
ABSTRACT

Mean Field Games of Controls and Moderate Interactions

Alan B. Mullenix, Ph.D.

Mentor: P. Jameson Graber, Ph.D.

Mean Field Game theory, a quickly growing field emerging around 2007, seeks

to answer qualitative and quantitative questions about high population competi-

tive dynamics. A typical Mean Field Game is comprised of a large pool of identical,

weak, rational agents, each seeking to maximize a payout (or, equivalently, mini-

mize a cost). When an agent selects a strategy, it alters the state of the playing

field for all other agents, that is, the actions of all agents must be factored into the

strategy choice of any agent. The main object of interest is the Nash Equilibria

of the game: a strategy choice that, if chosen by all players, no single player may

improve their outcome by adjusting their own strategy. The question of these

Nash Equilibria can be cast as solutions of a coupled system of partial differential

equations: a backward in time Hamilton Jacobi Equation that encapsulates the

strategy costs, the unknown being the value function upx, tq, and a forward in

time Fokker-Planck type equation governing the evolution mpx, tq:



the probability distribution of player states. We look at two adaptations of the

traditional Mean Field Game. First, a Potential Mean Field Game of Controls, in

which agents have knowledge of not only the current states of other agents, but also

their current adjustment to strategy. While the potential structure allows for the

use of convex analysis techniques, we introduce a new, spatially non-local coupling

component that depends on both the distribution of player states and the feedback.

We also consider a Mean Field Game of Moderate Interactions, in which agents are

more intensely affected by those in their immediate vicinity. This augments the

standard Mean Field Game by introducing a local coupling term that has interaction

with the gradient of the value function. We establish, in each case, well posedness

results under generic assumptions on the data. In the conclusion we remark on the

possible generalizations and further directions to take each work.
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CHAPTER ONE

Introduction

A Mean Field Game (MFG) for our purposes is a very high population differential

game between identical rational agents who are relatively weak (an individual has

little power to effect the entire population). MFG with non-identical or singular

powerful agents are an active field of study as well, such as a monopolistic corporation

competing in a market with smaller players, but we concentrate on the former. We

motivate the main ideas of our formulation of a mean field game with a short scenario.

Suppose a large group of several hundred people have just exited a building in a

tight clump and notice they are all going to miss the bus a few blocks away if they

don’t hurry. We know each person now has desire to reach the bus stop quickly.

Given this desire, the optimal “strategy” for each person to take is travel as fast as

possible in a straight line for the bus stop, but everyone doing this en masse may

cause congestion, slowing the group, resulting in many or all individuals to miss

out on the bus. Each person choosing their individual optimal strategy resulted

not only in a poor outcome for the group, but for the person themselves. A single

enterprising person might expect the congestion clumping and opt to travel a longer,

but unimpeded path around the group. Recall from above, however, that we consider

all players equally enterprising, and so even players being clever may cause sub-

optimal outcomes when that cleverness is in the aggregate. We have then a situation

where each player attempting to optimize their end result must contend with an ever

changing environment that is evolving with the collective choices of all players. A
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natural question to ask is whether or not there is a Nash Equilibrium strategy. Such

a strategy adopted by all players, is individually protective in the following sense:

assuming all players follow the strategy, any individual player cannot do better by

adjusting their own away from the equilibrium. An example of a Nash Equilibrium

can be seen in the classical game theoretic “Prisoner’s Dilemma”, where two separated

prisoners each must choose to confess or stay silent. If both confess, they each receive

a four year sentence. If they both stay silent, each receives only two years. If one

confesses and the other remains silent, the confessing prisoner receives one year while

the silent receives eight. Clearly, the best outcome for both prisoners occurs when

they each stay silent, but individually the best outcome is to confess while hoping

the other stays silent. Assuming that the other might confess, and fearing the eight

year sentence, both prisoners choose to confess. The outcome is sub-optimal both for

the group and the individual, but there is a protective mutually assured outcome. In

what follows, we will be seeking solutions to a coupled system of partial differential

equations. These solutions are the Nash Equilibrium strategies.

1.1 Mean Field Games

A typical mean field game consists of competitors seeking to minimize a “cost”:

Jpα, 0, T q “ E

»

—

—

–

ż T

0

¨

˚

˝

LpXt, αq
looomooon

Running Cost

` fpXt,mpXt, tqq
loooooooomoooooooon

“Congestion Penalty”

˛

‹

‚

dt ` uT pXT q
loomoon

Final Cost

fi

ffi

ffi

fl

with dynamics dXt “ α dt ` “noise” (a Brownian Motion) driven by control α. The

function mpx, tq describes the distribution of player states. As noted in the motivat-

ing example, a vital feature is that the cost function for each player depends upon
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the state of all players. Examples of running costs range from literal monetary costs

along the way, to fuel expenditure, distance travelled, or considered a “negative” cost,

and looked at as end payout, or the maximization of a desired outcome. A final cost

(or alternatively, payout) might be a scaling penalty/reward based on proximity to

a goal outcome. The term fpx,mq in the integrand, labeled colloquially “congestion

penalty” to align with the motivating example, is the mechanism by which the in-

dividual player’s optimal control problem is coupled with the crowd at large. If for

example, f is monotonically increasing with respect to m, that would model a penalty

for traveling through a high density area. However, f could introduce reward for clus-

tering up, penalty/reward for uniformly spreading out, even repulsion/attraction for

a particular state. One could further let f assume a value of `8 out side of a par-

ticular range to impose an “infinite penalty”. For our purposes, f will be increasing

with respect to the density m.

1.2 From Mean Field Game to PDE

The Hamiltonian Hpx, pq is the convex conjugate with respect to the second

variable of the running cost (termed the Lagrangian), that is:

Hpx, pq :“ sup
v

“

p ¨ v ´ Lpx, vq
‰

The Lagrangian is taken to be convex in the second variable, and thus H is as

well. This convexity turns out to be vital to well posedness considerations of the

Nash Equilibria in many treatments of the field.
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A value function upx, tq of such a finite time horizon optimal control problem can

be defined as the infimum of the above costs over all appropriate controls:

upx, tq :“ inf
α
Jpα, t, T q

This value function u satisfies, in a viscosity sense, a backward in time Hamilton

Jacobi equation:

´ut ´ σ∆u ` Hpx,∇uq “ fpx,mq; upT q “ uT .

The probability density of player states, mpx, tq evolves via a forward in time

Fokker-Planck type equation, where m0 is the given initial state of players:

mt ´ σ∆u ´ ∇ ¨ pmDpHpx,∇uqq “ 0; mpx, 0q “ m0.

Together, these form a coupled system of PDE, the solutions of which are the

value function and player density evolution for Nash Equilibrium strategies.

1.3 Historical Development and Related Current Works

The theory of Mean Field Games (a term borrowed from physics), was developed

simultaneously in 2006-2007 by Lasry, Lions [39], and Huang, Malhamé, Caines [33]

(under the name “Nash certainty equivalence principle”). The main idea (that the

impossibility of players to assess all the relevant details of competitors in fact doesn’t

matter) was already studied in the case of more traditional, static games by Aumann

[1]. The speed at which this field has grown means contributions are both numerous

and intertwined, but we attempt to lay out the major highlights. The probabalistic

approach has been well studied by Carmona and Delarue, especially in the two vol-

4



umes [14] and [15]. See also the Paris-Princeton lectures taught by Lasry [32] and

include work by Lions and Guéant. A thorough PDE based introduction to MFG

can be found in Cardaliaguet and Poretta’s monograph [13] with contributed work

from Santambrogio (lecture notes on variational mean field games), Delarue (master

equation considerations, see below), Achdou and Laurière (applications and numer-

ics). Weak solution existence and uniqueness is proved for first and second order

MFG with local coupling by Cardaliaguet, Graber in [10] and Cardaliaguet, Graber,

Poretta, Tonon in [11]. Duality techniques that inspire Chapter Two can be found in

[30] by Graber and Mouzouni.

Before moving on to the context of the manuscripts that appear here, we briefly

mention the other large way in which PDE manifest in the study of Mean Field

Games: the so-called “master equation”. As outlined by Cardaliaguet and Poretta in

[13], the master equation is a PDE in the space of measures (infinite space dimension)

which does not have some of the primary weaknesses of the mean field game system

of PDE we’ve described. In particular, it allows one to deal with global noise in the

game system, which is clearly important to modeling real world situations. We do not

discuss the master equation here, but it would be folly to not nod to it when discussing

PDE in MFG theory. In exchange for overcoming these weaknesses however, it is of

course a challenging object of study. See [25], [8].

Turning to the context of Chapter Two (Mean Field Games of Controls), both

stationary and deterministic iterations of the problem have been treated by Gomes et.

al in [22] and [24] respectively. The suffix we employ: “of controls” was introduced in

2017 [12] by Cardialiaguet and LeHalle, who looked at an application to trade crowd-
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ing where the mean field contained only the actions and not states of traders, showing

that nonetheless traders attempting to optimize their individual outcomes ended up

in a MFG Nash Equilibrium strategy. We quote from that article to stress the in-

teresting phenomena of the aggregating interaction despite the individual’s efforts of

optimal control: “Let us underline that, in our model, the market participants do not

have access to the distribution of the trading positions of the other participants; they

do not necessarily have the same estimate of the permanent market impact; they are

not even aware that they are “playing a game”. Nevertheless, the configuration after

stabilization is an MFG equilibrium.”. In the 2019 article [5], Bonnans, Hadikhanloo,

and Pfeiffer gave existence of a unique classical solution for a time-dependent, non-

deterministic model of the problem, in which the limitation of bounded controls in

[12] was done away with. To note, Mean Field Games of Controls are also referred

to as Extended Mean Field Games, and returning to the probabilistic approaches

aforementioned have been studied in [14] by Carmona and Delarue, and in [16] by

Carmona and Lacker.

As to the context of Chapter Three (Mean Field Games of Moderate Interactions),

we investigate the model studied by Flandoli, Ghio, and Livieri in 2021 [21]. The

motivating consideration of a Mean Field Game of Moderate Interactions is that in

certain models, such as physical congestion, it makes sense that agents interact only

with other nearby agents. On the other hand, one doesn’t expect this in, say, a

trading scenario (where traders may have uniform access to information). However,

one might speculate a situation where purchasing power/interest concentrates mostly

on “nearby” trader interactions, i.e. those with similar assets and aims. In the
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Flandoli article, the existence of weak solutions are given on any finite time horizon,

with uniqueness results holding only when the time horizon is sufficiently small. In

this work we show the existence of classical solutions on any finite time horizon. A

prior contribution to this area in the context of pedestrian crowd modeling is that of

Aurell, Djehiche [2].

1.4 Main Results of this Work

Two alterations that will be discussed in this work are in Chapter Two with

introduction of a new, spatially non-local coupling element in the second argument

of the Hamiltonian, which will appear as

´ut ´ σ∆u ` H

˜

x,∇u ´ Gpxq
⊺Ψ

ˆ
ż

Td

Gpxqvm dx

˙

¸

“ fpx,mq

v “ ´DpH

˜

x,∇u ´ Gpxq
⊺Ψ

ˆ
ż

Td

Gpxqvm dx

˙

¸

,

the second line being a new fixed point condition that must be satisfied that does

not appear in a traditional MFG presentation. In Chapter Three an additional local

coupling term is introduced in the Hamiltonian as the form of a vector field bpx,mq,

appearing as

´ut ´ σ∆u `
“

Hpx,∇uq ´ bpx,mq ¨ ∇u
‰

“ fpx,mq.

In Chapter Two we exploit the potential structure of the MFG to apply convex

analysis techniques, viewing the game as two minimization problems in duality to each

other. Relaxation of the dual problem then leads to existence and uniqueness of weak
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solutions to the MFG. Further space and time regularity results are given provided

some additional assumptions of the behaviors of the coupling f and Hamiltonian H.

In Chapter Three we use regularity bootstrapping (using regularity of the Hamil-

ton Jacobi equation to obtain results for the Fokker-Planck and vice versa) to prove

the a priori estimates required to apply the Leray-Schauder Fixed Point Theorem.

From this we obtain existence of classical solutions for any finite time horizon. We go

on in Chapter Four to allude to further obtainable results applying various techniques

in the spirit of Gomes [23].

1.5 Notation and Preliminary Definitions

A few common spaces and pieces of notation will be used throughout that we

collect here.

In both manuscripts we will be working over the set

Q :“ Td
ˆ r0, T s,

a space-time cylinder with Td being the flat d-dimensional torus.

We recall that the weak derivative of a function f on a set A is a function g such

that for any smooth function ϕ, compactly supported in A, we have

ż

A

fϕ1 dx “ ´

ż

A

gϕ dx.

Let α P p0, 1q and let A be a compact set. A function f is said to be uniformly Hölder

continuous on A with index α if the quantity

rf sα;A :“ sup
x,yPA; x‰y

|fpxq ´ fpyq|

|x ´ y|α

8



is finite. The Hölder spaces, denoted Ck,αpAq, are subspaces of CkpAq whose k-th

order partial derivatives are uniformly Hölder continuous on A with index α. These

are Banach spaces, with norm

}u}Ck,αpAq “ }u}CkpAq `
ÿ

|β|“k

rDβusα;A,

where β is a multi-index, and the Ck norm above is given by

}u}Ck “
ÿ

|β|“k

}Dβu}8.

These spaces enjoy the useful inclusion that if 0 ď k ` α ď m ` β with k,m integers

and α, β P p0, 1q,

Cm,β
Ñ Ck,α is a continuous embedding.

In the case that k “ m and α ă β, bounded sets are precompact in the embedding.

The Sobolev spaces, denoted W n,kpAq, consist of k times weakly differentiable func-

tions on A, with each weak derivative being a member of LnpAq. These are Banach

spaces with norm

}f}Wn,kpAq “
ÿ

|α|ďk

}Bαf}LnpAq,

where α is a multi-index.

1.6 Attribution

The contents of Chapter Two are in collaboration with Dr. P. Jameson Graber and

Dr. Laurent Pfeiffer. We confirm that all authors contributed equally to this work, in

the matters of planning, organization, notation, proof, applications, typesetting, and
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revision. Further, the chapter was reproduced from Nonlinear Differential Equations

and Applications (NoDEA) and Springer.
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CHAPTER TWO

Weak Solutions for Potential Mean Field Games of Controls

Graber, P.J., Mullenix, A. & Pfeiffer, L. Weak solutions for potential mean field
games of controls. Nonlinear Differ. Equ. Appl. 28, 50 (2021).

