
 

 

 

 

 

 

 

 

ABSTRACT 

 

Small-molecule Inhibitors of Tubulin Polymerization as Vascular Disrupting Agents and 

Prodrugs Targeting Tumor-Associated Hypoxia 

 

Zhe Shi, Ph.D. 

 

Mentor: Kevin G. Pinney, Ph.D. 

 

 

The tumor microenvironment provides a number of promising targets for selective 

treatment with anticancer agents. Aberrant tumor-associated neovascularization offers 

one such targeting opportunity. Compounds referred to as vascular disrupting agents 

(VDAs) cause morphological changes in endothelial cells lining tumor-associated 

vasculature leading to selective and irreversible reduction in blood flow thus starving 

tumors of necessary oxygen and nutrients, ultimately culminating in necrosis. 

Combretastatin A-4 (CA4) and combretastatin A-1 (CA1) are natural products derived 

from the South African tree Combretum caffrum that inhibit tubulin polymerization and 

demonstrate dual mechanism of action functioning both as antiproliferative agents and 

separately as VDAs. Inspired by the molecular architecture of colchicine and the 

combretastatin family of natural products, several 2-aryl-3-aryol-indole analogues were 

designed and synthesized to further enhance structure activity relationship considerations 

around our previously discovered lead indole-based anticancer agent, OXi8006. These 

indole analogues were evaluated for their ability to inhibit tubulin assembly and for their 



cytotoxicity against several human cancer cell lines.  An amino analogue showed a 

comparable inhibition of tubulin assembly (IC50 = 0.83 µM) to the reference compound 

OXi8006. In addition to the synthesis of new analogues and prodrugs, a mechanistic 

study related to the formation of a key intermediate (2-arylindole) was also carried out 

utilizing a 13C-labeled molecule.    

A wide variety of solid tumor cancers are characterized by profound regions of 

hypoxia, which provides a unique opportunity for targeted cancer therapy. A promising 

strategy involves the hypoxia-selective release of potent anticancer agents facilitated 

through reductase-mediated cleavage of non-toxic bioreductively activatable prodrug 

conjugates (BAPCs). A series of BAPCs were synthesized that incorporate parent 

anticancer agents OXi8006 (indole), OXi6196 (dihydronaphthalene), and KGP18 

(benzosuberene) that incorporate a variety of nitro-bearing heteroaromatic triggers. The 

cytotoxicity of these BAPCs was evaluated under both normoxic and hypoxic conditions 

to determine their hypoxia cytotoxicity ratio (HCR). Several of these BAPCs 

demonstrated promising HCR values (>7) in the A549 lung cancer cell line. The most 

promising BAPC (OXi6196-monomethylthiophene trigger) demonstrated anti-vascular 

activity in a preliminary in vivo study in an orthotopic syngeneic breast tumor mouse 

model (4T1/BALB/c), as evidenced through bioluminescence imaging (BLI) and 

histology. 
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CHAPTER ONE 

Introduction 

Cancer 

Cancer is a group of diseases characterized by uncontrolled growth of abnormal 

cells and potential spread to other organs of the body.1 It continues to be a major public 

health problem worldwide and is the second leading cause of death in the United States 

after cardiovascular disease. In 2018, it is estimated that over 1.7 million new cancer 

cases will occur in the United States. Moreover, 600,000 cancer deaths are projected to 

happen.2 The top three types of cancer that occur in men are prostate, lung and bronchus, 

and colon and rectum cancer. On the other side, the most common types of cancer among 

women are breast, lung and bronchus, and colon and rectum cancer (Figure 1.1).2 

Statistics have also shown that approximately 40 percent of men and 38 percent of 

women in the U.S. will get cancer at a certain stage during their lifetime.3 

Surgery, radiation therapy, chemotherapy, targeted therapy and immunotherapy 

are the most common cancer therapy methods.4 The choice of therapy depends upon the 

location of the tumor and the stage of the disease, as well as the performance status of the 

patient. In most cases, patients receive a combination of treatments, such as surgery with 

chemotherapy and/or radiation therapy.5 Immunotherapy and targeted therapy have 

attracted growing interest from researchers, clinicians, and pharmaceutical companies, as 

these therapies are expected to be more effective and less harmful in comparison to 

radiotherapy and chemotherapy.6 
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Figure 1.1. Top Ten Types of Cancer in Estimated New Cases and Death by Sex, United 

States, 20182  

 

 

Vascular Targeting Agents 

The vascular network supporting normal tissue is hierarchically organized and 

evenly distributed to maintain the supply of oxygen and nutrients to all cells (Panel A in 

Figure 1.2).7 When a tumor reaches a few millimeters in size, it outgrows its blood 

supply,8 and in order to receive sufficient oxygen and nutrition, solid tumors become 

angiogenic and develop their own vasculature to meet the demand.9,10   

However, this newly-formed tumor vasculature (Panel B in Figure 1.2) is 

different from the vasculature in normal tissue, which might be its Achilles’ heel. The 
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vascular network associated with tumors is typically not systemic and is unevenly 

distributed.11 Tumor blood vessels are often immature, leaky and highly-permeable.12,13 

This chaotic vascular network and primitive blood vessels serve as promising targets for 

cancer therapeutics.  

 

 

Figure 1.2. Scanning Electron Microscopy (SEM) Image of a Microvascular Cast from 

Normal Lung Tissue (A) and a Human Sigmoidal Adenocarcinoma (Colorectal Cancer) 

(B)7 

 

 

In the early 1970s, Folkman and coworkers observed that tumors were limited in 

size to 1-2 mm3 if neovascularization of tumors was inhibited.14,15 From these 

observations, he proposed a well-known hypothesis that tumor growth depends on 

angiogenesis and suggested a potential therapeutic approach that would inhibit 

angiogenesis in solid tumors.9 He also brought up the idea of “anti-angiogenesis” and 

proposed that tumors would not grow beyond a few cubic millimeters in size without the 

development of new capillary blood vessels for the supply of oxygen and nutrients.9  

Later in 1982, Dr. Denekamp observed that blockage of solid tumor blood vessels led to 

tumor necrosis.16 She then proposed that the fragile neovasculature in tumors could be a 
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target. This idea focused on damaging the existing new vessels, comparable to Folkman’s 

suggestion to inhibit angiogenesis.  

Vascular targeting agents generally consist of two distinct classes of compounds: 

angiogenesis-inhibiting agents (AIAs) and vascular disrupting agents (VDAs). AIAs are 

represented by a set of small-molecules that are inherently cytostatic and inhibit the 

development of new vasculature in the tumor region. On the other hand, VDAs cause 

irreversible damage to existing tumor vasculature and restrict the supply of oxygen and 

nutrients (Figure 1.3).  

 

 

Figure 1.3. Angiogenesis-Inhibiting Agents (AIAs) and Vascular Disrupting Agents 

(VDAs)17  

 

 

Angiogenesis is the physiological process of forming new blood vessels which 

involves migration, growth and differentiation of endothelial progenitor cells.18 This 
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process is normal and vital in growth and development, such as pregnancy, wound 

healing and the menstrual cycle.19 This process is regulated by several signal proteins, 

including vascular endothelial growth factor (VEGF) and fibroblast growth factor 

(FGF).20,21 When these endothelial growth factors bind to their receptors on the surface of 

endothelial cells, the development of new blood vessels are initiated.20–22 As the tumor 

grows, certain growth factors are upregulated to provide sufficient tumor-associated 

blood supply. AIAs are unique anti-cancer agents.22 They inhibit the growth of blood 

vessels through interaction with these growth factors, thus restricting the supply of 

oxygen and nutrients, rather than blocking the growth of tumor cells.17,22 For example, 

some monoclonal antibodies specifically recognize and bind to VEGF. Once VEGF is 

attached to these drugs, it is unable to activate the receptor on the surface of endothelial 

cells.22–24 

More than a dozen AIAs have been approved by the U.S. Food and Drug 

Administration (FDA) since the approval of bevacizumab (Avastin®) in 2004. 

Bevacizumab is a recombinant humanized monoclonal antibody that inhibits 

angiogenesis. It interacts with vascular endothelial growth factor A (VEGF-A), which is a 

growth factor overexpressed in tumors.23,24 It has been used as single agent or in 

combination therapy for the treatment colon cancer, lung cancer, glioblastoma, and renal-

cell carcinoma.23,24 

 

Vascular Disrupting Agents 

Distinct from AIAs, VDAs target endothelial cells and pericytes of established 

tumor-associated vasculature, and cause rapid occlusion of vessels, which leads to 
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secondary tumor-cell death.25 There are two types of VDAs, small-molecule VDAs and 

ligand-directed VDAs.26  

A subset of the small-molecule VDAs are tubulin binding agents, which bind to 

the tubulin β-subunit at the colchicine binding site.27 This binding causes 

depolymerization of microtubules, rearrangement of the cytoskeleton, and 

disorganization of actin and tubulin, which leads to rapid morphology changes of these 

endothelial cells in the tumor-associated blood vessels.7 The rounding up and blebbing of 

these endothelial cells increases the vascular resistance, which contributes to vascular 

shutdown (Figure 1.4). In addition, shape changes and apoptosis of these cells activate 

vasoconstriction, which also decreases the blood flow.28 Moreover, the slow-down of 

blood flow results in promotion of red blood cell aggregation. This effect further 

increases viscous resistance to blood flow.29 All these effects result in the occlusion of 

tumor-associated blood vessels. 

 

 

Figure 1.4. Mechanism of Tumor Vasculature Shutdown after Administration of a VDA30 
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Colchicine, which was isolated from Colchicum autumnale, has been described 

for the treatment of gout since the first century AD (Figure 1.5).31 It belongs to this VDA 

family, which binds to the tubulin heterodimer, disrupts further polymerization to form 

microtubules, and inhibits mitosis.31–34 It has been demonstrated to cause tumor 

regression and necrosis through vascular shutdown. However, due to high toxicity, its use 

as an anticancer agent is limited.35 Combretastatins are a class of potent natural products 

which were first isolated by Dr. Pettit and co-workers from the South African Combretum 

caffrum tree.36,37 These compounds are phenolic stilbenes that bear structural similarity to 

colchicine. They are potent antimitotic agents that bind to the colchicine binding site of 

tubulin and inhibit tubulin assembly. Combretastatin A-4 (CA4) along with 

Combretastatin A-1 (CA1) are the most potent members of this family.27,36,37 CA4, a cis-

stilbene, is highly active against a wide-variety of human cancer cell lines and was found 

to exhibit an antivascular effect at one tenth of its maximum tolerated dose.38 The poor 

solubility of CA4 led to the development of its water-soluble disodium phosphate 

prodrug, CA4P.39  

 

 

Figure 1.5. Selected Natural Products that Function as VDAs 

 

VDAs are known to cause tumor necrosis, but tend to spare some tumor cells on 

the rim, which receive their blood supply from normal blood vessels (Figure 1.3).17,30,40 

To overcome this problem, VDAs like CA4P are usually administrated in combination 
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with other chemotherapy drugs in clinical trial.41 Four phase I clinical trials of 

combination therapy involving CA4P were reported.42–45 All these studies showed that 

the combination therapy was generally well tolerated and displayed promising tumor 

responses. However, several phase II studies involving CA4P for the treatment of 

anaplastic thyroid cancer (ATC) have been completed with no significant tumor response 

observed, including a single agent and a combination therapy with doxorubicin, cisplatin 

and radiotherapy.46,47 Combination therapy of pazopanib with CA4P for ovarian cancer 

and the combination of everolimus with CA4P for neuroendocrine tumors are currently 

undergoing clinical trials. Recently, a preclinical study has shown that the combination 

therapy of CA4P and an anti-CTLA-4 antibody nearly doubles the amount of tumor 

necrosis. This new finding showed the potential of CA4P in enhancing the efficacy of 

checkpoint inhibitors.48 

 

 

Figure 1.6. Leading Small-Molecule Inhibitors of Tubulin Polymerization Developed in 

Pinney Research Group: OXi6196,49,50 OXi6197,49 KGP18,50–52 KGP265,52 KGP433,53 

KGP481,53 OXi8006,54,55 OXi8007,54 and Benzo[b]thiophene analogues.56,57  
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Numerous structure-activity relationship (SAR) studies of CA4 have shown that 

the trimethoxyphenyl moiety, the p-methoxyphenyl moiety and a distance of 4-5 Å 

between the two aryl rings are essential to maintain tubulin binding activity.58 With 

structural inspiration provided by colchicine, CA4 and CA1, a series of potent tubulin 

binding agents functioning as VDAs have been discovered by the Pinney Research Group 

(Baylor University), including dihydronaphthalene,50 benzosuberene,50–52 

benzocyclooctene,53 indole54,55, and benzo[b]thiophene analogues59 (Figure1.6). A 

benzosuberene analogue KGP18 stands out among these VDAs since it combines potent 

inhibition of tubulin polymerization (IC50= 1.1 µM) with enhanced cytotoxicity against 

human cancer cell lines (see Table 1.1).50,51 Its water-soluble phosphate prodrug KGP265 

was also prepared by the Pinney Research Group.52 

 

Table 1.1 Inhibition of Tubulin Assembly and Cytotoxicity of Selected VDAs52–54,60,61 

Compounds 

Inhibition of 

Tubulin 

Assembly IC50 

(µM) ± SD 

GI50 (µM) ± SD SRB assay 

NCI-H460 DU-145 SK-OV-3 

CA4 1.0a 0.0022a 0.00054a 0.00042a 

CA1 1.9b 0.046b 0.013b n.d. 

OXi6196 0.46 ± 0.01c 0.0054c 0.0034c 0.0022c 

KGP18 1.4d 0.000054d 0.000042d 0.000025d 

KGP433 1.2 ± 0.1e 0.11e 0.10e 0.081e 

OXi8006 1.1 ± 0.04f 0.038f 0.036f 0.0034f 

 
a Data from ref 60.  
b Data from ref 61.  
c Unpublished data from Trawick Laboratory, Baylor University.  
d Data from ref 52.  
e Data from ref 53.  
f Data from ref 54.  

n.d. = not available  
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OXi8006 

 

OXi8006 (Figure 1.6) is a indole-based tubulin binding agent which was first 

reported by the Pinney Research Group.54 Flynn and coworkers have subsequently 

obtained this compound through a separate synthetic route.62 OXi8006 is a potent 

inhibitor of tubulin assembly with an IC50 value of 1.1 µM that demonstrates strong 

cytotoxicity against human cancer cell lines (Table 1.1). Its corresponding water-soluble 

disodium phosphate prodrug salt, OXi8007, demonstrated its ability to selectively 

decrease and shut down tumor-associated blood flow in a SCID mouse model bearing an 

orthotopic PC-3 (prostate) tumor.54 A previous SAR study from the Pinney Group has 

identified two other indole analogues with inhibition of tubulin assembly comparable to 

OXi8006.55 

The mechanism of action has also been proposed (Figure 1.7).63 OXi8006, 

generated from dephosphorylation of the corresponding phosphate prodrug salt OXi8007, 

enters tumor-associated endothelial cells via passive diffusion. This free phenol binds to 

tubulin resulting in microtubule disassembly and RhoA activation. RhoA kinase (ROCK) 

is activated by RhoA and phosphorylates myosin light chain (MLC) and suppresses MLC 

phosphatase (MP). This leads to increased levels of phosphorylated MLC and activation 

of non-muscle myosin II, which contributes to actin bundling and stress fiber formation. 

ROCK also leads to focal adhesion kinase (FAK) phosphorylation and activation 

contributing to increased focal adhesions. 
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Figure 1.7. Proposed VDA Mechanism of Action of OXi8007 in Activated Endothelial 

Cells63 

 

Bioreductively Activatable Prodrug Conjugates 

One salient feature in the solid tumor microenvironment is hypoxia. 

Approximately 50–60% of solid tumors contain pronounced hypoxic regions, where the 

oxygen concentrations are below 1.5% - 2%.64 Hypoxia can be divided into two major 

categories, perfusion-limited hypoxia and diffusion-limited hypoxia (Figure 1.8). Acute 

or perfusion-limited hypoxia occurs due to temporal blood vessel occlusion and unstable 

blood flow in tumor microvasculature.65 The abnormal tumor vasculature structure and 
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enlarged distance between tumor blood microvessels may result in chronic or diffusion-

limited hypoxia.66 

 

 

Figure 1.8. Chronic (Diffusion-Limited) and Cycling (Perfusion-Limited) Hypoxia67 

 

Hypoxia plays a key role in both tumor biology and prognosis. Tumor hypoxia 

can promote resistance to cell apoptosis,68 downregulate DNA damage repair pathways 

and increase genomic instability69, induce angiogenesis,70 change cell metabolism to 

promote cell growth,71 increase invasion and metastasis,72 promote autophagy,73 as well 

as suppress immunoreactivity.74 This plethora of tumor biological effects is orchestrated 

largely by hypoxia-inducible factor-1 (HIF-1),71 which has been observed in most solid 

tumors.75 
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Figure 1.9. Structure of Selected Bioreductive Prodrugs: TH-302,76 TH-4000,77 

Tirapazamine,78 PR-104,79 EO9,80 and Combretastatin A-4 BAPCs.81,82 

 

Hypoxia promotes cellular resistance to many therapeutic methods including 

radiotherapy and chemotherapy.83–85 On the other hand, some cytotoxic drugs are found 

to be more effective in hypoxia.83 Therefore, cancer hypoxia became an interesting target 

for new anticancer agents and treatments. Two main approaches are currently being 

applied: bioreductively activatable prodrug conjugates [BAPCs, also known as hypoxia-

activated prodrugs (HAPs)] and small-molecule inhibitors that specifically target 

hypoxia, especially the HIF-pathway.86 Herein, we are interested in developing BAPCs 

that incorporate small-molecule inhibitors of tubulin polymerization as the parent anti-

cancer agents (effectors). These prodrugs undergo enzyme-mediated reduction in the 

hypoxic region through either a one- or two- electron reductase resulting in the selective 

release of cytotoxic agents.66 Five different types of chemical entities have demonstrated 

the ability to selectively release the parent compound in hypoxia, including 

nitro(hetero)cyclic compounds, aromatic N-oxides, aliphatic N-oxides, quinones and 
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metal complexes87 A selection of these prodrugs are shown in Figure 1.9, including 

tirapazamine, evofosfamide, PR-104 and TH-4000 . 

Chemically, tirapazamine belongs to the aromatic N-oxide family. It was first 

prepared in a program screening for novel herbicides in 1972. Zemen and coworkers 

found it to be a leading compound in the development of bioreductive cytotoxic agents 

for cancer therapy in 1986.88 Its triazine moiety reduces to a tirapazamine radical 

intermediate through a one-electron reduction. This unstable intermediate undergoes 

further reaction in hypoxia to produce either a benzotriazinyl radical or a hydroxyl 

radical, which leads to DNA damage and poisoning of topoisomerase II (Scheme 1.1).88–

90  While tirapazamine was extensively investigated in clinic trials, and phase I and II 

studies showed positive results, the phase III studies utilizing a combination of 

tirapazamine with the conventional anticancer agent cisplatin generated limited 

effectiveness.91–93  

 

 

Scheme 1.1. Mechanism of Reductive Activation of Tirapazamine90 

 

TH-302, also known as evofosfamide, is a 2-nitroimidazole BAPC based on a 

bromoisophosphoramide mustard (Figure 1.9), which releases its parent drug under 

hypoxic conditions.94 This prodrug is reduced by one-electron oxidoreductases to 
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fragment and release the alkylating agent (bromoisophosphoramide mustard). It also 

presents a high hypoxic cytotoxicity ratio (HCR: GI50 ratio normoxia/hypoxia), and good 

pharmacokinetics and safety profiles in model animals.76 However, Phase III clinical 

trials against pancreatic adenocarcinoma and soft tissue sarcoma showed no statistical 

significance for TH-302.95,96 Recently, TH-302 in clinical trials has been shown to act as 

a sensitizer in combination therapy with certain immune checkpoint inhibitors for the 

treatment of patients with advanced prostate cancer, metastatic pancreatic cancer, 

melanoma and glioblastoma.97,98 

The potent VDA CA4 was used by Davis and co-workers to prepare a series of 

BAPCs (Figure 1.9).81,82 5-Nitrothiophene triggers were utilized as bioreductive trigger 

moieties and were covalently attached to CA4 through an ether linkage. These 

compounds were designed to release CA4 selectively in the hypoxic tumor 

microenvironment upon enzymatic reduction.  

The BAPCs developed within the Pinney Research Group (Baylor University) 

followed the same strategy as TH-302 and the CA4 BAPCs shown in Scheme 1.2A.99 

Aromatic N-oxide moieties, including nitrothiophene, nitrofuran, nitroimidazole and 

nitrobenzene,82,100–102 were covalently linked to the small-molecule tubulin binding 

agents developed in the Pinney Group to target human hypoxia. These conjugates 

undergo bioreductive cleavage to release the cytotoxic agents. The detailed mechanism of 

reduction and fragmentation is shown in Scheme 1.2B.   
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Scheme 1.2. A: Proposed Strategy for Selective Release of Cytotoxic Agents from 

Prodrugs under Hypoxic Associated with Cancer Cells; B: Biological Reduction and 

Cleavage of BAPCs (CA4-gem-dimethyl Nitrothiophene as an Example)103 

 

 

Antibody-Drug Conjugates 

In 1900, a German immunologist Paul Ehrlich proposed that if a compound can 

selectively target a disease-causing organism, then a toxin for that organism could be 

delivered without harming the body itself.104,105 This so-called “magic bullet” theory has 

to some extent been realized by the development of antibody-drug conjugates (ADCs). 

ADCs are composed of antibodies that are covalently bonded via either cleavable or non-
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cleavable linkers to anticancer agents (known as payloads).106,107 The antibodies bind to 

specific antigens on the surface of tumor cells and thus deliver their payload selectively 

to the tumor. These ADCs are designed as targeted therapy for cancer treatment, thus 

killing specific tumor cells and sparing normal tissue from chemotherapeutic damage.  

 

 

Figure 1.10. Structure of Brentuximab Vedotin106 and  Trastuzumab Emtansine108,109 

 

Since the discovery of monoclonal antibody (mAb) technology by Kohler and 

Milstein,110 this antibody is widely used in ADC development. The first FDA approved 

ADC in the oncology space was Gemtuzumab ozogamicin for the treatment of acute 

myeloid leukemia in 2001. After being withdrawn from the US market in 2010 due to its 

high fatal toxicity rate, Gemtuzumab ozogamicin was re-entered last year.111 At the 

beginning of this decade, Brentuximab vedotin (Figure 1.10) for the treatment of 

Hodgkin Lymphoma (HL) and systemic anaplastic large cell lymphoma (ALCL),106,112,113 
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and Trastuzumab emtansine for the treatment of HER2-positive metastatic breast 

cancer108,109 gained FDA approval. This field has generated extensive pre-clinical 

experimentation, and more than 60 ADCs are currently in clinical trials.107  

Brentuximab vedotin incorporates a cathepsin B cleavable linker containing 

valine-citrulline (Val-Cit).106 This dipeptide is stable in the plasma, but is quickly cleaved 

by lysosomal enzymes such as cathepsin B.114 A para-amino benzyl alcohol (PABOH) 

was also used as spacer in this ADC. Inspired by this study, a series of VDAs attached to 

this cathepsin B cleavable linker were prepared by the Pinney Research Group.115 

Another spacer N,N’-dimethylethylenediamine was installed between PABOH and the 

payload to generate carbamate groups instead of a carbonate moiety, since it is reported 

that several carbonate conjugates are less stable when compared with their carbamate 

derivatives.116 

 

Mechanism of Indole Ring Formation 

Indole is an aromatic heterocyclic compound with a benzene ring fused to a five-

membered pyrrole ring. It widely exists in the natural environment. The amino acid 

tryptophan, neurotransmitter serotonin, and tryptamine all contain an indole core ring. 

Indoles are also important scaffolds in medicinal chemistry.117 The anticancer agents 

vinblastine, vincristine, and mitomycin C are well-known examples of biologically active 

natural products that contain an indole ring.  

The preparation of indole rings has been studied for over 150 years.118–121 The 

synthetic routes available toward the indole ring are well established.118,120,121 Among 

these methods, the most versatile and well-studied approach is the Fischer indole 

synthesis, which involves a [3,3]-sigmatropic rearrangement followed by closure to the 
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fused five-membered ring.122 Other methods include the Leimgruber–Batcho indole 

synthesis, the Bischler–Mohlau indole synthesis, and the Fukuyama indole 

synthesis.120,121  

OXi8006 and its phosphate prodrug salt OXi8007 (Figure 1.6) bear an indole 

structure.54,55 OXi8006 was synthesized following the Bischler-Molhau indole 

methodology.123,124 This synthesis involved a reaction between aniline and α-halogenated 

acetophenone. Two recognized mechanism pathways were postulated for the formation 

of the 2-aryl indole product.125   In this work, a 13C isotope labeling experiment was 

carried out to find which pathway is favored.126 

 

Small-molecule Inhibitors of Cathepsin L 

Metastasis occurs when cancer cells invade normal tissue by spreading from a 

primary site to a secondary site within the host body.14,127–129 It is the primary reason for 

approximately 90% of cancer deaths.129  

Cathepsins are a group of endopeptidases which are predominately found in the 

lysosome.130,131 Some cysteine cathepsins have extracellular functions. Many 

mechanisms have been found to upregulate cathepsin expression in various tumor cell 

lines, including amplification,132 transcript variants133,134 and transcriptional regulation.135 

After being secreted from tumor cells as the proenzyme form, these proteases increase 

degradation of the extracellular matrix and promote metastasis.136–138 Cathepsin L, a 

member of the cathepsin family, is a ubiquitous endopeptidase which is overexpressed in 

cancer cells and accumulates at elevated levels in tumors and the tumor 

microenvironment.139 Cathepsin L inhibitors, such as E-64 and KGP94, have shown 

biological activity in vivo and are promising for therapeutic application.7,140–143  
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The thiosemicarbazone moiety has also been shown to exhibit anti-parasitic 

activity through inhibition of the cysteine proteases cruzain and falcipain.144–146 These 

discoveries inspired further investigation of the thiosemicarbazone moiety as the warhead 

incorporated within small-molecule inhibitors designed to target other cysteine proteases, 

such as cathepsin L.147,148 

 

 

Figure 1.11. Structure of Cathepsin L inhibitor KGP94149–151 

 

KGP94 is a functionalized benzophenone thiosemicarbazone derivative developed 

in the Pinney Research Group, which functions as a potent inhibitor of cathepsin L.149–151  

It significantly limits the activity of cathepsin L toward human type I collagen. It also 

inhibits the invasion of breast cancer cells (MDA-MB-231) through MatrigelTM by 70% 

at 10 µM.149 A water-soluble phosphate prodrug of KGP94 was also prepared to 

overcome its limited aqueous solubility.151 Preliminary biological evaluation has shown 

that this phosphate prodrug is readily hydrolyzed to KGP94 by alkaline phosphatase. 
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CHAPTER TWO  

 

Indole-based Vascular Disrupting Agents and Antibody-Drug Conjugates 

 

 

Introduction 

 

Our previous work lead to the potent compound 2-(3’-hydroxy-4’-

methoxyphenyl)-3-(3’’, 4’’, 5’’-trimethoxybenzoyl)-6-methoxyindole (OXi8006)152 and 

its corresponding water-soluble disodium phosphate prodrug salt, OXi8007.54 A previous 

structure activity relationship (SAR) study of OXi8006 from the Pinney Group identified 

indole analogues 3 and 4 (Figure 2.1) that demonstrate inhibition of tubulin assembly 

comparable to OXi8006 with IC50 value of 1.1 µM and 1.0 µM.55 Herein the synthesis 

and preliminary biological evaluation of the corresponding water-soluble disodium 

phosphate salts of indole analogues 3 and 4, along with several other indole-based 

analogues is described. Synthesis of a bridge-modified combretastatin analogue is also 

included. In addition, a drug-linker construct of OXi8006 covalently bonded to a 

cathepsin L cleavable linker was synthesized. This drug-linker construct is suitable for 

attachment to a monoclonal antibody in future studies. 

 

 

Figure 2.1 Selected Indole-based VDAs and Their Prodrugs153,154 
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Synthesis of Indole Analogues 

 

 

 

Scheme 2.1. Synthetic Route to OXi800654 

 

The synthetic route towards OXi8006 (1) and OXi8007 (2) are shown in Scheme 

2.1, which utilizes 2-arylindole 12 as a key intermediate.  The synthesis started from the 

commercially available isovanillin 7. After protection of the phenol as its corresponding 

silyl ether 8, addition of methyllithium formed the secondary alcohol 9, which was 

subsequently oxidized by pyridinium chlorochromate to afford the expected 

acetophenone 10. The α-brominated acetophenone 11 was prepared by treatment of 
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compound 10 with LDA to form the corresponding silyl enol ether followed by 

bromination with bromine. The key step relied on a Bischler-Mohlau indole synthesis to 

obtain indole 12 followed by the reaction with 3, 4, 5-trimethoxylbenzoyl chloride. The 

resulting TBS-protected indole derivative 13 was desilylated by tetrabutylammonium 

fluoride to afford indole-based phenol 1 (OXi8006). Reaction of free phenol 1 (OXi8006) 

with in situ-generated dibenzyl chlorophosphite resulted in the indole-based dibenzyl 

phosphate ester 14. Deprotection by hydrogen gas and palladium on activated carbon 

(10%), followed by an acid−base reaction between the resulting phosphoric acid and 

sodium carbonate, resulted in the desired disodium phosphate indole prodrug 2 

(OXi8007).  

 

 

Scheme 2.2. Synthetic Route towards Water-Soluble Disodium Phosphate Salt 5 
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The synthetic route towards indole-based disodium phosphate prodrug salt 5 

(Scheme 2.2) started from the previously described bromoacetophenone 11. Similar to 

the synthesis of OXi8006, 2-arylindole 16 was obtained through the Bischler-Mohlau 

indole synthesis and a subsequent acylation reaction with 3, 4, 5-trimethoxybenzoyl 

chloride resulted in the TBS-protected indole analogue 17. After deprotection of the TBS 

protecting group, free phenol 3 was reacted with phosphoryl chloride to form the indole-

based phosphoric acid. The corresponding phosphate salt 5 was afforded through 

neutralization by sodium carbonate.  

 

 

Scheme 2.3. Synthetic Route towards Indole Analogue 22 
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The synthesis of phosphate prodrug salt 6 was attempted through a similar route 

as that described for phosphate prodrug salt OXi8007 (Scheme 2.3). After the Bischler-

Mohlau indole synthesis, 2-arylindole 19 was selectively demethylated in the presence of 

the ionic liquid [TMAH] [Al2Cl7] under microwave irradiation to generate the phenolic 2-

arylindole 20, which was subsequently protected as it corresponding TBS derivative 21. 

In the Friedel Crafts acylation of TBS protect 21, ester 22 was obtained instead of the 

expected product 23. It is possible that due to the acidity of the reaction mixture, the TBS 

protecting group was cleaved and the free phenol 20 was formed, which subsequently 

reacted with 3,4,5-trimethoxybenzoyl chloride to afford ester 22. Interestingly, biological 

evaluation of compound 20 indicated that this compound has moderate cytotoxicity 

against selected human cancer cell lines (GI50 = 0.248 µM against DU-145 cells, for 

example).    

 

 

Scheme 2.4. Synthetic Route towards Amino Indole Analogue 28 

 

Another indole-based VDA target is the amino compound 28. (Scheme 2.4) 

Bromoacetophenone 25 was obtained from the bromination of commercially available 
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acetophenone 24. 2-Arylindole 26 was synthesized utilizing a similar Bischler-Mohlau 

indole protocol, which was followed by acylation to afford nitro compound 27. Reduction 

with hydrogen and palladium on carbon provided the final target amino compound 28.  

 

Synthesis of Bridge-Modified Combretastatin Analogue 

 

The objective for this project was to synthesize bridge-extended combretastatin 

analogues, in which the bridge consisted of methylene groups. As the initiation of this 

project, the previously reported four-carbon bridge molecule155 was synthesized to lay a 

foundation upon which further extensions of the bridge may be fabricated in the Pinney 

Group Laboratory.  

