
ABSTRACT

Comparison of Smallest Eigenvalues and Extremal Points for Third and Fourth
Order Three Point Boundary Value Problems

Jeffrey T. Neugebauer, Ph.D.

Advisor: Johnny Henderson, Ph.D.

The theory of u0-positive operators with respect to a cone in a Banach space is

applied to the linear differential equations u(4) +λ1p(x)u = 0 and u(4) +λ2q(x)u = 0,

0 ≤ x ≤ 1, with each satisfying the boundary conditions u(0) = u′(r) = u′′(r) =

u′′′(1) = 0, 0 < r < 1. The existence of smallest positive eigenvalues is established,

and a comparison theorem for smallest positive eigenvalues is obtained. These re-

sults are then extended to the nth order problem using two different methods. One

method involves finding the Green’s function for −u(n) = 0 satisfying the higher

order boundary conditions, and the other involves making a substitution that al-

lows us to work with a variation of the fourth order problem. Extremal points via

Krein-Rutman theory are then found. Analogous results are then obtained for the

eigenvalue problems u′′′ + λ1p(x)u = 0 and u′′′ + λ2q(x)u = 0, with each satisfying

u(0) = u′(r) = u′′(1) = 0, 0 < 1/2 < r < 1.
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CHAPTER ONE

Introduction

1.1 Overview

In this dissertation, we will consider two eigenvalue problems. First, we con-

sider the comparison of eigenvalues for the eigenvalue problems

u(4) + λ1p(x)u = 0, (1.1)

u(4) + λ2q(x)u = 0, (1.2)

satisfying the boundary conditions

u(0) = u′(r) = u′′(r) = u′′′(1) = 0, (1.3)

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

The focus in the second chapter of the dissertation will be on comparing the

smallest eigenvalues for these eigenvalue problems. First, using the theory of u0-

positive operators with respect to a cone in a Banach space, we establish the exis-

tence of smallest eigenvalues for (1.1),(1.3), and (1.2),(1.3), and then compare these

smallest eigenvalues after assuming a relationship between p(x) and q(x). We then

extend these results to the nth order case using two different methods. First, in

Chapter 3, we establish the properties of the Green’s function for the nth order

problem, and by using these properties, we are able to again establish the existence

of smallest eigenvalues and then derive the comparison results. In Chapter 4, we use

a substitution method so that we can work with fourth order eigenvalue problems

that have the same eigenvalues as the nth order problem. Comparison results are

then obtained.
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We then consider the comparison of eigenvalues for the eigenvalue problems

u′′′ + λ1p(x)u = 0, (1.4)

u′′′ + λ2q(x)u = 0, (1.5)

each of which satisfies the boundary conditions

u(0) = u′(r) = u′′(1) = 0, (1.6)

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1]. Results analogous to the ones in Chapters 2, 3, and 4 are found for these

eigenvalue problems in Chapters 5, 6, and 7.

The technique for the comparison of these eigenvalues involve the application

of sign properties of the Green’s function, followed by the application of u0-positive

operators with respect to a cone in a Banach space. These applications are presented

in books by Krasnoselskii [23] and by Krein and Rutman [22].

Several authors have before applied these techniques in comparing eigenvalues

for different boundary problems than the ones seen here. Previous work has been

devoted to boundary value problems for ordinary differential equations involving

conjugate, Lidstone, and right focal conditions. For example, Eloe and Hender-

son have studied smalleset eigenvalue comparisons for a class of two-point bound-

ary value problems [8], and for a class of multipoint boundary value problems [9].

Karna has also studied smallest eigenvalue comparisons for m-point boundary value

problems [18] and three-point boundary value problems [19]. In addition, compari-

son results have been obtained for difference equations [14] and for boundary value

problems on time scales [2, 4, 16, 17, 24]. For additional work on this field, see

[3, 10, 11, 13, 15, 20, 27, 28].

In the final chapter, we characterize extremal points for both a fourth order

problem and the third order problem via Krein-Rutman theory. We show there
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exists a smallest interval such that there exists at least one nontrivial solution for

a fourth order three point problem and a third order three point problem. For the

theory used in this chapter, we refer the reader to Amann [1], Deimling [5], Krein

and Rutman [22], Schmidt and Smith [26], and Zeidler [29].

There has also been work done on extremal points. Eloe, Hankerson, and

Henderson characterized extremal points for a class of multipoint boundary value

problem [6] and for a class of two point boundary value problems [7]. Eloe, Hender-

son, and Thompson characterized extremal points for impulsive Lidstone boundary

value problems [12].

1.2 Preliminary Definitions and Theorems

Definition 1.1. Let B be a Banach space over R. A closed nonempty subset P of B

is said to be a cone provided

(i) αu+ βv ∈ P , for all u, v ∈ P and all α, β ≥ 0, and

(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 1.2. A cone P is solid if the interior, P◦, of P , is nonempty. A cone P is

reproducing if B = P−P ; i.e., given w ∈ B, there exist u, v ∈ P such that w = u−v.

Remark 1.1. Krasnosel’skii [23] showed that every solid cone is reproducing.

Definition 1.3. Let P be a cone in a real Banach space B. If u, v ∈ B, u ≤ v with

respect to P if v − u ∈ P . If both M,N : B → B are bounded linear operators,

M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P .

Definition 1.4. A bounded linear operator M : B → B is u0-positive with respect to

P if there exists 0 6= u0 ∈ P such that for each 0 6= u ∈ P , there exist k1(u) > 0 and

k2(u) > 0 such that k1u0 ≤Mu ≤ k2u0 with respect to P .

The following three results are fundamental to our comparison results and are

attributed to Krasnosel’skii [23]. The proof of Lemma 1.1 is provided, the proof of

3



Theorem 1.1 can be found in Krasnosel’skii’s book [23], and the proof of Theorem

1.2 is provide by Keener and Travis [21] as an extension of Krasonel’skii’s results.

Lemma 1.1. Let B be a Banach space over the reals, and let P ⊂ B be a solid cone.

If M : B → B is a linear operator such that M : P\{0} → P◦, then M is u0-positive

with respect to P.

Proof. Choose any u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose

k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and

u0 − 1
k2
Mu ∈ P◦. So k1u0 ≤Mu with respect to P and Mu ≤ k2u0 with respect to

P . Thus k1u0 ≤Mu ≤ k2u0 with respect to P and so M is u0-positive with respect

to P .

Theorem 1.1. Let B be a real Banach space and let P ⊂ B be a reproducing cone.

Let L : B → B be a compact, u0-positive, linear operator. Then L has an essentially

unique eigenvector in P, and the corresponding eigenvalue is simple, positive, and

larger than the absolute value of any other eigenvalue.

Theorem 1.2. Let B be a real Banach space and P ⊂ B be a cone. Let both M,N :

B → B be bounded, linear operators and assume that at least one of the operators

is u0-positive. If M ≤ N , Mu1 ≥ λ1u1 for some u1 ∈ P and some λ1 > 0, and

Nu2 ≤ λ2u2 for some u2 ∈ P and some λ2 > 0, then λ1 ≤ λ2. Futhermore, λ1 = λ2

implies u1 is a scalar multiple of u2.
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CHAPTER TWO

The Fourth Order Problem

In this chapter, we consider the fourth order eigenvalue problems

u(4) + λ1p(x)u = 0, (2.1)

u(4) + λ2q(x)u = 0, (2.2)

satisfying the boundary conditions

u(0) = u′(r) = u′′(r) = u′′′(1) = 0, (2.3)

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

We derive comparison results for these fourth order eigenvalue problems by

applying the theorems mentioned in the Introduction. To do this, we will define

integral operators whose kernel is the Green’s function for −u(4) = 0 satisfying

(2.3).

This Green’s function is given by

G(x, s) =



s3

6
, s ≤ r, s ≤ x,

(x−r)3+r3

6
, s > r, s > x,

(x−s)3+s3

6
, s ≤ r, s > x,

r3+(s−x)3+(x−r)3
6

, s > r, s ≤ x.

So u(x) solves (2.1),(2.3) if and only if u(x) = λ1

∫ 1

0
G(x, s)p(s)u(s)ds, and u(x)

solves (2.2),(2.3) if and only if u(x) = λ2

∫ 1

0
G(x, s)q(s)u(s)ds. Note G(x, s) ≥ 0 on

[0, 1]× [0, 1], G(x, s) > 0 on (0, 1]× (0, 1], and ∂
∂x
G(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C1[0, 1] | u(0) = 0}
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with the norm

||u|| = sup
0≤x≤1

|u′(x)|.

Define the cone P to be

P = {u ∈ B | u(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(x)| = |u(x)− u(0)| =
∣∣∣∣∫ x

0

u′(s)ds

∣∣∣∣
≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(x)| ≤ ||u||.

Lemma 2.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(x) > 0 on (0, 1] and u′(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u′(0)− ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v′(x)− u′(x)| < ε0.

So v′(0) > u′(0) − ε0 > 0. Also, |v(x) − u(x)| ≤ ||v − u|| < ε0, and so v(x) > 0 on

(0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P and Ω ⊂ P◦. Therefore P is solid in

B.

Next, we define our linear operators M,N : B → B by

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

G(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.
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Lemma 2.2. The linear operators M and N are compact.

Proof. We prove the statement for M only. The proof for N is similiar. We will use

the Arzelá-Ascoli theorem to show that M is a compact operator. To do this, we

need to show that M is continuous, and for any bounded sequence {un} in B, the

sequence {Mun} is unformly bounded and equicontinuous.

Let u, v ∈ B. Since p(x) is a nonnegative continuous function on [0, 1], p(x), has

a maximum value. Define this maximum value, sup
0≤x≤1

{p(x)} = L. Since ∂
∂x
G(x, s)

is bounded, let K = sup
(x,s)∈[0,1]×[0,1]

{
∂

∂x
G(x, s)

}
. Then, for ε > 0, there exists δ =

ε

LK
> 0 such that if ||u− v|| < δ, for any x ∈ [0, 1],

|Mu′(x)−Mv′(x)| =
∣∣∣∣∫ 1

0

∂

∂x
G(x, s)p(s)(u(s)− v(s))ds

∣∣∣∣
≤
∫ 1

0

∂

∂x
G(x, s)p(s)|(u(s)− v(s))|ds

< LKδ = ε.

So, if ||u − v|| < δ, then sup
0≤x≤1

|Mu′(x) − Mv′(x)| < ε. Thus, for ||u − v|| < δ,

||Mu−Mv|| < ε. Hence M is continuous.

Let {un} be a bounded sequence in B and let ||un|| ≤ K0 for all n. Since

Mun(x) =
∫ 1

0
G(x, s)p(s)un(s)ds, we have

|Mu′n(x)| =
∣∣∣∣∫ 1

0

∂

∂x
G(x, s)p(s)un(s)ds

∣∣∣∣
≤ KK0L,

for all n. So {Mun} is uniformly bounded.

Finally, since ∂
∂x
G(x, s) is continuous for any fixed s, for any ε > 0, there exists

δ > 0 such that if |x1 − x2| < δ,
∣∣ ∂
∂x
G(x1, s)− ∂

∂x
G(x2, s)

∣∣ < ε
LK0

. Then, for any n,

|Mu′n(x1)−Mu′n(x2)| ≤
∫ 1

0

∣∣∣∣ ∂∂xG(x1, s)−
∂

∂x
G(x2, s)

∣∣∣∣ p(s)un(s)ds

<
ε

LK0

LK0 = ε.
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So, if |x1 − x2| < δ, then ||Mun(x1)−Mun(x2)|| < ε for all n. Therefore, {Mun} is

equicontinuous. Therefore, by the Arzela-Ascoli theorem, M is a compact operator.

