallest distance to

goal h is then expanded and this process is repeated until the goal is reached or the

open set is depleted. Expanding until the open set is depleted or the goal is found

insures that if there is a path from the start to goal it will be found, making this a

complete algorithm.

This heuristic used in A* can be shown to be admissible in most cases and thus

�nd an optimal solution [9]. The heuristic can been said to be admissible is it always

perfectly estimates or under estimates the distance from the node to the goal. This is

why straight line distance is typically used as it assumes the shortest distance possible

from any given node. The reduction of complexity achieved by using a heuristic is im-

portant within path planners is important as it allows for more complex environments

to be analyzed and opens up real-time path planners [13].

Challenges that A* based path planners have encountered include dynamic en-

vironments, any-angle movement, trading complexity for sub-optimality, and moving

targets [14]. The algorithm in this thesis modi�es the dynamic environment path

planner, dynamic A*, known as D* [10], in order to address the complexity of the

moving-target problem by trading optimality for a reduction in time complexity. D*

is a complete and optimal A* variant with provisions in place to allow for quick re-

planning in case of a change in the environment, but not the target. It accomplishes

this by �rst expanding from the goal instead of from the start as was done in A* and
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then leveraging non-optimal paths created in the initial expansion and searching from

these to �nd a new path. D* itself has been modi�ed several times to attack di�erent

problems such as Moving target D* lite [1], or reduce complexity with The Focused

D* [15] which achieves this by incrementally updating the map, and D* lite [16] which

combines both incremental and heuristic elements.

Moving target path-planners have been used in robotics [17], video games [18]

[19] and networking [20]. These applications all rely on being able to quickly re-

plan a path when the objective changes. Two major moving target path planners are

Hierarchical Path-Finding Formula, or HPA* [6], which simpli�es the environment to

reduce the complexity of re-planning the initial path while sacri�cing optimality, and

Moving target D* lite [1], which leverages data generated from using D* to reduce

the nodes recalculated during a re-plan while maintaining optimality.

The algorithm described in this thesis modi�es D* [10] in a novel fashion by

introducing the tracking of a set of search trees. This allows the reduction of com-

plexity by estimating which nodes will need to be recalculated if the target moves.

D* makes several changes to A* in order to allow for incremental planning in the

case of an unknown environment while maintaining optimality. D* acts similar to A*

in that it uses a open and closed set along with parameters assigned to the nodes,

including: the cost of the robot moving to the current node g, the cost of moving from

one node to another c, which can vary from node to node, and a heuristic denoted

by h. In order to �nd the initial path D* does a very similar thing to A*. First it

expands nodes around the goal, this is di�erent than A*, as A* starts its expansion

around the robot or start. The heuristic used is also changed, instead of straight line

distance to the goal, h is changed to be the straight line distance to the start and the

nodes within the open set with the lowest h are expanded �rst. Doing this creates

a di�erent set of nodes that are expanded but still leads to an optimal path being

taken, and still provides an algorithm that is complete. D* then uses this new data
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to re-plan the path in the event of a new obstacle being found or obstacles moving.

It does this by �rst taking the node which was previously unblocked and setting it to

a blocked state, representing the �nding of an obstacle. That node is then analyzed

further by looking at any nodes it points to and setting those nodes to a raised state.

This node then checks if it can lower or maintain it's g by having it be pointed to by

one of its neighbors. If this is not the case, the nodes g is set to a large number and

all the neighboring nodes are set to the raised state. This process is repeated with the

newly raised nodes until a node is able to lower or maintain its g. Once a node is able

to maintain or lower its g, that node is set to a lowered state. The lowered node is

then expanded allowing a new path to propagate through all the raised nodes while

simultaneously setting them to the lowered state. This is done until all the raised

nodes are set to the lowered state.

This method of raised and lowered states introduces the idea of search trees to

this algorithm. The search tree starts at the newly blocked node and expands out to

all the raised nodes. The search tree is then shifted so that its start begins at the �rst

lowered node and expands from there. The algorithm described in this thesis looks

at the search trees which start immediately around the goal in D* and instead of

recalculating them entirely when the goal moves, creates a list of nodes that will be

changed if the start of these trees is moved and instead expands those.
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CHAPTER THREE

Design and Implementation

In this chapter the moving target path planner's algorithm will be detailed,

estimates will be made on its performance, and the experiments run to analyze it will

be explained.

Algorithm

The environment used for this algorithm is similar to the environment used

in Dijkstra based path �nding algorithms. A grid of nodes are created with a set

of parameters: actual cost of movement from the goal, straight path distance to the

hunter's location, cost to move through the node, and a tag which identi�es which

search tree it is a part of. A set of nodes cost's to move through them are set set

to an extremely large value in order to represent an obstacle. A node is then set to

represent the goal and a di�erent node is set to represent the starting point.

The algorithm consists of four steps in which di�erent nodes are expanded.

Expansion of a node consists of taking a node and checking the nodes surrounding

it. Expansion is important as it allows the algorithm to �nd obstacles, determine if

one path is shorter than another and establish search trees for determining whether

a node will be required to be recalculated later. The four steps taken are summarized

as follows:

(1) Initial expansion around the goal: This establishes the initial search trees and

begins the search for the �rst path.

(2) Expansion for �nding the initial path: This expands upon the initial search

trees and is run until a path is found, while marking nodes that will need to

be expanded if the goal moves.
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(3) Expansion around new goal when the goal moves: This step is run when the

goal moves and creates a new set of search trees and connects them to the

old search trees.

(4) Path Correction: This steps re-expands the nodes marked for expansion by

steps 1 and 2.

Now a more detailed explanation of the listed steps will be given.

Step 1 (Initial Expansion around the goal): This algorithm begins its initial

search by �rst taking the goal node and expanding around it. The cost of each of the

nodes initially expanded to is set to the cost of moving from that node back to the

goal. They are given a unique tag to show they are the beginning of a search tree

along with assigning each search tree a unique number. All nodes expanded to are set

to the open set.

Expanding (Algorithm 1): To expand a node, a new node around the expanded

node is �rst checked to see if it is an obstacle, if not, the current cost of the new

node is compared to the cost of the expanded node, plus the cost of moving through

the new node. If the new cost is less, then the following changes are applied to the

new node: the new node is set to point to the expanded node, the cost is updated to

the new lower cost, the tag which identi�es the search tree of the expanded node is

copied to the new node, and the new node is set to the open set. If the cost is not

changed and the two nodes being compared are from di�erent search trees, a tag is

placed upon both of them so that where the search trees touch is known. Once all the

surrounding nodes have been checked, the expanded node is set to the closed set. This

is shown in Algorithm 1, and the and the equivalent Matlab code written is found in

Appendix B.

Step 2 (Expansion for Finding the initial path): The nodes in the open set are

then expanded. The order of which the open set is expanded can be determined by

a heuristic. For this algorithm, whichever node had the shortest straight line path to
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Algorithm 1 Expansion
1: procedure ExpandNode

2: for All nodes Surrounding Current Node do
3: if surrounding node is not obstacle & cost of surrounding node > cost of

node + movement then
4: Surrounding node cost = cost of node + movement
5: Surrounding node tree = expanded node's tree
6: Surrounding node pointer = expanded node
7: Surrounding node => open set
8: if Surrounding Node is part of leaf set then
9: Surrounding node removed from leaf set

10: end if

11: Surrounding node priority = straight line distance to Hunter
12: end if

13: if Surrounding node is not obstacle & cost of surrounding node < cost of
node + movement & surrounding node tree ! = expanded node tree then

14: Surrounding node => Leaf set
15: Expanded node => Leaf set
16: end if

17: end for

18: Expanded Node => Closed Set
19: Expanded Node removed from Open Set
20: end procedure
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the hunter node was the �rst to be expanded. The open set is expanded until the

start node is reached at which point the initial expansion is stopped, all the nodes in

the open set assigned to the closed set, and the hunter and goal are allowed to move.

Steps 1 and 2 are shown in Algorithm 2, and the equivalent Matlab code written is

found in Appendix B.

Algorithm 2 Initial Path Finding
procedure Initial path finding

Search_Tree = 1
for All nodes Surrounding Goal do

if surrounding node is not obstacle then
Node tree = Search_Tree
Node Cost = 1
Node => Parent of Search_Tree
Node => Open Set
Node priority = Straight line distance to Hunter
Search_Tree = Search_Tree +1

end if

end for

while start/hunter is not in open set do
for Nodes in Open Set do

function ExpandNode(Node with lowest priority)
end function

end for

end while

Open Set => Closed Set
Open Set is Cleared

end procedure

Step 3 (Expansion around new goal when the goal moves): When the goal moves

another function is called to determine if a new path is needed before the hunter moves

again. This algorithm �rst searches around the old goal location to �nd the new goal

location. Once the new goal location is found, the goal is expanded around to create

new search trees. The new search trees are expanded as if it were an empty map,

until all of the old search trees ,"parent blocks", have been expanded to. No heuristic

is used , in order to allow each search tree to expand the same amount. The costs of
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all the nodes in the old search trees are then modi�ed by adding the cost of moving

from the old search tree to the new search tree. This cost can be negative if the goal

moved onto the parent block of an old search tree.

