

Baylor University

Department of Computer Science

Master’s Project

Extending Hibernate

Author:

Sweta Shrestha

Mentor:

Dr. Gregory D. Speegle

Committee Members:

Dr. Michael J. Donahoo

Dr. Lesley Wright

ABSTRACT

Extending Hibernate

Sweta Shrestha, M.S.

Chairperson: Dr. Gregory D. Speegle, Ph.D.

Hibernate is an open source ORM (Object Relational Mapping) tool. It maps

objects into a relational database and vice versa. Hibernate persists objects of a class in

a relational database so that they can be retrieved even after the application program

terminates. Hibernate is a huge project which has been evolving ever since its first release

in 2001. New features are added and previous flaws are fixed with every new version of

Hibernate. This project adds a new feature to Hibernate to broaden the scope of use of

one-to-many construct for a one-to-many association. This extension allows a user to use

the one-to-many construct with a multiple table representation of a class as a part of the

association. The project implements the execution path of the workaround currently used

in Hibernate to provide this functionality.

TABLE OF CONTENTS

LIST OF FIGURES iii

LIST OF TABLES vi

1 Object Relational Mapping 1

1.1 Object Oriented Programming and Relational Databases 1

1.2 Hibernate . 3

1.3 Problem Statement . 4

2 Hibernate 8

2.1 Overview . 8

2.2 Retrieving Objects . 9

2.3 Inheritance Mapping in Hibernate . 13

2.4 Collections in Hibernate: . 18

3 Project Development 20

3.1 Problem Definition . 20

3.1.1 Query Program . 22

3.1.2 Discriminator Program . 26

3.1.3 Error Program. 28

3.2 Original Attempts to Solve the Bug . 32

3.3 Root Cause of the Bug . 34

3.3.1 Hibernate Collection Processing . 35

3.3.2 Hibernate Workaround Processing . 37

3.4 Fix to the Bug . 37

i

3.5 Backward Compatibility of the Fix . 45

3.6 Validation of a Fix to the Bug . 46

3.7 Summary of Results . 51

4 Conclusion 53

4.1 Timeline . 53

4.2 Activities . 54

4.3 Conclusion . 55

A APPENDIX 58

BIBLIOGRAPHY 78

ii

LIST OF FIGURES

1.1 Java class Cat as given in the bug report . 5

1.2 Java class DomesticCat as given in the bug report 5

1.3 Java class Cage as given in the bug report . 6

1.4 Java class Catloader as given in the bug report 6

2.1 A Java class Cat . 9

2.2 A Hibernate configuration file . 10

2.3 A Hibernate mapping file for the class Cat in Figure 2.1 11

2.4 (a)A simple class diagram, (b)Tables for classes in the class diagram 12
(a) . 12
(b) . 12

2.5 A class diagram indicating inheritance . 15

2.6 Tables in database for the class diagram in Figure 2.5 using “Table per
concrete class with implicit polymorphism” . 15

2.7 A table in database for the class diagram in Figure 2.5 using “Table per class
hierarchy” . 17

2.8 Tables in database for the class diagram in Figure 2.5 using “Table per subclass” 18

2.9 An XML mapping for a bidirectional one-to-many relation (from House to Cat) 19

3.1 A class diagram used for the project . 21

3.2 Table mappings for the class diagram in Figure 3.1 in query program 22

3.3 An XML mapping for the class DomesticCat in query program 23

3.4 An XML mapping for the class House used in the project 23

3.5 Snippets of log generated for a query program 24

3.6 Table mappings for the class diagram in Figure 3.1 in the discriminator program 26

3.7 An XML mapping for the class DomesticCat in the discriminator program . . 26

3.8 Snippets of log generated in the discriminator program 27

iii

3.9 Table mappings for the class diagram in Figure 3.1 in the error program 29

3.10 An XML mapping for the class DomesticCat in the error program 29

3.11 Snippets of logs generated in the error program 30

3.12 (a)Many-to-one association between Cat and House, (b)the class Cat persisted
on multiple tables . 34

(a) . 34
(b) . 34

3.13 An example of one-to-many construct . 36

3.14 An example of many-to-many construct with unique attribute set to true . . . 37

3.15 Original Hibernate method bindCollectionSecondPass(..) changed to fit in
Modified Hibernate . 40

3.16 A new method setUpManytoMany(..) added in a modified Hibernate 41

3.17 A method initOuterJoinFetchSetting() in modified Hibernate 43

3.18 A method bindColumns(..) in modified Hibernate 44

4.1 Project timeline . 53

A.1 Java class DomesticCat from Figure 2.5 . 58

A.2 Java class ZooCat from Figure 2.5 . 58

A.3 XML mapping for a class DomesticCat in A.1 using “table per concrete class
with implicit polymorphism” . 59

A.4 XML mapping for a class ZooCat in A.2 using “table per concrete class with
implicit polymorphism” . 59

A.5 XML mapping for the classes in Figure 2.5 using “table per concrete class” . . 60

A.6 XML mapping for the class Cat in Figure 2.5 using “Table per class hierarchy” 60

A.7 XML mapping for the class DomesticCat in Figure 2.5 using “Table per class
hierarchy” . 61

A.8 XML mapping for the class ZooCat in Figure 2.5 using “Table per class
hierarchy” . 61

A.9 XML mapping for the class Cat from Figure 2.5 using “Table per subclass” . . 62

A.10 XML mapping for the class DomesticCat from Figure 2.5 using “Table per
subclass” . 62

A.11 XML mapping for the class ZooCat from Figure 2.5 using “Table per subclass” 63

iv

A.12 Java class DomesticCat used in the project . 63

A.13 Java class House used in the project . 64

A.14 Java class CatLoader used in the project . 65

A.15 TestCase1 - CompositeId test . 66

A.16 TestCase2 - Bidirectional One-To-Many with Join 67

A.17 TestCase3 - Unidirectional One-To-Many without Join but an Association
mapped to a different table . 68

A.18 TestCase4 - Bidirectional One-To-Many which does not require table attribute
in set but it is specified . 69

A.19 TestCase5 - Bidirectional One-To-Many that requires table attribute in set but
the wrong table name is specified . 70

A.20 TestCase6 - Bidirectional One-To-Many that requires table attribute in set but
no table name is specified . 71

A.21 The patch generated . 72

A.22 The patch generated (contd..) . 73

A.23 The patch generated (contd..) . 74

A.24 The patch generated (contd..) . 75

A.25 The patch generated (contd..) . 76

A.26 The patch generated (contd..) . 77

v

LIST OF TABLES

3.1 Comparison of the failures in the modified Hibernate with that in the original
Hibernate . 47

3.2 Comparison of the first twenty-six errors in the modified Hibernate with that
in the original Hibernate . 48

3.3 Comparison of the last thirteen errors in the modified Hibernate with that in
the original Hibernate . 49

3.4 Results of running the testcases built for this project on the original Hibernate
and the modified Hibernate . 49

3.5 Summary of all tests conducted . 51

vi

CHAPTER ONE

Object Relational Mapping

1.1 Object Oriented Programming and Relational Databases

Object Oriented Programming (OOP) is used extensively in application program

development and design. OOP implements powerful features like inheritance, polymorphism

and encapsulation. Properties (called data members or attributes) that are related and

the operations (called methods) that apply to these properties are encapsulated in a

common structure called a class. Instances of a class are called objects. The object oriented

paradigm has become so popular, that the concept of objects has surpassed the boundary

of programming and many applications now require objects to be persisted in storage for

future use.

A database is an organized repository that is capable of storing and retrieving a huge

amount of data efficiently. Relational databases are based on the relational model and store

data in tables. Structured Query Language (SQL) is the common standardized language

[1] used to store and retrieve data from a relational database. Relational databases became

available in the early 70’s [6] and the popularity of SQL made relational databases the

dominant platform for storing data. A majority of the databases used today are relational

databases [6].

With the dominance of relational databases and the need to store objects for future

use, an interface that communicates between relational databases and object oriented

applications is required. Objects cannot be directly saved to and retrieved from relational

databases because there are conceptual differences between OOP and relational databases.

These differences are termed impedance mismatch [7]. ORM (Object Relational Mapping)

is a new methodology for overcoming impedance mismatch. ORM tools store and retrieve

objects from a relational database with minimal programming.

1

Three of the key issues of impedance mismatch related to the project are defined

below [7].

I Identity: In Java, there are two ways to compare objects - one using “==”

operator and the other using the equals() method inherited from the Object class.

The equals operator, “==”, tests whether two objects refer to the same memory

location, while equals() compares the two objects based on their contents. In

databases, the primary key of a row determines the identity of the row. Here we

can see a subtle difference in the definition of identity in the OOP and in relational

databases. For example, the following two statements extract an object of the

class Person with id (primary key) 0001.

Person p1 = get Person whose id = 0001;

Person p2 = get Person whose id = 0001;

In this case, the database rows accessed in executing the two statements are the

same. However, according to the Java rules, p1 == p2 should be false since these

are two different Java objects.

II Subclass: Inheritance is an integral characteristic of OOP, but relational databases

do not have any notion of inheritance. Inheritance must be enforced by the designer

and involves constraints which are not commonly supported in RDBMS [10].

For example, the class Cat inherits from the class Animal. When instances of these

classes are created, these instances automatically possess the correct properties.

The objects of the class Animal possess the properties of the class Animal and the

objects of the class Cat possess the properties defined in the class Cat, and public

and protected properties from the class Animal. If these classes are persisted in a

table in the database, the database will not have any knowledge which columns

correspond to properties of a particular class. If these classes are persisted in

different tables, there is no RDBMS concept to fetch records from both the tables

when there is a request for retrieving all instances of class Cat.

2

III Association: Associations among objects are represented using references. If an

object A has an association with an object B, then in OOP the object A has a

reference to object B. In relational databases, associations are represented using

foreign keys. With the help of the foreign keys, all the associated data can be

retireved from another table. References are directional in nature. For example, if

a class A has a reference to a class B, it is not necessarily true that the class B

also has a reference to the class A. However, joins are not directional in nature.

With a single join, all data can be accessed from either table.

There are other ways to integrate databases and OOP applications. JDBC is

an industry standard from Sun Microsystems that allows Java programs to access and

manipulate databases [8]. Open Database Connectivity (ODBC) is a standard from

Microsoft for using different databases [9]. Object Oriented Database Management System

(OODBMS) is an integration of OOP concepts and relational database concepts for complex

data management services [14]. Objects can be directly persisted in an Object Oriented

Database without any help from a third-party tool. Another approach is to use an Object

Relational database that combines scalability and a support for complex data types [15].

1.2 Hibernate

Hibernate is a Java based open source ORM tool playing the role of a mediator

between the database and OOP by mapping objects into a relational database and vice

versa. This allows objects and their relationships to be made persistent in a relational

database with minimal application programming. It can be used with any relational

database which supports JDBC. The popularity of Hibernate is on the rise because of the

following four reasons [3].

I The productivity of the system developer increases since the developer can focus

on the logic of the system rather than worrying about how to persist and retrieve

objects.

II Hibernate can be made to work with any database with a few changes in properties.

3

III Hibernate is free, and

IV The job market has a preference for job seekers with Hibernate knowledge.

Hibernate solves the identity problem by always returning the same reference to the

object that is persisted by a row in the table. Hibernate solves the inheritance problem in

four different ways which are discussed in detail in Section 2.3. Operators like join, union

and multiple queries are used to extract the object of a right type from the database. The

problem with association is handled by reading in the description of OOP design from the

user. Joins are limited to being directional and have an orientation from a table (a class in

a OOP design) to another table (another class in the OOP design) based on the description

provided by the user. This limits the direction of navigation from one table to another.

Hibernate solves the impedance mismatch by using mapping files common to all

applications in an enterprise. This allows the user to focus on the functionality of the

program rather than the issues of how to persist objects in a relational database.

1.3 Problem Statement

Hibernate has been evolving ever since its conception. With the addition of new

features comes the introduction of bugs in the code. Hibernate 3.2 has bugs varying from

misusing of naming strategy [11] to not supporting reference to a property of an abstract

class in a one-to-one association [12].

The objective of this project is to analyze and fix a bug (HHH-3095) present in

Hibernate 3.2 which was reported on February 4, 2008. The bug - “Invalid queries when

using subclasses and one-to-many associations” - arises from the way Hibernate treats

a collection of objects that extends a base class [13]. An example is given in Figure 1.1

through Figure 1.4.

In the example, there are three classes - Cat, DomesticCat and Cage. A superclass

Cat has a subclass DomesticCat. Each DomesticCat object belongs to a Cage object

and a Cage object has a collection of DomesticCat objects. The association between the

classes Cage and DomesticCat is bidirectional. The class Cat has one attribute, id. The

4

class DomesticCat has one attribute, cage which is a reference to an object of the class

Cage. The class Cage has two attributes, id and cats which is a collection of references to

DomesticCat objects.

1 package cat ;
2

3 public class Cat {
4 protected Long id ;
5 public Long get Id () {
6 return id ;
7 }
8

9 public void s e t I d (Long id) {
10 this . id = id ;
11 }
12 }

Figure 1.1: Java class Cat as given in the bug report

1 package cat ;
2

3 public class DomesticCat extends Cat {
4 protected Cage cage ;
5 public Cage getCage () {
6 return cage ;
7 }
8

9 public void setCage (Cage cage) {
10 this . cage = cage ;
11 }
12 }

Figure 1.2: Java class DomesticCat as given in the bug report

5

1 package cat ;
2

3 import java . u t i l . L i s t ;
4

5 public class Cage {
6 protected Long id ;
7 protected List<DomesticCat> ca t s ;
8 public Long get Id () {
9 return id ;

10 }
11

12 public void s e t I d (Long id) {
13 this . id = id ;
14 }
15

16 public List<DomesticCat> getCats () {
17 return ca t s ;
18 }
19

20 public void setCats (Li s t<DomesticCat> ca t s) {
21 this . c a t s = cat s ;
22 }
23 }

Figure 1.3: Java class Cage as given in the bug report

1 package cat ;
2

3 import org . h ibe rnate . Se s s i on ;
4 import org . h ibe rnate . Ses s ionFactory ;
5 import org . h ibe rnate . c f g . Conf igurat ion ;
6

7 public class CatLoader {
8 public stat ic void main (St r ing [] a rgs) {
9 Conf igurat ion c f g = new Conf igurat ion () ;

10 c f g . c o n f i g u r e (‘ ‘ h ibe rnate . c f g . xml ’ ’) ;
11 Sess ionFactory s e s s i onFac to ry = c fg . bu i ldSe s s i onFac to ry () ;
12 Ses s i on s e s s i o n = se s s i onFac to ry . ge tCurrentSes s i on () ;
13 s e s s i o n . beg inTransact ion () ;
14 s e s s i o n . get (Cage . class , 1L) ;
15 s e s s i o n . getTransact ion () . commit () ;
16 }
17 }

Figure 1.4: Java class Catloader as given in the bug report

6

The following error is thrown when the class Catloader from Figure 1.4 is executed.