Lemma 2.3. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then since

G(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since G(x, s) > 0 on (0, 1]× (0, 1],

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds

≥
∫ β

α

G(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
G(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)′(0) =

∫ 1

0

∂

∂x
G(0, s)p(s)u(s)ds

≥
∫ β

α

∂

∂x
G(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 2.1. Notice that

Λu = Mu =

∫ 1

0

G(x, s)p(s)u(s)ds,
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if and only if

u(x) =
1

Λ

∫ 1

0

G(x, s)p(s)u(s)ds,

if and only if

−u(4)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(r) = u′′(r) = u′′′(1) = 0.

So the eigenvalues of (2.1),(2.3) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (2.2),(2.3) are reciprocals of eigenvalues of N , and

conversely.

Theorem 2.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 2.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 2.1 associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)(x) =

∫ 1

0

G(x, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

9



If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 2.1, the following theorem is an immediate consequence of Theo-

rems 2.1 and 2.2.

Theorem 2.3. Assume the hypotheses of Theorem 2.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (2.1),(2.3) and (2.2),(2.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may

be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x)

for 0 ≤ x ≤ 1.
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CHAPTER THREE

Extending the Fourth Order Problem Using the Green’s Function

3.1 Introduction

In this chapter, we will extend the results of the previous fourth order problem

to the nth order problems

u(n) + λ1p(x)u = 0,

u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

To do this, we will find the sign properties of the Green’s function for −u(n) = 0

satisfying the boundary conditions just stated. We will need the Green’s function for

the fourth order problem to find these sign properties. We first show the extension

of the fourth order problem to the fifth order problem. Then, we extend to the nth

order problem.

3.2 The Fifth Order Problem

We now consider the eigenvalue problems

u(5) + λ1p(x)u = 0, (3.1)

u(5) + λ2q(x)u = 0, (3.2)

satisfying the boundary conditions

u(0) = u′(0) = u′′(r) = u′′′(r) = u(4)(1) = 0, (3.3)

11



where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

Here we will use methods similar to the methods used in the previous chapter

to derive comparison theorems for these fifth order eigenvalue problems. We will

do this by finding the Green’s function, which we will call G5(x, s), for −u(5) = 0

satisfying (3.3). This Green’s function is continuous and ∂
∂x
G5(x, s) = G(x, s), where

G(x, s) is as defined earlier. Therefore, the Green’s function is

G5(x, s) =



4s3x−s4
24

, s ≤ r, s ≤ x,

(x−r)4+4r3x−r4
24

, s > r, s > x,

(x−s)4+4s3−s4
24

, s ≤ r, s > x,

4r3x−(s−x)4+(x−r)4
24

, s > r, s ≤ x.

Now u(x) solves (3.1),(3.3) if and only if u(x) = λ1

∫ 1

0
G5(x, s)p(s)u(s)ds, and u(x)

solves (3.2),(3.3) if and only if u(x) = λ2

∫ 1

0
G5(x, s)q(s)u(s)ds.

Since ∂
∂x
G5(x, s) = G(x, s), ∂

∂x
G5(x, s) ≥ 0 on [0, 1]× [0, 1] and ∂

∂x
G5(x, s) > 0

on (0, 1] × (0, 1]. Also, since ∂2

∂x2
G5(x, s) = ∂

∂x
G(x, s), then ∂2

∂x2
G5(x, s)|x=0 > 0 for

0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C2[0, 1] | u(0) = u′(0) = 0},

with the norm

||u|| = sup
0≤x≤1

|u′′(x)|.

Define the cone P to be

P = {u ∈ B | u′(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u′(x)| = |u′(x)− u′(0)| =
∣∣∣∣∫ x

0

u′′(s)ds

∣∣∣∣
12



≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u′(x)| ≤ ||u||.

Lemma 3.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u′(x) > 0 on (0, 1] and u′′(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u′′(0)−ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v′′(x)−u′′(x)| < ε0.

So v′′(0) > u′′(0) − ε0 > 0. Also, |v′(x) − u′(x)| ≤ ||v − u|| < ε0, and so v′(x) > 0

on (0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P and Ω ⊂ P◦. Therefore P is solid in

B.

Next, we define our linear operators M and N by

Mu(x) =

∫ 1

0

G5(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

G5(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

Since G5(0, s) = ∂
∂x
G5(x, s)|x=0 = 0, M,N : B → B. A standard application of the

Arzelá-Ascoli theorem shows that M and N are compact.

Lemma 3.2. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then, since

∂
∂x
G5(x, s) = G(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

13



Mu′(x) =

∫ 1

0

∂

∂x
G5(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since ∂
∂x
G5(x, s) > 0 on (0, 1]× (0, 1],

Mu′(x) =

∫ 1

0

∂

∂x
G5(x, s)p(s)u(s)ds

≥
∫ β

α

∂

∂x
G5(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂2

∂x2
G5(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)′′(0) =

∫ 1

0

∂2

∂x2
G5(0, s)p(s)u(s)ds

≥
∫ β

α

∂2

∂x2
G5(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 3.1. Notice that

Λu = Mu =

∫ 1

0

G5(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

G5(x, s)p(s)u(s)ds,

if and only if

−u(5)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(0) = u′′(r) = u′′′(r) = u(4)(1) = 0.

14



So the eigenvalues of (3.1),(3.3) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (3.2),(3.3) are reciprocals of eigenvalues of N , and

conversely.

Theorem 3.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 3.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 3.1 associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)′(x) =

∫ 1

0

∂

∂x
G5(x, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 < Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 3.1, the following theorem is an immediate consequence of Theo-

rems 3.1 and 3.2.

15



Theorem 3.3. Assume the hypotheses of Theorem 3.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (3.1),(3.3) and (3.2),(3.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may

be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x)

for 0 ≤ x ≤ 1.

3.3 The nth Order Problem

Let n ∈ N, n ≥ 5. In this section, we will consider the eigenvalue problems

u(n) + λ1p(x)u = 0, (3.4)

u(n) + λ2q(x)u = 0, (3.5)

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0, (3.6)

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanish identically on any compact subinterval of [0, 1].

Again, we will use methods similar to the methods used previously to derive

comparison theorems for these nth order eigenvalue problems. We will do this by

finding the the sign properties of the Green’s function, which we will call Gn(x, s), for

−u(n) = 0 satisfying (3.6). This Green’s function, as a function of x, is C(n−4)[0, 1],

and ∂n−4

∂xn−4Gn(x, s) = G(x, s), where G(x, s) is as defined earlier.

Now u(x) solves (3.4),(3.6) if and only if u(x) = λ1

∫ 1

0
Gn(x, s)p(s)u(s)ds, and

u(x) solves (3.5),(3.6) if and only if u(x) = λ2

∫ 1

0
Gn(x, s)q(s)u(s)ds.

Since ∂n−4

∂xn−4Gn(x, s) = G(x, s), then ∂n−4

∂xn−4Gn(x, s) ≥ 0 on [0, 1] × [0, 1] and

∂n−4

∂xn−4Gn(x, s) > 0 on (0, 1] × (0, 1]. Also, since ∂n−3

∂xn−3Gn(x, s) = ∂
∂x
G(x, s), then

∂n−3

∂xn−3Gn(x, s)|x=0 > 0 for 0 < s < 1.

16



To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C(n−3)[0, 1] | u(0) = u′(0) = · · · = u(n−4)(0) = 0}

with the norm

||u|| = sup
0≤x≤1

|u(n−3)(x)|.

Define the cone P to be

P = {u ∈ B | u(n−4)(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(n−4)(x)| = |u(n−4)(x)− u(n−4)(0)| =
∣∣∣∣∫ x

0

u(n−3)(s)ds

∣∣∣∣
≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(n−4)(x)| ≤ ||u||.

Lemma 3.3. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(n−4)(x) > 0 on (0, 1] and u(n−3)(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u(n−3)(0) − ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v(n−3)(x) −

u(n−3)(x)| < ε0. So v(n−3)(0) > u(n−3)(0) − ε0 > 0. Also, |v(n−4)(x) − u(n−4)(x)| ≤

||v − u|| < ε0, and so v(n−4)(x) > 0 on (0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P ,

and Ω ⊂ P◦. Therefore P is solid in B.

Next, we define our linear operators M and N by

Mu(x) =

∫ 1

0

Gn(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,
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and

Nu(x) =

∫ 1

0

Gn(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

Note that since ∂n−i

∂xn−iGn(x, s)|x=0 = 0 for i = 4, 5, . . . , n, then M,N : B → B. A

standard application of the Arzela-Ascoli theorem shows that M and N are compact.

Lemma 3.4. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then, since

∂n−4

∂xn−4Gn(x, s) = G(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such

that u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since ∂n−4

∂xn−4Gn(x, s) > 0 on

(0, 1]× (0, 1],

Mu(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)p(s)u(s)ds

≥
∫ β

α

∂n−4

∂xn−4
Gn(x, s)(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂n−3

∂xn−3Gn(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)(n−3)(0) =

∫ 1

0

∂n−3

∂xn−3
Gn(0, s)p(s)u(s)ds

≥
∫ β

α

∂n−3

∂xn−3
Gn(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.
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Remark 3.2. Notice that

Λu = Mu =

∫ 1

0

Gn(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

Gn(x, s)p(s)u(s)ds,

if and only if

−u(n)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0.

So the eigenvalues of (3.4),(3.6) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (3.5),(3.6) are reciprocals of eigenvalues of N , and

conversely.

Theorem 3.4. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 3.5. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 3.4 associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)(q(s)− p(s))u(s)ds ≥ 0.
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So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 3.2, the following theorem is an immediate consequence of Theo-

rems 3.4 and 3.5.

Theorem 3.6. Assume the hypotheses of Theorem 3.5. Then there exists smallest

positive eigenvalues λ1 and λ2 of (3.4),(3.6) and (3.5),(3.6), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may be

chosen to belong to P◦. Finally, λ1 ≥ λ2 and λ1 = λ2 if and only if p(x) = q(x) for

0 ≤ x ≤ 1.
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CHAPTER FOUR

Extending the Fourth Order Problem Using Substitution

4.1 Introduction

In this chapter, we will again extend the results of the fourth order problem

to the nth order problem

u(n) + λ1p(x)u = 0,

u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

Instead of using the sign properties of the Green’s function for the nth order

equation to derive the comparison theorems, we will instead make a substitution and

work with a variation of the fourth order problem. This method has its benefits,

since we do not need to find the sign properties of the Green’s function of the nth

order problem, and can instead work with the fourth order problem. We will again

start with the fifth order problem and then look at the nth order problem.

4.2 The Fifth Order Problem

We now consider the eigenvalue problems

u(5) + λ1p(x)u = 0, (4.1)

u(5) + λ2q(x)u = 0, (4.2)

satisfying the boundary conditions

u(0) = u′(0) = u′′(r) = u′′′(r) = u(4)(1) = 0, (4.3)
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and the eigenvalue problems

v(4) + λ1p(x)

∫ x

0

v(s)ds = 0, (4.4)

v(4) + λ2q(x)

∫ x

0

v(s)ds = 0, (4.5)

satisfying the boundary condtions

v(0) = v′(r) = v′′(r) = v′′′(1) = 0, (4.6)

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

First we note that if u(x) is a solution to (4.1),(4.3), then u′(x) solves (4.4),(4.6).

