ABSTRACT

Comparison of Smallest Eigenvalues and Extremal Points for Third and Fourth
Order Three Point Boundary Value Problems

Jeffrey T. Neugebauer, Ph.D.
Advisor: Johnny Henderson, Ph.D.

The theory of ug-positive operators with respect to a cone in a Banach space is
applied to the linear differential equations u‘® + X\ p(z)u = 0 and u™® 4+ \yq(x)u = 0,
0 < z < 1, with each satisfying the boundary conditions u(0) = u/(r) = u"(r) =
u”(1) =0, 0 < r < 1. The existence of smallest positive eigenvalues is established,
and a comparison theorem for smallest positive eigenvalues is obtained. These re-
sults are then extended to the nth order problem using two different methods. One
method involves finding the Green’s function for —u(® = 0 satisfying the higher
order boundary conditions, and the other involves making a substitution that al-
lows us to work with a variation of the fourth order problem. Extremal points via
Krein-Rutman theory are then found. Analogous results are then obtained for the
eigenvalue problems u” + A\ip(x)u = 0 and «” + Ayg(x)u = 0, with each satisfying
u(0)=u'(r)=u"(1)=0,0<1/2<r <1
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CHAPTER ONE

Introduction

1.1  OQwverview
In this dissertation, we will consider two eigenvalue problems. First, we con-

sider the comparison of eigenvalues for the eigenvalue problems
u® + \ip(x)u =0, (1.1)

u® + Noq(z)u = 0, (1.2)

satisfying the boundary conditions
w(0) =u'(r) =u"(r) =u" (1) =0, (1.3)

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(z) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

The focus in the second chapter of the dissertation will be on comparing the
smallest eigenvalues for these eigenvalue problems. First, using the theory of ug-
positive operators with respect to a cone in a Banach space, we establish the exis-
tence of smallest eigenvalues for (1.1),(1.3), and (1.2),(1.3), and then compare these
smallest eigenvalues after assuming a relationship between p(z) and g(x). We then
extend these results to the nth order case using two different methods. First, in
Chapter 3, we establish the properties of the Green’s function for the nth order
problem, and by using these properties, we are able to again establish the existence
of smallest eigenvalues and then derive the comparison results. In Chapter 4, we use
a substitution method so that we can work with fourth order eigenvalue problems
that have the same eigenvalues as the nth order problem. Comparison results are

then obtained.



We then consider the comparison of eigenvalues for the eigenvalue problems
u" 4+ Mp(z)u =0, (1.4)

u" + Aog(z)u =0, (1.5)

each of which satisfies the boundary conditions
w(0) =/ (r) =u"(1) =0, (1.6)

where 0 < 1/2 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(x) vanishes identically on any compact subinterval
of [0,1]. Results analogous to the ones in Chapters 2, 3, and 4 are found for these
eigenvalue problems in Chapters 5, 6, and 7.

The technique for the comparison of these eigenvalues involve the application
of sign properties of the Green’s function, followed by the application of ug-positive
operators with respect to a cone in a Banach space. These applications are presented
in books by Krasnoselskii [23] and by Krein and Rutman [22].

Several authors have before applied these techniques in comparing eigenvalues
for different boundary problems than the ones seen here. Previous work has been
devoted to boundary value problems for ordinary differential equations involving
conjugate, Lidstone, and right focal conditions. For example, Eloe and Hender-
son have studied smalleset eigenvalue comparisons for a class of two-point bound-
ary value problems [8], and for a class of multipoint boundary value problems [9].
Karna has also studied smallest eigenvalue comparisons for m-point boundary value
problems [18] and three-point boundary value problems [19]. In addition, compari-
son results have been obtained for difference equations [14] and for boundary value
problems on time scales [2, 4, 16, 17, 24]. For additional work on this field, see
3, 10, 11, 13, 15, 20, 27, 28].

In the final chapter, we characterize extremal points for both a fourth order

problem and the third order problem via Krein-Rutman theory. We show there
2



exists a smallest interval such that there exists at least one nontrivial solution for
a fourth order three point problem and a third order three point problem. For the
theory used in this chapter, we refer the reader to Amann [1], Deimling [5], Krein
and Rutman [22], Schmidt and Smith [26], and Zeidler [29].

There has also been work done on extremal points. Eloe, Hankerson, and
Henderson characterized extremal points for a class of multipoint boundary value
problem [6] and for a class of two point boundary value problems [7]. Eloe, Hender-
son, and Thompson characterized extremal points for impulsive Lidstone boundary

value problems [12].

1.2 Preliminary Definitions and Theorems
Definition 1.1. Let B be a Banach space over R. A closed nonempty subset P of B

is said to be a cone provided

(i) au+ pv € P, for all u,v € P and all o, 5 > 0, and

(ii) w € P and —u € P implies u = 0.
Definition 1.2. A cone P is solid if the interior, P°, of P, is nonempty. A cone P is
reproducing if B =P —"P; i.e., given w € B, there exist u,v € P such that w = u—w.
Remark 1.1. Krasnosel’skii [23] showed that every solid cone is reproducing.

Definition 1.3. Let P be a cone in a real Banach space B. If u,v € B, u < v with
respect to P if v —u € P. If both M, N : B — B are bounded linear operators,

M < N with respect to P if Mu < Nu for all u € P.

Definition 1.4. A bounded linear operator M : B — B is ug-positive with respect to
P if there exists 0 # uy € P such that for each 0 # u € P, there exist ky(u) > 0 and

ks(u) > 0 such that kyug < Mu < koug with respect to P.

The following three results are fundamental to our comparison results and are

attributed to Krasnosel’skii [23]. The proof of Lemma 1.1 is provided, the proof of
3



Theorem 1.1 can be found in Krasnosel’skii’s book [23], and the proof of Theorem

1.2 is provide by Keener and Travis [21] as an extension of Krasonel’skii’s results.

Lemma 1.1. Let B be a Banach space over the reals, and let P C B be a solid cone.
If M : B — B is a linear operator such that M : P\{0} — P°, then M is ug-positive

with respect to P.

Proof. Choose any uy € P\{0}, and let v € P\{0}. So Mu € Q C P°. Choose
k1 > 0 sufficiently small and ko sufficiently large so that Mu — kyug € P° and
Uy — k—12Mu € P°. So kiug < Mu with respect to P and Mu < kyug with respect to
P. Thus kyug < Mu < kyug with respect to P and so M is ug-positive with respect

to P. O

Theorem 1.1. Let B be a real Banach space and let P C B be a reproducing cone.
Let L : B — B be a compact, ug-positive, linear operator. Then L has an essentially
unique eigenvector in P, and the corresponding eigenvalue is simple, positive, and

larger than the absolute value of any other eigenvalue.

Theorem 1.2. Let B be a real Banach space and P C B be a cone. Let both M, N :
B — B be bounded, linear operators and assume that at least one of the operators
s ug-positive. If M < N, Muy > Auy for some uy € P and some \y > 0, and
Nug < Aug for some uy € P and some Ay > 0, then Ay < Xy, Futhermore, A\ = Ay

implies uy is a scalar multiple of us.



CHAPTER TWO
The Fourth Order Problem

In this chapter, we consider the fourth order eigenvalue problems
u® + A\ p(x)u =0, (2.1)

u® + Aoq(z)u = 0, (2.2)

satisfying the boundary conditions
w(0) =u'(r) =u"(r) =u"(1) =0, (2.3)

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(x) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

We derive comparison results for these fourth order eigenvalue problems by
applying the theorems mentioned in the Introduction. To do this, we will define
integral operators whose kernel is the Green’s function for —u® = 0 satisfying
(2.3).

This Green’s function is given by

(
$3
G s<rs<ux,

(a:—r)3+7"3

6

G(z,s) = .

(z—s)°+s
6 )
r34+(s—x)3+(z—r)3

\ 6 ’

So u(x) solves (2.1),(2.3) if and only if u(z) = N\ fol G(z,s)p(s)u(s)ds, and u(z)

, s>r5> T,

s<r,s>ux,

s>r,s <.

solves (2.2),(2.3) if and only if u(z) = s fol G(z,s)q(s)u(s)ds. Note G(z,s) > 0 on
[0,1] x [0,1], G(z,s) > 0on (0,1] x (0,1], and ZG(z,8)[s—0 >0 for 0 < s < 1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by

B={uecC'0,1] | uw(0) =0}
5



with the norm

[lul] = sup |u/(x)].

0<z<L1

Define the cone P to be
P={ueB|u(x)>0on][0,1]}.
Notice that for u € B, 0 <z <1,

u(@)] = |u(x) = u(0)] =

/Ox u'(s)ds

< [fullz

< [ful],

and so sup |u(z)| < [|ull.
0<z<L1

Lemma 2.1. The cone P is solid in B and hence reproducing.
Proof. Define
Q={ueB|u(x)>0on (0,1 and «'(0) > 0}.
Note 2 C P. Choose u € 2 and define B.(u) = {v € B | ||u —v|| < €} for € > 0.

Choose €y > 0 such that v/(0) —eg > 0. So for v € B, (u), sup [v'(z) —u'(z)| < €.
0<z<1

So v'(0) > u/(0) — €y > 0. Also, |v(z) — u(z)| < ||v — ul| < €y, and so v(z) > 0 on
(0,1]. So v € ©Q and hence B, (u) C @ C P and Q2 C P°. Therefore P is solid in
B. O

Next, we define our linear operators M, N : B — B by
1
Mu(x) = / G(z,s)p(s)u(s)ds, 0 <z <1,
0

and

Nu(z) = /0 G(z,s)q(s)u(s)ds, 0 <x < 1.

6



Lemma 2.2. The linear operators M and N are compact.

Proof. We prove the statement for M only. The proof for N is similiar. We will use
the Arzeld-Ascoli theorem to show that M is a compact operator. To do this, we
need to show that M is continuous, and for any bounded sequence {u,} in B, the
sequence { Mu,} is unformly bounded and equicontinuous.

Let u,v € B. Since p(x) is a nonnegative continuous function on [0, 1], p(z), has

a maximum value. Define this maximum value, sup {p(z)} = L. Since 2G(z, s)
0<a<1

0
is bounded, let K = sup { G(z, s)} Then, for € > 0, there exists § =
(z,5)€[0,1]x[0,1] Ox

LK > 0 such that if ||u — v|| < J, for any = € [0, 1],

| Mu'(z) — MV (x)| = —G (x,8)p(s)(u(s) —v(s))ds

/—st 9)l(u(s) — v(s))|ds

< LK§ =e.

So, if |Ju —v|| < 0, then sup |Mu'(z) — Mv'(z)|] < e. Thus, for ||u —v|| < 0,

0<z<1
||Mu — Mv|| < e. Hence M is continuous.

Let {u,} be a bounded sequence in B and let ||u,|| < K, for all n. Since
Mu,(z) = fol G(z, s)p(s)u,(s)ds, we have
1o

—G(z, s)p(s)uy,(s)ds

/ _
@) =| [ 5

< KK0L7

for all n. So {Mu,,} is uniformly bounded.

Finally, since %G (x, s) is continuous for any fixed s, for any € > 0, there exists

§ > 0 such that if |11 — 22| < 8, | 2G(21,5) — ZG(22, 5)| IR
| Mu,(x1) — Mu,(xq)] < /1 gG(m s) — QG(l’ s)| p(s)un(s)ds
n\+1 n\+2)| = 0 856 1, ax 2, p n
LKOLKO = €.

7



So, if |x; — xo| < 6, then ||Mu,(z1) — Mu,(xs)|| < € for all n. Therefore, { Mu,} is
equicontinuous. Therefore, by the Arzela-Ascoli theorem, M is a compact operator.

