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The thermal motion of a dust particle levitated in a plasma chamber is similar to that 

described by Brownian motion in many ways. The primary differences between a dust 

particle in a plasma system and a free Brownian particle is that in addition to the random 

collisions between the dust particle and the neutral gas atoms, there are electric field 

fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous 

signals originating within the plasma system itself. This last contribution does not include 

random motion and is therefore separable from the random motion in a ‘normal’ temperature 

measurement. In this paper, we discuss how to separate random and coherent motion of a 

dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio 

frequency (rf) reference cell employing experimentally determined dust particle fluctuation 

data analyzed using the mean square displacement technique.  

1.   Introduction 

 
    The coupling parameter   for a dusty plasma system is defined as the ratio of the 

interparticle potential energy to the dust kinetic (thermal) energy (Wigner 1938, Thomas 

1994, Ichimaru 1982). A two dimensional dust system exhibits a phase transition from a 

liquid to crystalline state as the coupling parameter increases beyond a critical value, c    , 

where c  is approximately 170 (Farouki 1995, Melandso 1997, Otani 1997). To determine 

this system coupling parameter experimentally, a proper measurement of the dust kinetic 

energy, i.e., the dust temperature, is very important. By definition, the temperature of a dust 

particle in the one dimensional case (1D) is taken to be 

 2

Bk T m v  (1) 

where Bk  is the Boltzmann constant, m  is the dust mass, and 2v  is the mean square 

velocity of the random motion of the dust particle. Therefore, an accurate determination of 
2v  is crucial for measurement of the dust temperature. There are different techniques to 

determine 2v , such as using the velocity distribution (which is often assumed to be a 

Gaussian distribution under normal dusty plasma conditions), where 2v  represented the 

standard deviation, and using the autocorrelation function (ACF) and assumed ballistic 

motion at short time scales of the mean square displacement (MSD) (Li 2010, Kheifets 2014, 
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Pusey 2011, Schmidt 2015). The experimentally measured dust temperatures determined 

employing either of these techniques are much higher than that of the neutral gas (Thomas 

1996, Melzer 1996, Williams 2006, Quinn 2012, Mukhopadhyay 2012, Mukhopadhyay 2013, 

Pieper 1996, Nosenko 2006). Possible explanations for this include charge fluctuations 

(Quinn 2000, Zhakhovski 1997, Vaulina 2006, Vaulina 1999, Morfill 1996), and various 

plasma-dust instabilities in the electric field of the gas discharge chambers (Vaulina 2003, 

Vaulina 2004). 

    In addition to the random motion created by collisions between a dust particle and neutral 

gas molecules, and stochastic electrostatic and charge fluctuations, dust particles are also 

perturbed by oscillations imposed due to continuous driving sources. Quinn and Goree (2000) 

pointed out that the measured mean square velocity 2v  includes two main components due 

to random motion and coherent motion, where the latter is caused by correlated waves 

created within the plasma system. Unfortunately, how to separate these two parts remains an 

unanswered question. In this paper, we will explain how to obtain a measurement of the dust 

particle kinetic temperature from only the random motion using the MSD technique. A brief 

theoretical background for this technique will be given in Section 2. Experimental results and 

discussions are presented in Sections 3 and 4 respectively, with conclusions in Section 5. 

 2.   Theoretical background 

 
    It has long been known that Brownian particle can be used as a probe to determine the 

properties of its environment. In one of his seminal papers, Einstein related the mean square 

displacement (MSD) of a free Brownian particle over a time Δt to the diffusion constant D  

as (Einstein 1905) 

 2 2x D t   (2) 

where BD k T , with  defined as the mobility. This relationship is only valid for time 

intervals 
pt   , where 

p  is the momentum relaxation time. At very short time scales 

 pt    particle motion may be considered to be ballistic, as given by 

  2 2 2 2

Bx v t k T m t     (3) 

which characterizes the short time scale MSD for a Brownian particle. 

    Eqs 2 and 3 are derived assuming non-bounded particles, i.e., the Langevin equation for 

describing the particle motion is free of any confinement force (Kubo, 1966, Kubo 1986) 

  mv mv R t    (4) 

where  R t is the fluctuating force and 1 p  is the damping coefficient (Epstein 1924). 
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    For dust particles confined in a harmonic potential well, Eq 4 is modified to read as (Wang 

1945) 

  mx m x R t    (5) 

where 2

0k m and 
0  is the particle resonance frequency. The MSD solution of Eq 5 is 

(Schmidt 2015, Li 2013) (also see the Appendix A1 – A8), 

    2

0
ˆ ˆ1 exp cos sin

ˆ2 2

t
x A t t

 
 



    
        

   
 (6) 

where 0 2

0

2 Bk T
A

m
  and 

2

2

0
ˆ

2


 

 
  

 
. 