Step 4 (Path Correction): All of the nodes which are marked as places where

the search trees touch are then set to the open set. The open set is then expanded,

starting from the lowest cost to goal node and then moving to higher cost nodes. This

expansion continues to add new nodes into the open set and marks the new position

where the search trees meet until the current node of the hunter is marked. Once this

is done all the nodes still in the open set are set to closed and the actors are allowed to

move again. This process is repeated until the hunter reaches the goal. This process,

combined with step three is what is run when the goal moves as seen in Algorithm 3,

and the equivalent Matlab code written is found in Appendix C.

Complexity Estimates

In order to estimate the complexity of the algorithm, worst case and best case

scenarios were formed. The most basic search is on a map with no obstacles and no

heuristic being used in the initial search. Fig. 3.1 shows what the search trees would

look like in this scenario if the goal was in the center and the hunter was in one of

the corners. All the search trees are equivalent, and touch one another along their

edges. Once the goal moves, the edges that touch and the immediate blocks around

the goal must be recalculated as shown in pink in Fig. 3.2. As the nodes one step

away from the goal are always recalculated when the goal moves, the complexity of

this scenario will scale with the length of the diagonals. The number of nodes within

the diagonals is estimated using the length of a diagonal of a square (3.1). With two

diagonals being present, we multiply the length by two, leading to a scaling factor

shown in (3.2) for a worst case scenario.
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Algorithm 3 Path correction
1: procedure path correction

2: New goal position is found
3: Parent of Search_Tree => Old Parent of Search_Tree
4: Parents of Search_Trees cost = not calculated/high
5: Search_Tree = 1
6: for All nodes Surrounding Goal do
7: if Surrounding node is not obstacle then
8: Node tree = Search_Tree
9: Node Cost = 1

10: Node => Parent of Search_Tree
11: Node => Open Set
12: Node priority = Straight line distance to Hunter
13: Search_Tree = Search_Tree +1
14: end if

15: end for

16: while Old Parents of Search_Trees are not in Open Set do
17: for Nodes in Open Set do
18: function ExpandNode(Open Set)
19: end function

20: end for

21: end while

22: for Number of old Search trees do
23: for All nodes in Search_tree do
24: Node Cost = Node Cost + Cost of Old Parent
25: end for

26: end for

27: Open Set => Closed Set
28: Open Set is Cleared
29: Leaf Set => Open Set
30: Leaf Set Is Cleared
31: while start/hunter is not in open set do
32: for Nodes in Open Set do
33: function ExpandNode(Open Set)
34: end function

35: end for

36: end while

37: end procedure
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Length of Diagonal =
√
(2 ∗ pathlength2) (3.1)

Worst Case Complexity =
√

(2 ∗ pathlength2) ∗ 2 (3.2)

Figure 3.1: Example of search trees without using a heuristic: The Goal resides in the middle
and the hunter is in the bottom left corner. Seperate colors show the four di�erent search
trees generated in a Manhattan connected environment. This is a worst case scenario as all
the search trees fully touch each other across the entire map.

If the initial search is run with a heuristic, the map will look as in Fig. 3.3. Only

two search trees actually expand in this case, as they are equal distance away from

the hunter. As the goal moves, the leaves and nodes surrounding the goal must be

recalculated as marked in pink in Fig. 3.4. Similar to the previous case, the nodes sur-

rounding the goal must always be recalculated along with the leaf nodes which touch

from separate search trees. Here the scaling factor from the non heuristic scenario is

divided by 4, leading to a scaling factor shown in (3.3).
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Figure 3.2: Full grid search after the goal moves to the right: The pink squares show the
nodes that would be recalculated in this scenario and are estimated to scale with (3.2)

Worst_Case_Complexity_(Heuristic) =
√
(2 ∗ pathlength2)/2 (3.3)

Figure 3.3: A full grid search with a heuristic with the goal in the center and hunter in
the bottom left: the heuristic only allows expansion of the nodes from the goal towards the
hunter instead of in a wave around the goal. The search trees generated fully touch each
other over a quarter of the map.
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Figure 3.4: Heuristic grid search after the goal moves to the right: Only a quarter of the
diagonals need to be recalculated in this case, leading to the estimated scaling factor shown
in (3.3)

A best case scenario was formed where the hunter was in line with the goal

(Fig. 3.5). When combined with a heuristic only one tree is expanded leaving no area

where the leaves of search trees touch. When the goal moves, as shown in Fig. 3.6,

only the nodes directly surrounding the goal require to be recalculated. This leads to

only 7 nodes having to be recalculated. The best case value is independent of path

length or grid size.
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Figure 3.5: Best case scenario with the goal in the center and the hunter directly to the left:
only one search tree is expanded towards the hunter with the search trees touching each
other only in two places.

Figure 3.6: Best case scenario after the goal moves right: only the immediate surrounding
nodes require recalculation, leading to 7 nodes needing expansion. This is true no matter
how far the hunter is from the goal and gives a best case scenario which does not increase
or decrease with path length or grid size.
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Experiments

An experimental environment as similar as possible to the environment used

in the testing of moving target D* lite [1] was created. The Matlab code which ac-

complishes this is in Appendix A. The environment consists of a NxN grid of nodes.

During the creation of the environment, each node had a 25% chance of being marked

as an obstacle. The grid was assumed to be four connected to only allow Manhattan

movement. The start and goal position were then placed on random nodes within the

grid. For the movement of the goal, a random node was chosen that the goal would

move to. The goal moves 9 times for every 10 times the hunter moves so that even

if the goal is heading in the direct opposite direction of the hunter, the hunter can

catch the goal given enough time. The goal heads in a straight path towards the node

chosen, randomly choosing between vertical or horizontal movement. If the goal hits

an obstacle, a new node is selected for it to move towards. If no path from the hunter

to the goal can be found, the environment is reset.

The environment was then tested by running the moving target path planner

within it using a 1000x1000 grid over 1000 maps and comparing the results to those

within the paper describing moving target D* lite [1]. The results are given in Table

3. As the exact maps used in Sun's paper were not able to be used, slight variations in

the data were to be expected. In the maps run with the moving target path planner,

a 5% longer path was observed with 13% fewer searches. These di�erences indicated

that the maps run for the moving target path planner may have had the goal move

into a corner, reducing the movements it could make, more often than moving target

D* lite or the moving target path planner may be a non-optimal algorithm. A reduc-

tion in the number of nodes expanded per search, the main indicator of complexity

within Sun's paper, was also seen. The moving target path planner had 257 times less

complexity per search versus A*, and 12.3 times less complexity than MT-D* Lite.

This reduction in complexity directly correlates with a reduction in the time taken
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to run the algorithm, meaning that for a small increase in path length the moving

target path planner was able to more quickly �nd a path.

Table 3.1: Comparing data from MT-D* Lite [1] to moving target path planner and
environment. In the newly created environment with the moving target path planner
there was: 5% longer path, 13% less searches, 257 times less complexity per search
versus A*, 12.3 times less complexity than MT-D* Lite. These results show us that
the environments perform similarly with the moving target path planner exchanging
a slight increase in path length for a large reduction in complexity.

Algorithm Name Searches Per Map Moves per map Expanded nodes per search (Complexity)

A* 379 689 14156

MT-D* lite 383 688 679

Moving Target Path Planner 335 722 55

Six sets of trials were then run so that the sensitivity of the Moving Target

Path Planner's optimality and complexity as they relate to path length and grid size

could be analyzed. These sets of trials were as follows:

(1) Optimality in a static grid size: The �rst set of trials to test the optimality

of the path the moving target algorithm could �nd. Two identical 100x100

grids were used, one running with the moving target path planner algorithm

and the other with D*. D*'s Matlab code can be found in Appendix D. Both

grids had the same initial hunter and goal nodes along with the goal node

following the same path. 1000 randomly created grids were tested using this

method.

(2) Optimality in varying grid sizes: The second set of trials evaluates the sen-

sitivity of complexity to grid size. These sets of trials only ran the moving

target path planner. Grid sizes of N = 10,11,12....100 ,for a NxN grid with

1000 grids for each size N were used.
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(3) Optimality in varying grid sizes expanded: The third set of trials evaluates

the sensitivity of complexity to grid size and expands upon the second set of

trials. A grid size of N = 150, 200, 250 ..1000 ,for a NxN grid with 100 grids

for each size N were used. Fewer trials were run compared to previous sets so

that the data could be acquired quickly.

(4) Complexity in a static grid size: The fourth set of trials tests the complexity

of the new algorithm and veri�es the results in Table 3. These trials only

ran the moving target path planner on 1000 randomly generated grids of size

1000x1000.

(5) Complexity in varying grid sizes: In order to check the moving target path

planner's sensitivity to grid size the �fth trials ran both the moving target

path planner and D*. Again, N was scaled from 10-100, using 100 grids for

each size. In this scenario, D* was run from scratch every time the goal moved,

in order to �nd the optimal path at any point.

(6) Complexity with varying path length: The sixth set of trials was used to test

scaling of path length with grid size, and scaling of complexity with with path

length, running only the moving target path planner. Scaling N with values

50,250,500,750,1000 were used with 1000 grids for each size.
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CHAPTER FOUR

Experimental Results

The results detail the sensitivity of the algorithm to grid size and initial dis-

tance between the hunter and goal. In this chapter the following are analyzed: The

optimality and its sensitivity to grid size, the sensitivity of complexity to grid size,

the sensitivity of complexity to initial distance between hunter and goal is analyzed.