]

Lemma 2.3. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let u € P. So u(x) > 0. Then since
G(z,s) > 0on [0,1] x [0,1] and p(x) > 0 on [0, 1],

for0<z<1 SoM:P—P.
Now let u € P\{0}. So there exists a compact interval [, 8] C [0, 1] such that

u(z) > 0 and p(z) > 0 for all z € [, 5]. Then, since G(x,s) > 0 on (0, 1] x (0, 1],

Mu(x):/o G(zx, s)p(s)u(s)ds

B
> / G(z, s)p(s)u(s)ds

for 0 < x < 1. Also, since B%G(:r,s)h:o >0for0<s<1,
/ —G(0, s)p(s)u(s)ds
/ —G 0, s)p(s)u(s)ds

and so Mu € Q C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof. [
Remark 2.1. Notice that

Au=Mu = /0 G(z,s)p(s)u(s)ds,

8



if and only if
if and only if
with

So the eigenvalues of (2.1),(2.3) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (2.2),(2.3) are reciprocals of eigenvalues of N, and

conversely.

Theorem 2.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say u € P, and eigenvalue

A with the above properties. Since u # 0, Mu € Q C P°and u = M (%u) epe. U

Theorem 2.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 2.1 associated with M and N,
respectively, with the essentially unique eigenvectors uy and us € P°. Then Ay < As,

and Ay = Ay if and only if p(x) = q(x) on [0, 1].
Proof. Let p(x) < q(z) on [0,1]. So for any u € P, and = € [0, 1],
(Vu = Mu)(a) = [ Glas)als) = p(s)uls)s > 0.

So Nu — Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, Ay < As.



If p(x) = q(x), then Ay = Ay. Now suppose p(z) # q(x). So p(x) < g(x) on
some subinterval [a, 5] C [0,1]. Then (N — M)u; € Q C P° and so there exists
e > 0 such that (N — M)u; —euy; € P. So Aqyuy + eu; = Muy + euy < Nuy, implying
Nuy > (A + €)uy. Since N < N and Nug = Agug, by Theorem 1.2, A + € < Ay, or

A1 < Ag. O

By Remark 2.1, the following theorem is an immediate consequence of Theo-

rems 2.1 and 2.2.

Theorem 2.3. Assume the hypotheses of Theorem 2.2. Then there exists smallest
positive eigenvalues Ay and Ay of (2.1),(2.3) and (2.2),(2.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to A1 and Ny may
be chosen to belong to P°. Finally, A\y > o, and Ay = Xy if and only if p(z) = q(z)

for 0 <ax <1.

10



CHAPTER THREE

Extending the Fourth Order Problem Using the Green’s Function

3.1 Introduction
In this chapter, we will extend the results of the previous fourth order problem
to the nth order problems
u™ 4+ Aip(z)u = 0,

u™ 4 Aoq(z)u = 0,

satisfying the boundary conditions
u(0) =u/(0) = - =uY(0) = " (r) =u" P (r) = u"V(1) =0,

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(x) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

To do this, we will find the sign properties of the Green’s function for —u(™ = 0
satisfying the boundary conditions just stated. We will need the Green’s function for
the fourth order problem to find these sign properties. We first show the extension
of the fourth order problem to the fifth order problem. Then, we extend to the nth

order problem.

3.2 The Fifth Order Problem

We now consider the eigenvalue problems
u® + \ip(z)u =0, (3.1)

u® + Agq(2)u = 0, (3.2)

satisfying the boundary conditions

u(0) = u'(0) = u"(r) = u"(r) = u™®(1) = 0, (3.3)



where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(x) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

Here we will use methods similar to the methods used in the previous chapter
to derive comparison theorems for these fifth order eigenvalue problems. We will
do this by finding the Green’s function, which we will call G5(z, s), for —u® = 0
satisfying (3.3). This Green’s function is continuous and 2 G5(z, s) = G(z, s), where

G(z, s) is as defined earlier. Therefore, the Green’s function is

(
4s3x—s?

o s<r,s<u,
744374
(@=r)"+drie—r? s>1.8> 7,

24 )
G5(x’ S) =) (z—s)+453 -5
it s<r,s>u1,
4T3x_(8_§i4+(x_r)4a s>rs <.
\

Now u(z) solves (3.1),(3.3) if and only if u(z) = A fol Gs(z, s)p(s)u(s)ds, and u(x)
solves (3.2),(3.3) if and only if u(x) = Ay fol Gs(z, s)q(s)u(s)ds.

Since £ G5(z,s) = G(z,s), 2Gs(x,s) > 0on [0,1] x [0,1] and ZG5(z,s) > 0
on (0,1] x (0,1]. Also, since 68—;G5(x,3) = 2G(,s), then 88—;G5(x,s)|x:0 > 0 for
0<s<1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B = {u e C?0,1] | u(0) = u'(0) = 0},
with the norm

[lul| = sup [u"(z)].

0<z<1

Define the cone P to be
P={ueB|u(x)>0o0n]l0,1]}
Notice that for u € B, 0 <z <1,

|/ (x)] = [ (x) — /' (0)] =




< [fulle

< [[ull,

and so sup |u'(x)] < ||ul|.
0<z<1

Lemma 3.1. The cone P is solid in B and hence reproducing.

Proof. Define
Q={ueB|d(x)>0o0n (0,1] and u"(0) > 0}.

Note 2 C P. Choose u € Q and define B.(u) = {v € B | ||u —v|| < €} for e > 0.
Choose €y > 0 such that u”(0) — ey > 0. So for v € B, (u), sup [v"(z)—u"(z)| < €.
So v"(0) > u"(0) — €y > 0. Also, |v/(x) — u/(x)] < [|v — 1?|S|I§eo, and so v'(z) > 0

n (0,1]. So v € Q and hence B (u) C Q C P and 2 C P°. Therefore P is solid in

B. ]

Next, we define our linear operators M and N by
1
Mu(z) = / Gs(z, s)p(s)u(s)ds, 0 <z <1,
0
and
1
Nu(z) = / Gs(z,s)q(s)u(s)ds, 0 <x < 1.
0

Since G5(0,5) = 2G5(x,5)|e—0 = 0, M, N : B — B. A standard application of the

ox

Arzela-Ascoli theorem shows that M and N are compact.

Lemma 3.2. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let u € P. So u(x) > 0. Then, since
L G5(x,s) = G(z,s) > 0on [0,1] x [0,1] and p(z) > 0 on [0, 1],

13



/ —G5 (x, s)p(s)u(s)ds > 0,

for0<z<1 SoM:P—P.
Now let u € P\{0}. So there exists a compact interval [, 5] C [0, 1] such that

u(z) > 0 and p(z) > 0 for all z € [, 8]. Then, since &G5(z,s) > 0 on (0,1] x (0, 1],

Mu'(x) :/0 %Cﬁ(x s)p(s)u(s)ds

B
> /a (%Gg,(x, s)p(s)u(s)ds

> 0,

for 0 <z < 1. Also, since 88—;2G5(x,s)]x:0 >0for0<s <1,

62
0x?
82

@G5(0 s)p(s)u(s)ds

(Mu)"(0) = [ ==G5(0,s)p(s)u(s)ds

e

> 0,

and so Mu € Q C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

up-positive with respect to P. A similar argument for N completes the proof. O

Remark 3.1. Notice that

Au=Mu = /o Gs(z, s)p(s)u(s)ds,

if and only if
if and only if
with

u(0) = u'(0) = u"(r) = u"(r) = u®(1) = 0.

14



So the eigenvalues of (3.1),(3.3) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (3.2),(3.3) are reciprocals of eigenvalues of N, and

conversely.

Theorem 3.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since u # 0, Mu € Q C P° and u = M (%u) ePe. O

Theorem 3.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 3.1 associated with M and N,

respectively, with the essentially unique eigenvectors uy and ug € P°. Then Ay < Ao,

and Ay = Ay if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) < ¢(x) on [0,1]. So for any u € P, and « € [0, 1],

(Nu — Mu)’ / —G5 (x,$)(q(s) — p(s))u(s)ds > 0.

So Nu — Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, Ay < As.

If p(x) = q(z), then Ay = Ay. Now suppose p(z) # q(z). So p(x) < ¢(x) on
some subinterval [a, 5] C [0,1]. Then (N — M)u; € Q C P° and so there exists
e > 0 such that (N — M)u; — euy € P. So Ajug +eu; = Mug + eu; < Nug, implying
Nuy > (A 4+ €)uy. Since N < N and Nuy = Asus, by Theorem 1.2, Ay + € < Ay, or
A < Ay O

By Remark 3.1, the following theorem is an immediate consequence of Theo-

rems 3.1 and 3.2.
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Theorem 3.3. Assume the hypotheses of Theorem 3.2. Then there exists smallest
positive eigenvalues Ay and Ao of (3.1),(3.3) and (3.2),(3.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to A\ and \s may
be chosen to belong to P°. Finally, A\y > Xg, and Ay = Ay if and only if p(z) = q(x)

for 0 <ax <1.

3.3 The nth Order Problem

Let n € N, n > 5. In this section, we will consider the eigenvalue problems
u™ + \ip(x)u = 0, (3.4)

u™ + Apq(z)u =0, (3.5)

satisfying the boundary conditions
u(0) = u'(0) = - = u" 0 (0) = "I (r) = "I (r) ="V (1) = 0, (3.6)

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(z) nor ¢(x) vanish identically on any compact subinterval of [0, 1].

Again, we will use methods similar to the methods used previously to derive
comparison theorems for these nth order eigenvalue problems. We will do this by
finding the the sign properties of the Green’s function, which we will call G,,(x, s), for
—u(™ = 0 satisfying (3.6). This Green’s function, as a function of x, is C»=4]0, 1],

n—4

and 2= G, (z,s) = G(z, s), where G(z, s) is as defined earlier.

Now u(z) solves (3.4),(3.6) if and only if u(z) = \ fol Gn(z, s)p(s)u(s)ds, and
u(z) solves (3.5),(3.6) if and only if u(x) = As fol Gn(x, s)q(s)u(s)ds.
Since %Gn(l‘, s) = G(z,s), then %Gn(x,s) > 0 on [0,1] x [0,1] and

%Gn(x,s) > 0 on (0,1] x (0,1]. Also, since aa;TiGn(x,s) = 2G(z,s), then

%Gn(m, 8)|a=o >0 for 0 < s < 1.
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To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B ={ueC"00,1] | u(0) = u'(0) = --- = u"~(0) = 0}
with the norm

lul| = sup a2 (2)|.
0<z<1

Define the cone P to be
P={ucB|u"Yx)>0o0n[0,1]}
Notice that for u € B, 0 <z <1,

[u V()| = Ju" D (z) — ul*=(0)] =

/ w3 (s)ds
0

< [Jullz

< ful],

and so sup [u" V()| < ||ul|.
0<x<1

Lemma 3.3. The cone P is solid in B and hence reproducing.

Proof. Define
Q={ueB|u" ) >0on (0,1 and «"~¥(0) > 0}.

Note 2 C P. Choose u € 2 and define B.(u) = {v € B | ||u — v|| < €} for € > 0.
Choose ¢y > 0 such that u("3(0) — ¢y > 0. So for v € B, (u), sup [0 (z) —

0<z<1
w3 (2)] < e. So v (0) > u3(0) — € > 0. Also, [v D (z) — uV ()| <

l[v — u|| < €, and so v (z) > 0 on (0,1]. So v € Q and hence B, (u) C Q C P,

and 2 C P°. Therefore P is solid in B. O]

Next, we define our linear operators M and N by

Mu(x) = /0 Gn(z,s)p(s)u(s)ds, 0 <x <1,
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and

Nu(z) = /0 Gn(z,s)q(s)u(s)ds, 0 <z < 1.

Note that since Gn(z,8)|g=0 = 0 for i = 4,5,...,n, then M,N : B — B. A

an—i
Oxn—1

standard application of the Arzela-Ascoli theorem shows that M and N are compact.

Lemma 3.4. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let u € P. So u(z) > 0. Then, since
D Gz, s) = G(x,s) > 0 on [0,1] x [0,1] and p(z) > 0 on [0, 1],

Oxn—4

1 9n—4
Mul"(z) = a—G (x,s)p(s)u(s)ds > 0,

0 a$n_4 "
for0<z<1 SoM:P—P.