    Eq 6 clearly shows that as t  increases to 1t   , 

 2

0 21
0

2 B

t

k T
x A

m  
   (7) 

    As can be seen, instead of being linearly proportional to t  as in Eq 1, 2x  is now a 

constant which is related to both the kinetic temperature and the resonance frequency of the 

particle and is independent of t . Experimentally the constant 0A  is very easy to extract as 

will be shown in the following section.  

    However, Eq 5 is based on an ideal system employing a harmonic confinement. For a 

dusty plasma system with unwanted continuous oscillations, Eq 5 must be modified as, 

   cosi i

Correlated

mx m x kx R t a t        (8) 

where 
ia  and 

i  are the amplitude and frequency of individual oscillations within the 

system. These unwanted oscillations may be mechanical or electronic. The corresponding 

solution for Eq 8 is (see A10 and A11 in the Appendix), 

      2

0
ˆ ˆ1 exp cos sin cos

ˆ2 2
i i i

Correlated

t
x A t t C t

 
   



    
           

   
  (9) 

    Eq 9 indicates that when 
0 2

0

2 B
i

k T
C A

m
  , and 1t   , the mean square displacement 

approaches an equilibrium value 0A with small modulations about this value of frequency i . 

This means that these oscillations will not affect the constant 0A , which is related to the dust 

temperature. The implication of this is that the experimentally determined average MSD at 
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1t    is not affected by this continuous oscillation. Therefore, by measuring the constant 

0A  the stochastic fluctuation can be separated from the correlated oscillations.  

    The kinetic energy supplied by the continuous oscillations to the dust particle is 

 2 21

2
Corr i i

Corr

E m    (10) 

where 
i is the i

th
 oscillation amplitude. Because this kinetic energy is proportional to the 

square of the oscillation frequency, a greater contribution comes from higher frequency 

oscillations when the amplitudes of all oscillations are similar.  

    The following sections describe a recent experiment which uses the random motion of a 

single dust particle confined within a glass box placed on the lower powered electrode in a 

GEC rf reference cell to verify Eqs 8 and 9. This is accomplished by measuring the particle’s 

mean square displacement and then using this data to derive both the oscillation frequency 

(i.e., the confinement force constant) and the temperature of the dust particle.  

3.   Experiment and results  

    The experiments described here were conducted in one of CASPER’s GEC rf reference 

cells (Hyde 2013, Kong 2014). Melamine formaldehyde (MF) dust particles having a 

diameter of 8.89 µm were introduced into a glass box of dimension 10.5 mm × 10.5 mm × 

12.5 mm (width × length × height) placed on the lower powered electrode using a dust shaker 

mounted above the upper ring electrode. The number of dust particles confined within the 

box was controlled by adjusting the system’s rf power. A single confined dust particle was 

used for this experiment. For all experiments, a side mounted high speed camera recorded 60 

seconds of dust particle motion at 500 frames per second (fps) (illuminated using a 50 mW 

solid state laser at 660 nm), neutral gas (argon) pressure was held at 13.3 Pa and rf power was 

2.25 W. An important aspect of the experimental setup is that the DC bias of the lower 

electrode can be modulated using a function generator. This allows a signal, consisting of a 

single frequency or random noise, to be sent to the lower electrode in order to generate either 

correlated or random dust particle motion on top of the natural fluctuations. For a single 

frequency input, the frequency selected should be far from the dust particle’s intrinsic 

frequency, 0 0 2f    (less than 10 Hz in this experiment), in order to avoid resonance and 

reduce the mode coupling effects. In this experiment, a single frequency input of 110 Hz was 

chosen. Adjusting the driving voltage allows the amplitude of the single frequency or random 

noise to be controlled. Therefore, the values of 110i HzC C , and 0A  in Eq 9 can be varied 

independently, i.e., 0A  and 110HzC  are now independent functions of the driving voltage driveV . 

The original raw data (i.e., photos) are processed using “ImageJ” developed at the National 

Institutes of Health (Rasband (website)). Fig 1 shows representative raw data of dust particle 

position fluctuations in the horizontal and vertical directions. 

https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/National_Institutes_of_Health
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FIGURE 1. Experimental data for a single dust particle’s position fluctuations. (a) 

Horizontal and (b) vertical fluctuations as a function of time. 