JDBCExceptionReporter:69 - could not initialize a collection:
[cat.Cage.cats\#1][select
cats0_.CAGE_ID as CAGE3_1_, cats0_.CAT_ID as CAT1_1_, cats0_.CAT_ID as CAT1_0_0_,
cats0_1_.CAGE_ID as CAGE2_2_0_
from CAT cats0_ inner join DCAT cats0_1_ on
cats0_.CAT_ID=cats0_1_.CAT_ID
where cats0_.CAGE_ID=?]
java.sql.SQLException: null, message from server:
"Unknown column in ‘cats0_.CAGE_ID’ ‘field list’ "

When the Cage object is accessed, the DomesticCat objects associated with the Cage

object are also fetched. The query to fetch the associated DomesticCat objects from the

database has an error because it has a column for Cat.Cage which does not exist in the

table for Cat, but does exist in the table for DomesticCat.

The inheritance from Cat to DomesticCat is mapped using table per subclass which

is discussed in Section 2.3, and the other subclasses of the class Cat, if added, are mapped

using table per class hierarchy which is also explained in Section 2.3

At first, it seems the bug exists only when different inheritance mappings are used in

a hierarchy. If a single inheritance mapping is used, the problem does not arise. This bug

is important to fix because mixed inheritance is essential when it comes to mapping a large

hierarchy to the database and performance is a key consideration. After a detailed study,

the problem actually arises due to an irregularity in one-to-many association mappings

in Hibernate. This project fixes the irregularity in a one-to-many association by taking

into account the “table” attribute given in a mapping file which is ignored in the current

Hibernate implementation.

7

CHAPTER TWO

Hibernate

2.1 Overview

Hibernate maps a Java class to a set of tables in the database. In order to do this for

many applications, Hibernate needs to setup its environment. It requires a configuration file

which provides information necessary to make database connections and a mapping file for

the class. The Hibernate configuration file has an extension “.cfg.xml” which specifies the

mapping files to use for all Java classes that need to be persisted. The file includes session

variables such as the name of the database driver, the name of the database, the username,

the password and boolean values for displaying SQL statements. The configuration file

also contains the location of mapping file(s).

The mapping files have information on how a class is mapped to a table (or tables)

in a database and how each attribute of a class maps to a column in the table(s). The

mapping files have the extension “.hbm.xml”.

There are other ways, like annotations and entity manager, in Hibernate to specify

metadata for a transformation of information from relational database to OOP and vice-

versa [7]. It should be noted here that this project does not deal with annotations and

entity manager.

There are two ways to specify object persistence - a class may be persisted in either

a single table or multiple tables. For example, consider a Java class Cat as shown in Figure

2.1 (which is also used in the project). Figure 2.2 and Figure 2.3 show the configuration

file and the mapping file respectively for the class Cat.

8

1 package p r o j e c t ;
2

3 public class Cat {
4 protected Long id ;
5 protected St r ing breed ;
6 // g e t t e r s and s e t t e r s
7 public Long get Id () {
8 return id ;
9 }

10

11 public void s e t I d (Long id) {
12 this . id = id ;
13 }
14

15 public St r ing getBreed () {
16 return breed ;
17 }
18

19 public void setBreed (St r ing breed) {
20 this . breed = breed ;
21 }
22 }

Figure 2.1: A Java class Cat

2.2 Retrieving Objects

One of the characteristics of Hibernate is that it has its own query language called

Hibernate Query Language (HQL). HQL is similar to SQL but it is object oriented and

deals with objects similar to the way SQL deals with tables. Hibernate supports queries

written in both HQL and SQL [7].

A simple HQL query that fetches objects of a class Cat looks like - “from Cat”. The

queries “from Cat c” and “from Cat as c” are equivalent to “from Cat” but use an alias.

HQL queries support inner join, left outer join, right outer join and full outer join. For

example, consider the class Cat associated with a class House. To get all the Cats with

their House object, the HQL query would be - “from Cat inner join House”. For further

details in HQL, refer to [4].

9

<! - - This specifies the xml version and other information regarding DTD.
- - In some editors this is auto generated.
- ->

<?xml version=“1.0” encoding=“utf-8”?>
<!DOCTYPE hibernate-configuration PUBLIC

“-//Hibernate/Hibernate Configuration DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd”>

<hibernate-configuration>
<session-factory>

<!- - This part specifies all of the database specific attributes like
- - password, username, the driver to use, etc
- ->
<property name=“current session context class”> thread </property>
<property name=“connection.driver class”>com.mysql.jdbc.Driver</property>
<property name=“connection.url”>jdbc:mysql://localhost/test db new</property>
<property name=“connection.password”>password</property>
<!- - SQL dialect - ->
<property name=“dialect”>org.hibernate.dialect.MySQLDialect</property>

<!- - This specifies that the queries generated by Hibernate are to be displayed to
- - standard output. This is for debugging purpose and should not be set for production.
- ->
<property name=“show sql”>true</property>
<property name=“format sql”>true</property>

<!- - mapping resources : all the mapping files are specified here - ->
<mapping resource=“Cat.hbm.xml”/>

</session-factory>
</hibernate-configuration>

Figure 2.2: A Hibernate configuration file

10

<!- - This specifies the xml version and Document Type Declaration (DTD). This remains same
- - for all hibernate mapping files. In some editors this is auto generated.
- ->

<?xml version=“1.0” encoding=“UTF-8”>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>

<hibernate-mapping package=“project”>
<!- - It specifies a class named Cat is to be mapped to a table CAT. - ->
<class name=“Cat” table=“CAT” >

<!- - The data member “id” of class Cat is to be mapped to a column called “CAT ID”
- - and the ids are generated by the database itself in an increasing order. The id tag
- - indicates that “CAT ID” is a primary key for the table
- ->
<id name=“id” column=“CAT ID” >

<generator class=“increment”/>
</id>
<!- - This specifies that the data member breed of the class Cat is to be mapped to a
- - column called BREED. Note that the type attribute is optional. Hibernate can
- - determines the type itself.
- ->
<property name = “breed” column = “BREED” />

</class>
</hibernate-mapping>

Figure 2.3: A Hibernate mapping file for the class Cat in Figure 2.1

Hibernate Criteria Query is another approach to interact with objects in the relational

database. It is a powerful API that has the functionality same as of the SQL and is

completely object oriented. It is efficient to use for dynamic queries [17].

Fetching an object from the database involves a technique on how and when to

retrieve the object and its associated objects. Hibernate uses the following four fetching

techniques to retrieve objects and their associations. For illustrations of the fetching

strategies, consider two classes - Cat and House - where the class House has a collection

property of type Cat. The relationship is shown in the class diagram in Figure 2.4a and

the corresponding tables in the database are shown in Figure 2.4b.

In join fetching, the objects and the associations are fetched by using a single Select

statement and an outer-join (other types of joins can also be used but left outer join is the

11

(a)

(b)

Figure 2.4: (a)A simple class diagram, (b)Tables for classes in the class diagram

default). An SQL statement to extract an instance of class House with id = 1 for the class

diagram in Figure 2.4a looks like the query shown below.

SELECT
house.id, house.name, cat.id, cat.breed, cat.house_id

FROM
house LEFT OUTER JOIN cat

ON
house.id = cat.house_id

WHERE
house.id = 1

Multiple Select statements are issued for fetching objects of a class and their corre-

sponding associated objects in select fetching. In the example considered, a Select statement

is first issued to fetch a House object with id = 1. Then after another Select statement is

issued to fetch all the objects of Cat which are associated with the House object fetched by

the previous Select statement. The queries issued are -

12

SELECT
house.id, house.name

FROM
house

WHERE
house.id = 1

SELECT
cat.id, cat.breed, cat.house_id

FROM
cat

WHERE
cat.house_id = 1

In subselect fetching, a second SELECT statement is issued to retrieve the collection

for an entity (or all entities) retrieved from the previous fetch operation. The fourth type

of fetching called batch fetching, fetches N collections (where N is specified by a user) for

entities retrieved from the previous fetch.

Hibernate uses various techniques to decide when to fetch the associated objects.

In immediate fetching or eager fetching, the associated objects are fetched as soon as the

objects themselves are fetched. In lazy fetching, the collection or associated objects are

fetched only when the operation on the collections is invoked. Lazy fetching helps in tuning

the performance when there is a long chain of associations among classes and is the default

fetching strategy. Another strategy called extra-lazy fetching, goes one step further than

lazy fetching and fetches an object in the collection only as needed.

2.3 Inheritance Mapping in Hibernate

Inheritance allows one class (subclass) to have the same methods and data-members

as another class (superclass or extended class) and tailor these inherited methods according

to the subclass’s need. The subclass can have its own properties that are not in its superclass.

Inheritance is one of the impedance mismatch issues because relational databases do not

have a concept of inheritance. Hibernate solves the problem of inheritance by using different

mapping techniques for a hierarchy.

13

As stated in Section 2.1, a persistent class is mapped to a table in a database,

according to the mapping files. If an inheritance exists between two classes then these two

classes can be mapped in four different ways.

I Table per concrete class with implicit polymorphism.

II Table per concrete class

III Table per class hierarchy

IV Table per subclass

I Table per concrete class with implicit polymorphism: This is the most

simple implementation. Under this strategy, there is one table for each instantiated

class (it should be noted that abstract classes and interfaces do not need tables).

The subclasses have tables which include all of the properties of their superclass.

This implementation is good when the subclasses are queried often and when

modification of the superclass in the future is unlikely. Since all of the attributes

of a class including inherited attributes are placed in one table, only one table is

accessed to persist the objects of a subclass. The attributes of the superclass are

repeated in the tables of each subclass which makes it difficult to propagate the

changes made in the attributes of the superclass in all of the subclasses’ tables. If

attributes are added or removed frequently from the superclass, the tables for the

subclasses have to be changed frequently which is extra work. The XML mapping

for this inheritance scheme requires replication of all inherited properties.

The example given in Figure 2.5 clarifies the concept. Figure 2.5 shows a class

diagram where classes DomesticCat and ZooCat inherit from a class Cat. Figure

A.1 and Figure A.2 show the Java classes - DomesticCat and ZooCat. The Java

class Cat is same as in Figure 2.1. Figure 2.6 shows the database with three tables

- one for each class - and the subclass’s table includes all of the properties of the

superclass. Here it can be seen that a query against “Cat” must be executed as

14

several queries against each subclass. For example, to get all the objects of the

class Cat, the following three queries are executed.

SELECT * FROM CAT;
SELECT * FROM ZCAT;
SELECT * FROM DCAT;

On the other hand a query against a subclass (ZooCat or DomesticCat) is executed

as a single query.

Figure 2.5: A class diagram indicating inheritance

Figure 2.6: Tables in database for the class diagram in Figure 2.5 using “Table per
concrete class with implicit polymorphism”

II Table per concrete class: This method results in the same tables as does “Table

per concrete class with implicit polymorphism”. However, it avoids the redundant

15

XML code as shown in Figure A.5 that shows the XML mappings for the class

diagram shown in Figure 2.5. The query against a superclass is executed as a

single query where the tables for subclasses are combined using a UNION operator

in SQL. For example, to retrieve all instances of the class Cat, the following query

is executed.

SELECT
CAT_ID, BREED, DCAT_NAME, ZCAT_NAME

FROM(
SELECT
CAT_ID, BREED, null as DCAT_NAME, null as ZCAT_NAME

FROM
CAT

UNION
SELECT
CAT_ID, BREED, DCAT_NAME, null as ZCAT_NAME

FROM
DCAT

UNION
SELECT
CAT_ID, BREED, null as DCAT_NAME, ZCAT_NAME

FROM
ZCAT)

Only one query is executed in this inheritance mapping compared to three queries

in “Table per concrete class with implicit polymorphism”. “Table per concrete class”

is preferred to “Table per concrete class with implicit polymorphism” because the

mapping file is shorter without redundant information.

III Table per class hierarchy: This implementation makes use of a discriminator -

a value that determines the subclass of an instance. It maps the entire hierarchy

to one table. The table includes columns for all properties of all classes in the

hierarchy and a column for the discriminator. The table is much larger than

in the other cases because the table stores all objects of all subclasses. This

mapping provides good performance because insertion or retrieval of an instance

of a superclass or subclass involves only one table. However, it has the drawback

of requiring null values for the properties belonging to only one subclass. For

16

the class diagram in Figure 2.5, the classes are mapped to the table shown in

Figure 2.7. The table CAT has an extra attribute - CAT TYPE which is the

discriminator. The XML mappings are shown in Figure A.6 through Figure A.8.

All instances of DomesticCat will have a value “D” for CAT TYP as stated in the

mapping of class DomesticCat and all instances of ZooCat will have a value of “Z”

for CAT TYP as stated in the mapping of class ZooCat.

Figure 2.7: A table in database for the class diagram in Figure 2.5 using “Table per
class hierarchy”

IV Table per subclass: In this strategy, each class (including abstract classes and

interfaces) has its own table. The table contains columns for the properties that

belong to the classes mapped to them and do not have columns for inherited

properties. It uses foreign key constraints with associated tables to reference all

inherited attributes. The primary key of the subclass table has a foreign key

constraint with the primary key of the superclass table. The main benefit of using

this mapping technique is that the tables in the database are normalized. This

scheme is unacceptable when the chain of references requires too many joins even

though Hibernate allows it. For the class diagram in Figure 2.5, the classes are

mapped to a table as shown in Figure 2.8. The attributes DCAT.CAT ID and

ZCAT.CAT ID, foreign keys, reference CAT.CAT ID.

These strategies can be intermixed. The use of different inheritance mappings used

within a class hierarchy tunes the performance of an application. For example, consider a

case where there are four levels of the class hierarchy and each class has two subclasses

17

Figure 2.8: Tables in database for the class diagram in Figure 2.5 using “Table per
subclass”

(which is not uncommon in a large system), the hierarchy contains fifteen classes. For

efficiency, a user may want to map some classes into their own table but putting all of the

other classes into a single table.

2.4 Collections in Hibernate:

A collection is a group of objects. Hibernate requires that persistent collection-valued

fields are declared as an interface type in Java. A collection of objects can be of two types

- collection of value type and a collection of entity references. Collections of value-type

are persisted when an owner of the collection is persisted and deleted when the owner is

deleted. To store a collection of value-type Hibernate requires a collection table. This

collection table is hidden from the user. The references to objects, which form a collection,

are preserved in the collection table.

Hibernate supports collections like set (and sorted set), map (and sorted map),

bag, idbag, list and array (no longer used). Among these, bag and idbag do not have

implementations in Java. Hibernate also allows users to implement their own collection

interface.