 

 

Scheme 2.5. Synthetic Route Towards the Methylene Bridge-Modified CA4 Analogue 35 

from Literature155 

 

The synthetic pathway delineated in Scheme 2.5 represents the reported route for 

the synthesis of the four-carbon bridge analogue 35.155 Phosphonium bromide salt 29 was 

treated with potassium tert-butoxide to generate the corresponding ylide, which was 
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subsequently reacted with acetaldehyde through a Wittig reaction to yield propylene 

analogue 30. Without ready access to a 500-watt lamp utilized in the literature155 for 

radical bromination, a modification which used N-bromosuccinimide (NBS) as the 

brominating agent was pursued. Propylene analogue 30 was heated at reflux in CCl4 with 

NBS and benzoyl peroxide. Unfortunately, the desired allylic bromide 31 was not 

obtained under these reaction conditions, and instead primarily starting material 

remained.   

 

 

Scheme 2.6. Synthetic Route Towards the Methylene Bridge-Modified CA4 Analogue 35 

Used in This Study 
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A new synthetic pathway, outlined in Scheme 2.6, was devised in order to avoid 

the fastidious radical bromination reaction. Propanoic acid derivative 38 was treated with 

lithium aluminum hydride to form propanol analogue 39, which was reacted with PBr3 to 

yield the propyl bromide derivative 40. Bromide 40 was then heated at reflux in toluene 

with triphenylphosphine to generate phosphonium bromide salt 41. This salt was reacted 

with n-butyllithium and successively combined with benzaldehyde 37 through a Wittig 

reaction, which was synthesized prior to this step though protection of isovanillin 36 by 

tert-butyldimethylsilyl chloride (TBSCl). Silyl ether 42 that resulted from the Wittig 

reaction was treated with tetrabutylammonium fluoride (TBAF) to yield compound 43. 

Alkene 43 was then subjected to hydrogenation with palladium on carbon as the catalyst. 

This reaction pathway resulted in the successful synthesis of combretastatin analogue 35. 

 

Synthesis of OXi8006-based Antibody-Drug Conjugate 

ADCs are an important class of biopharmaceutical drugs designed to selectively 

target identified tumor specific markers and thus function as targeted therapy. An 

improved methodology to synthesize a cathepsin B cleavable linker was developed in 

Pinney Research Group by Dr. Deboprosad Mondal and Jacob Ford (unpublished 

results). Following the same methodology, the leading indole-based VDA OXi8006 was 

covalently attached to the Val-Cit linker (Scheme 2.7). 

The para-nitrophenyl carbonate activating group was installed onto indole-based 

VDA OXi8006 (1) through the reaction with bis-(4-nitrophenyl) carbonate (bis-PNP). 

The activated succinimide ester 47 was also synthesized by reacting 6-maleimidocaproic 

acid 45 with disuccinimide carbonate 46.156  
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Scheme 2.7. Preparation of OXi8006-based ADC 54 
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Citrulline 48 was protected by fluorenylmethyloxycarbonyl chloride (FmocCl) 

and then linked with 4-aminobenzyl alcohol through hexafluorophosphate 

azabenzotriazole tetramethyl uranium (HATU) coupling to form compound 50. Fmoc-

protected compound 50 was deprotected and coupled with Fmoc-Val-OSu to form the 

dipeptide 51, which was then activated by bis-PNP. The carbonate 52 was treated with 

N,N’-dimethylethylenediamine (DMED) and coupled with the PNP-activated OXi8006 

44. Finally, succinimide ester 47 was attached to the free amine 53 to provide the target 

conjugate 54.  

 

Biological Evaluation 

 

 

Figure 2.2. Synthesized Indole-Based VDAs and Prodrugs   

 

All of the synthesized indole analogues were evaluated for their ability to inhibit 

tubulin assembly (in a cell-free, pure protein assay). The nitro indole 27 (IC50 = 0.97 µM) 

and amino indole 28 (IC50 = 0.83 µM) demonstrated impressive inhibition of tubulin 
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assembly, which is comparable to that of CA4 and OXi8006 (Table 2.1). Unlike CA4P 

(IC50 > 40 µM),157 indole-based phosphate salts 2 (OXi8007) and 5 were also found to be 

strongly inhibitory. The inhibition of tubulin assembly assays were carried out by Dr. 

Hamel at National Cancer Institute. 

These analogues were also tested for their cytotoxicity against selected cancer cell 

lines (Table 2). Amino analogue 28 demonstrated strong cytotoxicity (GI50 values 

ranging from 28 to 62 nM) against the NCI-H460 (lung), DU-145 (prostate), and SK-OV-

3 (ovarian) human cancer cell lines. Comparing with compound 28, nitro analogue 27 

was somewhat less cytotoxic with GI50 values ranging from 99 nM to 219 nM. The ester 

analogue 22 demonstrated moderate cytotoxicity against these three cancer cell lines. The 

Sulforhodamine B (SRB) assays were carried out in Dr. Trawick’s laboratory (Dr. Tracy 

Strecker) at Baylor University.  

 

Table 2.1 Inhibition of Tubulin Assembly and Cytotoxicity of Target Indole Analogs54,60 

Compounds 

Inhibition of 

Tubulin 

Assembly IC50 

(µM) ± SD 

GI50 (µM) ± SD SRB assay 

NCI-H460 DU-145 SK-OV-3 

CA4 1.0b 0.00223b 0.00054b 0.00042b 

1 (OXi8006) 1.1 ± 0.04c 0.0379c 0.0356c 0.00345c 

2 (OXi8007) 4.2 ± 0.1c 0.0311c 0.0297c 0.0223c 

5 8.1 ± 1 n. d. n. d. n. d. 

22 n. d. 0.248 ± 0.0853 1.00 ± 0.158 0.429 ± 0.0276 

27 0.97 ± 0.07 0.219 ± 0.0419 0.151 ± 0.00506 0.0991 ± 0.0139 

28 0.83 ± 0.05 0.0435 ± 0.0011 0.0622 ± 0.0042 0.0282 ± 0.0015 

 

a Average of n ≥ 3 independent determinations 
b Data from ref. 136 
c Data from ref. 53 

n.d. = not determined  
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Materials and Methods 

 
General Experimental Methods 

Dichloromethane, acetonitrile, dimethylformamide (DMF), methanol, ethanol, 

and tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the 

chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen 

gas, unless specified. Thin-layer chromatography (TLC) plates (precoated glass plates 

with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification 

of intermediates and products was carried out with a Biotage isolera flash purification 

system using silica gel (200-400 mesh, 60 Å) or RP-18 prepacked columns or manually 

in glass columns. Intermediates and products synthesized were characterized on the basis 

of their 1H NMR (500 or 300 MHz), 13C NMR (125 or 75 MHz), and 31P NMR (200 or 

120 MHz) spectroscopic data using a Varian VNMRS 500 MHz or Bruker DPX 300 

MHz instrument. Spectra were recorded in CDCl3, D2O, or CD3OD. All chemical shifts 

are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns 

are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), septet (sept), 

double doublet, (dd), and multiplet (m).  

Purity of the final compounds was further analyzed at 25 oC using an Agilent 

1200 HPLC system with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 

HPLC column (4.6 mm - 150 mm, 5 μm), and a Zorbax reliance cartridge guard-column; 

method A: solvent A, acetonitrile, solvent B, 0.1% TFA in H2O, gradient, 10%A / 90%B 

to 90%A / 10%B over 0 to 30 min; or method B: solvent A, acetonitrile, solvent B, H2O, 

gradient, 30%A / 70%B to 90%A / 10%B over 0 to 30 min; or method C: solvent A, 

acetonitrile, solvent B, H2O, gradient, 50%A / 50%B to 90%A / 10%B over 0 to 30 min; 
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post-time 10 min; flow rate 1.0 mL/min; injection volume 20 μL; monitored at 

wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out 

under positive ESI (electrospray ionization) using a Thermo scientific LTQ Orbitrap 

Discovery instrument. 

 

3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde 8 158 

 To a solution of 3-hydroxy-4-methoxybenzaldehyde 7 (10.0 g, 65.8 mmol) 

dissolved in dichloromethane (150 mL) at 0 oC was added triethylamine (Et3N) (10.1 mL, 

72.3 mmol) followed by N,N-dimethylaminopyridine(DMAP) (0.804 g, 6.58 mmol). The 

reaction mixture was stirred for 10 min, and tert-butyldimethylsilyl chloride (TBSCl) 

(10.9 g, 72.3 mmol) was then added gradually. The solution was allowed to warm to 

room temperature over 12 h. Upon completion of the reaction, the reaction mixture was 

quenched with water (100 mL) and extracted with dichloromethane (3 X 50 mL). The 

extracted layers were combined, dried over Na2SO4, and concentrated under reduced 

pressure. The TBS benzaldehyde product 8 [17.3 g, 64.9 mmol, 99%, Rf = 0.50 (70:30 

hexanes: EtOAc)] was isolated as a yellow oil and was taken to the next step without 

further purification.  

1H NMR (CDCl3, 500 MHz): δ 9.80 (s, 1H, CHO), 7.45 (dd, J = 8.5, 2.0 Hz, 1H, 

ArH), 7.35 (d, J = 2.0 Hz, 1H, ArH), 6.93 (d, J = 8.5 Hz, 1H, ArH), 3.87 (s, 3H, OCH3), 

0.99 (s, 9H, C(CH3)3), 0.16 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 

55.1, 25.3, 18.0, -5.0. 
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3-tert-Butyldimethylsilyloxy-1-(1’-hydroxyethyl)-4-methoxybenzene 9 158 

Crude TBS benzaldehyde 8 (4.00 g, 15.0 mmol) dissolved in tetrahydrofuran 

(THF, 40 mL) at 0 oC was treated with CH3Li (12.2 mL, 1.6 M, 20 mmol) dropwise. The 

solution was then stirred at room temperature. After 12 h, the reaction mixture was 

slowly quenched with water (40 mL) and extracted with EtOAc (4 X 20 mL). The 

organic extract was dried over Na2SO4 and concentrated under reduced pressure, 

resulting in secondary alcohol 9 [3.84 g, 13.6 mmol, 90%, Rf = 0.40 (70:30 hexanes: 

EtOAc)] as a yellow oil, which was taken to the next step without further purification.  

1H NMR (CDCl3, 500 MHz): δ 6.88 (m, 2H, ArH), 6.83 (d, J = 8.1 Hz, 1H, ArH), 

4.81 (q, J = 6.3 Hz, 1H, CH), 3.79 (s, 3H, OCH3), 1.82 (s, 1H, OH), 1.45 (d, J = 6.3 Hz, 

3H, CH3), 0.99 (s, 9H, (CH3)3), 0.15 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 149.7, 144.5, 138.9, 118.4, 118.0, 111.7, 69.1, 

55.1, 25.5, 24.9, 18.2, -4.8. 

 

3-tert-Butyldimethylsilylox)-4-methoxyacetophenone 10 54,158 

 To a solution of crude alcohol 9 (3.48 g, 12.3 mmol) and Celite® (3 g) in 

dichloromethane (40 mL) at 0 oC was added pyridinium chlorochromate (PCC, 2.92 g, 

13.6 mmol) in small increments, allowing 10 min of stirring between each addition. The 

solution was then stirred at room temperature. After 12 h, the reaction mixture was 

filtered through a 50/50 plug of silica gel/Celite®, and the plug was rinsed well with 

dichloromethane. The filtrate was concentrated under reduced pressure providing the 

desired acetophenone derivative 10 [2.58 g, 9.20 mmol, 75%, Rf = 0.50 (70:30 hexanes: 

EtOAc)] as a pale yellow solid.  
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1H NMR (CDCl3, 500 MHz): δ 7.57 (dd, J = 8.5 Hz, 2.0 Hz, 1H, ArH), 7.46 (d, J 

= 2.0 Hz, 1H, ArH), 6.86 (d, J = 8.5 Hz, 1H, ArH), 3.86 (s, 3H, OCH3), 2.52 (s, 3H, 

CH3), 1.00 (s, 9H, C(CH3)3), 0.16 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 196.7, 155.3, 144.8, 130.5, 123.5, 120.4, 110.7, 

55.4, 26.2, 25.6, 18.4, -4.7. 

 

1-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1-trimethylsilylethene 54 

 To a solution of diisopropylamine (7.9 mL, 56 mmol) in THF (150 mL) at 0 oC 

was added n-butyllithium (22.4 mL, 2.5 M, 56 mmol) dropwise. The LDA solution was 

allowed to stir for 15 min, and then a solution of TBS-acetophenone 10 (10.5 g, 37.1 

mmol) in THF (50 mL) was added dropwise. The solution was stirred for 10 min, and 

trimethylsilyl chloride (TMSCl) (7.2 mL, 56 mmol) was added dropwise. The reaction 

mixture was allowed to reach room temperature overnight. After 12 h, the solution was 

diluted with NaHCO3 (10%, 100 mL). The reaction mixture was extracted with Hexane 

(4 X 30 mL). Next the extract was dried over Na2SO4, and the organic phase was 

concentrated under reduced pressure to provide crude TMS-enol ether (14.5 g, 

41.1mmol) as a dark yellow oil, which was taken to the next step without purification.  

1HNMR (CDCl3, 500 MHz): δ 7.18 (dd, J = 8.5 Hz, 2.5 Hz, 1H ArH), 7.12 (d, J = 

2.5 Hz, 1H, ArH), 6.80 (d, J = 8.5 Hz, 1H, ArH), 4.78 (d, J = 1.5 Hz, 1H, CH2), 4.34 (d, J 

= 1.5 Hz, 1H, CH2), 3.81 (s, 3H, OCH3), 1.03 (s, 9H, C(CH3)3), 0.27 (s, 9H, Si(CH3)3), 

0.18 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 155.3, 151.1, 144.4, 130.6, 118.8, 118.1, 111.2, 

89.5, 55.4, 25.7, 18.4, 0.03, -4.7. 
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3’-(tert-Butyldimethylsilyloxy)-4’-methoxy-2-bromoacetophenone 11 54 

To a solution of crude TMS-enol ether (14.3 g, 40.6 mmol) and anhydrous K2CO3 

(0.240 g, 1.74 mmol) in dichloromethane (120 mL) at 0 oC was added bromine (1.24 mL, 

24 mmol) dropwise. The solution was allowed to stir for 30 min, diluted with sodium 

thiosulfate (10%) and extracted with dichloromethane (3 X 50 mL). The extract was dried 

over Na2SO4 and concentrated under reduced pressure. Purification by flash 

chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 2%A / 98%B (4 CV), 2%A / 98%B → 20%A / 80%B (10 CV), 20%A 

/ 80%B (1.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] afforded 

bromoacetophenone analogue 11 [7.28 g, 20.2 mmol, 50%, Rf = 0.37 (90:10 hexanes: 

EtOAc)] as a tan red solid.  

1H NMR (CDCl3, 500 MHz): δ 7.61 (dd, J = 8.5 Hz, 2.5 Hz, 1H, ArH), 7.48 (d, J 

= 2.5 Hz, 1H, ArH), 6.88 (d, J = 8.5 Hz, 1H, ArH), 4.37 (s, 2H, CH2), 3.88 (s, 3H, 

OCH3), 1.00 (s, 9H, C(CH3)3), 0.17 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 189.8, 156.1, 145.1, 127.1, 124.2, 121.0, 111.0, 

55.5, 30.7, 25.6, 18.4, -4.6.  

 

2-(3’-tert-Butyldimethylsilyloxy-4’-methoxyphenyl)-6-methoxyindole 12 159 

To a solution of m-anisidine (5.16 mL, 46,2 mmol) dissolved in N,N-

dimethylaniline (50 mL) at 170 oC was added dropwise bromoacetophenone 11 (5.03 g, 

14.0 mmol) in EtOAc (10 mL). The reaction mixture was stirred at 170 oC for 12 h. Upon 

completion of the reaction, the reaction mixture was cooled to room temperature and 

extracted with EtOAc (3 x 30 mL). The combined organic extract was dried over Na2SO4 

and concentrated under reduced pressure. Purification by flash chromatography using a 
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prepacked 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 

88%B (4 CV), 12%A / 88%B → 100%A / 0%B (10 CV), 100%A / 0%B (2.6 CV); flow 

rate: 25 mL/min; monitored at 254 and 280 nm] resulted in the desired 2-phenylindole 

derivative 12 [3.44 g, 8.97 mmol, 64%, Rf = 0.48 (50:50 hexanes: EtOAc)] as light tan 

crystals.  

1H NMR (CDCl3, 500 MHz): δ 8.11 (br s, 1H, NH), 7.47 (d, J = 8.5 Hz, 1H, 

ArH), 7.16 (dd, J = 8.5 Hz, 2.0 Hz 1H, ArH), 7.13 (d, J = 2.5 Hz, 1H, ArH), 6.90 (d, J = 

8.5 Hz, 1H, ArH), 6.89 (d, J = 2.5 Hz, 1H, ArH), 6.79 (dd, J = 8.5, 2.5 Hz, 1H, ArH), 

6.64 (dd, J = 2.0, 1.0 Hz 1H, ArH), 3.86 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 1.04 (s, 9H, 

C(CH3)3), 0.21 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 156.3, 150.5, 145.4, 137.4, 136.9, 125.8, 123.7, 

120.9, 118.2, 117.8, 112.4, 109.9, 98.6, 94.5, 55.6, 55.4, 25.7, 18.5, -4.6.  

 

2-(3’-tert-Butyldimethylsiloxy-4’-methoxyphenyl)-3-(3”,4”,5”- trimethoxybenzoyl)-6-

methoxyindole 13 152 
 

 To a solution of compound 12 (3.12 g, 8.14 mmol) in o-dichlorobenzene (30 mL) 

was added 3,4,5-trimethoxybenzoylchloride (2.82 g, 12.2 mmol). The reaction mixture 

was heated to reflux at 170 oC for 12 h. The o-dichlorobenzene was removed by simple 

distillation, and the resulting dark colored crude oil was subjected to flash 

chromatography using a prepacked 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (4 CV), 10%A / 90%B → 80%A / 20%B (10 CV), 

80%A / 20%B (2.8 CV); flow rate: 40 mL/min; monitored at 254 and 280 nm] resulting 

in TBS-indole analogue 13 [1.60 g, 2.77 mmol, 34%, Rf = 0.38 (60:40 hexanes:EtOAc)] 

as a yellow powder.  
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1H NMR (CDCl3, 500 MHz): δ 8.42 (br s, 1H, NH), 7.93 (d, J = 9.5 Hz, 1H, 

ArH), 6.99 (s, 2H, ArH) 6.94 (dd, J = 8.0, 2.0 Hz 1H, ArH), 6.91 (dd, J = 9.0, 2.0 Hz, 1H, 

ArH), 6.91 (d, J = 2.0 Hz, 1H, ArH), 6.77 (d, J = 2.0 Hz, 1H, ArH), 6.70 (d, J = 8.5 Hz, 

1H, ArH), 3.87 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 3.69 (s, 6H, 

OCH3), 0.94 (s, 9H, C(CH3)3), 0.04 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 191.9, 157.4, 152.6, 151.6, 145.2, 142.1, 141.3, 

136.5, 134.6, 125.2, 123.4, 122.6, 122.3, 121.9, 112.9, 111.8, 111.7, 107.4, 94.6, 60.9, 

56.1, 55.9, 55.5, 25.8, 18.5, -4.7. 

 

2-(3’-Hydroxy-4’-methoxyphenyl)-3-(3”,4”,5”-trimethoxybenzoyl)-6-methoxyindole 1 

(OXi8006)152,160  
 

 To a well-stirred solution of compound 13 (0.796 g, 1.49 mmol) in THF (15 mL) 

at 0 oC was added tetrabutylammonium fluoride (TBAF·3H2O, 0.707 g, 2.24 mmol). The 

reaction mixture was stirred for 30 min while warming to room temperature. The reaction 

mixture was quenched with water (10mL) and extracted with EtOAc (3 x 10 mL). The 

combined organic extract was dried over Na2SO4 and concentrated under reduced 

pressure. Purification by flash column chromatography using a prepacked 50 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 

88%B → 100%A / 0%B (10 CV), 100%A / 0%B (5 CV); flow rate: 40 mL/min; 

monitored at 254 and 280 nm] afforded the desired phenolic indole 1 (OXi8006) [0.661 

g, 1.43 mmol, 95%, Rf = 0.28 (50:50 hexanes: EtOAc)] as a yellow powder.  

1H NMR (CDCl3, 500 MHz): δ 8.30 (br s, 1H, NH), 7.93 (d, J = 9.5 Hz, 1H, 

ArH), 6.96 (s, 2H, ArH) 6.95 (d, J = 2.0 Hz, 1H, ArH), 6.93 (dd, J = 9.5, 2.5 Hz, 1H, 

ArH), 6.92 (d, J = 2.5 Hz, 1H, ArH), 6.78 (dd, J = 8.0, 2.0 Hz, 1H, ArH), 6.65 (d, J = 8.5 
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Hz, 1H, ArH), 5.55 (s, 1H, OH) 3.89 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.80 (s, 3H, 

OCH3), 3.71 (s, 6H, OCH3).  

13C NMR (CDCl3, 125 MHz): δ 192.7, 157.1, 152.5, 147.0, 145.3, 143.3, 141.0, 

136.6, 135.0, 125.1, 123.0, 122.1, 121.5, 115.1, 112.6, 111.6, 110.3, 107.4, 94.8, 60.8, 

56.0, 55.8, 55.6.  

HPLC: Method B, 6.8 min. 

HRMS (ESI+): m/z calculated for C26H26NO7 [M+H]+ 464.1704, found 464.1706. 

 

2-(3′-Dibenzyl phosphate-4′-methoxyphenyl)-3-(3″,4″,5″-trimethoxybenzoyl)-6-

methoxyindole 1454  

 

To a solution of compound 1 (1.90 g, 4.09 mmol) in acetonitrile (70 mL) at −25 

°C was added CCl4 (3.50 mL, 36.0 mmol). The solution was stirred for 10 min, and 

diisopropylethylamine (1.50 mL, 8.63 mmol) and DMAP (0.050 g, 0.41 mmol) were 

added. After 5 min of stirring, dibenzyl phosphite (1.36 mL, 6.17 mmol) was added, and 

the reaction mixture was stirred for 2 h while allowing the solution to reach room 

temperature. After 2 h, the reaction was terminated by adding a solution of KH2PO4 (15 

mL, 0.5 M) and extracted with EtOAc (3 × 50 mL). The combined organic extract was 

dried over Na2SO4 and concentrated under reduced pressure. Purification by flash column 

chromatography using a prepacked 25 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 12% A/88% B (4 CV), 12% A/88% B → 100% A/0% B (10 CV), 

100% A/0% B (5.2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] afforded 

the desired phosphate ester 14 [2.71 g 3.75 mmol, 91%, Rf = 0.57 (hexanes:EtOAc, 

50:50)] as a yellow powder.  
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1H NMR (CDCl3, 500 MHz) δ 9.20 (1H, br s, NH), 7.78 (1H, d, J = 8.5 Hz, ArH), 

7.35 (1H, m, ArH), 7.25 (1H, m, ArH), 6.96 (1H, dd, J = 9.0, 2.5 Hz, ArH), 6.93 (2H, s, 

ArH), 6.91 (1H, d, J = 2.0 Hz, ArH), 6.86 (1H, dd, J = 9.0, 2.5 Hz, ArH), 6.51 (1H, d, J = 

8.5 Hz, ArH) 5.17 (4H, d, J = 8.0 Hz, CH2), 3.82 (3H, s, OCH3), 3.79 (3H, s, OCH3), 3.65 

(6H, s, OCH3), 3.54 (3H, s, OCH3).  

13C NMR (CDCl3, 125 MHz) δ 192.1, 157.3, 152.7, 150.73, 150.69, 141.3, 141.2, 

136.7, 135.6 (d, J = 7.3 Hz), 135.0, 128.84, 128.78, 128.1, 127.8, 124.6, 123.1, 122.3, 

121.4, 112.8, 112.0, 111.7, 107.4, 94.9, 70.3 (d, J = 6.0 Hz), 60.9, 56.2, 55.8, 55.7. 

31P NMR (CDCl3, 200 MHz) δ −6.1.  

 

2-(3′-Disodium phosphate-4′-methoxyphenyl)-3-(3″,4″,5″-trimethoxybenzoyl)- 

6-methoxyindole 2 (OXi8007)152,160  

 

To a solution of dibenzyl ester (0.827 g, 1.14 mmol) in methanol (25 mL) was 

added 10% palladium−carbon (0.365 g). The flask was evacuated under vacuum, and H2 

gas was introduced via a balloon. The reaction proceeded for 30 min, and the solution 

was filtered using Celite with EtOAc. The filtrate was concentrated under reduced 

pressure to give the crude phosphoric acid derivative as a greenish-yellow oil. The oil 

was dissolved in a solution of sodium carbonate (5.0 mL, 0.50 M in H2O) was added. The 

reaction mixture was stirred at room temperature for 12 h, and the methanol was removed 

under reduced pressure. Purification by flash chromatography using a prepacked 25 g 

reversed-phase silica column [solvent A: water; solvent B: acetonitrile; gradient: 100% 

A/0% B (3 CV), 100% A/0% B → 20% A/80% B (10 CV), 0% A/100% B (7.3 CV); 

flow rate: 25 mL/min; monitored at 254 and 280 nm] resulted in the desired disodium 

phosphate salt 2 (OXi8007) [0.399 g, 0.682 mmol, 60%] as a yellow powder.  
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1H NMR (D2O, 500 MHz) δ 8.03 (1H, d, J = 9.0 Hz, ArH), 7.71 (1H, m, ArH), 

7.21 (1H, d, J = 2.0 Hz, ArH) 7.03 (1H, dd, J = 9.0, 2.5 Hz, ArH), 6.93 (2H, s, ArH), 6.67 

(1H, d, J = 8.5 Hz, ArH), 6.63 (1H, dd, J = 9.0, 2.0 Hz, ArH), 3.95 (3H, s, OCH3), 3.77 

(3H, s, OCH3), 3.75 (6H, s, OCH3), 3.72 (3H, s, OCH3).  

13C NMR (D2O, 125 MHz) δ 195.1, 156.3, 151.7, 150.5, 150.4, 147.7, 142.8 (d, J 

= 5.6 Hz), 139.7, 136.6, 135.4, 125.8, 123.8, 122.2, 121.5, 120.4, 111.7, 111.2, 107.8, 

94.5, 60.8, 56.1, 55.8, 55.7. 

31P NMR (D2O, 200 MHz) δ 0.57.  

HPLC: Method A, 13.3 min. 

HRMS (ESI+): m/z calculated for C26H25NNa2O10P [M+H]+ 588.1006, found 

588.1008. 

 

2-(3’-tert-Butyldimethylsilyloxy-4’-methoxyphenyl)-6,7-dimethoxyindole 16 

To a solution of 2,3-dimethoxyaniline 15 (2.19 mL, 16.3 mmol) dissolved in N,N-

dimethylaniline (20 mL) was added bromoacetophenone 11 (2.93 g, 8.16 mmol). The 

solution was heated to reflux and stirred at 150 oC for 12 h. Upon completion of the 

reaction, the reaction mixture was cooled to room temperature and extracted with EtOAc 

(3 X 50 mL). The combined organic extract was dried over Na2SO4 and concentrated 

under reduced pressure. Purification by flash chromatography using a prepacked 50 g 

silica column [solvent (A) EtOAc; solvent (B) hexanes; gradient: 5%A/95%B (4 CV), 

5%A/95%B→ 40%A/60%B (10 CV), 40%A/60%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] resulted in the desired 6,7-dimethoxy-2-phenylindole 16 

(1.41 g, 3.42 mmol, 42%, Rf = 0.40 (80:20 hexanes: EtOAc)) as a tan solid. 
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 1H NMR (CDCl3, 500 MHz): d 8.63 (br s, 1H, NH), 7.33 (d, J = 8.5 Hz, 1H, 

ArH), 7.28 (d, J = 2.2 Hz, 1H, ArH), 7.26 (dd, J = 8.5 Hz, 2.2 Hz, 1H, ArH), 6.92 (dd, J = 

8.4 Hz, 1.4 Hz, 2H, ArH), 6.71 (d, J = 2.2 Hz, 1H, ArH), 4.15 (s, 3H, OCH3), 4.01 (s, 3H, 

OCH3), 3.88 (s, 3H, OCH3), 1.15 (s, 9H, C(CH3)3), 0.31 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): d 150.7, 147.1, 145.4, 137.9, 134.2, 131.2, 126.0, 

125.7, 118.4, 118.1, 115.2, 112.3, 108.7, 99.0, 60.9, 57.3, 55.4, 25.8, 18.5, -4.5. 

 

2-(3’-tert-Butyldimethylsiloxy-4’-methoxyphenyl)-3-(3”,4”,5”-trimethoxybenzoyl)-6,7-

dimethoxyindole 17 

 

To a solution of compound 16 (1.36 g, 3.28 mmol) in o-dichlorobenzene (20 mL) 

was added 3,4,5-trimethoxybenzoyl chloride (1.14 g, 4.92 mmol). The reaction mixture 

was heated to reflux at 160 oC for 12 h. The o-dichlorobenzene was removed by simple 

distillation, and the resulting dark green colored solid was subjected to flash 

chromatography using a prepacked 50 g silica column [solvent (A) EtOAc; solvent (B) 

hexanes; gradient: 7%A/93%B (4 CV), 7%A/93%B→ 60%A/40%B (10 CV), 

60%A/40%B (5.2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] resulting in 

a TBS protected indole analogue 17 as yellow powder (0.44 g, 0.72 mmol, 22%, Rf = 

0.17(70:30 hexanes:EtOAc)).  

1H NMR (CDCl3, 500 MHz): d 8.53 (br s, 1H, NH), 7.71 (d, J = 8.5 Hz, 1H, 

ArH), 6.98 (m, 4H, ArH), 6.77 (d, J = 2.0 Hz, 1H, ArH), 6.73 (d, J = 8.5 Hz, 1H, ArH), 

4.06 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 3.69 (s, 

6H, OCH3), 0.94 (s, 9H, C(CH3)3), 0.03 (s, 6H, Si(CH3)2).  
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13C NMR (CDCl3, 125 MHz): d 191.8, 152.6, 151.8, 148.0, 145.2, 142.8, 141.3, 

134.6, 134.0, 130.2, 125.2, 125.1, 122.3, 122.2, 116.8, 113.1, 111.8, 110.4, 107.4, 61.3, 

60.9, 57.3, 56.1, 55.5, 25.8, 18.5, -4.7. 

 

2-(3’-Hydroxy-4’-methoxyphenyl)-3-(3’’, 4’’, 5’’-trimethoxybenzoyl)-6,7-

dimethoxyindole 3 

 

To a well-stirred solution of compound 17 (0.380 g, 0.625 mmol) in THF (10 mL) 

at 0 oC was added TBAF (0.296 g, 0.938 mmol). The reaction mixture was stirred for 30 

min while warming to room temperature. The reaction mixture was quenched with water 

(10 mL) and extracted with EtOAc (3 X 10 mL). The combined organic extract was dried 

over Na2SO4 and concentrated under reduced pressure. Purification by flash column 

chromatography using a prepacked 25 g silica column [solvent (A) EtOAc; solvent (B) 

hexanes; gradient: 12%A/88%B (4 CV), 12%A/88%B?100%A/0%B (10 CV), 

100%A/0%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in 

free phenol indole 3 as a dark brown powder (0.233 g, 0.472 mmol, 75%, Rf = 0.14 

(50:50 hexanes: EtOAc)).  

1H NMR (CDCl3, 500 MHz): d 8.57 (br s, 1H, NH), 7.71 (d, J = 9.0 Hz, 1H, 

ArH), 6.972 (d, J = 9.0 Hz, 1H, ArH), 6.971 (d, J = 2.0 Hz, 1H, ArH), 6.94 (s, 2H, ArH), 

6.79 (dd, J = 8.3, 2.0 Hz, 1H, ArH), 6.64 (d, J = 8.3 Hz, 1H, ArH), 5.63 (br s, 1H, OH), 

4.06 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.71 (s, 

6H, OCH3).  