Also, if v(x) is a solution to (4.4),(4.6), then
∫ x

0
v(s)ds is a solution to (4.1),(4.3).

Similarly, if u(x) is a solution to (4.2),(4.3), then u′(x) solves (4.5),(4.6), and if v(x)

is a solution to (4.5),(4.6), then
∫ x

0
v(s)ds is a solution to (4.2),(4.3).

Now let λ be an eigenvalue of (4.1),(4.3) with the corresponding eigenvector

u(x). Then u′(x) is a solution to (4.4),(4.6) with the same eigenvalue λ. Also, if λ

is an eigenvalue of (4.4),(4.6) with corresponding eigenvector v(x), then
∫ x

0
v(s)ds

is a solution to (4.1),(4.3) with the corresponding eigenvalue λ. So eigenvalues

of (4.1),(4.3) are eigenvalues of (4.4),(4.6), and vice versa. Similarly, eigenvalues of

(4.2),(4.3) are eigenvalues of (4.5),(4.6), and vice versa. So any comparison theorems

for (4.4),(4.6), and (4.5),(4.6) will apply to (4.1),(4.3), and (4.2),(4.3).

For these reasons, we will derive comparison theorems for eigenvalue problems

(4.4),(4.6), and (4.5),(4.6), and then use these theorems to derive the comparison

theorems for (4.1),(4.3), and (4.2),(4.3).

Let G(x, s) by the Green’s function for −v(4) = 0 satisfying (4.6), which was

defined earlier. So v(x) solves (4.4),(4.6) if and only if

v(x) = λ1

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds,
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and v(x) solves (4.5),(4.6) if and only if

v(x) = λ2

∫ 1

0

G(x, s)q(s)

∫ s

0

v(t)dtds.

Again, noteG(x, s) ≥ 0 on [0, 1]×[0, 1], G(x, s) > 0 on (0, 1]×(0, 1], and ∂
∂x
G(x, s)|x=0 >

0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {v ∈ C1[0, 1] | v(0) = 0}

with the norm

||v|| = sup
0≤x≤1

|v′(x)|.

Define the cone P to be

P = {v ∈ B | v(x) ≥ 0 on [0, 1]}.

Notice that for v ∈ B, 0 ≤ x ≤ 1,

|v(x)| = |v(x)− v(0)| =
∣∣∣∣∫ x

0

v′(s)ds

∣∣∣∣
≤ ||v||x

≤ ||v||,

and so sup
0≤x≤1

|v(x)| ≤ ||v||.

Lemma 4.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {v ∈ B | v(x) > 0 on (0, 1] and v′(0) > 0}.

It was shown in Chapter 2 that Ω ⊂ P◦. Therefore P is solid in B.
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Next, we define our linear operators M,N : B → B by

Mv(x) =

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds, 0 ≤ x ≤ 1,

and

Nv(x) =

∫ 1

0

G(x, s)q(s)

∫ s

0

v(t)dtds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-

pact.

Lemma 4.2. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let v ∈ P . So v(x) ≥ 0. Then since

G(x, s) ≥ 0 on [0, 1]× [0, 1], p(x) ≥ 0 on [0, 1] and
∫ x

0
v(s)ds ≥ 0,

Mv(x) =

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let v ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such

that
∫ x

0
v(s)ds > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since G(x, s) > 0 on

(0, 1]× (0, 1],

Mv(x) =

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds

≥
∫ β

α

G(x, s)p(s)

∫ s

0

v(t)dtds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
G(x, s)|x=0 > 0 for 0 < s < 1,

(Mv)′(0) =

∫ 1

0

∂

∂x
G(0, s)p(s)

∫ s

0

v(t)dtds

≥
∫ β

α

∂

∂x
G(0, s)p(s)

∫ s

0

v(t)dtds

> 0,
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and so Mv ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 4.1. Notice that

Λv = Mv =

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds,

if and only if

v(x) =
1

Λ

∫ 1

0

G(x, s)p(s)

∫ s

0

v(t)dtds,

if and only if

−v(4)(x) =
1

Λ
p(x)

∫ x

0

v(s)ds, 0 ≤ x ≤ 1,

with

v(0) = v′(r) = v′′(r) = v′′′(1) = 0.

So the eigenvalues of (4.4),(4.6) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (4.5),(4.6) are reciprocals of eigenvalues of N , and

conversely.

Theorem 4.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say v ∈ P , and eigenvalue

Λ with the above properties. Since v 6= 0, Mv ∈ Ω ⊂ P◦ and v = M
(

1
Λ
v
)
∈ P◦.

Theorem 4.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 4.1 associated with M and N ,

respectively, with the essentially unique eigenvectors v1 and v2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) ≤ q(x) on [0, 1]. So for any v ∈ P , and x ∈ [0, 1],

(Nv −Mv)(x) =

∫ 1

0

G(x, s)(q(s)− p(s))
∫ s

0

v(t)dtds ≥ 0.

So Nv −Mv ∈ P for all v ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)v1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)v1 − εv1 ∈ P . So Λ1v1 + εv1 = Mv1 + εv1 ≤ Nv1, implying

Nv1 ≥ (Λ1 + ε)v1. Since N ≤ N and Nv2 = Λ2v2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 4.1, the following theorem is an immediate consequence of Theo-

rems 4.1 and 4.2.

Theorem 4.3. Assume the hypotheses of Theorem 4.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (4.4),(4.6) (and hence (4.1),(4.3)) and (4.5),(4.6)

(and hence (4.2),(4.3)), respectively, each of which is simple, positive, and less than

the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally,

λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x) for 0 ≤ x ≤ 1.

4.3 The nth Order Problem

Let n ∈ N, n ≥ 5. In this section, we consider the eigenvalue problems

u(n) + λ1p(x)u = 0, (4.7)

u(n) + λ2q(x)u = 0, (4.8)

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0, (4.9)
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and the eigenvalue problems

v(4) + λ1p(x)
1

(n− 5)!

∫ x

0

(x− s)n−5v(s)ds = 0, (4.10)

v(4) + λ2q(x)
1

(n− 5)!

∫ x

0

(x− s)n−5v(s)ds = 0, (4.11)

satisfying the boundary condtions

v(0) = v′(r) = v′′(r) = v′′′(1) = 0, (4.12)

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],

where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

First we note that if u(x) is a solution to (4.7),(4.9), then u(n−4)(x) solves

(4.10),(4.12). Also, if v(x) is a solution to (4.10),(4.12), then 1
(n−5)!

∫ x
0

(x−s)n−5v(s)ds

is a solution to (4.7),(4.9). Similarly, if u(x) is a solution to (4.8),(4.9), then u(n−4)(x)

solves (4.11),(4.12) and if v(x) is a solution to (4.11),(4.12), then 1
(n−5)!

∫ x
0

(x −

s)n−5v(s)ds is a solution to (4.8),(4.9).

Now let λ be an eigenvalue of (4.7),(4.9) with the corresponding eigenvec-

tor u(x). Then u(n−4)(x) is a solution to (4.10),(4.12) with the same eigenvalue

λ. Also, if λ is an eigenvalue of (4.10),(4.12) with corresponding eigenvector v(x),

then 1
(n−5)!

∫ x
0

(x − s)n−5v(s)ds is a solution to (4.7),(4.9) with the corresponding

eigenvalue λ. So eigenvalues of (4.7),(4.9) are eigenvalues of (4.10),(4.12), and vice

versa. Similarly, eigenvalues of (4.8),(4.9) are eigenvalues of (4.11),(4.12), and vice

versa. So any comparison theorems for (4.10),(4.12), and (4.11),(4.12) will apply to

(4.7),(4.9), and (4.8),(4.9).

For these reasons, we will derive comparison theorems for eigenvalue problems

(4.10),(4.12), and (4.11),(4.12), and then use these theorems to derive the comparison

theorems for (4.7),(4.9), and (4.8),(4.9).
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Let G(x, s) by the Green’s function for −v(4) = 0 satisfying (4.12), which was

defined earlier. So v(x) solves (4.10),(4.12) if and only if

v(x) = λ1

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds,

and v(x) solves (4.11),(4.12) if and only if

v(x) = λ2

∫ 1

0

G(x, s)q(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds.

Again, noteG(x, s) ≥ 0 on [0, 1]×[0, 1], G(x, s) > 0 on (0, 1]×(0, 1], and ∂
∂x
G(x, s)|x=0 >

0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {v ∈ C1[0, 1] | v(0) = 0}

with the norm

||v|| = sup
0≤x≤1

|v′(x)|.

Define the cone P to be

P = {v ∈ B | v(x) ≥ 0 on [0, 1]}.

Notice that for v ∈ B, 0 ≤ x ≤ 1,

|v(x)| = |v(x)− v(0)| =
∣∣∣∣∫ x

0

v′(s)ds

∣∣∣∣
≤ ||v||x

≤ ||v||,

and so sup
0≤x≤1

|v(x)| ≤ ||v||.

Lemma 4.3. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {v ∈ B | v(x) > 0 on (0, 1] and v′(0) > 0}.

It was shown in Chapter 2 that Ω ⊂ P◦. Therefore P is solid in B.
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Next, we define our linear operators M,N : B → B by

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds, 0 ≤ x ≤ 1,

and

Nv(x) =

∫ 1

0

G(x, s)q(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-

pact.

Lemma 4.4. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let v ∈ P . So v(x) ≥ 0. Then since

G(x, s) ≥ 0 on [0, 1]× [0, 1], p(x) ≥ 0 on [0, 1] and 1
(n−5)!

∫ x
0

(x− s)n−5v(s)ds ≥ 0,

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let v ∈ P\{0}. Since (x−s)n−5 > 0 for 0 ≤ s < x, there exists a compact

interval [α, β] ⊂ [0, 1] such that 1
(n−5)!

∫ x
0

(x − s)n−5v(s)ds > 0 and p(x) > 0 for all

x ∈ [α, β]. Then, since G(x, s) > 0 on (0, 1]× (0, 1],

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds

≥
∫ β

α

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
G(x, s)|x=0 > 0 for 0 < s < 1,

(Mv)′(0) =

∫ 1

0

∂

∂x
G(0, s)p(s)

1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds

≥
∫ β

α

∂

∂x
G(0, s)p(s)

1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds

> 0,
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and so Mv ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 4.2. Notice that

Λv = Mv =

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds,

if and only if

v(x) =
1

Λ

∫ 1

0

G(x, s)p(s)
1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds,

if and only if

−v(4)(x) =
1

Λ
p(x)

1

(n− 5)!

∫ x

0

(x− s)n−5v(s)ds, 0 ≤ x ≤ 1,

with

v(0) = v′(r) = v′′(r) = v′′′(1) = 0.

So the eigenvalues of (4.10),(4.12) are reciprocals of eigenvalues of M , and

conversely. Similarly, eigenvalues of (4.11),(4.12) are reciprocals of eigenvalues of N ,

and conversely.

Theorem 4.4. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say v ∈ P , and eigenvalue

Λ with the above properties. Since v 6= 0, Mv ∈ Ω ⊂ P◦ and v = M
(

1
Λ
v
)
∈ P◦.

Theorem 4.5. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 4.4 associated with M and N ,

respectively, with the essentially unique eigenvectors v1 and v2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) ≤ q(x) on [0, 1]. So for any v ∈ P , and x ∈ [0, 1],

(Nv −Mv)(x) =

∫ 1

0

G(x, s)(q(s)− p(s)) 1

(n− 5)!