For the collection of entity type, concepts of multiplicity and directionality are

required. There are four types of multiplicity - One to Many, Many to One, One to One

and Many to Many. Out of these multiplicities, One To Many and Many to Many form a

collection. The relationship between two classes A and B are said to be bidirectional when

both the classes have an association with each other, i.e. the class A has class B as its data

member and the class B has the class A as its data member. The relationship between

18

these two classes are said to be unidirectional when only of these classes has the other as

its data member i.e. either the class A has the class B as its data member or the class B

has the class A as its data member.

Consider the mapping given in Figure 2.9 where an instance of a class Cat is

associated with an instance of a class House and an instance of a class House is associated

with numerous instances of a class Cat. Each of these classes are mapped as an entity. The

association is a bi-directional, one-to-many (from House to Cat) and the collection is of

entity type.

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“project”>

<class name=“Cat” table=“CAT”>
<id name=“id” column=“CAT ID” >

<generator class=“increment”/>
</id>
<many-to-one name=“house” class=“House” column=“HOUSE ID”>

</class>

<class name=“House” table=“HOUSE”>
<id name=“id” column=“HOUSE ID” >

<generator class=“increment”/>
</id>
<set role=“animals” inverse=“true”>

<key column = “HOUSE ID” />
<one-to-many class=“Cat”>

</set>
</class>

</hibernate-mapping>

Figure 2.9: An XML mapping for a bidirectional one-to-many relation (from House

to Cat)

19

CHAPTER THREE

Project Development

3.1 Problem Definition

As mentioned in Section 1.3, there is an irregularity in how Hibernate handles one-to-

many associations. Bug HHH-3095 has mixed inheritance with a one-to-many association.

The problem arises because the one-to-many type collection uses a one-to-many construct

for specifying the collection (which seems reasonable). In the bug HHH-3095, to achieve

mixed inheritance the class DomesticCat is persisted across another table (so that the class

DomesticCat is mapped using a table per subclass) along with the table for the class Cat.

Within Hibernate, mapping of a class on multiple tables can generate an error when there

is a one-to-many collection.

Mapping a class across multiple tables is not uncommon. Attributes of the class can

be scattered across multiple database tables. Spreading the attributes of a class in multiple

tables has a benefit when the class is a part of a collection, which can be empty thereby

avoiding the null values. This is especially true for a one-to-many association where a

collection property is stored in the table for a class that makes up the collection. Bug

HHH-3095 involves inheritances among classes which are mapped using “Table per class

hierarchy” and “Table per subclass”, thus the class DomesticCat is persisted across two

different tables.

To study the problem in detail, consider four classes - Cat, DomesticCat, ZooCat

and House as shown in Figure 3.1. The superclass Cat has two subclasses - DomesticCat

and ZooCat. Each DomesticCat object belongs to a House object. All of these classes are

mapped as an entity. The association depicted here is bidirectional, many-to-one (from

House to DomesticCat). The collection of DomesticCat in the class House is an entity

collection.

20

Figure 3.1: A class diagram used for the project

To find out the point of the problem, three programs are written that map inheritance

among the classes in Figure 3.1 in three different ways - table per class hierarchy, table

per subclass and a mixed implementation (which uses table per class hierarchy for one

subclass and table per hierarchy for another subclass). Each implementation creates

a list of DomesticCat objects for a House object. The Java classes in each of these

implementations are the same and are listed in the Appendix. The only differences are the

Hibernate mapping files and the configuration file. From this point onwards, the table per

subclass implementation of the problem will be referred as query program, the table per

class hierarchy implementation of the problem as discriminator program and the mixed

implementation of the problem as error program. As its name implies, the error program

demonstrates bug HHH-3095 [13]. In fact, it terminates with an SQL error.

The Java code for classes - Cat and ZooCat are the same as shown in Figure 2.1

and Figure A.2 respectively. Since the class DomesticCat has an association with the class

House, the Java classes for DomesticCat and House are modified to include the association.

The code for these classes are shown in Figure A.12 and Figure A.13 along with the code

for the driver (named CatLoader.java) that creates and persists objects in the database,

which is in Figure A.14.

These three programs are executed and each of them generates three SQL queries.

The HQL query, which is same for all of these three programs, is given below:

21

“from DomesticCat dc order by dc.id asc”

The objective is to retrieve all the objects of DomesticCat from the database which

are sorted in an ascending order by their id fields.

The reason for creating the three different programs is the bug involves mixed

inheritance as well as a one-to-many association. The original bug code has “table per

subclass” and “table per class hierarchy” implementations. Hence, three different programs

are developed - two for the two implementations mentioned and one that has both of these

implementations.

3.1.1 Query Program

The query program works properly. Figure 3.2 shows the relationships between

tables after the classes in Figure 3.1 are mapped into a database in the query program.

Figure 3.2: Table mappings for the class diagram in Figure 3.1 in query program

The XML mapping for the class Cat and the class ZooCat are the same as shown in

the Figure A.9 and Figure A.11 respectively. The XML mapping for the class DomesticCat

and the class House are as shown in Figure 3.3 and Figure 3.4 respectively.

22

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<joined-subclass name=“DomesticCat” extends=“Cat” table=“DCAT”>
<key column=“CAT ID”/>
<property name = “dcatName” column = “DCAT NAME” />
<many-to-one name=“house” column=“HOUSE ID” lazy=“false” cascade=“none”
not-null=“false”/>

</joined-subclass>
</hibernate-mapping>

Figure 3.3: An XML mapping for the class DomesticCat in query program

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<class name=“House” table=“HOUSE”>
<id name=“id” column=“HOUSE ID” >

<generator class=“increment”/>
</id>
<property name=“houseName” column=“HOUSE NAME”/>
<bag name=“animals” lazy =“false” cascade=“none” inverse=“true”>

<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“DomesticCat”/>

</bag>
</class>

</hibernate-mapping>

Figure 3.4: An XML mapping for the class House used in the project

Figure 3.5 shows the log generated in the query program. The SQL queries executed

in the query program are also explained.

23

Snippets of log generated for the query program.

1 INFO: Hibernate 3 . 2 . 6
2 INFO: Reading mappings from re sou r c e : cat /Cat .hbm. xml
3 INFO: Mapping class : cat . Cat −> CAT
4 INFO: Reading mappings from re sou r c e : cat /DomesticCat .hbm. xml
5 INFO: Mapping jo ined−s u b c l a s s : cat . DomesticCat −> DCAT
6 INFO: Reading mappings from re sou r c e : cat /ZooCat .hbm. xml
7 INFO: Mapping jo ined−s u b c l a s s : cat . ZooCat −> ZCAT
8 INFO: Reading mappings from re sou r c e : cat /House .hbm. xml
9 INFO: Mapping class : cat . House −> HOUSE

10 INFO: Conf igured Sess ionFactory : null
11 INFO: Mapping c o l l e c t i o n : cat . House . animals −> DCAT

Figure 3.5: Snippets of log generated for a query program

From the log generated in Figure 3.5 it can be seen that DomesticCat is mapped

to a table DCAT on line 5. The class House’s collection of DomesticCat is also mapped

to the table DCAT on line 11. In order to retrieve the collection of DomesticCat objects,

Hibernate queries the table DCAT.

First Hibernate tries to pull all the instances of DomesticCat from the table DCAT.

The table DCAT persists the property-values of DomesticCat that are not inherited. To get

the inherited property-values, Hibernate needs to access the table CAT. Since Cat-subclass

inheritance is mapped using “Table per subclass”, Query 1 has to perform a join on the

primary keys of CAT and DCAT.

Query 1

SELECT
domesticca0 .CAT ID as CAT1 0 ,
domesticca0 1 .BREED as BREED0 ,
domesticca0 .DCAT NAME as DCAT2 1 ,
domesticca0 .HOUSE ID as HOUSE3 1

FROM
DCAT domesticca0

INNER JOIN
CAT domesticca0 1

ON
domesticca0 .CAT ID=domesticca0 1 .CAT ID

ORDER BY
domesticca0 .CAT ID ASC

24

The class DomesticCat has a data member of type House and non-lazy fetching is

used, so to complete the DomesticCat instances pulled from Query 1, Hibernate has to

pull their corresponding House objects. This is what Query 2 does where the placeholder

(?) is filled by domesticca0 .HOUSE ID extracted from the resultset of Query 1.

Query 2

SELECT
house0 .HOUSE ID as HOUSE1 3 0 ,
house0 .HOUSE NAME as HOUSE2 3 0

FROM
HOUSE house0

WHERE
house0 .HOUSEID=?

Since there is a two way navigability between the tables DCAT and HOUSE and

non-lazy fetching is done, the House instances resulting from the execution of Query 2

needs to find their corresponding DomesticCat objects. So for each House object, Hibernate

executes Query 3 where the placeholders are replaced by house0 .HOUSE ID from the

resultset of Query 2.

Query 3

SELECT
animals0 .HOUSE ID as HOUSE3 1 ,
animals0 .CAT ID as CAT1 1 ,
animals0 .CAT ID as CAT1 0 0 ,
animals0 1 .BREED as BREED0 0 ,
animals0 .DCAT NAME as DCAT2 1 0 ,
animals0 .HOUSE ID as HOUSE3 1 0

FROM
DCAT animals0

INNER JOIN
CAT animals0 1

ON
animals0 .CAT ID=animals0 1 .CAT ID

WHERE
animals0 .HOUSE ID=?

25

3.1.2 Discriminator Program

Figure 3.6 shows the relationships between tables after they are mapped into a

database in the discriminator program.

Figure 3.6: Table mappings for the class diagram in Figure 3.1 in the discriminator
program

The XML mapping for the classes Cat, ZooCat and House are the same as shown in

the Figure A.6, Figure A.8 and Figure 3.4 respectively. The XML mapping for the class

DomesticCat is shown in Figure 3.7.

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<subclass name=“DomesticCat” extends=“Cat” discriminator-value=”D”>
<property name = “dcatName” column = “DCAT NAME” />
<many-to-one name=“house” column=“HOUSE ID” lazy=“false” cascade=“none”
not-null=“true”/>

</subclass>
</hibernate-mapping>

Figure 3.7: An XML mapping for the class DomesticCat in the discriminator program

The discriminator program is executed with the resulting logs (Figure 3.8) and the

queries.

26

Snippets of logs generated and SQL queries for the discriminator pro-
gram.

1 INFO: Hibernate 3 . 2 . 6
2 INFO: Reading mappings from re sou r c e : cat /Cat .hbm. xml
3 INFO: Mapping class : cat . Cat −> CAT
4 INFO: Reading mappings from re sou r c e : cat /DomesticCat .hbm. xml
5 INFO: Mapping s u b c l a s s : cat . DomesticCat −> CAT
6 INFO: Reading mappings from re sou r c e : cat /ZooCat .hbm. xml
7 INFO: Mapping s u b c l a s s : cat . ZooCat −> CAT
8 INFO: Reading mappings from re sou r c e
9 INFO: Mapping class : cat . House −> HOUSE

10 INFO: Mapping c o l l e c t i o n : cat . House . animals −> CAT

Figure 3.8: Snippets of log generated in the discriminator program

From the log in Figure 3.8, it can be seen that the classes Cat, DomesticCat and

ZooCat are mapped to one table, CAT, on line 3, line 5 and line 7 respectively. Since

DomesticCat is mapped to the table CAT, the class House’s collection of DomesticCat is

mapped to the table CAT on line 10.

The classes DomesticCat and ZooCat are mapped to the table CAT using discrimi-

nators, so Hibernate tries to select Cat objects with discriminators set to ’D’ (which was

set in the mapping file for DomesticCat). This gives a list of DomesticCat from the table

CAT.

Query 4

SELECT
domesticca0 .CAT ID as CAT1 0 ,
domesticca0 .BREED as BREED0 ,
domesticca0 .DCAT NAME as DCAT4 0 ,
domesticca0 .HOUSE ID as HOUSE5 0

FROM
CAT domesticca0

WHERE
domesticca0 .CAT TYP=’D’

ORDER BY
domesticca0 .CAT ID ASC

The DomesticCat class has a data member of type House and non-lazy fetching is

used, so to complete the DomesticCat instances pulled from Query 4, Hibernate has to

27

pull their corresponding House objects. This is what Query 5 does where the placeholder

is filled by domesticca0 .HOUSE ID extracted from the resultset of Query 4.

Query 5

SELECT
house0 .HOUSE ID as HOUSE1 1 0 ,
house0 .HOUSE NAME as HOUSE2 1 0

FROM
HOUSE house0

WHERE
house0 .HOUSE ID=?

Since there is a two way navigability between the tables DCAT and HOUSE, and

non-lazy fetching is used, the House instances resulting from the execution of Query 5 need

to find their corresponding DomesticCat objects. So for each House objects, Hibernate

executes Query 6. Since all DomesticCat objects are persisted in the table CAT, the table

CAT is used in a query.

Query 6

SELECT
animals0 .HOUSE ID as HOUSE5 1 ,
animals0 .CAT ID as CAT1 1 ,
animals0 .CAT ID as CAT1 0 0 ,
animals0 .BREED as BREED0 0 ,
animals0 .DCAT NAME as DCAT4 0 0 ,
animals0 .HOUSE ID as HOUSE5 0 0

FROM
CAT animals0

WHERE
animals0 .HOUSE ID=?

3.1.3 Error Program

Figure 3.9 shows the relationships between tables after they are mapped into the

database in the error program. The inheritance mapping used in the error program is a

combination of “Table per class hierarchy” and “Table per subclass”. The subclass ZooCat

and the superclass Cat are mapped using “Table per class hierarchy” and the inheritance

between the subclass DomesticCat and the superclass Cat is mapped using “Table per

subclass”.

28

Figure 3.9: Table mappings for the class diagram in Figure 3.1 in the error program

The XML mapping for the classes Cat and ZooCat are the same as shown in Figure

A.6 and Figure A.8 respectively. The mapping for DomesticCat differs from the mapping

shown in Figure A.7 in that it has an additional line specifying that the inheritance with

Cat is mapped with “Table per subclass”. This is done by inserting a tag <join> which is

not present in the mapping in Figure A.7 as can be seen in Figure 3.10. The XML mapping

for the class House is unchanged, and can be found in Figure 3.4.

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<subclass name=“DomesticCat” extends=“Cat” discriminator-value=“D”>
<join table=“DCAT”>

<key column=“CAT ID”/>
<property name = “dcatName” column =“DCAT NAME” type = “string”/>
<many-to-one name=“house” column=“HOUSE ID” lazy=“false” cascade=“none”
not-null=“false”/>

</join>
</subclass>

</hibernate-mapping>

Figure 3.10: An XML mapping for the class DomesticCat in the error program

Following are the SQL queries generated along with the logs generated, Figure 3.11,

when CatLoader.java is executed in the error program. Only the snippets of the logs

generated, when mapping the classes and the collections to the tables, are shown here.

The SQL queries are generated when processing the HQL query and accessing the objects

loaded from the database.

29

Snippets of logs generated for the error program.