13C NMR (CDCl3, 125 MHz): d 192.0, 152.6, 148.1, 147.2, 145.7, 143.2, 141.1, 

135.0, 134.0, 130.2, 125.4, 125.0, 122.0, 116.8, 114.8, 113.4, 110.52, 110.45, 107.3, 61.3, 

60.9, 57.4, 56.17, 56.15. 
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Sodium 5-(6,7-dimethoxy-3-(3,4,5-trimethoxybenzoyl)-1H-indol-2-yl)-2-methoxyphenyl 

phosphate 5 

 

To a well-stirred solution of phenol (100 mg, 0.202 mmol) in dichloromethane 

(10 mL), POCl3 (0.076 mL, 0.81mmol) and pyridine (0.059 mL, 0.72 mmol) were added 

into the reaction flask. After the reaction mixture was stirred at room temperature for 15 

hours, the solvent was evaporated under reduced pressure. 0.25 M Na2CO3 solution (9.5 

mL) was added into the flask until the pH of the solution was neutral, and the reaction 

mixture was allowed to stir for another 2 hours. The reaction mixture was concentrated to 

dryness with a stream of nitrogen gas and purified by flash chromatography using a 

prepacked C-18 12 g silica column affording phosphate salt as a yellow solid 5 (24.5 mg, 

0.0397 mmol, 20%).   

1H NMR (500 MHz, Deuterium Oxide) δ 7.58 (d, J = 8.7 Hz, 1H), 7.48 (s, 1H), 

6.89 (d, J = 8.8 Hz, 1H), 6.63 (s, 2H), 6.37 – 6.26 (m, 2H), 3.77 (s, 3H), 3.77 (s, 3H), 

3.54 (s, 3H), 3.52 (s, 6H), 3.49 (s, 3H). 

13C NMR (126 MHz, D2O) δ 195.00, 151.58, 150.43 (d, J = 5.5 Hz), 148.52, 

147.66, 142.67 (d, J = 5.9 Hz), 139.52, 135.32, 133.57, 130.05, 125.95, 124.34, 123.44, 

120.42, 116.52, 111.68, 111.52, 110.25, 107.66, 61.33, 60.71, 56.98, 55.94, 55.65. 

HPLC: Method A, 13.2 min. 

HRMS [M+H]+: 385.2031 (calcd for [C21
13CH30NO3Si]+, 385.2023). 

 

2-(4’-Methoxyphenyl)-6, 7-dimethoxyindole 19 

 To a solution of 2,3-dimethoxyaniline 15 (2.19 mL, 16.3 mmol) dissolved in 

N,N-dimethylaniline (20 mL) was added 4-methoxybromoacetophenone 18 (1.87 g, 8.15 

mmol). The solution was heated to reflux and stirred at 150 oC for 12 h. Upon completion 
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of the reaction, the reaction mixture was cooled to room temperature and extracted with 

EtOAc (3 X 50 mL). The combined organic extract was dried over Na2SO4 and 

concentrated under reduced pressure. Purification by flash chromatography using a 

prepacked 100 g silica column [solvent (A) EtOAc; solvent (B) hexanes; gradient: 

5%A/95%B (4 CV), 5%A/95%B - 40%A/60%B (10 CV), 40%A/60%B (4 CV); flow 

rate: 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 6,7-dimethoxy-2-

phenylindole 19 (1.20 g, 4.24 mmol, 52%, Rf = 0.35 (80:20 hexanes: EtOAc)) as a tan 

solid.  

1H NMR (CDCl3, 500 MHz): d 8.61 (br s, 1H, NH), 7.61 (d, J = 8.7 Hz, 2H, 

ArH), 7.28 (d, J = 8.5 Hz, 1H, ArH), 6.97 (d, J = 8.7 Hz, 2H, ArH), 6.87 (d, J = 8.6 Hz, 

1H, ArH), 6.66 (d, J = 2.1 Hz, 1H, ArH), 4.09 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 3.85 

(s, 3H, OCH3).  

13C NMR (CDCl3, 125 MHz): d 159.2, 147.1, 138.0, 134.2, 131.3, 126.4, 126.0, 

125.3, 115.3, 114.5, 108.5, 98.8, 61.1, 57.4, 55.4.  

 

2-(4’-Methoxyphenyl)-6-methoxy-7-hydroxyindole 20 

 Trimethoxyindole 19 (0.613 g, 2.16 mmol) was dissolved in a solution of 

[Al2Cl7][TMAH] (6.3 mL, 3.1 mmol, 0.496 M in dichloromethane). The reaction mixture 

was sealed and subjected to microwave irradiation at 80 ºC for 1 h. Upon completion of 

the reaction, the reaction mixture was diluted with NaHCO3 and extracted with CH2Cl2 (3 

X 20 mL). The combined organic extract was dried over Na2SO4 and concentrated under 

reduced pressure. Purification by flash chromatography using a prepacked 100 g silica 

column [solvent (A) EtOAc; solvent (B) hexanes; gradient: 7%A/93%B (4 CV), 

7%A/93%B - 60%A/40%B (10 CV), 60%A/ 40%B (2 CV); flow rate: 40 mL/min; 
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monitored at 254 and 280 nm] resulted in the desired 6-methoxy-7-hydroxy-2-

phenylindole 20 (0.420 g, 1.55 mmol, 71%, Rf = 0.36 (70:30 hexanes: EtOAc)) as a tan 

solid.  

1H NMR ((CD3)2CO, 500 MHz): d 10.11 (br s, 1H, NH), 7.85 (d, J = 8.7 Hz, 2H, 

ArH), 7.66 (s, 1H, OH), 6.98 (m, 3H, ArH), 6.81 (d, J = 8.5 Hz, 1H, ArH), 6.66 (d, J = 

2.2 Hz, 1H, ArH), 3.83 (s, 3H, OCH3), 3.81 (s, 3H, OCH3).  

13C NMR ((CD3)2CO, 125 MHz): d 159.9, 142.5, 138.8, 133.1, 128.4, 127.2, 

127.1, 126.5, 115.0, 111.3, 108.9, 99.0, 58.3, 55.7.  

 

2-(4’-Methoxyphenyl)-6-methoxy-7-tertbutyldimethylsilyloxyindole 21 

To a solution of free phenol indole 20 (0.328 g, 1.22 mmol) in dichloromethane 

(20 mL) at 0 oC was added Et3N (0.19 mL, 1.3 mmol) and DMAP (0.015 g, 0.12 mmol). 

The reaction mixture was stirred for 10 min, and TBSCl (0.202 g, 1.30 mmol) was added 

gradually. The solution was allowed to warm to room temperature over 12 h. Upon 

completion of the reaction, water (10 mL) was added, and the reaction mixture was 

extracted with dichloromethane (3 X 20 mL). The combined organic extract was dried 

over Na2SO4 and concentrated under reduced pressure. Purification by flash 

chromatography using a prepacked 50 g silica column [solvent (A) EtOAc; solvent (B) 

hexanes; gradient: 2%A/98%B (4 CV), 2%A/ 98%B to 20%A/80%B (10 CV), 

20%A/80%B (5.2 CV); flow rate: 35 mL/min; monitored at 254 and 280 nm] resulted in 

the TBS indole product 21 (0.366 g, 0.90 mmol, 74%, Rf = 0.64 (70:30 hexanes: EtOAc)) 

as a light tan solid.  

1 H NMR (CDCl3, 500 MHz): d 8.03 (br s, 1H, NH), 7.53 (d, J = 8.7 Hz, 2H, 

ArH), 7.13 (d, J = 8.5 Hz, 1H, ArH), 6.98 (d, J = 8.7 Hz, 2H, ArH), 6.80 (d, J = 8.5 Hz, 
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1H, ArH), 6.61 (d, J = 2.2 Hz, 1H, ArH), 3.86 (s, 6H, OCH3), 1.11 (s, 9H, C(CH3)3), 0.24 

(s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): d 159.3, 145.2, 137.5, 131.2, 130.2, 126.2, 125.9, 

125.6, 114.6, 112.9, 108.5, 99.0, 57.0, 55.5, 26.3, 18.8, 4.2.  

 

2-(4’-Methoxyphenyl)-3-(3’’,4’’,5’’-trimethoxybenzoyl)-6- methoxy-7-tert-

butyldimethylsilyloxyindole 22 

 

To a solution of compound 21 (0.417 g, 1.09 mmol) in o-dichlorobenzene (30 

mL) was added 3,4,5-trimethoxybenzoyl chloride (0.376 g, 1.63 mmol). The reaction 

mixture was heated to reflux at 160 oC for 12 h. The o-dichlorobenzene was removed by 

simple distillation, and the resulting dark green colored solid was subjected to flash 

chromatography using a prepacked 25 g silica column [solvent (A) EtOAc; solvent (B) 

hexanes; gradient: 10%A/ 90%B (4 CV), 10%A/90%B - 80%A/20%B (10 CV), 

80%A/20%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm] resulting in  

22 as a tan solid (0.26 g, 0.56 mmol, 46%, Rf = 0.36 (60:40 hexanes:EtOAc)). 

1H NMR (600 MHz, CDCl3) δ 8.70 (s, 1H), 7.60 (d, J = 8.8 Hz, 2H), 7.44 (s, 2H), 

7.41 (d, J = 8.6 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.6 Hz, 1H), 6.67 (d, J = 

2.1 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 6H), 3.86 (s, 3H), 3.81 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 164.1, 159.2, 152.7, 146.5, 142.5, 138.4, 130.8, 

126.4, 126.3, 125.1, 124.9, 123.9, 117.8, 114.3, 107.5, 107.4, 98.9, 61.0, 57.2, 56.1, 55.4. 

HPLC: Method B, 10.9 min. 

HRMS (ESI+): m/z calculated for C26H25NO7Na [M+Na]+ 486.1521, found 

486.1523. 
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4’-Methoxy-3’-nitro-2-bromoacetophenone 25 

To a well-stirred solution of 4-methoxy-3-nitroacetophenone 24 (2.00 g, 10.3 

mmol) in chloroform (10 mL) at room temperature, was added dropwise a solution of 

bromine (0.53 mL, 10 mmol) in chloroform (2 mL). The reaction mixture was stirred for 

30 mins. Water (10 mL) was added upon the completion of the reaction, the organic layer 

was separated and the aqueous layer was extracted with dichloromethane (3 X 15 mL). 

The combined organic layer was dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was then recrystallized from hot ethanol to afford the desired 

bromoacetophenone derivative as yellow needle-shaped crystals 25 (1.38 g, 4.98 mmol, 

50%), Rf = 0.40 (EtOAc/Hexanes: 40/60). 

1H NMR (600 MHz, CDCl3) δ 8.49 (d, J = 2.3 Hz, 1H), 8.22 (dd, J = 8.9, 2.3 Hz, 

1H), 7.20 (d, J = 8.8 Hz, 1H), 4.40 (s, 2H), 4.07 (s, 3H). 

 13C NMR (151 MHz, CDCl3) δ 188.5, 156.8, 139.4, 134.9, 126.9, 126.2, 113.6, 

57.1, 29.9. 

 

6-methoxy-2-(4-methoxy-3-nitrophenyl)indole 26 

To a solution of m-anisidine (4.7 mL, 42 mmol) in N,N-dimethylaniline at 150 oC, 

a warm solution (60 oC) of bromide 25 (3.50 g, 12.8 mmol) in ethanol (15 mL) was added 

dropwise. The reaction mixture was stirred at 160 – 170 oC for 12 hours. Water (20 mL) 

was added into the solution and organic layer was separated in a separation funnel. 

Aqueous layer was then extracted with EtOAc (3 X 30 mL). The combined organic phase 

was dried over Na2SO4 and concentrated under reduced pressure to afford a dark colored 

solid. This crude product was further purified by recrystallization from EtOAc to form 

the desired product as dark red powder 26 (1.13 g, 3.80 mmol, 30%). 
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1H NMR (600 MHz, Acetone-d6) δ 10.65 (s, 1H), 8.23 (d, J = 2.1 Hz, 1H), 8.08 

(dd, J = 8.8, 2.2 Hz, 1H), 7.45 (t, J = 8.5 Hz, 2H), 6.95 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 

2.0 Hz, 1H), 6.73 (dd, J = 8.7, 2.1 Hz, 1H), 4.04 (s, 3H), 3.82 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 157.8, 152.1, 141.4, 139.4, 135.3, 130.8, 126.8, 

124.3, 121.8, 121.4, 115.6, 111.0, 100.5, 95.2, 57.2, 55.7. 

 

(6-methoxy-2-(4-methoxy-3-nitrophenyl)indol-3-yl)(3,4,5-trimethoxyphenyl)methanone  

27 

 

To a solution of 6-methoxy-2-(4-methoxy-3-nitrophenyl)indole 26 (1.59 g, 5.32 

mmol) in o-dichlorobenzene (45 mL) at 150 oC, was added 3,4,5-trimethoxybenzoyl 

chloride (2.1 g, 9.1 mmol) in portions. The reaction mixture was stirred at 160-170 oC for 

12 hours. It was allowed to cool down to room temperature, filter and rinsed with a small 

amount of EtOAc. The residue was further purified by recrystallization from 

dichloromethane-hexanes to afford a greenish-yellow solid 27 (0.48 g, 0.97 mmol, 18%). 

1H NMR (600 MHz, Acetone-d6) δ 11.08 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.86 

(s, 1H), 7.70 (dd, J = 8.7, 2.3 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 7.04 (d, J = 2.2 Hz, 2H), 

6.92 – 6.88 (m, 4H), 3.95 (s, 3H), 3.86 (s, 3H), 3.70 (s, 6H), 3.67 (s, 3H). 

13C NMR (151 MHz, Acetone-d6) δ 190.9, 157.5, 152.9, 152.2, 141.1, 140.2, 

139.2, 137.1, 136.9, 135.4, 134.7, 125.8, 125.0, 122.8, 122.2, 113.6, 111.7, 107.0, 94.4, 

59.6, 56.4, 55.4, 54.9. 

HPLC: Method C, 5.5 min. 

HRMS (ESI+): m/z calculated for C26H25N2O8 [M+H]+ 493.1605, found 

493.1604. 
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(2-(3-amino-4-methoxyphenyl)-6-methoxy-1H-indol-3-yl)(3,4,5-

trimethoxyphenyl)methanone 28 

 

To a round-bottom flask containing nitro compound 27 (246 mg, 0.497 mmol), 

10% palladium on carbon (52.9 mg, 0.050mmol) was added under nitrogen followed by 

MeOH (50 mL). Hydrogen was introduced through a balloon. The reaction mixture was 

then stirred at room temperature for 2 h examining periodically by TLC. It was filtered 

and the filtrate was concentrated under reduced pressure to achieve a yellow solid.  The 

crude product was subjected to flash column chromatography using a pre-packed 50 g 

silica gel column [solvent A, 50% EtOAc, 50% dichloromethane, solvent B, hexanes; 

gradient 20%A / 80%B (1CV), 20%A / 80%B → 90%A / 10%B (15 CV), 90%A / 10%B 

(6 CV); flow rate, 36 mL/min; monitored at 254 and 280 nm]. The final product amine 28 

(0.186 g, 0.402 mmol, 81%) was isolated as a yellow solid, Rf = 0.35, 

(EtOAc/Dichloromethane/hexane: 40/40/20). 

1H NMR (600 MHz, CDCl3) δ 8.46 (s, 1H), 7.90 (d, J = 9.3 Hz, 1H), 6.97 (s, 2H), 

6.90 (dd, J = 4.7, 2.4 Hz, 2H), 6.69 (dd, J = 8.2, 2.1 Hz, 1H), 6.63 (d, J = 2.1 Hz, 1H), 

6.59 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H), 3.70 (s, 6H). 

13C NMR (151 MHz, CDCl3) δ 192.0, 157.2, 152.4, 147.7, 143.1, 140.9, 136.2, 

136.2, 134.9, 124.8, 123.1, 122.4, 119.2, 115.2, 112.6, 111.4, 109.9, 107.1, 94.5, 60.8, 

56.0, 55.7, 55.5, 53.4.  

HPLC: Method C, 3.8 min. 

HRMS (ESI+): m/z calculated for C26H27N2O6 [M+H]+ 463.1864, found 

463.1868. 
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3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde 37 

 3-Hydroxy-4-methoxybenzaldehyde 36 (2.00 g, 13.2 mmol) was dissolved in 

CH2Cl2 (40 mL) and cooled to 0 oC. Triethylamine (Et3N) (2.0 mL, 15 mmol) and N,N-

dimethylaminopyridine (DMAP) (0.161 g, 1.31 mmol) were added, and the solution was 

stirred for 10 minutes. tert-Butyldimethylsilyl chloride (TBSCl) (2.18 g, 14.5 mmol) was 

added gradually. The reaction mixture was allowed to warm to room temperature over 12 

hours. It was then quenched with water, extracted with CH2Cl2 three times. The combined 

organic layers were dried over sodium sulfate, and concentrated under reduced pressure 

to afford aldehyde 37 as a dark tan oil (3.42 g, 12.8 mmol, 97%).  

1H NMR (CDCl3, 500 MHz): δ 9.80 (s, 1H, CHO), 7.45 (dd, J = 8.5, 2.0 Hz, 1H, 

ArH), 7.35 (d, J = 2.0 Hz, 1H, ArH), 6.93 (d, J = 8.5 Hz, 1H, ArH), 3.87 (s, 3H, OCH3), 

0.99 (s, 9H, C(CH3)3), 0.16 (s, 6H, Si(CH3)2).  

13C NMR (CDCl3, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 

55.1, 25.3, 18.0, -5.0. 

 

3-(3,4,5-Trimethoxyphenyl)propanol 39 

To a stirred suspension of lithium aluminum hydride (16.7 mL, 33.4 mmol) in dry 

THF (25 mL) at 0 oC, compound 38 (5.02 g, 20.8 mmol) in THF (25 mL) was added 

dropwise. The reaction mixture was stirred from 0 oC to room temperature overnight. It 

was then cooled to 0 oC, quenched by dropwise addition of 20% H2O in THF (50 mL), 

filtered and washed with Et2O. A yellow oil 39 (4.37 g, 19.3 mmol, 93%) was isolated 

under reduced pressure.   

1H-NMR (CDCl3, 500 MHz): δ 6.41 (s, 2H, ArH), 3.83 (s, 6H, OCH3), 3.81 (s, 

3H, OCH3), 3.68 (t, 2H, CH2), 2.64 (t, 2H, CH2), 1.87 (pent, 2H, CH2), 1.74 (s, 1H, OH).  
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13C-NMR (CDCl3, 125 MHz): δ 153.1, 137.6, 136.1, 105.3, 62.2, 60.8, 56.0, 34.3, 

32.5.  

HRMS (ESI+): m/z calculated for C12H18O4 [M + Na]+ 249.1097, found 

249.1094.  

 

5-(3-Bromopropyl)-1,2,3-trimethoxybenzene 40 

To a solution of compound 39 (4.05 g, 17.9 mmol) in CH2Cl2 (25 mL), PBr3 (9.0 

mL, 9.0 mmol) in CH2Cl2 (25 mL) was added dropwise. The solution was stirred at room 

temperature for 1 hour. It was then washed several times with water until pH of the rinse 

was neutral. The organic phase was dried and concentrated under reduced pressure.  

Purification by flash chromatography using a prepacked 100 g silica column [solvent A: 

n-Hexane; solvent B: ethyl acetate (EtOAc); gradient: 7% A / 93% B (1.0 CV), 7% A / 

93% B → 60% A / 40% B (10.0 CV), 60% A / 40% B (2.0 CV); flow rate: 50 mL/min; 

monitored at 254 nm and 280 nm] afforded bromide derivative 40 (1.52 g, 4.86 mmol, 

28%) as a pale-yellow oil.   

1H-NMR (CDCl3, 500 MHz): δ 6.41 (s, 2H, ArH), 3.85 (s, 6H, OCH3), 3.82 (s, 

3H, OCH3), 3.41 (t, 2H, CH2), 2.72 (t, 2H, CH2), 2.15 (pent, 2H, CH2).  

13C-NMR (CDCl3, 125 MHz): δ 153.2, 136.3, 136.2, 105.4, 60.8, 56.1, 34.3, 34.1, 

33.1.  

HRMS (ESI+): m/z calculated for C12H17O3Br [M + Na]+ 311.0253 and 313.0233, 

found 311.0258 and 313.0234. 
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Triphenyl(3-(3,4,5-trimethoxyphenyl)propyl)phosphate Bromide 41 

To a round-bottom flask with a condenser, triphenylphosphine (1.27 g, 4.84 

mmol), compound 40 (1.52 g, 4.84 mmol), and toluene (15 mL) were added. The reaction 

was refluxed for 5 hours. The solution was then poured out and the precipitate washed 

with diethyl ether. Bromide salt 41 (1.77 g, 5.57 mmol, 57%) was advanced to the next 

step without further purification. 

 

tert-Butyl(2-methoxy-5-(4-(3,4,5-trimethoxyphenyl)but-1-en-1-yl)phenoxy)dimethylsilane 

42 

 

Bromide salt 41 (2.67 g, 4.84 mmol) was suspended in THF (15 mL) and purged 

with N2. While being stirred at room temperature, 2.5 M n-BuLi (2.0 mL, 4.84 mmol) 

was added dropwise. The reaction was stirred for 15 minutes and the solution changed 

color from orange to red. Aldehyde 37 (1.29 g, 4.84 mmol) in THF (15 mL) was then 

added dropwise and the reaction mixture was stirred for 24 hours. The color of the 

solution changed to light orange. The reaction was poured onto ice and diluted with ethyl 

acetate. It was extracted three times with ethyl acetate, dried over sodium sulfate, and 

concentrated. Purification by flash chromatography using a prepacked 100 g silica 

column [solvent A: n-Hexane; solvent B: ethyl acetate (EtOAc); gradient: 2% A / 98% B 

(1.0 CV), 2% A / 98% B → 20% A / 80% B (10.0 CV), 20% A / 80% B (2.0 CV); flow 

rate: 50 mL/min; monitored at 254 nm and 280 nm] afforded alkene 42 (0.380 g, 0.832 

mmol, 17%) as a white solid. Note that this is a mixture of E and Z isomers.   

1H-NMR (CDCl3, 500 MHz): δ 6.87 (m, 3H, ArH), 6.44 (s, 2H, ArH), 6.31 (d, 

1H, CH), 6.08 (m, 1H, CH), 3.83 (s, 3H, OCH3), 3.82 (s, 6H, OCH3), 3.79 (s, 3H, OCH3), 

2.68 (m, 4H, CH2), 0.15 (m, 15H, CH3).  
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13C-NMR (CDCl3, 125 MHz): δ 153.0, 149.8, 144.5, 137.4, 130.6, 130.1, 129.0, 

122.3, 121.5, 119.7, 118.2, 112.0, 111.7, 105.4, 60.8, 56.0, 55.5, 36.4, 34.9, 30.2, 25.7, 

18.4, -4.6.  

HRMS (ESI+): m/z calculated for C26H38O5Si [M + Na]+ 481.2381, found 

481.2383. 

 

2-Methoxy-5-(4-(3,4,5-trimethoxyphenyl)but-1-en-1-yl)phenol 43 

Compound 42 (0.38 g, 0.83 mmol) was dissolved in THF (10 mL). TBAF (1.3 

mL, 1.0 M, 1.3 mmol) was added and the solution was stirred for 30 minutes. The 

reaction was quenched with water, extracted with ethyl acetate three times, and dried 

over sodium sulfate. Compound 43 (0.12 g, 0.35 mmol, 42%) was advanced to the next 

step without further purification.  

HRMS (ESI+): m/z calculated for C20H24O5 [M + Na]+ 367.1516, found 

367.1518. 

 

2-methoxy-5-(4-(3,4,5-trimethoxyphenyl)butyl)phenol 35 

10% Pd/C (0.090 g, 0.085 mmol) was added to compound 43 (0.120 g, 0.351 

mmol) under N2, and methanol (10 mL) was added. The reaction was stirred under H2 (in 

balloons) for 12 hours. The product was filtered, washed with ethyl acetate, and 

evaporated under reduced pressure. Purification by flash chromatography using a 

prepacked 10 g silica column [solvent A: n-Hexane; solvent B: ethyl acetate (EtOAc); 

gradient: 8% A / 92% B (1.0 CV), 8% A / 92% B → 60% A / 40% B (10.0 CV), 60% A / 

40% B (2.0 CV); flow rate: 12 mL/min; monitored at 254 nm and 280 nm] afforded 

derivative 35 (11.4 mg, 0.033 mmol, 9.5%) as a white solid.    
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1H-NMR (CDCl3, 500 MHz): δ 6.76 (d, 2H, ArH), 6.64 (dd, 1H, ArH), 6.38 (s, 

2H, ArH), 5.56 (s, 1H, OH), 3.86 (s, 3H, OCH3), 3.84 (s, 6H, OCH3), 3.82 (s, 3H, OCH3), 

2.56 (dd, 4H, CH2), 1.64 (m, 4H, CH2).  

13C-NMR (CDCl3, 125 MHz): δ 153.0, 145.4, 144.6, 138.4, 136.0, 135.9, 119.6, 

114.6, 110.5, 105.2, 60.8, 56.0, 56.0, 36.2, 35.1, 31.1, 31.0.  

HPLC: Method C, 7.4 min. 

HRMS (ESI+): m/z calculated for C20H26O5 [M + Na]+ 369.1672, found 

369.1674. 

 

OXi8006-PNP 44 

To a solution of OXi8006 (200 mg, 0.431 mmol) and bis-PNP (394 mg, 1.30 

mmol), was added triethylamine (0.18 mL, 1.3 mmol) dropwise. The reaction mixture 

was stirred at room temperature for 24 h and then concentrated under reduced pressure. 

The residue was purified by flash column chromatography using 15-100% hexanes-

EtOAc as solvent. Compound 44 (165 mg, 0.261 mmol, 61%) was obtained as a yellow 

solid.   

1H NMR (600 MHz, Methanol-d4) δ 8.37 (d, J = 9.1 Hz, 2H), 7.89 (d, J = 8.8 Hz, 

1H), 7.55 (d, J = 9.1 Hz, 2H), 7.34 (dd, J = 8.5, 2.2 Hz, 1H), 7.26 (d, J = 2.2 Hz, 1H), 

7.06 (d, J = 8.5 Hz, 1H), 7.02 (d, J = 2.3 Hz, 1H), 6.91 (s, 2H), 6.89 (dd, J = 8.8, 2.3 Hz, 

1H), 4.87 (s, 6H), 3.88 (s, 6H), 3.71 (s, 3H), 3.70 (s, 6H). 

 

2,5-dioxopyrrolidin-1-yl 6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoate 47 

To a solution of 6-maleimidocaproic acid 45 (1.00 g, 4.70 mmol) and 

disuccinimide carbonate 46 (1.27 g, 5.02 mmol) in DMF (10 mL), was added 
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triethylamine (0.66 mL, 4.70 mmol) dropwise. The reaction mixture was stirred at room 

temperature for 2.5 h and concentrated to remove DMF. The residue was re-dissolved in 

EtOAc (20 mL) and washed with saturated NaHCO3 solution (20 mL). The aqueous layer 

was separated and extracted with EtOAc (20 mL X 2). The combined organic layers were 

dried over sodium sulfate and concentrated to provide compound 47 (1.28 g, 4.20 mmol, 

88%) as an oil. 

 1H NMR (600 MHz, Chloroform-d) δ 6.70 (s, 2H), 3.54 (t, J = 7.2 Hz, 2H), 2.91 

– 2.77 (m, 4H), 2.61 (t, J = 7.3 Hz, 2H), 1.79 (p, J = 7.5 Hz, 2H), 1.65 (p, J = 7.3 Hz, 

2H), 1.43 (p, J = 7.3 Hz, 2H). 

 

Fmoc-L-Citrulline 49 

A solution of l-citrulline 48 (1.25 g, 7.11 mmol) in water (0.2 M) was treated with 

sodium bicarbonate (1.20 g, 14.2 mmol). After stirring for 1 h at room temperature, THF 

(0.2 M) was added followed by Fmoc-Cl (1.68 g, 6.52 mmol). The solution was stirred at 

room temperature for 24.0 h, at which point THF was removed under vacuum. The 

aqueous solution was extracted with EtOAc (20 mL X 3) and the organic layer was 

discarded. The aqueous layer was subsequently acidified with HCl (2 M) at which point a 

white precipitate was observed, which was partly soluble in water. iPrOH [10% by 

volume]-EtOAc was added followed by stirring to achieve a clear phase separation. The 

organic layer was collected, and the aqueous layer was extracted two more times with the 

same solvent system. The combined organic layer was dried over sodium sulfate. The 

solvent was removed under reduced pressure to afford the product as a clear viscous 

liquid, which was subjected to sonication in diethyl ether. After trituration the diethyl 

ether was decanted off. This step was repeated twice to obtain a white solid, which was 
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dried under reduced pressure to obtain an analytically pure sample of compound 49 (2.55 

g, 6.43 mmol, 94%).  

1H NMR (600 MHz, DMSO-d6) δ 7.90-7.89 (d, J = 7.5 Hz, 2H), 7.74-7.72 (d, J = 

7.4 Hz, 2H), 7.68-7.67 (d, J = 8.0 Hz, 1H), 7.43-7.41 (d, J = 7.4 Hz, 1H), 7.42-7.41 (d, J 

= 7.5 Hz, 1H), 7.34-7.33 (d, J = 7.4 Hz, 1H), 7.33-7.32 (d, J = 7.4 Hz, 1H), 6.01 (s, 1H), 

5.44 (s, 3H), 4.28-4.21 (m, 3H), 3.95-3.91 (m, 1H), 2.97-2.95 (t, J = 6.6 Hz, 2H), 1.74-

1.68 (m, 1H), 1.60-1.52 (m, 1H), 1.48-1.37 (m, 2H);  

HRMS (ESI+) calc. for C21H23N3NaO5 [M+Na]+: 420.1535. Found: 420.1529. 

 

Fmoc-L-Citrulline-PABOH 50 

A solution of compound 49 (2.55 g, 6.43 mmol) and 4-aminobenzyl alcohol (2.37 

g, 19.0 mmol) in DMF (0.1 M) was treated with DIPEA (1.15 mL, 6.52 mmol) followed 

by stirring for 15 min at room temperature. HATU (2.68 g, 6.98 mmol) was added to the 

reaction mixture and stirred at room temperature for 48 hours in the dark. DMF was 

removed under reduced pressure and the resulting residue was purified by flash column 

chromatography using 2-10% MeOH-CH2Cl2 as solvent. Compound 50 was isolated as a 

white solid (2.09 g, 4.20 mmol, 65%).   

1H NMR (600 MHz, DMSO-d6) δ 9.98 (s, 1H), 7.90-7.88 (d, J = 7.5 Hz, 2H), 

7.76-7.73 (t, J = 7.1 Hz, 2H), 7.67-7.66 (d, J = 8.0 Hz, 1H), 7.57-7.55 (d, J = 8.4 Hz, 2H), 

7.43-7.40 (m, 2H), 7.35-7.31 (m, 2H), 7.25-7.23 (d, J = 8.4 Hz, 2H),6.01-5.99 (t, J = 5.4 

Hz, 1H), 5.43 (s, 2H), 5.10-5.09 (t, J = 5.6 Hz, 1H), 4.44-4.43 (d, J = 5.3 Hz, 2H), 4.30-

4.15 (m, 4H), 3.07-3.01 (m, 1H), 2.98-2.93 (m, 1H), 1.71-1.58 (m, 2H), 1.51-1.35 (m, 

2H);  

HRMS (ESI+) calc. for C28H30N4NaO5 [M+Na]+: 525.2114. Found: 525.2111. 
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Fmoc-Val-Cit-PABOH 51 

A solution of compound 50 (2.09 g, 4.22 mmol) in DMF (0.2 M) was treated with 

triethylamine (11.6 mL, 83.0 mmol) followed by stirring at room temperature for 24 h. 

DMF and excess triethylamine were removed under reduced pressure. The resulting 

residue was dissolved in DMF (0.1 M) and to the solution Fmoc-Val- OSu (1.99 g, 4.98 

mmol) was added. The reaction mixture was stirred at room temperature for 20 h. DMF 

was removed under reduced pressure and the resulting residue was purified by flash 

column chromatography using 3-12% MeOH-CH2Cl2 as solvent. Compound 51 (1.39 g, 

2.31 mmol, 55%) was obtained as a white solid.  