∫ s

0

(s− t)n−5v(t)dtds ≥ 0.

So Nv −Mv ∈ P for all v ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)v1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)v1 − εv1 ∈ P . So Λ1v1 + εv1 = Mv1 + εv1 ≤ Nv1, implying

Nv1 ≥ (Λ1 + ε)v1. Since N ≤ N and Nv2 = Λ2v2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 4.2, the following theorem is an immediate consequence of Theo-

rems 4.4 and 4.5.

Theorem 4.6. Assume the hypotheses of Theorem 4.5. Then there exists smallest pos-

itive eigenvalues λ1 and λ2 of (4.10),(4.12) (and hence (4.7),(4.9)) and (4.11),(4.12)

(and hence (4.8),(4.9)), respectively, each of which is simple, positive, and less than

the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally,

λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x) for 0 ≤ x ≤ 1.
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CHAPTER FIVE

The Third Order Problem

In this chapter, we consider the third order eigenvalue problems

u′′′ + λ1p(x)u = 0, (5.1)

u′′′ + λ2q(x)u = 0, (5.2)

each of which satisfies the boundary conditions

u(0) = u′(r) = u′′(1) = 0, (5.3)

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

We derive comparison results for these third order eigenvalue problems by ap-

plying the theorems mentioned in the introduction. To do this, we will define integral

operators, each of whose kernel is the Green’s function for −u(3) = 0 satisfying (5.3).

This Green’s function is given by

H(x, s) =



s2

2
, s ≤ r, s ≤ x,

x(2r−x)
2

, s ≥ r, s ≥ x,

x(2s−x)
2

, s ≤ r, s ≥ x,

x(2r−x)+(x−s)2
2

, s ≥ r, s ≤ x.

So u(x) solves (5.1),(5.3) if and only if u(x) = λ1

∫ 1

0
H(x, s)p(s)u(s)ds, and u(x)

solves (5.2),(5.3) if and only if u(x) = λ2

∫ 1

0
H(x, s)q(s)u(s)ds. Also, note H(x, s) ≥

0 on [0, 1]× [0, 1], H(x, s) > 0 on (0, 1]× (0, 1], and ∂
∂x
H(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C1[0, 1] | u(0) = 0}
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with the norm

||u|| = sup
0≤x≤1

|u′(x)|.

Define the cone P to be

P = {u ∈ B | u(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(x)| = |u(x)− u(0)| =
∣∣∣∣∫ x

0

u′(s)ds

∣∣∣∣
≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(x)| ≤ ||u||.

Lemma 5.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(x) > 0 on (0, 1] and u′(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u′(0)− ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v′(x)− u′(x)| < ε0.

So v′(0) > u′(0) − ε0 > 0. Also, |v(x) − u(x)| ≤ ||v − u|| < ε0, and so v(x) > 0 on

(0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P and Ω ⊂ P◦. Therefore P is solid in

B.

Next, we define our linear operators M,N : B → B by

Mu(x) =

∫ 1

0

H(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

H(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-

pact.
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Lemma 5.2. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then since

H(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(x) =

∫ 1

0

H(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since H(x, s) > 0 on (0, 1]× (0, 1],

Mu(x) =

∫ 1

0

H(x, s)p(s)u(s)ds

≥
∫ β

α

H(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
H(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)′(0) =

∫ 1

0

∂

∂x
H(0, s)p(s)u(s)ds

≥
∫ β

α

∂

∂x
H(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 5.1. Notice that

Λu = Mu =

∫ 1

0

H(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

H(x, s)p(s)u(s)ds,
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if and only if

−u(3)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(r) = u′′(1) = 0.

So the eigenvalues of (5.1),(5.3) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (5.2),(5.3) are reciprocals of eigenvalues of N , and

conversely.

Theorem 5.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 5.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 5.1 associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)(x) =

∫ 1

0

H(x, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying
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Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 5.1, the following theorem is an immediate consequence of Theo-

rems 5.1 and 5.2.

Theorem 5.3. Assume the hypotheses of Theorem 5.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (5.1),(5.3) and (5.2),(5.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may

be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x)

for 0 ≤ x ≤ 1.
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CHAPTER SIX

Extending the Fourth Order Problem Using the Green’s Function

6.1 Introduction

In this chapter, we will extend the results of the previous third order problem

to the nth order problem

u(n) + λ1p(x)u = 0,

u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−1)(r) = u(n−1)(1) = 0,

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

To do this, we will find the sign properties of the Green’s function for −u(n) = 0

satisfying the boundary conditions just stated. We will need the Green’s function

for the third order problem to find these sign properties. We first show the extension

of the third order problem to the fourth order problem. Then, we extend to the nth

order problem.

6.2 The Fourth Order Problem

We now consider the eigenvalue problems

u(4) + λ1p(x)u = 0, (6.1)

u(4) + λ2q(x)u = 0, (6.2)

satisfying the boundary conditions

u(0) = u′(0) = u′′(r) = u′′′(1) = 0, (6.3)
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where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

Here we will use methods similar to the methods used in the previous chapter

to derive comparison theorems for these fourth order eigenvalue problems. We will

do this by finding the Green’s function, which we will call H4(x, s), for −u(4) = 0

satisfying (6.3). This Green’s function is continuous and ∂
∂x
H4(x, s) = H(x, s), where

H(x, s) is as defined earlier. Therefore, the Green’s function is

H4(x, s) =



3s2x−s3
6

, s ≤ r, s ≤ x,

3rx2−x3
6

, s ≥ r, s ≥ x,

3sx2−x3
6

, s ≤ r, s ≥ x,

3rx2−2x3+(x−s)3
6

, s ≥ r, s ≤ x.

Now u(x) solves (6.1),(6.3) if and only if u(x) = λ1

∫ 1

0
H4(x, s)p(s)u(s)ds, and u(x)

solves (6.2),(6.3) if and only if u(x) = λ2

∫ 1

0
H4(x, s)q(s)u(s)ds.

Note that since ∂
∂x
H4(x, s) = H(x, s), ∂

∂x
H4(x, s) ≥ 0 on [0, 1] × [0, 1] and

∂
∂x
H4(x, s) > 0 on (0, 1]× (0, 1]. Also, since ∂2

∂x2
H4(x, s) = ∂

∂x
H(x, s), ∂2

∂x2
H4(x, s)|x=0

> 0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C2[0, 1] | u(0) = u′(0) = 0},

with the norm

||u|| = sup
0≤x≤1

|u′′(x)|.

Define the cone P to be

P = {u ∈ B | u′(x) ≥ 0 on [0, 1]}.
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Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u′(x)| = |u′(x)− u′(0)| =
∣∣∣∣∫ x

0

u′′(s)ds

∣∣∣∣
≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u′(x)| ≤ ||u||.

Lemma 6.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u′(x) > 0 on (0, 1] and u′′(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u′′(0)−ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v′′(x)−u′′(x)| < ε0.

So v′′(0) > u′′(0) − ε0 > 0. Also, |v′(x) − u′(x)| ≤ ||v − u|| < ε0, and so v′(x) > 0

on (0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P and Ω ⊂ P◦. Therefore P is solid in

B.

Next, we define our linear operators M and N by

Mu(x) =

∫ 1

0

H4(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

H4(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

Since H4(0, s) = ∂
∂x
H4(x, s)|x=0 = 0, M,N : B → B. A standard application of the

Arzelá-Ascoli theorem shows that M and N are compact.

Lemma 6.2. The bounded linear operators M and N are u0-positive with respect to

P.
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Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then, since

∂
∂x
H4(x, s) = H(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

Mu′(x) =

∫ 1

0

∂

∂x
H4(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since ∂
∂x
H4(x, s) > 0 on (0, 1]× (0, 1],

Mu′(x) =

∫ 1

0

∂

∂x
H4(x, s)p(s)u(s)ds

≥
∫ β

α

∂

∂x
H4(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂2

∂x2
H4(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)′′(0) =

∫ 1

0

∂2

∂x2
H4(0, s)p(s)u(s)ds

≥
∫ β

α

∂2

∂x2
H4(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 6.1. Notice that

Λu = Mu =

∫ 1

0

H4(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

H4(x, s)p(s)u(s)ds,

if and only if

−u(4)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,
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with

u(0) = u′(0) = u′′(r) = u′′′(1) = 0.

So the eigenvalues of (6.1),(6.3) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (6.2),(6.3) are reciprocals of eigenvalues of N , and

conversely.

Theorem 6.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 6.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 6.1 associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)′(x) =

∫ 1

0

∂

∂x
H4(x, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.
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By Remark 6.1, the following theorem is an immediate consequence of Theo-

rems 6.1 and 6.2.

Theorem 6.3. Assume the hypotheses of Theorem 6.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (6.1),(6.3) and (6.2),(6.3) respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may be

chosen to belong to P◦. Finally, λ1 ≥ λ2 and λ1 = λ2 if and only if p(x) = q(x) for

0 ≤ x ≤ 1.

6.3 The nth Order Problem

Let n ∈ N, n ≥ 4. In this section, we will consider the eigenvalue problems

u(n) + λ1p(x)u = 0, (6.4)

u(n) + λ2q(x)u = 0, (6.5)

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(r) = u(n−1)(1) = 0, (6.6)

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

Again, we will use methods similar to the methods used previously to derive

comparison theorems for these nth order eigenvalue problems. We will do this by

finding the the sign properties of the Green’s function, which we will call Hn(x, s), for

−u(n) = 0 satisfying (6.6). This Green’s function is C(n−3)[0, 1] and ∂(n−4)

∂x(n−3)Hn(x, s) =

H(x, s), where H(x, s) is as defined earlier.

Now u(x) solves (6.4),(6.6) if and only if u(x) = λ1

∫ 1

0
Hn(x, s)p(s)u(s)ds, and

u(x) solves (6.5),(6.6) if and only if u(x) = λ2

∫ 1

0
Hn(x, s)q(s)u(s)ds.
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Note that since ∂n−3

∂xn−3Hn(x, s) = H(x, s), ∂n−3

∂xn−3Hn(x, s) ≥ 0 on [0, 1] × [0, 1]

and ∂n−3

∂xn−3Hn(x, s) > 0 on (0, 1] × (0, 1]. Also, since ∂n−2

∂xn−2Hn(x, s) = ∂
∂x
H(x, s),

∂n−2

∂xn−2Hn(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {u ∈ C(n−2)[0, 1] | u(0) = u′(0) = · · · = u(n−3)(0) = 0},

with the norm

||u|| = sup
0≤x≤1

|u(n−2)(x)|.

Define the cone P to be

P = {u ∈ B | u(n−3)(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(n−3)(x)| = |u(n−3)(x)− u(n−3)(0)| =
∣∣∣∣∫ x

0

u(n−2)(s)ds

∣∣∣∣
≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(n−3)(x)| ≤ ||u||.

Lemma 6.3. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(n−3)(x) > 0 on (0, 1] and u(n−2)(0) > 0}.

Note Ω ⊂ P . Choose u ∈ Ω and define Bε(u) = {v ∈ B | ||u − v|| < ε} for ε > 0.