Now let u € P\{0}. So there exists a compact interval [, 5] C [0, 1] such

that u(z) > 0 and p(x) > 0 for all x € [«, B]. Then, since %Gn(x,s) > 0 on

(0,1] x (0, 1],
1 an74
Mu(”_4)(x): i WGn(x, s)p(s)u(s)ds
B gn—4
> ) WGn(x,s)(x,s)p(s)u(s)ds
> 0,

for 0 < x < 1. Also, since ;;L%Gn(x,s)|x:0 >0for0<s <1,

M) 90) = [ 260, $)p(s)uls)ds

o Oxn=3"
B on—3
> -
> [ G Cal0. sl uls)ds

> 0,

and so Mu € Q C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ugp-positive with respect to P. A similar argument for N completes the proof. [
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Remark 3.2. Notice that

Au= Mu = /0 Gz, s)p(s)u(s)ds,

if and only if
if and only if

with
w(0) =u'(0) =--- = u(”_4)(0) = "3 (r) = u(”_Q)(r) = u(”_l)(l) =0.

So the eigenvalues of (3.4),(3.6) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (3.5),(3.6) are reciprocals of eigenvalues of N, and

conversely.

Theorem 3.4. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

ergenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since u # 0, Mu €  C P° and u = M (%u) ePc. O

Theorem 3.5. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 3.4 associated with M and N,
respectively, with the essentially unique eigenvectors uy and us € P°. Then Ay < Ay

and Ny = Ay if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) < q(z) on [0,1]. So for any u € P, and = € [0, 1],

(Nu — Mu)" 9 (z) = O %Gn(m, s)(q(s) — p(s))u(s)ds > 0.
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So Nu — Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, A} < As.

If p(x) = gq(x), then Ay = Ay. Now suppose p(x) # q(x). So p(x) < g(x) on
some subinterval [a, 8] C [0,1]. Then (N — M)u; € Q C P° and so there exists
e > 0 such that (N — M)u; —euy; € P. So Aqyuy + eu; = Muy + euy < Nuy, implying
Nuy > (A + €)uy. Since N < N and Nug = Agug, by Theorem 1.2, A + € < Ay, or

A1 < AQ. O

By Remark 3.2, the following theorem is an immediate consequence of Theo-

rems 3.4 and 3.5.

Theorem 3.6. Assume the hypotheses of Theorem 3.5. Then there exists smallest
positive eigenvalues Ny and Ao of (3.4),(3.6) and (3.5),(3.6), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to Ay and X may be
chosen to belong to P°. Finally, \y > Ay and A\ = Ay if and only if p(x) = q(x) for

0<z<1.
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CHAPTER FOUR

Extending the Fourth Order Problem Using Substitution

4.1 Introduction
In this chapter, we will again extend the results of the fourth order problem
to the nth order problem
u™ 4+ Aip(z)u = 0,

u™ + \pq(2)u = 0,

satisfying the boundary conditions
u(0) = ' (0) = - = u"D(0) = " V(1) = "D (r) = V(1) = 0,

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(z) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

Instead of using the sign properties of the Green’s function for the nth order
equation to derive the comparison theorems, we will instead make a substitution and
work with a variation of the fourth order problem. This method has its benefits,
since we do not need to find the sign properties of the Green’s function of the nth
order problem, and can instead work with the fourth order problem. We will again

start with the fifth order problem and then look at the nth order problem.

4.2 The Fifth Order Problem

We now consider the eigenvalue problems
u® + \ip(z)u = 0, (4.1)

u® + \yq(x)u = 0, (4.2)

satisfying the boundary conditions

u(0) = ' (0) = u"(r) = u"(r) = u®(1) = 0, (4.3)



and the eigenvalue problems
@ + Alp(x)/ v(s)ds =0, (4.4)
0

v™® 4 Ayq(z) /z v(s)ds =0, (4.5)

satisfying the boundary condtions
v(0) =o' (r) =2"(r) = 0" (1) =0, (4.6)

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(z) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

First we note that if u(z) is a solution to (4.1),(4.3), then u'(x) solves (4.4),(4.6).
Also, if v(z) is a solution to (4.4),(4.6), then [ v(s)ds is a solution to (4.1),(4.3).
Similarly, if u(z) is a solution to (4.2),(4.3), then u/(z) solves (4.5),(4.6), and if v(x)
is a solution to (4.5),(4.6), then [ v(s)ds is a solution to (4.2),(4.3).

Now let A be an eigenvalue of (4.1),(4.3) with the corresponding eigenvector
u(z). Then «'(x) is a solution to (4.4),(4.6) with the same eigenvalue A. Also, if A
is an eigenvalue of (4.4),(4.6) with corresponding eigenvector v(z), then [ v(s)ds
is a solution to (4.1),(4.3) with the corresponding eigenvalue A. So eigenvalues
of (4.1),(4.3) are eigenvalues of (4.4),(4.6), and vice versa. Similarly, eigenvalues of
(4.2),(4.3) are eigenvalues of (4.5),(4.6), and vice versa. So any comparison theorems
for (4.4),(4.6), and (4.5),(4.6) will apply to (4.1),(4.3), and (4.2),(4.3).

For these reasons, we will derive comparison theorems for eigenvalue problems
(4.4),(4.6), and (4.5),(4.6), and then use these theorems to derive the comparison
theorems for (4.1),(4.3), and (4.2),(4.3).

Let G(x,s) by the Green’s function for —v™® = 0 satisfying (4.6), which was

defined earlier. So v(x) solves (4.4),(4.6) if and only if

v(z) =N\ /01 G(z, s)p(s) /03 v(t)dtds,
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and v(z) solves (4.5),(4.6) if and only if

o(z) = Ao /0 G 5)a(s) /0 (b dtds.

Again, note G(z,s) > Oon [0,1]x[0,1], G(z,s) > 0on (0,1]x(0,1], and L G(x, 5)|s=0 >
0for 0 <s<1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B={veC0,1]|v0)=0}
with the norm

o]l = sup |v/()].
0<az<1

Define the cone P to be
P={veB|v(x)>0on|0,1]}.

Notice that for v € B, 0 < x <1,

and so sup |v(z)| < ||v]].
0<z<1
Lemma 4.1. The cone P 1is solid in B and hence reproducing.

Proof. Define
Q={veB|v(x)>0on(0,1] and v'(0) > 0}.

It was shown in Chapter 2 that 2 C P°. Therefore P is solid in B. m
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Next, we define our linear operators M, N : B — B by

Muv(z) = /0 G(z, s)p(s) /Osv(t)dtds, 0<z<1,

and
1 s
Nuv(x) :/ G(:U,s)q(s)/ v(t)dtds, 0 <z < 1.
0 0
A standard application of the Arzela-Ascoli theorem shows that M and N are com-

pact.

Lemma 4.2. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let v € P. So v(x) > 0. Then since
G(z,s) > 0on [0,1] x [0,1], p(x) > 0 on [0,1] and [ v(s)ds >0,

Muv(z) = /01 G(z,s)p(s) /Osv(t)dtds >0,

for0<z<1. SoM:P—P.
Now let v € P\{0}. So there exists a compact interval [a, 5] C [0, 1] such
that [ v(s)ds > 0 and p(z) > 0 for all # € [o, 8]. Then, since G(x,s) > 0 on

(0,1] x (0,1],
Mo(z) :/0 G(z,s)p(s) /Osv(t)dtds
B s
> / Gz, s)p(s)/o v(t)dtds
> 0,
for 0 < 2 < 1. Also, since ZG(x,5)|s—0 > 0for 0 < s <1,
(Mv)'(0) = /0 %G(O,s)p(s) /Osv(t)dtds
B s
> /a %G(O,s)p(s) /0 ot)dtds

> 0,
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and so Mv € Q@ C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof.  [J

Remark 4.1. Notice that

Av = My = /0 1 G(z, s)p(s) /0 Co(t)dtds,

if and only if
if and only if

with

v(0) ='(r) =0"(r) =" (1) = 0.

So the eigenvalues of (4.4),(4.6) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (4.5),(4.6) are reciprocals of eigenvalues of N, and

conversely.

Theorem 4.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since v # 0, Mv € Q C P° and v = M (%v) epe. O

Theorem 4.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 4.1 associated with M and N,

respectively, with the essentially unique eigenvectors vi and vy € P°. Then Ay < Ao,

and Ny = Ay if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) < q(z) on [0,1]. So for any v € P, and z € [0, 1],

(Nv— Mv)(x) = /o G(z,s)(q(s) — p(s)) /Osv(t)dtds > 0.

So Nv — Mwv € P for all v € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ay

If p(x) = q(z), then Ay = Ay. Now suppose p(x) # q(z). So p(x) < ¢(z) on
some subinterval [, 5] C [0,1]. Then (N — M)v; € 2 C P° and so there exists
€ > 0 such that (N — M)v; —ev; € P. So Ajvy + evy = Mv; + evy < Nog, implying
Nuvy > (A1 + €)vy. Since N < N and Nvy = Agvy, by Theorem 1.2, A; + € < Ay, or
A < A, O

By Remark 4.1, the following theorem is an immediate consequence of Theo-

rems 4.1 and 4.2.

Theorem 4.3. Assume the hypotheses of Theorem 4.2. Then there exists smallest
positive eigenvalues Ny and Ay of (4.4),(4.6) (and hence (4.1),(4.3)) and (4.5),(4.6)
(and hence (4.2),(4.3) ), respectively, each of which is simple, positive, and less than
the absolute value of any other eigenvalue of the corresponding problems. Also,
eigenfunctions corresponding to A1 and Ay may be chosen to belong to P°. Finally,

A1 > Ao, and Ay = Ag if and only if p(x) = q(z) for 0 <z < 1.

4.8 The nth Order Problem

Let n € N, n > 5. In this section, we consider the eigenvalue problems
ul™ + \ip(z)u = 0, (4.7)
u™ + \yq(2)u = 0, (4.8)
satisfying the boundary conditions
w(0) =u'(0) =--- = u(”_4)(0) = u("_?’)(r) =" (r) = u(”_l)(l) =0, (4.9)
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and the eigenvalue problems

o™ 4 A\ p(x) ! 5 /Ox(a: — 5)"Pu(s)ds = 0, (4.10)

(n—
ﬁ /Ox(q; — 5)"Pu(s)ds = 0, (4.11)

satisfying the boundary condtions

™ 4+ Ayq(x)

v(0) =o' (r) =0"(r) =0"(1) =0, (4.12)

where 0 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on [0, 1],
where neither p(x) nor ¢(x) vanishes identically on any compact subinterval of [0, 1].

First we note that if u(x) is a solution to (4.7),(4.9), then u"~%(z) solves
(4.10),(4.12). Also, if v(z) is a solution to (4.10),(4.12), then ﬁ Jy (x=s)"Pv(s)ds
is a solution to (4.7),(4.9). Similarly, if u(z) is a solution to (4.8),(4.9), then v~ (x)

solves (4.11),(4.12) and if v(x) is a solution to (4.11),(4.12), then (n—15)! INCE

s)"Sv(s)ds is a solution to (4.8),(4.9).

Now let A be an eigenvalue of (4.7),(4.9) with the corresponding eigenvec-
tor u(z). Then u™ ¥ (z) is a solution to (4.10),(4.12) with the same eigenvalue
A. Also, if A is an eigenvalue of (4.10),(4.12) with corresponding eigenvector v(z),
then ﬁ Jy (@ — s)"Pu(s)ds is a solution to (4.7),(4.9) with the corresponding
eigenvalue \. So eigenvalues of (4.7),(4.9) are eigenvalues of (4.10),(4.12), and vice
versa. Similarly, eigenvalues of (4.8),(4.9) are eigenvalues of (4.11),(4.12), and vice
versa. So any comparison theorems for (4.10),(4.12), and (4.11),(4.12) will apply to
(4.7),(4.9), and (4.8),(4.9).