1H NMR (600 MHz, DMSO-d6) δ 9.96 (s, 1H), 8.10-8.09 (d, J = 7.59 Hz, 1H), 

7.90-7.88 (d, J = 7.54 Hz, 2H), 7.76-7.75 (d, J = 7.51 Hz, 1H), 7.74-7.72 (d, J = 7.50 Hz, 

1H), 7.55-7.53 (d, J = 8.40 Hz, 2H), 7.44-7.40 (m 3H), 7.34-7.32 (d, J = 6.80 Hz, 1H), 

7.32-7.31 (d, J = 7.40 Hz, 1H), 7.24-7.22 (d, J = 8.42 Hz, 2H), 5.97-5.95 (t, J = 5.49 Hz, 

1H), 5.40 (s, 2H), 5.10-5.08 (t, J = 5.75 Hz, 1H), 4.43-4.42 (d, J = 5.62 Hz, 2H), 4.42-

4.40 (m, 1H), 4.33-4.29 (m, 1H), 4.25-4.21 (m, 2H), 3.94-3.92 (dd, J = 8.91, 7.05 Hz, 

1H), 3.05-2.99 (m, 1H), 2.96-2.91 (m, 1H), 2.02-1.96 (m, 1H), 1.72-1.66 (m, 1H), 1.62-

1.58 (m, 1H), 1.48-1.41 (m, 1H), 1.40-1.33 (m, 1H), 0.89-0.88 (d, J = 6.76 Hz, 3H), 0.86-

0.85 (d, J = 6.76 Hz, 3H);  

HRMS (ESI+) calc. for C33H39N5NaO6 [M+Na]+: 624.2798. Found: 624.2791. 

 

Fmoc-Val-Cit-PABOH-PNP 52 

To a solution of compound 51 (200 mg, 0.332 mmol) in DMF (6 mL), was added 

bis-PNP (303 mg, 1.00 mmol). The reaction mixture was stirred at room temperature for 

72 h, followed by removal of DMF under reduced pressure. The residue was purified by 
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flash column chromatography using 2-15% MeOH-CH2Cl2 as solvent. Compound 52 

(230 mg, 0.302 mmol, 90%) was obtained as a white solid. 

1H NMR (600 MHz, DMSO-d6) δ 10.14 (s, 1H), 8.32 (d, J = 9.1 Hz, 2H), 8.14 (d, 

J = 7.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.75 (dd, J = 12.0, 7.5 Hz, 2H), 7.65 (d, J = 8.4 

Hz, 2H), 7.60 – 7.56 (d, J = 9.1 Hz, 2H), 7.45 – 7.39 (m, 5H), 7.33 (td, J = 7.4, 1.1 Hz, 

2H), 5.98 (s, 1H), 5.41 (s, 2H), 5.25 (s, 2H), 4.47 – 4.39 (m, 1H), 4.37 – 4.28 (m, 1H), 

4.27 – 4.20 (m, 2H), 3.94 (dd, J = 9.0, 7.0 Hz, 1H), 3.09 – 2.99 (m, 1H), 2.99 – 3.92 (m, 

1H), 2.04 – 1.96 (m, 1H), 1.75 – 1.65 (m, 1H), 1.65 – 1.57 (m, 1H), 1.50 – 1.43 (m, 1H), 

1.41 – 1.34 (m, 1H), 1.32 – 1.21 (m, 1H), 0.88 (dd, J = 17.2, 6.8 Hz, 6H). 

HRMS (ESI+) calc. for C40H42N6NaO10 [M+Na]+: 789.2855. Found: 789.2847. 

 

Val-Cit-PABOH-DMED-OXi8006 53 

To a solution of Fmoc-Val-Cit-PABOH-PNP 52 (152 mg, 0.200 mmol) in DMF 

(3 mL), DMED (0.11 mL, 1.0 mmol) was added dropwise.  The reaction mixture was 

stirred at room temperature for 1h at which point analysis of the reaction progress (by 

mass spectrometry) indicated completion, and the solvent was removed under reduced 

pressure. The residue was then dissolved in DMF and concentrated under reduced 

pressure to remove DMED, followed by dissolution in DMF (5 mL). DIPEA (0.18 mL, 

1.0 mmol) was added to the mixture, followed by the addition of OXi8006-PNP (190 mg, 

0.304 mmol). The reaction was stirred for 2 h, checked by mass spec and then 

concentrated under reduced pressure. The residue was purified by flash chromatography 

using a prepacked 25 g silica column [solvent (A) MeOH; solvent (B) CH2Cl2; gradient: 

2%A/98%B (1 CV), 2%A/ 98%B to 20%A/80%B (10 CV), 20%A/80%B (2 CV); flow 

rate: 25 mL/min; monitored at 254 and 280 nm]. Fractions contained the target product 
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53 was combined and concentrated to afford a mixture (122 mg) which was advanced to 

the next step without further purification.  

HRMS (ESI+) calc. for C50H63N8O13 [M+H]+: 983.4509. Found: 983.4506.     

 

Maleimide-Val-Cit-PABOH-DMED-OXi8006 54 

To the solution of the previous mixture containing drug-linker conjugate 53 and 

activated succinimide ester 47 (93.1 mg, 0.301 mmol) in DMF (5 mL), was added 

diisopropylethylamine (0.11 mL, 0.61 mmol). The reaction was stirred for 4 h, checked 

by mass spec and then concentrated under reduced pressure. The residue was purified by 

flash chromatography using a prepacked 25 g silica column [solvent (A) MeOH; solvent 

(B) CH2Cl2; gradient: 2%A/98%B (1 CV), 2%A/ 98%B to 15%A/85%B (10 CV), 

15%A/85%B (2 CV); flow rate: 25 mL/min; monitored at 254 and 280 nm]. Pure 

fractions were combined and concentrated to afford compound 54 (104 mg, 0.0880 

mmol, 30% over 2 steps) as a yellow solid.  

1H NMR (600 MHz, DMSO-d6) δ 12.02 – 11.94 (m, 1H), 9.96 (s, 1H), 8.06 (d, J 

= 7.3 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.78 – 7.69 (m, 1H), 7.60 – 7.50 (m, 2H), 7.30 – 

7.20 (m, 3H), 6.99 (s, 2H), 6.96 (d, J = 8.5 Hz, 1H), 6.94 (s, 1H), 6.82 (d, J = 6.8 Hz, 

2H), 6.79 (s, 1H), 5.96 (t, J = 5.2 Hz, 1H), 5.40 (s, 2H), 5.00 – 4.92 (m, 2H), 4.37 (q, J = 

7.0 Hz, 1H), 4.19 (t, J = 7.7 Hz, 1H), 3.81 (s, 3H), 3.75 – 3.65 (m ,3H), 3.60 (s, 9H), 3.54 

– 3.45 (m, 2H), 4.43 – 3.33 (m, 4H), 3.05 – 2.97 (m, 2H), 2.97 – 2.83 (m, 5H), 2.82 – 

2.76 (m ,1H), 2.21 – 2.14 (m, 1H), 2.14 – 2.07 (m, 1H), 2.00 – 1.91 (m, 1H), 1.73 – 1.65 

(m, 1H), 1.63 – 1.54 (m, 1H), 1.54 – 1.39 (m, 5H), 1.39 – 1.22 (m, 3H), 1.22 – 1.14 (m, 

3H), 1.21 – 1.14 (m, 2H), 0.89 – 0.77 (m, 7H). 

HPLC: Method B, 10.1 min. 
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HRMS (ESI+) calc. for C60H73N9NaO16 [M+Na]+: 1198.5067. Found: 1198.6086.  
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CHAPTER THREE 

 

Synthesis of Bioreductively Activatable Prodrug Conjugates based on OXi8006 and 3-

Bromopyruvic Acid 

 

 

Some portion of this chapter is published as: Winn, B. A.; Shi, Z.; Carlson, G. J.; Wang, 

Y.; Nguyen, B. L.; Kelly, E. M.; Ross IV, R. D.; Hamel, E.; Chaplin, D. J.; Trawick, M. 

L.; Pinney, K. G. Bioreductively Activatable Prodrug Conjugates of Phenstatin Designed 

to Target Tumor Hypoxia. Bioorg. Med. Chem. Let., 2017, 27, 636-641. 

 

 

Introduction 

 

 In this chapter, synthetic efforts towards several nitro-aromatic triggers are 

discussed including nitrothiophene, nitroimidazole, nitrofuran and nitrobenzyl triggers. 

The synthesis of these triggers in the Pinney Research Group (Baylor University) 

supported the preparation towards bioreductively activatable product conjugates (BAPCs) 

of phenstatin, a potent small-molecule inhibitor of tubulin polymerization. In addition, 

the synthesis towards a nor-methylnitrothiophene-OXi8006 BAPC and a gem-

dimethylnitrobenzyl 3-bromopyruvate BAPC are also described.    

 

Synthesis of Bioreductive Triggers 

 

 The nor-methyl nitrothiophene trigger 2 was prepared in good yield through 

sodium borohydride reduction of aldehyde 1.81 However, synthetic routes towards the 

gem-dimethyl nitrothiophene trigger 5 by Davis and his coworkers generated the trigger  

in very low yield (< 8%).81,82 To overcome this problem, direct methylation of ketone 4 

was investigated. Methylation conditions described by Reetz et al. and adopted by us in 

the synthesis of nitrobenzyl triggers (described later in this chapter) provided a new 
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synthetic route towards both mono- and gem-dimethyl nitrothiophene triggers in good 

yields.161 Aldehyde 1 was reacted with methyllithium and titanium tetrachloride to 

generate the secondary alcohol 3 in 90% yield, which was oxidized by Dess-Martin 

periodinane to provide ketone 4. Further methylation of compound 4 afforded the 

targeted gem-dimethyl nitrothiophene trigger 5 in 45% yield (Scheme 3.1). Discussion 

with Dr. Peter Davis and further investigation led to the discovery that 

trimethylaluminium might be a more efficient methylating agent in this type of reaction, 

and indeed the use of trimethylaluminium improved the yields of aldehyde 1 and ketone 3 

to 92% and 73%, respectively (Scheme 3.2). 

 

 
 

Scheme 3.1. Synthesis of Nitrothiophene Triggers81,161 

  

 
 

Scheme 3.2. Alternative Route towards Nitrothiophene Triggers 3 and 582 

 

 The synthetic route towards the nitrofuran bioreductive triggers was based on the 

modified route to the nitrothiophene triggers (Scheme 3.3).99,161 The nor-methyl 

nitrofuran trigger 7 was prepared from the sodium borohydride reduction of aldehyde 6. 
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The mono-methyl nitrofuran trigger 8 was prepared from methylation of 6 by titanium 

tetrachloride and methyllithium. Ketone 9 was synthesized from Dess-Martin oxidation 

of secondary alcohol 8 and followed by methylation to generate the dimethyl nitrofuran 

trigger 10.  

 

 
 

Scheme 3.3. Synthesis of the Nitrofuran Triggers82,99,102 

 

 
 

Scheme 3.4. Synthesis of the Nitroimidazole Triggers99,100,162 

 

 To prepare the imidazole triggers, the first few attempts were carried out 

following a published route (patent) by Threshold Pharmaceuticals Inc.100 However, these 

attempts resulted in poor yields. A similar route towards these imidazole triggers was 

published later by the Conway Group (Scheme 3.4)102,162 and was adopted in this study. 
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Sarcosine ethyl ester hydrochloride salt 11 was first formylated, then deformylated, and 

cyclized in order to generate ester 14 with a yield of 45% over the three steps.100,162 

Amine 14 was treated with sodium nitrite to generate nitro ester 15 through a diazonium 

intermediate, which was hydrolyzed and then reacted with isobutylchloroformate to form 

a carbonate, which was subsequently reduced to the nor-methyl nitroimidazole trigger 

16.100,162 Alcohol 16 was subsequently oxidized by Dess-Martin periodinane to provide 

aldehyde 17,100,162 was methylated by trimethylaluminum to yield the mono-methyl 

nitroimidazole trigger 18.82  

 

 
 

Scheme 3.5. Attempted Methylation of Nitroimidazole Ketone82 
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 Mono-methyl trigger 18 was oxidized to yield the ketone 19. Several methylation 

strategies were investigated to generate the gem-dimethyl nitroimidazole trigger 20, 

shown in Scheme 3.5. However, none of the strategies were successful and only starting 

material was recovered. To be best of our knowledge, only one synthetic route towards 

trigger 20 has been reported.163 However, this procedure was not attempted in our 

laboratory due to the extremely low overall yield (< 1%) reported in the literature and the 

required large scale use of potassium cyanide and picric acid.163  

Preparation of mono-methyl nitrobenzyl trigger 21 and gem-dimethyl trigger 23 is 

shown in Scheme 3.6. Methyllithium and titanium tetrachloride were utilized and gave 

good yields, while using methyllithium directly significantly lowered the yields.   

 

 

Scheme 3.6. Synthesis of the Nitrobenzyl Triggers161 

 

Preparation of Nor-methylnitrothiophene-OXi8006 Bioreductively Activatable Prodrug 

Conjugates 

 

OXi8006 is a leading indole-based, small-molecule inhibitor of tubulin 

polymerization (IC50 = 1.1 µM) developed in the Pinney Research Laboratory (Baylor 

University) that demonstrates dual-mechanism of action functioning both as a cytotoxic 

agent and a VDA.55,160 A series of nitrothiophene-OXi8006 BAPCs were prepared by Dr. 

Matthew T. MacDonough a former graduate student in the Pinney Research Group. 

However, a compound in this series, nor-methylnitrothiophene-OXi8006 BAPC 26, 
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required re-synthesis to provide a sample of sufficient quantity and purity to support to 

biological evaluation.  

The parent compound OXi8006 was prepared through the procedure described in 

Chapter 2. OXi8006 was then subjected to a Mitsunobu reaction facilitated by 

diisopropyl azodicarboxylate (DIAD) and triphenylphosphine at room temperature. The 

reaction gave the desired BAPC 26 in 22% yield (Scheme 3.7). 

 

 

 

Scheme 3.7 Synthesis of BAPC 26 

 

 

Preparation of Bromopyruvate BAPC 

 

The Warburg effect, which is defined as enhanced metabolism of glucose to lactic 

acid even under anaerobic conditions, has been a common observation in tumor regions 

for over 80 years.164 3-Bromopyruvic acid was demonstrated to be a glycolytic inhibitor 

which targets glyceraldehyde-3-phosphate dehydrogenase. Dr. Peter Davis proposed a 

series of BAPCs based on this antiglycolytic agent. Initial investigation regarding various 

synthetic approaches towards these bromopyruvate BAPCs was carried out by other 

members of the Pinney Research Group (Baylor University). Herein, attempts toward 

gem-dimethylnitrobenzyl-3-bromopyruvate 28 are described.  

Retrosynthetic analysis of BAPC 28 revealed two distinct pathways to synthesize 

the target molecule. One pathway utilized an esterification reaction between 3-
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bromopyruvic acid and gem-dimethylnitrobenzyl alcohol 24 as the last step. The other 

pathway concluded with bromination of the α-carbon of the carbonyl group to generate 

bromopyruvate 28. 

 

 
 

Scheme 3.8. Unsuccessful Attempts towards BAPC 28 Utilizing an Esterification 

Pathway 

 

The first attempt of the coupling between tertiary alcohol 24 and bromopyruvic 

acid 27 utilized acid-catalyzed esterification with either p-toluenesulfonic acid (TsOH) or 

sulfuric acid. However, neither of these approaches generated the desired product. The 

coupling reaction was also carried out under Mitsunobu reaction conditions with 1,1′-
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(azodicarbonyl)dipiperidine and diphenylphosphine as the catalyst. Unfortunately, this 

reaction was not successful and only the starting material alcohol was obtained. Another 

attempt involved the activation of tertiary alcohol 24 by trichloroacetonitrile, which did 

not generate the desired product.  

Conversion of bromopyruvic acid 27 to bromopyruvic chloride 29 was also 

attempted (Scheme 3.8). Chlorination was achieved by phosphorus pentachloride, thionyl 

chloride or 1,1-dichlorodimethyl ether. However, the reaction between chloride 29 and 

tertiary alcohol 24 did not generate the targeted BAPC. Pyruvic chloride 31, synthesized 

by the treatment of pyruvic acid 30 with 1,1-dichlorodimethyl ether, was reacted with 

tertiary alcohol 24 to afford ester 32 (Scheme 3.9). With compound 32 in hand, a simple 

bromination to form compound 28 was proposed.  

 

 
 

Scheme 3.9. Synthesis of Compound 32 

 

Pyruvate 32 was treated with bromine at room temperature, but unfortunately the 

desired product was not formed (Scheme 3.10). Inorganic bases, namely sodium 

carbonate or potassium carbonate, were employed as catalyst as well as sulfuric acid in 

separate attempts. However, none of these attempts were successful. N-

Bromosuccinimide (NBS) and copper bromide were also evaluated as another 

bromination source with no success. Furthermore, lithium diisopropylamide (LDA) and 
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trimethylsilyl chloride (TMSCl) were applied to generate silyl enol ether 33, followed by 

treatment with bromine. This route was also unsuccessful. 

 

 

Scheme 3.10. Unsuccessful Attempts Towards BAPC 28 Utilizing a Bromination 

Pathway 

 

 

 Pyruvate 32 was also treated with N, N-diisopropylethylamine and trimethylsilyl 

trifluoromethanesulfonate at 0 °C for 30 minutes to form silyl enol ether 33.165 Bromine 

was then added to the resulting intermediate 33 with potassium carbonate as the catalyst 
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at 0 °C. This route (Scheme 3.11) successfully produced bromopyruvate BAPC 28 with a 

yield of 52% in two steps. However, final compound 28 was not stable. It partially 

decomposed while carefully stored under a nitrogen or argon atmosphere at -20 °C 

overnight. 

 

 

Scheme 3.11. Successful Synthetic Route to Bromopyruvate BAPC 28 

 

Materials and Methods 

 

 

General Experimental Methods 

Dichloromethane, benzene, diethyl ether, methanol, ethyl acetate and 

tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the chemical 

suppliers. Reactions were performed under an inert atmosphere using nitrogen gas, unless 

specified. Thin-layer chromatography (TLC) plates (precoated glass plates with silica gel 

60 F254, 0.25 mm thickness) were used to monitor reactions. Purification of 

intermediates and products was carried out with a Biotage isolera flash purification 

system using silica gel (200-400 mesh, 60 Å). Intermediates and products synthesized 

were characterized on the basis of their 1H NMR (500 or 300 MHz) and 13C NMR (125 

or 75 MHz) spectroscopic data using a Bruker DPX 300 MHz instrument. Spectra were 

recorded in CDCl3 or CD3CN. All chemical shifts are expressed in ppm (δ), coupling 
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constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), 

doublet (d), triplet (t), quartet (q), septet (sept), double doublet, (dd), and multiplet (m).  

Purity of the final compounds was further analyzed at 25 oC using an Agilent 

1200 HPLC system with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 

HPLC column (4.6 mm - 150 mm, 5 μm), and a Zorbax reliance cartridge guard-column; 

method A: solvent A, acetonitrile, solvent B, H2O; gradient, 50%A / 50%B to 100%A / 

0%B over 0 to 40 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 μL; 

monitored at wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was 

carried out under positive ESI (electrospray ionization) using a Thermo scientific LTQ 

Orbitrap Discovery instrument. 

 

(5-Nitrothiophen-2-yl)methanol 281  

5-Nitrothiophene-2-carboxaldehyde 1 (1.00 g, 6.38 mmol) was dissolved in dry 

methanol (20 mL) in an ice bath (0 °C). NaBH4 (0.270 g, 7.14 mmol) was added, and the 

reaction mixture was stirred for 2 hours. Ice was added and the solution was acidified to 

pH 7 with 3 M HCl. The reaction mixture was extracted with EtOAc, dried with Na2SO4, 

and evaporated under reduced pressure. Flash chromatography of the crude product using 

a pre-packed 50 g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 

10% A/90% B (1 CV), 10% A/90% B → 65% A/35% B (10 CV), 65% A/35% B (2 CV); 

flow rate 50.0 mL/min; monitored at 254 and 280 nm] afforded (5-Nitrothiophen-2-

yl)methanol 2 (0.914 g, 5.74 mmol, 90% yield) as a brown oil. 

1H NMR (CDCl3, 500 MHz): δ 7.84 (1H, d, J = 4.1 Hz), 6.95 (1H, dt, J = 4.1, 1.0 

Hz), 4.90 (2H, d, J = 5.2 Hz), 2.15 (1H, t, J = 5.8 Hz).  

13C NMR (CDCl3, 126 MHz): δ 154.0, 150.6, 129.0, 123.5, 60.2. 
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1-(5-Nitrothiophen-2-yl)ethan-1-ol 399  

5-Nitro-2-thiophenecarboxaldehyde 1 (1.00 g, 6.36 mmol) was dissolved in 

CH2Cl2 (50 mL) at 0 °C. Trimethylaluminum (2 M, 5.30 mL, 10.6 mmol) was added 

dropwise, and the reaction mixture was stirred for 2 hours. The reaction was quenched 

with HCl (1 M, 40 mL) and the layers were partitioned. The residue was extracted with 

CH2Cl2 (3 x 30 mL), and the combined organic phase was washed with brine (40 mL), 

dried over Na2SO4, and evaporated under reduced pressure. The crude product was 

purified by flash column chromatography using a pre-packed 100 g silica column 

[solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B 

→ 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; monitored at 

254 and 280 nm] to afford 1-(5-Nitrothiophen-2-yl)ethan-1-ol 3 (1.01 g, 5.85 mmol, 

92%) as yellow-orange crystals. 

1H NMR (CDCl3, 600 MHz): δ 7.82 (1H, d, J = 4.2 Hz), 6.91 (1H, dd, J = 4.2, 

1.0 Hz), 5.14 (1H, qd, J = 6.4, 1.0 Hz), 2.14 (1H, s), 1.64 (3H, d, J = 6.5 Hz).  

13C NMR (CDCl3, 126 MHz): δ 160.0, 149.9, 129.1, 122.2, 66.3, 25.1. 

 

1-(5-Nitrothiophen-2-yl)ethan-1-one 499 

2-(1-Hydroxyethyl)-5-nitrothiophene 3 (1.04 g, 6.00 mmol) was dissolved in 70 

mL CH2Cl2 at room temperature. Dess-Martin periodinane (3.82 g, 9.00mmol) was added 

in portions to the solution, and the reaction mixture was stirred for 1 hour. Saturated 

solutions of sodium thiosulfate (50 mL) and NaHCO3 (50 mL) were used to quench the 

reaction mixture. The layers were partitioned, and the residue was extracted with EtOAc 

(4 x 30 mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by flash 
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chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 

80%A / 20%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 1-

(5-Nitrothiophen-2-yl)ethan-1-one 4 (0.873 g, 5.10 mmol, 90% yield) as yellow-orange 

crystals.  

1H NMR (CDCl3, 600 MHz): δ 7.89 (1H, d, J = 4.3 Hz), 7.58 (1H, d, J = 4.3 Hz), 

2.60 (3H, s).  

13C NMR (CDCl3, 151 MHz): δ 190.4, 156.5, 148.7, 130.1, 128.3, 26.6. 

 

2-(5-Nitrothiophen-2-yl)propan-2-ol 5 99 

2-Acetyl-5-nitrothiophene 4 (0.500 g, 2.92 mmol) was dissolved in CH2Cl2 (20 

mL) at 0 °C. Trimethylaluminum (2 M, 2.42 mL, 4.85 mmol) was added dropwise, and 

the reaction mixture was stirred for 2 hours. The reaction was quenched with HCl (1 M, 

30 mL), and the layers were partitioned. The residue was extracted with CH2Cl2 (3 x 20 

mL), and the combined organic extracts were washed with brine (20 mL), dried over 

Na2SO4, filtered and the solvent was evaporated under reduced pressure. The crude 

product was purified by flash column chromatography using a pre-packed 50 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 

90%B → 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 50 mL/min; 

monitored at 254 and 280 nm] to afford 2-(5-Nitrothiophen-2-yl)propan-2-ol 5 (0.365 g, 

2.13 mmol, 73%) as bright orange crystals. 

1H NMR (CDCl3, 600 MHz): δ 7.80 (1H, d, J = 4.2 Hz), 6.89 (1H, d, J = 4.2 Hz), 

1.69 (6H, s).  

13C NMR (CDCl3, 151 MHz): δ 163.5, 150.0, 128.8, 121.3, 71.9, 32.1. 
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(5-Nitrofuran-2-yl)methanol 7 81 

5-Nitrofuran-2-carbaldehyde 6 (4.00 g, 28.0 mmol) was dissolved in anhydrous 

methanol (80 mL) and cooled to 0 oC. NaBH4 (1.17 g, 31 mmol) was added to the 

reaction mixture, which was stirred for 2.5 h. The reaction was quenched with an HCl 

solution (1 M, 40 mL) and extracted with EtOAc (3 x 50 mL). The combined organic 

layer was dried over Na2SO4 and concentrated under reduced pressure to afford a crude 

yellow oil. Purification by flash chromatography using a prepacked 100 g silica column 

[solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 CV), 7%A / 93%B → 

60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 100 mL/min; monitored at 254 

and 280 nm] afforded (5-nitrofuran-2-yl)methanol 7 (3.23 g, 22.6 mmol, 80%) as a pale 

yellow oil.  

1H NMR (600 MHz, CDCl3) δ 7.31 (1H, d, J = 3.6 Hz), 6.58 (1H, d, J = 3.6 Hz), 

4.74 (2H, s), 2.09 (1H, s).  

13C NMR (151 MHz, CDCl3) δ 157.37, 151.92, 112.40, 110.61, 57.45. 

 

1-(5-Nitrofuran-2-yl)ethan-1-ol 8 161  

TiCl4 (0.78 mL, 7.1 mmol) in Et2O (35 mL) was treated with methyllithium (4.4 

mL, 1.6 M, 7.1 mmol) at -78 oC. The resulting solution was stirred for 1 h. A THF (10 

mL) solution of 5-nitrofuran-2-carbaldehyde 6 (0.500 g, 3.5 mmol) was added dropwise, 

and the reaction mixture was stirred for 24 h. Water (30 mL) was added and the resulting 

solution was extracted with EtOAc (3 x 30 mL), which was dried over Na2SO4 and 

concentrated to afford a crude brown oil. Purification by flash chromatography using a 

prepacked 25 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 

93%B (1 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow 
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rate: 75 mL/min; monitored at 254 and 280 nm] afforded 1-(5-nitrofuran-2-yl)ethan-1-ol 

8 (449 mg, 2.86 mmol, 81%) as a brown oil.  

1H NMR (600 MHz, CDCl3) δ 7.29 (1H, d, J = 4.1 Hz), 6.52 (1H, d, J = 4.6 Hz), 

4.96 (1H, q, J = 7.1 Hz), 2.57 (1H, s), 1.61 (3H, d, J = 6.8 Hz).  

13C NMR (151 MHz, CDCl3) δ 161.27, 151.59, 112.51, 108.57, 63.66, 21.38. 

 

1-(5-Nitrofuran-2-yl)ethan-1-one 9  

Dess-Martin periodinane (8.62 g, 20.4 mmol) was added to 1-(5-nitrofuran-2-

yl)ethan-1-ol 8 (3.20 g, 20.4 mmol) dissolved in CH2Cl2 (250 mL), and the reaction 

mixture was stirred for 1 h. The reaction was quenched with saturated solutions of 

sodium thiosulfate and NaHCO3, then extracted with CH2Cl2 (3 x 50 mL), which was 

washed with water and brine, dried with Na2SO4, and evaporated under reduced pressure. 

Flash chromatography of the crude product using a prepacked 100 g silica column 

[eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 7% A/93% B over 1.19 min (1 

CV), 7% A/93% B  50% A/50% B over 13.12 min (10 CV), 50% A/50% B over 2.38 

min (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 1-(5-

nitrofuran-2-yl)ethan-1-one 9 (2.98 g, 19.2 mmol, 94%) as yellow solid. 

1H NMR (600 MHz, CDCl3) δ 7.38 (1H, d, J = 3.8 Hz), 7.28 (1H, d, J = 3.7 Hz), 

2.61 (3H, s).  

13C NMR (151 MHz, CDCl3) δ 186.73, 151.91, 151.48, 116.79, 111.94, 26.27. 

 

2-(5-Nitrofuran-2-yl)propan-2-ol 10 

1-(5-Nitrofuran-2-yl)ethan-1-one 9 (3.00 g, 19.3 mmol) in CH2CI2 (120 mL) was 

treated dropwise at 0 °C with trimethylaluminium (16.0 mL, 2.0 M, 32 mmol), and the 
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resulting yellow solution was stirred for 90 min at 0 °C. Sat. aq. NH4Cl was added to the 

reaction mixture, which was extracted with CH2Cl2 (3 x 50 mL). The combined organic 

layers were dried over Na2SO4 and filtered, and the solvent was removed under reduced 

pressure to provide a yellow oil. Purification by flash chromatography using a prepacked 

100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient: 7%A / 93%B (1 

CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate: 

1000mL/min; monitored at 254 and 280 nm] afforded 2-(5-nitrofuran-2-yl)propan-2-ol 

10 (2.75 g, 16.1 mmol, 83%) as a yellow oil.  

1H NMR (600 MHz, CDCl3) δ 7.27 (1H, d, J = 3.7 Hz), 6.49 (1H, d, J = 3.7 Hz), 

2.36 (1H, s), 1.65 (7H, s).  

13C NMR (151 MHz, CDCl3) δ 164.05, 151.36, 112.55, 107.37, 69.30, 28.67. 

 

Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate 14 101  

To a suspension of sarcosine ethyl ester 11 (4.00 g, 0.026 mol) in THF (90 mL) 

and ethyl formate (90 mL) was added NaH (60 % dispersion in mineral oil, 10.0 g, 0.25 

mol) in several portions at room temperature. The reaction mixture was stirred for 3 

hours, during this time a yellow suspension formed. The reaction mixture was 

concentrated and triturated with hexane (2 x 150 mL). The hexane was decanted and the 

resulting light tan solid 12 was dried in vacuo. Ethanol (80 mL) and concentrated 

aqueous HCl (16 mL) were added to the solid, and the suspension was heated to reflux 

for 2 hours. The reaction mixture was filtered while hot and the filter was rinsed with 

boiling ethanol (2 x 50 mL). The combined filtrate was concentrated to yield a brown oil 

13. The oil was diluted with ethanol (140 mL) and water (60 mL), and the pH of the 

solution was adjusted to 3 by using NaOH solution (2 M). Cyanamide (2.18 g, 0.052 mol) 



78 

 

was added, and the resulting solution was heated to reflux for 1.5 hours. After being 

cooled to room temperature, the reaction mixture was concentrated to approximately 1/8 

of its original volume. Solid K2CO3 was added to adjust the pH of the concentrated 

reaction mixture to 8-9, resulting in the formation of a yellow precipitate. The solid was 

removed by filtration, washed with a K2CO3 solution (1 M, 1 x 20 mL) and water (2 x 20 

mL) and dried to afford a pale yellow solid 14 (1.97 g, 12.0 mmol, 45% yield).  

1H NMR (CDCl3, 600 MHz): δ 7.45 (1H, s), 4.27 (2H, q, J = 7.1 Hz), 4.25 (2H, 

s), 3.68 (3H, s), 1.34 (3H, t, J = 7.1 Hz).  

13C NMR (CDCl3, 151 MHz): δ 160.7, 151.9, 135.5, 119.1, 59.8, 30.6, 14.4. 

 

Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate 15 100,101  

Aminoimidazole 14 (0.700 g, 4.14 mmol) in acetic acid (7.3 mL) was added 

dropwise to an aqueous solution of sodium nitrite (3.6 mL, 11 M). The solution was 

stirred at room temperature for 4 hours until no further N2 was formed. The reaction 

mixture was extracted with CH2Cl2 (1 x 20 mL), washed with brine (1 x 20 mL) and a 

saturated aqueous solution of Na2SO3 (1 x 20 mL). The organic layer was then dried over 

Na2SO4, filtered and concentrated to afford a crude yellow solid. Purification by flash 

chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient: 7%A / 93%B (4 CV), 7%A / 93%B → 60%A / 40%B (10 CV), 60%A 

/ 40%B (2 CV); flow rate: 70 mL/min; monitored at 254 and 280 nm] afforded Ethyl 1-

methyl-2-nitro-1H-imidazole-5-carboxylate 15 (0.510 g, 2.60 mmol, 63% yield) as a 

yellow solid.  