Choose ε0 > 0 such that u(n−2)(0) − ε0 > 0. So for v ∈ Bε0(u), sup
0≤x≤1

|v(n−2)(x) −

u(n−2)(x)| < ε0. So v(n−2)(0) > u(n−2)(0) − ε0 > 0. Also, |v(n−3)(x) − u(n−3)(x)| ≤

||v − u|| < ε0, and so v(n−3)(x) > 0 on (0, 1]. So v ∈ Ω and hence Bε0(u) ⊂ Ω ⊂ P

and Ω ⊂ P◦. Therefore P is solid in B.
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Next, we define our linear operators M and N by

Mu(x) =

∫ 1

0

Hn(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

Hn(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

Note that since ∂n−i

∂xn−iHn(x, s)|x=0 = 0 for i = 3, 4, . . . , n, M,N : B → B. A standard

application of the Arzelá-Ascoli theorem shows that M and N are compact.

Lemma 6.4. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(x) ≥ 0. Then, since

∂n−3

∂xn−3Hn(x, s) = H(x, s) ≥ 0 on [0, 1]× [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(n−3)(x) =

∫ 1

0

∂n−3

∂xn−3
Hn(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such

that u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since ∂n−3

∂xn−3Hn(x, s) > 0 on

(0, 1]× (0, 1],

Mu(n−3)(x) =

∫ 1

0

∂n−3

∂xn−3
Hn(x, s)p(s)u(s)ds

≥
∫ β

α

∂n−3

∂xn−3
Hn(x, s)(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂n−2

∂xn−2Hn(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)(n−2)(0) =

∫ 1

0

∂n−2

∂xn−2
Hn(0, s)p(s)u(s)ds

≥
∫ β

α

∂n−2

∂xn−2
Hn(0, s)p(s)u(s)ds

> 0,
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and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 6.2. Notice that

Λu = Mu =

∫ 1

0

Hn(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

Hn(x, s)p(s)u(s)ds,

if and only if

−u(n)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(r) = u(n−1)(1) = 0.

So the eigenvalues of (6.4),(6.6) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (6.5),(6.6) are reciprocals of eigenvalues of N , and

conversely.

Theorem 6.4. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say u ∈ P , and eigenvalue

Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 6.5. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 6.4 associated with M and N

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P , and x ∈ [0, 1],

(Nu−Mu)(n−3)(x) =

∫ 1

0

∂n−3

∂xn−3
Hn(x, s)(q(s)− p(s))u(s)ds ≥ 0.

So Nu −Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)u1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)u1− εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 6.2, the following theorem is an immediate consequence of Theo-

rems 6.4 and 6.5.

Theorem 6.6. Assume the hypotheses of Theorem 6.5. Then there exists smallest

positive eigenvalues λ1 and λ2 of (6.4),(6.6) and (6.5),(6.6), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may

be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x)

for 0 ≤ x ≤ 1.
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CHAPTER SEVEN

Extending the Third Order Problem Using Substitution

7.1 Introduction

In this chapter, we will again extend the results of the third order problem to

the nth order problems

u(n) + λ1p(x)u = 0,

u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(r) = u(n−1)(1) = 0,

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

Instead of using the sign properties of the Green’s function for the nth order

equation to derive the comparison theorems, we will instead make a substitution

and work with a variation of the third order problem. This method has its benefits,

since we do not need to find the sign properties of the Green’s function for the nth

order problem, and can instead work with the third order problem. We will again

start with the fourth order problem and then look at the nth order problem.

7.2 The Fourth Order Problem

We now consider the eigenvalue problems

u(4) + λ1p(x)u = 0, (7.1)

u(4) + λ2q(x)u = 0, (7.2)
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satisfying the boundary conditions

u(0) = u′(0) = u′′(r) = u′′′(1) = 0, (7.3)

and the eigenvalue problems

v(3) + λ1p(x)

∫ x

0

v(s)ds = 0, (7.4)

v(3) + λ2q(x)

∫ x

0

v(s)ds = 0, (7.5)

satisfying the boundary condtions

v(0) = v′(r) = v′′(1) = 0, (7.6)

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanish identically on any compact subinterval of

[0, 1].

First we note that if u(x) is a solution to (7.1),(7.3), then u′(x) solves (7.4),(7.6).

Also, if v(x) is a solution to (7.4),(7.6), then
∫ x

0
v(s)ds is a solution to (7.1),(7.3).

Similarly, if u(x) is a solution to (7.2),(7.3), then u′(x) solves (7.5),(7.6), and if v(x)

is a solution to (7.5),(7.6), then
∫ x

0
v(s)ds is a solution to (7.2),(7.3).

Now let λ be an eigenvalue of (7.1),(7.3) with the corresponding eigenvector

u(x). Then u′(x) is a solution to (7.4),(7.6) with the same eigenvalue λ. Also, if λ

is an eigenvalue of (7.4),(7.6) with corresponding eigenvector v(x), then
∫ x

0
v(s)ds

is a solution to (7.1),(7.3) with the corresponding eigenvalue λ. So eigenvalues

of (7.1),(7.3) are eigenvalues of (7.4),(7.6), and vice versa. Similarly, eigenvalues of

(7.2),(7.3) are eigenvalues of (7.5),(7.6), and vice versa. So any comparison theorems

for (7.4),(7.6), and (7.5),(7.6) will apply to (7.1),(7.3), and (7.2),(7.3).

For these reasons, we will derive comparison theorems for eigenvalue problems

(7.4),(7.6), and (7.5),(7.6), and then use these theorems to derive the comparison

theorems for (7.1),(7.3), and (7.2),(7.3).
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Let H(x, s) by the Green’s function for −v(3) = 0 satisfying (7.6), which was

defined earlier. So v(x) solves (7.4),(7.6) if and only if v(x) = λ1

∫ 1

0
H(x, s)p(s)

∫ s
0
v(t)dtds

and v(x) solves (7.5),(7.6) if and only if v(x) = λ2

∫ 1

0
H(x, s)q(s)

∫ s
0
v(t)dtds. Also,

note H(x, s) ≥ 0 on [0, 1]× [0, 1], H(x, s) > 0 on (0, 1]×(0, 1], and ∂
∂x
H(x, s)|x=0 > 0

for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {v ∈ C1[0, 1] | v(0) = 0},

with the norm

||v|| = sup
0≤x≤1

|v′(x)|.

Define the cone P to be

P = {v ∈ B | v(x) ≥ 0 on [0, 1]}.

Notice that for v ∈ B, 0 ≤ x ≤ 1,

|v(x)| = |v(x)− v(0)| =
∣∣∣∣∫ x

0

v′(s)ds

∣∣∣∣
≤ ||v||x

≤ ||v||,

and so sup
0≤x≤1

|v(x)| ≤ ||v||.

Lemma 7.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {v ∈ B | v(x) > 0 on (0, 1] and v′(0) > 0}.

It was shown in Chapter 5 that Ω ⊂ P◦. Therefore P is solid in B.
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Next, we define our linear operators M,N : B → B by

Mv(x) =

∫ 1

0

H(x, s)p(s)

∫ s

0

v(t)dtds, 0 ≤ x ≤ 1,

and

Nv(x) =

∫ 1

0

H(x, s)q(s)

∫ s

0

v(t)dtds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-

pact.

Lemma 7.2. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let v ∈ P . So v(x) ≥ 0. Then since

H(x, s) ≥ 0 on [0, 1]× [0, 1], p(x) ≥ 0 on [0, 1] and
∫ x

0
v(s)ds ≥ 0,

Mv(x) =

∫ 1

0

H(x, s)p(s)

∫ s

0

v(t)dtds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let v ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such

that
∫ x

0
v(s)ds > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since H(x, s) > 0 on

(0, 1]× (0, 1],

Mv(x) =

∫ 1

0

H(x, s)p(s)

∫ s

0

v(t)dtds

≥
∫ β

α

H(x, s)p(s)

∫ s

0

v(t)dtds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
H(x, s)|x=0 > 0 for 0 < s < 1,

(Mv)′(0) =

∫ 1

0

∂

∂x
H(0, s)p(s)

∫ s

0

v(t)dtds

≥
∫ β

α

∂

∂x
H(0, s)p(s)

∫ s

0

v(t)dtds

> 0,
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and so Mv ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 7.1. Notice that

Λv = Mv =

∫ 1

0

H(x, s)p(s)

∫ s

0

v(t)dtds,

if and only if

v(x) =
1

Λ

∫ 1

0

H(x, s)p(s)

∫ s

0

v(t)dtds,

if and only if

−v(3)(x) =
1

Λ
p(x)

∫ x

0

v(s)ds, 0 ≤ x ≤ 1,

with

v(0) = v′(r) = v′′(1) = 0.

So the eigenvalues of (7.4),(7.6) are reciprocals of eigenvalues of M , and con-

versely. Similarly, eigenvalues of (7.5),(7.6) are reciprocals of eigenvalues of N , and

conversely.

Theorem 7.1. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say v ∈ P , and eigenvalue

Λ with the above properties. Since v 6= 0, Mv ∈ Ω ⊂ P◦ and v = M
(

1
Λ
v
)
∈ P◦.

Theorem 7.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 7.1 associated with M and N ,

respectively, with the essentially unique eigenvectors v1 and v2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) ≤ q(x) on [0, 1]. So for any v ∈ P , and x ∈ [0, 1],

(Nv −Mv)(x) =

∫ 1

0

H(x, s)(q(s)− p(s))
∫ s

0

v(t)dtds ≥ 0.

So Nv −Mv ∈ P for all v ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)v1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)v1 − εv1 ∈ P . So Λ1v1 + εv1 = Mv1 + εv1 ≤ Nv1, implying

Nv1 ≥ (Λ1 + ε)v1. Since N ≤ N and Nv2 = Λ2v2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 7.1, the following theorem is an immediate consequence of Theo-

rems 7.1 and 7.2.

Theorem 7.3. Assume the hypotheses of Theorem 7.2. Then there exists smallest

positive eigenvalues λ1 and λ2 of (7.4),(7.6) (and hence (7.1),(7.3)) and (7.5),(7.6)

(and hence (7.2),(7.3)), respectively, each of which is simple, positive, and less than

the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally,

λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x) for 0 ≤ x ≤ 1.

7.3 The nth Order Problem

Let n ∈ N, n ≥ 4. In this section, we consider the eigenvalue problems

u(n) + λ1p(x)u = 0, (7.7)

u(n) + λ2q(x)u = 0, (7.8)

satisfying the boundary conditions

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(r) = u(n−1)(1) = 0, (7.9)
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and the eigenvalue problems

v(3) + λ1p(x)
1

(n− 4)!

∫ x

0

(x− s)n−4v(s)ds = 0, (7.10)

v(3) + λ2q(x)
1

(n− 4)!

∫ x

0

(x− s)n−4v(s)ds = 0, (7.11)

satisfying the boundary condtions

v(0) = v′(r) = v′′(1) = 0, (7.12)

where 0 < 1/2 < r < 1, and p(x) and q(x) are continuous nonnegative functions on

[0, 1], where neither p(x) nor q(x) vanishes identically on any compact subinterval

of [0, 1].

First we note that if u(x) is a solution to (7.7),(7.9), then u(n−3)(x) solves

(7.10),(7.12). Also, if v(x) is a solution to (7.10),(7.12), then 1
(n−4)!

∫ x
0

(x−s)n−4v(s)ds

is a solution to (7.7),(7.9). Similarly, if u(x) is a solution to (7.8),(7.9), then u(n−3)(x)

solves (7.11),(7.12), and if v(x) is a solution to (7.11),(7.12), then 1
(n−4)!

∫ x
0

(x −

s)n−4v(s)ds is a solution to (7.8),(7.9).