For these reasons, we will derive comparison theorems for eigenvalue problems

(4.10),(4.12), and (4.11),(4.12), and then use these theorems to derive the comparison

theorems for (4.7),(4.9), and (4.8),(4.9).
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Let G(z,s) by the Green’s function for —v®) = 0 satisfying (4.12), which was

defined earlier. So v(x) solves (4.10),(4.12) if and only if

= Al/ G(z, s)p 5)‘ /Os(s — )" u(t)dtds,

and v(z) solves (4.11),(4.12) if and only if

= )\2/ G(z, s) / (s —t)"Pv(t)dtds.
5)' 0
Again, note G(z,s) > 0on [0, 1]x[0, 1], G(SE, s) > 0on (0,1]x(0,1], and ZG(z, 8)|,—0 >

0for 0 <s<1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B={ved0,1] | v(0) =0}
with the norm

loll = sup |v/(z)].

0<z<1

Define the cone P to be
P={veB|vx)>0on|0,1]}.

Notice that for v € B, 0 < x <1,

and so sup |v(x)| < ||v]l.

0<z<1

Lemma 4.3. The cone P is solid in B and hence reproducing.

Proof. Define
Q={veB|v(x)>0on (0,1 and v'(0) > 0}.

It was shown in Chapter 2 that {2 C P°. Therefore P is solid in B. O]
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Next, we define our linear operators M, N : B — B by

1

S — )" Pu(t)dtds, 0 <z <1
g | s 0 <o <,

M'U(x)—/o G(z,s)p(s)

and
1
(n—5)!

Nou(x) = /01 G(z,s)q(s) /Os(s — )" Po(t)dtds, 0 < x < 1.

A standard application of the Arzela-Ascoli theorem shows that M and N are com-

pact.

Lemma 4.4. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let v € P. So v(x) > 0. Then since
G(z,s) > 0 on [0,1] x [0,1], p(z) > 0 on [0,1] and ﬁ Jo (= s)"Pu(s)ds > 0,

/ G(z, s)p = 5) /S(s — )" Pu(t)dtds > 0,

for0<z<1.SoM:P—P.

Now let v € P\{0}. Since (z—s)"> > 0 for 0 < s < x, there exists a compact
interval [a, 8] C [0, 1] such that ﬁ Jy (x = s)"Pv(s)ds > 0 and p(z) > 0 for all
x € |a, B]. Then, since G(z,s) > 0 on (0, 1] x (0, 1],

1

= / G(z,s t)dtds

0
B

> / G(z,s)p t)dtds

for 0 <z < 1. Also, since 2G(x,5)]y—0 > 0 for 0 < s < 1,
0= [ o)ty [ -0 uara
7:° (n—5)J, vAnanas
1 S
> i - _ 4\n—5
> /a 5C0. s — /O (s — )" Fu(t)dtds

> 0,
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and so Mv € Q@ C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof.  [J

Remark 4.2. Notice that

Av=Mv = /0 G(z, s)p(s) n=5) /Os(s — )" v (t)dtds,

if and only if

with

So the eigenvalues of (4.10),(4.12) are reciprocals of eigenvalues of M, and
conversely. Similarly, eigenvalues of (4.11),(4.12) are reciprocals of eigenvalues of NV,

and conversely.

Theorem 4.4. Let B, P, M, and N be defined as earlier. Then M (and N) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since v # 0, Mv € Q C P°and v =M (%v) epPe. O

Theorem 4.5. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 4.4 associated with M and N,
respectively, with the essentially unique eigenvectors vy and vy € P°. Then Ay < As,
and Ny = Ay if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) < q(z) on [0,1]. So for any v € P, and z € [0, 1],

;5)! /Os(s — )" u(t)dtds > 0.

1
(Vo= 30)(a) = [ G 5)(ale) =) =
So Nv — Mwv € P for all v € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ay

If p(x) = q(z), then Ay = Ay. Now suppose p(x) # q(z). So p(x) < ¢(z) on
some subinterval [, 5] C [0,1]. Then (N — M)v; € 2 C P° and so there exists
€ > 0 such that (N — M)v; —evy; € P. So Ajvy + evy = Mv; + evy < Ny, implying
Nuvy > (A1 + €)vy. Since N < N and Nvy = Agvy, by Theorem 1.2, A; + € < Ay, or
A < A, O

By Remark 4.2, the following theorem is an immediate consequence of Theo-

rems 4.4 and 4.5.

Theorem 4.6. Assume the hypotheses of Theorem 4.5. Then there exists smallest pos-
itive eigenvalues Ay and Ay of (4.10),(4.12) (and hence (4.7),(4.9)) and (4.11),(4.12)
(and hence (4.8),(4.9)), respectively, each of which is simple, positive, and less than
the absolute value of any other eigenvalue of the corresponding problems. Also,
eigenfunctions corresponding to A1 and Ao may be chosen to belong to P°. Finally,

A1 > Ao, and Ay = Ag if and only if p(x) = q(z) for 0 <z < 1.
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CHAPTER FIVE
The Third Order Problem

In this chapter, we consider the third order eigenvalue problems
u" 4+ Mp(z)u = 0, (5.1)
u" 4+ Xaq(z)u =0, (5.2)
each of which satisfies the boundary conditions
uw(0) =u'(r) =u"(1) =0, (5.3)

where 0 < 1/2 < r < 1, and p(z) and g(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(z) vanishes identically on any compact subinterval
of [0, 1].

We derive comparison results for these third order eigenvalue problems by ap-
plying the theorems mentioned in the introduction. To do this, we will define integral
operators, each of whose kernel is the Green’s function for —u(® = 0 satisfying (5.3).

This Green’s function is given by

;

H(z,s) = 2

z(2r—a)+(z—s)?
\ 2 ’

So u(x) solves (5.1),(5.3) if and only if u(z) = A fol H(z, s)p(s)u(s)ds, and u(z)

s>r,s <.

solves (5.2),(5.3) if and only if u(x) = Ay fol H(x,s)q(s)u(s)ds. Also, note H(x,s) >
0 on [0,1] x [0,1], H(z,s) > 0 on (0,1] x (0,1], and £ H(z, s)|,—0 > 0 for 0 < s < 1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by

B={uecC'0,1] | u(0) =0}
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with the norm

[lul] = sup |u/(x)].

0<z<L1

Define the cone P to be
P={ueB|ulx)>0on][0,1]}.
Notice that for u € B, 0 <z <1,

u(@)] = lu(z) = u(0)] =

/Ox u'(s)ds

< fullz

< [ful],

and so sup |u(z)] < ||ull.
0<a<1

Lemma 5.1. The cone P is solid in B and hence reproducing.

Proof. Define
Q={ueB|u(x)>0on (0,1 and u'(0) > 0}.

Note 2 C P. Choose u € 2 and define B.(u) = {v € B | ||u — v|| < €} for € > 0.
Choose €y > 0 such that u/(0) — ey > 0. So for v € B, (u), sup_ V' (x) — /()] < €.
So v'(0) > v/ (0) — €y > 0. Also, |v(x) — u(z)| < ||v — ul| i_io_, and so v(z) > 0 on
(0,1]. So v € Q and hence B, (u) C @ C P and 2 C P°. Therefore P is solid in

B. O
Next, we define our linear operators M, N : B — B by
1
Mu(z) = / H(z,s)p(s)u(s)ds, 0 <z <1,
0

and
Nu(zr) = /0 H(z,s)q(s)u(s)ds, 0 <z <1.

A standard application of the Arzela-Ascoli theorem shows that M and N are com-
pact.
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Lemma 5.2. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let u € P. So u(x) > 0. Then since
H(z,s) >0on[0,1] x [0,1] and p(x) > 0 on [0, 1],

/H:z:s u(s)ds > 0,

for0<z<1. SoM:P—P.
Now let u € P\{0}. So there exists a compact interval [, 8] C [0, 1] such that

u(z) > 0 and p(z) > 0 for all € [, 8]. Then, since H(x,s) > 0 on (0, 1] x (0, 1],

for 0 <z < 1. Also, since & H(x,5)|,—0 > 0 for 0 < s <1,

/ O H(0, $)p(s)u(s)ds
> / (0, 5)p(s)u(s)ds

X

> 0,

and so Mu € Q2 C P°. So M : P\{0} — © C P°. Therefore by Lemma 1.1, M is

ugp-positive with respect to P. A similar argument for N completes the proof.  []

Remark 5.1. Notice that
1
Au= Mu = / H(z,s)p(s)u(s)ds,
0

if and only if



if and only if
with

So the eigenvalues of (5.1),(5.3) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (5.2),(5.3) are reciprocals of eigenvalues of N, and

conversely.

Theorem 5.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is wug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since u # 0, Mu € Q C P° and u = M (%u) ePe. O

Theorem 5.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 5.1 associated with M and N,
respectively, with the essentially unique eigenvectors uy and ug € P°. Then Ay < Ao,

and Ay = Ay if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) < g(x) on [0, 1]. So for any v € P, and z € [0, 1],

(Nu — Mu)(z) = / H(z, $)(a(s) — p(s))us)ds > 0.

So Nu— Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ao

If p(x) = q(z), then Ay = As. Now suppose p(z) # q(z). So p(x) < ¢(x) on
some subinterval [a, 8] C [0,1]. Then (N — M)u; € Q C P° and so there exists

e > 0 such that (N — M)u; — euy € P. So Ajug +eu; = Mug + eu; < Nug, implying
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Nuy > (A + €)uy. Since N < N and Nus = Agus, by Theorem 1.2, A; + € < Ay, or
A1 < A2. OJ

By Remark 5.1, the following theorem is an immediate consequence of Theo-

rems 5.1 and 5.2.

Theorem 5.3. Assume the hypotheses of Theorem 5.2. Then there exists smallest
positive eigenvalues Ny and Ay of (5.1),(5.3) and (5.2),(5.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to Ay and Ay may

be chosen to belong to P°. Finally, A\y > Ao, and Ay = g if and only if p(z) = q(z)

for 0 <ax <1.
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CHAPTER SIX

Extending the Fourth Order Problem Using the Green’s Function

6.1 Introduction
In this chapter, we will extend the results of the previous third order problem
to the nth order problem
u™ 4+ Aip(z)u = 0,
u™ + \pq(2)u = 0,
satisfying the boundary conditions

u(0) = /' (0) = - = u"2(0) = " V(r) = V(1) = 0,

where 0 < 1/2 < r < 1, and p(x) and ¢g(z) are continuous nonnegative functions on
[0, 1], where neither p(x) nor ¢(z) vanishes identically on any compact subinterval
of [0, 1].

To do this, we will find the sign properties of the Green’s function for —u(™ =0
satisfying the boundary conditions just stated. We will need the Green’s function
for the third order problem to find these sign properties. We first show the extension
of the third order problem to the fourth order problem. Then, we extend to the nth

order problem.

6.2 The Fourth Order Problem

We now consider the eigenvalue problems
u® + A\p(x)u =0, (6.1)
u® + Aoq(z)u = 0, (6.2)
satisfying the boundary conditions

uw(0) =4/ (0) = u"(r) =" (1) =0, (6.3)
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where 0 < 1/2 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(z) vanishes identically on any compact subinterval
of [0, 1].

Here we will use methods similar to the methods used in the previous chapter
to derive comparison theorems for these fourth order eigenvalue problems. We will
do this by finding the Green’s function, which we will call Hy(z,s), for —u® = 0
satisfying (6.3). This Green’s function is continuous and 2 Hy(z,s) = H(z, s), where

H(z,s) is as defined earlier. Therefore, the Green’s function is

.

3s2x—s3
6 Y S S T’ S S x?
2_ .3
3rx6m7 s>r s>,
H4(£L’, 3) = s 3
3sze—x
= s<r,s>ux,
_ 9.3 3
\ 3ra? 2x6+(m s) L s>rs<ua

Now u(z) solves (6.1),(6.3) if and only if u(z) = A\ fo Hy(x, s)p(s)u(s)ds, and u(z)
solves (6.2),(6.3) if and only if u(z) = Ay fo Hy(x, s)q(s)u(s)ds
Note that since 2 Hy(z,s) = H(z,s), ZHy(z,s) > 0 on [0,1] x [0,1] and
2 Hy(z,s) > 0on (0,1] x (0,1]. Also, since 25 Hy(w,8) = L H(x,s), 25 Hy(2, 5)|smo
>0for0<s<1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B = {ue C?0,1] | u(0) = «/(0) = 0},
with the norm

lull = sup [u"(z)].
0<z<1

Define the cone P to be

P={ueB|u(x)>0o0nl0,1]}.
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Notice that for u € B, 0 <z <1,

o' (z)] = |u'(z) — u'(0)] =

/0 " u(5)ds

< fulle

< |lull;
and so sup |u'(z)] < ||ul].
0<z<1
Lemma 6.1. The cone P 1is solid in B and hence reproducing.