A relation between grid size and initial distance is also made.

Optimality

Optimality was tested in the �rst three sets of trials. End results showed that

the moving target path planner was optimal in 38% of cases and had an average 1.5%

increase in path length over the optimal path.

Figure 4.1 is a explains where the data used in the following �gures was gathered

from. Each grid size used had up to M trials with both the moving target path planner

and Djikstra's returning the number of steps taken to reach the goal in y and x

respectively. Equation 4.1 shows how the individual sub-optimality of each trial was

found while the formula used to calculate the averaged sub-optimality is shown in

(4.2).

Sub− optimality = (y1 − x1)/x1 = E1 (4.1)

Averaged_Sub− optimality = 1/M ∗
M∑
n=1

En (4.2)
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Figure 4.1: Data tree for sub-optimality, where N is the size of the grid, M is the number of
trials ran, y is how long the moving algorithm's path is, and x is the length of the optimal
path

In Fig. 4.2 the y-axis shows the percent sub-optimality of the moving target

path planner's path versus an optimal path. If optimal path was 1 long and the path

generated by the moving target path planner was 2 long, there would be a dot at

x-axis 1 with an error of 100%. Figure 4.2 shows the correlation between path length

and percent error in that more optimal path lengths lead to a lower variance in error.

This can most likely be explained by the fact that the same number of steps o� of the

optimal path for a short path vs a longer path would lead to a much higher error. The

grouping of most of the data around the x-axis shows that the algorithm is optimal or

close to optimal, and is quanti�ed in Fig.4.3. The curved groups of data that diminish

as the optimal path length increases shows that in many cases the algorithm is only a

couple nodes o� optimal. This trade o� of a few extra steps is good for a non-optimal

algorithm, given the decrease in complexity the algorithm gives.
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Figure 4.2: Scatter plot of 1000 trials sub-optimality at grid size N = 100 vs optimal path
length. Data points were calculated using Eq. 4.1. The clustering of data near the x axis
shows how most of the trials ended with low sub-optimality

Figure 4.3 is a cumulative distribution function (CDF) of the individual trials'

error o� optimal. The CDF describes the reliability of the new algorithm. Within the

trials done, 90% of the trials fall within 6% error, and 95% of trials falling within 10%

error. However most trials are sub-optimal, with only 35% of trials of trials having

zero or near zero error. This steep curve con�rms the fact that most of the trials are

within a few steps of optimal. No cases were found where the moving target algorithm

takes an incorrect route that would vastly increase the time needed to reach the goal.

This level of reliability is important in systems where there is a set time limit or where

a predictable path is required.
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Figure 4.3: Cumulative distribution function of data in Fig. 4.2 with 95% of the trials falling
under 10% longer than optimal path.

Figure 4.4 shows the relation between sub-optimality and grid size using the

average error shown in (4.2). This data help shows how the optimality of the moving

target algorithm scales as grid size increases. From grid size 10 to 30, the averaged

error grows reaching a stable point at around 1.5%. The initial growth is most likely

due to the fact that in smaller grid sizes the initial search dominates the results

due to the shorter average path. The moving target algorithm increases in average

sub-optimality until it reaches 1.5%. At this point the curve levels o� and exhibits de-

creasing variance. Having a stable error at larger grid sizes means that this algorithm

should be able to scale well where the reduction in complexity is more important and
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opens up the possibility for more complex environments or cases where the target

moves more in relation to the hunter.

Figure 4.4: Averaged sub-optimality relative to grid size: A quadratic �t was made to the
data to reveal any trends. The sub-optimality slowly increases from small grids, and at a
grid size of 40 stabilizes out at 1.5% averaged sub-optimality. This shows the algorithms
robustness to grid size.

Complexity

Complexity of the algorithm was analyzed in two ways. Once with relation to

the grid size, and again with relation to the distance between the start and the goal.

This was done so that the algorithm could be analyzed in relation to the number of

nodes available to be expanded, and the expected path length separately.
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Grid Size Results

The data gathered from both the second set of trials and the third set of trials

were used for the grid size results. Figure (4.5) shows how the data was acquired.

Each trial has a set of searches, an initial search when the map is created, and a

re-plan every time the goal moved. When each search was done the number of nodes

expanded, or recalculated, was counted. This is done because the expansion of nodes

is the most repeated process within A* based path planners. The number of nodes

recalculated from �nding the initial path to reaching the goal were then summed (4.3),

to create a total complexity of that search. The number of searches was also summed

as denoted by X1. Using this data and Equations 4.3 - 4.6, a metric of complexity

was calculated. The main metric used for complexity is the average number of nodes

recalculated per search. This correlates directly to how long re-planning a path will

take when the goal moves.

Total_nodes =

Xi∑
n=1

Yn = Ti (4.3)

Average_Nodes_Per_Search = Ti/Xi = Ki (4.4)

Averaged_number_of_searches = 1/M ∗
M∑
n=1

Xi (4.5)

Averaged_complexity = 1/M ∗
M∑
n=1

Ki (4.6)
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Figure 4.5: Data Tree for complexity with N is the grid size, M is the number of trials
per grid size, X is the number of re-plans needed plus one, and Y is the number of nodes
expanded per search.

Figure 4.6 was generated using the fourth trial's data. The x-axis shows the

size of the grid while the y-axis indicates complexity using (4.6) to generate the

points. This graph shows how the complexity of the algorithm changes as the grid

size increases. For the most part, the complexity slowly increases as the size increases.

The high values of complexity for 10 < N < 20 is due to the initial search calculating

many nodes, but few re-plans to bring the average down. This con�rms what was seen

in Fig. 4.4 where the error increased at low grid sizes and then stabilized around a

grid size of 30. The increase in complexity appears to be increasing linearly, which is

promising since the grid complexity increases with a factor of N2. Having a reduction

in complexity versus the map is very important if the algorithm was to be used on a

higher dimension map or in very large environments.

30



Figure 4.6: Complexity vs Size: The data was calculated using 4.6 which is indicative of the
time complexity. The data within the red oval is decreasing as the initial searches complex-
ity is mitigated by the re-planning algorithm. Once the re-planner dominates the search,
complexity begins to increase linearly with grid size.

Figure 4.6 was expanded using data from the �fth set of trials to further evaluate

the complexity's sensitivity to increasing grid size, Fig. 4.7 shows this data. In order

to create the �t lines only the initial data was used, as the data from the �fth set

of trials only had 100 trials per grid size and therefore increased variance. As seen

the data points fall between the linear and log �t, meaning the complexity scales

somewhere between those two. The fact that most of the data seems to fall under the

linear �t is promising, as it shows the complexity is not increasing at the rate of the

map complexity of N2, and instead follows the linear complexity estimates.
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Figure 4.7: Expanded complexity vs size: The data within the orange box is from Fig. 4.6.
The data from Fig. 4.6 was �t to a linear and logarithmic line. 78% of the data gathered
from the sixth set of trials falls between these two lines. Therefore the complexity is shown
to scale between linear and logarithmic with grid size.

The complexity analysis for a selected set of grid sizes was expanded by looking

at a histogram of the complexities, Fig. 4.8. For the larger grid sizes (Fig. 4.8 b - e

), points above 200 were removed to allow a better representation of the bulk of the

data. All grid sizes have a large amount of cases within the data bin at 0. These cases

are from when the goal only has one tree attached to it. This is due to the goal getting

stuck in a corner. Cases of high complexity can either be explained as cases where

the initial search dominates the searches, or where the search trees touch in several

areas. A majority of the trials complexity resides below the 100 nodes per search with

smaller grid sizes. As the grid sizes increase, the data shifts towards higher numbers
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to follow the average increase in complexity. Having a majority of complexities in the

lower range is good because it shows there are very few cases where the moving target

algorithm will take a long time for re-plans. This is useful for real time applications

and will allow for more accuracy as the algorithm can update more often as the target

moves.

Figure 4.9 shows the averaged number of searches as in (4.5). The averaged

number of searches was �t to a line. This veri�es that as the grid size increases the

path taken by the hunter will on average be longer. The average error o� the linear

approximation is 1.75% with 91% of data falling under 5% error o� the �t line. This

low amount of error helps show the reliability of the the algorithm's optimality in

relation to size. This reliability is sought after, because it means that the algorithms

behavior can be predicted.

Figure 4.10 shows the average nodes recalculated per trial as in (4.4). This

represents the total complexity of getting the hunter from start to goal. This begins

to increase at a slightly greater than linear rate as the grid size increases. This data

also shows a fairly low variance, which shows the reliability of the algorithm. The

slightly more than linear increase seen in the total complexity is to be expected. This

is due to the increased number of searches compounded with the increased complexity

of each of these searches at larger grid sizes.
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Figure 4.8: Complexity histogram over a set of grid sizes: a) is for N=50, b) N=250, c) N=500,
d) N=750, e) N=1000. The spike at 0 complexity is due to cases where the goal only has
one tree attached to it. Complexity slowly spreads away from 0 showing a slow increase in
complexity as grid size increases. This shows that the Moving Target Path Planner stays
reliable through the grid sizes.
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Figure 4.9: Searches vs grid size: The red �t line is a linear approximatation using the points
plotted. The average error o� the estimate is 1.75% with 91% of data falling under 5% error
o� the �t line. The low error is indicated low variance in the data. Low variance in the
number of searches made supports the reliability of the algorithm.
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Figure 4.10: Total nodes recalculated vs grid size: The slightly greater than linear increase in
total complexity coincides with the linear increase in number of searches and the increase in
complexity per each of these searches. This shows that even with the reduction in complexity,
as a map gets larger the total time for the algorithm to run and the hunter to reach the goal
increases quickly.