1 INFO: Hibernate 3 . 2 . 6
2 INFO: Reading mappings from re sou r c e : cat /Cat .hbm. xml
3 INFO: Mapping class : cat . Cat −> CAT
4 INFO: Reading mappings from re sou r c e : cat /DomesticCat .hbm. xml
5 INFO: Mapping s u b c l a s s : cat . DomesticCat −> CAT
6 INFO: Mapping class j o i n : cat . DomesticCat −> DCAT
7 INFO: Reading mappings from re sou r c e : cat /ZooCat .hbm. xml
8 INFO: Mapping s u b c l a s s : cat . ZooCat −> CAT
9 INFO: Reading mappings from re sou r c e : cat /House .hbm. xml

10 INFO: Mapping class : cat . House −> HOUSE
11 INFO: Mapping c o l l e c t i o n : cat . House . animals −> CAT

Figure 3.11: Snippets of logs generated in the error program

From the logs in Figure 3.11, it can be seen that line 3 maps the class Cat to a

table CAT. On line 5, the class DomesticCat is mapped as a subclass of the class CAT

and is mapped to the table CAT. According to the mapping file, the attributes of the class

DomesticCat are persisted in two tables - CAT and DCAT using a join tag. Hence, there

exists a join between the tables CAT and DCAT. This is defined on line 6, by adding a

join of the class DomesticCat and that join is mapped to the table DCAT. Adding a join

means that the table DCAT should be considered while fetching objects of DomesticCat.

Since the class DomesticCat is mapped to the table CAT (line 5) and the join for the class

DomesticCat is mapped to the table DCAT, any collection of DomesticCat is by default

mapped to the table CAT. This is seen on line 11 of the logs. The property animals of

the class House is a collection of DomesticCat objects and hence this collection is mapped

to the table for DomesticCat, CAT. The table CAT persists some of the attributes of the

class DomesticCat but it does not persist the attribute “house” (which is persisted in the

table for join i.e. DCAT). This is the original source of the error since getting the instances

of a collection causes Hibernate to query the table CAT which does not contain all of the

properties in the class DomesticCat. The mapping of the class DomesticCat to the table

CAT is consistent with the fact that Cat.hbm.xml includes a discriminator property and

the DomesticCat.hbm.xml also has a value “D” for the discriminator.

30

For collecting instances of DomesticCat, the table to which the class DomesticCat is

mapped is queried i.e. the table CAT. Since the classes Cat, ZooCat and DomesticCat are

mapped using discriminators, Hibernate tries to select Cat objects with discriminators set

to ‘D’ (which was set in the mapping file for DomesticCat) in order to find the persisted

DomesticCat objects. Since DomesticCat has some of its attributes mapped in a join table,

DCAT, the from clause in Query 7 uses join on CAT and DCAT. Query 7 is correct and

fetches instances of DomesticCat.

Query 7

SELECT
domesticca0 .CAT ID as CAT1 0 ,
domesticca0 .BREED as BREED0 ,
domesticca0 1 .DCAT NAME as DCAT2 1 ,
domesticca0 1 .HOUSE ID as HOUSE3 1

FROM
CAT domesticca0

INNER JOIN
DCAT domesticca0 1

ON
domesticca0 .CAT ID=domesticca0 1 .CAT ID

WHERE
domesticca0 .CAT TYP=’D’

ORDER BY
domesticca0 .CAT ID ASC

The DomesticCat class has a data member of type House and non-lazy fetching is

used, so to complete the DomesticCat instances pulled from Query 7, Hibernate has to

pull their corresponding House objects. This is what Query 8 does where the placeholder

is filled by domesticca0 1 .HOUSE ID extracted from the resultset of Query 7. Query 8 is

also correct.

Query 8

SELECT
house0 .HOUSE ID as HOUSE1 2 0 ,
house0 .HOUSE NAME as HOUSE2 2 0

FROM
HOUSE house0

WHERE
house0 .HOUSE ID=?

31

Since there is a two-way navigability between the class DomesticCat and the class

House, and the non-lazy fetching is used, the House instances resulting from the execution

of Query 8 must find their corresponding DomesticCat objects. So for each House objects,

Hibernate executes Query 9. It is this query that crashes the program as it can be seen it is

trying to extract the field HOUSE ID from the table CAT (which does not have that field).

The errors are present in the select clause and the where clause which are highlighted in

Query 9.

Query 9

SELECT
animals0 .HOUSE ID as HOUSE5 1 ,
animals0 .CAT ID as CAT1 1 ,
animals0 .CAT ID as CAT1 0 0 ,
animals0 .BREED as BREED0 0 ,
animals0 1 .DCAT NAME as DCAT2 1 0 ,
animals0 1 .HOUSE ID as HOUSE3 1 0

FROM
CAT animals0

INNER JOIN
DCAT animals0 1

ON
animals0 .CAT ID=animals0 1 .CAT ID

WHERE
animals0 .HOUSE ID=?

3.2 Original Attempts to Solve the Bug

Determining the exact point of the problem is challenging. Prior to using the

approach in Section 3.4, two different approaches failed to pass all test cases. The first

approach is pertinent to inheritance. The original Java classes specified in the bug [13] use

inheritance and an error occurs when mixed inheritance is used (Section 3.1). When only

one particular type of inheritance mapping is used, no error occurs. This induced a mindset

that Hibernate has a faulty way of handling collections when mixed inheritance mapping is

used and hence, generates a wrong alias for a subclass in an SQL statement. A fix, which

will be called Modification1 hereupon, modified the alias generation for tables by identifying

their correct table number. The method that generates an alias for a table retrieves the

32

column name of all of the properties possessed by a class and the corresponding number for

each of these column names, both of which are set by Hibernate while parsing the mapping

files. These numbers correspond to the join table numbers (this is how Hibernate generates

alias). The join table number for a table is assigned while reading a mapping file and is

assigned based on the depth of the nesting of a join tag associated with that table. This

approach did not work with an unidirectional one-to-many association since a class that

persists a collection may not have a property (that is related to a collection) and hence, no

column name exists for the collection property in the class that persists the collection.

Another approach, which will be called Modification2 hereupon, considers the joins

for a table of a given class. This approach, like the previous one, modifies the alias

generation method for a table however, in a different way. It receives an alias generated

for a table by the original Hibernate and the tablename, where the collection is persisted,

as its arguments. It finds the class that persists the collection and iterates through an

array of tablenames, called spaces, to find whether the argument tablename matches any

tablename in the spaces. If the spaces have a tablename, then it adds a suffix to the alias

(passed to the method as one of its arguments). The suffix thus added is a position of the

tablename in the spaces. If the tablename is not included in the spaces array then the alias

passed as an argument to the method is returned unchanged. This approach also does not

work with a unidirectional association.

Both Modification1 and Modification2 produced correct result for the code given

in Section 1.3. Hibernate test cases are run on Modification1 with a number of errors of

825 (out of 1273). It was not evident outright that the problem was with unidirectional

one-to-many collection. Stepping through the original program code (Section 1.3) under

Hibernate gave an understanding of Hibernate variables - joins, spaces - which led to the

development of Modification2. Hibernate test cases are run on Modification2 with a number

of errors of 49 (out of 1273). The testing result of Modification2 was an improvement over

that of Modification1. However, Modification2 was behind Hibernate which has 39 testing

errors. To find the exact point of a problem, failed test cases were separated out and were

stepped through each line of code (one failed test case at a time) on both Hibernate and

33

Modification2 simultaneously. After much strenuous work of going through each line of

code (for each test case) and understanding changes made to Hibernate variables in the

process of stepping, the problem became obvious. A table that persists the class (that

makes up the collection) is set as the table for the collection and no joins are considered

even when the collection is actually persisted on some join tables.

3.3 Root Cause of the Bug

In the original Hibernate code, if there is a one-to-many association between two

classes, the collection is persisted on the class that makes up the collection. For example,

consider a bidirectional association between the classes Cat and House as shown in Figure

3.12a. Since the class Cat forms a collection for the class House, the table on which the

class Cat is persisted is responsible for persisting the collection as well. The corresponding

tables in the database are shown in Figure 3.12b.

(a)

(b)

Figure 3.12: (a)Many-to-one association between Cat and House, (b)the class Cat
persisted on multiple tables

34

To collect all of the Cat objects associated with a particular instance of the class

House, tables LINKTABLE1 and CAT should be joined to get all such instances. Likewise

to get an instance of the class House associated with a particular instance of the class Cat,

the tables CAT and LINKTABLE1 must be joined.

The original Hibernate code works correctly with a one-to-many association when the

class Cat is persisted in a single table. If the class Cat shown in Figure 3.12a is persisted in

multiple tables as shown in the Figure 3.12b, then it becomes essential to specify the exact

table where the collection is persisted. The problem arises due to the fact that it is NOT

required in Hibernate to specify the name of the table for collections in a one-to-many

association. In fact, any such table specification is IGNORED. In the error program, under

the original Hibernate code, the class DomesticCat is persisted in multiple tables - CAT

and DCAT as shown in Figure 3.10. Only the table DCAT has a column that persists the

collection. However, Hibernate assigns the table CAT as the collection table and since the

table attribute is ignored in processing one-to-many collections, it is impossible for the user

to specify the correct table DCAT. This project extends Hibernate by allowing a user to

specify tables for one-to-many associations so that a user can explicitly specify the table to

use for the collection.

3.3.1 Hibernate Collection Processing

The Hibernate object which is responsible for storing a proper table for a collection

(and hence resulting in an incorrect tablename as mentioned in the previous paragraph)

is collection which is an instance of the class “org.hibernate.mapping.Collection”. The

object “collection” stores information specified for a collection by a mapping file. Two

variables of the object collection - collection.element and collection.collectionTable - hold

key information. The variable collection.element stores information regarding the type of

the association (e.g. one-to-many, many-to-many), the strategy to fetch the collection, the

referenced class (the class that makes up the collection), the referenced property of the

35

referenced class, etc. The other variable, collection.collectionTable, stores a reference to

the table that persists the collection.

Hibernate treats a collection in two passes. In the first pass, Hibernate sets up the

attributes of a collection as given in the mapping file. A specification for a collection in

a mapping file has attributes like lazy fetching, user provided SQL queries, etc. These

attributes are read and appropriate Hibernate variables are set in the first pass. If a

collection is many-to-many, then the collection table is also set, but if the collection is

one-to-many, the collection table is set in the second pass. The reason for setting the

collection table for a one-to-many association in the second pass is that during the first

pass not all the classes have been mapped and hence, resolving references to a class (that

has not yet been mapped) is not possible. In the second pass, the collection table (if a

collection is one-to-many) is set and references to classes that makes up a collection are

resolved. Consider the example construct for one-to-many given in Figure 3.13.

<set name="persons" lazy="false" cascade="none"

table = "HOUSE_PERSON" fetch="select">

<key column="HOUSE_ID" not-null="false"/>

<one-to-many class="Person" />

</set>

Figure 3.13: An example of one-to-many construct

In the example given in Figure 3.13, the collection type used is a “set”. The attribute

name, specifies the name of the collection which is “persons” in this case. The attribute

cascade specifies whether to enable operations to cascade to child entities or not. Its value

of none means there is no cascading operation. The attribute fetch here specifies that the

collection should be fetched by issuing a select statement. The tag key specifies that the

column “HOUSE ID” is a foreign key in the collection table. The tag one-to-many specifies

that the collection consists of objects of the class “Person”. The attribute table specifies

the table used to store the collection. In this example, the original Hibernate code would

36

by default set the collection table to be the table on which the class Person is persisted

instead of the table “HOUSE PERSON” as specified by the table attribute.

3.3.2 Hibernate Workaround Processing

Hibernate has a workaround for a one-to-many association when a collection is

persisted on a table other than the one where the class that makes up the collection

is persisted. The workaround requires using a many-to-many construct with a unique

constraint set to true. By setting the unique attribute to true, Hibernate does not allow

any instance of a class, that makes up the collection, to be associated with more than

one instance of a class that owns the collection. This in effect imposes a one-to-many

constraint in a many-to-many association. Note that the many-to-many construct used

to represent the one-to-many collection must have the unique attribute set to true. The

unique attribute is set to false by default.

Consider the one-to-many construct shown in Figure 3.13. The workaround for using

a different table for collection other than the default one is shown in Figure 3.14. The

unique attribute is set to true and the collection table will be set to the one specified in

the many-to-many construct. In this example, collection table is set to HOUSE PERSON

and the column PERSON ID in the table HOUSE PERSON is unique.

<set name="persons" lazy="false" cascade="none"

table = "HOUSE_PERSON" fetch="select">

<key column="HOUSE_ID" not-null="false"/>

<many-to-many class="Person" column="PERSON_ID" unique="true" />

</set>

Figure 3.14: An example of many-to-many construct with unique attribute set to true

3.4 Fix to the Bug

37

This project extends the capability of Hibernate to consider the table attribute for

one-to-many associations. The new implementation considers the table attribute and follows

the execution path of many-to-many with a unique constraint, which is described in Section

3.3.2. The tablename declared in the mapping file is stored in a new Hibernate variable

called explicitTableName, while the default used by the original Hibernate is stored in a new

variable implicitTableName. These local Java variables are added to modified Hibernate

code in the method bindCollectionSecondPass() of the class org.hibernate.cfg.HbmBinder.

To correctly integrate the user specified table into Hibernate, there are three cases

to consider. They are -

I The table attribute is absent, hence the value of explicitTableName is null.

II The table attribute is present, but the value of explicitTableName and the value

of implicitTableName are the same.

III The table attribute is present and, the value of explicitTableName and the value

of implicitTableName are different.

It is already mentioned in Section 3.3.1 that a collection is processed in two passes. In

all of these cases, modified Hibernate code treats a one-to-many collection as one-to-many

in the first pass and reads attributes specified in the collection construct into a node.

The value of the variable collection.element (Section 3.3) is set to OneToMany. In the

second pass, the modified Hibernate code determines which of the three cases exists. The

variable explicitTableName is set as the second pass for a collection is started. In the

method bindCollectionSecondPass() the value of the attribute table from a node, which

was previously populated during the first pass, is read and stored in explicitTableName.

If explicitTableName is null, then the first case holds and the the collection is treated

exactly as in the current implementation of Hibernate, i.e. the value of the Hibernate

variable collection.collectionTable (Section 3.3) is set to the table whose name is specified

by implicitTableName. However, it should be noted here that an error can still occur if the

table that actually stores the collection (and which is not specified by the user) and the

38

table given by the implicitTableName are not the same. This is considered a design error

(See Figure A.20).