Proof. Define
Q={ueB|d(x)>0on (0,1] and u"(0) > 0}.

Note €2 C P. Choose u € 2 and define B.(u) = {v € B | ||u —v|| < €} for € > 0.

Choose €y > 0 such that «”(0) — ey > 0. So for v € B (u), sup [v"(z)—u"(z)| < €.
0<z<L1

So v"(0) > u"(0) — ¢y > 0. Also, |v'(z) — v/ (z)] < ||v —ul| < €, and so v'(x) > 0
on (0,1]. So v € Q and hence B, (u) C Q C P and Q C P°. Therefore P is solid in
B. O

Next, we define our linear operators M and N by
1
Mu(z) = / Hy(z,s)p(s)u(s)ds, 0 < a <1,
0

and

Nu(z) = /0 Hy(z,s)q(s)u(s)ds, 0 <z < 1.

Since Hy(0,s) = 2 Hy(z,s)|s=0 = 0, M,N : B — B. A standard application of the

Arzela-Ascoli theorem shows that M and N are compact.

Lemma 6.2. The bounded linear operators M and N are ug-positive with respect to

P.
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Proof. First we show M : P\{0} — Q C P°. Let u € P. So u(z) > 0. Then, since
L Hy(z,s) = H(z,s) >0on [0,1] x [0,1] and p(z) > 0 on [0,1],

Mu'(z) = /0 2H4(x s)p(s)u(s)ds > 0,

for0<z<1. SoM:P—P.
Now let u € P\{0}. So there exists a compact interval [«, 5] C [0, 1] such that

u(z) > 0 and p(z) > 0 for all z € [, B]. Then, since & Hy(z,s) > 0 on (0,1] x (0, 1],

/ = Hy(, $)p(s)u(s)ds
> [ 2 e pteyutsias

> 0,

for 0 < x < 1. Also, since 88—;2H4(x,s)|x:0 >0for0<s <1,
82
(Mu)"(0) :/0 @m(o s)p(s)u(s)ds

B 52
> @Hél(o s)p(s)u(s)ds

[0}

> 0,

and so Mu € 2 C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

up-positive with respect to P. A similar argument for N completes the proof. O

Remark 6.1. Notice that
1
Au= Mu = / Hy(z, s)p(s)u(s)ds,
0

if and only if

if and only if



with

w(0) =4/ (0) = u"(r) =" (1) = 0.

So the eigenvalues of (6.1),(6.3) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (6.2),(6.3) are reciprocals of eigenvalues of N, and

conversely.

Theorem 6.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

ergenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since u # 0, Mu € Q C P° and u = M (%u) ePe. O

Theorem 6.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 6.1 associated with M and N,

respectively, with the essentially unique eigenvectors uy and ug € P°. Then Ay < Ao,

and Ay = Ay if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) < ¢(x) on [0,1]. So for any u € P, and x € [0, 1],

(Nu — Mu)'(z) = /o £H4(x, s)(q(s) — p(s))u(s)ds > 0.

So Nu — Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, A} < As.

If p(x) = q(x), then Ay = Ay. Now suppose p(x) # q(x). So p(x) < g(x) on
some subinterval [a, 8] C [0,1]. Then (N — M)u; € Q C P° and so there exists
e > 0 such that (N — M)u; —euy; € P. So Ayuy + eu; = Muy + euy < Nuy, implying
Nuy > (A + €)uy. Since N < N and Nug = Agug, by Theorem 1.2, A + € < Ay, or
A < A, O
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By Remark 6.1, the following theorem is an immediate consequence of Theo-

rems 6.1 and 6.2.

Theorem 6.3. Assume the hypotheses of Theorem 6.2. Then there exists smallest
positive eigenvalues Ay and Ao of (6.1),(6.3) and (6.2),(6.3) respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to Ay and Ay may be
chosen to belong to P°. Finally, \y > Ay and A\ = Ay if and only if p(x) = q(x) for

0<z<1.

6.3 The nth Order Problem

Let n € N, n > 4. In this section, we will consider the eigenvalue problems
u™ 4+ A\ip(2)u = 0, (6.4)

u™ 4 Aoq(z)u = 0, (6.5)

satisfying the boundary conditions
u(0) = v/ (0) = - = w3 (0) = u" D (r) = V(1) = 0, (6.6)

where 0 < 1/2 < r < 1, and p(x) and ¢(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(x) vanishes identically on any compact subinterval
of [0,1].

Again, we will use methods similar to the methods used previously to derive
comparison theorems for these nth order eigenvalue problems. We will do this by
finding the the sign properties of the Green’s function, which we will call H,,(z, s), for
—u(™ = 0 satisfying (6.6). This Green’s function is C~3[0, 1] and %Hn(x, s) =
H(z,s), where H(z,s) is as defined earlier.

Now u(z) solves (6.4),(6.6) if and only if u(x) = A\, fol H,(z,s)p(s)u(s)ds, and
u(z) solves (6.5),(6.6) if and only if u(x) = Ag fol H,(z,s)q(s)u(s)ds.
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Note that since %Hn(x,s) = H(x,s), %Hn(x,s) > 0 on [0,1] x [0,1]
and %Hn(x,s) > 0 on (0,1] x (0,1]. Also, since ;:TiHn(x, s) = 2£H(z,s),

8n—2 H

Oxn—2 n

(,8)|z=0 >0 for 0 < s < 1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B={uecC"?[0,1] | u(0) =4 (0)=---=u"30) =0},
with the norm

lul| = sup a2 (2)|.
0<z<1

Define the cone P to be
P={ueB|u"3z)>0o0n0,1]}.
Notice that forue B, 0 < x <1,

)| = [u @) = a0 (0)] =

/ u"(s)ds
0

< [[ullz

< |lull,

and so sup [u""¥ ()| < ||ul|.
0<a<1

Lemma 6.3. The cone P is solid in B and hence reproducing.
Proof. Define
Q={ueB|u"3(z)>0on (0,1 and «""2(0) > 0}.

Note 2 C P. Choose u € 2 and define B.(u) = {v € B | ||u — v|| < €} for € > 0.
Choose €y > 0 such that u("2(0) — ¢y > 0. So for v € B, (u), sup [v" 2 (z) —

0<z<L1
u" ()| < €. So v2(0) > u(0) — ¢ > 0. Also, |03 (z) — u*3)(z)| <
[ —u|| < €, and so v 3 (x) > 0 on (0,1]. So v € Q and hence B, (u) C Q C P
and ) C P°. Therefore P is solid in B. O
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Next, we define our linear operators M and N by
/Hms Ju(s)ds, 0 <z <1,

and

/Hms Ju(s)ds, 0 <z < 1.

Note that since ;n ZHH(I, $)|g=o =0fori=3,4,...,n, M, N : B— B. A standard

application of the Arzeld-Ascoli theorem shows that M and N are compact.

Lemma 6.4. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} —  C P°. Let u € P. So u(x) > 0. Then, since
D H,(x,s) = H(x,s) > 0on [0,1] x [0,1] and p(z) > 0 on [0, 1],

Oxn—3

1 n—3
Mu™3)(z) = a—3Hn(x, s)p(s)u(s)ds > 0,
o Ox"~

for0<z<1. SoM:P—P.
Now let u € P\{0}. So there exists a compact interval [a, 5] C [0, 1] such

that u(z) > 0 and p(xz) > 0 for all € [, 5]. Then, since g;T__gan(x,s) > 0 on

(0,1] x (0, 1],
Mu™=3) (z) = /0 %Hn(:ﬁ, s)p(s)u(s)ds
B anfS
> W[‘[n(l’, s)(x, s)p(s)u(s)ds
> 0,

for 0 < x < 1. Also, since 38n 2 H,(z,8)|z=0 >0 for 0 <s <1,

() 20) = [ T 095 ute)ds

B on—2
> -
= H, (0, s)p(s)u(s)ds

> 0,
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and so Mu € Q C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof.  [J

Remark 6.2. Notice that

Au= Mu = /0 H,(x,s)p(s)u(s)ds,

if and only if
if and only if

with

w(0) = v/ (0) = - = w3 (0) = u" D (1) = V(1) = 0.

So the eigenvalues of (6.4),(6.6) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (6.5),(6.6) are reciprocals of eigenvalues of N, and

conversely.

Theorem 6.4. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since u # 0, Mu € Q C P° and u = M (%u) epe. O

Theorem 6.5. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and As be the eigenvalues defined in Theorem 6.4 associated with M and N

respectively, with the essentially unique eigenvectors uy and ug € P°. Then Ay < As,

and Ny = Ay if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) < q(z) on [0,1]. So for any u € P, and = € [0, 1],

(V= )9 a) = [T 5)a(s) = pleuts)ds = 0,

So Nu — Mu € P for all u € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ay

If p(x) = q(z), then Ay = Ay. Now suppose p(x) # q(z). So p(x) < ¢(x) on
some subinterval [o, 8] C [0,1]. Then (N — M)u; € Q C P° and so there exists
€ > 0 such that (N — M)uy; —euy € P. So Ajuy +eu; = Muy + euy < Nuyg, implying
Nuy > (A + €)uy. Since N < N and Nus = Agus, by Theorem 1.2, A; + € < Ay, or
A < A, O

By Remark 6.2, the following theorem is an immediate consequence of Theo-

rems 6.4 and 6.5.

Theorem 6.6. Assume the hypotheses of Theorem 6.5. Then there exists smallest
positive eigenvalues Ny and Ay of (6.4),(6.6) and (6.5),(6.6), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to Ay and Ay may
be chosen to belong to P°. Finally, A\y > \o, and Ay = g if and only if p(x) = q(z)

for 0 <ax <1.
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CHAPTER SEVEN

Extending the Third Order Problem Using Substitution

7.1 Introduction
In this chapter, we will again extend the results of the third order problem to
the nth order problems

u™ 4+ A\ip(z)u = 0,
u™ + \og(x)u = 0,

satisfying the boundary conditions
u(0) =u/(0) = -+ = u(0) =" (r) =" V(1) = 0,

where 0 < 1/2 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(z) vanishes identically on any compact subinterval
of [0, 1].

Instead of using the sign properties of the Green’s function for the nth order
equation to derive the comparison theorems, we will instead make a substitution
and work with a variation of the third order problem. This method has its benefits,
since we do not need to find the sign properties of the Green’s function for the nth
order problem, and can instead work with the third order problem. We will again

start with the fourth order problem and then look at the nth order problem.

7.2  The Fourth Order Problem

We now consider the eigenvalue problems
u™ + \p(z)u =0, (7.1)

u™ + \yq(x)u = 0, (7.2)
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satisfying the boundary conditions
w(0) = u'(0) = u"(r) =" (1) =0, (7.3)
and the eigenvalue problems
v® + \ip(x) /zv(s)ds =0, (7.4)
0

v® 4 Aoq(x) /I v(s)ds =0, (7.5)

satisfying the boundary condtions
v(0) ='(r) =4"(1) =0, (7.6)

where 0 < 1/2 < r < 1, and p(z) and ¢(z) are continuous nonnegative functions on
0, 1], where neither p(z) nor ¢(x) vanish identically on any compact subinterval of
[0, 1].

First we note that if u(z) is a solution to (7.1),(7.3), then «'(x) solves (7.4),(7.6).
Also, if v(z) is a solution to (7.4),(7.6), then [ v(s)ds is a solution to (7.1),(7.3).
Similarly, if u(z) is a solution to (7.2),(7.3), then «/(z) solves (7.5),(7.6), and if v(x)
is a solution to (7.5),(7.6), then [ v(s)ds is a solution to (7.2),(7.3).