The particle’s mean square displacement can be calculated from the experimental data 

shown in Fig 1, and the corresponding equilibrium position 0A , resonance frequency 0  and 

damping coefficient   then derived using the theoretical fit provided by Eq 6. An example 

MSD (under the conditions of no applied DC bias perturbation) is shown in Fig 2. 
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    FIGURE 2. (a) Overview of a representative experimental MSD data set. (b) Expanded view 

of (a) for 2.0t  s. Dotted lines are experimental values and the solid lines are the 

theoretical fit calculated using Eq 6 in (b). 

    As can be seen in Fig 2, the MSDs are flat for a region 0.5 40t   s. This constant value 

is 0A , which can be obtained by averaging over at least 
42 10  data points under the 

experimental setup of camera rate at 500 fps for 60 sec. 

    Fig 3 shows Fast Fourier Transformation (FFT) spectra for dust particle positions having 

different values of 
driveV  for both 110 Hz single frequency and random noise DC bias 

modulations. The single frequency driving peak-to-peak voltage is measured before a 20 dB 

attenuator. 
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    FIGURE 3. FFT spectra of particle motion produced by modulation of the DC bias of the 

lower electrode using a single frequency (a) – (c) and random noise (d) – (f).  The amplitude 

of the modulation is controlled by the driving voltage, as indicated in each panel. Only results 

for the vertical direction are shown as there are no significant changes to the spectra for 

motion in the horizontal direction in either case. 

    As can be seen in Fig 3, there is only minimal increase within the low frequency band (< 

10 Hz, where the dust intrinsic frequency, 0 , is located) as the single frequency driving 

voltage increases (notice the difference in vertical scaling for each panel), while increasing 

the random noise driving voltage has a strong effect on the low frequency band. 

    The effect of the modulation of the DC bias on the MSDs in the horizontal and vertical 

motion is illustrated in Figure 4. The modulation of the DC bias using a single 110 Hz 

frequency had very little effect on either the horizontal (4a) or vertical (4b) motion, and was 

only weakly dependent on the magnitude of the driving amplitude. However, modulation of 

the DC bias employing random noise increased the MSD in the vertical direction, with the 

magnitude of this increase proportional to the driving amplitude (4d). There was no 

correlated effect on the MSD in the horizontal direction (4c).  
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    FIGURE 4. MSD for a 110 Hz single wavelength driving voltage at 200 mV and 1500 mV 

in the (a) horizontal and (b) vertical directions, respectively. MSD for a random noise driving 

voltage at 0 mV and 1600 mV in (c) horizontal and (d) vertical directions, respectively. 

    As can be seen in Fig 4, horizontal (a) and vertical (b) equilibrium MSDs are only 

minimally affected by changing the amplitude of a single-frequency modulation. On the other 

hand, changing the amplitude of the random noise modulation causes the vertical equilibrium 

position to shift significantly (d), while leaving the horizontal equilibrium MSD relatively 

unchanged (c).   

    Examining the MSD at short time scales reveals the small amplitude oscillations imposed 

in the vertical direction by the 2000 mV, 110 Hz DC bias modulation (Fig 5), while the MSD 

in the horizontal direction remains unaffected by the single frequency modulation. 
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    FIGURE 5. (a) Comparison of the horizontal and vertical MSD for a 110 Hz single 

wavelength modulation of the DC bias provided to the lower electrode. (b) Expanded view 

showing short time scales. 

    As can be seen in Fig 5, the constant 0A  can still be obtained by averaging the MSD over 

0.5t  s. However, the short time scale MSD is strongly affected by the 110 Hz oscillation 

in the vertical direction. 

4.   Discussion 

 
    To verify Eq 9 experimentally, we must first prove that a random driving force is related to 

the equilibrium value of the MSD. Since 0 2

0

2 Bk T
A

m
 , and thus is directly related to the dust 

kinetic temperature, a positive correlation between 0A  and the amplitude of the random 

driving force would imply that the random driving force also contributes to the dust kinetic 

temperature. 

    The dust particle temperature is derived using Eq 6. For this case, the drag will be assumed 

to be to be given by the Epstein drag (Epstein 1924) in order to simplify the fitting process, 

with the drag coefficient given by 

 
8

d d th

p

r v
 

 
  (11) 
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where the coefficient for diffuse reflection is 1.44   for MF dust particles in argon gas 

(Jung 2015), 
dr  and 

d  are the dust particle radius and density respectively, 
thv  is the 

thermal velocity of the neutral gas, and p  is the pressure.  