1H NMR (CDCl3, 600 MHz): δ 7.74 (1H, s), 4.40 (2H, q, J = 7.1 Hz), 4.35 (3H, 

s), 1.41 (3H, t, J = 7.1 Hz). 
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13C NMR (CDCl3, 151 MHz): δ 159.1, 147.5, 134.7, 126.3, 61.8, 35.4, 14.2. 

 

(1-Methyl-2-nitro-1H-imidazol-5-yl)methanol 16 100  

A suspension of the nitroimidazole ethyl ester 15 (0.796 g, 4.00 mmol) in 0.75 M 

NaOH solution (16 mL) was stirred at room temperature overnight to give a clear light 

yellow solution. The pH of the reaction mixture was adjusted to 1 by adding concentrated 

HCl. The resulting solution was extracted with EtOAc (5 x 20 mL). The combined 

organic layer was dried over Na2SO4, filtered and concentrated to afford a light yellow 

solid. The solid was dissolved in THF (8 mL) with triethylamine (0.880 mL, 6.30 mmol). 

Isobutylchloroformate (0.820 mL, 6.30 mmol) was added dropwise at -40 oC, and the 

reaction mixture was stirred at room temperature for 1 hour. NaBH4 (0.794 g, 21.0 mmol) 

was added to the solution, followed by dropwise addition of water (7 mL) over 1 hour 

while maintaining the temperature around 0 oC. The reaction mixture was extracted with 

Et2O (3 x 20 mL), which was dried over Na2SO4, filtered and the solvent was removed 

under reduced pressure. Purification by flash chromatography using a pre-packed 25 g 

silica column [solvent A: methanol; solvent B: CH2Cl2; gradient: 1%A / 99%B (4 CV), 

1%A / 99%B → 15%A / 85%B (10 CV), 15%A / 85%B (2 CV); flow rate: 75 mL/min; 

monitored at 254 and 280 nm] afforded (1-Methyl-2-nitro-1H-imidazol-5-yl)methanol 16 

(0.449 g, 2.86 mmol, 71% yield) as a pale yellow solid.  

1H NMR (Methanol-D4, 600 MHz): δ 7.11 (1H, s), 4.68 (2H, s), 4.06 (3H, s).  

13C NMR (Methanol-D4, 151 MHz): δ 145.8, 137.9, 126.0, 53.2, 33.4. 
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1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde 17 99  

(1-Methyl-2-nitro-1H-imidazol-5-yl)methanol 16 (359 mg, 2.28 mmol) was 

dissolved in CH2Cl2 (10 mL). Dess–Martin periodinane (1.16 g, 2.74 mmol) was added 

and the reaction mixture was stirred for 1 hour at room temperature. Saturated solutions 

of NaHCO3 (20 mL) and sodium thiosulfate (20 mL) were added to the reaction mixture, 

which was extracted with EtOAc (3 x 25 mL). The combined organic layers were dried 

over Na2SO4, filtered and the solvent was removed under reduced pressure. Purification 

by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient: 12%A / 88%B (1 CV), 12%A / 88%B → 100%A / 0%B 

(10 CV), 100%A / 0%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] 

afforded 1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde 17 (346 mg, 2.23 mmol, 98% 

yield) as a yellow solid.  

1H NMR (CDCl3, 600 MHz): δ 9.94 (1H, s), 7.82 (1H, s), 4.36 (3H, s).  

13C NMR (CDCl3, 151 MHz,): δ 180.4, 148.4, 139.4, 132.4, 35.6. 

 

1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol 18 99  

1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde 17 (200 mg, 1.29 mmol) was 

dissolved in CH2Cl2 (10 mL) at 0 °C. Trimethylaluminum (2 M, 1.3 mL, 2.6 mmol) was 

added dropwise, and the reaction mixture was stirred for 2 hours. The reaction was 

quenched with HCl (1 M, 10 mL) and the layers were partitioned. The residue was 

extracted with CH2Cl2 (3 x 10 mL), and the combined organic phase was washed with 

brine (20 mL), dried over Na2SO4, and evaporated under reduced pressure. The crude 

product was purified by flash column chromatography using a pre-packed 25 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient: 10%A / 90%B (1 CV), 10%A / 
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90%B → 70%A / 30%B (13 CV), 70%A / 30%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] to afford 1-(5-Nitrothiophen-2-yl)ethan-1-ol 18 (125 mg, 

0.742 mmol, 57%) as a yellow solid. 

1H NMR (Acetone-D6, 600 MHz): δ 7.07 (1H, s), 5.01 (1H, p, J = 6.2 Hz), 4.64 

(1H, d, J = 6.0 Hz), 4.09 (3H, s), 1.63 (3H, d, J = 6.6 Hz). 

13C NMR (Acetone-D6, 151 MHz): δ 146.4, 141.6, 124.7, 60.4, 33.9, 21.1. 

 

1-(4-Nitrophenyl)ethan-1-ol 20 161  

TiCl4 (2.72 mL, 24.8 mmol) was slowly added (dropwise) to dry Et2O (100 mL) 

in an acetone / dry ice bath (-78 °C). Methyllithium (15.5 mL, 25 mmol, 1.6 M) was then 

added dropwise slowly to the reaction mixture which was stirred for 1.5 h. 4-

Nitrobenzaldehyde 19 (2.88g, 19.1 mmol) dissolved in Et2O (140 mL) was added 

dropwise to the reaction mixture, which was stirred for 18 h. The reaction was quenched 

with water and extracted with CH2Cl2 (3 x 50 mL), which was washed with water and 

brine and dried over Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 100 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

80% A/20% B over (10 CV), 80% A/20% B (2 CV); flow rate 100.0 mL/min; monitored 

at 254 and 280 nm] yielded 1-(4-nitrophenyl)ethan-1-ol 20 (2.49 g, 14.9 mmol, 78%) as a 

yellow-orange oil.  

1H NMR (600 MHz, CDCl3) δ 8.17 (2H, d, J = 8.7 Hz), 7.53 (2H, d, J = 8.6 Hz), 

5.01 (1H, q, J = 6.5 Hz), 1.51 (3H, d, J = 6.6 Hz).  

13C NMR (151 MHz, CDCl3) δ 153.22, 147.09, 126.13, 123.71, 69.43, 25.44. 
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2-(4-Nitrophenyl)propan-2-ol 22 161    

TiCl4 (3.02 mL, 27.6 mmol) was slowly added (dropwise) to dry Et2O (100 mL) 

in an acetone / dry ice bath (-78 °C). Methyllithium (17.2 mL, 28 mmol, 1.6 M) was then 

added dropwise slowly to the reaction mixture, which was stirred for 1.5 h. 4-

Nitroacetophenone 21 (3.50 g, 21.2 mmol) dissolved in Et2O (150 mL) was added 

dropwise to the reaction mixture, which was stirred for 18 h. The reaction was quenched 

with water, and the mixture was extracted with CH2Cl2 (3 x 50 mL), which was washed 

with water and brine, dried over Na2SO4, and evaporated under reduced pressure. Flash 

chromatography of the crude product using a prepacked 100 g silica column [eluents: 

solvent A, EtOAc; solvent B, hexanes; gradient, 10% A/90% B (1 CV), 10% A/90% B  

60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate 100.0 mL/min; monitored at 

254 and 280 nm] yielded 2-(4-nitrophenyl)propan-2-ol 22 (1.42 g, 7.84 mmol, 37%) as 

an orange oil.  

1H NMR (600 MHz, CDCl3) δ 8.16 (2H, d, J = 8.9 Hz), 7.65 (2H, d, J = 8.9 Hz), 

1.61 (7H, s).  

13C NMR (151 MHz, CDCl3) δ 156.52, 146.64, 125.51, 123.45, 72.49, 31.69. 

 

(6-methoxy-2-(4-methoxy-3-((5-nitrothiophen-2-yl)methoxy)phenyl)-1H-indol-3-yl)(3,4,5-

trimethoxyphenyl)methanone 26 

 

To a clean, dry round-bottom flask, nitrothiophenyl alcohol 2 (0.14 g, 0.90 mmol) 

was dissolved in CH2Cl2 (10 mL). Compound 25 (0.47 g, 1.0 mmol) and PPh3 (0.46 g, 

1.8 mmol) were added and the solution was stirred for 5 min. 

Diisopropylazodicarboxylate (DIAD) (0.24 mL, 1.2 mmol) was added dropwise and the 

reaction mixture was stirred for 12 h. The dichloromethane was removed under reduced 
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pressure and the crude mixture was subjected to flash column chromatography using a 

pre-packed 50 g silica gel column [solvent A, EtOAc, solvent B, hexanes; gradient 15%A 

/ 85%B (4 CV), 15%A / 85%B → 100%A / 0%B (8 CV), 100%A / 0%B (7.2 CV); flow 

rate, 40 mL/min; monitored at 254 and 280 nm]. BAPC 26 (0.080 g, 0.11 mmol, 13%) 

was isolated as a yellow solid. 

1H NMR (CDCl3, 500 MHz): δ 8.62 (br s, 1H, NH), 7.81 (d, J = 9.5 Hz, 1H, ArH 

), 7.78 (d, J = 4.0 Hz, 1H, ArH), 7.10 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H, ArH), 6.99 (s, 2H, 

ArH), 6.95 (d, J = 4.0 Hz, 1H, ArH), 6.89 (m, 2H, ArH), 6.85 (d, J = 2.0 Hz, 1H, ArH), 

6.81 (d, J = 8.0 Hz, 1H, ArH), 4.91 (s, 2H, CH2), 3.85 (s, 3H, OCH3), 3.83 (s, 3H, 

OCH3), 3.82 (s, 3H, OCH3), 3.67 (s, 6H, OCH3). 

13C NMR (CDCl3, 125 MHz): δ 192.0, 157.5, 152.8, 151.8, 150.6, 148.1, 147.0, 

141.8, 141.6, 136.5, 134.9, 128.5, 125.1, 124.9, 123.1, 122.9, 122.5, 117.3, 113.0, 111.94, 

111.87, 107.5, 94.7, 66.9, 61.1, 56.2, 56.1, 55.8. 

HPLC: 15.21 min. 

HRMS (ESI+): m/z calculated for C31H29N2O9S [M+H]+ 605.1588, found 

605.1587. 

 

2-(4-nitrophenyl)propan-2-yl 2-oxopropanoate 32 

To a round bottom flask 50-mL) with pyruvic acid 30 (1.2 mL, 17 mmol) was 

added (dropwise) 1,1-dichloromethyl ether (1.5 mL, 17 mmol). The reaction mixture was 

warmed up to 50 ºC for 1.5 h and then was added (dropwise) to a benzene solution (50 

mL) of 2-(4-nitrophenyl)propan-2-ol 22 (1.24 g, 6.82 mmol) and pyridine (2.5 mL, 34 

mmol) at 0 ºC. The mixture was stirred from 0 ºC to room temperature overnight. The 

reaction was quenched with water, and the mixture was extracted with ethyl acetate (3 x 
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50 mL), which was washed with water and brine, dried over Na2SO4, and evaporated 

under reduced pressure. Flash chromatography of the crude product using a prepacked 50 

g silica column [eluents: solvent A, EtOAc; solvent B, hexanes; gradient, 5% A/95% B (1 

CV), 5% A/95% B to 40% A/60% B (10 CV), 40% A/60% B (2 CV); flow rate 100.0 

mL/min; monitored at 254 and 280 nm] yielded 2-(4-nitrophenyl)propan-2-yl 2-

oxopropanoate 32 (1.01 g, 4.01 mmol, 59%) as a tan solid.  

1H NMR (600 MHz, Chloroform-d) δ 8.24 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 

Hz, 2H), 2.45 (s, 3H), 1.91 (s, 6H). 

13C NMR (151 MHz, Chloroform-d) δ 192.0, 159.7, 151.5, 147.2, 125.4, 123.9, 

83.6, 28.0, 26.4. 

 

2-(4-nitrophenyl)propan-2-yl 3-bromo-2-oxopropanoate 28 165 

To a dry round bottom flask with 2-(4-nitrophenyl)propan-2-yl 2-oxopropanoate 

32 (250 mg, 1.02 mmol) in dichloromethane (5 mL) at 0 ºC under argon, 

diisopropylethylamine (0.21 mL, 1.2 mmol) and trimethylsilyl trifluoromethanesulfonate 

(0.22 mL, 1.2 mmol) were added. The reaction mixture was stirred at 0 ºC for 30 minutes. 

Potassium carbonate (7.1 mg, 0.051 mmol) was added, followed by the addition of 

bromine (30 µL, 0.6 mmol) in dichloromethane (1 mL) solution. The resulting solution 

was stirred at 0 ºC for an additional 30 min. The reaction was then quenched with 

saturated sodium thiosulfate solution, and the mixture was extracted with 

dichloromethane (3 x 50 mL), which was washed with water and brine, dried over 

Na2SO4, and evaporated under reduced pressure. Flash chromatography of the crude 

product using a prepacked 50 g silica column [eluents: solvent A, EtOAc; solvent B, 

hexanes; gradient, 7% A/93% B (1 CV), 7% A/93% B to 60% A/40% B (10 CV), 60% 
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A/40% B (2 CV); flow rate 100.0 mL/min; monitored at 254 and 280 nm] yielded 2-(4-

nitrophenyl)propan-2-yl 3-bromo-2-oxopropanoate 28 (170 mg, 0.520 mmol, 52%) as a 

tan solid.   

1H NMR (600 MHz, Chloroform-d) δ 8.25 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 

Hz, 2H), 4.26 (s, 2H), 1.94 (s, 3H). 

13C NMR (151 MHz, Chloroform-d) δ 184.6, 158.4, 150.9, 147.3, 125.5, 123.9, 

84.8, 77.3, 77.0, 76.8, 30.2, 28.1. 

HRMS (ESI+): m/z calculated for C12H12BrNNaO5 [M+Na]+ 351.9791, found 

351.9792. 

  



86 

 

 

 

 

CHAPTER FOUR 

 

Targeting Tumor-Associated Hypoxia with Bioreductively Activatable Prodrug 

Conjugates Derived from Dihydronaphthalene and Benzosuberene-Based Inhibitors of 

Tubulin Polymerization 

 

 

This chapter will be submitted to a peer reviewed journal with the following title and 

author list: “Targeting Tumor Hypoxia with Bioreductively Activatable Prodrug 

Conjugates Derived from Dihydronaphthalene, and Benzosuberene-Based Vascular 

Disrupting Agents” Zhe Shi, Rajsekhar Guddneppanavar, Blake A. Winn, Clinton S. 

George, Tracy E. Strecker, Jeni Gerberich, Alex Winters, Elisa Lin, Casey J. Maguire, 

Jacob Ford, Ernest Hamel, David J. Chaplin, Ralph P. Mason, Mary Lynn Trawick, 

Kevin G. Pinney. 

 

 

The author Zhe Shi contributed to this manuscript through synthesizing four of 

the eight BAPCs reported in this manuscript and full characterization of all eight final 

compounds including NMR, HPLC and HRMS. In addition, Zhe Shi made significant 

contributions to the preparation of the manuscript and the supporting material. 

 

Abstract 

 

A significant percentage of solid tumors are characterized with profound regions 

of hypoxia, which is a hallmark of cancer. While tumor-associated hypoxia is associated 

with challenges in effective external beam radiation therapy, it provides a unique 

opportunity for targeted cancer therapy. A promising strategy involves the selective 

release of potent anticancer agents facilitated through reductase-mediated cleavage of 

non-toxic bioreductively activatable prodrug conjugates (BAPCs) in regions of 

pronounced tumor-associated hypoxia. Previous studies in our laboratories resulted in a 

series of highly potent, small-molecule anticancer agents, including dihydronaphthalene 
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analogue 1 and benzosuberene analogue 2, which were inspired by the molecular 

architecture of the natural products combretastatin A-4 (CA4), combretastatin A-1 (CA1), 

and colchicine that inhibit tubulin assembly into microtubules. Compounds 1 and 2 

demonstrate dual-mechanism of action functioning as both potent anti-proliferative 

(cytotoxic) agents and promising vascular disrupting agents (VDAs) that selectively and 

irreversibly disrupt tumor-associated vasculature. A series of BAPCs was synthesized 

that incorporate anticancer agents 1 and 2 with nitro-bearing heteroaromatic triggers. In a 

preliminary evaluation of this series, several BAPCs produced positive hypoxia 

cytotoxicity ratios (GI50 ratio normoxia/hypoxia) in the A549 human lung carcinoma cell 

line. One of these promising BAPCs, 13, demonstrated vascular disrupting activity in a 

preliminary in vivo study in an orthotopic syngeneic breast tumor (4T1) mouse model as 

evidenced with bioluminescence imaging (BLI) and histology. 

 

Introduction 

 

Tumor-associated vasculature is aberrant in nature and is typically characterized 

by a chaotic vascular network and primitive blood vessel network,7 which fails to 

sufficiently rectify oxygen deficiency and results in regions of hypoxia.  In addition, 

temporal opening and closing of blood vessel occlusion also leads to acute perfusion-

limited hypoxia. 86,166 Tumor-associated hypoxia plays an important role in tumor 

progession,83,87 and promotes cellular resistance to many types of radiotherapy and 

chemotherapy.83–85 However, in certain cases cytotoxic drugs are more effective under 

hypoxic conditions.83 Tumor-associated hypoxia represents a promising target for the 

selective delivery of potent anticancer agents though a variety of prodrug strategies.   
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Figure 4.1. Structure of Selected Bioreductive Prodrugs 

 

Bioreductively activated prodrug conjugates (BAPCs) also referred to as hypoxia-

activated prodrugs (HAPs) facilitate the selective release of highly potent anticancer 

agents to tumors characterized with hypoxic fractions, and represent a promising 

investigative approach towards cancer therapy.66,83,89,167,168 The mechanism of these 

prodrugs involves enzymatic reduction through either one- or two- electron reductases 

resulting in selective release of cytotoxic anticancer agents.66 A variety of chemical 

entities (triggers) are capable of undergoing enzymatic reduction to release their 

cytotoxic anticancer agents (effector molecules), including nitro(hetero)cyclic 

compounds, aromatic N-oxides, aliphatic N-oxides, quinones, and metal complexes.83,86,87 

Clinically relevant prodrugs that undergo selective activation under hypoxia are shown in 

Figure 1. TH-302 is currently undergoing clinical trials in combination therapy with 

checkpoint inhibitor antibodies.167 Despite significant progress and advances over the 

past 40+ years, prodrugs that target tumor-associated hypoxia have yet to reach FDA 

approval.  
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Figure 4.2. Representative Small-Molecule Inhibitors of Tubulin Polymerization.36,37,50–52 

 

In addition to hypoxia, the immature vasculature itself also represent a promising 

target for cancer therapy. The natural product combretastatin A-4 (CA4), originally 

isolated from African bush willow tree Combretum caffrum, is a potent inhibitor of 

tubulin assembly, which binds at the colchicine site.37 CA4, along with another analogue 

in the combretastatin family combretastatin A-1 (CA1), demonstrates significant 

cytotoxicity (in vitro) against human cancer cell lines. 36 The necessity and challenge of 

improving water-solubility led to the development of their corresponding phosphate 

prodrug salts [combretastatin A-4P (Zybrestat®) and combretastatin A-1P (OXi4503)], 

which have been evaluated in clinical trials as vascular disrupting agents (VDAs).44,169 

These VDAs induce significant morphological changes to the endothelial cells lining 

tumor-associated vasculature leading to microvessel occlusion and shutdown of blood 

flow, which restricts the supply of oxygen and nutrients, and leads to necrosis.  
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The potent antimitotic capability of CA4 inspired Davis and co-workers to 

prepare a series of BAPCs (Fig. 3) that utilize CA4 as the parent (effector) anticancer 

agent.81,82 A 5-nitrothienyl bioreductive trigger was covalently bonded to CA4 through an 

ether linkage. These CA4-BAPCs were designed to release CA4 selectively in the 

hypoxic tumor microenvironment upon enzymatic reduction. We employed the same 

strategy to develop a series of BAPCs based on phenstatin,99,170 which is a functionalized 

benzophenone analogue prepared by Pettit and co-workers that mimics salient structural 

features of CA4. A subset of nitrothiophene, nitrobenzyl, nitrofuran, and nitroimidazole 

triggers was employed as the bioreductive triggers in this study.99,102  

 

 

Figure 4.3. Previously Reported BAPCs based on Tubulin Binding Agents 

 

A long-standing program in the design, synthesis, and biological evaluation of 

small-molecule inhibitors of tubulin polymerization resulted in our discovery and 

development of a wide-variety of molecules including dihydronaphthalene, 

benzosuberene analogues inspired, in part, by colchicine and CA4.50–52 Utilizing a 

promising phenolic-based benzosuberene analogue (referred to as KGP18) and a 

corresponding dihydronaphthalene analogue (referred to as KGP03) as effector 

anticancer agents, we prepared a series of BAPCs bearing nitrothienyl and nitroimidazole 
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moieties as triggers, which are capable of undergoing reductase cleavage (Scheme 1) in 

hypoxic tumor fractions. 

 

Scheme 4.1. Biological Reduction and Cleavage of BAPCs (Compound 13 as a 

Representative Example) 

 

 

Chemistry 

 

The synthetic strategy towards BAPCs 10 to 17 is shown in Scheme 2. Tubulin 

binding agents 1 (OXi6196) and 2 (KGP18) were prepared through newly developed 

methods published by our group.49–52 Bioreductive triggers 6-9 were synthesized 

following previously reported procedures.99,100,162 A Mitsunobu reaction was employed to 

facilitate incorporation of the bioreductive triggers with the parent agents to generate the 

requisite BAPCs in low to moderate yields (12% to 46%).81,171 Depending on the 



92 

 

reactivity of the nitro triggers involved in each reaction, a combination of 

triphenylphosphine with either diethyl azodicarboxylate (DEAD) or diisopropyl 

azodicarboxylate (DIAD) were used to generate the ether linkage. The order of reagent 

addition and the amount of solvent utilized also played important roles in the successful 

synthesis of these compounds.   

 

 

Scheme 4.2. Synthetic Routes toward BAPC 10-17. 

 

Biological Evaluation 

 

These BAPCs, as well as their parent anticancer agents, were evaluated for their 

ability to inhibit tubulin assembly and compete for the colchicine binding site (Table 1) 

through a collaboration with Dr. Ernest Hamel (National Cancer Institute). All the 

BAPCs were inactive (IC50 > 20 µM) as inhibitors of tubulin assembly. This is a desired 

attribute for these dihydronaphthalene and benzosuberene BAPCs. Ideally, these BAPCs 

will remain inactive until they undergo enzyme-mediated prodrug cleavage to generate 

their corresponding parent anticancer agents. 
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Table 4.1. Inhibition of Tubulin Assembly and Colchicine Binding. 

Compound 

Inhibition of 

tubulin assembly 

IC50 (M)  SD 

 

Inhibition of colchicine 

binding 

% Inhibition  SD 

5 µM inhibitor 

1 0.5  

2 1.4  

10 >20 9.2 ± 5 

11 >20 9.4 ± 2 

12 >20 9.6 ± 1 

13 >20 4.8 ± 2 

14 n.d. n.d. 

15 >20 4.7 ± 2 

16 >20 6.1 ± 3 

17 >20 25 ± 3 

                    n.d. = not determined 

 

 

The cytotoxicity (Table 4.2) of these BAPCs was also evaluated in A549 human 

lung carcinoma cell line through collaborative studies with the Trawick Group (Dr. Tracy 

Strecker) at Baylor University. These compounds were evaluated under both normoxic 

and hypoxic conditions utilizing the standard sulforhodamine B (SRB) assay to determine 

and quantify cell-based cytotoxicity. The ideal BAPC should demonstrate differential 

growth inhibition between normoxic and hypoxic conditions, showing enhanced 

cytotoxicity under hypoxic condition. Several BAPCs in this study demonstrated a 

positive hypoxic cytotoxicity ratio (HCR > 6), including compound 11, 13 and 16. 
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Table 4.2. In Vitro Potency and Hypoxia Cytotoxicity Ratio (HCR) of the BAPCs in the 

A549 Human Lung Carcinoma Cell Line 

 

Compound 
IC50 [oxic] 

(μM)±SD 

IC50 [anoxic] 

(μM)±SD 
HCR 

TPZ 63.5 7.1 9.0 

1 0.0066b n.d.c n.d.c 

2 0.000027b n.d.c n.d.c 

10 0.46 0.48 0.97 

11 0.94 0.12 7.8 

12 0.13 0.083 1.6 

13 0.39 0.049 8.0 

14 0.046 0.062 0.74 

15 1.7 1.2 1.4 

16 0.36 0.046 7.8 

17 2.1 0.060 3.5 

                                a Average of n ≥ 3 independent determinations 
                                b Values for standard SRB assay for cytotoxicity in A549 cells 
                                c n.d. = not determined 

 

 

A preliminary in vivo study was carried out in collaboration with Dr. Ralph P. 

Mason (University of Texas Southwestern Medical Center) that utilized BALB/c mice 

bearing the syngeneic 4T1-luc breast cancer model with BAPC 13 to gauge initial 

tolerability and efficacy of this agent.  4T1 is a murine mammary tumor that arose 

spontaneously in an ageing BALB/C mouse and is considered to replicate many of the 

characteristics of human breast cancer.172 It is widely used in studies of chemotherapy, 

and several reports have used luciferase transfected clones to facilitate imaging of 

therapeutic response and metastasis. 173–176 
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Figure 4.4.  Bioluminescence imaging (BLI) of 4T1-luc Tumor Bearing Nude Mice at 

Various Times Following VDA (OXi6197) and BAPC (KGP291, compound 13) 

Administration.  Baseline shows mice at 20 min time point following administration of 

120 mg/kg of luciferin subcutaneously to five athymic nude mice bearing orthotopic 

syngeneic 4T1-luc tumors growing in frontal mammary fat pad.  Immediately following 

baseline BLI, mice were treated by IP injection as follows: (l to r) KGP291 (13) @ 29 

mg/kg; vehicle (10%DMSO/90% sesame oil); KGP291 (13) @ 61 mg/kg; Oxi6197 @ 30 

mg/kg in saline vehicle; KGP291 (13) @ 53 mg/kg.  BLI was repeated 4 hrs and 24 hrs 

after treatment. 

 

BLI was performed on a group of five mice. Three mice were treated with BAPC 

13 at different doses, 29 mg/kg, 53 mg/kg and 61 mg/kg. Two mice served as controls, 

with one mouse treated with vehicle alone and another mouse treated with OXi6197 (30 

mg/kg), the phosphate salt prodrug of compound 1. Bioluminescent images are shown for 

the group of five mice at various time points (baseline to 24 hrs in Figure 5.4). Four hours 

following administration of BAPC 13, one of three mice, which treated with the highest 
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dose showed a dramatic decrease in light emission following administration of fresh 

luciferin (Figures 5.4 and 5.5). At 24 h this tumor remained depressed. By comparison, 

CA4P caused a >99 % drop in signal within 4 h, which remained reduce up to 24 h. By 

contrast, the control mouse receiving vehicle alone showed relative stability up to 24 h. 

 

 

Figure 4.5.  Dynamic Light Emission Time Courses with Respect to Vascular Disruption.  

Variation of signal intensity is shown at baseline, 4 hrs. and 24 hrs. Lines with red 

squares received OXi6197; green circles received vehicle; solid blue triangles was treated 

with KGP291 (13) @ 29 mg/kg; solid blue squares received KGP291 (13) @ 53 mg/kg 

and open blue diamonds received KGP291 @ 61 mg/kg.  At baseline all tumors showed 

similar light emission kinetics (upper left).  Four hrs. and 24 hrs. later (upper right and 

lower left, respectively), the tumors receiving Oxi6197 and the highest dose of KGP291 

(13) showed substantially reduced signal, while the tumors receiving vehicle alone and 

two lower doses of KGP291 (13) showed little change.  The histogram (lower right) 

shows the point of maximum light emission along the dynamic curve for each individual 

tumor at baseline, 4 hrs. and 24 hrs. 
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Conclusion 

In this study, eight BAPCs based on tubulin binding agents dihydronaphthalene 

analogue 1 and benzosuberene analogue 2 were prepared to target tumor-associated 

hypoxia for selective delivery of anticancer agents. Among them BAPCs 11, 13 and 16 

produced positive HCRs (~8) in the initial assays. In a preliminary in vivo study, the 

monomethyl-nitroimidazole BAPC 11 demonstrated antivascular activity in an orthotopic 

syngeneic breast tumor mouse model (4T1/BALB/c) as evidenced through BLI. 

 

Materials and Methods 

 

General Experimental Methods  

Dichloromethane, acetonitrile, dimethylformamide (DMF), methanol, ethanol, 

and tetrahydrofuran (THF) were used in their anhydrous forms, as obtained from the 

chemical suppliers. Reactions were performed under an inert atmosphere using nitrogen 

gas, unless specified. Thin-layer chromatography (TLC) plates (precoated glass plates 

with silica gel 60 F254, 0.25 mm thickness) were used to monitor reactions. Purification 

of intermediates and products was carried out with a Biotage isolera flash purification 

system using silica gel (200-400 mesh, 60 Å). Intermediates and products synthesized 

were characterized on the basis of their 1H NMR (600 or 500 MHz) and 13C NMR (150 

or 125 MHz) spectroscopic data using a Varian VNMRS 500 MHz or Bruker DPX 600 

MHz instrument. Spectra were recorded in CDCl3 or Aceton-d6. All chemical shifts are 

expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are 

reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), septet (sept), double 

doublet, (dd), and multiplet (m).  
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Purity of the final compounds was further analyzed at 25 oC using an Agilent 

1200 HPLC system with a diode-array detector (λ = 190-400 nm), a Zorbax XDB-C18 

HPLC column (4.6 mm - 150 mm, 5 μm), and a Zorbax reliance cartridge guard-column; 

solvent A, acetonitrile, solvent B, H2O; gradient, 50%A / 50%B to 100%A / 0%B over 0 

to 30 min; post-time 10 min; flow rate 1.0 mL/min; injection volume 20 μL; monitored at 

wavelengths of 210, 254, 230, 280, and 360 nm. Mass spectrometry was carried out 

under positive ESI (electrospray ionization) using a Thermo scientific LTQ Orbitrap 

Discovery instrument. 

 

2-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-5-

nitrothiophene 1081,171,177  

 

Dihydronaphthalene 1 (0.340 g, 1.00 mmol), (5-nitrothiophen-2-yl)methanol 6 

(0.080 g, 0.500 mmol), and triphenylphosphine (0.267 g, 1.00 mmol) were dissolved in 

THF (2.0 mL) at room temperature. DEAD (0.158 mL, 1.00 mmol) was added dropwise 

and the reaction mixture was stirred at 55 °C for 3.5 hours. The reaction was then cooled 

and the solvent was evaporated under reduced pressure. The crude product was purified 

by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient 0%A / 100%B (1 CV), 0%A / 100%B → 30%A / 70%B (13 

CV), 30%A / 70%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] to 

afford 2-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-

yl)oxy)methyl)-5-nitrothiophene 10 (0.040 g, 0.083 mmol, 17% yield) as a yellow oil.  

1H NMR (600 MHz, Acetone-d6) δ 7.98 (d, J = 4.1 Hz, 1H), 7.24 (d, J = 4.1 Hz, 

1H), 6.87 (d, J = 8.6 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), 5.99 (t, J = 4.7 Hz, 1H), 5.31 (s, 
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1H), 3.91 (s, 2H), 3.81 (s, 3H), 3.76 (s, 1H), 2.87 – 2.82 (m, 2H), 2.29 (td, J = 7.9, 4.7 

Hz, 2H). 

13C NMR (151 MHz, Acetone-d6) δ 153.3, 151.8, 151.4, 149.8, 143.6, 139.5, 

137.7, 136.3, 130.5, 128.8, 128.6, 125.9, 124.9, 122.1, 109.3, 106.1, 68.6, 59.7, 55.5, 

55.2, 22.6, 21.1. 

HRMS, m/z: observed 506.1244 [M + Na]+,(calcd for C25H25NNaO7S
+, 

506.1244).  

HPLC: 16.4 min, 100% pure at 254 nm. 