Path Length Results

The data gathered from the sixth set of trials was used to analyze the complexity

of the algorithm at di�erent estimated path lengths. Path length was estimated as

the initial straight line distance between the hunter and goal. This done over a set of

grid sizes isolates the number of nodes available from the complexity, and allows for

estimates of the complexity to be analyzed.

In Figure 4.11 the comparison of complexity to initial distance is shown. The

number of recalculated nodes are averaged as shown in (4.4), for each trial in all the
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grid sizes. This graph displays how the complexity of the algorithm changes with path

length. More than 99% of the data falls under the lower worst case line generated from

(3.2). This is important because it demonstrates empirical measurements matching

theoretical predictions. The cases that are higher complexity are due to scenarios

where the obstacles create more complex initial searches, leading to more complex

search trees. The high complexity at low path length is due to the initial search

dominating the search �eld. While 88% percent of the data falls under the worst case

line from (3.3).

Figure 4.11: Initial distance vs complexity bounded by worst case estimates: Less than 1%
of the data falls above the worst case line, with 90% of that data being at path lengths less
than 40, where the initial search dominates the complexity. This validates the analytical
estimates made in (3.2) & (3.3)
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For Fig. 4.12, the data from Fig. 4.11 was averaged by taking each 10 data

points closest in initial distance and averaging them. This was done to remove any

outliers and gain a clearer picture of the data. In this case, the heuristic's worst

case line from (3.3) and the best case line were used to bound the data. The short

path length cases where the data exceeds the worst case scenario can be attributed

to the initial search dominating the re-plans. The grouping of the data is mostly in

the lower portion, and does not increase too much as the path length increases. This

shows that most cases have fairly low complexity. No point passes the best case line

and 88% of data falls under the worst case line. This shows the averaged complexity

will scale between a linear and static with respect to initial distance between start

and goal. Having this low complexity will allow for quicker re-planning. This allows

for more accurate paths and longer runs without the worry of the target outrunning

the algorithm.
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Figure 4.12: Path length vs complexity after averaging data from Fig. 4.11: All averages
are above the best case scenario and 88% lie under the estimate. Clustering near the best
case line shows worst case scenarios are rare within this environment. This also shows the
algorithm on average scales well below the worst case estimate. This further validates the
estimates made by (3.3) and Fig. 3.5.

In order to understand the relationship between grid size and optimal path

length, the optimal path lengths from each grid size were separated and plotted into

histograms (Fig. 4.13).

The straight line path length centers around a little under 1/2 of grid size, with

the distribution favoring shorter paths. This is most likely due to the fact that longer

paths are more likely to have impassible obstacles between the start and goal. Path

length scales linearly with grid size. These patterns are to be expected, but show that

in order to analyze extremely long path lengths a map may need to be created instead
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of randomly generated. This also shows that the grid sizes used in previous results are

a good correlate to optimal path length. Combined with previous results, this shows

shows that the algorithm is able to handle extremely large grid sizes quickly as long

as the initial path is short.
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Figure 4.13: Histograms of initial distance based on grid size: a) is for N=50, b) N=250, c)
N=500, d) N=750, e) N=1000. Data follows a normal function with a center close to 1/2 of
grid size. It then tapers o� on longer paths due to more possibility of no path being possible.
This shows that grid size is a good correlate with initial path length.
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CHAPTER FIVE

Discussion

This thesis describes a new path planner designed to pursue a moving target.

This planner uses D* as a base for its initial path �nding, and then takes data from

its search trees to quickly re-plan the path when the target of the planner moves.

In order to test this planner an environment was created based on work done in the

paper describing Moving target D* lite [1]. This environment was tested by running

the planner over 1000 trials, and then validated by comparing it to the data within

MT-D* Lite paper. The new planner was found to have, on average: a 5% longer

path, 13% fewer searches, 257 times less complexity per search versus A*, and 12.3

times less complexity than Moving target D* lite. This data shows that the planner

traded complexity for optimality, allowing a longer path to be planned much faster

than an optimal one.

The algorithm's complexity was estimated analytically by evaluating the plan-

ner's performance in both a worst case scenario and a best case scenario. It was

estimated to, in the worst case, scale linearly with the distance from the hunter to

the goal if the goal moved. In the best case scenario, the complexity was found to be

a static number of 7 to only update the position of the goal and connect it to the

previous path. These estimates were later tested and veri�ed with empirical data.

A set of experiments were run so that the performance of the algorithm could be

characterized by showing the sensitivity of optimality to grid size, and complexity to

straight line path length and grid size. The experiments run showed that the algorithm

increased, sub-optimality from .9% on average at low grid size, and then leveled out

to 1.5% at larger grid sizes. This error in 90% of cases was found to be less than

5%, with 38% of cases being of optimal path length. This helped show the algorithm
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planned path is not ever an extreme amount longer than the optimal path, and in a

majority of cases is only a few nodes di�erent in length.

The experiments run that related grid size to optimality showed that the algo-

rithm scaled somewhere between linear and logarithmic as grid size increased. This is

a good result as the complexity of the map increases with a factor of N2. It was also

found that the algorithm performed predictably amongst the trials. This reliability is

a desired trait as the algorithm can be expected to perform in a particular way under

all tested environments. When doing experiments which tested the sensitivity of the

algorithm to optimal path length, �rst the analytical estimates made were veri�ed. It

was found amongst 5000 trials with initial path lengths varying from 1 to 850 nodes

that: 99% of the data fell under the worst case estimate without a heuristic, 90% of

the data fell under the worst case estimate with a heuristic, all cases fell above the

best case estimate. These results veri�ed the analytical estimates. The initial distance

and grid sizes were then shown to correlate well with one another. This indicates that

the data taken with a varying grid size provides more valuable information about the

algorithm.

In this paper the algorithm developed was shown to:

• Be a complete planner that will �nd a path if one exists.

• Have a complexity that is predictable, lower than the current algorithms being

used, and scales in a worst case scenario linearly with an increased initial path

length.

• Be sub-optimal, but remain within 1.5% of optimal on average with no scaling

with path length or grid size.

• Have reliable and predictable performance in a large variety of environments.
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This algorithm is useful for moving target scenarios where generating and up-

dating a path quickly takes priority over spending more time to generate an optimal

path. This helps to ensure that the algorithm is able to keep up with the target.

44



APPENDICES
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APPENDIX A

Top level code for Simulation

% movenorm = zeros (1);

% move = zeros (1);

%stats = struct('indmovenorm ',movenorm ,'indmove ',move);

%sizetrials =10;

while sizetrials < 100;

trials = 100;

if montcount == trials

montcount =1;

%

% % define stuff

searchtotal = 0;

counttotal = 0;

movetotal= 0;

indsearch = zeros(1,trials);

indmove = zeros(1,trials);

indcount = zeros(1,trials);

searchtotalnorm = 0;

counttotalnorm = 0;

movetotalnorm = 0;

indsearchnorm = zeros(1,trials);
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indmovenorm = zeros(1,trials);

indcountnorm = zeros(1,trials);

end

while montcount < trials

clearvars -except sizetrials searchtotal counttotal movetotal

montcount indsearch indmove ...

indcount trials map searchtotalnorm movetotalnorm

counttotalnorm indsearchnorm indmovenorm indcountnorm stats

pblockversion =0; %set to 1 to make pblock version

mapcreate = 1; %set to 0 to use previous map data

planesize = sizetrials;

heur = 1;

if mapcreate == 1

start = [randi ([1 planesize -1]),randi ([1 planesize -1])];

goal = [randi ([1 planesize -1]),randi ([1 planesize -1])];

% start = [2,2];

% goal = [7,7];

heur = 1;

%for testing with no movie

% Movie = struct('map ',{},'Dstar.tags ',{},'Dstar.pointer

',{},'f',{},'j',{},'writerObj ',{});
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%Dstar.cost map

cost = zeros(planesize +1);

%Dstar.tags such as: where robot is, Dstar.goal , and whether a

block has been

%calculated/ needs to be Dstarmovinggoal.recalculated.

tags = zeros(planesize +1);

%where each block "points to" to create a path

pointer = zeros(planesize+1,planesize +1,2);

%Dstar.pointer x,y,1 = x coordinate

%Dstar.pointer x,y,2 = y coord

closedset = zeros (1,2);

%set for the current "wavefront" so eronius calculations do not

need to be

%made

openset = zeros (1,2);

%where the robot start

robottrack = zeros (1);

Dstar = struct('cost',cost ,'tags',tags ,'pointer ',pointer ,'

closedset ',closedset ,...