    The equilibrium value 
0A  and the resonance frequency 

0  can now be determined using 

Eq 6 to fit the experimentally derived MSDs shown in Figures 2 and 5. The resonance 

frequencies found in this manner are 
0 0 2 7.0horiz horizf     Hz, 

0 6.6vertf   Hz (for the non-

driven oscillations shown in Fig 2), and 
0 0 2 7.8horiz horizf     Hz, 

0 0 2 6.5vert horizf     

Hz (for the single frequency driven oscillations shown in Fig 5). The dust temperatures 

derived as a function of the driving amplitude are shown in Fig 6 for both the random and 

single frequency driving signals. 

 

    FIGURE 6. The calculated dust temperature as a function of the driving amplitude for both a 

single frequency and random driving signal in the (a) horizontal, and (b) vertical direction. 

Connecting lines serve to guild the eye. 

    It can be seen that the dust temperature in the vertical direction increases as the driving 

amplitude of the noise increases, while remaining almost constant in the horizontal direction. 

This is due to the fact that DC modulation of the lower powered electrode creates a variation 

in the confining electric field primarily in the vertical direction. In the vertical direction, the 

supporting electric field force is balanced by the gravitational force acting on the dust 

particle, which is constant. Therefore, changes in the vertical electric field represent an 

asymmetric driving force which changes the instantaneous vertical equilibrium position of 

the particle, which is added to the natural fluctuation about the equilibrium position. 

Changing the DC bias of the lower electrode contributes a much smaller variation to the 
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horizontal confining fields, with the change being symmetric to each side. Thus the 

horizontal equilibrium position is not changed.  

    Secondly, it must be proved that a driving force consisting of a continuous single 

frequency wave of constant amplitude, represented by 
i  and 

iC  in Eq 9, does not contribute 

to the dust temperature. In this case, the kinetic temperature of the dust particle should not 

change as the input amplitude of the continuous wave increases (as long as 
0iC A ), since 

the continuous wave should only induce small oscillations around the equilibrium value 
0A . 

As shown in Fig 5, a single frequency driving force imposes a modulation on the MSD in the 

vertical direction with the same frequency as the driving force. This modulation does not 

significantly change the equilibrium value 
0A , but it does make calculation of the ballistic 

motion over the short time regime ( 1 0.028t    s for this experiment) very difficult if 

not impossible. Therefore, employing the ballistic motion assumption, Eq 3, to calculate the 

dust temperature can be easily affected by any unwanted coherent motion from the plasma 

system. On the other hand, as pointed out in the previous section, the constant 
0A  can be 

calculated by averaging over a large percentage of the collected data. This is another big 

advantage over the ballistic motion method, which only consists a few data points. 

    In addition to the MSD and the short time scale techniques, the dust particle kinetic energy 

can be obtained using the velocity probability distribution function (PDF). Representative 

velocity PDFs from this experiment are shown in Fig 7. As shown, Gaussian distributions fit 

the experimental data well in both the horizontal and vertical directions.  
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    FIGURE 7. Representative velocity probability distribution functions (normalized) for 

driven noise modulation with a driving amplitude of 100 mV. Symbols represent 

experimental values while solid lines provide a theoretical Gaussian distribution fit. 

    The temperatures calculated from the Gaussian fit, where the standard deviation gives a 

measure of 2

Gauss
v  which is related to the temperature by Eq 1, is shown in Fig 8 as a 

function of the driving amplitude. This is compared to the temperatures calculated by the 

MSD technique.  

 

    FIGURE 8. Comparison of dust temperature derived using MSD technique (circles) and 

velocity distribution function technique (crosses). Oscillations are driven using random noise.  

 

    The values for the temperature at a driving amplitude of 0 mV in Fig 8a are 0.052 eV and 

0.35 eV as derived from the MSD and PDF of velocities respectively, which correspond to 

approximately 600 K and 4000 K. Extrapolating the data to larger driving amplitudes as 

shown (see the circled area around 5700 mV in Fig 8), the two extrapolated temperatures 

converge at a certain point. This can be explained by assuming 

 Gauss real correlatedT T T   (12) 

where real MSDT T  and correlatedT  represents all the correlated oscillation contributions. Noting 

that increasing the noise amplitude only increases MSDT , as the noise level increases to a point 

where correlatedT  can be ignored, eventually Gauss MSDT T . 
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    As mentioned earlier, the continuous driving sources add kinetic energy to the dust particle 

(Eq 10). If not separated from the stochastic fluctuations, these oscillations lead to in apparent 

increase in the dust temperature. The energy contributed by each oscillation frequency is 

represented by the amplitude of the FFT spectra.  It can be seen in Figure 3 that the system 

(without added single-frequency or noise driven sources) shows small peaks at 55 Hz and 110 

Hz. The amplitude of these oscillations is about 1 10  of the low frequency band ( 10  Hz). 