Now let A be an eigenvalue of (7.1),(7.3) with the corresponding eigenvector
u(x). Then u'(x) is a solution to (7.4),(7.6) with the same eigenvalue A. Also, if A
is an eigenvalue of (7.4),(7.6) with corresponding eigenvector v(z), then [ v(s)ds
is a solution to (7.1),(7.3) with the corresponding eigenvalue A. So eigenvalues
of (7.1),(7.3) are eigenvalues of (7.4),(7.6), and vice versa. Similarly, eigenvalues of
(7.2),(7.3) are eigenvalues of (7.5),(7.6), and vice versa. So any comparison theorems
for (7.4),(7.6), and (7.5),(7.6) will apply to (7.1),(7.3), and (7.2),(7.3).

For these reasons, we will derive comparison theorems for eigenvalue problems
(7.4),(7.6), and (7.5),(7.6), and then use these theorems to derive the comparison
theorems for (7.1),(7.3), and (7.2),(7.3).
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Let H(x,s) by the Green’s function for —v® = 0 satisfying (7.6), which was
defined earlier. So v(z) solves (7.4),(7.6) if and only if v(z) = \; fol H(z, s)p(s) [, v(t)dtds
and v(z) solves (7.5),(7.6) if and only if v(z) = Ay fol H(xz,s)q(s) [ v(t)dtds. Also,
note H(z,s) > 0on [0,1] x[0,1], H(z,s) > 0on (0,1]x (0,1], and 2 H(z, s)|s—0 > 0
for 0 <s < 1.

To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B = {veC'0,1] | v(0) = 0},
with the norm

]| = sup [v'(2)].
0<z<1

Define the cone P to be
P={veB|v(x)>0on|0,1]}.

Notice that for v € B, 0 < x < 1,

and so sup |v(z)| < ||v]].
0<a<1
Lemma 7.1. The cone P is solid in B and hence reproducing.

Proof. Define
Q={veB|v(x)>0on(0,1] and v'(0) > 0}.

It was shown in Chapter 5 that 2 C P°. Therefore P is solid in B. O
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Next, we define our linear operators M, N : B — B by
1 s
Mo(z) :/ H(m,s)p(s)/ v(t)dtds, 0 < x <1,
0 0
and

1 s
Nuv(x) :/ H(x,s)q(s)/ v(t)dtds, 0 <z < 1.
0 0
A standard application of the Arzeld-Ascoli theorem shows that M and N are com-

pact.

Lemma 7.2. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let v € P. So v(x) > 0. Then since
H(z,s) > 0on [0,1] x [0,1], p(x) > 0 on [0,1] and [ v(s)ds >0,

1 s

Mo(z) :/ H(z, s)p(s)/ v(t)dtds > 0,

0 0

for0<z<1. SoM:P—P.
Now let v € P\{0}. So there exists a compact interval [a, 5] C [0, 1] such

that [ v(s)ds > 0 and p(x) > 0 for all € [a,]. Then, since H(z,s) > 0 on

(0,1] x (0,1],
Mu(z) :/0 H(z,s)p(s) /Osv(t)dtds
B s
2/ H(:C,s)p(s)/o v(t)dtds
>0

for 0 < 2 < 1. Also, since 2 H(x,5)|y—0 > 0 for 0 < s <1,
1 o s
(Mv)'(0) = / —H(O,s)p(s)/ v(t)dtds
o Oz 0
B o s
> / 8_H(O’ s)p(s)/ v(t)dtds
« 0

Xz
> 0,
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and so Mv € Q@ C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof.  [J

Remark 7.1. Notice that

Av = Mv = /0 1 H(z, $)p(s) /0 Co(t)dtds,

if and only if
1 s
v(x) = l/ H(m,s)p(s)/ v(t)dtds,
A Jo 0

if and only if

1

—0®(z) = —p(a:)/ v(s)ds, 0 <z <1,
A 0

with

So the eigenvalues of (7.4),(7.6) are reciprocals of eigenvalues of M, and con-
versely. Similarly, eigenvalues of (7.5),(7.6) are reciprocals of eigenvalues of N, and

conversely.

Theorem 7.1. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since v # 0, Mv € Q C P° and v = M (%v) epe. O

Theorem 7.2. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 7.1 associated with M and N,

respectively, with the essentially unique eigenvectors vi and vy € P°. Then Ay < Ao,

and Ny = Ay if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) < q(z) on [0,1]. So for any v € P, and z € [0, 1],

(Nv — Mv)(x) = /0 H(z,s)(q(s) —p(s)) /Osv(t)dtds > 0.

So Nv — Mwv € P for all v € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ay

If p(x) = q(z), then Ay = Ay. Now suppose p(x) # q(z). So p(x) < g(x) on
some subinterval [, 5] C [0,1]. Then (N — M)v; € 2 C P° and so there exists
€ > 0 such that (N — M)v; — evy; € P. So Ajvy + evy = Moy + evy < Nog, implying
Nuvy > (Ay + €)vy. Since N < N and Nvy = Agvy, by Theorem 1.2, A; + € < Ay, or
A < A, O

By Remark 7.1, the following theorem is an immediate consequence of Theo-

rems 7.1 and 7.2.

Theorem 7.3. Assume the hypotheses of Theorem 7.2. Then there exists smallest
positive eigenvalues Ay and Xy of (7.4),(7.6) (and hence (7.1),(7.3)) and (7.5),(7.6)
(and hence (7.2),(7.3) ), respectively, each of which is simple, positive, and less than
the absolute value of any other eigenvalue of the corresponding problems. Also,
eigenfunctions corresponding to A1 and Ay may be chosen to belong to P°. Finally,

A1 > Ao, and Ay = Ag if and only if p(x) = q(z) for 0 <z < 1.

7.8 The nth Order Problem

Let n € N, n > 4. In this section, we consider the eigenvalue problems
u™ + \yp(x)u = 0, (7.7)

u™ 4 Aoq(z)u = 0, (7.8)

satisfying the boundary conditions



and the eigenvalue problems

v® 4+ A\ip(x) ! D /Ox(a: —5)"*u(s)ds = 0, (7.10)

(n —

v® 4+ Ayq()

m /Ox(q; — 5)”’4v(5)d5 =0, (7.11)

satisfying the boundary condtions
v(0) ='(r) =0"(1) =0, (7.12)

where 0 < 1/2 < r < 1, and p(x) and ¢(z) are continuous nonnegative functions on
[0, 1], where neither p(z) nor ¢(z) vanishes identically on any compact subinterval
of [0, 1].

First we note that if u(x) is a solution to (7.7),(7.9), then u"=®(z) solves
(7.10),(7.12). Also, if v(z) is a solution to (7.10),(7.12), then ﬁ Jy (x=s)""*v(s)ds
is a solution to (7.7),(7.9). Similarly, if u(z) is a solution to (7.8),(7.9), then u(™~%) (x)
solves (7.11),(7.12), and if v(z) is a solution to (7.11),(7.12), then mfow(x -
s)"~tv(s)ds is a solution to (7.8),(7.9).

Now let A be an eigenvalue of (7.7),(7.9) with the corresponding eigenvec-
tor u(z). Then u" 3 (z) is a solution to (7.10),(7.12) with the same eigenvalue
A. Also, if X is an eigenvalue of (7.10),(7.12) with corresponding eigenvector v(z),
then m Jy (@ — s)"*v(s)ds is a solution to (7.7),(7.9) with the corresponding
eigenvalue \. So eigenvalues of (7.7),(7.9) are eigenvalues of (7.10),(7.12), and vice
versa. Similarly, eigenvalues of (7.8),(7.9) are eigenvalues of (7.11),(7.12), and vice
versa. So any comparison theorems for (7.10),(7.12), and (7.11),(7.12) will apply to
(7.7),(7.9), and (7.8),(7.9).

For these reasons, we will derive comparison theorems for eigenvalue problems

(7.10),(7.12), and (7.11),(7.12), and then use these theorems to derive the comparison

theorems for (7.7),(7.9), and (7.8),(7.9).
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Let H(z,s) by the Green’s function for —v® = 0 satisfying (7.12), which was

defined earlier. So v(x) solves (7.10),(7.12) if and only if

= )\1/ H(z,s)p / (s — t)" o (t)dtds,
4)‘ 0
and v(z) solves (7.11),(7.12) if and only if

1 S
= )\2/ H(z,s) / (s —t)" o (t)dtds.
— 4! Jo
Also, note H(x,s) > 0on [0,1]x]0, 1], H(:v, s) > 0on (0,1]x(0,1], and 2 H(z, 8)|4—0 >

0for 0 <s<1.
To apply Theorems 1.1 and 1.2, we need to define a Banach space B and a

cone P C B. Define the Banach space B by
B={veddo,1] | v(0) =0},
with the norm

loll = sup [v/()].

0<z<1

Define the cone P to be
P={veB|v(x)>0on|0,1]}.

Notice that for v € B, 0 < x <1,

and so sup |v(x)| < ||v]].

0<z<1

Lemma 7.3. The cone P is solid in B and hence reproducing.

Proof. Define
Q={veB|v(x)>0on (0,1 and v'(0) > 0}.

It was shown in Chapter 5 that 2 C P°. Therefore P is solid in B. O]
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Next, we define our linear operators M, N : B — B by

— /0 H(m,s)p(s)ﬁ /Os(s — )" Y(t)dtds, 0 <z < 1,

and

1 1 s
= H(x,s)q(s / s—t)"(t)dtds, 0 < x < 1.
| = [ =t
A standard application of the Arzela-Ascoli theorem shows that M and N are com-

pact.

Lemma 7.4. The bounded linear operators M and N are ug-positive with respect to

P.

Proof. First we show M : P\{0} — Q C P°. Let v € P. So v(x) > 0. Then since
H(z,s) =2 0on [0,1] x [0,1], p(z) = 0 on [0,1] and = fo x — s)"tu(s)ds > 0,

- [ meome = [ s(s e tu(e)deds > 0,

for0<z<1.SoM:P—P.

Now let v € P\{0}. Since (z—s)""* > 0 for 0 < s < x, there exists a compact
interval [a, 5] C [0, 1] such that m Jy (x = s)"*v(s)ds > 0 and p(z) > 0 for all
x € [a, f]. Then, since H(z,s) > 0 on (0, 1] x (0, 1],

1
:/ H(z,s t)dtds
0
E
2/ H(z,s)p( t)dtds
for 0 <z < 1. Also, since 2 H(x,5)],—0 >0 for 0 < s < 1,
0= [ o) gy [ o=t
P T SRR
1 S
> | —H —_ — )"t (t)dtd
_/a 2 <o,s>p<s>(n_4)!/0 (5 — 1)~ Ho(t)dds

> 0,
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and so Mv € Q@ C P°. So M : P\{0} — Q C P°. Therefore by Lemma 1.1, M is

ug-positive with respect to P. A similar argument for N completes the proof.  [J

Remark 7.2. Notice that

Av = Mv = /0 H(x,s)p(s) =) /Os(s — )" o(t)dtds,

if and only if

o(z) = % /0 Hir. (o) ! o /0 (s — 1) o (t)dids,

if and only if

with

So the eigenvalues of (7.10),(7.12) are reciprocals of eigenvalues of M, and
conversely. Similarly, eigenvalues of (7.11),(7.12) are reciprocals of eigenvalues of N,

and conversely.

Theorem 7.4. Let B, P, M, and N be defined as earlier. Then M (and N ) has an
eigenvalue that is simple, positive, and larger than the absolute value of any other

eigenvalue, with an essentially unique eigenvector that can be chosen to be in P°.

Proof. Since M is a compact linear operator that is ug-positive with respect to P,
by Theorem 1.1, M has an essentially unique eigenvector, say v € P, and eigenvalue

A with the above properties. Since v # 0, Mv € Q C P°and v =M (%v) epPe. O

Theorem 7.5. Let B, P, M, and N be defined as earlier. Let p(x) < q(x) on [0, 1].
Let Ay and Ay be the eigenvalues defined in Theorem 7.4 associated with M and N,
respectively, with the essentially unique eigenvectors vy and vy € P°. Then Ay < As,
and Ny = Ay if and only if p(x) = q(x) on [0, 1].
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Proof. Let p(x) < q(z) on [0,1]. So for any v € P, and z € [0, 1],

1

(Nv — Mv)(x) = /0 H(z,s)(q(s) — p(s))m /Os(s — )" tu(t)dtds > 0.