'openset ',openset ,'robottrack ',robottrack ,'start',start ,'goal'

,...

goal);

%set all blocks as uncalculated

for n=1: planesize
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for p=1: planesize

g = rand;

if g < .25

Dstar.tags(n,p) = 'O';

else

Dstar.tags(n,p) = 'n';

end

end

end

%set all blocks as uncalculated

for n=1:10

for p=1:10

Dstar.tags(n,p) = 'n';

end

end

% %set obstacles in Dstar.tags

% Dstar.tags (6 ,1:4) = 'O' ;

% Dstar.tags (6 ,6:9) = 'O' ;

% Dstar.tags (5:9 ,8) = 'O' ;

%set robot in Dstar.tags

Dstar.tags(Dstar.start (1),Dstar.start (2)) = 'R';

%set Dstar.goal in Dstar.tags

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 'G';

%point Dstar.goal to self

Dstar.pointer(Dstar.goal (1),Dstar.goal (2) ,1) = Dstar.goal (1);

Dstar.pointer(Dstar.goal (1),Dstar.goal (2) ,2) = Dstar.goal (2);
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Dstar.robottrackx = Dstar.start (1);

Dstar.robottracky = Dstar.start (2);

Dstar.robottrackxold = Dstar.start (1);

map(montcount) = Dstar;

else

Dstar = map(montcount);

end

%where each blocks path ends up around the Dstar.goal

%parent block and blocks needed to be Dstarmovinggoal.

recalculated if Dstar.goal moves

parentblock = zeros(planesize +1);

pblock = zeros (1,2);

pblockcount =0;

pblockcost = zeros (1);

recalc = zeros (1,2);

recalccount = 1;

Dstarmovinggoal = struct('parentblock ',parentblock ,'pblock ',

pblock ,'pblockcount ',pblockcount ,'pblockcost ',pblockcost ,'

recalccount ',recalccount ,'recalc ',recalc);

Dstarnorm = Dstar;

%find Dstar.goal

%original path
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count =0;

countnorm = 0;

j=1;

[ Dstar , Dstarmovinggoal , count ,planesize ,pathfound] =

Dstarpathfindwpblock( Dstar , Dstarmovinggoal , count ,

planesize);

[ Dstarnorm , countnorm ,planesize ,heur ,pathfoundnorm ] =

Dstarpathfind( Dstarnorm , countnorm ,planesize ,heur);

move =0;

movenorm = 0;

search =0;

searchnorm =0;

goalmove =1;

newgoal = [randi ([1 planesize -1]),randi ([1 planesize -1])];

gmove =1;

checker =0;

blah =0;

checkernew = 0;

tic;

while Dstar.tags(Dstar.goal (1),Dstar.goal (2)) ~= 'R'
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if pathfound ==0|| pathfoundnorm ==0

break

end

% movement for goal , chooses random point , moves towards it

9/10 of robots

% moves

regoal =0;

if gmove < 10

regoal =0;

smove =0;

regoal =0;

if Dstar.goal (1) ~= newgoal (1)

if Dstar.goal (1) < newgoal (1)

if Dstar.tags(Dstar.goal (1)+1,Dstar.goal (2)) ~= 'O'

Dstar.tags(Dstar.goal (1)+1,Dstar.goal (2)) = 'G';

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 0;

if Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) ~= 'R'

Dstarnorm.tags(Dstar.goal (1)+1,

Dstar.goal (2)) = 'G';

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) = 0;

end

smove =1;

else
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regoal =1;

end

elseif Dstar.goal (1) > newgoal (1)

if Dstar.tags(Dstar.goal (1) -1,Dstar.goal (2)) ~= 'O'

Dstar.tags(Dstar.goal (1) -1,Dstar.goal (2)) = 'G';

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 0;

if Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) ~= 'R'

Dstarnorm.tags(Dstar.goal (1) -1,

Dstar.goal (2)) = 'G';

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) = 0;

end

smove =1;

else

regoal =1;

end

end

else

regoal =1;

end

if Dstar.goal (2) ~= newgoal (2) && regoal ==1

if Dstar.goal (2) < newgoal (2)

if Dstar.tags(Dstar.goal (1),Dstar.goal (2)+1) ~= 'O'

Dstar.tags(Dstar.goal (1),Dstar.goal (2)+1) = 'G';
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Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 0;

if Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) ~= 'R'

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)+1) = 'G';

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) = 0;

end

regoal =0;

smove =1;

end

elseif Dstar.goal (2) > newgoal (2)

if Dstar.tags(Dstar.goal (1),Dstar.goal (2) -1) ~= 'O'

Dstar.tags(Dstar.goal (1),Dstar.goal (2) -1) = 'G';

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 0;

if Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) ~= 'R'

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2) -1) = 'G';

Dstarnorm.tags(Dstar.goal (1),Dstar.

goal (2)) = 0;

end

regoal =0;

smove =1;

end

end
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else

regoal =1;

end

if regoal == 1

newgoal = [randi ([1 planesize -1]),randi ([1 planesize -1])];

blocked =0;

while blocked ==0

if Dstar.tags(newgoal (1),newgoal (2)) == 'O';

newgoal = [randi ([1 planesize -1]),randi ([1 planesize -1])];

else

blocked =1;

end

end

end

gmove = gmove +1;

else

gmove =1;

end

if goalmove ==10

goalmove =1;

else
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goalmove = goalmove +1;

end

%end goal moving

%if Dstar.goal moves

%pblock version

if Dstar.tags(Dstar.goal (1),Dstar.goal (2)) ~= 'G' && Dstar.tags

(Dstar.robottracky ,Dstar.robottrackx) ~= 'G'

[ Dstar ,Dstarmovinggoal , count] = ...

Dstarreplangoalmove( Dstar , Dstarmovinggoal , count ,planesize );

Dstar.tags(Dstar.robottracky ,Dstar.robottrackx) = 'R';

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 'G';

search = search +1;

end

%non pblock version

if Dstarnorm.tags(Dstarnorm.goal (1),Dstarnorm.goal (2)) ~= 'G'

&& Dstarnorm.tags(Dstarnorm.robottracky ,Dstarnorm.

robottrackx) ~= 'G'

for n=1: planesize
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for p=1: planesize

if Dstarnorm.tags(n,p) ~= 'R' && Dstarnorm.tags(n,p) ~= 'O'&&

Dstarnorm.tags(n,p) ~= 'G'

Dstarnorm.tags(n,p) = 'n';

elseif Dstarnorm.tags(n,p) == 'G'

Dstarnorm.goal = [n p];

end

end

end

Dstarnorm.openset = zeros (1,2);

Dstarnorm.closedset = zeros (1,2);

Dstarnorm.cost = zeros(planesize +1);

Dstarnorm.pointer = zeros(planesize+1,planesize +1,2);

[ Dstarnorm , countnorm ,planesize ,heur ,pathfoundnorm ] =

Dstarpathfind( Dstarnorm , countnorm ,planesize ,heur);

searchnorm = searchnorm +1;

end
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%end Dstar.goal moving stuff

%do normal stuff here

if Dstar.tags(Dstar.goal (1),Dstar.goal (2)) == 'R' || (Dstar.

tags(Dstar.robottracky ,Dstar.robottrackx) == 'G' ...

&& Dstarnorm.tags(Dstarnorm.robottracky ,Dstarnorm.robottrackx)

== 'G')

pathfound = 0;

break

end

if pathfound == 0

break

end

if Dstar.tags(Dstar.robottracky ,Dstar.robottrackx) ~= 'G' ||

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) ~= 'R'

%go through path

oldcost = Dstar.cost(Dstar.robottracky ,Dstar.robottrackx);

Dstar.tags(Dstar.robottracky ,Dstar.robottrackx) =0;

Dstar.cost(Dstar.robottracky ,Dstar.robottrackx) =oldcost;

Dstar.tags(Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,1)

,Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,2)) = 'R'

;

move = move +1;
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Dstar.robottrackx = Dstar.pointer(Dstar.robottracky ,Dstar.

robottrackx ,2);

Dstar.robottracky = Dstar.pointer(Dstar.robottracky ,Dstar.

robottrackxold ,1);

Dstar.robottrackxold = Dstar.robottrackx;

if Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,1)== Dstar

.robottracky ...

&& Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,2)== Dstar

.robottrackx

checker = checker +1;

else

checker = 0;

end

end

if Dstarnorm.pointer(Dstarnorm.robottracky ,Dstarnorm.

robottrackx ,1) ~= 0

if Dstarnorm.tags(Dstarnorm.robottracky ,Dstarnorm.robottrackx)

~= 'G' || Dstarnorm.tags(Dstarnorm.goal (1),Dstarnorm.goal (2)

) ~= 'R'

%go through path

oldcost = Dstarnorm.cost(Dstarnorm.robottracky ,Dstarnorm.

robottrackx);

Dstarnorm.tags(Dstarnorm.robottracky ,Dstarnorm.robottrackx) =0;
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Dstarnorm.cost(Dstarnorm.robottracky ,Dstarnorm.robottrackx) =

oldcost;

Dstarnorm.tags(Dstarnorm.pointer(Dstarnorm.robottracky ,

Dstarnorm.robottrackx ,1),Dstarnorm.pointer(Dstarnorm.

robottracky ,Dstarnorm.robottrackx ,2)) = 'R';

movenorm = movenorm +1;

Dstarnorm.robottrackx = Dstarnorm.pointer(Dstarnorm.robottracky

,Dstarnorm.robottrackx ,2);

Dstarnorm.robottracky = Dstarnorm.pointer(Dstarnorm.robottracky

,Dstarnorm.robottrackxold ,1);

Dstarnorm.robottrackxold = Dstarnorm.robottrackx;

if Dstarnorm.pointer(Dstarnorm.robottracky ,Dstarnorm.

robottrackx ,1)== Dstarnorm.robottracky ...