2.1 Abstract

We analyze a system of partial differential equations that model a potential mean

field game of controls, briefly MFGC. Such a game describes the interaction of in-

finitely many negligible players competing to optimize a personal value function that

depends in aggregate on the state and, most notably, control choice of all other play-

ers. A solution of the system corresponds to a Nash Equilibrium, a strategy for which

no one player can improve by altering only their own action. We investigate the sec-

ond order, possibly degenerate, case with non-strictly elliptic diffusion operator and

local coupling function. The main result exploits potentiality to employ variational

techniques to provide a unique weak solution to the system, with additional space

and time regularity results under additional assumptions. New analytical subtleties

occur in obtaining a priori estimates with the introduction of an additional coupling

that depends on the state distribution as well as feedback.

2.2 Introduction

Mean Field Games (MFG), introduced simultaneously in 2006-7 by J.-M. Lasry,

P.-L. Lions [38] and M. Huang, R. Malhamé, P. Caines [33], have seen swift devel-

opment into a vibrant and substantial subfield of partial differential equations. See,
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for instance, the monographs [14, 15, 4]. Considered are high population games of

homogeneous, negligibly powerful players all attempting to optimize a cost while

contending with the effects of the choices of all other players.

The term Mean Field, inspired by physics, relates to each player viewing the

remaining players as one large entity. The cost functional that has to be optimized

by each player typically incorporates an interaction term fpmq, where m denotes the

distribution of player states. Mean Field Games of Controls (briefly, MFGC), also

called Extended Mean Field Games, introduce a control element into the Mean Field,

so that not only can players “detect” (via the Mean Field) the positions of others, but

also their control choices. Such an extension naturally arises in many applications,

for example in economics [32, 17, 18, 26, 30, 31, 27]. MFGC have been studied by D.

Gomes and V. Voskanyan, who have results on classical solutions with S. Patrizi in

the stationary (time independent) second order case where the diffusion is explicitly

the Laplacian [22], and also in the time dependent first order case [24]. In the second

order uniformly parabolic time dependent case, Z. Kobeissi has proved the existence

of classical solutions under sufficient structural and smoothness assumptions, with

uniqueness under additional assumptions, as well as results on approximate solutions

[35, 36]. P. Cardaliaguet and C.-A. Lehalle have provided a theorem giving the

existence of weak solutions to a general system of MFGC, under the assumption

that the Lagrangian is monotone with respect to the measure variable and that the

Hamiltonian is sufficiently smooth; in particular it must depend on the density of

players nonlocally [12]. See also R. Carmona and F. Delarue [14] for a probabalistic

approach to Extended Mean Field Games.
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In this article, we investigate the second order degenerate case (which can, in

particular, be first order) featuring a non-strictly elliptic diffusion operator with space

dependence. The MFGC system to be studied is
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

piq ´Btu ´ AijBiju ` H
`

x,Dupx, tq ` Gpxq⊺P ptq
˘

“ f
`

x,mpx, tq
˘

px, tq P Q,

piiq Btm ´ Bij
`

Aijm
˘

` ∇ ¨ pvmq “ 0 px, tq P Q,

piiiq P ptq “ Ψ
` ş

Td Gpxqvpx, tqmpx, tq dx
˘

t P r0, T s,

pivq vpx, tq “ ´DξH
`

x,Dupx, tq ` Gpxq⊺P ptq
˘

px, tq P Q,

pvq mpx, 0q “ m0pxq, upx, T q “ uT pxq, x P Td

(2.1)

where u,m are scalar functions, v is a vector field in Rd, P “ P ptq P Rk, Q :“

Td ˆ r0, T s, and Apxq “ rAijpxqs1ďi,jďd is a given matrix-valued function on Td whose

values are symmetric and non-negative.

The heuristic interpretation of the above system is the following. The variable

m describes the distribution of the state of the players and P is a time-dependent

price variable. These two variables are interaction terms; they describe the collective

behavior of the agents. Isolated agents have no impact of them. Each agent controls

the following dynamical system in Td : dXt “ αt dt`
?
2ΣpXtq dBt where pBtqtPr0,T s is

a standard Brownian motion in RD, α is an adapted process in Rd, and Σ: Td Ñ RdˆD

is such that Apxq “ ΣpxqΣpxq⊺, for all x P Td. Given the interaction terms m and P ,

the associated cost (to be minimized) is given by

E
”

ż T

0

´

H˚
pXt,´αtq ` xP ptq, GpXtqαty ` fpXt,mpXt, tqq

¯

dt ` uT pXT q

ı

.
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Equation (2.1)piq is a Hamilton-Jacobi-Bellman equation and characterizes the value

function u associated with the optimal control problem to be solved by each agent,

given m and P . Equation (2.1)pivq gives the corresponding solution in feedback form:

αt “ vpXt, tq “ ´DpHpXt, DupXt, tq ` GpXtq
⊺P ptqq.

Assuming now that all agents employ the feedback v, the evolution of their distribu-

tion is given by the Fokker-Planck equation (2.1)piiq (the initial distribution m0) is

fixed). Then equation (2.1)piiiq gives the price in function of m and v. When Gpxq

is the identity matrix, P is simply a function Ψ of the average control of the agents.

Let us emphasize that P induces an interaction of the agents not only through their

states but also via their controls. In summary, a (mean field) Nash equilibrium is

attained when v is a best reponse with respect to the interaction terms m and P

(equations piq and pivq), and when m and P can be deduced from v via equations piiq

and piiiq.

A natural economic interpretation of P is as negative market price (the negative

sign is introduced so that we have a minimization problem). In this interpretation,

P increases (i.e. demand decreases) in each dimension along which the total market

supply of a particular good increases. See [6] for more details. Alternatively, one

could interpret System (2.1) as a model of congestion penalization with an additional

dispersive forcing term given by P . For example, P may be proportional to average

velocity. In this case, whereas f imposes a cost corresponding to population density,

P pushes agents to move in a direction opposite to that general motion of the crowd,

thus encouraging the crowd to disperse.

The basic structural assumptions are

14



1. Td ˆ Rd Q px, ξq ÞÑ Hpx, ξq P R is convex in ξ

2. Td ˆ r0,8q Q px,mq ÞÑ fpx,mq P R is monotone increasing in m

3. Rk Q z ÞÑ Ψpzq P Rk is monotone in z, i.e. xΨpt, z1q ´ Ψpt, z2q, z1 ´ z2y ě 0 for

all z1, z2 P Rk.

See section 2.4 for more detailed assumptions on the data.

We will focus in the article on the MFG system obtained after performing the

Benamou-Brenier change of variables w “ mv [3]:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

piq ´Btu ´ AijBiju ` H
`

x,Dupx, tq ` Gpxq⊺P ptq
˘

“ f
`

x,mpx, tq
˘

px, tq P Q,

piiq Btm ´ Bij
`

Aijm
˘

` ∇ ¨ w “ 0 px, tq P Q,

piiiq P ptq “ Ψ
` ş

Td Gpxqwpx, tq dx
˘

t P r0, T s,

pivq wpx, tq “ ´DξH
`

x,Dupx, tq ` Gpxq⊺P ptq
˘

mpx, tq px, tq P Q,

pvq mpx, 0q “ m0pxq, upx, T q “ uT pxq, x P Td.

(2.2)

It is worth mentioning that although the function w as defined above is determined

by u, m, and P , labeling greatly reduces clutter in the statements and calculations

to follow. For the same reason, we keep P , although it is determined by w.

In [5] the authors prove the existence of classical solutions to (2.1) when A is the

identity matrix and the congestion term f is nonlocal. They also showed that the

game is “potential,” which means that a Nash equilibrium can be interpreted as a

critical point of a suitably chosen functional, which we may call the potential. Cf. [38,

Section 6.2]. When the potential is strictly convex, we formally have that the Nash

equilibrium is unique, and under suitable assumptions one can show that the PDE
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system is well-posed. In what follows we will provide the existence and uniqueness of a

suitably defined “weak solution” to the MFGC system with local coupling and provide

additional regularity results involving the solution u and the distribution evolution

m. The method follows that of Cardaliaguet, Graber, Porretta, and Tonon in [11]–

see also [9, 10]–in the study of the case of first and second order “classical” MFG

systems, which are also potential. The nonlocal interaction term P ptq introduces new

subtleties into the analysis, especially as it does not introduce any a priori gain of

regularity. On the contrary, a priori estimates on solutions to the Hamilton-Jacobi

Equation (2.2)(i) are highly sensitive to the Lp norms of P ptq. See Section 2.6.

We first lay out the required assumptions on the data (Section 2.4). We then

view the MFGC system as a system of optimality for the minimization of a suitably

defined convex potential. Next, we consider the dual problem and show that the

correct relaxation of it provides existence and a.e. uniqueness of an adjoint state

(Section 2.6). The solutions to these minimization problems are then shown to be

proper candidates for the weak solution to the MFGC, whose existence is then proved

(Section 2.7). Finally, with some additional assumptions on the data, we include some

space and time regularity results for the weak solution based on previous techniques of

Graber and Meśzáros [28] (Section 2.8). We now lay out the notation and assumptions

to hold throughout the paper.

2.3 Notation

We denote by xx, yy the Euclidean scalar product of two vectors x, y P Rd and by

|x| the Euclidean norm of x. We use conventions on repeated indices: for instance, if

16



a, b P Rd, we often write aibi for the scalar product xa, by. More generally, if A and B

are two square symmetric matrices of size d ˆ d, we write AijBij for TrpABq.

To avoid further difficulties arising from boundary issues, we work in the flat

d´dimensional torus Td “ Rd{Zd with Q :“ Td ˆ r0, T s for some fixed time T ą 0.

Our methods can be applied in a more or less straightforward way when the boundary

conditions are of Neumann type; with some further technical assumptions they may

be applied on the whole space. Other boundary conditions, which may be more

appropriate for economics applications, tend to introduce greater technicalities; this

is a subject for future research. We denote by P pTdq the set of Borel probability

measures over Td. It is endowed with the weak convergence. For k, n P N and T ą 0,

we denote by CkpQ,Rnq the space of maps G “ Gpt, xq of class Ck in time and space

with values in Rn. For p P r1,8s and T ą 0, we denote by LppTdq and LppQq the set

of p´integrable maps over Td and Q respectively. We often abbreviate LppTdq and

LppQq into Lp. We denote by }f}p the Lp´norm of a map f P Lp. The conjugate of

a real p ą 1 is denoted by p1, i.e. 1{p ` 1{p1 “ 1.

2.4 Assumptions

We now collect the assumptions on the “congestion coupling” f , the “aggregate

control coupling” Ψ, the Hamiltonian H, and the initial and terminal conditions m0

and uT . Along the article, we assume that there exist some constants C1 ą 0, C2 ą 0,

C3 ą 0, C4 ą 0, q ą 1, r ą 1, and s ą 1 such that the following hypotheses hold true.

We denote

p “ q1.
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(H1) (Conditions on the coupling)

‚ The map f : Td ˆ r0,`8q Ñ R is continuous in both variables, increasing

with respect to the second variable m, and satisfies

1

C1

|m|
q´1

´ C1 ď fpx,mq ď C1|m|
q´1

` C1 @m ě 0 . (2.3)

Moreover fpx, 0q “ 0 for all x P Td.

‚ The map Ψ: Rk Ñ Rk is the continuous gradient of some convex func-

tion Φ: Rk Ñ R. Without loss of generality, we assume that Φp0q “ 0.

Moreover,

Φpzq ď C2|z|
s

` C2 @z P Rk. (2.4)

Changing C2 if necessary, we have

Φ˚
pzq ě

1

C2

|z|
s1

´ C2 @z P Rk.

If 1
s

` 1
pr

ă 1, we assume that

1

C2

|z|
s

´ C2 ď Φpzq @z P Rk. (2.5)

‚ The map G : Td Ñ LpRd;Rkq is continuously differentiable. If 1
s

` 1
pr

ă 1,

we assume that it is constant.

(H2) (Conditions on the Hamiltonian) The Hamiltonian H : Td ˆ Rd Ñ R is contin-

uous in both variables, convex and differentiable in the second variable, with

DξH continuous in both variables, and has a superlinear growth in the gradient

variable:

1

C3

|ξ|
r

´ C3 ď Hpx, ξq ď C3|ξ|
r

` C3 @px, ξq P Td
ˆ Rd. (2.6)
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We note for later use that the Fenchel conjugate H˚ of H with respect to the

second variable, given by

H˚
px, ζq “ sup

γ

“

xζ, γy ´ Hpx, γq
‰

,

is continuous and satisfies similar inequalities to H (changing C3 if necessary):

1

C3

|ξ|
r1

´ C3 ď H˚
px, ξq ď C3|ξ|

r1

` C3 @px, ξq P Td
ˆ Rd. (2.7)

(H3) (Conditions on A) There exists a Lipschitz continuous map Σ : Td Ñ RdˆD

such that ΣΣT “ A and such that

|Σpxq ´ Σpyq| ď C4|x ´ y| @x, y P Td. (2.8)

(H4) (Conditions on the initial and terminal conditions) uT : Td Ñ R is of class C2,

while m0 : Td Ñ R is a C1 positive density (namely m0pxq ą 0 and
ş

Td m0 dx “

1).

(H5) (Restrictions on the exponents). We consider 4 cases, depending on whether

s1 ă r or s1 ě r and whether A is constant or not. In the case that A is not

constant,

s1
ă r ùñ s1

ě p; s1
ě r ùñ r ě p,

while when A is constant,

s1
ă r ùñ

s1pd ` 1q

d
ě p

s1
ě r ùñ

`

s1
ě 1 ` d

˘

or

ˆ

s1
ă 1 ` d and

s1p1 ` dq

d ´ s1 ` 1
ą p

˙
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As a remark, the condition fpx, 0q “ 0 is just a normalization condition, which

we may assume without loss of generality, as explained in [11, Section 2]. Let us

compare the natures of Assumption (H5).

(a) Assumption (H5) is stronger in cases 1A and 2A than in cases 1B and

2B, respectively, that is, Assumption (H5) is stronger in the case of a

non-constant A than in the constant case.

(b) If A is not constant (cases 1A and 2A), then Assumption (H5) can be

summarized by minps1, rq ě p.

(c) If A is constant, it is easy to verify that Assumption (H5) is stronger in

the case 1B ps1 ă rq than in case 2B ps1 ě rq.

1. If Ψ “ 0, then we are back to the framework of [11] and our assumptions

coincide. Indeed, (2.4) is then satisfied with any s ą 1. Taking s sufficiently

close to 1, we have 1{s ` 1{prpq ě 1, so that (2.5) is not necessary, and we

have s1 ě r, so that we are either in case 2A or 2B in hypothesis (H5). If A is

constant, we must choose s close enough to 1, so that s1 ě 1 ` d.