If explicitTableName is not null, modified Hibernate determines the value of im-

plicitTableName (note that the original Hibernate code does that too but at a later point

in the second pass). Since all of the classes are already mapped, modified Hibernate can

easily determine the name of the table on which the class, which makes up the collection,

is persisted. The value of implicitTableName is not computed in the first pass because it

might so happen that the class making up the collection is not already mapped and hence

no information on that table exists. During the second pass all the classes are already

mapped and the name of the table where a collection is persisted can be determined. This

is the main reason for processing one-to-many collections in the second pass in modified

Hibernate code. Modified Hibernate compares the value of explicitTableName and im-

plicitTableName, if they are same, the collection is treated as one-to-many and if they

are different, the collection is treated as many-to-many with a unique constraint. Under

the second condition, the value of the variable collection.collectionTable is set to a table

whose name is given by explicitTableName. Modified Hibernate (and the original Hibernate

as well) keeps a list of all tables and it searches for a table in its list of tables whose

name is specified by explicitTableName. Also, the value of the variable collection.element

is set to null, allowing the modified Hibernate to set to type ManyToOne later. For a

one-to-many collection, collection.element is set to a type one-to-many in the first pass

while for many-to-many, collection.element is set to null in the first pass. So when a

one-to-many collection acts like a many-to-many with a unique constraint in the second

pass, the value of collection.element is set to null. The variable collection.element is set to

a type ManyToOne when a many-to-many collection is further processed.

The snippets of code that have been added to the original Hibernate code are shown

in Figure 3.15 and Figure 3.16.

39

1 public stat ic void bindCol l ec t ionSecondPass (Element node , C o l l e c t i o n
2 c o l l e c t i o n , java . u t i l .Map p e r s i s t e n t C l a s s e s , Mappings mappings ,
3 java . u t i l .Map inher i t edMetas)throws MappingException {
4 //Check whether a g iven c o l l e c t i o n i s o f type one−to−many .
5 i f (c o l l e c t i o n . isOneToMany ()) {
6 //Get the one−to−many node which was p r e v i o u s l y parsed from
7 // the mapping f i l e
8 Element oneToManyNode = node . element (‘ ‘ one−to−many ’ ’) ;
9 //Get the a t t r i b u t e t a b l e from a g iven node

10 Attr ibute tableNode = node . a t t r i b u t e (‘ ‘ t a b l e ’ ’) ;
11 // exp l i c i tTab leName : v a l u e o f the a t t r i b u t e tab leNode i f p r e s e n t
12 St r ing expl ic i tTableName = null ;
13 // I f t h e r e i s a tab leNode then g e t the v a l u e o f the node and
14 // conver t i t to a lowercase f o r a comparison
15 i f (tableNode != null) {
16 expl ic i tTableName = mappings . getNamingStrategy () .
17 tableName (tableNode . getValue ()) . toLowerCase () ;
18 }
19 /∗ Get the name o f the c l a s s (which comprises the c o l l e c t i o n) from
20 ∗ a one−to−many tag , then g e t the name o f the t a b l e f o r t h a t c l a s s
21 ∗ and conver t i t to a lower case f o r a comparison ∗/
22 St r ing implic itTableName = mappings . ge tC la s s (
23 getClassName (oneToManyNode . a t t r ibuteVa lue (‘ ‘ class ’ ’) ,
24 mappings)) != null ?mappings . ge tC la s s (getClassName (
25 oneToManyNode . a t t r ibuteVa lue (‘ ‘ class ’ ’) , mappings)
26) . getTable () . getName () . toLowerCase () : null ;
27 /∗ i f the user g iven name o f the c o l l e c t i o n t a b l e i s not same
28 ∗ as the one computed by o r i g i n a l Hibernate then the c o l l e c t i o n must
29 ∗ a many−to−many with a unique c o n s t r a i n t , and hence the type o f the
30 ∗ be t r e a t e d as c o l l e c t i o n which was p r e v i o u s l y
31 ∗ one−to−many i s changed ∗/
32 i f (expl ic i tTableName != null && implicitTableName != null &&
33 ! expl ic i tTableName . equa l s (implic itTableName)) {
34 // see Figure r e f { f i g : setUpManytoMany}
35 setUpManyToMany(node , c o l l e c t i o n , p e r s i s t e n t C l a s s e s ,
36 mappings , inher i tedMetas , tableNode) ;
37 }
38 }
39
40 }

Figure 3.15: Original Hibernate method bindCollectionSecondPass(..) changed to fit

in Modified Hibernate

40

1 public stat ic void setUpManyToMany(Element node , C o l l e c t i o n c o l l e c t i o n ,
2 java . u t i l .Map p e r s i s t e n t C l a s s e s , Mappings mappings ,
3 java . u t i l .Map inher i tedMetas , Node tableNode) {
4

5 St r ing tableName = mappings . getNamingStrategy ()
6 . tableName (tableNode . getValue ()) ;
7 // Reading a t t r i b u t e s f o r a many−to−many .
8 // These l i n e s are from the o r i g i n a l Hibernate code .
9 Attr ibute schemaNode = node . a t t r i b u t e (‘ ‘ schema ’ ’) ;

10 St r ing schema = schemaNode == null ?
11 mappings . getSchemaName () : schemaNode . getValue () ;
12 Attr ibute catalogNode = node . a t t r i b u t e (‘ ‘ c a ta l og ’ ’) ;
13 St r ing ca ta l og = catalogNode == null ?
14 mappings . getCatalogName () : catalogNode . getValue () ;
15 Table t a b l e = mappings . addTable (
16 schema , cata log , tableName , g e t S u b s e l e c t (node) , fa l se) ;
17 c o l l e c t i o n . s e t C o l l e c t i o n T a b l e (t a b l e) ;
18 bindComment (tab le , node) ;
19 // End o f the o r i g i n a l Hibernate code
20 // For a one−to−many c o l l e c t i o n , c o l l e c t i o n . e lement i s s e t to a type
21 // one−to−many in the f i r s t pass .
22 c o l l e c t i o n . setElement (null) ;
23 l og . i n f o (
24 ‘ ‘ Converting one−to−many to many−to−many : Mapping c o l l e c t i o n : ’ ’
25 + c o l l e c t i o n . getRole () +
26 ‘ ‘ −−> ’ ’ + c o l l e c t i o n . g e tCo l l e c t i onTab l e () . getName ()
27) ;
28 }

Figure 3.16: A new method setUpManytoMany(..) added in a modified Hibernate

The method bindCollectionSecondPass (Figure 3.15) is called for all collections during

the second pass. The original method “bindCollectionSecondPass” has been modified to

implement the bugfix. If the collection requires treatment as a many-to-many collection

with a unique constraint, then the modified Hibernate code calls the newly added method

setUpManyToMany, shown in Figure 3.16, to re-read the collection node and set the

parameters as done for a many-to-many collection. This execution changes the type of

the collection - from one-to-many to many-to-many (later on). On line 22 of Figure 3.16,

collection.element is set to null so that it no longer is set to OneToMany type. During later

phase of the second pass, collection.element is set to ManyToOne Type for a one-to-many

collection that needs to be treated as a many-to-many collection with a unique constraint.

41

From this point, the collection will not act as one-to-many (but rather as a many-to-many

with a unique constraint) even though the XML mapping for the collection is a one-to-many.

This is exactly the same behavior as the workaround.

Another part of code which is modified is the method initOuterJoinFetchSetting as

given in the Figure 3.17. This method is responsible for assigning the fetching property

for a collection. By default, this method sets up eager left join fetching for many-to-many,

hence a collection which acts as a many-to-many with a unique constraint should follow

this path as well. The method “initOuterJoinFetchSetting” is modified so as to set the

eager join fetching, by default, for a one-to-many collection that acts as a many-to-many

collection with a unique constraint. In the code given in the Figure 3.17, the “if” statement

on a line 18 is different from that in the original Hibernate code. The expression after

the “‖” operator checks if the collection is specified as a one-to-many in a mapping file

and it needs to be treated as a many-to-many collection with a unique constraint. For

a many-to-many collection, the value of the variable collection.element is always of type

ManyToOne. So any one-to-many collection that should act as a many-to-many collection

with a unique constraint must have collection.element set to a type ManyToOne and this

is done later in the second pass.

The last part of the code that has been modified is given in Figure 3.18. The method

bindColumns is responsible for reading the data (which was previously read from the

mapping file and stored in a tree like structure) stored in a node and generating columns

for a table. Since the construct for a one-to-many does not have the column attribute,

the column(s) for the collection table has to be generated from the table where the class

(that makes up the collection) is persisted. The method has been changed in the modified

Hibernate code with the addition of the code (from line 1 through 45 in Figure 3.18) that

generates columns for a one-to-many node that need to be treated as a many-to-many

node with a unique attribute set to true. The while loop on line 10 in Figure 3.18 iterates

through the column(s) of the table that persists the class making up the collection. Line 1

through 45 are newly added codes while everything that is already there (from the original

Hibernate) goes inside the else block on line 45.

42

1 private stat ic void i n i tOute rJo inFe t chSe t t ing (
2 Element node , Fetchable model , Mappings mappings) {
3 Attr ibute fetchNode = node . a t t r i b u t e (‘ ‘ f e t c h ’ ’) ;
4 f ina l FetchMode f e t c h S t y l e ;
5 boolean l a zy = true ;
6 i f (fetchNode == null) {
7 Attr ibute j fNode = node . a t t r i b u t e (‘ ‘ outer−j o i n ’ ’) ;
8 i f (j fNode == null) {
9 /∗ I f a c o l l e c t i o n i s o f type many−to−many as s p e c i f i e d

10 ∗ in an XML mapping OR
11 ∗ i f a c o l l e c t i o n i s o f type one−to−many as s p e c i f i e d
12 ∗ in an XML mapping BUT
13 ∗ the c o l l e c t i o n shou ld be t r e a t e d as a many−to−many
14 ∗ with a unique c o n s t r a i n t then TRUE.
15 ∗ In the l a t t e r case , the c o l l e c t i o n i s a l r e a d y s e t
16 ∗ to a type ManyToOne
17 ∗/
18 i f (‘ ‘ many−to−many ’ ’ . equa l s (node . getName ()) | |
19 (‘ ‘ one−to−many ’ ’ . equa l s (node . getName ()) &&
20 ‘ ‘ManyToOne ’ ’ . equa l s (model . g e tC la s s () . getSimpleName ()))) {
21 //NOTE SPECIAL CASE: a
22 // d e f a u l t to j o i n and non−l a z y f o r the ‘ ‘ second j o i n ’ ’
23 // o f the many−to−many
24 l a zy = fa l se ;
25 f e t c h S t y l e = FetchMode . JOIN ;
26 }
27
28
29 model . setFetchMode (f e t c h S t y l e) ;
30 model . setLazy (l azy) ;
31 }

Figure 3.17: A method initOuterJoinFetchSetting() in modified Hibernate

43

1 // one−to−many node t h a t a c t s as a many−to−many node wi th a unique
2 // c o n s t r a i n t . A many−to−many c o l l e c t i o n i s i n t e r n a l l y
3 // t r e a t e d i t as a many−to−one c l a s s by the o r i g i n a l Hibernate
4 i f (‘ ‘ one−to−many ’ ’ . equa l s (node . getName ()) &&
5 ‘ ‘ManyToOne ’ ’ . equa l s (s impleValue . ge tC la s s () . getSimpleName ())) {
6 St r ing classNodeValue = node . a t t r ibuteVa lue (‘ ‘ class ’ ’) ;
7 I t e r a t o r i t e r mappings . ge tC la s s (getClassName (classNodeValue , mappings)) .
8 g e t I d e n t i f i e r P r o p e r t y () . getValue () . getColumnIterator () ;
9 int count = 0 ;

10 while (i t e r . hasNext ()) {
11 // g e t an i d e n t i f i e r from the c l a s s t h a t makes up the c o l l e c t i o n
12 Column c o l u m n I d e n t i f i e r = (Column) i t e r . next () ;
13 Column column = new Column () ;
14 column . setValue (s impleValue) ;
15 column . setTypeIndex (count++) ;
16 // s e t the v a r i a b l e s as done by the method bindColumn
17 column . setLength (c o l u m n I d e n t i f i e r . getLength ()) ;
18 column . s e t S c a l e (c o l u m n I d e n t i f i e r . g e tSca l e ()) ;
19 column . s e t P r e c i s i o n (c o l u m n I d e n t i f i e r . g e t P r e c i s i o n ()) ;
20 column . s e t N u l l a b l e (i s N u l l a b l e) ;
21 column . setUnique (c o l u m n I d e n t i f i e r . i sUnique ()) ;
22 column . setCheckConstra int (c o l u m n I d e n t i f i e r . getCheckConstra int ()) ;
23 column . se tDe fau l tVa lue (c o l u m n I d e n t i f i e r . getDefau l tValue ()) ;
24 column . setSqlType (c o l u m n I d e n t i f i e r . getSqlType ()) ;
25 column . setComment (c o l u m n I d e n t i f i e r . getComment ()) ;
26 // end o f s e t t i n g the v a r i a b l e s as done by the bindColumn
27 // g e t the name o f the i d e n t i f i e r column
28 St r ing logicalColumnName = mappings . getNamingStrategy () .
29 logicalColumnName (c o l u m n I d e n t i f i e r . getName () , propertyPath) ;
30 column . setName (mappings . getNamingStrategy () .
31 columnName(logicalColumnName)) ;
32 i f (t a b l e != null) { // which i s a lways t r u e in the second pass
33 t a b l e . addColumn (column) ;
34 mappings . addColumnBinding (logicalColumnName , column , t a b l e) ;
35 }
36 s impleValue . addColumn (column) ;
37 // column index
38 bindIndex (null , tab le , column , mappings) ;
39 bindIndex (ode . a t t r i b u t e (‘ ‘ index ’ ’) , tab le , column , mappings) ;
40 //column unique−key
41 bindUniqueKey (null , tab le , column , mappings) ;
42 bindUniqueKey (node . a t t r i b u t e (‘ ‘ unique−key ’ ’) , tab le , column , mappings) ;
43 }
44 }
45 else {

Figure 3.18: A method bindColumns(..) in modified Hibernate

44

3.5 Backward Compatibility of the Fix

This project adds to the capability of the Hibernate 3.2.6 (and Hibernate 3.3.2

as well) by broadening the scope of use of one-to-many construct. Current Hibernate

ignores a table attribute even if it is specified for a one-to-many collection whereas modified

Hibernate takes the table attribute into account. Specifying the wrong table in an XML

mapping leads to an error in modified Hibernate. There can be six possible scenarios with

a specification of a table attribute.

I A correct table attribute value is specified even when it is not necessary. Modified

Hibernate will compare the table attribute value with the default table name for

the collection. Since these two value are same, modified Hibernate would follow

the execution path for a one-to-many collection as taken by the original Hibernate.

II An incorrect table attribute value is specified even when it is not necessary. The

incorrect table name from an XML mapping would not match the default table

name for the collection and hence, the collection table is set to an erroneous value

(the one given by the table attribute). This results in an error under modified

Hibernate and not in the original Hibernate.

III A correct table attribute value is specified when it is required. The consequence

is same as in the first scenario for modified Hibernate but the original Hibernate

fails here.

IV An incorrect table attribute value is specified when it is required. The incorrect

table name from an XML mapping would not match the default table name for

the collection and hence, the collection table is set to an erroneous value (the one

given by the table attribute). This results in an error under modified Hibernate.