&& Dstarnorm.pointer(Dstarnorm.robottracky ,Dstarnorm.

robottrackx ,2)== Dstarnorm.robottrackx

checkernew = checkernew +1;

else

checkernew =0;

end

% if there is no path break

end

end

if checkernew >= 5 || checker >= 5

checkernew;

checker;

break
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end

if Dstar.tags(Dstar.goal (1),Dstar.goal (2)) == 'R'...

&& Dstarnorm.tags(Dstarnorm.goal (1),Dstarnorm.goal (2)) == 'R'

break

end

time = toc;

if time > 600

toc

break

end

end

%goal has been reached

%keep count of stats

avgtime =0;

if Dstar.tags(Dstar.goal (1),Dstar.goal (2)) == 'R' && Dstarnorm.

tags(Dstarnorm.goal (1),Dstarnorm.goal (2)) == 'R'

%put normal count in here

searchtotalnorm = searchtotalnorm + searchnorm;

counttotalnorm = counttotalnorm + countnorm;

movetotalnorm = movetotalnorm + movenorm;

indsearchnorm(montcount) = searchnorm;

indmovenorm(montcount) = movenorm;

indcountnorm(montcount) = countnorm;
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searchtotal = searchtotal + search;

counttotal = counttotal + count;

movetotal= movetotal + move;

indsearch(montcount) = search;

indmove(montcount) = move;

indcount(montcount) = count;

montcount = montcount +1;

end

end

sizetrials

indmovenorm;

%display stats

nsearchavg = searchtotal /(montcount -1);

ncounttotal = counttotal /(montcount -1);

nmovetotal= movetotal /(montcount -1);

navgcounttotal = ncounttotal/nsearchavg;

%stuff

% for x=1:99

% avgerror(x) = mean(percenterrrorvspathlength (1:x));

% avglength(x) = mean(newtest (1:x));

% end

stats.movenorm(sizetrials -9,1: montcount) = indmovenorm;

stats.move(sizetrials -9,1: montcount) = indmove;
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sizetrials = sizetrials +1;

save('DifferentSizes ');

end

DstarDrakewithmovinggoalbothscaling.m
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APPENDIX B

Initial Path Finding Code for moving target algorithm

function [ Dstar , Dstarmovinggoal , count ,planesize ,pathfound ]

= Dstarpathfindwpblock( Dstar , Dstarmovinggoal , count ,

planesize)

pathfound =0;

heur = 100000;

setcount =1;

% calc Dstar.cost around Dstar.goal

%set parrent Dstar.pointers

x=1;

for n = Dstar.goal (1) -1:Dstar.goal (1)+1

for p = Dstar.goal (2) -1:Dstar.goal (2)+1

if n > 0 && p >0 && n < planesize +1 && p < planesize +1

if abs(n-Dstar.goal (1))+abs(p-Dstar.goal (2)) <=1

if Dstar.tags(n,p) ~= 'O' && (n ~= Dstar.goal (1) || p ~= Dstar.

goal (2));

if Dstar.tags(n,p) == 'n' && Dstar.tags(n,p) ~= 'R';

%set Dstar.cost , tag as calculated

Dstar.cost(n,p) = 1;

Dstar.tags(n,p) = 'p';

%Set parent block numbers and remember locations for if Dstar.

goal moves

Dstarmovinggoal.parentblock(n,p) = x;

Dstarmovinggoal.pblock(x,1) =n;

Dstarmovinggoal.pblock(x,2) =p;

Dstarmovinggoal.pblockcount = Dstarmovinggoal.pblockcount +1;
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x=x+1;

%point to Dstar.goal

Dstar.pointer(n,p,1) = Dstar.goal (1);

Dstar.pointer(n,p,2) = Dstar.goal (2);

%add to current wavefront and increase setcount

Dstar.openset(setcount ,1) = n;

Dstar.openset(setcount ,2) = p;

setcount = setcount +1;

%add block to calculation Dstar.costs

end

end

end

end

end

end

%create a open set to be determined

newcurrentset = zeros (1,2);

newsetcount =1;

%add current open set to list of blocks

Dstar.closedset = Dstar.openset;

setcount = setcount -1;

%find neighbors

%calculate Dstar.cost of neighbors

%repeat untill path is found

%need to add a heuristic here

tic

while pathfound ==0
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for m = 1:min(setcount ,heur)

for n = Dstar.openset(m,1) -1:Dstar.openset(m,1)+1

for p = Dstar.openset(m,2) -1:Dstar.openset(m,2)+1

if abs(n-Dstar.openset(m,1))+abs(p-Dstar.openset(m,2)) <=1

if n > 0 && p >0 && n <= planesize && p <= planesize

if Dstar.tags(n,p) ~= 'O' && (n ~= Dstar.openset(m,1) || p ~=

Dstar.openset(m,2));

if (Dstar.cost(n,p) > Dstar.cost(Dstar.openset(m,1),Dstar.

openset(m,2))+1 || Dstar.tags(n,p) == 'n') && Dstar.tags(n,p

) ~= 'G';

%set Dstar.pointer to lowest Dstar.cost

%future: add random here if multiple possible Dstar.pointers

Dstar.pointer(n,p,1) = Dstar.openset(m,1);

Dstar.pointer(n,p,2) = Dstar.openset(m,2);

%EXPERIMENTAL FOR MOVING TARGET set parent

%block to parent block of where we are pointing

Dstarmovinggoal.parentblock(n,p) = Dstarmovinggoal.parentblock(

Dstar.openset(m,1),Dstar.openset(m,2));

%add block to new set

newcurrentset(newsetcount ,1) =n;

newcurrentset(newsetcount ,2) =p;

newsetcount = newsetcount +1;

% tag as calculated and add up Dstarmovinggoal.recalculations

if Dstar.tags(n,p) == 'n'

Dstar.tags(n,p) = 0;

end
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% give new Dstar.cost

Dstar.cost(n,p) = Dstar.cost(Dstar.openset(m,1),Dstar.openset(m

,2))+1;

end

if Dstarmovinggoal.parentblock(n,p) ~= Dstarmovinggoal.

parentblock(Dstar.openset(m,1),Dstar.openset(m,2)) && Dstar.

cost(n,p) > 1 && Dstar.cost(Dstar.openset(m,1),Dstar.openset

(m,2)) > 1

if Dstarmovinggoal.parentblock(n,p) ~= 0 && Dstarmovinggoal.

parentblock(Dstar.openset(m,1),Dstar.openset(m,2)) ~= 0

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount ,1) = n;

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount ,2) = p;

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount +1,1) = Dstar

.openset(m,1);

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount +1,2) = Dstar

.openset(m,2);

Dstarmovinggoal.recalccount = Dstarmovinggoal.recalccount +2;

end

end

end
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end

end

end

end

end

%make current set new set and clear new set

% Dstar.closedset = [Dstar.closedset;Dstar.openset ];

% Dstar.closedset = unique(Dstar.closedset ,'rows ');

% Dstar.openset = unique(newcurrentset ,'rows ');

% setcount = length(Dstar.openset);

time = toc;

if time > 25

break

end

% heuristic

Dstar.closedset = [Dstar.closedset;Dstar.openset (1:min(setcount

,heur) ,1:2)];

Dstar.closedset = unique(Dstar.closedset ,'rows');

Dstar.openset = [Dstar.openset(min(setcount+1,heur +1):end ,1:2);

unique(newcurrentset ,'rows')];

Dstar.openset = unique(Dstar.openset ,'rows');

distance = zeros (1);

tempopen = zeros (1,2);

if length(Dstar.openset) == 2

break
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end

for z = 1: length(Dstar.openset)

distance(z) = abs(Dstar.start (1)-Dstar.openset(z,1))+abs(Dstar.

start (2)-Dstar.openset(z,2));

end

[tempsort ,Index] = sort(distance ,2);

for z = 1: length(Index);

tempopen(z,1) = Dstar.openset(Index(z) ,1);

tempopen(z,2) = Dstar.openset(Index(z) ,2);

end

Dstar.openset = tempopen;

setcount = length(Dstar.openset);

newsetcount = 1;

% check if path has been found to robot

%if so break from the loop

for n = Dstar.start (1) -1: Dstar.start (1)+1

for p = Dstar.start (2) -1: Dstar.start (2)+1

if abs(n-Dstar.start (1))+abs(p-Dstar.start (2)) <=1

if n ~=Dstar.start (1) || p ~= Dstar.start (2)

if n > 0 && p > 0 && n <= planesize && p <=planesize && Dstar.

tags(n,p) ~= 'n' && Dstar.tags(n,p) ~= 'R' && Dstar.tags(n,p

) ~= 'O'

Dstar.pointer(Dstar.start (1),Dstar.start (2) ,1) = n;

Dstar.pointer(Dstar.start (1),Dstar.start (2) ,2) = p;
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pathfound =1;