 

2-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-5-

nitrothiophene 1181,171,177  

 

Dihydronaphthalene 1 (0.342 g, 1.00 mmol), 1-(5-nitrothiophen-2-yl)ethan-1-ol 7 

(0.087 g, 0.500 mmol), and triphenylphosphine (0.267 g, 1.00 mmol) were dissolved in 

THF (2.5 mL) at room temperature. DEAD (0.160 mL, 1.00 mmol) was added drop-wise 

and the reaction mixture was stirred at 55 °C for 3.5 hours. The reaction was then cooled 

and the solvent was evaporated under reduced pressure. The crude product was purified 

by flash chromatography using a pre-packed 25 g silica column [solvent A: EtOAc; 

solvent B: hexanes; gradient 0%A / 100%B (1 CV), 0%A / 100%B → 30%A / 70%B (13 

CV), 30%A / 70%B (2 CV); flow rate: 75 mL/min; monitored at 254 and 280 nm] to 

afford 2-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-

yl)oxy)ethyl)-5-nitrothiophene 11 (0.115 g, 0.231 mmol, 46% yield) as a yellow solid. 

 1H NMR (Acetone-D6, 500 MHz): δ 7.95 (1H, d, J = 4.2 Hz), 7.16 (1H, dd, J = 

4.2, 0.9 Hz), 6.85 (1H, d, J = 8.6 Hz), 6.81 (1H, d, J = 8.6 Hz), 6.58 (2H, s), 5.98 (1H, t, J 



100 

 

= 4.7 Hz), 5.68 (1H, qd, J = 6.4, 0.9 Hz), 3.87 (3H, s), 3.81 (6H, s), 3.75 (3H, s), 2.78 

(2H, ddd, J = 10.8, 8.9, 6.7 Hz), 2.34 – 2.14 (2H, m), 1.71 (3H, d, J = 6.5 Hz).  

13C NMR (Acetone-D6, 126 MHz): δ 155.6, 153.3, 151.9, 150.7, 142.2, 139.6, 

136.4, 130.9, 128.7, 128.6, 125.0, 124.2, 121.9, 109.3, 106.1, 106.1, 74.8, 59.7, 55.5, 

55.1, 27.7, 21.7, 21.3.  

HRMS, m/z: observed 520.1400 [M + Na]+, (calcd for C29H27NNaO7S
+, 

520.1400).  

HPLC: 18.7 min, 98.6% pure at 254 nm. 

 

5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-

methyl-2-nitro-1H-imidazole 1281,171,177  

 

Dihydronaphthalene 1 (0.363 g, 1.06 mmol), (1-methyl-2-nitro-1H-imidazol-5-

yl)methanol 8 (0.200 g, 1.27 mmol), and DIAD (0.280 mL, 1.43 mmol) were dissolved in 

THF (70 mL) at room temperature. Triphenylphosphine (0.557 g, 2.12 mmol) was added 

and the reaction mixture was stirred for 2 days. The reaction solvent was evaporated 

under reduced pressure. The crude product was purified by flash chromatography using a 

pre-packed 50 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 

90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow 

rate: 50 mL/min; monitored at 254 and 280 nm] to afford 5-(((2-methoxy-5-(3,4,5-

trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-methyl-2-nitro-1H-

imidazole 12 (0.179 g, 0.371 mmol, 35% yield) as a yellow solid.  

1H NMR (CDCl3, 600 MHz): δ 7.14 (1H, s), 6.85 (1H, d, J = 8.5 Hz), 6.69 (1H, 

d, J = 8.5 Hz), 6.54 (2H, s), 5.97 (1H, t, J = 4.6 Hz), 5.01 (2H, s), 4.24 (3H, s), 3.89 (3H, 

s), 3.85 (3H, s), 3.85 (6H, s), 2.76 (2H, t, J = 7.9 Hz), 2.31 (2H, td, J = 7.8, 4.6 Hz).  
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13C NMR (151 MHz, CDCl3) δ 153.0, 151.6, 143.0, 139.4, 137.2, 136.4, 133.9, 

130.7, 129.1, 129.0, 125.4, 122.6, 109.0, 107.2, 105.8, 63.0, 61.0, 56.2, 55.6, 34.6, 22.8, 

21.1.  

HRMS, m/z: observed 504.1740 [M + H]+, (calcd for C25H27N3NaO7
+, 504.1741).  

HPLC: 7.3 min, 96.2% pure at 254 nm. 

 

5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-1-

methyl-2-nitro-1H-imidazole 1381,171,177  

 

Dihydronaphthalene 1 (0.200 g, 0.585 mmol), 1-(1-methyl-2-nitro-1H-imidazol-

5-yl)ethan-1-ol 9 (0.120 g, 0.702 mmol), and DIAD (0.150 mL, 0.761 mmol) were 

dissolved in THF (60 mL) at room temperature. Triphenylphosphine (0.307 g, 1.17 

mmol) was added to the reaction mixture and it was stirred for 2 days. The reaction 

solvent was evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B → 79%A / 21%B (13 CV), 

79%A / 21%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford 

compound 13 (0.0694 g, 0.140 mmol, 24%) as a yellow solid.  

1H NMR (CDCl3, 600 MHz): δ 7.14 (1H, s), 6.77 (1H, d, J = 8.5 Hz), 6.62 (1H, 

d, J = 8.6 Hz), 6.47 (2H, s), 5.91 (1H, t, J = 4.6 Hz), 5.53 (1H, q, J = 6.6 Hz), 4.11 (3H, 

s), 3.82 (3H, s), 3.79 (3H, s), 3.78 (6H, s), 2.69 (2H, td, J = 9.3, 6.8 Hz), 2.27 – 2.14 (2H, 

m), 1.61 (3H, d, J = 6.6 Hz).  

13C NMR (Acetone-D6, 126 MHz): δ 153.3, 152.0, 141.6, 139.6, 138.8, 137.6, 

136.3, 131.6, 128.7, 126.3, 125.0, 122.0, 109.2, 106.0, 68.9, 59.7, 55.5, 55.1, 34.1, 22.6, 

21.7, 17.6.  
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HRMS, m/z: observed 496.2077 [M + H]+, (calcd for C26H29N3NaO7
+, 496.2078).  

HPLC: 10.0 min, 95.0% pure at 254 nm. 

 

2-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)methyl)-5-nitrothiophene 14 

 

(5-nitrothiophen-2-yl)methanol (0.129 g, 0.810 mmol) was dissolved in CH2Cl2 (7 

mL). 3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol 

(0.301 g, 0.844 mmol) and triphenylphosphine (0.435 g, 1.66 mmol) were added to the 

solution and allowed to stir until all reagents had dissolved. Azodicarbonyldipiperidine 

(0.333 g, 1.32 mmol) was then added to the solution. The solution was allowed to stir for 

12 hours at room temperature. The solvent was removed under reduced pressure. The 

crude product purified on silica gel using isocratic 7.5% EtOAc: 92.5% hexanes as 

eluent. The solvent was removed under reduced pressure and the resultant product was 

crystallized using Et2O to afford 2-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-

5H-benzo[7]annulen-4-yl)oxy)methyl)-5-nitrothiophene 14 (0.050 g, 0.010 mmol, 12% 

yield) as a yellow solid. 

1H NMR (CDCl3, 500 MHz): δ 7.85 (1H, d, J = 4.2 Hz), 7.03 (1H, d, J = 4.2 Hz), 

6.83 (1H, d, J = 8.6 Hz), 6.80 (1H, d, J = 8.6 Hz), 6.48 (2H, s), 6.34 (1H, t, J = 7.3 Hz), 

5.22 (2H, d, J = 0.5 Hz), 3.92 (3H, s), 3.86 (3H, s), 3.81 (6H, s), 2.73 (2H, t, J = 6.8 Hz), 

2.07 (2H, p, J = 7.0 Hz), 1.93 (2H, q, J =7.0 Hz). 

13C NMR (CDCl3, 126 MHz): δ 152.9, 151.8, 151.1, 149.2, 143.8, 142.6, 138.2, 

137.5, 135.9, 134.0, 128.2, 127.3, 126.1, 125.0, 109.4, 105.3, 69.4, 60.9, 56.2, 55.7, 34.4, 

25.5, 24.4. 

HPLC: Method C, 16.5 min 
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HRMS, m/z: observed 520.1394 [M + Na]+, (calcd for 520.1400). 

 

2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)ethyl)-5-nitrothiophene 15 81,171,177  

 

1-(5-nitrothiophen-2-yl)ethan-1-ol 7 (0.650 g, 3.75 mmol) was dissolved in 

CH2Cl2 (40 mL). 3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]annulen-4-ol 2 (1.50 g, 4.20 mmol) and triphenylphosphine (1.37 g, 7.29 mmol) 

were added to the solution and allowed to stir until all reagents had dissolved. 

Diisopropylazodicarboxylate (1.15 mL, 5.08 mmol) was then added to the solution. The 

solution was allowed to stir for 12 hours at room temperature. The solvent was removed 

under reduced pressure. The crude product was purified on silica gel using isocratic 5% 

EtOAc: 95% hexanes as eluent. The solvent was removed under reduced pressure and the 

resultant product was crystallized using Et2O to afford 2-(1-((3-methoxy-9-(3,4,5-

trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-5-nitrothiophene 15 

(0.869 g, 1.70 mmol, 45% yield) as a yellow solid.  

1H NMR (CDCl3, 500 MHz): δ 7.81 (1H, d, J = 4.4 Hz), 6.94 (1H, dd, J =4.2, 0.7 

Hz), 6.80 (1H, d, J = 8.6 Hz), 6.77 (1H, d, J =8.6 Hz), 6.45 (2H, s), 6.32 (1H, t, J = 7.1 

Hz), 5.62 (1H, qd, J = 6.4, 0.7 Hz), 3.87 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.74 (1H, m), 

2.64 (1H, m), 2.06 (1H, m), 1.91 (3H, m), 1.73 (3H, d, J = 6.6 Hz).  

13C NMR (CDCl3, 126 MHz): δ 155.3, 152.9, 151.1, 142.6, 142.4, 138.3, 137.4, 

136.6, 134.0, 128.1, 127.3, 125.8, 123.3, 109.4, 105.2, 74.6, 60.9, 56.1, 55.6, 34.1, 25.6, 

24.4, 21.8.  

HRMS, m/z: observed 520.1394 [M + H]+, (calcd for 512.1737).  

HPLC: 20.1 min, 99.0% pure at 254 nm. 
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5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole 1681,171,177  

 

Benzosuberene analogue 2 (0.250 g, 0.702 mmol), (1-methyl-2-nitro-1H-

imidazol-5-yl)methanol 8 (0.123 g, 0.842 mmol), and DEAD (0.144 mL, 0.913 mmol) 

were dissolved in CH2Cl2 (60 mL) at room temperature. Triphenylphosphine (0.368 g, 

1.40 mmol) was added to the mixture and the reaction was stirred for 2 days. The reaction 

was evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 

80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford 5-

(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole 16 (0.143 g, 0.288 mmol, 41% yield) as 

an orange crystal.   

1H NMR (600 MHz, Chloroform-d) δ 7.15 (s, 1H), 6.84 (d, J = 8.5 Hz, 1H), 6.79 

(d, J = 8.5 Hz, 1H), 6.46 (s, 2H), 6.34 (t, J = 7.3 Hz, 1H), 5.05 (s, 2H), 4.25 (s, 3H), 3.89 

(s, 3H), 3.86 (s, 3H), 3.80 (s, 6H), 2.68 (t, J = 6.9 Hz, 2H), 2.07 – 1.99 (m, 2H), 1.93 (q, J 

= 7.1 Hz, 2H).  

13C NMR (151 MHz, CDCl3) δ 152.9, 151.1, 146.3, 142.5, 141.7, 138.6, 138.2, 

137.5, 136.8, 134.3, 127.4, 126.7, 126.1, 109.2, 105.3, 68.7, 60.9, 56.2, 55.5, 34.7, 34.1, 

25.6, 24.3, 18.4.  

HRMS, m/z: observed 518.1898 [M + Na]+, (calcd for C26H29N3NaO7
+, 

518.1898).   

HPLC: 10.7 min, 98.1% pure at 254 nm. 
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5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole 1781,171,177  

 

Benzosuberene analogue 2 (0.250 g, 0.702 mmol), 1-(1-methyl-2-nitro-1H-

imidazol-5-yl)ethan-1-ol 9 (0.144 g, 0.842 mmol), and DIAD (0.179 g, 0.913 mmol) 

were dissolved in CH2Cl2 (60 mL) at room temperature. Triphenylphosphine (0.368 g, 

1.40 mmol) was added to the mixture and the reaction was stirred for 2 days. The reaction 

was evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 10%A / 90%B (1 CV), 10%A / 90%B → 80%A / 20%B (13 CV), 

80%A / 20%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford 5-

(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole 17 (0.122 g, 0.239 mmol, 34% yield) as an 

orange solid.  

1H NMR (600 MHz, Chloroform-d) δ 7.14 (s, 1H), 6.75 (d, J = 8.5 Hz, 1H), 6.71 

(d, J = 8.5 Hz, 1H), 6.38 (s, 2H), 6.26 (t, J = 7.0 Hz, 1H), 5.57 (q, J = 6.6 Hz, 1H), 4.09 

(s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 3.73 (s, 6H), 2.63 (dt, J = 12.6, 6.3 Hz, 1H), 2.54 (dt, J 

= 13.7, 6.8 Hz, 1H), 2.05 – 1.97 (m, 1H), 1.85 (m, 3H), 1.64 (d, J = 6.6 Hz, 3H).  

13C NMR (151 MHz, CDCl3) δ 152.9, 151.1, 146.3, 142.5, 141.7, 138.6, 138.2, 

137.5, 136.8, 134.3, 127.4, 126.7, 126.1, 109.2, 105.3, 68.7, 60.9, 56.2, 55.5, 34.7, 34.1, 

25.6, 24.3, 18.4.  

HRMS, m/z: observed 532.2054 [M + Na]+, (calcd for C27H31N3NaO7
+, 

532.2503).   

HPLC: 11.5 min, 97.5% pure at 254 nm. 
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Mohlau Conditions 
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Abstract 

 

 Mechanistic insight into the pathway of the Bischler-Mohlau indole formation 

reaction is provided by isotopic labeling utilizing judicious incorporation of a 13C atom 

within the α-bromoacetophenone analogue reactant.  The resulting rearranged 2-aryl 

indole, isolated as the major product, located the 13C isotope label at the methine carbon 

of the fused five-membered heterocyclic ring, which suggested that the mechanistic 

pathway of cyclization, in this specific example, required two equivalents of the aniline 

analogue reactant partner and proceeded through an imine intermediate rather than by 

direct formation of the corresponding 3-aryl indole accompanied by a concomitant 1,2-

aryl shift rearrangement. 
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Introduction 

In the context of a long-standing program focused on the design, synthesis, and 

biological evaluation of diversely functionalized small-molecule anticancer agents, a 

series of benzo[b]thiophene,56,57,178 benzo[b]furan, and indole-based153,154,179 analogues 

emerged as promising potential pre-clinical candidates (Fig. 5.1). These compounds were 

designed to function as inhibitors of tubulin polymerization (assembly) that bind to the 

colchicine site on the tubulin heterodimer and certain of these compounds demonstrated a 

dualistic mechanism of action functioning both as potent antiproliferative agents and as 

pronounced vascular disrupting agents (VDAs).180 In each case, the heterocyclic fused 

ring was introduced synthetically through an efficient ring-closing step, and it proved 

intriguing to consider whether this reaction in the indole series of analogues mirrored that 

of the benzo[b]thiophene series or was mechanistically distinct.  

 

 

Figure 5.1. Representative Examples of Inhibitors of Tubulin Polymerization 

Incorporating Fused Heterocyclic Ring Systems: Benzo[b]thiophene (A); Benzo[b]furan 

(B); and Indole (C) 

 

 

The indole core ring system continues to be utilized as an abundant molecular 

scaffold in medical chemistry181 and represent an important class of heterocycles. The 

mechanistic pathways and synthetic routes available towards the indole platform are well 

established and vary greatly.121 One established approach, referred to as the Fischer 
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indole synthesis, involves a [3,3]-sigmatropic rearrangement followed by closure to the 

fused five-membered ring. This method was first pioneered by Fischer in 1883182 and 

continues to be explored today.118 Another frequently utilized approach is the Bischler-

Mohlau indole synthesis119,183 that involves the reaction between aniline analogues and α-

halogenated ketone analogues and results in both 2-aryl and 3-aryl indole regioisomers.  

While the Bischler-Mohlau reaction120,184–188 accommodates a wide-range of 

functionalized α-bromoketones and aniline analogues as starting materials, low isolated 

yields and unpredictable regiochemistry189 remain potentially problematic.  The reaction 

is heavily substrate dependent (in terms of yield and regiochemical outcome) and 

modifications in reaction conditions, including microwave heating, can dramatically 

influence the overall process.189 The perceived simplicity of the Bischler-Mohlau reaction 

somewhat disguises the complex mechanistic pathways which can lead to both 2-aryl and 

3-aryl indole analogues.  The indole product (2-aryl or 3-aryl) is dependent on one of 

several potential mechanistic pathways. These pathways were further investigated by 

Vara and co-workers by assessing the activation energies associated with intermediates 

and transition states.26 Pathway A (Scheme 5.1) involves initial displacement of a 

bromine atom from 2-bromoacetophenone or an appropriately functionalized 2-

bromoacetophenone analogue by aniline or an analogous aniline analogue. The pathway 

proceeds through intramolecular cyclization and subsequent re-aromatization to afford 

non-rearranged 3-aryl indole 4.   
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Scheme 5.1. Mechanistic Pathway A Associated with the Bischler-Mohlau Reaction 

 

A well-recognized competing Pathway B (Scheme 5.2), which most often is 

invoked as being predictive of the major product of the Bischler-Mohlau indole synthesis, 

initiates in a similar fashion with the aniline analogue (3-methoxyaniline in this example) 

displacing the bromine atom on the α-bromoacetophenone analogue (compound 1 in this 

example). Condensation with a second molecule of 3-methoxyaniline results in the 

formation of imine intermediate 5, which upon intramolecular cyclization involving 

displacement of the initial aniline molecule and subsequent tautomerization of 2-aryl 

indole 7, generates the stable 2-aryl indole tautomer 8. Previous computational and 

experimental studies have suggested that pathway B is preferred when an excess of 

aniline is used.189 It should be noted that Vara and co-workers have evaluated another 

mechanistic possibility leading to formation of rearranged indole products (such as 8), 

through an interesting carbonyl-shift rearrangement of a ketone (such as 3) to an 

aldehyde prior to cyclization.189,190     
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Scheme 5.2. Mechanistic Pathway B Associated with the Bischler-Mohlau Reaction. 

 

We were intrigued by the possibility that a 3-aryl-indole analogue formed through 

pathway A could perhaps undergo a subsequent 1,2 aryl shift (pH dependent) resulting in 

a rearranged 2-aryl-indole analogue as the thermodynamic sink under these reaction 

conditions (Scheme 5.3).191 

 

 

Scheme 5.3. Postulated 1,2-Aryl Shift Resulting in Rearranged Indole Analogue. 

 

This postulated methodology (1,2-aryl shift in the indole system under Bischler-

Mohlau conditions) is somewhat reminiscent of previous studies with related 

benzo[b]thiophene ring systems in which alpha-thio-ketone III (Scheme 5.4), for 

example, was converted to benzo[b]thiophene regioisomers IV and V upon treatment 

with PPA.57,192 The mechanism is widely thought to involve concomitant cyclization and 
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1,2 aryl ring migration.  The regioisomers in this example result from initial cyclization 

occurring either ortho or para to the methoxy group on the aryl ring of the sulfide.57,192  

 

 

Scheme 5.4. Formation of Benzo[b]thiophene Regioisomers via Cyclization and 

Concomitant 1,2-Aryl Ring Migration. 

 

 

In an effort to further explore the Bischler-Mohlau reaction pathways a 13C 

isotopic labelling strategy was developed in which the α-carbon (to the carbonyl) was 

selectively labeled with 13C.  This labeled carbon atom can be readily traced through the 

identification of key distinct 13C NMR signatures, specifically 13C DEPT NMR, thus 

providing evidence for which mechanistic pathway predominates in this specific indole-

forming reaction sequence (Scheme 5.5).  

 

Synthesis and Characterization 

The synthetic route to 13C-labeled bromoacetophenone intermediate 16 followed a 

similar sequence as the non-labeled bromoacetophenone intermediate from our previous 

studies with the indole based vascular disrupting agent (VDA) OXi8006153,154 along with 

related work by von Angerer and co-workers,193 and simply replaces the transitional 

methylation step reagents to install the 13C carbon atom at the alpha position (Scheme 

5.6). 
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Scheme 5.5. Potential Mechanistic Pathways Leading to 13C Labeled Indole Analogues 

  

Protection of 3-hydroxy-4-methoxybenzaldehyde (isovanillin) with TBSCl in the 

presence of Et3N and catalytic DMAP afforded TBS-aldehyde 11 which was 

subsequently treated with in situ generated 13CH3MgI (from commercially available 

13CH3I) to yield 13C-labeled secondary alcohol 12. PCC mediated oxidation generated 

13C-labeled acetophenone 13, which after enolization was trapped as its corresponding 

silyl enol ether 14 upon reaction with TMSCl. Bromination of 13C-labled enol ether 14 

afforded requisite 13C-labeled bromoacetophenone intermediate 15, which was treated 

with three molar equivalents of 3-methoxyaniline (m-anisidine) 2 in N,N-dimethylaniline 
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at 170 oC (Bischler-Mohlau conditions) for 12 h to afford rearranged 13C-labeled 2-aryl 

indole 16 (Scheme 5.6).  

 

 

Scheme 5.6. Synthesis of 13C Labeled Bromoacetophenone 16 

 

It is important to note that there are four possible indole regioisomers that can 

result from this transformation (Fig. 5.2) depending on whether the initial cyclization 

takes place para or ortho to the methoxy group, with or without rearrangement.  In our 

hands, with this specific set of reactants and these reaction conditions, only one 

regioisomer was isolated and it was identified as the regioisomer in which the 13C atom 

label was located at the methine carbon (C-3 position of the indole core), suggesting that 

the system proceeded mechanistically through pathway B (imine intermediate formation) 

to generate the rearranged 2-aryl indole analogue 16.  The Bischler-Mohlau reaction to 

form indole analogue 16 was repeated twice for verification. In the first case, the 
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isolated/purified yield of indole 16 was somewhat low (23%), however in the repeated 

experiment this yield rose to 73% (91% pure by HPLC), and a subsequent 

recrystallization afforded a highly pure sample (see Supplementary data for pertinent 

spectra). Initial comparison of the 13C-NMR of indole regioisomer 16 (Fig. 5.3) with the 

predicted spectra (ChemBioDraw Ultra, Version 13.0.2.3020) for each of the four 

regioisomers, also taking into account the differences in the 1H-NMR coupling patterns in 

the A-ring between the para and ortho ring closed possible products, strongly suggested 

regioisomer 16 as the major (and only identified and characterized) product of this 

reaction (both the intial reaction and the repeated reaction).  DEPT 13C NMR analysis 

(Fig.5.3) confirmed that the 13C atom label was located on a methine carbon, thus 

providing further evidence in support of regioisomer 16.  X-ray crystallographic analysis 

of indole regioisomer 16 provided unequovical confirmation of its structural assignment 

(see Supplementary data).  

 

 

Figure 5.2. Four Possible Indole Regioisomers from Representative Bischler-Mohlau 

Reaction  
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Figure 5.3. 13C-NMR of Unlabeled Indole Analogue 8, 13C-NMR of 13C Labeled Indole 

Analogue 16 (same as indole 8 but incorporating 13C label), DEPT NMR of 13C Labeled 

Indole Analogue 16. 
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Conclusion 

Judicious incorporation of a 13C label provided compelling evidence that the 

indole ring closure occurred (at least in this example) through a Bischler-Mohlau 

pathway rather than a Friedel-Crafts type ring closure, re-aromatization, accompanied by 

a concomitant aryl ring migration sequence that was envisioned as a potential competing 

pathway based on early studies suggesting that certain benzo[b]thiophene systems 

undergo ring-closure through this pathway under polyphosphoric acid (PPA) conditions. 

These results suggest that further inquiry into these and related systems may prove 

fruitful in delineating and predicting mechanistic pathways based (perhaps) on functional 

group incorporation and choice of reaction conditions, thus expanding the canopy of 

indole, benzo[b]thiophene, benzo[b]furan, and related small-molecule anticancer agents 

accessible under these synthetic protocols. 

 

Experimental Procedures 

 

CH2Cl2, THF, EtOH, and Et2O were used in their anhydrous forms as obtained 

from the chemical suppliers.  Reactions were performed under an inert atmosphere using 

nitrogen gas, unless specified otherwise.  Thin-layer chromatography (TLC) plates 

(precoated glass plates with silica gel 60 F254, 0.25 mm thickness) were used to monitor 

reactions.  Purification of intermediates and products was carried out with a flash 

purification system (Biotage Isolera 1 or 4) using silica gel (200-400 mesh, 60 Å) 

prepacked columns.  Intermediates and products synthesized were characterized on the 

basis of their 1H NMR (500 MHz), 13C NMR (125 MHz), and DEPT 13C NMR (125 

MHz) spectroscopic data using a Varian VNMRS 500 MHz instrument.  Spectra were 

recorded in CDCl3.  All of the chemical shifts are expressed in ppm (δ), coupling 
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constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), 

doublet (d), double doublet (dd), quartet of doublets (qd) quartet (q), and multiplet (m). 

13C-labeled atoms have their 13C-NMR chemical shift values denoted with bold text in 

each appropriate experimental write-up. 

  

3-(tert-Butyldimethylsilyloxy)-4-methoxybenzaldehyde 11  

To a clean dry round bottom flask 3-hydroxy-4-methoxybenaldehyde 10 (5.02 g, 

32.9 mmol) was dissolved in CH2Cl2 (100 mL).  The solution was cooled to 0 oC and 

Et3N (5.04 mL, 36.2 mmol) was added followed by the addition of N,N-

dimethylaminopyridine (DMAP) (0.402 g, 3.29 mmol).  The reaction mixture was stirred 

for 10 min and tert-butyldimethylsilyl chloride (TBSCl) (5.29 g, 36.2 mmol) was added 

gradually.  The solution was allowed to warm to room temperature and was stirred for 12 

hours.  The reaction was diluted with water (50 mL), transferred to a separatory funnel, 

and was extracted with CH2Cl2.  The organic extracts were combined, dried over Na2SO4, 

filtered, and concentrated under reduced pressure.  The TBS benzaldehyde product 11 

(9.24 g, 34.7 mmol) was isolated quantitatively as a yellow oil and was taken to the next 

step without further purification.   

1H NMR (CDCl3, 500 MHz): δ 9.80 (s, 1H, CHO), 7.45 (dd, J = 8.5, 2.0 Hz, 1H, 

ArH), 7.35 (d, J = 2.0 Hz, 1H, ArH), 6.93 (d, J = 8.5 Hz, 1H, ArH), 3.87 (s, 3H, OCH3), 

0.99 (s, 9H, C(CH3)3), 0.16 (s, 6H, Si(CH3)2).   

13C NMR (CDCl3, 125 MHz): δ 190.2, 156.2, 145.2, 130.0, 126.0, 119.4, 110.9, 

55.1, 25.3, 18.0, -5.0.  
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3-tert-Butyldimethylsilyloxy-1-(1’-hydroxyethyl)-4-methoxybenzene 12 

To a solution of magnesium turnings (0.40 g, 17 mmol) in diethyl ether (Et2O) 

was added 13C-labeled methyl iodide (1.00 mL, 16.0 mmol).  The solution was refluxed 

for 30 minutes until the turnings were dissolved.  The solution was cooled to room 

temperature and TBS benzaldehyde 11 (1.92 g, 7.20 mmol) in Et2O was added dropwise.  

The reaction mixture was stirred for 5 hours.  Upon completion the reaction mixture was 

slowly quenched with 0.1 M HCl and extracted with Et2O.  The organic extracts were 

washed sequentially with saturated NaHCO3 solution and water. The organic layer was 

further dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude 

mixture was subjected to flash chromatography using a prepacked 50 g silica column 

[solvent A, EtOAc, solvent B, hexanes; gradient, 7%A / 93%B (1 CV), 7%A / 93%B → 

60%A / 40%B (10 CV), 60%A / 40%B (2 CV); flow rate, 40 mL/min; monitored at 254 

and 280 nm] to yield 13C-labeled alcohol 12 (1.54 g, 5.45 mmol, 75%, Rf = 0.47 (70:30 

hexanes: EtOAc)) as a yellow oil.   

1H NMR (CDCl3, 500 MHz): δ 6.90 (dd, J = 8.2, 2.2 Hz, 1H, ArH), 6.88 (d, J = 

2.2 Hz, 1H, ArH), 6.81 (d, J = 8.2 Hz, 1H, ArH), 4.79 (qd, J = 6.4, 2.0 Hz, 1H, CH), 3.79 

(s, 3H, OCH3), 1.79 (s, 1H, OH), 1.45 (dd, J = 6.4 Hz, JC-H = 126.6 Hz, 3H, CH3), 1.00 

(s, 9H, C(CH3)3), 0.16 (s, 6H, Si(CH3)2). 

13C NMR (CDCl3, 500 MHz): δ 150.30, 145.02, 138.64, 118.50 (d, J = 1.9 Hz), 

118.27 (d, J = 1.6 Hz), 111.96, 69.96 (d, J = 38.6 Hz), 55.56, 25.73, 24.96, 18.45, -4.59 

(d, J = 1.4 Hz). 

HRMS [M+Na]+: 306.1578 (calcd for [C14
13CH26NaO3Si]+, 306.1577). 
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3-tert-Butyldimethylsilyloxy-4-methoxyacetophenone 13 

The crude alcohol 12 (1.76 g, 6.23 mmol) was dissolved in CH2Cl2 (50 mL).  

Celite (1.5 g) was added and the solution was cooled to 0 oC.  Pyridinium chlorochromate 

(PCC) (1.48 g, 6.86 mmol) was added in small increments allowing 10 minutes of stirring 

between each addition.  The reaction was allowed to warm to room temperature and 

stirred for 12 hours.  The reaction mixture was filtered through a 50/50 mixture of silica 

gel/celite rinsing well with CH2Cl2.  The filtrate was concentrated under reduced pressure 

providing the desired 13C-labeled acetophenone 13 (1.48 g, 5.28 mmol, 85%) as a pale 

yellow solid.  

1H NMR (CDCl3, 500 MHz): δ 7.58 (dd, J = 8.5, 2.1 Hz, 1H, ArH), 7.47 (d, J = 

1.9 Hz, 1H, ArH), 6.87 (d, J = 8.3 Hz, 1H, ArH), 3.87 (s, 3H, OCH3), 2.53 (d, J = 127.3 

Hz, 3H, CH3), 1.01 (s, 9H, C(CH3)3), 0.17 (s, 6H, Si(CH3)2). 

13C NMR (CDCl3, 500 MHz): δ 196.71 (d, J = 42.7 Hz), 155.31, 144.83, 130.59 

(d, J = 13.9 Hz), 123.50, 120.47, 110.78, 55.48, 26.30, 25.68, 18.44, -4.63. 

HRMS [M+H]+: 282.1603 (calcd for [C14
13CH25O3Si]+, 282.1601). 

 

1-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1-trimethylsilylethene 14 

To a solution of diisopropylamine (1.1 mL, 7.0 mmol) in THF (30 mL) at 0 
oC 

was added n-butyllithium (3.2 mL, 7.9 mmol) dropwise. The LDA solution was allowed 

to stir for 15 minutes and a solution of TBS acetophenone 13 (1.48 g, 5.26 mmol) in THF 

(5 mL) was added dropwise.  The solution was stirred for 10 min and TMSCl (1.0 mL, 

7.9 mmol) was added dropwise and the reaction was allowed to warm to room 

temperature.  The solution was stirred for 12 hours and was quenched using 10% 

NaHCO3 (100 mL).  The reaction mixture was extracted with Et2O, dried over Na2SO4, 
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and concentrated under reduced pressure resulting in 13C-labeled TMS enol ether 14 

(1.95 g, 5.51 mmol) quantitatively as a dark yellow oil which was taken to the next step 

without purification.      