So Nv — Mwv € P for all v € P, or M < N with respect to P. Then by Theorem
1.2, Ay < Ay

If p(x) = q(z), then Ay = Ay. Now suppose p(x) # ¢(z). So p(x) < ¢(x) on
some subinterval [, 5] C [0,1]. Then (N — M)v; € 2 C P° and so there exists
€ > 0 such that (N — M)v, —evy; € P. So Ajvy + evy = Moy + evy < Nog, implying
Nuvy > (A1 + €)vy. Since N < N and Nvy = Agvy, by Theorem 1.2, A; + € < Ay, or
A < A, O

By Remark 7.2, the following theorem is an immediate consequence of Theo-

rems 7.4 and 7.5.

Theorem 7.6. Assume the hypotheses of Theorem 7.5. Then there exists smallest pos-
itive eigenvalues Ay and Ay of (7.10),(7.12) (and hence (7.7),(7.9)) and (7.11),(7.12)
(and hence (7.8),(7.9) ), respectively, each of which is simple, positive, and less than
the absolute value of any other eigenvalue of the corresponding problems. Also,
eigenfunctions corresponding to A1 and Ao may be chosen to belong to P°. Finally,

A1 > Ao, and Ay = Ag if and only if p(x) = q(z) for 0 <z < 1.
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CHAPTER EIGHT

Extremal Points

8.1 Introduction

In this chapter, we will consider the fourth order boundary value problem,
u™ + p(x)u = 0, (8.1)
for 0 < x < 3 satisfying the boundary conditions
uw(0) =u'(r) = u"(r) =u"(b) = 0, (8.2)

where 0 < r < b < (3, and p(z) is a nonnegative continuous function on [0, b] which
does not vanish identically on any compact subinterval of [0, b]. We will also consider

the third order boundary value problem,
u® + p(x)u = 0, (8.3)
for 0 < x < 3 satisfying the boundary conditions
uw(0) = u'(r) =u"(b) =0, (8.4)

where 0 < 1/2 < r < b < 3, and p(z) is a nonnegative continuous function on [0, b]
which does not vanish identically on any compact subintervale of [0, b].

For the fourth order problem, we establish the existence of a largest interval,
[0,0), such that on any subinterval [0, ¢] of [0,b), there exists only the trivial solution
of (8.1) satisfying u(0) = «/(r) = u”(r) = u"'(¢) = 0. For the third order problem,
we establish the existence of a largest interval, [0, b), such that on any subinterval
0, c] of [0,b), there exists only the trivial solution of (8.3) satisfying u(0) = u'(r) =
u”(c) = 0. We accomplish this by characterizing the first extremal point through

the existence of a nontrivial solution that lies in a cone, by establishing the spectral
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radius of a compact operator. Because the spectral radius of the compact operators
dealt with in the previous chapters is precisely the largest positive eigenvalues of

those operators, this inclusion of this material is natural.

8.2 Definitions and Theorems
Definition 8.1. We say by is the first extremal point of the boundary value problem
(8.1),(8.2) (or (8.3),(8.4)), if by = inf{b > 0| (8.1),(8.2) (or (8.3),(8.4)) has a

nontrivial solution}.

Definition 8.2. A bounded linear operator N : B — B is said to be positive with

respect to the cone P if N : P — P.

Throughout this chapter, we will denote the spectral radius of the bounded
linear operator N by r(N).

The following four theorems are fundamental to our following results. The first
result can be found in [25], and the last three theorems and proofs can be found in
[1] or [23]. In each of the following theorems, assume that P is a reproducing cone,

and that N, Ny, Ny : B — B are compact, linear, and positive with respect to P.

Theorem 8.1. Let Ny, p < 8 < o be a family of compact, linear operators on a
Banach space such that the mapping b — Ny, is continuous in the uniform operator

topology. Then the mapping b — r(Ny) is continuous.

Theorem 8.2. Assume r(N) > 0. Then r(N) is an eigenvalue of N, and there is
a corresponding eigenvector in P. If, in addition, N is ug-positive, then r(N) is a
simple eigenvalue of N, and the corresponding eigenvector is essentially unique and

belongs to P°.

Theorem 8.3. If Ny < Ny with respect to P, then r(Ny) < r(Ny).
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Theorem 8.4. Suppose there exists v > 0, u € B, —u & P such that yu < Nu with
respect to P. Then N has an eigenvector in P which corresponds to an eigenvalue,

<A

8.3 The Fourth Order Problem

Consider the fourth order boundary value problem,
u™ + p(x)u = 0, (8.1)
for 0 < x < 3 satisfying the boundary conditions
w(0) =o' (r) =u"(r) =u"(b) = 0, (8.2)

where 0 < r < b < 8, and p(z) is a nonnegative continuous function on [0, b] which
does not vanish identically on any compact subinterval of [0, b].

We will be defining compact integral operators whose kernels are the Green’s
function for —u™® = 0 satisfying (8.2). Because G(x, s), which was defined in Chap-
ter 2, has the property that aa—;G(x,s) = 0 for all (z,s) € [r,1] x [0,1], G(x,s)
satisfies (8.2), and so G/(z, s) is the Green’s function for —u® = 0 satisfying (8.2).

To apply Theorems 8.1-8.4, we need to define a family of Banach spaces B and

cones P C B. Define the Banach space B to be
B ={u€C'0,8] | u(0) =0},
with the norm

|ul| = sup |u(z)].
0<z<p

Define the cone P C B to be
P={ueB|u(x)>0on|0,/s]}.
From earlier, we know that P° # (). In fact,

{u € B | u(z) >0on (0,5] and «'(0) > 0} C P°.
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For all b € [0, ], define the Banach space B, to be
By = {u e C'0,8] | u(0) = 0},

with the norm
|[ul| = sup |u'(x)].
0<z<b

Define the cone P, C B, to be
Py={ue€ B, | u(x)>0on|0,b]}.
Again, note that for all b € [0, 5], Pg # 0. In fact,
{u € B | u(z) >0on (0,0 and v'(0) > 0} C P;.
Now for each b € [0, 3], define the linear operator

fob G(x, s)p(s)u(s)ds, 0<z<0,
Nyu(x) =
fob G(b, s)p(s)u(s)ds + (z — b) Ob LG(b, s)p(s)u(s)ds, b<xz<p.
Notice that by the way N, is defined, Nyu(z) € C*0,3] for u(x) € C[0, ], and
Nyu(0) = 0. So N, : B — B. Also note that when Nj is restricted to By, Ny : By, — By,
by
b
Nyu(z) = / G(zx, s)p(s)u(s)ds.
0

So u(x) is a solution to (8.1),(8.2) if and only if u(z) = Nyu(x) = fb

o G(x,5)p(s)u(s)ds

for = € [0,0].

Lemma 8.1. For all b € [0, f], the linear operator Ny is positive with respect to P
and Py. Also, N, : P\{0} — P;.

Proof. Since for u € P, G(z,s) > 0, Z£G(b,s) > 0, and p(s)u(s) > 0, Nyu(z) > 0
for 0 <x < fB. So Ny : P — P. Similarly, N, : P, — P,
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Now set Q, = {u € B | u(x) > 0 on (0, 5] and «/(0) > 0}. Let u € P,\{0}. So
there exists a compact interval [c,d] C [0,b] such that p(z)u(z) > 0 for all = € [c, d].

Since G(z,s) > 0 for 0 <z < b,

Nbu(x)—/o G(z, s)p(s)u(s)ds
d
> [ Gl oplsuls)ds

>0,

for 0 < x <b.

Since ZG(, s)|—0 > 0,

A@U%O)::

and so Nyu € . So N, : P\ {0} — Q, C Py. O
Lemma 8.2. The map b +— N, is continuous in the uniform topology.

Proof. First note that sup |u(x)| < B||ul|]. Let f: (0,5] = {Ny}, b € [0, f], such
0<z<p
that f(b) = Np. Let 0 < by < by < 3. Let € > 0. Then

[1f (b2) = f(O)I] = [[No, — N, ||

= sup { sup [(Ny,u)(x) — (N, u)'(2)[}.
lull=1 " z€[0,

Since Z(G(z,s) and p(z) are continuous functions for 0 < z < 3, they are
bounded above for 0 < # < 8. Choose K and P such that [2G(z,s)| < K and

Ip(z)] < P for 0 <z < p.
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€
Suppose © < by. Then for [by — b < § < K—Pﬁ’

((Noyr) () — (Nyyu)' ()] = / "D Gl plus)ds — [ G, sp(s)uls)ds

bo
/b1 %G(m, s)p(s)u(s)ds

bz
< /
b]

ba
< KPpds

b1

= KPj|b, —b1|

2G(z,s)

G, )| [p(s)][u(s)lds

=€

KPB
Now suppose by < x < by. Since G(z,s) € C*0, 8] in the first variable, for

by — by| < 6 < — 2G(by, )| < == So

_¢ o
2K Pj’ |56(x9) 2P

|(Noyu)'(z) = (Np,u)' ()| =

< [ |56t ol as
+ [ |56t = 60 I sl

b2 bl €
KP ——P
< Bds + /0 T Bds

b1

=KPBlby — bi| + -5 Pbi3

2Pﬁ2

¢ PB? =e.

<KPp 2KP6 topg

Now suppose 3 > x > by. Again, since G(x,s) € C*[0, 3] in the first variable,

for |by — by| < 6 < ﬁ, | 2G by, s) — £G(by,5)| < %ﬁz. So
b2 b1
(Vi () = Vi (@)] = | | GG spluts)ds = [ -Gl shpteu(s)ds
bo a
< [ |50 Il s
bl o 0
—l—/o (%G(bg, s) — 8xG<b1’S) (s)||u(s)|ds
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bo

b,
< KPpds + / ———Pfds
b 0 2P52

€
KP Pp* =
< BQKPﬁ pt P
So we have that sup { sup |(Np,u) () — (Np,u)'(x)|} < € for |bp— 1] < J. So
|lul|=1 z€[0,5]
|| f(b2) — f(b1)]| < € for |by — by| < 0, and so f is continuous. O

Theorem 8.5. For 0 < b < 3, r(Ny) is strictly increasing as a function of b.

Proof. In [22], it is shown that there is a A > 0 and u € P,\{0} such that Nyu(z) =
Au(x). Extend u to [b, 8] by

u(x):§</oba(b,s)p()( ds + ( x—b/—Gbs (s)ds).

Then for z € [0, 8], Nyu(z) = Au(x). Thus for 0 < b < g, r(N,) > A > 0.

Now let 0 < by < by < . Since r(N,,) > 0, by Theorem 8.2, there exists a
ug € Pp, \{0} such that Ny ug = r(Ny,)ug. Let uy = Ny ug and ug = Np,ug. Then
for x € (0,by],

(ug —up)(x) = /be G(x, s)u(s)p(s)ds > 0.
!
Also,

b
(ug — u1)"(0) :/ %G(O s)u(s)p(s)ds > 0.

b1

Thus the restriction of ugs —uy to [0, ;] belongs to ,. So there exists a § > 0 such
that us — uy > dugy with respect to Py,. Since ug € P, it follows that ug — w3 > dug

with respect to P. Thus

(%) Z Ul + 51/4)
= r(Np, )u + dug

= (r(Np,) + 9)ug
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with respect to P. Thus Ny, ug > (r(Ny, ) +0) with respect to P, and so by Theorem
8.4, 1(Np,) > 1(Np, ) + 9. So r(Ny,) > r(Np,) and r(Ny) is strictly increasing. O

Now, we state and prove the main result.
Theorem 8.6. The following are equivalent:

(i) by is the first extremal point of the boundary value problem corresponding to

(8.1),(8.2) for 0 <z < j3;

(1) there exists a nontrivial solution u of the boundary value problem (8.1),(8.2)

for 0 < x < by such that u € Py, \{0};

(i) 7(Noy) =

Proof. First, we show (iii) = (ii); since r(Ny,) = 1 > 0, by Theorem 8.3, r(Ny,)
is an eigenvalue of Ny, and so there exists a u € P, \{0} such that Ny u(z) =
7(Npy )u(z) = u(z) for = € [0, by]. So (i7) holds.