Dstar.cost(Dstar.start (1),Dstar.start (2)) = Dstar.cost(n,p)+1;

Dstarmovinggoal.parentblock(Dstar.start (1),Dstar.start (2)) =

Dstarmovinggoal.parentblock(n,p);

oldcost = Dstar.cost(n,p)+1;

break

end

end

end

end

end

end

Dstar.closedset = [Dstar.closedset;Dstar.openset ];

Dstar.closedset = unique(Dstar.closedset ,'rows');

Dstarmovinggoal.recalc = unique(Dstarmovinggoal.recalc ,'rows');

Dstarmovinggoal.recalccount = length(Dstarmovinggoal.recalc);

Dstar.robottracky = Dstar.start (1);

Dstar.robottrackx = Dstar.start (2);

Dstar.robottrackxold = Dstar.robottrackx;

clear newcurrentset;

end

Dstarpath�ndwpblock.m
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APPENDIX C

Replanning Code for moving target algorithm

function [ Dstar ,Dstarmovinggoal , count ] = Dstarreplangoalmove

( Dstar , Dstarmovinggoal , count ,planesize )

oldgoal (1) =Dstar.goal (1);

oldgoal (2) =Dstar.goal (2);

%find whereDstar.goal is

for n = oldgoal (1) -1:oldgoal (1)+1

for p = oldgoal (2) -1:oldgoal (2)+1

if n > 0 && p >0 && n < planesize +1 && p < planesize +1

if Dstar.tags(n,p) == 'G'

Dstar.goal (1) = n;

Dstar.goal (2) = p;

Dstar.pointer(n,p,1) = n;

Dstar.pointer(n,p,2) = p;

end

end

end

end

check =0;

pblocksfound =0;

z=0;
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%&& n <= planesize && p<= planesize && Dstar.tags(n,p) ~= 'r'

while pblocksfound ==0

for n =Dstar.goal (1)-z:Dstar.goal (1)+z

for p =Dstar.goal (2)-z:Dstar.goal (2)+z

if n > 0 && p >0 && n < planesize +1 && p < planesize +1

for t = 1: Dstarmovinggoal.pblockcount

if Dstarmovinggoal.pblock(t,1) == n && Dstarmovinggoal.pblock(t

,2) == p && Dstar.tags(n,p) ~= 'Y' %&& Dstar.tags(n,p) ~= 'G

'

Dstarmovinggoal.pblockcost(Dstarmovinggoal.parentblock(n,p))=

abs(n-Dstar.goal (1))+abs(p-Dstar.goal (2)) -1;

Dstar.cost(n,p) = abs(n-Dstar.goal (1))+abs(p-Dstar.goal (2));

check = check +1;

Dstar.tags(n,p) = 'Y';

end

if check == Dstarmovinggoal.pblockcount

pblocksfound = 1;

end

end

end

end

end

z = z+1;

end
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Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 'G';

x=1;

oldpblockcount = Dstarmovinggoal.pblockcount;

Dstarmovinggoal.pblockcount =0;

gparentblock = zeros(planesize);

%calculate new parent blocks ,

count = count +1;

for n =Dstar.goal (1) -1:Dstar.goal (1)+1

for p =Dstar.goal (2) -1:Dstar.goal (2)+1

if n > 0 && p >0 && n < planesize +1 && p < planesize +1

if abs(n-Dstar.goal (1))+abs(p-Dstar.goal (2)) <=1

if Dstar.tags(n,p) ~= 'G' && Dstar.tags(n,p) ~= 'O'

gparentblock(n,p) = x;

Dstarmovinggoal.pblock(x,1) =n;

Dstarmovinggoal.pblock(x,2) =p;

Dstarmovinggoal.pblockcount = Dstarmovinggoal.pblockcount +1;

Dstar.pointer(n,p,1)=Dstar.goal (1);

Dstar.pointer(n,p,2)=Dstar.goal (2);

x=x+1;

end

end

end

end

end
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g=1;

%if a new parent block is more efficent switch to it

while g <= oldpblockcount;

for n = Dstarmovinggoal.pblock(g,1) -1: Dstarmovinggoal.pblock(g

,1)+1

for p = Dstarmovinggoal.pblock(g,2) -1: Dstarmovinggoal.pblock(g

,2)+1

if n > 0 && p >0 && n < planesize +1 && p < planesize +1 &&

Dstarmovinggoal.parentblock(n,p) ~=0;

if abs(n-Dstarmovinggoal.pblock(g,1))+abs(p-Dstarmovinggoal.

pblock(g,2)) <=1

if Dstar.tags(n,p) == 'Y'

nparentblock(Dstarmovinggoal.parentblock(n,p)) = gparentblock(

Dstarmovinggoal.pblock(g,1),Dstarmovinggoal.pblock(g,2));

Dstarmovinggoal.pblockcost(Dstarmovinggoal.parentblock(n,p)) =

Dstar.cost(n,p)-Dstar.cost(Dstarmovinggoal.pblock(g,1),

Dstarmovinggoal.pblock(g,2));

Dstar.pointer(n,p,1)= Dstarmovinggoal.pblock(g,1);

Dstar.pointer(n,p,2)= Dstarmovinggoal.pblock(g,2);

Dstar.tags(n,p) = 0;

end

end

end

end
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end

g=g+1;

end

Dstar.tags(Dstar.goal (1),Dstar.goal (2)) = 'G';

for g = 1: Dstarmovinggoal.pblockcount;

Dstar.tags(Dstarmovinggoal.pblock(g,1),Dstarmovinggoal.pblock(g

,2)) = 'p';

Dstar.cost(Dstarmovinggoal.pblock(g,1),Dstarmovinggoal.pblock(g

,2)) = 1;

Dstarmovinggoal.parentblock(Dstarmovinggoal.pblock(g,1),

Dstarmovinggoal.pblock(g,2)) = gparentblock(Dstarmovinggoal.

pblock(g,1),Dstarmovinggoal.pblock(g,2));

end

Dstar.closedset = unique(Dstar.closedset ,'rows');

%change Dstar.costs based on old parent blocks

%make a Dstar.closedset of all calculated blocks and move

through it?

if exist('nparentblock ')

for z= 1: length(Dstar.closedset)
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if Dstar.tags(Dstar.closedset(z,1),Dstar.closedset(z,2))~='p'

for s = 1: length(nparentblock)

if Dstarmovinggoal.parentblock(Dstar.closedset(z,1),Dstar.

closedset(z,2)) == s

Dstar.cost(Dstar.closedset(z,1),Dstar.closedset(z,2))=Dstar.

cost(Dstar.closedset(z,1),Dstar.closedset(z,2))+

Dstarmovinggoal.pblockcost(s);

Dstarmovinggoal.parentblock(Dstar.closedset(z,1),Dstar.

closedset(z,2)) = nparentblock(s);

end

end

end

end

end

%update parent blocks

%if on Dstarmovinggoal.recalc Dstar.closedset , Dstarmovinggoal.

recalc

%also need to Dstarmovinggoal.recalc neighbors if their Dstar.

cost is higher

for z = 1: Dstarmovinggoal.recalccount -1

if Dstarmovinggoal.recalc(z,1) > 0 && Dstarmovinggoal.recalc(z

,2) >0 && Dstarmovinggoal.recalc(z,1) < planesize +1 &&

Dstarmovinggoal.recalc(z,2) < planesize +1
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Dstar.tags(Dstarmovinggoal.recalc(z,1),Dstarmovinggoal.recalc(z

,2)) = 'r';

end

end

checker =1;

oldz =1;

newrecalccount =1;

newrecalc = zeros (1,2);

test =3;

%fix this somehow

strun =0;

if Dstarmovinggoal.recalc (1,1) ~=0;

while checker == 1

Dstarmovinggoal.recalccount = size(Dstarmovinggoal.recalc ,1);

z = Dstarmovinggoal.recalccount;

toldz = z;

checker =0;

for z = oldz:size(Dstarmovinggoal.recalc ,1)

%check if any neighbors need to be Dstarmovinggoal.recalculated

and mark them
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if Dstar.tags(Dstarmovinggoal.recalc(z,1),Dstarmovinggoal.

recalc(z,2)) == 'r' && Dstar.cost(Dstarmovinggoal.recalc(z

,1),Dstarmovinggoal.recalc(z,2)) < (Dstar.cost(Dstar.

robottracky ,Dstar.robottrackx)+test)

count=count+1 ;

for n = Dstarmovinggoal.recalc(z,1) -1: Dstarmovinggoal.recalc(z

,1)+1

for p = Dstarmovinggoal.recalc(z,2) -1: Dstarmovinggoal.recalc(z

,2)+1

if abs(n-Dstarmovinggoal.recalc(z,1))+abs(p-Dstarmovinggoal.

recalc(z,2)) <=1

if n > 0 && p >0 && n ~= planesize +1 && p ~= planesize +1 && (n

~= Dstarmovinggoal.recalc(z,1) && p ~= Dstarmovinggoal.recalc

(z,2))

if (Dstar.cost(n,p) > Dstar.cost(Dstarmovinggoal.recalc(z,1),

Dstarmovinggoal.recalc(z,2))+1) && Dstar.tags(n,p) ~= 'n'

Dstar.cost(n,p) = Dstar.cost(Dstarmovinggoal.recalc(z,1),

Dstarmovinggoal.recalc(z,2)) +1;