1HNMR (CDCl3, 500 MHz): δ 7.23 (dd, J = 8.5, 2.0 Hz, 1H ArH), 7.18 (d, J = 2.0 

Hz, 1H, ArH), 6.82 (d, J = 8.5 Hz, 1H, ArH), 4.83 (dd, J = 1.5 Hz, JC-H = 159.5 Hz, 1H, 

CH2), 4.38 (dd, J = 1.5 Hz, JC-H = 159.0 Hz, 1H, CH2), 3.83 (s, 3H, OCH3), 1.08 (s, 9H, 

C(CH3)3), 0.32 (s, 9H, Si(CH3)3), 0.23 (s, 6H, Si(CH3)2). 

13C NMR (CDCl3, 125 MHz): δ 155.4 (d, J = 82.0 Hz), 151.3, 144.6, 130.8 (d, J 

= 6.9 Hz), 118.9 (d, J = 2.4 Hz), 118.2 (d, J = 2.3 Hz), 111.3 (d, J = 42.6 Hz), 89.6, 55.5, 

25.9, 18.6, 0.2, -4.5. 

 

3’-(tert-Butyldimethylsilyloxy)-4’-methoxy-2-bromoacetophenone 15 

A solution of crude 14 (1.95 g, 5.51 mmol) in CH2Cl2 (30 mL) and K2CO3 (0.033 

g, 0.239 mmol) was cooled to 0 oC.  Bromine (0.17 mL, 3.3 mmol) was added dropwise 

and the solution was allowed to stir for 30 minutes.  The reaction was quenched with 10 

% sodium thiosulfate solution, transferred to a separatory funnel, and extracted with 

CH2Cl2.  The organic extracts were dried over Na2SO4 and concentrated under reduced 

pressure.  The crude mixture was subjected to flash chromatography using a prepacked 

100 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 2%A / 98%B (4 

CV), 2%A / 98%B → 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); flow rate, 50 

mL/min; monitored at 254 and 280 nm] to yield 13C-labeled bromoacetophenone 15 as a 

tan solid (1.16 g, 3.22 mmol, 58%, Rf = 0.29 (80:20 hexanes: EtOAc)). 
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1H NMR (CDCl3, 500 MHz): δ 7.62 (dd, J = 8.5, 2.2 Hz, 1H, ArH), 7.49 (d, J = 

2.2 Hz, 1H, ArH), 6.89 (d, J = 8.5 Hz, 1H, ArH), 4.38 (d, JC-H = 150.9 Hz, 2H, CH2), 

3.89 (s, 3H, OCH3), 1.01 (s, 9H, C(CH3)3), 0.18 (s, 6H, Si(CH3)2). 

13C NMR (CDCl3, 500 MHz): δ 189.89 (d, J = 43.8 Hz), 156.10, 145.13, 127.12 

(d, J = 17.2 Hz), 124.21, 121.10, 111.00, 55.55, 30.69, 25.65, 18.43, -4.61. 

HRMS [M+Na]+: 382.0533 (calcd for [C14
13CH23BrNaO3Si]+, 382.0526). 

 

2-(3’-tert-Butyldimethylsilyloxy-4’-methoxyphenyl)-6-methoxyindole 16  

A solution of m-anisidine (0.41 mL, 3.7 mmol) was dissolved in N,N-

dimethylaniline (10 mL) and was heated to reflux at 170 oC.  A solution of 15 (0.40 g, 1.1 

mmol) in EtOAc (1 mL) was added dropwise.  The reaction mixture was stirred at 170o C 

for 12 hours. The reaction mixture was allowed to cool to room temperature and was 

extracted with EtOAc (3 x 50 mL).  The combined organic extracts were dried over 

Na2SO4 and concentrated under reduced pressure.  Purification by flash chromatography 

using a prepacked 50 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 

2%A / 98%B (1 CV), 2%A / 98%B → 25%A / 75%B (10 CV), 25%A / 75%B (2 CV); 

flow rate, 40 mL/min; monitored at 254 and 280 nm] resulted in the desired 13C-labeled 

phenylindole 16 (0.312 g, 0.81 mmol, 73%, Rf = 0.48 (50:50 hexanes: EtOAc)) as a light 

tan solid. A portion of compound 16 was recrystallized from hexane and dichloromethane 

to obtain the analytical data. 

1H NMR (CDCl3, 500 MHz): δ 8.14 (br s, 1H, NH), 7.48 (dd, J = 8.6 Hz, 2.9 Hz, 

1H, ArH), 7.16 (m, 2H, ArH), 6.90 (m, 2H, ArH), 6.83 – 6.40 (m, 2H, ArH), 3.87 (s, 3H, 

OCH3), 3.85 (s, 3H, OCH3), 1.06 (s, 9H, C(CH3)3), 0.22 (s, 6H, Si(CH3)2). 
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13C NMR (CDCl3, 125 MHz): δ 156.36, 150.57, 145.39, 137.37 (d, J = 3.3 Hz), 

136.85, 125.77 (d, J = 3.6 Hz), 123.68 (d, J = 56.5 Hz), 120.89 (d, J = 2.4 Hz), 118.18 (d, 

J = 2.9 Hz), 117.81 (d, J = 2.5 Hz), 112.36, 109.89 (d, J = 4.6 Hz), 98.68, 94.46 (d, J = 

2.4 Hz), 55.68, 55.53, 25.75, 18.49, -4.57. 

HPLC: Method C, 23.8 min. 

HRMS [M+H]+: 385.2031 (calcd for [C21
13CH30NO3Si]+, 385.2023). 
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CHAPTER SIX 

 

Scale-up Synthesis of Cathepsin L Inhibitor KGP94 

 

 

Introduction 

 

The thiosemicarbazone moiety has been recognized for its ability to interact with 

the cysteine-25 thiolate in the active site of the cysteine protease cruzain.194,195 Recent 

work by the Pinney and Trawick Research Groups has also demonstrated that this moiety 

is a good warhead for incorporation in small-molecule inhibitors of cathepsin L.196–200 

Benzophenone thiosemicarbazone derivative KGP94 is a leading cathepsin L inhibitor 

from a privileged synthetic library, which consists of functionalize benzophenone, 

thiophene, pyridine, fluorene, thiochromanone, and benzoylbenzophenone 

thiosemicarbazones.140,141,149 KGP94 has been demonstrated to be a competitive inhibitor 

of Cathepsin L with strong inhibitory activity against cathepsin L (IC50 = 189 

nM).140,141,149 In this study, a scale-up synthesis of KGP94 was carried out to obtain 10 

grams of KGP94 to support continuing preclinical studies.   

 

Synthesis 

 

The synthetic route (Scheme 6.1) towards cathepsin L inhibitor KGP94 involved 

the condensation of the benzophenone intermediate and thiosemicarbazide. The synthesis 

began with the commercially available 3-bromophenol 1, which was protected by the 

tert-butyldimethylsilyl group to afford silyl ether 2. Acyl chloride 3 was treated with 

N,O-dimethylhydroxylamine to form the Weinreb amide 4. The first two reactions were 
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carried out in large scales of 100 grams to 200 grams. The benzophenone scaffold 5 was 

synthesized in 98% yield from reaction between the phenyllithium intermediate, which 

was obtained from compound 2 and Weinreb amide 4. Condensation of the resulting meta 

substituted benzophenone analogue 5 with thiosemicarbazide and removal of the 

protecting group afforded thiosemicarbazone analogue 7 (KGP94). 

 

 

Scheme 6.1. Synthesis of KGP94 
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A two-step alternative route towards benzophenone 5 the was also evaluated with 

an overall yield of 78%, where aldehyde 8 was treated with the phenyllithium 

intermediate, followed by a pyridinium chlorochromate (PCC) oxidation. 

 

Materials and Methods 

 

 

 (3-Bromophenoxy)(tert-butyl)dimethylsilane 2197,200 

To a clean dry round bottom flask imidazole (36.8 g, 0.540 mol) was dissolved in 

N,N-dimethylformamide (DMF, 350 mL). The solution was cooled to 0 oC and 3-

bromophenol 1 (29.4 ml, 0.278 mol) was added dropwise followed by the addition of 

tert-butyldimethylsilyl chloride (60.5 g, 0.390 mol). The reaction mixture was allowed to 

warm to room temperature and stirred for 4 h. The reaction was diluted with a 5 % 

sodium bicarbonate solution (100 mL) and extracted with hexanes (100 ml x 3). The 

combined organic layer was dried over Na2SO4, filtered and concentrated under reduced 

pressure.  Purification of the crude mixture by column chromatography (silica gel, 

hexane) afforded the silyl ether 2 (79.6 g, 0.277 mmol, 100 % yield) as a colorless liquid. 

1H NMR (500 MHz, CDCl3) δ 7.10-7.06 (2H, m), 7.01-7.00 (1H, m), 6.78-6.74 

(1H, m), 0.98 (9H, s), 0.20 (6H, s).  

13C NMR (125 MHz, CDCl3) δ156.67, 130.55, 124.61, 123.66, 122.61, 118.96, 

25.75, 18.33, -4.32. 

 

3-bromo-N-methoxy-N-methylbenzamide 4197,200 

N, O-dimethylhydroxylamine hydrochloride (45.0 g, 0.461 mol) was suspended in 

450 mL dichloromethane. The solution was cooled to 0 oC and triethylamine (85.7 mL, 

0.615 mol) was added dropwise. After the reaction mixture was stirred for 10 min, 3-
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bromobenzoyl chloride 3 (67.5 g, 0.308 mol) in dichloromethane (125 mL) was added 

dropwise. The resulting reaction mixture was allowed to warm to room temperature and 

stirred for 6 h. Upon completion the reaction was quenched with water (200 mL) and 

extracted with dichloromethane (100ml x 4). The combined organic extract was dried 

over sodium sulfate, filtered and concentrated under reduced pressure. Purification of the 

crude mixture by column chromatography (silica gel, 90:10 hexane: ethyl acetate then 

with 80:20 hexane: ethyl acetate followed by 70:30 hexane: ethyl acetate) afforded the 

Weinreb amide 4 (71.6 g, 0.293 mmol, 95 % yield) as a colorless liquid. 

1H NMR (500 MHz, CDCl3): 7.83 (1H, t, J = 1.8 Hz), 7.61 (1H, dt, J = 7.7 Hz, 

1.3 Hz), 7.59 (1H, ddd, J = 8.0 Hz, 2.1 Hz, 1.1 Hz), 7.28 (1H, m), 3.35 (3H, s), 3.36 (3H, 

s).  

13C NMR (125 MHz, CDCl3): 168.32, 136.06, 133.69, 131.36, 129.74, 126.93, 

122.14, 61.33, 33.71. 

 

(3-bromophenyl)(3-((tert-butyldimethylsilyl)oxy)phenyl)methanone 5197,200 

Silyl ether 2 (10.5 g, 36.5 mmol) was dissolved in tetrahydrofuran (60 mL) at -78 

oC followed by the dropwise addition of n-Butyllithium (10.3 mL, 1.6 M, 16.4 mmol). 

The reaction mixture was stirred for 2 h and added dropwise into weinreb amide 4 (4.67 

g. 18.3 mmol) in 40 mL tetrahydrofuran. The reaction was continued to stir at -78 oC for 

2 h. Upon completion the solution was quenched with 50 mL 1 M HCl. After stirred for 5 

min, the solution was extracted by dichloromethane (50 mL X 4). The combined organic 

layer was washed by saturated sodium bicarbonate, dried over sodium sulfate, filtered 

and concentrated under reduced pressure. The crude mixture was subjected to flash 

column chromatography using a prepacked 350 g silica column [solvent A, EtOAc, 
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solvent B, hexanes; gradient, 0%A / 100%B (6 CV), 0%A / 100%B → 15%A / 85%B (10 

CV), 15%A / 85%B (2 CV); flow rate, 70 mL/min; monitored at 254 and 280 nm] to 

afford ketone 5 (6.07 g, 15.5 mmol, 94% yield) as a colorless liquid. 

1H NMR (600 MHz, DMSO-d6) δ 7.89 (1H, ddd, J = 8.0 Hz, 2.1 Hz, 1.0 Hz), 

7.83 (1H, t, J = 1.8 Hz), 7.71 (1H, ddd, J = 7.7 Hz, 1.6 Hz, 1.0 Hz), 7.53 (1H, t, J = 7.9 

Hz), 7.47 (1H, t, J = 7.9 Hz), 7.34 (1H, ddd, J = 7.6 Hz, 1.6 Hz, 1.0 Hz), 7.20 (1H, ddd, J 

= 8.1 Hz, 2.6 Hz, 1.0 Hz), 7.14 (1H, dd, J = 2.5 Hz, 1.6 Hz), 0.95 (s, 9H), 0.20 (s, 6H).  

13C NMR (150 MHz, DMSO-d6) δ 193.90, 155.11, 139.16, 137.84, 135.32, 

131.84, 130.82, 130.19, 128.56, 124.80, 123.09, 121.80, 120.57, 25.55, 18.01, -4.54. 

 

3-(t-Butyldimethylsilyl)oxyphenyl]-(3-bromophenyl)-ketone] thiosemicarbazone 6197,200 

Ketone 5 (7.26 g, 18.6 mmol) and thiosemicarbazide (3.38 g, 37.1 mmol) was 

added into anhydrous methanol (250 mL) followed by the addition of para-

toluenesulfonic acid (0.006 g, 0.04 mmol). The reaction mixture was reflux for 24 h. 

thiosemicarbazide (1.69 g, 18.6 mmol) and para-toluenesulfonic acid (0.009 g, 0.05 

mmol) was added into the solution. The reaction mixture was reflux for another 24 h. 

Upon completion the reaction was quenched with water (200 mL) followed by extraction 

with ethyl acetate (100 mL X 3). The combined organic layer was dried over sodium 

sulfate and concentrated under reduced pressure. The crude mixture was subjected to 

flash column chromatography using a prepacked 100 g silica column [solvent A, EtOAc, 

solvent B, hexanes; gradient, 6%A / 94%B (2 CV), 6%A / 94%B → 40%A / 60%B (10 

CV), 40%A / 60%B (2 CV); flow rate, 100 mL/min; monitored at 254 and 280 nm] to 

afford thiosemicarbazone derivative 6 (7.50 g, 16.1 mmol, 87% yield) as a white solid. 
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1H-NMR (DMSO-d6, 600 MHz) δ 8.70 (1H, s), 8.57 (1H, s), 8.45 (1H, s), 8.04 

(1H, s), 7.59 (1H, ddd, J = 8.0 Hz, 2.0 Hz, 1.0 Hz), 7.55 (1H, t, J = 7.9 Hz), 7.46 (1H, 

ddd, J = 8.0 Hz, 1.7 Hz, 1.0 Hz ) 7.31 (1H, t, J = 8.0 Hz), 7.10 (1H, ddd, J = 8.3 Hz, 2.5 

Hz, 1.0 Hz), 6.94 (1H, ddd, J = 7.5 Hz, 1.5 Hz, 1.0 Hz), 6.81 (1H, dd, J = 2.5 Hz, 1.5 Hz), 

0.945 (9H, s), 0.21 (6H, s).  

13C-NMR (DMSO-d6, 150 MHz) δ 177.87, 156.21, 146.80, 138.57, 132.36, 

132.03, 131.59, 130.43, 129.46, 126.81, 122.18, 121.87, 121.27, 119.73, 25.59, 18.05, -

4.51. 

 

[(3-Bromophenyl)-(3-hydroxyphenyl)-ketone] thiosemicarbazone 7197,200 

Tetrabutylammonium fluoride trihydrate (TBAF) (10.8 g, 7.77 mmol) was added 

to the solution of the silyl ether (7.82 g, 16.8 mmol) in dry THF (40 ml). The reaction 

mixture was stirred at room temperature for 20 min. The reaction mixture was diluted 

with ethyl acetate (100 mL) and then brine (100 mL). The resulting solution was 

separated in a separation funnel. The organic layer was dried over sodium sulfate and 

concentrated under reduced pressure. The crude mixture was subjected to flash column 

chromatography using a prepacked 100 g silica column [solvent A, EtOAc, solvent B, 

hexanes, solvent C dichloromethane; gradient, 20%A / 60%B / 20% C(2 CV), 20 %A / 

60%B / 20%C→ 50%A / 0%B / 50%C (12CV), 50%A / 0%B / 50%C (2 CV); flow rate, 

100 mL/min; monitored at 254 and 280 nm] to afford the thiosemicarbazone derivative 7 

(4.98 g, 14.2 mmol, 84 % yield) as a solid. 

1H-NMR (DMSO-d6, 600 MHz) δ 10.00 (1H, s), 8.70 (1H, s), 8.57 (1H, s), 8.40 

(1H, s), 8.10 (1H, s), 7.59 (1H, ddd, J = 7.9 Hz, 2.0 Hz, 1.0 Hz), 7.46 (1H, t, J = 7.8 Hz), 

7.44 (1H, ddd, J = 7.9 Hz, 1.7 Hz, 1.0 Hz), 7.31 (1H, t, J = 7.9 Hz), 7.00 (1H, ddd, J = 8.3 
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Hz, 2.5 Hz, 1.0 Hz), 6.73 (1H, ddd, J = 7.4 Hz, 1.5 Hz, 1.0 Hz), 6.65 (1H, dd, J = 2.5 Hz, 

1.5 Hz).  

13C-NMR (DMSO-d6, 150 MHz) δ 177.76, 158.53, 147.38, 138.51, 132.38, 

131.71, 131.42, 130.46, 129.33, 126.98, 122.21, 118.41, 117.24, 114.53. 

HPLC: Method B, 12.0 min. 

HRMS (ESI+): m/z calculated for C11H13BrN3OS [M+H]+ 349.9957, found 

349.9958. 

 

(3-bromophenyl)(3-((tert-butyldimethylsilyl)oxy)phenyl)methanol 9 (Alternative Route) 

Silyl ether 2 (3.50 g, 12.2 mmol) was dissolved in 25 mL tetrahydrofuran at -78 

oC followed by the dropwise addition of n-Butyllithium (3.4 mL, 1.6 M, 5.5 mmol). The 

reaction mixture was stirred for 1 h and aldehyde 8 (1.13 g. 6.1 mmol) in tetrahydrofuran 

(40 mL). The reaction was continued to stir at -78oC for 1.5 h. Upon completion the 

solution was quenched with HCl (1 M, 20 mL). After stirred for 5 min, the solution was 

extracted by dichloromethane (20 mL X 3). The combined organic layer was washed by 

saturated sodium bicarbonate, dried over sodium sulfate, filtered and concentrated under 

reduced pressure. The crude mixture was subjected to flash column chromatography 

using a prepacked 50 g silica column [solvent A, EtOAc, solvent B, hexanes; gradient, 

0%A / 100%B (6 CV), 0%A / 100%B → 20%A / 80%B (10 CV), 20%A / 80%B (2 CV); 

flow rate, 100 mL/min; monitored at 254 and 280 nm] to afford secondary alcohol 9 

(2.18 g, 5.50 mmol, 90% yield) as a colorless liquid. 

1H NMR (600 MHz, Chloroform-d) δ 7.54 (s, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.28 

(d, J = 7.7 Hz, 1H), 7.22  (dq, J = 7.6, 4.7 Hz, 2H), 6.92 (d, J = 7.6 Hz, 1H), 6.83 (s, 1H), 
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6.76 (d, J = 8.1 Hz, 1H), 5.72 (d, J = 3.3 Hz, 1H), 2.27 (d, J = 3.0 Hz, 1H), 0.96 (s, 10H), 

0.17 (s, 6H). 

13C NMR (151 MHz, CDCl3) δ 155.93, 145.89, 144.75, 130.58, 130.01, 129.69, 

129.51, 125.10, 122.60, 119.57, 119.47, 118.30, 77.26, 77.05, 76.84, 75.40, 25.71, 18.25, 

-4.38. 

 

(3-Bromophenyl)(3-((tert-butyldimethylsilyl)oxy)phenyl)methanone 5 (Alternative Route) 

To a solution of PCC (1.57 g, 7.3 mmol) and celite (1.5 g) in dichloromethane (30 

mL), secondary alcohol 8 (1.90 g, 4.8 mmol) was added dropwise at 0 oC. The reaction 

mixture was stirred at room temperature for 24 h, followed by filtered through a bed of 

celite and then concentrated under reduced pressure. The residue was then subjected to 

flash column chromatography using a prepacked 50 g silica column [solvent A, EtOAc, 

solvent B, hexanes; gradient, 0%A / 100%B (1 CV), 0%A / 100%B → 15%A / 85%B (10 

CV), 15%A / 85%B (2 CV); flow rate, 100 mL/min; monitored at 254 and 280 nm] to 

afford benzylphenone 5 (1.64 g, 4.20 mmol, 87% yield) as a colorless liquid.  
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CHAPTER SEVEN 

 

Conclusion 

 

 

In summary, a series of small-molecule tubulin binding agents, structurally 

motivated by 2-aryl-3-aroyl indole-based molecular templates, were synthesized and 

subjected to biochemical and biological evaluation.  The most promising new analogue, 

amino compound 28, demonstrated inhibition of tubulin assembly comparable to the 

reference compounds OXi8006 and CA4. The lead indole analogue OXi8006 was also 

tethered to a cathepsin B cleavable dipeptide linker, designed for selective drug delivery 

as a drug-linker construct suitable for future antibody incorporation and evaluation as 

corresponding antibody-drug conjugates (ADCs). 

A small library of OXi8006, dihydronaphthalene, and benzosuberene BAPC 

analogues was prepared to target tumor-associated hypoxia for selective delivery of 

anticancer agents. Three BAPCs in this library demonstrated moderate hypoxia-selective 

activation (HCR > 7) in the A549 lung cancer cell line. One of them, the monomethyl-

nitroimidazole OXi6196 BAPC, demonstrated anti-vascular activity in an orthotopic 

syngeneic breast tumor mouse model (4T1/BALB/c) as evidenced through BLI.  

A carbon-13 isotope labeling strategy was used to explore the mechanistic 

pathway of the Bischler-Mohlau indole reaction. Analysis of 13C nuclear magnetic 

resonance (NMR) of the reaction products demonstrated that the indole ring closure, at 

least in this specific example, required two equivalents of the aniline analogue reactant 

partner and proceeded through an imine intermediate rather than by direct formation of 
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the corresponding 3-aryl indole accompanied by a concomitant 1,2-aryl shift 

rearrangement. 

Collectively, these studies have advanced therapeutic approaches towards the 

targeting of tumor-associated vasculature and hypoxia through the discovery and 

development of prodrug strategies that enhance selectivity in terms of targeting and 

delivery of potent anticancer agents that function as small-molecule inhibitors of tubulin 

polymerization. 
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Indole-based Vascular Disrupting Agents and Antibody-Drug Conjugates 
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HRMS of Compound 1 (OXi8006) 
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HPLC of Compound 1 (OXi8006)
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1H NMR of Compound 2 (OXi8007) 
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13C NMR of Compound 5 
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HPLC traces of Compound 5 
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1H NMR of Compound 22
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13C NMR of Compound 22
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HRMS of Compound 22 
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HPLC traces of Compound 22
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1H NMR of Compound 27
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13C NMR of Compound 27
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HRMS of Compound 27
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HPLC traces of compound 27
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1H NMR of Compound 28
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13C NMR of Compound 28
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HRMS of Compound 28
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HPLC traces of Compound 28
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1H NMR of Compound 35 
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13C NMR of Compound 35
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HRMS of Compound 35 
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HPLC traces of Compound 35
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1H NMR of ADC 54 
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HRMS of ADC 54  
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HPLC of ADC 54
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1H NMR (500 MHz, CDCl3) of (5-nitrothiophen-2-yl)methanol 2 
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13C NMR (500 MHz, CDCl3) of (5-nitrothiophen-2-yl)methanol 2 
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1H NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-ol 3 
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13C NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-ol 3 
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1H NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-one 4 
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13C NMR (500 MHz, CDCl3) of 1-(5-nitrothiophen-2-yl)ethan-1-one 4 
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1H NMR (500 MHz, CDCl3) of 2-(5-nitrothiophen-2-yl)propan-2-ol 5 
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13C NMR (500 MHz, CDCl3) of 2-(5-nitrothiophen-2-yl)propan-2-ol 5
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1H NMR (500 MHz, CDCl3) of (5-nitrofuran-2-yl)methanol 7 
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13C NMR (500 MHz, CDCl3) of (5-nitrofuran-2-yl)methanol 7
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1H NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-ol 8 
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13C NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-ol 8
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1H NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-one 9
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13C NMR (500 MHz, CDCl3) of 1-(5-nitrofuran-2-yl)ethan-1-one 9
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1H NMR (500 MHz, CDCl3) of 2-(5-nitrofuran-2-yl)propan-2-ol 10

 



210 

 

13C NMR (500 MHz, CDCl3) of 2-(5-nitrofuran-2-yl)propan-2-ol 10 
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1H NMR (500 MHz, CDCl3) of Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate 14
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13C NMR (500 MHz, CDCl3) of Ethyl 2-amino-1-methyl-1H-imidazole-5-carboxylate 14 
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1H NMR (500 MHz, CDCl3) of Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate 15  
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13C NMR (500 MHz, CDCl3) of Ethyl 1-methyl-2-nitro-1H-imidazole-5-carboxylate 15 
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1H NMR (500 MHz, CDCl3) of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol 16 
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13C NMR (500 MHz, CDCl3) of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol 16
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1H NMR (500 MHz, CDCl3) of 1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde 17 
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13C NMR (500 MHz, CDCl3) of 1-Methyl-2-nitro-1H-imidazole-5-carbaldehyde 17
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1H NMR (500 MHz, Acetone d-6) of 1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol 18
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13C NMR (500 MHz, Acetone d-6) of 1-(1-Methyl-2-nitro-1H-imidazol-5-yl)ethan-1-ol 18
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1H NMR (500 MHz, CDCl3) of 1-(4-nitrophenyl)ethan-1-ol 22
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13C NMR (500 MHz, CDCl3) of 1-(4-nitrophenyl)ethan-1-ol 22
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1H NMR (500 MHz, CDCl3) of 2-(4-nitrophenyl)propan-2-ol 24
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13C NMR (500 MHz, CDCl3) of 2-(4-nitrophenyl)propan-2-ol 24
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1H NMR of OXi8006-normethylthiophene BAPC 26

 



226 

 

13C NMR of OXi8006-normethylthiophene BAPC 26
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HRMS of OXi8006-normethylthiophene BAPC 26
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HPLC traces of OXi8006-normethylthiophene BAPC 26
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1H NMR of Bromopyruvate BAPC 28
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13C NMR of Bromopyruvate BAPC 28
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HRMS of Bromopyruvate BAPC 28
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APPENDIX C 

 

Targeting Tumor Hypoxia with Bioreductively Activatable Prodrug Conjugates Derived 

from Dihydronaphthalene, and Benzosuberene-Based Vascular Disrupting Agents 

 

 

This appendix will be published as: “Targeting Tumor Hypoxia with Bioreductively 

Activatable Prodrug Conjugates Derived from Dihydronaphthalene, and Benzosuberene-

Based Vascular Disrupting Agents” Zhe Shi, Rajsekhar Guddneppanavar, Blake A. 

Winn, Clinton S. George, Tracy E. Strecker, Jeni Gerberich, Alex Winters, Elisa Lin, 

Casey J. Maguire, Jacob Ford, Ernest Hamel, David J. Chaplin, Ralph P. Mason, Mary 

Lynn Trawick, Kevin G. Pinney. 

 

 

The author Zhe Shi contributed to this manuscript through synthesizing four of 

the eight BAPCs reported in this manuscript and full characterization of all eight final 

compounds including NMR, HPLC and HRMS. In addition, Zhe Shi contributed a 

significant amount to the preparation of the manuscript and the supporting material. 
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Synthesis of OXi6196 

 

 

 
Scheme C.1. Synthesis of OXi6196 

 

The synthesis to OXi6196 was begin with 6-methoxy-1-tetralone which is 

commercially available. Regioselective bromination of the tetralone followed by lithium 

halogen exchange provided a means to direct the hydroxylation to the correct  position 

with a 69% yield in 2 steps.49,187,188 The phenolic tetralone S3 was subsequently 

converted to its corresponding silyl ether S4 upon treatment with TBSCl.  Installation of 

the trimethoxy aryl ring and elimination of the resulting tertiary alcohol to generate the 

OXi6196 core structure was accomplished in a one-pot reaction. The appropriate 

aryllithium intermediate (prepared in situ from the corresponding aryl bromide) was 

allowed to  react  with  the  tetralone,  the  resulting  tertiary  alcohol  (in  situ)  was  

treated  with  triethyl  amine  and  mesly  chloride  to furnish  the  OXi6196-silyl  ether  

derivative S5.189 Desilylation  with  TBAF  afforded  OXi6196  in  a  5-step  synthesis  

with  a 36% yield overall. 
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5-Bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-one S2 

6-methoxy-1-tetralone S1 (1.06 g, 6.02 mmol) was stirred in 60 mL of H2O. N-

bromosuccinimide (1.07g, 6.01 mmol) was added and the reaction mixture was heated to 

60 °C. H2SO4 (0.67 mL) was then added to the reaction mixture and the reaction was 

heated for 5 hours. The reaction was extracted with EtOAc and the organic layers were 

dried over Na2SO4 and filtered. The solvent was then removed in vacuo and the resulting 

solid was dissolve in methanol and recrystallized. The crystals were filtered and washed 

with cold methanol affording 5-bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-one S2 

(1.22 g, 4.78 mmol, 81% yield) as a white solid.  

1H NMR (CDCl3, 600 MHz): δ 8.09 (1H, d, J = 8.7 Hz), 6.91 (1H, d, J = 8.7 Hz), 

4.00 (3H, s), 3.06 (2H, t, J = 6.2 Hz), 2.66 (2H, m), 2.15 (2H, p, J = 6.3 Hz).  

13C NMR (CDCl3, 151 MHz): δ 196.8, 159.8, 145.5, 128.4, 127.6, 113.0, 109.6, 

56.5, 38.0, 30.5, 22.5. 

HRMS, m/z: observed 255.0016 [M + H]+, (calcd for C11H12BrO2
+ 255.0015). 

 

5-Hydroxy-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (S3)  

To a well-stirred solution of 5-bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-

one S2 (0.50 g, 1.96 mmol) in Et2O at -78 °C, n-BuLi (4.90 mL, 7.84 mmol) was added 

dropwise. After the addition was complete, the reaction mixture was stirred at -78 °C for 

1 hour then allowed to warm to room temperature. B(OMe)3 (0.45 mL, 3.92 mmol) was 

added dropwise and the reaction mixture was stirred for 1 hour at room temperature. 

Glacial acetic acid (0.22 mL) was added dropwise, followed by the addition of 35 wt.% 

H2O2 (0.48 mL) added dropwise. The reaction mixture was then stirred at room 

temperature for 12 hours. Saturated NH4Cl (20 mL) was added to the solution and the 
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mixture was extracted with Et2O (3 x 50 mL). The combined organic phases were washed 

with brine and dried over Na2SO4, filtered, and concentrated in vacuo. Purification by 

flash column chromatography afforded the phenol S3 (0.32 g, 1.66 mmol, 85% yield) as a 

tan solid.  

1H NMR (CDCl3, 600 MHz): δ 7.70 (1H, d, J = 8.6 Hz), 6.86 (1H, d, J = 8.6 Hz), 

5.76 (1H, s), 3.98 (3H, s), 2.95 (2H, t, J = 6.2 Hz), 2.65 (2H, m), 2.13 (2H, p, J = 6.4 Hz).  

13C NMR (CDCl3, 151 MHz): δ 197.9, 149.9, 141.9, 130.4, 126.8, 120.0, 108.3, 

56.1, 38.8, 22.9, 22.7. 

HRMS, m/z: observed 215.0679 [M + Na]+, (calcd for C11H12NaO3
+ 215.0679). 

 

5-((tert-Butyldimethylsilyl)oxy)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (S4) 

5-hydroxy-6-methoxy-3,4-dihydronaphthalen-1(2H)-one S3 (1.05 g, 5.46 mmol) 

was stirred in 10 mL of CH2Cl2 at 0 °C. Triethylamine (0.84 mL, 6.03 mmol) and DMAP 

(0.27 g, 2.18 mmol) were then added. The reaction was stirred for an additional 10 

minutes before adding TBSCl (0.90g, 5.97 mmol). The reaction was quenched with 100 

mL of H2O after 1 hour. The reaction was extracted with CH2Cl2 (3x 100 mL) and the 

organic layer was dried over sodium sulfate. The organic layer was then filtered and the 

solvent was removed in vacuo. The crude mixture was purified by flash chromatography 

afforded the silyl ether S4 (1.58 g, 5.16 mmol, 95% yield) as an orange oil.  