Let us set

F px,mq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ż m

0

fpx, τqdτ if m ě 0

`8 otherwise.

Then F is continuous on Td ˆ p0,`8q, differentiable and strictly convex in m and

satisfies

1

C1

|m|
q

´ C1 ď F px,mq ď C1|m|
q

` C1 @m ě 0, (2.9)
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changing C1 if necessary. Let F ˚ be the Fenchel conjugate of F with respect to the

second variable. Note that F ˚px, aq “ 0 for a ď 0 because F px,mq is nonnegative,

equal to `8 for m ă 0, and null at zero. Moreover,

1

C1

|a|
p

´ C1 ď F ˚
px, aq ď C1|a|

p
` C1 @a ě 0, (2.10)

changing again C1 if necessary. Most of the results in this paper hold also for time-

dependent data, in particular when f and H depend on t. It suffices to have the

estimates in this subsection hold uniformly with respect to t.

2.5 Two Problems in Duality

The approach that we follow consists in viewing the MFG system as an optimality

condition for two convex problems, which we introduce now.

Let K0 be the set of all triples pu, P, γq P C2pQq ˆ C0pr0, T s;Rkq ˆ C0pQq satisfying
$

’

’

’

&

’

’

’

%

´Btu ´ AijBiju ` H
`

x,Dupx, tq ` Gpxq⊺P ptq
˘

“ γ,

upx, T q “ uT pxq.

(2.11)

The associated cost is given by

Dpu, P, γq “ ´

ż

Td

upx, 0qm0pxq dx `

ż T

0

Φ˚
`

P ptq
˘

dt `

ĳ

Q

F ˚
`

x, γpx, tq
˘

dx dt.

(2.12)

The first problem is

inf
pu,P,γqPK0

Dpu, P, γq. (2.13)
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We consider now the set K1 of all pairs pm,wq P L1pQq ˆ L1pQ;Rdq such that m ě 0

a.e.,
ş

Td mpx, tq dx “ 1 for a.e. t P p0, T q, and such that the continuity equation
$

’

’

’

&

’

’

’

%

Btm ´ Bij
`

Aijm
˘

` ∇ ¨ w “ 0,

mpx, 0q “ m0pxq

(2.14)

holds in the sense of distributions. For pm,wq P K1, consider the following cost

functional:

Bpm,wq “

ĳ

Q

˜

H˚

ˆ

x,´
wpx, tq

mpx, tq

˙

mpx, tq ` F
`

x,mpx, tq
˘

¸

dx dt

`

ż T

0

Φ

ˆ
ż

Td

Gpxqwpx, tq dx

˙

dt `

ż

Td

uT pxqmpx, T q dx,

(2.15)

where for mpt, xq “ 0, we impose that

mpt, xqH˚
´

x,´
wpt, xq

mpt, xq

¯

“

$

’

’

’

’

&

’

’

’

’

%

`8 if wpt, xq ‰ 0

0 if wpt, xq “ 0.

Since H˚ and F are bounded from below and m ě 0, the first integral in B is well

defined in R Y t`8u. Concerning the second term in B, we simply need to observe

that since Φ is convex, there exists a constant C ą 0 such that Φpzq ě ´Cp1 ` |z|q,

for all z P Rk. For w P L1pQ;Rdq, the term

ż

Td

Gpxqwpx, ¨q dx

is integrable in time and therefore

ż T

0

Φ

ˆ
ż

Td

Gpxqwpx, tq dx

˙

dt

is well-defined in R Y t`8u. For the third term, we refer the reader to [11, Lemma

4.1], where it is proved that for pm,wq P K1, m can be seen as a continuous map

22



from r0, T s to P pTdq for the Rubinstein-Kantorovich distance d1. Finally, the second

optimization problem is the following:

inf
pm,wqPK1

Bpm,wq. (2.16)

2.5.1 Lemma. We have

inf
pu,P,γqPK0

Dpu, P, γq “ ´ min
pm,wqPK1

Bpm,wq.

Moreover, the minimum in the right-hand side is achieved by a unique pair pm,wq P

K1 satisfying

m P Lq
pQq, w P L

r1q
r1`q´1 pQ;Rd

q, and

ż

Td

Gpxqwpx, ¨q dx P Ls
pp0, T q;Rk

q.

(2.17)

Proof. Following previous papers [9, 10, 11], we look to apply the Fenchel-Rockafellar

duality theorem. In order to do so, we reformulate the first optimization problem

into a more suitable form.

Let E0 “ C2pQq ˆ C0pr0, T s,Rkq and E1 “ C0pQq ˆ C0pQ;Rdq. Define on E0 the

functional

Fpu, P q “

ż T

0

Φ˚
pP ptqq dt ´

ż

Td

up0, xqm0pxq dx ` χSpuq,

where χS is the convex characteristic function of the set S “
␣

u P E0, upT, ¨q “ uT

(

,

i.e., χSpuq “ 0 if u P S and `8 otherwise. For pa, bq P E1, we define

Gpa, bq “

ĳ

Q

F ˚
`

x,´a ` Hpx, bq
˘

dx dt.

The functional F is convex and lower semi-continuous on E0 while G is convex and

continuous on E1. Let Λ : E0 Ñ E1 be the bounded linear operator defined by
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Λpu, P q “ pBtu ` AijBiju,Du ` G⊺P q. We can observe that

inf
pu,P,γqPK0

Dpu, P, γq “ inf
pu,P qPE0

␣

Fpu, P q ` GpΛpu, P qq
(

.

In the interest of employing the Fenchel-Rockafellar duality theorem, note that Fpu, P q ă

`8 for puT , 0q and GpΛpu, P qq is continuous at puT , 0q. This satisfies the duality the-

orem, and so

inf
pu,P qPE0

␣

Fpu, P q ` GpΛpu, P qq
(

“ max
pm,wqPE1

1

␣

´F˚
pΛ˚

pm,wqq ´ G˚
p´pm,wqq

(

,

where E 1
1 is the dual space of E1, i.e., the set of vector valued Radon measures pm,wq

over Q with values in R ˆ Rd, E 1
0 is the dual space of E0, Λ

˚ : E 1
1 Ñ E 1

0 is the dual

operator of Λ and F˚ and G˚ are the convex conjugates of F and G respectively. We

now compute the relevant conjugate transforms.

F˚
pΛ˚

pm,wqq “ sup
pu,P q

!

xpu, P q,Λ˚
pm,wqy ´ Fpu, P q

)

“ sup
pu,P q

uPS

!

xΛpu, P q, pm,wqy ´

ż T

0

Φ˚
pP q dt `

ż

Td

up0, xqm0pxq dx
)

“ sup
pu,P q

uPS

!

xBtu ` AijBiju,my ` xDu,wy ` xG⊺P,wy

´

ż T

0

Φ˚
pP q dt `

ż

Td

up0, xqm0pxq dx
)

“ sup
pu,P q

uPS

!

x´Btm ` BijpAijmq ´ ∇ ¨ w, uy ` xG⊺P,wy

´

ż T

0

Φ˚
pP q dt `

ż

Td

uT pxqmpT, xq dx
)

It is evident here that if ´Btm`BijpAijmq´∇¨w ‰ 0 in the sense of distributions, this

supremum is infinite. If the condition does hold however, the supremum no longer
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depends on u, and so the calculation is reduced to

sup
P

!

ż T

0

´

ş

TdxGpxq
⊺P ptq, wpx, tqy dx

¯

´ Φ˚
pP ptqq dt

)

“ sup
P

!

ż T

0

A

P ptq,
ş

TdGpxqwpx, tq dx
E

´ Φ˚
pP ptqq dt

)

“ sup
P

!

ż T

0

Φ
`ş

TdGpxqwpx, tq dx
˘

dt
)

.

Combined with the conditions above, we have

F˚
pΛ˚

pm,wqq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ż T

0

Φ
`ş

TdGw
˘

`

ż

Td

uT pxqmpT, xq dx, if ´Btm ` AijBijm ´ ∇ ¨ w “ 0

`8 otherwise.

Following [9], we have that G˚pm,wq “ `8 if pm,wq R L1pQq ˆ L1pQ;Rdq and

G˚
pm,wq “

ĳ

Q

K˚
px,mpt, xq, wpt, xqq dx dt

otherwise, where K˚ is given by

K˚
px,m,wq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

F px,´mq ´ mH˚

´

x,´ w
m

¯

if m ă 0

0 if m “ 0 and w “ 0

`8 otherwise,

it is the convex conjugate of

Kpx, a, bq “ F ˚
px,´a ` Hpx, bqq @px, a, bq P Td

ˆ R ˆ Rd.
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Therefore

max
pm,wqPE1

1

␣

´ F˚
pΛ˚

pm,wqq ´ G˚
p´pm,wqq

(

“ max
!

ĳ

Q

´F px,mq ´ mH˚
´

x,´
w

m

¯

dx dt ´

ż T

0

Φ
`ş

TdGw
˘

dt

´

ż

Td

uT pxqmpT, xq dx
)

with the last maximum taken over the L1 maps pm,wq such that m ě 0 a.e. and

´Btm ` BijpAijmq ´ ∇ ¨ w “ 0, mp0q “ m0

holds in the sense of distributions. Since
ş

Td m0 “ 1, it follows that
ş

Td mptq “ 1 for

any t P r0, T s. Thus the pair pm,wq belongs to the set K1 and the first part of the

statement is proved.

It remains to show (2.17). Taking an optimal pm,wq P K1 in the above problem, we

have that wpt, xq “ 0 for all pt, xq P r0, T s ˆ Td whenever mpt, xq “ 0. By convexity

of Φ, we have

ż T

0

Φ
`ş

TdGw dx
˘

dt ě

ż T

0

Φp0q `
@

Ψp0q,
ş

Td Gw dx
D

dt ě C ´ C}w}1. (2.18)

Moreover, by Hölder’s inequality,

}w}1 “

ĳ

Q

|w|

m
m dx dt ď

´

ĳ

Q

´

|w|

m

¯r1

m
¯1{r1

.

It follows with Young’s inequality that

}w}1 ď
ε

r1

ĳ

Q

|w|
r1

m1´r1

dx dt ` ε´pr´1q,
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for any ε ą 0. Therefore,

ż T

0

Φ
`ş

TdGw dx
˘

dt ě C ´
εC

r1

ĳ

Q

|w|
r1

m1´r1

dx dt ´ ε´pr´1q.

Using successively the optimality of pm,wq, the growth conditions on F and H˚ and

the above inequality, we obtain

C ě

ĳ

Q

F px,mq ` mH˚
´

x,´
w

m

¯

dx dt `

ż T

0

Φ
`ş

TdGw
˘

dt `

ż

Td

uT pxqmpT, xq dx

ě
1

C
}m}

q
q `

´ 1

C
´ εC

¯

ĳ

Q

|w|
r1

m1´r1

dx dt ´ ε´pr´1q
´ C,

for some constant C ą 0 independent of ε. Choosing ε ą 0 sufficiently small, we

deduce that m P LqpQq and that |w|r
1

m1´r1

P L1pQq. To investigate the claim on w

given in the statement, write, for some ρ to be determined,

}w}
r1

ρr1 “

∥∥∥∥∥mr1´1 |w|r
1

mr1´1

∥∥∥∥∥
ρ

ď

∥∥∥mr1´1
∥∥∥

q
r1´1

∥∥∥∥∥ |w|r
1

mr1´1

∥∥∥∥∥
1

“ }m}
r1´1
q

∥∥∥∥∥ |w|r
1

mr1´1

∥∥∥∥∥
1

ă 8.

For this interpolative Hölder inequality to hold, we must have ρ “
q

r1`q´1
. Thus

w P LσpQ;Rdq, with

σ “
r1q

r1 ` q ´ 1
, i.e. σ1

“ rp. (2.19)

Two cases must be considered. If 1
s

ě 1 ´ 1
rp

“ 1
σ
, then we have σ ě s, thus

w P LspQ;Rdq and (2.17) follows. In the other case, we have by Hypothesis (H1) the

growth assumption Φpzq ě 1
C

|z|s ´C. It can be employed to get a better bound from

below in (2.18). We obtain (2.17) with a straightforward adaptation of the above

proof.
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2.6 Optimal Control Problem of the HJ Equation

In general we do not expect problem (2.13) to have a solution. In this section we

exhibit a relaxation for (2.13) (Proposition 2.6.8) and show that the obtained relaxed

problem has at least one solution (Proposition 2.6.10).

2.6.1 Estimates on Subsolutions to HJ equations

In this subsection we prove estimates in Lebesgue spaces for subsolutions of Hamilton-

Jacobi equations of the form
$

’

’

’

’

&

’

’

’

’

%

piq ´Btu ´ AijBiju ` HpDu ` G⊺P q ď γ

piiq upx, T q ď uT pxq

(2.20)

in terms of Lebesgue norms of γ, uT , and P . Equation (2.20) is understood in the

sense of distributions. This means that Du ` G⊺P P LrpQq and for any nonegative

test function ζ P C8
c pp0, T s ˆ Tdq,

´

ż

Td

ζpT quT `

ĳ

Q

uBtζ `xDζ,ADuy`ζ
`

BiAijBju`HpDu`G⊺P q
˘

ď

ĳ

Q

γζ. (2.21)

Let us introduce some notation. For all r̃ ą 1 and for all p̃ ě 1, let us define κ̄pr̃, p̃q

and η̄pr̃, p̃q by

η̄pr̃, p̃q “
dpr̃pp̃ ´ 1q ` 1q

d ´ r̃pp̃ ´ 1q
and κ̄pr̃, p̃q “

r̃p̃p1 ` dq

d ´ r̃pp̃ ´ 1q

if p̃ ă 1 ` d
r̃
and

η̄pr̃, p̃q “ 8 and κ̄pr̃, p̃q “ 8

28



if p̃ ą 1 ` d
r̃
. In the border line case p̃ “ 1 ` d

r̃
, η̄pr̃, p̃q and κ̄pr̃, p̃q can be fixed to

arbitrarily large values. We let the reader verify that

κ̄pr̃, p̃q ě r̃ and κ̄pr̃, p̃q ě p̃, (2.22)

assuming that the assigned value to κ̄pr̃, p̃q is large enough in the border line case.

We now restate [11, Theorem 3.3], since it will prove useful below.