The original Hibernate also fails here.

V No table attribute value is specified and it is not necessary. Modified Hibernate

will treat the one-to-many collection the same as the original Hibernate.

45

VI No table attribute value is specified even when it is required. Modified Hibernate

will act no different from the original Hibernate and since the table attribute is

required here but not specified, this would result in an erroneous outcome for both

the original Hibernate and the modified Hibernate.

These scenarios show that the responsibility of specifying the correct table lies entirely

upon the user. If the user specifies the wrong table assuming the original Hibernate ignores

the table attribute, errors will occur. To make modified Hibernate backward compatible

with the original Hibernate, users should decide whether to specify the table attribute or

not in the first place and if yes, should specify the correct table. If the user wants the

backward compatibility of the modified Hibernate with already developed projects, it is

recommended to remove table attributes from all one-to-many collections, which is ignored

in the original Hibernate.

3.6 Validation of a Fix to the Bug

The Hibernate class HbmBinder is modified so as to fix the bug. The patch for

the class HbmBinder for the modified Hibernate is generated using Unix diff and patch

commands. The patch is then integrated into the original Hibernate code to form the

modified Hibernate. The patch generated is shown in Figures A.21 through A.26.

For a proper validation of the modified Hibernate, it is tested against the Hibernate

test suite and additional test cases that are built for this project. In Hibernate 3.2.6, there

are 1273 JUnit test cases. For validation purposes, the original Hibernate is tested against

these test cases, out of which 39 test cases produced an error and 14 test cases ended up

with a failure. Some of the test cases in the Hibernate package are expected to fail i.e. they

are written for testing a bad case. The modified Hibernate is also run against the same

set of test cases and the result of running the JUnit test cases on modified Hibernate is

consistent with that of the original Hibernate code.

The test reports are generated in an XML format (by the Eclipse IDE which is

used for the project). The XML test reports generated for the original Hibernate and the

46

modified Hibernate are processed by an XSL script that compares the test results from

the original Hibernate code and the modified Hibernate code, and displays the errors and

failures in modified Hibernate code along with an indication whether the failure or the

error occurs in the original Hibernate as well. Table 3.1 shows the list of errors in modified

Hibernate. The first column and the second column in Table 3.1 specifies the name of

the test case that failed and the name of the class where the failed test case is defined

respectively. The value ok on the third column Issue indicates whether the failed test

case occurred in the original Hibernate as well. As it can be seen, here all of the modified

Hibernate failed test cases are failed by the original Hibernate as well.

AllTests
Failures : 14

Test Name Test Class Issue
testLazy org.hibernate.test.bidi.AuctionTest ok
testOneToOnePropertyRef org.hibernate.test.cuk.CompositePropertyRefTest ok
testUpdateDetachedParentNo
ChildrenToNullFailureExpected

org.hibernate.test.event.collection.BrokenCollection
EventTest

ok

testBooleanHandling org.hibernate.test.hql.BulkManipulationTest ok
testEmptyInListFailureExpected org.hibernate.test.hql.HQLTest ok
testMaxindexHqlFunctionInEleme
ntAccessorFailureExpected

org.hibernate.test.hql.HQLTest ok

testMultipleElementAccessor Op-
eratorsFailureExpected

org.hibernate.test.hql.HQLTest ok

testKeyManyToOneJoinFailure
Expected

org.hibernate.test.hql.HQLTest ok

testDuplicateExplicitJoinFailure
Expected

org.hibernate.test.hql.HQLTest ok

testLoadEntityWithEagerFetching
ToKeyManyToOneReference-
BackToSelfFailureExpected

org.hibernate.test.keymanytoone.bidir.component.
EagerKeyManyToOneTest

ok

testCreate org.hibernate.test.legacy.FooBarTest ok
testCreateUpdate org.hibernate.test.legacy.FooBarTest ok
testFind org.hibernate.test.legacy.FooBarTest ok
testPersistentLifecycle org.hibernate.test.legacy.FooBarTest ok

Table 3.1: Comparison of the failures in the modified Hibernate with that in the
original Hibernate

The result of running the XSL script on the modified Hibernate code for error

comparison is shown in Table 3.2 and Table 3.3. Since the number of errors i.e. 39 is large,

47

the list of errors is split into two tables. The meaning of the respective columns in Table

3.2 and Table 3.3. are same as that in Table 3.1.

AllTests
Errors : 1-26/39

Test Name Test Class Issue
testSaveOrphanDeleteChildWith
ParentFailureExpected

org.hibernate.test.cascade.BidirectionalOneToMany
CascadeTest

ok

testSaveParentNullChildrenFailure
Expected

org.hibernate.test.event.collection.BrokenCollection
EventTest

ok

testUpdateParentNoChildrenTo
NullFailureExpected

org.hibernate.test.event.collection.BrokenCollection
Eve ntTest

ok

testIntegrityViolation org.hibernate.test.exception.SQLExceptionConver
sionTest

ok

testBadGrammar org.hibernate.test.exception.SQLExceptionConver
sionTest

ok

testFormulaJoin org.hibernate.test.formulajoin.FormulaJoinTest ok
testParameterTypeMismatch Fail-
ureExpected

org.hibernate.test.hql.ASTParserLoadingTest ok

testCriteriaAggregationReturn
TypeFailureExpected

org.hibernate.test.hql.CriteriaHQLAlignmentTest ok

testLockModeTypeRead org.hibernate.test.jpa.lock.JPALockTest ok
testLockModeTypeWrite org.hibernate.test.jpa.lock.JPALockTest ok
testStaleVersionedInstanceFound
InQueryResult

org.hibernate.test.jpa.lock.RepeatableReadTest ok

testStaleVersionedInstanceFound
OnLock

org.hibernate.test.jpa.lock.RepeatableReadTest ok

testStaleNonVersionedInstance
FoundInQueryResult

org.hibernate.test.jpa.lock.RepeatableReadTest ok

testStaleNonVersionedInstance
Found OnLock

org.hibernate.test.jpa.lock.RepeatableReadTest ok

testLoadingAndSerializationOf
Configuration

org.hibernate.test.legacy.ConfigurationPerformance
Test

ok

testQuery org.hibernate.test.legacy.FooBarTest ok
testOneToOneGenerator org.hibernate.test.legacy.FooBarTest ok
testCollectionOfSelf org.hibernate.test.legacy.FooBarTest ok
testReachability org.hibernate.test.legacy.FooBarTest ok
testVersionedCollections org.hibernate.test.legacy.FooBarTest ok
testMap org.hibernate.test.legacy.MapTest ok
testSelfManyToOne org.hibernate.test.legacy.MasterDetailTest ok
testExample org.hibernate.test.legacy.MasterDetailTest ok
testMultiTableCollections org.hibernate.test.legacy.MultiTableTest ok
testMultiTableManyToOne org.hibernate.test.legacy.MultiTableTest ok
testReturnPropertyComponent
RenameFailureExpected

org.hibernate.test.legacy.SQLLoaderTest ok

Table 3.2: Comparison of the first twenty-six errors in the modified Hibernate with
that in the original Hibernate

48

AllTests
Errors : 27-39/39

Test Name Test Class Issue
testOptimisticLockDirty org.hibernate.test.optlock.OptimisticLockTest ok
testOptimisticLockAll org.hibernate.test.optlock.OptimisticLockTest ok
testOptimisticLockDirtyDelete org.hibernate.test.optlock.OptimisticLockTest ok
testOptimisticLockAllDelete org.hibernate.test.optlock.OptimisticLockTest ok
testReadOnlyOnProxiesFailure
Expected

org.hibernate.test.readonly.ReadOnlyTest ok

testScalarStoredProcedure org.hibernate.test.sql.hand.custom.mysql.MySQL
CustomSQLTest

ok

testParameterHandling org.hibernate.test.sql.hand.custom.mysql.MySQL
CustomSQLTest

ok

testEntityStoredProcedure org.hibernate.test.sql.hand.custom.mysql.MySQL
CustomSQLTest

ok

testCompositeIdJoinsFailure Ex-
pected

org.hibernate.test.sql.hand.query.NativeSQLQueries
Test

ok

testAutoDetectAliasing org.hibernate.test.sql.hand.query.NativeSQLQueries
Test

ok

testConcurrentCachedDirty
Queries

org.hibernate.test.tm.CMTTest ok

testSave org.hibernate.test.typeparameters.TypeParameter
Test

ok

testLoading org.hibernate.test.typeparameters.TypeParameter
Test

ok

Table 3.3: Comparison of the last thirteen errors in the modified Hibernate with that
in the original Hibernate

To further test modified Hibernate, five test cases are built and run on both modified

Hibernate and the original Hibernate. The XML mappings for the these test cases are

shown in Figure A.15 through Figure A.19. Table 3.4 shows the outcomes of running these

five test cases in the modified Hibernate and the original Hibernate.

MyTests
Testcase Original Hibernate Modified Hibernate
Test Figure A.15 Failed Passed
Test Figure A.16 Failed Passed
Test Figure A.17 Failed Passed
Test Figure A.18 Passed Passed
Test Figure A.19 Failed Failed
Test Figure A.20 Failed Failed

Table 3.4: Results of running the testcases built for this project on the original
Hibernate and the modified Hibernate

49

The first case, Figure A.15 tests for composite primary key and a unidirectional

one-to-many association. A class Orderline has a composite id, id, of type OrderLineId and

a property name. A class Order has id, orderName and orderLine as its properties among

which orderLine is a collection of Orderline objects. There is a unidirectional one-to-many

association from the classes Oder to Orderline. The collection is persisted in the table

called LINKTABLE.

In the next two test cases, Figure A.16 and Figure A.17, classes House and Person

are mapped to tables HOUSE and PERSON, and there exists a one-to-many association

from the class House to Person. The collection of Person objects is persisted in the

table HOUSE PERSON which is explicitly stated in an XML mapping i.e. the table

HOUSE PERSON has a column HOUSE ID that references the column HOUSE ID of the

table HOUSE. The original Hibernate assumes the collection table is PERSON instead

of HOUSE PERSON, which is the correct one. The difference between these two tests is

Figure A.16 is bidirectional and Figure A.17 is unidirectional.

The fourth test case Figure A.18 is same as the second test case except that the

collection is persisted in the table PERSON. The table for collection is specified as PERSON

in the XML file even though it is not required because the collection is persisted in the table

PERSON as assumed in the original Hibernate. The successful run of this test case shows

that when a correct table is specified in the XML mapping even when it is not necessary

(i.e the collection table assumed by the original Hibernate is same as the one specified in

the mapping file), modified Hibernate works with success. In the fifth test case, Figure

A.19, the wrong collection table name is specified in the mapping file. The value of the

table attribute should be “HOUSE PERSON” and not “PERSON”. Since a wrong table

name is specified by the user, the test case fails. The test case in Figure A.19 shows that it

is the responsibility of the user to specify the correct table for the collection. Failure to do

so would result in an error.

In the sixth and the last test case, Figure A.20, the table name is not specified

even when it is required because the one-to-many collection, persons, is persisted on the

table, “HOUSE PERSON”. Since the table attribute is not given, modified Hibernate, like

50

the original Hibernate, assumes the collection is persisted on the table “PERSON” which

results in a failure.

3.7 Summary of Results

Table 3.5 shows the results of running the testcases in different versions of Hibernate.

Hibernate 3.2.6 is used to develop a project. The latest version of Hibernate used for

production is 3.3.2 (Hibernate 3.5.0-Beta-2 is still under development). Before applying the

final modification to the original Hibernate, two different approaches are taken (Section

3.2). The two approaches - Modification1 and Modification2 - are tested against the same

test suites as modified Hibernate, which implements a correct approach to extend the

Hibernate 3.2.6, is. The class HbmBinder from the modified Hibernate is integrated in

Hibernate 3.3.2 and the testcases under Hibernate 3.3.2 are run, the results of which can be

seen in Table 3.5. The integration of the class HbmBinder to Hibernate 3.3.2 here requires

a few changes in importing packages.

Tested code Number of
test cases

Number of test
cases failed

Number of
failures

Hibernate 3.2.6 1273 39 14
Modification1 applied to the original Hiber-
nate 3.2.6 (Section 3.2)

1273 825 2

Modification2 applied to the original Hiber-
nate 3.2.6 (Section 3.2)

1273 49 14

Modified Hibernate 3.2.6 1273 39 14
Hibernate 3.3.2 1425 62 31
Modified Hibernate 3.3.2 1425 62 31

Table 3.5: Summary of all tests conducted

The original Hibernate code has 1273 test cases out of which it fails 14 test cases and

results in an error in 39 test cases. The first approach to fix the bug, Modification1, has a

large number of errors – 825 – however, it has three fewer failures compared to the original

Hibernate. Modification2 has only 49 errors and 14 failures. The final approach, the

modified Hibernate code, has same number of errors and failures as the original Hibernate

as specified in the fifth row of the Table 3.5. The latest version of Hibernate used in

production, Hibernate 3.3.2, has more test cases than Hibernate 3.2.6. The last two rows

51

of the table compares the results of running testcases on Hibernate 3.3.2 and the Hibernate

3.3.2 with HbmBinder class from modified Hibernate incorporated to it. Note the results

are the same. This shows that the fix which is developed for Hibernate 3.2.6 can be applied

to Hibernate 3.3.2 as well.

52

CHAPTER FOUR

Conclusion

4.1 Timeline

Hibernate is an ambitious venture with about one thousand and seventy six Java

classes. Hibernate 3.2.6 is used to develop this project. The latest version of Hibernate

(3.3.2) still has bug “Invalid queries when using subclasses and one-to-many associations”.

The extension of Hibernate, which is the objective of this Master’s project, involves under-

standing about three hundred lines of code which are not well documented. Documentation

of source code is an important phase of the software development cycle and enables the

reader of the source code to understand the meaning and functioning of modules in the

software. Since most of the Hibernate code is not documented, a huge amount of time was

required to understand the methods involved in the instantiation of bug in the Hibernate

code. The activity timeline for the project is given in Figure 4.1.

Figure 4.1: Project timeline

53

4.2 Activities

I Setting Environment : This phase involved setting up configurations to work with

Hibernate and Eclipse IDE, setting up HSQL DB and MySQL.

II Reading source code: As mentioned earlier, Hibernate consists of more than one

thousand classes and has poor documentation. Digging through the source code

and familiarization with the workflow are essential, but at the same time this is

tedious and time consuming. Although the patch for the extension of Hibernate

as intended by this project is nearly 160 lines, going through numerous methods

that directly or indirectly affect the patch was painstaking. The UML diagrams of

various classes and packages aided in getting the exact picture of the Hibernate

source code. UML diagrams helps in visualizing an entire system or a part of

a system from different perspectives and from different levels. Class diagrams

and package diagrams were helpful for this project. Rational Software Architect

(RSA) was a tool used for reverse engineering. By using RSA, UML diagrams for

Hibernate were reverse engineered from the Hibernate source code.