Assuming that the contribution due to each of these frequencies is 10h , where h  is the 

standard deviation of the displacement for the non-driven case (Fig 3a). The total contribution 

to the temperature can be calculated using Eqs 10 and 1. The excess temperature associated 

with the 55 Hz is 
55 560T  K, and the excess temperature associated with the driving 

frequency 110 Hz is 110 2230T  K.  Adding these to the temperature derived from 0A using 

the MSD method, the total temperature is 3400totalT  K, close to the temperature determined 

from the Gaussian fit to the velocity distribution shown in Figure 8, 4000GaussT  K. 

5.   Conclusion  

    In this paper, temperature measurement of a dust particle in a dusty plasma chamber is 

discussed in detail. Based on a MSD analysis, the contribution to the temperature 

measurement from random fluctuations of a dust particle confined in a glass box in a GEC rf 

reference cell is separated from the motion of a continuous single frequency perturbation. 

Theoretical analysis and experimental data show that the equilibrium MSD at 1t    is a 

function of the amplitude of the driving random noise, but independent of the amplitude of a 

continuous single frequency perturbation. Thus, a temperature derived using this method will 

be lower than that using the velocity PDF method, where both the random and correlated 

motions are included in the particle velocities, and thus a measurement of temperature is 

based on the energy of both random and correlated motions. A real system will have particle 

motion driven by both random forces (Brownian motion, fluctuations of the particle charge, 

fluctuations in the electric field, etc.) as well as motion which is correlated with driving 

forces at a single frequency. It is important to note that the MSD technique yields a 

temperature which includes energy contributions from all random effects. However, it is not 

yet known how to distinguish between the contributions of each of these effects which 

together form what is commonly referred to as the temperature of the dust particle. 

Appendix 

 
    For a particle confined by a harmonic potential well, the Langevin equation is (Wannier 

1966, Langevin 1908, Zwanzig 2001, Kneller 2015, Kneller (website)), 

  2

0mv m v m x R t      ( 13) 

where   is the damping coefficient, 0  is the dust resonance frequency,  R t  is the random 

force, and m is the dust particle mass. Divide both sides by m, 

  2

0v v x r t      ( 14) 
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where    r t R t m . A2 can be rewritten as, 

    2

0
0

t

v v v d r t        ( 15) 

    Multiplication with  0v  and averaging over time yields [40] 

  2

0
0

0
t

vv vv vvc c c d       ( 16) 

where    0vvc v t v


  is the velocity autocorrelation function (VACF), and 

   0 0v r t

 . Applying Laplace transform to A4, the VACF is solved as, 

  
  1 2

ˆ B
vv

k T s
c s

m s s s s


 
 ( 17) 

where  ˆ
vvc s  is the Laplace transform of VACF, 1,2

ˆ
2

s i


   , 

2

2

0
ˆ

2


 

 
  

 
. The 

inverse Laplace transform of A5 is the VACF 

      ˆ ˆexp cos sin
ˆ2 2

B
vv

k T
c t t t t

m

 
 



  
    

  
 ( 18) 

    To derive the MSD solution of A2, the following relationship between the VACF and 

MSD is employed, 

  
 
2

ˆ2ˆ B
sk T

W s
m s


  ( 19) 

where  Ŵ s  is the Laplace transform of MSD and  ˆ s  is the Laplace transform of 

normalized VACF  
   

2

0v t v
t

v





   . Therefore, the explicit form of MSD is, 

    2

2

0

2
ˆ ˆ1 exp cos sin

ˆ2 2

Bk T
x t t t

m

 
 

 

   
      

   
 ( 20) 

     It is clear that as 1t  ,  

 
2

21
0

2 B

t

k T
x

m 
   ( 21) 

    For a system with continuous oscillation driving sources, A2 becomes, 

    2

0 cosi i

Correlated

v v x r t a t         ( 22) 
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where the sum runs over all continuous oscillation frequencies. The solution of A10 is, 

derived using the same technique as the above on the homogeneous equation A4,  

      2

2

0

2
ˆ ˆ1 exp cos sin cos

ˆ2 2

B
i i i

Corr

k T
x t t t C t

m

 
   

 

   
        

   
  ( 23) 

    When the driving oscillation frequency is greater than the resonance frequency, 
0i  , 

and its amplitude is smaller 
2

0

2 B
i

k T
C

m
 , the oscillation driven MSD, A11, is just a small 

sinusoidal oscillation imposed on the MSD solution of A8. Therefore, as 1t  , the 

average value of A11 is the same as in A9. 
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