2.6.1 Theorem. Let u satisfy
$

’

’

’

’

&

’

’

’

’

%

piq ´Btu ´ AijBiju ` 1
K
|Du|r̃ ď γ

piiq upx, T q ď uT pxq

(2.23)

in the sense of distributions, with γ P Lp̃pQq for some p̃ ě 1 and r̃ ą 1. Then

}u`}L8pp0,T q,LηpTqq ` }u`}LκpQq ď C,

where u` :“ maxtu, 0u, κ “ κ̄pr̃, p̃q, η “ η̄pr̃, p̃q. The constant C depends only

on T, d, r̃, p̃, K (appearing in (2.23)), C4 (appearing in Hypothesis (H3)), }γ}p̃, and

∥uT∥η.

2.6.2 Remark. Although the case p̃ “ 1 is not explicitly mentioned in [11, Theorem

3.3], it is not hard to check that the theorem also applies in that case.

2.6.3 Corollary. Let P P C0pr0, T s;Rkq and γ P C0pQ;Rq. Let u be the viscosity

solution to the HJ equation
$

’

’

’

&

’

’

’

%

´Btu ´ AijBiju ` H
`

x,Dupx, tq ` Gpx, tq⊺P ptq
˘

“ γ,

upx, T q “ uT pxq.

(2.24)

Let r̃ ą 1. Define

κ “ κ̄pr̃, 1q “
r̃p1 ` dq

d
. (2.25)
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Then

}u}L8pp0,T q,L1pTqq ` }u}LκpQq ď C,

where the constant C depends only on T, d, r̃, p̃, C4 (appearing in Hypothesis (H3)),

}γ}1, ∥Du∥r̃, }HpDu ` G⊺P q}1, and ∥uT∥1.

Proof. By [34], u also satisfies the HJ equation in the sense of distributions. Observe

that (2.24) can be rewritten

´ Btu ´ AijBiju `|Du|r̃ “ γ ´ HpDu ` G⊺P q `|Du|r̃ . (2.26)

The L1 norm of the right-hand side depends on }γ}1, }HpDu ` G⊺P q}1, and ∥Du∥r̃.

Similarly, ´u is a weak subsolution of a HJ equation with right-hand side

´γ ` HpDu ` G⊺P q ` |Du|
r̃.

By applying Theorem 2.6.1 to both u and ´u, we deduce the desired estimate.

When s1 ě r, the growth assumption on the Hamiltonian (Hypothesis (H2)) can be

exploited to derive a more precise estimate on the solution to (2.24).

2.6.4 Corollary. Let P , u, and γ be as in Corollary 2.6.3. Assume moreover that

γ ě 0 and s1 ě r. Take r̃ P p1, rs and define

p̃ “ min
´

p,
s1

r̃

¯

, κ “ κ̄pr̃, p̃q, and η “ η̄pr̃, p̃q.

Then

}u}L8pp0,T q,LηpTdqq ` }u}LκpQq ď C.

The constant C depends only on T, d, r̃, p̃, C3 (appearing in Hypothesis (H2)), C4

(appearing in Hypothesis (H3)), }γ}p, ∥P∥s1, and }uT }η.
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Proof. We have γ ě 0 and the upper bound

HpDu ` G⊺P q ď C|Du|
r

` C|P |
r,

therefore,

´ Btu ´ AijBiju ` C|Du|
r

ě ´C|P |
r

´ C, upT, xq ě

´

min
x1PTd

uT px1
q

¯

. (2.27)

Let û be defined by

ûpx, tq “

´

min
x1PTd

uT px1
q

¯

´

ż T

t

|P ptq|
r dt ´ CpT ´ tq,

which solves (2.27) with inequality replaced by equality. By the comparison principle,

u ě û ě ´C, where C depends only on T, the growth of H, minuT , and ∥P∥r. Note

that ∥P∥r depends only on ∥P∥s1 and T because s1 ě r.

Next, by the growth condition of H we have

´Btu ´ AijBiju `
1

C3

|Du ` G⊺P |
r

´ C3 ď γ.

Observe that by Young’s inequality,

|Du|
r̃

ď 2r̃´1
|Du ` G⊺P |

r̃
` 2r̃´1

|G⊺P |
r̃

ď 2r̃´1
´ r̃

r
|Du ` G⊺P |

r
` 1

¯

` C|P |
r̃,

since r ě r̃. It follows that

|Du ` G⊺P |
r

ě
1

C
|Du|

r̃
´ C|P |

r̃
´ C,

therefore,

´ Btu ´ AijBiju `
1

C
|Du|

r̃
ď γ ` C|P |

r̃
` C. (2.28)
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Since |P |r̃ lies in Ls1{r̃pQq, we have that the right hand side of (2.28) is bounded in

Lp̃. Combining this with the lower bound on u, the conclusion follows from Theorem

2.6.1.

We can now fix the values of the coefficients r̃ P p1, rs, κ ą 1, and η ą 1 to be

employed in the sequel, consistently with Corollary 2.6.3 (if s1 ă r) and Corollary

2.6.4 (if s1 ě r). As will appear later in the proofs of Lemma 2.6.9 and Proposition

2.6.10 , these coefficients must satisfy the following:

“

s1
ě r̃

‰

,
“

κ ě p
‰

, and
“

A is not constant ùñ r̃ ě p
‰

.

This is the reason why four subcases have been introduced in Hypothesis (H5) and

why we have a specific definition of the coefficients for each of the subcases. In order

to deal with the case 2B, we need the following lemma.

2.6.5 Lemma. Assume that s1 ě r and A is constant, that is, consider the case 2B of

Assumption (H5). Then the corresponding condition:

”

s1
ě 1 ` d

ı

or
”

s1
ă 1 ` d and

s1p1 ` dq

d ´ s1 ` 1
ą p

ı

(2.29)

is satisfied if and only if there exists r̃ P p1, rs such that

κ̄
´

r̃,min
`

p, s
1

r̃

˘

¯

ě p. (2.30)

Proof. Several cases must be distinguished.

• Case (i): s1 ą p. In that case, either s1 ě 1 ` d or s1 ă 1 ` d and then

s1p1 ` dq

d ´ s1 ` 1
ą s1

ą p.
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Thus, if s1 ą p, then (2.29) holds true. Then we can set r̃ “ s1

p
ą 1. We have

min
`

p, s
1

r̃

˘

“ p and therefore κ “ κ̄pr̃, pq ě p, by inequality (2.22).

• Case (ii): s1 ď p. Then whatever the choice of r̃ P p1, rs, we have

p̃pr̃q :“ min
`

p, s
1

r̃

˘

“ s1

r̃
.

– Case (iia): s1 ą 1 ` d. Then we can chose r̃ sufficiently close to 1, so that

s1 ´ d

r̃
ą 1.

Then we have p̃pr̃q ą 1 ` d
r̃
, thus κ “ κ̄pr̃, p̃pr̃qq “ 8.

– Case (iib): s1 ď 1 ` d. Then whatever the choice of r̃ P p1, rs, we have

p̃pr̃q ă 1 ` d
r̃
and therefore, condition (2.30) is equivalent to:

Dr̃ P p1, rs,
s1pd ` 1q

d ` r̃ ´ s1
ě p.

The above condition is clearly satisfied if and only if either s1 “ 1 ` d or

s1 ă 1 ` d and s1pd`1q

d`1´s1 ą p.

We can finally fix r̃, κ, and η.

• In cases 1A and 1B (i.e. s1 ă r), we set

r̃ “ s1, κ “ κ̄pr̃, 1q, η “ η̄pr̃, 1q.

Then we have κ ě r̃ ě p. In case 1A, r̃ ě p.

• In case 2A (i.e. s1 ě r and A is not constant), we set r̃ “ p. In case 2B (i.e.

s1 ě r and A is constant), we assign a value to r̃ so that (2.30) holds true. In

both cases 2A and 2B, we set

κ “ κ̄
´

r̃,min
`

p, s
1

r̃

˘

¯

and η “ η̄
´

r̃,min
`

p, s
1

r̃

˘

¯

.

33



In case 2A, we have κ ě r̃ “ p by inequality (2.22). In case 2B, we have κ ě p

by definition.

2.6.6 Remark. In case 2B, it is easy to deduce from the proof of Lemma 2.6.5 an

explicit r̃ P p1, rs such that (2.30) holds. Note that the obtained r̃ may not be the best

one (i.e. the largest one). For example, if s1 ě pr, then one can take r̃ “ r. Then

s1

r̃
ě p and therefore κ “ κ̄pr̃, pq ě p, by inequality (2.22).

2.6.2 The Relaxed Problem

We propose in this subsection an appropriate relaxation of problem (2.13). Let K

denote the set of triplets pu, P, γq P LκpQq ˆLs1

p0, T q ˆLppQq such that Du`G⊺P P

LrpQ;Rdq, Du P Lr̃pQ;Rdq, and such that (2.20) holds in the sense of distributions.

The following statement explains that u has a “trace” in a weak sense.

2.6.7 Lemma. Let f P L1pQq and let u P L1pQq satisfy Du P Lr̃pQ;Rdq and

´ Btu ´ AijBiju ď f, upT q ď uT (2.31)

in the sense of distributions, i.e. for every non-negative function ϑ P C8
c pTd ˆ p0, T sq

we have

ĳ

Q

`

uBtϑ ` BjpAijϑqBiu ´ fϑ
˘

dx dt ď

ż

Td

ϑpx, T quT pxq dx.

Then, for any C1 map ϑ : r0, T s ˆ Td Ñ R, the function

t ÞÑ

ż

T
ϑpx, tqupx, tqdx
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has a BV representative on r0, T s. In particular, for any nonnegative C1 map ϑ : r0, T sˆ

Td Ñ R, one has the integration by parts formula: for any 0 ď t1 ď t2 ď T ,

´

”

ż

Td

ϑu
ıt2

t1
`

ż t2

t1

ż

Td

uBtϑ ` xDϑ,ADuy ` ϑBiAijBju ď

ż t2

t1

ż

Td

fϑ. (2.32)

Proof. First, observe that x ÞÑ upx, tq is a well-defined L1pTdq function for a.e. t P

p0, T q. Then by standard convolution smoothing arguments, one can check that (2.32)

holds for a.e. t1, t2 P r0, T s with t1 ď t2. Indeed, if ξε is a convolution kernel, then

uε “ ξε ˚ u, fε “ ξε ˚ f can be shown to satisfy

´ Btuε ´ AijBijuε ď fε ` Rε (2.33)

where Rε Ñ 0 in L1 as ε Ñ 0. Then integration by parts implies, for 0 ă t1 ď t2 ă T

and ε small enough, that

´

”

ż

Td

ϑuε

ıt2

t1
`

ż t2

t1

ż

Td

uεBtϑ` xDϑ,ADuεy `ϑBiAijBjuε ď

ż t2

t1

ż

Td

pfε `Rεqϑ. (2.34)

Since uεp¨, tq Ñ up¨, tq in L1pTdq for a.e. t, and likewise uε Ñ u,Duε Ñ Du, and

fε Ñ f in L1, so by letting ε Ñ 0 we deduce the (2.32) for a.e. t1, t2 P r0, T s with

t1 ď t2.

Now define, for a.e. t P r0, T s, the functions

Gptq “

ż

Td

ϑpx, tqupx, tq dx`F ptq, F ptq “

ż T

t

ż

Td

uBtϑ`xDϑ,ADuy`ϑBiAijBju´fϑ.

Now F is absolutely continuous, being the integral of an L1p0, T q function. By what

we have shownGptq is increasing on its domain, and moreoverGpT q ď
ş

Td ϑpx, T quT pxq dx

by hypothesis. Thus I :“ G ´ F is BV, and (2.32) indeed continues to hold for all

0 ď t1 ď t2 ď T , even if we replace
ş

Td ϑpx, tqupx, tq dx by any value between Ipt`q

and Ipt´q.
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We extend the functional D to triplets pu, P, γq P K:

Dpu, P, γq “ ´

ż

Td

upx, 0`
qm0pxq dx `

ż T

0

Φ˚
`

P ptq
˘

dt `

ĳ

Q

F ˚
`

x, γpx, tq
˘

dx dt.

We consider the following relaxation of problem (2.13):

inf
pu,P,γqPK

Dpu, P, γq. (2.35)

2.6.8 Proposition. We have

inf
pu,P,γqPK0

Dpu, P, γq “ inf
pu,P,γqPK

Dpu, P, γq.

The proof requires an integration by parts formula, established in the following lemma.

2.6.9 Lemma. Let pu, P, γq P K and pm,wq P K1 satisfy (2.17).

Assume that mH˚p¨,´w{mq P L1pQq. Then

γm P L1
pp0, T q ˆ Td

q, xP p¨q,
ş

TdGpxqwpx, ¨q dxy P L1
p0, T q

and for almost all t P p0, T q we have

ż

Td

pupT qmT ´ uptqmptqq dx`

ż T

t

ż

Td

´

mγ ` mH˚
`

x,´ w
m

˘

` xP ptq, Gpxqwpx, tqy

¯

dx dt ě 0,

(2.36)

and
ż

Td

puptqmptq ´ up0qm0q dx`

ż t

0

ż

Td

´

mγ ` mH˚
`

x,´ w
m

˘

` xP ptq, Gpx, tqwpx, tqy

¯

dx dt ě 0.

(2.37)

Moreover, if equality holds in the inequality (2.36) for t “ 0, then

w “ ´mDξHp¨, Du ` G⊺P q a.e.
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Proof. In the interest of smoothing pm,wq by convolution, extend the pair to r´1, T `

1s ˆ Td by defining m “ m0 on r´1, 0s, m “ mpT q on rT, T ` 1s, and wps, xq “ 0

for ps, xq P p´1, 0q Y pT, T ` 1q ˆ Td. Let Ãij be an extension of Aij with Ãij “ Aij

if t P p0, T q and zero otherwise. Note that with these described extensions, pm,wq

solves

Btm ´ BijpÃijpt, xqmq ` ∇ ¨ w “ 0 on p´1, T ` 1q ˆ Td.

Let ξϵ “ ξϵpt, xq “ ξϵ1ptqξ
ϵ
2pxq be a smooth convolution kernel with support in a ball

of radius ϵ. We smoothen the pair pm,wq with this kernel in a standard way into

pmϵ, wϵq “ pξϵ ˚ m, ξϵ ˚ wq. Then pmϵ, wϵq solves

Btmϵ ´ BijpÃijmϵq ` ∇ ¨ wϵ “ BjRϵ in

ˆ

´
1

2
, T `

1

2

˙

(2.38)

in the sense of distributions, where

Rϵ :“ rξϵ, BjÃijspmq ` rξϵ, ÃijBjspmq. (2.39)

Here we use again the commutator notation [20]

rξϵ, cspfq :“ ξϵ ‹ pcfq ´ cpξϵ ‹ fq. (2.40)

By [20, Lemma II.1], we have that Rϵ Ñ 0 in Lq, since m P Lq and Ãij P W 1,8. Fix

time t P p0, T q at which upt`q “ upt´q “ uptq in LκpTdq and mϵptq converges to mptq.