Next, we prove (ii) = (7). Let u € Py, \{0} satisfy (8.1),(8.2), for 0 < = < by.
For & > by, extend u(z) = [1° G(by, 5)p(s)u(s)ds + (x —bo) [ 2 G(bo, s)p(s)u(s)ds.
So Nyyu(z) = u(z) for 0 <z < 8. So 7(NVy,) > 1.

If r(Ny,) = 1, then by Theorem 8.5, for 0 < b < by, 7(Ny) < r(Ny,) = 1, and
so by is the first extremal point of (8.1),(8.2).

Assume r(N,,) > 1. Let v € Py \{0} such that Nyv = r(Ny,)v. Now v re-
stricted to [0, by] belongs to €2, and so there exists a ¢ > 0 such that u > Jv with re-
spect to Py,. Extend v(z) = fobo G(bo, s)p(s)v(s)ds+(x—bg) f0° DG (bo, s)p(s)v(s)ds
for x > bg. Then u > dv with respect to P. Assume ¢ is maximal such that u > dv.
Then

u = Np,u > Ny, (0v) = INpv = 1 (Np, )v.

Since 7(Np,) > 1, dr(Np,) > 0. But u > §r(Ny, )v, a contradiction to the fact that o
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is the maximal value satisfying y > dv. So r(NNy,) = 1, and so by is the first extremal
point of (8.1),(8.2).

Last, we show (i) = (di7). If by is the first extremal point of the boundary
value problem (8.1),(8.2), there exists a u € Py, \{0} such that r(Ny,)u = Np,u, and
so 1(Np,) > 1. Assume r(N,) > 1. By Lemma 8.2, ll)i_r)rér(]\fb) = 0, and so by the
Intermediate Value Theorem, there exists an a € (0, by) such that r(N,) = 1. So
there exists a nontrivial solution of (8.1),(2.2) on [0, @], which contradicts the fact

that by is the first extremal point. So r(N,,) = 1. O

8.4 The Third Order Problem

In this section, we will consider the third order boundary value problem,
u® + p(z)u =0, (8.3)
for 0 < x < 3 satisfying the boundary conditions
u(0) = u'(r) = u"(b) =0, (8.4)

where 0 < 1/2 < r, r < b < 3, and p(z) is a nonnegative continuous function on
[0, b] which does not vanish identically on any compact subinterval of [0, b].

We will be defining compact integral operators whose kernels are the Green’s
function for —u® = 0 satisfying (8.4). Because H(w,s), which was defined in
Chapter 5, has the property that aa—;H(x, s) =0 for all (z,s) € [r,1] x [0,1], H(x, s)
satisfies (8.4), and so H(z,s) is the Green’s function for —u® = 0 satisfying (8.4).

To apply Theorems 8.1-8.4, we need to define a family of Banach spaces B and

cones P C B. Define the Banach space B to be
B = {ueC'0, 8] | u(0) =0},

with the norm

lull = sup [/ ()|.
0<e<p
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Define the cone P C B to be
P={ueB|u(xr)>0on]|0,/M7]}.
From earlier, we know that P° # (). In fact,
{ue B |u(z)>0on (0,5 and «'(0) > 0} C P°.
For all b € [0, ], define the Banach space B, to be
= {u € C"[0,b] | u(0) = 0},
with the norm

[lul| = sup |u'(x)].
0<a<b

Define the cone P, C B to be
Py={ue€ B, | u(x)>0on|0,b]}.
Again, note that for all b € [0, 5], Pg # (. In fact,
{u € B | u(z) >0on (0,0 and v'(0) > 0} C P;.
Now for each b € [0, 3], define the linear operator

fo Ju(s)ds, 0<z<0b,
fO Ju(s)ds + ( fo s p(s)u(s)ds, b<z <p.

Nyu(z) =

Notice that by the way N, is defined, Nyu(z) € C*0,3] for u(x) € C[0, ], and
Nyu(0) = 0. So N, : B — B. Also note that when N, is restricted to By, Ny : By, — By,
by

Nyu(z / H(z, s)p(s)u(s)ds.
So u(x) is a solution to (8.3),(8.4) if and only if u(z) = Nyu(z) = fob H(x,s)p(s)u(s)ds

for x € [0, b].
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Lemma 8.3. For all b € [0, f], the linear operator Ny is positive with respect to P
and Py. Also, N, : P\{0} — Py.

Proof. Since for u € P, H(z,s) > 0, £ H(b,s) > 0, and p(s)u(s) > 0, Nyu(z) > 0
for 0 <z < pB. So Ny : P — P. Similarly, N, : P, — Py.

Now set €, = {u € B | u(x) > 0 on (0, 5] and y'(0) > 0}. Let u € P,\{0}. So
there exists a compact interval [¢,d] C [0,b] such that p(z)u(z) > 0 for all = € [, d].

Since H(z,s) > 0 for 0 < x < b,

Nyu(z / H(x,s)p(s)u(s)ds

> / H(z, s)p(s)u(s)ds

for 0 < x <b.
Since 2 H (z, s)|4—0 > 0,

b
Ny (0) = / 2H(O, s)p(s)u(s)ds

/ —H (0, s)p(s)u(s)ds

and so Nyu € . So N, : P\ {0} — Q, C Py. O
Lemma 8.4. The map b — N, is continuous in the uniform topology.

Proof. First note that sup |u(x)| < ||ul|. Let f: (0,5] — {No}, b € [0, 5], such
0<a<1
that f(b) =Ny Let 0 < by < by < 5 Let € > 0. Then

[1f (b2) = f(O)I] = [[No, — N, ||

= sup ||Np,u — Ny, ul|
[Ju|[=1

= sup { sup [(Ny,u)'(x) — (Ny,u)'(z)[}.
lull=1 "e[o0,6]
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Since %H (x,s) and p(z) are continuous functions for 0 < x < 3, they are
bounded above for 0 < z < 3. Choose K and P such that |2 H(z,s)] < K and
Ip(z)| < P for 0 < < p.

Suppose = < b;. Then for by — by| < < K;Pﬁ’

(Vi () = N @)] = | [ SR shplsuts)ds = [ S p(opu(s)as

bo a
/b1 %H(:v s)p(s)u(s)ds

</
b]

b
< KPpds

by

= KPﬂlbg — by

gH(x,s)

- H(2,5)] Ip(s) lu(s) ds

=€

KPB

Now suppose by < x < by. Since H(z,s) € C'0, 4] in the first variable, for

|b2—b1|<5< So

€
2KP5 H(x s) — H(bl,s)|<2P62.
bo 8

b1a
|(Nou)' () = (Noyu)'(2)| = | [ z-H(z, s)p(s)uls)ds — jﬁ 5 11 (0L, 8)p(s)u(s)ds

bo a
sA — H(,5)| () lu(s) s
[ = S ol

bo

b1
€
< KPpds —i—/ ——Pfds
b1 0 2P62

=K PB|by — by| + ——Pb, 3

2P52

€
KP P3? =e.
<KPp 2KP5+2P52 pr=e

Now suppose 3 > x > by. Again, since H(z,s) € C1[0, 8] in the first variable,

for [by — 01| <9 < 2K€Pﬁ’ !%H(bz,s) _ %H(bl,s)] - 2]3652- %
b2 9 b
[(Noy) () = (N @)] =| [ 5 H (o, s)p(s)u(s)s = | S H by, s)p(s)u(s)ds
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< [ gt ol lute s
o [ s) = G| ol

b2 bl €
KPpd ——Ppd
< 5s+/0 3P Bds

by

— K PBby — by + QPBZPblﬁ
€
KP Pp? =e.
<KPS 2KP6 topElt =
So we have that sup { sup |(Np,u) (z) — (Np,u) (z)|} < € for [by —by| < 4. So
llul|=1 z€[0,5]
|| f(b2) — f(b1)]] < € for |by — by| < §, and so f is continuous. O

Theorem 8.7. For 0 < b < 3, r(N,) is strictly increasing as a function of b.

Proof. In [22], it is shown that there exists A > 0 and u € P,\{0} such that Nyu(z) =
Au(z). Extend u to [b, 5] by

(/Hbs §)ds + ( x—b/—Hbs )u(s)ds).

Then for z € [0, 8], Nyu(z) = Au(z). Thus for 0 < b < 3, r(Ny) > A > 0.
Now let 0 < by < by < . Since 7(Vy,) > 0, by Theorem 8.2, there exists a

ug € Py, \{0} such that Ny ug = r(Ny, )ug. Let uy = Ny ug and us = Np,ug. Then

for z € (0, by],
(s — wr)(x) = : H(z, s)u(s)p(s)ds > 0.
Also,
(s — 1y (0) = : (%H(o syu(s)p(s)ds > 0.

Thus the restriction of us — uq to [0, b] belongs to Qp,. So there exists a 6 > 0 such
that ug — uy > duy with respect to Py,. Since ug € P, it follows that ug — u; > dug

with respect to P. Thus

U9 Z Uy +(5’LLO
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= 1r(Np, )u + dug
= (r(Nb,) + 0)uo

with respect to P. Thus Ny,ug > (7(Ne, ) +6) with respect to P, and so by Theorem
8.4, (Np,) > 1(Np, ) + 9. So 7(Ny,) > r(Np,) and r(Ny) is strictly increasing. O

Now, we state and prove the main result.
Theorem 8.8. The following are equivalent:

(i) bo is the first extremal point of the boundary value problem corresponding to

(8.3),(8.4) for 0 <z < B;

(1) there exists a nontrivial solution u of the boundary value problem (8.3),(8.4)

for 0 < x < by such that u € Py, \{0};

(111) r(Ny,) =
Proof. First, we show (iii) = (ii); since r(Np,) = 1 > 0, by Theorem 8.3, r(Ny,)
is an eigenvalue of N, and so there exists a u € P, \{0} such that Ny u(z) =
7(Npy )u(z) = u(x) for x € [0, by]. So (i7) holds.

Next, we prove (ii) = (i). Let u € Py, \{0} satisfy (8.3),(8.4), for 0 < = < by.
For x > by, extend u(x fo (bo, s)p(s)u(s)ds+ (z—bp) fbo 2 H(by, s)p(s)u(s)ds.
So Np,u(z) = u(x) for 0 <z < . So r(Ny,) > 1.

If r(Ny,) = 1, then by Theorem 8.7, for 0 < b < by, r(Ny) < r(Ny,) = 1, and
so by is the first extremal point of (8.3),(8.4).

Assume 7(Ny,) > 1. Let v € Py, \{0} such that Nyv = r(Ny,)v. Now v re-
stricted to [0, bo] belongs to €2, and so there exists a ¢ > 0 such that u > dv with re-
spect to Py,. Extend v(x) = fobo H (b, s)p(s)v(s)ds+(x—by) foo D H(by, s)p(s)v(s)ds
for x > by. Then u > dv with respect to P. Assume ¢ is maximal such that u > dv.
Then

u = Npyu > Ny, (0v) = O Npyv = 61 (Np, ).
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Since 7(Ny,) > 1, dr(Ny,) > 0. But u > dr(Ny, )v, a contradiction to the fact that ¢
is the maximal value satisfying y > dv. So r(NNy,) = 1, and so by is the first extremal
point of (8.1),(8.2).

Last, we show (i) = (4i7). If by is the first extremal point of the boundary
value problem (8.3),(8.4), there exists a u € Py, \{0} such that r(Ny,)u = Np,u, and
so 1(Np,) > 1. Assume r(N,) > 1. By Lemma 8.4, ll;ii%r(]\/b) = 0, and so by the
Intermediate Value Theorem, there exists an a € (0, by) such that r(N,) = 1. So
there exists a nontrivial solution of (8.1),(2.2) on [0, @], which contradicts the fact

that by is the first extremal point. So r(N,,) = 1. O
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