III Finding the point of problem: The exact point of the problem (which is responsible

for the wrong code generation) is located. Lack of proper documentation in the

original Hibernate source codes led to a several false starts. Originally, it is thought

that a wrong alias is assigned to a table. Finally, the original source of a problem

i.e. the irregularity in one-to-many construct is found out.

IV Modifying existing code: To fix the bug, the existing source code is modified

numerous times with different approaches. The initial approach focuses on in-

heritance. As mentioned in 1.3, initially the problem was thought to be with

inheritance. The first approach tried to find the exact table, among the tables in a

class hierarchy, whose rows form a part of a collection. A new class is added that

had the responsibility of generating a proper aliases for tables. Modifications are

done at the lowest level where the impacts of changes would be minimal. The new

class is modified many times as a result of running test cases. Since inheritance is

54

not the problem, the modified source code failed additional test cases. The final

approach is related to the irregularity in the usage of a one-to-many association.

The final approach imitates a many-to-many association whenever there is a “table”

value for a one-to-many association and the given “table” value is different from

the one that Hibernate determines for a one-to-many association.

V Writing a project report: Involves the preparation of this report itself.

VI Testing: There is a whole suite of test cases available for the Hibernate source

code. Finally, I added my own set of test cases for testing the bug fix. Testing

was done thoroughly for every modification done to the code.

4.3 Conclusion

In this project, a new feature is added to Hibernate which allows the use of one-to-

many construct with a join table on the many side of the association. The work is motivated

from Bug HHH-3095 [13] in Hibernate. Prior to the new extension to Hibernate 3.2.6

(which is called modified Hibernate), Hibernate 3.2.6 (which is called the original Hibernate)

does not support using a one-to-many construct for a one-to-many association when join

tables are used on the many side of the association. However, there is a workaround for it.

In the original Hibernate, users define many-to-many construct with a unique attribute set

to true. The workaround, to use many-to-many for a one-to-many association, does not

seem apparent to many users. The project takes this into account and lets the users define

one-to-many constructs for all one-to-many associations. Clearly, this is more natural than

the workaround. Modified Hibernate does not require any extra information on mapping

metadata, rather it extends the original Hibernate by complying within the framework

definitions in the original Hibernate. In particular, modified Hibernate makes use of a table

attribute specified for a collection which is ignored in the original Hibernate. Hence, no

violations of Hibernate rules are made.

Test cases show that modified Hibernate fixes the problem specified in the bug [13].

Modified Hibernate is run on the Hibernate test suites. The test results are consistent

55

with the original Hibernate i.e. the only failures in modified Hibernate are also in original

Hibernate. Both versions of Hibernate 3.2.6 are tested under new test cases that involve

one-to-many associations and the test results for both are as expected. Hibernate 3.3.2,

the latest version of Hibernate that can be used for production, is also integrated with the

modification made for Hibernate 3.2.6. The modifications made to Hibernate 3.3.2 are also

successful in that Hibernate 3.3.2 and Hibernate 3.3.2 with the modification produced the

same test suite results.

Since Hibernate 3.3.2 is the latest Hibernate version in use, a patch is generated

for Hibernate 3.3.2. The patch is submitted to Hibernate group in their issue tracking

system. Hibernate is being developed over time - its functionality increasing with every

new version. The integration of the patch submitted to Hibernate 3.3.2 will extend its

evergrowing capability.

56

APPENDICES

57

APPENDIX A

APPENDIX

package cat ;
public class DomesticCat extends Cat {

protected St r ing dcatName ;
// g e t t e r s and s e t t e r s
public St r ing getdcatName () {

return this . dcatName ;
}
public void setdcatName (St r ing dcatName) {

this . dcatName = dcatName ;
}

}

Figure A.1: Java class DomesticCat from Figure 2.5

package cat ;
public class ZooCat extends Cat {

protected St r ing zcatName ;
// g e t t e r s and s e t t e r s
public St r ing getzcatName () {

return this . zcatName ;
}
public void setzcatName (St r ing zcatName) {

this . zcatName = zcatName ;
}

}

Figure A.2: Java class ZooCat from Figure 2.5

58

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<class name=“DomesticCat” extends=“Cat” table=“DCAT”>
<id name=“ID” column=“CAT ID”>

<generator class=“increment”/>
</id>
<property name=“breed” column = “BREED”/>
<property name=“dcatName” column = “DCAT NAME”/>

</class>
</hibernate-mapping>

Figure A.3: XML mapping for a class DomesticCat in A.1 using “table per concrete

class with implicit polymorphism”

<?xml version=“1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<class name=“ZooCat” extends=“Cat” table=“ZCAT”>
<id name=“ID” column=“CAT ID”>

<generator class=“increment”/>
</id>
<property name=“zcatName” column = “ZCAT NAME”/>

</class>
</hibernate-mapping>

Figure A.4: XML mapping for a class ZooCat in A.2 using “table per concrete class

with implicit polymorphism”

59

<?xml version=“1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<class name=“Cat” table=“CAT” >
<id name=“ID” column=“CAT ID”>

<generator class=“increment”/>
</id>
<property name=“breed” column = “BREED”/>
<union-subclass name=“DomesticCat” table=“DCAT”>

<property name=“dcatName” column = “DCAT NAME”/>
</union-subclass>
<union-subclass name=“ZooCat” table=“ZCAT”>

<property name=“zcatName” column = “ZCAT NAME”/>
</union-subclass>

</class>
</hibernate-mapping>

Figure A.5: XML mapping for the classes in Figure 2.5 using “table per concrete class”

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<class name=“Cat” table=“CAT” batch-size=“100”>
<id name=“id” column=“CAT ID” >

<generator class=“increment”/>
</id>
<property name=“breed” column = “BREED”/>
<discriminator column=“CAT TYPE” />

</class>
</hibernate-mapping>

Figure A.6: XML mapping for the class Cat in Figure 2.5 using “Table per class

hierarchy”

60

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<subclass name=“DomesticCat” extends=“Cat” discriminator-value=“D”>
<property name=“dcatNam” column = “DCAT NAME”/>

</subclass>
</hibernate-mapping>

Figure A.7: XML mapping for the class DomesticCat in Figure 2.5 using “Table per

class hierarchy”

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<subclass name=“ZooCat” extends=“Cat” discriminator-value=“Z”>
<property name=“zcatName” column = “ZCAT NAME”/>

</subclass>
</hibernate-mapping>

Figure A.8: XML mapping for the class ZooCat in Figure 2.5 using “Table per class

hierarchy”

61

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping >

<class name=“Cat” table=“CAT” >
<id name=“ID” column=“CAT ID”>

<generator class=“increment”/>
</id>
<property name=“breed” column=“BREED”/>

</class>
</hibernate-mapping>

Figure A.9: XML mapping for the class Cat from Figure 2.5 using “Table per

subclass”

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<joined-subclass name=“DomesticCat” extends=“Cat” table=“DCAT”>
<key column=“CAT ID”/>
<property name=“dcatName” column=“DCAT NAME”/>

</joined-subclass>
</hibernate-mapping>

Figure A.10: XML mapping for the class DomesticCat from Figure 2.5 using “Table

per subclass”

62

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“cat”>

<joined-subclass name=“ZooCat” extends=“Cat” table=“ZCAT”>
<key column=“CAT ID”/>
<property name=“zcatName” column=“ZCAT NAME”/>

</joined-subclass>
</hibernate-mapping>

Figure A.11: XML mapping for the class ZooCat from Figure 2.5 using “Table per

subclass”

package cat ;
public class DomesticCat extends Cat {

protected St r ing dcatName ;
protected House house ;
// g e t t e r s and s e t t e r s
public St r ing getdcatName () {

return this . dcatName ;
}
public void setdcatName (St r ing dcatName) {

this . dcatName = dcatName ;
}
public House getHouse () {

return house ;
}
public void setHouse (House house) {

this . house = house ;
}

}

Figure A.12: Java class DomesticCat used in the project

63

package cat ;

import java . u t i l . ArrayList ;
import java . u t i l . C o l l e c t i o n ;

public class House {
protected Long id ;
protected Co l l e c t i on <DomesticCat> animals = new ArrayList () ;
protected St r ing houseName ;
// g e t t e r s and s e t t e r s
public Long get Id () {

return id ;
}
public void s e t I d (Long id) {

this . id = id ;
}
public Co l l e c t i on <DomesticCat> getAnimals () {

return animals ;
}
public void setAnimals (Co l l e c t i on <DomesticCat> animals) {

this . animals = animals ;
}
public St r ing getHouseName () {

return this . houseName ;
}
public void setHouseName (St r ing houseName) {

this . houseName = houseName ;
}

}

Figure A.13: Java class House used in the project

64

package cat ;
import java . u t i l . L i s t ;
import org . h ibe rnate . Se s s i on ;
import org . h ibe rnate . Ses s ionFactory ;
import org . h ibe rnate . c f g . Con f igurat ion ;

public class CatLoader {
public stat ic void main (St r ing [] a rgs) {

Conf igurat ion c f g = new Conf igurat ion () ;
c f g . c o n f i g u r e (‘ ‘ h ibe rnate . c f g . xml ’ ’) ;
Ses s ionFactory s e s s i onFac to ry = c fg . bu i ldSe s s i onFac to ry () ;
S e s s i on s e s s i o n = se s s i onFac to ry . ge tCurrentSes s i on () ;
s e s s i o n . beg inTransact ion () ;
L i s t<DomesticCat> dcats = s e s s i o n . createQuery (

‘ ‘ from DomesticCat dc order by dc . id asc ’ ’) . l i s t () ;
System . out . p r i n t l n (‘ ‘ The s i z e o f the l i s t o f domest ic ca t s i s ’ ’

+ dcats . s i z e ()) ;
for (Object m : dcats){

DomesticCat loadedDCats = (DomesticCat) m;
System . out . p r i n t l n (loadedDCats . ge t Id ()+ ‘ ‘ and ’ ’

+ loadedDCats . getHouse () . ge t Id ()) ;
}
s e s s i o n . getTransact ion () . commit () ;

}
}

Figure A.14: Java class CatLoader used in the project

65

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“Orderline” table=“ORDERLINE”>
<composite-id name=“id” class=“OrderLineId”>

<key-property name=“lineId” column=“LINEID”/>
<key-property name=“orderId” column=“ORDERID”/>
<key-property name=“customerId” column=“CUSTOMERID”/>

</composite-id>
<property name=“name” column=“NAME”/>

</class>

<class name=“Order” table=“ORDERTABLE”>
<id name=“id” column=“ORDER ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“orderName” column=“ORDER NAME”/>
<set name=“orderLines” table=”LINKTABLE”>

<key>
<column name=“ORDER ID”/>

</key>
<one-to-many class=“Orderline”/>

</set>
</class>

</hibernate-mapping>

Figure A.15: TestCase1 - CompositeId test

66

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“House” table=“HOUSE” >
<! - - id - - >
<id name=“id” column=“HOUSE ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“housename” column=“HOUSE NAME”/>
<set name=“persons” lazy=“false” cascade=“all” table = “HOUSE PERSON”

fetch=“select” inverse=“true”>
<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“Person” />

</set>
</class>

<class name=“Person” table=“PERSON” >
<!– id –>
<id name=“id” column=“PERSON ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name = “name” column = “PERSON NAME” type = “string”/>
<join table=“HOUSE PERSON”>

<key column=“PERSON ID” />
<many-to-one name=“myhouse” column = “HOUSE ID” lazy=“false” not-null=“false”/>

</join>
</class>

</hibernate-mapping>

Figure A.16: TestCase2 - Bidirectional One-To-Many with Join

67

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“Person” table=“PERSON” >
<!– id –>
<id name=“id” column=“PERSON ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name = “name” column = “PERSON NAME” type = “string”/>

</class>

<class name=“House” table=“HOUSE” >
<!– id –>
<id name=“id” column=“HOUSE ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“housename” column=“HOUSE NAME”/>
<set name=“persons” lazy=“false” cascade=“none” table = “HOUSE PERSON”

fetch=“select”>
<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“Person” />

</set>
</class>

</hibernate-mapping>

Figure A.17: TestCase3 - Unidirectional One-To-Many without Join but an Association

mapped to a different table

68

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“House” table=“HOUSE” >
<! - - id - - >
<id name=“id” column=“HOUSE ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“housename” column=“HOUSE NAME”/>
<set name=“persons” lazy=“false” cascade=“all” table = “PERSON”

fetch=“select” inverse=“true”>
<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“Person” />

</set>
</class>

<class name=“Person” table=“PERSON” >
<!– id –>
<id name=“id” column=“PERSON ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<many-to-one name=“myhouse” column = “HOUSE ID” lazy=“false” not-null=“false”/>
<join table=“HOUSE PERSON”>

<key column=“PERSON ID”/>
<property name = “name” column = “PERSON NAME” type = “string”/>

</join>
</class>

</hibernate-mapping>

Figure A.18: TestCase4 - Bidirectional One-To-Many which does not require table

attribute in set but it is specified

69

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“House” table=“HOUSE” >
<! - - id - - >
<id name=“id” column=“HOUSE ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“housename” column=“HOUSE NAME”/>
<set name=“persons” lazy=“false” cascade=“all” table = “PERSON”

fetch=“select” inverse=“true”>
<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“Person” />

</set>
</class>

<class name=“Person” table=“PERSON” >
<!– id –>
<id name=“id” column=“PERSON ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name = “name” column = “PERSON NAME” type = “string”/>
<join table=“HOUSE PERSON”>

<key column=“PERSON ID” />
<many-to-one name=“myhouse” column = “HOUSE ID” lazy=“false” not-null=“false”/>

</join>
</class>

</hibernate-mapping>

Figure A.19: TestCase5 - Bidirectional One-To-Many that requires table attribute in

set but the wrong table name is specified

70

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE hibernate-mapping PUBLIC
“-//Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd”>
<hibernate-mapping package=“mypackage”>

<class name=“House” table=“HOUSE” >
<! - - id - - >
<id name=“id” column=“HOUSE ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name=“housename” column=“HOUSE NAME”/>
<set name=“persons” lazy=“false” cascade=“all” inverse=“true”

fetch=“select”>
<key column=“HOUSE ID” not-null=“false”/>
<one-to-many class=“Person” />

</set>
</class>

<class name=“Person” table=“PERSON” >
<!– id –>
<id name=“id” column=“PERSON ID” type=“java.lang.Long”>

<generator class=“increment”/>
</id>
<property name = “name” column = “PERSON NAME” type = “string”/>
<join table=“HOUSE PERSON”>

<key column=“PERSON ID” on-delete=“cascade”/>
<many-to-one name=“myhouse” column = “HOUSE ID” lazy=“false” not-null=“false”/>