We have the following inequality based on the equality in (2.11),

´ Btu ´ AijBiju ` Hpx,Du ` G⊺P q ď γ. (2.41)
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Integrating this inequality against mϵ yields

ż T

t

ż

Td

uBtmϵ ` BiuBjpÃijmϵq ` mϵHpx,Du ` G⊺P q `

ż

Td

mϵptquptq ´ mϵpT quT

ď

ż T

t

ż

Td

γmϵ.

(2.42)

By (2.38), we have

ż T

t

ż

Td

uBtmϵ ` BiuBjpÃijmϵq “

ż T

t

ż

Td

´BiuRϵ ` xDu,wϵy,

while the convexity of H in the last variable gives

ż T

t

ż

Td

´mϵH
˚
´

x,´ wϵ

mϵ

¯

ď

ż T

t

ż

Td

xwϵ, Du ` G⊺P y ` mϵHpx,Du ` G⊺P q. (2.43)

Combining these results yields

ż

Td

mϵptquptq ď

ż

Td

mϵpT quT `

ż T

t

ż

Td

mϵ

ˆ

γ ` H˚
´

x,´ wϵ

mϵ

¯

˙

` xGwϵ, P y ` BjuRϵ.

Following now [11], we have that as Du P Lr̃ (where we recall that r̃ ě p or A is

a constant matrix), and as m is continuous in time with respect to the topology on

P pTdq, we have, as ϵ Ñ 0,

ż T

t

ż

Td

BjuRϵ Ñ 0,

ż T

t

ż

Td

´mϵH
˚
´

x,´ wϵ

mϵ

¯

Ñ

ż T

t

ż

Td

´mH˚
`

x,´ w
m

˘

,

ż

Td

mϵpT quT Ñ

ż

Td

mpT quT .

(For the second limit, cf. [10].) We also claim that

ż T

t

ż

Td

xGwϵ, P y Ñ

ż T

t

ż

Td

xGw,P y .
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To see this, recall Equation (2.17) from Lemma 2.5.1. If 1
s

` 1
pr

ě 1, we deduce

that w P Ls and therefore wϵ Ñ w in Ls; from this the claim follows immediately.

Otherwise, if 1
s

` 1
pr

ă 1, then by Hypothesis (H1) we assume that G is constant.

Therefore, we have

ż T

t

ż

Td

xGwϵ, P y “

ż T

t

B
ż

Td

Gwϵ, P

F

“

ż T

t

B

ξϵ1 ˚

ż

Td

Gw,P

F

Ñ

ż T

t

B
ż

Td

Gw,P

F

because t ÞÑ
ş

Td Gw is in Ls. Now since u P LκpQq, m P LqpQq, and κ ě p, mϵu

strongly converges to mu in L1pQq and thus up to a subsequence,
ş

Td mϵptquptq Ñ

ş

Td mptquptq a.e. We now have that

ż

Td

mptquptq dx ď

ż

Td

mpT quT dx `

ż T

t

ż

Td

m
´

γ ` H˚
`

x,´ w
m

˘

¯

` xP,Gwy dx dt.

An analogous argument produces the other desired inequality, so now assume that

equality holds in inequality (2.37) with t “ 0. Then there is t˚ P p0, T q where equality

holds with t “ t˚. Let

Eσptq :“

"

ps, yq : s P rt, T s, m
´

H˚
`

y,´ w
m

˘

` Hpx,Du ` G⊺P q ě

´xw,Du ` G⊺P y ` σ u

If |Eσptq| ą 0, then for ϵ ą 0 small enough, the set of s, y satisfying

mϵ

ˆ

H˚
´

y,´ wϵ

mϵ

¯

` Hpx,Du ` G⊺P q

˙

ě ´xwϵ, Du ` G⊺P y `
σ

2

has measure larger than |Eσptq|

2
. Then by (2.43), for the fixed choice of ϵ,

ż T

t˚

ż

Td

´mϵH
˚
´

x,´ wϵ

mϵ

¯

ď

ż T

t˚

ż

Td

xwϵ, Du`G⊺P y`mϵHpx,Du`G⊺P q´|Eσptq|σ{4,
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whereby we obtain strict inequality in (2.37) with t “ t˚, a contradiction. Thus

|Eσptq| “ 0 for any σ and a.e. t,

x´w,Du ` G⊺P y “ m
`

Hpx,Du ` G⊺P q ` H˚
py,´ w

m
q
˘

,

and hence

w “ ´mDξHp¨, Du ` G⊺P q a.e. in p0, T q ˆ Td.

Proof of Proposition 2.6.8. It is clear that the value of the relaxed problem is smaller

than the value of problem (2.13). It remains to show the other inequality. For any

pm,wq P K1 with mH˚p´w{mq P L1pQq, we have, by Fenchel-Young inequality and

Lemma 2.6.9,

Dpu, P, γq ě ´

ż

Td

up0qm0 `

ż T

0

´

@

P ptq,
ş

TdGw
D

´ Φp
ş

TdGwq

¯

`

ĳ

Q

`

γm ´ F pmq
˘

ě ´

ż

Td

uTmpT q ´

ĳ

Q

mH˚
´

´
w

m

¯

´

ż T

0

Φp
ş

TdGwq ´

ĳ

Q

F pmq

“ ´ Bpm,wq.

Maximizing the right-hand side with respect to pm,wq, we obtain with Lemma 2.5.1

that

Dpu, P, γq ě ´ inf
pm,wqPK1

Bpm,wq “ inf
pu,P,γqPK0

Dpu, P, γq,

which concludes the proof.
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2.6.3 Existence of a Relaxed Solution

We establish now the existence of a relaxed solution.

2.6.10 Proposition. The relaxed problem (2.35) has at least one solution pu, P, γq P K.

Proof. Let pun, Pn, γnq be a minimizing sequence for problem (2.13). By Proposition

(2.6.8), it is also a minimizing sequence for the relaxed problem (2.35). We can,

without loss of generality, assume that γn ě 0, so long as we only require un to be a

viscosity solution to the Hamilton-Jacobi equation. Let us replace γn with its positive

part, i.e. pγnq` :“ maxtγn, 0u. Then we replace un with ũn, the continuous viscosity

solution of

´Btũn ´ AijBijũn ` HpDũn ` G⊺Pnq “ pγnq`, ũnpx, T q “ uT pxq.

By [34], ũn also satisfies this equation in the sense of distributions, and thus the new

triple pũn, Pn, pγnq`q is also a member ofK. We have ũn ě un and F ˚pγnq “ F ˚ppγnq`q

for all px, tq P Q. Therefore, Dpũn, Pn, pγnq`q ď Dpun, Pn, γnq, and thus the new

sequence also minimizes D. The arguments below will then apply to pũn, Pn, pγnq`q

in place of pun, Pn, γnq.

Step 1: [Bounds for pγnq, pPnq, and pDunq]:

All constants C used in this part of the proof are independent of n. We integrate

(2.20) against m0 on Q and obtain

ż

Td

unp0qm0 `

ĳ

Q

BjunBipAijm0q `

ĳ

Q

HpDun ` G⊺Pnqm0 ď

ĳ

Q

γnm0 `

ż

Td

uTm0.

(2.44)
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Let us recall that m0 ě 1
C
. The Hamiltonian term can be bounded from below as:

ĳ

Q

HpDun ` G⊺Pnqm0 ě
1

C
}Dun ` G⊺Pn}

r
r ´ C. (2.45)

In light of the regularity assumptions on A and m0, we also have that

ˇ

ˇ

ˇ

ĳ

Q

BjunBipAijm0q

ˇ

ˇ

ˇ
ď C}Dun}1 ď C}Dun}r̃. (2.46)

Finally, the right-hand side of (2.44) is bounded by C}γn}p ` C. Combining this

estimate with (2.45) and (2.46), we obtain that

ż

Td

unp0qm0 `
1

CB
}Dun ` G⊺Pn}

r
r ´ C}Dun}r̃ ď C}γn}p ` C (2.47)

for any choice of B ě 1. The constants C used are also independent of B. Now we

use the fact that pun, Pn, γnq is a minimizing sequence and the growth assumptions

on F ˚ and Φ˚ to derive

´

ż

Td

unp0qm0 `
1

C
}Pn}

s1

s1 `
1

C
}γn}

p
p ´ C ď Dpun, Pn, γnq ď C. (2.48)

Summing up (2.47) and (2.48), we obtain

1

CB
}Dun ` G⊺Pn}

r
r ´ C}Dun}r̃ `

1

C
}Pn}

s1

s1 `
1

C
}γn}

p
p ď C}γn}p ` C. (2.49)

Now by Hölder’s inequality we have

}Du}
r̃
r̃ ď C

`

}Du ` G⊺P }
r̃
r̃ ` }G⊺P }

r̃
r̃

˘

ď C
`

}Du ` G⊺P }
r
r ` }P }

s1

s1 ` 1
˘

and so

1

CB
}Dun}

r̃
r̃ `

„

1

C
´

C

B

ȷ

}Pn}
s1

s1 ´ C}Dun}r̃ `
1

C
}γn}

p
p ď C}γn}p ` C. (2.50)

We fix now B “ 2C2. The terms }Dun}r̃, }γn}p can be absorbed. For instance, the

former can be absorbed by }Du}r̃r̃ insofar as for an arbitrarily small ε ą 0, there exists
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C ą 0 (depending on ε) such that

}Dun}r̃ ď ε}Dun}
r̃
r̃ ` C. (2.51)

Taking ε small enough, we finally deduce from (2.50) the estimate

}Dun}
r̃
r̃ ` }Pn}

s1

s1 ` }γn}
p
p ď C, (2.52)

so that pγnqnPN is bounded in LppQq, pPnqnPN is bounded in Ls1

pp0, T q;Rkq and pDunqnPN

is bounded in Lr̃pQq. Inequality (2.49) further shows that Dun `G⊺Pn is bounded in

LrpQ;Rdq. This implies that

}HpDun ` G⊺Pnq}1 ď C.

Step 2 [Bound of un in LκpQq]:

Now that we have estimates on Pn in Ls1

, γn in Lp, Dun in Lr̃, and HpDun ` G⊺Pnq

in L1, we can apply Corollary 2.6.3 in case s1 ă r or Corollary 2.6.4 in case s1 ě r

and obtain ∥un∥κ ď C, where κ is defined at the end of Section 2.6.1.

Step 3 [Conclusion]:

The rest of the proof is very similar to the proof of [11, Proposition 5.4], we only give

the main lines. By passing to a subsequence, we assume without loss of generality

that

un á ū in LκpQq, Dun á Dū in Lr̃pQq, Dun ` G⊺Pn á Dū ` GJP̄ in LrpQ;Rdq,

γn á γ̄ in LppQq, Pn á P̄ in Ls1

p0, T q.

Since H is convex, pū, P̄ , γ̄q P K. By weak lower semicontinuity arguments, we have

lim inf
nÑ8

ĳ

Q

F ˚
pγnq `

ż T

0

Φ˚
pPnq ě

ĳ

Q

F ˚
pγ̄q `

ż T

0

Φ˚
pP̄ q.
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Using exactly the same arguments as in [11, Proposition 5.4 (Step 3)], one can prove

that

lim sup
nÑ8

ż

Td

unp0qm0 ď

ż

Td

ūp0qm0,

which proves the optimality of pū, P̄, γ̄q.

2.7 Existence and Uniqueness of a Solution for the MFG System

We prove in this section the existence and uniqueness of a weak solution to the MFG 

system (2.2).

2.7.1 Definition. We say that a  quadruplet pu, P, m, wq P LκpQq  ̂Ls1 
p0, T q  ̂LqpQq ˆ

L
r1q

r1`q´1 pQq is a weak solution if

(i) The following integrability conditions hold: Du P Lr̃pQq and mH˚p¨,´m{wqq P

L1pQq.

(ii) Equation (2.2)-(i) holds in the sense of distributions,

´Btu ´ AijBiju ` HpDu ` G⊺P q ď fpmq, upT q ď uT

(iii) Equation (2.2)-(ii) holds in the sense of distributions,

Btm ´ Bij
`

Aijm
˘

´ ∇ ¨ w “ 0, mp0q “ m0,

(iv) Equations (2.2)-(iii)-(iv) hold almost everywhere,

(v) The following equality holds:

ĳ

Q

´

mfpmq`mH˚
p´w{mq`xP,Gwy

¯

`

ż

Td

mpT quT ´

ż

Td

m0up0q “ 0. (2.53)
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2.7.2 Theorem. There exists a weak solution pu, P,m,wq to the MFG system (2.2). It

is unique in the following sense: if pu, P,m,wq and pu1, P 1,m1, w1q are two solutions,

then m “ m1, w “ w1, P “ P 1 a.e. and u “ u1 in tm ą 0u.

2.7.3 Theorem. Let pm̄, w̄q P K1 be a minimizer of (2.16) and pū, P̄ , γ̄q be a minimizer

of (2.35). Then, pū, P̄ , m̄, w̄q is a weak solution of the MFG system and γ̄ “ fpm̄q.

Conversely, any weak solution pū, P̄ , m̄, w̄q of the MFG system is such that pm̄, w̄q is

the solution to (2.16) and pū, P̄ , fpm̄qq is a solution to (2.35).

Proof. Part 1. Let pm̄, w̄q P K1 be the solution to (2.16) and pū, P̄ , γ̄q P K be a

solution to (2.35). Condition piiiq of Definition (2.7.1) is verified by the definition of

K1. By Lemma 2.5.1 and Proposition 2.6.8, these two problems have the same value,

thus

0 “ Dpū, P̄ , γ̄q ` Bpm̄, w̄q

“

ĳ

Q

`

F ˚
pγ̄q ` F pm̄q

˘

`

ż T

0

´

Φ˚
pP̄ q ` Φ

`ş

TdGw̄
˘

¯

`

ĳ

Q

m̄H˚
p´w̄{m̄q `

ż

Td

uT m̄pT q ´

ż

Td

ūp0qm0.