Now let λ be an eigenvalue of (7.7),(7.9) with the corresponding eigenvec-

tor u(x). Then u(n−3)(x) is a solution to (7.10),(7.12) with the same eigenvalue

λ. Also, if λ is an eigenvalue of (7.10),(7.12) with corresponding eigenvector v(x),

then 1
(n−4)!

∫ x
0

(x − s)n−4v(s)ds is a solution to (7.7),(7.9) with the corresponding

eigenvalue λ. So eigenvalues of (7.7),(7.9) are eigenvalues of (7.10),(7.12), and vice

versa. Similarly, eigenvalues of (7.8),(7.9) are eigenvalues of (7.11),(7.12), and vice

versa. So any comparison theorems for (7.10),(7.12), and (7.11),(7.12) will apply to

(7.7),(7.9), and (7.8),(7.9).

For these reasons, we will derive comparison theorems for eigenvalue problems

(7.10),(7.12), and (7.11),(7.12), and then use these theorems to derive the comparison

theorems for (7.7),(7.9), and (7.8),(7.9).
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Let H(x, s) by the Green’s function for −v(3) = 0 satisfying (7.12), which was

defined earlier. So v(x) solves (7.10),(7.12) if and only if

v(x) = λ1

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds,

and v(x) solves (7.11),(7.12) if and only if

v(x) = λ2

∫ 1

0

H(x, s)q(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds.

Also, noteH(x, s) ≥ 0 on [0, 1]×[0, 1], H(x, s) > 0 on (0, 1]×(0, 1], and ∂
∂x
H(x, s)|x=0 >

0 for 0 < s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P ⊂ B. Define the Banach space B by

B = {v ∈ C1[0, 1] | v(0) = 0},

with the norm

||v|| = sup
0≤x≤1

|v′(x)|.

Define the cone P to be

P = {v ∈ B | v(x) ≥ 0 on [0, 1]}.

Notice that for v ∈ B, 0 ≤ x ≤ 1,

|v(x)| = |v(x)− v(0)| =
∣∣∣∣∫ x

0

v′(s)ds

∣∣∣∣
≤ ||v||x

≤ ||v||,

and so sup
0≤x≤1

|v(x)| ≤ ||v||.

Lemma 7.3. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {v ∈ B | v(x) > 0 on (0, 1] and v′(0) > 0}.

It was shown in Chapter 5 that Ω ⊂ P◦. Therefore P is solid in B.
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Next, we define our linear operators M,N : B → B by

Mv(x) =

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds, 0 ≤ x ≤ 1,

and

Nv(x) =

∫ 1

0

H(x, s)q(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-

pact.

Lemma 7.4. The bounded linear operators M and N are u0-positive with respect to

P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let v ∈ P . So v(x) ≥ 0. Then since

H(x, s) ≥ 0 on [0, 1]× [0, 1], p(x) ≥ 0 on [0, 1] and 1
(n−4)!

∫ x
0

(x− s)n−4v(s)ds ≥ 0,

Mv(x) =

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P .

Now let v ∈ P\{0}. Since (x−s)n−4 > 0 for 0 ≤ s < x, there exists a compact

interval [α, β] ⊂ [0, 1] such that 1
(n−4)!

∫ x
0

(x − s)n−4v(s)ds > 0 and p(x) > 0 for all

x ∈ [α, β]. Then, since H(x, s) > 0 on (0, 1]× (0, 1],

Mv(x) =

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds

≥
∫ β

α

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x
H(x, s)|x=0 > 0 for 0 < s < 1,

(Mv)′(0) =

∫ 1

0

∂

∂x
H(0, s)p(s)

1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds

≥
∫ β

α

∂

∂x
H(0, s)p(s)

1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds

> 0,
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and so Mv ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 1.1, M is

u0-positive with respect to P . A similar argument for N completes the proof.

Remark 7.2. Notice that

Λv = Mv =

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds,

if and only if

v(x) =
1

Λ

∫ 1

0

H(x, s)p(s)
1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds,

if and only if

−v(3)(x) =
1

Λ
p(x)

1

(n− 4)!

∫ x

0

(x− s)n−4v(s)ds, 0 ≤ x ≤ 1,

with

v(0) = v′(r) = v′′(1) = 0.

So the eigenvalues of (7.10),(7.12) are reciprocals of eigenvalues of M , and

conversely. Similarly, eigenvalues of (7.11),(7.12) are reciprocals of eigenvalues of N ,

and conversely.

Theorem 7.4. Let B, P, M , and N be defined as earlier. Then M (and N) has an

eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P ,

by Theorem 1.1, M has an essentially unique eigenvector, say v ∈ P , and eigenvalue

Λ with the above properties. Since v 6= 0, Mv ∈ Ω ⊂ P◦ and v = M
(

1
Λ
v
)
∈ P◦.

Theorem 7.5. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues defined in Theorem 7.4 associated with M and N ,

respectively, with the essentially unique eigenvectors v1 and v2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) ≤ q(x) on [0, 1]. So for any v ∈ P , and x ∈ [0, 1],

(Nv −Mv)(x) =

∫ 1

0

H(x, s)(q(s)− p(s)) 1

(n− 4)!

∫ s

0

(s− t)n−4v(t)dtds ≥ 0.

So Nv −Mv ∈ P for all v ∈ P , or M ≤ N with respect to P . Then by Theorem

1.2, Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on

some subinterval [α, β] ⊂ [0, 1]. Then (N −M)v1 ∈ Ω ⊂ P◦ and so there exists

ε > 0 such that (N −M)v1 − εv1 ∈ P . So Λ1v1 + εv1 = Mv1 + εv1 ≤ Nv1, implying

Nv1 ≥ (Λ1 + ε)v1. Since N ≤ N and Nv2 = Λ2v2, by Theorem 1.2, Λ1 + ε ≤ Λ2, or

Λ1 < Λ2.

By Remark 7.2, the following theorem is an immediate consequence of Theo-

rems 7.4 and 7.5.

Theorem 7.6. Assume the hypotheses of Theorem 7.5. Then there exists smallest pos-

itive eigenvalues λ1 and λ2 of (7.10),(7.12) (and hence (7.7),(7.9)) and (7.11),(7.12)

(and hence (7.8),(7.9)), respectively, each of which is simple, positive, and less than

the absolute value of any other eigenvalue of the corresponding problems. Also,

eigenfunctions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally,

λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x) for 0 ≤ x ≤ 1.
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CHAPTER EIGHT

Extremal Points

8.1 Introduction

In this chapter, we will consider the fourth order boundary value problem,

u(4) + p(x)u = 0, (8.1)

for 0 ≤ x ≤ β satisfying the boundary conditions

u(0) = u′(r) = u′′(r) = u′′′(b) = 0, (8.2)

where 0 < r < b ≤ β, and p(x) is a nonnegative continuous function on [0, b] which

does not vanish identically on any compact subinterval of [0, b]. We will also consider

the third order boundary value problem,

u(3) + p(x)u = 0, (8.3)

for 0 ≤ x ≤ β satisfying the boundary conditions

u(0) = u′(r) = u′′(b) = 0, (8.4)

where 0 < 1/2 < r < b ≤ β, and p(x) is a nonnegative continuous function on [0, b]

which does not vanish identically on any compact subintervale of [0, b].

For the fourth order problem, we establish the existence of a largest interval,

[0, b), such that on any subinterval [0, c] of [0, b), there exists only the trivial solution

of (8.1) satisfying u(0) = u′(r) = u′′(r) = u′′′(c) = 0. For the third order problem,

we establish the existence of a largest interval, [0, b), such that on any subinterval

[0, c] of [0, b), there exists only the trivial solution of (8.3) satisfying u(0) = u′(r) =

u′′(c) = 0. We accomplish this by characterizing the first extremal point through

the existence of a nontrivial solution that lies in a cone, by establishing the spectral
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radius of a compact operator. Because the spectral radius of the compact operators

dealt with in the previous chapters is precisely the largest positive eigenvalues of

those operators, this inclusion of this material is natural.

8.2 Definitions and Theorems

Definition 8.1. We say b0 is the first extremal point of the boundary value problem

(8.1),(8.2) (or (8.3),(8.4)), if b0 = inf{b > 0 | (8.1),(8.2) (or (8.3),(8.4)) has a

nontrivial solution}.

Definition 8.2. A bounded linear operator N : B → B is said to be positive with

respect to the cone P if N : P → P .

Throughout this chapter, we will denote the spectral radius of the bounded

linear operator N by r(N).

The following four theorems are fundamental to our following results. The first

result can be found in [25], and the last three theorems and proofs can be found in

[1] or [23]. In each of the following theorems, assume that P is a reproducing cone,

and that N,N1, N2 : B → B are compact, linear, and positive with respect to P .

Theorem 8.1. Let Nb, ρ ≤ β ≤ σ be a family of compact, linear operators on a

Banach space such that the mapping b 7→ Nb is continuous in the uniform operator

topology. Then the mapping b 7→ r(Nb) is continuous.

Theorem 8.2. Assume r(N) > 0. Then r(N) is an eigenvalue of N , and there is

a corresponding eigenvector in P. If, in addition, N is u0-positive, then r(N) is a

simple eigenvalue of N , and the corresponding eigenvector is essentially unique and

belongs to P◦.

Theorem 8.3. If N1 ≤ N2 with respect to P, then r(N1) ≤ r(N2).

59



Theorem 8.4. Suppose there exists γ > 0, u ∈ B, −u /∈ P such that γu ≤ Nu with

respect to P. Then N has an eigenvector in P which corresponds to an eigenvalue,

γ ≤ λ.

8.3 The Fourth Order Problem

Consider the fourth order boundary value problem,

u(4) + p(x)u = 0, (8.1)

for 0 ≤ x ≤ β satisfying the boundary conditions

u(0) = u′(r) = u′′(r) = u′′′(b) = 0, (8.2)

where 0 < r < b ≤ β, and p(x) is a nonnegative continuous function on [0, b] which

does not vanish identically on any compact subinterval of [0, b].

We will be defining compact integral operators whose kernels are the Green’s

function for −u(4) = 0 satisfying (8.2). Because G(x, s), which was defined in Chap-

ter 2, has the property that ∂3

∂x3
G(x, s) = 0 for all (x, s) ∈ [r, 1] × [0, 1], G(x, s)

satisfies (8.2), and so G(x, s) is the Green’s function for −u(4) = 0 satisfying (8.2).

To apply Theorems 8.1-8.4, we need to define a family of Banach spaces B and

cones P ⊂ B. Define the Banach space B to be

B = {u ∈ C1[0, β] | u(0) = 0},

with the norm

||u|| = sup
0≤x≤β

|u′(x)|.

Define the cone P ⊂ B to be

P = {u ∈ B | u(x) ≥ 0 on [0, β]}.

From earlier, we know that P◦ 6= ∅. In fact,

{u ∈ B | u(x) > 0 on (0, β] and u′(0) > 0} ⊂ P◦.
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For all b ∈ [0, β], define the Banach space Bb to be

Bb = {u ∈ C1[0, b] | u(0) = 0},

with the norm

||u|| = sup
0≤x≤b

|u′(x)|.

Define the cone Pb ⊂ Bb to be

Pb = {u ∈ Bb | u(x) ≥ 0 on [0, b]}.

Again, note that for all b ∈ [0, β], P◦b 6= ∅. In fact,

{u ∈ B | u(x) > 0 on (0, b] and u′(0) > 0} ⊂ P◦b .