</join>
</class>

</hibernate-mapping>

Figure A.20: TestCase6 - Bidirectional One-To-Many that requires table attribute in

set but no table name is specified

71

−−− HbmBinder . java 2009−10−19 23 :07 :46 .000000000 −0500
+++ HbmBinder Sweta . java 2009−10−19 23 :07 :55 .000000000 −0500
@@ −1029 ,7 +1029 ,49 @@

f ina l Mappings mappings) throws MappingException {

Table t a b l e = simpleValue . getTable () ;
+ //one−to−many node t h a t a c t s as a many−to−many node wi th a
+ // unique c o n s t r a i n t
+ // i f the c o l l e c t i o n i s mapped as a many−to−many , Hibernate i n t e r n a l l y
+ // t r e a t s i t as a many−to−one c l a s s
+ i f (‘ ‘ one−to−many ’ ’ . equa l s (node . getName ()) && ‘ ‘ManyToOne ’ ’ .

equa l s (s impleValue . ge tC la s s () . getSimpleName ())) {
+ Str ing classNodeValue = node . a t t r ibuteVa lue (‘ ‘ class ’ ’) ;
+ I t e r a t o r i t e r = mappings . ge tC la s s (getClassName (classNodeValue ,

mappings)) . g e t I d e n t i f i e r P r o p e r t y () . getValue () . getColumnIterator () ;
+ int count = 0 ;
+ while (i t e r . hasNext ()) {
+ // g e t an i n d e n t i f i e r column from the c l a s s t h a t
+ //makes up the c o l l e c t i o n
+ Column c o l u m n I d e n t i f i e r = (Column) i t e r . next () ;
+ Column column = new Column () ;
+ column . setValue (s impleValue) ;
+ column . setTypeIndex (count++) ;
+ // s e t the v a r i a b l e s as done by the method bindColumn
+ column . setLength (c o l u m n I d e n t i f i e r . getLength ()) ;
+ column . s e t S c a l e (c o l u m n I d e n t i f i e r . g e tSca l e ()) ;
+ column . s e t P r e c i s i o n (c o l u m n I d e n t i f i e r . g e t P r e c i s i o n ()) ;
+ column . s e t N u l l a b l e (i s N u l l a b l e) ;
+ column . setUnique (c o l u m n I d e n t i f i e r . i sUnique ()) ;
+ column . setCheckConstra int (c o l u m n I d e n t i f i e r . getCheckConstra int ()) ;
+ column . se tDe fau l tVa lue (c o l u m n I d e n t i f i e r . getDefau l tValue ()) ;
+ column . setSqlType (c o l u m n I d e n t i f i e r . getSqlType ()) ;
+ column . setComment (c o l u m n I d e n t i f i e r . getComment ()) ;
+ // end o f s e t t i n g the v a r i a b l e s as done by the bindColumn
+ // g e t the name o f the i d e n t i f i e r column
+ Str ing logicalColumnName = mappings . getNamingStrategy () .
+ logicalColumnName (c o l u m n I d e n t i f i e r . getName () , propertyPath) ;
+ column . setName (mappings . getNamingStrategy () .
+ columnName(logicalColumnName)) ;
+ i f (t a b l e != null) { // which i s a lways t r u e in the second pass
+ t a b l e . addColumn (column) ;
+ mappings . addColumnBinding (logicalColumnName , column , t a b l e) ;
+ }
+ simpleValue . addColumn (column) ;

Figure A.21: The patch generated

72

+ // column index
+ bindIndex (null , tab le , column , mappings) ;
+ bindIndex (node . a t t r i b u t e (‘ ‘ index ’ ’) , tab le , column , mappings) ;
+ //column unique−key
+ bindUniqueKey (null , tab le , column , mappings) ;
+ bindUniqueKey (node . a t t r i b u t e (‘ ‘ unique−key ’ ’) , tab le , column ,

mappings) ;
+ }
+ }
+ else {

// COLUMN(S)
Attr ibute columnAttribute = node . a t t r i b u t e (‘ ‘ column ’ ’) ;
i f (columnAttr ibute == null) {

@@ −1097 ,7 +1139 ,7 @@
bindIndex (node . a t t r i b u t e (‘ ‘ index ’ ’) , tab le , column , mappings) ;
bindUniqueKey (node . a t t r i b u t e (‘ ‘ unique−key ’ ’) , tab le , column ,

mappings) ;
}

−
+ }

i f (autoColumn && simpleValue . getColumnSpan () == 0) {
Column column = new Column () ;
column . setValue (s impleValue) ;

@@ −1378 ,8 +1420 ,7 @@

// FETCH STRATEGY
− i n i tOute rJo inFe t chSe t t ing (node , c o l l e c t i o n) ;
−
+ in i tOute rJo inFe t chSe t t ing (node , c o l l e c t i o n , mappings) ;

i f (‘ ‘ s u b s e l e c t ’ ’ . equa l s (node . a t t r ibuteVa lue (‘ ‘ f e t c h ’ ’))) {
c o l l e c t i o n . s e tSubse l e c tLoadab l e (true) ;
c o l l e c t i o n . getOwner () . s e t S u b s e l e c t L o a d a b l e C o l l e c t i o n s (true) ;

@@ −1557 ,7 +1598 ,7 @@
boolean i s N u l l a b l e , Mappings mappings) throws MappingException {

bindColumnsOrFormula (node , manyToOne , path , i s N u l l a b l e , mappings) ;
− i n i tOute rJo inFe t chSe t t ing (node , manyToOne) ;
+ in i tOute rJo inFe t chSe t t ing (node , manyToOne , mappings) ;

i n i t L a z i n e s s (node , manyToOne , mappings , true) ;
Att r ibute ukName = node . a t t r i b u t e (‘ ‘ property−r e f ’ ’) ;

@@ −1640 ,7 +1681 ,7 @@
Fore ignKeyDirect ion .FOREIGN KEY FROM PARENT :
Fore ignKeyDirect ion .FOREIGN KEY TO PARENT) ;

Figure A.22: The patch generated (contd..)

73

− i n i tOute rJo inFe t chSe t t ing (node , oneToOne) ;
+ in i tOute rJo inFe t chSe t t ing (node , oneToOne , mappings) ;

i n i t L a z i n e s s (node , oneToOne , mappings , true) ;

oneToOne . setEmbedded (‘ ‘ true ’ ’ . equa l s (
node . a t t r ibuteVa lue (‘ ‘ embed−xml ’ ’))) ;

@@ −1954 ,15 +1995 ,18 @@
return typeNode . getValue () ;

}

− private stat ic void i n i tOute rJo inFe t chSe t t ing (Element node ,
Fetchable model) {

+
+ private stat ic void i n i tOute rJo inFe t chSe t t ing (Element node ,

Fetchable model , Mappings mappings) {

Attr ibute fetchNode = node . a t t r i b u t e (‘ ‘ f e t c h ’ ’) ;
f ina l FetchMode f e t c h S t y l e ;
boolean l a zy = true ;
i f (fetchNode == null) {

Attr ibute j fNode = node . a t t r i b u t e (‘ ‘ outer−j o i n ’ ’) ;
i f (j fNode == null) {

− i f (‘ ‘many−to−many ’ ’ . equa l s (node . getName ())) {
− //NOTE SPECIAL CASE:
+ // i f a node i s a many−to−many OR a node i s a one−to−many but
+ // needs to be t r e a t e d as a many−to−many node
+ // wi th a unique c o n s t r a i n t
+ i f (‘ ‘many−to−many ’ ’ . equa l s (node . getName ()) | |

(‘ ‘ one−to−many ’ ’ . equa l s (node . getName ()) &&
‘ ‘ManyToOne ’ ’ . equa l s (model . g e tC la s s () . getSimpleName ()))

){
+
+ //NOTE SPECIAL CASE: a

// d e f a u l t to j o i n and non−l a z y f o r the ‘ ‘ second j o i n ’ ’
// o f the many−to−many
l a zy = fa l se ;

@@ −1999 ,7 +2043 ,6 @@
model . setFetchMode (f e t c h S t y l e) ;
model . setLazy (l azy) ;

}
−

private stat ic void m a k e I d e n t i f i e r (Element node , SimpleValue model ,
Mappings mappings) {

// GENERATOR

Figure A.23: The patch generated (contd..)

74

@@ −2383 ,14 +2426 ,60 @@
r e f e r e n c e d . addProperty (ib) ;

}
}

+ public stat ic void setUpManyToMany(Element node , C o l l e c t i o n c o l l e c t i o n ,
+ java . u t i l .Map p e r s i s t e n t C l a s s e s , Mappings mappings ,
+ java . u t i l .Map inher i tedMetas , Att r ibute tableNode) {
+ Str ing tableName ;
+ tableName = mappings . getNamingStrategy () .
+ tableName (tableNode . getValue ()) ;
+ // Reading a t t r i b u t e s f o r a many−to−many . These l i n e s are from the
+ // o r i g i n a l Hibernate code .
+ Attr ibute schemaNode = node . a t t r i b u t e (‘ ‘ schema ’ ’) ;
+ St r ing schema = schemaNode == null ?mappings . getSchemaName () :
+ schemaNode . getValue () ;
+ Attr ibute catalogNode = node . a t t r i b u t e (‘ ‘ c a ta l og ’ ’) ;
+ St r ing ca ta l og = catalogNode == null ?mappings . getCatalogName () :
+ catalogNode . getValue () ;
+ Table t a b l e = mappings . addTable (
+ schema ,
+ cata log ,
+ tableName ,
+ g e t S u bs e l e c t (node) ,
+ fa l se
+) ;
+ c o l l e c t i o n . s e t C o l l e c t i o n T a b l e (t a b l e) ;
+ bindComment (tab le , node) ;
+ c o l l e c t i o n . setElement (null) ;
+ log . i n f o (
+ ‘ ‘ Converting one−to−many to many−to−many : Mapping c o l l e c t i o n : ’ ’
+ + c o l l e c t i o n . getRole () +‘‘−> ’ ’ +
+ c o l l e c t i o n . g e tCo l l e c t i onTab l e () . getName ()) ;
+ }

Figure A.24: The patch generated (contd..)

75

/∗∗
∗ Ca l l ed f o r a l l c o l l e c t i o n s
∗/

public stat ic void bindCol l ec t ionSecondPass (Element node ,
C o l l e c t i o n c o l l e c t i o n , java . u t i l .Map p e r s i s t e n t C l a s s e s ,
Mappings mappings , java . u t i l .Map inher i t edMetas)
throws MappingException {

−
+ //Check whether a g iven c o l l e c t i o n i s o f type one−to−many .
+ i f (c o l l e c t i o n . isOneToMany ()) {
+ //Get the one−to−many node which was p r e v i o u s l y parsed from
+ // the mapping f i l e
+ Element oneToManyNode = node . element (‘ ‘ one−to−many ’ ’) ;
+ //Get the a t t r i b u t e t a b l e from a g iven node
+ Attr ibute tableNode = node . a t t r i b u t e (‘ ‘ t a b l e ’ ’) ;
+ // exp l i c i tTab leName : s t o r e s the v a l u e o f the
+ // a t t r i b u t e tab leNode i f p r e s e n t
+ Str ing expl ic i tTableName = null ;
+ // I f t h e r e i s a tab leNode then g e t the v a l u e o f the node
+ //and conver t i t to a lowercase f o r a comparision
+ i f (tableNode != null) {
+ expl ic i tTableName = mappings . getNamingStrategy () .

tableName (tableNode . getValue ()) . toLowerCase () ;
+ }
+ //Get the name o f the c l a s s (which comprises the c o l l e c t i o n)
+ // from a one−to−many tag , then g e t the name o f the t a b l e f o r
+ // t h a t c l a s s and conver t i t to a lower case f o r a comparision
+ Str ing implic itTableName = mappings . ge tC la s s (

getClassName (oneToManyNode . a t t r ibuteVa lue (‘ ‘ class ’ ’) , mappings))
!=null ? mappings . ge tC la s s (

+ getClassName (oneToManyNode . a t t r ibuteVa lue (‘ ‘ class ’ ’) ,
mappings)) . getTable () . getName () . toLowerCase () : null ;

+ // i f the user g iven name o f the c o l l e c t i o n t a b l e i s not same
+ // as the one computed by o r i g i n a l Hibernate
+ // then the c o l l e c t i o n must be t r e a t e d as a many−to−many with a
+ // unique c o n s t r a i n t , and hence the type o f the c o l l e c t i o n
+ // which was p r e v i o u s l y one−to−many i s changed
+ i f (expl ic i tTableName != null && implicitTableName != null &&

! expl ic i tTableName . equa l s (implic itTableName)){
+ setUpManyToMany(node , c o l l e c t i o n , p e r s i s t e n t C l a s s e s ,
+ mappings , inher i tedMetas , tableNode) ;
+ }
+ }

Figure A.25: The patch generated (contd..)

76

i f (c o l l e c t i o n . isOneToMany ()) {
OneToMany oneToMany = (OneToMany) c o l l e c t i o n . getElement () ;
S t r ing a s socC la s s = oneToMany . getReferencedEntityName () ;

@@ −2459 ,7 +2548 ,7 @@
mappings

) ;
}

− else i f (‘ ‘ many−to−many ’ ’ . equa l s (name)) {
+ else i f (‘ ‘ many−to−many ’ ’ . equa l s (name) | |

(‘ ‘ one−to−many ’ ’ . equa l s (name) && ! c o l l e c t i o n . isOneToMany ())) {
ManyToOne element = new ManyToOne(

c o l l e c t i o n . g e tCo l l e c t i onTab l e ()) ;
c o l l e c t i o n . setElement (element) ;
bindManyToOne(

Figure A.26: The patch generated (contd..)

77

BIBLIOGRAPHY

[1] http://en.wikipedia.org/wiki/SQL

[2] http://www.mkyong.com/hibernate/why-i-choose-hibernate-for-my-project/

[3] http://java.dzone.com/news/hibernate-best-choice

[4] Hibernate 3.2.6 Reference Manual

[5] http://iproving.ca/space/Technologies/Hibernate/SQL+vs+HQL+with+the+Session+
Cache

[6] http://en.wikipedia.org/wiki/RDBMS

[7] Christian Bauer and Gavin King, “Java Persistence with Hibernate”

[8] http://java.sun.com/javase/technologies/database/

[9] http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx

[10] http://www.agiledata.org/essays/mappingObjects.html#MappingInheritance

[11] http://opensource.atlassian.com/projects/hibernate/browse/HHH-4077

[12] http://opensource.atlassian.com/projects/hibernate/browse/HHH-987

[13] http://opensource.atlassian.com/projects/hibernate/browse/HHH-3095

[14] http://www.aspfree.com/c/a/Database/Introduction-to-RDBMS-OODBMS-and-ORDBMS/
1/

[15] http://www.acm.org/crossroads/xrds7-3/ordbms.html

[16] http://sourceforge.net/project/stats/detail.php?group id=40712&ugn=
hibernate&type=prdownload&mode=alltime&file id=113508

[17] http://www.javalobby.org/articles/hibernatequery102/?source=archives

78