By the Fenchel-Young inequality, we have

F ˚
pγ̄q ` F pm̄q ě γ̄m̄ for a.e. px, tq P Q, (2.54)

Φ˚
pP̄ q ` Φ

`ş

TdGw̄
˘

ě
@

P̄ ,
ş

TdGw̄
D

for a.e. t P p0, T q (2.55)

thus

0 ě

ĳ

Q

´

m̄γ̄ ` m̄H˚
p´w̄{m̄q ` xP,Gwy

¯

`

ż

Td

m̄pT quT ´

ż

Td

m0ūp0q. (2.56)
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This implies first that m̄H˚p´w̄{m̄q P L1pQq. Moreover, by Lemma 2.6.9, inequality

(2.56) is in fact an equality and w̄ “ ´m̄DξHpDū ` G⊺P̄ q. Moreover, the equality

holds a.e. in (2.54) and (2.55) therefore,

γ̄ “ F 1
pm̄q “ fpm̄q for a.e. px, tq P Q,

P̄ “ DΦ
`ş

TdGw̄
˘

“ Ψ
`ş

TdGw̄
˘

for a.e. t P p0, T q.

Since (2.56) is an equality and γ̄ “ fpm̄q, (2.53) (condition (v)) holds true. Further,

by the definition of K and γ̄ “ fpm̄q, condition piiq holds. We conclude then that

pū, P̄ , m̄, w̄q is a weak solution to the MFG system.

Part 2. Let pū, P̄ , m̄, w̄q be a weak solution to (2.2). Let γ̄ “ fpm̄q. The growth

condition on f implies that γ̄ P LppQq. Therefore, pm̄, w̄q P K1 and pū, P̄ , γ̄q P K. It

remains to show that pū, P̄ , γ̄q solves (2.35) and that pm̄, w̄q solves (2.35).

The argument is very similar to the one used in Proposition 2.6.8. It mainly consists

in showing that Dpū, P̄ , γ̄q `Bpm̄, w̄q “ 0. Since γ̄ “ fpm̄q “ F 1pm̄q a.e., we have by

convexity of F that

F pm̄q ` F ˚
pγ̄q “ γ̄m̄, for a.e. px, tq P Q.

Similarly, since P̄ “ Ψ
`ş

TdGw
˘

“ DΦ
`ş

TdGw
˘

, we have

Φ
`ş

TdGw
˘

` Φ˚
pP̄ q “

@

P,
ş

TdGw
D

, for a.e. t P p0, T q.
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These two equalities and (2.53) yield:

Dpū, P̄ , γ̄q ` Bpm̄, w̄q “

ĳ

Q

`

F ˚
pγ̄q ` F pm̄q

˘

`

ż T

0

´

Φ
`ş

TdGw̄
˘

` Φ˚
pP̄ q

¯

`

ĳ

Q

m̄H˚
p´w̄{m̄q `

ż

Td

`

uT m̄pT q ´ ūp0qm0

˘

“

ĳ

Q

m̄γ̄ `

ĳ

Q

xP̄ , Gw̄y `

ż

Td

uT m̄pT q ´ ūp0qm0 `

ĳ

Q

m̄H˚
p´w̄{m̄q

“ 0.

As a consequence, we obtain

inf
pu,P,γqPK

Dpu, P, γq ď Dpū, P̄ , γ̄q “ ´Bpm̄, w̄q ď ´ min
pm,wqPK1

Bpm,wq.

The first and the last term being equal, the two above inequalities are equalities,

which shows the optimality of optimality of pū, P̄ , γ̄q and pm̄, w̄q, respectively.

Proof of Theorem 2.7.2. By Lemma 2.5.1, problem (2.16) has a solution pm̄, w̄q and

by Proposition 2.6.10, problem (2.35) has a solution pū, P̄ , γ̄q. By Theorem 2.7.3,

pū, P̄ , m̄, w̄q is a weak solution to the MFG system.

Now, let pu1, P1,m1, w1q and pu2, P2,m2, w2q be two weak solutions. By Theorem

2.7.3, pm1, w1q and pm2, w2q are solutions to problem (2.16), they are therefore equal.

Relation (2.2)-(iii) implies that P1 “ P2. Let pm̄, w̄, P̄ q “ pm1, w1, P1q denote the

common values. Let γ̄ “ fpm̄q. Then pu1, P̄ , γ̄q and pu2, P̄ , γ̄q lie in K (by definition

of weak solutions).
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For t P p0, T q, pm,wq P K1, and pu, P, γq P K, we introduce

Btpm,wq “

ż T

t

ż

Td

´

mH˚
p´w{mq ` F pmq

¯

`

ż T

t

Φ
`ş

TdGw
˘

`

ż

Td

uTmpT q

Dtpu, P, γq “ ´

ż

Td

up0qm0 `

ż T

t

Φ˚
pP q `

ż T

t

ż

Td

F ˚
pγq.

Proceeding as in the proof of Proposition 2.6.8, we obtain that

inf
pu,P,γqPK

Dtpu, P, γq ě ´Btpm̄, w̄q.

By Lemma 2.6.9 and relation (2.53),

ż T

t

ż

Td

´

m̄fpm̄q ` m̄H˚
p´w̄{m̄q ` xP̄ , Gw̄y

¯

`

ż

Td

m̄pT quT ´

ż

Td

m̄ptquiptq “ 0

for a.e. t P p0, T q and for i “ 1, 2. Proceeding as in the proof of Theorem 2.7.3, we

obtain that ´Btpm̄, w̄q “ Dtpui, P̄ , γ̄q. Thus pu1, P̄ , γ̄q and pu2, P̄ , γ̄q minimize Dt

over K.

Let ū “ u1_u2. Adapting the proof in [11, Theorem 6.2], we obtain that pū, P̄ , γ̄q P K.

Since Dtpūq ď Dtpuiq, we deduce that pū, P, γq also minimize Dt. It follows that

ż

Td

u1ptqm̄ptq “

ż

Td

u2ptqm̄ptq “

ż

Td

ūptqm̄ptq

As u1 ď ū and u2 ď ū, this implies that u1 “ u2 “ ū a.e. in tm̄ ą 0u and concludes

the proof.

2.8 Regularity Estimates

In this section we adapt the methods used in [28, 29] to show that weak solutions 

of (2.1) possess extra regularity–Sobolev estimates in both space and time–not re-

quired by Definition 2 .7.1. These e stimates hold under g eneral s trong monotonicity
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assumptions on the coupling fpx,mq and coercivity on the Hamiltonian. We divide

our results into “space regularity,” i.e. estimates on derivatives with respect to x, and

“time regularity,” estimates on derivatives with respect to t.

2.8.1 Space Regularity

Before stating the result, let us enumerate a few additional assumptions.

2.8.1 Assumption. Aij is constant for every i, j.

2.8.2 Assumption (Strong monotonicity). We have a Lipschitz estimate on f of the

form

|fpx,mq ´ fpy,mq| ď Cpmq´1
` 1q|x ´ y| @x, y P Td, m ě 0. (2.57)

We also assume that fpx,mq is strongly monotone in m, that is, there exists cf ą 0

such that

`

fpx, m̃q ´ fpx,mq
˘

pm̃ ´ mq ě cf mintm̃q´2,mq´2
u|m̃ ´ m|

2
@m̃,m ě 0, m̃ ‰ m.

(2.58)

If q ă 2 one should interpret 0q´2 as `8 in (2.58). In this way, when m̃ “ 0, for

instance, (2.58) reduces to fpx,mqm ě cfm
q, as in the more regular case q ě 2.

2.8.3 Assumption (Coercivity). There exist j1, j2 : Rd Ñ Rd and cH ą 0 such that

Hpx, ξq ` H˚
px, ζq ´ ξ ¨ ζ ě cH |j1pξq ´ j2pζq|

2. (2.59)

In particular, and in light of our restriction on the growth of H, we specify that

j1pξq „ |ξ|r{2´1ξ and j2pζq „ |ζ|r
1{2´1ζ.
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2.8.4 Assumption. m0 P W 2,8pTdq, uT P W 2,8pTdq, G P W 2,8
`

Td;LpRk,Rdq
˘

, and

H˚ is twice continuously differentiable in x with

|D2
xxH

˚
px, ζq| ď CH

´

|ζ|
r1

` 1
¯

. (2.60)

Notice that Assumption 2.8.2 holds for the canonical case fpx,mq “ mq´1 or even

if fpx,mq “ f̃pxqmq´1 for some strictly positive, Lipschitz continuous function f̃ on

Td. Assumption 2.8.3 likewise holds for a canonical structure Hpx, ξq “ cpxq|ξ|r for

some strictly positive, C2 smooth function cpxq on Td.

2.8.5 Proposition. Let Assumptions 2.8.1, 2.8.2, 2.8.3, 2.8.4 hold. Then, if pu,mq is

a weak solution of (2.1),

}m
q
2

´1Dm}L2pQ ď C and }m1{2Dpj1pDuqq}L2pQ ď C,

where C is a constant depending only on the data.

Proof. Throughout we use the notation gδpxq “ gpx ` δq for any function depending

on x P Td.

Take a smooth minimizing sequence pun, Pn, γnq P K0 for the dual problem. Integrate

(2.14) by parts against un and rearrange to get

ĳ

Q

mHpx,Dun`G⊺Pnq dx dt “

ż

Td

puTmpT q´unp0qm0q dx`

ĳ

Q

γnm´xDun, wy dx dt.

(2.61)

Step 1. The following estimates show that (up to a subsequence) Dun á Du in

Lr̃
mpr0, T s ˆ Td;Rdq (see Section 2.6 for definition of r̃, and NB r̃ ď mintr, s1u):
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Using Young’s inequality and Assumption (H2) we get

1

C

ĳ

Q

|Dun ` G⊺Pn|r̃ m dx dt ď
1

C

ĳ

Q

|Dun ` G⊺Pn|r m dx dt ` C

ď }uT }8 `

ż

Td

|unp0q|m0 `

ĳ

Q

˜

pγnq`m ` Cm

∣∣∣∣wm
∣∣∣∣r1
¸

dx dt ` C. (2.62)

By possibly increasing C we get

1

C

ĳ

Q

|Dun|r̃ m dx dt

ď }uT }8 `

ż

Td

|unp0q|m0 `

ĳ

Q

˜

pγnq`m ` Cm

∣∣∣∣wm
∣∣∣∣r1

` C|G⊺Pn|r̃ m

¸

dx dt ` C

ď }uT }8 `

ż

Td

|unp0q|m0 `

ĳ

Q

˜

pγnq`m ` Cm

∣∣∣∣wm
∣∣∣∣r1
¸

dx dt ` C

ż T

0

|Pn|
s1

dt ` C.

(2.63)

Since Pn is bounded in Ls1

, we have that Dun is bounded in Lr̃
m where we recall that

r̃ “ minpr, s1q. Thus, up to a subsequence, Dun á ζ for some ζ P Lr̃
m. The argument

that ζ “ Du m´a.e. follows as in [28]. We also have, up to a subsequence, that Pn á

P in Ls1

p0, T q, and thus also that Dun ` G⊺Pn á Du ` G⊺P in Lr
mpr0, T s ˆ Td;Rdq.

Indeed, the upper bound given by (2.62) shows that Dun ` G⊺Pn converges weakly

in Lr
m, and its limit must be equal to Du ` G⊺P a.e. by taking the limit of each

summand.

Step 2. Now use uδ
n and u´δ

n as test functions in (2.14) to get

ż

Td

puδ
TmpT q ´ uδ

np0qm0q dx “

ĳ

Q

´

Hpx ` δ,Duδ
n ` pGδ

q
⊺Pnqm ´ γδ

nm ` Duδ
n ¨ w

¯

dx dt
(2.64)
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and
ż

Td

pu´δ
T mpT q ´ u´δ

n p0qm0q dx “

ĳ

Q

´

Hpx ´ δ,Du´δ
n ` pG´δ

q
TPnqm ´ γ´δ

n m ` Du´δ
n ¨ w

¯

dx dt
(2.65)

We have the optimality condition

ż

Td

puTmpT q ´ up0qm0q dx “

´

ĳ

Q

˜

H˚

ˆ

x,´
w

m

˙

m ` P ¨ pGwq ` fpx,mqm

¸

dx dt.
(2.66)

Take (2.64) ` (2.65) ´ 2(2.66) to get

ż

Td

ˆ

´

uδ
T ` u´δ

T ´ 2uT

¯

mpT q ´ unp0q

´

mδ
0 ` m´δ

0 ´ 2m0

¯

˙

dx

“

ĳ

Q

˜

Hpx ` δ,Duδ
n ` pGδ

q
TPnqm ` H˚

ˆ

x ` δ,´
w

m

˙

m`

´

Duδ
n ` pGδ

q
TPn

¯

¨ w dx dt

`

ĳ

Q

˜

Hpx ´ δ,Du´δ
n ` pG´δ

q
TPnqm ` H˚

ˆ

x ´ δ,´
w

m

˙

m`

´

Du´δ
n ` pG´δ

q
TPn

¯

¨ w dx dt

`

ĳ

Q

ˆ

´

2fpx,mq ´ γδ
n ´ γ´δ

n

¯

m ` 2P ¨ pGwq´

Pn ¨ pGδw ` G´δwq dx dt ´ I (2.67)

where

I :“

ĳ

Q

˜

H˚

ˆ

x ` δ,´
w

m

˙

` H˚

ˆ

x ´ δ,´
w

m

˙

´ 2H˚

ˆ

x,´
w

m

˙

¸

m (2.68)

and where we have used

ż

Td

´

uδ
np0q ` u´δ

n p0q ´ 2up0q

¯

m0 dx “

ż

Td

unp0q

´

mδ
0 ` m´δ

0 ´ 2m0

¯

dx. (2.69)
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Since H is convex in the third argument, by the result of Step 1 and weak lower

semicontinuity we have

ĳ

Q

Hpx˘δ,Du˘δ
`pG˘δ

q
TP qm dx dt ď lim inf

ĳ

Q

Hpx˘δ,Du˘δ
n `pG˘δ

q
TPnqm dx dt.

Letting n Ñ 8 in (2.67) we obtain

ĳ

Q

˜

Hpx ` δ,Duδ
` pGδ

q
TP qm ` H˚

ˆ

x ` δ,´
w

m

˙

m`

´

Duδ
` pGδ

q
TP

¯

¨ w dx dt

`

ĳ

Q

˜

Hpx ´ δ,Du´δ
` pG´δ

q
TP qm ` H˚

ˆ

x ´ δ,´
w

m

˙

m`

´

Du´δ
` pG´δ

q
TP

¯

¨ w dx dt

ď

ż

Td

ˆ

´

uδ
T ` u´δ

T ´ 2uT

¯

mpT q ´ up0q

´

mδ
0 ` m´δ

0 ´ 2m0

¯

˙

dx ` I

`

ĳ

Q

ˆ

´

fpx ` δ,mδ
q ` fpx ´ δ,m´δ

q ´ 2fpx,mq

¯

m`

P ¨

ˆ

´

Gδ
` G´δ

´ 2G
¯

w

˙

dx dt. (2.70)

By [28, computation (4.25)] we have

ż

Td

´

fpx ` δ,mδ
q ` fpx ´ δ,m´δ

q ´ 2fpx,mq

¯

m dx

ď C|δ|
2

ˆ

1 `

ż

Td

mintmδ,mu
q dx

˙

´
cf
2

ż

Td

mintpmδ
q
q´2,mq´2

u|mδ
´ m|

2 dx.