Now for each b ∈ [0, β], define the linear operator

Nbu(x) =


∫ b

0
G(x, s)p(s)u(s)ds, 0 ≤ x ≤ b,∫ b

0
G(b, s)p(s)u(s)ds+ (x− b)

∫ b
0

∂
∂x
G(b, s)p(s)u(s)ds, b ≤ x ≤ β.

Notice that by the way Nb is defined, Nbu(x) ∈ C1[0, β] for u(x) ∈ C1[0, β], and

Nbu(0) = 0. So Nb : B → B. Also note that when Nb is restricted to Bb, Nb : Bb → Bb

by

Nbu(x) =

∫ b

0

G(x, s)p(s)u(s)ds.

So u(x) is a solution to (8.1),(8.2) if and only if u(x) = Nbu(x) =
∫ b

0
G(x, s)p(s)u(s)ds

for x ∈ [0, b].

Lemma 8.1. For all b ∈ [0, β], the linear operator Nb is positive with respect to P

and Pb. Also, Nb : P\{0} → P◦b .

Proof. Since for u ∈ P , G(x, s) ≥ 0, ∂
∂x
G(b, s) ≥ 0, and p(s)u(s) ≥ 0, Nbu(x) ≥ 0

for 0 ≤ x ≤ β. So Nb : P → P . Similarly, Nb : Pb → Pb.
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Now set Ωb = {u ∈ B | u(x) > 0 on (0, β] and u′(0) > 0}. Let u ∈ Pb\{0}. So

there exists a compact interval [c, d] ⊂ [0, b] such that p(x)u(x) > 0 for all x ∈ [c, d].

Since G(x, s) > 0 for 0 < x ≤ b,

Nbu(x) =

∫ b

0

G(x, s)p(s)u(s)ds

≥
∫ d

c

G(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ b.

Since ∂
∂x
G(x, s)|x=0 > 0,

Nbu
′(0) =

∫ b

0

∂

∂x
G(0, s)p(s)u(s)ds

≥
∫ d

c

∂

∂x
G(0, s)p(s)u(s)ds

> 0,

and so Nbu ∈ Ωb. So Nb : P\{0} → Ωb ⊂ P◦b .

Lemma 8.2. The map b 7→ Nb is continuous in the uniform topology.

Proof. First note that sup
0≤x≤β

|u(x)| ≤ β||u||. Let f : (0, β] → {Nb}, b ∈ [0, β], such

that f(b) = Nb. Let 0 < b1 < b2 ≤ β. Let ε > 0. Then

||f(b2)− f(b1)|| = ||Nb2 −Nb1||

= sup
||u||=1

||Nb2u−Nb1u||

= sup
||u||=1

{ sup
x∈[0,β]

|(Nb2u)′(x)− (Nb1u)′(x)|}.

Since ∂
∂x
G(x, s) and p(x) are continuous functions for 0 ≤ x ≤ β, they are

bounded above for 0 ≤ x ≤ β. Choose K and P such that | ∂
∂x
G(x, s)| ≤ K and

|p(x)| ≤ P for 0 ≤ x ≤ β.
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Suppose x ≤ b1. Then for |b2 − b1| < δ <
ε

KPβ
,

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
G(x, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
G(x, s)p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣∫ b2

b1

∂

∂x
G(x, s)p(s)u(s)ds

∣∣∣∣
≤
∫ b2

b1

∣∣∣∣ ∂∂xG(x, s)

∣∣∣∣ |p(s)||u(s)|ds

≤
∫ b2

b1

KPβds

= KPβ|b2 − b1|

< KPβ
ε

KPβ
= ε

Now suppose b1 < x ≤ b2. Since G(x, s) ∈ C1[0, β] in the first variable, for

|b2 − b1| < δ <
ε

2KPβ
,
∣∣ ∂
∂x
G(x, s)− ∂

∂x
G(b1, s)

∣∣ < ε

2Pβ2
. So

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
G(x, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
G(b1, s)p(s)u(s)ds

∣∣∣∣
≤
∫ b2

b1

∣∣∣∣ ∂∂xG(x, s)

∣∣∣∣ |p(s)||u(s)|ds

+

∫ b1

0

∣∣∣∣ ∂∂xG(x, s)− ∂

∂x
G(b1, s)

∣∣∣∣ |p(s)||u(s)|ds

<

∫ b2

b1

KPβds+

∫ b1

0

ε

2Pβ2
Pβds

=KPβ|b2 − b1|+
ε

2Pβ2
Pb1β

<KPβ
ε

2KPβ
+

ε

2Pβ2
Pβ2 = ε.

Now suppose β > x > b2. Again, since G(x, s) ∈ C1[0, β] in the first variable,

for |b2 − b1| < δ <
ε

2KPβ
,
∣∣ ∂
∂x
G(b2, s)− ∂

∂x
G(b1, s)

∣∣ < ε

2Pβ2
. So

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
G(b2, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
G(b1, s)p(s)u(s)ds

∣∣∣∣
≤
∫ b2

b1

∣∣∣∣ ∂∂xG(b2, s)

∣∣∣∣ |p(s)||u(s)|ds

+

∫ b1

0

∣∣∣∣ ∂∂xG(b2, s)−
∂

∂x
G(b1, s)

∣∣∣∣ |p(s)||u(s)|ds
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<

∫ b2

b1

KPβds+

∫ b1

0

ε

2Pβ2
Pβds

=KPβ|b2 − b1|+
ε

2Pβ2
Pb1β

<KPβ
ε

2KPβ
+

ε

2Pβ2
Pβ2 = ε.

So we have that sup
||u||=1

{ sup
x∈[0,β]

|(Nb2u)′(x)− (Nb1u)′(x)|} < ε for |b2− b1| < δ. So

||f(b2)− f(b1)|| < ε for |b2 − b1| < δ, and so f is continuous.

Theorem 8.5. For 0 < b ≤ β, r(Nb) is strictly increasing as a function of b.

Proof. In [22], it is shown that there is a λ > 0 and u ∈ Pb\{0} such that Nbu(x) =

λu(x). Extend u to [b, β] by

u(x) =
1

λ

(∫ b

0

G(b, s)p(s)u(s)ds+ (x− b)
∫ b

0

∂

∂x
G(b, s)p(s)u(s)ds

)
.

Then for x ∈ [0, β], Nbu(x) = λu(x). Thus for 0 < b ≤ β, r(Nb) ≥ λ > 0.

Now let 0 < b1 < b2 ≤ β. Since r(Nb1) > 0, by Theorem 8.2, there exists a

u0 ∈ Pb1\{0} such that Nb1u0 = r(Nb1)u0. Let u1 = Nb1u0 and u2 = Nb2u0. Then

for x ∈ (0, b1],

(u2 − u1)(x) =

∫ b2

b1

G(x, s)u(s)p(s)ds > 0.

Also,

(u2 − u1)′(0) =

∫ b2

b1

∂

∂x
G(0, s)u(s)p(s)ds > 0.

Thus the restriction of u2 − u1 to [0, b1] belongs to Ωb1 . So there exists a δ > 0 such

that u2 − u1 ≥ δu0 with respect to Pb1 . Since u2 ∈ P , it follows that u2 − u1 ≥ δu0

with respect to P . Thus

u2 ≥ u1 + δu0

= r(Nb1)u+ δu0

= (r(Nb1) + δ)u0
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with respect to P . Thus Nb2u0 ≥ (r(Nb1)+δ) with respect to P , and so by Theorem

8.4, r(Nb2) ≥ r(Nb1) + δ. So r(Nb2) > r(Nb1) and r(Nb) is strictly increasing.

Now, we state and prove the main result.

Theorem 8.6. The following are equivalent:

(i) b0 is the first extremal point of the boundary value problem corresponding to

(8.1),(8.2) for 0 ≤ x ≤ β;

(ii) there exists a nontrivial solution u of the boundary value problem (8.1),(8.2)

for 0 ≤ x ≤ b0 such that u ∈ Pb0\{0};

(iii) r(Nb0) = 1.

Proof. First, we show (iii) ⇒ (ii); since r(Nb0) = 1 > 0, by Theorem 8.3, r(Nb0)

is an eigenvalue of Nb0 , and so there exists a u ∈ Pb0\{0} such that Nb0u(x) =

r(Nb0)u(x) = u(x) for x ∈ [0, b0]. So (ii) holds.

Next, we prove (ii)⇒ (i). Let u ∈ Pb0\{0} satisfy (8.1),(8.2), for 0 ≤ x ≤ b0.

For x > b0, extend u(x) =
∫ b0

0
G(b0, s)p(s)u(s)ds+ (x− b0)

∫ b0
0

∂
∂x
G(b0, s)p(s)u(s)ds.

So Nb0u(x) = u(x) for 0 ≤ x ≤ β. So r(Nb0) ≥ 1.

If r(Nb0) = 1, then by Theorem 8.5, for 0 < b < b0, r(Nb) < r(Nb0) = 1, and

so b0 is the first extremal point of (8.1),(8.2).

Assume r(Nb0) > 1. Let v ∈ Pb0\{0} such that Nb0v = r(Nb0)v. Now v re-

stricted to [0, b0] belongs to Ωb0 , and so there exists a δ > 0 such that u ≥ δv with re-

spect to Pb0 . Extend v(x) =
∫ b0

0
G(b0, s)p(s)v(s)ds+(x−b0)

∫ b0
0

∂
∂x
G(b0, s)p(s)v(s)ds

for x ≥ b0. Then u ≥ δv with respect to P . Assume δ is maximal such that u ≥ δv.

Then

u = Nb0u ≥ Nb0(δv) = δNb0v = δr(Nb0)v.

Since r(Nb0) > 1, δr(Nb0) > δ. But u ≥ δr(Nb0)v, a contradiction to the fact that δ
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is the maximal value satisfying y ≥ δv. So r(Nb0) = 1, and so b0 is the first extremal

point of (8.1),(8.2).

Last, we show (i) ⇒ (iii). If b0 is the first extremal point of the boundary

value problem (8.1),(8.2), there exists a u ∈ Pb0\{0} such that r(Nb0)u = Nb0u, and

so r(Nb0) ≥ 1. Assume r(Nb0) > 1. By Lemma 8.2, lim
b→0

r(Nb) = 0, and so by the

Intermediate Value Theorem, there exists an α ∈ (0, b0) such that r(Nα) = 1. So

there exists a nontrivial solution of (8.1),(2.2) on [0, α], which contradicts the fact

that b0 is the first extremal point. So r(Nb0) = 1.

8.4 The Third Order Problem

In this section, we will consider the third order boundary value problem,

u(3) + p(x)u = 0, (8.3)

for 0 ≤ x ≤ β satisfying the boundary conditions

u(0) = u′(r) = u′′(b) = 0, (8.4)

where 0 < 1/2 < r, r < b ≤ β, and p(x) is a nonnegative continuous function on

[0, b] which does not vanish identically on any compact subinterval of [0, b].

We will be defining compact integral operators whose kernels are the Green’s

function for −u(3) = 0 satisfying (8.4). Because H(x, s), which was defined in

Chapter 5, has the property that ∂2

∂x2
H(x, s) = 0 for all (x, s) ∈ [r, 1]× [0, 1], H(x, s)

satisfies (8.4), and so H(x, s) is the Green’s function for −u(3) = 0 satisfying (8.4).

To apply Theorems 8.1-8.4, we need to define a family of Banach spaces B and

cones P ⊂ B. Define the Banach space B to be

B = {u ∈ C1[0, β] | u(0) = 0},

with the norm

||u|| = sup
0≤x≤β

|u′(x)|.
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Define the cone P ⊂ B to be

P = {u ∈ B | u(x) ≥ 0 on [0, β]}.