Dstar.pointer(n,p,1) =Dstarmovinggoal.recalc(z,1);

Dstar.pointer(n,p,2) =Dstarmovinggoal.recalc(z,2);

Dstarmovinggoal.recalccount = Dstarmovinggoal.recalccount +1;

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount ,1) = n;

Dstarmovinggoal.recalc(Dstarmovinggoal.recalccount ,2) = p;

Dstarmovinggoal.parentblock(n,p) = Dstarmovinggoal.parentblock(

Dstarmovinggoal.recalc(z,1),Dstarmovinggoal.recalc(z,2));
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checker = 1;

if Dstar.tags(n,p) == 0

Dstar.tags(n,p) = 'r';

end

end

end

end

end

end

Dstar.tags(Dstarmovinggoal.recalc(z,1),Dstarmovinggoal.recalc(z

,2)) = 0;

end

z=z-1;

end

Dstarmovinggoal.recalccount = size(Dstarmovinggoal.recalc ,1);

oldz = toldz;

Dstarmovinggoal.recalc = unique(Dstarmovinggoal.recalc ,'rows');

end

for z = 1: Dstarmovinggoal.recalccount

count = count +1;

for n = Dstarmovinggoal.recalc(z,1) -1: Dstarmovinggoal.recalc(z

,1)+1
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for p = Dstarmovinggoal.recalc(z,2) -1: Dstarmovinggoal.recalc(z

,2)+1

if abs(n-Dstarmovinggoal.recalc(z,1))+abs(p-Dstarmovinggoal.

recalc(z,2)) <=1

if n > 0 && p >0 && n ~= planesize +1 && p ~= planesize +1

if Dstarmovinggoal.parentblock(n,p) ~= Dstarmovinggoal.

parentblock(Dstarmovinggoal.recalc(z,1),Dstarmovinggoal.

recalc(z,2)) && Dstarmovinggoal.parentblock(n,p)~= 0

%Dstar.tags(n,p) ~= 'n' && Dstar.tags(n,p) ~= 'R' && Dstar.tags

(n,p) ~= 'O'

newrecalc(newrecalccount ,1) = Dstarmovinggoal.recalc(z,1);

newrecalc(newrecalccount ,2) = Dstarmovinggoal.recalc(z,2);

newrecalccount = newrecalccount +1;

newrecalc(newrecalccount ,1) = n;

newrecalc(newrecalccount ,2) =p;

newrecalccount = newrecalccount +1;

end

end

end

end

end

end

Dstarmovinggoal.recalc = unique(newrecalc ,'rows');

Dstarmovinggoal.recalccount = size(Dstarmovinggoal.recalc ,1);

count;
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end

end

Dstarreplangoalmove.m
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APPENDIX D

Path Finding Code for optimal algorithm

function [ Dstar , count ,size ,heur ,pathfound ] = Dstarpathfind(

Dstar , count ,size ,heur)

pathfound =0;

heur = 20000000000;

setcount =1;

% calc Dstar.cost around Dstar.goal

%set parrent Dstar.pointers

x=1;

for n = Dstar.goal (1) -1:Dstar.goal (1)+1

for p = Dstar.goal (2) -1:Dstar.goal (2)+1

if n > 0 && p >0 && n < size+1 && p < size+1

if abs(n-Dstar.goal (1))+abs(p-Dstar.goal (2)) <=1

if Dstar.tags(n,p) ~= 'O' && (n ~= Dstar.goal (1) || p ~= Dstar.

goal (2));

if Dstar.tags(n,p) == 'n' && Dstar.tags(n,p) ~= 'R';

%set Dstar.cost , tag as calculated

Dstar.cost(n,p) = 1;

Dstar.tags(n,p) = 'p';

%point to Dstar.goal

Dstar.pointer(n,p,1) = Dstar.goal (1);

Dstar.pointer(n,p,2) = Dstar.goal (2);

%add to current wavefront and increase setcount

Dstar.openset(setcount ,1) = n;

Dstar.openset(setcount ,2) = p;

82



setcount = setcount +1;

%add block to calculation Dstar.costs

end

end

end

end

end

end

for n = Dstar.robottracky -1: Dstar.robottracky +1

for p = Dstar.robottrackx -1: Dstar.robottrackx +1

if abs(n-Dstar.robottracky)+abs(p-Dstar.robottrackx) <=1

if n ~=Dstar.robottracky || p ~= Dstar.robottrackx

if n > 0 && p > 0 && n <= size && p <=size && Dstar.tags(n,p)

~= 'n' && Dstar.tags(n,p) ~= 'R' && Dstar.tags(n,p) ~= 'O'

Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,1) = n;

Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,2) = p;

pathfound =1;

Dstar.cost(Dstar.robottracky ,Dstar.robottrackx) = Dstar.cost(n,

p)+1;

oldcost = Dstar.cost(n,p)+1;

break

end

end

end

end
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end

%create a open set to be determined

newcurrentset = zeros (1,2);

newsetcount =1;

%add current open set to list of blocks

Dstar.closedset = Dstar.openset;

setcount = setcount -1;

%find neighbors

%calculate Dstar.cost of neighbors

%repeat untill path is found

%need to add a heuristic here

while pathfound ==0

for m = 1:min(setcount ,heur)

for n = Dstar.openset(m,1) -1:Dstar.openset(m,1)+1

for p = Dstar.openset(m,2) -1:Dstar.openset(m,2)+1

if abs(n-Dstar.openset(m,1))+abs(p-Dstar.openset(m,2)) <=1

if n > 0 && p >0 && n <= size && p <= size

if Dstar.tags(n,p) ~= 'O' && (n ~= Dstar.openset(m,1) || p ~=

Dstar.openset(m,2));

if (Dstar.cost(n,p) > Dstar.cost(Dstar.openset(m,1),Dstar.

openset(m,2))+1 || Dstar.tags(n,p) == 'n') && Dstar.tags(n,p

) ~= 'G';

%set Dstar.pointer to lowest Dstar.cost

%future: add random here if multiple possible Dstar.pointers

Dstar.pointer(n,p,1) = Dstar.openset(m,1);
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Dstar.pointer(n,p,2) = Dstar.openset(m,2);

%add block to new set

newcurrentset(newsetcount ,1) =n;

newcurrentset(newsetcount ,2) =p;

newsetcount = newsetcount +1;

% tag as calculated and add up Dstarmovinggoal.recalculations

if Dstar.tags(n,p) == 'n'

Dstar.tags(n,p) = 0;

end

% give new Dstar.cost

Dstar.cost(n,p) = Dstar.cost(Dstar.openset(m,1),Dstar.openset(m

,2))+1;

end

end

end

end

end

end

end

%make current set new set and clear new set

% Dstar.closedset = [Dstar.closedset;Dstar.openset ];

% Dstar.closedset = unique(Dstar.closedset ,'rows ');

% Dstar.openset = unique(newcurrentset ,'rows ');
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% setcount = length(Dstar.openset);

% heuristic

Dstar.closedset = [Dstar.closedset;Dstar.openset (1:min(setcount

,heur) ,1:2)];

Dstar.closedset = unique(Dstar.closedset ,'rows');

Dstar.openset = [Dstar.openset(min(setcount+1,heur +1):end ,1:2);

unique(newcurrentset ,'rows')];

Dstar.openset = unique(Dstar.openset ,'rows');

distance = zeros (1);

tempopen = zeros (1,2);

% check if path has been found to robot

%if so break from the loop

for n = Dstar.robottracky -1: Dstar.robottracky +1

for p = Dstar.robottrackx -1: Dstar.robottrackx +1

if abs(n-Dstar.robottracky)+abs(p-Dstar.robottrackx) <=1

if n ~=Dstar.robottracky || p ~= Dstar.robottrackx

if n > 0 && p > 0 && n <= size && p <=size && Dstar.tags(n,p)

~= 'n' && Dstar.tags(n,p) ~= 'R' && Dstar.tags(n,p) ~= 'O'

Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,1) = n;

Dstar.pointer(Dstar.robottracky ,Dstar.robottrackx ,2) = p;

pathfound =1;
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Dstar.cost(Dstar.robottracky ,Dstar.robottrackx) = Dstar.cost(n,

p)+1;

oldcost = Dstar.cost(n,p)+1;

break

end

end

end

end

end

if length(Dstar.openset) == 2

break

end

for z = 1: length(Dstar.openset)

distance(z) = abs(Dstar.robottracky -Dstar.openset(z,1))+abs(

Dstar.robottrackx -Dstar.openset(z,2));

end

[tempsort ,Index] = sort(distance ,2);

for z = 1: length(Index);

tempopen(z,1) = Dstar.openset(Index(z) ,1);

tempopen(z,2) = Dstar.openset(Index(z) ,2);

end

Dstar.openset = tempopen;

setcount = length(Dstar.openset);

clear newcurrentset;
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newsetcount = 1;

end

Dstar.closedset = [Dstar.closedset;Dstar.openset ];

Dstar.closedset = unique(Dstar.closedset ,'rows');

Dstar.robottracky = Dstar.robottracky;

Dstar.robottrackx = Dstar.robottrackx;

Dstar.robottrackxold = Dstar.robottrackx;

end

Dstarpath�nd.m
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