(2.71)
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Using estimate (2.59) on the left-hand side of (2.70), then using|a ` b|2 ď 2|a|2`2|b|2,

and combining with (2.71), then using Assumption 2.8.4 we deduce

cH
2

ĳ

Q

∣∣∣∣´Duδ
` pGδ

q
TP

¯r{2

´

´

Du´δ
` pG´δ

q
TP

¯r{2
∣∣∣∣m dx dt

`
cf
2

ż

Td

mintpmδ
q
q´2,mq´2

u

∣∣∣mδ
´ m

∣∣∣2 dx
ď |δ|2

¨

˝∥uT∥W 2,8 `∥m0∥W 2,8

ż

Td

|up0q| dx ` CH

˜∥∥∥∥wm
∥∥∥∥
Lr
m

` 1

¸

˛

‚

|δ|2

¨

˚

˝

C

ˆ

1 `

ż

Td

mintmδ,mu
q dx

˙

`∥G∥W 2,8

ĳ

Q

|P ¨ w| dx dt

˛

‹

‚

. (2.72)

2.8.2 Time Regularity

As in the previous subsection, we enumerate our assumptions before stating the main

result.

2.8.6 Assumption. We assume that Aij “ 0.

We remark that Assumption 2.8.6 is much stronger than Assumption 2.8.1 but ap-

pears to be necessary, for technical reasons that appear in the estimates below.

2.8.7 Assumption (Strong monotonicity in time). We assume that (2.58) holds.

We assume that Ψ is invertible, with inverse denoted by
`

Ψ´1
˘

pt, ¨q (for instance, it

suffices to assume that its primitive Φ is strictly convex). We assume that, for some

constant cΨ ą 0,
´

Ψ´1pP̃ q ´ Ψ´1pP q

¯

( - P) ě cΨmin

"∣∣∣P̃ ∣∣∣s1´2

,|P |s
1´2

*

|P̃ ´ P |2

@t, τ P r0, T s, P P Rk.
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2.8.8 Proposition. Under Assumptions 2.8.6, 2.8.7, and (2.60), for every ε ą 0, there

exists a constant Cpεq, depending only on ε and the data, such that∥∥∥∥Bt

´

mq{2
¯

∥∥∥∥
L2pQεq

`

∥∥∥∥ d
dt

´

P s1{2
¯

∥∥∥∥
L2pε,T´εq

ď Cpεq (2.73)

where Qε :“ Td ˆ pε, T ´ εq.

2.8.9 Remark. The proposition could also be proved for data depending on time, in

particular with fpx,mq and Hpx, ξq replaced by fpt, x,mq and Hpt, x, ξq, respectively.

The only additional assumption needed would be a Lipschitz estimate in t, where the

Lipschitz constant can depend on x (but not on m or ξ).

Proof. Let ε P R be small and η : r0, T s Ñ r0, 1s be smooth and compactly supported

(with the support of η denoted sptpηqq in p0, T q such that

|ε| ă min
␣

distp0, sptpηqq; distpT, sptpηqq
(

and maxt|εη1ptq| ă 1. If ε ą 0 we set ηεptq “ t ` εηptq, which is a strictly increasing

bijection from r0, T s to itself. Then we set η´ε “ η´1
ε , which is also smooth by the

inverse function theorem. For competitors pu, P, γq of the minimization problem for

A, let us define

uε
px, tq :“ upx, ηεptqq; P ε

ptq “ P pηεptqq; γε
px, tq :“ η1

εptqγpx, ηεptqq.

Notice that by construction, if t P t0, T u then upx, tq “ uεpx, tq and γpx, tq “ γεpx, tq,

provided that γpx, tq is well-defined.

Similarly, for competitors pm,wq of minimization problem for B, we define

mε
px, tq :“ mpx, ηεptqq; wε

px, tq :“ η1
εptqwpx, ηεptqq

and here as well if t P t0, T u then mpx, tq “ mεpx, tq and wpx, tq “ wεpx, tq.
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We define moreover perturbations on the data as

Φε
pt, vq :“ η1

εptqΦ
`

v{η1
εptq

˘

,

f ε
pt, x,mq :“ η1

εptqfpx,mq; F ε
pt, x,mq :“ η1

εptqF px,mq,

from which the Legendre transforms w.r.t. the last variable satisfy

pΦε
q

˚
pt, P q “ η1

εptqΦpP q, pF ε
q

˚
pt, x, γq :“ η1

εptqF
˚
px, γ{η1

εptqq.

Finally, we define

Hε
pt, x, ξq :“ η1

εptqHpx, ξq, thus pHε
q

˚
px, ζq :“ η1

εptqH
˚
px, ζ{η1

εptqq.

Step 1. Take a smooth minimizing sequence pun, Pn, γnq in K0. Use u˘ε
n as a test

function in Btm ` ∇ ¨ w “ 0 to get

ż

Td

`

uTmpT q ´ unp0qm0

˘

dx ě

ĳ

Q

`

Hε
pt, x,Duε

n ` G⊺P ε
ptqqm

´ γε
nm ` Duε

n ¨ w dx dt

(2.74)

and
ż

Td

`

uTmpT q ´ unp0qm0

˘

dx ě

ĳ

Q

`

H´ε
pt, x,Du´ε

n ` G⊺P´ε
ptqqm

´ γ´ε
n m ` Du´ε

n ¨ w dx dt.

(2.75)
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Take (2.74) ` (2.75) ´ 2(2.66) to get

ż

Td

2
`

up0q ´ unp0q
˘

m0 dx

ě

ĳ

Q

˜

Hε
px,Duε

n ` G⊺P ε
q ` H˚

ˆ

x,´
w

m

˙

` pDuε
n ` G⊺P ε

q ¨
w

m

¸

m dx dt

`

ĳ

Q

˜

H´ε
px,Du´ε

n ` G⊺P´ε
q ` H˚

ˆ

x,´
w

m

˙

`
`

Du´ε
n ` G⊺P´ε

˘

¨
w

m

¸

m dx dt

`

ĳ

Q

`

2fpx, t,mq ´ γε
n ´ γ´ε

n

˘

m dx dt`

ĳ

Q

`

2P ¨ pGwq ´ P ε
¨ pGwq ´ P´ε

¨ pGwq
˘

dx dt. (2.76)

Letting n Ñ 8 we get

ĳ

Q

˜

Hε
px,Duε

` G⊺P ε
q ` pH˚

q
ε

ˆ

x,´
w

m

˙

` pDuε
` G⊺P ε

q ¨
w

m

¸

m dx dt

`

ĳ

Q

˜

H´ε
px,Du´ε

` G⊺P´ε
q ` pH˚

q
´ε

ˆ

x,´
w

m

˙

`
`

Du´ε
` G⊺P´ε

˘

¨
w

m

¸

m dx dt

`

ĳ

Q

`

2fpx,mq ´ f ε
pt, x,mε

q ´ f´ε
pt, x,m´ε

q
˘

m dx dt

`

ĳ

Q

`

2P ¨ pGwq ´ P ε
¨ pGwq ´ P´ε

¨ pGwq
˘

dx dt ď Rpεq (2.77)

where

Rpεq :“

ĳ

Q

˜

pH˚
q
ε

ˆ

x,´
w

m

˙

` pH˚
q

´ε

ˆ

x,´
w

m

˙

´ 2H˚

ˆ

x,´
w

m

˙

¸

dx dt. (2.78)

Arguing as in [29, Proposition 3.3, Step 1] and using the estimate on D2
xxH

˚, we have

Rpεq “ Opε2q.
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Next we perform changes of variables and the relation P “ DvΦpt,
ş

Gwq to rewrite

ĳ

Q

`

2P ¨ pGwq ´ P ε
¨ pGwq ´ P´ε

¨ pGwq
˘

dx dt “

ĳ

Q

pP ε
´ P q ¨ pGwε

´ Gwq dx dt

“

ż T

0

pP ε
´ P q ¨

´

`

Ψ´1
˘ε

pt, P ε
q ´ Ψ´1

pt, P q

¯

dt. (2.79)

Using the same argument as in [29, Proposition 3.3, Step 4], Assumption 2.8.7 implies

ż T

0

pP ε
´ P q ¨

´

`

Ψ´1
˘ε

pt, P ε
q ´

`

Ψ´1
˘

pt, P q

¯

dt

ě
cΨ
2

ż T

0

min
␣

|P ε
ptq| ,|P ptq|

(s1´2|P ε
ptq ´ P ptq|2 dt ´ C|ε|2

ż T

0

|P ptq|s
1

dt. (2.80)

We use an analogous argument (or see [29, Proposition 3.3, Step 4]) we deduce

ĳ

Q

`

2fpx,mq ´ f ε
pt, x,mε

q ´ f´ε
pt, x,m´ε

q
˘

m dx dt

“

ĳ

Q

`

f ε
pt, x,mε

q ´ fpx,mq
˘

pmε
´ mq dx dt

ě
cf
2

ĳ

Q

min tmε,mu
q´2|mε

´ m|2 dx dt ´ C|ε|2
ĳ

Q

mq dx dt. (2.81)
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Finally, using Assumption 2.8.3 we get

ĳ

Q

˜

Hε
px,Duε

` G⊺P ε
q ` pH˚

q
ε

ˆ

x,´
w

m

˙

` pDuε
` G⊺P ε

q ¨
w

m

¸

m dx dt

`

ĳ

Q

˜

H´ε
px,Du´ε

` G⊺P´ε
q ` pH˚

q
´ε

ˆ

x,´
w

m

˙

`
`

Du´ε
` G⊺P´ε

˘

¨
w

m

¸

m dx dt

ě cH

ĳ

Q

∣∣∣∣∣j1 pDuε
` G⊺P ε

q ´ j2

ˆ

w

m

˙

∣∣∣∣∣
2

m dx dt

` cH

ĳ

Q

∣∣∣∣∣j1 `Du´ε
` G⊺P´ε

˘

´ j2

ˆ

w

m

˙

∣∣∣∣∣
2

m dx dt

ě
cH
2

ĳ

Q

∣∣∣j1 pDuε
` G⊺P ε

q ´ j1
`

Du´ε
` G⊺P´ε

˘

∣∣∣2m dx dt (2.82)

Combining (2.78), (2.80), (2.81), and (2.82) with (2.77), we get

cH
2

ĳ

Q

∣∣∣j1 pDuε
` G⊺P ε

q ´ j1
`

Du´ε
` G⊺P´ε

˘

∣∣∣2m dx dt

`
cf
2

ĳ

Q

min tmε,mu
q´2|mε

´ m|2 dx dt

`
cΨ
2

ż T

0

min
␣

|P ε
ptq| ,|P ptq|

(s1´2|P ε
ptq ´ P ptq|2 dt ď C|ε|2 , (2.83)

where we have used the estimates on
ť

Q
mq dx dt and

şT

0
|P ptq|s

1

dt. The conclusion

follows.
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CHAPTER THREE

Classical Solution for a Mean Field Game of Moderate Interactions

3.1 Abstract

We analyze a system of partial differential equations that model a potential mean field

game of moderate interactions. Such a game models agents considering the positions

of nearby opponents to be of higher import, and so decisions made concentrate on

nearby information. The existence of classical solutions on any finite time horizon is

provided under generic assumptions. The augmentation here from traditional Mean

Field Games is the introduction of a new local coupling term that can be viewed as

part of the Hamiltonian.

3.2 Introduction

We provide the existence of classical solutions to the following coupled PDE system:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´ut ´ σ∆u ` Hp∇uq ´ bpx,mq ¨ ∇u “ fpx,mq px, tq P Q

mt ´ σ∆m ` ∇ ¨ rmpbpx,mq ´ DpHp∇uqqs “ 0 px, tq P Q

upx, T q “ gpxq; mpx, 0q “ m0pxq, x P Td

(3.1)

where x P Td, the d-dimensional torus and Q :“ Td ˆ r0, T s for some T ą 0 fixed.

Solutions to the system (3.1) are Nash Equilibria for a class of Mean Field Game,

a competition amongst a high population of agents each attempting to optimize a

personal value function that in turn depends on the state of all players. Mean Field

Games were introduced in the works of Lasry and Lions [39] and Huang et al [33]. The
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term Mean Field, inspired by physics, relates to each player viewing the remaining

players as one large entity, rather than attempting to view competitors individually.

Applications in a variety of fields interested in social phenomena abound: Economics,

logistics, biology, physics. In a typical Mean Field Game, the cost functional to be

optimized by each player typically incorporates a monotone interaction term fpmq,

where m denotes the distribution of player states. Such a coupling term often bakes

in a penalty for being too close, for instance in a crowd of individuals moving to a new

location, individuals still value personal space for safety and comfort, despite wanting

to quickly reach their destination. The model considered presently introduces a new

coupling in the function bpx,mq ¨ ∇u, which involves again the distribution of player

states as well as the solution u itself. In [21], the existence (but not uniqueness) of

weak solutions with explicitly quadratic Hamiltonian was proved, with uniqueness on

a small enough time horizon. We extend this by providing the existence of classical

solutions for any finite time horizon, and a more general Hamiltonian.

With the eventual aim of employing the Leray-Schauder fixed point theorem, the

parameterized system (MFG)τ will be given by, with τ P r0, 1s,
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´ut ´ σ∆u ` τ
“

Hp∇uq ´ bpx,mq ¨ ∇u
‰

“ τfpx,mq px, tq P Q

mt ´ σ∆m ` τ∇ ¨ rmpbpx,mq ´ DpHp∇uqqs “ 0 px, tq P Q

upx, T q “ τgpxq; mpx, 0q “ m0pxq x P Td.

(3.2)

For the convenience of the reader we state the Leray-Schauder Theorem and clarify

the space X to be used for our purposes.
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3.2.1 Theorem (Leray-Schauder Fixed Point). Let X be a Banach space and let T :

X ˆ r0, 1s Ñ X be a continuous and compact mapping. Let x0 P X. Assume that

T px, 0q “ x0 for all x P X and assume there exists C ą 0 such that }x}X ă C for

all px, τq P X ˆ r0, 1s such that T px, τq “ x. Then there exists x P X such that

T px, 1q “ x.