From earlier, we know that P◦ 6= ∅. In fact,

{u ∈ B | u(x) > 0 on (0, β] and u′(0) > 0} ⊂ P◦.

For all b ∈ [0, β], define the Banach space Bb to be

Bb = {u ∈ C1[0, b] | u(0) = 0},

with the norm

||u|| = sup
0≤x≤b

|u′(x)|.

Define the cone Pb ⊂ Bb to be

Pb = {u ∈ Bb | u(x) ≥ 0 on [0, b]}.

Again, note that for all b ∈ [0, β], P◦b 6= ∅. In fact,

{u ∈ B | u(x) > 0 on (0, b] and u′(0) > 0} ⊂ P◦b .

Now for each b ∈ [0, β], define the linear operator

Nbu(x) =


∫ b

0
H(x, s)p(s)u(s)ds, 0 ≤ x ≤ b,∫ b

0
H(b, s)p(s)u(s)ds+ (x− b)

∫ b
0

∂
∂x
H(b, s)p(s)u(s)ds, b ≤ x ≤ β.

Notice that by the way Nb is defined, Nbu(x) ∈ C1[0, β] for u(x) ∈ C1[0, β], and

Nbu(0) = 0. So Nb : B → B. Also note that when Nb is restricted to Bb, Nb : Bb → Bb

by

Nbu(x) =

∫ b

0

H(x, s)p(s)u(s)ds.

So u(x) is a solution to (8.3),(8.4) if and only if u(x) = Nbu(x) =
∫ b

0
H(x, s)p(s)u(s)ds

for x ∈ [0, b].
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Lemma 8.3. For all b ∈ [0, β], the linear operator Nb is positive with respect to P

and Pb. Also, Nb : P\{0} → P◦b .

Proof. Since for u ∈ P , H(x, s) ≥ 0, ∂
∂x
H(b, s) ≥ 0, and p(s)u(s) ≥ 0, Nbu(x) ≥ 0

for 0 ≤ x ≤ β. So Nb : P → P . Similarly, Nb : Pb → Pb.

Now set Ωb = {u ∈ B | u(x) > 0 on (0, β] and y′(0) > 0}. Let u ∈ Pb\{0}. So

there exists a compact interval [c, d] ⊂ [0, b] such that p(x)u(x) > 0 for all x ∈ [c, d].

Since H(x, s) > 0 for 0 < x ≤ b,

Nbu(x) =

∫ b

0

H(x, s)p(s)u(s)ds

≥
∫ d

c

H(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ b.

Since ∂
∂x
H(x, s)|x=0 > 0,

Nbu
′(0) =

∫ b

0

∂

∂x
H(0, s)p(s)u(s)ds

≥
∫ d

c

∂

∂x
H(0, s)p(s)u(s)ds

> 0,

and so Nbu ∈ Ωb. So Nb : P\{0} → Ωb ⊂ P◦b .

Lemma 8.4. The map b 7→ Nb is continuous in the uniform topology.

Proof. First note that sup
0≤x≤1

|u(x)| ≤ ||u||. Let f : (0, β] → {Nb}, b ∈ [0, β], such

that f(b) = Nb. Let 0 < b1 < b2 ≤ β. Let ε > 0. Then

||f(b2)− f(b1)|| = ||Nb2 −Nb1||

= sup
||u||=1

||Nb2u−Nb1u||

= sup
||u||=1

{ sup
x∈[0,β]

|(Nb2u)′(x)− (Nb1u)′(x)|}.
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Since ∂
∂x
H(x, s) and p(x) are continuous functions for 0 ≤ x ≤ β, they are

bounded above for 0 ≤ x ≤ β. Choose K and P such that | ∂
∂x
H(x, s)| ≤ K and

|p(x)| ≤ P for 0 ≤ x ≤ β.

Suppose x ≤ b1. Then for |b2 − b1| < δ <
ε

KPβ
,

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
H(x, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
H(x, s)p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣∫ b2

b1

∂

∂x
H(x, s)p(s)u(s)ds

∣∣∣∣
≤
∫ b2

b1

∣∣∣∣ ∂∂xH(x, s)

∣∣∣∣ |p(s)||u(s)|ds

≤
∫ b2

b1

KPβds

= KPβ|b2 − b1|

< KPβ
ε

KPβ
= ε

Now suppose b1 < x ≤ b2. Since H(x, s) ∈ C1[0, β] in the first variable, for

|b2 − b1| < δ <
ε

2KPβ
,
∣∣ ∂
∂x
H(x, s)− ∂

∂x
H(b1, s)

∣∣ < ε

2Pβ2
. So

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
H(x, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
H(b1, s)p(s)u(s)ds

∣∣∣∣
≤
∫ b2

b1

∣∣∣∣ ∂∂xH(x, s)

∣∣∣∣ |p(s)||u(s)|ds

+

∫ b1

0

∣∣∣∣ ∂∂xH(x, s)− ∂

∂x
H(b1, s)

∣∣∣∣ |p(s)||u(s)|ds

<

∫ b2

b1

KPβds+

∫ b1

0

ε

2Pβ2
Pβds

=KPβ|b2 − b1|+
ε

2Pβ2
Pb1β

<KPβ
ε

2KPβ
+

ε

2Pβ2
Pβ2 = ε.

Now suppose β > x > b2. Again, since H(x, s) ∈ C1[0, β] in the first variable,

for |b2 − b1| < δ <
ε

2KPβ
,
∣∣ ∂
∂x
H(b2, s)− ∂

∂x
H(b1, s)

∣∣ < ε

2Pβ2
. So

|(Nb2u)′(x)− (Nb1u)′(x)| =
∣∣∣∣∫ b2

0

∂

∂x
H(b2, s)p(s)u(s)ds−

∫ b1

0

∂

∂x
H(b1, s)p(s)u(s)ds

∣∣∣∣
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≤
∫ b2

b1

∣∣∣∣ ∂∂xH(b2, s)

∣∣∣∣ |p(s)||u(s)|ds

+

∫ b1

0

∣∣∣∣ ∂∂xH(b2, s)−
∂

∂x
H(b1, s)

∣∣∣∣ |p(s)||u(s)|ds

<

∫ b2

b1

KPβds+

∫ b1

0

ε

2Pβ2
Pβds

=KPβ|b2 − b1|+
ε

2Pβ2
Pb1β

<KPβ
ε

2KPβ
+

ε

2Pβ2
Pβ2 = ε.

So we have that sup
||u||=1

{ sup
x∈[0,β]

|(Nb2u)′(x)− (Nb1u)′(x)|} < ε for |b2− b1| < δ. So

||f(b2)− f(b1)|| < ε for |b2 − b1| < δ, and so f is continuous.

Theorem 8.7. For 0 < b ≤ β, r(Nb) is strictly increasing as a function of b.

Proof. In [22], it is shown that there exists λ > 0 and u ∈ Pb\{0} such that Nbu(x) =

λu(x). Extend u to [b, β] by

u(x) =
1

λ

(∫ b

0

H(b, s)p(s)u(s)ds+ (x− b)
∫ b

0

∂

∂x
H(b, s)p(s)u(s)ds

)
.

Then for x ∈ [0, β], Nbu(x) = λu(x). Thus for 0 < b ≤ β, r(Nb) ≥ λ > 0.

Now let 0 < b1 < b2 ≤ β. Since r(Nb1) > 0, by Theorem 8.2, there exists a

u0 ∈ Pb1\{0} such that Nb1u0 = r(Nb1)u0. Let u1 = Nb1u0 and u2 = Nb2u0. Then

for x ∈ (0, b1],

(u2 − u1)(x) =

∫ b2

b1

H(x, s)u(s)p(s)ds > 0.

Also,

(u2 − u1)′(0) =

∫ b2

b1

∂

∂x
H(0, s)u(s)p(s)ds > 0.

Thus the restriction of u2 − u1 to [0, b1] belongs to Ωb1 . So there exists a δ > 0 such

that u2 − u1 ≥ δu0 with respect to Pb1 . Since u2 ∈ P , it follows that u2 − u1 ≥ δu0

with respect to P . Thus

u2 ≥ u1 + δu0

70



= r(Nb1)u+ δu0

= (r(Nb1) + δ)u0

with respect to P . Thus Nb2u0 ≥ (r(Nb1)+δ) with respect to P , and so by Theorem

8.4, r(Nb2) ≥ r(Nb1) + δ. So r(Nb2) > r(Nb1) and r(Nb) is strictly increasing.

Now, we state and prove the main result.

Theorem 8.8. The following are equivalent:

(i) b0 is the first extremal point of the boundary value problem corresponding to

(8.3),(8.4) for 0 ≤ x ≤ β;

(ii) there exists a nontrivial solution u of the boundary value problem (8.3),(8.4)

for 0 ≤ x ≤ b0 such that u ∈ Pb0\{0};

(iii) r(Nb0) = 1.

Proof. First, we show (iii) ⇒ (ii); since r(Nb0) = 1 > 0, by Theorem 8.3, r(Nb0)

is an eigenvalue of Nb0 , and so there exists a u ∈ Pb0\{0} such that Nb0u(x) =

r(Nb0)u(x) = u(x) for x ∈ [0, b0]. So (ii) holds.

Next, we prove (ii)⇒ (i). Let u ∈ Pb0\{0} satisfy (8.3),(8.4), for 0 ≤ x ≤ b0.

For x > b0, extend u(x) =
∫ b0

0
H(b0, s)p(s)u(s)ds+(x− b0)

∫ b0
0

∂
∂x
H(b0, s)p(s)u(s)ds.

So Nb0u(x) = u(x) for 0 ≤ x ≤ β. So r(Nb0) ≥ 1.

If r(Nb0) = 1, then by Theorem 8.7, for 0 < b < b0, r(Nb) < r(Nb0) = 1, and

so b0 is the first extremal point of (8.3),(8.4).

Assume r(Nb0) > 1. Let v ∈ Pb0\{0} such that Nb0v = r(Nb0)v. Now v re-

stricted to [0, b0] belongs to Ωb0 , and so there exists a δ > 0 such that u ≥ δv with re-

spect to Pb0 . Extend v(x) =
∫ b0

0
H(b0, s)p(s)v(s)ds+(x−b0)

∫ b0
0

∂
∂x
H(b0, s)p(s)v(s)ds

for x ≥ b0. Then u ≥ δv with respect to P . Assume δ is maximal such that u ≥ δv.

Then

u = Nb0u ≥ Nb0(δv) = δNb0v = δr(Nb0)v.
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Since r(Nb0) > 1, δr(Nb0) > δ. But u ≥ δr(Nb0)v, a contradiction to the fact that δ

is the maximal value satisfying y ≥ δv. So r(Nb0) = 1, and so b0 is the first extremal

point of (8.1),(8.2).

Last, we show (i) ⇒ (iii). If b0 is the first extremal point of the boundary

value problem (8.3),(8.4), there exists a u ∈ Pb0\{0} such that r(Nb0)u = Nb0u, and

so r(Nb0) ≥ 1. Assume r(Nb0) > 1. By Lemma 8.4, lim
b→0

r(Nb) = 0, and so by the

Intermediate Value Theorem, there exists an α ∈ (0, b0) such that r(Nα) = 1. So

there exists a nontrivial solution of (8.1),(2.2) on [0, α], which contradicts the fact

that b0 is the first extremal point. So r(Nb0) = 1.
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