1H NMR (CDCl3, 600 MHz): δ 7.54 (1H, d, J = 8.6 Hz), 6.64 (1H, d, J = 8.7 Hz), 

3.67 (3H, s), 2.72 (2H, t, J = 6.1 Hz), 2.42 (2H, m), 1.89 (2H, p, J = 6.4 Hz), 0.83 (9H, s), 

0.00 (6H, s).  

13C NMR (CDCl3, 151 MHz): δ 198.0, 154.0, 141.3, 136.1, 126.8, 121.5, 109.2, 

54.9, 38.7, 26.1, 24.4, 22.9, 18.9, -3.8. 
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HRMS, m/z: observed 307.1727 [M + H]+, (calcd for C17H27O3Si+ 307.1724). 

 

tert-Butyl((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-

yl)oxy)dimethylsilane (S5) 

 

To a solution of 3,4,5- trimethoxybromobenzene (1.62g, 6.55 mmol) in anhydrous 

THF (20 mL), n-BuLi (2.62 mL, 6.55 mmol) was added dropwise at -78 °C. The reaction 

mixture was stirred for 30 minutes at -78 °C. A solution of 5-((tert-

butyldimethylsilyl)oxy)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one S4 (1.00g, 3.27 

mmol) in THF (10 mL) was added dropwise and the reaction mixture was then allowed 

warm to 0 °C over 3 hours. The reaction was then cooled to -78 oC and triethylamine 

(3.68 mL, 26.16 mmol) and MsCl (1.01 mL, 13.08 mmol) were added dropwise to the 

solution. The reaction was allowed to warm to room temperature over a period of 8 

hours. The reaction was quenched with H2O (100 mL) and the reaction mixture was then 

extracted with EtOAc (2 x 100 mL). The combined organic phases were washed with 

brine and dried over sodium sulfate, filtered and the solvent was evaporated under 

reduced pressure. The resulting crude product was then subjected to flash column 

chromatography to afford tert-butyl((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-

dihydronaphthalen-1-yl)oxy)dimethylsilane S5 (0.82g, 1.80 mmol, 55% yield).  

1HNMR (CDCl3, 600 MHz): δ 6.44 (1H, d, J = 8.4 Hz), 6.40 (1H, d, J = 8.5 Hz), 

6.37 (2H, s), 5.75 (1H, t, J = 4.6 Hz), 3.69 (3H, s), 3.65 (6H, s), 3.58 (3H, s), 2.69-2.64 

(2H, m), 2.13 (2H, td, J = 7.9, 4.7 Hz), 0.83 (9H, s), 0.00 (6H, s).  

13C NMR (CDCl3, 151 MHz): δ 152.9, 149.7, 141.4, 139.8, 137.0, 137.0, 128.7, 

128.1, 124.9, 118.9, 108.1, 106.0, 60.9, 56.1, 26.1, 23.1 21.7, 18.9, -3.9.  
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2-Methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-ol (OXi6196) 

tert-Butyl((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-

yl)oxy)dimethylsilane S5 (0.82g, 1.80 mmol) was dissolved in THF and cooled to 0 °C. 

TBAF (0.71g, 2.70mmol) was added to the solution. The reaction was stirred 30 minutes 

and then quenched with 50 mL of H2O. The aqueous layer was then extracted with 

EtOAc (3x 100 mL) and the organic layer was dried over Na2SO4. The Organic layer was 

then filtered and the solvent was removed in vacuo. Purification by flash chromatography 

afforded 2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-ol OXi6196 

(0.62 g, 1.80 mmol, quantitative yield) as a white solid.  

1H NMR (CDCl3, 600 MHz): δ 6.65 (1H, d, J = 8.4 Hz), 6.61 (1H, d, J = 8.4 Hz), 

6.58 (2H, s), 5.99 (1H, t, J = 4.7 Hz), 5.74 (1H, s), 3.86 (6H, s), 2.93 (2H, t, J = 8.4 Hz), 

2.40 (2H, td, J = 8.0, 4.7 Hz).  

13C NMR (CDCl3, 151 MHz): δ 152.9, 145.8, 142.0, 139.5, 136.9, 129.0, 125.4, 

122.3, 117.4, 107.2, 105.8, 61.0, 56.1, 56.0, 22.8, 20.2. 

HRMS, m/z: observed 343.1541 [M + H]+, (calcd for C20H23O5
+ 343.1540). 
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Synthesis of KGP18 

 

 
 

Scheme C.2. Synthesis of KGP18  

 

The KGP18 synthesis developed by the Pinney Research Group utilizes two key 

reactions to generate the benzosuberene CA4 analogue- a cyclization employing Eaton’s 

reagent to form the seven membered ring and a lithium-halogen exchange to install the 

trimethoxy aryl ring system.51 The Wittig olefination reaction was used to generate 

alkene S7 from phosphonium salt S6 and 2,3 dimethoxybenzaldehyde (Scheme C2). 

Reduction of alkene S7 yielded carboxylic acid S8, which was then cyclized, upon 

treatment with Eaton’s reagent, to produce benzosuberene S9. Benzosuberene S9 was 

demethylated by ionic liquid to generate phenol S10, which was then silylated to form the 

protected benzosuberene S11. Installation of the trimethoxy aryl ring and elimination of 

the resulting tertiary alcohol to generate S13, which was then deprotected to yield 

KGP18. 
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5-(2,3-Dimethoxyphenyl)pent-4-enoic acid S7  

(2-Carboxyethyl)triphenylphosphonium bromide S6 (16.7 g, 39.0 mmol) was 

dissolved in THF (400 mL). Potassium tert-butoxide (11.7 g, 104 mmol) was added to 

the reaction and it was stirred for 1 h at room temperature. 2,3-Dimethoxybenzaldehyde 

(5.39 g, 32.0 mmol) was added to the reaction mixture and it was stirred for 8 h. The 

reaction was then quenched with HCl (2 M, 50 mL) and evaporated under reduced 

pressure. EtOAc (80 mL) was added to the residue and the layers were partitioned. The 

aqueous layer was extracted with EtOAc (3 x 40 mL). The combined organic layers were 

washed with brine (50 mL), dried over Na2SO4, and evaporated under reduced pressure. 

The crude product was purified by flash chromatography using a pre-packed 100 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  50%A / 50%B (13 CV), 50%A / 50%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] to afford compound S7 (6.00 g, 25.4 mmol, 65%) as a 

light yellow solid.  NMR characterization was conducted after the next step. 

 

5-(2,3-Dimethoxyphenyl)pentanoic acid S8  

5-(2,3-Dimethoxyphenyl)pent-4-enoic acid S7 (5.39 g, 21.5 mmol) was added to 

an empty flask flushed under N2, followed by 10 % palladium on carbon (0.430 g, 0.404 

mmol). Methanol (100 mL) was added slowly to the reagents, and then the flask was 

purged under N2. The flask was placed under vacuum, and then H2 was added and the 

reaction was stirred for 12 h at room temperature. The reaction was then filtered through 

Celite in a frit funnel, rinsed with EtOAc (3 x 50 mL), and the combined organic phases 

were evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 
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hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  40%A / 60%B (13 CV), 40%A / 

60%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound S8 (6.00 g, 25.4 mmol, 77%) as a clear oil.     

1H NMR (500 MHz, CDCl3) δ 6.97 (1H, t, J = 7.9 Hz), 6.76 (2H, m), 3.85 (3H, 

s), 3.81 (3H, s), 2.64 (2H, t, J = 7.3 Hz), 2.38 (2H, t, J = 7.1 Hz), 1.74 – 1.60 (4H, m). 

13C NMR (125 MHz, CDCl3) δ 179.5, 152.7, 147.0, 135.9, 123.8, 121.8, 110.1, 

60.6, 55.6, 33.8, 30.1, 29.4, 24.5. 

 

1,2-Dimethoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one S9  

5-(2,3-Dimethoxyphenyl)pentanoic acid S8 (3.55 g, 14.9 mmol) was dissolved in 

Eaton’s reagent (29 mL, 7.7 wt.%) and stirred for 12 h at room temperature. The reaction 

was poured over ice and neutralized with saturated sodium bicarbonate. The layers were 

partitioned, then the aqueous layer was extracted with EtOAc (3 x 50 mL). The combined 

organic layers were washed with brine (40 mL), dried over Na2SO4, and evaporated 

under reduced pressure. The crude product was purified by flash chromatography using a 

pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 

93%B (1 CV), 7%A / 93%B  40%A / 60%B (13 CV), 40%A / 60%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound S9 (2.22 g, 10.1 

mmol, 68%) as a yellow solid.  

1H NMR (500 MHz, CDCl3) δ 7.53 (1H, d, J = 8.6 Hz), 6.84 (1H, d, J = 8.6 Hz), 

3.90 (3H, s), 3.79 (3H, s), 3.00 (2H, t, J = 6.1 Hz), 2.69 (2H, t, J = 6.1 Hz), 1.89 – 1.81 

(2H, m), 1.81 – 1.72 (2H, m). 

13C NMR (125 MHz, CDCl3) δ 204.9, 156.1, 145.9, 135.7, 132.8, 125.5, 109.7, 

61.1, 55.8, 40.6, 24.9, 23.2, 20.9. 
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1-Hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one S10  

[TMAH][Al2Cl7] (18.3 mL, 9.08 mmol) was added to 1,2-dimethoxy-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-one S9 (1.01 g, 4.54 mmol) in a 20 mL microwave 

vial. The reaction mixture was then exposed to microwave irradiation for 1 h on high 

absorbance at 80 °C. The reaction was then poured into water (50 mL) and EtOAc (40 

mL) was added. The layers were partitioned and the aqueous layer was extracted (3 x 40 

mL). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, 

and evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 50 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  60%A / 40%B (13 CV), 60%A / 

40%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 nm] to afford compound 

S10 (0.590 g, 2.86 mmol, 63%) as a yellow solid.    

1H NMR (500 MHz, CDCl3) δ 7.34 (1H, d, J = 8.5 Hz), 6.79 (1H, d, J = 8.5 Hz), 

5.77 (1H, s), 3.94 (3H, s), 3.01 (2H, dd, J = 7.2, 5.0 Hz), 2.76 – 2.66 (2H, m), 1.83 (4H, 

m). 

13C NMR (125 MHz, CDCl3) δ 205.1, 149.2, 142.4, 133.3, 127.7, 120.8, 107.9, 

56.1, 40.8, 24.5, 23.0, 21.3. 

 

1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one 

S11  

 

1-Hydroxy-2-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one S10 (2.00 g, 

9.70 mmol) was dissolved in CH2Cl2 (80 mL). Triethylamine (1.64 mL, 11.6 mmol), tert-

butyldimethylsilyl chloride (1.61 g, 10.7 mmol) and DMAP (0.0650 g, 0.532 mmol) were 

added to the reaction mixture and it was stirred for 8 h. The reaction was quenched with 
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water (40 mL) and the layers were partitioned. The aqueous layer was extracted with 

CH2Cl2 (3 x 40 mL). The combined organic layers were washed with brine (50 mL), 

dried over Na2SO4, and evaporated under reduced pressure. The crude product was 

purified by flash chromatography using a pre-packed 50 g silica column [solvent A: 

EtOAc; solvent B: hexanes; gradient 2%A / 98%B (1 CV), 2%A / 98%B  20%A / 

80%B (13 CV), 20%A / 80%B (2 CV); flow rate: 50 mL/min; monitored at 254 and 280 

nm] to afford compound S11 (2.18 g, 6.79 mmol, 70%) as light tan crystals. 

1H NMR (500 MHz, CDCl3) δ 7.37 (1H, d, J = 8.5 Hz), 6.76 (1H, d, J = 8.6 Hz), 

3.82 (3H, s), 3.00 (2H, dd, J = 7.0, 5.1 Hz), 2.69 (2H, dd, J = 7.3, 4.4 Hz), 1.84 – 1.73 

(4H, m), 1.01 (9H, s), 0.18 (6H, s). 

13C NMR (125 MHz, CDCl3) δ 205.3, 153.2, 141.7, 133.1, 133.1, 122.3, 108.7, 

54.8, 40.7, 26.1, 25.6, 24.7, 23.9, 21.2, -3.9. 

 

1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-ol S12  

 

3,4,5-Trimethoxybromobenzene (4.13 g, 16.7 mmol) was dissolved in THF (80 

mL) at -78 °C. n-Butyllithium (1.6M, 7.06 mL, 16.8 mmol) was added dropwise to the 

reaction mixture and it was stirred for 1 h. 1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-

6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one S11 (3.99 g, 12.4 mmol) was added to the 

reaction mixture and it was stirred for 8 h while warming from -78 °C to room 

temperature. The reaction was quenched with water (50 mL) and the layers were 

partitioned. The aqueous layer was extracted with EtOAc (3 x 60 mL). The combined 

organic layers were washed with brine (60 mL), dried over Na2SO4, and evaporated 

under reduced pressure. The crude product was purified by flash chromatography using a 
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pre-packed 100 g silica column [solvent A: EtOAc; solvent B: hexanes; gradient 7%A / 

93%B (1 CV), 7%A / 93%B  60%A / 40%B (13 CV), 60%A / 40%B (2 CV); flow 

rate: 100 mL/min; monitored at 254 and 280 nm] to afford compound S12 (4.57 g, 9.35 

mmol, 56%) as a clear oil. NMR characterization was performed after the next step. 

 

tert-butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-

yl)oxy)dimethylsilane S13 
 

 1-((tert-Butyldimethylsilyl)oxy)-2-methoxy-5-(3,4,5-trimethoxyphenyl)-6,7,8,9-

tetrahydro-5H-benzo[7]annulen-5-ol S12 (4.57 g, 9.35 mmol) was dissolved in glacial 

acetic acid (50 mL) and the reaction mixture was stirred for 12 h at room temperature. 

The reaction was quenched with water (50 mL), the mixture was evaporated under 

reduced pressure, and the residue was dissolved in EtOAc (60 mL) and water (40 mL). 

The layers were partitioned, and then the aqueous layer was extracted with EtOAc (3 x 50 

mL). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, 

and evaporated under reduced pressure. The crude product was purified by flash 

chromatography using a pre-packed 100 g silica column [solvent A: EtOAc; solvent B: 

hexanes; gradient 7%A / 93%B (1 CV), 7%A / 93%B  60%A / 40%B (13 CV), 60%A / 

40%B (2 CV); flow rate: 100 mL/min; monitored at 254 and 280 nm] to afford 

compound S13 (3.61 g, 7.67 mmol, 82%) as a clear oil.  

1H NMR (500 MHz, CDCl3) δ 6.69 (1H d, J = 8.5 Hz), 6.61 (1H, d, J = 8.4 Hz), 

6.48 (2H, s), 6.32 (1H, t, J = 7.3 Hz), 3.85 (3H, s), 3.80 (3H, s), 3.79 (6H, s), 2.76 (2H, t, 

J = 6.9 Hz), 2.10 (2H, p, J = 7.1 Hz), 1.95 (2H, q, J = 7.2 Hz), 1.04 (9H, s), 0.23 (6H, s). 

13C NMR (125 MHz, CDCl3) δ 152.8, 148.6, 143.0, 141.5, 138.6, 137.2, 133.8, 

133.3, 126.9, 122.4, 108.3, 105.2, 60.9, 56.1, 54.6, 33.9, 26.2, 25.6, 24.2, 19.0, 3.8. 
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3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol OXi6196 

tert-Butyl((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-

benzo[7]annulen-4-yl)oxy)dimethylsilane S13 (3.61 g, 7.67 mmol) was dissolved in THF 

(80 mL). TBAF (1M, 9.00 mL, 9.00 mmol) was added dropwise to the reaction mixture 

and it was stirred for 12 h at room temperature. The reaction was quenched with water 

(50 mL), the mixture was evaporated under reduced pressure, and the residue was 

dissolved in EtOAc (60 mL) and water (40 mL). The layers were partitioned, and then the 

aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were 

washed with brine (50 mL), dried over Na2SO4, and evaporated under reduced pressure. 

The crude product was purified by flash chromatography using a pre-packed 100 g silica 

column [solvent A: EtOAc; solvent B: hexanes; gradient 10%A / 90%B (1 CV), 10%A / 

90%B  80%A / 20%B (13 CV), 80%A / 20%B (2 CV); flow rate: 100 mL/min; 

monitored at 254 and 280 nm] to afford OXi6196 (2.40 g, 6.73 mmol, 88%) as a white 

solid.  

1H NMR (500 MHz, CDCl3) δ 6.71 (1H, d, J = 8.4 Hz), 6.57 (1H, d, J = 8.4 Hz), 

6.50 (2H, s), 6.33 (1H, t, J = 7.4 Hz), 3.91 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.76 (2H, t, 

J = 7.0 Hz), 2.14 (2H, p, J = 7.1 Hz), 1.96 (2H, q, J = 7.2 Hz). 

13C NMR (125 MHz, CDCl3) δ 152.8, 145.0, 142.8, 142.3, 138.5, 137.2, 134.2, 

127.7, 127.2, 120.8, 107.6, 105.2, 60.9, 56.1, 55.9, 33.6, 25.7, 23.5. 
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1H NMR of 2-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-5-nitrothiophene 
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13C NMR of 2-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-5-nitrothiophene 10
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HRMS of 2-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-5-nitrothiophene 10
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HPLC traces of Compound 10
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1H NMR of 2-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-5-nitrothiophene 11
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13C NMR of 2-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-5-nitrothiophene 11
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HRMS of 2-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-5-nitrothiophene 11
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HPLC traces of Compound 11



260 

 



261 

 



262 

 

 

 



263 

 

1H NMR of 5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole
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13C NMR of 5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole 12
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HRMS of 5-(((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)methyl)-1-methyl-2-nitro-1H-imidazole 12
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HPLC traces of compound 12
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1H NMR of 5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole 13 
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13C NMR of 5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole 13
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HRMS of 5-(1-((2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphthalen-1-yl)oxy)ethyl)-1-methyl-2-nitro-1H-imidazole 13
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HPLC traces of Compound 13
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1H NMR of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-5-nitrothiophene 14
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13C NMR of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-5-nitrothiophene 14
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HRMS of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-5-nitrothiophene 14
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HPLC traces of Compound 14
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1H NMR of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-5-nitrothiophene 15
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13C NMR of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-5-nitrothiophene 15
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HRMS of 2-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-5-nitrothiophene 15
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HPLC traces of compound 15
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1H NMR of 5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-1-methyl-2-nitro-1H-

imidazole 16 
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1H NMR of 5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-1-methyl-2-nitro-1H-

imidazole 16 

 



289 

 

HRMS of 5-(((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)methyl)-1-methyl-2-nitro-1H-

imidazole 16 
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HPLC traces of compound 16
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1H NMR of 5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-1-methyl-2-nitro-1H-

imidazole 17 
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13C NMR of 5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-1-methyl-2-nitro-1H-

imidazole 17 
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HRMS of 5-(1-((3-methoxy-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-yl)oxy)ethyl)-1-methyl-2-nitro-1H-

imidazole 17 
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HPLC traces of Compound 17
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APPENDIX D 

 

Mechanistic Considerations in the Synthesis of 2-Aryl-Indole Analogues under Bischler-

Mohlau Conditions 

 

 

This appendix published as: MacDonough, M. T.; Shi, Z.; Pinney, K. G. Mechanistic 

considerations in the synthesis of 2-aryl-indole analogues under Bischler–Mohlau 

conditions. Tetrahedron Letters, 2015, 56, 3624-3629. 

 

 

The author Zhe Shi contributed to this manuscript through re-synthesis of the 13C 

isotope labelled indole analogue and full characterization of this final compound 

including NMR, HPLC, HRMS and crystallization. In addition, Zhe Shi contributed a 

significant amount to the preparation of the supporting material and editing of the 

manuscript. 
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1H NMR (500 MHz, CDCl3) of Compound 11 
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13C NMR (125 MHz, CDCl3) of Compound 11 
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1H NMR (500 MHz, CDCl3) of Compound 12 
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13C NMR (125 MHz, CDCl3) of Compound 12 
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13C NMR (125 MHz, CDCl3) of Compound 12 
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HRMS of Compound 12 
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1H NMR (500 MHz, CDCl3) of Compound 13 
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13C NMR (125 MHz, CDCl3) of Compound 13 
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13C NMR (125 MHz, CDCl3) of Compound 13 
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HRMS of Compound 13 
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1H NMR (500 MHz, CDCl3) of Compound 14 
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13C NMR (125 MHz, CDCl3) of Compound 14 
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13C NMR (500 MHz, CDCl3) of Compound 14 
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1H NMR (500 MHz, CDCl3) of Compound 15 
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13C NMR (125 MHz, CDCl3) of Compound 15 
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13C NMR (125 MHz, CDCl3) of Compound 15 
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HRMS of Compound 15 
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1H NMR (500 MHz, CDCl3) of Compound 16 
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13C NMR (125 MHz, CDCl3) of Compound 16 
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13C NMR (125 MHz, CDCl3) of Compound 16 
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HRMS of Compound 16 
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X-ray Crystallographic Data for 13C Labeled Indole 16 

X-ray crystallographic data were collected at 110 K on a Bruker X8 Apex using Mo KR 

radiation (λ = 0.71073 Å). The structure was solved by direct methods after correction of 

the data using SADABS. All data were processed using the Bruker AXS SHELXTL 

software, version 6.10. 
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Table D.1.  Crystal data and structure refinement for Indole 16. 

Identification code  kp66 

Empirical formula  C22 H29 N O3 Si 

Formula weight  383.55 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 12.5182(6) Å = 90°. 

 b = 23.1476(10) Å = 100.7843(17)°. 

 c = 7.5208(3) Å  = 90°. 

Volume 2140.79(16) Å3 

Z 4 

Density (calculated) 1.190 Mg/m3 

Absorption coefficient 0.130 mm-1 

F(000) 824 

Crystal size 0.38 x 0.16 x 0.12 mm3 

Theta range for data collection 2.42 to 26.85°. 

Index ranges -15<=h<=15, -29<=k<=25, -9<=l<=9 

Reflections collected 25973 

Independent reflections 4565 [R(int) = 0.0410] 

Completeness to theta = 26.85° 99.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9843 and 0.9526 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4565 / 0 / 251 

Goodness-of-fit on F2 1.569 

Final R indices [I>2sigma(I)] R1 = 0.0419, wR2 = 0.1071 

R indices (all data) R1 = 0.0590, wR2 = 0.1115 

Largest diff. peak and hole 0.307 and -0.225 e.Å-3 
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 Table D.2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for indole 16.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Si(1) -2359(1) 615(1) 10812(1) 28(1) 

O(1) -1718(1) 1161(1) 9999(1) 29(1) 

O(2) -1373(1) 1655(1) 13280(1) 33(1) 

O(3) 5990(1) 2021(1) 6358(1) 33(1) 

N(1) 2891(1) 1943(1) 9526(2) 25(1) 

C(1) -729(1) 1406(1) 10656(2) 25(1) 

C(2) -534(1) 1682(1) 12347(2) 25(1) 

C(3) 451(1) 1958(1) 12936(2) 27(1) 

C(4) 1238(1) 1962(1) 11862(2) 27(1) 

C(5) 1069(1) 1687(1) 10190(2) 23(1) 

C(6) 65(1) 1405(1) 9622(2) 25(1) 

C(7) 1881(1) 1681(1) 9018(2) 24(1) 

C(8) 1838(1) 1437(1) 7346(2) 26(1) 

C(9) 2848(1) 1544(1) 6794(2) 25(1) 

C(10) 3495(1) 1863(1) 8189(2) 24(1) 

C(11) 4555(1) 2038(1) 8135(2) 25(1) 

C(12) 4965(1) 1880(1) 6621(2) 26(1) 

C(13) 4339(1) 1563(1) 5201(2) 29(1) 

C(14) 3297(1) 1398(1) 5277(2) 29(1) 

C(15) -1193(1) 1901(1) 15046(2) 45(1) 

C(16) 6666(1) 2332(1) 7773(2) 38(1) 

C(17) -3537(1) 901(1) 11724(2) 45(1) 

C(18) -1395(1) 230(1) 12588(2) 45(1) 

C(19) -2826(1) 149(1) 8766(2) 34(1) 

C(20) -3455(1) -377(1) 9276(2) 43(1) 

C(21) -1833(2) -63(1) 8029(3) 57(1) 

C(22) -3569(2) 496(1) 7300(3) 59(1) 

________________________________________________________________________________ 
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 Table D.3.   Bond lengths [Å] and angles [°] for indole 16. 

_____________________________________________________  

Si(1)-O(1)  1.6721(10) 

Si(1)-C(18)  1.8536(16) 

Si(1)-C(17)  1.8602(16) 

Si(1)-C(19)  1.8804(16) 

O(1)-C(1)  1.3674(16) 

O(2)-C(2)  1.3690(17) 

O(2)-C(15)  1.4236(18) 

O(3)-C(12)  1.3744(17) 

O(3)-C(16)  1.4253(17) 

N(1)-C(10)  1.3785(17) 

N(1)-C(7)  1.3892(17) 

C(1)-C(6)  1.3717(19) 

C(1)-C(2)  1.403(2) 

C(2)-C(3)  1.386(2) 

C(3)-C(4)  1.385(2) 

C(4)-C(5)  1.3909(19) 

C(5)-C(6)  1.4090(19) 

C(5)-C(7)  1.4651(19) 

C(7)-C(8)  1.3703(19) 

C(8)-C(9)  1.4244(19) 

C(9)-C(14)  1.404(2) 

C(9)-C(10)  1.4078(19) 

C(10)-C(11)  1.3953(19) 

C(11)-C(12)  1.382(2) 

C(12)-C(13)  1.4077(19) 

C(13)-C(14)  1.371(2) 

C(19)-C(22)  1.531(2) 

C(19)-C(21)  1.533(2) 

C(19)-C(20)  1.538(2) 

 

O(1)-Si(1)-C(18) 109.52(6) 

O(1)-Si(1)-C(17) 109.55(7) 

C(18)-Si(1)-C(17) 111.09(8) 
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O(1)-Si(1)-C(19) 103.37(6) 

C(18)-Si(1)-C(19) 111.97(8) 

C(17)-Si(1)-C(19) 111.05(7) 

C(1)-O(1)-Si(1) 130.24(9) 

C(2)-O(2)-C(15) 117.18(12) 

C(12)-O(3)-C(16) 116.89(11) 

C(10)-N(1)-C(7) 109.62(12) 

O(1)-C(1)-C(6) 119.82(12) 

O(1)-C(1)-C(2) 120.58(13) 

C(6)-C(1)-C(2) 119.54(13) 

O(2)-C(2)-C(3) 125.42(13) 

O(2)-C(2)-C(1) 115.06(12) 

C(3)-C(2)-C(1) 119.52(14) 

C(4)-C(3)-C(2) 120.28(14) 

C(3)-C(4)-C(5) 121.31(13) 

C(4)-C(5)-C(6) 117.51(13) 

C(4)-C(5)-C(7) 122.88(13) 

C(6)-C(5)-C(7) 119.61(12) 

C(1)-C(6)-C(5) 121.83(13) 

C(8)-C(7)-N(1) 108.04(12) 

C(8)-C(7)-C(5) 130.01(13) 

N(1)-C(7)-C(5) 121.95(12) 

C(7)-C(8)-C(9) 108.10(12) 

C(14)-C(9)-C(10) 118.06(13) 

C(14)-C(9)-C(8) 134.94(13) 

C(10)-C(9)-C(8) 106.99(12) 

N(1)-C(10)-C(11) 129.53(13) 

N(1)-C(10)-C(9) 107.25(12) 

C(11)-C(10)-C(9) 123.21(13) 

C(12)-C(11)-C(10) 116.66(13) 

O(3)-C(12)-C(11) 123.82(13) 

O(3)-C(12)-C(13) 114.63(12) 

C(11)-C(12)-C(13) 121.54(13) 

C(14)-C(13)-C(12) 120.84(13) 

C(13)-C(14)-C(9) 119.67(13) 
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C(22)-C(19)-C(21) 109.39(15) 

C(22)-C(19)-C(20) 108.96(13) 

C(21)-C(19)-C(20) 108.91(13) 

C(22)-C(19)-Si(1) 110.02(11) 

C(21)-C(19)-Si(1) 109.30(11) 

C(20)-C(19)-Si(1) 110.23(11) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table D.4.   Anisotropic displacement parameters  (Å2x 103) for indole 16.  The anisotropic 

displacement factor exponent takes the form:  -22[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Si(1) 24(1)  25(1) 35(1)  0(1) 7(1)  -4(1) 

O(1) 25(1)  29(1) 32(1)  1(1) 2(1)  -7(1) 

O(2) 31(1)  35(1) 35(1)  -7(1) 12(1)  -2(1) 

O(3) 28(1)  38(1) 33(1)  -6(1) 10(1)  -6(1) 

N(1) 26(1)  25(1) 24(1)  -2(1) 4(1)  -4(1) 

C(1) 24(1)  18(1) 30(1)  3(1) 1(1)  -3(1) 

C(2) 27(1)  22(1) 28(1)  2(1) 6(1)  1(1) 

C(3) 30(1)  26(1) 25(1)  -2(1) 2(1)  0(1) 

C(4) 24(1)  24(1) 30(1)  0(1) -1(1)  -4(1) 

C(5) 25(1)  19(1) 25(1)  4(1) 2(1)  -1(1) 

C(6) 29(1)  20(1) 24(1)  1(1) 2(1)  -3(1) 

C(7) 23(1)  19(1) 28(1)  3(1) 1(1)  -2(1) 

C(8) 25(1)  21(1) 29(1)  -1(1) -1(1)  -2(1) 

C(9) 28(1)  19(1) 26(1)  1(1) 1(1)  0(1) 

C(10) 29(1)  18(1) 24(1)  2(1) 4(1)  0(1) 

C(11) 26(1)  22(1) 27(1)  -2(1) 2(1)  -2(1) 

C(12) 28(1)  23(1) 29(1)  3(1) 6(1)  0(1) 

C(13) 34(1)  26(1) 28(1)  -3(1) 9(1)  2(1) 

C(14) 32(1)  25(1) 28(1)  -5(1) 1(1)  0(1) 

C(15) 38(1)  67(1) 32(1)  -5(1) 10(1)  9(1) 

C(16) 30(1)  45(1) 42(1)  -10(1) 12(1)  -10(1) 

C(17) 36(1)  46(1) 58(1)  -10(1) 19(1)  -9(1) 

C(18) 47(1)  36(1) 48(1)  10(1) 0(1)  -4(1) 

C(19) 32(1)  26(1) 42(1)  -3(1) 6(1)  -7(1) 

C(20) 35(1)  32(1) 60(1)  -4(1) 6(1)  -8(1) 

C(21) 54(1)  50(1) 75(1)  -29(1) 29(1)  -18(1) 

C(22) 77(2)  43(1) 48(1)  0(1) -14(1)  -12(1) 

______________________________________________________________________________   
NOTE: 
Crystallographic data for 13C labeled indole regioisomer 16 presented in this paper have been deposited with the Cambridge 

Crystallographic Data Centre (CCDC deposition number 1041417). Copies of the data can be obtained, free of charge, on application 
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.Uk). 
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1H NMR (500 MHz, CDCl3) of Compound 2 
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13C NMR (125 MHz, CDCl3) of Compound 2 
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1H NMR (500 MHz, CDCl3) of Compound 4
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13C NMR (125 MHz, CDCl3) of Compound 4
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1H NMR (600 MHz, CDCl3) of Compound 5 
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13C NMR (150 MHz, CDCl3) of Compound 5 
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1H NMR (DMSO-d6, 600 MHz) of Compound 6 

 

 



 

 

13C NMR (DMSO-d6, 600 MHz) of Compound 6 

 

 



 

 

1H NMR (DMSO-d6, 600 MHz) of Compound 7 
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13C-NMR (DMSO-d6, 150 MHz) of Compound 7 
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Mass Spec of Compound 7 
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1H NMR (DMSO-d6, 600 MHz) of Compound 9 
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13C NMR (DMSO-d6, 150 MHz) of Compound 9 
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HPLC of Compound 7 (KGP94)
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