In application of this theorem we will let X :“ W 2,1,ppQq ˆ W 2,1,ppQq, and at that

point the mapping T will be constructed.

3.3 Assumptions

Suppose that

f : PpTd
q Ñ C2

pTd
q, g : Td

Ñ R with }f}C2 ` }g}C2 ` }b}C2 ď C.

Suppose further that g, b P C2`α.

We remark that fpmqpxq, as a function on Td for each m P PpTdq will be occa-

sionally presented as fpx,mq as it appears above in the system (MFG)τ , with the

same remark applying to bpmqpxq.

Assumptions on the Hamiltonian. For H : Q ˆ Rd Ñ R, it is assumed to be strictly

convex in the third variable p, and that for px, tq P Q,

1

C
|p|

2
´ C ď Hpx, t, pq ď C|p|

2
` C. (3.3)
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The convex conjugate with respect to p, given as H˚px, t, pq :“ Lpx, t,´pq, then

adheres as well to

1

C
|p|

2
´ C ď Lpx, t, pq ď C|p|

2
` C. (3.4)

We note also that the convex conjugate of H̃ppq :“ Hppq ´ bpx,mq ¨ p is

H̃˚
pvq :“ sup

p

␣

xv ` bpx,mq, py ´ Hppq
(

“ H˚
px, t, v`bpx,mqq “ Lpx, t,´v´bpx,mqq.

That is,

L̃px, t, vq “ Lpx, t, v ´ bpx,mqq.

We further assume that

|Lpx, t, pq ´ Lpy, t, pq| ď C|x ´ y|
`

1 ` |p|
2
˘

,

and that

|Lpx, t, pq ´ Lpx, t, vq| ď C|p ´ v|
`

1 ` |p|
2

` |v|
2
˘

uniformly in x.

3.4 Existence of Classical Solution

3.4.1 A priori Estimates on Fixed Points

We first present a set of results from [5], [37] that will be often cited in what follows.

3.4.1 Theorem. Let p ą d` 2. There exists C ą 0 such that for all u0 P W 2´2{p,ppTdq

and for all h P LppQq, the unique solution u to

ut ´ σ∆u “ h, upx, 0q “ u0pxq, px, tq P Q
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satisfies

}u}W 2,1,ppQq ď Cp}u0}W 2´2{p,ppTdq ` }h}LppQqq.

Further, there exists δ P p0, 1q and C̃ ą 0 such that

}u}CδpQq ` }∇u}CδpQ,Rdq ď C̃}u}W 2,1,ppQq.

Proof. For the first assertion see [5] Theorem 6, for the second see [37] Lemma II.3.3,

page 80 and Corollary, page 342.

3.4.2 Theorem. Let p ą d ` 2. For all α P p0, 1q, for all R ą 0, there exist β P p0, 1q

and C ą 0 such that for all u0 P C2`αpTdq, b P Cα,α{2pQ,Rdq, c P Cα,α{2pQq, and

h P Cα,α{2pQq solving

Btu ´ σ∆u ` xb,∇uy ` cu “ h, upx, 0q “ u0

and satisfying that each norm in the respective space of u0, b, c, h be no more than R,

the solution u lies in C2`β,1`β{2pQq and satisfies }u}C2`β,1`β{2pQq ď C.

Proof. See [5].

3.4.3 Proposition. Let uτ ,mτ solve (MFG)τ . Then, uτ and mτ are in C2`α,1`α{2pQq

for some Hölder coefficient α. Further, ∇uτ P CαpQq.

To prove this, we first establish a series of lemmas, and remind the reader that in

what follows, C is a constant that may change from line to line, but may only depend

on the data. Important as well, C is independent of the Leray-Schauder parameter

τ .
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3.4.4 Lemma. }uτ}8 ` }∇uτ}8 ď C

Proof. Since uτ solves (MFG)τ , it is the value function associated with the stochastic

optimal control problem given by

uτ px, tq “ τ

¨

˝ inf
αPL2

Fpt,T ;Rdq

E

«

ż T

t

`

LpXs, s, αs ` bpmqpXsqq ` fpmqpXsq
˘

ds ` gpXT q

ff

˛

‚

(3.5)

where pXsqsPrt,T s is the solution to the stochastic dynamic

dXs “ ταs ds `
?
2σ dBs, Xt “ x, (3.6)

the infimum taken over the set of stochastic processes on pt, T q, with values in Rd,

adapted to the filtration F generated by the Brownian motion pBsqsPr0,T s with finite

second moment: E
”

şT

t
|αpsq|2 ds

ı

ă 8. It follows then that uτ is bounded above by

choosing α “ 0, and appealing to the fact that }b}8 ` }f}8 ` }g}8 ď C. We also

bound uτ from below via assumptions (3.3): For any choice of α,

uτ px, tq ě τE

«

ż T

t

1

C
|α ` bpmqpXsq|

2
´ C ` fpmqpXsq ds ` gpXT q

ff

ě ´τC ě ´C.

where once more C depends only on }f}8, }b}8, }g}8 and that E
”

şT

t
|α|2 ds

ı

ď C.

To bound ∇uτ , choose ε P p0, 1q. For any px, tq P Q, take an ε-optimal control

α̃s for (3.5). Set

dXs “ τ α̃s `
?
2σ dBs, Xt “ x, Ys “ Xs ´ x ` y,

from which it follows that Ys ´ Xs “ y ´ x and Yt “ y. We then have that

uτ px, tq ` ε ě τE

«

ż T

t

`

LpXs, s, α̃s ` bpmqpXsqq ` fpmqpXsq
˘

ds ` gpXT q

ff

,
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uτ py, tq ď τE

«

ż T

t

`

LpYs, s, α̃s ` bpmqpYsqq ` fpmqpYsq
˘

ds ` gpYT q

ff

.

Thus,

uτ py, tq ´ uτ px, tq ď ε ` A ` B

where

A “ E

«

ż T

t

LpYs, s, α̃s ` bpmqpYsqq ´ LpXs, s, α̃s ` bpmqpXsqq ds

ff

B “ E

«

ż T

t

fpmqpYsq ´ fpmqpXsq ds ` gpYT q ´ gpXT q

ff

.

By the assumptions (3.3), we have that

|B| ď E

«

ż T

t

C|Ys ´ Xs| ds ` C|YT ´ XT |

ff

“ E

«

ż T

t

C|y ´ x| ds ` C|y ´ x|

ff

“ C|y´x|,

where the final C depends on the Lipschitz constants of f, g, and the quantity T ´ t.

By the assumptions (3.3), it follows that

|A| ď E

»

–C|y ´ x|

˜

1 `

ż T

t

|α̃s ` bpmqpYsq|
2 ds `

ż T

t

|α̃s ` bpmqpYsq|
2 ds

¸

`C

ż T

t

|bpmqpYsq ´ bpmqpXsq|
`

1 ` |α̃s ` bpmqpYsq|
2
˘

ff

As }b}8 ď C and Lipschitz, and E
”

şT

t
|α̃s|

2 ds
ı

ă 8, we have that |A| ď C|y ´ x| as

well. With x, y P Td it follows that }∇uτ}8 ď C, with bound independent of τ , and

uτ Lipschitz.

3.4.5 Lemma. }uτ}W 2,1,p ` }uτ}Cα ` }∇uτ}Cα ď C

Proof. The previous result gives h :“ τpf ´ Hp∇uτ q ´ b ¨ ∇uτ q bounded, and thus in

LppQq with }h}LppQq ď C. Both Sobolev and Hölder space estimates of uτ then follow
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immediately from Theorem (3.4.1), as well as the Hölder estimate of ∇uτ , with

}uτ}W 2,1,p ď C
´

}g}W 2´2{p,ppTdq ` }h}LppQq

¯

ď C,

}uτ}Cα ` }∇uτ}Cα ď C}u}W 2,1,p ď C.

3.4.6 Lemma. }mτ}Cα ď C

Proof. This result follows from the second assertion of Theorem (3.4.1), as the Fokker-

Planck equation can be viewed as a parabolic equation with coefficients in LppQq, by

the boundedness of mτ .

3.4.7 Lemma. }uτ}C2`α,1`α{2 ď C

Proof. Since }∇uτ}Cα ď C and }Hpx, t, ¨q}Cα ď C on bounded sets, it holds that

}Hp∇uτ q ´ b ¨ ∇uτ}Cα ď C.

This fact, along with assumptions (3.3) yield the result by Theorem (3.4.2).

3.4.8 Lemma. }mτ}C2`α,1`α{2 ď C

Proof. Since }uτ}C2`α,1`α{2 ď C has been shown in the previous step, we have that mτ

satisfies

pmτ qt ´ σ∆pmτ q “ τ∇ ¨ rmτ p∇puτ q ´ bpx,mτ qqs, mτ px, 0q “ m0pxq,

a parabolic equation with Hölder coefficients and the result follows once more from

Theorem (3.4.2).
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3.4.2 Application of the Leray-Schauder Theorem

We now state and prove the main result.

3.4.9 Theorem. Under the given assumptions of Chapter Three, the system (3.1) has

a classical solution for any finite time horizon.

Proof. Define X :“ rC1`α,α{2s2. For a given pu,m, τq P X ˆ r0, 1s, the pair pũ, m̃q “

Tpu,m, τq is defined as follows: ũ is the solution to

´ ũt ´ σ∆ũ ` τ
“

Hp∇uq ´ bpx,mq ¨ ∇u
‰

“ τfpx,mq; ũpx, T q “ τgpxq (3.7)

and m̃ is the solution to

m̃t ´ σ∆m̃ ` τ∇ ¨ rmp´∇u ` bpx,mqqs “ 0; m̃px, 0q “ m0pxq (3.8)

T is constant for τ “ 0 It follows from construction that Tpu,m, 0q is constant for

all choices of u,m.

Fixed points of T are a priori bounded in X. Suppose now that Tpu,m, τq “ pu,mq.

Then u,m solve MFGτ , and by Proposition (3.4.3) there exists a constant C inde-

pendent of τ , u, and m such that

}pu,mq}X ă C.

T is continuous. By Theorem 6 BHP (RPT), the solution to

´ũt ´ σ∆ũ “ τfpx,mq ´ τHp∇uq ` τbpx,mq ¨ ∇u

in X is a continuous mapping of the right hand side due to the results of Proposition

(3.4.3), and thus continuous with respect to pu,m, τq by composition. With ũ con-

tinuously depending on the input, the same can then be said for m̃ with right hand
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side

´τ∇ ¨ rmp´∇ũ ` bpx,mqqs.

T is compact. By Theorem (3.4.2), a sequence puk,mkq such that, with constant C

independent of uk,mk, τ ,

}uk}C1`α,α{2 ` }mk}C1`α,α{2 ď C

yields a sequence pũk, m̃kq P

”

C2`α,1`α{2
ı2

, which is compactly embedded in X by the

Arzela-Ascoli theorem, thus, by possibly passing to a subsequence, a fixed limit point

pu,mq P X is obtained. We can now apply the Leray-Schauder fixed point theorem

to conclude that Tpu,m, 1q “ pu,mq for some pu,mq, which is therefore a solution to

the PDE system.
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CHAPTER FOUR

Further Remarks

4.1 Concluding Remarks and Extensions

In both cases, boundary conditions were ignored by working on the flat d-

dimensional torus Td. This is evidently restrictive, and so there is a rich landscape to

investigate for those interested in looking at analytical or topological considerations

boundaries could provide. In a congestion game model, certainly an impassable wall

boundary would affect player strategy, although to some extent one can include ex-

treme penalty costs for unwanted actions such as passing through a restricted area.

M. Cirant in [19] looked at a non-time dependant MFG with Neumann conditions

at the boundary of a C2 domain. Also of interest are matters of aborption at a

boundary, to model players leaving a physical area, or exiting a market due to lack of

resources. An example of a probabalistic treatment can be found in [7], while results

for a Cournot Mean Field Game of Controls with absorption are given by Graber and

Sircar in a 2021 preprint [25].

Another avenue of possible extension is slotting in local or non-local phenomena

in various capacities. The two models in this document were augmentations of this

nature, adding a non-local and local coupling feature respectively. Local and non-

local changes need not involve the coupling: an interesting non-local change would

be to non-localize the spatial diffusion operator with a fractional Laplacian or the

generator of a stable Lévy process.
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Finally, exploited heavily in Chapter Two is the use of the potential structure of

the game: that the Nash Equilibria can be considered as a critical point of some

functional. Not all MFG are potential, however, and so a different toolkit entirely

would need to be employed in this case, an example of which being a 2020 article by Z.

Kobeissi [35] where classical well posedness is proved using some novel assumptions

on the behavior of the Hamiltonian that cause a useful contraction mapping with

regard to the fixed point condition. Compare this with Bonnans, Hadikhanloo, and

Pfeiffer [5], where the potentiality of the game provided satisfaction of the fixed point

issue with minimization arguments.

4.2 Further Extensions to Chapter Three

The theorem from [37] that forms the main tool for the a priori estimates in the

technique of Chapter Three requires significant assumptions on the regularity of the

vector field bpx,mq to obtain immediate Hölder regularity for the value function u.

However, one can weaken substantially these assumptions and still produce a number

of regularity results about u and m. We suggest an adaptation of the methods

previously applied to a traditional mean field game by Gomes, Pimentel, and Sánchez-

Morgado in [23].

The suggested relaxation we will make is that bpx,mq is now only Lipschitz and

bounded. However, there will be additional slight restrictions made to reach various

conclusions, used to extend the techniques of [23] to suit our purposes. Many of the

assumptions (convexity, coercivity of the Hamiltonian, various growth conditions)

are standard to the field. Under the assumptions of [23], with the added features of
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bpx,mq, the same methods could likely be applied to obtain a classical solution to the

model of Chapter Three.

To allude to the ideas, this theorem could be proved by “bootstrapping” regularity

results by alternating between improvements in the Hamilton Jacobi equation (3.1)

(i) and the Fokker-Planck equation (3.1) (ii). The target regularity being that both

u and m be Hölder continuous of certain parameters, uniformly in the mollification

parameter pεq, as do the derivatives of the sequence functions puε,mεq. As the reader

can see in [23], unlike the unified potentiality technique of Chapter Two, each boot-

strapping step is its own problem, requiring disparate approaches at each state. The

basis for applying the techniques of the aforementioned reference are justified, as the

mollified system has a solution by Chapter Three, and the limit as ε Ñ 0 as in [23]

could then be investigated. Uniqueness of the solutions proven to exist in Chapter

Three could also be investigated via some stronger monotonicity assumptions as in

[5].
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